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RÉSUMÉ

Ce mémoire présente un nouvel algorithme métaheuristique de recherche taboue

pour trouver des solutions optimales ou sous-optimales au problème de minimisation de

la longueur des dépendances d’une matrice de conception (FLMP). Ce problème com-

porte une fonction économique non-linéaire et il appartient à la classe N P − ardu. Il

s’ensuit qu’il est très difficile à trouver une solution optimale exacte en temps réel pour

les problèmes de taille moyenne ou grande.

D’abord, on présente le problème et une revue de la littérature associée. Ensuite, on

analyse le problème, et on présente les détails du nouvel algorithme de recherche ta-

boue produisant des solutions au problème de réduction de l’effet de retour en utilisant

deux voisinages différents, le premier basé sur l’échange des positions de deux activi-

tés ("swap"), et le second sur le déplacement d’une activité à une position différente

("shift"). Des résultats numériques permettent d’analyser le comportement de l’algo-

rithme et de comparer les deux voisinages. La première étape consiste à déterminer de

bonnes valeurs pour les paramètres en utilisant des problèmes générés aléatoirement.

Ensuite nos résultats sont comparés avec ceux obtenus dans la littérature.

On conclut que l’algorithme de recherche taboue proposé est très prometteur, car nos

résultats sont meilleurs que ceux publiés dans la litérature. D’autant plus que la recherche

taboue semble avoir été utilisée pour la première fois sur ce problème.

Mots clés : gestion de projet, métaheuristique, le probleme de minimisation du lon-

geur des dépendances, matrice de conception.



ABSTRACT

This paper proposes and investigates a metaheuristic tabu search algorithm (TSA)

that generates optimal or near optimal solutions sequences for the feedback length mini-

mization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a

non-linear combinatorial optimization problem, belonging to the N P−hard class, and

therefore finding an exact optimal solution is very hard and time consuming, especially

on medium and large problem instances.

First, we introduce the subject and provide a review of the related literature and prob-

lem definitions. Using the tabu search method (TSM) paradigm, this paper presents a

new tabu search algorithm that generates optimal or sub-optimal solutions for the feed-

back length minimization problem, using two different neighborhoods based on swaps

of two activities and shifting an activity to a different position. Furthermore, this paper

includes numerical results for analyzing the performance of the proposed TSA and for

fixing the proper values of its parameters. Then we compare our results on benchmarked

problems with those already published in the literature.

We conclude that the proposed tabu search algorithm is very promising because it

outperforms the existing methods, and because no other tabu search method for the

FLMP is reported in the literature. The proposed tabu search algorithm applied to the

process layer of the multidimensional design structure matrices proves to be a key opti-

mization method for an optimal product development.

Keywords: project management, metaheuristic, feedback length minimization prob-

lem, design structure matrix
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CHAPTER 1

INTRODUCTION

In today’s highly concurrent markets, efficient product design is crucial to the suc-

cess of many corporations and businesses [16] [18]. In recent years, many industries

and engineering organizations have focused on concurrent product design in order to

quickly introduce new products on the market [5], using various optimization methods.

The product development should be organized in three dimensions: the product to be

developed, the process involved in developing the product and the teams in charge to

execute the various aspects of the project [35].

Whenever a project manager has to design a new product, he needs to rearrange the

sequence of interrelated design activities of the process in the best possible way, in order

to reduce the feedback length between the activities. If the interrelated activities are

not arranged in the proper order, the feedback of the process increases, which requires

rework and thus decreases the project’s performance. Therefore, the following question

arises: how to properly sequence a set of interrelated activities in order to minimize the

total feedback length of the process activities? The objective of this study is to deal with

this question, which is extremely important to design managers.

Concurrent product engineering aims at reducing rework, time and costs of projects

[21], [18]. It increases the quality and the reliability of the project products, making the

entire project easier to manage [17]. However, an efficient concurrent product design

may increase the complexity of the process development, due to interactions between

the activities in the process [21].



Advances in operations research and computer science, during the past three decades,

have led to many new optimization techniques for dealing with complex product devel-

opment. The tabu search (TS) [14] can be used to solve a broad range of optimization

problems. The approach in this paper consists in applying the TS to the research area

of complex product development, where theoretical foundations and significant progress

have been accomplished.

The design process starts with identifying the requirements for the project [21]. Once

the activities that need to be executed within the process are identified, the information

flow dependencies between the activities are estimated and recorded in a design structure

matrix (DSM). Furthermore, the DSM is analyzed using a chosen optimization technique

and a sequence of reordered interrelated activities is finally produced. The designer has

to follow the execution order of all the activities given by this sequence.

The examined problem of DSM sequencing can be formulated as a feedback length

minimization problem (FLMP), which is known to be a N P − hard combinatorial

optimization problem [27]. Consequently, the methods that attempt to solve the FLMP

in an exact matter quickly become inefficient and time-consuming, as the size of the

problem increases [27], [35]. It seems that the tabu search method is not used at all in

the literature to deal with the FLMP.

In 2012, Yassine [35] mentions that "tabu search must be considered for medium or

large DSM problems" and also that "it is difficult to achieve further improvements within

a single domain (DSM)". Qian [27] also mentioned in 2013 the need for using the tabu

search in DSM-based sequencing. Thus this paper aims to bring further improvements

to the effectiveness of single domain process DSM optimization by extending the appli-

cation of the tabu search method to this field. We implement the technique and we test

its efficiency using real-life and simulated problems.
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A review of the literature is presented in the following chapter. The problem for-

mulation is further introduced in Chapter 3. The proposed tabu search algorithm and

its variations are described in Chapter 4. By running the algorithm on a large number

of different problems, a set of numerical results is obtained and presented in Chapter 5,

along with parameter fixing and benchmark analysis.

The tabu search method can generate very good solutions in reasonable amounts of

time, even though we cannot guarantee their optimality. In this paper, the proposed tabu

search method is shown to outperform other methods found in the literature, to solve

the benchmarked problems. In the final chapter, an overview of the main research is

discussed, along with indications for future research.
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CHAPTER 2

RELATED LITERATURE

Planning a sequence of many activities requires an identification and a resequencing

of the interrelated activities [9] [32]. This chapter first introduces the design structure

matrix (DSM), which is a powerful analysis tool for system modeling. The DSM is

increasingly used in scheduling interrelated activities of projects [27]. A multitude of

DSM-based optimization techniques for sequencing interrelated activities were found in

the literature. A common objective of some researchers is finding an activity sequence

that minimizes the total feedback length (TFL) associated to a DSM matrix. This specific

type of problem is known as the feedback length minimization problem (FLMP) [27].

Several researchers focused on solving the FLMP, using other methods than the tabu

search, as mentioned in the second part of this chapter. The next chapter about the

problem formulation also includes other relevant references.

2.1 The Design Structure Matrix

The DSM is a powerful tool used to model elements comprising a complex system

and the interactions between the elements, providing a global image of the system’s

structure (or architecture). Donald Steward developed the early DSM technique in the

1960s for finding solutions to systems of equations, focusing on the order of the variables

to be solved and on minimizing the solution algorithm’s iteration. Steward realized that

the DSM can be applied to the sequencing of activities in processes, by giving a better

representation and improvement of the sequence of activities. His work on the DSM was



published in 1981 [32]. Warfield [34] used a binary matrix representation of systems.

Starting in the early 1990s, researchers (several of them from MIT) improved the early

DSM models and applied the concepts to industrial problems. The DSM was used by

Rogers for the NASA [29], Grose [15] for Boeing, and Black [4] and Eppigner [8] for

General Motors. The use of design structure matrices for modeling complex processes

has increased since, becoming the largest field of DSM research and application.

The DSM is a N x N square matrix used in product development to model process

architecture, where the DSM elements are the interrelated activities involved in the pro-

cess and the interactions are the information flows between these activities. This study

is focused on optimizing complex process DSMs that involve many interrelated sequen-

tial activities. The process can be viewed as a system of activities and their interactions

required in the development of a project. The activities are all the tasks to be executed in

the process. Interactions between the activities are modeled as information flows, where

information outputs of some activities influence the execution of other activities. The

process architecture DSM is also known as activity-based DSM, process flow DSM or

simply process DSM [7]. The sequencing is completed trough an analysis of the DSM

and an ordering of the activities which are sequential in our model. Iteration or rework

occurs when the activities need to be repeated. Two or more activities are coupled if their

interactions create iteration. Coupled activities are also known under the name of cycles

or feedback loops and can deteriorate the process performance if they are not executed

in the proper order. The DSM matrix has row and colum headings both representing the

same index sequence of interrelated activities. The diagonal elements are empty and di-

vide the DSM into two triangular portions. The subdiagonal elements of the DSM matrix

represent forward information flows from upstream activities to downstream activities

denoted as feedforwards, and the superdiagonal entries represent backward information

flows from downstream activities to upstream activities, denoted as feedbacks [27]. The

5



IR/FAD DSM convention specifies that the feedback marks of the DSM are above its di-

agonal (FAD) and the inputs of the DSM are in rows (IR) and the outputs are in columns

[7]. A general representation of the DSM is found in Figure 2.1.

x x
x x x x

x x
x x
x Feedback
x x x x x

x x x x
x

x x x x
x

x x x x x
x

x x
x x x x

Feedforward x x
x x

x x x
x

x x x

Activities
A

ct
iv

iti
es

Figure 2.1 – DSM respecting the IR/FAD convention

The length of the feedbacks ("distance between the corresponding downstream and

upstream activities") can cause rework in a project, and it can substantially increase the

process execution time and costs [27]. For example, a feedback from an activity located

at the end of the process activity sequence to an activity located at the beginning of the

activity process sequence causes more rework than if the two activities in feedback were

located next to each other (neighbors) in the sequence.

Eppigner [7] further classifies the DSM problem models in three categories : static

6



architectures that represent system elements that exist simultaneously, such as products

and organization; temporal flow models, representing system elements that can change

trough time, and multidomain matrices that are a combination of multiple DSMs of the

previous two (single-domain) models.

Multidomain DSM matrices recently became extremely important because they cap-

ture different aspects of the project development (PD) and are required to organize com-

plex projects that take into account products, people and processes [35]. We will see in

the next chapters that the proposed tabu search method can be applied to optimize single-

domain process DSMs, which can often be components of the multidomain matrix.

2.2 Interrelated Activity Scheduling Techniques

Project management scheduling techniques such as "Program Evaluation and Review

Technique (PERT)" [19] and "Critical Path Method (CPM)" [24] emerged during the

50s, and they were used by Western industrial and military organizations to schedule

and control complex projects, such as chemicals plants and submarine weapon systems.

Their model is based on network flow representation. Even if these techniques were very

handful at that time, they cannot deal with information flow cycles [20], [31], which

are very common in the context of projects where the activities are interrelated. If the

execution of an activity A influences the execution of activity B and if the execution of

B also influences the execution of A, then activities A and B are in an information flow

cycle or circuit. Researchers such as Smith and Eppigner [30], Krishnan and Ulrich [20],

revealed that these early techniques are inefficient.

Many researchers focused on the problem of scheduling interrelated activities. Ku-

siak and Wang [21] proposed a graph theory based heuristic. The problem of scheduling

7



interrelated activities was also examined by Abdelsalam and Bao [1] using Simulated

Annealing for finding the optimized activity sequence, by Qian and Lin [28] using a

hybrid algorithm for large problem sizes and also by Lin [23] with a "fuzzy approach"

to schedule interrelated activities with uncertain dependencies. Gebala and Eppinger

[11] and other researchers mentioned that, in addition to the number of feedbacks in

the DSM, the feedback length should also be considered when sequencing interrelated

activities. Qian and Lin [27] refer to this problem as feedback length minimization prob-

lem (FLMP). Meyer [25] et. al used Genetic Algorithms to order the sequence of the

activities for the FLMP formulated as a quadratic assignment problem. Lancaster and

Cheng [22] used an Adaptive Evolutionary Algorithm in order to bring the DSM matrix

into a lower triangular form and minimize the total feedback length (TFL). Ahmadi et.

al [2] proposed a hybrid heuristic for finding an activity sequence with minimum total

feedback length. Todd [33] used a Genetic Algorithm for minimizing the TFL and he

tested his algorithm on several literature problems. Rogers [29] incorporated a Genetic

Algorithm into the NASA’s DSM tool DeMAID (Design Manager’s Aid for Intelligent

Decomposition). DeMAID was reducing the iteration (TFL) by reordering the DSM to

get as close as possible to a lower triangular form. Qian and Lin [27] proposed a heuristic

for finding good initial sequences for the FLMP that can be used as an initial solution, to

be improved by the CPLEX MILP-solver, when the size of the problem is small enough

(up to 12 activities).

8



CHAPTER 3

PROBLEM FORMULATION

In this chapter, the DSM matrix is described in more detail and multiple formula-

tions of the feedback length minimization problem are presented. Furthemore, Qians’

formulation [27] is reduced to an equivalent, more simple and adequate formulation to

adapt the tabu search procedure in Chapter 4.

3.1 Details of the Design Structure Matrix

The information dependencies among interrelated activities can be represented by an

activity-activity incidence matrix (DSM) where each element of the matrix represents

the relationship between the corresponding pair of activities.

Assume that a design project requires to sequence M activities and among them, N

activities are interrelated (M ≥ N). The M−N unrelated activities can be excluded from

the model because they can be placed at any position in the optimal activity sequence

index. In other words, the M −N activities may be executed at any time during the

project, as they do not account in the calculation of the TFL.

Let ai, j be the degree of information dependency of activity i on activity j where

0 ≤ ai, j ≤ 1, i ≤ N and j ≤ N. Note that the elements located on the diagonal of the

DSM matrix are left blank because by definition, an activity information cannot depend

on itself. Some researchers use the elements located on the diagonal to denote the ac-

tivity index [25]. Each element of the DSM represents an activity-activity dependence



relationship. A general representation of the DSM is given in Table 3.1

Activities 1 ... i ... j ... N

1 ... a1, i ... a1, j ... a1,N

... ... ... ... ... ... ...

i ai,1 ... ... ai, j ... ai,N

... ... ... ... ... ... ...

j a j,1 ... a j, i ... ... a j,N

... ... ... ... ... ... ...

N aN,1 ... aN, i ... aN, j ...

Table 3.1 – DSM general representation

In Steward [32], the DSM represents only strict precedence relationships. Therefore,

the information dependencies values are limited to the values 0 and 1, generating a binary

DSM. But in many project development (PD) problems, the dependencies among the

interrelated activities are not necessarily of equal weight: interrelated activities can have

degrees of information dependency that are not necessarily 0 and 1, but are real numbers

in the interval [0,1]. Real number DSM elements offer a better modeling of the FLMP

because the dependencies can have different strengths.

In practice, the term ai, j is defined as the product of the variability of task j and the

sensitivity of task i to j [1],[30]. In information theory, the term ai, j is quantified as

the volatility of a task, denoted by Vol and defined as: Vol = IV ∗T S, where IV is the

information variability ("variability of the input of information needed") and T S is the

task sensitivity ("receiving task’s sensitivity to change in that information") [7].

10



3.2 Formulation of the Feedback Length Minimization Problem (FLMP)

The objective function of the FLMP is to minimize the TFL of the DSM associated to

a sequence of activities. There exist several formulations of the FLMP in the literature,

each having its own specific objective function and constraints [35]. In this paper, we use

the formulation presented by Qian and Lin [27]. It will be shown that their formulation

can be reduced to another one, found in Gebala and Eppigner [11] and also in Todd [33].

3.2.1 Qian’s Formulation

For a better understanding of the model presented by Qian and Lin [27], we summa-

rize the notation used in this model:

N : the number of interrelated activities in the project ;

A : matrix of information dependencies ;

ai, j : the degree of information dependency of activity i on activity j (0 ≤ ai, j ≤ 1) ;

x : solution specifying the precedence among the activities ;

xi j : the binary variables such that xi j =

⎧⎪⎪⎨
⎪⎪⎩

1, if activity i precedes activity j ;

0, otherwise.

.

C(x): the objective function evaluating the TFL.

The model is summarized in the following page.

11



(P1) Minimize C(x) =
N

∑
i=1

N

∑
j=1
j �=i

ai, j xi j

⎛
⎜⎝ N

∑
k=1
k �= j

xk j −
N

∑
k=1
k �=i

xk i

⎞
⎟⎠

Subject to

xi j + x j i = 1, for 1 ≤ i < j ≤ N (1)

xi j + x j k + xk i ≤ 2, for all distinct activities i, j and k (2)

xi j ∈ {0,1} for 1 ≤ i,1 ≤ j, i �= j (3)

The objective function is to minimize the total feedback length, C(x), specified as a

quadratic function, by approaching the interrelated activties in the solution sequence. If

activity i precedes activity j, the term xi j

(
∑N

k=1
k �= j

xk j −∑N
k=1
k �=i

xk i

)
, denoting the length of

a feedback is greater than or equal to 0. If activity i does not precede activity j, then

xi j = 0 and the term does not contribute to the objective value. Constraint (1) states

that if activity i precedes activity j, then activity j cannot precede activity i and vice

versa. Constraint (2) ensures the transitivity property : if activity i precedes activity j

and activity j precedes activity k, then activity i must precede activity k. Constraint (3)

defines xi j as binary numbers.

3.2.2 A More Simple Formulation of the FLMP

The sequence of interrelated activities can be represented as an array X =(X [1 ], ...,X [N ]),

where the kth entry of X (denoted by X [k ]) is the index of the activity located at the po-

sition k of the array X . Note that the array X is a permutation of {1,2, ...,N}. Hence,

X [k ] ∈ {1,2, ...,N}. The permutation is representing an ordering of the activities. To

establish the equivalence between the two objective functions, we refer to the position

12



of activity i denoted by pi ∈ {1,2, ...,N}. Using this new notation, the problem (P1)

reduces to the following problem (P2) :

(P2) Minimize C =
N−1

∑
i=1

N

∑
j=i+1

a X [ i ],X [ j ] ( j− i)

over all the permutations X of {1,2, ...,N}. To verify the equivalence, suppose that xi j,

1 ≤ i, j ≤ N, i �= j is a solution of problem (P1). Consider two activities i and j, i �= j.

We have

ai, j xi j

(
∑N

k=1
k �= j

xk j −∑N
k=1
k �=i

xk i

)
=

⎧⎪⎪⎨
⎪⎪⎩

ai, j

(
∑N

k=1
k �= j

xk j −∑N
k=1
k �=i

xk i

)
if xi j = 1;

0 otherwise.

But xi j = 1 means that activity i precedes activity j in the corresponding solution for-

mulation (P1). Thus in terms of positions of the activities

ai, j xi j

(
∑N

k=1
k �= j

xk j −∑N
k=1
k �=i

xk i

)
=

⎧⎪⎪⎨
⎪⎪⎩

ai, j(p j − pi) if p j > pi ;

0, otherwise

and it follows that only the terms i, j where p j > pi can have a positive value in the

objective function of formulation (P1). Since the objective function in formulation (P2)

is specified in terms of the position of the activities in the array X , it follows that :

∑N
i=1 ∑N

j=1
j �=i

ai, j xi j

(
∑N

k=1
k �= j

xk j −∑N
k=1
k �=i

xk i

)
= ∑N−1

i=1 ∑N
j=i+1 a X [ i ],X [ j ] ( j− i)

This proposed formulation will be used in the rest of this paper due to its simplicity.

It is more elegant than the formulation of Qian and Lin since the constraint requires only

that the solution be a permutation of {1,2, ...,N}.
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3.3 A Practical Example

To illustrate these concepts, we take as example a process DSM used by the Boeing

Company to create the conceptual design phase of a UCAV (unmanned combat aerial

vehicle), for the US military [7]. The original DSM consists of N = 12 interrelated ac-

tivities and each activity index (from 1 to 12) corresponds to an activity name, given in

Table 3.2. For example activity index 2 corresponds to the activity name "Create Con-

figurations Options". The original process DSM is given in Figue 3.1 and feedbacks

are shown above its diagonal (see highlighted elements). Using the formulation in Sec-

tion 3.2.2, we calculate the total feedback length associated with the permutation of X =

{1,2,3, ...,12} :

C = ∑11
i=1 ∑12

j=i+1 a X [ i ],X [ j ] ( j− i) = 34.

The initial total feedback length of the DSM can be decreased by rearranging the

activities using the tabu search algorithm presented in Chapter 4. The resulting sequence

is X = {1,2,3,8,5,7,4,6,9,11,10,12} and the total feedback length becomes 24. The

rearranged DSM associated with X is illustrated in Figure 3.2. Because the TFL of the

original DSM was reduced to 24, the reordered DSM in Figure 3.2 shows a less iterative

and faster process if the activities are executed sequentially in the following order :

1,2,3,8,5,7,4,6,9,11,10,12.
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Activity index Activity name
1 Prepare UCAV Conceptual DRO

2 Create Configuration Concepts

3 Prepare 3-View Drawing and Geometry Data

4 Perform Aerodynamics Analyses and Eval.

5 Perform Propulsion Analyses and Eval.

6 Perform SC Characteristics Analyses and Eval.

7 Perform Mechanical and Electrical Analyses and Eval.

8 Perfrom Weights Analyses and Eval.

9 Perfrom Perfromance Analyses and Eval.

10 Perform Multidisciplinary Analyses and Eval.

11 Make Concept Assessment and Variant Decisions

12 Prepare and Distribute Choice Config. Data Set

Table 3.2 – Conceptual design of UCAV : activity index and corresponding names

1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 0 0 0 0 0 0 0 1 0
2 1 0 0 0 0 0 0 0 0 1 0
3 1 1 0 0 0 0 1 0 0 0 0
4 1 1 1 1 0 0 1 0 0 0 0
5 1 1 1 0 0 1 0 0 0 0 0
6 1 0 1 1 1 0 1 0 0 0 0
7 1 0 0 1 1 0 0 0 0 0 0
8 1 0 1 0 0 0 1 0 0 0 0
9 1 0 0 1 1 0 0 1 0 0 0
10 1 1 0 1 1 1 1 1 1 0 0
11 1 1 0 1 1 1 1 1 1 1 0
12 1 1 0 0 0 0 0 1 0 0 1

Figure 3.1 – Process DSM example (before sequencing)
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1 2 3 8 5 7 4 6 9 11 10 12
1 1 0 0 0 0 0 0 0 1 0 0
2 1 0 0 0 0 0 0 0 1 0 0
3 1 1 1 0 0 0 0 0 0 0 0
8 1 0 1 0 1 0 0 0 0 0 0
5 1 1 1 0 1 0 0 0 0 0 0
7 1 0 0 0 1 1 0 0 0 0 0
4 1 1 1 1 1 0 0 0 0 0 0
6 1 0 1 1 1 0 1 0 0 0 0
9 1 0 0 1 1 0 1 0 0 0 0
11 1 1 0 1 1 1 1 1 1 1 0
10 1 1 0 1 1 1 1 1 1 0 0
12 1 1 0 1 0 0 0 0 0 1 0

Figure 3.2 – Process DSM example (after sequencing)
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CHAPTER 4

TABU SEARCH : METHOD AND PROPOSED ALGORITHM

4.1 Introduction

Assume that we want to schedule a sequence of N distinct interrelated activities.

There are N! possible permutations of the activities which correspond to the total number

of feasible solutions. Let ζ denote the solution space of the FLMP problem. Notice that

|ζ |= N! and ζ increases factorially as the size N of the problem increases. Experimental

results show that the FLMP is extremely hard to solve even for small problem instances.

In fact, it is known that the FLMP belongs to the N P − hard class of problems [27],

[35]. Each sequence of activities among the N! possible sequences is feasible, because

the interrelated activities can be rearranged in any order. Only one or a few of these

permutations will lead to an optimal solution. Therefore, exact optimization algorithms

require an exponential time to solve the FLMP, and their inefficiency increases with the

size of the problem.

For this reason, we introduce in this chapter a metaheuristic algorithm for solving

the FLMP in a reasonable amount of time, even for large instances. We focus on finding

a "good" solution sequence and its associated TFL being an upper bound on its optimal

value. Thus we evaluate the costs of feasible solution sequences being as close as possi-

ble to the optimal solution. Recall from Chapter 3 that we reduced (P1) to (P2) in order

to reach an objective function which is easier to evaluate.



4.2 The Tabu Search Method for Solving FLMP

The tabu search is a heuristic method, initially introduced by Glover [13] in 1986 and

it can be used for solving complex optimization problems. In Ferland and Costa, [10],

several heuristic search methods are summarized, including the tabu search. A general

template for simple tabu search as well as implementation guidelines are presented by

Gendreau and Potvin [12]. A good detailed presentation of the tabu search is also found

in Glover and Laguna [14]. In this solution approach, a local iterative search technique

explores the neighborhood of a current solution, looking for a better solution, until a

stopping criterion is reached. Each problem has its own specific neighborhood that in-

cludes solutions obtained with a slight modification to the current solution. To be more

specific, suppose that x is the current solution. Let M be the set of all possible modi-

fications to the current solution. Thus a new solution is obtained using a modification

m ∈ M to generate x′ = x⊕m, m ∈ M. So the neighborhood N(x) of the current solution

includes all the solutions obtained by using all the different |M | modifications :

N(x) = {x′ = x⊕m | m ∈ M}

In our implementations we will derive two variants of the tabu search using two dif-

ferent neighborhoods, and they will be compared numerically. Recall that in the descent

method, the best solution in N(x) is selected to be the new current solution until it is

not possible anymore to improve the current solution. Thus, this method stops when it

reaches a local minimum of the objective function. In the tabu search procedure, it is

allowed to move out of local minima by moving to the best solution in the neighborhood

N(x), even if the value of the objective function does not improve. But then we have to

prevent cycling (returning to a solution sequence already visited). For this reason, some

18



modifications are prohibited (become tabu) for a while. Note that the tabu modifications

can be used again after a fixed number of iterations because the solutions have changed

enough so that these modifications should not generate solutions already visited. Never-

theless, tabu modifications might generate new solutions that were never visited before

with a value better than the best solution found so far. In this case, an aspiration criterion

allows these modifications. In fact, a simple aspiration criterion often used is the fol-

lowing : allow a tabu modification if it results in a better solution than the best solution

found so far.

In general, the tabu search procedure stops using the following two criteria : after

a fixed number of iterations or after a fixed number of consecutive iterations without

improvement to the objective function.

The procedure starts with an initial solution x 0. In our case, the initial solution is a

random permutation of {1,2, ...,N} obtained by using the Durstenfeld’s algorithm [6].

4.3 Mechanics of the Proposed Tabu Seach Algorithm

The general tabu seach procedure is described in Algorithm 1. We introduce two

variants of this procedure using different sets of modifications but similar tabu lists. The

first one, named TSASW, is based on swaps where two activities swap their positions

in the permutation. In the second one, named TSASH, an activity is shifted to another

position in the permutation.
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Algorithm 1 The general tabu search procedure

procedure TABU SEARCH

Select an initial random permutation of X ′
Let T ← /0 (Tabu list initially empty)

Let iter ← 0; niter ← 0

X ← X0; X∗ ← X0; Stop ← f alse
while not Stop do

iter ← iter+1; niter ← niter+1

Determine a subset V ⊂ N(X) of solutions X ′ = X ⊕m satisfying at

least one of the two following conditions :

• m /∈ T
• C(X ′)<C(X∗)
Determine X ′′ ∈V such that X ′′ ← arg minX ′∈VC(X ′)
X ← X ′′
if C(X)<C(X∗) then X∗ ← X and niter ← 0

if iter = itermax or niter = nitermax then Stop ← true
Update tabu list

X∗ is the best solution generated
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4.4 Tabu Search Algorithm based on Swaps (TSASW)

In this variant, a neighbor of a current solution X is obtained by swapping the posi-

tions of two activities. More specifically, suppose that the activities in position i and j

are swapped :

X = [ X [ 1 ] , ... ,X [ i−1 ],X [ i ],X [ i+1 ], ... ,X [ j−1 ],X [ j ],X [ j+1 ], ... ,X [ N ] ].

The corresponding neighbor is :

X ′ = [ X [ 1 ], ... ,X [ i−1 ],X ( j ),X [ i+1 ] , ... ,X [ j−1 ],X [ i ],X [ j+1 ], ...,X [ N ] ].

In [27] it is shown that :

C(X)−C(X ′)= θ X [ i ], X [ j ] =∑ j−1
l=i+1[ (l−i)(a X [ i ]X [ l ]−a X [ j ]X [ l ])+( j−l)(a X [ l ]X [ j ]−

a X [ l ]X [ i ]) ]+( j−i) [ a X [ i ]X [ j ]−a X [ j ]X [ i ]+∑i−1
l=1 a X [ l ]X [ j ]−a X [ l ]X [ i ]+∑N

l= j+1 a X [ i ]X [ l ]−
a X [ j ]X [ l ] ].

The value of the objective function decreases when θ X [ i ],X [ j ] > 0. Four elements are

involved in a swap : activity X [ i ], position i in X , activity X [ j ], position j in X . Thus,

the tabu list must account for these four elements to avoid cycling. It should make sure

that activities X [ i ] and X [ j ] do not return to positions i and j, respectively, for the next

TLD iterations.

The tabu list (TL) can be implemented using a square matrix with N (number of

activities) rows and N (number of positions in the permutation) columns. Hence, when

the swap of X [ i ] and X [ j ] is completed, the ith element of row X [ i ] and the jth

element of row X [ j ] take both the value (TLD+iter) indicating that X [ i ] cannot return

to position i before iteration (TLD+iter) is completed, and similarly for X [ j ] to position

j.
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At some iteration iter, the swap X [ k ],X [ l ] is prohibited (or tabu) if either T L X [ k ], l ≥
iter or T L X [ l ],k ≥ iter. This strategy implies that activity X [ k ] or X [ l ] cannot be moved

to a position where it was assigned in the last TLD iterations. For a better understanding

of the tabu list, assume that the current solution sequence is X = [2,4,1,3,5] and activi-

ties 4 and 1 are swapped. The positions of the activities in the array X are i = 2 and j = 3

and the elements in the tabu list become T L4,2 = iter+TLD and T L1,3 = iter+TLD. At

the next iteration, the current solution becomes X = [2,1,4,3,5]. Assume that at itera-

tion iter+1 we want to swap the activities 1 and 4 in the current solution. The algorithm

will not allow this swap because T L 4,2 = iter+TLD> iter+1 and T L1,3 = iter+TLD>

iter+1. The TSASW is summarized in Algorithm 2.

4.5 Tabu Search Algorithm based on Shifting (TSASH)

In this variant, a neighbor of a current solution X is obtained by moving an acitvity

X [ i ] currently in position i to another position j �= i. If X [ i ] is moved backward (i.e

i > j) then

X = [ X [ 1 ],X [ 2 ], ... ,X [ j−1 ],X [ j ], ... ,X [ i−1 ],X [ i ],X [ i+1 ] ... ,X [ N ] ]

and the neighbor X ′ is :

X ′ = [ X [ 1 ],X [ 2 ], ... ,X [ j−1 ],X [ i ],X [ j ], ... ,X [ i−1 ],X [ i+1 ], ... ,X [ N ] ]

Thus

X ′[ k ] = X [ k ], k = 1, ..., j−1, i+1, ...,N

X ′[ j ] = X [ i ]

X ′[ j+1 ] = X [ j ]

...

X ′[ i ] = X [ i−1 ]
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Algorithm 2 Tabu search algorithm base on swaps (TSASW)

procedure TSASW

Select an initial random permutation of X0

Let θi, j ← 0 for i, j = 1,2, ...,N
Let iter ← 0;

X ← X0; X∗ ← X0; Stop ← f alse
while not Stop do

iter ← iter+1;

X ′′ ← /0; C(X ′′)←+∞;(ki,kki) �= (k j,kk j)← (0,0)
for i = 1 to N −1 do

for j = i+1 to N do
X ′ obtained by swapping X [i] and X [ j]
Compute θX [i]X [ j]
C(X ′) =C(X)−θX [i]X [ j]
if C(X ′)<C(X∗) or (T LX [i] j < iter and T LX [ j]i < iter) then

if C(X ′)<C(X ′′) then X ′′ ← X ′;
(ki,kki)← (X [i], i)
(k j,kk j)← (X [ j], j)

if X ′′ = /0 then Stop ← true
else:

X ← X ′′
if C(X ′′)<C(X∗) then X∗ ← X ′′

if iter = itermax then Stop ← true
T Lki,kki = iter+ TLD

T Lk j,kk j = iter+ TLD

X∗ is the best solution generated
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On the other hand, if X [ i ] is moved forward (i.e i < j) then :

X = [ X [ 1 ],X [ 2 ], ... ,X [ i−1 ],X [ i ],X [ i+1 ], ... ,X [ j−1 ],X [ j ],X [ j+1 ] ... ,X [ N ] ]

and the neighbor X ′′ is :

X ′′= [X [ 1 ],X [ 2], ... ,X [ i−1 ],X [ i+1 ], ... ,X [ j−1 ],X [ j ],X [ i ],X [ j+1 ], ...,X [N ] ].

Thus :

X ′′[ k ] = X [ k ], k = 1, ..., i−1, j+1, ...,N

X ′′[ i ] = X [ i+1 ]

X ′′[ i+1 ] = X [ i+2 ]

X ′′[ j−2 ] = X [ j−1 ]

X ′′[ j−1 ] = X [ j ]

...

X ′′[ j ] = X [ i ].

As illustrated above, the positions of several activities are modified when we are

shifting an activity X [ i ] from its current position i to another position j. But to simplify

the tabu status, in this case, we prohibit X [ i ] to return to the position i during the next the

next TLD iterations and X [ j ] to return to the position j during the next TLD iterations.

As in the other variant, the tabu list (TL) can be implemented using a square ma-

trix with N (number of activities rows) and N (number of position in the permutation)

columns. Since the modification involve shifting an activity X [ i ] from its current po-

sition i to j, one way to modify the tabu list would be to modify T LX [i]i to the value

TLD+iter to prevent X [ i ] to return to position i during the next TLD iterations. But

preliminary testing indicates that cycling is not prevented in some cases. Indeed, sup-

pose that X [ i ] is moved to position (i+1). Then X [ i+1 ] is moved to position i. Nothing

prevents X [ i+1 ] (currently in position i) to be moved back to position (i+1) at the next

iteration. Thus, X [ i ] is moved back to position i, and we have a cycle. Note that these
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two shifts correspond to a swap. For this reason at each iteration we modify the tabu list

TL as in the preceding variant. Hence, to summarize if the modification indicate to shift

X [ i ] from its current position i to position j, then T LX [i]i = T LX [ j] j =TLD+iter. The

verification to see if a shift is tabu is completed as in the previous variant.

The TSASH can be summarized in Algorithm 3.

4.5.1 Diversification Strategies

It is well-known that diversification strategies should be combined with metaheuristic

methods like tabu search. These strategies allow to search more extensively the feasible

domain of the problem by generating new initial solutions to restart the tabu search.

The diversification is applied in two cases. First, when all the possible moves have

the tabu status, the tabu search stops. The second type of diversification occurs when

the maximum number of iterations (iter) reaches a certain threshold value that will be

determined in the following chapter.

In order to allow exploring other portions of the search space, a restart diversification

is applied in the two variants. We generate a new random permutation of the current so-

lution using Durstenfields’ algorithm [6] to initiate a new application of the TS. All the

previous values in the tabu list are erased and the algorithm restarts with an empty tabu

list. The current number of iterations, iter is reset to 0. The total number of diversifica-

tions to be applied is fixed by the user.
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Algorithm 3 Tabu search algorithm based on shifting (TSASH)

procedure TSASH

Select an initial random permutation of X0

Let T Li, j ← 0 for i, j = 1,2, ...,N
Let iter ← 0

X ← X0; X∗ ← X0; Stop ← f alse
while not Stop do

iter ← iter+1

X ′′ ← /0; C(X ′′)←+∞;(ki,kki) �= (0,0)
for i = 1 to N do

for j = 1 to N, j �= i do
X ′ obtained by shifting X [i] to j
Compute C(X ′)
if C(X ′)<C(X∗) or (T LX [i] j < iter and T LX [ j]i < iter) then

if C(X ′)<C(X ′′) then X ′′ ← X ′;
(ki,kki)← (X [i], i)
(k j,kk j)← (X [ j], j)

if X ′′ = /0 then END
X ← X ′′
if C(X ′′)<C(X∗) then X∗ ← X ′′

if iter = itermax then Stop ← true
T Lki,kki = iter+TLD

T Lk j,kk j = iter+TLD

X∗ is the best solution generated
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CHAPTER 5

NUMERICAL RESULTS

5.1 Problem Presentation and Testing Environment

The tabu search algorithm (TSA) performance is greatly influenced by the value of

its parameters. Proper calibration of the parameters is essential, but it can be difficult,

especially on problems with a large number of activities, due to the time required to

validate each parameter and their interactions. A large number of DSMs are used to

test the effectiveness of the tabu search algorithm and calibrate its parameters. After,

the TSA is compared against problems found in the literature, for example the Austins’

DSM [3] [22] [27] [33] consisting of 51 interrelated activities.

The two variants of the tabu search algorithm coded and tested in the C++ envi-

ronment are compiled using the C++ GNU compiler. Computational experiments were

performed on a Acer Aspire T3-710 PC with an Intel Core i7-6700 CPU, under a Win-

dows 10 x64 operating system. Solution spaces can become very large: for example

a DSM matrix of 120 activities has a solution space of 6.6895e+198 feasible solution

sequences, so efficient memory allocation and adequate data structures influence the

computing performance, especially for medium and large instances. For medium (12 or

more activities) and large problem size, exact optimal solutions cannot be obtained using

the CPLEX solver.

The first part of this section includes numerical results to analyze and to compare the

two variants of the tabu search (TSASW and TSASH) using a large number of randomly



generated problems. In the second part, we use four known benchmark problems to

evaluate the efficiency of the TSASW and TSASH when compared with methods known

in the literature.

5.2 Tests completed using Randomly Generated Problems

5.2.1 Part 1 - Tests without Diversification

A set of binary DSMs (each element is either 0 or 1) of different size and den-

sity were generated. The files are organized in 5 folders including problems of size

8,16,30,60,120. Each folder is composed of 6 files, containing different random DSM

problems of different densities (0.1,0.2,0.3, 0.4,0.5,0.6). The DSM problem set and

the tested number of instances can be summarized in Table 5.1.

0.1, 0.2, 0.3, 0.4, 0.5, 0.6
0.1, 0.2, 0.3, 0.4, 0.5, 0.6
0.1, 0.2, 0.3, 0.4, 0.5, 0.6

Number of tested problems of each density

100
100

5

8
16
30
60

120

0.1, 0.2, 0.3, 0.4, 0.5, 0.6
0.1, 0.2, 0.3, 0.4, 0.5, 0.6

Problem Size Densities
100
100

Table 5.1 – DSM problem set

In the literature, practical DSMs are often of density less than 0.5 [27]. The density is

the number of nonzero DSM elements divided by N2, where N is the problem size. Qian

and Lin [27] use a similar definition of density: the number of nonzero DSM elements

divided by N(N −1). In order to generate a random DSM of a chosen density level, we

determine the number of elements different from 0 as the ceiling value of �density ·N2.

Then we randomly generate that number of pairs (x,y) made of two different pseudo-
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random integers using the Mersenne Twister pseudo-random generator [26], from the

mt19937 class of the C++ Standard Library based on two pseudo-random seeds. The

entries (x,y) of the matrix take a value of 1.

An example of a randomly generated binary DSM matrix of density 0.2, consisting

of 8 activities is found in Table 5.2. The initial activity index sequence is by default

[1,2,3,4,5,6,7,8].

1 0 0 0 1 0 0

0 0 0 1 0 0 1

0 1 0 0 0 1 0

0 0 0 0 0 0 0

1 0 0 1 0 0 0

0 0 0 0 0 1 0

0 1 0 1 0 0 0

1 0 0 0 1 0 0

Table 5.2 – Example of a data binary DSM

During preliminary tests, a large initial stopping criterion was established for each

problem set as presented in Table 5.3. Recall that in our tests, we use only one stopping

criterion based on the number of iterations (itermax).

8 200 200

16 400 400

30 800 800

60 1600 1600

120 3200 3200

Stopping Criterion

Problem Size TSASW TSASH

Table 5.3 – itermax value (number of iterations)
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First, the values of the parameter tabu list duration, previously denoted by TLD, are

examined. To show the effect of the values of this parameter on solution quality, the

values of itermax are fixed, for each tested problem size, to the values of the initial stop-

ping criterion in Table 5.3. We solve each problem once with different values of TLD.

We select the values of TLD that give best average solutions (minimum TFL) for each

problem subset. For simplicity, if there are more than one value of TLD that produces

the best average TFL, the smallest value is selected. The values of TLD that minimize

the average TFL for each density and problem size are presented in Table 5.4.

Density Tabu Search Algorithm N  = 8 N = 16 N  = 30 N  = 60 N  = 120

TSASW 5 20 35 110 200

TSASH 10 65 90 180 200

TSASW 5 15 45 130 200

TSASH 5 50 95 160 200

TSASW 10 15 30 130 140

TSASH 10 40 100 170 160

TSASW 5 15 35 110 180

TSASH 5 35 90 190 200

TSASW 5 15 45 170 180

TSASH 5 35 80 130 200

TSASW 10 20 35 150 200

TSASH 10 50 95 190 200

0.5

0.6

Tabu list duration (number of iterations)

0.1

0.2

0.3

0.4

Table 5.4 – Best tabu list durations (TLD)

The TSA is tested on random problems of each density 0.1,0.2,0.3,0.4,0.5,0.6 :

100 problems of size 8, 16 and 30 by incrementing the values of TLD from 0 to 100 by

a factor of 5; 100 problems of size 60, by incrementing TLD from 0 to 200 by a factor

of 10; 5 problems of size 120, by incrementing TLD from 0 to 200 by a factor of 20.

30



Note that we limit the number of observations of TLD due to the solution times required

to solve each problem. For each tested problem subset, the corresponding average TFL

can be found in Appendix A, for both TSASW and TSASH. The results reveal that the

tabu list durations TLD increase with the problem size.

The next experimentation was to fix the value of itermax to the values of Table 5.3

and the value of TLD to those in Table 5.4, in order to determine the number of iterations

until we reach the best solution. Then for each problem size and density, the largest of

these numbers over all the problems solved is found in Table 5.5.

Density Tabu Search Algorithm N  = 8 N = 16 N  = 30 N  = 60 N  = 120

TSASW 7 354 795 1165 3200

TSASH 51 325 776 1473 2735

TSASW 32 347 799 1251 3189

TSASH 23 374 769 1463 2722

TSASW 121 399 799 1554 3200

TSASH 68 321 769 1507 2003

TSASW 14 340 785 680 2271

TSASH 18 366 760 1466 2392

TSASW 33 270 790 1228 3041

TSASH 27 226 771 1284 2780

TSASW 57 285 760 1591 2988

TSASH 37 233 736 1146 2561

0.5

0.6

Maximum nb. of iterations till best solution

0.1

0.2

0.3

0.4

Table 5.5 – Largest number of iterations to reach the best solution

For example, the TSASW and the TSASH complete at most 32 and 23 iterations,

respectively, before reaching the best solution for the 100 tested problems of size 8 and

density 0.2. The results in Table 5.5 indicate that this number increases with the problem
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size. Referring to the results of this experimentation, we can derive the results in Table

5.6 showing the average (instead of the largest) number of iterations before reaching the

best solution. Note that the average number of iterations to reach the best solution is

much smaller than the corresponding largest number in Table 5.5. Indeed, this follows

from the fact that the largest value is attained only by one or a few problems of the tested

problem sets.

Density Tabu Search Algorithm N  = 8 N = 16 N  = 30 N  = 60 N  = 120

TSASW 3 42 243 510 2147

TSASH 7 23 180 494 1617

TSASW 6 47 245 638 1675

TSASH 5 40 158 576 1151

TSASW 12 56 225 662 2348

TSASH 7 35 135 645 922

TSASW 6 45 257 345 1403

TSASH 6 37 132 457 846

TSASW 6 38 165 413 1542

TSASH 5 30 140 561 2089

TSASW 7 40 225 558 1717

TSASH 5 29 140 518 1087

0.5

0.6

Average nb. of iterations till best solution

0.1

0.2

0.3

0.4

Table 5.6 – Average number of iterations to reach the best solution

Referring to Table 5.5, let us determine the largest value for each size over all the

densities. These values are summarized in Table 5.7, and they can be seen as a kind of

stopping values for itermax. In fact, we observe that they are quite close to the values

selected in Table 5.3, with the exception of problems of size 8.

Finally, the elements of Table 5.8 correspond to the average total feedback length

for all problem sizes and densities when using the values of Table 5.3 to fix itermax,
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and those of Table 5.4 for TLD. Note that for any problem size, the TFL increases with

the density, and that similarly, for any density, the total feedback length (TFL) increases

with the size.

8 121 68

16 399 374

30 799 776

60 1591 1507

120 3200 2780

Stopping Criterion

Problem Size TSASW TSASH

Table 5.7 – Observed stopping criteria (number of iterations)

Density Tabu Search Algorithm N  = 8 N = 16 N  = 30 N  = 60 N  = 120

TSASW 0.86 7.34 109.78 1570.7 16589.2

TSASH 0.86 7.30 108.57 1567.9 16586.0

TSASW 3.64 48.63 439.82 4480.1 41264.8

TSASH 3.64 48.46 437.44 4474.1 41271.8

TSASW 11.34 103.22 815.93 7659.7 67883.2

TSASH 11.34 103.01 815.07 7651.8 67719.4

TSASW 18.70 165.14 1238.5 10939.7 95607.6

TSASH 18.70 165.04 1236.8 10933.6 95558.4

TSASW 28.20 234.61 1686.8 14481.2 124047.2

TSASH 28.20 234.54 1684.9 14472.6 124117.2

TSASW 38.26 314.80 2154.4 18357.9 153559.8

TSASH 38.26 314.72 2153.5 18373.5 153601.2

0.5

0.6

Average TFL

0.1

0.2

0.3

0.4

Table 5.8 – Average total feedback length

We use the two-tailed matched-pairs signed-rank Wilcoxon test to verify if the av-

erage TFL produced by the two variants of the tabu search (TSASW and TSASH)
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are different or not. Let μTSASH be the average TFL produced by the TSASH and

μTSASW be the average TFL produced by the TSASW. The null hypothesis is: H0 :

μTSASW = μTSASH and the alternative hypothesis is HA : μTSASW �= μTSASH. There are

30 pairs of observations, each pair corresponding to the average TFL obtained using

the TSASW and the TSASH respectively, among which 6 pairs are tied (for N = 8).

The pairs can be seen in Table 5.8. For example, for size 30 and density 0.1 the pair

is (109.78,108.57). The obtained W − value of the Wilcoxon test is 61 and the criti-

cal value of W is 81 using a 5% level of confidence. Because the W-value obtained is

smaller than the critical value, the null hypothesis is verified, and we conclude that the

average TFL obtained using the TSASW and the TSASH variants of the tabu search is

not different. It follows that both variants have the same performance in terms of opti-

mizing the TFL.

Density Tabu Search Algorithm N  = 8 N = 16 N  = 30 N  = 60 N  = 120

TSASW 0.0009 0.0347 0.9939 32.6097 1033.7751

TSASH 0.0012 0.0451 1.4218 47.2450 1517.5158

TSASW 0.0012 0.0344 1.0037 32.5409 1028.7433

TSASH 0.0015 0.0423 1.4059 47.0523 1520.1981

TSASW 0.0010 0.0308 1.0013 32.5859 1026.2587

TSASH 0.0012 0.0454 1.4265 47.0931 1521.1291

TSASW 0.0012 0.0358 0.9671 28.8066 1029.1321

TSASH 0.0015 0.0454 1.3573 41.6892 1520.9832

TSASW 0.0011 0.0356 0.9541 28.7909 1028.0662

TSASH 0.0014 0.0454 1.36 41.3376 1521.4995

TSASW 0.0010 0.0338 0.9093 28.6592 1025.6302

TSASH 0.0012 0.0431 1.2954 41.2681 1518.6842

0.5

0.6

Avg CPU time  (sec)

0.1

0.2

0.3

0.4

Table 5.9 – Average computation times

Another measure of efficiency of the TSA is the average solution time required by
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the tabu search, denoted by Avg CPU . For each problem size and density, the Avg CPU

for all the tested problem subsets, is presented in Table 5.9. The average computation

times tend to increase as the problem size increases. The Wilcoxon test is not necessary

to compare the average solution times of the two variants : we can clearly see that the

Avg CPU of the TSASH is greater than the Avg CPU of the TSASW for all combinations

of problem size and density. The difference in the average computation time of the two

variants can be explained by the fact that the TSASH has two nested For loops that

iterate over a larger number of elements than the two nested For loops of the TSASW.

5.2.2 Part 2 - Tests with Diversification

The diversification previously presented in Section 4.5.1 of Chapter 4 is now ap-

plied to analyze the improvement over the total feedback length. The stopping criterion

itermax is fixed for each problem size to the corresponding value in Table 5.7, each time

we apply the procedure. Basically, this selection of itermax is to allow the tabu search

to perform enough iterations to reach good solutions for all the given densities of a fixed

problem size. By restarting the algorithm when reaching this threshold value, we allow

exploring other parts of the search space. The tests with diversification are performed

using the best values of TLD presented in Table 5.4. We allow a number of 5 diversifica-

tions for each tested problem and the results are reported in Table 5.10, for the average

total feedback length obtained with the TSASW and TSASH with diversification.

Next we compare the average total feedback length obtained when using diversifica-

tion with that in Table 5.8 where diversification is not used. As expected, the average

total feedback length (TFL) obtained with diversification is smaller than the TFL com-

puted without diversification, except for N = 8 and two instances with N = 16, where the

problem size is too small to really observe the effects of the diversification. Specifically,
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Table 5.11 indicates the percentage of improvement when diversification is applied for

each problem size and density.

Density Tabu Search Algorithm N  = 8 N = 16 N  = 30 N  = 60 N  = 120

TSASW 0.86 7.30 108.14 1565.67 16507.0

TSASH 0.86 7.30 108.17 1561.56 16510.8

TSASW 3.64 48.45 437.36 4442.54 41262.4

TSASH 3.64 48.45 436.58 4435.30 41228.6

TSASW 11.34 102.99 814.41 7592.99 67666.6

TSASH 11.34 102.99 814.25 7585.38 67655.6

TSASW 18.70 165.03 1236.47 10902.7 95528.4

TSASH 18.70 165.04 1236.62 10893.6 95515.0

TSASW 28.20 234.54 1684.27 14418.2 123912.4

TSASH 28.20 234.54 1684.21 14412.4 123897.8

TSASW 38.26 314.70 2152.86 18284.1 153460.0

TSASH 38.26 314.70 2152.84 18279.4 153394.8

0.5

0.6

Improved Average TFL

0.1

0.2

0.3

0.4

Table 5.10 – TFL with diversification

Density Tabu Search Algorithm N  = 8 N = 16 N  = 30 N  = 60 N  = 120

TSASW 0.000% 0.545% 1.494% 0.320% 0.496%

TSASH 0.000% 0.000% 0.368% 0.404% 0.453%

TSASW 0.000% 0.370% 0.559% 0.838% 0.006%

TSASH 0.000% 0.021% 0.197% 0.867% 0.105%

TSASW 0.000% 0.223% 0.186% 0.871% 0.319%

TSASH 0.000% 0.019% 0.101% 0.868% 0.094%

TSASW 0.000% 0.067% 0.166% 0.338% 0.083%

TSASH 0.000% 0.000% 0.018% 0.366% 0.045%

TSASW 0.000% 0.030% 0.150% 0.435% 0.109%

TSASH 0.000% 0.000% 0.043% 0.416% 0.177%

TSASW 0.000% 0.032% 0.073% 0.402% 0.065%

TSASH 0.000% 0.006% 0.028% 0.512% 0.134%

0.5

0.6

Percentage of amelioration

0.1

0.2

0.3

0.4

Table 5.11 – Percentage of improvement of the TFL using diversification
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The TSA performs a number of 5 diversifications, so the total number of iterations

of the TSA increases by a factor of 6. Observe that the diversification threshold values

from Table 5.7 are very close to the initial stopping criterion from Table 5.3 (except

for N = 8), so the solution time with diversification is around 5 times longer than the

solution times presented in Table 5.9, obtained without diversification.

5.3 Solving the Benchmark Problems

Afterward, we solved the benchmarked problems, and we compare our results with

those found in the literature. More precisely, we consider the problems of Kusiak (1991)

[21] with 12 activities, Steward (1981) [32] with 20 activities, Austin (1996) [22][27]

with 51 activities and Qian and Lin (2014) [27] with 48 activities. Austin (1996) problem

represents a building design process [3]. Note that a second version of Austin (1996) can

be found in [33].

Different authors offered solutions to each of these problems, using methodologies

other than tabu search. Kusiak applied his triangulation algorithm to his problem to ob-

tain a solution of 7 (in terms of TFL). Steward obtained a solution for his problem of

93 (in terms of TFL) using a simple algorithm. Tood [33] first solved these benchmark

problems in 1997 using his "single criterion Genetic Algorithm with enhanced edge and

local search". His algorithm is based on a maximization of concurrency and a mini-

mization of the TFL (also called "iteration"). The maximization of concurrency was

done by moving as many of the feedback marks as close as possible to the left hand

side or the bottom edge of the matrix. In 2008, Lancaster and Cheng [22] developed the

procedure FDAPCEA (Fitness Differential Adaptive Parameter Controlled Evolutionary

Algorithm) for a design structure matrix, and they used a mutation operator to generate
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diversity in their algorithm. They also validated their algorithm using the three bench-

mark problems. Qian and Lin [27] proposed in 2014 an exchange-based heuristic to find

good initial activity solution sequences for small problem sizes (up to 12 activities) that

are then provided to the MILP-solver of CPLEX 12.1. They also found good solutions

for problems of large size. A summary of the best results in terms of the TFL obtained

by these researchers using different methods for the first three benchmark problems is

given in Table 5.12.

Original Todd's Lancaster and Quian's Optimal 
Solution Solution Cheng's Solution Solution Solution

Kusiak (1991) 12 7 6 6 6 6
Steward (1981) 20 93 24 24 24 24
Austin (1996) 51 320 158 157 146 unknown

Total Feedback Length

Problem Size

Table 5.12 – TFL computed using different methods and DSMs

The optimal value of the total feedback length (TFL) is known for the problems

of Kusiak (1991) and Steward (1981) as indicated in the last column of Table 5.12.

Todd [33], Lancaster and Cheng [22], Qian and Lin [27] provide optimal solutions for

the Kusiak (1991) and Steward (1981) problems, and they also provide the rearranged

matrices according to their optimal solution sequences. For the Austin (1996) DSM, the

optimal value of the TFL is unknown but Qian and Lin provide the best known solution

up to now for this problem with a TFL of 146. Our method will be compared with these

methods later on in this section.

The most challenging problem is Austin (1996). The initial matrix was not provided

by Austin [3]. Unfortunately, two different formulations of the Austin (1996) problem

exist in the literature, with a different initial total feedback length. The first one is used
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by Lancaster [22] and Qian and Lin [27]. They both provide a reordered Austin (1996)

DSM matrix. Lancaster finds a solution sequence with a TFL equal to 157 and Qian

and Lin find a solution sequence with a TFL equal to 146 for this problem. They do not

provide the initial matrix used for obtaining their solutions. Thus we reordered both of

their optimized DSMs to find the one where the activities are ordered from 1 to 51; this

ordering has a TFL equal to 300. Furthermore, Todd [33] uses an initial Austins (1996)

DSM in his thesis, claiming that the TFL of this matrix is 320. The objective function for

computing the TFL used by Todd is similar to the objective function presented in Section

3.2.2. After analyzing this matrix, using Todds’ objective function and the objective

function presented in Section 3.2.2, we found that the Austins’ DSM provided by Todd

[33] has an initial TFL of 317, different from the TFL calculated by Todd for this DSM

in his thesis, which is 320.

We analyze the problems of Kusiak (1991), Steward (1981), Qian and Lin (2014)

and the two versions of Austin (1996) using the two variants of the tabu search and

we compare our results (in terms of optimized TFL) with the solutions reported in the

literature. We found that Kusiak (1991) DSM has an initial TFL of 39 when the activities

are ordered {1,2, ...,N} and its density is 0.917. Using Table 5.7 as guidance for a

problem size of 12, the stopping criterion of the TSASW was fixed to 260 iterations

((399+121)/2) and the one of TSASH to 221 ((68+374)/2) iterations by interpolating

between the values of known stopping criteria for N = 8 and N = 16. The known optimal

solution of TFL equal to 6 is reached by both variants of the tabu search algorithm, with

all the tested values of the tabu list duration (from 0 to 100, incremented by a factor of

5). Our solution sequence and the rearranged DSM of Kusiak (1991) are presented is

Table 5.13. The computation times are presented in Table 5.14 and the TSASH takes

more time to solve the Kusiak (1991) problem than the TSASW, although both variants

solve this problem very fast.
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1 2 3 11 7 6 10 12 9 8 5 4
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0
11 0 1 1 0 0 0 0 0 0 0 0
7 0 1 0 1 0 0 0 0 0 0 0
6 0 1 0 0 0 0 1 0 0 0 0
10 0 1 1 1 0 1 1 0 0 0 0
12 1 0 0 1 0 0 1 1 0 0 0
9 0 0 1 0 0 1 1 0 0 0 0
8 1 0 0 1 0 0 0 0 1 0 1
5 0 0 0 1 0 1 0 0 0 1 0
4 0 0 1 0 0 1 0 1 0 0 1

Table 5.13 – Reordered DSM of Kusiak (1991) using tabu search (TLF = 6)

CPU time (sec.)

Best Average Worst

TSASW 0.0011 0.0033 0.0061

TSASH 0.0021 0.0052 0.0067

Algoritm

Table 5.14 – Computation times used by the TSA for Kusiak (1991) DSM

The effects of the diversification on the Kusiak (1991) problem are not interesting

since the optimal solution is attained by all the tested values of the tabu list duration.

We found that the Steward (1981) problem when activities are ordered {1,2, ...,N}
has an initial total feedback length (TFL) of 159 and a density level of 0.116. Using Table

5.7 as a guidance for a problem size of 20, and interpolating between the known stopping

criteria for N = 16 and N = 30, the stopping criterion of the tabu search algorithm was

fixed to 514 iterations (�399+4 · (799−399)/14) for the TSASW and to 518 (�374+

4 · (776− 374)/14) iterations for the TSASH. The tabu list duration was varied from

0 to 100, incremented by a factor of 5. The improvement graph can be found in Figure

5.1.
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Figure 5.1 – Algorithm improvement over succesive TLD without diversification (Stew-

ard 1981)

Figure 5.1 shows that TLD of 15, 20, 25, 30, 35 for the TSASW and 35, 40, 45, 50,

55, 60, 65, 70, 75, 80, 85 ,90, 95 and 100 for the TSASH yield optimal solutions, and

that the other tested values of the TLD are very close to the optimal solution of 24. Both

variants of the tabu search algorithm yield multiple different solution sequences with a

TFL of 24. One of the obtained solution sequences and the corresponding rearranged

DSM matrix of Steward (1981) is presented in Table 5.16.

The computation times used by the two variants of the TSA for the Steward (1981)

problem are presented in Table 5.15.

CPU time (sec,)

Best Average Worst

TSASW 0.0819 0.0873 0.0987

TSASH 0.1044 0.1161 0.1354

Algoritm

Table 5.15 – Computation times used by the TSA procedures for Steward (1981) DSM
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2 19 5 6 16 7 8 18 11 9 17 10 4 3 1 15 13 20 14 12
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
7 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
9 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
17 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
10 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1

Table 5.16 – Reordered DSM of Steward (1981) using tabu search (TFL = 24)

It will be interesting to observe the effects of the diversification on Stewards’ (1981)

DSM by varying the tabu list durations from 0 to 100, incremented by a factor of 5.

The results obtained with the previously presented diversification are summarized in

Figure 5.2. We can see that the diversification improves near optimal solutions obtained

without diversification for both TSASW and TSASH. For almost all the values of the

tested TLD, we obtain optimal solutions, except for a TLD equal to 85 with TSASW.

Further, we apply the TSASW and the TSASH to the first formulation of the ini-

tial Austin (1996) DSM, with an initial total feedback length (TFL) of 300. A large

stopping criterion of 1354 (�799+21 · (1591−799)/30) for the TSASW and of 1288
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Figure 5.2 – Algorithm improvement over simulated TLD (Steward 1981) with diversi-

fication

(�776+21 · (1507−776)/30) for the TSASH, were obtained by interpolating between

the stopping criteria values for N = 30 and N = 60 in Table 5.7 to obtain a value for

N = 51. The tabu list duration was varied from 0 to 100, incremented by a factor of 5.

The improvement graph of the TSASW and TSASH can be found is Figure 5.3,

and we can see that both TSASW and TSASH find a best solution sequence with a

TFL equal to 133, which is better than all solutions found to date for this problem. The

improvement curve shows that tabu list durations of 35, 40, 45 and 60 for the TSASW

and 45, 50, 55, 60, 65, 70, 75, 80, 85 ,90, 95 and 100 for the TSASH yield the best

solutions and also that the other tested values of the TLD are very close to our best

solution of 133. The reordered DSM matrix of Austin (1996) is found in Table 5.18.

The TSA was also applied using diversification to Austins’ DSM, and the results are

presented in Figure 5.4. We observe that the diversification improves some solutions, for

example a solution obtained with a TFL of 135 without diversification was improved to

the best solution of 133 for the TSASW.
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Figure 5.3 – Algorithm improvement over simulated TLD (first formulation of Austin

1996)

Figure 5.4 – Algorithm improvement over simulated TLD (first formulation of Austin

1996) with diversification.

The computation times required by our implementation of the TSA to solve Austin

(1996) problem are presented in Table 5.17. Appendix B contains the detailed computa-

tion times of the three problems for each value of the tested tabu list duration.
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Best Average Worst

TSASW 9.2899 9.6005 10.1160

TSASH 12.7261 13.2722 14.1694

CPU time (sec.)
Algoritm

Table 5.17 – Computation times used by the TSA procedures for the first formulation of

Austin (1996) DSM

Finally, the most important results obtained in this section can be summarized in the

last two columns of the Table 5.19.

Original Todd's Lancaster and Quian's Optimal TSASW TSASH
Solution Solution Cheng's Solution Solution Solution Solution Solution

Kusiak (1991) 12 7 6 6 6 6 6 6
Steward (1981) 20 93 24 24 24 24 24 24
Austin (1996) 51 320 158 157 146 unknown 133 133

Problem Size

Total Feedback Length

Table 5.19 – TFL computed using different methods and DSMs

It is interesting to observe the performance of the TSASW and TSASH using the

second formulation of Austin (1996) DSM, with an initial TFL of 317. The parameter

values are the same as those used in the former Austins (1996) DSM provided by Qian

and Lancaster. The improvement graph for the TSASW and TSASH is found in Figure

5.5. The improvement curve shows that both TSASW and TSASH find a best solution

sequence with a TFL of 137. The TFL of the second formulation is greater than the TFL

of the first formulation; this can be explained by the fact that the second formulation has

a greater initial TFL.
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1 2 3 17 16 14 18 15 5 35 4 34 7 6 8 10 12 11 13 25 24 19 20 21 9 26 28 30 29 31 32 27 33 22 36 38 37 39 40 46 47 44 45 42 41 43 49 51 23 50 48
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
47 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
45 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
42 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0
41 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.18 – Reordered DSM of the first formulation of Austin (1996) DSM (TLF = 133)
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Figure 5.5 – Algorithm improvement over simulated TLD (second formulation of Austin

1996).

In addition, tests were also performed using a DSM matrix of 48 interrelated activi-

ties found in Qian and Lin [27]. In total, 70 activities are required to develop a balancing

machine and 22 of the 70 activities were found to be independent, with a technique pre-

sented by Kusiak and Wang [21]. Since these activities can be performed simultaneously,

they are not included in the DSM. Qian and Lin were not able to provide a numerical

DSM because they could not estimate the degree of activity dependencies, due to a lack

of historical data. Their model has two types of dependencies: "a soft dependence of

activity A on activity B means that activity A depends on information input from activity

B, but is allowed to precede activity B" and "a hard dependence of activity A on B means

that activity B must precede activity A" [27].

Qian and Lin provide an initial matrix (see Figure 5.6) where the soft dependency is

denoted by 1, and the hard dependency marked with "H" take a large value. This induces

an initial solution having a total feedback length (TFL) equal to 358 ensuring that the

hard dependency of activity A on B forces B to precede A. Qian and Lin indicate that as
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long as "H" takes a value larger than 358, then the hard dependency is satisfied in the

initial solution. Using their procedure, they obtain a solution having a value of 111.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1 1 1 1
2 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1
9

10 1 1 1 1
11 1 1
12 1 1
13 1 1
14 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1
17
18 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1
20 H H H H H H H H H H H H H H H H H H H
21 1
22 H
23
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H H 1 1 1 1
28 1 1 1 1 H H H H H
29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H H H H
30 H H H H H H H
31 H
32 H 1 1 1 1
33 H 1 1 1 1
34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H
35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H
37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H
38 1 1 1 1 1 1 H
39 1 1 1 1 1 1 H
40 1 1 1 1 1 1 1 1 1 H
41 1 1 1 1 1 1 1 H
42 H H H H H H H H 1
43 H H H
44 H
45 H
46 H H
47 H
48 H

Table 5.20 – Unordered DSM of Qian (TFL = 358)

When we applied our heuristics to this DSM we obtained orderings with a TFL equal

to 106 using the TSASW and equal to 107 using the TSASH. The stopping criterion

was set to 1000 iterations according to Table 5.7 and the TLD was varied from 0 to 100,

incremented by a factor of 5. The TSA improvement is presented in Figure 5.6 and the

optimized DSM matrix and the solution sequence found by the TSA is in Table 5.21.
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Figure 5.6 – Algorithm improvement over simulated TLD (Qian).

Both variants of our heuristic yield a TFL smaller than the one of 111 found by Qian

and Lin using their heuristic.
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9 17 23 2 4 3 1 14 13 16 12 11 8 10 7 6 5 24 21 26 33 32 25 34 37 35 27 36 15 28 18 29 22 31 38 39 41 43 45 44 46 40 47 48 30 42 19 20
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 H 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 H 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 H H 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 1 0 H 1 1 1 1 1 1 0 1 1 1 1 1 1 1 H 0 H 0 0 H 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 1 H 0 0 0 0 0 0 1 0 0 0 0 0 0 0 H 0 H 0 0 H 0 0 0 H 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 1 1 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H 0 H 0 0 H 0 0 0 H 0 1 H 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 H 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 H 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 H 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 H H 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H 0 0 0 0 0 0 0
40 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 H 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0
30 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 H 0 0 H 0 0 0 H 0 0 H 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H 0 H 0 0 0 0 0 0 H H H 0 0 0 0 H 0 1 0 0 0
19 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 H H 0 H H H H H H H H H H H H H H 0 0 0 0 0 0 0 0 0 0 0 H 0 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H

Table 5.21 – Reordered DSM of Qian (TFL = 106)
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CHAPTER 6

CONCLUSION

In this paper, we study the feedback length minimization problem (FLMP) associated

with a process design structure matrix (DSM), which is a N P −hard non-linear com-

binatorial problem that allows modeling complex interrelated activity scheduling prob-

lems. The objective function of the FLMP indicates a measure of the activity sequence

disorder based on the information dependencies among activities that are interrelated.

The overall TFL of the process activity sequence is proportional to the entropy of the

activities.

We reduced Qian and Lin’s formulation [27] of the total feedback minimization prob-

lem to a more simple and equivalent formulation. A new solution method based on the

simple formulation was developed, that uses the tabu search to yield good solutions to

the FLMP using two different neighborhoods : one based on a "swap" of two activities

in the sequence and the other based on a "shift" of an activity to a new position in the

sequence. The parameters of these two variants of the tabu search algorithm are tuned

using problems of different sizes and densities. Afterwards, the tabu search algorithm is

benchmarked with other methods found in the literature. Our method finds the optimal

solution of the Kusiak (1991) and Steward (1981) problems. For the Austin (1996) prob-

lem, it outperforms the other methods found in the literature, yielding the best known

solution for this problem. The TSA is lastly tested using a DSM that involves soft and

hard dependencies of activities and again, our results outperform the results of the liter-

ature.



Two other types of DSM are less frequently used in product development : prod-

uct architecture where the DSM elements are the components of the product and the

interactions are the dependencies between the components and organization architecture

where the DSM elements represent the people (or teams) and the interactions are the

communications between them [7]. Nowadays, multi-domain DSMs are increasingly

used to capture different aspects of project design, for example the people involved in

the execution of the activities, the product to be developed, and the processes required to

complete the project. Yassine [35] recently constructed a multi-domain objective func-

tion that minimizes the sum of the people, product and process single-domain costs. The

proposed tabu search approach can be used to optimize the single-domain process cost

of this objective function. By reducing the total feedback length of the single-domain

process DSM, the tabu search algorithm can substantially decrease the total number of

feedback marks located above the diagonal of the DSM and therefore can decrease the

product domain cost.

The proposed tabu search algorithm provides a new strong base for the optimization

of single-domain process DSMs which can also benefit to multi-domain DSM optimiza-

tion. An interesting future research will be to use a hybrid approach, that combines the

tabu search method with a genetic algorithm. The genetic algorithm can use adaptive

parameters to store the best solution sequences found by the tabu search. The algorithm

can apply crossovers by taking multiple best solution sequences found by the tabu search

and recombining them to find better solutions. We have seen that each heuristic leads to

a good solution by itself. To get a more robust and well-performing solution approach,

we could also combine both heuristics presented in this paper.
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APPENDIX A

AVERAGE TOTAL FEEDBACK LENGTH

TLD TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW
0 0.89 1.13 3.87 3.83 11.68 11.74 19.05 19.03 28.51 28.61 38.47 38.42
5 0.86 0.89 3.64 3.64 11.37 11.35 18.7 18.7 28.2 28.2 38.27 38.28
10 0.86 0.86 3.64 3.64 11.34 11.34 18.7 18.7 28.2 28.2 38.26 38.26
15 0.86 0.86 3.64 3.64 11.37 11.34 18.7 18.7 28.21 28.2 38.26 38.26
20 0.86 0.87 3.69 3.64 11.46 11.34 18.7 18.7 28.25 28.2 38.29 38.26
25 0.86 0.88 3.69 3.64 11.47 11.35 18.7 18.7 28.27 28.2 38.29 38.26
30 0.86 0.91 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
35 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
40 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
45 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
50 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
55 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
60 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
65 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
70 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
75 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
80 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
85 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
90 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26
95 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26

100 0.86 0.94 3.69 3.65 11.47 11.39 18.7 18.7 28.27 28.2 38.29 38.26

TLD TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW
0 9.11 8.03 51.67 51.45 105.66 105.02 167.42 167.52 236.13 236.42 316.87 316.93
5 7.96 7.69 50.2 49.59 104.4 104.1 166.39 166.03 235.53 235.55 315.6 315.98
10 7.51 7.51 48.95 49.41 103.57 103.76 165.42 165.64 234.93 235.17 315.16 315.17
15 7.4 7.47 48.63 48.84 103.22 103.65 165.14 165.53 234.61 234.83 314.95 315.09
20 7.34 7.4 48.74 48.68 103.22 103.35 165.18 165.24 234.64 234.65 314.8 314.81
25 7.38 7.39 48.77 48.66 103.24 103.22 165.3 165.1 234.77 234.59 314.87 314.78
30 7.42 7.36 48.85 48.63 103.43 103.2 165.42 165.1 234.74 234.64 314.88 314.76
35 7.44 7.35 48.92 48.61 103.45 103.18 165.4 165.04 234.83 234.54 314.99 314.75
40 7.49 7.31 49.09 48.68 103.58 103.01 165.41 165.05 234.9 234.55 315.03 314.76
45 7.5 7.31 49.14 48.55 103.67 103.03 165.51 165.05 234.97 234.57 315.1 314.75
50 7.58 7.31 49.28 48.46 103.75 103.02 165.58 165.06 235.07 234.54 315.16 314.72
55 7.61 7.31 49.24 48.46 103.92 103.02 165.53 165.08 235.03 234.56 315.15 314.73
60 7.67 7.31 49.33 48.51 103.96 103.02 165.68 165.1 235.08 234.59 315.24 314.8
65 7.66 7.30 49.25 48.54 103.84 103.05 165.62 165.09 235.14 234.59 315.24 314.81
70 7.68 7.31 49.46 48.53 103.92 103.06 165.7 165.13 235.08 234.62 315.28 314.73
75 7.7 7.31 49.46 48.53 103.89 103.07 165.62 165.12 235.23 234.6 315.31 314.76
80 7.77 7.31 49.44 48.53 103.92 103.06 165.7 165.13 235.21 234.63 315.32 314.83
85 7.73 7.31 49.44 48.51 104.02 103.09 165.78 165.1 235.25 234.61 315.33 314.78
90 7.74 7.32 49.5 48.56 104.03 103.1 165.78 165.14 235.23 234.65 315.34 314.81
95 7.75 7.32 49.54 48.5 104.02 103.09 165.78 165.14 235.25 234.61 315.34 314.78

100 7.77 7.31 49.54 48.53 104.03 103.11 165.78 165.14 235.23 234.65 315.35 314.77

Total Feedback Length (N=16)
Density

0.1 0.2 0.3 0.4 0.5 0.6

Total Feedback Length (N=8)
Density

0.1 0.2 0.3 0.4 0.5 0.6



TLD TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW
0 118.73 116.78 449.5 446.33 823.4 823.56 1248.08 1249.18 1696.41 1694.34 2164.56 2164.76
5 117.13 115.11 447.21 444.86 821.72 820.24 1245.26 1245.46 1693.93 1691.54 2162.45 2162.99

10 115.25 113.11 445.89 442.59 820.03 818.42 1243.61 1244.17 1691.41 1690.3 2160.05 2160.36
15 113.71 112.44 444 442.06 819.25 817.54 1242.01 1242.31 1690.65 1689.71 2159.19 2158.83
20 112.64 111.55 441.73 441.39 817.54 816.9 1240.52 1241.54 1688.45 1688.63 2158.36 2158.03
25 111.89 111 440.74 441.18 816.69 816.52 1239.21 1241.19 1687.42 1688.3 2156.46 2157.43
30 110.65 110.75 440.33 440.38 815.93 816.47 1239.1 1240.3 1686.82 1687.55 2155.19 2156.41
35 109.78 110.46 439.89 440.05 816.19 816.24 1238.52 1239.76 1687 1686.8 2154.44 2155.08
40 110.16 110.1 440.44 439.35 816.28 816.13 1238.6 1239.24 1687.04 1686.71 2154.86 2154.97
45 110.41 109.34 439.82 439.23 816.44 815.96 1239.04 1238.58 1686.8 1686.21 2154.46 2154.64
50 109.81 109.51 440.07 438.51 816.87 815.83 1238.9 1237.93 1686.96 1686.09 2154.79 2154.85
55 109.95 109.35 439.85 438.24 816.92 815.65 1238.94 1237.82 1687.19 1685.61 2154.62 2154.57
60 109.87 109 439.94 438.38 817.02 815.8 1239.48 1237.39 1687.52 1685.52 2154.9 2154.27
65 110.44 109.07 440.21 437.83 817.1 815.45 1239.28 1237.58 1687.4 1685.28 2155.18 2154.21
70 110.43 108.96 440.35 437.78 817.42 815.32 1239.73 1237.31 1687.55 1684.97 2155.22 2154
75 110.63 108.84 440.68 437.74 817.61 815.49 1239.67 1237.08 1687.56 1685.2 2155.46 2154.07
80 110.73 108.74 441 437.51 817.45 815.5 1240.02 1237.12 1687.68 1684.93 2155.69 2153.78
85 111.1 108.75 441.23 438 817.75 815.34 1239.96 1237.04 1687.94 1685.07 2155.6 2153.81
90 111.26 108.57 441.12 437.54 817.91 815.17 1240.04 1236.84 1688.21 1685.44 2155.73 2153.77
95 111.16 108.78 441.17 437.44 817.93 815.11 1240.37 1237.33 1688.24 1685.12 2156.08 2153.45

100 111.53 108.7 441.57 437.58 817.82 815.07 1240.25 1237.21 1688.33 1684.93 2155.78 2153.46

TLD TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW
0 1606.1 1599.2 4521.7 4519 7705.4 7695.2 11008.4 10999.4 14510 14524.2 18413.5 18410.6

10 1603.1 1597.6 4513.7 4516.3 7702.8 7678.7 10999.3 10995.8 14504 14514.6 18412.2 18397
20 1596.4 1592.5 4509.1 4508.4 7695.5 7671.8 10985.5 10987.7 14501.9 14510 18411 18392
30 1593.1 1591.5 4501.4 4506.1 7687 7669.7 10976.7 10987 14493.9 14508.2 18407.4 18388.1
40 1593.2 1588.7 4500.8 4494.2 7680.7 7665.7 10965.2 10985.4 14494.1 14509.2 18404.2 18388
50 1576.4 1588.3 4497.7 4493.2 7673.7 7666.8 10956.8 10979.9 14493 14503 18387.9 18387.4
60 1575.8 1587.9 4493.3 4490.1 7676 7665.9 10952.9 10978.9 14494.2 14485.1 18376.7 18387.3
70 1576 1586.6 4484.6 4485.5 7672.8 7664.5 10953 10953.6 14494.3 14484.5 18371.3 18384.4
80 1572.8 1586.4 4486.3 4482.5 7671.4 7663.7 10952.4 10976.9 14493.4 14483.1 18367.5 18384.6
90 1573.9 1586.4 4484.9 4483.6 7673.4 7662.9 10954.7 10950.2 14494.2 14477.8 18369.1 18384.6

100 1571.7 1582.8 4482.9 4478.1 7670.2 7662.4 10942.3 10946.4 14489.6 14477.7 18369.4 18382.6
110 1570.7 1586.2 4486 4484.6 7673.8 7653.4 10939.7 10947.1 14494.5 14477.5 18361 18377.2
120 1572.7 1579.6 4482 4479.7 7678.9 7653 10941.9 10938.6 14484.7 14474.5 18363 18374.4
130 1571.8 1574.5 4480.1 4477.3 7659.7 7653.5 10943.1 10945.1 14492.1 14472.6 18361.2 18380.6
140 1574.2 1569.5 4481.6 4477.6 7663.7 7656.7 10945.2 10934.4 14493.6 14475.1 18360.6 18377.3
150 1576.5 1575.3 4482.9 4480.9 7676.8 7653 10942.9 10933.8 14483.5 14473.1 18357.9 18373.7
160 1571.8 1572.5 4482.7 4474.1 7661.1 7652.6 10944.5 10933.9 14492.7 14474.9 18360.3 18373.9
170 1572.9 1573 4483.9 4474.1 7673.6 7651.8 10947.7 10934.7 14481.2 14474.8 18359.8 18374.8
180 1576.8 1567.9 4481.8 4475.2 7665.5 7653.4 10946.2 10933.8 14482.4 14475.3 18364 18376.9
190 1574.4 1569.9 4488.3 4475.6 7667.2 7654.8 10950.6 10933.6 14486.7 14474.7 18362.9 18373.5
200 1573.6 1569.3 4486.3 4474.5 7667 7653.2 10950.1 10933.7 14481.6 14473.4 18359.1 18374.3

Total Feedback Length (N=60)
Density

0.1 0.2 0.3 0.4 0.5 0.6

Total Feedback Length (N=30)
Density

0.1 0.2 0.3 0.4 0.5 0.6

59



TLD TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW TSSH TSSW
0 16775.6 16745.4 41438.0 41308.2 68103.2 67872.2 95716.2 95661.6 124272.2 124197.4 153816.2 153725.4

20 16745.6 16698.2 41376.2 41299.0 68076.2 67787.6 95680.4 95658.0 124265.0 124191.8 153808.6 153708.6
40 16718.0 16634.0 41417.8 41284.0 68053.0 67757.4 95665.4 95596.4 124208.8 124170.8 153716.2 153618.2
60 16701.2 16625.6 41361.4 41280.4 68032.4 67780.8 95664.6 95595.0 124206.4 124169.0 153687.8 153611.6
80 16698.8 16600.0 41334.6 41280.0 68019.0 67763.4 95626.4 95590.8 124161.8 124162.4 153687.8 153617.8

100 16703.2 16602.4 41323.0 41280.0 67977.0 67755.8 95625.2 95587.2 124131.4 124160.4 153710.2 153617.6
120 16676.6 16625.2 41330.8 41280.0 67927.8 67754.4 95629.6 95585.8 124119.8 124168.8 153645.0 153606.8
140 16662.8 16620.0 41296.0 41280.0 67883.2 67748.0 95625.2 95585.6 124063.6 124158.6 153646.2 153611.6
160 16652.2 16620.0 41302.0 41279.6 67923.4 67719.4 95625.6 95571.2 124053.2 124155.2 153597.4 153611.8
180 16640.4 16613.2 41289.8 41272.6 67889.0 67735.4 95607.6 95559.6 124047.2 124138.8 153558.8 153611.6
200 16589.2 16586.0 41264.8 41271.8 67938.8 67738.6 95624.0 95558.4 124080.0 124117.2 153559.8 153601.2

Total Feedback Length (N=120)
Density

0.1 0.2 0.3 0.4 0.5 0.6

60



APPENDIX B

COMPUTATION TIMES OF THE KUSIAK (1991), STEWARD (1981) AND

AUSTIN (1996) PROBLEMS

TSASW TSASH TSASW TSASH TSASW TSASH

0 0.0061 0.0067 0.0888 0.1211 9.6840 13.2239

5 0.0057 0.0067 0.0861 0.1181 9.6287 13.9749

10 0.0055 0.0067 0.0820 0.1155 10.0241 14.1694

15 0.0060 0.0064 0.0824 0.1178 9.8649 13.2238

20 0.0058 0.0063 0.0823 0.1187 9.8686 13.6943

25 0.0058 0.0063 0.0987 0.1354 9.7281 13.6483

30 0.0058 0.0061 0.0939 0.1176 9.5208 13.8762

35 0.0055 0.0063 0.0819 0.1123 9.9308 13.5098

40 0.0055 0.0061 0.0838 0.1118 9.5247 13.2584

45 0.0055 0.0061 0.0833 0.1193 9.9600 13.9224

50 0.0012 0.0055 0.0955 0.1343 10.0886 13.9630

55 0.0012 0.0059 0.0889 0.1076 10.1160 13.1300

60 0.0011 0.0054 0.0825 0.1083 9.2923 12.8526

65 0.0012 0.0060 0.0848 0.1074 9.2979 12.8192

70 0.0012 0.0052 0.0820 0.1118 9.2899 12.8168

75 0.0011 0.0055 0.0983 0.1291 9.2944 12.7967

80 0.0011 0.0028 0.0917 0.1049 9.2988 12.7675

85 0.0011 0.0022 0.0832 0.1044 9.2922 12.7880

90 0.0011 0.0024 0.0834 0.1061 9.3000 12.7536

95 0.0011 0.0021 0.0825 0.1075 9.2956 12.7261

100 0.0011 0.0022 0.0980 0.1281 9.3107 12.8015

TLD
Kusiak (1991) Steward (1981) Austin (1996)

CPU time (sec.)


