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Résumé

Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram-
ment utilisés pour générer des prévisions depuis l’article pionnier de Stock et Watson (2002)
sur les indices de diffusion. Ces modèles tolèrent l’inclusion d’un grand nombre de variables
macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di-
verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco-
nométriques qui améliorent l’inférence dans les modèles à facteurs utilisant des facteurs latents
extraits d’un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen-
taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron.
Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées

pour faire de l’inférence dans les modèles de prévision pour un horizon de h périodes dans le
futur. Pour ce faire, il examine l’inférence bootstrap dans un contexte de régression augmentée
de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves
et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild
bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux
de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches
comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation
sérielle dans les erreurs de régression.
Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles

de prévision permettant de relâcher l’hypothèse de normalité des innovations. Nous y propo-
sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa
moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble
de facteurs extraits d’un large panel de variables. Parce que nous traitons ces facteurs comme
latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres-
sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction
d’intervalles asymptotiques sous l’hypothèse de Gaussianité des innovations. Le bootstrap nous
permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des
hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à
des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il
prend en considération le biais de l’estimateur des moindres carrés ordinaires comme le montre
une étude récente de Gonçalves et Perron (2014).
Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour

les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement
que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation,
la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour
l’espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la
validité généralise l’approximation bootstrap de Shao (1996) pour les regressions augmentées
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de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par-
cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles.
L’application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et
l’excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d’un
large panel de données macroéconomiques et financières des États Unis, les facteurs fortement
correlés aux écarts de taux d’intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif
pour les excès de rendement.
Mots-clés : Modèles à facteurs, correlation sérielle, prévision, moyenne conditionnelle, sélec-
tion de modèle, validation croisée, bootstrap, inflation, excès de rendement boursier, É.U.
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Abstract

This thesis develops bootstrap methods for factor models which are now widely used for
generating forecasts since the seminal paper of Stock and Watson (2002) on diffusion indices.
These models allow the inclusion of a large set of macroeconomic and financial variables as
predictors, useful to span various information related to economic agents. My thesis develops
econometric tools that improves inference in factor-augmented regression models driven by few
unobservable factors estimated from a large panel of observed predictors. It is subdivided into
three complementary chapters. The two first chapters are joint papers with Sílvia Gonçalves
and Benoit Perron.
In the first chapter, we study how bootstrap methods can be used to make inference in

h-step forecasting models which generally involve serially correlated errors. It thus considers
bootstrap inference in a factor-augmented regression context where the errors could potentially
be serially correlated. This generalizes results in Gonçalves and Perron (2013) and makes the
bootstrap applicable to forecasting contexts where the forecast horizon is greater than one.
We propose and justify two residual-based approaches, a block wild bootstrap (BWB) and a
dependent wild bootstrap (DWB). Our simulations document improvement in coverage rates of
confidence intervals for the coefficients when using BWB or DWB relative to both asymptotic
theory and the wild bootstrap when serial correlation is present in the regression errors.
The second chapter provides bootstrap methods for prediction intervals which allow re-

laxing the normality distribution assumption on innovations. We propose bootstrap prediction
intervals for an observation h periods into the future and its conditional mean. We assume
that these forecasts are made using a set of factors extracted from a large panel of variables.
Because we treat these factors as latent, our forecasts depend both on estimated factors and
estimated regression coefficients. Under regularity conditions, Bai and Ng (2006) proposed the
construction of asymptotic intervals under Gaussianity of the innovations. The bootstrap al-
lows us to relax this assumption and to construct valid prediction intervals under more general
conditions. Moreover, even under Gaussianity, the bootstrap leads to more accurate intervals
in cases where the cross-sectional dimension is relatively small as it reduces the bias of the
ordinary least squares estimator as shown in a recent paper by Gonçalves and Perron (2014).
The third chapter proposes two consistent model selection procedures for factor-augmented

regressions in finite samples. We first demonstrate that the usual cross-validation is inconsistent,
but that a generalization, leave-d-out cross-validation, selects the smallest basis of estimated
factors for the space spanned by the true factors. The second proposed criterion is a genera-
lization of the bootstrap approximation of the squared error of prediction of Shao (1996) to
factor-augmented regressions which we also show is consistent. Simulation evidence documents
improvements in the probability of selecting the smallest set of estimated factors than the
usually available methods. An illustrative empirical application that analyzes the relationship
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between expected stock returns and macroeconomic and financial factors extracted from a large
panel of U.S. macroeconomic and financial data is conducted. Our new procedures select fac-
tors that correlate heavily with interest rate spreads and with the Fama-French factors. These
factors have strong predictive power for excess returns.
Keywords : Factor model, serial correlation, forecast, conditional mean, model selection,
cross-validation, bootstrap, excess returns, U.S.
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Introduction Générale

Dans les dernières décennies, nous avons noté une disponibilité croissante de données éco-
nomiques. Leur utilisation pour générer des prévisions a connu un regain d’intérêt depuis le
travail pionnier de Stock et Watson (2002) sur les modèles à facteurs augmentés. Ces modèles
assument que la variable d’intérêt par exemples l’inflation ou l’excès de rendement boursier
dépendent non seulement de variables observées mais aussi de facteurs inobservés résumant
l’information d’un grand nombre de variables.
En pratique, parce que les facteurs sont latents, ils sont remplacés par leur version estimée

généralement par la méthode des composantes principales. Sous des conditions de régularité, Bai
et Ng (2006) montrent que les facteurs extraits peuvent être traités comme si ils éntait observés
lorsque la racine carrée de la dimension temporelle sur le nombre de série tend vers zéro. En
examinant les propriétés asymptotiques, Gonçalves et Perron (2014) démontrent la présence
d’un biais dans la distribution asymptotique de l’estimateur obtenu par la regression augmentée
de facteurs. De surcroît, ils suggèrent une méthode de bootstrap en deux étapes permettant
de capturer ce biais. Cette méthode du wild bootstrap détruit toute dépendance entre les
observations. Ainsi, elle n’est valide que lorsque l’horizon de prévision est 1 car lorsque l’horizon
de prévision est supérieure à une période, les innovations sont généralement dépendantes. Ce
qui rend invalide le wild bootstrap. Dans le premier chapitre, nous justifions théoriquement la
validité du block wild bootstrap et le dépendent wild bootstrap. Ces deux méthodes basées sur
les résidus en dimension temporelle se rejoignent sur le fait qu’elles préservent la dépendance
dans la variance asymptotique de l’estimateur. Toutefois, la première préserve cette dépendance
en considérant k blocs de résidus multipliés chacun par une même variable externe. La seconde
approche quant à elle lisse les variables externes au delà des blocs.
Dans le deuxième chapitre, nous justifions la validité du bootstrap pour construire les in-

tervalles de prédiction pour une réalisation future de la variable dépendante ou sa moyenne
conditionnelle à l’information disponible. Nos résultats, permettent contrairement à l’approache
asymptotique usuelle, de relâcher l’hypothèse de normalité des innovations futures. En appli-
quant notre demarche à la prévision des changements de l’inflation avec des données trimes-
trielles de l’économie américaine couvrant la période 1973 à 2014, nos intervalles de prédiction
incluent la forte déflation observée pendant la crise financière de 2008 et celle du dernier tri-
mestre de 2011.
Nous complètons notre analyse dans le troixième chapitre par l’examen du choix des facteurs

estimés à inclure dans l’équation de prévision. En effet, les facteurs latents F 0 importants pour
prédire la variable dépendente ne sont pas nécessairement tous ceux (F ) qui résument l’infor-
mation dans le grand nombre de prédicteurs disponibles X. Nous nous fixons comme objectif
de détecter le plus petit ensemble de regresseurs générés capable de recouvrir l’information
dans F 0. Bien que beaucoup de travaux se sont intéressé au choix des facteurs estimés reflétant
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le mouvement commun dans X, peu se sont penchés sur l’identification de ces derniers. Nous
explorons comment la méthode de validation croisée peut être utilisée dans notre contexte de
régresseurs générés. Nous montrons que la méthode de sélection de validation croisée usuelle
n’est valide que lorsqu’un seul ensemble de facteurs estimés est correct. Pour remédier à cette
situation, nous justifions la validité du «leave-d-out cross-validation» avec un d convenablement
choisi. Nous proposons également une approche de bootstrap convergente qui contrairement à
la méthode de validation croisée leave-d-out évalue l’habileté de prédiction des modèles can-
didats avec un estimateur se basant sur toutes les observations. En considérant un ensemble
de 277 variables macroéconomiques et financières, nous avons étudié les déterminants de l’ex-
cès de rendement boursier sur le marché américain en revisitant le travail de Ludvigson et Ng
(2007). Les facteurs fortement correlés aux écarts entre les taux d’intérêts et le taux directeur
et les facteurs de Fama-French ont un fort pouvoir prédictif pour l’excès de rendement boursier.
Nos résultats montrent que les approches suggérées protègent contre la sélection d’un nombre
inapproprié de facteurs estimés.



3

Chapitre 1

Bootstrap Inference in Regressions
with Estimated Factors and Serial
Correlation

1.1 Introduction

Factor-augmented regressions have become quite popular in research in finance and econo-
mics since the seminal paper of Stock and Watson (2002). They are often used in a forecasting
context as they allow to summarize a large number of predictors with a small number of indexes.
Because these indexes are treated as latent factors in an approximate factor model, the

estimated regression contains estimated regressors which poses challenges for inference. Under
regularity conditions, Bai and Ng (2006) derived the asymptotic distribution of regression esti-
mates. One of the key conditions used in their work is that

√
T/N → 0. In that case, the error

in estimating the factors can be neglected and inference can proceed as if they were observed.
Gonçalves and Perron (2014) (GP (2014) thereafter) showed that the finite sample properties

of the asymptotic approach of Bai and Ng (2006) can be poor, especially if N is not sufficiently
large relative to T . In particular, estimation of factors leads to an asymptotic bias term in
the OLS estimator if

√
T/N → c and c = 0. They provided a set of high level conditions

under which any residual-based bootstrap method is valid in this context and showed that
a bootstrap algorithm based on the wild bootstrap removes this bias and outperforms the
asymptotic approach of Bai and Ng (2006) in simulation experiments. This wild bootstrap
algorithm is only valid when the forecasting horizon is one because it does not reproduce serial
correlation. In general, when the forecasting horizon is larger than one and the model is correctly
specified, the residuals in the factor-augmented regression will follow a moving average process
(Diebold (2007), pp. 256-257).
In this paper, we extend the work of Bai and Ng (2006) and GP (2014) by considering errors

This chapter is a joint paper with Sílvia Gonçalves and Benoit Perron. The authors are grateful for comments
from seminar participants at the Toulouse School of Economics, Pompeu Fabra University and Duke University,
as well as from participants at the Workshop on Bootstrap Methods for Time Series, Copenhagen, Denmark,
September 2013, and the MAESG conference in Emory, Atlanta, November 2013. Gonçalves acknowledges
financial support from the NSERC and MITACS whereas Perron acknowledges financial support from the
SSHRC and MITACS. We acknowledge that this chapter has been published by Journal of Time Series Analysis
and agree with the publication disclosure.
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that are serially correlated. Bai and Ng effectively ruled out possible serial correlation since their
estimator of the asymptotic variance of the scaled average of the scores is only consistent with
heteroskedasticity. We begin by providing an asymptotic theory under general assumptions on
the serial correlation of the error term (of the strong mixing type) and proposing a consistent
estimator of the covariance matrix in that case. As in GP (2014), we allow

√
T/N → c > 0

so that a bias term appears in the asymptotic distribution. Secondly, we propose two residual-
based bootstrap schemes and show that they provide valid inference in this context. The first
scheme which we call the block wild bootstrap (BWB) was proposed by Yeh (1998) for a linear
regression with fixed scalar regressor and strong mixing errors. It is implemented by separating
the residuals into non-overlapping blocks of observations and multiplying the elements of each
block by the same realization of an external variable. The fact that each element in a block is
multiplied by the same external draw generates correlation among the elements within a block
but enforces independence across blocks. The second scheme we consider is the dependent wild
bootstrap (DWB) originally proposed by Shao (2010) in the context of the smooth function
model with time series observations. The DWB differs from the BWB by smoothing the external
draws across blocks. Our main contribution is to show that these two methods are valid in the
context of a factor augmented regression model with estimated factors and serially correlated
errors, characterized by a strong mixing assumption.
The remainder of the paper is organized as follows. Section 1.2 introduces our assump-

tions, provides the asymptotic distribution of the OLS estimator, and proposes a consistent
estimator of the covariance matrix. Section 1.3 considers bootstrap inference using our two pro-
posed algorithms. Section 1.4 presents our simulation experiments, and Section 1.5 concludes.
Mathematical proofs appear in the Appendix 0.1.

1.2 Assumptions and asymptotic results

We consider the following standard factor-augmented regression model,

yt+h = α Ft + β Wt + εt+h, t = 1, . . . , T − h,

where yt+h denotes the variable of interest, for example GDP growth or inflation, with h the
forecast horizon. The r × 1 vector Ft consists of latent factors which help forecast yt+h. These
are thought as common latent factors in a panel factor model given by

Xit = λiFt + eit, i = 1, . . . , N, t = 1, . . . , T,

where λi, i = 1, . . . , N, are the r × 1 factor loadings and eit is an idiosyncratic error term,
i = 1, . . . , N, t = 1, . . . , T . The vector Wt contains a smaller set of other observed regressors
(including for instance a constant and lags of yt). We will denote the set of regressors as
zt = (Ft ,Wt) , t = 1, . . . , T .
We impose the following assumptions. Throughout, M = (trace (M M))1/2 denotes the

Euclidean norm, M > 0 denotes positive definiteness for a square matrix, and C represents a
generic finite constant.

Assumption 1 (factor model)

a) E Ft
4 ≤ C and ΣF = limT→∞E (T−1F F ) = limT→∞E T−1 T

t=1 FtFt > 0.
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b) λi ≤ C if λi are deterministic, or E λi ≤ C if not, and N−1Λ Λ = N−1 N
i=1 λiλi →P

ΣΛ > 0.

c) The eigenvalues of the r × r matrix (ΣF × ΣΛ) are distinct.

Assumption 2 (Idiosyncratic errors)

a) E (eit) = 0, E |eit|8 ≤ C.
b) E (eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s) and |σij,ts| ≤ τ st for all (i, j) withN−1 N

i,j=1 σij ≤
C, T−1 T

t,s=1 τ st ≤ C and (NT )−1 i,j,t,s=1 |σij,ts| ≤ C.
c) E N−1/2 N

i=1 (eiteis − E (eiteis))
4

≤ C for all (t, s) .
Assumption 3 (Moments and weak dependence among {zt}, {λi}, and {eit})
a) E N−1 N

i=1 T−1/2 T
t=1 Fteit

2

≤ C, where E (Fteit) = 0 for every (i, t) .

b) For each t, E (NT )−1/2 T
s=1

N
i=1 zs (eiteis − E (eiteis))

2

≤ C where zs = (Fs,Ws) .

c) E (NT )−1/2 T
t=1 ztetΛ

2

≤ C where E (ztλieit) = 0 for all (i, t) .

d) E T−1 T
t=1 N−1/2 N

i=1 λiet
2

≤ C where E (λieit) = 0 for all (i, t) .

e) AsN, T →∞, (NT )−1 T
t=1

N
i=1

N
j=1 λiλjeitejt−Γ→P 0, where Γ ≡ limN, T→∞ T−1

T
t=1 Γt >

0, and Γt ≡ V ar N−1/2 N
i=1 λieit .

Assumption 4 (Weak dependence betwen εt+h and eit)

a) For each t and h ≥ 0, E (NT )−1/2 T
s=1

N
i=1 εs+h (eiteis − E (eiteis)) ≤ C.

b) E (NT )−1/2 T−h
t=1 λieitεt+h

2

≤ C where E (λieitεt+h) = 0 for all (i, t, h) .
Assumption 5 (Moments and dependence of the score vector) For some r > 2,

a) E (ztεt+h) = 0, E zt
2r < C and E ε2rt+h < C.

b) {(zt, εt+h)} is a fourth order stationary strong mixing sequence of size − 2r
r−2 .

c) Σzz = lim
T→∞

E T−1 T
t=1 ztzt > 0.

d) Ω = lim
T→∞

V ar T−1/2 T−h
t=1 ztεt+h > 0.

Assumptions 1-4 are identical to those of GP (2014) whereas Assumption 5 contains the
fundamental difference. We replace the high level central limit theorem assumption of GP (2014,
cf. Assumption 5(c)) by more primitive assumptions that allow us to show consistency of the
bootstrap in this context. Specifically, we impose a strong mixing assumption on (zt, εt+h) and
require the existence of slightly more than four finite moments for these random variables (which
is a strengthening of the moment conditions used by GP (2014)). Under these assumptions, we
can show that a central limit theorem holds for the regression scores (using the latent factors),
thus verifying Assumption 5 of GP (2014). Our strong mixing assumption allows for quite
general serial dependence, including the class of stationary ARMA processes. This is the case
even when h = 1, where the condition E (ztεt+h) = 0 imposes further restrictions on the form of
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serial correlation in εt when zt contains a lagged dependent variable (e.g. it rules out an AR(1)
model for εt) but does not eliminate it.
To estimate the factor-augmented regression, it is necessary to use an estimator of the latent

factors Ft. It is well known that factor models suffer from a lack of identification. As shown
by Bai (2003), the principal component Ft is only consistent for a rotation of Ft, denoted by
HFt, where H denotes the associated rotation matrix. Bai showed that the rotation matrix H
is given by

H = Ṽ −1
F̃ F

T

Λ Λ

N
, (1.1)

where Ṽ is a r × r diagonal matrix with the r largest eigenvalues of XX /NT , in decreasing
order on the diagonal.
It is useful to rewrite the model as

yt+h = ẑ δ + αH−1 HFt − F̃t + εt+h,

where δ = (αH−1 β ) and ẑt = F̃t ,Wt . The consequence of the lack of identification of the
factor model is that the coefficients associated with the estimated factors are rotated versions of
those associated with the true latent factors. Bai and Ng (2013) provide three sets of conditions
under which H0 = p limH = diag (±1). Under those conditions, α will be identified up to sign.
The OLS estimator from regressing yt+h on F̃t and Wt is given by

δ̂ = α̂ , β̂ =
T−h

t=1

ẑtẑt

−1 T−h

t=1

ẑtyt+h,

and it will be such that δ̂ →P δ ≡ αH−1 β under our assumptions. We denote Φ0 ≡
diag (H0, I). The following theorem provides the asymptotic distribution of the OLS estimator.
The proof is in the Appendix.

Theorem 1. Under Assumptions 1-5, if
√
T
N
→ c <∞, as N, T →∞, then

√
T δ − δ →d N (−cΔδ,Σδ) ,

with Σδ = Φ −1
0 Σ−1zz ΩΣ

−1
zz Φ

−1
0 , and

Δδ = (Φ0ΣzzΦ0)
−1 ΣF̃ + V ΣF̃V

ΣWF̃V ΣF̃V
−1 H−1

0 α

where ΣWF̃ = p lim
W F̃
T

, ΣF̃ = V
−1QΓQ V −1, Q = p lim F̃ F

T
, and V = p lim Ṽ .

Theorem 1 follows from Theorem 2.1 of GP (2014), where the asymptotic normality of
the OLS estimator was obtained under a high level CLT assumption on the regression scores.
Instead, here we allow dependence of unknown form by assuming a mixing condition on the
regressors and on the regression errors. This primitive condition will be useful to establish the
consistency of the BWB and DWB in Section 1.3, as well as the consistency of a HAC estimator
of Ω, as we prove next. Note that under this mixing condition, Ω is not necessarily of the form
Ω = E ztztε

2
t+h assumed by Bai and Ng (2006).
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To carry out inference or construct prediction intervals, a consistent covariance estimator
of Σδ is required. As we allow for serial correlation in the score, a HAC estimator of Σδ is
appropriate,

Σ̂δ = T−1ẑ ẑ
−1

Ω̂ T−1ẑ ẑ
−1

with

Ω̂ = Ξ̂0 +
T−h−1

j=1

k
j

MT

Ξ̂j + Ξ̂j ,

where Ξ̂j =
1
T

T−h−j
t=1 ztzt+jεt+hεt+h+j is the autocovariance matrix of the scores, k (·) is a

kernel function, and MT is a bandwidth.
To prove consistency of this estimator, restrictions must be placed on the kernel function

k (·) and bandwidthMT .We will consider kernels in the family K1 as in Andrews and Monahan
(1992) :

K1= k (·) : R→ [−1, 1] , k (0) = 1, k (x) = k (−x) for x ∈ R, +∞
−∞ |k (x)| dx <∞,

k (·) is continuous at 0 and at all but a finite number of points .

In addition, we must strengthen Assumptions 3 and 5. Specifically, we require :

Assumption 3’

d) E T−1 T
t=1 N−1/2 N

i=1 λiet
4

≤ C where E (λieit) = 0 for all (i, t) .
Assumption 5’ For some r > 2,

a) E (ztεt+h) = 0, E zt
4r < C and E ε4rt+h < C.

b) {(zt, εt+h)} is a fourth order stationary strong mixing sequence of size − 3r
r−2 .

The other parts of these two assumptions remain as before. By strengthening Assumption
5.a) by Assumption 5’.a) we have that E ztεt+h

2r < C, which is sufficient for the proof of our
next result. Assumption 5’ is analogous to the assumptions made in Andrews (1991, Lemma 1)
to prove consistency of the HAC estimator.

Lemma 2. Suppose that Assumptions 1-5, with Assumptions 3 and 5 strengthened by Assump-
tions 3’ and 5’ respectively, hold. Suppose further that k (·) belongs to the set K1 and that
MT →∞ as T →∞ such that MT

T

2 → 0. If
√
T
N
→ c <∞ as N, T →∞, then Σδ →P Σδ.

This lemma shows that a HAC covariance estimator is consistent for Σδ despite the presence
of estimated regressors. This implies that, as in Bai and Ng (2006), asymptotic inference can
be carried out as if the factors were observed if

√
T/N → 0 since in that case, the asymptotic

distribution of
√
T δ̂ − δ is centered at 0. If

√
T/N → c > 0, Lemma 2.1 shows that HAC

estimation is still possible, but inference is complicated by the need to account for the bias term
in the asymptotic distribution. As in GP (2014), we consider the bootstrap to accomplish this
in the next section.
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1.3 Bootstrap inference

1.3.1 General residual-based bootstrap : review

In this section, we consider bootstrap inference on the coefficients of the factor-augmented
regression. The proposed bootstrap scheme resamples the idiosyncratic and regression residuals
separately and is similar to the one in GP (2014) with the difference that in the second step,
residuals {ε̂t+h} are resampled by either the block wild bootstrap or the dependent wild boots-
trap. As usual, we will denote with asterisks quantities in the bootstrap world. We will also
denote by E∗ (and V ar∗) the expectation (and variance) under the bootstrap measure P ∗.

Bootstrap algorithm

1. For t = 1, . . . , T , generateX∗
t = Λ̃F̃t+e

∗
t , where {e∗it} is a resampled version of ẽit = Xit − λ̃iF̃t .

In this step, we use the wild bootstrap and set

e∗it = ẽit · ηit, i = 1, . . . , N, t = 1, . . . , T

where ηit is an i.i.d. draw (over i and t) from an external random variable with mean 0
and variance 1.

2. Estimate the bootstrap factors F̃ ∗t : t = 1, . . . , T by principal components using X∗.

3. For t = 1, . . . , T − h, generate y∗t+h = α̂ F̃t + β̂ Wt + ε∗t+h, where the error term ε∗t+h is a
resampled version of ε̂t+h. In this step, we will use either the block wild bootstrap or the
dependent wild bootstrap as detailed below to accommodate serial correlation in εt+h. 1

4. Regress y∗t+h generated in step 3 on the bootstrap estimated factors F̃
∗
t obtained in step

2 and on the observed regressors Wt and obtain the OLS estimator δ̂
∗
,

δ̂
∗
=

T−h

t=1

ẑ∗t ẑ
∗
t

−1 T−h

t=1

ẑ∗t y
∗
t+h, where ẑ

∗
t = F̃ ∗t ,Wt .

5. Repeat steps 1-4 B times.

As in the sample, the principal component estimator in the bootstrap consistently estimates
the space of factors only. The specific rotation that is estimated is given by the bootstrap
analogue of the H matrix,

H∗ = Ṽ ∗−1
F̃ ∗ F̃
T

Λ̃ Λ̃

N
,

where Ṽ ∗ is the r× r diagonal matrix containing on the main diagonal the r largest eigenvalues
of X∗X∗ /NT , in decreasing order. Note that contrary to H, which depends on unknown popu-
lation parameters, H∗ is fully observed. Using the results in Bai and Ng (2013) , H∗ converges
asymptotically to a diagonal matrix with +1 or −1 on the main diagonal, see GP (2014) for
more details.

1When Wt includes lagged values of the dependent variable, it is also possible to generate y∗t+h recursively
as in y∗t+h = α Ft + βy

∗
t + ε

∗
t+h, t = 1, . . . , T − h. Simulation results did not show any noticeable improvements

from doing this, so we concentrate on a fixed-design scheme which allows for a unified treatment of Wt.
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The consequence of this lack of identification is that the bootstrap OLS estimator estimates

δ∗ = α̂H∗−1 β̂ = (Φ∗−1) δ̂ which is different from δ̂. GP (2014) suggested using a rotated

version of this estimator, δ̃
∗
= Φ∗ δ̂

∗
for bootstrap inference, and we will do the same here.

The next assumption is a modified version of Assumptions 6-8 in GP (2014) applied to our
context.

Assumption 6

a) λi are either deterministic such that λi ≤ C <∞, or stochastic such that E λi
12 ≤ C <

∞ for all i, and E Ft
12 ≤ C <∞.

b) E |eit|
12 ≤ C <∞, for all (i, t) and E (eitejs) = 0, if i = j.

c) zt and εt+h are independent of eis for all (i, t, s).

Assumption 6.b) excludes cross-sectional dependence among idiosyncratic errors as in As-
sumption 8 of GP (2014). This is required because we use the wild bootstrap in step 1 of the
bootstrap algorithm which destroys such dependence. We could relax this assumption if we
were willing to assume that

√
T/N → 0 as in Bai and Ng (2006). In that case, the bias term

of the OLS estimator is 0, and this is the only quantity that depends on the properties of the
idiosyncratic errors asymptotically. In that situation, factor estimation error does not matter
asymptotically, and the key condition for bootstrap validity is to replicate the properties of the
regression errors εt+h, as we are doing here with our two proposed blocking methods.
We now consider the two bootstrap schemes to generate ε∗t+h in step 3 of this algorithm.

1.3.2 Block wild bootstrap

The first scheme we consider is the block wild bootstrap (BWB) first proposed by Yeh
(1998) and analyzed in other contexts by Shao (2011) and Urbain and Smeekes (2013).
First, we form non-overlapping blocks of size bT of consecutive residuals. For simplicity, we

assume that (T − h) /bT = kT , where kT is an integer and denotes the number of blocks of size
bT . For l = 1, . . . , bT and j = 1, . . . , kT , we let

y∗(j−1)bT+l+h = α̂ F̃(j−1)bT+l + β̂ W(j−1)bT+l + ε∗(j−1)bT+l+h, (1.2)

where
ε∗(j−1)bT+l+h = ε̂(j−1)bT+l+h · νj

and νj is an external random variable with mean 0, variance 1, and independent and identically
distributed across blocks. In other words, the bootstrap data is obtained by multiplying each
residual by an external variable that is the same for all observations within a block. The
next theorem shows the consistency of the bootstrap based on the rotated version of the OLS
estimator, Φ∗ δ̂

∗
.

Theorem 3. Under the same assumptions as in Lemma 2, assuming E∗ |ηit|4 ≤ C <∞, for all
(i, t), and E∗ |νj|4q ≤ C <∞, j = 1, . . . , kT , for some q > 1, if

√
T
N
→ c <∞ and bT →∞ such

that b
2
T

T
→ 0, as N, T →∞, then supx∈Rdim(δ) P ∗

√
T Φ∗ δ̂

∗ − δ̂ ≤ x − P √
T δ̂ − δ ≤ x →P

0.
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1.3.3 Dependent wild bootstrap

In this section, we consider the dependent wild bootstrap as an alternative to the block
wild bootstrap. The dependent wild bootstrap was proposed by Shao (2010) and differs from
the BWB by the fact that the draws of the external variable are smoothed across observations.
The DWB is implemented by multiplying each residual by a variable which is a local weighted
average of external draws. The local weighting makes neighboring observations dependent, and
this explains why it is valid under serial correlation. More formally, the DWB observations are
obtained as

ε∗t+h = ε̂t+h · w∗t+h,
where w∗t+h is the typical element of a vector w

∗ of length T − h of random draws with mean 0

and covariance matrix K, with typical element Kij = E
∗ w∗i · w∗j = kdwb

j−i
lT

, with kdwb (·)
a kernel function and lT a bandwidth parameter. Following Shao (2010, Assumption 2.1), we
assume that w∗ is lT -dependent. In our simulations, we set w∗ = K1/2w, where w ∼ N (0, IT−h).
Because the choices of kernel and bandwidth used to construct the DWB observations do not
need to coincide with the choices of kernel and bandwidth used to construct the HAC estimator,
we use different notations here.
We make the same assumptions as for the BWB with the addition of the following restriction

on the class of kernels.

Assumption 7 kdwb : R → [0, 1] is symmetric with compact support on [−1, 1] , kdwb (0) = 1,
limx→0 {1− kdwb (x)} / |x|q = 0 for some q ∈ (0, 2] such that ψ (ξ) = 1

2π

+∞
−∞ kdwb (x) e

iξxdx ≥
0 for all ξ ∈ R.

The condition ψ (ξ) ≥ 0 ensures that the matrix K is positive definite (see Shao (2010)).
These assumptions are satisfied by the Bartlett and Parzen kernels but not for the truncated,
quadratic spectral and the Tukey-Hanning kernels (see Andrews (1991), Davidson and De Jong
(2000) and Shao (2010)).
The following theorem justifies the dependent wild bootstrap for inference on δ.

Theorem 4. Under the same assumptions as in Lemma 2 and Assumption 7, and assuming
E∗ |ηit|4 ≤ C <∞, E∗ |w∗t |2r ≤ C <∞, for some r > 2, if

√
T
N
→ c <∞ and lT →∞ such that

T−1l2(r+1)/rT → 0, as N, T →∞, then

sup
x∈Rdim(δ)

P ∗
√
T Φ∗ δ̂

∗ − δ̂ ≤ x − P
√
T δ̂ − δ ≤ x →P 0.

This result is the DWB analog of Theorem 3 for the BWB. Both theorems allow us to use
these two methods for constructing percentile confidence intervals using the bootstrap. In order
to construct percentile-t intervals (Hall, 1992), we need a consistent estimator of the variance

of
√
T Φ∗ δ̂

∗ − δ̂ to define studentized statistics. This estimator is given by Φ∗ Σ̂∗δΦ
∗, where

Σ̂∗δ = T−1ẑ∗ ẑ∗
−1

Ω̂∗ T−1ẑ∗ ẑ∗
−1
,

with Ω̂∗ being a HAC estimator

Ω̂∗ = Ξ̂∗0 +
T−h

j=1

k∗
j

M∗
T

Ξ̂∗j + Ξ̂∗j
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where k∗ (·) and M∗
T denote the kernel function and the bandwidth parameter used in the

bootstrap HAC estimator and Ξ̂∗j =
1
T

T−h−j
t=1 ẑ∗t ẑ

∗
t+j ε̂

∗
t+hε̂

∗
t+h+j.

The consistency of Σ̂∗δ is formalized in the next lemma.

Lemma 5. Suppose the assumptions of Theorems 3 and 4 hold for the DWB and the BWB,
respectively. Let k∗ (·) belong to the set K1 and M∗

T → ∞ as T → ∞ such that M∗2
T

T
→ 0. If√

T
N
→ c <∞ as N, T →∞, then Σ∗δ →P ∗ Σ∗δ ≡ (Φ∗0 )−1Σδ (Φ

∗
0)
−1 , in probability.

This result implies the consistency of the bootstrap distribution of the studentized statistic
for any given coefficient and justifes the construction of symmetric or equal-tailed percentile-t
confidence intervals.

1.4 Simulation results

In this section, we report results of a simulation experiment to document the properties of
the bootstrap inference procedures above. Our design follows Gonçalves, Perron, and Djogbenou
(2015) closely. We consider a single factor model,

yt+h = αFt + εt+h,

where α = 1 and Ft is an AR(1) process, Ft = 0.8Ft−1 + ut, with ut drawn for a normal
distribution with mean 0 and variance 1− (0.8)2 independently over time.
We consider three possibilities for the error term εt+h. In the first two designs, we set h = 1

or 12, and let the error term follow an MA(h− 1) as is appropriate if the forecasting model is
correctly specified. In each case, following Cheng and Hansen (2013), the MA process is εt+h =

h−1
j=0 (0.8)

j vt+h−j, and vt ∼ N 0, h−1
j=0 (0.8)

2j
−1

so that εt+h has variance 1. Finally, in

the last design, we set h = 1 and generate εt+h from an AR(1) process, εt+h = .8εt+h−1 + vt+h,
with vt+h drawn for a normal with expectation 0 and variance (1− .82) . This design is plausible
for cases where the forecasting model is dynamically misspecified.
As in Gonçalves, Perron, and Djogbenou (2015), the (T ×N) matrix of panel variables is

generated as,
Xit = λiFt + eit,

where λi is drawn from a U [0, 1] distribution (independent across i) and eit is heteroskedastic
but independent over i and t. The variance of eit is drawn from U [.5, 1.5] for each i.
We consider asymptotic and bootstrap confidence intervals at a nominal level of 95% for

the regression coefficient. Asymptotic inference is conducted using a HAC estimator with a
quadratic spectral kernel and with bandwidth selected by the data-based rule from Andrews
(1991), both in the original sample and in the bootstrap samples. We consider three bootstrap
schemes for generating ε∗t+h in step 3 of our algorithm : the wild bootstrap, the block wild
bootstrap with block size equal to the integer part of the bandwidth choice in the sample, and
the dependent wild bootstrap with Bartlett kernel and bandwidth equal to the one selected in
the sample.
We consider two values for each of N and T, 50 and 100, so that we have a total of four

sample sizes. For all our bootstrap schemes, we let ηit ∼ N (0, 1) . Moreover, for the BWB, we
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let νj ∼ N (0, 1) whereas we let w∗ = K1/2w, with w ∼ N (0, IT−h) for the DWB. We set the
number of replications to 5,000 and the number of bootstrap to 399.
Table 1 reports our simulation results. We report coverage rates of confidence intervals, the

bias of the estimators, the length of the confidence intervals, and the bandwidth choices made
in the sample and in the bootstrap.
The first set of results are coverage rates of the confidence intervals. We report results for

the OLS estimator, the OLS estimator if we did not have to estimate the factors, and six
bootstrap intervals. We report coverage rates of symmetric-t and equal-tailed-t intervals for the
wild bootstrap (WB), the block wild bootstrap (BWB) and dependent wild bootstrap (DWB).
Remember that the wild bootstrap is not valid with serial correlation.
The results for the first DGP are similar to those of GP (2014). The OLS estimator suffers

from severe undercoverage. These distortions come from the presence of a bias associated with
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the estimation of the factor. This is illustrated in two ways : first, the OLS estimator with the
true factor has coverage much closer to the nominal level, and second, the bias results show
that the OLS estimator is biased (downward) when the factor must be estimated (and this bias
goes down with N and T ), while the estimator is essentially unbiased when we use the true
factor.
The bootstrap is successful in removing this bias and providing more reliable inference.

Whereas coverage is only 57% with N = T = 50 for asymptotic theory, symmetric bootstrap
intervals have a coverage rate of about 87% and equal-tailed intervals about 89%. As N and
T increase, coverage rates approach their nominal levels. With this design, all three bootstrap
methods are asymptotically valid, and we see only small differences among them.
It is interesting to note that the equal-tailed intervals are much shorter than the symmetric

intervals. This is because the sampling distribution of the OLS estimator is shifted to the left,
and imposing symmetry around 0 is inappropriate in this case and entails a cost. We also see
that the equal-tailed intervals provide slightly better coverage than the symmetric ones.
Many of the same features are reproduced in the other two designs. The OLS estimator is

still biased due to the estimation of the factor, but the effect on coverage is not as dramatic
as the bias of the estimator is unaffected but its variance increases. Thus, the t-statistic is less
shifted to the left than in the first design, and the overall effect is that coverage improves. We
do see the effect of serial correlation on the deterioration of inference for the OLS estimator
with the true factor.
In the last two designs, we see differences among bootstrap methods. The wild bootstrap

does not reproduce serial correlation and leads to intervals with lower coverage rates with equal-
tailed intervals. On the other hand, we see little difference with the symmetric-t intervals. The
fact that the wild bootstrap does not reproduce serial correlation is highlighted by the selected
bandwidths. The selected bandwidth in the wild bootstrap is similar to the selected bandwidth
when the data was i.i.d in the first design. The selected bandwidth in the BWB and DWB
are lower than in the sample but large enough to capture some of the serial correlation in the
bootstrap errors. Moreover, the dependent wild bootstrap provides slightly better coverage than
the BWB. However, contrary to the first design, the symmetric intervals provide much better
coverage than the equal-tailed intervals. This is due to the fact that the bias is less important
in these designs than in the first one relative to the variance. Nevertheless, the equal-tailed
intervals are much shorter than the symmetric ones.

Conclusion

In this paper, we theoretically justify two bootstrap methods for inference on the coefficients
in factor-augmented regressions with serial correlation. Serial correlation naturally arises in a
multi-step forecasting context or in a forecasting model that is dynamically misspecified. Our
proposed bootstrap algorithm resamples the idiosyncratic errors with the wild bootstrap and
the regression errors with either the block wild bootstrap or dependent wild bootstrap. Both
methods are proved to provide valid inference under strong mixing dependence despite factor
estimation error.
The results in this paper can be used to construct valid prediction intervals for the conditio-

nal mean or the realization of the variable of interest h periods into the future. This extension of
the current results is explored in a recent paper by Gonçalves, Perron, and Djogbenou (2015).
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Chapitre 2

Bootstrap Prediction Intervals for
Factor Models

2.1 Introduction

Forecasting using factor-augmented regression models has become increasingly popular since
the seminal paper of Stock and Watson (2002). The main idea underlying the so-called diffusion
index forecasts is that when forecasting a given variable of interest, a large number of predictors
can be summarized by a small number of indexes when the data follows an approximate factor
model. The indexes are the latent factors driving the panel factor model and can be estimated
by principal components. Point forecasts can be obtained by running a standard OLS regression
augmented with the estimated factors.
In this paper, we consider the construction of prediction intervals in factor-augmented regres-

sion models using the bootstrap. In particular, our main contribution is to show the consistency
of bootstrap intervals for a future target variable and its conditional mean. Our results allow
for the construction of bootstrap prediction intervals without assuming Gaussianity and with
better finite-sample properties than those based on asymptotic theory.
To be more specific, suppose that yt+h denotes the variable to be forecast (where h is the

forecast horizon) and let Xt be a N -dimensional vector of candidate predictors. We assume that
yt+h follows a factor-augmented regression model,

yt+h = α Ft + β Wt + εt+h, t = 1, . . . , T − h, (2.1)

where Wt is a vector of observed regressors (including for instance lags of yt) which jointly with
Ft help forecast yt+h. The r-dimensional vector Ft describes the common latent factors in the

This chapter is a joint paper with Sílvia Gonçalves and Benoit Perron. We are grateful for comments from
Lutz Kilian and seminar participants at the University of California, San Diego, the University of Southern Ca-
lifornia, Queen’s, Pompeu Fabra, the Toulouse School of Economics, Duke, Western, Sherbrooke, and Michigan
as well as from participants at the 23rd meeting of the (EC)^2, the 2013 North American Winter Meeting of the
Econometric Society, the 2013 meeting of the Canadian Economics Association, the 2013 Joint Statistical Mee-
tings, the conference "Bootstrap Methods for Time Series" in Copenhagen, the MAESG conference in Atlanta,
and the 2014 Canadian Econometric Study Group. We also thank Tatevik Sekhposyan for providing the data
for the empirical application. Gonçalves acknowledges financial support from the NSERC and MITACS whereas
Perron acknowledges financial support from the SSHRC and MITACS. We acknowledge that this chapter has
been published by Journal of Business and Economics Statistics and agree with the publication disclosure.
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panel factor model,
Xit = λiFt + eit, i = 1, . . . , N, t = 1, . . . , T, (2.2)

where the r × 1 vector λi contains the factor loadings and eit is an idiosyncratic error term.
The goal is to forecast yT+h or its conditional mean yT+h|T = α FT + β WT using

{(yt, Xt,Wt) : t = 1, . . . , T}, the available data at time T . Since factors are not observed, the
diffusion index forecast approach typically involves a two-step procedure : in the first step
we estimate Ft by principal components (yielding F̃t) and in the second step we regress yt+h
on Wt and F̃t to obtain the regression coefficients. The point forecast is then constructed as
ŷT+h|T = α̂ F̃T + β̂ WT . Because we treat factors as latent, point forecasts depend both on
estimated factors and regression coefficients. These two sources of parameter uncertainty must
be accounted for when constructing prediction intervals and confidence intervals, as shown by
Bai and Ng (2006).
Under regularity conditions, Bai and Ng (2006) derived the asymptotic distribution of regres-

sion estimates and the corresponding forecast errors and proposed the construction of asymp-
totic intervals. Our motivation for using the bootstrap as an alternative method of inference is
twofold. First, the finite sample properties of the asymptotic approach of Bai and Ng (2006)
can be poor, especially if N is not sufficiently large relative to T . This was recently shown by
Gonçalves and Perron (2014) in the context of confidence intervals for the regression coefficients,
and as we will show below, the same is true in the context of prediction intervals. In particular,
estimation of factors leads to an asymptotic bias term in the OLS estimator if

√
T/N → c and

c = 0. Gonçalves and Perron (2014) proposed a bootstrap method that removes this bias and
outperforms the asymptotic approach of Bai and Ng (2006). Second, the bootstrap allows for
the construction of prediction intervals for yT+h that are consistent under more general assump-
tions than the asymptotic approach of Bai and Ng (2006). In particular, the bootstrap does
not require the Gaussianity assumption on the regression errors that justifies the asymptotic
prediction intervals of Bai and Ng (2006). As our simulations show, prediction intervals based
on the Gaussianity assumption perform poorly when the regression error is asymmetrically
distributed whereas the bootstrap prediction intervals do not suffer significant size distortions.
We apply our procedure to forecasting inflation changes using quarterly observations on the

US GDP deflator for the period 1973-2014. The resulting bootstrap intervals differ in interesting
ways from the asymptotic ones in specific periods. In particular, the 95% equal-tailed percentile-
t bootstrap intervals are shifted downwards and lie entirely below 0 following the financial crisis
of 2008 and during the last quarter of 2011. These periods were marked by a significant concern
of deflation. Our intervals are more consistent with such concerns than the asymptotic ones
which include some probability of increasing inflation.
The remainder of the paper is organized as follows. Section 2.2 introduces our forecas-

ting model and considers asymptotic prediction intervals. Section 2.3 describes two bootstrap
prediction algorithms. Section 2.4 presents a set of high level assumptions on the bootstrap idio-
syncratic errors under which the bootstrap distribution of the estimated factors at a given time
period is consistent for the distribution of the sample estimated factors. These results together
with the results of Gonçalves and Perron (2014) and Djogbenou, Gonçalves, and Perron (2014)
regarding inference on the coefficients are used in Section 2.5 to show the asymptotic validity
of wild bootstrap prediction intervals. Section 2.6 presents our simulation experiments, while
Section 2.7 presents an empirical illustration of our methods. Finally, Section 2.8 concludes.
Mathematical proofs appear in the Appendix 0.2.
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2.2 Prediction intervals based on asymptotic theory

This section introduces our assumptions and reviews the asymptotic theory-based prediction
intervals proposed by Bai and Ng (2006).

2.2.1 Assumptions

Let zt = Ft Wt , where zt is p × 1, with p = r + q. Following Bai and Ng (2006), we
make the following assumptions.

Assumption 1
(a) E Ft

4 ≤M and 1
T

T
t=1 FtFt →P ΣF > 0, where ΣF is a non-random r × r matrix.

(b) The loadings λi are either deterministic such that λi ≤ M , or stochastic such that
E λi

4 ≤M. In either case, Λ Λ/N →P ΣΛ > 0, where ΣΛ is a non-random matrix.

(c) The eigenvalues of the r × r matrix (ΣΛΣF ) are distinct.
Assumption 2
(a) E (eit) = 0, E |eit|4 ≤M.
(b) E (eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s), |σij,ts| ≤ τ ts for all (i, j) . Furthermore,

T
s=1 τ ts ≤M, for each t, and 1

NT t,s,i,j |σij,ts| ≤M.
(c) For every (t, s), E N−1/2 N

i=1 (eiteis − E (eiteis))
4

≤M.
(d) 1

NT 2 t,s,l,u i,j |Cov (eiteis, ejleju)| < M <∞.
(e) For each t, 1√

N

N
i=1 λieit →d N (0,Γt), where Γt ≡ limN→∞ V ar 1√

N

N
i=1 λieit > 0.

Assumption 3 The variables {λi} , {Ft} and {eit} are three mutually independent groups.
Dependence within each group is allowed.

Assumption 4
(a) E (εt+h) = 0 and E |εt+h|4 < M.
(b) E (εt+h|yt, zt, yt−1, zt−1, . . .) = 0 for any h > 0, and (zt, εt) are independent of the idiosyn-

cratic errors eis for all (i, s, t).

(c) E zt
4 ≤M and 1

T
T
t=1 ztzt →P Σzz > 0.

(d) As T →∞, 1√
T

T−h
t=1 ztεt+h →d N (0,Ω) , where E 1√

T

T−h
t=1 ztεt+h

2

< M , and

Ω ≡ limT→∞ V ar 1√
T

T−h
t=1 ztεt+h > 0.

Assumptions 1 and 2 are standard in the approximate factors literature, allowing in par-
ticular for weak cross sectional and serial dependence in eit of unknown form. Assumption 3
assumes independence among the factors, the factor loadings and the idiosyncratic error terms.
We could allow for weak dependence among these three groups of variables at the cost of intro-
ducing restrictions on this dependence. Assumption 4 imposes moment conditions on {εt+h},
on {zt} and on the score vector {ztεt+h}. Part c) requires {ztzt} to satisfy a law of large num-
bers. Part d) requires the score to satisfy a central limit theorem, where Ω denotes the limiting
variance of the scaled average of the scores. We generalize the form of the covariance matrix
assumed in Bai and Ng (2006) to allow for serial correlation as this will generally be the case
when the forecast horizon is greater than 1.
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2.2.2 Normal-theory intervals

As described in Section 1, the diffusion index forecasts are based on a two step estimation
procedure. The first step consists of extracting the common factors F̃t from the N -dimensional
panel Xt. In particular, given X, we estimate F and Λ with the method of principal compo-
nents. F is estimated with the T × r matrix F̃ = F̃1 . . . F̃T composed of

√
T times the

eigenvectors corresponding to the r largest eigenvalues of XX /TN (arranged in decreasing
order), where the normalization F̃ F̃

T
= Ir is used. The matrix containing the estimated loadings

is then Λ̃ = λ̃1, . . . , λ̃N = X F̃ F̃ F̃
−1
= X F̃/T.

In the second step, we run an OLS regression of yt+h on ẑt = F̃t Wt , i.e. we compute

δ̂ ≡ α̂

β̂
=

T−h

t=1

ẑtẑt

−1 T−h

t=1

ẑtyt+h, (2.3)

where δ̂ is p× 1 with p = r + q.
Suppose the object of interest is yT+h|T , the conditional mean of yT+h = α FT +β WT +εT+h

at time T . The point forecast is ŷT+h|T = α̂ F̃T + β̂ WT and the forecast error is given by

ŷT+h|T − yT+h|T = 1√
T
ẑT
√
T δ̂ − δ +

1√
N
αH−1√N F̃T −HFT , (2.4)

where δ ≡ αH−1 β is the probability limit of δ̂. The matrix H is defined as

H = Ṽ −1
F̃ F

T

Λ Λ

N
, (2.5)

where Ṽ is the r×r diagonal matrix containing on the main diagonal the r largest eigenvalues of
XX /NT , in decreasing order (cf. Bai (2003)). It arises because factor models are only identified
up to rotation, implying that the principal component estimator F̃t converges to HFt, and the
OLS estimator α̂ converges to H−1 α. It must be noted that forecasts do not depend on this
rotation since the product is uniquely identified.
The above decomposition shows that the asymptotic distribution of the forecast error de-

pends on two sources of uncertainty : the first is the usual parameter estimation uncertainty
associated with estimation of α and β, and the second is the factors estimation uncertainty.
Under Assumptions 1-4, and assuming that

√
T/N → 0 and

√
N/T → 0 as N, T → ∞, Bai

and Ng (2006) show that the studentized forecast error

ŷT+h|T − yT+h|T
B̂T

→d N (0, 1) , (2.6)

where B̂T is a consistent estimator of the asymptotic variance of ŷT+h|T given by

B̂T = V ar ŷT+h|T =
1

T
ẑT Σ̂δẑT +

1

N
α̂ Σ̂F̃T α̂. (2.7)
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Here, Σ̂δ consistently estimates Σδ = V ar
√
T δ̂ − δ and Σ̂F̃T consistently estimates

ΣF̃T = V ar
√
N F̃T −HFT . In particular, under Assumptions 1-4,

Σ̂δ = T−1
T−h

t=1

ẑtẑt

−1

Ω̂T T−1
T−h

t=1

ẑtẑt

−1

, (2.8)

where Ω̂T is a heteroskedasticity and autocorrelation consistent (HAC) estimator of

Ω = limT→∞ V ar 1√
T

T−h
t=1 ztεt+h , and

Σ̂F̃T = Ṽ
−1Γ̃T Ṽ −1, (2.9)

where Γ̃T is an estimator of ΓT = limN→∞ V ar 1√
N

N
i=1 λieiT which depends on the cross

sectional dependence and heterogeneity properties of eiT . Bai and Ng (2006) provide three
different estimators of ΓT . Section 2.5 below considers such an estimator.
The central limit theorem result in (2.6) justifies the construction of an asymptotic 100(1− α)%

level confidence interval for yT+h|T given by

ŷT+h|T − z1−α/2 B̂T , ŷT+h|T + z1−α/2 B̂T , (2.10)

where z1−α/2 is the 1− α/2 quantile of a standard normal distribution.
When the object of interest is a prediction interval for yT+h, Bai and Ng (2006) propose

ŷT+h|T − z1−α/2 ĈT , ŷT+h|T + z1−α/2 ĈT , (2.11)

where
ĈT = B̂T + σ̂2ε,

with B̂T as above and σ̂
2
ε =

1
T

T
t=1 ε̂

2
t . The validity of (2.11) depends on the additional as-

sumption that εt is i.i.d. N (0,σ2ε).
An important condition that justifies (2.10) and (2.11) is that

√
T/N → 0. This condition

ensures that the term reflecting the parameter estimation uncertainty in the forecast error
decomposition (2.4),

√
T δ̂ − δ , is asymptotically normal with a mean of zero and a variance-

covariance matrix that does not depend on the factors estimation uncertainty. As was recently
shown by Gonçalves and Perron (2014), when

√
T/N → c = 0,

√
T δ̂ − δ →d N (−cΔδ,Σδ) ,

where Δδ is a bias term that reflects the contribution of the factors estimation error to the
asymptotic distribution of the regression estimates δ̂. In this case, the two terms in (2.4) will
depend on the factors estimation uncertainty and a natural question is whether this will have
an effect on the prediction intervals (2.10) and (2.11) derived by Bai and Ng (2006) under the
assumption that c = 0. As we argue next, these intervals remain valid even when c = 0. The
main reason is that when

√
T/N → c = 0, the ratio N/T → 0, which implies that the parameter
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estimation uncertainty associated with δ is dominated asymptotically by the uncertainty from
having to estimate FT .
More formally, when

√
T/N → c = 0, N/T → 0 and the convergence rate of ŷT+h|T is

√
N ,

implying that

√
N ŷT+h|T − yT+h|T = N/T

√
T δ̂ − δ ẑT + αH−1√N F̃T −HFT

= αH−1√N F̃T −HFT + oP (1) .

Thus, the forecast error is asymptoticallyN 0,αH−1ΣF̃TH
−1 α . SinceNB̂T = (N/T ) ẑT Σ̂δẑT+

α̂ Σ̂F̃T α̂ = αH−1ΣF̃TH
−1 α+ oP (1), the studentized forecast error given in (2.6) is still N (0, 1)

as N, T →∞. For the studentized forecast error associated with forecasting yT+h, the variance
of ŷT+h is asymptotically (as N, T → ∞) dominated by the variance of the error term σ2ε, im-
plying that neither the parameter estimation uncertainty nor the factors estimation uncertainty
contribute to the asymptotic variance.

2.3 Description of bootstrap intervals

Following Gonçalves and Perron (2014), we consider the following bootstrap data-generating
process :

X∗
t = Λ̃F̃t + e

∗
t , (2.12)

y∗t+h = α̂ F̃t + β̂ Wt + ε∗t+h, (2.13)

where e∗t = (e
∗
1t, . . . , e

∗
Nt) denotes a bootstrap sample from ẽt = Xt − Λ̃F̃t and ε∗t+h is

a resampled version of ε̂t+h = yt+h − α̂ F̃t − β̂ Wt .
Our goal in this section is to describe two general bootstrap algorithms that can be used to

compute intervals for yT+h|T and yT+h for any choice of {e∗t} and ε∗t+h . The specific method
of generating {e∗t} and ε∗t+h will depend on the assumptions we make on {eit} and {εt+h},
respectively. In Section 2.5 we describe several methods. For example, we rely on the wild
bootstrap to generate both {e∗t} and ε∗t+1 when constructing confidence intervals for yT+1|T .
The wild bootstrap is justified in this setting since we assume away cross sectional dependence
in eit and we assume that εt+1 is a m.d.s. when h = 1. For one-step ahead prediction intervals
we strengthen the m.d.s. assumption to an i.i.d. assumption on εt+1, and therefore we generate
ε∗t+1 using the i.i.d. bootstrap. For multi-step prediction intervals, we generate ε

∗
t+h with either

the block wild bootstrap or the dependent wild bootstrap of Djogbenou et al. (2014) to account
for possible serial correlation.
We estimate the factors by the method of principal components using the bootstrap panel

data set {X∗
t : t = 1, . . . , T}. We let F̃ ∗ = F̃ ∗1 , . . . , F̃

∗
T denote the T × r matrix of bootstrap

estimated factors which equal the r eigenvectors of X∗X∗ /NT (multiplied by
√
T ) correspon-

ding to the r largest eigenvalues. The N × r matrix of estimated bootstrap loadings is given
by Λ̃∗ = λ̃

∗
1, . . . , λ̃

∗
N = X∗ F̃ ∗/T . We then run a regression of y∗t+h on F̃

∗
t and Wt using
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observations t = 1, . . . , T − h. We let δ̂∗ denote the corresponding OLS estimator

δ̂
∗
=

T−h

t=1

ẑ∗t ẑ
∗
t

−1 T−h

t=1

ẑ∗t y
∗
t+h,

where ẑ∗t = F̃ ∗t ,Wt .

The steps for obtaining a bootstrap confidence interval for yT+h|T are as follows.

Algorithm 1 (Bootstrap confidence interval for yT+h|T )

1. For t = 1, . . . , T , generate
X∗
t = Λ̃F̃t + e

∗
t ,

where {e∗it} is a resampled version of ẽit = Xit − λ̃iF̃t .

2. Estimate the bootstrap factors F̃ ∗t : t = 1, . . . , T using X∗.

3. For t = 1, . . . , T − h, generate

y∗t+h = α̂ F̃t + β̂ Wt + ε∗t+h,

where the error term ε∗t+h is a resampled version of ε̂t+h.

4. Regress y∗t+h generated in step 3 on the bootstrap estimated factors F̃
∗
t obtained in step

2 and on the fixed regressors Wt and obtain the OLS estimator δ̂
∗
.

5. Obtain bootstrap forecasts

ŷ∗T+h|T = α̂∗ F̃ ∗T + β̂
∗
WT ≡ δ̂

∗
ẑ∗T ,

and bootstrap variance

B̂∗T =
1

T
ẑ∗T Σ̂

∗
δ ẑ
∗
T +

1

N
α̂∗ Σ̂∗

F̃T
α̂∗, (2.14)

where the choice of Σ̂∗δ and Σ̂∗
F̃T
depends on the properties of ε∗t+h and e

∗
it.

6. Let y∗T+h|T = α̂ F̃T + β̂ WT and compute bootstrap prediction errors :

(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap pre-
diction errors as

s∗T+h =
ŷ∗T+h|T − y∗T+h|T

B̂∗T

.

(b) For symmetric percentile-t bootstrap intervals, compute s∗T+h .

7. Repeat this processB times, resulting in statistics s∗T+h,1, . . . , s
∗
T+h,B and s∗T+h,1 , . . . , s

∗
T+h,B .

8. Compute the corresponding empirical quantiles :

(a) For equal-tailed percentile-t bootstrap intervals, q∗1−α is the empirical 1−α quantile
of s∗T+h,1, . . . , s

∗
T+h,B .
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(b) For symmetric percentile-t bootstrap intervals, q∗|·|,1−α is the empirical 1−α quantile
of s∗T+h,1 , . . . , s

∗
T+h,B .

A 100(1− α)% equal-tailed percentile-t bootstrap interval for yT+h|T is given by

EQ1−α
yT+h|T ≡ ŷT+h|T − q∗1−α/2 B̂T , ŷT+h|T − q∗α/2 B̂T , (2.15)

whereas a 100(1− α)% symmetric percentile-t bootstrap interval for yT+h|T is given by

SY 1−α
yT+h|T ≡ ŷT+h|T − q∗|·|,1−α B̂T , ŷT+h|T + q∗|·|,1−α B̂T , (2.16)

When prediction intervals for a new observation yT+h are the object of interest, the algorithm
reads as follows.

Algorithm 2 (Bootstrap prediction interval for yT+h)

1. Identical to Algorithm 1.

2. Identical to Algorithm 1.

3. Generate y∗1+h, . . . , y
∗
T , y

∗
T+1, . . . , y

∗
T+h using

y∗t+h = α̂ F̃t + β̂ Wt + ε∗t+h,

where ε∗1+h, . . . , ε
∗
T , ε

∗
T+1, . . . , ε

∗
T+h is a bootstrap sample obtained from {ε̂1+h, . . . , ε̂T} .

4. Not making use of the stretch y∗T+1, . . . , y
∗
T+h , compute δ̂

∗
as in Algorithm 1.

5. Obtain the bootstrap point forecast ŷ∗T+h|T as in Algorithm 1 but compute its variance as

Ĉ∗T = B̂
∗
T + σ̂∗2ε ,

where σ̂∗2ε is a consistent estimator of σ2ε = V ar (εT+h) and B̂
∗
T is as in Algorithm 1.

6. Let y∗T+h = α̂ F̃T + β̂ WT + ε∗T+h and compute bootstrap prediction errors :

(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap pre-
diction errors as

s∗T+h =
ŷ∗T+h|T − y∗T+h

Ĉ∗T

.

(b) For symmetric percentile-t bootstrap intervals, compute s∗T+h .

7. Identical to Algorithm 1.

8. Identical to Algorithm 1.

A 100(1− α)% equal-tailed percentile-t bootstrap interval for yT+h is given by

EQ1−α
yT+h

≡ ŷT+h|T − q∗1−α/2 ĈT , ŷT+h|T − q∗α/2 ĈT , (2.17)
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whereas a 100(1− α)% symmetric percentile-t bootstrap interval for yT+h is given by

SY 1−α
yT+h

≡ ŷT+h|T − q∗|·|,1−α ĈT , ŷT+h|T + q∗|·|,1−α ĈT . (2.18)

The main differences between the two algorithms is that in step 3 of Algorithm 2 we generate
observations for y∗t+h for t = 1, . . . , T instead of stopping at t = T − h. This allows us to
obtain a bootstrap observation for y∗T+h, the bootstrap analogue of yT+h, which we will use
in constructing the studentized statistic s∗T+h in step 6 of Algorithm 2. The point forecast is
identical to Algorithm 1 and relies only on observations for t = 1, . . . , T − h, but the bootstrap
variance Ĉ∗T contains an extra term σ̂∗2ε that reflects the uncertainty associated with the error
of the new observation εT+h.
Note that Algorithm 2 generates bootstrap point forecasts ŷ∗T+h|T and bootstrap future

observations y∗T+h that are conditional on WT . This is important because the point forecast
ŷT+h|T depends onWT . WhenWt contains lagged dependent variables (e.g.Wt = yt and h = 1),
steps 5 and 6 of Algorithm 2 set WT = yT when computing ŷ∗T+1|T and y

∗
T+1. This is effectively

equivalent to setting y∗T = yT for the purposes of computing these quantities. However, Step 3 of
Algorithm 2 generates observations on y∗t+1 : t = 1, . . . , T that do not necessarily satisfy the
requirement that y∗T = yT . As recently discussed by Pan and Politis (2014), we can account for
parameter estimation uncertainty in predictions generated by autoregressive models by relying
on a forward bootstrap method that contains two steps : one step generates the bootstrap
data by relying on the forward representation of the model. This step accounts for parameter
estimation uncertainty even if y∗T = yT . In a second step, we evaluate the bootstrap prediction
and future observation conditional on the last value(s) of the observed variable. Our Algorithm
2 can be viewed as a version of the forward bootstrap method of Pan and Politis (2014) when
some of the regressors are latent factors that need to be estimated.

2.4 Bootstrap distribution of estimated factors

The asymptotic validity of the bootstrap intervals for yT+h and yT+h|T described in the pre-
vious section depends on the ability of the bootstrap to capture two sources of estimation error :
the parameter estimation error and the factors estimation error. In particular, the bootstrap
estimation error for the conditional mean is given by

ŷ∗T+h|T − y∗T+h|T =
1√
T
ẑ∗T
√
T δ̂

∗ − δ∗ +
1√
N
α̂H∗−1√N F̃ ∗T −H∗FT ,

where δ∗ = Φ∗ −1δ̂ and Φ∗ = diag (H∗, Iq) . Here, H∗ is the bootstrap analogue of the rotation
matrix H defined in (2.5), i.e.

H∗ = Ṽ ∗−1
F̃ ∗ F̃
T

Λ̃ Λ̃

N
,

where Ṽ ∗ is the r× r diagonal matrix containing on the main diagonal the r largest eigenvalues
of X∗X∗ /NT , in decreasing order. Note that contrary to H, which depends on unknown popu-
lation parameters, H∗ is fully observed. Using the results in Bai and Ng (2013) , H∗ converges
asymptotically to a diagonal matrix with +1 or −1 on the main diagonal, see Gonçalves and
Perron (2014) for more details.



23

Adding and subtracting appropriately, we can write

ŷ∗T+h|T − y∗T+h|T =
1√
T
ẑT
√
T Φ∗ δ̂

∗ − δ̂ +
1√
N
α̂
√
N H∗−1F̃ ∗T − F̃T + oP ∗ (1) . (2.19)

As usual in the bootstrap literature, we use P ∗ to denote the bootstrap probability measure,
conditional on a given sample ; E∗ and V ar∗ denote the corresponding bootstrap expected
value and variance operators. For any bootstrap statistic T ∗NT , we write T

∗
NT = oP ∗ (1), in

probability, or T ∗NT →P ∗ 0, in probability, when for any δ > 0, P ∗ (|T ∗NT | > δ) = oP (1). We
write T ∗NT = OP ∗ (1), in probability, when for all δ > 0 there exists Mδ < ∞ such that
limN,T→∞ P [P ∗ (|T ∗NT | > Mδ) > δ] = 0. Finally, we write T ∗NT →d∗ D, in probability, if condi-
tional on a sample with probability that converges to one, T ∗NT weakly converges to the distri-
bution D under P ∗, i.e. E∗ (f (T ∗NT )) →P E (f (D)) for all bounded and uniformly continuous
functions f . See Chang and Park (2003) for similar notation and for several useful bootstrap
asymptotic properties.
The stochastic expansion (2.19) shows that the bootstrap estimation error captures the two

forms of estimation uncertainty in (2.4) provided : (1) the bootstrap distribution of
√
T Φ∗ δ̂

∗ − δ̂

is a consistent estimator of the distribution of
√
T δ̂ − δ , and (2) the bootstrap distribution

of
√
N H∗−1F̃ ∗T − F̃T is a consistent estimator of the distribution of

√
N F̃T −HFT . Gon-

çalves and Perron (2014) discussed conditions for the consistency of the bootstrap distribution

of
√
T δ̂ − δ . Here we propose a set of conditions that justifies using the bootstrap to consis-

tently estimate the distribution of the estimated factors
√
N F̃t −HFt at each point t.

Condition A.
A.1. For each t, T

s=1 |γ∗st|2 = OP (1), where γ∗st = E∗ 1
N

N
i=1 e

∗
ite
∗
is .

A.2. For each t, 1
T

T
s=1E

∗ 1√
N

N
i=1 (e

∗
ite
∗
is − E∗ (e∗ite∗is))

2

= OP (1) .

A.3. For each t, E∗ 1√
TN

T
s=1

N
i=1 F̃s (e

∗
ite
∗
is − E∗ (e∗ite∗is))

2

= OP (1).

A.4. E∗ 1√
TN

T
t=1

N
i=1 F̃tλ̃ie

∗
it

2

= OP (1) .

A.5. 1
T

T
t=1E

∗ 1√
N

N
i=1 λ̃ie

∗
it

2

= OP (1) .

A.6. For each t, Γ∗−1/2t
1√
N

N
i=1 λ̃ie

∗
it →d∗ N (0, Ir), in probability, where Γ∗t = V ar

∗ 1√
N

N
i=1 λ̃ie

∗
it

is uniformly positive definite.

ConditionA is the bootstrap analogue of Bai’s (2003) assumptions used to derive the limiting
distribution of

√
N F̃t −HFt . Gonçalves and Perron (2014) also relied on similar high level

assumptions to study the bootstrap distribution of
√
T δ̂

∗ − δ∗ . In particular, Conditions A.4
and A.5 correspond to their Conditions B*(c) and B*(d), respectively. Since our goal here is to
characterize the limiting distribution of the bootstrap estimated factors at each point t, we need
to complement some of their other conditions by requiring boundedness in probability of some
bootstrap moments at each point in time t (in addition to boundedness in probability of the time
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average of these bootstrap moments ; e.g. Conditions A.1 and A.2 expand Conditions A*(b)
and A*(c) in Gonçalves and Perron (2014) in this manner). We also require that a central limit
theorem applies to the scaled cross sectional average of λ̃ie∗it, at each time t (Condition A.6).
This high level condition ensures asymptotic normality for the bootstrap estimated factors. It
was not required by Gonçalves and Perron (2014) because their goal was only to consistently
estimate the distribution of the regression estimates, not of the estimated factors.

Theorem 6. Suppose Assumptions 1 and 2 hold. Under Condition A, as N, T →∞ such that√
N/T 3/4 → 0, we have that for each t,

√
N F̃ ∗t −H∗F̃t = H∗Ṽ −1

1√
N

N

i=1

λ̃ie
∗
it + oP ∗ (1) ,

in probability, which implies that

Π
∗−1/2
t

√
N H∗−1F̃ ∗t − F̃t →d∗ N (0, Ir) ,

in probability, where Π∗t = Ṽ
−1Γ∗t Ṽ

−1.

Theorem 1.(i) of Bai (2003) shows that under regularity conditions weaker than Assumptions

1 and 2 and provided
√
N/T → 0,

√
N F̃t −HFt →d N (0,Πt), where Πt = V −1QΓtQ V −1,

Q = p lim F̃ F
T

. Theorem 6 is its bootstrap analogue. A stronger rate condition (
√
N/T 3/4 → 0

instead of
√
N/T → 0) is used to show that the remainder terms in the stochastic expansion

of
√
N F̃ ∗t −H∗F̃t are asymptotically negligible. This rate condition is a function of the

number of finite moments for Fs we assume. In particular, if we replace Assumption 1(a) with
E Ft

q ≤ M for all t, then the required rate restriction is
√
N/T 1−1/q → 0. See Remarks 1

and 3 below.
To prove the consistency of Π∗t for Πt we impose the following additional condition.

Condition B. For each t, p limΓ∗t = QΓtQ .

Condition B requires that Γ∗t , the bootstrap variance of the scaled cross sectional average
of the scores λ̃ie∗it, be consistent for QΓtQ . This in turn requires that we resample ẽit in a way
that preserves the cross sectional dependence and heterogeneity properties of eit.

Corollary 7. Under Assumptions 1 and 2 and Conditions A and B, we have that for each t, as
N, T → ∞ such that

√
N/T 3/4 → 0,

√
N H∗−1F̃ ∗t − F̃t →d∗ N (0,Πt), in probability, where

Πt = V
−1QΓtQ V −1 is the asymptotic covariance matrix of

√
N F̃t −HFt .

Corollary 7 justifies using the bootstrap to construct confidence intervals for the rotated
factors HFt provided Conditions A and B hold. These conditions are high level conditions that
can be checked for any particular bootstrap scheme used to generate e∗it. We verify them for a
wild bootstrap in Section 2.5 when proving the consistency of bootstrap confidence intervals
for the conditional mean.
The fact that factors and factor loadings are not separately identified implies the need to

rotate the bootstrap estimated factors in order to consistently estimate the distribution of
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the sample factor estimates, i.e. we use
√
N H∗−1F̃ ∗t − F̃t to approximate the distribution

of
√
N F̃t −HFt . A similar rotation was discussed in Gonçalves and Perron (2014) in the

context of bootstrapping the regression coefficients δ̂.

2.5 Validity of bootstrap intervals

2.5.1 Confidence intervals for yT+1|T
We begin by considering intervals for next period’s conditional mean. For this purpose, we

use a two-step wild bootstrap scheme, as in Gonçalves and Perron (2014). Specifically, we rely
on Algorithm 1 and we let

ε∗t+1 = ε̂t+1 · vt+1, t = 1, . . . , T − 1, (2.20)

with vt+1 i.i.d.(0, 1), and

e∗it = ẽit · ηit, t = 1, . . . , T, i = 1, . . . , N, (2.21)

where ηit is i.i.d.(0, 1) across (i, t), independently of vt+1.

To prove the asymptotic validity of this method we strengthen Assumptions 1-4 as follows.

Assumption 5. λi are either deterministic such that λi ≤ M <∞, or stochastic such that
E λi

12 ≤ M < ∞ for all i ; E Ft
12 ≤ M < ∞; E |eit|12 ≤ M < ∞, for all (i, t) ; and

for some q > 1, E |εt+1|4q ≤M <∞, for all t.
Assumption 6. E (eitejs) = 0 if i = j.

With h = 1, our Assumption 4(b) on εt+h becomes a martingale difference sequence assump-
tion, and the wild bootstrap in (2.20) is natural. This assumption rules out serial correlation
in εt+1 but allows for conditional heteroskedasticity. Below, we consider the case where h > 1.
Assumption 6 assumes the absence of cross sectional correlation in the idiosyncratic errors

and motivates the use of the wild bootstrap in (2.21). As the results in the previous sections
show, prediction intervals for yT+h or yT+h|T are a function of the factors estimation uncer-
tainty even when this source of uncertainty is asymptotically negligible for the estimation of
the distribution of the regression coefficients (i.e. even when

√
T/N → c = 0). Since factors

estimation uncertainty depends on the cross sectional correlation of the idiosyncratic errors
eit (via ΓT = limN→∞ V ar 1/

√
N N

i=1 λieiT ), bootstrap prediction intervals need to mimic
this form of correlation to be asymptotically valid. Contrary to the pure time series context, a
natural ordering does not exist in the cross sectional dimension, which implies that proposing
a nonparametric bootstrap method (e.g. a block bootstrap) that replicates the cross sectional
dependence is challenging if a parametric model is not assumed. Therefore, we follow Gonçalves
and Perron (2014) and use a wild bootstrap to generate e∗it under Assumption 6.
The bootstrap percentile-t method, as described in Algorithm 1 and equations (2.15) and

(2.16), requires the choice of two variances, B̂T and its bootstrap analogue B̂∗T . To compute B̂T
we use (2.7), where Σ̂δ is given in (2.8). Σ̂F̃T is given in (2.9), where

Γ̃T =
1

N

N

i=1

λ̃iλ̃iẽ
2
iT
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is estimator 5(a) in Bai and Ng (2006) , and it is a consistent estimator of (a rotated version

of) ΓT = limN→∞ V ar 1√
N

N
i=1 λieiT under Assumption 6. We compute B̂∗T using (2.14) and

relying on the heteroskedasticity-robust bootstrap analogues of Σ̂δ and Σ̂F̃T .

Theorem 8. Suppose Assumptions 1-6 hold and we use Algorithm 1 with ε∗t+1 = ε̂t+1 · vt+1
and e∗it = ẽit · ηit, where vt+1 ∼ i.i.d.(0, 1) for all t = 1, . . . , T − 1 and ηit ∼ i.i.d.(0, 1) for all
i = 1, . . . , N ; t = 1, . . . , T , and vt+1 and ηit are mutually independent. Moreover, assume that
E∗ |ηit|4 < C for all (i, t) and E∗ |vt+1|4 < C for all t. If

√
T/N → c, where 0 ≤ c < ∞, and√

N/T 11/12 → 0, then conditional on {yt, Xt,Wt : t = 1, . . . , T},
ŷ∗T+1|T − y∗T+1|T

B̂∗T

→d∗ N (0, 1) ,

in probability.

Remark 1. The rate restriction
√
N/T 11/12 → 0 is slightly stronger than the rate used by Bai

(2003) (cf.
√
N/T → 0). It is weaker than the restriction

√
N/T 3/4 → 0 used in Theorem 6

and Corollary 7 because we have strengthened the number of factor moments that exist from 4
to 12 (compare Assumption 5 with Assumption 1(a)). See Remark 3 in the Appendix.

Remark 2. Since ŷT+1|T−yT+1|T√
B̂T

→d N (0, 1) , as shown by Bai and Ng (2006), Theorem 8

implies that bootstrap confidence intervals for yT+1|T obtained with Algorithm 1 have the correct
coverage probability asymptotically.

2.5.2 Prediction intervals for yT+1
In this section we provide a theoretical justification for bootstrap prediction intervals for

yT+1 as described in Algorithm 2. In particular, our goal is to prove that a bootstrap prediction
interval contains the future observation yT+1 with unconditional probability that converges to
the nominal level as N, T →∞.
We add the following assumption.

Assumption 7. εt+1 is i.i.d.(0,σ2ε) with a continuous distribution function Fε (x) = P (εt+1 ≤ x) .
Assumption 7 strengthens the m.d.s. Assumption 4.(b) by requiring the regression errors

to be i.i.d. However, and contrary to Bai and Ng (2006), Fε does not need to be Gaussian.
The continuity assumption on Fε is used below to prove that the Kolmogorov distance between
the bootstrap distribution of the studentized forecast error and the distribution of its sample
analogue converges in probability to zero.
Let the studentized forecast error be defined as

sT+1 ≡ ŷT+1|T − yT+1
B̂T + σ̂2ε

,

where σ̂2ε is a consistent estimate of σ
2
ε = V ar (εT+1) and B̂T = V ar ŷT+1|T = 1

T
ẑT Σ̂δẑT +

1
N
α̂ Σ̂F̃T α̂. Given Assumption 7, we can use

σ̂2ε =
1

T

T−1

t=1

ε̂2t+1 and Σ̂δ = σ̂2ε
1

T

T−1

t=1

ẑtẑt

−1

. (2.22)
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Our goal is to show that the bootstrap can be used to estimate consistently FT,s (x) =
P (sT+1 ≤ x), the distribution function of sT+1. Note that we can write

ŷT+1|T − yT+1 = ŷT+1|T − yT+1|T + yT+1|T − yT+1
= −εT+1 +OP (1/δNT ) ,

given that ŷT+1|T − yT+1|T = OP 1
δNT

, where δNT = min
√
N,
√
T (this follows under the

assumptions of Theorem 8). Since σ̂2ε →P σ2ε and B̂T = OP 1/δ2NT = oP (1), it follows that

sT+1 = −εT+1
σε

+ oP (1) . (2.23)

Thus, as N, T →∞, sT+1 converges in distribution to the random variable − εT+1
σε
, i.e.

FT,s (x) ≡ P (sT+1 ≤ x)→ P −εT+1
σε

≤ x = 1− Fε (−xσε) ≡ F∞,s (x) ,

for all x ∈ R. If we assume that εt+1 is i.i.d. N (0,σ2ε), as in Bai and Ng (2006), then Fε (−xσε) =
Φ (−x) = 1 − Φ (x) , implying that FT,s (x) → Φ (x), i.e. sT+1 →d N (0, 1). Nevertheless,
this is not generally true unless we make the Gaussianity assumption. We note that although
asymptotically the variance of the prediction error ŷT+1|T − yT+1 does not depend on any
parameter nor factors estimation uncertainty (as it is dominated by σ2ε for large N and T ), we
still suggest using ĈT = B̂T + σ̂

2
ε to studentize ŷT+1|T−yT+1 since σ̂2ε will underestimate the true

forecast variance for finite T and N . Politis (2013) and Pan and Politis (2014) discuss notions
of asymptotic validity that require taking into account the estimation of the condition mean.
More specifically, in addition to requiring that the interval contains the true observation with
the desired nominal coverage probability asymptotically, they require the bootstrap to capture
parameter estimation uncertainty. To the extent that their definitions can be extended to the
case of generated regressors, we expect our bootstrap intervals to satisfy these stricter notions
of validity.
Next we show that the bootstrap yields a consistent estimate of the distribution of sT+1

without assuming that εt+1 is Gaussian. Our proposal is based on a two-step residual based
bootstrap scheme, as described in Algorithm 2 and equations (2.17) and (2.18), where in step
3 we generate ε∗2, . . . , ε

∗
T , ε

∗
T+1 as a random sample obtained from the centered residuals

ε̂2 − ε̂, . . . , ε̂T − ε̂ . Resampling in an i.i.d. fashion is justified under Assumption 7. We re-
center the residuals because ε̂ is not necessarily zero unless Wt contains a constant regressor.
Nevertheless, since ε̂ = oP (1), resampling the uncentered residuals is also asymptotically valid
in our context. We compute B̂∗T and σ̂

∗2
ε using the bootstrap analogues of Σ̂δ and σ̂

2
ε introduced

in (2.22). Note that σ̂∗2ε is a consistent estimator of σ2ε and B̂
∗
T = oP ∗ (1), in probability.

As above, we can write

ŷ∗T+1|T − y∗T+1 = ŷ∗T+1|T − y∗T+1|T + y∗T+1|T − y∗T+1
= −ε∗T+1 +OP ∗ (1/δNT ) ,

in probability, which in turn implies

s∗T+1 ≡
ŷ∗T+1|T − y∗T+1
B̂∗T + σ̂∗2ε

= −ε
∗
T+1

σε

+ oP ∗ (1) . (2.24)
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Thus, F ∗T,s (x) = P
∗ s∗T+1 ≤ x , the bootstrap distribution of s∗T+1 (conditional on the sample)

is asymptotically the same as the bootstrap distribution of − ε∗T+1
σε
.

Let F ∗T,ε denote the bootstrap distribution function of ε
∗
t . It is clear from the stochastic

expansions (2.23) and (2.24) that the crucial step is to show that ε∗T+1 converges weakly in
probability to εT+1, i.e. d F ∗T,ε, Fε →P 0 for any metric that metrizes weak convergence. In the

following we use Mallows metric which is defined as d2 (FX , FY ) = inf E |X − Y |2 1/2
over

all joint distributions for the random variables X and Y having marginal distributions FX and
FY , respectively.

Lemma 9. Under Assumptions 1-7, and as T,N → ∞ such that
√
T/N → c, 0 ≤ c < ∞,

d2 F
∗
T,ε, Fε →P 0.

Corollary 10. Under the same assumptions as Theorem 8 strengthened by Assumption 7, we
have that

sup
x∈R

F ∗T,s (x)− F∞,s (x) → 0,

in probability.

Corollary 10 implies the asymptotic validity of the bootstrap prediction intervals given
in (2.17) and (2.18), where asymptotic validity means that the interval contains yT+1 with
unconditional probability converging to the nominal level asymptotically. Specifically, we can
show that P yT+1 ∈ EQ1−α

yT+1
→ 1 − α and P yT+1 ∈ SY 1−α

yT+1
→ 1 − α as N, T → ∞. See

e.g. Beran (1987) and Wolf and Wunderli (2015, Proposition 1). For instance,

P yT+1 ∈ EQ1−α
yT+1

= P sT+1 ≤ q∗1−α/2 − P sT+1 ≤ q∗α/2
= P F ∗T,s (sT+1) ≤ 1− α/2 − P F ∗T,s (sT+1) ≤ α/2 .

Given Corollary 10, we have that F ∗T,s (sT+1) = F∞,s (sT+1) + oP (1) , and we can show that
F∞,s (sT+1)→d U [0, 1] . Indeed, for any x,

P (F∞,s (sT+1) ≤ x) = P sT+1 ≤ F−1∞,s (x) ≡ FT,s F−1∞,s (x) → F∞,s F−1∞,s (x) = x.

A stronger result than that implied by Corollary 10 would be to prove that P yT+1 ∈ EQ1−α
yT+1

|zT →
1 − α, where zT = (FT ,WT ) . Nevertheless, to claim asymptotic validity of the bootstrap pre-
diction intervals conditional on the regressors would require stronger assumptions, namely the
assumption that εT+1 is independent of zT . Such a strong exogeneity assumption is unlikely to
be satisfied in economics.

2.5.3 Multi-horizon forecasting, h > 1

Finally, we consider the case where the forecasting horizon, h, is larger than 1. The main
complication in this case is the fact that the regression errors εt+h in the factor-augmented
regression will generally be serially correlated to order h − 1. This serial correlation affects
the distribution of

√
T δ̂ − δ since the form of Ω is different in this case, as it includes

autocovariances of the score process.
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We modify our two algorithms above by drawing ε∗t+h using the block wild bootstrap (BWB)
algorithm proposed in Djogbenou et al. (2015). The idea is to separate the sample residuals ε̂t+h
into non-overlapping blocks of b consecutive observations. For simplicity, we assume that T−h

b
,

the number of such blocks, is an integer. Then, we generate our bootstrap errors by multiplying
each residual within a block by the same draw of an external variable, i.e.

ε∗i+(j−1)b = ε̂i+(j−1)bηj

for j = 1, . . . , T−h
b
, i = 1+h, . . . , h+ b, and ηj ∼ i.i.d. (0, 1) . The fact that each residual within

a block is multiplied by the same external draw preserves the time series dependence. We let
b = h because we use the fact that εt+h ∼MA (h− 1) under Assumption 4(b). For h = 1, this
algorithm is the same as the wild bootstrap. Djogbenou et al. (2015) show that this algorithm
allows for valid bootstrap inference in a regression model with estimated factors and general
mixing conditions on the error term. The moving average structure obtained in a forecasting
context (assuming correct specification) obviously satisfies these mixing conditions, and this

ensures that this block wild bootstrap algorithm replicates the distribution of
√
T δ̂ − δ after

rotating the estimated parameter in the bootstrap world. Thus, the result of Theorem 8 holds
in this more general context since h > 1 does not affect factor estimation.
For the forecast of the new observation, yT+h, the crucial condition for asymptotic validity of

the bootstrap prediction intervals is to capture the marginal distribution of εT+h.. This means
that the i.i.d. bootstrap can still be used in step 2 of algorithm 2 to generate ε∗t+h despite
the serial correlation in εt+h. Alternatively, we can also amend the block wild bootstrap by
generating ε̂∗t+h as above for t = 1, . . . , T − h and generating ε∗T+h as a draw from the empirical
distribution function of ε̂t, t = 1, . . . , T − h. We will compare these two approaches in the
simulation experiment below.

2.6 Simulations

In this section, we report results from a simulation experiment to analyze the properties of
the normal asymptotic intervals as well as their bootstrap counterparts analyzed above. The
data-generating process is similar to the one used in Gonçalves and Perron (2014).We consider
the single factor model :

yt+h = .5Ft + εt+h (2.25)

where Ft is an autoregressive process :

Ft = .8Ft−1 + ut

with ut drawn from a normal distribution independently over time with a variance of (1− .82).
We use the backward representation of this autoregressive process to make sure that all sample
paths have FT = 1. We will consider two forecasting horizons, h = 1 and h = 4.
The regression error εt+h will be homoskedastic with expectation 0, variance 1 and will have

a moving average structure to accommodate multi-horizon forecasting :

εt+h =

h−1

j=0

.8jvt+h−j,
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and to analyze the effects of deviations from normality, we report results for two distributions
for vt :

Normal : vt ∼
1

h−1
j=0 .8

2j
N (0, 1)

Mixture : vt ∼
1

h−1
j=0 .8

2j

1√
10
[pN (−1, 1) + (1− p)N (9, 1)] ,

where p is distributed as Bernoulli (.9) . The particular mixture distribution we are using is
similar to the one proposed by Pascual, Romo and Ruiz (2004). Most of the data is drawn from
a N (−1, 1) but about 10% will come from a second normal with a much larger mean of 9. The
scaling term in parentheses ensures that the variance of εt+h is 1 regardless of h. We have also
considered other distributions such as the uniform, exponential, and χ2 but do not report these
results for brevity.
The (T ×N) matrix of panel variables is generated as :

Xit = λiFt + eit

where λi is drawn from a U [0, 1] distribution (independent across i) and eit is heteroskedastic
but independent over i and t. The variance of eit is drawn from U [.5, 1.5] for each i.
We consider asymptotic and bootstrap confidence intervals at a nominal level of 95%.

Asymptotic inference is conducted by using a HAC estimator (quadratic spectral kernel with
bandwidth set to h) to account for possible serial correlation.
We use Algorithms 1 and 2 described above to generate the bootstrap data with B = 999

bootstrap replications. The idiosyncratic errors are always drawn using the wild bootstrap in
step 1. In step 3, three bootstrap schemes are analyzed to draw ε∗t : the first one draws the
residuals with replacement in an i.i.d. fashion, the second one uses the wild bootstrap, while
the last one redraws the residuals using the block wild bootstrap with a block size equal to h.
The first two methods are only valid when h = 1, while the last one is valid for both values of
h. In all applications of the wild bootstrap and block wild bootstrap, the external variable has
a standard normal distribution. With the wild bootstrap, we use the heteroskedasticity-robust
variance estimator, while we use the HAC one with block size equal to h for the block wild
bootstrap.
We consider two types of bootstrap intervals : symmetric percentile-t and equal-tailed

percentile-t. We report experiments based on 5,000 replications and with three values for T
(50, 100, and 200) and 4 values for N (50, 100, 150, and 200).
We report results graphically for the conditional mean yT+h|T and for the new observation

yT+h. We report the frequency of times the 95% confidence interval is to the left or right
of the true parameter. Each figure has three rows corresponding to T = 50, T = 100, and
T = 200 with N on the horizontal axis, and in the last column, we show the average length of
the corresponding confidence intervals relative to the length of the "ideal"confidence intervals
obtained with the 2.5% and 97.5% quantiles from the empirical distribution simulated for each
N and T 1,000,000 times as endpoints. To keep the figures readable, we report results for two
bootstrap methods in each figure. For the conditional mean, we report results for the wild
bootstrap and block wild bootstrap (with differences thus only coming from the block size since
the two methods are the same for a block size equal to 1). For the observation, we report results
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using the iid and block wild bootstrap since we require an i.i.d. assumption for the construction
of intervals for this quantity.
It turns out that the distribution of εT+h noticeably affects the results for yT+h only. As a

consequence, we only report results with Gaussian εt+h for the conditional mean. On the other
hand, the results of yT+h are dominated by the behavior of εt+h. Thus, the contribution of the
conditional mean from the contribution of εT+h in the forecasts of yT+h are clearly separated.

2.6.1 Forecasting horizon h = 1

We start by presenting results when we are interested in making a prediction for next period’s
value. For this horizon, because εt+1 does not have serial correlation, the wild bootstrap and
block wild bootstrap methods are identical with reported differences due to simulation error.

Conditional mean, yT+1|T The results for the conditional mean are presented in Figure 1.
Asymptotic theory (blue line) shows large distortions that decrease with an increasing N. For
example, for N = T = 50, the 95% confidence interval does not include the true mean in 11% of
the replications instead of the nominal 5%. This number is reduced to 7.8% when N = 200 and
T = 50. Moreover, we see that most of these instances are in one direction, when the confidence
interval is to the left of the true value. This can be explained by a bias in the estimation of the
parameter δ as documented by Gonçalves and Perron (2014) due to the estimation uncertainty
in the factors. This bias is negative, thus shifting the distribution of the conditional mean to
the left, leading to more rejections on the left side and fewer on the right side than predicted
by the asymptotic normal distribution.
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Note : The figures in the first two columns report the fraction of confidence intervals that lie to the left
or to the right of the conditional mean for each method as a function of the cross-sectional dimension
N. Each row corresponds to a different time series dimension. The last column reports the length of
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the confidence intervals relative to the length of the "ideal" intervals obtained as the 2.5% and 97.5%
quantiles of the empirical distribution.

The presence of bias is reflected in the bootstrap distribution of ŷ∗T+1|T which is also shifted
to the left. This is illustrated by a large difference between the bootstrap symmetric and equal-
tailed intervals. The symmetric intervals reproduce the pattern of more coverage to the left than
to the right, while equal-tailed intervals distribute coverage more or less equally in both tails.
In both cases, the total rejection rates are closer to their nominal level than with asymptotic
theory, for example with N = T = 50, the wild bootstrap does not include the true value in
6.7% of the replications with the symmetric intervals and 6.1% for the equal-tailed intervals.
This phenomenon is also reflected in the length of intervals. The asymptotic intervals are

shortest (and least accurate). The equal-tailed intervals are typically slightly shorter than the
corresponding symmetric intervals.

Forecast of yT+1 We next consider the prediction of yT+1 in Figures 2 and 3. As mentioned
before, given our parameter configuration, the uncertainty is dominated by the underlying
error term εT+1 and not estimation uncertainty. This is the reason asymptotic intervals rely
on the normality assumption. This provides a motivation for the bootstrap, and the effect of
non-normality is highlighted in our figures.
Figure 2 shows that under normality, inference for yT+1 is quite accurate for all methods,

and it is essentially unaffected by the values of N and T as predicted since it is dominated by
the behavior of εt+h. All methods perform similarly, though we see that the asymptotic intervals
that make the correct Gaussianity assumption are shorter than those based on the bootstrap.
The iid bootstrap also produces slightly narrower intervals than the block wild bootstrap.
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Note : The figures in the first two columns report the fraction of confidence intervals that lie to the
left or to the right of the observation for each method as a function of the cross-sectional dimension
N. Each row corresponds to a different time series dimension. The last column reports the length of
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the confidence intervals relative to the length of the "ideal" intervals obtained as the 2.5% and 97.5%
quantiles of the empirical distribution.

Figure 3 provides the same information when the errors are drawn from a mixture of normals.
We see problems with asymptotic theory, and these come almost exclusively in the form a
confidence interval to the left of the true value. This is due to the fact that we have falsely
imposed that errors are Gaussian, whereas the true distribution is bimodal. On the other hand,
the bootstrap corrects these difficulties. The symmetric intervals do so by reducing coverage
on the left side to between 5 and 6% and having almost no coverage to the right. The equal-
tailed intervals distribute coverage more evenly by reducing undercoverage on the right side and
pretty much eliminating the over-coverage on the left side. Because they allow for asymmetry,
the equal-tailed intervals are shorter than the symmetric ones. Similarly, the i.i.d. bootstrap
that makes the correct assumption that εT+1 is i.i.d. produces slightly more accurate coverage
and shorter intervals.

50 100 150 200
0

2

4

6

8

10

12
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Note : see Figure 2.

2.6.2 Multi-horizon forecasting

In Figures 4-6, we report the same results as before but for h = 4 instead of h = 1. Because
the error term is now a moving average of order 3, the wild bootstrap and block wild bootstrap
(a block size equal to 4 is used) are no longer identical.
Figure 4 reports the results for the conditional mean, yT+4|T . The main difference with Figure

1 is that there is a gap between the accuracy of the intervals based on the wild bootstrap and on
the block wild bootstrap. As before, the equal-tailed intervals provide more accurate intervals
and smaller length because they capture the bias in the distribution.
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While there is a difference in coverage between the wild bootstrap and the block wild
bootstrap, it is not very large. This feature can be explained by the fact that factors are
estimated. The forecast error variance has two parts, one due to the estimation of the parameters
and one due to the estimation of the factors (see equation (2.4)). Serial correlation only affects
the first term in that expression, and thus its effect is dampened by the presence of the second
term which is usually not present in a typical forecasting context where predictors are observed.
Figures 5 and 6 give the results for the new observation, yT+4. Overall, we see that serial

correlation does not seem to affect inference on yT+h much. There are some effects when T = 50,
but this seems related to difficulties in estimating the distribution of εT+4 with serial correlation.
Otherwise, the figures and conclusions are similar to those in Figures 2 and 3 with the exception
of the fact that the block wild bootstrap leads to much wider intervals than the i.i.d. bootstrap
with some improvement in coverage for T = 50.
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2.7 Empirical illustration

In this section, we use the dataset of Stock and Watson (2003) and Rossi and Sekhposyan
(2014), updated to the first quarter of 2014, to illustrate the properties of asymptotic and
bootstrap intervals.1

1We thank Tatevik Sekhposyan for providing us with the data.
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We consider forecast intervals for changes in the inflation rate measured by the quarterly
growth rate of the GDP deflator (PGDP ) at annual rate :

Δπt = ln
PDGPt
PGDPt−1

− ln PDGPt−1
PGDPt−2

× 400.

There is a total of N = 29 series on asset prices, measures of economic activity, wages and
prices, and money used to construct forecasts, see Rossi and Sekhposyan (2014) for details.
The inflation rate is not included in the data used for extracting the factors. In order to have
a balanced panel, our sample covers the period 1973q1-2014q1.
We construct forecasts from the factor-augmented autoregressive model :

Δπ̂t+h = β̂0 +

p

j=1

φ̂jΔπt−j+1 +
r

j=1

α̂jF̃j,t.

We compute forecast intervals for h = 1 for the last 50 observations in the sample. This
means that the forecasts are made each period from the third quarter of 2001 until the end
of 2013. We use a rolling window of 40 observations to estimate factors and parameters as in
Rossi and Sekhposyan. We also follow Rossi and Sekhposyan and first choose the AR order p
for each time period using BIC and then augment with the estimated factors. In each period,
we select the number of factors such that the factors explain a minimum of 60% of the total
variance of the panel after centering and rescaling. Three factors are selected by this approach
in 40 out of the 50 periods, and 4 for the remaining 10 periods.
The factor-based forecasts reduce the root mean squared error of the forecasts by about

13% relative to autoregressive forecasts. In Figure 7, we report prediction intervals for the
factor-augmented forecasts. The dashed red lines represent the bounds of the (pointwise) 95%
prediction interval based on the asymptotic theory of Bai and Ng (2006) for each date. This
interval is symmetric around the point forecast by construction since it is based on the normal
distribution. We also report bootstrap intervals based on the block wild bootstrap (BWB)
for ε∗t+h with block size equal to the bandwidth selected by the Andrews (1991) rule and the
wild bootstrap for e∗t . Other methods for drawing ε

∗
t+h lead to very similar intervals, and we

do not report them to ease exposition (they are available from the authors upon request).
The reported intervals were constructed as equal-tailed percentile-t intervals and are based on
B = 9999 bootstrap replications.
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Note : The dashed red lines represent the bounds of the (pointwise) 95% prediction interval based on
the asymptotic theory of Bai and Ng (2006) for each date. The solid blue line are bounds of the 95%
equal-tailed percentile-t bootstrap intervals based on the block wild bootstrap (BWB) with block size
equal to the bandwidth selected by the Andrews (1991) based on B=9999 bootstrap replications.

While both sets of intervals in Figure 7 are similar, there are noticeable differences that
can be attributed either to bias in the estimation of the parameters or to non-normality in
the distribution of the error term. Rossi and Sekhposyan (2014) find fairly strong evidence of
non-normality of the forecast errors for this series, and this is likely an important source of the
differences between the asymptotic and equal-tailed intervals.
The behavior of the bootstrap intervals during specific periods is quite interesting. For

example, early in the sample, the bootstrap intervals are consistently shifted down relative
to the asymptotic intervals. Figure 8 highlights two periods where the bootstrap interval lies
completely below 0. The left panel presents the same intervals as Figure 7 around the fourth
quarter of 2008. We see that the bootstrap intervals are shifted down for most of the reported
period, and the upper limit of the bootstrap interval drops just below 0 (it is -.07%) in the
fourth quarter of 2008. On the other hand, the asymptotic interval contains 0 with an upper
limit of about 1%. This means that policy makers concerned about a sudden reduction in
inflation following the collapse of Lehman Brothers would have underestimated the probability
of a reduction in inflation had they based their decision on the asymptotic intervals.
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Similarly, the right panel of Figure 8 focuses on the intervals around the fourth quarter of
2011. As in 2008, the bootstrap interval for the fourth quarter of 2011 is shifted down and
includes only negative values, whereas the corresponding asymptotic interval includes positive
inflation changes. At that time, many central banks were concerned about deflation risk, and
relying on asymptotic intervals would have given them the impression that large reductions in
inflation were much less likely than suggested by the bootstrap interval (the change in inflation
turned out to be −2 percentage points).

2.8 Conclusion

In this paper, we have proposed the bootstrap to construct valid prediction intervals for
models involving estimated factors. We considered two objects of interest : the conditional mean
yT+h|T and the realization yT+h.. The bootstrap improves considerably on asymptotic theory
for the conditional mean when the factors are relevant because of the bias in the estimation
of the regression coefficients. However, our simulation results suggest that allowing for serial
correlation, as is relevant when the forecasting horizon is greater than 1, is not very important
in practice. For the observation, the bootstrap allows the construction of valid intervals without
having to make strong distributional assumptions such as normality as was done in previous
work by Bai and Ng (2006) .
One key assumption that we had to make to establish our results is that the idiosyncratic

errors in the factor models are cross-sectionally independent. This is certainly restrictive, but
it allows for the use of the wild bootstrap on the idiosyncratic errors. Non-parametric boots-
trapping under more general conditions remains a challenge. The results in this paper could be
used to prove the validity of a scheme in that context by showing the conditions A and B are
satisfied.



39

Chapitre 3

Model Selection in Factor-Augmented
Regressions with Estimated Factors

⊂

3.1 Introduction

Factor-augmented regression (FAR) models are now widely used for generating forecasts
since the seminal paper of Stock and Watson (2002) on diffusion indices. Unlike the traditional
regressions, these models allow the inclusion of a large set of macroeconomic and financial
variables as predictors, useful to span various information sets related to economic agents.
Thereby, economic variables are considered as driven by some unobservable factors which are
inferred from a large panel of observed data. Many empirical studies have been conducted using
FAR. Among others, Stock and Watson (2002) forecast the inflation rate assuming some latent
factors explain the comovement in their high dimensional macroeconomic data set. Furthermore,
Ludvigson and Ng (2007) look at the risk-return relation in the equity market. From eight
estimated factors resuming the information in their macro and financial data sets using Bai
and Ng (2002) ICp2 criterion, they identify, based on the bayesian information criterion (BIC),
three new factors termed "volatility", "risk premium" and "real" factors that predict future
excess returns.
Considerable research has been devoted to detect the number of factors capturing the in-

formation in the large panel of potential predictors, but very few addressed the second step
selection of relevant estimated factors for a targeted dependent variable. Bai and Ng (2009)
addressed this issue and revisited forecasting with estimated factors. Based on the forecast
mean squared error (MSE) approximation, they pointed out that the standard BIC criterion
does not incorporate the factor estimation error. Consequently, they suggested a final predic-
tion error (FPE) type criterion with a penalty term depending on both the time series and the
cross-sectional dimensions of the panel. Nevertheless, estimating consistently the MSE does not
by itself ensure the consistent model selection. In fact, Groen and Kapetaneos (2013) showed
that this is true for the FPE criterion which inconsistently estimates of the true factor space. In
consequence, they provided consistent procedures which minimize the log of the sum of squared
residuals and a penalty depending on time and cross-sectional dimensions. Their consistent
selection methods choose the smallest set of estimated factors that span the true factors with



40

probability converging to one as the sample sizes grow. But in finite sample exercises, these
criteria tends to underestimate the true number of estimated factors spanning the true factors.
In particular, they found in the simulation experiments that their suggested modified BIC be-
haves similarly to the standard time series set-up with non-generated regressors using the BIC
criterion by under-fitting the true model.
For finite sample improvements, cross-validation procedures have been used for a long time

by statisticians to select models with observed regressors and are considered here for factor-
augmented regression model selection. As it is well known, the leave-one-out cross-validation
(CV1) measures the predictive ability of a model by testing it on a set of regressors and re-
gressand not used in estimation. This model selection procedure is consistent if only one set
of generated regressors spans the true factors. Indeed, the CV1 criterion breaks down into five
main terms : the variability of the future observations term (independent of candidates mo-
dels), the complexity error term (increases with model dimension), the model identifiability
term (zero for models with estimated factors spanning the true factor space), its parameter
and factor estimation errors. When only one set of generated factors spans the true model, this
criterion converges to the forecast error variance for this particular set since the identifiability
component is zero and the remainder ones converge to zero. But for the other candidate sets,
it is inflated by the positive limit of the identifiability part since they do not span the true
latent factor space. These sets of estimated factors called incorrect are therefore excluded with
probability converging to one when we minimize the standard cross-validation criterion.
However, when many sets of estimated factors generate the true model, the CV1 model

selection procedure has a positive probability of not choosing the smallest one. The source of
this problem is not only due to the well known parameter estimation error when factors are
observed but also the factor estimation error in this criterion. The harmful effect of generated
regressors is more pronounced when the cross-sectional dimension is much smaller than the time
dimension as the factor estimation component dominates in finite sample both the complexity
and the parameter estimation ones. Our simulations show that this factor estimation error while
asymptotically negligible, contributes to reduce considerably the probability to select in finite
samples the smallest set of estimated factors that generate the true factor space.
In this paper, we suggest two alternative model selection procedures with better finite sample

properties that are consistent and select the smaller set of estimated factors spanning the true
model. The first is the Monte Carlo leave-d-out cross-validation suggested by Shao (1993) in the
context of observed and fixed regressors. The other method uses the bootstrap selection proce-
dure studied by Shao (1996) which is implemented with the two-step residual-based bootstrap
method suggested by Gonçalves and Perron (2014) when the regressors are generated.
The simulations show that the leave-one-out cross-validation often selects a model larger

than the true one while the modified BIC of Groen and Kapetanios (2013) tends to under-
parameterize for smaller sample sizes. Nevertheless, the Monte Carlo leave-d-out cross-validation
and the bootstrap selection pick with higher probability the estimated factors spanning the true
factors. To illustrate the methods, an empirical application that revisits the relationship between
macroeconomic and financial factors, and excess stock returns for the U.S. market have been
conducted. The factors are extracted from 147 financial series and 130 macroeconomic series.
The financial series correspond to the 147 variables in Jurado, Ludvigson and Ng (2015). The
quarterly macroeconomic data set is constructed following McCracken and Ng (2015) and spans
the first quarter of 1960 to the third quarter of 2014. After controlling for the consumption-
wealth variable (Ludvigson and Lettau, 2001), the lagged realized volatility of the future excess
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returns and other factors, among the estimated factors from a large panel of U.S. macro and
financial data, the factors heavily correlated with interest rate spreads and with the Fama-
French factors have strong additional predictive power for excess returns. The out-of-sample
performance for predicting excess returns with the new procedures is also compared to existing
model selection ones.
This paper is organized as follows. In Section 3.2, we present the settings and assumptions.

Section 3.3 addresses model selection. Section 3.4 reports the simulation study, and the section
3.5 presents the empirical application. The section 3.6 concludes. Mathematical proofs are in
the Appendix 0.3 and the empirical application details in the Appendix 0.4.

3.2 Settings and assumptions

In this set-up, the econometrician has an information set up to time T i.e. (yt, Wt , Xt)t=1,··· ,T
and his goal is to predict yT+1 with the following factor-augmented regression model

yt+1 = δ Z0t + εt+1, t = 1, ..., T − 1 (3.1)

where Z0t = (F
0
t , Wt) . The q×1 vectorWt contains some observed regressors and F 0t represents

r0 factors not observed by the econometrician. These latent factors F 0t are a subset of the
unobserved factors Ft : r × 1 driven the large dimensional matrix X following a factor panel
model specification given by

Xit = λiFt + eit, i = 1, ..., N, t = 1, ..., T,

where λi are the r× 1 factor loadings and eit an idiosyncratic error terms. Since the factors F 0t
are unobserved, they are replaced by a subset Ft (m) of Ft estimated from X using principal
component estimation. Hence, the estimated regression takes the form

yt+1 = α (m) Ft (m) + β Wt + ut+1 (m) = δ (m) Ẑt (m) + ut+1 (m) (3.2)

where m is any of the 2r subsets of {1, . . . , r} denotedM including the empty set where no
factor drives y. The size of Ft (m) is r (m) ≤ r and we assume the number of estimated factors
selected in the first step known and equal to r. While Kleibergen and Zhan (2015) guide against
the harmful effect of under parameterizing on the true R2 and test statistics, Kelly and Pruitt
(2015) correct for forecast using irrelevant factors by suggesting a three-pass regression filter
procedure. Carrasco and Rossi (2015) recently develop regularization methods for in-sample
inference and forecasting in misspecified factor models. Cheng and Hansen (2015) also study
forecasting using a frequentist model averaging approach. However, none of these papers study
the consistent estimation of the true latent factors space in order to predict y, based on the
commonly used ordinary least squares of FAR with principal components. Although there is
a large body of literature on selecting the number of factors that resume the information in
the factor panel data set, including the work of Bai and Ng (2002), very few papers have
been devoted to the second-step selection. This paper is precisely interested in this second-step
selection. We denote Zt = (Ft ,Wt) , t = 1, ..., T , M = (trace (M M))1/2 the Euclidean norm,
M > 0 the positive definiteness for any square matrix M , and C a generic finite constant. The
following standard assumptions are made.
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Assumption A1 (factor model and idiosyncratic errors)

(a) E Ft
4 ≤ C and ΣF = limT→∞E 1

T
F F > 0 where F = (F1, · · · , FT ) .

(b) λi ≤ C if λi are deterministic, or E λi ≤ C if not, and 1
N
Λ Λ −→p ΣΛ > 0 where

Λ = (λ1, · · · ,λN) .
(c) The eigenvalues of the r × r matrix (ΣF × ΣΛ) are distinct.

(d) E (eit) = 0, E |eit|8 ≤ C.
(e) E (eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s) and |σij,ts| ≤ τ st for all (i, j) with 1

N
N
i,j=1 σij ≤

C, 1
T

T
t,s=1 τ st ≤ C and 1

NT i,j,t,s=1 |σij,ts| ≤ C.
(f) E 1√

N

N
i=1 (eiteis − E (eiteis))

4

≤ C for all (t, s) .
Assumption A2 (moments and weak dependence among {zt}, {λi}, {eit} and {εt+1})

(a) E 1
N

N
i=1

1√
T

T
t=1 Fteit

2

≤ C, where E (Fteit) = 0 for every (i, t) .

(b) For each t, E 1√
TN

T
s=1

N
i=1 Zs (eiteis − E (eiteis))

2

≤ C where Zs = (Fs,Ws) .

(c) E 1√
TN

T
t=1 ZtetΛ

2

≤ C where E (Ztλieit) = 0 for all (i, t) .

(d) E 1
T

T
t=1

1√
N

N
i=1 λiet

2

≤ C where E (λieit) = 0 for all (i, t) .

(e) AsN, T −→∞, 1
TN

T
t=1

N
i=1

N
j=1 λiλjeitejt−Γ −→P 0, where Γ ≡ limN, T−→∞ 1

T
T
t=1 Γt >

0, and Γt ≡ V ar 1√
N

N
i=1 λieit .

(f) For each t and h ≥ 0, E 1√
TN

T
s=1

N
i=1 εs+h (eiteis − E (eiteis)) ≤ C.

(g) E 1√
TN

T−h
t=1 λieitεt+1

2

≤ C where E (λieitεt+1) = 0 for all (i, t) .
Assumption A3 (moments and CLT for the score vector)

(a) E (εt+1|Ft) = 0, E ε2t+1|Ft = σ2, E Zt
4 < C and E ε4t+1 < C where

Ft = σ(yt, Ft , Wt , X1t, ..., XNt, yt−1, Ft−1, Wt−1, X1,t−1, ..., XN,t−1, ...)

(b) ΣZZ = lim
T−→∞

E 1
T

T
t=1 ZtZt > 0.

(c) 1√
T

T−1
t=1 Ztεt+1 →d N (0, Ω) with Ω positive definite.

A1 and A2 are the same as in Bai and Ng (2002), Gonçalves and Perron (2014) and Cheng
and Hansen (2015) in terms of factor-augmented regression specifications that allow for weak
dependence and heteroscedasticity in the idiosyncratic errors. Assumption A3 is useful for
deriving the asymptotic distribution of the estimator δ̂ of δ. It assumes that the forecast error
is conditionally homoscedastic which is rather strong.
The principal component estimate F corresponds to the eigenvectors of 1

T
X X associated

with the r largest eigenvalues times
√
T . As it is well known, Ft only consistently estimates
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a rotation of Ft given by HFt, with H identifiable asymptotically under Bai and Ng’s (2013)
assumptions. Note that

H = Ṽ −1
F̃ F

T

Λ Λ

N
, (3.3)

where Ṽ contains the r largest eigenvalues of XX /NT , in decreasing order along the diagonal
and is a r × r diagonal matrix. As it has been argued previously, all of the estimated factors
are not necessarily relevant for prediction.

3.3 Model selection

The aim of this work is to provide an appropriate procedure to select the set of estimated
factors that should be used to estimate (3.2). In practice, we extract estimated factors F̃t which
summarize information in the large N × T matrix X. Afterwards, a subset F̃t (m) is chosen for
the prediction of yt+1. Ludvigson and Ng (2007) select F̃t (m) using the bayesian information
criterion (BIC) to predict excess stock returns. Because this criterion does not correct for factor
estimation, Bai and Ng (2009) suggest a modified final prediction error (FPE) with an extra
penalty to proxy the effect of factor estimation by approximating the mean squared error.
However, as pointed out by Stone (1974), we may have a consistent estimate of the MSE or a
loss that does not select the true observed regressors with probability converging to one. Given
the information up to time t, the true conditional mean is

E (yt+1|Ft) = α F 0t + β Wt, t = 1, . . . , T − 1.
In the usual case with observed factors, Shao (1997) defines a model m as correct if its condi-
tional mean equals that of the true unknown model i.e.

α (m) Ft (m) + β Wt = E (yt+1|Ft) , t = 1, . . . , T − 1.
When the smallest set of regressors that generates the true model is picked with probability
going to one, the selection procedure is said to be consistent. For FAR models with generated
regressors, Groen and Kapetanios (2013) suggest a consistent procedure based on IC type
criteria, which select Ft (m) spanning asymptotically the true unknown factors F 0t . Formally,
Ft (m) spans F 0t or m is correct if Ft (m) − Ft (m) →p 0 and there is a r0 × r (m) matrix
A (m) such that F 0t = A (m)Ft (m) . By definition, Ft (m) = H0 (m)Ft, where H0 (m) is a
r (m) × r sub-matrix of H0 = p limN, T→∞H. If H0 is diagonal, each estimated factor will
identify one and only one unobserved factor. Bai and Ng (2013) extensively studied conditions
that help identify the factor from the first step estimation. We define byM1, the category of
estimated models with set of estimated factors that are incorrect, and byM2, those which are
correct. There is at least one correct set of estimated factors inM1 which is the one with all r
estimated factors. In remainder of the paper, we will associate one set of estimated factors to
the corresponding estimated model. That been said, if we denote m0 the smallest correct set of
generated regressors, a selection procedure will be called consistent if it selects a model m̂ such
that

P (m̂ = m0)→ 1 as T, N →∞.
In finite sample experiments, Groen and Kapetanios (2013) information criteria tend to unde-
restimate the true number of factors. In particular, their suggested modified BIC behaves as the
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BIC for time series with non-generated regressors known to under-fit the true model. In order
to obtain a finite sample improvement, this paper proposes alternative consistent procedures
using cross-validation and bootstrap procedures.
The next subsection begins by showing why the usual "naive" leave-one-out cross-validation

fails to select the smallest correct set of estimated factors with a probability approaching one
as the sample sizes increase. In addition, a theoretical justification of the Monte Carlo cross-
validation and the bootstrap selection procedures in this generated regressors framework is
provided.

3.3.1 Leave-d-out or delete-d cross-validation

This part of the paper studies the factor-augmented model selection based on cross-validation
starting with the usual leave-one-out or delete-one cross-validation. As it is well known, it es-
timates the predictive ability of a model by testing it on a set of regressors and regressand not
used in estimation. Thereby, the leave-one-out cross-validation minimizes the average squared
distance

CV1 (m) =
1

T − 1
T−1

t=1

yt+1 − δ̂t (m) Ẑt (m)
2

between yt+1 and its point forecast using an estimate from the remaining time periods

δ̂t (m) =

⎛⎝
|j−t|≥1

Ẑj (m) Ẑj (m)

⎞⎠−1⎛⎝
|j−t|≥1

Ẑj (m) yj+1

⎞⎠ .
However, by minimizing the CV1, there is a positive probability that we do not select the
smallest possible correct set of generated regressors. As it is next shown based on Lemma
3.1, this positive probability to select a larger correct model is not only due to the parameter
estimation error but also to the factor estimation one in the CV1 criterion. We denote P (m)
the projection matrix associated to the space spanned by Z (m) = (F (m) , W ) with F (m) the
generic limit of F (m) and μ = Z0δ the true conditionnal mean vector.

Lemma 11. Under Assumptions A1-A3 and assuming

p lim
T→∞

sup 1≤t≤T−1 Zt (m) Z (m) Z (m)
−1
Zt (m) = 0

for all m, as T, N →∞, for m ∈M2,

CV1 (m) =
1

T − 1ε ε+ 2
(r (m) + q)

T − 1 σ2 − 1

T − 1ε P (m) ε+ VT (m) + op
1

C2NT

where VT (m) = Op 1
C2NT

, and for m ∈M1,

CV1 (m) = σ2 +
1

T − 1μ (I − P (m))μ+ op (1)



45

From Lemma 11, a for correct model,

CV1 (m) = σ2 + op (1)

otherwise
CV1 (m) = σ2 +

1

T − 1μ (I − P (m))μ+ op (1) .
Lemma 11 contains the equations (3.5) and (3.6) of Shao (1993) when the factors are not
observed but estimated. Contrary to that case where the regressors are observed, we have an
additional term VT (m) corresponding to its factor estimation error, and P (m) is associated
to the space spanned by subsets of FH0 a rotation of the true factor space. Consider two
candidates estimated models m1 and m2. Suppose that m1 is correct and m2 is incorrect.
Assume p lim infT→∞ 1

T−1μ (I − P (m))μ > 0 for incorrect models. The CV1 will prefer m1 to
m2 since

p lim
N,T→∞

CV1 (m1) = σ2 < σ2 + p lim
T→∞

1

T − 1μ (I − P (m2))μ = p lim
N,T→∞

CV1 (m2)

as 1
T−1ε P (m) ε = op (1) . Thus, incorrect models will be excluded with probability approaching

one. Therefore, the CV1 is consistent when M2 contains only one correct set of estimated
factors. When M2 contains more than one correct estimated model, suppose m1 and m2 are
two correct sets of estimated factors with sizes r (m1)+ q and r (m2)+ q (r (m1) < r (m2)). The
leave-one-out cross-validation selects with positive probability the unnecessary large model m2

when the factors are generated. Indeed, for m ∈M2,

CV1 (m) =
1

T − 1ε ε+
(r (m) + q)

T − 1 σ2+
(r (m) + q)

T − 1 σ2 − 1

T − 1ε P (m) ε +VT (m)+op
1

C2NT

with VT (m) = Op 1
C2NT

. The first term is independent of candidate set of estimated factors.
The second term represents the complexity of the model as it increases with the model dimen-
sion. The term in parenthesis is a parameter estimation error with mean zero while comparing
two competing correct models. The term VT (m) contains the factor estimation error in the
CV1 (m) which is not reflected by the term in parentheses. Because the complexity component
is inflated in finite samples not only by this parameter estimation error but also the factor
estimation one, we fail to pick accurately the smallest correct model. In the usual case with
observed factors, Shao (1993) already showed that the leave-one-out cross-validation has a po-
sitive probability to select a larger model than the consistent one because of the presence of
the parameter estimation error. Hence, a sufficient condition for a consistent estimated model
selection is its ability to capture the complexity term useful to penalize the over-fitting.
When the factor estimation error in the CV1 is such that N = o(T ), then VT (m) =

Op
1
N

and dominates both the complexity term and the parameter estimation error. More
precisely, comparing two competing set of estimated factors inM2 amounts to the comparison
of their factor estimation errors in CV1 instead of the model complexities since

CV1 (m) =
1

T − 1ε ε+ VT (m) + op
1

N
.

We analyze through a simulation study how VT contributes to worsen the probability of selecting
a consistent set of estimated factors.
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We consider the same data generating process (DGP) as the first DGP in the simulation
section where yt+1 = 1 + F1t + 0.5F2t + εt+1 with εt+1 ∼ N(0, 1) and F 0 = (F1, F2) ⊂ F =
(F1, F2, F3, F4). Given the specification for the latent factors and the factor loadings, the PC1
condition for identifying restrictions provided by Bai and Ng (2013) is asymptotically satisfied
and makes possible to identify estimated factors. Hence, we extract four estimated factors and
we expect to pick consistently the first two among the 24 = 16 possibilities. The line "with
parameter and factor estimation errors" on Figure 9 reports the frequency of selecting a larger
set of estimated factors while minimizing the CV1 criterion which includes the estimation errors.
Given the different sample sizes, it turns that the leave-one-out cross-validation selects

very often a larger set of generated regressors. To understand how each component in the CV1
contributes to this over-fitting, we will minimize the sum of the complexity and the identifiability
terms plus the forecast error in the leave-one-out cross-validation

CV11 (m) =
1

T − 1ε ε+
(r (m) + q)

T − 1 σ2 +
1

T − 1μ (I − P (m))μ

where we omit the parameter and the factor estimation errors. The second and the third terms
are those important for consistent model selection. The corresponding line "without errors" on
Figure 1 show that we never over-fit through the 10, 000 simulations. Afterwards, we incorporate
the parameter estimation error by minimizing

CV12 (m) =
1

T − 1ε ε+
(r (m) + q)

T − 1 σ2+
1

T − 1μ (I−P (m))μ+
(r (m) + q)

T − 1 σ2 − 1

T − 1ε P (m) ε .

Once the parameter estimation error is included, the frequency of selecting a larger model
increases. Moreover, when we include both the parameter and the factor estimation errors
corresponding to the CV1, that frequency increases more. The results show that this factor
estimation error while asymptotically negligible, also increases this probability given the dif-
ferent sample sizes. In addition, an increase in the cross-sectional dimension implies a decrease
in the factor estimation error (Figure 10) which is followed by a drop of the probabilities of
over-parameterization.
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Figure 9. Frequencies of selecting a larger set of estimated factors minimizing the CV1, the
CV1 without the factor estimation error and the CV1 without the parameter and the factor
estimation errors over 10,000 simulations
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Note : It reports the frequencies of selecting a larger set than first two estimated factors. The
line blue represents the frequencies while minimizing the complexity component and the identifiability
one plus 1

T−1ε ε. The orange and red corresponds respectively to the frequency when the parameter
estimation error is added, and the "naive" leave-one-out cross-validation which includes both the
parameter and the factor estimation errors.
Figure 10. Average parameter estimation error and factor estimation error in the CV1
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Note : This figure shows the average parameter and factor estimation errors in the leave-one-out
cross-validation criterion as N and T vary over the simulations.
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The sum of the complexity and the identifiability term in the CV1, helpful to achieve
consistent estimated model selection, corresponds the conditional mean of the infeasible in-
sample squared error

LT (m) =
1

T − 1 (μ̂ (m)− μ) (μ̂ (m)− μ) =
1

T − 1ε P (m) ε+
1

T − 1μ (I − P (m))μ

with μ̂ (m) = P (m) y.
To avoid the selection of larger set of observed regressors, Shao (1993) suggests a modification

of the CV1 using a smaller construction sample to estimate δ by deleting d 1 periods for
validation. This consists in splitting the T −1 time observations into κ = (T − 1)−d randomly
drawn observations that are used for parameter estimation and d remaining ones that are used
for evaluation, while repeating this process b times with b going to infinity. We extend it to
FAR and provide conditions for its validity.
Given b random draws of d indexes s in {1, . . . , T − 1} called validation samples, for each

draw s = {s (1) , · · · , s (d)}, we define

ys =

⎛⎜⎜⎜⎝
ys(1)
ys(2)
...
ys(d)

⎞⎟⎟⎟⎠ , Ẑs (m) =
⎛⎜⎜⎜⎜⎝
Fs(1) (m) Ws(1)·1 · · · Ws(1)·q
Fs(2) (m) Ws(2)·1 Ws(2)·q

...
...

...
Fs(d) (m) Ws(d)·1 · · · Ws(d)·q

⎞⎟⎟⎟⎟⎠ .
The corresponding construction sample is indexed by sc = {1, . . . , T − 1} \ s, with ysc the
complement of ys in y and Ẑsc the complement of Ẑs in Ẑ. We denote ys (m) = Ẑs (m) δ̂sc (m) ,

δ̂sc = Ẑsc (m) Ẑsc (m)
−1
Ẑsc (m) ysc. The Monte Carlo leave-d-out CV estimated model is

obtained by minimizing

CVd (m) =
1

d · b
s∈R

ys − ys (m) 2

where R represents a collection of b subsets of size d randomly drawn from {1, . . . , T − 1} .
This procedure generalizes the leave-one-out cross-validation because when d = 1, s = {t} ,
sc = {1, . . . , t− 1, t+ 1, . . . , T − 1} and R = {{1} , . . . , {T − 1}} , CVd (m) = CV1 (m) . Using
a smaller construction sample, the next theorem shows that

CVd (m) =
1

d · b
s∈R t∈s

ε2t+1 +
r (m) + q

κ
σ2 + op

1

κ

for correct m and CVd (m) = σ2 + 1
T−1μ (I − P (m))μ + op (1) for incorrect m. Hence for m1

and m2 correct estimated models such that r (m1) < r (m2) ,

P (CVd (m1)− CVd (m2) < 0) = P (r (m2)− r (m1) > 0 + op (1)) = 1 + o (1) .

Thus m1 will be preferred to m2. To prove the validity of this procedure, we made some
additional assumptions.

Assumption A4

(a) p lim infT→∞ 1
T−1μ (I − P (m))μ > 0 for any m ∈M1.



49

(b) p limT→∞ sup1≤t≤T−1 Zt (m) Z (m) Z (m)
−1
Zt (m) = 0 for all m.

(c) p limT→∞ sups∈R
1
d
ZsZs − 1

κ
ZscZsc = 0 where κ = T − 1− d.

(d) E (eiteju) = σij,tu with 1√
T ·κ t ∈ sc

T
u=1

1
N i,j |σij,tu| ≤ C for all s.

(e) 1
κ
E t ∈ sc

1√
N

N
i=1 λiet

4

≤ C for all (i, t) and all s.

Assumption A4 (a) is an identifiability assumption in order to distinguish a correct set from
an incorrect one. Groen and Kapetanios (2013) also made this assumption. By A4 (b), for any
model, the diagonal elements of the projection matrix vanish asymptotically. This regularity
condition can be seen as a form of a stationarity assumption for regressors in the different
sub-model, which is typical in cross-validation literature. Assumption A4 (c) argues that the
average difference between the Fisher information matrix of the validation and the construction
samples are close as N, T → ∞. A4 (d) complements A1 (e) as when sc = {1, . . . , T − 1} ,
1√
T ·κ t ∈ sc

T
u=1

1
N i,j |σij,tu| = 1

TN
T
t,u,i,j |σij,tu| ≤ C. Assumption A4 (e) strengthen A2

(d) and is used for proving Lemma 18. The next theorem proves the consistency of the Monte
Carlo leave-d-out cross-validation for FAR.

Theorem 12. Under Assumptions A1, A2, A3 and A4 such that κ
C2NT

→ 0, T 2

κ2b
→ 0, T

κ2
→

C <∞ and κ, d→∞, when b, T, N →∞,

P (m̂ = m0)→ 1

where
m̂ = argmin

m
CVd (m)

ifM contains at least one correct model.

The proof of Theorem 12 is given in Appendix. This result is an extension of Shao (1993)
to the case with generated regressors. Given the rate conditions, κ, d→∞ such that κ

T−1 → 0

and d
T−1 → 1. It follows from Theorem 12 that the consistency of the Monte Carlo leave-d-

out cross-validation relies on κ much smaller than d. One could consider κ = min {T, N}3/4
and d = (T − 1) − κ as they are consistent with the conditions in Theorem 12. In particular,
Shao (1993) suggests for the observed regressors framework κ = T 3/4. This difference is due
to the presence of the factor estimation error which should converge faster to zero relative to
the complexity term. An extreme case where this condition is not satisfied is the leave-one-out
cross-validation where κ = (T − 1)− 1 and d = 1.
The next paragraph studies an alternative selection procedure using the bootstrap methods.

3.3.2 Bootstrap rule for model selection

It follows from the previous subsection that the improvement in the Monte Carlo leave-d-out
cross-validation relies in its ability to capture the complexity and the identifiability component
in the conditional mean of the infeasible in-sample squared error LT . This is obtained by making
the complexity component vanishes at a slower rate than the parameter and factor estimation
errors. An alternative way to achieve the same purpose is using a bootstrap approach.
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The suggested bootstrap model selection procedure generalizes the result of Shao (1996)
to the factor-augmented regressions context where we have generated regressors. We define
Γ̂κ (m) a bootstrap estimator of the prediction error mean conditionally to Z which is σ2 +
E (LT (m) |Z) , based on the two-step residual procedure proposed by Gonçalves and Perron
(2014) for FAR. In the case with observed regressors, Shao (1996) considers

Γ̂κ (m) = E
∗ 1

T − 1 y − Z (m) δ̂∗d (m)
2

where δ̂
∗
κ (m) = (Z (m)Z (m))

−1 Z (m) y∗ is the bootstrap estimator of δ using a residual boots-
trap scheme. E∗ represents the expectation in the bootstrap world which is conditional to the
data. While fixing Z∗ (m) = Z (m) , the bootstrap version of y is given by y∗ = Z (m) δ̂ + ε∗

with ε∗ the i.i.d. resampled version of ε̂ multiplied by T−1
κ

1

1− r+q
T−1

where κ → ∞ such that

κ
T−1 → 0. When κ = T − 1, we turn to the usual residual bootstrap. In fact, the factor T−1

κ

ensures δ̂
∗
d (m) to converge to δ at a slower rate

√
κ rather than the usual

√
T . The bootstrap

estimator therefore has the same convergence rate with the leave-d-out cross validation trai-
ning parameter estimator where only k time periods are considered for estimation. As for the
leave-d-out cross-validation, κ = o (T ) such that κ

T−1 → 0 and d
T−1 → 1. If κ=O(T ), we have

similarly to the leave-one-out cross-validation, a naive estimator of LT up to the constant σ2

which does not choose the smallest model inM2 with probability going to one. In our set-up,
to mimic the estimation of F by F from X, F ∗ is extracted from the bootstrap sample X∗ and
Ẑ∗ = F ∗, W . Subsets of F ∗ are denoted by F ∗ (m), Ẑ∗ (m) = F ∗ (m) , W and

Γ̂κ (m) = E
∗ 1

T − 1 y − Ẑ∗ (m) δ̂∗κ (m)
2

where
δ̂
∗
κ (m) = Ẑ∗ (m) Ẑ∗ (m)

−1
Ẑ∗ (m) y∗ (m) (3.4)

with Ẑ∗ (m) , y∗ (m) the bootstrap analog of Ẑ (m) , y (m) obtained through the following
Algorithm 3.3.

Algorithm 3.3

A) Estimate F and Λ from X.

B) For each m :

1. Compute δ̂ (m) by regressing y on Ẑ (m) .

2. Generate B bootstrap samples such that X∗
it = Ftλi + e

∗
it, y

∗ (m) = Ẑ (m) δ̂ (m) +
ε∗ where {e∗it} and ε∗t+1 are re-sampled residual based respectively on {êit} and
{ε̂t+1 (M)} where M is the model with all the estimated factors.

(a) {e∗it} are obtained by multiplying {êit} i.i.d.(0, 1) external draws ηit for i =
1, . . . , N and t = 1, . . . , T.

(b) ε∗t+1 t=1,...,T−1 are i.i.d. draws of
T−1
κ

1

1− r+q
T−1

ε̂t+1 (M)− ε̂ (M)
t=1,...,T−1

.
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3. For each bootstrap sample extract F ∗ from X∗ and estimate δ̂
∗
κ (m) based on Ẑ

∗ =

F ∗,W and y∗ (m) using (3.4) .

C) Obtain m̂ as the model that minimizes the average of Γ̂κ (m) over the B samples.

By multiplying the second-step i.i.d. bootstrap residuals by
√
T−1√
κ
, we obtain Γ̂κ (m) =

ε ε
T−1 +

(r(m)+q)
κ

σ2 + op
1
κ
for m inM2 and Γ̂κ (m) = σ2 + 1

T−1μ (I − P (m))μ+ op (1) for m in
M1, which achieves a consistent selection. The next theorem proves the validity of the described
bootstrap scheme.

Theorem 13. Under the Assumptions A1-A3. Suppose further that Assumptions 6-8 of Gon-
çalves and Perron (2014) and E∗ |ηit|4 ≤ C <∞ hold. If N, T −→ ∞ and κ −→ ∞ such that

κ
C2NT

−→ 0 then
√
κ δ̂

∗
κ (m)− Φ∗0 (m) δ̂ (m) →d∗ N 0, Σδ∗(m)

for anym with Σδ∗(m) = σ2 [Φ∗0 (m)ΣZZ (m)Φ
∗
0 (m)]

−1 and ΣZZ (m) = p limT→∞ 1
T
Z (m) Z (m) .

From Theorem 13, it follows that δ̂
∗
κ (m) converges to the limit of Φ

∗
0 (m) δ̂ (m) at a lower

rate
√
κ = o

√
T . The proof in Appendix shows that our bootstrap scheme satisfies the high

level conditions provided by Gonçalves and Perron (2014). This result allows us to use our new
bootstrap scheme for the following optimality results.

Theorem 14. Suppose that Assumptions A1, A2, A3, A4 (a) complemented by Assumptions
6-8 of Gonçalves and Perron (2014) hold. Suppose further κ → ∞ such that κ

C2NT
→ 0 as T,

N →∞ and E∗ |ηit|4 ≤ C <∞ then ifM2 is not empty then

lim
N, T→∞

P (m̂ = m0) = 1

where
m̂ = argmin

m
Γ̂κ (m) .

This bootstrap result is the analog of Theorem 11. The following section compares the
different procedures through a simulation study.

3.4 Simulation experiment

To investigate the finite sample properties of the proposed selection methods, Monte Carlo
simulations are conducted. We consider the following model

yt+1 = α F 0t + α0 + εt+1,

where α0 = 1, F 0t ⊂ Ft ∼ i.i.d.N (0, I4) and εt+1 ∼ i.i.d.N (0, 1). Three data generating process
(DGP) are used.
— For DGP1, r0 = 2, F 0t = (Ft,1, Ft,2) and α = (1, 1/2) .
— For DGP2, r0 = 3, F 0t = (Ft,1, Ft,2, Ft,3) and α = (1, 1/2, − 1) .
— For DGP3, r0 = 4, F 0t = (Ft,1, Ft,2, Ft,3, Ft,4) and α = (1, 1/2, − 1, 2) .
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There are 4 factors, but only DGP 3 uses them all. DGP 1 and 2 only use a subset of
them to generate the variable of interest yt+1. The panel factor model is a (N × T ) matrix with
element :

Xit = λiFt + eit,

where λ1i ∼ 12U [0, 1] , λ2i ∼ 8U [0, 1] , λ3i ∼ 4U [0, 1] and λ4i ∼ U [0, 1]. The factor loadings are
labelled in decreasing order of importance to explain the dynamics of the panel Xit. The specifi-
cation for the unobserved factors and the factor loadings satisfies asymptotically PC1 identifying
restrictions provided by Bai and Ng (2013). Indeed, p limT→∞ 1

T
F F = I4 and p limN→∞ 1

N
Λ Λ is

diagonal with distinct entries, and make possible to identify estimated factors as N, T →∞ go
to infinity. As in Djogbenou, Gonçalves and Perron (2015), eit ∼ N (0,σ2i ) with σ2i ∼ U [.5, 1.5].
We consider 1000 replications, for bootstrap and Monte Carlo, 399 simulations and for sample
sizes T ∈ {100, 150} N ∈ {50, 100, 150, 200}. The construction data size for the CVd and
for the bootstrap is κ = (min {T,N})3/4. The first step bootstrap residual are obtained by the
wild bootstrap using i.i.d. normal with mean 0 and variance 1 external draws.
We compare the ability of the proposed procedures to select consistently the true model to

the leave-one-out cross-validation

CV1 (m) =
1

T − 1
T−1

t=1

yt+1 − δ̂t (m)Ft (m)
2

and the modified bayesian information criteria (BICM) suggested by Groen and Kapetanios
(2013)

BICM (m) =
T

2
ln σ̂2 (m) +r (m) ln (T ) 1 +

T

N
where σ̂2 (m) =

1

T − 1− r (m) y − F (m) δ̂ (m)
2

,

is made by considering subsets of the first four principal component estimated factors.
Figure 11, 12 and 13 present the average number of selected estimated factors whereas Figure

14, 15 and 16 show the frequencies of selecting the true model over the 24 = 16 possibilities
including the case of no factor. Except for the largest estimated model, where the average
number of estimated factors tends to be close to four, the CV1 tends to overestimate the true
number of factors. The BICM very often selects a smaller set of estimated factors than the true
one. The leave-d-out cross-validation and the bootstrap procedure select in average a number
of factor close to the true number.
The suggested procedures offer a higher frequency of selecting factor estimates that span

the true model for DGP 1 and 2. In particular, when N = T = 100, for DGP 1, the frequency
of selecting the first two estimated factors is 55.3% using the modified BIC and 64.5% using the
leave-one-out cross-validation. The bootstrap selection increases the frequency of the CV1 by
13.6 points of percentage and the CVd increases it by 18.5 points of percentage.These frequencies
increase with the sample sizes. In general, the delete-one cross-validation very often selects a
larger model than the true one and the modified BIC tends to pick smaller subset of the
consistent model. As DGP 3 corresponds to the largest model, CV1 unsurprisingly performs
well.
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Figure 11. Average number of estimated factors for DGP 1

Note : This figure plots the average number of selected estimated factors over 1000 simulations.
There are 24 = 16 possible subsets of the larger one containing all factors. BICM relates to the modified
BIC of Groen and Kapetanios (2013).
Figure 12. Average number of estimated factors for DGP 2

Note : see Figure 11.
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Figure 13. Average number of estimated factors for DGP 3

Note : see Figure 11.
Figure 14. Frequencies of selecting the two first estimated factors for DGP 1

Note : The figure reports frequencies in percentage by methods.



55

Figure 15. Frequencies of selecting the three first estimated factors for DGP 2

Note : see Figure 14.
Figure 16. Frequencies of selecting the three first estimated factors for DGP 3

Note : see Figure 14.

3.5 Empirical application

This section revisits the factor analysis of excess risk premia of Ludvigson and Ng (2007).
The data set contains 147 quarterly financial series and 130 quarterly macroeconomic series
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from the first quarter of 1960 to the third quarter of 2014. The variables in the financial data
set are constructed using Jurado, Ludvigson and Ng (2015) financial data set and variables
from Kenneth R. French website as described in the appendix 1. The quarterly macro data are
downloaded from the St. Louis Federal Reserve website and correspond to the monthly series
constructed by McCracken and Ng (2015). Some of the quarterly data are also constructed
based on McCracken and Ng (2015) data as explained in the Appendix. We examine how eco-
nomic information summarized through a few numbers of estimated factors from real economic
activities data and those related to financial markets can explain the future excess returns using
various selection procedures. Recently, Gonçalves, McCracken and Perron (2015) also study the
predictive ability of estimated factors from the macroeconomic data provided by McCracken
and Ng (2015) to forecast excess returns to the S&P 500 Composite Index. They detect the
interest rate factor as the strongest predictor of the equity premium. Indeed, as argued by Lud-
vigson and Ng (2007), restricting attention to a few sets of observed factors may not span all
information related to financial market participants. Unlike Gonçalves, McCracken and Perron
(2015), they considered both financial and macroeconomic data. Using the BIC, they found
three new estimated factors termed "volatility", "risk premium" and "real" factors that have
predictive power for the market excess returns after controlling for usual observed factors.
Following Ludvigson and Ng (2007), we define mt+1 as the continuously compounded one-

quarter-ahead excess returns in period t +1 obtained by computing the log return on the
Center for Research in Security Prices (CRSP) value-weighted price index for NYSE, AMEX
and NASDAQminus the three-month Treasury bill rate. The factor-augmented regression model
used by Ludvigson and Ng (2007) takes the form,

mt+1 = α1Ft + α2Gt + β Wt + εt+1.

The variables Ft and Gt are latent and represent respectively the macroeconomic and the
financial factors. The vector Wt contains commonly used observable predictors that may help
predict excess returns and the constant. The observed predictors are essentially those studied by
Ludvigson and Ng (2007). We have the dividend price ratio (d-p) introduced by Campbell and
Shiller (1989), the relative T-bill (RREL) from Campbell (1991) and the consumption-wealth
variable suggested by Ludvigson and Lettau (2001). In addition, the lagged realized volatility
is computed over each quarter (see Ludvigson and Ng, 2007) and included. The factors are
estimated by Ft and Gt using principal components based respectively on the macro factor
panel model

X1it = λiFt + e1it

and the financial factor panel model

X2it = γiGt + e2it.

Like Ludvigson and Ng (2007), we use the ICp2 information criterion of Bai and Ng (2002)
and select six estimated factors from each set that summarize 54.87% of the information in
our macroeconomic series and 83.64% of the financial information. Despite the imperfection of
naming an estimated factor, it turns to be interesting as it helps us understand the economic
message revealed by the data. The marginal R2 of each different variables to each estimated
factor is obtained by regressing each estimated factor on the variables.

1We gratefully thank Sydney C. Ludvigson who provided us their data set.
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In the panel, similarly to McCracken and Ng (2015), F1 is a real factor because variables
related to production and labor market are highly correlated to it. The generated regressor F3
represents an interest rate spread factor. The estimated financial factors G2 and G3 are market
risk factors. The market excess returns and the High Minus Low Fama-French factors have
a marginal R2 greater than 0.7 with G2 whereas the Cochrane-Piazzesi factor and the Small
Minus Big Fama-French factor have the highest correlation to G3. The estimated factor G4 is
dominated by oil industry portfolio return and G6 is mostly related to utility industry portfolio
return.
The next two subsections study the in-sample and out-of-sample excess returns prediction

while picking consistently the estimated factors in the second step.

3.5.1 In-sample prediction of excess returns

The estimated regression takes the form

mt+1 = α1 (m)Ft (m) + α2 (m)Gt (m) + β Zt + ut+1 (m)

for m = 1, . . . , 2r including the possibility that no factor is selected, with r the number of
selected factors in the first step. The selected model and the estimated regression results are
reported in Table 2.
The Monte Carlo cross-validation and the bootstrap selection procedures select smaller

set of generated regressors than the leave-one-out cross-validation. On the other hand, BICM
selects the model with no financial or macro factor. Our cross-validation method selects two
factors, the second financial factor G2t and third macro factor F3t . Investors care about the
spread between interest rates and effective federal funds rate motivating interventions by the
Federal Reserve to impulse economic expansion. Estimated risk factors also play an important
role in predicting the equity premium associated to U.S. stock market as in Ludvigson and Ng
(2007). We can deduce that the important estimated factors which investors in the U.S. financial

market should care about are interest rate spread factor F3t and market risk factor G2t .
These factors are significant and simultaneously picked by the leave-d-out cross-validation and
bootstrap model selection approach. We also study the joint significativity of the estimated
factors using the Fisher test. The constrained model is the one estimated with only observed
regressors and the volatility factor, whereas the unconstrained model is m̂j, j = 1, · · · , 4. The
estimated models m̂1, m̂2, m̂3 and m̂4 correspond respectively to those selected by the CV1,
the BICM, the CVd and the Γ̂κ. The F-test statistic is always greater than the 5% critical
value, implying additional significant information in the unconstrained model for the different
procedures except the BICM where no factor is selected.

3.5.2 Out-of-sample prediction of excess returns

This subsection studies how the new procedures behave in out-of-sample forecasting. Para-
meters and factors are estimated recursively with an initial sample of data from 1960 :1 through
2004 :4. The forecasts are generated for each subsample based on the model selected over that
subsample by each criterion The forecast sample corresponds to the period 2005 :1-2014 :3.
This forecasts are obtained by regressing the dependent variable from 1960 :2-2005 :1 on the
independent variables from 1960 :1-2004 :4. The used estimated factors are extracted from the
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large data set covering 1960 :1 to 2004 :4. From this estimated factors, a subset is selected using
each of the four criteria. This procedure is repeated by expanding data sample each quarter,
re-estimating the factors and selecting a new set of factors to forecast next quarter’s excess
returns. The number of estimated factors that summarizes information in X1 and X2 are selec-
ted using Bai and Ng (2002) criterion from the first estimation sample and maintained in each
recursion.
We compare the different sets of model by computing the MSE relative to the benchmark

which only contains the constant. The alternative model contains generated regressors selected
using the CV1, the BICM, CVd or the bootstrap selection. Hence, we computeMSEu/MSEr the
out-of-sample mean squared error of each unconstrained model relative to MOD0. The forecast
error is smaller in our new procedures (MSEu/MSEr = 0.8355 for Γ̂κ and MSEu/MSEr
= 0.9672 for CVd) than for the CV1 (MSEu/MSEr = 1.3163) and BICM (MSEu/MSEr
= 1.0000). Another method of gauging the out-of-sample is to test the equal predictive ability
of out-of-sample forecasts as considered by Gonçalves, McCracken and Perron (2015). Because
in each recursion a new number of estimated factors is selected, there are no available critical
values for such a situation.
Figure 17. Number of selected factors in the out-of-sample exercise

Note : This figure plots the number of selected estimated factors in term of the end of estimation
windows for each model selection procedure.
Figure 17 indicates how the number of selected factors varies while the estimation sample

changes. During the forecast exercise, while the BICM never selects an estimated factor, the
leave-one-out cross-validation always chooses a larger model than our proposed methods. As
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it is argued in the previous sections, the new consistent model selection approaches prevent
against too much under-fitting and over-fitting.

3.6 Conclusion

This paper suggests and provides conditions for the validity of two consistent model selec-
tion procedures for the factor-augmented regression models. It is the Monte Carlo leave-d-out
cross-validation and the bootstrap selection approach. In finite samples, the simulations docu-
ment improvement in the probability of selecting the set of estimated factors that span the true
model comparatively to other existing methods. The procedures in this paper have been used
to select estimated factors for in-sample and out-of-sample predictions of one-quarter-ahead
excess stock returns on U. S. market. The in-sample analysis reveals that the estimated factor
highly correlated to interest rate spreads and the generated regressor highly correlated to the
Fama-French factors drive the underlying unobserved factors, and strongly predict the excess
returns. Moreover, the out-of-sample forecasts lead to a smaller forecast error using our sug-
gested procedures. For future research, an important extension of the results in this paper is
to allow the inclusion of the non linear factors and the possibility of interaction between the
factors.
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Conclusion générale

Cette thèse étudie l’utilisation des méthodes de bootstrap pour améliorer la prédiction
de variables économiques en se basant sur les modèles à facteurs augmentés. Ces modèles
permettent l’inclusion d’informations relatives à un grand nombre de prédicteurs à travers un
petit nombre de facteurs communs. Étant donné que ces facteurs sont latents, ils sont estimés
en utilisant entre autre la méthode des composantes principales. Ce travail contribue à cette
litterature à au moins trois niveaux.
En premier lieu, nous justifions deux approches de bootstrap basés sur les résidus capables

non seulement de reproduire le biais dans la distribution asymptotique des estimateurs des
coefficients dû à l’estimation des facteurs, mais surtout de préserver la dépendence dans les
erreurs lorque l’horizon de prévision est h > 1. La première approche, le «block wild boots-
trap», subdivise les résidus en k blocs multipliés respectivement par k tirages i.i.d.(0, 1). Ce
faisant, nous pouvons maintenir la dépendance à l’intérieur de chaque bloc tout en considérant
k blocs indépendants. La seconde, le «dependent wild bootstrap», est mis en oeuvre en multi-
pliant chaque résidu par une variable qui est une moyenne pondérée locale de tirage externe. En
deuxième lieu, nous proposons d’algorythme permettant de construire les intervalles de predic-
tion pour une réalisation future d’une variable ainsi que pour sa moyenne conditionnellement à
l’information disponible. Ce faisant, nous pouvons relâcher l’hypothèse forte de normalité des
erreurs. En troixième lieu, nous nous sommes intéressés à comment choisir passimonieusement
parmi les facteurs communs estimés de sorte à recouvrir l’information contenue dans les fac-
teurs latents. L’examen des insuffisances des methodes de selection existantes ont permis de
proposer un critère validation croisée «leave-d-out» et un critère bootstrap approprié. Comme
le montre nos résultats en échantillon fini, ces deux approches préservent contre la selection
d’un ensemble inapproprié de facteurs estimés.
Ce travail ouvre la porte à de nouvelles pistes de reflexion. En particulier, nos résultats

peuvent aisément s’étendre dans le contexte où aucun sous-ensemble de facteurs estimés n’est
correcte.
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Annexes

.1 Proofs of results in Sections 1.2 and 1.3

We first state an auxiliary result which strengthens the results in Lemma A.1 in Bai (2003,
p. 159) and Theorem 1 in Bai and Ng (2002, p. 198), followed by its proof. We then prove the
results in the main text.

Lemma 15. Under Assumptions 1, 2, 3 and 4.a) strengthened by Assumption 3’.d), if N−1T 1/2 →
c <∞, then T

t=1 F̃t −HFt
4

= OP (1) .

Proof of Lemma 15. We have the following identity
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4

T

t=1

at
4 +

T

t=1

bt
4 +

T

t=1

ct
4 +

T

t=1

dt
4 .

Note that T−1 T
t=1 at

4 ≤ T T−1 T
t=1 at

2
2

and T−1 T
t=1 at

2 = OP (T
−1) (Bai and

Ng (2002, p. 213)), implying that T
t=1 at
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Cauchy-Schwarz inequality,
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since maxs,tE ζ4st = O (N
−2) by Assumption 2.c). Thus, T
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given in particular Assumption 3’.d). The proof that T
t=1 dt

4 = OP (N
−2T ) is similar and

therefore omitted. Thus, T
t=1 F̃t −HFt

4

= OP (1) as N−1T 1/2 → c <∞.

Proof of Theorem 1. We apply Theorem 2.1 of GP (2014) by verifying their high level assump-
tions. Our Assumptions 1-4 coincide with their Assumptions 1-4, whereas by Theorem 5.3 of
Gallant and White (1988, p. 76), we have that Ω−1/2T−1/2z ε →d N (0, I), which verifies their
Assumption 5.b). Finally, our moment conditions on zt and εt+h imply those of GP (2014).

Proof of Lemma 2. We can write Ω̂ = A1T +A2T +A3T +A2T +A4T +A5T +A3T +A5T +A6T ,
with
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ẑt HFt − F̃t H−1 ααH−1 HFs − F̃s ẑsk
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Next we show A1T →P Φ0ΩΦ0 and AiT = oP (1) , for i = 2, . . . , 6. Starting with A2T , note that
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By repeated application of Cauchy-Schwarz inequality,
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where the same bound holds for A2T,3 . It follows that
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= O (MT ) . We can also show that the two last factors are

OP (1) (in particular, by Lemma 15 and the decomposition ẑt = Φzt + (ẑt − Φzt) , we have
that T−1 T−h

t=1 ẑt
4 ≤ 8Φ4T−1 T−h

t=1 zt
4 + 8T−1 T−h

t=1 ẑt − Φzt
4 = OP (1) given Mar-

kov’s inequality and the moment conditions on zt). Thus, A2T = OP T−1/2MT = oP (1)

since T−1/2MT → 0. Turning now to A3T , and given that ẑt = Φzt + (ẑt − Φzt), we can write
A3T = A3T,1 + A3T,2, where

A3T,1 = T−1
T−h

s=1

T−h

t=1

(ẑt − Φzt) εt+hαH
−1 HFs − F̃s ẑsk

s− t
MT

and

A3T,2 = T−1Φ
T−h

s=1

T−h

t=1

ztεt+hαH
−1 HFs − F̃s ẑsk

s− t
MT

.

Using the same arguments as for A2T , we can show that A3T,1 = OP T−1/2MT . Similarly,

A3T,2 ≤ Φ αH−1 T−1
T−h

s=1

HFs − F̃s
4

T−1
T−h

s=1

ẑs
4

1/4
⎛⎝T−1 T−h

s=1

T−h

t=1

ztεt+hk
s− t
MT

2
⎞⎠1/2 ,

which is OP T−1/2MT
1/2

. In particular, the last factor is OP (MT ) . To see this, note that

E

⎛⎝T−1 T−h
s=1

T−h

t=1

ztεt+hk
s− t
MT

2
⎞⎠ = T−1

T−h

s=1

T−h

t1=1

T−h

t2=1

E zt1εt1+hzt2εt2+h k
s− t1
MT

k
s− t2
MT

≤ T−1
T−h

t1=1

T−h

t2=1

E zt1εt1+hzt2εt2+h

+∞

τ=−∞
k

τ

MT

2

= OP (MT ) ,
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given that the first factor is OP (1) (by a mixingale inequality, cf. Corollary 14.3 of Davidson
(1994, p. 212) with p = r > 2 and r > p

p−1 and the fact that E ztεt+h
r ≤ C < ∞) and that

the second factor is O (MT ) since M−1
T

+∞

τ=−∞
k τ

MT

2

→ +∞
−∞ k (x)2 dx ≤ +∞

−∞ |k (x)| dx <∞.
Thus, A3T = OP T−1/2MT = oP (1) . Similar arguments show that A4T ≤ OP (T−1MT ) =

oP (1), A5T = OP T−3/4MT = oP (1) and A6T = OP T−1/2MT = oP (1). Finally, we show
that A1T →P Φ0ΩΦ0. By replacing ẑt with Φzt+(ẑt − Φzt), we can write A1T = A1T,1+A1T,2+
A1T,3 + A1T,3, where

A1T,1 = ΦT−1
T−h

s=1

T−h

t=1

ztεt+hzsεs+hk
s− t
MT

Φ ,

A1T,2 = T−1
T−h

s=1

T−h

t=1

(ẑt − Φzt) εt+h (ẑs − Φzs) εs+hk
s− t
MT

,

A1T,3 = ΦT−1
T−h

s=1

T−h

t=1

ztεt+h (ẑs − Φzs) εs+hk
s− t
MT

.

By arguments similar to those already used, we can show that the last two terms areOP T−1/2MT =

op (1) . To show that A1T,1 →P Φ0ΩΦ0, note that under our assumptions, E ztεt+h
2r < C and

{ztεt+h} is a strong mixing sequence of size − 3r
r−2 . The result then follows by Proposition 1 of

Andrews (1991, p. 825) and the fact that Φ = Φ0 + oP (1) . Since T−1ẑ ẑ = Φ0ΣzzΦ0 + oP (1)

with Σzz > 0, we conclude that Σδ →P Σδ = (Φ0)
−1Σ−1zz ΩΣ

−1
zz Φ

−1
0 .

Proof of Theorem 3. We verify Conditions A*-F* of GP (2014). Because our bootstrap scheme
relies on the wild bootstrap to generate e∗it, as in GP (2014), conditions that only involve this
random variable were already verified by them. In particular, Conditions A*, B* and F* are
satisfied under our assumptions (see proof of Theorem 4.1 of GP (2014)). Hence, we only need to
verify Conditions C*, D* and E*. Starting with Condition C*(a), by the independence between
e∗it and ε

∗
s+h, and the fact that e

∗
it is independent across (i, t), it follows that

T−1
T

t=1

E∗ (TN)−1/2
T−h

s=1

N

i=1

ε∗s+h (e
∗
ite
∗
is − E (e∗ite∗is))

2

= T−2
T

t=1

T−h

s=1

T−h

l=1

E∗ ε∗s+hε
∗
l+h N−1

N

i=1

N

j=1

Cov∗ e∗ite
∗
is, e

∗
jte

∗
jl

= T−2
T

t=1

T−h

s=1

ε̂2s+hN
−1

N

i=1

e2ite
2
isV ar

∗ (ηitηis)

≤ CN−1
N

i=1

T−1
T

t=1

e2it T−1
T−h

s=1

ε̂2s+he
2
is ,

where the second equality uses the fact that Cov∗ e∗ite
∗
is, e

∗
jte

∗
jl = 0 for i = j or s = l, and

E∗ ε∗2s+h = ε̂2s+h, given that E
∗ η2j = 1. The inequality relies on a bound for V ar∗ (ηitηis)

under our assumptions. The result follows by an application of Cauchy-Schwarz inequality given
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in particular the fact that (NT )−1 N
i=1

T
t=1 ẽ

4
it = OP (1) and T

−1 T−h
s=1 ε̂

4
s+h = OP (1) under

our assumptions. For Condition C*(b), we can show that

E∗ (NT )−1/2
T−h

t=1

N

i=1

λ̃ie
∗
itε
∗
t+h

2

= (NT )−1
T−h

t=1

ε̂2t+h

N

i=1

λ̃i
2

ẽ2it ,

using the facts that E∗ e∗ite
∗
js = 0 whenever i = j or t = s and E∗ ε∗2t+h = ε̂2t+h. The rest of

the proof follows exactly the proof of GP (2014) (cf. Proof of their Theorem 4.1). The proof of
Condition C*(c) follows the proof in GP (2014) closely with the only difference that we show

that T−1
T−h

t=1

ε∗4t+h = Op∗(1) in probability. Indeed,

E∗ T−1
T−h

t=1

ε∗4t+h = T−1
kT

j=1

bT

l=1

ε̂4(j−1)bT+l+hE
∗ ν4j ≤ CT−1

kT

j=1

bT

l=1

ε̂4(j−1)bT+l+h = CT
−1

T−h

t=1

ε̂4t+h,

since E∗ ν4j ≤ C < ∞. Because T−1 T−h
t=1 ε̂

4
t+h = OP (1) under our assumptions, this proves

the desired result. For Condition D*(a), we have that for any i = 1, . . . , bT and j = 1, . . . , kT ,

E∗ ε∗i+(j−1)bT+h = ε̂(j−1)bT+i+hE
∗ (νj) = 0 and T−1

T−h
t=1E

∗ ε∗t+h
2
= T−1

T−h
t=1ε̂

2
t+h = Op (1) .

For Condition D*(b), let

ξ∗j ≡ Ω∗−1/2b−1/2T

bT

l=1

ẑ(j−1)bT+lε
∗
(j−1)bT+l+h = Ω∗−1/2b−1/2T

bT

l=1

ẑ(j−1)b+lε̂(j−1)bT+l+hνj,

where νj are i.i.d. (0, 1) across j.We can write Ω∗−1/2T−1/2
T−h
t=1 ẑtε

∗
t+h = k

−1/2
T

kT
j=1 ξ

∗
j , where

ξ∗j are conditionally independent for j = 1, . . . , kT , withE
∗ ξ∗j = 0 and V ar∗ k

−1/2
T

kT
j=1 ξ

∗
j =

I. It suffices to show that for some d > 1, ZT ≡ k−dT kT
j=1E

∗ ξ∗j
2d
= oP (1). Replacing ξ

∗
j by

its definition and using the fact that kT = b−1T (T − h), we have that

ZT ≤ C Ω∗−1/2
2d 1

T d

kT

j=1

E∗
bT

l=1

ẑ(j−1)bT+lε
∗
(j−1)b+l+h

2d

.

Since Ω∗ →P Φ0ΩΦ0 (see Condition E* below) and Φ0ΩΦ0 > 0, Ω∗−
1
2

2d

= OP (1). We show

that the second factor is oP (1) . Noting that

ε∗(j−1)bT+l+h = ε(j−1)bT+l+h ·νj− ẑ(j−1)bT+l δ̂ − δ ·νj+ HF(j−1)bT+l − F̃(j−1)bT+l H−1 α ·νj,
(5)
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we have that

1

T d

kT

j=1

E∗
bT

l=1

ẑ(j−1)bT+lε
∗
(j−1)bT+l+h

2d

≤ 32d−1 1
T d

kT

j=1

bT

l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

2d

E∗ |νj|2d

+32d−1
1

T d

kT

j=1

bT

l=1

ẑ(j−1)bT+lẑ(j−1)bT+l δ̂ − δ

2d

E∗ |νj|2d

+32d−1
1

T d

kT

j=1

bT

l=1

ẑ(j−1)bT+l HF(j−1)bT+l − F̃(j−1)bT+l H−1 α

2d

E∗ |νj|2d ≡ Z1T + Z2T + Z3T .

Starting with Z1T , by letting ẑ(j−1)b+l = Φz(j−1)bT+l + ẑ(j−1)bT+l − Φz(j−1)bT+l and using the
c-r inequality,

Z1T ≤ C
1

T d

kT

j=1

bT

l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

2d

≤ C Φ 2d 2
2d−1

T d

kT

j=1

bT

l=1

z(j−1)bT+lε(j−1)bT+l+h

2d

+C
22d−1

T d

kT

j=1

bT

l=1

ẑ(j−1)bT+l − Φz(j−1)bT+l ε(j−1)bT+l+h

2d

.

Noting that for any d > 1, kT
j=1 |aj|2d ≤ kT

j=1 |aj|2
d

for any aj, we can bound the second
term of Z1T by

C
1

T d

⎛⎝ kT

j=1

bT

l=1

ẑ(j−1)b+l − Φz(j−1)bT+l ε(j−1)bT+l+h

2
⎞⎠d = OP T−1/2bT

d
= oP (1) ,

given an application of the c-r inequality and the fact that T−h
t=1 ẑt − Φzt

4 = OP (1) and
T−h
t=1 ε

4
t = OP (T ) . Similarly, we can show that the first term of Z1t is oP (1). This follows

by showing that its expectation is of order O ((T−1bT ))
d−1

= o (1) for some 1 < d < 2, given
standard inequalities (in particular, we rely on Corollary 14.3 of Davidson (1994)). For Z2T , by
repeated application of the Cauchy-Schwarz and the c-r inequalities, we have that it is bounded
by

1

T d

kT

j=1

bT

l=1

ẑ(j−1)bT+lẑ(j−1)bT+l δ̂ − δ

2d

≤ bdT
T d

δ̂ − δ
2d

kT

j=1

bT

l=1

ẑ(j−1)bT+l
4

d

= O bdT/T
d ·OP 1/T d ·OP kT · bdT = OP b2d−1T /T 2d−1 = oP (1) .

That Z3T = OP T−1/2bT
d
follows by similar arguments and we omit the details. For Condi-

tion E*, since νj is independent over j = 1, . . . , kT , with V ar∗ (νj) = 1, we have that

Ω∗ = T−1V ar∗
kT

j=1

bT

l=1

ẑ(j−1)bT+lε̂(j−1)bT+l+h · νj

= T−1
kT

j=1

bT

l=1

ẑ(j−1)bT+lε̂(j−1)bT+l+h
bT

l=1

ẑ(j−1)bT+lε̂(j−1)bT+l+h ≡ Ω∗1T + Ω∗2T + Ω∗2T + Ω∗3T ,
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where

Ω∗1T = T−1
kT

j=1

bT

l=1

ẑ(j−1)bT+lε(j−1)bT+l+h
bT

l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

Ω∗2T = T−1
kT

j=1

bT

l=1

ẑ(j−1)bT+lε(j−1)bT+l+h

×
bT

l=1

ẑ(j−1)bT+l −ẑ(j−1)bT+l δ̂ − δ + αH−1 HF(j−1)bT+l − F̃(j−1)bT+l

Ω∗3T =
1

T

kT

j=1

bT

l=1

ẑ(j−1)bT+l −ẑ(j−1)bT+l δ̂ − δ + αH−1 HF(j−1)bT+l − F̃(j−1)bT+l

×
bT

l=1

ẑ(j−1)bT+l −ẑ(j−1)bT+l δ̂ − δ + αH−1 HF(j−1)bT+l − F̃(j−1)bT+l .

Starting with Ω∗1T , and using the fact that ẑ(j−1)bT+l = Φz(j−1)bT+l + ẑ(j−1)bT+l − Φz(j−1)bT+l ,
we can write Ω∗1T = Ω∗1.1T + Ω∗1.2T + Ω∗1.2T + Ω∗1.3T , where

Ω∗1.1T = T−1Φ
kT

j=1

bT

l=1

z(j−1)bT+lε(j−1)bT+l+h
bT

l=1

z(j−1)bT+lε(j−1)bT+l+h Φ ,

Ω∗1.2T = T−1Φ
kT
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bT

l=1

z(j−1)bT+lε(j−1)bT+l+h
bT

l=1

ẑ(j−1)bT+l − Φz(j−1)bT+l ε(j−1)bT+l+h

and

Ω∗1.3T = T
−1

kT

j=1

bT

l=1

ẑ(j−1)bT+l − Φz(j−1)bT+l ε(j−1)bT+l+h
bT

l=1

ẑ(j−1)bT+l − Φz(j−1)bT+l ε(j−1)bT+l+h .

We can show that Ω∗1.1T →P Φ0ΩΦ0 by an application of Theorem 3.1 of Lahiri (2003, p. 49)
and the fact that Φ = Φ0 + oP (1). For Ω∗1.2T , by Cauchy-Schwarz inequality, Ω

∗
1.2T is bounded

by

Φ

⎛⎝ 1
T

kT

j=1

bT

l=1

z(j−1)bT+lε(j−1)bT+l+h

2
⎞⎠ 1

2
⎛⎝ 1
T

kT

j=1

bT

l=1

ẑ(j−1)bT+l − Φz(j−1)bT+l ε(j−1)bT+l+h

2
⎞⎠ 1

2

,

which is OP (b2T/T )
1
4 = oP (1) as the first factor is OP (1) by a mixingale inequality. The second

factor is bounded by

T−1bT
kT

j=1

bT

l=1

ẑ(j−1)bT+l − Φz(j−1)bT+l ε(j−1)bT+l+h
2 ≤ T−1bT

T−h

t=1

(zt − Φzt) εt+h
2

≤ bT T−1
T−h

t=1

zt − Φzt
4

1
2

T−1
T−h

t=1

ε4t+h

1
2

= OP T−1/2bT ,
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since T−h
t=1 ẑt − Φzt

4 = OP (1) . The same argument can be used to show that Ω∗1.3T =
OP T−1/2bT = oP (1) , implying that Ω∗1T = oP (1). Next, we show that Ω

∗
2T = oP (1) . Letting

X̂j ≡ bT
l=1 ẑ(j−1)bT+lε(j−1)bT+l+h, by Cauchy-Schwarz inequality, we can bound Ω∗2T by

1

T

kT

j=1

X̂j

2

1
2

⎛⎝ 1
T

kT

j=1

bT

l=1

ẑ(j−1)bT+l −ẑ(j−1)bT+l δ̂ − δ + αH−1 HF(j−1)bT+l − F̃(j−1)bT+l
2
⎞⎠ 1

2

,

where the first factor is equal (trace (Ω∗1T ))
1/2 = oP (1), as we showed before. For the second

factor, and ignoring the square root, applying twice the c-r inequality yields the bound of

2

T

kT

j=1

bT

l=1

ẑ(j−1)bT+lẑ(j−1)bT+l δ − δ

2

+
2

T

kT

j=1

bT

l=1

ẑ(j−1)bT+lαH
−1 HF(j−1)bT+l − F̃(j−1)bT+l

2

by Ω∗2.1T + Ω∗2.2T where

Ω∗2.1T =
2

T
bT

kT

j=1

bT

l=1

ẑ(j−1)bT+lẑ(j−1)bT+l δ̂ − δ
2

≤ 2

T
bT δ̂ − δ

2
T−h

t=1

ẑt
4 = OP T−1bT ,

and

Ω∗2.2T =
2bT
T

kT

j=1

bT

l=1

ẑ(j−1)bT+lαH
−1 HF(j−1)bT+l − F̃(j−1)bT+l

2

,

bounded by

2bT
T

αH−1 2
T−h

t=1

ẑt
4

1
2 T−h

t=1

HFt − F̃t
4

1
2

= OP
bT
T 1/2

since in particular T−h
t=1 HFt − F̃t

4

= OP (1) . Hence, Ω∗2T = oP (1) . Finally, note that

Ω∗3T ≤ Ω∗2.1T + Ω∗2.2T = oP (1), which completes the proof.

Proof of Theorem 4. The proof follows closely that of Theorem 3, so we only highlight the main
differences. As in that proof, only Conditions C*, D* and E* of GP (2014) need to be verified,
now with ε∗s+h = ε̂s+h ·w∗s+h, where w∗ is lT -dependent with mean zero and covariance matrixK,
a (T − h)× (T − h) matrix with typical element given by Kij = kdwb

j−i
lT

, where kdwb (·) is a
kernel function and lT is a bandwidth parameter. Conditions C*(a) and (b) follow immediately
by noting that E∗ ε∗2s+h = ε̂2s+h since V ar

∗ (w∗) = K with diagonal elements equal to one.
Condition C*(c) follows by noting that E∗ ε∗4t+h = ε̂4t+hE

∗ w∗4t+h , where E∗ w∗4t+h ≤ C <∞
and T−1 T−h

t=1 ε̂
4
t+h = OP (1) . Condition D*(a) follows exactly as in the proof of Theorem 3,

with w∗t replacing vj. To prove D*(b), by a decomposition of ε
∗
t+h similar to that in (5) with

vj replaced with w∗t+h and the fact that ẑt = Φzt + (ẑt − Φzt) , Ω
∗−1/2T−1/2 T−h

t=1 ẑtε
∗
t+h =
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J1T + J2T + J3T + J4T , where

J1T = Ω∗−1/2T−1/2Φ
T−h

t=1

ztεt+hw
∗
t+h, J2T = Ω∗−1/2T−1/2

T−h

t=1

(ẑt − Φzt) εt+hw
∗
t+h,

J3T = −Ω∗−1/2T−1/2
T−h

t=1

ẑtẑt δ̂ − δ w∗t+h, and J4T = Ω∗−1/2T−1/2
T−h

t=1

ẑt HFt − F̃t H−1 αw∗t+h.

We first show that JiT = oP ∗ (1) for i = 2, 3 and 4. Starting with J2T , we have that

J2T ≤ Ω∗−
1
2 T−1/2

T−h

t=1

(ẑt − Φzt) εt+hw
∗
t+h = OP ∗ T−1/2 T 1/2lT

1/2
= OP ∗ T−1/4l1/2T = oP ∗ (1) ,

since T−1l2T → 0 and J2.1,T ≡ E∗ T−h
t=1 (ẑt − Φzt) εt+hw

∗
t+h

2

= OP T 1/2lT . Indeed, noting

that E∗ w∗t+hw
∗
s+h = kdwb

t−s
lT

,

J2.1,T =
T−h

t=1

T−h

s=1

(ẑt − Φzt) (ẑs − Φzs) εt+hεs+hE
∗ w∗t+hw

∗
s+h

≤ 2T 1/2lT

T−h

t=1

ẑt − Φzt
4

1/2

T−1
T−h

t=1

ε4t+h

1/2

l−1T

T−h

τ=0

kdwb
τ

lT
= OP T 1/2lT .

For J3T , we have that

J3T ≤ Ω∗−1/2 T−1/2
T−h

t=1

ẑtẑt δ̂ − δ w∗t+h = OP ∗ T−1/2l1/2T = oP ∗ (1) ,

where J3.1,T ≡ E∗ T−h
t=1 ẑtẑt δ̂ − δ w∗t+h

2

= OP (lT ). Indeed,

J3.1,T = δ − δ̂

T−h

s=1

T−h

t=1

ẑtẑtẑsẑsE
∗ w∗t+hw

∗
s+h δ − δ̂ ≤ 2T δ − δ̂

2
T−h

τ=0

kdwb
τ

lT
T−1

T−h

t=1

zt
4 ,

which is OP (lT ) . Similarly, we can show that J4,T = OP ∗ T−1/4l1/2T = oP ∗ (1) . It remains to

show that J1,T →d∗ N (0, I) in probability. For this purpose, we use Theorem 3.1 of Shao (2010)
by verifying his assumptions. In particular, as {ztεt+h} are strong mixing of size − 3r

r−2 for some

r > 2 with E ztεt+h
2r < C < ∞, we have that ∞

j=1 α (j)
r

r+2 < ∞ verifying his Assumption

3.1. We also have that ∞
j=1 j

2α (j)
r−2
r <∞ and E ztεt+h

2r < C <∞, thus verifying Shao’s
Assumption 3.2 (by Lemma 1 of Andrews (1991)). Finally, we verify Condition E* of GP (2014).
Following Lemma 2, we can write Ω∗ = B1T +B2T +B3T +B2T +B4T +B5T +B3T +B5T +B6T ,
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with

B1T = T−1E∗
T−h

t=1

ẑtεt+hw
∗
t+h

T−h

s=1

ẑsεs+hw
∗
s+h ,

B2T = T−1E∗
T−h

t=1

ẑtεt+hw
∗
t+h

T−h

s=1

ẑsẑs δ − δ̂ w∗s+h

B3T = T−1E∗

⎡⎣ T−h

t=1

ẑtεt+hw
∗
t+h

T−h

s=1

ẑs HFs − F̃s H−1 αw∗s+h

⎤⎦ ,
B4T = T−1E∗

⎡⎣ T−h

t=1

ẑtẑt δ − δ̂ w∗t+h

T−h

s=1

ẑsẑs δ − δ̂ w∗s+h

⎤⎦ ,
B5T = T−1E∗

⎡⎣ T−h

t=1

ẑtẑt δ − δ̂ w∗t+h

T−h

s=1

ẑs HFs − F̃s H−1 αw∗s+h

⎤⎦
and

B6T = T
−1E∗

⎡⎣ T−h

t=1

ẑt HFt − F̃t H−1 αw∗t+h

T−h

s=1

ẑs HFs − F̃s H−1 αw∗s+h

⎤⎦ .
We show that each of BiT , i = 2, 3, ..., 6 are oP (1) and that B1T →P Φ0ΩΦ0. Starting with
B2T ,

B2T ≤ T−1
⎛⎝E∗ T−h

t=1

ẑtεt+hw
∗
t+h

2
⎞⎠1/2 E∗

T−h

s=1

ẑsẑs δ − δ̂ w∗s+h

1/2

≡ T−1 (B2.1,T )1/2 (J3.1,T )1/2 ,

where J3.1,T = OP (lT ), as shown above, and

B2.1,T = E∗
T−h

t=1

Φztεt+hw
∗
t+h +

T−h

t=1

(ẑt − Φzt) εt+hw
∗
t+h

2

≤ 2E∗
T−h

t=1

Φztεt+hw
∗
t+h

2

+ 2E∗
T−h

t=1

(ẑt − Φzt) εt+hw
∗
t+h

2

,

where we can show that the first term is OP (T ) and the second term is identical to J2.1,T =

OP T 1/2lT . Hence, B2.1,T = OP (T ) given that lT = o
√
T by assumption. This implies that

B2T = OP T−1/2l1/2T = oP (1). For B3T , by Cauchy-Schwarz inequality,

B3T ≤ T−1 (B2.1,T )1/2 (B3.1,T )1/2 = Op l2T/T
1/4

,

where B2.1,T = OP (T ) and B3.1,T ≡ E∗ T−h
s=1 ẑs HFs − F̃s (H−1) αw∗s+h

2

= OP T 1/2lT ,

as can be shown using similar arguments as above. For B4T , note that B4T ≤ T−1J3.1,T =
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OP (T
−1lT ) = op (1) . ForB5T , by Cauchy-Schwarz inequality, we have that B5T ≤ T−1 (J3.1,T )1/2 (B3.1,T )1/2

OP (T
−1)OP l

1/2
T OP T 1/4l

1/2
T = OP T−3/4lT = oP (1) . For B6T , note that B6T ≤

T−1B3.1,T = OP T−1/2lT = oP (1) . Finally, note that

B1T = T
−1ΦE∗

T−h

t=1

ztεt+hw
∗
t+h

T−h

s=1

ztεt+hw
∗
t+h Φ +B1.2,T ,

where B1.2,T ≤ T−1J2.1,T = OP T−1/2lT = oP (1) . The first term converges in probability
to Φ0ΩΦ0 given that Φ→P Φ0 and

T−1E∗
T−h

t=1

ztεt+hw
∗
t+h

T−h

s=1

ztεt+hw
∗
t+h = T−1

T−h

t=1

T−h

s=1

ztzsεt+hεs+hkdwb
s− t
lT

.

Proof of Lemma 5. The proof follows closely that of Lemma 2 and therefore we omit the details.
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.2 Proofs of results in Chapter 2

The proof of Theorem 6 requires the following auxiliary result, which is the bootstrap
analogue of Lemma A.2 of Bai (2003). It is based on the following identity that holds for each
t :

F̃ ∗t −H∗F̃t = Ṽ ∗−1

⎛⎜⎜⎜⎜⎝ 1T
T

s=1

F̃ ∗s γ
∗
st

≡A∗1t

+
1

T

T

s=1

F̃ ∗s ζ
∗
st

≡A∗2t

+
1

T

T

s=1

F̃ ∗s η
∗
st

≡A∗3t

+
1

T

T

s=1

F̃ ∗s ξ
∗
st

≡A∗4t

⎞⎟⎟⎟⎟⎠ ,
where

γ∗st = E∗
1

N

N

i=1

e∗ise
∗
it , ζ∗st =

1

N

N

i=1

(e∗ise
∗
it − E∗ (e∗ise∗it)) ,

η∗st =
1

N

N

i=1

λ̃iF̃se
∗
it = F̃s

Λ̃ e∗t
N

and ξ∗st =
1

N

N

i=1

λ̃iF̃te
∗
is = η∗ts.

Lemma 16. Assume Assumptions 1 and 2 hold. Under Condition A, we have that for each t,
in probability, as N, T →∞,
(a) T−1 T

s=1 F̃
∗
s γ

∗
st = OP ∗

1√
T δNT

+OP ∗
1

T 3/4
;

(b) T−1 T
s=1 F̃

∗
s ζ

∗
st = OP ∗

1√
NδNT

;

(c) T−1 T
s=1 F̃

∗
s η

∗
st = OP ∗

1√
N
;

(d) T−1 T
s=1 F̃

∗
s ξ

∗
st = OP ∗

1√
NδNT

.

Remark 3. The term OP ∗ 1/T
3/4 that appears in (a) is of a larger order of magnitude than

the corresponding term in Bai (2003, Lemma A.2(i)), which is OP (1/T ). The reason why we
obtain this larger term is that we rely on Bonferroni’s inequality and Chebyshev’s inequality
to bound max1≤s≤T Fs = OP T 1/4 using the fourth order moment assumption on Fs (cf.
Assumption 1(a)). In general, if E Fs

q ≤ M for all s, then max1≤s≤T Fs = OP T 1/q and
we will obtain a term of order OP ∗ 1/T 1−1/q .

Proof of Lemma 16. The proof follows closely that of Lemma A.2 of Bai (2003). The only
exception is (a), where an additional O 1

T 3/4
term appears. In particular, we write

T−1
T

s=1

F̃ ∗s γ
∗
st = T

−1
T

s=1

F̃ ∗s −H∗F̃s γ∗st +H
∗T−1

T

s=1

F̃sγ
∗
st = a

∗
t + b

∗
t .

We use Cauchy-Schwartz and Condition A.1 to bound a∗t as follows

a∗t ≤ T−1
T

s=1

F̃ ∗s −H∗F̃s
2

1/2

T−1
T

s=1

|γ∗st|2
1/2

= OP ∗
1

δNT
OP

1√
T

= OP ∗
1

δNT
√
T

,
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where T−1 T
s=1 F̃ ∗s −H∗F̃s

2

= OP ∗ δ−2NT by Lemma 3.1 of Gonçalves and Perron (2014)

(note that this lemma only requires Conditions A*(b), A*(c), and B*(d), which correspond to
our Condition A.1, A.2 and A.5). For b∗t , we have that (ignoring H∗, which is OP ∗ (1)),

b∗t = T
−1

T

s=1

F̃sγ
∗
st = T

−1
T

s=1

F̃s −HFs γ∗st +HT
−1

T

s=1

Fsγ
∗
st = b

∗
1t + b

∗
2t,

where b∗1t = OP 1/δNT
√
T using the fact that T−1 T

s=1 F̃s −HFs
2

= OP δ−2NT under

Assumptions 1 and 2 and the fact that T−1 T
s=1 |γ∗st|2 = OP (1/T ) for each t by Condition

A.1. For b∗2t, note that (ignoring H = OP (1)),

b∗2t ≤ max
s

Fs

OP (T 1/4)

T−1
T

s=1

|γ∗st|

OP ( 1T )

= OP
1

T 3/4
,

where we have used the fact that E Fs
4 ≤ M for all s (Assumption 1) to bound maxs Fs .

Indeed, by Bonferroni’s inequality and Chebyshev’s inequality, we have that

P T−1/4max
s

Fs > M ≤
T

s=1

P Fs > T 1/4M ≤
T

s=1

E Fs
4

M4T
≤ 1

M3
→ 0

for M sufficiently large. For (b), we follow exactly the proof of Bai (2003) and use Condition
A.2 to bound T−1 T

s=1 ζ
∗2
st = OP ∗

1
N

for each t ; similarly, we use Condition A.3 to bound
1
T

T
s=1 F̃sζ

∗
st for each t. For (c), we bound T

−1 T
s=1 F̃sη

∗
st = N

−1H∗ N
i=1 λ̃ie

∗
it = OP ∗ 1/

√
N

by using Condition A.6. This same condition is used to bound T−1 T
s=1 η

∗2
st = OP ∗ (1/N) for

each t. Finally, for part (d), we use Condition A.4 to bound T−1 T
s=1 F̃sξ

∗
st = OP ∗

1√
NT

for

each t and we use Condition A.5 to bound T−1 T
s=1 ξ

∗2
st = OP ∗ (1/N) for each t.

Proof of Theorem 6.By Lemma 16, it follows that the third term in
√
N F̃ ∗t −H∗F̃t is

the dominant one (it is OP ∗ (1)) ; the first term is OP ∗
√
N√

T δNT
+ OP

√
N

T 3/4
= OP ∗

√
N

T 3/4
=

oP ∗ (1) if
√
N/T 3/4 → 0 whereas the second and the fourth terms are OP ∗ (1/δNT ) = oP ∗ (1) as

N, T →∞. Thus, we have that
√
N F̃ ∗t −H∗F̃t = Ṽ ∗−1

1

T

T

s=1

F̃ ∗s
1√
N

N

i=1

λ̃iF̃se
∗
it + oP ∗ (1)

= Ṽ ∗−1
F̃ ∗ F̃
T

Λ̃ Λ̃

N

Λ̃ Λ̃

N

−1
1√
N

N

i=1

λ̃ie
∗
it + oP ∗ (1)

= H∗Ṽ −1Γ∗1/2t Γ
∗−1/2
t

1√
N

N

i=1

λ̃ie
∗
it

→d∗N(0,Ir) by Condition A.6

+ oP ∗ (1) , (6)
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given the definition ofH∗ and the fact that Ṽ = Λ̃ Λ̃
N
. Since det (Γ∗t ) > > 0 for allN and some ,

Γ∗−1t exists and we can define Γ∗−1/2t = Γ
∗1/2
t

−1
where Γ∗1/2t Γ

∗1/2
t = Γ∗t . Let Π

∗−1/2
t = Γ

∗−1/2
t Ṽ

and note that Π∗−1/2t is symmetric and it is such that Π
∗−1/2
t Π

∗−1/2
t = Ṽ Γ∗−1t Ṽ = Π∗−1t .

The result follows by multiplying (6) by Π
∗−1/2
t H∗−1 and using Condition A.6.

Proof of Corollary 7. Condition B and the fact that Ṽ →P V under our assumptions
imply that Π∗t →P Πt ≡ V −1QΓtQ V −1. This suffices to show the result.
Proof of Theorem 8. Using the decomposition (2.19) and the fact that

ẑ∗T = Φ∗ẑT +
F̃ ∗T −H∗F̃T

0
,

where Φ∗ = diag (H∗, Iq), it follows that

ŷ∗T+1|T − y∗T+1|T =
1√
T
ẑT
√
T Φ∗ δ̂

∗ − δ̂ +
1√
N
α̂
√
N H∗−1F̃ ∗T − F̃T + r∗T ,

where the remainder is

r∗T =
1√
T

F̃ ∗T −H∗F̃T
√
T α̂∗ −H∗−1 α̂ = OP ∗

1√
TN

.

First, we argue that
ŷ∗T+1|T − y∗T+1|T

B∗T
→d∗ N (0, 1) , (7)

where B∗T is the asymptotic variance of ŷ
∗
T+1|T − y∗T+1|T , i.e. B∗T = aV ar∗ ŷ∗T+1|T − y∗T+1|T =

1
T
ẑTΣδẑT +

1
N
α̂ ΠT α̂. To show (7), we follow the arguments of Bai and Ng (2006, proof of

their Theorem 3) and show that (1) Z∗1T =
√
T Φ∗ δ̂

∗ − δ̂ →d∗ N (−cΔδ,Σδ) ; (2) Z∗2T =√
N H∗−1F̃ ∗T − F̃T →d∗ N (0,ΠT ) ; (3) Z∗1T and Z

∗
2T are asymptotically independent (condi-

tional on the original sample). Condition (1) follows from Gonçalves and Perron (2014) under
Assumptions 1-6 ; (2) follows from Corollary 7 provided

√
N/T 11/12 → 0 and conditions A

and B hold for the wild bootstrap (which we verify next) ; (3) holds because we generate e∗t
independently of ε∗t+1.
Proof of Condition A for the wild bootstrap. We verify for t = T . We have that
T
s=1 |γ∗sT |2 = 1

N
N
i=1 ẽ

2
iT

2

. Thus, it suffices to show that 1
N

N
i=1 ẽ

2
iT = OP (1). This follows

by using the decomposition

ẽit = eit − λiH
−1 F̃t −HFt − λ̃i −H−1 λi F̃t,

which implies that

1

N

N

i=1

|ẽit|2 ≤ 3
1

N

N

i=1

|eit|2 + 3 1
N

N

i=1

λi
2 H−1 2

F̃T −HFT
2

+3
1

N

N

i=1

λ̃i −H−1 λi
2

F̃T
2

.
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The first term is OP (1) given that E |eit|2 = O (1) ; the second term is OP (1) since E λi
2 =

O (1) and given that F̃T −HFT
2

= OP (1/N) = oP (1) ; and the third term is OP (1) given

Lemma C.1.(ii) of Gonçalves and Perron (2014) and the fact that F̃T
2

= OP (1) . Next, we

verify A.2. For t = T , following the proof of Theorem 4.1 in Gonçalves and Perron (2014)
(condition A*(c)), we have that

1

T

T

s=1

E∗
1√
N

N

i=1

(e∗iT e
∗
is − E∗ (e∗iT e∗is))

2

=
1

T

T

s=1

1

N

N

i=1

ẽ2iT ẽ
2
isV ar (ηiTηis)

≤η̄

≤ η̄
1

N

N

i=1

ẽ2iT
1

T

T

s=1

ẽ2is

≤ η̄
1

N

N

i=1

ẽ4iT

1/2

1

NT

N

i=1

T

s=1

ẽ4is

1/2

= OP (1) , (8)

where the first factor in (8) can be bounded by an argument similar to that used above to
bound 1

N
N
i=1 ẽ

2
iT , and the second factor can be bounded by Lemma C.1 (iii) of Gonçalves

and Perron (2014). A.3 follows by an argument similar to that used by Gonçalves and Perron
(2014) to verify Condition B*(b). In particular,

E∗
1√
TN

T

s=1

N

i=1

F̃s (e
∗
ise

∗
iT − E∗ (e∗ise∗iT ))

2

=
1

T

T

s=1

F̃sF̃s
1

N

N

i=1

ẽ2iT ẽ
2
isV ar

∗ (ηiTηis) ≤ η̄
1

N

N

i=1

ẽ2iT
1

T

T

s=1

F̃sF̃sẽ
2
is

≤ η̄
1

N

N

i=1

ẽ4iT

1/2

1

T

T

s=1

F̃s
4 1

N

1

T

N

i=1

T

s=1

ẽ4is

1/2

= OP (1) ,

under our assumptions. Conditions A.4 and A.5 correspond to Gonçalves and Perron’s (2014)
Conditions B*(c) and B*(d), respectively. Finally, we prove Condition A.6 for t = T. Using the
fact that e∗iT = ẽiTηiT , where ηiT ∼ i.i.d. (0, 1) across i, note that

Γ∗T = V ar
∗ 1√

N

N

i=1

λ̃ie
∗
iT =

1

N

N

i=1

λ̃iλ̃iẽ
2
iT →P QΓTQ ,

by Theorem 6 of Bai (2003), where ΓT ≡ limN→∞ V ar 1√
N

N
i=1 λieiT > 0 by assumption.

Thus, Γ∗T is uniformly positive definite. We now need to verify that

1√
N

N

i=1

Γ
∗−1/2
T λ̃ie

∗
iT =

1√
N

N

i=1

Γ
∗−1/2
T λ̃iẽiTηiT

=ω∗iT

→d∗ N (0, 1) ,

in probability, for any such that = 1. Since ω∗iT is an heterogeneous array of independent
random variables (given that ηit is i.i.d.), we apply a CLT for heterogeneous independent arrays.
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Note that E∗ (ω∗iT ) = 0 and

V ar∗
1√
N

N

i=1

ω∗iT = (Γ∗T )
−1/2 V ar∗

1√
N

N

i=1

λ̃iẽiTηiT (Γ∗T )
−1/2

= (Γ∗T )
−1/2 1

N

N

i=1

λ̃iλ̃iẽ
2
iT (Γ∗T )

−1/2 = = 1.

Thus, it suffices to verify Lyapunov’s condition, i.e. for some r > 1, 1
Nr

N
i=1E

∗ |ω∗iT |2r →P 0.
We have that

1

N r

N

i=1

E∗ |ω∗iT |2r ≤ 1

N r−1
2r (Γ∗T )

−1/2 2r 1

N

N

i=1

λ̃i
2r

|ẽiT |2r E∗ |ηiT |2r
≤M<∞

≤ C
1

N r−1 (Γ∗T )
−1/2 2r 1

N

N

i=1

λ̃i
4r

1/2

1

N

N

i=1

|ẽiT |4r
1/2

= OP
1

N r−1 = oP (1)

Proof of Condition B for the wild bootstrap. Γ∗T = 1
N

N
i=1 λ̃iλ̃iẽ

2
iT →P QΓTQ , by

Theorem 6 of Bai (2003).
The result for the studentized statistic (where we replace B∗T with an estimate B̂

∗
T ) then

follows by showing that ẑ∗T Σ̂
∗
δ ẑ
∗
T− ẑTΣδẑT →P ∗ 0, and α̂∗ Σ̂∗

F̃T
α̂∗−α̂ Σ̂F̃T α̂→P ∗ 0, in probability.

This can be shown using the arguments in Bai and Ng (2006, Theorems 3.1) and Bai (2003,
Theorem 6).
Proof of Lemma 9. Recall that Fε (x) = P (εt ≤ x) and define the following empirical

distribution functions,

FT,ε̂−ε̃ (x) =
1

T − 1
T−1

t=1

1 ε̂t+1 − ε̃ ≤ x and FT,ε (x) =
1

T − 1
T−1

t=1

1 {εt+1 ≤ x} ,

where ε̂ = 1
T−1

T−1
t=1 ε̂t+1. Note that FT,ε∗ (x) = FT,ε̂−ε̃ (x). It follows that

d2 FT,ε̂−ε̃, Fε ≤ d2 FT,ε̂−ε̃, FT,ε + d2 (FT,ε, Fε) ,

where d2 (FT,ε, Fε) = oa.s. (1) by Lemma 8.4 of Bickel and Freedman (1981). Thus, it suffices
to show that d2 FT,ε̂−ε̃, FT,ε = oP (1). Let I be distributed uniformly on {1, . . . , T − 1} and
define X1 = ε̂I+1 − ε̂ and Y1 = εI+1. We have that

d2 FT,ε̂−ε̃, FT,ε
2 ≤ E (X1 − Y1)2 = EI ε̂I+1 − ε̂− εI+1

2
=

1

T − 1
T−1

t=1

ε̂t+1 − ε̂− εt+1
2

=
1

T − 1
T−1

t=1

(ε̂t+1 − εt+1)
2 − 2 1

T − 1
T−1

t=1

(ε̂t+1 − εt+1) ε̂+ ε̂
2 ≡ A1 + A2 + A3.

We can write
ε̂t+1 − εt+1 = − F̃t −HFt α̂− (Φzt) δ̂ − δ ,
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where Φ = diag (H, Iq). This implies that

A1 ≤ 2 1

T − 1
T−1

t=1

F̃t −HFt
2

α̂ 2+2
1

T − 1
T−1

t=1

Φzt
2 δ̂ − δ

2

= OP
1

δ2NT
+OP

1

T
= oP (1) .

Similarly,

ε̂ =
1

T − 1
T−1

t=1

ε̂t+1 =
1

T − 1
T−1

t=1

(ε̂t+1 − εt+1) +
1

T − 1
T−1

t=1

εt+1 = OP
1

δNT
+ oP (1) ,

where the first term is bounded by an argument similar to that used to bound A1 (via the
Cauchy-Schwartz inequality). This implies that A2 and A3 are also oP (1).
Proof of Corollary 10. Lemma 9 implies that s∗T+1 →d∗ 1 − Fε (−xσε), in probability.

Since sT+1 →d 1 − Fε (−xσε) and Fε is everywhere continuous under Assumption 7, Polya’s
Theorem implies the result.
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.3 Proofs of results in Chapter 3

Lemma 17. Under Assumption A1-A3,

1

T − 1μ P (m)μ = μ P (m)μ+Op
1

C2NT

and
1

T − 1ε P (m) ε = ε P (m) ε+Op
1

C2NT
.

Proof of Lemma 17. We have the following decomposition

1

T − 1μ P (m)μ = δ
1

T − 1Z
0 Z (m)

1

T − 1Z (m) Z (m)
−1

1

T − 1Z (m) Z
0 δ

= δ
1

T − 1Z
0 Z (m)

1

T − 1Z (m) Z (m)
−1

1

T − 1Z (m) Z
0 δ

+δ
1

T − 1Z
0 Z (m)

1

T − 1Z (m) Z (m)
−1
− 1

T − 1Z (m) Z (m)
−1

× 1

T − 1Z (m) Z
0 δ

=
1

T − 1μ P (m)μ+ L1T + L2T + L3T

where

L1T = δ
1

T − 1Z
0 Z (m)− Z (m) 1

T − 1Z (m) Z (m)
−1

1

T − 1 Z (m)− Z (m) Z0 δ,

L2T = 2δ
1

T − 1Z
0 Z (m)

1

T − 1Z (m) Z (m)
−1

1

T − 1 Z (m)− Z (m) Z0 δ

and

L3T = δ
1

T − 1Z
0 Z (m)

1

T − 1Z (m) Z (m)
−1
− 1

T − 1Z (m) Z (m)
−1

1

T − 1Z (m) Z
0 δ.

To find the order of L1T , it will be sufficient to study 1
T−1Z F (m)− F (m) = 1

T−1Z Z (m)− Z (m)
as 1

T−1Z (m) Z (m)
−1

= Op (1) . By Gonçalves and Perron (2014), 1
T−1F F − FH =

Op
1

C2NT
and 1

T−1W F − FH = Op
1

C2NT
, thus 1

T−1Z F (m)− F (m) = Op
1

C2NT
.

Indeed, from their proof of Lemma A.2b,

1

T − 1F F − FH = (bf1 + bf2 + bf3 + bf4)V
−1

where bf1 = Op 1
CNTT 1/2

, bf2 = Op
1

N1/2T 1/2
, bf3 = Op

1
N1/2T 1/2

and bf4 = 1
N
QΓQ V −1 +

Op
1

N1/2T 1/2
. Hence, 1

T−1F F − FH = Op
1

C2NT
, similarly 1

T−1W F − FH = Op
1

C2NT
,
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thus L1T = Op
1

C4NT
. Since 1

T−1Z
0 Z (m) = Op (1) , similarly, L2T = Op

1
C2NT

. To finish,

L3T = Op
1

C2NT
as

1

T − 1Z (m) Z (m)
−1
− 1

T − 1Z (m) Z (m)
−1
= Op

1

C2NT
.

Indeed,

1

T − 1Z (m) Z (m)
−1
− 1

T − 1Z (m) Z (m)
−1

=
1

T − 1Z (m) Z (m)
−1

1

T − 1Z (m) Z (m)−
1

T − 1Z (m) Z (m)
1

T − 1Z (m) Z (m)
−1

=
1

T − 1Z (m) Z (m)
−1

1

T − 1Z (m) Z (m)− Z (m) +
1

T − 1 Z (m)− Z (m) Z (m)

× 1

T − 1Z (m) Z (m)
−1

since 1
T−1 Z (m)− Z (m) Z (m) = Op

1
C2NT

and 1
T−1Z (m) Z (m)− Z (m) = Op

1
C2NT

.

Proof of Lemma 11. To prove Lemma 11, we will first need to show that

max
1≤t≤T−1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m) − max

1≤t≤T−1
Zt (m) (Z (m)Z (m))

−1
Zt (m) = op (1) .

We have the following decomposition

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m)

=
1

T − 1 Ẑt (m)
1

T − 1 Ẑ (m) Ẑ (m)
−1
− 1

T − 1Z (m)Z (m)
−1

Ẑt (m)

+ Ẑt (m)− Zt (m) 1

T − 1Z (m)Z (m)
−1

Ẑt (m)− Zt (m)

+
2

T − 1Zt (m)
1

T − 1Z (m)Z (m)
−1

Ẑt (m)− Zt (m)

+Zt (m) (Z (m)Z (m))
−1
Zt (m) .
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Hence

max
1≤t≤T−1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m)

≤ 1

T − 1 max
1≤t≤T−1

Ẑt (m)
2 1

T − 1Ẑ (m) Ẑ (m)
−1
− 1

T − 1Z (m)Z (m)
−1

+
1

T − 1 max
1≤t≤T−1

Ẑt (m)− Zt (m)
2 1

T − 1Z (m)Z (m)
−1

+
2

T − 1 max
1≤t≤T−1

Zt (m)
1

T − 1Z (m)Z (m)
−1

max
1≤t≤T−1

Ẑt (m)− Zt (m)

+ max
1≤t≤T−1

Zt (m) (Z (m)Z (m))
−1
Zt (m) .

Thus

max
1≤t≤T−1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m) − max

1≤t≤T−1
Zt (m) (Z (m)Z (m))

−1
Zt (m) ≤ A1+A2+A3

where

A1 =
1

T − 1 max
1≤t≤T−1

Ẑt (m)
2 1

T − 1 Ẑ (m) Ẑ (m)
−1
− 1

T − 1Z (m)Z (m)
−1

,

A2 =
1

T − 1 max
1≤t≤T−1

Ẑt (m)− Zt (m)
2 1

T − 1Z (m)Z (m)
−1

and

A3 =
2

T − 1 max
1≤t≤T−1

Zt (m)
1

T − 1Z (m)Z (m)
−1

max
1≤t≤T−1

Ẑt (m)− Zt (m) .

Since
1

T − 1 max
1≤t≤T−1

Ẑt (m)
2

≤ 1

T − 1
T−1

t=1

Ẑt (m)
2

= Op (1)

and
1

T − 1Ẑ (m) Ẑ (m)
−1
− 1

T − 1Z (m)Z (m)
−1
= Op

1

C2NT
,

A1 = Op
1

C2NT
. Because,

1

T − 1 max
1≤t≤T−1

Ẑt (m)− Zt (m)
2

≤ 1

T − 1
T−1

t=1

Ẑt (m)− Zt (m)
2

= Op
1

C2NT
,

A2 = Op
1

C2NT
. From Proposition 2 of Bai (2003),

max
1≤t≤T−1

Ẑt (m)− Zt (m) = Op
1

T 1/2
+Op

T 1/2

N1/2
,
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it follows that A3 = Op 1
T
+Op

1
N1/2 as max1≤t≤T−1 Ẑt (m) = Op T

1/2 since

1

T − 1 max
1≤t≤T−1

Ẑt (m)
2

= Op (1)

. We then deduce

max
1≤t≤T−1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m) − max

1≤t≤T−1
Zt (m) (Z (m)Z (m))

−1
Zt (m) = op (1)

and

max
1≤t≤T−1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m) = op (1)

as by A4 (b)

max
1≤t≤T−1

Zt (m) (Z (m)Z (m))
−1
Zt (m) = op (1)

The remaining part of the proof goes similarly as the proof of (3.4) and (3.4) of Shao (1993).
Firstly,

CV1 (m) =
1

T − 1
T−1

t=1

1− Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m)

−1
ε̂2t+1.

By Taylor expansion,

1− Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m)

−1
= 1 + 2Ẑt (m) Ẑ (m) Ẑ (m)

−1
Ẑt (m)

+Op Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m)

2

.

Hence
CV1 (m) = A4 + 2A5 + op (A5)

where

A4 =
1

T − 1
T−1

t=1

ε̂2t+1 and A5 =
1

T − 1
T−1

t=1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m) ε̂

2
t+1

since

max
1≤t≤T−1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m) = op (1) .

Given the decomposition ε̂ (m) = ε + μ − μ (m) where μ = F 0α + Wβ and μ (m) =

P (m)μ+ P (m) ε,

A4 =
1

T − 1ε ε+ LT (m)− 2r1T (m)
with

LT (m) =
1

T − 1μ I − P (m) μ+
1

T − 1ε P (m) ε.
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and
r1T (m) =

1

T − 1 (μ (m)− μ) ε =
1

T − 1ε P (m) ε−
1

T − 1μ I − P (m) ε.

Hence,

A4 =
1

T − 1ε ε−
1

T − 1ε P (m) ε+
1

T − 1μ I − P (m) μ+ 2
1

T − 1μ I − P (m) ε.

Under our Assumption A1 − A3,
1

T − 1ε P (m) ε =
1

T − 1ε P (m) ε+Op
1

C2NT
,

1

T − 1μ I − P (m) μ = μ (I − P (m))μ+Op 1

C2NT
,

1

T − 1μ I − P (m) ε =
1

T − 1μ (I − P (m)) ε+Op
1

C2NT
.

It then follows that

A4 =
1

T − 1ε ε−
1

T − 1ε P (m) ε+
1

T − 1μ (I − P (m))μ+2
1

T − 1μ (I − P (m)) ε+Op
1

C2NT
.

(1) For incorrect model,

A4 =
1

T − 1ε ε+
1

T − 1μ (I − P (m))μ+ op (1)

since 1
T−1ε P (m) ε = op (1) and

1
T−1μ (I − P (m)) ε = op (1) . We also have that

A5 ≤ max
1≤t≤T−1

Ẑt (m) Ẑ (m) Ẑ (m)
−1
Ẑt (m)

1

T − 1
T−1

t=1

ε̂2t+1 (m) .

Hence, A5 = op (1) because the first term in the right hand side is op (1) given Assumption
A4 (b) and the second is equal to A2 which is Op (1). Thus, for m ∈M2

CV1 (m) =
1

T − 1ε ε+
1

T − 1μ (I − P (m))μ+ op (1)

= σ2 +
1

T − 1μ (I − P (m))μ+ op (1) .

(2) Because μ (I − P (m))μ = 0, μ (I − P (m)) ε = 0 for correct model,

A4 =
1

T − 1ε ε−
1

T − 1ε P (m) ε+Op
1

C2NT
.

More specifically, A5 =
(r(m)+q)
T−1 σ2 + op

1
T−1 for models inM2. Indeed, because

A5 =
1

T − 1trace
1

T − 1Ẑ (m) Ẑ (m)
−1

1

T − 1
T−1

t=1

Ẑt (m) Ẑt (m) ε̂
2
t+1 (m)
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and 1
T−1Ẑ (m) Ẑ (m) = ΣZZ (m) + op (1), it follows that

A5 =
1

T − 1trace ΣZZ (m)
−1 + op (1)

1

T − 1
T−1

t=1

Ẑt (m) Ẑt (m) ε̂
2
t+1 (m)

=
1

T − 1trace ΣZZ (m)
−1 + op (1) σ2ΣZZ (m) + op (1) =

(r (m) + q)

T − 1 σ2 + op
1

T − 1 .

In consequence, for m ∈M2

CV1 (m) =
1

T − 1ε ε+ 2
(r (m) + q)

T − 1 σ2 − 1

T − 1ε P (m) ε+Op
1

C2NT
+ op

1

C2NT

=
1

T − 1ε ε+ 2
(r (m) + q)

T − 1 σ2 − 1

T − 1ε P (m) ε+Op
1

C2NT
.

Because, in the usual case where the factors are observed, CV1 (m) = 1
T−1ε ε + 2

(r(m)+q)
T−1 σ2 −

1
T−1ε P (m) ε + op

1
T

for m ∈ M2 (see Shao, 1993). In consequence, we denote VT (m) =

CV1 (m) − 1
T−1ε ε+ 2

(r(m)+q)
T−1 σ2 − 1

T−1ε P (m) ε = Op
1

C2NT
the additional terms due the

factor estimation when m ∈M2.

Lemma 18. Under Assumptions A1-A4, as b, T, N →∞,
1

b
s ∈ R t ∈ sc

Ft −HFt
4

= Op
κ

T
+Op

κ

N2
.

Démonstration. The proof uses the following identity

Ft −HFt = V −1 (A1t + A2t + A3t + A4t)

A1t =
1

T

T

u=1

Fuγut, A2t =
1

T

T

s=1

Fuζut, A3t =
1

T

T

s=1

Fuηut, A4t =
1

T

T

u=1

Fuξut

where γut = E
1
N

N
i=1 eiueit , ζut =

1
N

N
i=1 eiueit − E 1

N
N
i=1 eiueit , ηut =

1
N

N
i=1 λiFueit,

and ξut =
1
N

N
i=1 λiFteiu. By the c-r inequality,

1

b
s ∈ R t ∈ sc

Ft −HFt
4

≤ 43 V −1
4 1

b
s ∈ R t ∈ sc

A1t
4 +

t ∈ sc
A2t

4 +
t ∈ sc

A3t
4 +

t ∈ sc
A4t

4 .

Using the Cauchy-Schwartz inequality, we have

1

b
s ∈ R t∈ sc

A1t
4 =

1

b
s ∈ R t ∈ sc

1

T

T

u=1

Fuγut

4

≤ κ

T

1

T

T

s=1

Fu
2

2

1

b
s∈ R

1√
κ · T t ∈ sc

T

u=1

γ2ut

2

In addition, 1
T

T
s=1 Fs

2

= Op (1) and 1√
T ·κ t ∈ sc

T
u=1 γ

2
ut ≤ C for any s ∈ R (because

1√
T ·κ t ∈ sc

T
u=1 |γut| ≤ C easily using the proof of Lemma 1 (i) of Bai and Ng (2002)). In
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consequence, 1
b s ∈ R t ∈ sc A1t

2 = Op
√
κ√
T
. By repeated application of Cauchy-Schwartz

inequality,

1

b
s ∈ R t ∈ sc

A2t
2 =

1

b
s ∈ R

1

T 2
t ∈ sc

T

u=1

Fuζut

2

≤ 1

T 2

T

s=1

T

u=1

FuFu1
2 1

T 2

T

s=1

T

u=1 t ∈ sc
ζ2stζ

2
ut

1/2

.

Hence,

1

b
s ∈ R

T

t=1

A2t
4 ≤ 1

T

T

u1=1

Fu1
2
2

1

b
s ∈ R

1

T 2

T

u1=1

T

u=1 t ∈ sc
ζ2u1tζ

2
ut ,

where 1
T

T
s=1 Fs

2

= Op (1) andE 1
b s ∈ R

1
T 2

T
u1=1

T
u=1 t ∈ sc ζ

2
u1t
ζ2ut = O

√
κ
N

2

.

Indeed,

E
1

b
s ∈ R

1

T 2

T

u1=1

T

u=1 t ∈ sc
ζ2u1tζ

2
ut ≤ 1

b
s ∈ R

1

T 2

T

u1=1

T

u=1 t ∈ sc
E ζ4u1t

1
2 E ζ4ut

1
2

≤ κ max
u,t

E ζ4ut = O
κ

N2
,

since maxu,tE ζ4ut = O
1
N2 by Assumption A1.(e) Thus, t ∈ sc A2t

2 = Op
κ
N2 . Thirdly,

as 1
b·κ s ∈ R t ∈ sc

1
N1/2Λet

4
= Op (1) ,

1

b
s ∈ R t ∈ sc

A3t
4 =

1

b
s ∈ R t ∈ sc

1

T

1

N

T

u=1

FuFuΛet

4

≤ 1

b
s ∈ R t ∈ sc

1

N
Λet

4
1

T

T

u=1

FuFu

4

,

implies that

1

b
s ∈ R t ∈ sc

A3t
4 ≤ κ

N2

⎡⎣1
b
s ∈ R

1

Tc t ∈ sc

1√
N

N

i=1

λiet

4
⎤⎦ 1

T

T

u=1

Fu
2

2

1

T

T

u=1

Fu
2

2

= Op
κ

N2
,

since 1
T

T
s=1 Fs

2

= Op (1) ,
1
T

T
s=1 Fs

2 = Op (1) . The proof that 1b s ∈ R t ∈ sc A4t
4 =

Op
κ
N2 uses 1

T
T
u=1 Fu

2

= Op (1) ,
1
b·κ s ∈ R t ∈ sc Ft

4 = Op (1) ,
1
T

T
u=1

1√
N
Λ eu

2

=

Op (1) and the following bound

1

b
s ∈ R t ∈ sc

A4t
4 ≤ 1

b
s ∈ R t ∈ sc

Ft
4 1

T

T

u=1

Fu
1

N
Λ eu

4

≤ κ

N2

1

b · κ
s ∈ R t ∈ sc

Ft
4 1

T

T

u=1

Fu
2

2

1

T

T

u=1

1√
N

Λ eu

2
2

.

Finally, 1
b s ∈ R t ∈ sc Ft −HFt

4

= Op
κ
T
+Op

κ
N2 .
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Proof of Theorem 12. We have the following decomposition

CVd (m) =
1

d× b
s∈R

ys − ys (m) 2

=
1

d× b
s∈R

(ys − Psc (m) ysc) + Psc (m)− Psc (m) ysc
2

= B1 +B2 +B3

where

B1 =
1

d× b
s∈R

Psc (m)− Psc (m) ysc
2

B2 = 2
1

d× b
s∈R

(ys − Psc (m) ysc) Psc (m)− Psc (m) ysc

and
B3 =

1

d× b
s∈R

(ys − Psc (m) ysc) 2

with
Psc (m) = Zs (m) Zsc (m) Zsc (m)

−1
Zsc (m)

and
Psc (m) = Ẑs (m) Ẑsc (m) Ẑsc (m)

−1
Ẑsc (m) .

The proofs will be done into two parts.
Part 1 : After decomposing Psc (m)− Psc (m) ysc and using the cr-inequality, it follows

that

B1 ≤ 4 1

d× b
s∈R

B11s
2

B11

+ 4
1

d× b
s∈R

B12s
2

B12

+ 4
1

d× b
s∈R

B13s
2

B13

+ 4
1

d× b
s∈R

B14s
2

B14

.

with

B11s = Ẑs (m) (Zsc (m)Zsc (m))
−1 − Ẑsc (m) Ẑsc (m)

−1
Ẑsc (m) ysc ,

B12s = Zs (m)− Ẑs (m) (Zsc (m)Zsc (m))
−1

Ẑsc (m)− Zsc (m) ysc ,

B13s = Zs (m) (Zsc (m)Zsc (m))
−1

Zsc (m)− Ẑsc (m) ysc ,

and
B14s = Zs (m)− Ẑs (m) (Zsc (m)Zsc (m))

−1
Zsc (m) ysc .

Starting with B11, it follows that

B11 ≤ 1

d× b
s∈R

Ẑs (m)
2

(Zsc (m)Zsc (m))
−1 − Ẑsc (m) Ẑsc (m)

−1 2

Ẑsc (m) ysc
2

.
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Using the fact that Ẑs (m) ≤ Ẑ (m) and Cauchy-Schwartz inequality,

B11 ≤ 1

d
Ẑ (m)

2

⎡⎣1
b
s∈R

1

κ
Zsc (m)Zsc (m)

−1
− 1

κ
Ẑsc (m) Ẑsc (m)

−1 4
1

b
s∈R

1

κ
Ẑsc (m) ysc

4
⎤⎦1/2

Because 1
d
Ẑ (m)

2

= Op (1) , let’s show that

B111 =
1

b
s∈R

1

κ
Zsc (m)Zsc (m)

−1
− 1

κ
Ẑsc (m) Ẑsc (m)

−1 4

= Op
1

κ2

and

B112 =
1

b
s∈R

1

κ
Ẑsc (m) ysc

4

= Op
T

κ3
.

We have the following decomposition

1

κ
Zsc (m)Zsc (m)

−1
− 1

κ
Ẑsc (m) Ẑsc (m)

−1

=
1

κ
Zsc (m)Zsc (m)

−1
1

κ
Ẑsc (m) Ẑsc (m)−

1

κ
Zsc (m)Zsc (m)

1

κ
Ẑsc (m) Ẑsc (m)

−1

=
1

κ
Zsc (m)Zsc (m)

−1
1

κ
Ẑsc (m) Ẑsc (m)− Zsc (m)

1

κ
Ẑsc (m) Ẑsc (m)

−1

+
1

κ
Zsc (m)Zsc (m)

−1
1

κ
Ẑsc (m)− Zsc (m) Zsc (m)

1

κ
Ẑsc (m) Ẑsc (m)

−1

Hence by the c-r inequality,

B111 ≤ (ΣZZ (m))
−1 4 1

b
s∈R

1

κ
Ẑsc (m) Ẑsc (m)− Zsc (m) +

1

κ
Ẑsc (m)− Zsc (m) Zsc (m)

4

× (ΣZZ (m))
−1 4

(1 + op (1))

≤ 23 (ΣZZ (m))
−1 4 1

b · κ4
s∈R

Ẑsc (m) Ẑsc (m)− Zsc (m)
4

(ΣZZ (m))
−1 4

(1 + op (1))

+23 (ΣZZ (m))
−1 4 1

b · κ4
s∈R

Ẑsc (m)− Zsc (m) Zsc (m)
4

(ΣZZ (m))
−1 4

(1 + op (1))

since 1
κ
Zsc (m)Zsc (m)

−1
= (ΣZZ (m))

−1 + op (1) . In addition, as Zsc (m) ≤ Z (m) and
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t Ẑt (m)− Zt (m)
4

= Op (1) by Lemma A1 of Djogbenou, Gonçalves and Perron (2015),

1

bκ4
s∈R

Ẑsc (m)− Zsc (m) Zsc (m)
4

≤ 1

bκ4
s∈R t ∈ sc

Ẑt (m)− Zt (m) Zt (m)
2

2

≤
T−1

t=1

Ẑt (m)− Zt (m)
4 1

bκ3
s∈R t ∈ sc

Zt (m)
4

= Op (1)×Op 1

κ2
= Op

1

κ2
.

Thus,B111 = Op 1
κ2
.Given the fact that 1

T
T−1
t=1 yt+1

4 = Op (1) and 1
b·κ s∈R t ∈ sc Ẑt (m)

4

=

Op (1) and the bound

B112 ≤ 1

κ2
1

b
s∈R

1

κ
t ∈ sc

Ẑt (m) yt+1
2

2

≤ T

κ3
1

T

T−1

t=1

yt+1
4 1

b · κ
s∈R t ∈ sc

Ẑt (m)
4

,

it follows thatB112 = Op T
κ3
. In consequence,B11 = Op T

κ5
1/2 ·Op 1

κ2
1/2

= Op
T
κ2

1
κ5

1/2

and B11 = Op
1

κ3/2
since T

κ2
→ C < ∞. Let’s look at B12. Since Zs (m)− Ẑs (m) ≤

Z (m)− Ẑ (m) and 1
Tc
Zsc (m)Zsc (m)

−1
= (ΣZZ (m))

−1 + op (1) , it follows that

B12 ≤ 1

d
Z (m)− Ẑ (m)

2 1

κ2
(ΣZZ (m))

−1 2
(1 + op (1))

1

b
s∈R

Ẑsc (m)− Zsc (m) ysc
2

≤ 1

κ

1

d
Z (m)− Ẑ (m)

2

(ΣZZ (m))
−1 2

(1 + op (1))

× 1

κ · b
s∈R t ∈ sc

Ẑt (m)− Zt (m)
4 1

κ · b
s∈R t ∈ sc

yt+1
4

1/2

.

Because, 1
d
Z (m)− Ẑ (m)

2

= Op
1

C2NT
, κ2

T
→ c <∞ and κ2

N2 → 0

1

κ · b
s∈R

Ẑsc (m)− Zsc (m)
4

= Op
κ2

T
+Op

κ2

N2
Op

1

κ2
= Op

1

κ2

and 1
κ·b s∈R t ∈ sc yt+1

4 = Op (1) , it follows that

B12 = Op
1

C2NT · κ
Op

1

κ
= Op

1

C2NT · κ2
.
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For B13, we have the bound

B13 ≤ 1

d · b
s∈R

Zs (m)
2 (Zsc (m)Zsc (m))

−1 2

Zsc (m)− Ẑsc (m) ysc
2

≤ 1

κ

d

κ2
1

d · b
s∈R t ∈ s

Zt (m)
4

1/2

(ΣZZ (m))
−1 2

(1 + op (1))

× 1

d
t

yt+1
4

1/2
1

κ · b
s∈R t ∈ sc

Zt (m)− Ẑt (m)
4
1/2

Hence

B13 = Op
1

κ
Op

1

T 1/2
+Op

1

N
= Op

1

κ2

since κ2

T
→ C <∞ and κ2

N2 → 0. To finish, we have that B14 = Op 1
κ·C2NT

, using the bound

B14 ≤ 1

d · b
s∈R

Zs (m)− Ẑs (m)
2

(Zsc (m)Zsc (m))
−1 2

Zsc (m) ysc
2
,

≤ 1

κ

1

d
Z (m)− Ẑ (m)

2

(ΣZZ (m))
−1 2

(1 + op (1))

× 1

b · κ
s∈R t ∈ sc

Zt (m)
4

1/2
1

b · κ
s∈R t ∈ sc

yt+1
4

1/2

,

B14 = Op
1

κ·C2NT
×Op (1)×Op (1) = Op 1

κ·C2NT
.

Finally B1 = op 1
κ
. By similar arguments, B2 = op 1

κ
.

Part 2 :
We first show in this part that

B3 =
1

d · b
s∈R

(ys − Psc (m) ysc) 2 =
1

d · b
s∈R

(Id −Qs (m))−1 ys − Zs (m) δ (m)
2

with δ (m) the OLS estimator by regressing ys on Zs (m) andQs (m) = Zs (m) (Z (m)Z (m))−1 Zs (m) .
Indeed,

ys − Psc (m) ysc = (Id −Qs (m))−1 (Id −Qs (m)) (ys − Psc (m) ysc)
= (Id −Qs (m))−1 [ys −Qs (m) ys − (Id −Qs (m))Psc (m) ysc ] .

Noting that

(Id −Qs (m))Psc (m)
= Psc (m)− Zs (m) (Z (m)Z (m))

−1
Zs (m)Zs (m) Zsc (m) Zsc (m)

−1
Zsc (m)

= Psc (m)− Zs (m) (Z (m)Z (m))
−1 × Z (m)Z (m)− Zsc (m) Zsc (m) Zsc (m) Zsc (m)

−1
Zsc (m)

= Psc (m)− Psc (m)− Zs (m) (Z (m)Z (m))
−1
Zsc (m) = −Zs (m) (Z (m)Z (m))

−1
Zsc (m) .
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It follows that

ys −Qs (m) ys − (Id −Qs (m))Psc (m) ysc
= ys − Zs (m) (Z (m)Z (m))

−1
Zs (m) ys + Zs (m) (Z (m)Z (m))

−1
Zsc (m) ysc

= ys − Zs (m) (Z (m)Z (m))
−1
Z (m) y = ys − Zs (m) δ (m) .

Thus
ys − ys (m) = ITv −Qs (m)

−1
ys − Zs (m) δ (m)

and
B3 =

1

d · b
s∈R

(ITv −Qs (m))−1 ys − Zs (m) δ (m)
2

.

Because Zs (m) can be treated as non generated regressors and δ (m) the associated estimator,
we next apply Theorem 2 of Shao (1993). Hence for m ∈M1,

B3 =
1

d · b
s∈R

εs
2 +

1

T − 1δ Z
0 I − Z (m) (Z (m)Z (m))

−1
Z (m) Z0δ + op (1) +RT (m)

where RT (m) ≥ 0 and m ∈M2,

B3 =
1

d · b
s∈R

εs
2 +

r (m) + q

κ
σ2 + op

1

κ
.

Finally,

CVd (m) = B3 + op
1

κ
.

And the result follows.

Proof of Theorem 13. The proof follows similarly as the one of Theorem 3.1 in Djogbenou,
Gonçalves and Perron (2015) by showing that the high level condition of Gonçalves and Perron
(2014) are satisfied. Noting that

√
κ δ̂

∗
d (m)− Φ∗−10 (m) δ̂ (m) =

1

T − 1Ẑ
∗ (m) Ẑ∗ (m)

−1
[A∗ (m) +B∗ (m)− C∗ (m)]

withA∗ (m) = Φ∗0 (m)
√
κ 1
T−1

T−1
t=1 Ẑt (m) ε

∗
t+1, B

∗ (m) =
√
κ 1
T−1

T−1
t=1 F ∗t (m)−H∗

0 (m)Ft (m) ε∗t+1

and C∗ (m) =
√
κ 1
T−1

T−1
t=1 Ẑ

∗
t (m) F ∗t (m)−H∗

0 (m)Ft (m) (H∗
0 (m))

−1 α where Φ∗0 (m) =

p limΦ∗ (m) and H∗
0 (m) = p limH

∗ (m) are diagonal. This decomposition uses the fact that in
the bootstrap world Φ∗0 is diagonal (see Gonçalves and Perron, 2014) and H

∗
0 (m) is a square

submatrix of H∗
0 . We will establish the result in three steps proving that A

∗ (m) converges in
distribution whereas B∗ (m) and C∗ (m) converge in probability to zero. (1) One can write that

B∗ (m) =
√
κ

T − 1
T−1

t=1

F ∗t (m)−H∗
0 (m)Ft (m) ε∗t+1 =

1√
T − 1

T−1

t=1

F ∗t (m)−H∗
0 (m)Ft (m) ξ∗t+1
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with ξ∗t+1 =
1

1− r+q
T−1

ε̂t+1 (M)− ε̂ (M) . Given Lemma B2.of Gonçalves and Perron (2014),

B∗ (m) = Op 1
CNT

as long as B∗ = 1√
T−1

T−1
t=1 F ∗t −H∗

0Ft ξ∗s+1 = Op
1

CNT
if Conditions

A∗ − D∗ are verified with ξ∗t+1 replacing ε
∗
t+1. Indeed, A

∗ and B∗ are satisfied since e∗it relies
on the wild bootstrap and we only need to check Conditions C*, D*. Starting with condition
C∗ (a) , since e∗it and ε

∗
s+1 are independent and e

∗
it is independent across (i, t),

1

T

T

t=1

E∗
1√
TN

T−1

s=1

N

i=1

ξ∗s+1 (e
∗
ite
∗
is − E (e∗ite∗is))

2

=
1

T

T

t=1

1

T

T−1

s=1

E∗ ξ∗2s+1
1

N

N

i=1

e2ite
2
isV ar

∗ (ηitηis)

≤ M
1

T − 1− r − q
T−1

l=1

ε2l+1
1

NT

N

i=1

T

t=1

e4it,

where the first equality uses the fact that Cov∗ e∗ite
∗
is, e

∗
jte

∗
jl = 0 for i = j or s = l, and the

inequality uses the fact that

E∗ ε∗2s+h =
1

1− r+q
T−1

1

T − 1
T−1

t=1

ε2s+1 − ε
2 ≤ 1

T − 1− r − q
T−1

s=1

ε2s+1.

and that V ar∗ (ηitηis) is bounded under our assumptions. Since

N

i=1

T

t=1

e4it/NT = OP (1) and
1

T − 1− r − q
T−1

t=1

ε2t+1 = OP (1)

under our assumptions, the result follows. We verify condition C∗(b). We have

E∗
1√
TN

T−1

t=1

N

i=1

λie
∗
itξ

∗
t+h

2

=
1

TN

T−1

t=1

E∗ ξ∗2t+1

N

i=1

λiλiE
∗ e∗2it

≤ 1

T − 1− r − q
T−1

s=1

ε2s+1
1

N

N

i=1

λi
4

1/2

1

NT

N

i=1

T−1

t=1

e4it

1/2

where the first equality uses the fact that E∗ e∗ite
∗
js = 0 whenever i = j or t = s, and the

third equality the fact that E∗ ε∗2t+1 ≤ 1
T−1−r−q

T−1
s=1 ε

2
s+1 and

1
T

T−1
t=1 e

2
it

2

≤ 1
T

T−1
t=1 e

4
it.

The result follows since each term of the last inequality is Op (1) (see GP(2014)). To prove
condition C∗(c), I follow closely the proof in GP (2014) and it will be sufficient to show that
1

T−1
T−1

t=1

ξ∗4t+1 = Op∗(1) in probability. Using the definition of E
∗ ξ∗4t+1 and the c-r inequality,

E∗
1

T − 1
T−1

t=1

ξ∗4t+1 = E∗ ξ∗4t+1 =
T − 1

(T − 1− r − q)2
T−1

s=1

ε̂s+1 − ε̂
4

≤ 23
(T − 1)2

(T − 1− r − q)2
1

T − 1
T−1

s=1

ε̂4s+1 + 2
3 (T − 1)2
(T − 1− r − q)2 ε̂

4
.
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Because 1
T−1

T−1
t=1 ε̂

4
t+1 = OP (1) and

1
T−1

T−1
t=1 ε̂t+1 = OP (1) under our assumptions,E

∗ 1
T−1

T−1
t=1 ε

∗4
t+1 =

Op∗(1) andC∗ (c) follows. For conditionD∗(a), we haveE∗ ξ∗t+1 = T−1
T−1−r−q

1
T−1

T−1
s=1 ε̂s+1 − ε̂ =

0 and

1

T

T−1

t=1

E∗ ξ∗2t+1 =
T − 1
T

E∗ ξ∗2t+1 ≤ T − 1
T

1

T − 1− r − q
T−1

s=1

ε̂2s+1 = Op (1) .

To finish, I also verify condition D∗(b). Noting Ψ∗ ≡ Ω∗−
1
2 Ẑtξ

∗
t+1 and

Ω∗ = p lim
N,T→∞

E∗
1

T

T−1

t=1

ẐtẐtξ
∗2
t+1 ,

we can write

Ω∗−
1
2
1√
T

T−1

t=1

Ẑtξ
∗
t+1 =

1√
T

T−1

t=1

Ψ∗
t

where Ψ∗
t are conditionally independent for t = 1, . . . , T−1, with E∗ (Ψ∗

t ) = Ω∗−
1
2 ẐtE

∗ ξ∗t+1 =
0 and

p lim
N,T→∞

V ar∗
1√
T

T

t=1

Ψ∗
t = Ω∗−

1
2 p lim

N,T→∞
E∗

1

T

T−1

t=1

ẐtẐtξ
∗2
t+1 Ω∗−

1
2 = I.

It remains to show that for some 1 < s < 2, ΥT ≡ 1
T d

T−1
t=1 E

∗ Ψ∗
t
2s = op(1). We have

ΥT =
1

T s

T−1

t=1

E∗ Ω∗−
1
2 Ẑtξ

∗
t+1

2 s

≤ 1

T s−1
1

T

T−1

t=1

E∗ Ω∗−
1
2 Ẑtξ

∗
t+1

2 s

≤ 1

T s−1
1

T

T−1

t=1

E∗ Ω∗−
1
2 Ẑtξ

∗
t+1

2
s

as s < 2.

which induces that ΥT = op(1) as

ΥT ≤ 1

T s−1
trace Ω∗−

1
2
1

T

T−1

t=1

E∗ ẐtẐtξ
∗2
t+1 Ω∗−

1
2

s

=
r + q

T s−1
→ 0 since as s > 1.

Thus 1√
T

T−1
t=1 Ẑtξ

∗
t+1 →d∗ N (0, Ω

∗). (2) By Lemma B4 of Gonçalves and Perron (2014),

1√
T

T−1

t=1

Ẑ∗ (m) F ∗t (m)−H∗
0 (m)Ft (m) (H∗

0 (m))
−1 α = Op

√
T

N

as it does not involve the residual bootstrap for the time series dimension. Hence,

C∗ (m) =
√
κ

1

T − 1
T−1

t=1

Ẑ∗ (m) F ∗t (m)−H∗
0 (m)Ft (m) (H∗

0 (m))
−1 α = Op

√
κ

N

T

T − 1 = op (1) .
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(3) By similar steps to condition D∗ (b), Ω∗ (m)−
1
2 A∗ (m)→d∗ N (0, I) where

Ω∗ (m)−
1
2 A∗ (m) = Ω∗ (m)−

1
2 Φ∗0 (m)

√
κ

1

T − 1
T−1

t=1

Ẑt (m) ε
∗
t+1 = Ω∗ (m)−

1
2 Φ∗0 (m)

1√
T − 1

T−1

t=1

Ẑt (m) ξ
∗
t+1,

Ω∗ (m) = V ar∗ Φ∗0 (m)
1√
T − 1

T−1

t=1

Ẑt (m) ξ
∗
t+1

and
Ψ∗
t (m) ≡ Ω∗−

1
2 (m) Ẑt (m) ξ

∗
t+1.

Finally,

A∗ (m)→p N 0, σ2Φ∗0 (m) p lim
1

T − 1Z (m) Z (m) Φ∗0 (m) .

Indeed,

Ω∗ (m) = Φ∗0 (m)
1

T − 1− (r + q)
T−1

t=1

Ẑt (m) Ẑt (m) ε̂t+1 (M)− ε̂ (M)
2

Φ∗0 (m)

with

1

T − 1− r − q
T−1

t=1

Ẑt (m) Ẑt (m) ε̂t+1 (M)− ε̂ (M)
2

=
1

T − 1− r − q
T−1

t=1

Ẑt (m) Ẑt (m) ε̂
2
t+1 (M)+op (1)

and 1
T−1−(r+q)

T−1
t=1 Ẑt (m) Ẑt (m) ε̂

2
t+1 (M) a submatrix of

1

T − 1− (r + q)
T−1

t=1

Ẑt (M) Ẑt (M) ε̂t+1 (M)
2 →p σ

2p lim
1

T − 1Z (M) Z (M)

by Assumption A3. Hence, it follows that Ω∗ (m)→p σ
2Φ∗0 (m) p lim

1
T−1Z (m) Z (m) Φ∗0 (m) .

From (1) , (2), (3) and the fact that

1

T − 1
T−1

t=1

Ẑ∗t (m) Ẑ
∗
t (m) = Φ∗0 (m) p lim

1

T − 1Z (m) Z (m) Φ∗0 (m) + op∗ (1) ,

by the asymptotic equivalence Lemma,

√
κ δ̂

∗
d (m)− Φ∗0 (m)

−1 δ̂ (m) =
1

T − 1 Ẑ
∗ (m) Ẑ∗ (m)

−1
[A∗ (m) + op∗ (1)]

→ d∗N 0,Φ∗0 (m)
−1 p lim

1

T − 1Z (m) Z (m)
−1

Φ∗0 (m)
−1 .
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Proof of Theorem 14. In the first part of our proof, I show that if it exists a matrix A (m) such
that F 0t = A (m)Ft (m) and no matrix A (m ) such that F

0
t = A (m )Ft (m ) , then

P Γ̂κ (m) < Γ̂κ (m ) → 1 as T, N →∞.

We have that for any m,

Γ̂κ (m) = E∗
1

T − 1 y − Ẑ∗ (m) δ̂∗κ (m)
2

= E∗
1

T − 1 y − Ẑ (m) δ̂ (m) + Ẑ (m) δ̂ (m)− Ẑ∗ (m) δ̂∗κ (m)
2

≡ D1 +D2 +D3

where

D1 =
1

T − 1 y − Ẑ (m) δ̂ (m)
2

(9)

D2 = E∗
1

T − 1 Ẑ (m) δ̂ (m)− Ẑ∗ (m) δ̂∗κ (m)
2

and
D3 = 2

1

T − 1 y − Ẑ (m) δ̂ (m) E∗ Ẑ (m) δ̂ (m)− Ẑ∗ (m) δ̂∗κ (m) .

Using the decomposition

Ẑ∗ (m) δ̂
∗
κ (m)− Ẑ (m) δ̂ (m) = Ẑ∗ (m) δ̂

∗
κ (m)− Φ∗−10 (m) δ̂ (m)

+ Ẑ∗ (m)− Ẑ (m)Φ∗0 (m) Φ∗−10 (m) δ̂ (m)

where Φ∗0 (m) is a (r (m) + q) × (r (m) + q) submatrix of Φ∗0 = p∗ limΦ∗ = diag (±1) (see
Gonçalves and Perron, 2014),

D2 = D21 +D22 + 2D23

where

D21 = E∗ δ̂
∗
κ (m)− Φ∗−10 (m) δ̂ (m)

1

T − 1 Ẑ
∗ (m) Ẑ∗ (m) δ̂

∗
κ (m)− Φ∗−10 (m) δ̂ (m)

D22 = E∗ δ̂ (m)Φ∗−10 (m)
1

T − 1 Ẑ∗ (m)− Ẑ (m)Φ∗0 (m) Ẑ∗ (m)− Ẑ (m)Φ∗0 (m) Φ∗−10 (m) δ̂ (m)

D23 =
1

T − 1E
∗ δ̂ (m)Φ∗−10 (m) Ẑ∗ (m)− Ẑ (m)Φ∗0 (m) Ẑ (m) δ̂

∗
κ (m)− Φ∗−10 (m) δ̂ (m) .
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Starting with D21, we have that

D21

= E∗ δ̂
∗
κ (m)− Φ∗−10 (m) δ̂ (m) Φ∗0 (m)

1

T − 1Ẑ (m) Ẑ (m)Φ∗0 (m) δ̂
∗
κ (m)− Φ∗−10 (m) δ̂ (m)

= trace Φ∗0 (m) Ẑ (m) Ẑ (m)Φ∗0 (m) E∗ κ δ̂
∗
κ (m)− Φ∗−10 (m) δ̂ (m) δ̂

∗
κ (m)− Φ∗−10 (m) δ̂ (m)

× [1 + op∗ (1)]× 1

T − 1
1

κ

=
1

κ
trace (Φ∗0 (m)ΣZZ (m)Φ

∗
0 (m))Avar

∗ √κ δ̂
∗
κ (m)− Φ∗−10 (m) δ̂ (m) + op∗

1

κ
.

By Gonçalves and Perron (2014), it follows that

√
κ δ̂

∗
κ (m)− Φ∗−10 (m) δ̂ (m) →d N 0, σ2Φ∗−10 (m)ΣZZ (m)

−1Φ∗−10 (m)

as
√
κ
N
→ 0. Hence,

p limAvar∗
√
κ δ̂

∗
κ (m)− Φ∗−10 (m) δ̂ (m)

= p limE∗ κ δ̂
∗
κ (m)− Φ∗−10 (m) δ̂ (m) δ̂

∗
κ (m)− Φ∗−10 (m) δ̂ (m)

= σ2Φ∗−10 (m)ΣZZ (m)
−1Φ∗−10 (m) .

Thereby,

D21 = σ2
1

κ
trace (Φ∗0 (m)ΣZZ (m)Φ

∗
0 (m))Φ

∗−1
0 (m)ΣZZ (m)

−1Φ∗−10 (m) + op
1

κ

= σ2
1

κ
trace ΣZZ (m)ΣZZ (m)

−1 + op
1

κ
.

For a correct model m,

D21 =
σ2 (r (m) + q)

κ
+ op

1

κ
.

For D22, we have that

D22 = δ̂ (m) Φ∗−10 (m)E∗
1

T − 1 Ẑ∗ (m)− Ẑ (m)Φ∗0 (m) Ẑ∗ (m)− Ẑ (m)Φ∗0 (m) Φ∗−10 (m) δ̂ (m) .

We also have that

E∗
1

T − 1 Ẑ∗ (m)− Ẑ (m)Φ∗0 (m) Ẑ∗ (m)− Ẑ (m)Φ∗0 (m)

=
1

T − 1
T−1

t=1

E∗ F ∗t (m)−H∗
0 (m)Ft (m) F ∗t (m)−H∗

0 (m)Ft (m)
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which is a subset ofD221 =
1

T−1
T−1
t=1 E

∗ F ∗t −H∗
0Ft F ∗t −H∗

0Ft . Because, it can be shown
that D221 is of the same order with

D222 =
1

T

T

t=1

E∗ F ∗t −H∗Ft F ∗t −H∗Ft

it suffices to find the order in probability of D222. Following the step of the proof of Lemma 3.1
in Gonçalves and Perron (2014), we have that,

D222 ≤ 1

T

T

t=1

E∗ F ∗t −H∗Ft
2

≤ 4

T

T

t=1

E∗ A∗1t
2 + E∗ A∗2t

2 + E∗ A∗3t
2 + E∗ A∗4t

2

given that V ∗−1 is bounded and ignored, where

A∗1t =
1

T

T

s=1

F ∗s γ
∗
st, A

∗
2t =

1

T

T

s=1

F ∗s ζ
∗
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as y − Ẑ (m) δ̂ (m) Ẑ (m) = 0.Let’s look at D1. Denoting
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In this part of our proof, I show that if it exists a matrix A (m) such that F 0t = A (m)Ft (m)
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Hence,

P Γ̂κ (m )− Γ̂κ (m) > 0 = P σ2 (r (m )− r (m)) > o+ op (1) > 0 = 1 + o (1) .



101

.4 Appendix for next quarter excess returns prediction

Table 2 : Variation explained by estimated macro in X1 and financial factors in X2
Macro factors F Financial factors G

N̊ Percentage (%) Cumulative (%) Percentage (%) Cumulative (%)
1 24.06 24.06 71.56 71.56
2 9.52 33.58 4.10 75.66
3 8.04 41.62 3.62 79.28
4 5.87 47.49 1.72 81.00
5 4.13 51.62 1.47 82.47
6 3.25 54.87 1.17 83.64

Note : The percentage of variation explained by each estimated factors is measured by the
associated eigenvalue relative to the sum of the overall eigenvalues.
Table 3 : Estimation results for mt+1 = α1 (m)Ft (m) + α2 (m)Gt (m) + βZt + ut+1 (m)

Regressors CV1 BICM CVd Γ̂κ

constant 10.90 6.53 11.49 10.31
(t− stat) (2.65) (1.48) (3.15) (2.30)
CAYt 20.37 27.97 22.71 22.62
(t− stat) (1.67) (2.36) (2.02) (1.77)
RRELt 0.50 −0.33 0.04 −0.16
(t− stat) (1.59) (−1.75) (0.19) (−0.61)
d− pt 1.85 1.02 1.89 1.76
(t− stat) (2.69) (1.40) (3.03) (2.35)
V OLt 0.15 0.0475 0.09 0.15
(t− stat) (1.83) (0.46) (0.83) (1.99)

F1t 0.71
(t− stat) (2.04)

F3t 1.34 0.98 0.97
(t− stat) (3.67) (2.99) (2.59)

F4t −0.65
(t− stat) (−2.37)
G2t −0.60 −0.65 −0.64
(t− stat) (−2.48) (−2.81) (−2.50)
G3t 0.48 0.59
(t− stat) (2.01) (2.48)

G4t 0.71 0.69
(t− stat) (2.40) (2.35)

G6t −0.55 −0.55
(t− stat) (−2.13) (−1.99)
R2 0.219 0.048 0.121 0.19
F − test 6.37 8.65 7.24
F − cv 2.05 3.04 2.26

Note : The estimated coefficients are reported. The student test statistic are presented
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into parenthesis. indicates the significant coefficients at 5% whereas those significant at
10% are indicated by . MOD0 represents estimation results with usual factors that are not
estimated from our economics data. These regressors are the consumption-wealth ratio (CAY),
the relative T-bill (RREL), the dividend price ratio (d-p) and the sample volatility (VOL) of
one-quarter-ahead excess returns. The other columns show estimates by selecting generated
regressors and those in MOD0. We tested whether the additional estimated factors are jointly
significant. The Fisher test statistic corresponds to the difference between the sum squared
residuals of MOD0 and m̂j, j = 1, 2, 3 and 4, divided by the sum squared residuals of MOD0
and corrected by the degrees of freedom. The critical values are based on the asymptotic result
that the statistic follows a Fisher distribution with the number of additional parameters r (m̂j)
and (T − 6)− r (m̂j) as degree of freedom.

Datas :
The macro data are formed following McCracken and Ng (2015). Four series are dropped to

obtain balanced data set indexed from 1 to 130 as listed below. This macro data contains eight
groups of variables related to output and income (group 1), labor market (group 2), housing
(group 3), consumption, orders and inventories (group 4), money and credit (group 5), interest
rates and exchange rates (group 6), prices (group 7) and stock market (group 8). The quarterly
version of McCracken and Ng (2015) are downloaded from St. Louis Federal Reserve database.
Since not all the data are available on FRED web site or some have missing value, we complete
my data set by aggregating appropriately monthly data in McCracken and Ng (2015). These
variables are listed with a star. Afterwards, the data are transformed to ensure stationarity.
In the Tcode column 1, 2, 3, 4, 5, 6, 7 correspond respectively to level, first difference, second
difference, log transformation, first difference of the log, second difference of the log and growth
rate.
The financial data series are indexed from 1 to 147 corresponding to Jurado, Ludvigson

and Ng (2015) database. This data set includes the group representing dividends and yields,
the group of risk factors, the group of industry portfolios and the portfolios sorted on size and
book-to-market ratio group. Because Jurado, Ludvigson and Ng (JLN) data are monthly, we
download quarterly available from Kenneth R. French database and construct the remaining
one using similar steps to JLN (2015). The quarterly returns of portfolios are obtained by
computing the three month returns from monthly version in Kenneth R. French database. We
also applied Log (1 + x/100) times 400 instead of 1200 by JLN to have the corresponding annual
version. Except the logged dividend price ratio which corresponds in my database to the end
of the correspond quarter in JLN (2015), the variables in group 1 are summed over the quarter
from JLN (2015). As in Ludvigson and Ng (2007), the quarterly CP factor of Cochrane and
Piazzesi (2005) is its average over the quarter.
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Macroeconomic series
Group 1 : Output and Income
No. Code Description Tcode
1 RPI Real Personal Income 5
2 W875RX1 RPI ex.Transfers 5
3 INDPRO Industrial Production Index 5
4 PFPNSS IP Final Products and Supplies 5
5 IPFINAL IP Final Products 5
6 IPCONGD IP Consumer Goods 5
7 IPDCONGD IP Durable Consumer Goods 5
8 IPNCONGD IP Nondurable Consumer Goods 5
9 IPBUSEQ IP Business Equipment 5
10 IPMAT IP Materials 5
11 IPDMAT IP Durable Materials 5
12 IPNMAT IP Nondurable Materials 5
13 IPMANSICS IP Manufacturing 5
14 IPB51222S IP Residential Utilities 5
15 IPFUELS IP Fuels 5
16 NAPMPI ISM Manufacturing : Production Index 1
17 CUMFNS Capacity Utilization : Manufacturing 2
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Group 2 : Labor market
No. Code Description Tcode
18 HWI Help-Wanted Index for US 2
19 HWIURATIO Ratio of Help Wanted to Number of.Unemployed 2
20 CLF16OV Civilian Labor Force 5
21 CE16OV Civilian Employment 5
22 UNRATE Civilian Unemployment Rate 2
23 UEMPMEAN Average Duration of Unemployment 2
24 UEMPLT5 Civilians Unemployed less than 5 Weeks 5
25 UEMP5TO14 Civilians Unemployed 5-14 Weeks 5
26 UEMP15OV Civilians Unemployed greater than 15 Weeks 5
27 UEMP15T26 Civilians Unemployed 15-26 Weeks 5
28 UEMP27OV Civilians Unemployed greater than 27 Weeks 5
29 CLAIMSx Initial Claims 5
30 PAYEMS All Employees : Total non farm 5
31 USGOOD All Employees : Goods-Producing 5
32 CES1021000001 All Employees : Mining and Logging 5
33 USCONS All Employees : Construction 5
34 MANEMP All Employees : Manufacturing 5
35 DMANEMP All Employees : Durable goods 5
36 NDMANEMP All Employees : Nondurable goods 5
37 SRVPRD All Employees : Service Industries 5
38 USTPU All Employees : TT&U 5
39 USWTRADE All Employees : Wholesale Trade 5
40 USTRADE All Employees : Retail Trade 5
41 USFIRE All Employees : Financial Activities 5
42 USGOVT All Employees : Government 5
43 CES0600000007 Hours : Goods-Producing 1
44 AWOTMAN Overtime Hours : Manufacturing 2
45 AWHMAN Hours : Manufacturing 1
46 NAPMEI ISM Manufacturing : Employment 1
47 CES0600000008 Ave. Hourly Earnings : Goods 6
48 CES2000000008 Ave. Hourly Earnings : Construction 6
49 CES3000000008 Ave. Hourly Earnings : Manufacturing 6
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Group 3 : Housing
No. Code Description Tcode
50 HOUST Starts :Total 4
51 HOUSTNE Starts :Northeast 4
52 HOUSTMW Starts :Midwest 4
53 HOUSTS Starts :South 4
54 HOUSTW Starts :West 4
55 PERMIT Permits 4
56 PERMITNE Permits : Northeast 4
57 PERMITMW Permits : Midwest 4
58 PERMITS Permits : South 4
59 PERMITW Permits : West 4

Group 4 : Consumption, orders and inventories
No Code Description Tcode
60 DPCERA3M086SBEA Real PCE 5
61 CMRMTSPLx Real M&T Sales 5
62 RETAILx Retail and Food Services Sales 5
63 NAPM ISM : PMI Composite Index 1
64 NAPMNOI ISM : New Orders Index 1
65 NAPMSDI ISM : Supplier Deliveries Index 1
66 NAPMII ISM : Inventories Index 1
67 AMDMNOx Orders : Durable Goods 5
68 AMDMUOx Unfilled Orders : Durable Goods 5
69 BUSINVx Total Business Inventories 5
70 ISRATIOx Inventories to Sales Ratio 2

Group 5 : Money and Credit
No. Code Description Tcode
71 M1SL M1 Money Stock 6
72 M2SL M2 Money Stock 6
73 M2REAL Real M2 Money Stock 5
74 AMBSL St.Louis Adjusted Monetary Base 6
75 TOTRESNS Total Reserves 6
76 NONBORRES Non borrowed Reserves 6
77 BUSLOANS Commercial and Industrial Loans 6
78 REALLN Real Estate Loans 1
79 NONREVSL Total Non revolving Credit 6
80 CONSPI Credit to PI ratio 2
81 MZMSL MZM Money Stock 6
82 DTCOLNVHFNM Consumer Motor Vehicle Loans 6
83 DTCTHFNM Total Consumer Loans and Leases 6
84 INVEST Securities in Bank Credit 6
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Group 6 : Interest rate and Exchange Rates
No. Code Description Tcode
85 FEDFUNDS Effective Federal Funds Rate 2
86 CP3M 3-Month AA Financial Commercial Paper Rate 2
87 TB3MS 3-Month T-bill 2
88 TB6MS 6-Month T-bill 2
89 GS1 1-Year T-bond 2
90 GS5 5-Year T-bond 2
91 GS10 10-Year T-bond 2
92 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
93 BAA Moody’s Seasoned Baa Corporate Bond Yield 2
94 COMPAPFF 3-Month Commercial Paper Minus FEDFUNDS 1
95 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1
96 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1
97 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1
98 T5YFFM 5-Year Treasury C Minus FEDFUNDS 1
99 T10YFFM 10-Year Treasury C Minus FEDFUNDS 1
100 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1
101 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1
102 EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5
103 EXJPUSx Japan / U.S. FX Rate 5
104 EXUSUKx U.S. / U.K. FX Rate 5
105 EXCAUSx Canada / U.S. FX Rate 5
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Group 7 : Prices
No. Code Description Tcode
106 PPIFGS Producer Price Index : Finished Goods 6
107 PPIFCG PPI : Finished Consumer Goods 6
108 PPIITM PPI : Intermediate Materials 6
109 PPICRM PPI : CrudeMaterials 6
110 OILPRICEx Crude Oil Prices : WTI 6
111 PPICMM PPI : Commodities 6
112 NAPMPRI ISM Manufacturing : Prices 1
113 CPIAUCSL CPI for All Urban Consumers : All Items 6
114 CPIAPPSL CPI for All Urban Consumers : Apparel 6
115 CPITRNSL CPI for All Urban Consumers : Transportation 6
116 CPIMEDSL CPI for All Urban Consumers : Medical Care 6
117 CUSR0000SAC CPI for All Urban Consumers : Commodities 6
118 CUUR0000SAD CPI for All Urban Consumers : Durables 6
119 CUSR0000SAS CPI for All Urban Consumers : Services 6
120 CPIULFSL CPI for All Urban Consumers : All Items Less Food 6
121 CUUR0000SA0L2 CPI for All Urban Consumers : All items less shelter 6
122 CUSR0000SA0L5 CPI for All Urban Consumers : All items less medical care 6
123 PCEPI Personal Consumption Expenditures : Chain-type 6
124 DDURRG3M086SBEA Personal Consumption Expenditures : Durable goods 6
125 DNDGRG3M086SBEA Personal Consumption Expenditures : Nondurable goods 6
126 DSERRG3M086SBEA Personal Consumption Expenditures : Services 6

Group 8 : Stock Market
No. Code Description Tcode
127 S&P 500 S&P’s Common Stock Price Index : Composite 5
128 S&P : indust S&P’s Common Stock Price Index : Industrials 5
129 S&P div yield S&P’s Composite Common Stock : Dividend Yield 2
130 S&P PE ratio S&P’s Composite Common Stock : Price-Earnings Ratio 5
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Financial data set
Group 1 : Yield and dividends
No. Code Description Tcode
1 D_log(DIV) Log diff. of sum of the dividends in the last 4 quarters 1
2 D_log(P) Log diff. of portfolio price when dividends are not reinvested 1
3 D_DIVreinvested Log diff. of sum of the dividends in the last 4 quarters 1
4 D_Preinvested Log diff. of portfolio price when dividends are reinvested 1
5 d-p DIVreinveste - Preinveste = log(DIV) - log(P) 1

Group 2 : Risk Factors
No. Code Description Tcode
6 R15-R11 Small stock value spread : (S, H) minus (S, L) sorted on (size, B/M) 1
7 factor Piazzesi-Cochrane risk factor, quarterly average 1
8 Mkt-RF Fama-French market risk factor : Market excess return 1
9 SMB Fama-French market risk factor : Small Minus Big, sorted on size 1
10 HML Fama-French market risk factor : High Minus Low, sorted on B/M 1
11 UMD Momentum risk factor : Up Minus Down, sorted on momentum 1

Group 3 : Industries portfolio
No. Code Description Tcode
12 Agric Agric industry portfolio 1
13 Food Food industry portfolio 1
14 Beer Beer industry portfolio 1
15 Smoke Smoke industry portfolio 1
16 Toys Toys industry portfolio 1
17 Fun Fun industry portfolio 1
18 Books Books industry portfolio 1
19 Hshld Hshld industry portfolio 1
20 Clths Clths industry portfolio 1
21 MedEq MedEq industry portfolio 1
22 Drugs Drugs industry portfolio 1
23 Chems Chems industry portfolio 1
24 Rubbr Rubbr industry portfolio 1
25 Txtls Txtls industry portfolio 1
26 BldMt BldMt industry portfolio 1
27 Cnstr Cnstr industry portfolio 1
28 Steel Steel industry portfolio 1
29 Mach Mach industry portfolio 1
30 ElcEq ElcEq industry portfolio 1
31 Autos Autos industry portfolio 1
32 Aero Aero industry portfolio 1
33 Ships Ships industry portfolio 1
34 Mines Mines industry portfolio 1
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Group 3 : Industries portfolio (cont.)
No. Code Description Tcode
35 Coal Coal industry portfolio 1
36 Oil Oil industry portfolio 1
37 Util Util industry portfolio 1
38 Telcm Telcm industry portfolio 1
39 PerSv PerSv industry portfolio 1
40 BusSv BusSv industry portfolio 1
41 Comps Comps industry portfolio 1
42 Chips Chips industry portfolio 1
43 LabEq LabEq industry portfolio 1
44 Paper Paper industry portfolio 1
45 Boxes Boxes industry portfolio 1
46 Trans Trans industry portfolio 1
47 Whisl Whisl industry portfolio 1
48 Rtail Rtail industry portfolio 1
49 Meals Meals industry portfolio 1
50 Banks Banks industry portfolio 1
51 Insur Insur industry portfolio 1
52 RIEst RIEst industry portfolio 1
53 Fin Fin industry portfolio 1
54 Other Other industry portfolio 1
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Group 4 : Size/Book-to-Market
No. Code Description Tcode
55 ports_2 (small, 2) Portfolio sorted on (size, book-to-market) 1
56 ports_4 (small, 4) Portfolio sorted on (size, book-to-market) 1
57 ports_5 (small, 5) Portfolio sorted on (size, book-to-market) 1
58 ports_6 (small, 6) Portfolio sorted on (size, book-to-market) 1
59 ports_7 (small, 7) Portfolio sorted on (size, book-to-market) 1
60 ports_8 (small, 8) Portfolio sorted on (size, book-to-market) 1
61 ports_9 (small, 9) Portfolio sorted on (size, book-to-market) 1
62 ports_high (small, high) Portfolio sorted on (size, book-to-market) 1
63 ports_low (small, low) Portfolio sorted on (size, book-to-market) 1
64 port2_2 (2, 2) Portfolio sorted on (size, book-to-market) 1
65 port2_3 (2, 3) Portfolio sorted on (size, book-to-market) 1
66 port2_4 (2, 4) Portfolio sorted on (size, book-to-market) 1
67 port2_5 (2, 5) Portfolio sorted on (size, book-to-market) 1
68 port2_6 (2, 6) Portfolio sorted on (size, book-to-market) 1
69 port2_7 (2, 7) Portfolio sorted on (size, book-to-market) 1
70 port2_8 (2, 8) Portfolio sorted on (size, book-to-market) 1
71 port2_9 (2, 9) Portfolio sorted on (size, book-to-market) 1
72 port2_high (2, high) Portfolio sorted on (size, book-to-market) 1
73 port2_low (2, low) Portfolio sorted on (size, book-to-market) 1
74 port3_2 (3, 2) Portfolio sorted on (size, book-to-market) 1
75 port3_3 (3, 3) Portfolio sorted on (size, book-to-market) 1
76 port3_4 (3, 4) Portfolio sorted on (size, book-to-market) 1
77 port3_5 (3, 5) Portfolio sorted on (size, book-to-market) 1
78 port3_6 (3, 6) Portfolio sorted on (size, book-to-market) 1
79 port3_7 (3, 7) Portfolio sorted on (size, book-to-market) 1
80 port3_8 (3, 8) Portfolio sorted on (size, book-to-market) 1
81 port3_9 (3, 9) Portfolio sorted on (size, book-to-market) 1
82 port3_high (3, high) Portfolio sorted on (size, book-to-market) 1
83 port3_low (3, low) Portfolio sorted on (size, book-to-market) 1
84 port4_2 (4, 2) Portfolio sorted on (size, book-to-market) 1
85 port4_3 (4, 3) Portfolio sorted on (size, book-to-market) 1
86 port4_4 (4, 4) Portfolio sorted on (size, book-to-market) 1
87 port4_5 (4, 5) Portfolio sorted on (size, book-to-market) 1
88 port4_6 (4, 6) Portfolio sorted on (size, book-to-market) 1
89 port4_7 (4, 7) Portfolio sorted on (size, book-to-market) 1
90 port4_8 (4, 8) Portfolio sorted on (size, book-to-market) 1
91 port4_9 (4, 2) Portfolio sorted on (size, book-to-market) 1
92 port4_high (4, high) Portfolio sorted on (size, book-to-market) 1
93 port4_low (4, low) Portfolio sorted on (size, book-to-market) 1
94 port5_2 (5, 2) Portfolio sorted on (size, book-to-market) 1
95 port5_3 (5, 3) Portfolio sorted on (size, book-to-market) 1
96 port5_4 (5, 4) Portfolio sorted on (size, book-to-market) 1
97 port5_5 (5, 5) Portfolio sorted on (size, book-to-market) 1
98 port5_6 (5, 6) Portfolio sorted on (size, book-to-market) 1
99 port5_7 (5, 7) Portfolio sorted on (size, book-to-market) 1
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Group 4 : Size/Book-to-Market (cont.)
No. Code Description Tcode
100 port5_8 (5, 8) Portfolio sorted on (size, book-to-market) 1
101 port5_9 (5, 9) Portfolio sorted on (size, book-to-market) 1
102 port5_high (5, high) Portfolio sorted on (size, book-to-market) 1
103 port5_low (5, low) Portfolio sorted on (size, book-to-market) 1
104 port6_2 (6, 2) Portfolio sorted on (size, book-to-market) 1
105 port6_3 (6, 3) Portfolio sorted on (size, book-to-market) 1
106 port6_4 (6, 4) Portfolio sorted on (size, book-to-market) 1
107 port6_5 (6, 5) Portfolio sorted on (size, book-to-market) 1
108 port6_6 (6, 6) Portfolio sorted on (size, book-to-market) 1
109 port6_7 (6, 7) Portfolio sorted on (size, book-to-market) 1
110 port6_8 (6, 8) Portfolio sorted on (size, book-to-market) 1
111 port6_9 (6, 9) Portfolio sorted on (size, book-to-market) 1
112 port6_high (6, high) Portfolio sorted on (size, book-to-market) 1
113 port6_low (6, low) Portfolio sorted on (size, book-to-market) 1
114 port7_2 (7, 2) Portfolio sorted on (size, book-to-market) 1
115 port7_3 (7, 3) Portfolio sorted on (size, book-to-market) 1
116 port7_4 (7, 4) Portfolio sorted on (size, book-to-market) 1
117 port7_5 (7, 5) Portfolio sorted on (size, book-to-market) 1
118 port7_6 (7, 6) Portfolio sorted on (size, book-to-market) 1
119 port7_7 (7, 7) Portfolio sorted on (size, book-to-market) 1
120 port7_8 (7, 8) Portfolio sorted on (size, book-to-market) 1
121 port7_9 (7, 9) Portfolio sorted on (size, book-to-market) 1
122 port7_low (7, low) Portfolio sorted on (size, book-to-market) 1
123 port8_2 (8, 2) Portfolio sorted on (size, book-to-market) 1
124 port8_3 (8, 3) Portfolio sorted on (size, book-to-market) 1
125 port8_4 (8, 4) Portfolio sorted on (size, book-to-market) 1
126 port8_5 (8, 5) Portfolio sorted on (size, book-to-market) 1
127 port8_6 (8, 6) Portfolio sorted on (size, book-to-market) 1
128 port8_7 (8, 7) Portfolio sorted on (size, book-to-market) 1
129 port8_8 (8, 7) Portfolio sorted on (size, book-to-market) 1
130 port8_9 (8, 9) Portfolio sorted on (size, book-to-market) 1
131 port8_high (8, high) Portfolio sorted on (size, book-to-market) 1
132 port8_low (8, low) Portfolio sorted on (size, book-to-market) 1
133 port9_2 (9, 2) Portfolio sorted on (size, book-to-market) 1
134 port9_3 (9, 3) Portfolio sorted on (size, book-to-market) 1
135 port9_4 (9, 4) Portfolio sorted on (size, book-to-market) 1
136 port9_5 (9, 5) Portfolio sorted on (size, book-to-market) 1
137 port9_6 (9, 6) Portfolio sorted on (size, book-to-market) 1
138 port9_7 (9, 7) Portfolio sorted on (size, book-to-market) 1
139 port9_8 (9, 8) Portfolio sorted on (size, book-to-market) 1
140 port9_high (9, high) Portfolio sorted on (size, book-to-market) 1
141 port9_low (9, low) Portfolio sorted on (size, book-to-market) 1
142 port10_2 (10, 2) Portfolio sorted on (size, book-to-market) 1
143 port10_3 (10, 3) Portfolio sorted on (size, book-to-market) 1
144 port10_4 (10, 4) Portfolio sorted on (size, book-to-market) 1
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Group 4 : Size/Book-to-Market (cont.)
No. Code Description Tcode
145 port10_5 (10, 5) Portfolio sorted on (size, book-to-market) 1
146 port10_6 (10, 6) Portfolio sorted on (size, book-to-market) 1
147 port10_7 (10, 7) Portfolio sorted on (size, book-to-market) 1


