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Abstract
An interesting feature of Bcl-xL protein is the presence of an unstructured loop

domain between its al and a2 helices, a domain not essential for its anti-apoptotic
function and absent in CED-9, ortholog protein in Caenorhabditis elegans. Within this
domain, Bcl-xL undergoes dynamic phosphorylation and dephosphorylation at Ser49 and
Ser62 during G2 and mitosis in human cancer cells. When these residues are mutated and
proteins expressed in cancer cells, cells harbor mitotic defects, including chromosome
mis-attachment, lagging, bridging and mis-segregation, events associated with
chromosome instability and aneuploidy. To further analyze the effects of Bcl-xL Ser49
and Ser62 in normal cells, the present studies were performed in normal human diploid
cells, and in vivo in Caenorhabditis elegans.

First, we studied normal human diploid BJ foreskin fibroblast cells expressing Bcl-
xL(wild type), (S49A), (S49D), (S62A), (S62D) and the dual (S49/62A) and (S49/62D)
mutants. Cells expressing S49 and/or S62 phosphorylation mutants showed reduced
kinetics of cell population doubling. These effects on cell population doubling kinetics
correlated with early outbreak of senescence with no impact on the cell death rate.
Senescent cells displayed typical senescence-associated phenotypes including high-level
of senescence-associated f-galactosidase activity, interleukin-6 secretion, tumor
suppressor p53 and cyclin-dependent kinase inhibitor p21Waf1/Cipl activation as well as
YH2A X-associated nuclear chromatin foci. Fluorescence in situ hybridization analysis
and Giemsa-banded karyotypes revealed that the expression of Bcl-xL. phosphorylation
mutants in normal diploid BJ cells provoked chromosome instability and aneuploidy.
These findings suggest that dynamic Bcl-xL Ser49 and Ser62 phosphorylation/
dephosphorylation cycles are important in the maintenance of chromosome integrity
during mitosis in normal cells.

Second, we undertook experiments in Caenorhabditis elegans to understand the
importance of Bcl-xL Ser49 and Ser62 in vivo. Transgenic worms carrying single-site
S49A, S62A, S49D, S62D and dual-site S49/62A mutants were generated and their
effects were analyzed in germlines of young adult worms. Worms expressing Bcl-xL
variants showed decreased egg-laying and hatching, variations in the length of their

mitotic regions and transition zones, chromosomal abnormalities at their diplotene stages,

iii



and increased germline apoptosis. Some of these transgenic strains, particularly the Ser to
Ala variants, also showed slight modulations of lifespan compared to their controls. The
in vivo observations confirmed the importance of Ser49 and Ser62 within the loop
domain of Bcl-xL in maintaining chromosome stability.

These studies could impact future strategies aiming to develop and identify
compounds that could target not only the anti-apoptotic domain of Bcl-xL protein, but

also its mitotic domain for cancer therapy.

Key Words: Bcl-xL, mitosis, chromosome instability, aneuploidy, senescence, apoptosis.
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Résumé

Une caractéristique intéressante de la protéine Bcl-xL est la présence d'un domaine en
boucle non-structurée entre les hélices ol and a2 de la protéine. Ce domaine protéique
n'est pas essentiel pour sa fonction anti-apoptotique et absent chez CED-9, la protéine
orthologue chez Caenorhabditis elegans. A 1'intérieur de ce domaine, Bcl-xL subit une
phosphorylation et déphosphorylation dynamique sur les résidus Ser49 et Ser62 en phase
G2 du cycle cellulaire et lors de la mitose. Lorsque ces résidus sont mutés et les protéines
exprimées dans des cellules cancéreuses, les cellules démontrent plusieurs défauts
mitotiques liés a l'instabilité chromosomique. Pour analyser les effets de Bcl-xL Ser49 et
Ser62 dans les cellules normales, les présentes études ont été réalisées dans des cellules
diploides humaines normales, et in vivo chez Caenorhabditis elegans.

Dans une premiere €tude, nous avons utilisé la lignée cellulaire de cellules
fibroblastiques diploides humaines normales BJ, exprimant Bcl-xL (type sauvage),
(S49A), (S49D), (S62A), (S62D) et les double (S49/62A) et (S49/62D) mutants. Les
cellules exprimant les mutants de phosphorylation ont montré des cinétiques de
doublement de la population cellulaire réduites. Ces effets sur la cinétique de doublement
de la population cellulaire correle avec l'apparition de la sénescence cellulaire, sans
impact sur les taux de mort cellulaire. Ces cellules sénescentes affichent des phénotypes
typiques de sénescence associés notamment a haut niveau de l'activité [3-galactosidase
associée a la sénescence, la sécrétion d' interleukine-6, l'activation de p53 et de
p21WAF1/ Cipl, un inhibiteur des complexes kinase cycline-dépendant, ainsi que la
formation de foyers de chromatine nucléaire associés a YH2A.X. Les analyses de
fluorescence par hybridation in situ et des caryotypes par coloration au Giemsa ont révélé
que l'expression des mutants de phosphorylation de Bcl-xL provoquent de l'instabilité
chromosomique et Il'aneuploidie. Ces résultats suggerent que les cycles de
phosphorylation et déphosphorylation dynamiques de Bcl-xL Ser49 et Ser62 sont
importants dans le maintien de l'intégrit¢ des chromosomes lors de la mitose dans les
cellules normales.

Dans une deuxieme étude, nous avons entrepris des expériences chez Caenorhabditis
elegans pour comprendre l'importance des résidus Ser49 et Ser62 de Bcl-xL in vivo. Les

vers transgéniques portant les mutations de Bcl-xL (S49A, S62A, S49D, S62D et



S49/62A) ont ét€ générés et leurs effets ont été analysés sur les cellules germinales des
jeunes vers adultes. Les vers portant les mutations de Bcl-xL ont montré une diminution
de ponte et d'éclosion des oeufs, des variations de la longueur de leurs régions mitotiques
et des zones de transition, des anomalies chromosomiques a leur stade de diploténe, et
une augmentation de l'apoptose des cellules germinales. Certaines de ces souches
transgéniques, en particulier les variants Ser/Ala, ont également montré des variations de
durée de vie par rapport aux vers témoins. Ces observations in vivo ont confirmé
I'importance de Ser49 et Ser62 a l'intérieur du domaine a boucle de Bcl-xL pour le
maintien de la stabilité chromosomique.

Ces études auront une incidence sur les futures stratégies visant a développer et a
identifier des composés qui pourraient cibler non seulement le domaine anti-apoptotique

de la protéine Bcl-xL, mais aussi son domaine mitotique pour la thérapie du cancer.

Mots clé: Bcl-xL, mitose, instabilité chromosomique, aneuploidie, sénescence, apoptose
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1. Introduction

1.1 Cell cycle, senescence and cell death : A brief overview

The term cell cycle refers to the orderly biological process where one cell will
generate 2 daughter cells through the duplication of their genetic material and cell
division. In eukaryotes the cell cycle is divided into specific phases, gap phase 0 (GO),
gap phase 1 (G1), DNA synthesis phase (S), gap phase 2 (G2), and mitosis (M)"*. To
ensure that the cells pass accurate copies of their genomes on to the next generation,
evolution has overlaid the core cell cycle machinery with a series of surveillance
pathways termed cell cycle checkpoints™®’. DNA damage including single nucleotide
damage, base pair mismatch, DNA single-strand breaks (SSB) and double-strand breaks
(DSB), chromosome misattachment and missegregation during mitosis represent global
and serious threats to genomic and chromosome stability which will rapidly induce
complex pleiotropic cell responses paired to cell cycle checkpoints and repair
mechanisms'*'°. The overall function of these checkpoints in response to damaged or
abnormally structured DNA is to slow down and halt cell cycle progression, thereby
allowing time for appropriate repair mechanisms to correct the genetic lesions and/or
structural aberrations before they are passed on to the next generation of daughter cells.
At their most proximal signaling elements, these complex machineries contain, sensor
proteins or protein complexes that scan chromatin for partially replicated DNA, DNA
errors, DNA strand breaks, or chromosome misattachment and missegregation, and
translate these derived stimuli into biochemical signals that will modulate the functions of
specific target proteins''. These mechanisms first promote cell cycle arrest, DNA repair
and proper chromosome alignment and segregation, but can also promote irreversible
cellular senescence or cell death'”. The repair mechanisms correct minor irregularities
during a temporary cell cycle halt, whereas more deleterious defects are believed to result
in the induction of cellular senescence or cell death. Defects in those signalling cascades
and/or repair mechanisms combined with errors initiating cellular senescence or cell
death could yield to mutations and/or aneuploidy leading to genomic and/or chromosome

instability '>'¢.



Cells can enter into an irreversible cell cycle arrest termed cellular senescence. The
process of cellular senescence was first described more than 50 years ago by Hayflick
and Moorehead as an irreversible cell cycle arrest of human fibroblasts that lost their
proliferative capacity®'>'®. It was later found that telomeres, necessary for chromosome
integrity and proper cell division, were gradually depleted to a threshold level within 40—
45 generations, which triggered the induction of senescence. This threshold was termed
as the Hayflick limit"". This natural process was named replicative senescence (RS),
which differs from premature senescence (PS), an accelerated mechanism that occurs in
response to extrinsic or intrinsic stress stimuli. These include DNA damage, disrupted
chromatin organization, increased oncogenic signalling, increased replicative stress,
treatment with chemotherapeutic drugs or irradiation'® and oxidative stress'**’. Cellular
senescence is a safeguard limiting the proliferative competence of cells in living
organisms and can act as a potent tumor suppressor mechanism for normal cells *'.

Cell death is often associated with apoptosis*, a morphologically distinct form of
physiological and programmed cell death, explicitly described through many years of
research®”. An understanding of apoptosis in mammalian cells was first achieved by
research in the nematode Caenorhabditis elegans (C. elegans)**. Apoptosis has since
been widely accepted as the primary mode of programmed cell death (PCD), which
genetically eliminates predetermined cells from an organism during development. The
process is also active in adult organisms as a homeostatic mechanism to maintain cell
populations in tissues. Apoptosis also occurs as a defense mechanism such as in immune
reactions or when cells are damaged in association with diseases, noxious agents or
deregulation of cellular processes”. Programmed necrosis or necroptosis and, in some
contexts, autophagy are often considered as two others forms of PCD, easily
distinguished by their morphological differences®. Apoptosis, or type I PCD, described
by Kerr et al.* is characterized by cell shrinkage, nuclear disassembly associated with
chromatin condensation and fragmentation, dynamic membrane blebbing and loss of
adhesion to neighbors or to extracellular matrix. Biochemical changes include
chromosomal DNA cleavage into internucleosomal fragments, phosphatidylserine
externalization and a number of intracellular substrate cleavages by specific

27,28

proteolysis™~. Autophagy, or type II PCD, is a catabolic process beginning with



formation of autophagosomes, which plays a crucial pro-survival role in cell homeostasis.
It is required during periods of starvation or stress due to growth factor deprivation but in
some contexts also leads to a form of cell death®****. Type III PCD termed programmed
necrosis or necroptosis, involves cell swelling, organelle dysfunction and cell lysis™™.
Thus, PCD may play an important role during preservation of tissue homoeostasis and
elimination of damaged cells; this has profound effects on malignant tissues® .

The intimate link between the cell cycle, cellular senescence and cell death with
diseases including cancer initiation and development and tumor responses to cancer

treatment is getting clearer as research progresses, but it is very far from being

completely understood®*. A schematic view of these concepts is shown in Figure 1.
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Figure 1: Schematic view of cellular response and fate after DNA damage (adapted
from Wang et al., 2011 43).



The first sections of the Introduction (1.2 to 1.6) focus on mechanisms in mammalian
cells, whereas the last section (1.7) is devoted to C. elegans, the second model used for

these studies.

1.2 Bcl-2 family of proteins

BCL2 was the first anti-death gene discovered in mammals*, a milestone with far
reaching implications for tumor biology. BCL2 was discovered because of its
involvement in t(14;18) chromosomal translocations observed in non-Hodgkin’s
lymphomas**°. Multiple members of Bcl-2 family of apoptosis regulating proteins have
been identified since, including mammalian anti-apoptotic proteins (Bcl-2, Bel-xL, Mcl-
1, Bcl-xES, Bcl-B, Bcel-w, Bfl-1/A1, Boo/Diva), structurally similar pro-apoptotic
proteins (Bax, Bak, Bok/Mtd, Bcl-xS, Bcl-rambo, Bcl-gL) and several structurally
diverse pro-apoptotic interacting proteins that operate as upstream agonists or
antagonists, called the BH3-only proteins (Bad, Bik, Bid, Bim, Noxa, Puma, Hrk, Bnip1 -
3, Bmf, Mcl-1s, Bcl-gS, Spike)*. Proteins of the Bcl-2 family play central roles in cell
death regulation and are capable of regulating diverse cell death mechanisms that

4748

encompass apoptosis, necrosis and autophagy™™, and thus are found undoubtedly altered
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in many cancers and leukemia Apart from their well-studied roles in controlling

apoptosis, members of the Bcl-2 family of proteins also interface with the cell cycle®®,

70-73 74,75

DNA repair pathways and membrane remodelling mechanisms™", pathways which

are well separated from their roles in apoptosis™>>">"",

1.2.1 Structure of anti-apoptotic Bcl-xL protein

The pro-survival family of Bcl-2 proteins has been divided into two sub-classes based
on the presence of one or more of Bcl-2 homology (BH) regions (Fig. 2). Four of these
regions (BH1-4) of sequence homology have been identified, and each Bcl-2 family
members contains at least one of them’”. Several members of the pro-survival subclass,
such as Bcl-2, Bcl-xL, Bbl.-w, and the CED-9 protein from C. elegans, possess all four
BH regions. Others, such as Mcl-1, the BHRF1 protein from Epstein—Barr virus, and
KSHV- Bcl-2 from Kaposi sarcoma virus, only possess strong sequence homology in the

BHI1, BH2, and BH3 regions.



The first published structure of a Bcl-2 family member was that of human Bcl-xL
determined by X-ray crystallography and nuclear magnetic resonance (NMR)
spectroscopy. It showed that the overall structure of Bcl-xL consists of nine a—helices
connected by loops of varying lengths. Bcl-xL adopts a globular structure; it consists of
two central, primarily hydrophobic a-helices (a5 and a6), which are surrounded by
amphipathic helices: a3 and 04 and by al, a2 and a7. A 60-residue loop connecting
helices o1 and a2 are flexible and non-essential for anti-apoptotic activity*’. The
signature “NWGR” sequence directly precedes a5. In Bcl-xL, this region appears to play
both an important structural and functional role. Structurally, the tryptophan residue
makes extensive hydrophobic contacts with residues in a7 and a8. The arginine residue
also plays a key functional role in the binding of Bcl-xL to pro-apoptotic proteins and
peptides such as Bax and Bak. The Bcl-2 family of proteins share homology domains
BH1 and BH2 and mutations in these regions in either Bcl-2 or Bcl-xL abrogates the anti-
apoptotic activity and block the heterodimerization with other members of the Bcl-2
family (e.g., Bax and Bak) that promote apoptosis®****. BH1, BH2 and BH3 are in close
proximity and form an elongated hydrophobic cleft in Bcl-xL, the site for interaction with
death-promoting BH3-only proteins. The BH3 region is involved in activity of the death
promoting proteins***. The BH3 amphipathic helix of BH3-only proteins binds the
hydrophobic groove of pro-survival proteins predominantly by the insertion of four
hydrophobic residues (h1-h4) along one face into hydrophobic pockets in the groove, and
by the formation of a salt bridge between a conserved BH3 Asp residue and a conserved
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Arg residue in the BHI domain of the pro-survival proteins® ™. Structural studies have

shown that the BH3 binding groove of the pro-survival Bcl-2 family members has

90,91

considerable plasticity” ', which probably contributes to their ability to associate with

multiple distinct BH3 domains. Besides the BH regions, many of the Bcl-2 family
members possess a carboxy-terminal hydrophobic domain, which is predicted to be

responsible for membrane localization’””.
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Figure 2: Comparison of domain structures of Bcl-2 family members. All Bcl-2
family of proteins contains at least one of the Bcl-2 homology (BH) domains; BH1, BH2,
BH3 and BH4. They also possesses a Transmembrane (TM) domain. The BH3 only
proteins contain only one, BH3 domain for their pro-apoptotic functions. (diagram
adapted from Peter E. Czabotar et. al 20147°).

The sequence homology between Bcl-xL and other Bcl-2 members suggests similar
structural folds. The arrangement of a-helices in Bcl-xL is reminiscent of the membrane

translocation domain of bacterial toxins, in particular diphtheria toxin and the colicins™.

1.2.2 Structure and importance of the loop domain of Bcl-xL

An interesting feature of the Bcl-xL protein is the presence of a long loop between ol
and a2” (Fig. 3). This loop is largely unstructured as evidenced by the lack of electron
density for residues 28-80 and the lack of medium and long range nuclear Overhauser
effects (NOEs) for these residues’. In addition, this region has highly variable amino acid
sequence among Bcl-2 family members. This loop domain has been shown to be the site
of some post-translational modifications affecting the activity of both Bcl-xL and Bcl-2*.
For example, interleukin-3 (Il-3) or erythropoietin treatment of NSF/N1.H7 cells induced
the phosphorylation of Ser70, resulting in the inactivation of Bcl-27. Mutant proteins
with Ser to Ala mutation® or deletion of the loop domain together® was able to inhibit
PCD better than the wild type protein. In contrast, proteolytic cleavage of the Bcl-2 loop

at Asp34 by caspase-3 converts it from an anti-apoptotic to a pro-apoptotic protein®'®.
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Figure 3: Bcl-xL structure. A) Bcl-xL contains BH1, BH2, BH3 and BH4 domains, a
COOH-terminus hydrophobic transmembrane domain (TM) and an unstructured loop
domain (LOOP), between BH4 and BH3. The amino acid sequence of the flexible loop
domain is indicated. A region of the loop domain previously identified as important for
Bcl-xL cell cycle functions is highlighted in the boxed region®. Amino acids that have
been mutated (Thr/Ala, Ser/Ala) and studied in a series of functional assays are
highlighted in red'®'"'®* (adapted from Wang et al 2011*). B) Visualization of the 3D
structure of Bcl-xL, with the annotated a-helices, BH domains, S49 and S62 (modified
from the National Center of Biotechnology Information (NCBI)/ cn3D Web site.)

However, compared to the full-length protein, Bcl-xL loop deletion mutants tend to
display a similar ability to inhibit apoptosis and do not show significant alterations in
their ability to bind pro-apoptotic proteins’*>*®, There is growing evidence indicating that
Ser62 of Bcel-xL is highly phosphorylated in cells exposed to microtubule inhibitors, and
a few protein kinases have been proposed to phosphorylate Bcl-xL(Ser62) in microtubule
inhibitor-exposed cells'**'”. Previous work in our laboratory has revealed that two serine

residues within the unstructured loop domain of Bcl-xL, Ser49 and Ser62, undergo



dynamic phosphorylation/dephosphorylation events during cell cycle progression'®'®,

The function of the unstructured loop domain within Bcl-xL remains elusive, and is the

subject of this work.

1.2.3 Bcl-2 family proteins interface with cell cycle

Numerous studies have revealed links between some Bcl-2-like family members, cell
cycle progression and cell cycle checkpoint regulation. First, Bcl-2 has been shown to
slow entry from the quiescent GO into the G1 phase of the cell cycle in multiple cell
lineages from transgenic mice. In contrast, Bcl2” knockout cells enter S-phase more
quickly'®'"°. More recently, phosphorylated forms of Bcl-2 also have been found to co-
localize in nuclear structures and on mitotic chromosomes, revealing the importance of
phosphorylation events for Bcl-2 protein localization during cell cycle progression'''.
Mcl-1, another Bcl-2 homologue known to function as an anti-apoptotic protein''?,
inhibits cell cycle progression through the S phase of the cell cycle. The cell cycle
regulatory function of Mcl-1 is partially mediated through its interaction with
proliferating cell nuclear antigen, a cell cycle regulator that is crucial in DNA
replication’'"’. Others have reported that a proteolytic fragment of Mcl-1 regulates cell
proliferation via its interaction with cyclin-dependent kinase 1 (Cdk1/Cdc20)''* and that
Mcl-1 is essential in Atr-mediated Chk1 phosphorylation'®. Others have discerned the
involvement of Bid, a BH3-only protein with pro-apoptotic activity, at the intra-S phase
checkpoint under replicative stress and in response to DNA-damaging agents. This
function of Bid is mediated through its phosphorylation at Ser78 and Ser61/64 by the
DNA-damage signaling kinase Atm ">,

Previous studies from our laboratory reported that Bcl-xL, an anti-apoptotic Bcl-2
family member, not only counteracts BH3-only protein-mediated cell death signals after
DNA-damaging treatment, it also stabilizes the G2 cell cycle checkpoint and favours the
establishment of premature senescence in surviving cells after DNA topoisomerase I
(camptothecin) and II (VP16) inhibitor exposition™. Bcl-xL co-localizes with Cdk1/Cdc2
in nucleolar structures and binds to Cdk1/Cdc2 during the G2 checkpoint, whereas its
overexpression stabilizes G2 arrest and premature senescence in surviving cells after

DNA damage. Interestingly, Bcl-xL potently inhibits Cdk1/Cdc2 kinase activities in



vitro. In in vitro kinase assays using recombinant Bcl-xL protein, this effect was reversed
by the addition of a synthetic peptide corresponding to the 41* to 60" amino acids, a
region rich in Ser- and Thr- putative phosphorylation residues within the flexible loop
domain of Bcl-xL. Furthermore, a deletion mutant of this region (Bcl-xLAP3) did not
alter the anti-apoptotic function of Bcl-xL, but impeded its effect on Cdk1/Cdc2 activities
and on the G2 checkpoint after DNA damage™. Bcl-xL is phosphorylated on Ser62 at the
loop domain during normal cell cycle progression and DNA-damage induced G2 arrest
by Plkl and Mapk9/Jnk2'”*>. Phosphorylated Bcl-xL(Ser62) accumulates in nucleolar
structures including nucleoli and Cajal bodies during the stabilization of DNA damage-
induced G2 arrest and co-localizes with Cdk1/Cdc2 avoiding unwanted mitosis during
DNA damage'”.

During mitosis, Bcl-xL(Ser62) 1is strongly phosphorylated by Plkl and
Mapk14/Sapkp38a. at prometaphase, metaphase and the anaphase boundary, while it is
dephosphorylated at telophase and cytokinesis'”. Phospho-Bcl-xL (Ser62) localizes in
centrosomes with <y-tubulin, and in the mitotic cytosol with some spindle-assembly
checkpoint (SAC) signaling components, including Plk1, BubR1 and Mad?2. In taxol- and
nocodazole-exposed cells, phospho-Bcl-xL(S62) also binds to Cdc20- Mad2- BubR1-
and Bub3-bound complexes, while the phosphorylation mutant Bcl-xL(S62A) does not'”
(Fig. 4).

In parallel, Bcl-xL undergoes cell cycle-dependent phosphorylation on Ser49, which
accumulates in centrosomes during the G2 cell cycle checkpoint, particularly during
DNA damage-induced G2 arrest '”'. Bcl-xL(Ser49) is rapidly dephosphorylated at early
mitotic phases (prometaphase, metaphase, anaphase) and is rephosphorylated during
telophase/cytokinesis by PIlk3. Phospho-Bcl-xL(S49) is found in association with
microtubule-associated dynein motor proteins and at the mid-zone body during
telophase/cytokinesis'"" (Fig. 4).

In tumor cells, expression of the phosphorylation mutants Bcl-xL(S62A), Bcl-
xL(S49A) or dual Bcl-xL(S49/62A) has no effect on apoptosis, but leads to an increased
number of cells harbouring mitotic defects'”. These defects include multipolar spindles,

chromosome lagging and bridging, and cells with micro-, bi- or multi-nucleated cells, and
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Figure 4: Schematic representation of Bcl-xL. phosphorylation during the
progression of mitosis. Question marks (?) indicate that the exact mechanisms are still
unknown (modified from Wang et al 2014'®).

cells that fail to resolve and complete mitosis'”’. Together, these observations indicated
that during mitosis, Bcl-xL(S49) and (S62) phosphorylation/dephosphorylation dynamics
impact on chromosome stability, mitosis resolution and cytokinesis completion, at least
in tumour cells'"""'?.
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1.3 The cell cycle : regulation at interphase
1.3.1 Cyclin-dependent kinases and cyclin-dependent kinase inhibitors

Proper progression through the cell cycle is monitored by checkpoints that sense
possible defects during DNA synthesis and chromosome segregation. During interphase,
activation of these checkpoints induces cell cycle arrest, which is controlled by interplay
modulation of cyclin dependent kinases (Cdks) and their associated cyclins. Cell cycle
arrest at these checkpoints allows the cell to repair defects, thus preventing transmission
of damage to the daughter cells'”’. Cdks are the catalytic subunits of a family of
mammalian heterodimeric serine/threonine kinases, best characterized in the control of
cell cycle progression. Cdks were first implicated in cell cycle control based on
pioneering work in yeast, in which Cdc genes were identified including Cdc8 in the
budding yeast S. cerevisiae and Cdc2 in the fission yeast S. pombe, and were found to
promote transitions between different cell cycle phases through its interactions with
various regulatory cyclin subunits''*'*'. Cyclins are synthesized and destroyed at specific
times during the cell cycle, regulating kinase activity of Cdks in a timely manner. Soon,
homologs of CDC2 were identified in human cells '** by their ability to complement yeast
mutants'”. Subsequently, CDK2 was discovered because of its ability to complement
Cdc8 S. cerevisiae mutants'>*'?’. Currently more than 20 members of the Cdk family each
characterized by a conserved catalytic core made of an ATP binding pocket, a PSTAIRE-
like cyclin binding domain and an activating T-loop motif. Cyclins belong to a
remarkably diverse group of proteins classified solely on the existence of a cyclin box
that mediates binding to Cdk'*®. Cdk activities are restrained by another class of proteins,
the cyclin-dependent kinase inhibitors (Cki). Cki are subdivided into two families based
on their structure and Cdk specificity. Ink4 proteins, including Ink4A, Ink4B, Ink4C and
Ink4D'; primarily target Cdk4 and Cdk6. The Cip/Kip family composed of p21, p27 and
p57'* are more promiscuous and broadly interfere with the activities of cyclin D, E, A

and B dependent kinase complexes'*

. Cki have been shown to block the proliferation of
adult stem cells in multiple tissue types. Loss of Cki may expand the stem cell

population, possibly contributing to the development of specific tumours.
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1.3.2 G1-S phase transition

After cytokinesis is completed, the newly generated cells can either continue cell division
or stop proliferating. If cells are deprived of growth factors prior to the G1 checkpoint,
they exit into a state of quiescence known as GO. Those cells that continue proliferating
advance to the G1 phase of the new cycle (Fig. 5). According to the classical model for
the mammalian cell cycle, specific Cdk-cyclin complexes are responsible for driving the
various events known to take place during interphase in a sequential and orderly fashion.
Progression through G1 is mainly regulated by Cdk4, Cdk6 and Cdk2 and their
regulatory cyclins"™*"'. At the beginning of G1, the mitogenic signaling induces synthesis
of the D-type cyclins (D1, D2 and D3) and possibly the proper folding and transport of
Cdk4 and/or Cdk6 to the nucleus and the activation of the latter. These Cdk-cyclin
complexes phosphorylate members of the retinoblastoma (Rb) protein family; pRb, p107
(RbL1) and p130 (RbL2) at their unique phoshorylation sites. The retinoblastoma protein
(pRb) and the pRb-related p107 and p130 comprise the 'pocket protein' family of cell
cycle regulators. These proteins are best known for their roles in restraining the G1-S
transition through the regulation of E2f-responsive genes. pRb and the p107/p130 pair are
required for the repression of distinct sets of genes, potentially due to their selective
interactions with E2fs that are engaged at specific promoter elements'*. Inactivation of
pocket proteins allow for the expression of the E-type cyclins (E1 and E2) which bind
and activate Cdk2'*'*. Cyclin E- cdk2 complexes further phosphorylate these pocket
proteins, leading to their complete inactivation'**'”. Another kinase, Cdk3 might also
participate in inactivation of pRb.

Cyclin E-Cdk2 activity is thought to be essential for initiating DNA replication by
facilitating loading of the Mcm chromosome maintenance proteins onto origins of
replication. Once cells enter S-phase, cyclin E-cdk2 complexes need to be silenced to
avoid the re-replication of DNA'*, Rapid degradation of cyclin E is carried about by Scf-
Fbxw?7 ubiquitin ligase followed by its subsequent cleavage by the proteasome. In
addition, cyclin E-cdk2 phosphorylates its own inhibitor p27, thereby facilitating the
degradation of this inhibitor by the proteasome'”. Inactivation of pRb also activates
transcription of A-type and B-type cyclins. Cyclin A-cdk2 is required for proper

completion and exit from S phase. S phase proteins also include upstream regulators of
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cyclin A (pRb), transcription factors (E2f1, B-Myb), protein involved in DNA replication
(Cdc6, Hssb, Mcm4), DNA repair (Brcal, Ku70), histone deposition and nucleosome
assembly (Hira)"”’, ubiquitin mediated proteolysis (hHR6A and Cdc20) and cell cycle
checkpoints (p53, p21°*', Mdm2)".
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Figure 5: Eukaryotic cell cycle phases with respective cyclin-Cdk complexes and
inhibitors. The Cdk-cyclin complexes regulate the cell cycle in terms of its entry from
one phase to another apart from the checkpoint proteins. Cyclin D-Cdk4/6 complex
stimulates the initiation of G1 phase and the start of the cell cycle. Increasing levels of
cyclin E-Cdk?2 triggers the onset of S phase towards the end of G1 phase. Then, Cyclin
A- Cdk?2 regulates the completion of S phase and entry into G2, where cyclin B-Cdk1 is
involved. The level of cyclin B increases initially and decreases at the end of M phase,
followed by a decrease in Cdk1. (Diagram modified from Moghadam et al., 2011"*)
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1.3.3 G2-M phase transition

At the end of the G2 phase, B-type cyclins associate with Cdkl1(cdc2), the master
regulatory kinase that controls the entry into mitosis. Cdkl is only active at the G2/M
border and becomes inactive as cells enter the anaphase stage of mitosis'*>'*’. During G2,
mammalian cyclin B1/Cdk1 complexes are held in an inactive state by phosphorylation

of Cdkl at two negative regulatory sites; Thr14 and Thr15, catalyzed by Mytl and Weel
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kinases respectively, when it is bound to cyclin B1'"'*. Cdc25 phosphatases
dephosphorylate these sites for the activation of Cdkl. Mammalian cells have three
Cdc25 phosphatases, Cdc25A, B and C, which appear to have some level of specificity
for different cyclin/Cdk complexes along the cell cycle. Studies indicate that Cdc25A
regulates G1/S and G2/M transitions, whereas Cdc25B and Cdc5C are involved in intra-S
and G2/M regulation'*'*"'**. Entry into mitosis absolutely requires progressive
accumulation of active cyclin B1/Cdkl(cdc2) complexes in the nucleus. Cyclin
B1/Cdk1(cdc2) kinase activity is therefore highly organized to coordinate and trigger
different mitotic events. The initial activation of cyclin B1/Cdk1(cdc2) complexes occurs
about 20 to 25 minutes before nucleolar disassembly and nuclear breakdown'>*'*>. After
these events, cyclin B1/Cdkl(cdc2) rapidly reaches its maximum activity to promote

mitosis.

1.4 The cell cycle : mitosis regulation

Mitosis can be divided into five distinct phases: prophase, prometaphase, metaphase,
anaphase and telophase (Fig. 6). During prophase, chromosomes condense into highly
compacted rigid bodies for physical segregation of sister chromatids into the daughter

cells'®

. Centrosomes increase the assembly rate of dynamic microtubules and move apart
to form a bipolar spindle. During prometaphase chromosomes successively attach to the
mitotic spindle microtubules via their kinetochores, multi protein structures that assemble

on centromeric chromatin'’

. Chromosomes align at the metaphase plate along the spindle
equator with sister chromatids, the two identical copies of a chromosome, facing opposite
poles™. Once all sister kinetochores are attached to microtubules originating from
opposite spindle poles, mitotic exit initiates by cleavage of the cohesion rings that hold
sister chromatids together'”’. In anaphase sister chromatids are then segregated towards

opposite spindle poles.
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Figure 6: Progression through mitosis. Mitosis proper in general involves four major
stages- Prophase, metaphase, anaphase and telophase. The stages are shown by schematic
of the mitotic spindle and chromosomes. Sister chromatids, the two identical copies of a
chromosome, are separated at the end of the mitosis into two equal daughter cells.
(diagram inspired from Cheeseman and Desai, 2008")

In telophase, many mitotic changes revert back to the interphase state; chromosomes
decondense and the nuclear envelope reassembles around two individual nuclei. Finally,
cytokinesis physically splits the cytoplasm to form the two new daughter cells. To ensure
smooth progression of the cell cycle, cell cycle checkpoints constantly monitor the
molecular mechanistics of cell division.

Monitoring the order and fidelity of chromosome alignment and segregation through
mitosis and meiosis is largely achieved by the actions of two checkpoints during mitosis:
the spindle assembly checkpoint (SAC) and the mitosis exit network (MEN). The SAC

functions in metaphase to prevent premature separation of sister chromatids at anaphase
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19012 The MEN acts at the end of telophase and control cytokinesis and cell division
itself ', Accurate chromosome segregation is essential for genome inheritance and
cellular fitness. Lethality or aneuploidy results when chromosomes fail to segregate
during mitosis. Aneuploidy leads to aberrant gene dosage and exposes detrimental
recessive mutations, potentially causing birth defects and promoting cancer cell

proliferation'®*'*®

. Accurate segregation is achieved by linking sister chromatids after
replication, which is mediated by spindle microtubules that attach to chromosomes at the

kinetochores.

1.4.1 Chromosome - microtubule attachment
1.4.1.1 The kinetochores

The kinetochore is a hierarchical protein assembly composed of nearly 100 proteins
that links centromeric DNA to spindle microtubules and thereby couples forces generated
by microtubule dynamics to power chromosome movement. Core components of the
kinetochore is established by the constitutive centromere associated network (CCAN)'®
and the Knl1-Mis12-Ncd80 (KMN) protein complex'®”’, which bind centromeric DNA
and microtubules, respectively. These networks are conserved across eukaryotes, with
additional contributions from species-specific auxiliary DNA and microtubule binding
proteins. Regulatory proteins at the kinetochore safeguard against erroneous segregation
and thereby increase the fidelity of mitosis in two ways. First, attachments on bi-oriented
kinetochore pairs are selectively stabilized, whereas erroneous attachments are
destabilized and eliminated. This allows for another opportunity for bi-orientation.
Second, unattached kinetochores are the primary signal to activate the SAC. The
competing need for speed and fidelity in chromosome segregation are integrated mainly
at the kinetochore. The KMN network is an essential and conserved complex of proteins
that constitutes the core microtubule binding activity at the kinetochore and is a platform
for SAC signaling. In addition to mediating chromosome spindle attachment, the
kinetochore also plays an essential role in relaying microtubule binding status to the SAC

to delay exit from metaphase and chromosome segregation.
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1.4.1.2 The KMN network

The kinetochore localized KMN network is composed of Knll (Kinetochore null
protein 1), four subunits of Mis12 (Mis-segregation 12) and four subunits of Ndc80/Hecl
(Nuclear division cycle 80) (Fig. 7). The Ndc80 complex is a heterotetramer comprising
Ndc80/Hecl, nuclear filamentous 2 (Nuf2), spindle pole component 24 (Spc24) and
Spc25. The site where kinetochores are assembled is determined by the presence of a
modified histone H3 or Cenp-A in humans, within nucleosomes at the periphery of each
sister centromere. The KMN network associates with kinetochores in prophase and
disappears from kinetochores in telophase'®. Heterodimers of Spc24-Spc25 and
Ndc80/Hec1-Nuf2 interact via coiled coil domains and assemble into a coiled like

d169»l72

structure with distinct functional domains at each en . The globular domains of the

Ndc80/Hec1-Nuf2 heterodimer fold into a calponin homology domain, which mediates

microtubule binding'®"'7*'7

. The Spc24-Spc25 heterodimer globular domains are
essential for kinetochore targeting of the Ndc80/Hecl complex, as they directly bind to
the Mis12 complex'” and CCAN components'”®. To couple chromosome movement to
microtubule dynamics, an electrostatic interaction between the basic amino terminal tail
of the Ndc80/Hec1 protein and the acidic E-hook of tubulin confers affinity'’>'*'””. The
complex then binds to microtubules by recognizing both a-tubulin and B-tubulin at the
inter- and intra-tubulin interfaces'”’. The Ndc80/Hecl complex binds to the microtubule
every 4 nm space, acting as a sensor allowing it to detach near depolymerizing
microtubule ends.

Knll has a microtubule binding activity, which enhances the binding of the KMN
network with microtubules in vitro'¥’. The Mis12 complex function as an inter-complex
scaffold that links the KMN network to the centromeric DNA via direct association with
the CCAN protein CenpC'"™'”. The Misl2 complex also bridges Knll and Ndc80
complex at the kinetochores'”.

A number of other proteins within and at the periphery of the kinetochore outer
domain depend on the presence of members of the KMN network for their kinetochore
localization. These include MT-associated proteins in the proximity of kinetochore MT
plus ends and members of the SAC''®. Current understanding of how KMN networks

promote kinetochore function is limited and requires further work.
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Figure 7: Organization of the KMN network. The KMN network consists of KNLI,
NDC80 and MSL12. The four subunits of the MSL12 complex bridges KNL1 and the
NDC80 complex to the constitutive centromere associated network (CCAN) and
centromeric DNA. (diagram inspired from Emily A. Foley 2013'*")

1.4.2 Activation of the spindle assemble checkpoint

In 1991, two independent screens identified various genes, mutation of which
bypassed the ability of wild type S. cerevisiae cells to arrest in mitosis in the presence of
spindle poisons'®*'*’. The genes which are conserved across eukaryotes, include the
human Ser/Thr kinases multipolar spindle protein 1 (Mpsl) and budding uninhibited by
benomyl 1 (Bubl), as well as the non-kinase components including mitotic arrest
deficient 1 (Mad1), Mad2, Bub3 and the likely pseudo-kinase Bub1 related (BubR1)"**'¢,
These genes are collectively involved in a pathway that is active in prometaphase and

which prevents the premature separation of sister chromatids'®'®

. This pathway
constitutes the spindle assembly checkpoint (SAC). These proteins delay the activation of
Cdc20, a cofactor of the E3 ubiquitin ligase known as anaphase promoting
complex/cyclosome (APC/C)"*"'*®, The APC/C is a master regulator of anaphase entry'®.
A mitotic checkpoint complex (MCC) that contains three SAC proteins, Mad2,

BubR1/Mad3 and Bub3, as well as Cdc20 acts as a SAC effector. The MCC binds the
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APC/C and seems to render it unable to exercise its ubiquitin-ligase activity on securin
and cyclin B®"'. Besides MCC, other core SAC components include Madl, Bubl,
Mpsl1 and Aurora-B. These proteins are required to amplify the SAC signal and the rate
of MCC formation'”’. The SAC inhibits the APC/C functions by inactivation of Cdc20
through the MCC complex .

The key step in MCC formation is conformational activation of Mad2 from the free
‘open’ form (O-Mad2) to the Cdc20-bound ‘closed’ form (C-Mad2)"”®'®°. This
conversion is a catalytic process, occurring through the association of soluble O-Mad2
with kinetochore bound C-Mad2. Mad1 is the receptor for C-Mad2 at the kinetochore,
distinct from Cdc20-bound C-Mad2, which facilitates Mad2 conformational conversion.
The kinetochore at this point promotes Mad2 conversion through hierarchical recruitment
of SAC proteins. This cascade seems to consist of kinases Aurora-B and Mpsl at top,
followed by recruitment of the Bub1-Bub3 complex, then by the recruitment of BubR1-

Bub3, and finally by recruitment of a heterotetramer composed of Madl and Mad2*>**,

1.4.2.1 Bub-related protein kinetochore recruitment

Recently it has been established that core kinetochore protein Knll recruits Bubl,
BubR1 and Bub3*?®, although complex recruitment isn’t clearly understood. Bubl, a
protein kinase, and BubR1, a pseudokinase in vertebrates, contain catalytic domains that
are universally required for the checkpoint and are important for kinetochore bi-
orientation®”?'"°, Bubl and BubR1 bind to Bub3 through a Bub3-binding domain also
known as GLEBS domain. Bubl1 interacts via its TPR motif with the KI motif on Knll of
the kinetochore**”. Mpsl1 kinase activity stimulates Bubl localization and checkpoint
activation and Mps1 mediated phosphorylation of Thr residues on the MELT-like motifs
of Knll, which is required for Bubl kinetochore localization®***. Crystallography and
biochemical stu