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C
ABSTRACT

The 96-amino acid Vpr protein encoded by HW-l performs multiple functions during the

retroviral life cycle, including the enhancement of viral replication in macrophages at early stage

of viral replication, the induction of G2 celi cycle arrest in proliferating T lymphocytes, and the

modulation ofHIY-l-induced apoptosis. In addition, extracellular full-length and processed forms

of Vpr have been previously detected in the sera and cerebral spinal fluids of RW-infected patients.

However, the mechanism underlying this processing and its implication for HW-l pathogenesis

remain unknown.

The first goal of this thesis was to investigate the mechanism of Vpr release and processing

during HIV-l infection. Herein, we report that fiill-length and several cleaved species ofVpr could

be detected in the culture media of HIV-l expressing ceils, independently of Vpr virion

incorporation. Tmncated forms of Vpr were abundant in the extracellular medium from HIV

producing celis but flot from ceils expressing Vpr alone. Moreover a small portion of cleaved Vpr

was found to be associated with the extemal ceil surface of HIV-producing ceils through binding

with celi surface heparin suiphate proteoglycans. Mutagenesis and mass spectrometry analyses

indicated that Vpr was processed at its C-terminus after the highly conserved R85QRR88 motif a

putative pair-basic proprotein convertase (PC) cleavage site. Consistently, the PC peptide inhibitor

dec-RVKR-cmk and the serine protease inhibitors (Œl-PDX and Spn4A) specifically inhibited

extracellular Vpr processing. Transient expression of proprotein convertases PC5A and PACE4

and to a lower extent fiirin increased extracellular Vpr processing, strongly suggesting that Vpr is

processed by proprotein convertases. We provide evidence suggesting that Vpr was processed in

the extracellular medium through PCs that are celi surface associated. Finally, the tmncated Vpr

protein was defective for the induction of celi cycle arrest and apoptosis, suggesting that Vpr
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— proteolytic processing might 5e a cellular mechanism to control the level of functionally active

extracellular Vpr during HW- 1 infection.

The second goal of this thesis was to investigate Vpr-interacting proteins within HIV- 1

vii-ion particles and their fiinctional relevance. Vpr early firnctions are closely related to its

specific virion incorporation. Vpr localization within the virion core and its association wiffi the

pre-integration complex suggest a role for Vpr in the early phases of HIV infection. However,

littie is known about Vpr interactions with other viral components in the virion particles and their

functional relevance. To address this question, we constructed an infectious molecular clone of

HIV-l expressing HA-tagged Vpr and we isolated purified virions containing HA-Vpr. Analysis

of anti-HA co-immunoprecipitated protein complexes by proteomic or western blot approaches

revealed that Vpr could form a complex with the matrix protein (MA) within viral particles

produced from various human celi lines. Furthermore, the MA-Vpr interaction was shown to

occur independently of the presence of RT and IN and could be detected by in vitro GST

pulldown experiments using recombinant Vpr and puHfied GST-fused MA proteins. These

resuits indicate that the Vpr-MA association involves a direct interaction. The respective

interacting domains were mapped by in vitro binding assays. We found that the fifth alpha helix

of MA (residues 97-10$), and the arginine-rich C-terminal domain of Vpr (residues $6-96) were

implicated in the Vpr-MA interaction. Since Vpr and MA are karyophilic proteins, and are both

components of the pre-integration complex (PIC), their interaction might have a synergistic effect

in the nuclear targeting of PIC and could contribute to the efficiency of viral infection during the

early stages of HIV- 1 infection.

it is important to investigate how host and viral factors interact to establish HIV-1

infection in human ceils. Vpr has been shown to contribute to HIV-1 infection in human ceils

when it is present as an extracellular species as well as a virion-associated species. Here, we

identified a cellular protease that regulates extracellular Vpr activity and characterized Vpr
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interacting-proteins within virion particles. The present study might contribute to a better

understanding of Vpr early functions during HW- 1 viraI replication and might provide new

targets for therapeutic intervention.

Key words: extracellular Vpr; proteolytic processing; proprotein convertase; 11EV-1; virion;

matrix protein; HA-tagged Vpr provirus
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C
RÉSUMÉ

La protéine Vpr codée par le rétrovirus VIH-1 est une protéine de 96 acides aminés qui

remplit de multiples fonctions au cours du cycle réplicatif du virus, comme l’augmentation de la

réplication virale dans les macrophages primaires aux stades précoces de l’infection, l’arrêt du

cycle cellulaire en phase G2 dans les lymphocytes T en division ou encore la régulation de

l’apoptose induite par le VIH-1. En plus de la forme sauvage, des formes tronquées de Vpr

avaient été précédemment détectées dans le sérum et le fluide cérébro-spinal de patients infectés

par le VIH. Toutefois, le mécanisme de ce clivage ainsi que son rôle dans la pathogènèse du VIH

1 restent inconnus.

Le but premier de cette étude était de caractériser le mécanisme par lequel Vpr est

modifié et relâché dans le milieu extracellulaire au cours d’une infection par le VIH-1. Nous

rapportons ici que la protéine sauvage ainsi que plusieurs formes tronquées de Vpr ont pu être

détectées dans le milieu de culture des cellules exprimant VIII-1 indépendamment de

l’incorporation de Vpr dans les particules virales. Les formes tronquées de Vpr étaient abondantes

exclusivement dans le milieu extracellulaire des cellules exprimant VIH-1 et non de celles

exprimant Vpr seul. De plus, une faible fraction de Vpr clivée s’associe à la surface

extracellulaire de la membrane plasmique, grâce à la présence de protéoglycanes contenant des

chaînes d’héparine sulfate, des cellules exprimant le VIH-1. Des études de mutagènèse dirigée et

de spectrométrie de masse ont montré que Vpr est clivé à l’extrémité C-terminale, en aval du

motif hautement conservé R85QRR88, un site de clivage putatif spécifique des proprotéine

convertases (PC). Le peptide dec-RVKR-cmk, un inhibiteur peptidique des protéine convertases,

ainsi que les inhibiteurs des sérine protéases Œ1-PDX et Spn4A inhibent spécifiquement le

clivage extracellulaire de Vpr. L’expression transitoire des proprotéines convertases PC5A et
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PACE4 et dans une moindre mesure de la furine favorise le clivage extracellulaire de Vpr,

suggérant ainsi fortement que Vpr est clivé par les proprotéines convertases. Nous avons apporté

la preuve que Vpr était clivé dans le milieu extracellulaire par des proprotéines convertases

associées à la surface cellulaire. Enfin, les formes tronquées de Vpr se sont révélées déficientes

pour l’arrêt du cycle cellulaire et l’induction de l’apoptose, suggérant ainsi que le clivage

protéolytique de Vpr peut être un mécanisme cellulaire destiné à réguler le niveau des formes

extracellulaires fonctionnelles de Vpr au cours d’une infection par le VIH-1.

Le second objectif de cette thèse est de caractériser les protéines interagissant avec Vpr

au sein des particules virales ainsi que leur fonctionnalité. Le rôle fonctionnel de Vpr est

étroitement relié à son incorporation spécifique au sein des particules virales. Sa localisation dans

le core viral et son association au complexe de préintégration (PIC) suggèrent un rôle de Vpr dans

les étapes précoces de l’infection par le VIH. Toutefois, peu de données sont disponibles sur le

mécanisme d’interaction de Vpr avec d’ autres partenaires viraux au sein des particules virales

ainsi que sur la signification fonctionnelle de telles interactions. Afin de résoudre ces questions,

nous avons construit un clone moléculaire infectieux de VIH- I exprimant Vpr en fusion avec le

peptide HA (HA-Vpr) et avons purifié les virions contenant la protéine HA-Vpr. L’analyse par

protéomique ou Western blot des complexes protéiques co-immunoprécipités grâce à l’anticorps

anti-HA a permis de révéler que Vpr formait un complexe avec la protéine de matrice (MA) au

sein de particules virales produites à partir de différentes lignées cellulaires humaines. De plus,

l’interaction Vpr-MA est indépendante de la présence de la transcriptase inverse (RT) et de

l’intégrase (IN) et a pu être détectée par des expériences de GST pulldown in vitro à l’aide de Vpr

recombinant et de la protéine GST-MA purifiée. Ces résultats indiquent que Vpr et MA

s’associent grâce à une interaction directe. Grâce à des expériences de liaison peptidique in vitro,

les domaines responsables de l’interaction entre MA et Vpr ont été cartographiés, respectivement,

au niveau de la 5 hélice LI (résidus 97 à 10$) et du domaine C-terminal riche en arginines.

Étant donné les propriétés karyophiles de MA et de Vpr et qu’elles sont toutes deux membres du
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PIC, leur interaction pourrait avoir un effet synergique dans le transport nucléaire du PIC et ainsi

optimiser l’efficacité des étapes précoces d’une infection par le VIH- I.

L’ étude de l’interaction des facteurs cellulaires et viraux impliqués dans l’infection des

cellules humaines par le VIH-1 est d’une importance majeure. Dans ce contexte, iI a été

démontré que la protéine Vpr contribue à l’infection virale lorsque présente sous sa forme

extracellulaire ainsi que lorsque présente à l’intérieur du virion. Dans la présente étude, nous

avons identifié une protéase cellulaire qui contrôle l’activité extracellulaire Vpr et avons

caractérisé des protéines interagissant avec Vpr à l’intérieur des virions. Ces données pourraient

contribuer à une meilleure compréhension des fonctions précoces de la protéine Vpr dans le cycle

de réplication viral et pourraient ainsi mener à l’identification de nouvelles cibles thérapeutiques.

Mots-clés : Vpr extracellulaire; clivage protéolytique, proprotéine convertase; VIH- 1; virion;

protéine de matrice; provims; HA-Vpr.
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C CHAPTER 1: LITERATURE

The Retroviridae famlly bas 7 subfamily, composed of the foïlowing virus genera: C-type, B-type,

D-type, HTLV-BLV, Spumavirus, Avian Leukosis $arcoma (ALSV), and Lentivirus. Lentiviruses are

further broken down into tbree categories: human primate lentivims, nonhuman primate lentivirus, and

non-primate lentivinis. Human primate lentivinises consist of the Human Immunodeficiency Virus-1 and

the Human Imrnunodeflciency Virus-2 (HIV- 1 and HIV-2). The former is highly pathogenic and the later

demonstrates a similar but less pathogenic etiology. Non-human primate lentiviruses form several distinct

lineages named the Simian Immunodeficiency Virus (SIV). They are endemic to their hosts and do not

usually cause immune suppression as seen in humans. Simian lmmunodeficiency Viruses are distinct

primate groups that include strains from mandrills (SIVmnd), mangabees (SIVrcp and SIVsm), l’hoest

($1V l’hoest), and sabaeus (SIVsab) monkeys among others (282). The non-primate lentiviruses include

Visna-Maedi Virus (VMV), Caprine Arthritis-Encephalituis Virus (CAEV), Equine Infectious Anemia

Virus (EIAV), Bovine Immunodeficiency Virus (BIV), and Feline Immunodeficiency Virus (FIV) (196).

Like other retroviruses, HIV-l produces Gag, Pol, and Env proteins. HIV-1 produces six

additional proteins: Tat, Rev, Nef, Vif, Vpr, and Vpu. While Tat and Rev are required for viral replication,

Nef, Vif, Vpr, and Vpu usually are dispensable for viral growth in many in vitro systems (112) and hence

are known as accessoiy proteins. However, these proteins are often necessary for viral replication and

pathogenesis in vivo, and they carry out many essential fiinctions during the viral life cycle. Consequently,

the presence or absence ofthese accessory proteins can significantly change the course and severity ofthe

viral infection (112).

Viral protein R (Vpr) is a small, highly conserved accessory protein that serves many functions in

HIV-1 life cycle. These functions include cytoplasmic-nuclear shuttling (146), induction ofthe ceil cycle

G2 arrest (144)fland celi killing (337). These three Vpr-specific activities are shown to be ftinctionally
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independent of each other (95, 252) and have been demonstrated in a wide variety of eukaryotic celis

ranging from human to yeast, indicating that Vpr most likely affects highly conserved cellular processes.

in this review, I descHbe the background of the HIV virus, the current understanding of Vpr

firnctions in HIV- 1 viral infection, and the potential roles of Vpr activities in viral pathogenesis and

disease progression.

Li. Tire acquired immune deflciency syndrome

1.11. Discovery of 11W-1 virus

In the early 1980s, physicïans in United States noticed an increasing number of young male

homosexuals with a range of opportunistic infections and malignancies which had not been seen before in

this age group (133, 156, 331). The most frequently observed symptoms were pneumocystis carinii

pneumonia, oesophageal candidiasis toxoplasmosis of the brain, Kaposi sarcoma, and non-Hodgkins

lymphoma, as well as other unusual complications. In 1981, Gottlieb et al. described these patients as

anergic, lymphopenic, later more appropriately renamed acquired immunodeficiency syndrome (AIDS).

At first, physicians thought that the origin of these diseases was a possible viral infection from the

cytomegalovirus (356). Based on the epidemiological observations, it was proposed that MD$ is caused

by an infectious agent transmifted by sex, contaminated blood products, and from mothers to chiidren

(277).

When it became apparent that the disease is transmissible, a wide range of known microorganisms

was suggested as the agent. The french group from the Pasteur Institute in Paris first reported the

isolation of a new human virus as the causative agent for AIDS, which was named LAV for the

lymphadenopathy-associated virus. This virus had distinct properties from HTLV-1 because it does flot

establish a transformed state in CD4+ T helper ceils but caused ceil death afier high level of replication

(23). The same French team made the most significant observation that the virus is cytopathic to the

helper 14 (CD4) ce!!, providing for the first time, an explanation of how and why AIDS develops (184).
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Several other research groups also were searching for the virus that might be responsible for MDS.

Afier this description of LAV by Luc Montagnier’ s laboratory, two other groups reported the isolation of

retroviruses from AIDS patients. In a series of papers published in 1984, Gallo and colleagues later

reported the discovery of an MDS-associated retrovinis, which appears distinct from HTLV, named

HTLV-III (121, 138). Levy and a coworker isolated a retrovirus from a San Francisco subject and named

it AIDS-associated retrovirus (ARV). The discovery of ARV in asymptomatic individuals indicated, for

the first time, a carrier state for the AIDS virus (201).

Subsequent research established that the different AIDS virus nucleic acid sequences are extremely

polymorphic, making it feasible unequivocally to identify the precise origin of different HIV isolates.

This first revealed that HTLV-III is in fact LAV because of its unique identity (280). Actually, the virus

had been supplied to Dr Robert GaHo’s lab at various times by the French team (233).

The genetic organization and the proteins encoded by HIV-1 were shown to be distinct from those of

HTLV; these retroviruses were recognized as members of the same group of retrovinises-Lentivirinae

(280). In 1986, the International Committee on the Nomenclature of Virus renamed the AIDS virus the

Human Immunodeficiency Virus (HIV) (61). Shortly afier the identification of HJV, another human

retrovirus was recovered from a West Africa patient with AIDS (59). It was noted to be sufficiently

different genetically from HIV-l (by up to 40%) and was named HIV-2.

1.1.2. Emergence of 111V-1 dïsease

The origin of HIV-1 has been linked to a virus found in chimpanzees (SIVcpz), originating in the

species Pan troglodyte troglodytes and pan troglodytes schweinfurthii from Central and Western Africa

(123). Previous data from the earliest documented case of AIDS in 1959 places HIV-l within this

geographic area, and phylogenetically proximal to the sequences of ancestral origin (412). The mode of

trans fer of the SWcpz virus to humans is a continuous debate, but recently theories have been disproved,

which suggested that SIV was transfened either by contaminated polio vaccines given to tens of

thousands of African workers by French colonialists in the early 1930s, or by reusing needles for
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vaccination (387). Direct human contact with primate bush meat during slaughter is stili a possibility

(139). The appearance of the less pathogenic HIV-2 strain in humans is thought to be caused by multiple

transfers of 51V from sooty mangabees, since the sequence similarities between these three viruses group

appears to be inseparable by phylogenetic analysis (124).

1.1.3. HW/AIDS global pandemic: current status

It is well accepted that MDS began in Africa (172). Not only is the disease widely spread in sub

Saharan Africa but also in Africa, monkey species are naturally infected with lentiviruses related to HIV,

as first shown by the Dr. Hayami research team (255). No evidence can be shown for the existence of

HIV in Europe, America, or Arabia during the past century or even the first haif of twentieth century,

strongly suggesting that the widespread HIV infection in Africa is a recent event. The epidemiological

evidence thus points to the spread of HIV infection from Africa afier the Second World War. The

proliferation seems to coincide with the widespread use of syringes and needles from the West, at the time

vaccination programs were being promoted and introduced. It also coincides with a post-war period of

greatly improved transportation and the extensive migration ofAfrican people.

Since the first diagnosis was made in the early 19$Os, AIDS has spread through the world, affecting

ail cultures and ethnic groups. At the end of 1984, the number ofAIDS cases in the United States was

7,699 (with 3,665 deaths resulting from AIDS) and in the United Kingdom, 764 cases were reported (50).

According to the 2005 AID$ epidemic update report from the Joint United Nations Program on

HIV/AID$ (UNAIDS) and the World Health Organization (WHO), the estimated number of people living

with AIDS in North America in 2005 is between 650,000 and 1.8 million, and the estimated world

population ofpeople living with AIDS is approximately 40.3 million, with 3.1 million death due to HIV

1/AID$. Seventy percent of alI individuals with HIV are living in sub-Saharan Africa. Despite education,

testing, and awareness of the disease, the number of newly acquired cases bas increased. In the United

States, the spread of HIV bas disproportionately increased in minorities where AIDS is the leading cause

of death among African American women between the ages of 25 to 34. High-risk behaviors, such as
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heterosexual ami homosexual unprotected sex and IV drug use, account for the increased numbers. The

spread of HP! has been most problematic in underdeveloped countries where both treatment and

education have flot been logistically and financially achievable for these govemments. Organizations such

as UNAIDS ami the WHO have implemented programs involving the support of many Western countries

to deliver affordable and simplified treatments.

1.2. HW viral structure and genornic organization

1.2.1. 111V-1 genomic RNA.

In general, two copies of viral genomic RNA are incorporated into virion particles. The genomic size

ofHIV is about 9.8 kb with open reading frames coding for at least nine viral proteins (see figure 1.1).

Like the oncoretroviruses, HIV-l genomic RNA contains cis-acting elements required for the

reverse-transcription in double-stranded DNA, the provirus integration into the host ceil genome, the

transcription of the different viral RNAs species, and the incorporation of newly synthesized genomic

RNAs into nascent particles. HP! expression is flanked by long terminal repeats (LTR). The 5’LTR binds

specific and general transcription factors that regulate the initiation of mRNA synthesis, whereas the

3’LTR signais the point at which mRNA synthesis should end, with the addition of a poly A tail. The

LTR sequence has three functionally distinct domains (U3, R, and U5) and contains transcriptional

promoter elements that regulate basal and inducible transcription firnctions. U3—the first promoter

region—contains a moduiatory enhancer region, which is the core promoter region for regulating

transcription. The core promoter region is where RNA polymerase II and TATA-box binding proteins

form the multiprotein complex that is responsible for initiating transcription and for providing the binding

sites for these proteins, as well as three sites for Spi (344). The upstream modulatory enhancer region

binds Nf-icB and the NF-AT transcription factor, and has binding sites for various cellular proteins

thought to be important for specificity of replication in ceil types such as macrophages (299). These

transcription factors include NF-IL-6, the cAMP response element-binding protein (CREB), and nuclear

hormone receptors (287). In contrast to the oncoretroviruses, HIV-I rnRNA contains a 5’UTR eÏement
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called transactivation response element (TAR), that prevents RNA polymerase II processing in absence of

the viral Tat protein (see below) (170). Located between the PJU5 regions in 3’LTR is the site for

retroviral 3’ end processing and polyadenylation signais. U5—the last prornoter region—when located at

the 5’ end, contains a GT-rich exon that ail viral transcripts contain, and encodes putative control

elements for 3’ end processing when it is located at the 3’ LTR. Celluiar machinery caps the 5’ end ofthe

viral transcript by the addition of methylated G nucieotide, it involves condensation of the trphosphate

group of molecule of GT with a diphosphate left at the 5’ end of initial transcript. The 5’ end cap is

necessary for the proper function of mRNAs in protein synthesis; it also seems to protect the growing

RNA transcript from degradation.

LTR LTR

_____

gag

MA CA NCHp6

P2 PI p0!

PR RTE

Figure 1.1. Organization of HIV-1 genome. The relative location ofthe HIV-1 open readingfraine gag,

p01, env, vf vpr, pu, nef tat, and rev are indicated.

1.2.2. The viral proteins.

Like other retroviruses, HIV encodes for Gag, Pol, and Env virion structural and enzymatic proteins.

In addition, the lentivirus encodes for two regulatory proteins, Tat and Rev, important for HIV-1 protein

expression, and four accessory proteins Vif, Vpr, Vpu, and Nef dispensable for productive infection of

transformed T lymphocytes, but oflen necessary for viral replication and pathogenesis in vivo. l-11V-1 Tat,

Rev and Nef proteins are expressed early during infection from fuiiy spiiced messenger RNA. In contrast,

Gag-Pol polyproteins, as weii as Env, Vpr, Vpu, and Vif are expressed in the late phase of infection from

intron-containing viral mRNAs.

vif env
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HIV- I Gag precursor p55 gives rise, by proteolytic cleavage, to the smaller proteins, including the

capsid protein CA (p24), matrix protein MA (p17), the nucleocapsid protein NC (p9), and the p6 protein

(147). Polis initially made as a Gag-Pol polyprotein A ribosomal frame shift of—1 in gag allows

a ribosomal reading through of gag and the production ofPro-Pol at the ratio of 1:20 within the celi (257).

The Pol precursor protein is cleaved into products consisting of the reverse transcriptase (RI), protease

(PR), and integrase (IN) proteins, which are essential for viral replication (357).

Env gene encodes a glycoprotein precursor gpl6O. This precursor is cleaved in the tran-Golgi

network (TGN) by furin-like convertase into a gpl2O extemal surface (SU) envelope protein and gp4l

transmembrane (1M) protein, which constitute the membrane glycoprotein of the virus (140).

Tat (transactivator of transcription) is a small fransactivating protein (101 amino acids in most

clinical HIV-1 isolates, $6 amino acids in the laboratory HIV-1 HXB2 strain). Tat, along with other

cellular proteins, interacts with an RNA loop structure formed in the 3’ portion of the viral long terminal

repeat (LTR) called TAR. Tat potently transactivates LTR-driven transcription, which resuits in a

remarkable increase of viral gene expression ($4).

Rev (regulator of viral protein expression) is a 116 amino acid sequence-specific RNA binding

phosphoprotein that is expressed during the early stages of HIV-1 replication (216). The protein is

necessary for the expression of intron-containing RNAs. In its absence, only the fully spliced class of

HIV-1 mRNAs is present in the cytoplasm, while intron-containing RNAs remain nuclear (103). Rev

multimers interact with a cis-acting RNA ioop structure called the Rev responsive elements (RRE),

located within the Env gene (301). This interaction permits the nuclear export of unspliced or partially

spliced RNAs (14). The transition from multiple spliced mRNA to unspliced mRNA into the cytoplasm is

the marker between early and late stages ofthe viral replication cycle (388). The export ofRev and single

spliced transcript to the cytoplasm is mediated by the cellular transport receptor, CRMI (Chromosomal

region maintenance 1), where the recycling of Rev to the nucleus is mediated by importin ci (2, 116).

Vif (viral infectivity factor) gene encodes a 23-kDa protein. Vif is essential for the reproduction of

HIV-1 in peripheral blood lymphocytes, macrophages, and certain ceil unes (340). Vif suppresses the
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antiviral activity of the cellular protein APOBEC 3G found in T cells (143, 323). APOBEC3G

(apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G) is a member of the cytidine

deaminase family, which prevents viral cDNA synthesis through deaminating deoxycytidines (dC) in the

minus-strand retroviral cDNA replication intermediate (143, 401). Vif binds directly to APOBEC3G and

counteracts its anti-HIV activity by promoting its degradation. Vif-mediated APOBEC3G degradation

involves the recmitment of a specific E3 ligase complex, which Jeads to polyubiquitylation and protease

mediated degradation (324, 395).

Vpu (viral protein U) is an accessory protein found only in HW-1 and SWcpz strains, and no

analogous proteins are present in HIV-2 and other SWs (64, 222). Vpu is a small (9 kDa) membrane

protein that enhances the release of progeny virion from infected celis and induces the degradation of the

CD4 protein (34). Vpu expressed in the ER interacts with a membrane-proximal domain of the

cytoplasmic tau of CD4 and links it to h-I3TrCP (221), a member of the F-box protein family first

characterized as components of the ubiquitin-ligase complex (183). The CD4-Vpu-3TrCP ternary

complex then recruits SKP 1, another member of the ubiquitinated machinery (381). CD4 is ubiquitinated

and targeted to proteasomes for degradation after recruiting SKPI. Initially, the ability of Vpu to increase

viral release from infected celis had been attributed to ion conductive membrane pore formation

characteristic to celis over-expressing Vpu (34). However, a recent report shows that the requirement for

Vpu is host ceil-dependent, suggesting that Vpu may counteract an inhibitory factor expressed in some,

but flot in other ceils (363). TASK-l, a widely expressed acid-sensitive K+ channel, is structurally

homologous to Vpu, suggesting oligomerization as a possible mechanism of inactivation of the ion

channel activity of these proteins (154). However, the mechanism by which TASK-1 inhibits virion

release is still unclear.

Vpr is a 96-amino-acid, 14-kDa protein which is expressed at the late stage of viral replication and is

virion incorporated (62). Vpr is much conserved among the primate lentiviruses HIV-l, HIV-2, and the

Simian Immunodeficiency Virus, suggesting that it may play an important role in the viral life cycle in

vivo. AÏthough Vpr is dispensable in vitro viral replication in T ceil unes, it plays an important role in
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macrophages infection and HIV- 1 pathogenesis in vivo (65, 131). Details regarding the Vpr protein ami its

biological function are discussed below.

Nef protein is a 27 kDa myristoylated protein that is abundantly produced during the early phase of

viral infection. It is highly conserved in ail primate lentivimses, suggesting that its function is essential for

the survival of these pathogens. 51V with Nef mutations quickly reverted to a wild type Nef in infected

monkeys or did not progress to AIDS-like symptoms (175). This suggests that Nef is essential for viral

pathogenesis in vivo. The role of Nef in HIV-1 replication and disease pathogenesis is determined by at

least four independent activities of this protein. First, Nef down regulated the ceil surface CD4 (125) and

the major histocompatibility complex class I (MHC-I) protein (313). Nef-induced CD4 down-regulation

bas been shown to be the result of rapid intemalization ami degradation of ifie CD4 receptor (125, 295).

Down-regulation of MHC I protects HIV-1 infected ceils from host CTL response, where as down

regulation of CD4 probably limits the adhesion of an expressing T ceil to the antigen-presenting celi and

prevents the interaction between CD4 and the envelope of a newly produced virion. Second, Nef

expression interferes with the cellular signal transduction pathway. Nef myristoylation and its proline-rich

SH3-binding domain mediate Nef association with lipid rafi, the cholesterol-rich membrane

microdomains that concentrate potent signaling mediators (373). Nef was found to complex with and

activate the serine/threonine protein kinase PAK-2 (p21-activated protein kinase 2) (283), which may

contribute to the activation of infected celis. Third, Nef enhances virion infectivity and viral replication.

This effect is mediated by the presence of Nef in the HIV-l virion and is due, at least in part, to the ability

of Nef to induce actin remodeling and to facilitate the movement of the viral core to pass the potentially

obstructive cortical actin barrier (48). fourth, Nef regulates cholesterol trafficking in HIV-infected ceils.

Cholesterol plays an important role in the HIV life cycle, since HIV assembly and budding—as well as

the infection of targeted ceÏÏs—depends on plasma membrane cholesterol. Nef has been shown to bind

cholesterol via a cholesterol-recognition motif at its carboxy-terminus and to transport newly synthesized

cholesterol to the site of viral budding (409).
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1.2.3. 111V virion structure

The typical mature HIV-1 vii-ion is about lOOnm in diameter. It is enveloped by a lipid bilayer that is

derived from the membrane of a host celi. The exposed surface glycoprotein SU, (gpl2O) anchors to the

virus via interaction with the fransmembrane TM protein (gp4l). The lipid bilayer also contains several

cellular membrane proteins from the host celi, including the major histocompatibility complex antigen,

actin, and ubiquitin (15); integral membrane-spanning intracellular adhesion molecules (ICAMs) such as

ICAM-1 is also incorporated witbin the envelopes of HIV-1 virion and can dramatically enhances

infectivity ofHIV-1 virion (349). A matrix sheil comprising the matrix protein (MA, p17) limes the inner

surface of viral membrane, and a conica capsid core particle comprising the capsid protein (CA, p24) is

located in the center of the virus.

The capsid particle encapsidates two copies of the unspliced dimerized viral RNA genome, which is

stabilized as a ribonucleoprotein complex with 2000 copies of the nucleoprotein (NC, p7) and also

contains three essential virally encoded enzymes—PR, RT, [N (see Figurel.2). MA has been found in

HIV-1 core preparations (187, 380). It is believed that phosphorylated MA locates in the viral core by

interacting with integrase (119, 120).

Virus particles also package the accessory protein Vpr via its interaction with p6 in the Gag p55

precursor (186, 266) Vpr is localized within the 111V-1 viral coi-e (1, 380). Muller et al. have reported that

HIV-l virus particles contain a lesser amount of Vpr in comparison to Gag (7:1 ratio of Gag to Vpr), i.e.

about 275 Vpr molecules per HIV-1 virion particle (239).
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Capsid(p24, CA)

o Nucleocapsid( p7, NC)
• P6
À Vpr

Reverse transcriptase
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• Integrase (p31, IN)
X Protease (pli, PR)

O Surface envelop protein
(gpl2O, SU)
Iransmembrane envelope
protein (gp4 1, 1M)

Figure 1.2. HIV-1 virion structure. Positions ofmajor viral proteins, the Ïtpid bilayer, and the genomic

RIVA are indicated.

Recent data shows the association ofNefwith the I-11V-1 core (187). Vif, another accessory HIV-1

protein, was also found to be associated with the HIV-1 core structure (207). However, whether Vif is a

genuine virion component or a contaminant remains controversial because other researchers have reported

that Vif is essentially absent from the highly purifled HIV-1 particles (81). Three additional accessory

proteins Rev, Tat, and Vpu that function in the host ce!! do not appear to be packaged (353).

1.3. HIV-1 Lfe cycle

HIV rep!ication cycle c!ose!y resembles that of other retroviruses (f igure 1 .3). However there are

anumber of unique aspects of HIV replication such as HIV target receptor and coreceptors distinct from

other retroviruses. Lentivirus like HIV encodes a number of regu!atoiy and accessoty proteins not

encoded by the genome of the prototypical simple retroviruses. Lentivirus like HIV has the ability to

11



productively infect certain type of nondividing ceils. The basic HW-1 replication process wiii be

introduced in the following.

1.3.1. Virus entry

Infected host ceits. HP’!- 1 infects CD4+ T helper celis and macrophages of the immune system. Celis

of macrophage lineage are among the first ceil types to become infected during the process of HIV

transmission (379). The ability of primate lentiviruses to infect nondividing ceils was first observed in

macrophages but now include microglia, mucosal dendritic celis, and epidermal Langerhans ceils, ail of

which are important for establishing a productive infection (127, 124, 193, 281). The successful infection

of nondividing ceils is attributed to the ability of the virus to transport its virai genome to the nucleus for

integration into a host celi. Retrovinises such as MLV require the breakdown of the nuclei envelope for

efficient nuclear import and integration of the viral cDNA (297). HIV-1 can replicate in nondividing celis,

such as macrophage, which relies on the active transport of the virai PIC through the nuclei pore complex

(44). Other ceii types, including PBMCs and the activated CD4+ T celi, have also been found to benefit

from this function, as mitosis is only a smali fraction of the entire cell cycle, and active nuclear import in

these ceils can enhance their infection (137, 294).

HIV-] receptors and co-receptors. The primary binding receptor for the HW-1 envelope is CD4, which is

found on lymphocytes and macrophages. Numerous celi types throughout the body are infectable with

HP’! in the absence of the CD4 receptor. They range from celis in the brain, intestine, and skin to ceils in

the heart, kidney, as well as other organs (200). Subsequent studies have shown that the CD4 receptor

aione is flot sufficient, nor is it the only way for HIV to enter ceiis. Chemokine receptors are found to act

as coreceptors for the entry of HIV into ceils. The CXCR4 acts as a coreceptor for the HIV-1 T ceil-celi

tropic strains. Subsequently, other molecules named CCR-5, CCR3, and CCR-2b were found to act as

coreceptors for the macrophage tropic HIV-1 strains (29, 58). The CXCR4 coreceptor is expressed on
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virtually ail lymphocyte subsets, aibeit at vaiying levels. CCR5 is predominantly expressed on pnmary T

ceils, macrophages, dendritic ceils and microgiia (234). Disease progression conelates with coreceptor

usage, as vii-uses from early in the course of infection predominantly use CCR5 for their mode of entry,

and later evoive to include the use of CXCR4 (66, 78). It is unciear why these vimses evoive, as celis

expressing CCR5 are stiil present at the iate stages of infection. One theory is that the CD4+ T celi is

present in larger numbers, and in more tissues, aliowing the evolving virus to infect more target celis. The

switch from CCR5 to CXCR4 using strains ultimateiy leads to the increased infection of CD4+ T celis,

and the progression to AIDS (66)

Virus entiy. HIV-1 replication cycle begins with the attachment of the virus to the target celi. The

envelope glycoprotein subunit gpl2O initially binds to CD4 (70, 184). The initial contact of CD4 and the

envelope leads to conformational changes that expose the surface required for coreceptor binding. A

subsequent interaction between gp 120 and the corereceptor triggers new confonriationai shifis in the

envelope glycoprotein (190). These sequentiai conformationai changes finaily lead to the dissociation of

gpl2O from gp4l, and the transition of gp4l to its fiisogenic conformation. The entiy of the virions into

the ceil is achieved by insertion of the gp4 1 fusion peptide into the target membrane, which resuits in the

fusion of the viral and cellular membranes and the release of the viral core in the cytoplasm (122). HIV-i

entry does flot depend on the pH (224).
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1.3.2. Uncoating.

Afler the membrane fusion, the viral core is released into the cytoplasm and further rearranged. Ibis

process called uncoating is flot fully understood. Current evidence suggests that both viral and cellular

proteins are involved in the process of uncoating. Ihe infectivity defect observed with delta nef vimses

occurs after entry and before the completion of reverse transcription, suggesting that nef has a role in the

uncoating (312). The second viral accessory protein Vif that may be important for uncoating was

described in Section 1.2.2. The most promising cellular factor identified that may contribute to viral

uncoating is cyclophulin A (CypA). Cyclophulins are a family of proteins that bind the immunosuppressant

cyclosporin A, possess peptidyl-prolyl cis-trans isomerase activity, and assist in the folding of proteins.

Human cyclophilins A and B are host ceil proteins that bind specifically to the HIV-l capsid protein

proline-rich ioop in the virion and are critical for HIV replication in human cells (110). Tripartite motif

protein 5cx (TRJM5Œ), a cellular restriction factor for HIV-1 replication, inhibits HIV-1 replication at the

Figure 1.3. Schematic representatïon of IUV-1 replication cycle. The major steps in rhe earÏy and late

stages ofreplication cycle are indicated (described in detail in the text)
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step before reverse transcription by interacting capsid with its CypA domain in owi monkey ceil (253).

HW-1 cores undergo a progressive uncoating that leads to the generation of sequential nucleoprotein

complexes now referred as reverse transcription complex (RTC) and pre-integration comptex (PIC) (44).

HIV- 1 proteins RT, IN, NC, MA, Vpr and Nef but not CA remain associated with the viral genome.

1.3.3. Reverse-transcription.

Sequentiat dsDNA conversion. Reverse-transcription is initiated within the virion and continues

shortly afier uncoating (402). It should be noted that the distinction between RTCs and PICs is somewhat

arbitrary, since uncoating is believed to occur progressively. However, PICs are usually defined as the

integration-competent complex, whereas reverse-transcription is incomplete in RTCs.

The biologically relevant fonu of HIV-1 and HIV-2 RI is an heterodimer consisting of two

polypeptides of molecular mass of 66 kDa (p66) and 51 kDa (p51); p51 is derived from p66 by

proteolytic cleavage of its C-terminal domain (83). The p51 subunit lacks the RNase H domain. Ihe

heterodimer form of the enzyme is found in the infectious virion and represents the biologically relevant

and active form of the enzyme, since the isolated subunit is functionally inactive (292). A recent study

showed that the interaction between the thumb domain of p51 and the RNase-H domain of p66 plays a

major role in an essential conformational change that is required for the proper folding of the

primer/template and the tRNA-binding site (for maturation and for activation of heterodimer reverse

transcriptase) (237). In addition to providing a strong structural support to the p66 subunit, the functional

role 0f p51 may involve the facilitation ofthe binding oftemplate-primer to the p66 subunit (142). HIV-1

uses human transfer RNA specific for lysine (tRNAs) to prime negative-strand DNA synthesis. DNA

synthesis proceeds to the 5’ end ofthe RNA molecule generating a DNA!RNA hybrid. The RNA portion

0f this hybrid is degraded by the RNase H activity that is an inherent part of the RI holoenzyme,

generating a DNA fragment known as the minus-strand strong stop DNA. By using short regions of

homology (the so- called “R” regions), the minus strand strong stop DNA “jump” from the 5’ to the 3’

end of the genome. This step is refered as the first strand transfer. Minus-strand synthesis occurs, using
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the 3’ end of the minus-strand strong stop DNA as a primer. Plus-strand synthesis occurs, using as

primers fragments of RNA remaining from minus-strand synthesis. The primaiy site of priming for

retroviruses takes place at a purine-rich sequence known as the polypurine tract (PPT). for HIV, priming

also occurs efficiently from another site, known as the central PPT. The tRNA bound to the primer

binding site is removed by RNase H, thereby allowing second-strand transfer to take place. Plus-strand

synthesis proceeds to the end of the minus strand. for MW, an additional termination site, referred to as

the central termination signal (CTS), is located near the center of the genome. Approximately 100

nucleotides of plus-strand DNA is displaced, resulting in the formation of a DNA “flap” (357). Once

synthesized linear viral DNA migrate from the cytoplasm to the nucleus of infected celis, where it eau

integrate in host genome or circularize. The circular DNA is found exclusively in the nucleus as 1-LTR or

2-LTR molecule as a marker of nuclear import detected early after MIV infection.

Fidelity of the RT. It is well-established that MIV mutates or evolves during replication, which

allows the virus to escape from both the cellular and hormonal immune response and to develop drug

resistance against ail licensed anti-retroviral medications. This critical iack of fidelity of MIV bas been

attributed at least in part to the reverse transcriptase because the enzyme is lacking Y- to 5’-exonucleolytic

proofreading activity and it has been shown to be error-prone in cell-free systems. Multiple factors may

also influence HIV fidelity, including cellular DNA deaminases (notably APOBEC3G) and uracil DNA

glycosylase 2 (UNG2). The nuclear form of Uracil DNA glycosylase (UNG2) is an enzyme involved in

the base excision repair pathway that specifically removes the RNA base uracil from DNA. Uracil can

occur in DNA either by misincorporation of dUTP or by cytosine deamination. Interestingly, HIV-l

encodes different proteins able to bind these enzymes. Vif counteracts the mutagenic effect of

APOBEC3G by reducing its stability and by incorporating it into the progeny virion (323). Vpr and N

promote UNG2 viral incorporation (32, 384). The interaction of Vpr with uracil DNA glycosylase

modulates the Human Immunodeficiency Virus type 1 in vivo mutation rate (219) and decrease the

mutation rate in ceIl (166), Priet et al. recently showed that RNA interference knockdown of UNG in
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macrophages blocked HW-1 replication (27$). They further showed that in vitro, on model substrates,

UNG and reverse transcriptase acted in concert to remove uradils that had been misincorporated during

reverse transcription (27$). Another research group had opposite point of opinion, they showed that Vpr

interacts with UNG-2 induces LLNG-2 proteasomal degradation; their data suggested that removal ofUNG

by Vpr did not appear to interfere with viral infectivity (310). It is stili possible that small amount of UNG

are required for HIV- 1 replication and these UNG are not removed by Vpr. The exact role of HIV- 1 Vpr

regulating UNG activity and its impact on RT fidelity during HIV-1 replication need to be confirmed.

Although Vpr interacts with another DNA repair protein the human homologue of yeast RAD23 protein

(HHR23A), the Vpr-HHR23A interaction does flot influence the HIV- 1 in vivo mutation rate or the Vpr

G2 celJ cycle arrest function (21$).

1.3.4. Nuctear transtocation of the PIC.

Nucleoprotein complexe utilize cytoskeletal components to reach the nucleus (41). PICs are

composed of the double-stranded linear DNA associated with the viral proteins MA, RT, IN, and Vpr. It

lias an estimated stoke diameter of 56nm (230). Since the central channel of the nuclear pore lias a

maximum diameter of 25nm and the pore is known to be able to transport macromolecules up to 39 nm

(262), HIV has developed a strategy to pass tbrough these structures. Unlike the oncoretroviruses,

lentiviruses including HIV-1 have the ability to infect non-dividing ceils without the breakdown of the

nuclei envelope and mitosis for viral replication, a feature important to HIV-1 in its establishment of a

long-lived infection of the host (379) (44). This property is shared with other lentiviruses and reflects the

existence of determinants that govem the active transport of the viral preintegration complex through the

nucleopore (44).

Nuclear pore complexes (NPCs) are large supramolecular protein structures that span the nuclear

membrane and protrude into both cytoplasm and nucleoplasm. Signal-mediated nuclear import involves

the interaction of nuclear localization signaIs (NLSs) in proteins with nucleocytoplasmic shuttiing

receptors, belonging to the karypherin 3 family, also known as importins. NLSs are typically short
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stretches of amino acids, the best studied of which are basic amino acid-rich sequences that interact with

the adapter importin Œ (115). Importin 3 interacts with other classes of NLS by using different adapters,

including snurportin, RIP (Rev interacting protein), and importin 7. Recently, importin 7 has been

proposed as playing a key role in the nuclear import of HW-1 PICs in primary macrophages (101). It is

believed that multiple factors are involved in the nuclear targeting of the HIV-1 preintegration complex

(PIC) in non-dividing celis, such as matrix protein (MA), karyophilic Vpr, integrase protein (LN), and

DNA flap (136, 275). Their respective involvement will be discussed later.

1.3.5. Integration

Integrase prepares the viral cDNAs for integration by cleaving their 3’ ends. An integrase mediated

hydroxyl group oriented attacking occurs on the host ceil DNA and this hydroxyl group forms new bonds

with the 3’ ends of the viral cDNA (309). HIV- 1 integration preferentially occurs in genes highly

transcribed by the RNA Pol 11(309). Several cellular factors have been described to interact with

integrase and may therefore constitute good candidates for directing the PIC to its target site. The

integrase interactor (mii, also called hSNF5), a subunit of the SWI/SNf chromatin-remodeling complex,

was initially isolated by yeast two hybrid screen for liuman proteins interacting with the IN and was

proposed to stimulate the in vitro DNA-joining activity of the IN and to target the viral genome to active

genes in an as yet undetermined manner (167). Equally, high mobllity group protein HMG-I(Y), which

lias been proposed to be important for integration (9$), appears to be required for efficient integration in

vitro, but their respective role in directing the PIC to precise sites ofhost genome was not evaluated. Two

other IN-binding partners were isolated which seem to be critical for directing the PIC to the host

chromatin. This is the case for the EED protein which is encoded by the human homologue of the mouse

ernbiyonic ectoderrn deveÏopment (eed) gene product and of the Drosphila esc gene, arid which also

interacts with the matrix protein of HIV-1 (269, 367) . These genes belong to the family of widely

conserved polycomb genes, involved in the maintenance of the silent state of chromatin and reduction of

DNA accessibility. An interaction occurring between EED and the viral proteins MA and IN might not
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oniy direct the PIC to the host chromatin but also trigger transcriptional activation (367). finally, the lens

epithelium-derived growth factor (LEDGf/p75), a protein implicated in the regulation of gene expression

and in the cellular stress response was found to interact with HIV- 1 iN (54). Interestingly, this interaction

is flot essential for nuclear accumulation ofHIV-1 IN, but seems to be absolutely required to dock the PIC

to the host chromatin (214).

1.3.6. HI”/-l gene expression

ReguÏation of the transcriptional activity. After the viral DNA has successfiully integrated into the

host ceil DNA, the process of viral gene expression begins. The cis-regulatory sequences in the LTR

promoter allow RNA polymerase II, together with other cellular factors, to bind and initiate transcription

(see Figure 1.4). The translation produces the basal amount of Tat, Rev, and Nef (165).

After a sufficient amount of Tat bas been produced, Tat controls the transcription ofthe HIV-1 gene.

Tat increases the efficiency of transcription by enhancing the elongation capacity ofthe RNA Polymerase

II complex by 10,000 fold. This increase is accomplished by the ability of Tat to recruit cyclin-dependent

kinase 9 (Cdk9) to the HIV-1 LTR by interacting with Cyclin Ti and binding it to the TAR elements, a

stem ioop structure found at the S’end of viral transcripts (378). Cyclin T is part of a family ofproteins

involved in celi cycle regulation that forms a complex with cyclin-dependent kinases (Cdk9)

F
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— figure.1.4. Schematic representation of 11W-1 LTR The position of binding sites for host factors

(LBF-1, NF-KB,LEfEts, USF-1, and NFAT-J) are shown at the 5’ ofthe transcription start site. The TAR

stem/loop structure, with its butge, is represented at the 5’ end ofa nascent mRNA. Numbering below the

boxed region is relative to the transcription start site nucleotide +J(here using the HIV-1 HXb2

sequences; accession no. K03 459).

to phosphorylate the C-terminal domain (CTD) of RNA polymerase II and initiate transcription. The

binding ofboth Cyclin T and Tat to the TAR element provides a high affinity complex that binds to the P

TEFb (positive elongation factor-b) complex. Cdk9 phosphoiylates the C-terminus of RNA polymerase II

and allows efficient elongation to occur. Tat has been found to interact with Spi and require Spi and NF

wB sites for its function (341, 342). Tat also recruits the chromatin remodeling enzymes (CBP/p300 and

pCAF) to the site of transcription to unravel the histone/chromatin structure of the integrated viral DNA,

and enhances the elongation process of RNA pol II, resulting in a several hundred fold increase in

transcription (260). HIV-1 Vpr interacts with HIV-l tat which causes synergic effect of Tat

transactivation (307). The detailed mechanism of Vpr role on its transactivation LTR is described in

section 4.5. Early reports showed that HIV-1 nef had a negative effect on LTR activity (5). The nuclear

factor of activated T ceils (NfAT) is an important transcription factor in regulation of gene expression in

T cell. Together with the activator (AP-1) it promotes transcription of several celiular genes involved in T

ccli activation, such as interleukin-2. Increased production of IL-2 is a critical step in T ccli activation.

Since the activation of T ceils strongly correlates with the ability of fflV- 1 to infect and replicate in these

ceils. It has been reported that NFAT can also directly bind to and activate HIV-1 LTR (182). Vpr can

potentiate Nef-induced activation of nuclear factor of activated T ceils (NfAT)-dependent transcription

(191). Unlike Nef, which stimulates calcium signaling to activate NFAT, Vpr functions farther

downstream via distinct mechanism to cooperate with Nef in NFAT-directed gene expression and

promote transactivation by CREB (191).
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Post-transcripfionat reg-utation. Regulation of the expression of a large number of structure and

regulatory genes within a relatively small genome highlights the complexity of HIV gene regulation

compared to other simple retroviruses. This regulation implicates a complex arrangement of genes

encoded in overlapping reading ftames and the expression ofthese genes through elaborate spiicing ofthe

single mRNA precursor. Through transcription and spiicing, HW4 produces three classes ofmRNA: the

multiply spliced 2kb mRNA species which encode the viral regulatory protein Tat, Rev, and Nef, the

unspliced (rn-9kb) and single spliced (-4kb) transcripts which encode the structure protein (Gag

polyprotein precursor, Gag-Pol polyprotein precursor, and Env glycoprotein precursor) and some of the

accessory proteins (Vif Vpr, and Vpu). The expression of unspliced and single spliced mRNA species is

tightly controlled by the HIV-1 regulatory protein Rev as described in section 2.2. Full-length unspliced

transcripts are exported by Rev and are recmited to the assembling virion by an interaction with the psi

packaging element located 3’ ofthe 5’ LTR.

1.3.7. Assembly and release ofHTV-1

Env trafficking. The env gene is translated into the precursor protein gp 160, which is glycosylated

within the endoplasmic reticulum and fransported to the plasma membrane via the secretory pathway to

areas of high lipid content (sphingolipids and cholesterol), known as lipid rafts. gpl6O is cleaved into

gp4l and gpl2O by the host protease furin during its transport through the Golgi apparatus (140). After

translation, the Env proteins migrate and insert into the plasma membrane.

Gag trafficking. The synthesis ofthe HIV Pr55gag and Pr160 gag-pol precursor polyproteins ofHIV

occurs on cytosolic polysomes. Unspliced viral RNA is translated by ribosome scanning from the first

AUG (+789). At least 90% of ail translation events terminate at the UAA stop coden (+2289) and result in

the synthesis of the gag polyprotein precursor. An infrequent —1 ribosomal frame shift (approximately 1-

5% of gag translation) at a stretch of uridine bases (+2023 to ±2089) resuits in read tbrough to the latter

UAA stop code and the synthesis ofthe protein ofthese precursors (159). Gag and Gag-Pol polyproteins

also migrate to the cellular membrane and start to assemble, directed by a series of basic residues and a
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C myristoylation sequence present at the N-terminus of MA of the Gag polyprotein (308). At the C-terminal

end of Gag, NC recruits two copies of unspliced RNAs, and the p6 late domain mediates the process of

budding and detachment by its interaction with the host cellular protein Tsg 101.

HIV-1 budding occurs mostly at the plasma membrane of infected T lymphocytes. In macrophage,

however, this virus accumulates in an intracellular, vacuole-like compartment (256). Recent

ultiastructural studies identified this compartment as late endosome/multivesticular bodies (MVBs) (284).

HIV-l p6 PTAP late domain recruits the cellular protein tumor susceptibility gene 101 (TsglOl) to

facilitate virus budding (126, 365). In uninfected celis, TsglOl functions in the biogenesis of the

multivicular body (MVB) (173). Reduction of TSG1O1 levels by siRNA treatment or introduction of a

dominant-negative TsglOl mutant blocks viral budding and produces tethered structures at the plasma

membrane that resemble the phenotype of late-domain (PTAP) mutants (77, 126). AIl these results

suggest that HIV may bind TsglOl in order to gain access to the downstream machineiy that catalyzes

MVB vesicle budding. Studies in yeast show that TsglOI is part of a 350-kDa intracellular complex

known as endosomal sorting complex required for transport-I (ESCRT-I), which along with ESCRT-II

and ESCRT-IIL directs monoubiquitinated endocytosed cargo to the MVB (19, 184). Wills et ai. first

noted the topological similarity between budding of vesicles into the lumen of the MVB and budding of

viral particles into the extracellular milieu-both processes irivolve budding away from the cytosol (265).

Although ESCRT components are required for HIV-l particle formation, it is flot known if they perform

this function at the MVB, with other compartment, at the plasma membrane, or at ail three locations.

Particte release and maturation. The process of viral budding or release triggers the activation of the

PR that autocatalytically cleaves the Gag and Gag-Pol polyprotein, which releases the structural proteins

and enzymes MA (p17), CA (p24), NC (3)9), p6, PR (pi0), the reverse transcriptase (RT), and integrase

(p32) (416). The individual proteins undergo fiirther interaction, with CA and NC forming the conic

nucleocapsid, MA remaining associated to the viral envelope (39, 383).
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1.4. Biotogicalfunctions of Vpr.

Vpr is the only accessory protein found within the virion in substantial amounts.In in vitro culture

systems, Vpr is not required for viral replication in transformed ceil unes and primary T lymphocytes;

however, it plays an important role in the productive infection of ceils, such as macrophages and

monocytes (65, 146, 368). HIV-1 replication in macrophages is extremely important for the pathogenesis

in vivo because terrninally differentiated macrophages are natural ceil targets for HIV and provide a

reservoir of viral production during the asymptomatic stages of disease (20) The most convincing

evidence that Vpr plays an important role in vivo cornes from experirnents showing that rhesus monkeys

infected with Vpr deleted SIV virus have a low viral burden and slow disease progression cornpared to

those infected with the wild-type virus (157, 192).

1.4.1. Structure of the protein.

Priniary seqilence. The Vpr gene of HIV- I encodes a 96-amino-acid Ï 4-kDa protein that is produced

late in the viral life cycle (62). Tue prirnary Vpr sequence is shown in Fig 1 .5. Vpr sequence is well

consen’ed arnong the primate lentiviruses HIV-l, HIV-2, and SIV (350).

10 20 30 40
MEQAPEDQGP QREPHNEWTL ELLEELKNEA VRHFPRJWLH

50 60 80
GLGQHIYETY GDTWAGVEAI IRILQQLLFI HFRIGCHSR

1GVTRQRRAR NGASRS96

Figure 1.5. The primary Vpr amino acid sequence. The negative amino acids are shown in puiple,

positive charge amino acids in red andphospho,yÏation site in green.

3D-structure. Vpr shows welI-characterized helical domains with amphipathic properties and y -turns

throughout the protein. NMR analysis of a soluble full length Vpr (1-96) polypeptide was recently

performed, and revealed the tertiaty structure of the protein, confirming the arnphipathic nature of the



() three u-helices of HIV-l Vpr. The helices are connected by loops and are folded around a hydrophobic

core surrounded by a flexible N-terminal domain and a C-terminal arginine-rich region that are negatively

and positively charged, respectively (f ig 1.6) (235). The flexible and negatively charged N-terminal

region (Metl-G1u13) followed by a y-tum (Prol4-Asnl6), then an Œ-helix of 17 amino-acids,

encompassing residues Aspl7 to His 33. Vpr first helix has the characteristics of an amphipathic helix. Its

hydrophilic face is formed by the amino acid side chains: Aspl7, G1u21, Glu24, G1u25, Lys27, Asn2$,

G1u29 and Arg32, while the hydrophobic face is constituted by the side chains: Trpl$, Thrl9, Leu2O,

Leu22, Leu23, Leu26, A1a30, and Va13 1; an interhelical domain 1 (34-39) followed by a second y-tum

(Phe34-Arg36) and a second Œ-helix (His4O-G1u4$). The second helix (residues His4O to G1u4$) also bas

amphipathic properties as the hydrophilic side chains of G1n44 and G1u4$ are located on one side of the

helix while the hydrophobic side chains of Leu42, 11e46 are on the other; an interlielical domain 2

followed by a ‘y-tum (Asp52-Trp54). The third—helix is also well defined in the (55—74) region. G1y75

appears to induce a slight curvature in the helix, which is poorly defined in the (7$—83) region. The

hydrophobic amino acid side chains (Va157, 11e61, 11e63, Leu64, Leu67, Leu6$ and 11e74) are located on

one face ofthe helix and form an uninterrupted hydrophobic face, whereas amino acid side chains (G1u5$,

Arg62, G1u65, G1u66, Cys76 and Arg77) form the hydrophilic face. Vpr C-terminal (11e84-Ser96) does

not have a defined structure; it is an arginine-rich positively charged flexible region (235, 377).

Resuits from site specific mutagenesis have shown the importance of helix I for Vpr functions such

as virion incorporation, stability, and subcellular localization (215, 390). Furthermore, this domain was

also implicated in the oligomerization of Vpr.The substitution for the hydrophobic residues in Vpr Helix

II severely affected the virion incorporation of Vpr (332).

Amino acids 60-8 1 ofVpr in Helix III constitute the leucine-isoleucine-rich (LR) domain. It forms a

tong, well-defined amphiphilic Œ-helical structure extending from Trp53 to Arg78, one side of the helix

offers a stretch of hydrophobic residues that can form a leucine-zipper-like motif (35). This leucine

zipper-like motif forms an extended uninterrupted hydrophobic surface, whereas, polar residues mainly
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occupy the other side. This structure may account for the formation of Vpr dimer (311, 375) and /or for

the interaction with cellular partners (179, 374, 404). The LR domain is also involved in Vpr-mediated

nucleocytoplasmic shuttling (326) which is described in detail in section 4.2

Four conserved prolines (positions 5, 10, 14 and 35) in the N-terminal domain present cis/trans

isomerization (40). It was reported that the cellular peptidyl-propyl isomerase cyclophilin A was able to

interact with Vpr via prolines at position 14 and 35, which made sure for the correct folding ofthe viral

protein (399).

It was reported that Vpr is phosphorylated in small proportion both in infected ceil and virion (239)

and the phosphotylation targets four serine residues which are located at S28, S79, S94 and S96 of Vpr

(4). The S28 site is Iess conserved among different 111V isolates. The S79 site is a major phosphorylated

site which plays an important role in HIV-1-mediated macrophages infection (4). The Vpr S79A mutation

does not have G2 celi cycle arrest. Besides the fact that another report showed that only S79, S94 and S96

triple mutation can block 111V-I macrophage infection (411), the real contribtition of Vpr phosphotylation

on HIV-1 macrophage infection needs to be deterrnined.

Figure 1.6. 3D structure of Vpr protein. Vpr lias three a-heÏices. The helices are connected by Ïoops

andfoÏded around a hydrophobie core surrounded liv a fexibÏe N-terminal domain and a C-terminal
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arginine —rich region that are negativety and positivety charged. N Morellet, et al. Pubrned rnmdb

ID:22329 (http://www. ncbi. nim. niÏ2.gov/Structure/mrndb)

The carboxy-terminus ofVpr contains six arginines between residues 73 and 96. This domain shows

similarity with those of arginine-rich protein transduction domains (PTD), and may explain the

transducing properties ofVpr, including its ability to cross the celi membrane lipid bilayers (148, 329).

Oligomerization. The gel filtration experiment using recombination Vpr from bacteria showed that

Vpr exists in vitro as an oligomer, possibibly as an hexamer. Vpr oligomerization appears to be mediated

primarily via the N-terminal domain (aa 1-42) (405). Similar report showed that a small percentage of

synthetic Vpr was detected in dimers and trimers. Such candidate oligomers were only detected at a

concentration of 250 ng of synthetic Vpr but flot in preparations from viral lysates (148). The reason

could be the sensitivity of detection. However we could readily detect the dimer form of Vpr from

infected ceils and virion using HA-tagged Vpr, but no other forms of Vpr oligomer could be detected (my

unpublished data). Another reason could be that Vpr is associated with other proteins both in the ceil and

virion which blocks the oligomer formation. Vpr contains a single cysteine at residue 76 that may

potentially participate in intermolecular disulfide bond formation About 10% of the molecules exist as

disulfide-linked dimers, the formation of which was prevented by the addition of dithiothreitol (DIT)

(148). There are three types of protein-protein interactions in which Vpr oligomerization could be

involved. first Vpr oligomerization may be important for Vpr interaction with the Gag p6. The tendency

of Gag and Vpr to oligomerize could be important for their assembly into mature virion. Second, Vpr

oligomerization may enhance Vpr interaction with its cellular target. Third, oligomerized form of Vpr in

the HIV- 1 pre-integration complex could ensure that Vpr can simultaneously interact with both the viral

component in the PIC and the cellular component in the cytoplasm. This may be a prerequisite for Vpr to

promote the PIC into nucleus. These possibilities deserve flirther investigation.
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1.4.2. Subcellular Iocalization.

NLS. Vpr iocalizes in the nucleus when it is expressed alone (210). Two independent nuclear targeting

signais have been characterized within the HW-1 Vpr sequence, one spanning the Œ-helical domain in the

N-terminal part of the protein and the other within the arginine-rich C-terminal region (163, 171).

However, within the context of the native Vpr protein, the function of C-terminal nuclear localization

domain is controversial. Several other mutagenesis studies have failed to link this basic sequence with

nuclear iocalization (215, 390, 404). Instead, these investigators found that nuclear iocalization was lost

when the first two N-terminal domains of Vpr were mutated. They proposed that the carboxy-domain

relates simply to Vpr stability. Detailed description of Vpr NLS and its role in targeting HIV PIC to the

nucieus is presented in section 5.1.

NES. In characterizing the NLS in the Vpr N-terminal (l-71), Sherman et al. found that the Vpr LR

domain (L64QQLL68) was also involved in Vpr-mediated nucleo-cytoplasma shuttiing (326). The distal

leucine-rich lieux contains a nuclear exporting signal (NES). This NES utilizes the chromosome

maintenance region I protein (CRMI), which binds to the leucine-rich NES directly and mediates export

through the NPC in a leptomycin B-sensitive manner (249). Jenkins et aL reported that the mutated form

ofVpr L6$A can stiil be virion-incorporated, suggesting that Vpr nuclear export is not required for virion

incorporation (164), while Sherman et al. reported that Vpr nuclear export mutant L67A impairs Vpr

virion incorporation and subsequently effects viral replication in the macrophage, suggesting that Vpr

NES is required for efficient macrophage infection (325). Because Vpr NES L64QQLL5s locates in the

centre region of Vpr Helix III, and mutation in this motif causes Vpr conformational change which

affenuates the incorporation of Vpr in the virion (164, 325), probably it is mutation itself but flot Vpr NES

mutation disturbing Vpr virion incorporation and HIV-1 macrophage infection. The exact role of Vpr

export during HIV-1 infection needs to be further defined.
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1.4.3. ViraI incorporation of Vpr

Since Vpr is flot synthesized as part of the Gag polyprotein precursor, Vpr requires an anchor to

associate with the assembled viral proteins that are to be virion-incorporated. It lias been clearly

demonstrated through deletion analysis that the p6 domain of the p55 Gag precursor constitutes such an

anchor for virion incorporation of Vpr (53, 186, 209, 210, 266). A subsequent report mapped tlie

interaction domain in residues 3 2-46 of p6 that contains a LXXLF motif (185). A predicted putative u

helical domain near the N-terminus plays an important role in the packaging of Vpr into the virion (82,

215, 390). The smallest Vpr fragment that supports the binding is amino acid 1-71 (164). After assembly

and proteolytic cleavage ofPr55 into the Matrix, Capsid, Nucleocapsid, and p6 protein, Vpr is recmited

into the mature virion core where p6 is excluded, indicating that Vpr may interact with viral or ce)lular

component(s) other than p6 that are to be localized within the core. It seems tliat Vpr is less avid for the

fiully processed p6 protein than for the p6 region in the context of the Pr55gag precursor. Because of

differential avidity, Vpr is recniited into the core of the particles where it could interact with nucleic acids

(403), NCp7 (73, 74), or the matrix protein (306). It is estimated that Vpr is efficiently incorporated into

the viral particle at molar amounts 1:7 to those of Gag that may represent 275 molecules of Vpr per virion;

a small part of Vpr is phosphorylated in the virion (239).

1.4.4. Effects of Vpr on HIV-1 replication and pathogenesis in vivo

Vpr protein sequences are much conserved throughout different primate lentivinises; it correlates

with conservation of Vpr function. This firnction associated with 1-11V-1 Vpr has segregated in the HIV

2/SIVmac/SIVsm lineage, where Vpr induces G2 arrest, and Vpx promotes the nuclear import of PICs

(106). The importance of Vpr in viral pathogenesis is addressed in a number of earlier studies of $1V

mac2l9 infection in Rhesus monkeys. In one study, Rhesus monkeys infected with the SIVmac239

defective in Vpr had a low viral burden and no disease progression, whereas monkeys infected with the

wild-type virus or the wild-type revertant from Vpr-defective viruses exhibited higher viral burden and

rapid disease progression. The reversion of Vpr in three of the five test animaIs indicates that there is
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significant selective pressure for functional forms of Vpr in vivo (192). In two other studies, no significant

differences in disease progression were found between Vpr-deficient and parental wild-type viruses—ail

infected monkeys developed AffiS-like symptoms (129, 151). However, in the experiment most relevant

to infection by HIV- 1 without Vpr, monkeys infected with SIVmac239 defective in both the Vpr and Vpx

genes had severe attenuated infection with a much lower viral burden and no evidence of disease

progression (80, 129). At least a 100-fold decrease in the pathogenic index was found in the infectivity of

these mutant viruses when compared with the wild-type viruses, confirming the role of Vpr in viral

pathogenesis (80).

The requirement for Vpr in vivo by HIV-1 was further illustrated in chimpanzees and in an

accidentally infected laboratory worker who initially was infected with a Vpr-defective HIV-1 laboratory

strain IIIB (131). The HIV-1 IIIB strain Vpr gene has frame shifi mutation at codon 73, which resulted in

a tmncated Vpr protein with only the first 72 amino acids. It was reported that this non-functional

truncated protein reverts to wiÏd-type Vpr both in the accidentaÏly infected laboratory worker and in the

experimentally infected chimpanzees (131). These resuits clearly demonstrate that Vpr is required for

HIV-1 replication in vivo.

The Vpr sequence is one of the most conserved regions in the HIV genome, with an estimated

similarity of 87% between the different viral strains (199). Usually, mutagenesis is used to predict the

functional changes derived from amino acid substitution. A synonymous or non-synonymous amino acid

substitution in Vpr could dramatically affect Vpr functions (82, 390). Since Vpr is a small molecule,

disruption ofany specific domain by insertion of mutation frequently causes major structural changes, and

affects the rest of the molecule. Another potential problem associated with these mutagenesis studies is

that the Vpr mutants were often artificially created, and therefore, may flot represent the profile of

naturally occurring mutations. The precise contribution of Vpr to HIV-1 pathogenesis in vivo is difficuit

to determine. The recent discoveries of Vpr mutations in long term non-progressor individuals (LTNPs)

have underscored the importance of Vpr in the viral life cycle in vivo (211, 334). One Vpr polymorphism

Q3R from LTNP contained both Q3R and C-terminal mutations, which significantly impaired the ability
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of Vpr to confer cytopathicity, but had no effect on the efficiency of viral replication. Vpr R77Q is

reported to associate with HW patients with slow disease progression (211, 232). Although they have

convincingly demonstrated that Vpr R77Q mutation isolated from the HIV-1 viral strain HxBm, impaires

the ability of Vpr to induce apoptosis, but it was not proven by other reports using other HIV-1 viral

strains (57, 105). Also, Vpr C-terminal mutations are frequently found in LTNP (47, 371, 406). These

natural Vpr mutations in LTNP support HIV- 1 replication in vivo, but these mutations may disturb the

other unknown functions of Vpr by eventually compromising HIV-1 pathogenesis in vivo. Detailed

research needs to 5e done to address this question. Taken together, these data support the idea that

functional Vpr may be one of the viral factors contributing to disease progression.

1.4.5. Biological functions ofthe 111V-1 Vpr protein

The precise mechanisms by which Vpr influences viral replication are stiil unclear. Numerous

proteins capable to bind Vpr have been identified, suggesting that the viral protein may 5e implicated in

the reverse-transcription, the transcriptional activation of the LTR promoter, the nuclear transport of the

preintegration complex in nondividing ceils, and HIY-induced growth arrest and cytotoxicity (see

summary in Fig 1.7).
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Figure 1.7. Potentil role of Vpr in AIDS pathogenesis.

Implication in the reverse-transcr43tion. The interaction of Vpr with uracil DNA glycosylase

modulates the human immunodeficiency virus type 1 in vivo mutation rate (219) and decreases the

mutation rate in cells (166) that has been described in section 1. 3.3.

Vpr is a generat transactivator. In early studies, Vpr was shown to be a moderate transcription

activator of several viral and cellular promoters (63, 107). Vpr may provide help in activating HIV- 1 LIR

direct expression at an early stage to generate the messenger RNA, which produces the early proteins,

such as Tat and Rev that are essential regulatory proteins following the integration of viral DNA into the

host genome. Consistent with this hypothesis, the virion-associated Vpr stimulates LTR-directed reporter

gene expression in vivo by increasing the mRNA level (389). The transactivation of HW-i induced by

Vpr is mediated through cis-acting elements, including NF-icB, Spi, CEBP, and the glucocorticoid
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response element (GRE) enhancer sequence found in the LTR promoter (152, 361, 374). Also related to

this activity, Vpr regulates the expression of host ceil genes such as NF-KB, Nf-IL-6, p2lwafl, and

suwivin (56, 303, 414). These studies proposed that Vpr stimulates the HIV-1 LTR promoter by

associating with the transcription factor Spi. Vpr could bind to Spi in a gel-shift assay using probes

containing the Spi -responsive elements and in a coimmunoprecipitation assay (374). Direct binding of

the two molecules has not been demonstrated, but the second Œ-helix of Vpr is necessary for stimulation

of the HIV- 1 LTR. Vpr was also shown to interact with one of the general transcription factors (TF)

TFIIB in an in vitro GST-pull down assay (3). Subsequent analyses fiirther indicated that Vpr fiinctions as

a potent enhancer of Tat-induced activation of HIV LTR (107, 180). Interaction of Vpr with Tat and its

partner Cyclin Ti were also found in in vitro binding assay (307).

Vpr displays high affinity for nucleic acids, but no specific DNA sequence targeted by Vpr bas been

identified yet (177, 403). Interestingly, Vpr does not bind to the Spi factor or cis-elements alone, but it

associates with Spi in the context ofthe G/C box array (374), indicating that Vpr might bind to a specific

DNA sequence after it associates with a cellular partner, and subsequently drive the expression of both

host celi and the viral gene.

It bas been reported that Vpr can directly bind to p300 via a LXXLL motif present in the C-terminal

Œ-helix of the protein (180), suggesting that Vpr may act by recruiting the p300/CBP co-activators to the

HIV-i LTR promoter, and thus enhance viral expression. Since p300 is a coactivator ofNF-KB, Vpr also

can mediate up-regulation of promoters containing the NF-icB and NE-IL-6 enhancer sequence in primary

T celis and macrophages. In addition, Vpr markedly potentiates glucocorticoid receptor (GR) action on its

responsive promoter (179, 180). The Vpr-induced LTR transcription is inhibited by the addition ofthe GR

antagonist, RU486, in cultured macrophages (288). Vpr-mediated coactivation of the GR is distinct from

the G2 arrest and requires both the LLEEL26 and LQQLL68 motifs from the first and third a-helical

domains ofHIV-i Vpr (179, 327).
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The last two flmctions of Vpr (Vpr-mediated nuclear import and cytotoxicity) will be developed in

section 1.5 and section 1.6 separately, since they constitute the main topics of my thesis study.

1.4.6. Vpr induced G2 arrest.

b ensure accurate transmission of the genetic information, eukaryotic celis have developed an

elaborate network of checkpoints to monitor the successful completion of every celi cycle step and to

respond to cellular abnormalities such as DNA damage and replication inhibition as they arise during ceil

proliferation. Two of the best characterized G2/M checkpoints—DNA damage and DNA replication—

were first characterized in detail by genetic analysis of fission yeast. The G2 to M transition is controlled

in fission yeast by the phosphorylation status of Tyri 5 on Cdc2, the cyclin-dependent kinase that

regulates the celi cycle in ail eukaryotic cells (236). The Weel phosphorylates Tyrl5 in Cdc2 and Miki

kinase to hold the celi in G2, and rapid dephosphorylation by Cdc25 phosphatase triggers the G2 to M

transition (188, 236).

One of the major biological activities associated with Vpr is its ability to prevent the passage of the

ceil through mitosis at the G2 stage of the celi cycle. The HW- I Vpr protein induces celi cycle G2 arrest

through inhibitory phosphorylation of Cdc2 both in fission yeast and human ceils, suggesting that Vpr

affects a consewed cellular process. Specifically, this effect is associated with the inactivation of the

cyclin-dependent kinase (Cdk) p34cdc2 (144, 285, 407). Vpr exerts its inhibitory effect through

phosphoiylation site 114 and Y1 5 of CDK1 and Yl 5 of Cdc2, as an expression of the nonphosphoiylated

Cdc mutant, 11 4A Y 15F of CDK1 and Y 15F of Cdc2 in the yeast, preventes Vpr-induced G2 arrest (95,

144). furthermore, Vpr interacts with, and inhibits the activity of the phosphatase Cdc25 (24, 96, 130)

and activates Weel kinase (96, 397) to promote phosphorylation of Cdc2/Cdkl during the induction of

G2 arrest. Consistent with the role of Weel and Cdc25 in Vpr-induced G2 arrest, proteins that are

involved in the regulation of Cdc25 or Weel have also been identified as either augmenting or alleviating

Vpr-induced G2 arrest. A Cdc25 inhibitor rad25 (208), which is the human 14-3-3 homologue, enhances

Vpr-induced G2 arrest when overproduced in fission yeast (96). Recent studies flirther show that Vpr
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binds to 14-3-3 and Cdc25C in human ceils (130, 181). The region of Vpr binding to Cdc25C mapped

near the catalytic domain of Cdc25C and the Cdc25C phosphatase activity was inhibited. The authors also

observed that RNAi lmockdown of Cdc25C expression abrogated Vpr-induced 02 arrest (130).

Early research in human celis showed that Vpr does flot induce G2 arrest through the DNA damage

checkpoint pathway. However, Vpr stiil induces G2 arrest in celis from patients with ataxia telangiectasia

(AT) (24). These AT celis has AIM gene mutation, which is a human homologue of fission yeast Rad3,

and they do flot arrest in 02 in response to DNA damage (223). However, recent reports show that Vpr

activates AIR and a second human homologue of fission yeast Rad3, and other steps in this checkpoint

pathway such as Radl7, Husi, BRCA1, and ‘y-H2AX, these studies suggest that Vpr induces G2 arrest

through either a cellular response to DNA replication stress or to a signal that mimics DNA damage (414,

415). Expression of Vpr does not increase gene mutation frequency (217) or change the radio-sensitivity

of the checkpoint defective mutant (96), which goes against the possibility that Vpr actually causes DNA

damage. Thus, it is reasonable to think that signais other than actual DNA damage triggers DNA damage

like cellular response. These cellular responses could include the nuclear herniation which is caused by

Vpr (72) or cellular stress responses to Vpr gene expression (28, 158). Since AIR and Chkl are primarily

responsive to changes in DNA replication, an alternative possibility is that Vpr may interfere with DNA

replication. This possibility is certainly supported by a number of reports showing that Vpr induces

genomic instability, formation of micronuclei, and aneuploidy (330, 407). AIl of these changes in DNA

structures could be perceived as replication stresses, which could trigger celi cycle arrest.

Recent findings suggest that Vpr mediated ceil cycle arrest at the G2 stage may have advantage for

the virus. The viral LTR is highly active in the 02 stage (131, 153, 413). Therefore, Vpr induction ofcell

cycle arrest at the G2/M transition can optimize viral gene expression and allows for more efficient viral

replication through the up regulation of viral transcription. Brasey and his colleague demonstrated the

presence of an IRES element in the 5’ leader of HIV-1 DNA, and the HIV-1 IRES showed peak

translation activity when ceils were arrested in 02 stage (37). It will be interesting to investigate if Vpr
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mediated 02 arrest can resuit in down-regulation of cap-dependent translation to favor protein translation

ftom internai ribosome entry sites (IRES s), including a putative viral IRES.

1.5. Proprotein convertase and HIV-1 infection

Biologically active proteins and peptides are ofien generated by intracellular limited proteolysis of

inactive precursors. The precursor protein can be cleaved intracellularly, at the ceil surface or within the

extracellular milieu. This process is accomplished by proprotein convertases (PCs), which are serine

proteinases related to bacterial subtilisin and yeast kexin. Today seven mammalian PCs, characterized by

their ability to activate precursors at dibasic amino acid residues, have been identified. PCs in this group

include PCi (PC3), PC2, PC4, PACE4, furin, PC5A&B (also known as PC6A&B), and PC7 (LPC) (247,

319). In addition, recently, two other PCs that cleave the precursor at non-basic residues have been

characterized. The pyrolysin-like subtilase SKI-1/S1P (305, 321) cleaves proproteins with the consensus

motif (RÎK)-X-(hydrophobic)-Z-i’ (where Z is a variable), whereas the novel neural apoptosis-regulated

convertase 1 cleaves its own prosegment at VFAQI- (31$). SKI and PCSK9 are important regulators in

cholesterol and tipoprotein homeostasis (305).

The specificity of PC-precursor interaction is regulated by cellular expression of the precursor and

subcelluiar localization, as well as by the strict requirements ofthe precursor structure and sequence (319,

346).

1.5.1. Tissue distribution and subcellular Iocalization of proprotein convertases

Furin is a ubiquitous PC of constitutive secretory pathway. Human fiirin bas 794 amino acids. It is a

type I membrane protein predominantly localized in the trans-Golgi network (TGN).Yet a proportion of

furin is also iocalized at the ceil surface (231) and in immature secretory granules of neuroendocrine and

endocrine celis (86).
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tE furin cleaves most efficiently at the R-X-(KJR) R motif: (j) An Arg residue is essential at the PI

position, (ii) In addition to the Pi Arg, at least two out of the three basic residues at P2, P4, and P6 are

required for efficient cleavage, and (iii) At the Pi’ position, an amino acid with a hydrophobic aliphatic

side chain is flot suitable (247). Three other PCs, PC5!6A, PACE4 and PC7, have the sequence specificity

similar to that of furin (247). In accordance with its tissue distribution, a wide range of protein precursors

are shown to be substrates for flirin, such as the parathryroid hormone-related peptide (PTHRP) (206), the

pro-f3-nenîe growth factor (3$), the HIY-i envelope gpl6O (140), and HW-i tat (34$).

PCI/PC3 and PC2 enzymes exhibit a more restrictive expression pattem than furin. It has been

suggested that PC1/PC3 and PC2 are involved primarily in the processing of prehormones within the

regulated secretoiy pathway of ceils of the endocrine and neural tissues (359). High levels of expression

of PCi and PC2 mRNA are observed in the neuropeptide-rich regions, such as the hypothalamus,

hippocampus, and cerebral cortex. These areas are also characterized by the relatively high expression of

carboxypeptidase E (319). Most prohormone processing occurs within the regulated secretory pathway

and generates a bioactive hormone that is secreted from mature secretory granules in response to specific

stimuli. PC1!PC3 and PC2, which concentrate in mature secretory granules, are the only PCs to enter this

pathway (322). The PC1/PC3 and PC2 proteins are shown to possess endoproteolytic activity with

specificity for cleavage sites that consist of paired basic amino-acid residues (26, 347).

PC4 exhibits a unique expression pattem, since it is only expressed in testicular germ ceils (25).

Like PC1/PC3, PC2, and an isoform of PC5A, PC4 belongs to the group of PCs which act within the

regulated secretory pathway. Only a few substrate of PC4, like the pituitary adenylate cyclase-activating

polypeptide, have been identified so far, which demonstrates the important role of the enzyme in the

testicular development system (203). Furthermore PC4 (-I-) transgene mice are infertile.
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Northern blot analysis revealed that like the finin gene, the PACE4-encoding gene is broadly

expressed. A 4A-kb PACE4-specific mRNA is found in a wide variety of tissues, including heart, brain,

placenta, lung, liver, skeletal muscle, kidney, and pancreas. It is apparent that PACE4 and PC5A are the

closest members of the family exhibiting about 74% sequence identity within their catalytic domain.

PACE4 seems to be particularly highly expressed in the cerebellum and in the spinal cord (320). Aithough

PACE4 is flot expressed in peripheral biood lymphocytes (PBL), it is well expressed in lymphatic tissue,

such as the thymus, lymph node, and spleen (141). PACE4 is localized in TGN and the ceil surface (345).

PACE4 is found in a number of ceil unes, such as the human embryonic kidney ceil une 293, the

hepatoma ceil lime HEPG2, the monocyte celi une U937 (359), and the Cos-1 ceil fine (320). PACE4 is

also present at the exterior of ceils and plays a role in the proteolytic activation of the anthrax toxin PA

(132).

PC5 is the only member of the basic amino-acid-specific PC family that exists as two isoforms:

soluble PC5A (212) and membrane-bound PC5B (245). PC5/6 undergoes alternative spiicing to generate

two isoforms (A & B) with distinct C-termini and expression pattems. PC5AJCA lacks the putative

transmembrane domain that is found in PC5B/6B and bas a much shorter Cys-rich region, whereas

PCSB/63 lias the largest Cys-rich region of ail the PCs (245). PC5A and PC5B are distributed

ubiquitously in the tissue (345). The structural differences of these two isoforms govem their sorting to

different compartments of the secretory pathway. PC5A is sorted to both the constitutive and regulated

secretory pathway, whereas PC5B is localized only within the constitutive secretory pathway (71). PC5A

is mostiy Iocalized within the dense core secretoiy granules in regulated ceils, and PC5B is localized to

the TGN where it communicates with endosomes and the ceil surface (71, 345). Recent reports indicate

that secreted PC5A and PACE4, but flot soluble fiirin, bind heparin within the extracellular matrix via a

cationic stretch ofamino acids within cysteine-rich domain (CRD) in both PCSA and PACE4 (254, 351).

Previous studies demonstrated that the majority of PC5A cleaved protein precursors are membrane-bound
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proteins, such as the adhesion protein, which includes integrin a-chains (336) and the neural adhesion

protein Li (16$), as well as TGf 3-like precursors (355).

PC7 is the third type membrane-bound protein. Unlike furin and PCS, PC7 has no cysteine-rich

region or RGD motif, suggesting it may not associate with extemal plasma membrane or extraceliular

matrix (ECM). Phylogenetics analysis suggests that PC7 represents the most divergent enzyme of the PC

family and that it is the closest member to the yeast convertase Kexin (319). The mature PC7 is mainly

localized to the TGN and celi surface (345), as described for furin that PC7 may recycle between TGN

and ceil surface. In contrast to fiirin, PC7 is flot shed from the ceIl (240, 358). PC7 appears to have a

redundant, nonessentiai fiinction, since its absence does not result in any detectable phenotype.

Histochemical analysis of internai organs lias not revealed any obvious abnormalities. The absence of a

phenotype is surprising in light of its ubiquitous expression at ail development stages and in aduit tissue,

including the brain, lung, liver, kidney, spleen, and thymus (67, 228). PC7 is either involved in the

processing of a set of nonessentiai substrates or is active in the ceiis where sufficient processing

redundancy is present.

1.5.2. PC expression in T lymphocytes celis

The Northem blotting analysis of the human immune system showed that PC5A and PACE4 are

found in liver, bone manow, appendix, thymus, lymph node, and spleen, but not in peripheral blood

lymphocyte (PBL) (141). furin and PC7 were found in ail tested, tissues whereas PCi was found only in

the appendix. furin and PC7 were the only enzymes detectable at the mRNA level in primary PBLs,

macrophages, and cultured T celis unes (CEM, MOLT-4, TPH-l, HUT-7$, H9, Jurkat). THP-l but not

primary macrophage celis were found to have PACE4 expression, suggesting PACE4 is expressed in

highly differentiated ceIl (141).
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Semi-quantitative RT-PCR resuits show that PC7, PC5, and furin are the three main PCs expressed

in resting CD4 T lymphocytes, although PC5 expression level is very low. In contrast, no PCi and PC2

transcripts were found in the isolated celis, and only insignificant levels of PACE4 mRNA were detected.

PHAIIL-2 stimulation of PBLs leads to a significant increase in the level of expression of fiirin and PC7,

but not of PC5 (76).

1.5.3. Proprotein convertase Inhibitors.

A considerable effort was made to produce the specific PC-inhibitor because of the potential

clinical and pharmacological role of the convertase. The proposed strategies involved the development of

either a peptide-based PC-inhibitor or protein-based inhibitors.

PC peptide inhibitor. Garten et al. have shown that acylated peptidyl chloromethanes (-CH2CL,

Chloromethylketones) containing a consensus furin cleavage motif—such as decanoyl-Arg-Glu-lys-Arg

CH2CL—inhibit in vitro cleavage of the Influenza-Virus HA protein by furin at a micromolar

concentration through covalently modifying the substrate-binding site of convertase (338). Garten et al.

fiirther showes that this PC peptide inhibitor blockes the cleavage of several viral envelope glycoprotein

precursors, such as influenza HA, HIV gpl6O, cytomegalovinis glycoprotein B, and parainfluenza-virus

glycoprotein F0, and subsequently inhibites the formation of infectious viral particles (140, 258, 338, 366).

Although these peptidyl-CH2CI species are very useful for in vitro studies of PCs, they appear to be

ineffective in in vivo antiviral therapy. One reason is that they are unable to completely abolish the

cleavage of these glycoprotein precursors, which is possibly due to their low efficiency for penetrating

into a celi and the instability of the chrolomethylketone group. Secondly, they are relatively cytotoxic,

possibly due to their irreversible mechanism of inhibition (247). So far, the in vitro peptide-based

approach has not effectively inhibited the PCs intracellularly, and thus more work is needed to improve

the cellular permeability of the designed inhibitors.
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Protein based inhibitor for PC. Protein-based furin inhibitors have also been developed, since tissue- or

ceil-type-specific expression of these inhibitors controlled by a characterized promoter could be

therapeutically valuable. In late 1980s, Brennan showed that a variant serpin of OEl-antitrypsin, name ai

antitrypsin Pittsburgh (al-PIT), wth Met to Arg substitution in the reactive-site (AIPM to AIP) inhibited

Kex2p cleavage ofproalbumin in vitro. al-PDX is al-antitrypsin variant serine protease inhibitor (serpin)

containing the minimal consensus fiirin cleavage site (R-I-P-R) in its reaction site ioop. al-PDX inhibits

furin by a slow tight-binding mechanism characteristic of the serpin molecule, and functions as a suicide

substrate inhibitor (il). ai-PDX inhibits PCs activity by forming the SDS-stable complex with furin,

PC5A, PC3 (l62), and PACE4 (351). al-PDX can block the furin-mediated proteolytic processing of

HIV-1 gp160 (10). al-PDX inhibits furin in vitro with a K43.5 of3ong/ml (0.6 nM) (10). cd-PDX is a

potent convertase inhibitor for ail tested PCs in the in vitro assays (76, 162). However, intracellularly ai

PDX acts primarily within the constitutive secretoiy pathway, and it strongly inhibits furin, PC5, and

PACE4 (27) but is Iess potent for PC7 (27, 162). Therefore, al-PDX is a veiy useful protein-based PCs

inhibitor toward process of endogenous growth factors precurssor and the viral envelope glycoproteins.

However, al-PDX may exhibit a limited toxicity to ceils in vivo.

Spn4A is a previously uncharacterized serpin from Drosophila rneÏanogaster. It contains a

consensus furin cleavage site, R-R-K-R in its reactive site ioop (RSL). Spn4A inhibits human furin ami

Drosophita PC2 by a slow-binding mechanism characteristic of serpin molecules and forms a kinetically

trapped SDS-stable complex with each enzyme (296).

1.5.4. 11W-1 env and tat are processed by PCs

The envelope (Env) glycoprotein of HIV- 1 is essential for receptor binding and membrane fusion

during infection. Env is syntliesized as a precursor polypeptide (gpl6O) that oligomerizes to form a trimer
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(87, 93), which is transported through the trans-Golgi network. In the trans-Golgi network, Env is cleaved

by the cellular protease into surface (gp 120) and transmembrane (gp4 1) subunits that remain associated

by non-covalent interactions. Cleavage of gpl6O occurs at a conserved Arg-Glu-Lys-Arg sequence (174,

225). Mutagenesis of the Arg-Glu-Lys-Arg sequence produces noninfectious HIV-1 particles containing

unprocessed gpl6O (225). Therefore, the cleavage or maturation of the envelope glycoprotein is a crucial

step for the propagation of viral infection. Several studies have suggested that several enzymes of

proprotein convertase family participate in the maturation process of MW-l gp 160, furin, PC7 and to the

lesser extent PC5A are the PCs expressed in the freshly isolated human CD4 T lymphocyte, the natura

host celis of HIV-1 infection. These three PCs were implicated in the intracellular proteolytic processing

of the HIV-1 envelope gp160 during HIV-1 infection (75, 238). It is difficuit to point which member of

the PC family is responsible for MIV Env processing because infected ceils may contain several redundant

activities, and every ceil une that exists contains at least some members of the PC family. The

requirements for the participation of an enzyme candidate in the envelope cleavage are: (1) a direct in

vitro cleavage of the envelope glycoprotein, (2) cleavage of the envelope protein intracellularly using tEe

coexpressing system, (3) colocalization with its substrate in the same intracellular compartment, (4)

cleavage inhibition by a specific protease inhibitor, (5) expressed and active in the virus infected celis.

The MIV- 1 Tat protein is a franscriptional activator for viral expression. Tat can be secreted

through the nonclassic leaderless secretion pathway that shares several features with the acid FGF

(fibroblast growth factor) (52). Tat expressed alone can 5e released in the absence of celi death or

permeability changes. Tat release is dependent on the temperature and serum concentration, and it is flot

blocked by brefeldin A or methylamine. Afier release, a portion of tEe protein remains in a soluble form,

whereas the rest binds to the extracellular matrix (ECM)-associated heparan sulfate proteoglycans

(HSPG), The ability of soluble Tat to attacli to membrane heparin sulfate proteoglycan is a step

preceeding intemalization transducing proteins by endocytosis (229). Extracellular Tat has multiple

firnctions, such as the rescue of virus expression in some latently infected cells (111) and increase of the

CXCR4 expression in T ceils for MIV infection (316). Tat peptide containing the cysteine-rich domain

41



can activate monocyte (6) and mediate CD4+T ceil killing by inducing tumor necrosis factor-related

apoptosis-induced ligand (TRAIL) (408), stimulates cytokine production in T-ceils (317) and mediates

protein transduction in many celi types (314). Extraceliular HIV-1 Tat protein has a highly conserved

basic region ofHIV-1 Tat protein (amino acids, 48-56). Two putative furin cleavage sites were identified

and showed that Tat protein was cieaved in vitro at the second site, RQRR56. This in vitro cleavage was

blocked by the furin inhibitor alpha-1 PDX (348). Monocytoid U937 ceils rich in surface fiirin aiso

degraded Tat. Furin processing did not affect the rate of Tat uptake and nuclear accumulation in HeLa or

Jurkat celis, but the transactivation activity was greatly reduced. Furin processing is a likely mechanism

for inactivating extracellular HIV-1 Tat protein (348).

1.6. Vpr and 111V-1 cytotoxicity

1.6.1. HIV-1-induced cytopathic effect

Direct cytopathicity. HIV infects celis of the immune system, particularly T helper celis, which

express the CD4 molecule. HIV infection is characterized by the graduai ioss of CD4+ T celis and a

progressive immune deficiency that leads to opportunistic infection and ultimately death. 98% of the

CD4+ T-lymphocytes reside in the lymphoid tissue. During the course of infection, a steady depletion of

lymphocytes occurs, and the structure of the iymphoid tissue is progressiveiy destroyed. In the final stage

of HIV infection, when the immune system is severely impaired and non-functional, the lymphoid

architecture is totally destroyed with complete loss of cellular tissue and its replacement by fibrotic tissue

(261). Inflammatoiy cytokines and HIV gene products, such as Nef, Tat, and Vpr, induce T celi receptor

(TCR)-independent T ceil activation and contribute to the efficient production and propagation of the

virus from infected celis to adjacent CCR5+CD4+ T celis. It was initially proposed that HIV-associated

irnmunodeficiency results from the direct vims-mediated kiiling of the CD4+ T ceil (200) or indirect

cytopathicity and CD$-mediated destruction of the infected CD4 T ceils (227). Recent affempts to

understand how HIV disrupts T-cell homeostasis suggest that chronic immune activation, due to the
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persistent expression of the viral particles, resuits in high turnover rates of T ceils, Ïeading to increased T

ceil proliferation that is physiologically controlled by increased apoptosis ($9).

HIV-infected patients—with different degrees of immune dysfirnction—have similar rates of

infected ceil clearance, suggesting that direct cytopathicity of the virus determines the life span of the

infected celis (150, 267). Increasing attention is being given to apoptosis as a major factor in celi

depletion during HIV infection. The HIV structural protein gpl2O and accessory proteins Tat, Nef, and

Vpr are found to exhibit apoptotic properties (18, 302). Apoptosis has been demonstrated in HW-infected

lymph nodes, the thymus, and other lymphoid tissue (8, 30). One type of HIV-1-induced cytopathic effect

(CPE) involves the fusion ofHIV-1 infected ceils with other infected or uninfected CD4+ ceils mediated

by HIV-1 Env (393). Another type of HIV-1 induced CPE resuits in the death of single-ceil kilhing rather

than syncytia ceil formation, which is the predominant HIV-1-induced CPE in peripheral blood

mononuclear ceils ofHIV-l patients (334). Cytotoxic T lymphocytes (CTL) could play an important role

in killing HIV-infected celis during the early stage of infection (31). A recent study shows that both

necrosis and apoptosis contribute to the HIV-induced killing of CD4+ T ceils in vitro; the predominant

population in acutely infected ceils present typcal feature ofnecrosis, whereas less than 12% ofcells have

the feature of apoptosis (273). Thus, it is hikely that the depletion of immune ceils during HIV infection

occurs through a variety ofcell death mechanisms.

Bystander cetÏ JdlÏing Increasing evidence exists in favor of the indirect kilhing of bystander celis by

extracehlular or ceil surface-associated components of HJV-1-infected celis. This could explain why such

massive death ofCD4+ T lymphocytes occurs during the course ofHIV infection when the viral burden is

relatively low (12, 200). A number of studies demonstrate that the majority of CD4+ celis undergoing

apoptosis during HIV infection are uninfected (104, 241). Coculturing of HIV-infected ceils with

uninfected ceils resuits in the apoptosis of the uninfected target celi prior to syncytium formation or

establishment of productive viral infection (24$). Ceil death during the course of HIV infection is flot

himited to CD4+ T lymphocytes. It also has been demonstrated in non-CD4+ celis such as CD8 T celI (30,
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49), B ceils (49), natural killer celis (286), hematopoietic progenitor celis (22), macrophages, dendritic

ceils, and endothelial cells (8). Since non-CD4+ ceils, which are not infected by HIV, are eliminated, this

suggests that their death is mediated by an indirect mechanism.

While contributing to the bystander effect, HW could also have devised strategies to prevent the

death of ifie ceils that it lias infected. Inhibition of apoptosis in HW-infected ceils enhances virus

production and facilitates persistent infection (13). Finkel et aï. showed that in HIV-patient lymph nodes,

widespread apoptosis occurs in uninfected ceils. HIV-infected ceils were very rarely apoptotic, and on the

basis of these studies, this suggests that a viral protein inside the infected celis may inhibit apoptosis. Both

Tat and Vpr proteins has been shown to have a dual effect on apoptosis (68, 69, 400).

1.6.2. Vpr-mediated apoptosïs.

Impact in HIV-1 pathogenesis. Apoptosis is a programmed ceil death, a mechanism multinuclear

organisms to ensure proper development and homeostasis. It is also a biological process necessary to

combat the effect of oncogenesis and viral infection. HIV infection causes a depletion of CD4+ T ceils in

AIDS patients, which resuits in a weakened immune system that is impaired in its ability to fight

infections. The major mechanism for CD4+ T celi depletion is apoptosis, which can be induced by HIV

through multiple pathways of both infected ceils and non-infected “bystander” ceils (7). In recent years,

the investigation of Vpr lias identified it as a possible causative agent or at least a contributing factor in

celi death via the apoptosis pathway. Even though the exact contribution of Vpr as a pro-apoptotic factor

responsible for T-cell depletion observed in the natural course ofHIV infection is stiil unknown, evidence

has repeatedly shown that Vpr lias a cytotoxic potential and is able to induce apoptosis in many in vitro

systems (391). In addition, transgenic mice expressing Vpr under the control of the CD4 promoter show

both CD4 and CD8 T celi depletion associated with thymic atrophy. However, controversial resuits

indicating that Vpr can also act as a negative regulator of T ceil apoptosis have been reported (17, 69).

Since apoptosis in response to viral infection is used by many eukaryotic organisms, some vinises

have developed strategies to inhibit, or at least delay the process, allowing virus to replicate before the
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celi is killed. The dual effect of Vpr on apoptosis (6$, 69) may be explained by the following scenario. In

the early phase of viral infection, the level of Vpr entering the ceil could be insufficient to produce the

immediate arrest of the celi cycle, and yet could delay apoptosis and permit integration of the provirus

and subsequent replication. The antiapoptotic effect may continue until Vpr is expressed at a level high

enough to arrest the celi at the G2+M late stage of viral infection, followed by the eventual progression to

apoptosis. The mechanism of induction of apoptosis by Vpr include activation of a transcription factor

such as NF-icB, activation of caspase 3 and 9, and the interaction of Vpr with the adenine nucleotide

transiocator (:160, 242, 303).

G2 arrest/apoprosis relationship. InitiaÏly, Vpr-mediated apoptosis was proposed as a consequence of

the prolonged ceil cycle arrest (337, 376, 389). Other investigations have revealed that the Vpr-mediated

G2 arrest was flot a prerequisite for the induction of apoptosis, suggesting that both G2 anest and

apoptosis functions are separated (250, 251, 370). However, the observation that the activity of the ceil

cycle regulatory Wee-1 kinase is decreased in Vpr-induced apoptotic ceil leads to the hypothesis of a

direct correlation between the G2 arrest and the apoptotic properties of Vpr (39$). Hence, reduction of

Wee- I activity, probably related to its delocalization provoked by Vpr, resuits in an inappropriated

activation of cdc2, leading to ceil death with phenotypical aberrant mitotic features, a process known as

mitotic catastrophe (145). By using an established ceIl une expressing Vpr, it was observed that afier the

long G2 phase, the celis rounded up with an aberrant M-phase spindie, and multiple poles that resulted

from abnormal centrosome duplication (51, 376). The cells stopped prematurely in pro-metaphase and

died by subsequent apoptosis.

1.6.3. Extracellular Vpr and its biological function.

Detection of soluble Vpr. The role of extracellular Vpr as an effector of pathogenesis lias recently

emerged. Extracellular Vpr can be found in the sera and cerebrospinal fluids of HIV-l-positive

individuals in quantities that correlate with the level ofviremia (197). Additionally, antibodies specific to
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Vpr can be detected in HIV-infected patients, indicating that a relevant fraction of Vpr circulating in

patients exist in an extravirion state (290, 291, 386). Amounts of extracellular Vpr correlate with the

extent of viremia, suggesting that the source of extracellular Vpr lilcely resuits from the decay of

circulating virion (197). However, a significant source might also be through the release of the cytosolic

protein from infected apoptotic ceils.

Vpr-transducing pi-operties. A class of proteins with the ability of transducing the plasma membrane,

independent of the classical endocytic mechanism, has been identified. These transducing proteins rely on

the presence of an arginine-ricli protein transduction domain (PTD) (229) and can penetrate lipid plasma

membranes in an energy-independent manner (315). Likewise, denaturation of these transducing proteins

also enhances their intracellular delivery, presumably through more efficient exposure of the PTD to the

ceil membrane (315). In fact uptake of exogenous protein very often involves the attachment of the

arginine-rich domain of the protein to membrane heparin sulfate proteoglycans (229). Interestingly, it lias

been shown that synthetic Vpr could also penetrate celis in vitro via an energy- and receptor-independent

process (148, 329). The Vpr C-terminal arginine-rich region is important for several Vpr biological

activities. It is not only critical for protein nuclear localization, G2 arrest and proapoptotic functions (9,

194, 410) but also important for the ability ofthe protein to transduce into ceNs (329). Since Vpr contains

an arginines-rich domain homologous to the PTDs, it seems logical that the Vpr might belong to this class

ofproteins (60, 148, 177, 329). The existence ofcirculating Vpr in an infected individual, and its capacity

to enter other ceils, further indicate that it is possible that Vpr lias an effect on bystander cells.

Addition of purified Vpr to the extracellular medium of cultured cells recapitulates many of the

phenotypes ascribed to Vpr synthesized de novo. Extracellular Vpr can transduce the celi membrane,

localize in the nucleus and cause ceil-cycle arrest at the G2 stage (329), which induces ceil apoptosis

(189, 272). The soluble protein is also able: (j) to enhance HIV-1 replication both in the latently infected

leukemia ceil une and in the peripheral blood mononuclear ceils (PBMCs), (ii) to activate virus

replication in a latently infected HIV-l ceil line at concentrations as low as lng/ml (198), and (iii) to

rescue the replication of the Vpr-defective virus in macrophages (329). On the other hand, extracellular
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Vpr inhibits the host inflammatory response by down-regulating pro-inflammatory cytokines (TNfa and

IL-12) and beta chemokines (MW-IŒ, MIP-1t3, and RANTES) in a manner similar to glucocorticoids (17,

243, 288). Vpr additionally suppresses the host inflammatory response by inhibiting NF KB activity

through the induction of 1KB (17).

Pro-apoptotic function of Vpr C-terminal domain. The C-terminal region of Vpr has a toxic effect

and prevents ceil proliferation in yeast, as indicated by osmotic sensitivity and gross celi enlargement.

These effects depend on the sequence 71HFRIGCRH$R1G82, which contains two H(SIF)RIG motifs (213).

Addition of extracellular synthetic Vpr peptides containing the H(F/S)RIG repeat motif has a similar

consequence in mammalian celis. When this peptide is added extemally to human CD4+ T celis, it

induces mitochondrial membrane permeabilization, dissipation of wm, morphological changes,

formation of apoptotic bodies, and DNA fragmentaton (16). However Vpr C-terminal peptides 83-96 and

80-96 did not display any ceil killing or toxic effects on CD4+ T celis (16) or rat neurons (304),

respectively.

Implication of Vpr N-terminal domain in the formation of ion channels. In addition, soluble Vpr was

found in the sera, as welI as in the cerebrospinal fluid of HIV-infected patients, and was proposed to play

a role related to its pro-apoptotic activity in AIDS-associated dementia (197, 198). The involvement of

Vpr in these neurological disorders has been suggested, since recombinant Vpr lias neurocytopathic

effects on both rat and human neuronal ceÏls (155, 263, 264, 270, 271). Neurons killed by extracellular

Vpr display the typical feature of apoptosis evidenced by the direct activation of the initiator caspase-8

that leads to subsequent activation of the effector caspase. These effects have been linked to the ability of

the first amphipathic Œ-helix of Vpr (1-40) to form cation-selective ion channels in planar lipid bilayers,

causing a depolarization of the plasma membrane (264, 270, 271), which may not depend on Vpr

transducing ability. These observations indicate that Vpr can trigger apoptotic processes by different

alternative pathways, depending on the target ceils.
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1.7. Vpr modulation of the nuclear trauslocation ofHIV-1 PIC’.

1.7.1. Viral components involved in PIC nuclear import.

Multiple factors are involved in the nuclear targeting of HIV-1 preintegration complex in non

dividing ceils, such as the matrix protein (MA), Vpr, integrase protein (IN), and the DNA flap (f ig 1 .9)

(136, 275).
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Vpr

DNA
flap 47Yé

(t’

Pre-Jntegration
Cornplex (PiC)

Figure 1.8. Schematic representation of PIC nuclear targeting during the early stage of 111V

infection. The viral protein IN together with M4, Vpr, NC, RI and central DNA ficip were invoÏved in

active nuclear import ofHIV PIC through nuclear pore complex.

Role ofIvL4 lnatrixprotein. MA was the flrst viral protein implicated in HIV-1 nuclear import (43,

369). MA is a 132-amino acid structural protein that is myristoylated at the N-terminus. The three

dimensional structure of MA bas been determined by nuclear magnetic resonance as well as by X-ray

ciystallography (149), and it consists of five a-helices-—one to four form a compact globular domain

while the C-terminal helix (Helix 5) projects away from the membrane (f ig.1.9). The N-terminal myristyl

moiety facilitates the binding of MA to the membrane. MA is required for the incorporation of the

envelope glycoprotein into the virion (396). MA is also important in early post entry events of the virus
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life cycle. Mutation of a highly conserved Leu at MA amino acid 20 or deletion at the C-terminus causes

a significant defect in an early step ofthe virus life cycle (178, 394). MA phosphorylation lias been shown

to be a critical regulator of MA flrnctions. Initially, MA was thought to be phosphoiylated at Tyr-132 and

to regulate the nuclear localization of the PIC (117, 120). However, other research groups were unable to

confirm this finding (42, 113). MA is also phosphorylated at serine residues, since protein kinase C was

identified as one of the kinase for MA phosphorylation, and Ser-ili was recognized as a putative

phosphoacceptor residue (46). However, the role of this modification in virus replication has flot been

defined. Bukrinskaya and colleagues have reported that at least five serines are pliosphorylated during

HW-1 entry into susceptible ceils (42). By using kinase inhibitors, they observed that MA-phosphorylated

serine or tyrosine residues regulate nuclear targeting the virus nucleic acid, independent of the presence of

Vpr. In addition, Nef has been shown to enhance MA phosphoiylation through Nef-associated serine

threonine kinase (343). A recent study shows that MA $er-9, -67, -72 and —77 mutation impairs viral

infectivity in dividing and nondïviding celis at the early post entry step of virus infection (174).

Most of the matrix in the virion localizes outside the core and forms the layer between the viral

capsid and the envelope. Some MA molecules are found in tight association with the HIV core and

become part of the PIC afier the viral core enters the celi (45, 230). The HIV-1 MA carnes two flrnctional,

yet rather weak, nuclear localization signals (NLSs) (244), which harbour a short stretch of basic amino

acids that introduce a positive charge, which is crucial for the nuclear targeting properties of these

sequences (85) (Figure 1.9).
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Figure 1.9. 111V-1 MA protein domains. M4 protein consists offive a-helices, one to four Jorms a

compact gÏobuÏar domain whiÏe the C-terminal helix (Helix 5) projects mvay from the membrane. The

NES and NLS are indicated.

Mutations in MA NLSs significantly allenuate HIV-1 replication in non-dividing cells (43, 136, 230).

In the case of basic-type NLSs, such as those present in MA, an heterodimer of two importins—importin

c and importin 3—is involved. Importin a is actually an adapter that ensures the binding of basic-NLS

protein complexes to nucleoporins (a collective terrn for nuclear pore complex proteins) and its

translocation through the pore (293). However, several researcli reports have recently questioned the role

of MA in HIV-1 nuclear import (109, 114). The main argument against MA being the principal HIV

nuclear targeting protein is the finding that, even though the virus lacked most of the MA, it was still

capable of infecting nondividing cells, albeit with a greatly reduced efficiency (289). While MA is clearly

important for efficient nuclear import ofHIV-1 PIC, it appears to be nonessential and is likely only one of

several factors regulating this process (289).

Basic domain

Env incorporation

]NIS1

50



Rote oflNprotein. The fact that IN is associated with viral DNA supports that N could be a a good

candidate for the nuclear import of viral DNA (99, 230). HW-l iN is a 2$8-amino acid protein composed

of three functionally independent domains: an N-terminal domain (which approximately spans the first

50 amino acids), a catalytic core domain (amino acids 51-202), and a C-terminal domain (amino acids

203-288) (97). The first two domains are relatively well conserved among retroviral integrases. The N-

terminal domain contains a zinc finger motif (HHCC) that participates in the oligomerization of N ami

stimulates its catalytic activity. The core domain is responsible for the catalytic activity of the enzyme.

Finally, the less conseiwed C-terminal region displays unspecific DNA binding properties, similar to those

ofthe fiull-length integrase. Recent resuits show that mutations of possible phosphorylation residues on N

have no effect on reverse transcription and nuclear transport of PIC, but have a slight nonessential effect

on integration (352).

It has been clearly demonstrated that N exerts pleiotropic effects on the HIV-l life cycle (97).

Whereas some mutations specifïcally block the integration step into the host DNA, others block

replication at a step prior to integration, indicating that N may be linked to nuclear import or intranuclear

routing of the viral DNA. [N displays a nuclear import function when assayed by microinjection, but

unlike Vpr and like MA, iN nuclear import is blocked when the importin Œ/13 pathway is disrupted (117).

However, mutations in IN which inactivate the putative NLS. also render HIV-1 replication defective and

apparently integration defective It is therefore impossible to separate the nuclear import properties of [N

from its integration fiinction using these mutants. Recently, this N NLS (aa 211-221) bas been disputed

for its importance in the infection ofnon-dividing cells (117). However, the nuclear import abilities of IN

proteins have been confirmed using microinjection of GFP-IN fusion protein (352). By using tmncated

fusion proteins, another region of N with NLS function bas been identified by Malim and colleagues

(36). This sequence (aa 161-173, IIGQVRDQAEHLK) does flot resemble a classical NLS, but the

addition of this sequence confers nuclear import to a heterologous substrate. Mutagenesis of this typical

NL$ prevents the nuclear accumulation of the IN-fusion protein. In the context of viral infection, this IN

NLS mutant is replication defective both for dividing and non-dividing ceils. The IN NLS stimulates the
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efficient nuclear accumulation of viral DNA during initial stages of infection but it is dispensable for

catalytic function (36). This NLS is required for infection irrespective of target ceil proliferation,

suggesting that interaction between uncoated viral nucleoprotein complexes and the host celi nuclear

import machinery is critical for HIV4 infection of ail cells (36).

RoÏe of the cPFT Another factor that bas been proposed to regulate HIV nuclear import is the

specific structure of the virai cDNA intermediate (36). During the plus-strand synthesis of the HIV

cDNA, a 99 nucleotide long “central DNA flap” is produced because of the addition of the plus DNA

synthesis at another polypurine tract in the middle of the HIV genome. This short trimeric structure is

proposed as a critical determinant of the PIC passage through the nuclear pore (36). This structure has

been reported to dramaticaily increase the efficiency of ientivims-mediated gene transfer (333, 360).

However, more recent research reports demonstrate that the central flap, at least in some ceils, is not

essential for PIC nuclear import, and its effect is dependent on the seiected HIV-l strain used (92, 205).

Most likely, the DNA flap assists the nuclear import function of HIV proteins by providing the optimal

conformation to the PIC that is necessary for its interaction with cellular factors and translocation through

the nuclear pore.

Karyophilic properties of Vpr. It has been noted that Vpr mutation decreased HIV-1 infection of

macrophages (21, 65, 382). Subsequent experiments attributed this resuit to Vpr nuclear targeting of the

PIC in a partially redundant fashion with MA (146). Deletion of Vpr decreased transport of the viral

genome to the nucleus (2-LTR circles) and decreased infection of macrophages (146). Again, the

attenuation in infection by the Vpr mutant was specific to non-proliferating celis without affecting the

infection of proliferating ceils. Recent data show that the virai proteins IN and Vpr are both karyophilic

and are associated with viral DNA within PIC, indicating that they may cooperatively participate in the

nuclear import of PIC (79). Significantly, viruses with deieted Vpr and MA NLS mutation had a more

severe phenotype than a single mutant, and caused a decrease in infection of macrophages and growth
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arrested ceils. However, no conventionai NLS is detectable in Vpr, and Vpr-mediated nuclear import is

flot disnipted by interference with the importin pathway (118). Vpr binds to importin c, flot as an NLS

substrate but through a different site on importin Œ (274). Additionally, Vpr binds to nucleoporins, and it

has been proposed that this binding facilitates the docking of PIC to the nuclear pore for nucleus entiy

viral genome. Moreover, nuclear pore targeting is shown to be necessary for Vpr to positively affect the

HW infection of macrophages (108, 275, 368). Two independent signais within Vpr, one in the amino

haif and the other in the carboxy haif of the protein, have been implicated in Vpr nuclear import (163,

169, 326). These signais seem to function in the absence of additionai soluble factors.

A recent report shows that Vpr alters the structure of the nuclear lamina in a manner that leads to

formation of nuclear herniation, which intermittent ruptures (72). These ruptures in the nuclear envelope

might provide a freely accessible portai for uptake of the large HIV PIC in this situation. However, the

precise role of nuclear envelope disruptions (associated with defects in the nuclear lamina) in PIC nuclear

import remains uncertain, since Vpr-deficient vinises can efficientÏy infect non-dividing cells (109, 289).

Vpr also has been shown to weakly enhance the nuclear uptake of NLS substrate (276). for HIV-2, the

closely related protein, Vpx, can perform a similar fiinction to HIV-1 Vpr in terms of promoting

macrophage infection (106, 339). Vpr (or Vpx in HIV-2) is an attractive candidate as a determinant of

infection of nondividing celis because it is part of PIC and has been clearly demonstrated to possess the

ability for nuclear import or NPC docking. Notewithstanding, the HIV genome clearly contains other

means for entiy into the nucleus of nondividing ceils, since HIV-based gene transfer vectors lacking Vpr

effectively transduce celis such as neurons. Vpr maybe a poor candidate for nuclear targeting PIC on the

other hand because it is only present in primate lentiviruses; the other lentivinises could stiil infect

nondividing ceils without a Vpr, suggesting other viral components are more important for nuclear

targeting PIC.
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1.7.2. Interactions of Vpr with other components ofthe virus particle

Considering the fact that viral DNA is transported into the nucleus within four to six hours post

infection (44), viral proteins involved in PIC import should originate directly from the virion. However,

fiinctional interactions occurring between the viral components ofthe core particles are yet to be studied.

Vpr and NC. Nucleocapsid protein p7 (NCp7) is a small basic protein of 72 amino acids and

contains two zinc finger domains (CX2CX4HX4C) flanked by basic amino acids. NCp7 is found in tight

association with the dimeric RNA genome in the core. In vivo, NCp7 is required for the protection of the

genome against cellular nucleases and is involved in genomic RNA packaging and morphogenesis of the

virus particles (91). Most of these functions are related to the well-demonstrated high affinity ofNCp7 for

single strand nucleic acid (176) Nuclear magnetic resonance (NMR) studies have demonstrated that the

folded CCHC boxes of NCp7 are in spatial proximity, whereas the N- and C-terminal sequence remains

flexible (195). The domain encompassing the C-terminal residues ofVpr (52-96) is shown to be involved

in the binding of the nucleocapsid protein NCp7 to nucleic acid (60, 74, 177). The distal NCp7 zinc finger

is mainly implicated in Vpr-NCp7 interaction, whereas the flexible N- and C-terminal parts of NCp7 are

not. Vpr-NCp7 interaction is mainly dependent on hydrophobic contacts and probably on hydrogen bond

formation (74). The packaging of the genomic RNA and encapsulation of a large number of Vpr

molecules could occur by an interaction of Vpr restricted to the accessible domain of the NC-RNA

complex. Accordingly, recent structural studies of complexed NCp7 (12-5 3) show that a large part of the

CCHC boxes remains free for additional interaction (300). Hence Vpr encapsidation does not occur if the

protein p6 was not directly linked to a nucleocapsid protein sequence in Pr55gag (185, 209), suggesting

that in HIV-1 Gag, NCp7 and p6 link together in a NCpY5 form to direct Vpr encapsidation. However, a

complex that consists of HIV-1 Vpr and HIV-1 NCp7 has not yet been identified in HIV-l-infected ceil

(16 1). Whether Vpr and NCp7 have direct interaction within the virion particles remains to be determined.

Vpr and RT. The direct evidence that Vpr and RI may be associated cornes from the analysis of the

intracelÏular reverse transcription complex (100). Evidence also cornes from the analysis ofthe purified
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integrationcomplex(120).However,aninvitrobindingassayshowednodirectinteractionbetweenRT

andVpr(90).ConsideringthatVprcanreducetheinvivomutationrateofHIV-1(219)anddecreasethe

mutationrateintheceIl(166),andthatNCp7isshowntoreducenonspecificreversetranscription(135),

VprmaypossiblyjointheNCp7toinfluencetheRIfunction.OneoftheprerequisitesfortRNAtoactas

aprimerforreversetranscriptionistheavailabilityofafree3-OHgroup,whichistruefordeacylatedbut

notforacylatedformsoftRNA.VprcanbindandinhibitLys-tRNAsynthetase,anenzymeinvolvedin

theamino-acylationoftRNA.TheintracellularlevelsofdeacylatedtRNAislowerinanondividingce!!

thaninproliferatingcelis.Therefore,itisarguedthattheinactivationofLys-tRNAsynthetasebyVpr

maybemorerelevantinnondividingceilswhereitcouldincreasethelevelsofdeacylatedtRNA,andthus

indirectlysupportthepackagingofdeacylatedtRNAintothevirionandinfluencethereverse

transcriptionefficiency(335).TherecoveryofRTinthecorepreparationappearstobelessefficientthan

thatofIN,raisingthepossibilitythatnotailoftheRIpresentinthevirionislocatedinthecore(1).

However,byusingdifferentcorepreparationprotocols,otherresearchersshowthatRTandINhavea

similarrecoveryefficiency(380).WhetherVprinteractswithRTwithinviralparticlesremainstobe

determined.

VprandIN.GST-VprcannotpulldownINbyGSTpull-downassay(384).However,theresultdo

notexciudeapossibleindirectinteractioninthecore.VprhasbeenshowntointeractwithUracilDNA

Glycosylase(UDG)UNGbyusingtheyeasttwo-hybridsystem(32).Vpr-mediatedincorporationof

overexpressedUNGmodulatesinvivoHIVmutationrate(219).Ontheotherhand,UNG-2precursorcan

beincorporatedintothevirioninaVpr-independentway,viaitsinteractionwithIN(384).Itis

noteworthythatresidues1to52ofUNG-2areimportantforthebindingtoIN,whereasresidues222to

225arereportedtobeimportantforthebindingtoVpr(33,384).INhastheabilitytopreferentiallybind

thecytoplasmicprecursorformofUNG-2(36kD)(384),VprbindsthematureformofUNG-2(28kD)in

theceil(32).VprhastheabilitytobindbothfulllengthprecursorandthematureformofUNG-2(2$kD)

inyeasttwohybridsandGST-pulldownassay(32)(384).ItwillbeinterestingtoinvestigateifUNG-2
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precursor in the virion acts as a linker between fl’l and Vpr. The role of UNG association with N and

Vpr, remains to be determined.

Vpr and the matrix protein. MA was initially reported to be absent from several of HW-1 cote

preparations (1) but appeares to be depleted to a lesser extent from HIV-1 core preparations as reported by

by Kotov et aÏ. (187) and Welker et al. (380). In the latter study, RIV-1 virions were briefly exposed to

detergent, and cores were recovered by rapid centrifugation in a microcentrifuge. Electron microscopy

analysis showed that the resulting core preparations were not completely pure (380), which may explain

the presence of residual MA. However, Kotov et al. observed an enrichment of MA at the expected

density ofthe cotes (187), suggesting that under certain isolation conditions, some MA remain associated

with HIV-l cores. Previously, a phosphorylated form of MA was detected in HIV-2 core preparations

(120). The phosphorylated form induced the formation of a complex with integrase, triggering the

redistribution of some MA to the inner region ofthe particle, which became part ofthe viral nucleoprotein

complex (120).

By using a special detergent Brij 96 to lyse the virion particle, direct coimmunoprecipitation

experiments showed that Vpr associates with the matrix protein p17 in the HIV-1 virion, but not with the

capsid protein p24. Protein-protein interactions experiments employing the yeast two-hybrid GAL4 assay

also demonstrated a direct association between Vpr and the C-terminal region of the p17 matrix protein

(306). However, considering the rare presence of MA in the virion core (1), whether Vpr directly interacts

with MA in the virion core remains to be answered.

1.8. The overait objective ofthe study

The pathogenesis of HIV lies in its special genome structure with 6 accessory genes; among them,

Vpr contributes to an important part of the HIV pathogenesis. The Vpr sequence is well conserved among

the primate lentiviruses, suggesting that it may play an important role in viral life cycle in vivo. Although

Vpr is dispensable for HIV replication in T lymphocytes, the protein plays an important role for
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macrophages infection (65). Furthermore, several unes of evidence indicate that Vpr is required for HIV

replication in vivo (131) (192). Although the precise mechanisms by which Vpr influences viral

replication are stiil unclear, increasing data suggesting that Vpr may 5e implicated in the reverse

transcription, the transcriptional activation of the LTR promoter, the nuclear transport of tbe

preintegration complex in nondividing celis, and HIV-induced growth arrest and cytotoxicity (194).

The goal of my study is to investigate the molecular function of Vpr protein during HIV-1 replication,

especially characterization of the extracellular Vpr release and proteolytic processing, determination of

Vpr partners within the core. The detail description of objectives as following:

Objective #1: Characterization of the release ofextracetlular Vpr.

Extending the biology of Vpr beyond the infected cell bas important potential consequences for the

pathogenesis of HIV in vivo. The additional ability of extraceflular Vpr to promote productive infection of

unstimulated celis may provide an important mechanism for efficient de novo infection of resting,

nondividing cells (94). Because extracellular Vpr mediates transactivation of latently infected viral

reservoirs, it may 5e responsible for a significant portion of events that currently prevent highly active

antiretroviral therapy (HAART) efforts towards disease control. In addition, soluble Vpr can be found in

the sera and cerebrospinfluids of HIV-l positive individuals (197). It has been previously shown that

synthetic Vpr could penetrate the cells in vitro via an energy- and receptor-independent process (14$,

328). Extracellular Vpr causes celi-cycle arrest at the G2 stage, nuclear localization (32$), and induces

celi apoptosis (189, 272). However, despite these numerous putative functions, mechanisms underlying

Vpr release as well as its biological impact on HIV-1 replication have neyer been addressed.

In the present study I have investigated whether HIV-Ï Vpr is released from HIV-Ï-producing celis.

For the first time, 1 showed that Vpr could 5e released in the culture media of HIV-l-expressing ceils,

independent of virion incorporation. Extracellular Vpr was cleaved by the cell surface-associated
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proprotein convertase (PC) that recognizes the Vpr C-terminal motif R85QRR88. finally, the truncated Vpr

protein was shown to 5e defective for the induction of ceil-cycle arrest and apoptosis, suggesting that Vpr

processing by ffie proprotein convertase might be a cellular mechanism to control the level of ffinctionally

active extracellular Vpr during HW- 1 infection.

Objective #2: Determination of Vpr partners within the core.

Human immunodeficiency virus type I can replicate in nondividing celis such as macrophages,

relying on the active transport of viral DNA into the nucleus of an infected ceil (44). Like other retrovirus,

it contains the RNA genome that is reverse transcribed and integrated into the host genome in the early

event of infection, before viral proteins are expressed. This mode of replication requires the presence of

aIl the necessaiy components of the replication and integration complex within the virion. Virus particles

are highly organized structure built to package and protect the viral genome, to facilitate its entry into a

host ceil, to control its release and to complete its early function in infection. It is believed that multiple

viral factors are involved in nuclear targeting of HIV- 1 PIC in nondividing cells, such as the matrix

protein (MA), the viral protein R (Vpr) and the integrase protein (IN), as well as the DNA flap. 11W-1

MA and IN proteins are thought to recruit karyopherin alpha through their nuclear localization signal

(NLS), while Vpr may modulate the nuclear import by increasing the affinity of karyopherin alpha for the

PIC (275).

Vpr possesses karyophilic property when expressed alone (210). Vpr is then incorporated into the

nascent virions through its interaction with the Pr55t5 p6 LXXLF domain (185, 209, 210, 266). The

early function of Vpr is closely related to the fact that it is specifically incorporated into virion. Although

Vpr is dispensable for 111V-l replication in dividing cells, it is required for efficient replication in

nondividing macrophages (146). Its localization within the virion core and functional association with the

nuclear complex implies its role in HW infection. Upon viral particle maturation, Vpr but flot p6 localizes
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in the virion core (1), suggesting Vpr might interact with other viral or cellular factors for proper

redistribution. However, little is known about the mechanism that Vpr uses to enter the virion core or its

interaction with other core components. An understanding of these processes will help to provide insight

into the early role of Vpr in HW infection, and to open a new approach to develop drugs to intervene in

Vpr core incorporation and its early function in HIV infection of nondividing ceils.

In order to facilitate the detection of virion-associated Vpr complexes, we first constmcted an

isogenic infectious HIV-1 molecular clone expressing HA-tagged Vpr. We found that Vpr was able to co

immunoprecipitate the matrix protein. Interestingly, this interaction occurred independently of the

presence of RT and IN proteins and could be detected in vitro with recombinant proteins, suggesting a

direct MANpr association. GST pull-down assays further demonstrated that the fifih alpha helix of MA

and the C-terminal domain of Vpr mediate this association. Involvement of the arginine-rich domain of

Vpr in the interaction was finally confirmed in vivo. Implication of virion-associated MAIVpr complexes

in the early steps of infection will be discussed.
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ABSTRACT

Increasing evidence suggests that extracellular Vpr could contribute to human imrnunodeficiency

virus (HIV) pathogenesis through its effect on bystander ceÏls. Soluble forms of Vpr have been detected in

the sera and cerebrospinal fluids of HW- 1 infected patients, and in vitro studies have implicated

extracellular Vpr as an effector of cellular responses, including G2 anest, apoptosis, induction of

cytokines and chemokines production as welI as increased viral replication, presumably through its ability

to transduce into multiple celi types. However, the mechanism underlying Vpr release from HW-1

producing ceils remains undefined and the biological modifications that the extracellular protein may

undergo are largeÏy unknown. We provide evidence indicating that Vpr is released in the extracellular

medium of HIV-1-producing celis by a process that is independent of Vpr virion incorporation but

requires the expression of viral proteins. Interestingly, extracellular Vpr was found to be cleaved by celi

surface-associated proprotein convertases (PC) at a very weIl conseiwed site, R85QRR88 SI-, located within

the functionally important C-terminal arginine-rich domain of the protein. Consistently, the PC inhibitors

Œ1-PDX, Spn4A and dec-RVKR-cmk inhibited Vpr processing, while expression of PCs that are known

to be associated with the extracellular matrix such as, PC5 and PACE4, enhanced Vpr processing. Finally,

PC-mediated processing of extracellular Vpr led to the production of a truncated Vpr product that was

defective for the induction of ceil-cycle arrest and apoptosis, suggesting that PC processing of

extracellular Vpr might represent a host celi response to inactivate soluble Vpr during HIV-1 infection.
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INTRODUCTION

HIV- I encodes four accessory gene products -Vif Vpr, Vpu and Nef- which are thought to

collectively manipulate host celi biology in order to promote viral replication, persistence and immune

escape (reviewed in reference: (15)). One ofthese accessory proteins, Vpr, is a 96 amino acid polypeptide

that is highly conserved both among the primate lentiviruses HIV-1, HIV-2 and the simian

immunodeficiency virus (66), supporting the notion that it plays an important role during viral infection in

vivo. Indeed, deletion of vpr and the related vpx genes in Simian Immunodeficiency Virus (SIV) severely

compromises virus burden and disease progression in experimentally infected monkeys (18, 25). Despite

its small size, Vpr induces multiple effects in host celis in culture that may contribute to the phenotypic

effects obsenred in vivo (reviewed in reference: (2, 36, 58)). First, Vpr lias been shown to act early in viral

infection as a facilitator of HIV-1 preintegration complex (PIC) entry through the limiting nuclear pore

(23, 50). This activity is thought to be responsible for Vpr’s ability to enhance HIV-l replication in

nondividing ceils, most notably in terminally differentiated macrophages (11, 70). Consistent with this

function, Vpr is packaged in relatively large amounts into viral particles through an interaction with the

carboxy-terminal of the p6 late domain of the p55a polyprotein precursor (40, 48), contains nuclear

targeting sequences (30, 56), and is present in PICs (50). Second, expression of Vpr was reported to

induce celI cycle arrest in G2 by activating the ATR (for Ataxia-Telangiectasia mutated and Rad3-related)

checkpoint signaling pathway, a signaling event that is normally part of the ceil response system to DNA

damage (53). Sucli arrested cell, were shown to ultimately die as a resuit of apoptosis (1, 61, 74). finally,

Vpr was also reported to act as a transcriptional activator of the HIV-1 LTR as well as host cell genes (10,

19, 32, 33, 43, 57).

Interestingly, beside being found in virions and in cells, Vpr and Vpr cleavage products have been

shown to exist as free molecules in the serum and the cerebrospinal fluids of 111V-1 infected patients (32),

indicating that Vpr may be released extracellularly and may exert its biological fiinction beyond infected

63



celis. In that regard, extraceilular Vpr was shown to transduce ceils in vitro, apparently via an energy- and

receptor-independent process (24). Following celiular uptake, Vpr was shown to retain the ability to

localize to the nucieus and to induce G2 ccli cycle arrest and apoptosis (24, 59), thus raising the

possibiiity that circulating forms of Vpr obsewed in HIV-1 infected patients may exert biological effects

on a broad range of host celis. Indeed, a large number of studies have reported that treatment of ceils with

extraceilular Vpr or Vpr fragments resulted in apoptosis (5, 28, 47) and cytotoxic effects (27, 49) in a

variety of ccli types. furthermore, extraceliular Vpr was aiso shown to activate AP-1, JNK, and NF-icB in

promonocytic ceils U937 and in primary macrophages (69) and enhance replication in chronically

infected ceils and in acutely infected primary macrophages (39, 59, 69). However, it has flot yet been

cleariy established how Vpr is released from HW-l-infected ceils. Furtliermore, given the cytopathic

properties of the protein, it is unclear whether Vpr proteins released in the extracelluiar milieu remain in a

fully fimctional form.

In the present work, we provide evidence indicating that Vpr is released in the culture media of

HIV-l-expressing ceils via a process that is independent from its capacity to be packaged into virion but

requires expression of virai proteins. Interestingly, exfracellular Vpr was cleaved by ccli surface

associated PCs at a site, R85QRR88 1, located within the functionaily important C-terminal arginine-rich

motif. The resulting tmncated Vpr product was defective for the induction of ceil-cycie anest and

apoptosis, suggesting that Vpr processing by PC miglit be a host ccli mechanism to control the level of

functionaily active extraceilular Vpr during HIV-1 infection.

64



MATERIALS AN]) METHODS

Ptasmids and proviral UNA constructs. The expression plasmid SV CMV 3HA-Vpr was constmcted by

inserting three consecutive hemaggiutinin tags (3HA) to the N-terminus of Vpr in SVCMV-Vpr Wt (72)

using a two-step PCR approach. The introduced 3HA tag contains 49 amino acids (aa):

MASVSYPYDVPDYA SLGGPSSVSYPYDVPDYASLGGPSSVYPYDVPDYA (HA epitope sequences

are underlined). The single mutant 3HA-Vpr R85Q and the double mutant 3HA-Vpr RR$7/8$AA were

produced by PCR-mutagenesis using SV CMV 3HA-Vpr as template. SV CMV 3HA-Vpr(l-88), (1-$6)

and (l-7$) as well as SV CMV Vpr (l-$6) were generated by introducing premature stop codons at aa

position 8$, $6 or 7$ of Vpr using PCR-mutagenesis. The SV CMVexPA, 8V CMV Vpr- and R$OA

constructs as well as the bi-cistronic expressors 5V CMV Vpr/GFP, Vpr-/GFP were described previously

(72) (26). The 8V CMV Vpr (1-$6)/GFP plasmid was constmcted by inserting a BglII/DraIII fragment

from pQB25I (Quantum Biotechnologies, Montreal, Que, Canada) encoding the green fluorescent protein

(GFP) coding sequence preceded by the cytomegalovims (CMV) early promoter into the BamNI sites of

SV CMV Vpr (1-86). 11e pET2lc 3HA-Vpr plasmid was generated by subcloning a DNA fragment

encoding 3HÀ-Vpr from SV CMV 3HA-Vpr into pET2lc (Novagen, Madison, WI, USA).

HxBmBH 1 O.R+ and Vpr-defective HxBruBH 1 0.R-

proviral constmcts were generated by introducing a SalIIKpnI fragment encoding Vpu from HxBH1O (37)

into HxBRU or HxBRU R- (73). The HxBmBH1O.3HAR+ proviral constmct was derived from the

HxBruBH1O.R+ provirus. In the process of introducing the DNA fragment encoding 3HA-Vpr, a NheI

site was created at nucleotide position 5140 (+1= start of BRU transcription initiation site) before the Vpr

ATG by PCR-mutagenesis. The creation of the NheI site led to the introduction of a frameshift mutation

at aa position 174 in the Vif open reading frame that resulted in a tmncated Vif protein. The proviral

construct HxBruBH1O.3HAR+/p6 (1-17) encodes a tmncated p6 domain (premature stop codon at aa

17). It was generated by replacing an ApaI (nucleotide position 2011)-BstZl7I (nucleotide position 2967)

DNA fragment from HxBniBHlO.3HAR+ by the corresponding fragment from HxBm.R+.sl7stop (8).
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The PC-expressing plasmids pIR lifurin, pIR mPC5A+v5 and pIR hPACE4+v5 encoding human furin,

murine PC5A and human PACE4, respectiveiy, were described previously (7). Plasmid pIR-PDX-v5

encoding the PC inhibitor Œ1-PDX fused to a v5 tag was described eisewhere (6), while pShuffle CMV

Spn4A encoding the PC inhibitor $pn4A fused to a Flag tag was kindly provided by Dr. François Jean

(Department ofMicrobiology and Immunology, University ofBritish Columbia, Vancouver, Canada). Ail

plasmid constructions were analyzed and confirmed by automated DNA sequencing.

Celi limes and reagents. Human embiyonic kidney (HEK) 2931, Hela-CCR5 and COS-1 ceils were

maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal caif serum

(fCS). Jurkat T-lymphoid celis were maintained in RPMI-1640 medium supplemented with 10% fCS.

Anti-HA monoclonal antibodies (mAb) were produced from hybridoma 12CA5, whuie anti-V5 and anti

flag mAb (M2) were purchased from Invitrogen (San Diego, CA, USA) and Sigma-Aidrich Canada Ltd

(Oakville, Ont, Canada) respectively. The anti-Vpr mAb 9F12 directed against an epitope comprising aa

4-16 was kindly provided by Dr. Jeffrey B. Kopp (Kidney Disease Branch, National Institutes ofHeaith,

Bethesda, USA). Rabbit anti-Vpr polyclonal antibodies (pAb) were previousiy described (73). The viral

expression and release from HW-1-expressing ceils are monitored by WB anti-CA. Anti-HIV-1 capsid

(CA or p24) protein mAb were produced from hybridoma HB9725 (ATCC; American Type Culture

Collection, Manassas, VA, USA) while anti-gpl2O mAb recognizing both gpl2O and precursor gpl6O

were obtained from the NIH AIDS Research and Reference Reagents Program. The PC inhibitor

decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (dec-RVKR-cmk) was purchased from Bachem

Bioscience Inc. (King of Prussia, PA, USA). A lOmM stock solution was prepared in DMSO and was

further diluted in tissue culture medium to give the required final concentration. Heparin sodium sait was

purchased from Sigma-Aidrich Canada Ltd (Oakville, Ont, Canada).

Transfection. 293T and COS-l celis were transfected by the standard calcium phosphate DNA

precipitation method. for detection of extraceilular 3HA-Vpr, 106 ceils were either transfected with 10 pg
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of3I{A-Vpr proviral DNA piasmid or co-transfected with 10 rg of Vpr-defective proviral DNA plasmid

and 5 .rg of 3HA-Vpr expression vector. For native Vpr proteolytic processing detection, 293T (4x106

celis) were either transfected with 40 jig of proviral DNA plasmid or co-transfected with 40 j.ig of Vpr

defective proviral DNA plasmid and 20 .tg ofVpr expression plasmid vector. Hela-CCR5 celis (4x105 in

6 wells plate) were transfected with 4 jig of 3HA-Vpr proviral DNA constnict and 0.5 rg of PC

expression plasmids using Lipofectamine 2000 (Invitrogen, San Diego, CA, USA) according to the

manufacturer instructions. Finally, Jurkat ceils (4x106 celis) were transfected with 20 j.ig of Vpr defective

or 3HA-Vpr proviral DNA constructs by the DEAE-dextran method (37). Analysis of 3HA-Vpr

processing was conducted 6 days post-transfection as described below.

Analysis of Vpr processing in IIW-1-prodncing celis, extracellular medium and viral particles.

Transfected or infected ceils were separated from virion-containing supernatants by low-speed

centrifugation and lysed in 1% NP4O lysis buffer (l4OmM NaC1, 2 mM Na2HPO4, 2mM NaH2PO4, I %

NP4O, 0.5% SDS, pH7.2) suppiemented with a protease inhibitor cocktail (Roche Diagnostics Canada,

Lavai, Que, Canada). Vpr was immunoprecipitated from celi lysates using anti-HA or anti-Vpr antibodies

as described (73). For detection ofextracellular Vpr, 16m1 of culture supernatants were first centrifuged at

2000 g for lOmin and then passed through a 0.45 tm filter to eliminate celi debris. Viral particles were

separated from the extracellular medium by ultra centrifugation onto a 20% sucrose cushion at 130 000 g

for 1.5 h. Eight ml ofvirus-free extraceilular medium treated with 5-fold-concentrated NP-40 lysis buffer

was immunoprecipitated with anti-HA or anti-Vpr antibodies as described (73). Pelleted virus was Iysed

directiy in 1% NP4O lysis buffer. Celi and viral lysates as well as immunocomplexes resulting from

immunoprecipitations were separated by 14% SDS-PAGE, transferred to a nitrocellulose membrane, and

analyzed by western blotting using antibodies against HIV-1 capsid p24, HA or Vpr as described

previously (37). Bound antibodies were revealed using the 3, 3’-diaminobenzidine detection system, as

recommended by the manufacturer (ICN Biomedicals, In’ine, CA, USA). For detection of extracellular
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native Vpr, supersensitive ImmobilonTM Western Chemiluminescent HRP Substrate (Millipore, Billerica,

MA, USA) was used according to the manufacturer instructions. Vpr processing efficiency was analyzed

by quantitating the density of each Vpr-related band using an AGFA Duoscan T 1200 scanner.

Densitometric analysis ofWB resuits was performed with Image Quant 5.0 from Molecular Dynamics.

Surface-enhanced laser desorption/ionizatïon tîme-of-fliglit mass spectrometry (SELDI-TOF-MS)

analysis. 3FIA-Vpr was isolated from vinis-free culture supematant of HxBruBH1O.3HAR+-transfected

2931 ceils by immunoprecipitation using anti-HA antibodies. 3HA-Vpr was eluted from anti-HA

antibodies bound to protein A sepharose beads using trifluoroacetic acid (TFA). The 3HA-Vpr-containing

eluate was combined with a similar volume of binding buffer (lOOmM PBS and 0.5 M NaCI pH 7.0),

applied onto a NP2O Protein-Chip spot (Ciphergen Biosystems Inc., Fremont, CA, USA) and incubated at

room temperature for 20 min to dry. Unbound samples on the chip spot were washed-off foïlowing tbree

washes of 5 min with binding buffer. The NP2O chip was then rinsed with 20 j.tl of distilled H20 and air

dried. A matrix consisting of a saturated solution of 3, 5-dimethoxy-4-hydroxycinnamic acid (SPA) in

50% acetonitrile and 0.5% TFA was added to the chip surface before SELDI-TOf-MS analysis. The

SELDI-TOF-MS analysis was performed using a Ciphergen Protein-Chip Reader (Ciphergen Biosystem

Inc., Fremont, CA, USA). Cytochrome c (12 kDa) was used as the molecular mass calibrator.

In vitro translation. 31-IA-Vpr was in vitro translated from pET2lc 3HA-Vpr using the Active Pr0TM In

vitro translation kit (Ambion, Austin, TX, USA) according to manufacturer instructions.

Ceil cycle proffling and analysis of apoptosis. Ce!! cycle analysis was performed as described (45).

Briefly, 2931 cells were co-transfected with 10 ig ofVpr and 0.5tg of GfP-expressing plasmids. Celis

were harvested 40 h later, fixed in 1% parafonnaldehyde during 10 min and incubated in 70% ethanol for

an additional 10 min. Fixed ceils were then treated with phosphate-buffered saline (PBS) containing

propidium iodine (PI) (50 jiglml), RNase A (50 jig/ml), and fCS (1%, vol/vol) for 60 min at room
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temperature. Afler gating on GFP positive population, the DNA content was analyzed on a FACScan flow

cytometer using the Ceil QUEST software (Becton Dickinson, franklin Lakes, NJ, USA). Relative

numbers of ceils in the G2IM and Gi phases of the ceil cycle (G2/M:Gl ratios) were calculated using the

ModFit LT software (Verity Software House, Topsham, ME, USA). Apoptotic ceils were detected using

the Annexin V-Alexa Fluor 647 assay (Invitrogen, San Diego, CA, USA). Briefly, 40 h post-transfection

O.25x106 Hela cells were washed once with PBS and then incubated for 20 min in annexin V binding

buffer (2.5 tl of Annexin V-Alexa Fluro 647 per ml, 10 mM HEPES-NaOH [pH 7.4], 150 mM NaCI,

5 mM KCI, 1 mM MgC12, 1.8 mÏvI CaC12, and 1 jig/ml of PI). Apoptotic celis, which stained positive for

PI and annexin V were detected using a FACScalibur (Becton Dickinson, Franklin Lakes, NJ, USA).
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RESULTS

11W-1 Vpr and C-terminally cleaved products are detected in the extracellular medium of 111V-1

producing ceils

To determine whether Vpr can be detected in the extracellular medium of HIV-1 producing ceils,

293T ceils were transfected with a proviral constmct (HXBruBH1O.R+) expressing Vpr in cis or with a

Vpr-defective provirus (HXBruBH1O.R) complemented in trans with an expressor plasmid encoding

Vpr. Forty hours post-transfection, ceils were isolated by low-speed centrifugation while cell-free culture

supematants were fractionated by ultracentrifiigation to separate viral particles from vims-free

extracelluar medium. The presence of Vpr was analyzed in HIV-1 producing ceils, pelleted virions and

virus-free extracellular medium as described in material and methods. As shown in f ig.2.1A, Vpr was

detected as a single hand of approximately 16-kDa in lysates from Vpr+ HIV-1-producing celis (F ig.

2.1A upper panel, lanes 3-4) as well as from HIV-1 virions (fig. 2.1A, upper panel, lanes 7-8).

Interestingly, upon more sensitive immunoprecipitationlwestem blot (IP/WB) analysis of ceil lysates, a

discrete hand of lower molecular weight reacting specifically with murine anti-Vpr mAb 9F2 was

detected in addition to native Vpr regardless of whether Vpr was expressed in cis or in trans (Fig. 2.1A

lower panel, lanes 3-4). Importantly, native Vpr as well as a fast migrating Vpr-related hand were

detected in the virus-free extracellular medium of Vpr+ HIV-l- producing celis by IP/WB analysis (Fig.

2.1A lower panel, lanes 7-8). In that regard, it is interesting to note that the levels of fast and slow

migrating Vpr species were inverted in the extracellular medium as compared to ceil lysates (fig. 2.IA,

lower panel, compare lanes 3-4 to lanes 7-8).

To increase the sensitivity of Vpr immunodetection and to analyze further Vpr release and

possible processing, we constructed proviral (HxBruBH1O.3HAR+) and expression (SV CMV 3HA-Vpr)

plasmids encoding a Vpr protein containing three consecutive HA epitope tags fused to the protein N-

terminus (3HA-Vpr). The HxBruBHl O.3HAR+ provirus was stili able to replicate and produce infectious

virus in Jurkat T ceils, even though the C-terminus of Vif had to be truncated in the process of

engineering the construct (data flot shown). Experiments similar to the one described in Fig. 2,ÏA led to
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essentially the same observations with, however, a drastic increase in sensitivity of Vpr species

immunodetection (Fig. 2.1B). Both slow and fast migrating forms of Vpr were detected in ccli and viral

lysates as well as in extracellular medium from HxBruBH1O.3HAR+-producing ceils (Fig. 2.1B, upper

and lower panels, lanes 3 and 8). The fact that the fast migrating Vpr band was specifically detected with

anti-HA antibodies indeed suggested that full length Vpr undergoes processing at a putative cleavage site

located at the Vpr C-terminus since the 3HA tags were fused at the N-terminal-end of the protein. To

examine how Vpr products were released extracellularly, we analyzed Vpr release in ccli cultures

transfected with either the p6-defective proviral construct, HxBrnBH1O.3HAR+/p6(1-17), which is

unable to package Vpr efficiently into virions (8) or with an expression plasmid encoding 3HA-Vpr only

(SV CMV 3HA-Vpr). Even though the p6-defective virus was unable to efficiently incorporate Vpr

(upper panel, compare lanes 8 and 9), we could stili detect large amounts of extracellular forms of Vpr in

the extracellular medium (lower panel, compare lanes 8 and 9), thus indicating that extracellular Vpr does

not primarily originate from dîsrupted or decaying viral particies. Interestingly, expression of Vpr alone

did flot Iead to extracellular release of Vpr nor to efficient Vpr processing (upper panel, lane 5 and Iower

panel lanes 5 and 10). As described for native Vpr in Fig. 2.1A, the ratio of full length 3HA-Vpr/cleaved

Vpr was inverted in ccli lysates and extracellular medium from HIV-l-producing 293T celis (iower panel,

compare lanes 8-9 to lanes 3-4). To examine whether the C-terminally-cleaved Vpr products detected in

ccli lysates were present intracellularly or were extemally associated to ceils, we treated

HxBniBH1O.3HAR+-transfected 293T ceils with 0.25% trypsin prior to lysis and Vpr detection by

western biot. Fig. 2. 1C clearly reveals that proteolytic treatment of celis with trypsin prior to lysis

drastically decreased detection of the fast Vpr migrating band while keeping levels of full length Vpr

intact (Fig. 2.1C, compare lanes 4 and 3), thus suggesting that full length Vpr undergoes processing at its

C-terminus exfracellularly, possibly at the ccli surface.

Finally, to ensure that these observations were reproducible in the context of infected CD4+ T cells,

we analyzed Vpr processing in transfected Jurkat T celis in which viral infection was let to spread over a

six day period. As shown in Fig. 2.2, results of these experiments clearly reveal that Vpr as well as Vpr C-

71



terminal cleaved products are detected in the extracellular medium during HW- 1 infection of T celis

(lower panel, lane 6). furthermore, as shown in HIV-1 producing 293T celis (Fig.2. 1), detectable amounts

ofcleaved products were found associated with celis (lower panel, lane 3).

Taken altogether, these resuits indicate that Vpr is released in the extracellular medium ofHW-1-

producing ceils by a process that requires expression of viral proteins but that is independent of Vpr virion

incorporation. Furthermore, while Vpr is released, it appears to undergo processing extracellularly rather

than intracellularly at a putative cleavage site located within the C-terminal domain of the protein.

Vpr is cleaved at a proprotein convertase processing site Iocated at the protein C-terminus.

Having obtained evidence that Vpr undergoes processing at the protein C-terminus, we next

performed deletion analysis in order to map the putative cleavage site. Expression plasmids encoding

3HA-Vpr harboring C-terminal deletions from aa residue 79 to 96 (SV CMV 3HA-Vpr (l-7$)) and from

residue 89 to 96 (SV CMV 3HA-Vpr (l-88)) were generated and used to trans-complement a Vpr

defective HxBruBH1O.R- provims in transfection assays in 293T celis. As shown in Fig. 2.3A, both

3HA-Vpr deletion mutants were expressed at levels comparable to the wild type (Wt) 3HA-Vpr in

transfected ceils (lanes 3-4) and were efficiently released in the extracellular medium (lanes 9-10), thus

suggesting that the C-terminal domain of Vpr is dispensable for extracellular release. Importantly, none of

the extracellular Vpr deletion mutants displayed any detectable processing (lanes 9-10). Indeed, processed

3HA-Vpr was found to migrate very closely to 3HA-Vpr (l-88) (compare lanes 11 and 10) but siower

than 3HA-Vpr (1-78) (compare lanes 11 and 9) indicating that the putative Vpr processing site most

probably lies between residues 7$ and 8$ and very close to residue $8. Consistently, a putative basic aa

specific PC cleavage site (RIK)-Xn-(RIK)I’ (n=0, 2, 4, 6) (55) was identified at Vpr R85QRR88 1- positions

using the Prop v.lOb Propeptide cleavage site prediction program (14). Alignrnents of HIV-1 Vpr from

different viral isolates and clades show that the putative Pi (R88) and P2 (R87) cleavage positions are

very well conserved, whule the P4 (R85) position reveals a degree of variation (Fig. 2.33). To confirm

whether this predicted PC processing site was indeed firnctional, we selectively substituted aa residues
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C within the putative cleavage site using site-directed mutagenesis. Given that the P4 position is important

for processing by fin-in while the Pi and P2 position are critical for PCs in general (44, 64), we focused

our mutagenesis on these positions and generated 3HA-tagged Vpr mutants R85Q (mutated P4 position)

and RR87/$8 AA (mutated PI and P2 positions) (fig. 2.3e). Both mutants were efficiently expressed in

HxBruBH1OR-co-transfected 293T ceils and released in the extracellular medium (lanes 3-4 and 9-10).

Interestingly, while extracellular 3HA-VprR$5Q mutant exhibited a two-fold decrease in processing as

compared to Wt 3HA-Vpr (compare lanes 11 to 9), processing of the double mutant RR87/88 AA was

reduced by at least six-fold (lane 10). These resuits strongly suggest that Vpr contains a PC processing

site, R85QRR88.1-(VIAJG)R, within the protein C-terminal arginine region that is recognized by a PC that

is most probably distinct from flirin. Furthermore, the presence of hydrophobic aa residues such as valine,

in some viral strains, just following the cleavage site (i.e., at Pi’) would be indicative of either a PC5 or

PACE4-generated cleavage (55).

b further identify the exact Vpr cleavage site, we immunopurified extracellular forms of 3HA-

Vpr from vims-free ceil culture supematant of HxBruBHIO.3HAR+ provirus-transfected 293T celis by

immunoprecipitation using anti-HA mAb and analyzed the molecular mass of proteins eluted from the

immunocomplexes by SELDI-TOF (Surface-enhanced laser desorption/ ionization time-of-flight) mass

spectrometry (Ciphergen Biosystem Inc., fremont, CA). Data of Fig. 2.3D reveals the presence of two

specific peaks of isolated proteins. The first peak was found to correspond to a protein having a molecular

mass 16189.6 dalton, which is indeed very close to the predicted molecular mass of fuIl-length 3HA-Vpr

(theoretical molecular mass: 16166.0 dalton). The second peak consisted of a mix of proteins having

molecular mass ranging from 15355.6 to 15034.6 dalton), which are indeed very close to the predicted

molecular mass for of 3HA-Vpr (1-88) (theoretical molecular mass 15365.6 dalton) and 3HA-Vpr (1-86)

(theoretical molecular mass: 15054.4 dalton), respectively.

Taken altogether, the resuits obtained by mutagenesis and mass spectrometry are consistent with

a sequential proteolysis process of Vpr. first, the protein is likely cleaved at a PC processing site located

at position $5-88, R85Q RR88L-, to Iead Vpr cleavage product 1-8$. Then, the two terminal arginine
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residues are most probably removed by a basic-aa specific carboxypeptidases, such as carboxypeptidase

D (CPD) (17), thus leading to fully processed Vpr (1-86).

Proprotein convertases mediate extracellular HW-1 Vpr processing.

To determine if PCs have an exclusive role in extracellular Vpr processing, 293T cefls were co

transfected with HxBRUBH1O.3HAR+ and expression plasmids encoding the protein-based PC inhibitors

Œ1-PDX or Spn4A (fig. 2.4A). aÏ-PDX, which 1$ an al-antitrypsin variant serine protease inhibitor

(serpin) contains the minimal consensus fui-in cleavage site (R-I-P-R) in its reactive site loop and

functions as a suicide substrate inhibitor of PCs, including furin, PC5, PC3 and PACE4 (3, 29, 67).

Likewise, $pn4A is a secretory pathway serpin from Drosophila Metanogaster that contains a consensus

fin-in cleavage site, R-R-K-R, in its reactive site ioop. $pn4A inhibits human furin and Drosophila PC2 by

a slow-binding mechanism characteristic of serpin molecules and forms kinetically trapped $D$-stable

complex with each enzyme (52). Fig. 2.4A reveals that extracellular Vpr processing was significantly

reduced in celis expressing al-PDX or Spn4A as compared to control ceils expressing empty vectors

(compare lanes 12 and 11, and lanes 14 and 13). Interestingly, $pn4A appeared to have a more potent

inhibitoiy effect on extracellular Vpr processing than cil -PDX in several reproducible experiments. To

ensure that these inhibitory effects were specific, we analyzed the processing of HIV-1 envelope gpl6O

precursor, a known substrate of fin-in (21) in celi lysates from the same celi transfectants. As expected,

gpl6O processing was inhibïted in celis expressing a1-PDX or $pn4A, with ci1-PDX showing a more

potent inhibition of gpl6O processing than Spn4A (Fig. $2.1 in the supplemental material). In a second

approach, HxBRUBHÏO.3HAR+ provims-transfected 2931 cells were treated forty hours post

transfection for 7 hours with lOpM of the membrane soluble peptide PC inhibitor dec-RVKR-cmk (29).

Processing of extracellular Ypr was specifically inhibited by at least 6-fold in presence of 1Oj.iM dec

RVKR-cmk (Fig. 2.4B, right panel, compare lanes $ and 7; left panel). The fact that both protein-based
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(E (c 1 -PDX and Spn4A) and peptide-based (dec-RVKR-cmk) PC inhibitors inhibited extracellular Vpr

processing strongly suggests that basic aa-specific PCs mediate Vpr processing during HIV-1 infection.

We next investigated which widely expressed PCs associated with the constitutive secretory

pathway could mediate processing of extracellular Vpr. Furin, PC5 and PACE4 were selected because of

their potential role in proteolytic processing of Env gpl6O during HIV-1 infection (12, 71), but more

importantly because of their presence at the celi surface as well as in the extracellular medium as

enzymatically active shed fonns (34, 41, 6$). Plasmids expressing human fiirin, mouse PC5A or human

PACE4 were co-transfected with HxBRUBH1O.3HAR+ in different ceils unes including Hela-CCR5,

COS-l and 293T and 48 h posttransfection, leveis of3HA-Vpr and cieaved products were analyzed in celi

lysates and vims-free extracellular medium by western blot or IP/WB (Fig. 2.4C). When PC5A or PACE4

were co-expressed with 3HA-Vpr-expressing virus, the level of fast migrating Vpr-processed forms

detected in the extracellular medium of ail transfected celi unes was significantly increased (compare

lanes 12 and 10 with lane 9). Interestingly, this increased detection of Vpr-processed forms in the

extracellular medium was also accompanied by a similar increase in the detection of cleaved product

externally associated with celis (compare lanes 6 and 4 with lane 3) as shown in Fig. 2.1C. In contrast, co

expression of furin in HxBRUBH1O.3HAR+-producing celi unes had a marginal effect on basal Vpr

processing (compare lanes 11 and 9 as well as lanes 5 and 3). Overali, these resuits suggest that

proprotein convertases PC5 and PACE4 can efficiently process extracellular Vpr.

Extracellular Vpr is processed by a PC that is ceil surface—associated.

The fact that full iength Vpr is detected rnainÏy intracelluiarly while processed-Vpr is found

primarily in the extracellular medium suggests that Vpr proteolytic processing occurs extracellulariy - i.e.

at the ceil surface or in the extracellular medium. To examine these possibilities we first performed a

time-course analysis of 3HA-Vpr release from HIV-1-producing 293T ceils. Equal amounts of

HXBruBH1O.3HAR+ provims-transfected 293T celis plated in 6 wells-plate (106 cells/2m1 media per

well) were extensively washed 40 h post-transfection and incubated with fresh culture medium. Over a 3
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(E h period and at different time intervals, the presence of 3HA-Vpr and cleavage products was analyzed in

ceil and vims-free extracellular medium by western Mot and TPRVB as described in material and methods

(Fig. 2.5A). Under these conditions, Vpr was first released out in the extracellular medium mostly as a

fiul-length protein as illustrated by detection of full Iength 3HA-Vpr as early as 15 min post-culture

medium change (lane 3). By 30 mm, 3HA-Vpr cleavage products started being clearly detected and by 3

h almost fifty percent of extracellular Vpr consisted of Vpr-processed products (lanes 4-6), thus providing

evidence that Vpr processing occurs extracellularly once full length Vpr has been released out of infected

ceils.

To characterize whether Vpr was processed by a PC at the celi surface or in the extracellular

medium, equivalent amounts of exogenous in vitro translated 3HA-Vpr was added to 293T celi or to

conditioned media for various time intervals. As shown in Fig. 2.5B (upper panel), addition of in vitro

translated 3HA-Vpr to 293T celi culture led to processing of exogenous 3HA-Vpr in the celi supernatants

starting at 6 h and reaching a peak by 12 h post-incubation (compare lanes 2-5 to lane 1). This processing

was PC-specific since addition of 10 .tM dec-RVKR-cmk to the culture media reduced drastically the

accumulation of Vpr cleavage products (compare lanes 6-9 to lanes 2-5). In contrast, only trace amount of

Vpr processing was detected upon addition of exogenous 3HA-Vpr to 293 T conditioned medium (Fig.

2.5B, lower panel, compare lanes 2-5 to lane 1). Importantly this residual processing of Vpr in

conditioned medium was flot affected by addition of PC inhibitor. Taken together, these results suggest

that Vpr undergoes proteolytic processing extracellularly upon close contact with ceils, most likely by a

PC that is predominantly cell-surface associated.

Vpr processing is detrimental for induction of G2 celi cyc]e arrest and apoptosis.

It was previously reported that extracellular Vpr can transduce ceils and cause G2 anest in HeLa

and CD4+ T cells (24, 59). b determine whether fully processed Vpr present in the extracellular medium

could induce G2 celi cycle arrest upon transduction of bystander ceils, we analyzed the effect of Vpr (1-

$6) expression on the celi cycle. 293T cells were co-transfected with a GFP-expressing construct as well
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as with expression plasmids encoding Vpr (SV CMV Vpr Wt) or fully processed Vpr (1-86) (SV CMV

Vpr (1-$6) or the G2 arrest-defective mutant R8OA (8V CMV Vpr R8OA) and the ceil cycle profile ofthe

GFP-positive ceil population was analyzed by flow cytometry 4$ h posttransfection as described in

material and methods. As shown in fig. 2.6A, Vpr (1-$6) was unable to induce a G2 ceil cycle arrest as

compared to full length Vpr (Vpr (1-$6) G2IM:G1 ratio = 0.4 versus 3.5 for Wt Vpr) even though both

proteins were expressed at similar levels (Fig. 2.6B). Indeed the degree of G2 arrest induced by Vpr (1-

86) was similar to that of Vpr R8OA, a well characterized G2 arrest-defective Vpr mutant (13, 62). Finally,

to determine whether proteolytic processing of Vpr could modulate Vpr-mediated apoptosis, HeLa ceils

were transfected with plasmids co-expressing GFP and Wt or truncated Vpr, and apoptosis was monitored

by PI and annexin V-staining 4$ hours post-transfection. Resuits presented in Table 1 reveal that

truncated Vpr (1-$6), in confrast to Wt Vpr, was unable to induce apoptosis. In presence of Vpr (1=86),

approximately 10% of celis were Pllannexin V-positive while approximately 26% of celis were apoptotic

in presence of Wt Vpr. Indeed, the level of apoptotic ceils detected in Vpr (1-$6)-expressing ceils was

similar to that obtained in control ceils (Vpr-). Overail, these results indicate that processing of Vpr at aa

residue 86 abolishes the ability ofthe protein to induce a G2 celi cycle arrest and mediate apoptosis.
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C DISCUSSION

In this study, we provide evidence indicating that Vpr as well as Vpr-cleaved products are

detected in the extracellular medium of several ceil unes, including HEK 293T , HeLa, COS-l and CD4

Jurkat T ceils, producing HW-l in vitro (Fig.2.l, 2.2 and 2.4). Interestingly, Vpr expression alone, in the

absence of any other viral products, did flot lead to efficient release even thougli the protein bas

proapoptotic properties (1, 61). Apparently, efficient Vpr release requires co-expression of viral proteins

suggesting that other viral components or/and host ceil responses may be necessary for extracellular

release Vpr. Since Vpr is primarily located in the nucleus when expressed alone (56, 63), it is possible

that expression of other nucleocytoplasmic shuttiing viral proteins such as the Gag polyprotein precursor

might be necessary to transport the protein in the cytosol near the plasma membrane. In that regard, it was

previously reported that during viral infection, Vpr was redistributed from the nucleus to the cytosol and

membrane compartments by a process that was independent of its interaction with the p6 domain of Gag

(30). In addition to nuclear export and transport near the plasma membrane, HIV-l-mediated

cytopathicity, including plasma membrane dismptions due to viral egress (16) or the combined

proapoptotic fiinction ofHW-l gene products (20), such as Vpr, Tat, Env and Vpu might be necessary for

release of Vpr in the extracellular medium. Nevertheless, our data clearly reveal that Vpr release in the

extracellular medium does not rely on the protein ability to be packaged into nascent viral particles; as

such, extracellular Vpr originates most likely from HIV- 1 -producing celis rather than from disrupted or

decaying virions, as was previously proposed (38).

Our data also provides evidence that Vpr undergoes processing extracellularly. Deletion mapping

analysis is consistent with Vpr processing occurring within the C-terminat arginine-rich domain of the

protein and specifically at a very well conserved putative PC motif located at position R85QRR88 (fig.

2.3A). Indeed, site-directed mutagenesis of this putative PC processing site reveals that double mutations

of the conserved basic arginine residues located at the P1 and P2 position for alanine (Vpr RR87/$8AA)

drastically reduced Vpr processing, whule substitution of the less conserved arginine residue for a

glutamine (R$5Q) at the P4 position, attenuated Vpr processing (Fig. 2.3C). These results indicate that the
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basic arginine residues in the Pi and P2 position are critical for Vpr processing, while the arginine located

in the P4 position is flot essential but seems to modulate the extent of Vpr processing. In this regard, it is

interesting to note that several Vpr alleles encoded by laboratory-adapted strains such as LAI or HW- 1

primary isolates from different clades contain a glutamine or a proline residue instead of an arginine at

that position (Fig. 2.3B), thus raising the possibility that soluble Vpr encoded by these alleles might be

less prone to efficient cleavage (35). Evidence that Vpr is undergoing processing at this site is also

supported by our mass spectrometiy analysis of extraceliular Vpr species, which revealed the presence of

primarily two Vpr cleavage products with predicted molecular mass corresponding to products

undergoing cleavage at positions $8 (Vpr 1-88) and $6 (Vpr 1-$6) in addition to full length Vpr (Fig.

2.3D). As it has been previously reported that the last two basic aa residues of the released N-terminal

peptide generated upon PC cleavage are generally removed by carboxypeptidases (31) (17), our resuits

are consistent with a Vpr processing occurring at the conserved double arginine residues (R87R$8) in the

Pi and P2 position, thus generating an 88 aa polypeptide that subsequently undergoes a rapid trimming of

the two basic pair residues leading to an $6 aa flully processed Vpr product. The fact that fully processed

Vpr was shown to migrate slightly faster than the Vpr (1-88) deletion mutant (fig. 2.3A) supports such a

sequential proteolytic process.

Furthermore, our resuits reveal that Vpr is initially released as a full-length protein and

subsequently processed extracellularly by ceil surface PCs (fig. 2.5). PCs belong to a family of

evolutionary conserved dibasic- and monobasic-specific Ca2tdependent subtilisin-like serine proteinases

related to the yeast kexin enzyme that constitute the major endoproteolytic processing enzymes of the

secretory pathway in mammals (55, 60). Traditionally, PCs have been shown to cleave their substrates

intracellularly. This is particularly true for furin, the best known member of the protease family (64).

Furin is known to exist at the celi surface while other PCs, such as PACE4 and PC5, are known to be

secreted and anchored in the extracellular matrix (46, 68) and are therefore, presumed to have

extracellular substrates. The inhibition of extracellular Vpr processing using PC inhibitors such as dec

RVKR-cmk or serpins al-PDX and Spn4A strongly suggests that PCs are involved in Vpr processing
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(Fig. 2.4A-B). Furthermore, transient co-expression of PCs in several HW-1 producing ceil unes reveal

that PC5 and PACE4 efficiently processed extracellular Vpr in 293T, Hela and COS-1 ceil lines, while

furin expression had only a marginal effect (Fig. 2.5 C). These resuits are consistent with the fact that

mutation of the arginine residue at the P4 position of the processing site, a residue critical for processing

by furin (64), was flot essential for Vpr cleavage. The fact that secreted PC5 and PACE4, but not soluble

furin, bind heparin within the extracellular matrix, via a cationic stretch of aa within their cysteine-rich

(CRD) domain (46, 68), raises the possibility that soluble Vpr, undergoes processing upon attachment to

the celi surface extracellular matrix ofbystander ceils. Indeed, our observations that Vpr protein needs to

5e in close contact with ceils to be efficiently processed as well as our data indicating that treatment of

1-11V-1 producing ceils with soluble heparin (fig. $2.2 in the supplemental material), a product known to

abolish the heparin sulfate-mediated attachment of exogenous protein to celis, promoted the detachment

ofcell-surface-associated Vpr and cleavage products support such a model.

Our data suggests that PCS and PACE4 might 5e involved in extracellular Vpr processing. This is

especially relevant since these enzymes can tolerate an aliphatic residue (e.g., Val or Leu) at Pi’ just

following the cleavage site, whereas furin does not (55). Interestingly, PC5 is expressed in freshly

isolated human CD4 T-lymphocytes, the natural host celis of HIV-l (12, 22). Although PACE4 is not

expressed in peripheral blood lymphocytes (PBL), it is highly expressed in lymphoid tissues such as

thymus, lymph node and spleen (22) and as such, might be present at the ceil surface of bystander cells

located in close proximity of HIV-l-producing ceils in vivo. However, we cannot rule out at this point

that other PCs displaying similar substrate specificity and cellular location may also participate to Vpr

processing in vivo, especially for those viruses harboring variants of Vpr sequence at the Pi’ position

where Val is replaced by either Ala or Gly (Fig. 2.3B).

Efficient processing of Vpr by PCs generates a truncated Vpr (i-86) that is defective for G2 celi

cycle arrest and is unable to induce apoptosis upon expression in celis (fig. 2.6 and Table 1). An eight aa

C-terminal peptide (89ARNGA$RS96) will be presumably generated following Vpr processing. However,

it is unlikely that this small peptide displays cytotoxic properties as was reported for other C-terminal
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Vpr-derived polypeptides (28, 58), since previous studies have shown that Vpr C-terminal peptide 83-96

or 80-96 did not exhibit any ccli kiliing or cytotoxic effects on CD4+ T cells (4) or rat neurons (54),

respectively. These findings raise the possibility that processing of extracellular Vpr by ceil-surface PCs,

such as PC5 and PACE4, might indeed represent a host ccii process to flinctionaily inactivate the

cytostatic and cytotoxic activities of extracellular Vpr. In addition to inactivating Vpr-mediated G2 anest

and proapoptotic activities, processing of extracellular Vpr C-terminus may also represent a mechanism to

prevent the uptake of the protein by target ceils. The carboxy-terminus domain of Vpr contains six highly

conserved arginine residues between residues 73 and 96. This domain shows simiiarity with those of

arginine-rich protein transduction domains and may explain the transducing properties of Vpr, including

its abiiity to cross the ccli membrane lipid bilayer (9, 24, 59). In fact, transduction of exogeneous protein

has been shown to very ofien involve the attachment of arginine-rich domain of proteins to membrane

heparin sulfate proteoglycans (HSPG) (42, 51). Likewise, soluble Vpr may interact with membrane HSPG

via its C-terminal arginine-rich domain as a first step prior to intemalization as was reported for other

transducing proteins (42). Processing of extraceilular Vpr by PCs will delete four of the six conserved

arginine residues and as such, is likely to interfere with the transduction properties of the protein (59).

More studies wiil now be required to analyze soluble Vpr interactions with ccli surface HSPG and its

implications in terms of protein cellular uptake. Furthermore, given that the expression profile of PC

varies according to tissues and ccli types (12, 22), it will be important to assess the level of Vpr

processing in any cellular system where the biological activity and function of soluble Vpr is analyzed.

Perhaps, inefficient or lack of soluble Vpr biological activity upon contact to certain ccli types might be

related to Vpr inactivation by ccli surface PC. It is interesting that Vpr is not the only HIV-transducing

protein undergoing processing by PCs. Extracellular Tat was reported to be cleaved by furin (65). Furin

processing did not affect the rates of N-terminal cleavage product uptake and nuclear localization but

greatly reduced the protein transactivation activity. It is thought that furin processing is a mechanism to

inactivate extracellular Tat protein. Aithough our resuits point towards a role of Vpr processing by PCs
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C’ as a mean to inactivate Vpr, we caimot entirely mie out that soluble truncated Vpr (1-$6) may stifi have

other biologicaî activities and ffinction important for RIV infection in vivo.

In conclusion, this study provides evidence that HIV-l Vpr is released in the extracellular milieu of

HW-l-producing celis where it undergoes processing by ceil surface PCs such as PC5 or PACE4. PC

processing of extracellular Vpr occurs at a very well conserved processing site located in the C-terminal

arginine-rich domain of the protein and leads to the production of a tmncated Vpr product that is unable

to induce G2 celi cycle arrest and apoptosis. We propose that PC processing of extracellular Vpr represent

a cellular process to inactivate soluble Vpr.
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TABLE 1. Effect ofVpr-processing on Vpr-mediated apoptosis.

PI(+)/Annexin V(-) (%) PI(+)/Aimexin V(+) (%)

SV CMV Vpr-/GFP 2.9± 0.5 9.2± 0.4

SV CMV Vpr(1-86)/GfP 3.2± 0.3 9.6± 1.3

SV CMV Vpr WtJGFP 7.9± 1.4 25.9± 3.3
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(f FIGURE 2.1. 11W-1 Vpr and cleaved products are found in the extracellular medium of

HIV-1-producing cetis. (A) Native Vpr and cleaved products are detected in the extracellullar

medium of HIV-l producing 293T ceils. 293T celis were mock-transfected (lanes 1 and 5) or

transfected with HXBruBH1O.R- (lanes 2 and 6) or HXBruBH1O.R- with SV CMV Vpr (lanes 3

and 7), or the HxBruBH1O.R+ provirus (lanes 4 and 8). Forty hours post-transfection, celis,

pelleted virus particles and virus-free extracellular medium were isolated, lysed, and analysed for

the presence of native Vpr directÏy by western blot (upper panel) or by TPRVB (lower panel).

Samples corresponding to 5% of the original crude ceil (lanes l-4) and viral (lanes 5-8) lysates

were analyzed for the presence of Vpr and CA by western blot using murine anti-Vpr mAb 9F2

and CA mAb respectively (upper panels). In parallel, ceil lysates (50 % of total celi lysates)

(lanes l-4) and vinis-free extracellular medium (50% of total medium recovered) (lanes 5-8)

were immunoprecipitated (IP) with rabbit anti-Vpr pAb and immunocomplexes analyzed by

western blot using anti-Vpr mAb 9f2 (lower panel). (B) Extracellular release of Vpr and C

terminally cleaved products requires expression of viral proteins and is independent of Vpr virion

incorporation. 293T ceils were mock-transfected (lanes I and 6) or fransfected with

HXBruBH1O.R- (lanes 2 and 7) or HxBruBH1O.3HAR+ (lanes 3 and 8) or

HXBrnBH1O.3HAR+/p6(1-17) (lanes 4 and 9), or SV CMV 3HA-Vpr (lanes 5 and 10). Forty

hours post-transfection, ceils, pelleted virus particles and virns-free extracellular medium were

isolated as described. Levels of HA-tagged-Vpr (3HA-Vpr) and CA were determined in

equivalent proportion of ceil and viral lysates by direct western blot using anti-CA or anti-HA

mAb (upper panel). In addition, the presence of 3HÀ-Vpr in ceil lysates and virns-free

extracellular medium was analyzed by IP!WB using anti-HA mAb (lower panel). (C) Cleaved

Vpr is associated to the extemal surface of HIV-l producing cells. 293 T ceils transfected with

the indicated proviral constructs or expression plasmids were extensively washed with PBS 40

hours posifransfection prior to a 10 min treatment with 0.25% trypsin. Following addition of 5 ml

DMEM supplemented with 10% FCS to stop trypsin digestion, ceils were extensively washed

with PBS and lysed in NP4O lysis buffer. The presence of 3HA-Vpr and cleaved products in ceil

lysates was analyzed by western blot using anti-HA mAb.
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FIGURE 2.2. Vpr and C-terminal cleaved products are detected in the extracellular
medium of 111V-1 infected Jurkat T celis. Jurkat T ceils were mock-transfected (lanes I and 4)
ortransfected with KxBruBH1O.R- (lanes 2 and 5) or HxBruBHIO.3HAR+ virus (lanes 3 and 6).
The presence of 3HA-Vpr and 3HA-Vpr cteaved products in infected celi and viral lysates as
weII as in virus-free extracellular medium was determined 6 days post-transfection as indicated.
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FIGURE 2.3. Vpr is cleaved at a PC processing site located within the arginine-rîch C-

terminal domaïn. (A) Deletion mapping of Vpr cleavage site. 293T ceils were mock-tiansfected

(lanes I and 7) or fransfected with HXBruBH1O.R- (lanes 2 and 8), or cotransfected with

HXBruBH1O.R- and SV CMV.3HAVpr (f-78) (fanes 3 and 9), 5V CMV.3HAVpr (1-$8) (fanes

4 and 10) or 5V CMV.3HAVpr (lanes 5 and 11). As an additional control, ceils were transfected

with HXBmBH1O.3HAR+ (fanes 6 and 12). Forty hours post-transfection, the presence of3HA-

Vpr and cleavage products was analyzed in ceils and vinis-ftee extracellular medium by IP/WB

as indicated. (B) Alignment of HW- 1 Vpr putative proprotein cleavage sites from different HW

1 subtypes. The consensus Vpr aa sequences between amino acid residue $0 and 90 are derived

from the HIV sequence database, Los Alamos National Laboratory (hffp:!/hiv

web.Ianl.gov/content/hiv-db/mainpage.html). Predicted PC processing site aa residues are

underlined and their positions indicated above. (C) Mutagenic analysis of the putative Vpr PC

cleavage site. 2931 ceils were mock-transfected (lanes 1 and 7), or tranfected with

HXBniBHYO.R- (fanes 2 and 8) or HXBmBH1O.3HAR+ (fanes 6 and 12), or co-transfected with

HXBruBHIO.R- provinis and SV CMV.3HA-VprR85Q (lanes 3 and 9), 5V CMV.3HA-Vpr

RR87/88AA (fanes 4 and 10) or SV CMV.3HA-Ypr (lanes 5 and 11). Forty hours post

transfection, 3HA-Vpr expression and extracellular release were analyzed in celis and vims-free

extracellular medium by IP/WB as indicated. D, Analysis of extracellular Vpr products by mass

spectrometry. Soluble Vpr and cleavage products from virus-free extracellular medium of mock

transfected or HXBruBH1O.R- or HXBruBH1O.3HAR+- transfected 293T celi were

immunopurified. Eluted proteins wîth molecular mass ranging from 10 to 22 kDa were then

analyzed by $ELDI-TOF-M$ using the Protein-Chip Reader (Ciphergen Biosystem Inc.,

fremont, CA).
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FIGURE 2.4. Proprotein convertases mediate ITIV-1 Vpr processing. (A) ExtracelÏular Vpr

processing is inhibited by PCs inhibitors ŒI-PDX and Spn4A. 293T celis were mock-transfected

(lanes I and 8), or transfected with HXBniBH1O.R- (lanes 2 and 9) or HxBruBHlO.3HAR+

(lanes 3 and 10), or co-transfected with lOp.g ofHxBruBHlO.3HAR+ and 1 ig ofplR v5 empty

vector (lanes 4 and 11) or pIR PDX+v5 (lanes 5 and 12), or SV CMVexPA control vector (lanes

6 and 13), or pShuflle CMV Spn4A (lanes 7 and 14). Forty hours post-transfection, the presence

of 3HA-Vpr products was analyzed in ceils and virus-free supernatants by IP/WB as indicated.

(B) Extracellular Vpr processing is inhibited by the PC inhibitor dec-RVKR-cmk. 293T ceils

were mock-transfected (lanes 1 and 5), or transfected with either HXBruBH1OER- (lanes 2 and 6)

or HXBruBH1 0.3HAR+ (lanes 3-4 and 7-8). Two days later, culture media were replaced with

fresh medium and ceils were cultured for 7 hours in presence (lanes 4 and 8) or in absence (lanes

1-3 and 5-7) of lOjiM dec-RVKR-cmk. 3HA-Vpr and cleaved products levels were analyzed in

celi lysates and virus-free extracellular medium by IP/WB as indicated (left panel). Vpr

processing efficiency is expressed as the percentage of cleaved-Vpr over total Vpr products in

the extracellular medium. (C) PC5A and PACE4 expression increases Vpr processing in

different ceil unes. HeIa-CCR5, COS-l and 293T ceils were mock-transfected (lanes I and 7) or

transfected with HXBruBH1O.R- (lanes 2 and 8) or co-transfected with HxBruBH1O.3HAR+

and pIR v5 empty vector (lanes 3 and 9) or pIR mPC5A+v5 (lane 4 and 10) or pIR hEurin FL

(lanes 5 and 11) or pIR hPACE4+v5 (lanes 6 and 12). forty hours post-transfection, levels of

3HA-Vpr products were analyzed in ceils and virus-ftee supematants as indicated.
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FIGURE 2.5. Vpr is processed extracellularly by a PC that is ceil surface-associated. (A)
HIV-1 Vpr is processed in the extracellular medium. 293T ceils were mock-transfected (lanes )
or transfected with HXBruBHIO.R- (lane 2) or HXBruBH1O.3HAR+ (lanes 3-6). Two days later,
media were replaced with fresh culture medium and ceils were further cultured for different
intervals of time as indicated. Ceils and virus-free culture media were then harvested at the
indicated tirnes and analyzed for the presence of3HA-Vpr as indicated. (B) Extracellular Vpr is
efflciently processed by a ceil surface-associated PC. Equivalent amounts (approxirnately I ig) of
in vitro translated Vpr were added to 293T cells (2X105/2ml of culture media) or to cell-free
conditioned media (2m1) collected from 293T ceil ovemight cultures in presence or absence of
10 jiM dec-RVKR-cmk. Cell-free supernatants (upper panel) and conditioned media (lower panel)
were collected at the indicated time intervals and analyzed for the presence of 3HA-Vpr and
cleavage products by IP/WB.
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FIGURE 2.6. Effect of processïng on Vpr-mediated celi-cycle arrest. (A) 2931 cells were
co-transfected with GFP-expressing plasmid (pQBI 25) and expression plasmids encoding Wt
Vpr, Vpr (1-86)-truncated mutant and Vpr R$OA. Forty-eight hours post-transfection, ceil
associated DNA content of GfP-expressing ceils was analyzed by PI staining and FACS analysis.
The ability of Wt Vpr, Vpr (1-$6) or Vpr R$OA to induce G2 arrest was determined by
calculating the G2/M:G1 ratio. Similar resuits were obtained in 3 independent experiments. (B)
Vpr levels in each ccli transfectant was anaiyzed by western biot using murine anti-Vpr rnAb
9F2.
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SUPPLEMENTAL FIGURE 52.1. Analysis of HW-1 Env gpl6O processing in presence of
PCs inhibitors Œ1-PDX and Spn4A. 293T ceils were rnock-transfected (lane 1), or transfected
with lOtg ofHXBruBHIO.R- (lane 2) or 10ig HxBruBHIO.3HAR+ (lane 3), or co-transfected
with lOj.ig of HxBruBH1O.3HAR+ and 1 jg of pIR v5 empty vector (lane 4) or pIR PDX+v5
(lane 5), or SV CMV exPA control vector (lane 6), or pShuttle CMV Spn4A (lane 7). forty hours
post-transfection, levels of precursor gpl6O and processed gpl2O products were analyzed by
western blot using monoclonal anti-gpl2O antibodies. Levels ofHIV-1 p24 as well as v5-tagged
Œ1-PDX or f lag-tagged-spn4A were determined by western blot analysis using anti-p24, anti-v5
and anti-Flag antibodies respectively. Please note that in addition to bands corresponding to cd
PDX and Spn4A, we also detected the presence of several high molecutar weight bands
corresponding to typical trapped SDS-stable complexes consisting of the inhibitor and targeted
PC enzymes.
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Ceil lysates Virus-free extraceflular

_______________________

medium IP Anti-HA
Heparin ig/rnI - - - 10 100 1000 - - - 10 100 1000
HxBruBHlO.R- - + - - + - - - -

HxBruBHlO.3HAR+ - - + + + + - - + + + +

Anti-HA

__

•- *ê+— 3HA-Vpr
-

—
Cleaved Vpr

1 2 3 4 5 6 7 $ 9 10 11 12

SUPPLEMENTAL FIGURE S2,2. Extracellular Vpr is associated with heparan sulfate
proteoglycans. 293T ceils were mock-transfected (tanes I and 7) or transfected with
HXBruBHIO.R- (lanes 2 and 8) or HxBruBHIO.3HÀR+ (lanes 3-6 and lane 9-12). Forty hours
post-transfection, 293 T celis were washed 3 tirnes with PBS, and treated with the indicated

concentrations of heparin (dissolved in DMEM) 20 min at
370 C. After treatrnent, celîs and

extracellular virus-free medium were isolated, lysed, and analyzed for the presence of3HA-Vpr

either directly by western blot (Ieft panel) or by IP/WB (right
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Abstract

Vpr localization within the virion core and its association with the pre-integration

complex suggest the protein plays an important role during HW-1 early infection. However, little

is known on Vpr interactions with other viral components within the virion particles. To address

this question, we constructed an infectious molecular clone of HIV- 1 expressing an HA-tagged

Vpr. Protein analysis of immunoprecipitated HA-Vpr complexes present in purified virions

revealed that Vpr could associate with the matrix protein (MA). Furthermore, MA-Vpr interaction

was shown to occur independently of the presence of RT and TN and could be detected in vitro

binding experiments, strongly suggesting the association was direct. The respective interacting

domains were mapped by in vitro binding assays. We pointed out the implication of the fifih

alpha lieux of M_A (residues 97-108), and the arginine-rich C-terminal domain of Vpr (residues

86-96) in the Vpr-MA interaction. Since Vpr and MA are karyophilic proteins, and are both

components of the pre-integration complex (PIC), their interaction might have a synergic effect in

the nuclear targeting of PIC and could contribute to the efficiency of viral infection during the

early stages of HIV- 1 infection.
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Introduction

Human immunodeficiency virus type 1 can replicate in non-dividing ceîls such as

macrophages, relying on the active transport of viral DNA into the nucleus of an infected ceil (5).

It is believed that multiple factors are involved in nuclear targeting of HIV-1 pre-integration

complex (PIC) in non-dividing celis, such as matrix protein (MA), viral protein R (Vpr) and

integrase protein (IN), as well as the DNA flap. HIV- 1 MA and iN proteins are thought to recruit

karyopherin alpha through their nuclear localization signal (NLS), Vpr may modulate the nuclear

import by increasing the affinity of karyopherin alpha for the PIC (22). Although Vpr is

dispensable for HIV-1 replication in dividing ceils, it is required for efficient replication in non

dividing macrophages (12).

Vpr possesses karyophilic property when expressed alone (19). Vpr becomes membrane

associated in vims-producing cells (13) and is then incorporated into the nascent virions through

its interaction with Pr55G p6 LXXLF domain (21) (18, 19) (16). Upon viral particle maturation,

Vpr but not p6 localizes in the virion core (1), suggesting Vpr might interact with other viral or

cellular factors for proper redistribution. However, nothing is known about the protein

interactions occuring in the core and their subsequent role, if any, in the preintegration fate.

Understanding of these processes will provide dues on the role of Vpr during the early stages of

HIV- I infection.

In order to facilitate the detection of virions-associated Vpr complexes, we first constructed

an isogenic infectious HIV-1 molecular clone expressing HA-tagged Vpr. We found that Vpr was

able to co-immunoprecipitate the matrix protein. Interestingly, this interaction occurred

independently of the presence of RI and N proteins and could be detected in vitro with

recombinant proteins, suggesting a direct MA/Vpr association. GST pull-down assays ftirther

demonstrated that the fifih alpha lieux of MA and the C-terminal domain of Vpr mediate this

association. Involvement of the arginin-rich domain of Vpr in the interaction was finally
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confirmed in vivo. Implication of virion-associated MA/Vpr complexes in the early steps of

infection will be discussed.

Materials & Methods

Plasmids and provirus constructs. Mammalian expression plasmid SVCMV HA-Vpr was

constmcted by one-step PCR insertion of a hemagglutinin (HA) tag at the N-terminus of Vpr in

SVCMV Vpr (28). The $peTISacI digested PCR fragment was inserted into the corresponding

Xba JI$ac I site of SVCMV Vpr. $VCMV HA-Vpr (1-86) and Vpr (l-78) were constructed by

ligating an EcoRI/SacI PCR fragment containing premature stop codons into the same sites of

SVCMV HA-Vpr.

For bacterial production of recombinant MA, matrix sequence was first amplified from

HxBruBH1O.R+ provims. The pGEX-4T3-MA plasmid was constmcted by ligation the digested

PCR fragment into the corresponding sites in pGEX-4T3 plasmid (Amersham, Buckinghamshire).

Similarly, deletion mutants of MA (GST-MA (1-96), GST-MA(1-108) and GST-MA (1-116))

were made by PCR using different 3’ MA primers with premature stop codons, and cloned in

pGEX-4T3.

For in vitro expression of wild-type and truncated T7-tagged Vpr, pET21C-Vpr and its

deletion derivatives were constructed by PCR amplification of Vpr from HxBmBH1O.R+

provirus. PCR fragments digested with BamHIISacI were subcloned in frame into the

corresponding sites in pET2ÏC (Novagen).

b introduce HA-Vpr sequence into the provirus, the intermediate plasmid BS$K

HAR+/Apal-SalI was first generated by a two-steps PCR-based method. HA-Vpr was first

generated as above, the HA-Vpr sequence linked to the upsfream Vif sequence by overlapping

PCR and cloned in BSSK plasmid. Ail PCR fragments have been sequenced.

HxBruBH1O.HAR+ provims was finally constmcted by replacing the HxBmBH1O.R+ ApaI-SalI
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- fragment with that of BSSK HAR+ Bru /ApaI-SalI. pNL4.3 HAR+ was constmcted using a

similar approach. In these HA-Vpr provirus constructs, the Vif C-tenninal reading frame has an

additional 10 amino acids CTHTMFQITL insertion following Vif Wl 74 amino acid position

because of HA tag insertion at the C-terminal ofVifwhich is overlapping with the N-terminus of

Vpr. The provirus HxBruBHlO.R-/RI- without Vpr, RI and IN expression was described before

(2).

The provirus constructs pNL43 K9$G and pNL43 E 106V containing MA mutation K9$G

and E1O6V were kindly provided by Dr Eric freed, NIH (7). A NL43 provirus containing a

L1O1A mutation in MA was constructed by PCR-mediated site-directed mutagenesis followed by

the insertion ofthe mutant sequence into the BssHIJlSphI sites ofpNL4.3. pNL43 K9$G, pNL43

L1O1A and pNL43 E1O6V containing HA-Vpr were constructed by replacing the ApaI/ Sal I

fragment containing the native Vpr sequence with the same fragment from pNL43 HAR+. Ail

the consfructed plasmids were sequenced to confirm the presence ofthe desired mutations.

Ceit unes and reagents. Human embryonic kidney 293T ceils were maintained in Dulbecco’ s

Modified Eagle Medium (DMEM) supplemented with 10% fetal caif senim (FCS). Jurkat and

MT4 T-lymphoid ceil Ïines were maintained in RPMI-1640 medium with 10% fetal calf serum

(FCS). The HIV-1- positive human serum 162 used in this study were previously described (27).

The anti-HA antibody was generated from the ascite fluid of mice injected with the anti-HA

hybridoma 12CA5. Monoclonal Anti-HIV capsid (p24) protein monoclonal antibodies were

harvested from the supematant of hybridoma HB9725 (ATCC; American Type Culture

Collection, Manassas, VA). Polyclonal rabbit antisenim to HIV-1 p17 from Dr Michael Phelan

was obtained through the NIH AIDS research and reference reagent program and the monoclonal

antibody for HIV-1 p17 was from the supematant of hybridoma HB9$75 from ATCC.

HJV production and immuno-precipitation. Transfection in 2931 celis was performed by a

standard calcium phosphate DNA precipitation method. 5x106 ceils were transfected with 20 .cg
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of provirus and 10 g of SVCMV-HA-Vpr expressor. At 40 hours post-transfection, ceil

supematants were collected, clarified through 0.45 im-filters (Nalgene), and ultra centrifiiged at

35,000 rpm in a Beckman 70 Ti rotor for 1.5 hour to pellet HIV virions. Each viral pellet was

resuspended in $00 pi RPMI 1640 medium, lyzed with 200 pi of 5 % NP4O lysis buffer (700mM

NaCI, 4OmM NaHPO4, 10mI4 Na2H2PO4, 5% NP4O, 2.5% SDS, pH7.2) with protease inhibitor

cocktail (Roche) and then 90% of viral lysates were irmrimuno-precipitated with anti-HA

antibody (2 hours, at 4 degrees). The remaining 10% of viral lysate was kept for direct Western

blot analysis.

Silver staining and Mass spectrornetly. IPs were done using the anti-HA 12CA5 antibody.

Purified products were separated by 12.5% SD$-PAGE and visualized by silver staining using

Proteo$ilverTM kit (Sigma). Bands of interest were excised from the gels, washed twice with

50% acetonitrile in water and analyzed by mass spectrometry at Taplin Biological Mass

Spectrometry Facility (Harvard Medical School, Boston, MA).

Furfication of GST-fusion proteins. E. Cou BL2 1 transformed with pGEX-4T3 MA or derivaties.

Expression of GST-fused proteins was induced for 4 hours at 30°C with 0.1 mM isopropyl-l-D

thiogalactopyranoside. Recombinant proteins were purified as described in (14).

In vitro translation. Radiolabeled Vpr was synthesized in vitro using the TNT-coupled

reticulocyte lysate system (Promega, Madison), according to the manufacturer’ s instructions.

Briefly, 1 rg of plasmid DNA was used for transcriptionftranslation in a 50pi-reaction mix in

presence of 35S-methionine.

In vitro G$T-pull down assays. 30 pi of 50% gluthatione-coupled sepharose 4B slurry were

incubated with 5ig of GST-MA in 800pi of PBS pH 7.4 at 4°C for 40 minutes. Beads were

washed 3 times with PBS. five pi of in vitro-translated T7-Vpr product in RPMI164O medium

(800pi/sample) were added to the GST- or GST-MA-bound beads and shaken at 4°C for 2 hours.

Afier vigorous washing with PBS, proteins were eluted with 5OmM reduced glutathione and
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separated byÏS% SDS-polyaciylamide gel electrophoresis (SDS-PAGE). Gels were fixed and

exposed on films or immunoblotted for detection ofbound Vpr.

I-IfV-1 replicarion analysis. 5 x 106 Jurkat T ceils were transfected with 10 tg of proviral DNA

plasmids using the DEAE-dextran method (8). Following transfection, the Jurkat T ceils were

cultured at a density of 0.5 x 106 cells/ml. Virus levels in the supematants at specific time points

after transfection were detennined by the HW reverse transcriptase (RT) assay, as previously

described (27).

113



Resuits

Insertion of a N-terminal HA tag in HIV-1 Vpr. It has been reported that Vpr, IN and

phosphorylated MA ail localize within viral core. However, the putative interactions occuning

between these three karyophilic proteins have not been studied yet. One ofthe major obstacles to

the characterization of Vpr-interacting proteins is the Yack of strongly reactive antibodies. We

then constmcted a HIV-lproviral clone expressing an HA-tagged Vpr (Fig.3.1A). We first

ensured the presence of the N-terminal tag did not alter Vpr properties, in terms of protein

stability, virus incorporation, celiular distribution and cytostatic abilities (data flot shown). Lastly,

we investigated the impact of the HA tag on viral replication. MT4 ceils were transfected with the

proviruses either mutated for Vpr initial coden (ATG to GTG), or expressing the wild-type or

HA-tagged proteins (HxBruBHÏO.R-, HxBruBHlO.R+, and HxBruBH1O.HAR+ respectively).

The viral replication was monitored by quantification of RT activity from the culture supematants.

As shown in Fig.3.1B, ah the three viruses replicated well, indicating the introduction of a small

foreign ILk tag at the N-terminus of Vpr did flot interfere with viral rephication.

Identflcation ofvirion-associated Vpr-complexes. First, we used HP! particles produced from

2931 ceils cotransfected with Vpr-minus provims and HA-Vpr expressor. Trans

complementation of HA-Vpr was sought to increase the amount of Vpr incorporated inside

virions (24). Released particles were concentrated by ultracentrifugation, lyzed and subjected to

immunoprecipitation (EP) using anti-HA antibody. IP products were then separated by 12.5%

SD$-PAGE gel, fixed and silver stained. Interestingly, a lSkDa protein was co

inmrnnoprecipitated along with HA-Vpr from the viral lysate containing HA-Vpr (Fig. 3.2A, lane

3), but not from the Vpr-negative viral lysate (lane 2). The l8kDa protein band was eut from the

gel and analyzed by mass spectrometry. Three peptide sequences were obtained from the mass

spectrometric analysis (Fig. 3.2B). They were corresponding to HIV-1 Matrix protein (MA).
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Vpr interacts with MA in HIV-1 partie!es. To exciude the possibility of an artificial

interaction between MA and over expressed tagged Vpr, IPs were performed on virions recovered

ftom 293T ceils transfected with Vpr-minus provirus as negative control, or with

HxBruBHlO.HAR+ provirus, that expressed HA-Vpr in cis. Aliquots of the virus lysates were

subjected to IP with anti-HIV antiserum, to ensure similar amounts of particles had been

concentrated before lysis (Fig. 3.3A, right panel) The rest of the samples were used to pull-down

HA-Vpr (left panel). Purified proteins were detected by western blot with specific antibodies

against HIV-1 p24 capsid, MA and HA-Vpr. As shown in fig. 3.3A, right panel, similar amounts

of p24 and MA were found when IPs were performed with HIV antiserum, indicating the

transfected 293T ceils had released equivalent number of particles. In contrast, MA but flot the

capsid p24 protein couÏd co-immunoprecipitated with HA-Vpr (Fig.3.3A, lane 3), suggesting the

binding was specific. Noteworthy, no immunoprecipitation of the matrix could be found in

absence of HA-Vpr. Taken together, these resuits provide evidence that Vpr specifically interacts

with MA in virion particles from transfected 293T celis.

Importantly, similar resuits were obtained with viruses produced by HIV-infected MT-4

celis. MA protein could co-immunoprecipitate with HA-Vpr in virion lysates prepared from MT4

celis infected with HxBmBHYO.HAR+ (Fig.3.33, lane 3) but not HxBruBH1O.R- vinises (fig.

3.3B, lane 2). These resuits suggest that Vpr and MA are able to interact under the normal

physiological conditions in virions produced from HIV-1 infected T-cells. However, the thinness

of the band (lanes 3) as opposed to the huge band detected for the inputs (lanes 6) tends to

indicate the amount of matrix present in Vpr complexes is weak, but may reflect the small

quantity of MA that is actually located inside the core.

The presence ofIN and RT is dispensabÏe for the formation ofthe complexes. In addition

to Vpr and phosphorylated MA, mature core particles contain RT and IN.

To determine whether these proteins could also participate to the complex, similar IP

assays were performed using a RT/lNIVpr-deleted provims Iran complemented or not with HA-
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() Vpr. Resuits show that MA could stili be co-immunoprecipitated with HA-Vpr in RT/IN-negative

viral particles (fig. 3.3C, fane 3), although to a lesser extent than that of wild type viruses

(Fig.3.3C, lane 5 and 6), suggesting that the Vpr and MA interaction was independent of the

presence of RI and integrase, but that these proteins might contribute to the stability of this

interaction.

Matrix 5th a-Helix is criticalfor Vpr interaction. b determine whether Vpr and MA interact

directly, we used a GST pull-down assay with bacterially produced GST-MA and in vitro

translated T7-Vpr. We found that GST-MA but not GST alone was able to interact with T7-Vpr

(Fig. 3.4B, lane 5) suggesting that Vpr and MA have a direct physical interaction. Moreover,

these resuits confirm that the observed interaction between MA and Vpr was not mediated by the

HA tag. Finally, recombinant Vpr could stiil interact in vitro with GST-MA even in the presence

of DNase and RNase indicating that this interaction might flot mediated by DNA or RNA (data

not shown).

In order to map the MA region responsible for Vpr binding, GST-MA (1-96), GST-MA

(l-108), and GST-MA (1-118) deletion mutants were produced in bacteria and purifled (fig.

3.4A). We found that GST-MA (1-118) (lane 8) and (l-108) (lane7) were able interact with Vpr

as well as wild-type GST-MA (lane 5), whereas the GST-MA (1-96) mutant (lane 6) almost

completely lost its ability to bind to Vpr (fig.3.4B). Amino acids 97-1 09 of MA corresponds to

the fifth Œ—helix, thus suggesting that this structure might contain the minimal sequence required

for Vpr interaction. Several MA mutations (K98G 1O1A, and E1O6V) were then introduced into

pNL4.3HAR+ provims and their effects on the Vpr-MA interaction were analyzed in the viral

particles (fig. 3.5A). Ail the MA mutants tested could bind Vpr at Ieast as efficiently as the wild

type mafrix (lane 3, 4 and 5). Surprisingly, virus expressing MA L1O1A exhibited a reduced

particle release compared to wild type HIV (lane 10 compared to lane 12), as determined by

capsid and MA protein levels in the viral lysate, even though the HA-Vpr and MA L1O1A
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interaction was 14 time stronger than that of wild type MA (Fig. 3.5B, compare pNL43 HAR+

L1O1A with pNL4.3 HÀR+). Since the MA Sth Œ-Helix seems to be involved in the formation of

Vpr complexe, other residue(s) within that domain are likely implicated.

Vpr amino acids 86-96 are responsibtefor MA binding. To further map the region of Vpr

responsible for the interaction, a series of Vpr deletion mutants were produced by in vitro

translation and used for GST pull-down experiments. As shown in Fig. 3.6B. GST-MA was able

to interact with ftill-length Vpr. In contrast, the truncated forms Vpr (1-86) and Vpr(l-78)

exhibited similar 50-75% reduction in MA association (lane 5 and 6), suggesting the 86-96 region

contains the main binding domain. Further deletion 63-96 completely abolished the interaction.

That region appears to participate in the formation of MA complexes, somewhat at lesser extent

than the C-terminal part.

F inally, to confirm the involvement ofthe 86-99 region, HA-Vpr(1-7$) and HA-Vpr(1-$6)

were used to trans complement Vpr-minus provinis in 293T ceils. Virions were purified, lyzed

and subjected to IP as above. Resuits presented in Fig.3.7 show that amounts of MA pulled-down

by HA-Vpr(1-78) and HA-Vpr(Ï-86) are both reduced, when compared to that obtained with

wild-type protein (compare lanes 3-4 to lane 5). The weaker intensity of the MA band obsewed

for HA-Vpr(1-$6) is likely due to a small difference in MA content in the lysates (compare lanes

9 and 10), rather than to distinct affinities ofthese two Vpr mutants for the matrix.
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Discussion

HIV-1 can replicate in non-dividing ceils such as macrophages, a process which relies on

the active transport of viral DNA into the nucleus of infected ceils.

Vpr is packaged into the virions via an interaction with the p6 domain of Pr55’°

precursor (16, 17, 21) and further localized within the viral core (1, 26). After virus entry in host

ceils, Vpr becomes part of the PIC, suggesting the protein plays a role during the early stages of

HIV-1 infection.

We seek to identify Vpr-interacting proteins within the viral particles. Epitope tagging

strategy provided a powerful tool to bypass the Iack of sensitive anti-Vpr antibodies. HA was

fused to the N-terminal part of Vpr, without altering neither the protein stability nor its

incorporation into nascent virions. Vpr tagging also had a minor impact on the virus replication.

Mass spectrometry analysis of immunopurified Vpr-associated complexes pointed out that Vpr

present in the virions was able to interact with HIV MA protein. Importantly, MA binding was

observed in particles produced from transfected 293T ceils as well as from HIV-infected MT4

celis. Our resuit is consistent with the interaction previously reported by Sato et aï., with distinct

IP conditions (23). Since MA appears to play important roles in the nuclear transport of the

proviral DMA in non-dividing ceils as part of the PIC (4), we further characterized Vpr/MA

interaction.

We showed here that Vpr is able to interact with MA in absence of incorporated RT and

integrase. Resuits obtained from in vitro GST pull-down strongly suggest the interaction is direct.

However, we found that HA-Vpr is also able to pull-down the integrase in virus lysates (data flot

shown). Since Vpr affinity for MA seems to be decreased in absence of IN, we cannot rule out the

possible involvement of integrase in the stabilization of the complex.
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By yeast two-hybrid assays, Sato et al. have mapped Vpr-binding domain in the C-

terminal region of the matrix protein (23). We further demonstrated by in vitro GST pull-down

that the region encompasses amino acids 97 to 107, which corresponds to the fifih alpha helix o

H5. We then constmcted proviruses expressing both HA-Vpr and MA variants K9$G, LYO1A or

BI 06V. Unfortunately, introduction of point mutations had no impact on the complex formation,

as determined by IP on the virus lysates. Although the residues targeted by mutagenesis are well

consen’ed among HIV clades A to D (data not shown), they are dispensable for Vpr binding.

Other amino acids in the 96DTKEALDKIEEEQ108 should be considered. In regard of MA Œ-H5

structure and the binding domain we mapped in Vpr (see below), implication of the likely

exposed residues E99, D102 and E105 will be evaluated.

Using in vitro binding assays, we demonsfrated that MA interacting region of Vpr spans

the C-terminal domain 86-96. Deletion of this region decreased matrix binding to 50-75%. That

domain shows no evident 3-D structure but it contains several arginine residues. It is thus

tempting to speculate an electrostatic interaction between the negatively-charged amino acids of

MA Œ-H5 and the basic C-terminal tail of Vpr. Deletion of the 7$-96 had a weak impact,

suggesting the phosphorylation site S79 plays a minor role, if any. Importantly, IP performed on

vit-uses expressing HA-Vpr(1-$6) or (1-78) forms confirmed the reduced ability of these truncated

proteins to interact with the matrix in vivo. finally, the larger C-terminal deletion 63-96 resulted

in a complete loss of MA binding. This region is composed of a leucine-rich domain which is

involved in the interaction with many cellular proteins (15, 25, 29). That region might form a

hydrophobic interphase which could facilitate Vpr!MA interaction. Altematively, the large

deletion Vpr (l-63) may alter the 3-D structure of the protein, as suggested by the high instability

of this mutant in vivo (data not shown). Precise mapping of the C-terminal domain of Vpr is

actually in progress.
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Both Vpr and MA are present in ffie viral core (1, 9, 10) and become components of the

preintegration complex following HW entry into the host cells (6, 12, 20). Thus, one can imagine

the interaction between the two proteins plays a role during the early stages of infection.

Unfortunately, introduction of a premature TGA stop after Vpr codon 86 appeared to be

detrimental for HIV replication preventing us from studying the role of this binding (data not

shown). Does one protein recniit the other to the core? Matrix protein mainly forms the outer

sheil of the viral coi-e (11), but it can also relocate into the viral core, presumably upon additional

phosphorylations on MA serine residues (3). Given that bacterially-produced MA is not

phosphorylated, our in vitro data suggest that Vpr may interact with the matrix proteins present in

the virions regardless of their phosphorylation status. However, amount of MA that is effectively

pulïed-down in virions lysates is weak, as if only a fraction of the protein was susceptible for the

IP. It is possible that Vpr interacts with MA only once both proteins have been targeted

independently to the core. On the other hand, we cannot rifle out the possibility that Vpr might

recruit (or be recmited by) the mati-ix protein near the virus membrane, its interaction with MA

occurring concomitantly with the MA phosphorylation of the serine residues. So far, Vpr ability

to bind to MA in immature particles, or outside the cores has flot been evaluated. Analysis ofthe

core composition of viruses expressing truncated MA and Vpr mutants defective for the binding

will be of great interest. It wiIl help in understanding where the interaction takes place and its

impact in the recruitment of the diverse components of the preintegration complex, leading to

some dues for the comprehension of the PIC fate.

In summary we constmcted an infectious molecular clone of HPI-1 expressing an HA

tagged Vpr and isolated purified virions containing HA-Vpr. Immunoprecipitation assays

revealed that MA and Vpr could form a complex within the virions. Determining whether the

binding occurs in the core particles should help us in understanding the respective role of the PIC

components during the early stages ofHIV-1 infection.
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Figure 3.1.Construction of isogenic provirus expressing HA-tagged Vpr (A) Schematic map
ofisogenic provirus expressing I-L4-tagged Vpr. (B) Kinetics of viral replication. MT4 ceils were
transfected with HIV-1 proviruses. Levels of RT activity present in culture supernatants were
deteniiined for 10 days. Representative experiment (n2).
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Figure 3.2. Detection of Vpr interacting proteins within virion particles. (A)
Immunoprecipitation of Vpr complexes. Culture supernatants from mock 293T celis (lane 1) or
celis co-transfected with HXBruBH1O.R- provirus (lane 2) or HXBruBKIO.R- and SV CMV HA
Vpr (lane 3) were concentrated by ultracentrifugation. Viral pellets were resuspended in lysis
buffer and were subjected to Vpr immunoprecipitation using anti-HA antibody. Co
immunoprecipitated proteins were separated by SDS-PAGE and revealed by silver staining. (B)
Mass spectrum analysis ofthe 1$ kDa protein. Peptides identified by mass spectrornetry analysis
are underlined in the MA sequence.
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Figure 3.3. Vpr associates with p17 (MA) protein in HIV-1 virions. (A) Culture supernatants
recovered from rnock-transfected 2931 cells (lane I and 4) or from celis transfected with
HXBruBH1O.R- (lane 2 and 5) or HXBruBHYO.HAR+ proviruses (lanes 3 and 6) were
concentrated by ultracentrifugation. Viral pellets were resuspended in lysis buffer and subjected
to anti-HA (left panel) or anti-HIV immunoprecipitation (riglit panel). Presence of the capsid
protein (p24), MA and HA-Vpr was determined by western blot following SDS-PAGE (B)
Culture media recovered from uninfected M14 cells (lane and 3), or M14 infected with
HXBruB[-110.R- (lane 2 and 4), or HXBruBHIO .HAR+ (lanes 3 and 6) were concentrated by
ultracentrifugation. 90% of the resuspended pellets were used for anti-HA immunoprecipitation
(left panel) whereas the rernaining fraction (right panel) was analyzed directly by Western blot.
(C) 293T celis were transfected with HXBruBHIO.R- /RI- (lanes 2-3 and 2-9) or HXBruBH1O.R-
(lanes 4-5 and 10-Il). Alone (lanes 2 and 2, 4 and 10) or complemented with SVCMV-HA-Vpr
(taries 3 and 9, 5 andi 1). As controt, ceils were rnock-transfected (lane I and 7) or transfected
with cis HA-Vpr- expressing provirus (lane 6 and 12). Culture media recovered 2 days later were
concentrated by ultracentrifugation. 90% of the resuspended pellets were used for anti-HA
immunoprecipitation whereas the rernaining fraction was Ioaded directly on the acrylamide gel
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rnethods. Sample were loaded and riin on 12.5% SDS-PAGE gels and detected by Coornassie
blue stai n ing and autoradiography.

1—,
13



A

pNL4.3 R
pNL4.3 HAR+ K98G
pNL4.3 HAR+ L1OIA
pNL4.3 HAR+ E 106V
pNL4.3 HAR+

Anti-CA

Anti-MA

Anti-HA

- + -

-
- t

- -
- +

+ -

- +

± -

- + -

-
- + -

1t1

Figure 3.5. Effect of Matrix mutants on Vpr interaction. (A) Culture media recovered from
mock transfected 293T cells (lane I and 7), or transfected with pNL4.3.R- (lane 2 and 8),
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Densitometric analysis of Western blot resuits was performed using AGFA Duoscan T1200
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CHÂPTER 4: GENERAL DISCUSSION

Extracellular forms of Vpr have been previously found in the sera and cerebrospinal fluids

ofHW-I positive individuals (196). Extracellular Vpr can transduce the celi membrane (147, 325),

suggesting that this protein may have a bystander ceil effect. $pecifically, it could penetrate

bystander latently infected celis or non-infected ceils to perform several biological activities, such

as a stimulation of HIV replication in latently infected cells (197), an increase of chemokine and

TNF-o. production (241, 358), or a modulation of apoptosis in T ceils (17). However, despite the

numerous putative functions described for extracellular Vpr, the mechanisms underlying Vpr

release, as weIl as its biological impact on HIV-1 replication, have neyer been addressed. In the

present work, for the first time, it has been shown that the protein can be released and cleaved in

the culture media of HIV-1-expressing ceils, and fiirther, characterized the mechanism of the

release and processing.

This study shows that soluble Vpr is released from vims-producing ceils by a process

independent of Vpr incorporation into HIV-1 particles. Since HIV-1 Vpr does flot possess a

signal peptide for secretion and contains nonclassical NLS, the protein is mainly located in the

nucleus when it is expressed alone (208). Most ofthe Vpr stili stays in the nucleus even when the

protein is fused with the baculovims secretory polypeptide, suggesting that Vpr possesses a

strong nucleophilic signal (54). Interestingly, the protein is redistributed to the cytoplasm and

membrane compartment independent of its interaction with the p6 domain of Gag during viral

infection (163). Vpr is released from HIV-1-producing ceils but not from ceils where Vpr is

expressed alone (see Chapter 2), implying that other viral component or some host ceil responses

may be necessary for Vpr release. As shown in Chapter 2, Vpr can stili be released and processed

without virion incorporation in the absence of functional p6, suggesting that Vpr does not need to

interact with p6 to be released out, and that extracellular forms of Vpr are not derived from

decayed virion particles, since no Vpr will be virion-incorporated in the absence of p6. The
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provirus HxBruBHÏO.3HÀR+ used in the study does flot have a fùnctional fief gene, suggesting

that nef does not play a role in releasing extracellular Vpr. Vpr can also be released in the absence

of Vpu, Env, and protease protein (data not shown), suggesting that Nef, Vpu, protease, and Env

may not contribute directly to the Vpr release during HW-1 infection. The viral assembly and

cytopathic effects resulting from HIV- 1 infection—including plasma membrane dismptions due

to viral egress (101) or the proapoptotic fhnction of HIV gene products (133)—might 5e

necessary for the redistribution and release of Vpr from the infected ceil. Further efforts need to

be made to clarify the viral components and activated cellular gene that are responsible for Vpr

release.

In this study, we showed that soluble Vpr is predominantly cÏeaved shortly after

extracellular Vpr releases. Extracellular Vpr and cleaved products can be found in HIV-1 patients’

sera and cerebrospinal fluid (196), suggesting that Vpr release and proteolytic processing could be

a physiological phenomenon during HIV- 1 infection. It is unlikely that HIV- 1 protease is

responsible for Vpr processing, since virion-associated Vpr remains intact in the mature virion

particles where HIV-1 protease is active. Deletion mapping analysis revealed that extracellular Vpr

was processed at the C-terminus, where a pair basic amino acid proprotein convertase-processing

motif R65QRR88 is located. Mutagenesis, mass spectrometry, and PC inhibitor experiments strongly

suggest that Vpr is cleaved by proprotein convertase (see Chapter 2). $ite-directed mutagenesis of

this putative PC processing site reveals that double mutations of the conserved basic arginine

residues located at the Pi and P2 position for alanine (Vpr RR87/88AA) almost completely

abolished Vpr processing, whereas substitution of the less consenred arginine residue for a

glutamine (R85Q) at the P4 position attenuated Vpr processing.

The P4 position mutation Vpr RS5A bas a G2 arrest firnction (81), which may explain

why HW- 1 can tolerate mutation at this site in vivo. HIV- 1 ofien lias another arginine insertion at

position P2’ to compensate for the P4 arginine mutation such as HIV-1 YU-2 and SF2 strains
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(Gene bank accession number M9325$, K02007) and other virus isolates (from QQRRARN to

QQRR,N) (47). This insertion creates another PC processing motif RARR, suggesting that

P4 position arginine may be required for efficient Vpr processing in vivo. Eventually, HW-1-

infected patients with the restored Vpr processing motif died of MD$. Yet interestingly, the Cali

et aï. report indicates that the additional Vpr glutamine to proline mutation in the P3 position in

this virus—with the restored PC processing motif (from QQRRARRN to QPRRARRN)—

correlates with non-symptomatic the HIV- 1 patient while no other genes mutations are found in

the viral genome (GenBank accession number A4779550-A4779564) (47). Many long term non

progressors (LTNP), as well as mother to chlld non-transmitter, carry the virus strain that has the

Vpr mutation at the P4 position (47, 330, 367, 388). Since the Vpr processing site overlaps with

the arginine rich C-terminus, which is important for Vpr stability and the G2 anest function, it is

flot clear whether Vpr lost its basic function due to the mutation near the PC processing site or

whether the Vpr processing defect itself causes the different in vivo phenotype. The exact

consequence of Vpr proteolytic processing and its effect on HIV-l pathogenesis in vivo need to

be determined.

Among the seven members of the pair-basic proprotein convertases, furin, PC?, and

PC5A are expressed in freshly isolated human CD4 T-lymphocytes, the natural host ceils of

HIV-1, although PC5A expression level is lower than that of furin (only 20% of flirin) in

activated T cells (75). Notably, these particular PCs were implicated in the intracellular

proteolytic processing of the HIV-1 envelope gpI6O during HIV-1 infection (75). Even though

PACE4 is flot expressed in peripheral blood lymphocytes (PBL), it is highly expressed in

lymphatic tissues such as thymus, lymph noUe, and spleen (140). The transient co-expression of

PCs and provirus showed that PC5A and PACE4 efficiently processed extracellular Vpr in 293T,

HeLa, and Cos-1 ceil unes, whereas furin only had a marginal effect in the 2931 and Cos-l ceil

unes. The presence of a hydrophobic Val just following the cleavage site (for example as seen in

HIV-l isolates A, F, G, H) at Pi’ is especially relevant and indicates either a PC5 or PACE4-
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generated Vpr cleavage, because these enzymes can tolerate an aliphatic residue at Pi’ just

foilowing the cleavage site, whereas furin does not (316). These resuits suggest that at least

PC5A and PACE4 might be involved in the exfracellular Vpr processing. As it is the case for

HW-1 envelope gpl6O processing, other members of the pair-basic PC family or other cellular

proteases may also contribute to the processing of extracellular Vpr, especially for those vimses

harboring variants of the Vpr sequence at the Pi’ position replaced by eitlier Ala or Gly (see

Chapter 2) (316). Usuaily, several PCs are expressed in the same ceil, and it will be difficuit to

knock down ail of them to underline the individual role of each in the proteolytic processing of

Vpr. The redundancy in the convertase might be useflil to ensure the proper processing of Vpr in

different host ceils.

The predominant presence of Vpr -ieaved products in the extracellular medium suggests

that Vpr is cleaved extracellularly. lime course experiment resuits showed that Vpr was first

released as a flulI-iength protein and then was processed extracellularly by plasma membrane

associated PCs. Liille cleavage was detected when Vpr was exposed to a conditioned medium

from normal 293T ceils, ftirther implying that: 1) the PC responsible for Vpr processing is flot

released in the extracellular milieu, and 2) Vpr cleavage is more efficient when extracellular Vpr

is in close contact to ceils. Although soluble forms of PCs in the extracellular medium have been

found from culture supernatant of PC-transfected cells (347, 381), their biologicai fiinctions

remain unknown (245). Vpr is flot processed inside the celi; one possible reason is that Vpr may

flot have access to the secretory machinery where PCs are located.

The proprotein convertase furin and PC7 have a transmembrane domain that may lead to

their possible presence at the plasma membrane (316). Indeed, furin cycles between the celi

surface and the trans-Golgi network (TGN) (229). The presence of a consensus integrin-binding

site (RGD) in PCs (except PC7) further suggests that these enzymes might associate directly

with extracellular matrix (ECM) components (245). Secreted PC5A and PACE4, but not soluble

fiirin, bind heparin within the extraceliular matrix via a cationic stretch of amino acids within
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their cysteine-rich (CRD) domain (252, 347). The observation of the present study that Vpr

protein needs to be in close proxirnity with ceils to be efficiently processed suggests that ccii

surface- or extracellular matrix—associated PCs such as PC5A and PACE4 may be responsible

for Vpr processing. Indeed, the study found that PCSA and PACE4 expression can efficiently

process extracellular Vpr in different celi unes.

Early study showed that Vpr localizes at the plasma membrane and at the surface of

intracellular vacuoles during HIV-1 infection (368), suggesting that Vpr could possibly localize

at the plasma membrane during HIV-l infection. Cieaved Vpr is associated with the celi

membrane as confirmed by trypsin digestion experiments. Moreover, transient over-expression

of PC5A and PACE4 in the provirus transfected 293T, Hela, and Cos-1 ceils dramatically

increased Vpr processing and consequently cell-associated cleaved Vpr (see Chapter 2). It is

interesting to note that extracellular Tat associated with heparin sulfate proteoglycans in the

extracellular matrix is protected from protease degradation (52) but also as a step prior to its

internalization into ceil (350). Ccli surface-associated Tat can also modulate HIV-1 infection and

spreading by a specific interaction with the gp 120 viral envelope protein (218). Interestingly, the

data from our study also suggests that extraceilular Vpr is also associated with the ceil surface

heparin sulfate proteoglycans. further experiments need to be performed to deterrnine the role of

Vpr and heparin sulfate proteoglycans interaction during HIV- 1 infection. It wiÏl be interesting

to identii, the viral or cellular factor(s) and the structurai motifs that mediate the association of

cieaved Vpr with the celi membrane, and to determine how this association relates to the

function ofVpr during HIV-1 infection, primarily in term of the transduction capacity ofVpr.

Extraceliular transducing Vpr can be firnctional similarly to the intraceilular expressed

Vpr. Addition of the recombinant protein enhances HIV-l repiication in leukemia T celis,

PBMCs, or latently-infected ceils (197) and is sufficient to rescue the replication of Vpr

defective virus in macrophages (325). Such an effect may be related to the abilities of synthetic

Vpr to alter the production of pro-inflammatory cytokines and 3-chemokines, at Ïeast in part by
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inhibiting the NF-icB pathway (17, 241, 285). Extracellular Vpr stili causes G2 ceil-cycle arrest

(325) and apoptosis (188, 270). Hence, release of the biologically-active protein may be crucial

for the progression of the disease. Since full-length and C-terminal Vpr peptides cause

membrane permeabilization and apoptosis of a wide range of ceils, soluble Vpr may contribute

to the killing of bystander ceils which is observed in HIV-infected tissues (reviewed in (18)).

Protein transduction relies on the presence of an arginine-ricli transduction domain (PTD)

(325). However, the Vpr C-terminal domain R85QRRAR90 that resembies the PTD present in

other transducing proteins eventually becomes R85Q86 afier being processed by extracellular

convertase and carboxypeptidase. Therefore, it is unlikely that cleaved Vpr is stiil able to

transduce the ccli membrane through its PTD domain. The data of the present study indicate that

truncated Vpr (1-$6) was defective in causing G2 celi cycle anest and had strongly attenuated

capabilities to induce apoptosis, suggesting that Vpr is inactivated by PCs. The mutant Vpr (1-$4)

was reported to be non-functional for G2 arrest in transfected ccli ($1). However, the possibility

cannot be mled out that extracellular Vpr (1-$6) may behave differently compared to

intracellularly expressed Vpr (1-$6). The processed form of Vpr (l-86) may 5e active and has

other unknown functions that are important for HIV- 1 infection in vivo. Although the mai ority of

extracellular Vpr was cleaved in in vitro culture systems like 293T ceils, a certain proportion of

full-length Vpr was stili present even when the dynamic equilibrium of Vpr processing was

reached. Therefore, this remaining amount of full-length Vpr could stiil be biologically active.

The resuits of the present study showed that trypsin treatment removed the ccli

associated cieaved Vpr in the provirus transfected 293T ccli, indicating that cleaved Vpr was

located outside of the plasma membrane in HIV-producing cells, no matter if it was 3HA-tagged

Vpr or native Vpr (Fig2.1A and IC). Interestingly, exogenously added recombinant Vpr could

5e processed by the celis, but the Vpr cleaved form was flot associated with the ceils, as we

found in HIV-l-producing celis (data not shown). The cell-associated cleaved Vpr was only

observed in HIV-producing celis, suggesting that viral factor(s) or cellular factors regulated by
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HIV-l infection may contribute to the association of cleaved Vpr with ceil surface. Membrane

associated Vpr functions may resemble membrane-associated HIV-1 tat. Extracellular Tat has

been shown to be associated to Env at the cell surface, thus promoting HIV-1 infection and ceil

to ccli transmission (21$), increasing celi stress and causing apoptosis by forming celi to celi

synapsis (266). HIV-1 transmission occurs predominantly in lymphoid tissue where ceil-to-ceil

contact is more essential. It will be interesting to investigate if cell surface associated cleaved

Vpr plays a role in promoting HI’!- 1 replication. No PC5 and PACE4 mRNA could be detected

in primary PBL and macrophages by northem blotting analysis, but they were abundant in

lymphoid tissue such as thymus, lymph node, and spleen ceils (140). PC5 expression level only

has 20 % that of fiirin in activated T ceils, and PACE4 has a much lower expression than PC5 in

these ceils (74). It will be interesting to investigate the presence of PC5A and PACE4 and their

influence on Vpr fiinction during HIV-1 infection. Given that cleaved Vpr is also associated

outside virion, it would be interesting to test its effect on virion infectivity.

The PC processing motif in the Vpr C-terminal is conserved among different HIV- 1 clades,

including SIVcpz. In the HI’!- 1 YU-2 strain, an infectious molecular clone isolated directly from

an AIDS patient’s brain (202), a natural mutation at the Vpr processing position was compensated

by the insertion of another RR site downstream in the C-terminal part, strongly suggesting that

this motif is important for HIV-1 in vivo replication. Although HIV-2 and SIVsm Vpr do not

possess such putative PC processing motifs like HIV-1 Vpr, I found $IVsm Vpr can be partially

cleaved within the ceil by unknown cellular protease, no cleaved SIVsm Vpr products was not

found in the extraceliular medium (data flot shown). It wili be interesting to investigate the Vpr

processing in other primate lentivirus, and analyze if this function is conserved and their function

relevance. Different Vpr proteolytic processing may not be essential for basic viral replication,

but might contribute to different in vivo pathogeneses.

During the establishment of cultured ceils chronically infected with HIV-1 primary

isolates, the Vpr C-terminal region could be selectively deleted or mutated (244, 295),
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suggesting that Vpr C-terminus does flot have selective advantage for in vitro HW- 1 replication.

At present, it is difficuit to evaluate the Vpr processing effect on viral repÏication using T celi

unes; however, it wilI be helpfiil to assess the Vpr processing effect on viral replication by using

the HIV-l primary isolate and primary celis to avoid any possible in vitro adaptation of the HW

Ï virus. On the other hand, Vpr from the HW II1B isolate, which has a frame-shift mutation at

codon 73, reverted to wild-type Vpr both in an accidentally infected laboratory worker and in

experimentally infected chimpanzees (130). These resuits demonstrate the importance ofthe Vpr

C-terminal domain for productive HIV- I replication in vivo. The Vpr C-terminal arginine-rich

region that overlaps the PC cleavage motif is extremely important for its nuclear localization and

G2 anest firnction (406), and thus is less likely to be mutated. In that context, its truncation by

an extracellular convertase could constitute a cellular process leading to the inactivation of

soluble Vpr proteins.

HIV-l can establish viral infection in non-dividing ceils by using a process based on the

active transport of the viral genome into the nucleus of an infected ceIl (44, 200). Considering

that viral DNA is transported into the nuclei within 4-6 h post infection (44), viral proteins

involved in PIC import should originate directly ftom the virion. Ihe other viral proteins RI and

IN as welI as the genomic RNA are condensed into the core (22$). It bas been reported that Vpr,

iN, and phosphorylatd MA are aIl Iocalized within the viral core. Vpr is a major virion

associated protein that is localized within the core when the virus matures (1), suggesting that

Vpr might interact with other viral or cellular factors for proper redistribution. It is known that

Vpr, together with these viral proteins, are actively involved in the nuclear transport of viral

DNA, but the putative interactions that occur between these three karyophilic proteins within the

virion cores and during the PIC nuclear import are yet to be demonstrated. Moreover, the

functional implications of these interactions remain to be determined. Understanding these

processes will provide dues to the role of Vpr during the early stages of HIV- 1 infection.
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The second part of my study is to identify Vpr-interacting proteins within viral particles

during HIV-1 infection. The epitope tagging strategy provided a powerful tool for dissecting Vpr

-interacting proteins, by bypassing the lack of sensitive anti-Vpr antibodies. It has been reported

that the fusion of the HA tag to the N-terminal part of Vpr does flot alter the stability of protein

nor its G2 anest functions and incorporation into nascent virions (81, 93). In confrast, Vpr C-

terminal HA tags were reported to render Vpr non-functional for G2 arrest (81). To facilitate the

analysis of the Vpr-interacting protein in continuous virus replication condition, we constructed

an HA-tagged Vpr isogenic infectious provirus clone. for the first time we presentdata on

isogenic infectious HA-tagged Vpr in the provirus. Although, in that HA-Vpr provirus constmct,

the Vif C-terminal reading frame has an additional 10 amino acids, i.e., CTHTMFQITL, HA

tagging has only a minor impact on the virus replication in the dividing T celi line (see Chapter

3).

Mass spectrometry analysis of immunopurified Vpr-associated complexes pointed out

that Vpr present in the virions was able to interact with the HIV MA protein. Importantly, MA

binding was observed in particles produced from transfected 293T celis, as well as from HIV

infected MT4 celis (see Chapter 3). The resuit of the present study is consistent with the

interaction previously reported by Sato et al., with distinct IP conditions (303) . Since MA

appears to play important roles in the nuclear transport of the proviral DNA in non-dividing celis

as part of the PIC (45), this study further characterized the Vpr/MA interaction.

Although Vpr is able to interact with MA in the absence of incorporated RT and

integrase (see Chapter 3), the interaction efficiency is lower than that of wild type viruses,

suggesting a possible involvement of RT and integrase. Furthermore, given that RT and

integrase are located in the core, these resuits suggest that Vpr-MA interaction is likely to occur

in the core. Mati-ix proteins form the outer sheli of the viral core (127), but it can also be located

inside the viral core due to phosphorylated MA interacting with integrase proteins (118, 119). In
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(Z the same experiment, the present study found that HA-Vpr is able to pull down not only MA but

also the integrase (data flot shown). Given that RT, integrase, and Vpr are Jocated in the virion

core (1, 376), this suggests that the MA that is associated with Vpr also could be located in the

core. The RT and integrase proteins might contribute to the stability of this interaction. Thus, it

is possible that Vpr interacts with MA within the coTe; however, the possibility cannot be ruled

out that Vpr might interact with MA outside the viral core. Further experiments using a purified

virion core will be necessaiy to analyze this interaction.

Vpr binds DNA and RI1A (72). The Vpr C-terminal basic amino acids rich region was

found to be responsible for the interaction with DNA (72, 399). Vpr interacts with NCp7 in in

vitro binding assay (297). NCp7 is involved in genomic RNA encapsidation during the budding

process, suggesting a possible interaction of Vpr with nucleic acids, either directly or via the

NCp7 intermediate. However, a compÏex that consists of HIV- Ï Vpr and NCp7 has flot yet been

identified in FIIV-l-infected cells (160). MA has also the ability to bind RNA (257, 276). It was

previously shown that Gag assembly relies on the binding of RNA by MA or NC sequences to

condense, organize, and stabilize the HIV-l Gag-Gag interactions that form the virion (300).

The results of the present study indicate that the recombinant Vpr could stili interact in vitro

with GST-MA even in the presence of DNase and RNase, which strongly suggests that the

virion-associated Vpr-MA interaction is not mediated by DNA or RNA (data flot shown).

Together with the resuits obtained from the in vitro GST pufl-down experiment (see

Chapter 3), this data strongly suggest that the Vpr and MA interaction is likely to be a direct

physical interaction. Given that bacterially produced MA were flot phosphoiylated, this in vitro

data suggest that Vpr may interact with MA without phosphorylation.

Matrix is the N-terminally myristoylated cleavage product of the Gag polyprotein

precursor. This cleavage product is generated by the viral protease foïlowing the maturation of

the precursor (360). As an essential viral structural protein, MA is involved in the HIV-1

assembly by targeting the poly gag precursor to the plasma membrane. MA also plays an
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assembly by targeting the poiy gag precursor to the plasma membrane. MA also plays an

important role in the incorporation of the envelope protein into the virion (87) and affects the

early steps ofthe viral life cycle that immediately follow viral entry (43). Phosphorylated MA is

present in the viral core (118, 119) and becomes a component ofthe PIC during the early stages

of viral infection (45, 145, 228). Moreover, Vpr and MA traffick together within the ceil after

viral entry (224). Ail these observations suggest that the Vpr-MA interaction might have a

biological role under physiological conditions. Interaction between these two proteins may have

a synergic effect to facilitate HIV-1 PIC nuclear import, which is critical for HIV-1 to establish

the infection ofnon-dividing ceils.

We further demonstrated that MA fifth alpha helix (Œ-H5) amino acids 97 to 107

containing the minimal domain required for Vpr interaction. This resuit is in consistent with

previous report that MA C-terminal region is responsible for binding with Vpr (303) Several

point mutations within the Œ-H5 did not decrease the Vpr and MA complex formation, as

determined by IP on the virus lysates. MA LIO1A mutant dramatically increased the affinity

with Vpr, ahhough it lias less Vpr incorporated and virus produced. If Vpr has increased affinity

with MA L1O1A in the viral particles, it should have same affinity with gag intermediate such as

p41 and Pr55gag inside the celi. But no increased affinity of Vpr with gag intermediate in the

celi was found (data not shown), suggesting that the increased Vpr and MA L1O1A affinity is

post viral maturation events. It will 5e interesting to investigate if MA L1OIA increased affinity

with Vpr is due to losing affinity with other viral component such as IN. Other likely exposed

amino acids in MA ct-H5 helix such as E99, D102 and E105 shouid be considered.

Given that bacterially produced MA is flot phosphorylated, the in vitro data of the

present study suggest that Vpr may interact with the matrix proteins present in the virions,

regardless of their phosphorylation status. It is possible that Vpr interacts with MA only after

both proteins have been targeted independently to the core regardless of their phosphorylation
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(E status. On the other hand, the possibility cannot be ruled out that Vpr might be recruited by the

matrix protein near the virus membrane.

So far, the ability of Vpr to bind to MA in immature particles, or outside the cores, has

flot been evaluated. Analysis of the core composition of viruses expressing truncated MA and

Vpr mutants defective for the binding will be of great interest. $uch an analysis will help to

understand where the interaction takes place and its impact on the recruitment of the diverse

components of the preintegration complex, perhaps leading to some comprehension of the fate

of PIC. We tried to analyze Vpr (1-86) virus replication capacity; Vpr (1-86) has decrease

affinity with MA protein as shown in chapter 3 Fig.7. Unfortunately, the introduction of a

premature TGA stop afier Vpr codon 86 appeared to be detrimental for HIV replication, thus

preventing the analysis of the role of this interaction in HIV-l infection (data flot shown). The

reason could be that Vpr (1-$6) stop mutation itself locates close to a RNA spiicing acceptor site

in HIV-1 genomic RNA, it may change the viral RNA structure disturb viral spiicing.

Alternative Vpr truncation mutant or way introducing stop code should be considered.

Deletion of Vpr C-terminal region decreased matrix binding to 50-75% of wlld type

levels. This domain shows no evident 3-D structure but contains several arginine residues. Thus,

it is tempting to speculate that an electrostatic interaction exists between the negatively-charged

amino acids of MA Œ-H5 and the basic C-terminal tail of Vpr. Deletion of the 79-96 had a weak

impact compared to the deletion of 87-96 in viral particles, suggesting that the phosphorylation

site $79 plays a minor role, if any; however, the phosphorylation sites (S79, $94, $96) cannot be

mled out as a group that can facilitate the interaction in vivo. Finally, the larger C-terminal

deletion 63-96 resulted in almost complete loss of MA binding as shown in in vitro binding

assay. The large deletion Vpr (1-63) and mutations in this LR domain may alter the 3-D

structure of the protein causing its instability, as suggested by the high instability of Vpr (1-63)

and mutants in this region in vivo (data not shown). The domain encompassing the C-terminal

residues of Vpr was shown to be involved in the binding of the nucleocapsid protein NCp7 and
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nucleic acid in vitro (59, 73, 176). The Vpr C-terminal arginine-rich region is extremely

important for its nuclear localization and G2 arrest fiinction, and so mutation in this region will

cause protein instability (406). Vpr C-terminal arginine mutation such as R85A stili has G2

arrest (81) and can be tolerated by HIV-1. It is interesting to investigate if Vpr R85Q or

RR87!$8 mutations decrease Vpr and MA interaction and its effect on 111V-1 macrophages

infection.

It is important to investigate how host and viral factors interact to establish HIV-1

infection in human ceils. Vpr has been shown to contribute to HIV- 1 infection in human celis

when it is present as an extracellular species as well as a virion-associated species. Here, we

identified a cellular protease that regulates extracellular Vpr activity and characterized Vpr

interacting-proteins within virion particles. The present study might contribute to a better

understanding of Vpr early functions during HIV- 1 viraI replication and might provide new

targets for therapeutic intervention.
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C
CHAPTER 5: CONCLUSIONS

Works presented in this thesis have focused on the function and mechanism of one ofHIV

1 the accessory proteins, Vpr, in the HW-l replication cycle. The following novel findings have

been demonstrated and are listed according to chapters.

Chapter 2: To investigate the mechanism ofHIV-l Vpr release, the resuits ofthe present study

first indicate that soluble Vpr is released from HIV-1-producing ceils, and Vpr release is

independent of its virion incorporation. The study found that Vpr predominantly cleaved at its C-

terminus extracellularly during HIV-l infection shortly afier its release; and some ofthe cleaved

Vpr products are associated with the extemal ceil membrane through the binding with the

extemal celi surface molecule heparin suiphate proteoglycan. Mutagenesis and mass

spectrometry analyses further showed that Vpr is cleaved at R85QRR88, a proprotein convertase

processing motif. This is proven by the fact that the proprotein convertase (PCs) peptide

inhibitor dec-RVKR-cmk and serpins (ul-PDX and Spn4A) specifically inhibited extracellular

Vpr processing. Moreover, resuits demonstrated that the transient expression of proprotein

convertase PC5A and PACE4 dramatically increased extracellular Vpr processing. Indeed, the

provided evidence suggesting that Vpr is processed in the extracellular medium through PCs that

are cell-surface associated. Finally, the truncated Vpr protein mimicking the fiuly processed

product was defective for the induction of celi cycle arrest and apoptosis. The Vpr C-terminal

arginine-rich region that overlaps the PC cleavage motif is extremely important for its nuclear

localization and G2 arrest firnction, and thus is less likely to be mutated. In that context, its

tmncation by an extracellular convertase could constitute a cellular process leading to the
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inactivation of soluble Vpr proteins. 11e smdy concludes that PC5A and PACE4 and related

PCs are the essential components of the cellular machineiy that controls the level of the

functionally active extracellular Vpr during HIV-1 infection.

Chapter 3; To investigate the Vpr-interacting protein within HIV-1 virion particles and

the relevance of their fi.mction, we first constructed an infectious molecular clone of HIV-l

expressing HA tagged Vpr. The analysis of anti-HA co-immunoprecipitated protein complexes

from isolated purified virions by proteomics or western blots revealed that Vpr could form a

complex with the matrix protein (MA) within viral particles produced from various human celi

unes. Furthermore, the MA-Vpr interaction was shown to occur independently of the presence of

RT and IN, and could be detected by in vitro GST pull down experiments using recombinant (r)

Vpr and purified G$T-MA proteins. These resuits indicate that the Vpr-MA association involves

a direct physical interaction. The respective interacting domains were mapped by in vitro

binding assays. The study pointed out the implication of the fifih alpha lieux of MA (residues

97-108) and the arginine-rich C-terminal domain of Vpr (residues $6-96) in the Vpr-MA

interaction. Since Ypr and MA are karyophilic proteins, and both are components of the pre

integration complex (PIC), their interaction might have a synergic effect in the nuclear targeting

of PIC and could contribute to the efficiency of viral infection during the early stages of HIV- 1

infection.

During my thesis study I also participated in another project whose resuits are not

included in my thesis. The first project is: MHC-II molecules enhance HIV-1 assembly and

budding to late endosomal/Multivesicular bodies compartments. The resuit is published in

Journal of Virology as shown in APPENDIX I: Publication I.
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I also cooperated with Dr. Andrew Mouand on the role of hnRNP A2 response elements

in genomic RNA, Gag, and Vpr localization. The resuit has been published in J Biol Chem as

shown in APPENDIX I. Publication II.

149



o
REFERENCES:

1. Accola, M. A., A. Ohagen, and H. G. Gottlinger. 2000. Isolation of human

immunodeficiency virus type 1 cores: retention of Vpr in the absence of p6(gag). J Virol

74:6198-202.

2. Adachi, Y., and M. Yanagida. 1989. Higher order chromosome structure is affected by

cold-sensitive mutations in a Schizosaccharomyces pombe gene crml+ which encodes a

I 15-kD protein preferentially localized in the nucleus and its periphery. J Ceil Biol

108:1195-207.

3. Agostini, I., J. M. Navarro, F. Rey, M. Bouhamdan, B. Spire, R. Vigne, and J. Sire.

1996. The human immunodeficiency virus type 1 Vpr transactivator: cooperation with

promoter-bound activator domains and binding to TFIIB. J Mol Biol 261:599-606.

4. Agostini, I., S. Popov, T. Hao, J. H. Li, L. Dubrovsky, O. Chaika, N. Chaika, R.

Lewis, and M. Bukrinsky. 2002. Phosphoiylation of Vpr regulates HIV type 1 nuclear

import and macrophage infection. AID$ Res Hum Retroviruses 18:283-8.

5. Ahmad, N., and S. Venkatesan. 1988. Nef protein of HIV-1 is a transcriptional

repressor ofHIV-1 LTR. Science 241:1481-5.

6. Albini, A., R. Benelli, D. Ginnciuglio, T. Cal, G. Mariani, S. Ferrini, and D. M.

Noonan. 1998. Identification of a novel domain of HIV tat involved in monocyte

chemotaxis. J Biol Chem 273:15895-900.

7. Atimonti, J. B., T. B. Bail, and K. R. Fowke. 2003. Mechanisms of CD4+ T

lymphocyte ceil death in human immunodeficiency virus infection and AIDS. J Gen

Virol 84:1649-61.

8. Amendola, A., M. L. Gougeon, F. Poccia, A. Bondurand, L. fesus, and M. Piacentini.

1996. Induction of “tissue” transglutaminase in HIV pathogenesis: evidence for high rate

150



Q
of apoptosis of CD4+ T lymphocytes and accessory celis in lymphoid tissues. Proc Nati

Acad Sci US A 93:11057-62.

9. Andersen, J. L., and V. Ptanelles. 2005. The role ofVpr in HPV-1 pathogenesis. Curr

HW Res 3:43-5 1.

10. Anderson, E. D., L. Thomas, J. S. llayfflck, and G. Thomas. 1993. Inhibition ofHIV

1 gpl6O-dependent membrane fusion by a furin-directed alpha 1-antitiypsin variant. J

Biol Chem 268:24887-9 1.

11. Anderson, E. D., J. K. VanSlyke, C. D. Thulln, F. Jean, and G. Thomas. 1997.

Activation of the fiirin endoprotease is a multiple-step process: requirements for

acidification and internai propeptide cleavage. Embo J 16:1508-18.

12. Anderson, R. W., M. S. Ascher, and H. W. Sheppard. 1998. Direct HW cytopathicity

cannot account for CD4 decline in AIDS in the presence of homeostasis: a worst-case

dynamic analysis. J Acquir Immune Defic Syndr Hum Retrovirol 17:245-52.

13. Antoni, B. A., P. Sabbatini, A. B. Rabson, and E. White. 1995. Inhibition ofapoptosis

in human immunodeficiency vims-infected celis enhances virus production and facilitates

persistent infection. J Virol 69:2384-92.

14. Arrigo, S. J., and I. S. Chen. 1991. Rev is necessary for translation but not cytoplasmic

accumulation ofHIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dey 5:808-19.

15. Arthur, L. O., J. W. Bess, Jr., R. C. Sowder, 2nd, R. E. Benveniste, D. L. Mann, J. C.

Chermann, and L. E. Henderson. 1992. Cellular proteins bound to immunodeficiency

viruses: implications for pathogenesis and vaccines. Science 258:1935-8.

16. Arunagiri, C., I. Macreadie, D. Hewish, and A. Azad. 1997. A C-terminal domain of

HIV-1 accessory protein Vpr is involved in penetration, mitochondrial dysfunction and

apoptosis ofhuman CD4+ lymphocytes. Apoptosis 2:69-76.

17. Ayyavoo, V., A. Mahboubi, S. Mahalingam, R. Ramalingam, S. Kudchodkar, W. V.

Williams, D. R. Green, and D. B. Weiner. 1997. HIV-1 Vpr suppresses immune

151



O
activation and apoptosis through regulation of nuclear factor kappa B. Nat Med 3:1117-

23.

18. Azad, A. A. 2000. Could Nef and Vpr proteins contribute to disease progression by

promoting depletion of bystander celis and prolonged survival of HIV-infected ceils?

Biochem Biophys Res Commun 267:677-85.

19. Babst, M., G. Odorizzi, E. J. Estepa, and S. D. Emr. 2000. Mammalian tumor

susceptibility gene 101 (TSG1O1) and the yeast homologue, Vps23p, both ffinction in late

endosomal trafficking. Traffic 1:248-58.

20. Bachelerie, F., J. Alcami, F. Arenzana-Sefsdedos, and J. L. Virelizier. 1991. HIV

enhancer activity perpetuated by NF-kappa 3 induction on infection of monocytes.

Nature 350:709-12.

21. Batliet, J. W., D. L. Kolson, G. Eiger, F. M. Mm, K. A. McGann, A. Srinïvasan, and

R. Coilman. 1994. Distinct effects in primary macrophages and lymphocytes of the

human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational

analysis ofa primary HIV-1 isolate. Virology 200:623-3 1.

22. Banda, N. K., J. A. Tomczak, E. J. ShpalI, J. Sïpple, R. K. Akkina, K. S. Steimer, L.

Hami, T. J. Curie!, and G. Singer Harrison. 1997. HIV-gpl2O induced ceil death in

hematopoietic progenitor CD34+ celis. Apoptosis 2:61-8.

23. Barre-Sinoussi, F., J. C. Chermanu, F. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest,

C. Dauguet, C. Axier-Blin, F. Vezinet-Brun, C. Rouzioux, W. Rozenhaum, and L.

Montagnîer. 1983. Isolation of a T-lymphotropic retrovinis from a patient at risk for

acquired immune deficiency syndrome (AIDS). Science 220:868-7 1.

24. Bartz, S. R., M. E. Roge], and M. Emerman. 1996. Human immunodeficiency virus

type I ceil cycle control: Vpr is cytostatic and mediates G2 accumulation by a

mechanism which differs from DNA damage checkpoint control. J Virol 70:2324-3 1.

152



25. Basak, A., B. B. loure, C. Lazure, M. Mbikay, M. Chretien, and N. G. Seidah. 1999.

Enzymic characterization in vitro of recombinant proprotein convertase PC4. Biochem J

343 Pt 1:29-37.

26. Benjannet, S., N. Rondeau, R. Day, M. Chretien, and N. G. Seidah. 1991. Pci and

PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs

of basic residues. Proc Nati Acad Sci U S A 88:3564-8.

27. Benjannet, S., D. Savaria, A. Laslop, J. S. Munzer, M. Chretien, M. Marcinkiewicz,

and N. G. Seidah. 1997. Aiphal-antitrypsin Portiand inhibits processing of precursors

mediated by proprotein convertases primarily within the constitutive secretory pathway. J

Biol Chem 272:26210-8.

2$. Benko, Z., D. Liang, E. Agbottah, J. Hou, K. Chïu, M. Yu, S. Innïs, P. Reed, W.

Kabat, R. T. Eider, P. Di Marzio, L. Taricani, L. Ratner, P. G. Young, M.

Bukrinsky, and R. Y. Zhao. 2004. Anti-Vpr activity of a yeast chaperone protein. J

Virol 78:11016-29.

29. Berger, E. A. 1997. HIV entry and tropism: the chemokine receptor connection. Aids 11

Suppi A:S3-16.

30. Bofihl, M., W. Gombert, N. J. Borthwick, A. N. Akbar, J. E. McLaughlin, C. A. Lee,

M. A. Johnson, A. J. Pinching, and G. Janossy. 1995. Presence of CD3+CD8+Bcl-

2(low) lymphocytes undergoing apoptosis and activated macrophages in lympli nodes of

HIV-1+ patients. Am J Pathol 146:1542-55.

31. Borrow, P., H. Lewickï, B. H. Hahn, G. M. Shaw, and M. B. Oldstone. 1994. Virus

specific CD8+ cytotoxic T-lymphocyte activity associated with confrol of viremia in

primary human immunodeficiency virus type 1 infection. J Virol 68:6103-10.

32. Bouhamdan, M., S. Benfchou, f. Rey, J. M. Navarro, I. Agostini, B. Spire, J.

Camonis, G. Slupphaug, R. Vigne, R. Benarous, and J. Sire. 1996. Human

153



o imrnunodeficiency vinas type I Vpr protein binds to the uracil DNA glycosylase DNA

repair enzyme. J Virol 70:697-704.

33. Boullamdan, M., Y. Xue, Y. Baudat, B. Hu, J. Sire, R J. Pomerantz, and L. X.

Duan. 199$. Diversity of HIV-1 Vpr interactions involves usage of the WXXF motif of

host celi proteins. J Biol Chem 273:8009-16.

34. Bour, S., and K. Strebel. 2003. The HIV-1 Vpu protein: a multifunctional enhancer of

viral particle release. Microbes Infect 5:1029-39.

35. Bourbigot, S., H. Beltz, J. Denis, N. Moreilet, B. P. Roques, Y. Mely, and S. Bouaziz.

2005. The C-terminal domain of the HIV- 1 regulatory protein Vpr adopts an antiparallel

dimeric structure in solution via its leucine-zipper-like domain. Biochem J 387:333-41.

36. Bouyac-Bertoia, M., J. D. Dvorin, R. A. Fouchier, Y. Jenkins, B. E. Meyer, L. I. Wu,

M. Emerman, and M. H. Malim. 2001. I-11V-1 infection requires a functional integrase

NES. Mol Celi 7:1025-35.

37. Brasey, A., M. Lopez-Lastra, T. Ohlmann, N. Beerens, B. Berkhout, J. L. Darlix,

and N. Sonenberg. 2003. The leader of human imrnunodeficiency virus type 1 genomic

RNA harbors an internai ribosome entry segment that is active during the G2/M phase of

the celi cycle. J Virol 77:3939-49.

3$. Bresnahan, P. A., R. Leduc, L. Thomas, J. Thorner, H. L. Gibson, A. J. Brake, P. J.

Barr, and G. Thomas. 1990. Human fur gene encodes a yeast KEX2-iike endoprotease

that cleaves pro-beta-NGf in vivo. J Celi Biol 111:2851-9.

39. Briggs, J. A., T. Wllk, R. Welker, H. G. Krausslich, and S. D. Fuller. 2003. Structural

organization of authentic, mature HIV-1 virions and cores. Embo J 22:1707-15.

40. Bruns, K., T. Fossen, V. Wray, P. Henklein, U. Tessmer, and U. Schubert. 2003.

Structural characterization of the HIV-1 Vpr N terminus: evïdence of cis/trans-proline

isomerism. J Bioi Chem 278:43188-201.

154



C 41. Bukrinskaya, A., B. Brichacek, A. Mann, and M. Stevenson. 1998. Establishment ofa

fimctional human immunodeficiency virus type I (HIV- 1) reverse transcription complex

involves the cytoskeleton. J Exp Med 188:2113-25.

42. Bukrinskaya, A. G., A. Ghorpade, N. K. Heinzinger, T. E. Smithgall, R E. Lewis,

and M. Stevenson. 1996. Phosphorylation-dependent human immunodeficiency virus

type I infection and nuclear targeting of viral DNA. Proc Nati Acad Sci U S A 93:367-71.

43. Bukrinsky, M. I., S. Haggerty, M. P. Dempsey, N. Sharova, A. Adzliubel, L. Spitz, P.

Lewis, D. Goldfarb, M. Emerman, and M. Stevenson. 1993. A nuclear localization

signal within HIV-1 matrix protein that govems infection of non-dividing ceils. Nature

365:666-9.

44. Bukrinsky, M. I., N. Sharova, M. P. Dempsey, T. L. Stanwick, A. G. Bnkrinskaya, S.

Haggerty, and M. Stevenson. 1992. Active nuclear import of human immunodeficiency

virus type 1 preintegration complexes. Proc Nati Acad Sci U $ A 89:6580-4.

45. Bukrinsky, M. I., N. Sharova, T. L. McDonald, T. Pushkarskaya, W. G. Tarptey,

and M. Stevenson. 1993. Association of integrase, matrix, and reverse transcriptase

antigens of human immunodeficiency virus type 1 with viral nucleic acids following

acute infection. Proc Nati Acad Sci U S A 90:6125-9.

46. Burnette, B., G. Yu, and R. L. Felsted. 1993. Phosphorylation ofHIV-1 gag proteins by

protein kinase C. J Biol Chem 268:8698-703.

47. Cail, L., B. Wang, M. Mikhait, M. J. Giil, B. Beckthold, M. Salemi, D. A. Jans, S. C.

Piller, and N. K. Saksena. 2005. Evidence for host-driven selection of the HIY type 1

vpr gene in vivo during HIV disease progression in a transfiision-acquired cohort. AID$

Res Hum Retroviruses 2 1:728-33.

48. Campbell, E. M., R. Nunez, and T. J. Hope. 2004. Disruption of the actin cytoskeleton

can complement the ability of Nef to enhance human immunodeficiency virus type 1

infectivity. J Virol 78:5745-5 5.

155



49. Carbonari, M., A. M. Pesce, M. Cibati, A. Modica, L. DelJ’Anna, G. D’Offizi, A.

Angelici, S. Uccini, A. Modesti, and M. Fiorïffl. 1997. Death of bystander ceils by a

novel pathway involving early mitochondrial damage in human immunodeficiency virus

related lymphadenopathy. Blood 90:209-16.

50. CDC. 1984. Acquired immunodeficiency syndrome (AID$),weekly surveillance report

United States’ (1984) AIDS activity. Centers for Disease Control.

51. Chang, F., F. Re, S. Sebastian, S. Sazer, and J. Luban. 2004. HIV-1 Vpr induces

defects in mitosis, cytokinesis, nuclear structure, and centrosomes. Mol Biol Celi

15:1793-801.

52. Chang, H. C., F. Samaniego, B. C. Nair, L. Buonaguro, and B. Ensoli. 1997. HIV-1

Tat protein exits from celis via a leaderless secretory pathway and binds to extracellular

matrix-associated heparan sulfate proteoglycaiis through its basic region. Aids 11:1421-

31.

53. Checroune, F., X. J. Yao, H. G. Gotttinger, D. Bergeron, and E. A. Cohen. 1995.

Incorporation of Vpr into human immunodeficiency virus type 1: role of conserved

regions within the P6 domain ofPr55gag. J Acquir Immune Defic Syndr Hum Retrovirol

10:1-7.

54. Cherepanov, P., G. Maertens, P. Proost, B. Devreese, J. Van Beeumen, Y.

Engelborghs, E. De Clercq, and Z. Debyser. 2003. HIV-1 integrase forms stable

tetramers and associates with LEDGFIp75 protein in human celÏs. J Biol Chem 278:372-

81.

55. Chikova, A. K., L. F. Lideman, S. N. Iordanskii, and R. A. Gibadulin. 1999.

[Inhibition of nuclear import of HIV- I Vpr protein by Gag polyprotein in the process of

virus-like particles formation]. Vopr Virusol 44:26 1-5.

156



o 56. Chowdhury, I. H., X. F. Wang, N. R. Landau, M. L. Robb, V. R Polonis, D. L. Birx,

and J. H. Kim. 2003. HIV-1 Vpr activates celi cycle inhibitor p21!Wafl/Cipl: a

potential mechanism of G2/M ceil cycle anest. Virology 305:371-7.

57. Chui, C., P. K. Cheung, C. J. Brumme, T. Mo, Z. L. Brumme, J. S. Montaner, A. D.

Badley, and P. R. Harrigan. 2006. HIV VprR77Q mutation does not influence clinical

response of individuals initiating highly active antiretroviral therapy. AIDS Res Hum

Retroviruses 22:615-8.

58. Ctapham, P. R., and A. McKnight. 2002. CelI surface receptors, virus entry and

tropism of primate lentiviruses. J Gen Virol 83:1809-29.

59. Clavel, F., D. Guetard, F. Brun-Vezinet, S. Chamaret, M. A. Rey, M. O. Santos

Ferreira, A. G. Laurent, C. Dauguet, C. Katiama, C. Rouzioux, and et aL 1986.

Isolation of a new human retrovirus from West African patients with AIDS. Science

233:343-6.

60. Coeytaux, E., D. Coutaud, E. Le Cam, O. Danos, and A. Kichler. 2003. The cationic

amphipathic aipha-helix of HIV-Ï viral protein R (Vpr) binds to nucleic acids,

permeabilizes membranes, and efficiently transfects ceils. J Biol Chem 278:18110-6.

61. Coffin, J., A. Haase, J. A. Levy, L. Montagnier, S. Oroszlan, N. Teich, H. Temin, K.

Toyoshima, H. Varmus, P. Vogt, and et aI. 1986. Human immunodeficiency viruses.

Science 232:697.

62. Cohen, E. A., G. Dehni, J. G. Sodroski, and W. A. Hasettine. 1990. Human

immunodeficiency virus vpr product is a virion-associated regulatoiy protein. J Virol

64:3097-9.

63. Cohen, E. A., E. F. TerwiLliger, Y. Jalinoos, J. Prouix, J. G. Sodroski, and W. A.

Haseltine. 1990. Identification of HIV-1 vpr product and function. J Acquir Immune

Defic Syndr3:11-8.

157



64. Cohen, E. A., E. F. Terwîlliger, J. G. Sodroski, and W. A. Haseltine. 1988.

Identification ofa protein encoded by the vpu gene ofHIV-1. Nature 334:532-4.

65. Connor, R. I., B. K. Chen, S. Choe, and N. R. Landau. 1995. Vpr is required for

efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes.

Virology 206:935-44.

66. Connor, R. I., K. E. Sheridan, D. Ceradini, S. Choe, and N. R. Landau. 1997. Change

in coreceptor use coreceptor use correlates with disease progression in HIV-1--infected

individuais. J Exp Med 185:621-8.

67. Constam, D. B., M. Calfon, and E. J. Robertson. 1996. SPC4, $PC6, and the novel

protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during

embryogenesis. J Ceil Biol 134:181-91.

68. Conti, L., P. Matarrese, B. Varano, M. C. Gauzzi, A. Sato, W. Malornï, F. Belardelli,

and S. Gessani. 2000. Dual role of the 111V-1 vpr protein in the modulation of the

apoptotic response of T celis. J Immunol 165:3293-300.

69. Conti, L., G. Rainaldi, P. Matarrese, B. Varano, R. Rivabene, S. Columba, A. Sato,

F. Belardelli, W. Malornï, and S. Gessani. 1998. The HIV-1 vpr protein acts as a

negative regulator of apoptosis in a human lymphoblastoid T ccli une: possible

implications for the pathogenesis ofAIDS. J Exp Med 187:403-13.

70. Dalgleish, A. G., P. C. Beverley, P. R. Clapham, D. H. Crawford, M. F. Greaves, and

R. A. Weiss. 1984. The CD4 (T4) antigen is an essential component of the receptor for

the AIDS retrovims. Nature 312:763-7.

71. De Bie, I., M. Marcinkiewicz, D. Malide, C. Lazure, K. Nakayama, M. Bendayan,

and N. G. Seidah. 1996. The isofonns of proprotein convertase PC5 are sorted to

different subcellular compartments. J Cdl Biol 135:1261-75.

158



o 72. de Noronha, C. M., M. P. Sherman, H. W. Lin, M. V. Cavrois, R. D. Moir, R. D.

Goidman, and W. C. Greene. 2001. Dynamic disruptions in nuclear envelope

architecture and integrity induced by HIV-f Vpr. Science 294:1105-8.

73. de Rocquigny, H., A. Caneparo, T. Delaunay, J. Bischerour, J. F. Mouscadet, and B.

P. Roques. 2000. Interactions of the C-terminus of viral protein R with nucleic acids are

modulated by its N-terminus. Eur J Biochem 267:3654-60.

74. de Rocquigny, H., P. Petitjean, V. Tanchou, D. Decimo, L. Drouot, T. Delaunay, J. L.

Darlix, and B. P. Roques. 1997. The zinc fingers of HIV nucleocapsid protein NCp7

direct interactions with the viral regulatory protein Vpr. J Biol Chem 272:30753-9.

75. Decroly, E., S. Benjannet, D. Savarin, and N. G. Seidah. 1997. Comparative flinctional

role of PC7 and furin in the processing of the HW envelope glycoprotein gpl6O. FEBS

Lett 405:68-72.

76. Decroly, E., S. Wouters, C. Di Bello, C. Lazure, J. M. Ruysschaert, and N. G. Seidah.

1996. Identification of the paired basic convertases implicated in HIV gpl6O processing

based on in vitro assays and expression in CD4(+) ceil unes. J Biol Chem 271:30442-50.

77. Demirov, D. G., A. Ono, J. M. Orenstein, and E. O. Freed. 2002. Overexpression of

the N-terminal domain of TSGW1 inhibits HIV-1 budding by blocking late domain

flinction. Proc NatI Acad Sci U S A 99:955-60.

78. Deng, H., R. Liu, W. Ellmeier, S. Choe, D. Unutmaz, M. Burkhart, P. Di Marzio, S.

Marmon, R. E. Sutton, C. M. HiJI, C. B. Davis, S. C. Peiper, T. J. Schah, D. R.

Littman, and N. R. Landau. 1996. Identification of a major co-receptor for primary

isolates of HIV- 1. Nature 381:661-6.

79. Depienne, C., P. Roques, C. Creminon, L. Fritsch, R. Casseron, D. Dormont, C.

Dargemont, and S. Benichou. 2000. CelluÎar distribution and kaiyophilic properties of

matrix, integrase, and Vpr proteins from the human and simian immunodeficiency

vimses. Exp Ceil Res 260:3 87-95.

159



$0. Desrosiers, R. C. 199$. Prospects for live attenuated HIV. Nat Mcd 4:982.

81. Dettenhofer, M., and X. F. Yu. 1999. Highiy purified human immunodeficiency virus

type 1 reveals a virtuai absence of Vif in virions. J Virol 73:1460-7.

82. Di Marzio, P., S. Choe, M. Ebright, R. Knoblauch, and N. R. Landau. 1995.

Mutational analysis of ccli cycle anest, nuclear localization and virion packaging of

human immunodeficiency virus type 1 Vpr. J Virol 69:7909-16.

83. di Marzo Veronese, F., T. D. Copeland, A. L. DeVico, R. Rahman, S. Oroszlan, R. C.

Gallo, and M. G. Sarngadharan. 1986. Characterization of highly immunogenic

p66/p5l as the reverse transcriptase ofHTLV-IIIJLAV. Science 231:1289-9 Ï.

84. Dingwall, C., I. Ernberg, M. J. Gait, S. M. Green, S. lleaphy, J. Karn, A. D. Lowe,

M. Singh, M. A. Skinner, and R. Valerfo. 1989. Human immunodeficiency virus 1 tat

protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc Nati Acad Sci

U S A 86:6925-9.

$5. Dingwall, C., and R. A. Laskey. 1991. Nuclear targeting sequences--a consensus?

Trends Biochem Sci 16:478-8 1.

86. Dittie, A. S., L. Thomas, G. Thomas, and S. A. Tooze. 1997. Interaction of furin in

immature secretrny granules from neuroendocrine ceils with the AP-1 adaptor complex is

modulated by casein kinase II phosphorylation. Embo J 16:4859-70.

$7. Doms, R. W., R. A. Lamb, J. K. Rose, and A. Helenius. 1993. folding and assembly of

viral membrane proteins. Virology 193:545-62.

$8. Dorfman, T., F. Mammano, W. A. Hasettine, and H. G. Gottiinger. 1994. Role ofthe

matrix protein in the virion association of the human immunodeficiency virus type 1

envelope glycoprotein. J Virol 68:1689-96.

$9. Douek, D. C., L. J. Picker, and R. A. Koup. 2003. T cdl dynamics in HIV-1 infection.

Annu Rev Immunol 21:265-3 04.

160



90. Druiliennec, S., A. Caneparo, H. de Rocquigny, and B. P. Roques. 1999. Evidence of

interactions between the nucleocapsid protein NCp7 and the reverse transcriptase of 111V-

1. JBiol Chem274:11283-8.

91. Drummond, J. E., P. Mounts, R. J. Gorelick, J. R. Casas-Finet, W. J. Bosche, L. E.

Henderson, D. J. Waters, and L. O. Arthur. 1997. Wild-type and mutant HW type 1

nucleocapsid proteins increase the proportion of long cDNA transcripts by viral reverse

franscriptase. AID$ Res Hum Retrovinises 13:533-43.

92. Dvorin, J. D., P. Beti, G. G. Maul, M. Yamashfta, M. Emerman, and M. H. Malim.

2002. Reassessment of the roles of integrase and the central DNA flap in human

immunodeficiency virus type I nuclear import. J Virol 76:12087-96.

93. Eari, P. L., S. Koenig, ami B. Moss. 1991. Biological and immunological properties of

human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with

truncations and deletions expressed by recombinant vaccinia viruses. J Virol 65:31-41.

94. Eckstein, D. A., M. P. Sherman, M. L. Penn, P. S. Chïn, C. M. De Noronha, W. C.

Greene, and M. A. Goldsmith. 2001. HIV-1 Vpr enhances viral burden by facilitating

infection of tissue macrophages but not nondividing CD4+ T ceils. J Exp Med 194:1407-

19.

95. Eider, R. T., M. Yu, M. Chen, S. Edelson, and Y. Zhao. 2000. Ceil cycle G2 arrest

induced by HIV-1 Vpr in fission yeast (Schizosaccharomyces pombe) is independent of

celi death and early genes in the DNA damage checkpoint. Virus Res 68:16 1-73.

96. Eider, R. T., M. Yu, M. Chen, X. Zhu, M. Yanagida, and Y. Zhao. 2001. HIV-1 Vpr

induces celi cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a

pathway involving regulatoiy and catalytic subunits of PP2A and acting on both Weel

and Cdc25. Virology 287:359-70.

97. Engelman, A. 1999. In vivo analysis of retroviral integrase structure and function. Adv

Virus Res 52:411-26.

161



O
98. Farnet, C. M., and F. D. Busliman. 1997. HW-1 cDNA integration: requirement of

HMG 1(Y) protein for fimction ofpreintegration complexes in vitro. CeYl 88:483-92.

99. Farnet, C. M., and W. A. Haseltine. 1991. Determination of viral proteins present in the

human imrnunodeficiency virus type 1 preintegration complex. J Virol 65:19 10-5.

100. Fassatï, A., and S. P. Goff. 2001. Characterization of intracellular reverse transcription

complexes ofhuman immunodeficiency virus type 1. J Virol 75:3626-35.

101. Fassati, A., D. GorHch, I. Harrison, L. Zaytseva, and J. M. Mingot. 2003. Nuclear

import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7.

Embo J 22:3675-85.

102. Fauci, A. S. 1988. The human immunodeficiency virus: infectivity and mechanisms of

pathogenesis. Science 239:617-22.

103. feinberg, M. B., R. F. Jarrett, A. Aldovini, R. C. Gallo, and F. Wong-Staal. 1986.

HTLV-III expression and production involve complex regulation at the levels of spiicing

and translation of viral RNA. Ceil 46:807-17.

104. Finket, T. H., G. Tudor-Wllliams, N. K. Banda, M. F. Cotton, T. Curiel, C. Monks,

T. W. Baba, R. M. Ruprecht, and A. Kupfer. 1995. Apoptosis occurs predominantly in

bystander ceils and flot in productively infected celis of HIV- and SIV-infected lymph

nodes. Nat Med 1:129-34.

105. Fischer, A., C. Lejczak, C. Lambert, F. Roman, J. Servais, E. Karita, S. Allen, J. C.

Schmït, and V. Arendt. 2004. Is the Vpr R77Q mutation associated with long-term non-

progression of HIV infection? Aids 18:1346-7.

106. Fletcher, T. M., 3rd, B. Brichacek, N. Sharova, M. A. Newman, G. Stivahtis, P. M.

Sharp, M. Emerman, B. H. Hahn, and M. Stevenson. 1996. Nuclear import and celi

cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in

HIV-2/SIV(SM). Embo J 15:6155-65.

162



Q
107. Forget, J., X. J. Yao, J. Mercier, and E. A. Cohen. 199$. Human immunodeficiency

virus type 1 vpr protein transactivation ffinction: mechanism and identification of

domains involved. J Mol Biol 284:915-23.

10$. Fouchier, R. A., B. E. Meyer, J. H. Simon, U. fischer, A. V. Albrïght, F. Gonzalez

Scarano, and M. H. Malim. 199$. Interaction of the human immunodeficiency virus

type 1 Vpr protein with the nuclear pore comp}ex. J Virol 72:6004-13.

109. Fouchier, R. A., B. E. Meyer, J. H. Simon, U. Fischer, and M. H. Mallm. 1997. HIV

Ï infection of non-dividing ceils: evidence that the amino-termina1 basic region of the

viral mati-ix protein is important for Gag processing but not for post-entry nuclear import.

Embo J 16:4531-9.

110. Franke, E. K., H. E. Yuan, and J. Luban. 1994. Specific incorporation of cyciophiiin

A into HIV-1 virions. Nature 372:359-62.

111. Frankel, A. D., and C. O. Pabo. 1988. CeIlular uptake of the tat protein from human

immunodeficiency virus. Ccli 55:1189-93.

112. Franket, A. D., and J. A. Young. 1998. HIV-1: fifleen proteins and an RNA. Annu Rev

Biochem 67:1-25.

113. Freed, E. O., G. Englund, F. Maldarelli, and M. A. Martin. 1997. Phosphorylation of

residue 131 of HIV-1 matrix is not required for macrophage infection. Ccli 88:171-3;

discussion 173-4.

114. Freed, E. O., G. Engtund, and M. A. Martin. 1995. Role of flic basic domain ofhuman

immunodeficiency virus type 1 matrix in macrophage infection. J Virol 69:3949-54.

115. Fried, H., and U. Kutay. 2003. Nucleocytoplasmic transport: taking an inventory. Ccli

Mol Life Sci 60:1659-88.

116. Fukuda, M., S. Asano, T. Nakamura, M. Adachi, M. Yoshida, M. Yanagida, and E.

Nishida. 1997. CRM1 is responsible for intracellular transport mediated by the nuclear

export signai. Nature 390:308-11.

163



117. Galtay, P., T. Hope, D. Chin, and D. Trono. 1997. HIV-1 infection ofnondividing ceils

through the recognition of integrase by the importinfkaryopherin pathway. Proc Nati

Acad $ci U S A 94:9825-30.

118. Gatlay, P., V. Stitt, C. Mundy, M. Oettinger, and D. Trono. 1996. Role of the

karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol

70:1027-32.

119. Gallay, P., S. Swingler, C. Aiken, and D. Trono. 1995. HIV-1 infection ofnondividing

ceils: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator.

Ceil 80:379-88.

120. GaiJay, P., S. Swingler, J. Song, F. Bushman, and D. Trono. 1995. HIV nuclear import

is govemed by the phosphotyrosine-mediated binding of matrix to the core domain of

integrase. CelI 83:569-76.

121. Gallo, R. C., S. Z. Salahuddin, M. Popovic, G. M. Shearer, M. Kaplan, B. F. Haynes,

T. J. Paiker, R. Redfield, J. Oleske, B. Safai, and et aI. 1984. Frequent detection and

isolation of cytopathic retroviruses (HTLV-III) from patients with MDS and at risk for

AIDS. Science 224:500-3.

122. Gallo, S. A., C. M. Finnegan, M. Viard, Y. Raviv, A. Dimitrov, S. S. Rawat, A. Puri,

S. Dureil, and R. Blumenthal. 2003. The HIV Env-mediated fusion reaction. Biochim

Biophys Acta 1614:36-50.

123. Gao, F., E. Balles, D. L. Robertson, Y. Chen, C. M. Rodenburg, S. F. Michaet, L. B.

Cummins, L. O. Arthur, M. Peeters, G. M. Shaw, P. M. Sharp, and B. H. Hahn.

1999. Origin ofHIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397:436-41.

124. Gao, F., L. Yue, A. T. White, P. G. Pappas, J. Barchue, A. P. Hanson, B. M. Greene,

P. M. Sharp, G. M. Shaw, and B. H. Hahn. 1992. Human infection by genetically

diverse SIVSM-related HIV-2 in west Africa. Nature 358:495-9.

164



125. Garcïa, J. V., and A. D. Muter. 1991. Serine phosphorylation-independent

downregulation of ceil-surface CD4 by nef. Nature 350:508-11.

126. Garrus, J. E., U. K. von Schwedler, O. W. Pornillos, S. G. Morham, K. H. Zavitz, H.

E. Wang, D. A. Wettstein, K. M. Stray, M. Cote, R. L. Rich, D. G. Myszka, and W. I.

Sundquist. 2001. TsglOl and the vacuolar protein sorting pathway are essential for HIV

1 budding. Celi 107:55-65.

127. Gartner, S., P. Markovits, D. M. Markovitz, R. f. Betts, and M. Popovic. 1986. Virus

isolation from and identification of HTLV-IIIILAV-producing ceils in brain tissue from a

patient with AIDS. Jama 256:2365-7 1.

128. Gelderblom, H. R., E. H. Hausmann, M. Ozel, G. Pauli, and M. A. Koch. 1987. Fine

structure of human immunodeficiency virus (HIV) and immunolocalization of structural

proteins. Virology 156:171-6.

129. Gibbs, J. S., A. A. Lackner, S. M. Lang, M. A. Simon, P. K. Sehgal, M. D. Daniel,

and R. C. Desrosiers. 1995. Progression to AIDS in the absence ofa gene for vpr or vpx.

J Virol 69:2378-83.

130. Goh, W. C., N. Manel, and M. Emerman. 2004. The human immunodeficiency virus

Vpr protein binds Cdc25C: implications for G2 arrest. Virology 318:337-49.

131. Goli, W. C., M. E. Rogel, C. M. Kinsey, S. f. Micbael, P. N. Fultz, M. A. Nowak, B.

H. Hahn, and M. Emerman. 199$. HIV-1 Vpr increases viral expression by

manipulation of the celi cycle: a mechanism for selection of Vpr in vivo. Nat Med 4:65-

71.

132. Gordon, V. M., A. Rehemtulla, and S. H. Leppla. 1997. A role for PACE4 in the

proteolytic activation of anthrax toxin protective antigen. Infect Immun 65:3370-5.

133. Gottlieb, M. S., R. Schroff, H. M. Schanker, J. D. Weisman, P. T. fan, R A. Wotf,

and A. Saxon. 1981. Pneumocystis carinii pneumonia and mucosal candidiasis in

165



previousiy healthy homosexual men: evidence of a new acquired cellular

immunodeficiency. N Engi J Med 305:1425-31.

134. Gougeon, M. L. 2003. Apoptosis as an HIV strategy to escape immune attack. Nat Rev

Immunol 3:392-404.

135. Guo, J., L. E. Henderson, J. Bess, B. Kane, and J. G. Levin. 1997. Human

immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer

and specific viral DNA synthesis by inhibiting TAR-dependent seif-priming from minus

strand strong-stop DNA. J Virol 71:5178-88.

136. Haffar, O. K., S. Popov, L. Dubrovsky, I. Agostini, H. Tang, T. Pushkarsky, S. G.

Nadier, and M. Bukrinsky. 2000. Two nuclear iocalization signais in the HIV-1 matrix

protein regulate nuclear import of the HIV-1 pre-integration compiex. J Mol Biol

299:359-68.

137. Haffar, O. K., M. D. Smithgatl, S. Popov, P. Ulrich, A. G. Bruce, S. G. Nadler, A.

Cerami, and M. I. Bukrinsky. 1998. CNI-H0294, a nuclear importation inhibitor ofthe

human immunodeficiency virus type 1 genome, abrogates virus replication in infected

activated peripheral blood mononuclear celis. Antimicrob Agents Chemother 42:1133-8.

138. Hahn, B. H., G. M. Shaw, S. K. Arya, M. Popovic, R. C. Gallo, and F. Wong-Staal.

1984. Moiecular cioning and characterization of the HTLV-III virus associated with

AIDS. Nature 312:166-9.

139. Hahn, B. H., G. M. Shaw, K. M. De Cock, and P. M. Sharp. 2000. AIDS as a zoonosis:

scientific and public health implications. Science 287:607-14.

140. Hallenberger, S., V. Bosch, H. Angliker, E. Shaw, H. D. Klenk, and W. Garten. 1992.

Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gpl6O. Nature

360:358-61.

166



141. Hallenberger, S., M. Moulard, M. Sordel, H. D. Klenk, and W. Garten. 1997. The

role of eukaryotic subtilisin-like endoproteases for the activation of human

immunodeficiency virus glycoproteins in natural host ceils. J Virol 71:1036-45.

142. Harris, D., R. Lee, II. S. Misra, P. K. Pandey, and V. N. Pandey. 1998. The pSI

subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in

loading the p66 subunit on the template primer. Biochemistry 37:5903-8.

143. Harris, R. S., K. N. Bishop, A. M. Sheehy, H. M. Craig, S. K. Petersen-Mahrt, I. N.

Watt, M. S. Neuberger, and M. H. MaJim. 2003. DNA deamination mediates innate

immunity to retroviral infection. CeIl 113:803-9.

144. 11e, J., S. Choe, R. Walker, P. Di Marzio, D. O. Morgan, and N. R. Landau. 1995.

Human immunodeficiency virus type I viral protein R (Vpr) anests ceils in the G2 phase

ofthe ceil cycle by inhibiting p34cdc2 activity. J Virol 69:6705-11.

145. Heald, R., M. McLoughlïn, and F. McKeon. 1993. Human weel maintains mitotic

timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Celi

74:463-74.

146. Heïnzinger, N. K., M. I. Bukinsky, S. A. Haggerty, A. M. Ragland, V. Kewairamani,

M. A. Lee, H. E. Gendelman, L. Ratner, M. Stevenson, and M. Emerman. 1994. The

Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of

viral nucleic acids in nondividing host celis. Proc Nati Acad Sci U $ A 91:7311-5.

147. Henderson, L. E., M. A. Bowers, R. C. Sowder, 2nd, S. A. Serabyn, D. G. Johnson, J.

W. Bess, Jr., L. O. Arthur, D. K. Bryant, and C. Fensetau. 1992. Gag proteins ofthe

highly replicative MN strain of human immunodeficiency virus type 1: posttranslational

modifications, proteolytic processings, and complete amino acid sequences. J Virol

66:1856-65.

148. Henklein, P., K. Bruns, M. P. Sherman, U. Tessmer, K. Licha, J. Kopp, C. M. de

Noronha, W. C. Greene, V. Wray, and U. Schubert. 2000. Functional and structural

167



characterization of synthetic HIV-1 Vpr that transduces ceils, localizes to the nucleus,

and induces G2 ceil cycle arrest. J Biol Chem 275:32016-26.

149. Hill, C. P., D. Worthylake, D. P. Bancroft, A. M. Christensen, and W. I. Sundquist.

1996. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix

protein: implications for membrane association and assembly. Proc Nati Acad Sci U $ A

93:3099-104.

150. Ho, D. D., A. U. Neumann, A. S. Pere]son, W. Chen, J. M. Leonard, and M.

Markowitz. 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-l

infection. Nature 373:123-6.

151. Hoch, J., S. M. Lang, M. Weeger, C. Stahl-Hennig, C. Coulibaly, U. Dittmer, G.

Hunsmann, D. Fuchs, J. Mufler, S. Sopper, and et al. 1995. vpr deletion mutant of

simian immunodeficiency virus induces MD$ in rhesus monkeys. J Virol 69:4807-13.

152. Hogan, T. H., M. R. Nonnemacher, F. C. Krebs, A. Henderson, and B. Wigdahl.

2003. HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions

is sequence-specific. Biomed Pharmacother 57:41-8.

153. Hrïmech, M., X. J. Yao, P. E. Branton, and E. A. Cohen. 2000. Human

immunodeficiency virus type 1 Vpr-mediated G(2) ceil cycle arrest: Vpr interferes with

ceil cycle signaling cascades by interacting with the B subunit of serine/threonine protein

phosphatase 2A. Embo J 19:3956-67.

154. Hsu, K., J. Seharaseyon, P. Dong, S. Bour, and E. Marban. 2004. Mutual fiinctional

destruction ofHIV-1 Vpu and host TASK-1 channel. Mol Ceil 14:259-67.

155. Huang, M. B., O. Weeks, L. J. Zhao, M. Saltarellï, and V. C. Bond. 2000. Effects of

extracellular human immunodeficiency virus type 1 vpr protein in primary rat cortical

ceil cultures. J Neurovirol 6:202-20.

168



156. Hymes, K. B., T. Cheung, J. B. Greene, N. S. Prose, A. Marcus, H. Ballard, D. C.

Wffliam, and L. J. Laubenstein. 1981. Kaposi?s sarcoma in homosexual men-a report of

eight cases. Lancet 2:598-600.

157. Igarashi, T., T. Kuwata, II. Yamamoto, H. Moriyama, M. Ui, Y. Miyazaki, and M.

Hayami. 1998. Infectivity and immunogenicity of SWmac/HIV-l chimeric vimses

(SHIVs) with deletions in two or three genes (vpr, nef and vpx). Microbiol Immunol

42:71-4.

158. Iordanskîy, S., Y. Zhao, L. Dubrovsky, T. Iordanskaya, M. Chen, D. Liang, ami M.

Bukrinsky. 2004. Heat shock protein 70 protects celis from ceil cycle arrest and

apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol

78:9697-704.

159. Jacks, T., M. D. Power, F. R. Masiarz, P. A. Luciw, P. J. Barr, and H. E. Varmus.

1988. Characterization of ribosomal frameshifling in HIV-1 gag-pol expression. Nature

331:280-3.

160. Jacotot, E., L. Ravagnan, M. Loeffler, K. F. Ferri, H. L. Vieira, N. Zamzami, P.

Costantini, S. Druillennec, J. Hoebeke, J. P. Briand, T. Irinopoulou, E. Daugas, S. A.

Susin, D. Comte, Z. H. Xie, J. C. Reed, B. P. Roques, and G. Kroemer. 2000. The

HIV-Ï viral protein R induces apoptosis via a direct effect on the mitochondrial

penneability transition pore. J Exp Med 191:33-46.

161. Janoo, A., P. W. Morrow, and H. Y. Tung. 2005. Activation of protein phosphatase

2A1 by HIV-1 Vpr ceil death causing peptide in intact CD(4+) T celis and in vitro. J Celi

Biochem 94:816-25.

162. Jean, F., K. Stella, L. Thomas, G. Lin, Y. Xiang, A. J. Reason, and G. Thomas. 199$.

alphal-Antitiypsin Portiand, a bioengineered serpin highly selective for furin: application

as an antipathogenic agent. Proc Nati Acad Sci U S A 95:7293-8.

169



C 163. Jenkins, Y., M. McEntee, K. Weis, and W. C. Greene. 1998. Characterization ofHIV

I vpr nuclear import: analysis of signais and pathways. J Ceil Biol 143:875-85.

164. Jenkins, Y., P. V. Sanchez, B. E. Meyer, and M. H. Malim. 2001. Nuclear export of

human immunodeficiency virus type 1 Vpr is not required for virion packaging. J Virol

75:8348-52.

165. Jordan, A., P. Defechereux, and E. Verdin. 2001. The site of HIV- 1 integration in the

human genome determines basal transcriptional activity and response to Tat

transactivation. Embo 120:1726-38.

166. Jowett, J. B., Y. M. Xie, and I. S. Chen. 1999. The presence of human

immunodeficiency virus type 1 Vpr correlates with a decrease in the frequency of

mutations in a plasmid shuttie vector. I Virol 73:7132-7.

167. Kalpana, G. V., S. Marmon, W. Wang, G. R. Crabtree, and S. P. Goff. 1994. Binding

and stimulation of HIV- I integrase by a human homolog of yeast transcription factor

SNF5. Science 266:2002-6.

168. Kalus, I., B. Schnegelsberg, N. G. Seidah, R. Keene, and M. Schachner. 2003. The

proprotein convertase PC5A and a metalloprotease are involved in the proteolytic

processing of the neural adhesion molecule Li. J Biol Chem 278:10381-8.

169. Kamata, M., and Y. Aida. 2000. Two putative aipha-helicai domains of human

immunodeflciency virus type 1 Vpr mediate nuclear localization by at least two

mechanisms. J Virol 74:7179-86.

170. Kao, S. Y., A. F. Calman, P. A. Luciw, and B. M. Peterlin. 1987. Anti-termination of

transcription within the long terminal repeat of HIV- 1 by tat gene product. Nature

330:489-93.

171. Karni, O., A. Friedier, N. Zakai, C. Gilon, and A. Loyter. 199$. A peptide derived

from the N-terminal region ofHIV-1 Vpr promotes nuclear import in permeabilized ceils:

elucidation of the NLS region ofthe Vpr. FEBS Lett 429:421-5.

170



172. Karpas, A. 1990. Origin and spread of AIDS. Nature 348:578.

173. Katzmann, D. J., G. Odorizzi, ami S. D. Emr. 2002. Receptor downregulation and

multivesicular-body sorting. Nat Rev Mol Celi Biol 3:893-905.

174. Kaushik, R., and L. Ratner. 2004. RoTe of human immunodeficiency virus type I

matrix phosphorylation in an early postentry step of virus replication. J Virol 7$:2319-26.

175. Kest]er, H. W., 3rd, D. J. Ringler, K. Mon, D. L. Panicali, P. K. Sehgal, M. D.

Daniel, and R. C. Desrosiers. 1991. Importance of the nef gene for maintenance ofhigh

virus loads and for development ofAID$. Ccli 65:65 l-62.

176. Khan, R., and D. P. Giedroc. 1992. Recombinant human immunodeficiency virus type

I nucleocapsid (NCp7) protein unwinds tRNA. J Biol Chem 267:6689-95.

177. Kichier, A., J. C. Pages, C. Leborgne, S. Druiliennec, C. Lenoir, D. CouIaud, E.

Delain, E. Le Cam, B. P. Roques, and O. Danos. 2000. Efficient DNA transfection

mediated by the C-terminal domain of human immunodeficiency virus type 1 viraI

protein R. J Virol 74:5424-3 1.

178. Kiernan, R. E., A. Ono, G. Engiand, and E. O. Freed. 1998. Role of matrix in an eariy

postentry step in the human immunodeficiency virus type 1 life cycle. J Virol 72:4 1 16-26.

179. Kino, T., A. Gragerov, J. B. Kopp, R. H. Stauber, G. N. Paviakis, and G. P.

Chrousos. 1999. The HIV-1 virion-associated protein vpr is a coactivator of the human

glucocorticoid receptor. J Exp Mcd 189:51-62.

180. Kino, T., A. Gragerov, O. SIobodskaya, M. Tsopanomichalou, G. P. Chrousos, and

G. N. Pavtakis. 2002. Human immunodeficiency virus type Ï (HIV-1) accessory protein

Vpr induces transcription of the HIV-1 and glucocorticoid-responsive promoters by

binding directly to p300/CBP coactivators. J Virol 76:9724-34.

181. Kino, T., A. Gragerov, A. Vatentin, M. Tsopanomihalou, G. Ilyina-Gragerova, R.

Erwin-Cohen, G. P. Chrousos, and G. N. Pavlakis. 2005. Vpr protein of human

171



imrnunodeficiency virus type 1 binds to 14-3-3 proteins and facilitates complex

formation with Cdc2SC: implications for ceil cycle arrest. J Virol 79:2780-7.

182. Kinoshita, S., L. Su, M. Amano, L. A. Timmerman, H. Kaneshima, and G. P. Nolan.

1997. The T ccli activation factor Nf-ATc positiveiy regulates HIV-1 replication and

gene expression in T ceils. Immunity 6:235-44.

183. Kipreos, E. T., and M. Pagano. 2000. The f-box protein family. Genome Biol

1:REVIEW$3002.

184. Klatzmann, D., E. Champagne, S. Chamaret, J. Gruest, D. Guetard, T. Hercend, J.

C. Gluckman, and L. Montagnier. 1984. T-lymphocyte T4 molecule behaves as the

receptor for human retrovirus LAV. Nature 312:767-8.

185. Kondo, E., and H. G. Gottlinger. 1996. A conserved LXXLf sequence is the major

determinant in p6gag required for the incorporation of human immunodeficiency virus

type 1 Vpr. J Virol 70:159-64.

186. Kondo, E., F. Mammano, E. A. Cohen, and H. G. Gottllnger. 1995. The p6gag

domain of human immunodeficiency virus type I is sufficient for the incorporation of

Vpr into heterologous viral particles. J Viral 69:2759-64.

187. Kotov, A., J. Zhou, P. Flicker, and C. Aiken. 1999. Association of Nef with the human

immunodeficiency virus type 1 core. J Viral 73:8824-30.

18$. Krek, W., and E. A. Nigg. 1991. Differential phosphoiylation of vertebrate p34cdc2

kinase at the GuS and G2!M transitions of the ccli cycle: identification of major

phosphorylation sites. Embo J 10:305-16.

189. Kulkosky, J., A. Laptev, S. Shetty, A. Srinivasan, M. Boullamdan, D. J. Prockop,

and R. J. Pomerantz. 1999. Human immunodeficiency virus type 1 Vpr alters bone

marrow ccli function. Blood 93:1906-15.

172



190. Kwong, P. D., R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, and W. A.

Hendrickson. 199$. Structure of an HIV gpl2O envelope glycoprotein in complex with

the CD4 receptor and a neutralizing human antibody. Nature 393:648-59.

191. Lahti, A. L., A. Manninen, and K. Saksela. 2003. Regulation of T ceil activation by

HIV- 1 accessory proteins: Vpr acts via distinct mechanisms to cooperate with Nef in

NFAT-directed gene expression and to promote transactivation by CREB. Virology

310:190-6.

192. Lang, S. M., M. Weeger, C. Stahl-Hennig, C. Coulibaly, G. Hunsmann, J. Muller, H.

MnlJer-Hermelink, D. Fuclis, H. Wachter, M. M. Daniel, and et al. 1993. Importance

of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol

67:902-12.

193. Langhoff, E., E. F. Terwllliger, H. J. Bos, K. H. Kalland, M. C. Poznansky, O. M.

Bacon, and W. A. Haseltine. 1991. Replication of human immunodeficiency virus type

1 in primary dendritic celi cultures. Proc Nati Acad Sci U S A 88:7998-$002.

194. Le Rouzic, E., and S. Benïchou. 2005. The Vpr protein from 1-11V-l: distinct roles along

the viral life cycle. Refrovirology 2:11.

195. Lee, B. M., R. N. De Guzman, B. G. Turner, N. Tjandra, and M. F. Summers. 1998.

Dynamical behavior of the HIV-1 nucleocapsid protein. J Mol Biol 279:633-49.

196. Lever, A. 1996. The molecular biology ofHIV/AIDS. John Wiley & Sons, Chichester.

197. Levy, D. N., Y. Refaeli, R. R. MacGregor, and D. B. Weiner. 1994. Serum Vpr

regulates productive infection and latency of human immunodeficiency virus type 1. Proc

Nati Acad Sci U S A 91:10873-7.

198. Levy, D. N., Y. Refaeli, and D. B. Weiner. 1995. Extracellular Vpr protein increases

cellular permissiveness to human immunodeficiency virus replication and reactivates

virus from latency. J Virol 69:1243-52.

199. Levy, J. 1998. HIV and the pathogenesis ofAIDS.

173



200. Levy, J. A. 1993. Pathogenesis of human immunodeficiency virus infection. Microbiol

Rev 57:183-289.

201. Levy, J. A., A. D. Hoffman, S. M. Kramer, J. A. Landis, J. M. Shimabukuro, and L.

S. Oshïro. 1984. Isolation of lymphocytopathic retroviruses from San Francisco patients

with AIDS. Science 225:840-2.

202. Lewis, P., M. Hensel, and M. Emerman. 1992. Human immunodeficiency virus

infection of ceils arrested in the ceil cycle. Embo J 11:3053-8.

203. Li, M., M. Mbikay, K. Nakayama, A. Miyata, and A. Arimura. 2000. Prohormone

convertase PC4 processes the precursor of PACAP in the testis. Ann N Y Acad Sci

921:333-9.

204. Li, Y., H. Uni, C. J. Burgess, R. W. Price, P. M. Sharp, B. H. Uahn, and G. M. Shaw.

1992. Complete nucleotide sequence, genome organization, and biological properties of

human immunodeficiency virus type Ï in vivo: evidence for limited defectiveness and

complementation. J Virol 66:6587-600.

205. Lïmon, A., N. Nakajima, R. Lu, H. Z. Ghory, and A. Engelman. 2002. WiId-type

levels ofnuclear localization and human immunodeficiency virus type 1 replication in the

absence ofthe central DNA flap. J Virol 76:12078-86.

206. Liu, B., D. Goltzman, and S. A. Rabbani. 1995. Processing of pro-PTHRP by the

prohormone convertase, furin: effect on biological activity. Am J Physiol 26$:E832-$.

207. Liu, H., X. Wu, M. Newman, G. M. Shaw, B. H. Hahn, and J. C. Kappes. 1995. The

Vif protein of human and simian immunodeficiency viruses is packaged into virions and

associates with viral core structures. J Virol 69:7630-8.

208. Lopez-Girona, A., B. furnari, O. Mondesert, and P. Russell. 1999. Nuclear

localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature

397:172-5.

174



() 209. Lu, Y. L., R. P. Benneif, J. W. WilIs, R. Gorelick, and L. Ratner. 1995. A leucine

triplet repeat sequence (LXX)4 in p6gag is important for Vpr incorporation into human

immunodeficiency virus type I particles. J Virol 69:6873-9.

210. Lu, Y. L., P. Spearman, and L. Ratner. 1993. Human immunodeficiency virus type I

viral protein R localjzatjon in infected ceils and virions. J Virol 67:6542-50.

211. Lum, J. J., O. J. Cohen, Z. Nie, J. G. Weaver, T. S. Gomez, X. J. Yao, D. Lynch, A.

A. Pilon, N. Hawley, J. E. Kim, Z. Chen, M. Montpetit, J. Sanchez-Dardon, E. A.

Cohen, ami A. D. Badley. 2003. Vpr R77Q is associated with long-term nonprogressive

HIV infection and impaired induction ofapoptosis. J Clin Invest 111:1547-54.

212. Lusson, J., D. Vieau, J. Hamelin, R. Day, M. Chretien, and N. G. Seidah. 1993.

cDNA structure of the mouse and rat subtilisin!kexin-like PC5: a candidate proprotein

convertase expressed in endocrine and nonendocrine celis. Proc Nati Acad Sci U S A

90:6691-5.

213. Macreadie, I. G., L. A. Castelil, D. R. Hewish, A. Kirkpatrick, A. C. Ward, and A. A.

Azad. 1995. A domain ofhuman immunodeflciency virus type I Vpr containing repeated

H(S/F)RIG amino acid motifs causes ceil growth anest and structural defects. Proc Nati

Acad $ci U S A 92:2770-4.

214. Maertens, G., P. Cherepanov, W. Pluymers, K. Busschots, E. De Clercq, Z. Debyser,

and Y. Engelborghs. 2003. LEDGF/p75 is essential for nuclear and chromosomal

targeting ofHIV-l integrase in human celis. J Biol Chem 278:33528-39.

215. Mahalingam, S., S. A. Khan, R. Murali, M. A. Jabbar, C. E. Monken, R. G. Coilman,

and A. Srinivasan. 1995. Mutagenesis of the putative aipha-helical domain of the Vpr

protein of human immunodeficiency virus type 1: effect on stability and virion

incorporation. Proc Nati Acad Sci U S A 92:3794-8.

175



216. Malim, M. H., S. Bohnlein, J. Hauber, and B. R. CulIen. 1929. Functional dissection

of the HW- 1 Rev trans-activator—derivation of a trans-dominant repressor of Rev

function. CelI 58:205-14.

217. Mansky, L. M. 1996. The mutation rate of human immunodeficiency virus type 1 is

influenced by the vpr gene. Virology 222:391-400.

218. Mansky, L. M., S. Preverat, f. Le Rouzic, L. C. Bernard, L. Selig, C. Depienne, R.

Benarous, ami S. Benichou. 2001. Interaction ofhuman immunodeficiency vinas type I

Vpr with the HHR23A DNA repair protein does flot correlate with multiple biological

functions of Vpr. Virology 282:176-85.

219. Mansky, L. M., S. Preveral, L. Selig, R. Benarous, and S. Benichou. 2000. The

interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency

virus type I In vivo mutation rate. J Virol 74:7039-47.

220. Marchio, S., M. Atfano, L. Primo, D. Gramaglia, L. Butini, L. Gennero, E. De Vivo,

W. Arap, M. Giacca, R. Pasqualini, and F. Bussolïno. 2005. CelI surface-associated

Tat modulates HPV-1 infection and spreading through a specific interaction with gpÏ2O

viral envelope protein. Blood 105:2802-11.

221. Margottin, F., S. P. Bour, H. Durand, L. Selig, S. Benichou, V. Richard, D. Thomas,

K. Strebel, and R. Benarous. 199$. A novel human WD protein, h-beta TrCp, that

interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box

motif. Mol CelI 1:565-74.

222. Matsuda, Z., M. J. Chou, M. Matsuda, J. H. Huang, Y. M. Chen, R. Redfleld, K.

Mayer, M. Essex, and T. H. Lee. 198$. Human immunodeficiency vinas type 1 has an

additional coding sequence in the central region of the genome. Proc NatI Acad Sci U S

A 85:6968-72.

223. Matsuoka, S., M. Huang, and S. J. Eliedge. 1998. Linkage of ATM to ceil cycle

regulation by the Chk2 protein kinase. Science 282:1893-7.

176



(E 224. McClure, M. O., M. Marsh, and R. A. Weiss. 1988. Human immunodeficiency virus

infection of CD4-bearing ceils occurs by a pH-independent mechanism. Embo J 7:513-8.

225. McCune, J. M., L. B. Rabin, M. B. Feinberg, M. Lieberman, J. C. Kosek, G. R

Reyes, and I. L. Weissman. 198$. Endoproteolytic cleavage ofgpl60 is required for the

activation ofliuman imrnunodeficiency virus. Celi 53:55-67.

226. McDonald, D., M. A. Vodicka, G. Lucero, T. M. Svitkina, G. G. Borisy, M.

Emerman, and T. J. Hope. 2002. Visualization of the intracellular behavior of HIV in

living ceils. J Celi Biol 159:441-52.

227. McMichael, A. J., and S. L. Rowland-Jones. 2001. Cellular immune responses to HIV.

Nature 410:980-7.

228. Meerabux, J., M. L. Yaspo, A. J. Roebroek, W. J. Van de Ven, T. A. Lister, and B. D.

Young. 1996. A new member of the proprotein convertase gene family (LPC) is located

at a chromosome translocation breakpoint in lympliomas. Cancer Res 56:448-51.

229. Melikov, K., and L. V. Chernomordik. 2005. Arginine-rich ceil penetrating peptides:

from endosomal uptake to nuclear deliveiy. Celi Mol Life Sci 62:2739-49.

230. MiIler, M. D., C. M. Farnet, and F. D. Bushman. 1997. Human immunodeficiency

virus type 1 preintegration complexes: studies of organization and composition. J Virol

71:5382-90.

231. Molloy, S. S., L. Thomas, J. K. VanSlyke, P. E. Stenberg, and G. Thomas. 1994.

Intracellular trafficking and activation of the fttrin proprotein convertase: Iocalization to

the TGN and recycling from the celi surface. Embo J 13:18-33.

232. Mologni, D., P. Citterio, B. Menzaghï, B. Z. Poma, C. Riva, V. Broggini, A. Sinicco,

L. Milazzo, f. Adorni, S. Rusconi, M. Galli, and A. Riva. 2006. Vpr and HIV-1

disease progression: R77Q mutation is associated with long-term control of HW-1

infection in different groups of patients. Aids 20:567-74.

233. Montagnier, L. 2002. Historical essay. A history of HIV discovery. Science 298:1727-8.

177



234. Moore, J. P., S. G. Kitchen, P. Pugach, and J. A. Zack. 2004. The CCR5 and CXCR4

coreceptors--central to understanding the transmission and pathogenesis of human

immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 20:111-26.

235. Morellet, N., S. Bouaziz, P. Petitjean, and B. P. Roques. 2003. NMR structure of the

HIV-1 regulatory protein VPR. J Mol Biol 327:215-27.

236. Morgan, D. 0. 1995. Principles of CDK regulation. Nature 374:131-4.

237. Morris, M. C., C. Berducou, J. Mery, F. Heitz, and G. Dïvita. 1999. The thumb

domain of the P51-subunit is essential for activation of HIV reverse transcriptase.

Biochemistry 38:15097-103.

238. Moulard, M., and E. Decro)y. 2000. Maturation of HIV envelope glycoprotein

precursors by cellular endoproteases. Biochim Biophys Acta 1469:121-32.

239. MuIler, B., U. Tessmer, U. Schubert, and H. G. Krausstich. 2000. Human

immunodeficiency virus type 1 Vpr protein is incorporated into the virion in significantly

smaller amounts than gag and is phosphorylated in infected ceils. J Virol 74:9727-3 1.

240. Munzer, J. S., A. Basak, M. Zhong, A. Mamarbachi, J. Hamelin, D. Savarin, C.

Lazure, G. N. Hendy, S. Benjannet, M. Chretien, and N. G. Seidah. 1997. In vitro

characterization of the novel proprotein convertase PC7. J Biol Chem 272:19672-81.

241. Muro-Cacho, C. A., G. Pantaleo, and A. S. Fauci. 1995. Analysis of apoptosis in

Jympli nodes of HIV-infected persons. Intensity of apoptosis correlates with the general

state of activation of the lymphoid tissue and not with stage of disease or viral burden. J

Immunol 154:5555-66.

242. Muthumani, K., A. Y. Choo, D. S. Hwang, M. A. Chattergoon, N. N. Dayes, D.

Zhang, M. D. Lee, U. Duvvuri, and D. B. Weiner. 2003. Mechanism of HIV-1 viral

protein R-induced apoptosis. Biochem Biophys Res Commun 304:583-92.

178



243. Muthumani, K., S. Kudchodkar, E. Papasavvas, L. J. Montaner, D. B. Weiner, and

V. Ayyavoo. 2000. HW-1 Vpr regulates expression of beta chemokines in human

primary lymphocytes and macrophages. J Leukoc BioÏ 68:366-72.

244. Nadler, S. G., D. Tritschler, O. K. Haffar, J. Blake, A. G. Bruce, and J. S.

Cleaveland. E 997. Differential expression and sequence-specific interaction of

karyopherin alpha with nuclear localization sequences. J Biol Chem 272:4310-5.

245. Nakagawa, T., K. Murakamï, and K Nakayama. 1993. Identification of an isoform

with an extremely large Cys-rich region of PC6, a Kex2-like processing endoprotease.

FEBS Lett 327:165-71.

246. Nakaya, T., K. Fui inaga, M. Kishi, S. Oka, T. Kurata, I. M. Joues, and K. Ikuta.

1994. Nonsense mutations in the vpr gene ofHIV-1 during in vitro virus passage and in

HIV-1 carrier-derived peripheralblood monorniclear ceils. fEBS Lett 354:17-22.

247. Nakayama, K. 1997. Furin: a mammalian subtilisin!Kex2p-like endoprotease involved in

processing ofa wide variety ofprecursor proteins. Biochem J 327 (Pt 3):625-35

248. Nardelli, B., C. J. Gonzalez, M. Schechter, and F. T. Vatentine. 1995. CD4+ blood

lymphocytes are rapidly killed in vitro by contact with autologous human

immunodeficiency virus-infected ceils. Proc Nati Acad Sci U S A 92:7312-6.

249. Nishï, K., M. Yoshida, D. Fujiwara, M. Nishikawa, S. Horinouchi, and T. Beppu.

1994. Leptomycin B targets a regulatory cascade of crml, a fission yeast nuclear protein,

involved in control of higher order chromosome structure and gene expression. J Biol

Chem 269:6320-4.

250. Nishizawa, M., M. Kamata, R. Katsumata, and Y. Aida. 2000. A carboxy-terminally

truncated form of the human immunodeficiency virus type 1 Vpr protein induces

apoptosis via G(1) celi cycle arrest. J Virol 74:6058-67.

179



251. Nishizawa, M., M. Kamata, T. Mojin, Y. Nakai, and Y. Aida. 2000. Induction of

apoptosis by the Vpr protein of human immunodeficiency virus type 1 occurs

independently of G(2) arrest of the celi cycle. Virology 276:16-26.

252. Nishizawa, M., T. Myojin, Y. Nishino, Y. Nakaï, M. Kamata, and Y. Aida. 1999. A

carboxy-terminally truncated form of the Vpr protein of human irnmunodeficiency virus

type 1 retards ceil proliferation independently of G(2) anest of the ceil cycle. Virology

263:313-22.

253. Nisole, S., C. Lynch, J. P. Stoye, and M. W. Yap. 2004. A Trim5-cyclophllin A fusion

pratein found in owi monkey kidney celis can restrict HIV-1. Proc Nati Acad Sci U S A

101:13324-8.

254. Nour, N., G. Mayer, J. S. Mort, A. Salvas, M. Mbikay, C. J. Morrfson, C. M. Overail,

and N. G. Seidah. 2005. The cysteine-rich domain ofthe secreted proprotein convertases

PC5A and PACE4 functions as a ceil surface anchor and interacts with tissue inhibitors

of metalloproteinases. Mol Biol CeIl 16:5215-26.

255. Ohta, Y., T. Masuda, H. Tsujimoto, K. Ishikawa, T. Kodama, S. Morikawa, M.

Nakai, S. Honjo, and M. Hayami. 1988. Isolation of simian inmiunodeflciency virus

from African green monkeys and seroepidemiologic suniey of the virus in various non

human primates. Int J Cancer 41:115-22.

256. Orenstein, J. M., M. S. Meftzer, T. Phipps, and H. E. Gendelman. 198$. Cytoplasmic

assembly and accumulation of human immunodeficiency virus types 1 and 2 in

recombinant human colony-stimulating factor- 1 -freated human monocytes: an

ultrastructural study. J Virol 62:2578-$6.

257. Oroszlan, S., and R. B. Luftig. 1990. Refroviral proteinases. Curr Top Microbiol

Immunol 157:153-$5.

180



25$. Ortmann, D., M. Ohuchi, H. Angliker, E. Shaw, W. Garten, and H. D. Klenk. 1994.

Proteolytic cleavage of wild type and mutants of the F protein of human parainfluenza

virus type 3 by two subtilisin-like endoproteases, fiirin and Kex2. J Virol 68:2772-6.

259. Ott, D. E., L. V. Coren, and T. D. Gagliardi. 2005. Redundant roles for nucleocapsid

and matrix RNA-binding sequences in human immunodeficïency virus type 1 assembÏy. J

Virol 79:13839-47.

260. Ott, M., M. Schnotzer, J. Garnica, W. Fischle, S. Emiliani, H. R. Rackwitz, and E.

Verdin. 1999. Acetylation of the HW-1 Tat protein by p300 is important for its

transcriptional activity. Curr Biol 9:1489-92.

261. Pantaleo, G., C. Graziosi, J. F. Demarest, O. J. Cohen, M. Vaccarezza, K. Gantt, C.

Muro-Cacho, and A. S. Fauci. 1994. Role of lymphoid organs in the pathogenesis of

human immunodeficiency virus (HIV) infection. Immunol Rev 140:105-30.

262. Pante, N., and M. Kann. 2002. Nuclear pore complex is able to transport

macromolecules with diameters of about 39 nm. Mol Biol Celi 13:425-34.

263. Patel, C. A., M. Mukhtar, S. Harley, J. Kulkosky, and R. J. Pomerantz. 2002.

Lentiviral expression of HIV-1 Vpr induces apoptosis in human neurons. J Neurovirol

8:86-99.

264. Patel, C. A., M. Mukhtar, and R. J. Pomerantz. 2000. Human immunodeficiency virus

type 1 Vpr induces apoptosis in human neuronal ceils. J Virol 74:9717-26.

265. Patnaik, A., V. Chau, and J. W. Wïlls. 2000. Ubiquitin is part of the retrovirus budding

machinery. Proc Nati Acad Sci U S A 97:13069-74.

266. Paxton, W., R. I. Connor, and N. R. Landau. 1993. Incorporation ofVpr into human

immunodeflciency virus type 1 virions: requirement for the p6 region of gag and

mutational analysis. J Virol 67:7229-37.

181



267. Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho. 1996.

HIV-1 dynamics in vivo: virion clearance rate, infected celi life-span, and viral

generation time. Science 271:1582-6.

26$. Perry, S. W., J. P. Norman, A. Litzburg, D. Zhang, S. Dewhurst, ami H. A. Gelbard.

2005. HIV- 1 transactivator of transcription protein induces mitochondrial

hyperpolarization and synaptic stress leading to apoptosis. J Immunol 174:4333-44.

269. Peytavi, R., S. S. Hong, B. Gay, A. D. d’Angeac, L. Selig, S. Benichou, R. Benarous,

ami P. Boulanger. 1999. HEED, the product of the human homolog ofthe murine eed

gene, binds to the matrix protein of HIV- I. J Biol Chem 274:1635-45.

270. Piller, S. C., G. D. Ewart, D. A. Jans, P. W. Gage, and G. B. Cox. 1999. The amino

terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels

and kilts neurons. J Virol 73 :4230-8.

271. Piller, S. C., G. D. Ewart, A. Premkumar, G. B. Cox, and P. W. Gage. 1996. Vpr

protein of human immunodeficiency virus type 1 forms cation-selective channels in

planar lipid bilayers. Proc Natl Acad Sci U S A 93:111-5.

272. PilIer, S. C., P. Jans, P. W. Gage, and D. A. Jans. 1998. Extracellular HIV-1 virus

protein R causes a large inward cunent and cell death in cultured hippocampal neurons:

implications for AIDS pathology. Proc Nati Acad Sci U $ A 95:4595-600.

273. Plymale, D. R., D. S. Tang, A. M. Comardette, C. D. fermin, D. E. Lewis, and R. f.

Garry. 1999. Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4

celis. Aids 13:1827-39.

274. Popov, S., L. Dubrovsky, M. A. Lee, S. Pennathur, O. Haffar, L. A. Y. n, P. longe, P.

Ulrich, M. Rexach, G. Blobel, A. Cerami, and M. Bukrinsky. 1996. Critical role of

reverse transcriptase in the inhibitory mechanism of CNI-H0294 on HIV-1 nuclear

transiocation. Proc Nati Acad $ci USA 93:11859-64.

182



e’ 275. Popov, S., M. Rexach, L. Ratner, G. Blobel, and M. Bukrinsky. 1998. Viral protein R

reguÏates docking of the HIV-1 preintegration complex to the nuclear pore complex. J

Biol Chem 273:13347-52.

276. Popov, S., M. Rexach, G. Zybarth, N. Reiling, M. A. Lee, L. Ratner, C. M. Lane, M.

S. Moore, G. Blobel, and M. Bukrinsky. 1998. Viral protein R regulates nuclear import

ofthe HIV-1 pre-integration complex. Embo J 17:909-17.

277. Prevention, C. f. D. C. a. 1982. Epidemiologic Notes and Reports Possible Transfusion

Associated Acquired Immune Deficiency Syndrome (AIDS) -- Califomia.

278. Priet, S., N. Gros, J. M. Navarro, J. Boretto, B. Canard, G. Querat, and J. Sire. 2005.

HIV-1-associated uracil DNA glycosylase activity controls dUT? misincorporation in

viral DNA and is essential to the HIV-1 life cycle. Mol Ceil 17:479-90.

279. Purohït, P., S. Dupont, M. Stevenson, and M. R. Green. 2001. Sequence-specific

interaction between HIV-l matrix protein and viral genomic RNA revealed by in vitro

genetic selection. Rna 7:576-84.

280. Rabson, A. B., and M. A. Martin. 1985. Molecular organization of the AIDS retrovims.

Ceil 40:477-$0.

281. Ramazzotti, E., A. Marconi, M. C. Re, G. Girolomoni, G. Cenacchi, M. Vignoli, G.

Zambruno, G. Furlini, M. La Placa, and A. Giannetti. 1995. In vitro infection of

human epidermal Langerhans’ celis with HIV-1. Immunology 85:94-8.

282. Rambaut, A., D. Posada, K. A. Crandafl, and E. C. Holmes. 2004. The causes and

consequences ofHIV evolution. Nat Rev Genet 5:52-6 1.

283. Raney, A., L. S. Kuo, L. L. Baugh, J. L. Foster, and J. V. Garda. 2005.

Reconstitution and molecular analysis of an active human immunodeficiency virus type 1

Nef’p21-activated kinase 2 complex. J Virol 79:12732-4 1.

183



284. Raposo, G., M. Moore, D. Innes, R. Leijendekker, A. Leigh-Brown, P. Benaroch,

and H. Geuze. 2002. Human macrophages accumulate HIV-1 particles in MHC II

compartments. Traffic 3:718-29.

285. Re, F., D. Braaten, E. K. Franke, and J. Luban. 1995. Human immunodeficiency virus

type Ï Vpr anests the ceil cycle in G2 by inhibiting the activation ofp34cdc2-cyclin B. J

Virol 69:6859-64.

286. Reddy, M. M., R. R. Goetz, J. M. Gorman, M. H. Grieco, L. Chess, and S.

Lederman. 1991. Human immunodeficiency virus type-1 infection of homosexual men

is accompanied by a decrease in circulating B celis. J Acquir Immune Defic Syndr 4:428-

34.

287. Reed-Inderbitzin, E., and W. Maury. 2003. Cellular specificity of HIV-1 replication

can be controlled by LTR sequences. Virology 314:680-95.

288. Refaeti, Y., D. N. Levy, and D. B. Weiner. 1995. The glucocorticoid receptor type II

complex is a target of the HIV-1 vpr gene product. Proc Nati Acad Sci U S A 92:3621-5.

289. Reil, II., A. A. Bukovsky, H. R. Gelderbiom, and H. G. Gottiinger. 199$. Efficient

HIV-1 replication can occur in the absence of the viral matrix protein. Embo J 17:2699-

70$.

290. Reiss, P., J. M. Lange, A. de Ronde, F. de WoJf, J. Dekker, S. A. Danner, C.

Debouck, and J. Goudsmit. 1990. Antibody response to viral proteins U (vpu) and R

(vpr) in HIV-1-infected individuals. J Acquir Immune Defic Syndr 3:115-22.

291. Reiss, P., J. M. Lange, A. de Ronde, F. de Wotf, J. Dekker, C. Debouck, and J.

Goudsmit. 1990. Speed of progression to AID$ and degree of antibody response to

accessoiy gene products ofHIV-1. J Med Virol 30:163-8.

292. Restle, T., M. Pawiita, G. Sczakiel, B. Muller, and R. S. Goody. 1992. Structure

function relationships of HIV-1 reverse transcriptase determined using monoclonal

antibodies. J Biol Chem 267:14654-61.

184



293. Rexacli, M., and G. BIobel. 1995. Protein import into nuclei: association and

dissociation reactions invoïving transport substrate, transport factors, and nucleoporins.

Ccli 83:683-92.

294. Rey, F., M. Boullamdan, J. M. Navarro, I. Agostini, K. Wiiletts, M. Bouyac, C.

Tamalet, B. Spire, R. Vigne, and J. Sire. 1998. A role for human immunodeficiency

virus type 1 Vpr during infection of peripheral blood mononuclear ceils. J Gen Virol 79

(Pt 5):1083-7.

295. Rhee, S. S., and J. W. Marsh. 1994. Human immunodeficiency virus type 1 Nef

induced down-modulation of CD4 is due to rapid internalization and degradation of

surface CD4. J Virol 68:5156-63.

296. Richer, M. J., C. A. Keays, J. Waterhouse, J. Minhas, C. Hashimoto, and F. Jean.

2004. The Spn4 gene of Drosophula encodes a potent furin-directed secretory pathway

serpin. Proc Nati Acad Sci U S A 101:10560-5.

297. Roe, T., T. C. Reynolds, G. Yu, and P. O. Brown. 1993. Integration of murine

leukemia virus DNA depends on mitosis. Embo J 12:2099-10$.

29$. Rogel, M. E., L. I. Wu, and M. Emerman. 1995. The human immunodeficiency virus

type 1 vpr gene prevents ccli proliferation during chronic infection. J Virol 69:882-8.

299. Rohr, O., C. Marban, D. Aunis, and E. $chaeffer. 2003. Regulation of HIV-1 gene

transcription: from lymphocytes to microglial celis. J Leukoc Biol 74:736-49.

300. Roques, B. P., N. Morellet, H. de Rocquigny, H. Demene, W. Schueler, and N.

Jullian. 1997. Structure, biological functions and inhibition of the HIV-1 proteins Vpr

and NCp7. Biochimie 79:673-80.

301. Rosen, C. A., E. Terwilliger, A. Dayton, J. G. Sodroski, and W. A. Haseltine. 198$.

Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency

virus. Proc Nati Acad Sci U $ A 85:2071-5.

302. Roshal, M., Y. Zhu, and V. PlanelIes. 2001. Apoptosis in AIDS. Apoptosis 6:103-16.

185



303. Roux, P., C. Affleri, M. Hrimech, E. A. Cohen, and J. E. Tanner. 2000. Activation of

transcription factors NF-kappaB and NF-IL-6 by human immunodeficiency virus type 1

protein R (Vpr) induces interleukin-8 expression. J Virol 74:4658-65.

304. Sabbah, E. N., and B. P. Roques. 2005. Critical implication of the (70-96) domain of

human immunodeficiency virus type 1 Vpr protein in apoptosis of primary rat cortical

and striatal neurons. J Neurovirol 11:489-502.

305. Sakai, J., R. B. Rawson, P. J. Espenshade, D. Cheng, A. C. Seegmlller, J. L.

Goldstein, and M. S. Brown. 1998. Molecular identification of the sterol-regulated

luminal protease that cleaves SREBPs and controls Iipid composition of animal ceils.

Mol Ceil 2:505-14.

306. Sato, A., J. Yoshimoto, Y. Isaka, S. Miki, A. Suyama, A. Adachi, M. Hayami, T.

Fujiwara, and O. Yoshie. 1996. Evidence for direct association of Vpr and matrix

protein p17 within the HIV-1 virion. Virology 220:208-12.

307. Sawaya, B. E., K. Khalili, J. Gordon, R. Taube, and S. Amini. 2000. Cooperative

interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription ofthe

viral genome. J Bio! Chem 275:35209-14.

30$. Scarlata, S., and C. Carter. 2003. Role of HIV-1 Gag domains in vira! assembly.

Biochim Biophys Acta 1614:62-72.

309. Schroder, A. R., P. Shinn, H. Chen, C. Berry, J. R. Ecker, and F. Bushman. 2002.

HIV-l integration in the human genome favors active genes and local hotspots. Celi

110:521-9.

310. Schrofelbauer, B., Q. Yu, S. G. Zeitiin, and N. R. Landau. 2005. Human

immunodeficiency virus type 1 Vpr induces the degradation of the IJNG and SMUG

uracil-DNA glycosylases. J Virol 79:10978-87.

186



( 311. Sehuier, W., K. Wecker, H. de Rocquigny, Y. Baudat, J. Sire, and B. P. Roques.

1999. NMR structure of the (52-96) C-terminai domain of the HIV-1 regulatory protein

Vpr: molecular insights into its biological fiinctions. J Mol Biol 285:2105-17.

312. Schwartz, O., V. Marechal, O. Danos, and J. M. Heard. 1995. Human

immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the

infected celi. J Virol 69:4053-9.

313. Schwartz, O., V. Marechal, S. Le GaL!, F. Lemonnier, and J. M. Heard. 1996.

Endocytosis of major histocompatibility complex class I molecules is induced by the

HIV-1 Nef protein. Nat Med 2:338-42.

314. Schwarze, S. R., A. Ho, A. Vocero-Akbani, and S. F. Dowdy. 1999. In vivo protein

transduction: delivery of a biologically active protein into the mouse. Science 285:1569-

72.

315. Schwarze, S. R., K. A. Hruska, and S. F. Dowdy. 2000. Protein transduction:

unrestricted delivery into ail celis? Trends Celi Biol 10:290-5.

316. Secchiero, P., D. Zeita, S. Capitani, R. C. Gallo, and G. Zauli. 1999. Extracellular

HW- 1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in

resting CD4+ T ceils. J Immunol 162:2427-3 1.

317. Secchiero, P., D. Zella, S. Curretï, P. Mirandola, S. Capitani, R. C. Gallo, and G.

Zauli. 2000. Pivotai role of cyciic nucleoside phosphodiesterase 4 in Tat-mediated CD4+

T ceil hyperactivation and HIV type 1 replication. Proc Nati Acad Sci U S A 97:14620-5.

318. Seidah, N. G., S. Benjannet, L. Wïckham, J. Marcinkiewicz, S. B. Jasmin, S. Stifani,

A. Basak, A. Prat, and M. Chretien. 2003. The secretory proprotein convertase neural

apoptosis-regulated convertase 1 (NARC- 1): liver regeneration and neuronal

differentiation. Proc Nati Acad Sci U S- A 100:928-33.

319. Seidali, N. G., and M. Chretien. 1999. Proprotein and prohormone convertases: a

famiiy ofsubtilases generating diverse bioactive polypeptides. Brain Res 848:45-62.

187



320. Seidah, N. G., M. Chretien, and R. Day. 1994. The family of subtilisin/kexin like pro

protein and pro-hormone convertases: divergent or shared functions. Biochimie 76:197-

209.

32L Seidah, N. G., S. J. Mowia, J. Hamelin, A. M. Mamarbachî, S. Benjannet, B. B.

loure, A. Basak, J. S. Munzer, J. Marcinkiewicz, M. Zhong, J. C. Barale, C. Lazure,

R. A. Murphy, M. Chretien, and M. Marcinkiewicz. 1999. Mammalian

subtilisiWkexin isozyme SKI-1: A widely expressed proprotein convertase with a unique

cleavage specificity and celÏular localization. Proc Nati Acad Sci U S A 96:1321-6.

322. Sefdah, N. G., and A. Prat. 2002. Precursor convertases in the secretory pathway,

cytosol and extracellular milieu. Essays Biochem 38:79-94.

323. Sheehy, A. M., N. C. Gaddis, J. D. Choi, and M. H. Mallm. 2002. Isolation ofa human

gene that inhibits HIV- 1 infection and is suppressed by the viral Vif protein. Nature

418:646-50.

324. Sheehy, A. M., N. C. Gaddis, and M. H. Matîm. 2003. The antiretroviral enzyme

APOBEC3G is degraded by the proteasome in response to HW-l Vif. Nat Med 9:1404-7.

325. Sherman, M. P., C. M. de Noronha, L. A. Eckstein, J. Hataye, P. Mundt, S. A.

Williams, J. A. Neidieman, M. A. Goldsmith, and W. C. Greene. 2003. Nuclear export

of Vpr is required for efficient replication of human immunodeficiency virus type 1 in

tissue macrophages. J Virol 77:7582-9.

326. Sherman, M. P., C. M. de Noronha, M. I. Heusch, S. Greene, and W. C. Greene.

2001. Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol

75:1522-32.

327. Sherman, M. P., C. M. de Noronha, D. Pearce, and W. C. Greene. 2000. Human

immunodeficiency virus type 1 Vpr contains two leucine-rich helices that mediate

glucocorticoid receptor coactivation independently of its effects on G(2) celi cycle arrest.

J Virol 74:8159-65.

18$



32$. Sherman, M. P., C. M. De Noronha, S. A. WiIliams, and W. C. Greene. 2002.

Insights into the biology of HIV-1 viral protein R. DNA Ceil Biol 21:679-$8.

329. Sherman, M. P., U. Schubert, S. A. Williams, C. M. de Noronha, J. F. Kreisberg, P.

Henklein, and W. C. Greene. 2002. HIV-l Vpr displays natural protein-transducing

properties: implications for viral pathogenesis. Virology 302:95-105.

330. Shimura, M., Y. Tanaka, S. Nakamura, Y. Mïnemoto, K. Yamashita, K. Hatake, F.

Takaku, and Y. Ishizaka. 1999. Micronuclei formation and aneuploidy induced by Vpr,

an accessory gene ofhuman immunodeficiency virus type 1. Faseb J 13:62 l-37.

331. Siegal, F. P., C. Lopez, G. S. Hammer, A. E. Brown, S. J. Kornfeld, J. Gold, J.

Hassett, S. Z. Hirschman, C. Cunningham-Rundles, B. R. Adelsberg, and et al. 1981.

Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal

ulcerative herpes simplex lesions. N Engi J Med 305:1439-44.

332. Singh, S. P., B. Tomkowicz, D. Lai, M. Cartas, S. Mahalingam, V. S. Kalyanaraman,

R. Murali, and A. Srinivasan. 2000. functional role ofresidues conesponding to helical

domain II (amino acids 35 to 46) of human immunodeficiency virus type 1 Vpr. J Virol

74:10650-7.

333. Sirven, A., F. Pllumio, V. Zennou, M. Titeux, W. Vainchenker, L. Coulombel, A.

Dubart-Kupperschmitt, and P. Chameau. 2000. The human immunodeficiency virus

type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and

gene transduction of human hematopoietic stem ceils. Blood 96:4103-10.

334. Somasundaran, M., M. Sharkey, B. Brichacek, K. Luzuriaga, M. Emerman, J. L.

Sullivan, and M. Stevenso». 2002. Evidence for a cytopathogenicity determinant in

HIV-1 Vpr. Proc Nati Acad Sci U S A 99:9503-8.

335. Stark, L. A., and R. T. Hay. 1998. Human immunodeficiency virus type 1 (HIV-1) viral

protein R (Vpr) interacts with Lys-tRNA synthetase: implications for priming of HIV-1

reverse transcription. J Virol 72:3037-44.

189



C 336. Stawowy, P., K. Graf, S. Goetze, M. Roser, M. Chretien, N. G. Seidah, E. Fleck, and

M. Marcinkiewicz. 2003. Coordinated regulation and colocalization of alphav integrin

and its activating enzyme proprotein convertase PC5 in vivo. Histochem Ceil Biol

119:239-45.

337. Stewart, S. A., B. Poon, J. B. Joweft, and I. S. Chen. 1997. Human immunodeficiency

virus type 1 Vpr induces apoptosis following ceil cycle anest. J Virol 71:5579-92.

338. Stîeneke-Grober, A., M. Vey, H. Angliker, E. Shaw, G. Thomas, C. Roberts, H. D.

Klenk, and W. Garten. 1992. Influenza virus hemaggiutinin with multibasic cleavage

site is activated by furin, a subtilisin-like endoprotease. Embo J 11:2407-14.

339. Stivahtis, G. L., M. A. $oares, M. A. Vodicka, B. H. Hahn, and M. Emerman. 1997.

Conservation and host specificity of Vpr-mediated celi cycle anest suggest a fundamental

role in primate lentivirus evolution and biology. J Virol 71:4331-8.

340. Strebel, K., D. Daugherty, K. Ctouse, D. Cohen, T. Folks, and M. A. Martin. 1987.

The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328:728-30.

341. Sune, C., and M. A. Garcia-Blanco. 1995. Spi transcription factor is required for in

vitro basal and Tat-activated transcription from the human immunodeficiency virus type

1 long terminal repeat. J Virol 69:6572-6.

342. Sune, C., and M. A. Garcia-Blanco. 1995. Transcriptional trans activation by human

immunodeficiency virus type 1 Tat requires specific coactivators that are not basal factors.

J Virol 69:3098-107.

343. Swingler, S., P. Gattay, D. Camaur, J. Song, A. Abo, and D. Trûno. 1997. The Nef

protein of human immunodeficiency virus type 1 enhances serine phosphorylation of the

viral matrix. J Virol 71:4372-7.

344. Taube, R., K. Fujinaga, J. Wimmer, M. Barboric, and B. M. Peterlin. 1999. Tat

transactivation: a model for the regulation of eukaryotic transcriptional elongation.

Virology 264:245-53.

190



345. Taylor, N. A., W. J. Van De Ven, and J. W. Creemers. 2003. Curbing activation:

proprotein convertases in homeostasis and pathology. Faseb J 17:12 15-27.

346. Thomas, G. 2002. Furin at the cutting edge: from protein traffic to embiyogenesis and

disease. Nat Rev Mol Celi Biol 3:753-66.

347. Thomas, L., R. Leduc, B. A. Thorne, S. P. Smeekens, D. F. Steiner, and G. Thomas.

1991. Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in

mammalian celis: evidence for a common core of neuroendocrine processing enzymes.

Proc Nati Acad $ci U S A $$:5297-301.

348. Tikhonov, I., T. J. Ruckwardt, S. Berg, G. S. Hatfietd, and C. David Pauza. 2004.

Furin cleavage of the HIV-1 Tat protein. FEBS Lett 565:89-92.

349. Tremblay, M. J., J. F. Fortin, and R. Cantin. 199$. The acquisition ofhost-encoded

proteins by nascent HIV-1. Immunol Today 19:346-51.

350. Tristem, M., C. Marshall, A. Karpas, and F. Hill. 1992. Evolution of the primate

lentiviruses: evidence from vpx and vpr. Embo J 11:3405-12.

351. Tsujï, A., K. Sakurai, E. Kiyokage, T. Yamazaki, S. Koide, K. Toida, K. Ishimura,

and Y. Matsuda. 2003. Secretoiy proprotein convertases PACE4 and PC6A are heparin

binding proteins which are Iocalized in the extracellular matrix. Potential role of PACE4

in the activation of proproteins in the extracellular matrix. Biochim Biophys Acta

1645:95-104.

352. Tsurutani, N., M. Kubo, Y. Maeda, T. Ohashi, N. Yamamoto, M. Kannagi, and T.

Masuda. 2000. Identification of critical amino acid residues in human immunodeficiency

virus type I IN required for efficient proviral DNA formation at steps prior to integration

in dividing and nondividing celis. J Virol 74:4795-806.

353. Turner, B. G., and M. F. Summers. 1999. Structural biology ofHIV. J Mol Biol 285:1-

32.

191



354. Tyagi, M., M. Rusnati, M. Presta, and M. Gïacca. 2001. Intemalization ofHW-1 tat

requires celi surface heparan sulfate proteoglycans. J Biol Chem 276:3254-6f.

355. UI]oa, L., J. W. Creemers, S. Roy, S. Lin, J. Mason, and S. Tabibzadeh. 2001. Lefiy

proteins exhibit unique processing and activate the MAPK pathway. J Biol Chem

276:21387-96.

356. Urmacher, C., P. Myskowski, M. Ochoa, Jr., M. Krfs, and B. Safai. 1982. Outbreak

of Kaposi’s sarcoma with cytomegalovirus infection in young homosexual men. Am J

Med 72:569-75.

357. Vaishnav, Y. N., and f. Wong-Staal. 1991. The biochemistiy of AID$. Annu Rev

Biochem 60:577-630.

358. van de Loo, J. W., J. W. Creemers, N. A. Bright, B. D. Young, A. J. Roebroek, and

W. J. Van de Ven. 1997. Biosynthesis, distinct post-translational modifications, and

functional characterization of lymphoma proprotein convertase. J Biol Chem 272:27116-

23.

359. Van de Ven, W. J., A. J. Roebroek, and H. L. Van Duijnhoven. 1993. Structure and

function of eukaryotic proprotein processing enzymes of the subtilisin family of serine

proteases. Crit Rev Oncog 4:11 5-36.

360. Van Maele, B., J. De Rijck, E. De Clercq, and Z. Debyser. 2003. Impact of the central

polypurine tract on the kinetics of human immunodeficiency virus type 1 vector

transduction. J Virol 77:4685-94.

361. Vanitharani, R., S. Mahalingam, Y. Rafaell, S. P. Singh, A. Srinivasan, D. B. Weiner,

and V. Ayyavoo. 2001. HIV- 1 Vpr transactivates LTR-directed expression through

sequences present within -278 to -176 and increases virus replication in vitro. Virology

289:334-42.

362. Varin, A., A. Z. Decrion, E. Sabbah, V. Quivy, J. Sire, C. Van Lint, B. P. Roques, B.

B. Aggarwal, and G. Herbein. 2005. Synthetic Vpr Protein Activates Activator Protein

192



1, c-Jun N-terminal Kinase, and NF- {kappa} B and Stimulates HW- 1 Transcription in

Promonocytic Celis and Primaiy Macrophages. J Biol Chem 280:42557-42567.

363. Varthakavi, V., R. M. Smïth, S. P. Bour, K. Strebel, ami P. Spearman. 2003. Viral

protein U counteracts a human host ceil restriction that inhibits HW-1 particle production.

Proc Nati Acad Sci U SA 100:15154-9.

364. Veronese, F. D., T. D. Copeland, S. Oroszlan, R. C. Gallo, and M. G. Sarngadharan.

1988. Biochemical and immunological analysis of human immunodeficiency virus gag

gene products p17 and p24. J Virol 62:795-801.

365. VerPtank, L., F. Bouamr, T. J. LaGrassa, B. Agresta, A. Kikonyogo, J. Leis, and C.

A. Carter. 2001. TsglOl, a homologue of ubiquitin-conjugating (E2) enzymes, binds the

L domain in HIV type 1 Pr55(Gag). Proc Nati Acad Sci U S A 98:7724-9.

366. Vey, M., W. Schafer, B. Reis, R. Ohuchi, W. Britt, W. Garten, H. D. Klenk, and K.

Radsak. 1995. Proteolytic processing of human cytomegalovirus glycoprotein B

(gpUL55) is mediated by the human endoprotease fiirin. Virology 206:746-9.

367. Violot, S., S. S. Hong, D. Rakotobe, C. Petit, B. Gay, K. Moreau, G. Billaud, S. Priet,

J. Sire, O. Schwartz, J. F. Mouscadet, and P. Boulanger. 2003. The human polycomb

group EED protein interacts with the integrase of human immunodeficiency virus type 1.

J Virol 77:12507-22.

368. Vodicka, M. A., D. M. Koepp, P. A. Silver, and M. Emerman. 1998. HIV-1 Vpr

interacts with the nuclear transport pathway to promote macrophage infection. Genes Dey

12:175-85.

369. von Schwedler, U., R. S. Kornbluth, and D. Trono. 1994. The nuclear localization

signal of the matrix protein of human immunodeficiency virus type I allows the

establishment of infection in macrophages and quiescent T lymphocytes. Proc Nati Acad

Sci U S A 91:6992-6.

193



370. Waldhuber, M. G., M. Bateson, J. Tan, A. L. Greenway, and D. A. McPhee. 2003.

Studies with GFP-Vpr fusion proteins: induction of apoptosis but ablation of celi-cycle

arrest despite nuclear membrane or nuclear localization. Virology 313:91-104.

371. Wang, B., Y. C. Ge, P. Palasanthiran, S. H. Xiang, J. Ziegler, D. E. Dwyer, C.

Randie, D. Dowton, A. Cunningham, and N. K. Saksena. 1996. Gene defects clustered

at the C-terminus of the vpr gene of HIV- 1 in long-term nonprogressing mother and chuld

pair: in vivo evolution ofvpr quasispecies in blood and plasma. Virology 223:224-32.

372. Wang, J. J., Y. Lu, and L. Ratner. 1994. Particle assembly and Vpr expression in

human immunodeficiency virus type 1 -infected ceils demonstrated by immunoelectron

microscopy. J Gen Virol 75 (Pt 1O):2607-14.

373. Wang, J. K., E. Kiyokawa, E. Verdin, and D. Trono. 2000. The Nef protein ofHIV-1

associates with rafts and primes T ceils for activation. Proc Nati Acad Sci U S A 97:394-

9.

374. Wang, L., S. Mukherjee, F. Jia, O. Narayan, and L. J. Zhao. 1995. Interaction of

virion protein Vpr of human immunodeficiency virus type Ï with cellular transcription

factor Spi and trans-activation of viral long terminal repeat. J Biol Chem 270:25564-9.

375. Wang, L., S. Mukherjee, O. Narayan, and L. J. Zhao. 1996. Characterization of a

leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1.

Gene 178:7-13.

376. Watanabe, N., T. Yamaguchi, Y. Akimoto, J. B. Rattner, H. Hïrano, and H.

Nakauchi. 2000. Induction of M-phase arrest and apoptosis afier HIV-1 Vpr expression

through uncoupling of nuclear and centrosomal cycle in HeLa celis. Exp Ceil Res

258:261-9.

377. Wecker, K., N. Morellet, S. Bouaziz, and B. P. Roques. 2002. NMR structure of the

HIV-1 regulatory protein Vpr in H20/trifluoroethanol. Comparison with the Vpr N-

terminal (1-5 1) and C-terminal (52-96) domains. Eur J Biochem 269:3779-88.

194



37$. Wei, P., M. E. Garber, S. M. Fang, W. H. Fischer, and K. A. Jones. 1998. A novel

CDK9-associated C-type cyclin interacts directÎy with HIV- 1 Tat and mediates its high

affinity, Joop-specific binding to TAR RNA. Celi 92:45 1-62.

379. Weinberg, J. B., T. J. Matthews, B. R. Cullen, and M. H. Malim. 1991. Productive

human immunodeficiency virus type 1 (HIV- 1) infection of nonproliferating human

monocytes. J Exp Med 174:1477-82.

380. Welker, R., H. Hohenberg, U. Tessmer, C. Huckhagel, and H. G. Krausstich. 2000.

Biochemical and structural analysis of isolated mature cores of human immunodeficiency

virus type 1. JVirol 74:1168-77.

381. West, C. M. 2003. Evolutionary and fimctional implications of the complex

glycosylation of Skpl, a cytoplasmic/nuclear glycoprotein associated with

polyubiquitination. Celi Mol Life Sci 60:229-40.

382. Westervelt, P., T. Henkel, D. B. Trowbridge, J. Orenstein, J. Heuser, H. E.

Gendelman, and L. Ratner. 1992. Dual regulation of suent and productive infection in

monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol

66:3925-31.

383. Wilk, T., I. Gross, B. E. Gowen, T. Rutten, F. de Haas, R. Welker, H. G. Krausslich,

P. Boulanger, and S. D. Fuller. 2001. Organization of immature human

immunodeficiency virus type 1. J Virol 75:759-71.

384. WllJefts, K. E., F. Rey, I. Agostini, J. M. Navarro, Y. Baudat, R. Vigne, and J. Sire.

1999. DNA repair enzyme uracil DNA glycosylase is specifically incorporated into

human immunodeficiency virus type 1 viral particles through a Vpr-independent

mechanism. J Virol 73:1682-8.

385. Wise, R. J., P. J. Barr, P. A. Wong, M. C. Kiefer, A. J. Brake, and R. J. Kaufruan.

1990. Expression of a human proprotein processing enzyme: correct cleavage of the von

195



Willebrand factor precursor at a paired basic amino acid site. Proc Nati Acad Sci U S A

87:9378-82.

386. Wong-Staal, F., P. K. Chanda, and J. Ghrayeb. 1987. Human immunodeficiency virus:

the eighth gene. AIDS Res Hum Retroviruses 3:33-9.

387. Worobey, M., M. L. Santiago, B. F. Keele, J. B. Ndjango, J. B. Joy, B. L. Labama, A.

B. D. Dhed, A. Rambaut, P. M. Sharp, G. M. Shaw, and B. H. Hahn. 2004. Origin of

AIDS: contaminated polio vaccine theory refiited. Nature 428:820.

388. Wu, Y., and J. W. Marsh. 2003. Gene transcription in HIV infection. Microbes Infect

5:1023-7.

389. Yao, X. J., A. J. Mouland, R. A. Subbramanïan, J. Forget, N. Rougeau, D. Bergeron,

and E. A. Cohen. 1998. Vpr stimulates viral expression and induces celi killing in

human immunodeficiency virus type 1-infected dividing Jurkat T ceils. J Virol 72:4686-

93.

390. Yao, X. J., R. A. Subbramanian, N. Rougeau, F. Boisvert, D. Bergeron, and E. A.

Cohen. 1995. Mutagenic analysis ofhuman immunodeficiency virus type 1 Vpr: role ofa

predicted N-terminal aipha-helical structure in Vpr nuclear localization and virion

incorporation. J Virol 69:7032-44.

391. Yasuda, J., T. Miyao, M. Kamata, Y. Aida, and Y. Iwakura. 2001. T celi apoptosis

causes peripheral T celi depletion in mice transgenic for the HIV-1 vpr gene. Virology

285:181-92.

392. Yedavalli, V. R., and N. Ahmad. 2001. Low conservation of firnctionaÏ domains ofHIV

type I vif and vpr genes in infected mothers correlates with lack of vertical transmission.

AIDS Res Hum Retroviruses 17:911-23.

393. Yoffe, B., D. E. Lewis, B. L. Petrie, C. A. Noonan, J. L. Melnick, and F. B. Hollinger.

1987. fusion as a mediator ofcytoÏysis in mixtures ofuninfected CD4+ lymphocytes and

ceils infected by human immunodefkiency virus. Proc Nati Acad Sci U S A 84:1429-33.

196



(E 394. Yu, X., Q. C. Yu, T. H. Lee, and M. Essex. 1992. The C terminus of human

immunodeficiency virus type J mati-ix protein is involved in early steps of the virus life

cycle. J Virol 66:5667-70.

395. Yu, X., Y. Yu, B. Lin, K. Luo, W. Kong, P. Mao, and X. F. Yu. 2003. Induction of

APOBEC3G ubiquitination and degradation by an HW-1 Vif-Cu15-SCF complex.

Science 302:1056-60.

396. Yu, X., X. Yuan, Z. Matsuda, T. H. Lee, and M. Essex. 1992. The matrix protein of

human immunodeficiency virus type 1 is required for incorporation of viral envelope

protein into mature virions. J Virol 66:4966-71.

397. Yuan, H., M. Kamata, Y. M. Xie, and I. S. Chen. 2004. Increased leveJs of Wee-1

kinase in 0(2) are necessary for Vpr- and gamma irradiation-induced 0(2) an-est. J Virol

78:8183-90.

398. Yuan, H., Y. M. Xie, and I. S. Chen. 2003. Depletion ofWee-1 kinase is necessary for

both human immunodeficiency virus type I Vpr- and gamma irradiation-induced

apoptosis. J Virol 77:2063-70.

399. Zander, K., M. P. Sherman, U. Tessmer, K. Bruns, V. Wray, A. T. Prechtel, E.

Schubert, P. Henklein, J. Luban, J. Neidieman, W. C. Greene, and U. Schubert.

2003. Cyclophilin A interacts with HIV-1 Vpr and is required for its functional

expression. J Biol Chem 278:43202-13.

400. Zauti, G., D. Gibellini, D. Milani, M. Mazzonï, P. Borgatti, M. La Ptaca, and S.

Capitani. 1993. Human immunodeficiency virus type 1 Tat protein protects lymphoid,

epithelial, and neuronal ceil lines from death by apoptosis. Cancer Res 53:4481-5.

401. Zhang, H., B. Yang, R. J. Pomerantz, C. Zhang, S. C. Arunachalam, and L. Gao.

2003. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV

I DNA. Nature 424:94-8.

197



402. Zhang, H., Y. Zhang, T. Spicer, D. Henrard, and B. J. Poiesz. 1995. Nascent human

immunodeficiency virus type 1 reverse transcription occurs within an enveloped particle.

J Virol 69:3675-82.

403. Zhang, S., D. Pointer, G. Singer, Y. Feng, K. Park, and L. J. Zhao. 1998. Direct

binding to nucleic acids by Vpr ofhuman immunodeficiency virus type 1. Gene 212:1 57-

66.

404. Zhao, L. J., S. Mukherjee, and O. Narayan. 1994. Biochemicai mechanism ofHIV-I

Vpr fiinction. Specific interaction with a cellular protein. J Biol Chem 269:15577-82.

405. Zhao, L. J., L. Wang, S. Mukherjee, and O. Narayan. 1994. Biochemical mechanism

of HIV-1 Vpr firnction. Oligomerization mediated by the N-terminal domain. J Biol

Chem 269:32131-7.

406. Zhao, Y., M. Chen, B. Wang, J. Yang, R. T. Eider, X. Q. Song, M. Yu, and N. K.

Saksena. 2002. Functional conservation of HIV-1 Vpr and variability in a mother-child

pair of long-term non-progressors. Virus Res 89:103-2 1.

407. Zhao, Y., M. Yu, M. Chen, R. T. Eider, A. Yamamoto, and J. Cao. 1998. Pleiotropic

effects of HIV- I protein R (Vpr) on morphogenesis and celi survival in fission yeast and

antagonism by pentoxifylline. Virology 246:266-76.

40$. Zheng, L., Y. D. Yang, G. C. Lu, and M. S. Salvato. 2005. Extracellular HIV Tat and

Tat cysteine rich peptide increase CCR5 expression in monocytes. J Zhejiang Univ Sci 3

6:668-72.

409. Zheng, Y. H., A. Piemenitas, C. J. Fieldïng, and B. M. Peterlin. 2003. Nef increases

the synthesis of and transports cholesterol to Iipid rafts and HIV- 1 progeny virions. Proc

Nati Acad Sci U S A 100:8460-5.

410. Zhou, Y., Y. Lu, and L. Ratner. 1998. Arginine residues in the C-terminus of HIV-1

Vpr are important for nuclear localization and ceil cycle arrest. Virology 242:414-24.

19$



411. Zhou, Y., and L. Ratner. 2000. Phosphotylation ofhuman immunodeficiency virus type

1 Vpr regulates celi cycle arrest. J Virol 74:6520-7.

412. Zhu, I., B. T. Korber, A. J. Nahmias, E. Hooper, P. M. Sharp, and D. D. Ho. 1998.

An African HIV-1 sequence from 1959 and implications for the origin of the epidemic.

Nature 391:594-7.

413. Zhu, Y., H. A. Gelbard, M. Rosha), S. Purseil, B. D. Jamieson, and V. Planelles.

2001. Comparison of celi cycle arrest, transactivation, and apoptosis induced by the

simian immunodeficiency virus SIVagm and human immunodeficiency virus type 1 vpr

genes. J Virol 75:3791-801.

414. Zhn, Y., M. Roshal, F. Li, J. Blackett, and V. Planelles. 2003. Upregulation ofsuniivin

by HIV-1 Vpr. Apoptosis 8:71-9.

415. Zimmerman, E. S., J. Chen, J. L. Andersen, O. Ardon, J. L. Dehart, J. Btackett, S.

K. Choudhary, D. Camerïni, P. Nghïem, and V. Planelles. 2004. Human

immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Radl7 and Musi and

induces nuclear BRCA1 and gamma-H2AX focus formation. Mol Ceil Biol 24:9286-94.

416. Zybarth, G., H. G. Krausslich, K. Partin, and C. Carter. 1994. Proteolytic activity of

novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a

blocking mutation at the N terminus of the PR domain. J Virol 68:240-50.

199



o
APPENDIX I:

Publication I: Andrés Finzil,3, Atexandre Brunet2,3+, Yong Xiao 1,3+,Jacques Thibodeau2,3

and Éric A. cohenl,3 .MHC-II motecutes enhance HIV4 assenzbty and budding to tate

endosomaL/Muttivesicutar bodies compartments. J Virot. 2006 Oct;80(19):9789-97.

Initially I developed concept of this project together with Alexandre Brunet when we tried

to characterize Vpr is released through exosome pathway. By chance I found HW-l release

decreased in presence of MHC-II DR expression, because we used MHC-II as an exosome

marker. Then I confirmed that HIV-1 gag accumulating in the celi in presence of MHC-ll DR

expression by chemical analysis experiments. I and Alexandre did EM analysis; the EM analysis

showed that MHC-II DR enhances HIV-l assembly and budding intracellularly in MVB like

compartment. I did the first immunofluorescence experiment suggesting HIV- 1 gag and MHC-II

DR colocalized in transfected 2931 ccii, which suggesting that HIV -l may assembly in MBV

created by MHC-II DR molecule, Andres Finzi helped for the staining process for this

experiment

Publication II: Beriautt V, Ctenzent If, Levesque K, Lebet C, Xiao Y, Chabot B, Cohen EA,

Cocitrane A W, Rigby WF, MoutandAJ A tate rote for the association ofhnRNPA2 with tite

HIV4 hnRNP A2 response etements in geltomic RNA, Gag, and Vpr tocalization. IBiot Chem.

2004 Oct 1S;279(42):44141-53.

I did A2RE mutants provirus constructs with HA-Vpr for Dr Mouland AJ. Later I did the

binding experiment between Vpr and A2RE mutants proteins, I found the Gag-Vpr interaction is

not influenced by A2RE mutations which is presented in discussion section.
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Human immunodeficiency virus type 1 (11W-1) assembly, budding, and release occur mostly at the plasma
membrane in T lymphocytes as well as in established nonlymphoid cdl lines, while in macrophages these
processes occur primarily in intracellular compartments that harbor late endosomal/multivesicular body
(LE/MVB) markers, including human leukocyte antigen DR (HLA-DR). Major histocompatibility complex
class U molecules (MHC-1I), which are expressed in macrophages and activated T cells, have been previously
reported to induce the formation of multilaminar and multivesicular endocytic MHC-1I-like structures anal
ogous to MVB upon their expression in HEK 293 cells. Here, we have examined the role of MHC-11 in 11W-1
Gag targeting as well as in virus assembly and release. Expression of HLA-DR in nonlymphoid cdl lines
induced a relocation of Gag to intracellular compartments that harbored LE/MVB markers and increased the
accumulation of viral particles assembling intracellularly. Consequently, viral production and release from the
ceit surface was found to be substantially decreased in HLA-DR-expressing ceils. This process was specific,
since it vas flot observed with HLA-DR molecules lacking their cytoplasmic tails, nor with structurally related
but functionally distinct MHC-II molecules such as HLA-DM or HLA-DO. Importantly, virus released intra
cellularly in HLA-DR-expressing cells retained infectivity. Overali, these resuits suggest a role of MIIC-il
molecules in promoting HIV-1 assembly and budding to LE/MVB and raise the possibilfty that this activity
might be part of a normal pathway of virus production in ceil types physiologically expressing MHC-II
molecules, such as macrophages.

Production of retrovirus particles is a multistep process that
requires the coordinated assembly of viral structural compo
nents at a membrane budditig site. Thc human immunode0-
ciency virus type 1 (HIV-1) Gag polyprotein, p55o, plays a
central rote in viral assembly and release, since Gag expression
alone is sufficient for the production ot noninfectious virus-like
particles (16). Pr555 is composed of four domains that are
cleaved by the viral protease (PR) during the budding process
to generate matrix (MA or p17), capsid (CA or p24), nucleo
capsid (NC or p7), and p6, as well as two spacer peptides. SPi
and SP2 (12, 16). Functional domains that promote Gag bind
ing to membrane and multimerization have •been mapped in
Pr555 to the myristoylated N-terminal portion of MA and the
region spanning from the C terminus of CA to the N terminus
of NU, respectively (12, 16). p6, through its tetrapeptide
(PTAP) late motif, plays a central rote in the release of viral
particles by recruiting Tsg 101 and other components of the
endosomal sorting complex required for transport involved in
the biogenesis of multivesicularbodies (MVB) (14, 30, 49, 51).

HIV-1 bas been recently rcported to assemble and bud ei
ther at the plasma membrane or in late endosomes (LE)/MVB.
In ceils such as T lymphocytes and transformed human ccli
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unes such as HeLa and HEK 293T, the majority of virus as
sembly takes place at the plasma membrane (12, 34, 36, 46). In
contrast, in primaiy macrophages, assembly occurs primarily in
intracellular compartments that express late endosomal or
MVB markers, including major histocompatibility complex
class 11 molecules (MHC-II), such as human leukocyte antigen
DR (HLA-DR), CD63, and Lampl (33, 38, 40, 42). However,
the mechanism governing whether virus release occurs via in
ternaI or plasma membranes remains poorly understood. In
terestingly, several reports have established that in addition to
directing Gag membrane binding, the HIV MA domain regu
lates the targeting of Gag to the site of virus assemhly (7, 9, 13,
18, 37). On the other hand, the cell-type-dependent nature of
HIV-1 assembly subcellular location strongiy suggests that in
addition to viral determinants, host celI factors must also play
an active role in determining whether HIV-1 particle assembly
and release occurs at the plasma membrane or in LE/MVB.
However, the identity of cellular factors promoting HIV-1 tar
geting to LE/MVB remains to be defined.

Interestingly, MHC-11 molecules, which are expressed in
macrophages and activated T cells, have been previously te
ported to induce the formation of CD63/Lampl-positive mul
tilaminar and multivesicular endocytic structures, reminiscent
of MHC-1I-enriched compartments (MIIC), upon their ectopic
expression in HEK 293 celis (4). Interestingly, the transmem
brune and cytoplasmic tails of the class II u and p chains wcre
found necessaiy for the induction of these prototypical
MHC-11 endocytic compartments in HEK 293 celis, indicating
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that MHC-11 molecules contain information critical for the
formation or maturation of MHC-II-like compartments. Since
HIV-1 particles preferentially assemble at the plasma mem
brane in HEK 293T cells (18, 46), we investigated the impact
of MHC-I1 expression on Gag localization as well as on assem
bly and release of HIV-1 particles. Our results suggest that
expression of classical MHC-II molecules promotes assembly
and budding of infectious HIV-1 to LE/MVB in a process that
implicates the cytoplasmic domain of the cx and chains of
MHC-II. These findings shed light on host ccli factors govern
ing the cell-type-dependent subcellular location of HIV-1 as
sembly and budding and reveal a novel effcct of MHC-I1 mol
ecuies on HIV-1 replication and persistence.

MATERIALS AND METIIODS

CeNs and plasmids. HEK 2931, l-leLa-CD4-LTR-0-Gal (25), HeLa DR1
(DRu + DROC]101) (43), and HeLa DRnTM/DRISTM (19) cells were main
tained as described elsesvhere (25). The 1-11V-l molecular clone HxBc2 (24) and
the MHC-ll expression plasmids, including pBud-DO, pBud-DM (10), and
pLNCX-DQ (19), were previously described. For the bicistronic pBud-DR con
struct, cDNAs encoding Oie DRu and DRÇI chains svere cloned into the
pBudCE4-amp vector. A BamI-li DR fragment originating from pBSDRp was
cloned into pBudCE4 (pBudCE4-amp DRp), and a BamHl fragment encoding
the DRu chain was cloned into the Bgl Il site of pBudCE4-amp DRp. For
experiments svhere the TM[FM mutant svas included, the follosving plasmids

used: RSV.5 DRix, RSV.3 DRf3, RSV.5 DRuTM, and RSV.3 DRTM
(19).

Transtections, immunoprecipitation, and viral release. Transfections svere
performed as descnhed previously (52). Immunoprecipitations svere donc using
a mix of human anti-HIV serum together with a monoclonal anti-p24 antibody
(Ah), as descrihed elsewhere (52). For pulse-labeling experiments, transfectants
svere metabolically labeled svith 1 mCi/ml [3xS]methionine_cysleine ([35S] protein
labeling mix; Perkin-Elmer) in Dulbecco’s modified Eagle’s medium lacking
methionine and cysteine and supplemented svith Stk dialyzed fetal bovine serum
for 2 h. Viral release was calculated as descrihed elsesvhere (35). For pulse-chase
experiments, cells were metaholically labeled for 30 min as descrihed above and
chased for different lime inteiwals in Dulhecco’s modified Eagle’s medium con
laining an excess of unlaheled methionine and cysteine. Viral release ivas calcu
lated as the amount of virion-associated Gag as a fraction of total (ccli plus
virion) Gag synthesized during 30 min of Oie metaholic labeling period (0-h
chase).

Antibodies and immunostaining. The follosving antibodies svere used: L243
(immunoglohuhn G2a [lgG2a]), a murine monoclonal antibody that hinds a
specihc HLA-DRrx conformational determinant dependent on the correct con
formation of the u/0 heterodimer (39); mouse monoclonal antihody (IgGi),
which recognizes p17 but flot p55m5 (catalog no. KB-$975) and mouse mono
clonal anti-p24 (catalog no. KB-9725), isolated from supernatancs of cultured
hybridoma cells ohtained from the American Type Culture Collection (Manas
sas, VA); rahhit anti-p24 polyclonal antibody (catalog no. 4250; NIH AIDS
Research and Reference Reagent Program); the anti-HIV-l serum (no. 162),
obtained from an HIV-l-infected individual svhose serum tested positive for the
presence of l-11V-1 antihodies hy enzyme-linked immunosorbent assay (25);
mouse anti-Camp-1 (H5GII; IgGl; Santa Cruz Biotechnology, Santa Cruz, CA);
anti-CD63 (H5C6; IgGi; l-lyhridoma Bank, N1CI-lD, University of losva); mouse
anti-lysohisphosphatidic acid (LBPA) monoclonal antihody (22), a kind gift from
J. Gruenberg (University of Geneva, Geneva, Ssvitzerland); and rabhit polyclonal
anti-human class II alpha chain serum (31), ix kind gift from J. Neefjes (Neth
erlands Cancer Institute). Alexa 4$8-conjugatcd anti-rahbit lgG, Alexa 594-
conjugated anti-mouse lgG, Alexa 4$$-conjugated anti-mouse IgGi, and Alexa
594-conjugated anti-mousc lgG2 avere ohtained from Molccular Probes (BurI
ington, ON, Canada). Immunostaining was performed on 5 X i0 HEK 2931 or
3 X 10’ 1-leLa relis as follows: transfected cdlx avere rinscd once svith phosphate
huffered saline (PBS), cylospun for 4 min at 1,100 rpm in a Cytospin 2 (Shan
don), and fixed with 4% parafonnaldehyde for 30 min. HeLa ceils wcre dircctly
6xcd in chamhcrcd covcrglasscs, where they werc plated 24 h before. AIl pro
cedures svere carried out at room temperature unless othenvise indicated. Fol
losving a wash with PBS, fixed cclls wcrc pcrmcabilizcd with PBS containing 0.2%
Triton X-100 for 10 min. follosved l’y an additional svashing svith PBS. Subse
quently, celis svere incubated in PBS conlaining 50 mM ammonium chloride for

10 min and exposcd to primai-y antihodies diluted appropriatcly in 2% bovine
serum albumin in PBS for 2 h at 37CC. Folloaving three washes svi[h PBS, celis
were next incubated for 40 min svith an appropriate secondai-y antihody diluted
in PBS. Nuclei were then stained svith 4’,6’-diamidino-2-phenylindolc forS min.
Aftcr cxtdnsivc washing, ceils svcrc mounted with Pcrmount (fisher Scientific,
Ottawa, ON, Canada) and examined by conventional epifluorescence micro
graphs on a Zeiss Ccli Observer system (Zeiss, Toronto, ON, Canada) equipped
with an Axiovert 200 M microscope using the bOX ofl lens. Images svere digitally
deconvoluted with the AxioVision 3.1 software using the nearest-neighbor de-
convolution mcthod. Flosv cytometiy analysis svas performed as described pre
viousty (3).

Cell-associated infectivity and Pr55i processing. HEK 293T cells (3 X 10)
were cotransfected with 1.6 p.g of HxBc2 provirus together svith 0.8 p.g of empty
or HLA-DR vectors and svashed 16h later. Twenty-four hours posttransfection,
indinavir sulfate (lyS; 10 p.M; catalog no. $145; Nl1-I AIDS Research and
Reference Reagent Program) was added to the culture medium 10 inhihit infec
tivity of newly produced virus. Forty-eight hours posttransfection, celis svere
extensively svashed in PBS and either lysed in RIPA buifer (5% of cclix) or
homogenized (95% of ceils) in homogenization buffer (0.25 M sucrose, 7$ mM
KCI, 4 mM MgCI,, 8.4 mM CaCi2, 10 mM EGTA, 5t) mM 1-IEPES-NaOH pH
7.0) during 60 s using a pellet pestle with a cordless motor (Kontes, Vineland,
Ni). Homogenates svere centrifugcd al 1,000 X g forS min to peilet nucici and
any ccli dehria Evaluation of ccli lysis cfficiency avas accomplishcd by measuring
-hexosaminidase activity in pellets and supernatants using 4-methyl-umbel-
liferyI-N-acetyl--o-glucosaminc (Sigma-Aldrich, Oakville, ON, Canada) as de
scribcd elsewhere (50). Infectivity of virus present in postnuclear supernatants
(PNS) svas assessed by MAGI assay (20). Each sample svas analyzed in dupiicate.
0f note, IVS treatment involved not only a 24-h exposure of transfected relis to
Ihe drug but aiso maintenance of IVS during PBS washes, the homogenization
step, and infection of MAGI (HeLa-CD4-LTR--Gal) ceils. Lysed celis avere
analyzed for Gag polyprotein precursor processing by Western blotling fixing the
mouse monoclonal anti-p24 antihody as described previously (25).

Electron microscopy. Ccli pelleta tvcre tixed in 25% glutaraldchydc in 0.1 M
cacodylate buffer. Postflxation of ccli pelleta avas performed using 2% 0x0., in
s-cothdinc buffer for 2 h at 2EC. Pellets avere dehydrated in an acetone sertes
before embedding and polymerization in SPURR resin. Thin sectioning mas
donc svith an ultramicrotome system (Ultrotome 2128, LKB, Ssvcden), and the
sections svere placed on copper-Formvar-carhon-coated grids. Ceils avere stained
svith 5% uranyi acetate in 50% ethanol and lead citrate (pH 12.0). For immu
nogold siaining, ccli pelleta were tixed in 0.1% glutaraldehyde—4% paraforniai
dehyde in 0.1 M cacodylate buffer. Pellet dehydration, polymerization, and thin
sectioning werc performed as described above, and the sections svere piaced on
nickcl-Formvar-carhon-coated grids. Cells svere taheled svith a rahhit polyclonal
anti-human class il serum (31) followed by incubation svith a goat anti-rabbit
antibody coupled to 12-nm gold beads before staining using 5% uranyl acetate in
50% ethanol and lead citrate (pH 12.0). TIse grids were examined on ix trans
mission electron microscope (Hitachi 7100; Japan).

RESULIS

HLA-DR expression induces a relocation of HIV-1 Gag to
LE/MVB. Expression of the cx and f3 chains of MHC-II mole-
cules in HEK 293 cells was found to be sufficient ta induce the
formation of multilameilar and multivesicular MIIC (4). To
examine whether MHC-I1 molecules could affect Gag localiza
tion, HEK 293T cells were cotransfected with the HIV-1 ma
lecular clone HxBc2 together with expression plasmids encod
ing the cx and f3 chains of HLA-DR or an empty vector. In the
absence of HLA-DR, the majority of Gag, as visualized with an
anti-p24 antibody, was detected as diffuse cytoplasmic and ccli
membrane staining (Fig. lA). In contrast, Gag-positive ceils
cxpressing HLA-DR oftcn displaycd a markcd modification of
Gag locahzation, with Gag staining accumulating in large in
tracellular vesicles (fig. lB). Interestingly, these intracellular
Gag-containing vesicles were also HLA-DR positive (Fig. I B,
merge).

Since we were abie to differentiate betwcen diffuse and large
punctuate Gag staining (Fig. lA and B, respectively), we quan
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FIG. 1. HLA-DR induces Gag accumulation in intracellular compartments in HEK 2931 cells. FIEK 2931 cells were cotransfected with the
HxBc2 provirus together tvith empty or HLA-DR vectors and analyzed 48 h later hy immunofluorescence microscopy using a polyclonal anti-p24
and the monoclonal L243 HLA-DR Abs. (A) In the absence of HLA-DR, Gag displays a diffuse staining. (B) HLA-DR redirects Gag to large
intracytoplasmic vesicles (punctuate staining), where it colocalizes with HLA-DR. (C) Quantification of Gag-associated staining. The number ot
cells displaying a diffuse versus punctuate Gag staining tvas evaluated in 200 cells per sample. Data shown represent the average of at least 25
independent experiments ± the standard deviation. (D) HLA-DR redirects Gag from a diffuse to a punctuate staining in a dose-dependent fashion.
Data are representative of four independent experiments.

liiied the extent o! Gag relocalization induced hy HLA-DR in
ccli transfectants (fig. 1C). In the absence of HL.A-DR, 80 to
90% of celis showed a diffuse Gag staïning, whlle less than 20%
displayed a punctuate Gag staining. Converseiy, upon
HLA-DR expression, a punctuate Gag staining was detected in
approximateiy 50% of the cells, most probabiy those express
ing higher levels of HLA-DR. lndeed, the effect of HLA-DR
expression on Gag iocalïzation in intracellular vesicles was
dose dependent (Fig. YD). Importantiy, however, levels of
HLA-DR expression tequired to induce Gag relocalization to
intraccilular vesieics (fig. 1) were comparable to those de
tected in activated primaiy monocyte-derived macrophages
(data not shown). Finaily, to examine whcther the effect of
HLA-DR on I-11V-1 Gag iocalization was restricted to the
classical MHC-II molecules, such as HLA-DR and -DQ, or
was also shared with other structurally related MHC-II pro
teins, such as HLA-DM and -DO (nonclassical MHC-II mol
ecules), we tested the impact of their expression on Gag local
ization. HLA-DM is expressed in late endosomal/lysosomal
compartments, inciuding MVB and muitilamellar compart
ments (28, 44), while HLA-DO resides in the endoplasmic
reticulum when expressed by itself in transfected cells (26);
neither HLA-DM nor -DO displayed any effect on Gag local
ization, while HLA-DQ partially rccapitulated the effect of
HLA-DR (Fig. 2).

b further characterize the nature of the intracellular com
partments where Gag aceumulates in the presence of HLA
DR, we performed costaining experiments with antibodies di-

rected against late endocytic markers. These experiments
revealed that Gag-containing intracellular vesicies tvere posi
tive for LE or MVB markers HLA-DR, Lampi, CD63, and
LBPA, a hpid found in the internai membranes of MVB (22)
(Fig. 13 and 3A toC, respeetively). Beeause results so far were

Mock [)R DQ 0M DO
FIG. 2. Classical MHC-II molecules rcdirect Gag to intracellular

compartments. HEK 2931 cells were transfected with the proviral
construct FIxBc2 md plasmids encoding Ml-lC-lI-related molecules,
including HLA-DR, -DQ, -DM, or -DO, and analyzed for Gag local
ization by immunostaining and fluorescence mieroscopy using a rabbit
polyclonal anti-p24 antibody. Diffuse or punetuale Gag-associated
staining patterns werc quantifled in 200 ceils per sample. Data shown
are means ± standard deviations of two independent experiments.
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A B C

FIG. 3. HLA-DR redirects Gag to LE/MVB in HEK 293T celis. HEK 293T cells were transfected with the proviral construct HxBc2, together
with t-ILA-DR or cmpty vector. Gag and MVB markers were detected hy immunofluorescence rnicroscopy 48 h later using a rahhit polyclonal
anti-p24 antibody together with monoclonal antibodies against MVB markers. In the absence of HLA-DR, Gag shows primarily a diffuse staining
(left panels of A. B. and C). Upon HLA-DR expression, Gag accumulates into Lampi-positive (A), CD63-positive (B), and LBPA-positive
(C) compartments (right panels).

Q
obtained in a transient expression system where proteins are
overexpressed, we also examined the effect of HLA-DR ex
pression on Gag relocalization in HeLa cells stably expressing
HLA-DR (Fig. 4A). Given that previous evidcnce suggested

that the cytosolic domain of MHC-II molecules might be im
plicated in the induction of MHC-II-Iike compartments (4), we
also analyzed Gag localization in HeLa cells stably expressing
a truncated form of HLA-DR that lacks the cytoplasmic tails of

A B

HeLa

HeLa-DR

HeLa-TM/TM

J

HLA-DR expression

FIG. 4. Stable HLA-DR expression in HeLa cells induces Gag accumulation into FILA-DR-positive intracellular vesicles. Parental, HLA-DR-,
or TM/TM-expressing HeLa cells were transfected with the infectious molccular clone HxBc2. Gag and HLA-DR were detected by immuno

G staining and fluorescence microscopy using mouse monoclonal anti-p17 (MA) and anti-HLA-DR (1243) Abs. (A) In parental HeLa cells, Gag is
localizcd at the plasma membrane, whereas in HLA-DR-cxpressing cells. Gag is predominantly detected in vesicles at the perinuclear rcgion.
lmportantly, stable TM[fM expression did not rnodifv Gag localization. (B) f low cytometrv analysis of total HLA-DR expression in cells depicted
in panel A using the L243 anti-I-ILA-DR monoclonal Ah. Black line, HeLa cells; red line, HeLa-DR ceNs; blue line, HeLa-TM[FM cells.
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the Œ and 3 chains (TMtFM). HLA-DR-expressing celi unes
were transfected with the HxBc2 provirus and analyzed 48 h
later by immunofluorescence microscopy, using an antibody
that recognizes mature p17 (but flot the MA domain in the
context of Pr55) and an anti-HLA-DR antibody. Given that
most processed MA is found associated with mature viral par
ticles (16). the MA signal obtained with the anti-p17 antibody,
in ail likclihood, represents sites at which viral assembly occurs.
In parental HeLa cells as well as in TM/TM ceils, the majority
of the MA signal was observed at the celI peripherv on the
plasma membrane (Fig. 4A), even though TM/TM molecules
have been dctected in intracellular vesiclcs that stained posi
tive for MVB markers (A. Finzi and E. A. Cohen, unpublished
data). In contrast, in HLA-DR-expressing celis, we observed a
clear redistribution of MA staining to intracellular vesicles,
where it colocalized with HLA-DR (Fig. 4A). Importantly,
both HeLa-DR and HeLa-TM/TM expressed similar amounts
of class II molecules as measured by flotv cytometry (Fig. 4B).

Together, these rcsults suggest that ectopic MHC-II expres
sion in human nonlymphoid ccli unes induces a redirection of
HIV-l Gag localization and assembly from the plasma mem
brane to MHC-II-containing LE/MVB. This effect is restricted
to classical MHC-II molecules, such as HLA-DR and -DQ
and, importantly, appears to involve the cytoplasmic domains
of the u and (3 chains.

111V-1 particles accumulate into intracellular compart
ments in MHC-II-expressing HEK 293T ceils. To obtain ad
ditional evidence that HLA-DR expression promotes HIV-1

O particle assembly and budding in intraceliular compartments,
tve performed electron microscopy analysis on HEK 293T celis
transfected with HxBc2 alone or cotransfected with vectors
encoding HLA-DR or the TMTfM mutant (Fig. 5). In HEK
293T cells transfected with HxBc2 alone or cotransfected with
TMFFM, viral particie budding vas observed predominantly at
the plasma membrane (Fig. 5A and D and 5C and F, respec
tively). In HLA-DR-expressing celis, mature virions with typ
ical condensed cores were observed in the lumen of large
intracellular vesicles (Fig. 58 and E and 5G and H). Viral
particles in the process of budding were aiso seen on the
limiting membrane of these enlarged intracellular vesicles (Fig.
5G and H). Furthermore, immunogold staining experiments
using an anti-HLA-DR antibody clearly revealed that the in
ternaI vesicles containing mature virions and budding viral
particles stained positive for HLA-DR (Fig. 5H).

Effect of HIÀ-DR expression on 11W-1 production. Having
obtained evidence suggesting that HLA-DR expression pro
motes assembly and budding of HIV-1 particles to LE!MVB in
HEK 2931 cefls. we next examined the impact of this reloca
tion on HIV-1 particle production. HEK 293T cells were singly
transfccted with HxRc2 or cotransfectcd with expression vec
tors encoding HLA-DR or related molecules. Ceils were pulse
labeled for 2 h, 48 h posttransfection, and cell and virus Gag
associated proteins wcre analyzcd by immunoprecipitation
(fig. 6A). In transfected ccli cultures expressing HLA-DR,
virus release vas reduced by two- to threefold compared to the
mock-transfected control (Fig. 6A and B). In contrast, in TM/

Q
TM-, HLA-DM-, or HLA-DO-expressing cells. viral release
efficiency was unaffected (Fig. 6A and B) (Finzi and Cohen,
unpublished). Importantly, the observed impact of HLA-DR
on HIV-1 release was flot due to any marked defect at the level

FIG. 5. Mature and hudding 1-11V-I particles accumulate in intra
cellular compartments upon HLA-DR expression. HEK 293T cells
were cotransfected with HxBc2 and empty, HLA-DR, or TMtfM
vectors and observed by transmission electron microscopy (A to G) or
processed for immunogold staining with a rabhit polyclonal anti-HLA
DRu Ab (H). In mock- or TM[FM-transfected cetls, HIV-1 assembles
at the plasma membrane (A and C, respectively). (B) HLA-DR ex
pression induces accumulation of mature and budding 111V-1 partictes
into largc intracellular compartmcnts. (D to F) Magnificd vicws from
regions indicated in panels A 10 C, respectively. (G) Magnified view of
intracellular HIV-1 -containing compartmenls in 1-ILA-DR-expressing
cells. (H) HIV-1 particles accumulate into HLA-DR-positive compart
ments. Empty arrows indicate budding virus, whereas solid arrows
indicate mature virus. Bar, 300 nm (A), 500 nm (B), 400 nm (C), or 100
nm (D 10 F1).

of Gag precursor processing, since measurements of Gag pre
cursor cleavage in pulse-chase labehng/immunoprecipitation
experimcnts revealed that the Pr55 processing kinetics was
identical in cells expressing HLA-DR and in the negative con
trol (Fig. 6C and D). These results suggest that expression of
MHC-II molecuies, such as HLA-DR, can modulate viral re
lease cfficiency.

Interestingly, when we analyzed both quantitatively and
qualitatively ccli- and virus-associated Gag-related products by
pulse-chase labeling and immunoprecipitation experiments, we
started detecting a reduction of viral release in HLA-DR
expressing cells as carly as 1 h postchase. This reduction in viral
release efflciency svas observed throughout the 24-h chase pe
riod. with a peak bctween 5 and 12 h; during that lime interval,
HLA-DR-expressing cells were found to release approximatety
twofold less virus than control celis (f ig. 6C and E). Interest
ingly, this reduction in viral release efficiencywas accompanied
by a change in the p24/p25 ratio accumulating in HLA-DR
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expressing celis; quantitative analysis over several experiments
revealed that there was 1.5 to 2.0 times more p24 relative to
p25 in HLA-DR-expressing cells than control cells (Fig. 6C;
compare p24 and p25 levels between HLA-DR and -DR
ceils). These results indicate that even though CA is accumu
lating intracellularly in HLA-DR-expressing cells, it is being
processed in a mature form usual]y found associated with ma
ture viral particles. Overall, these results are consistent with
our tindings suggesting that expression of MHC-1I molecules
in HIV-producing cells leads to increased assembly and hud
ding of mature viral particlcs in LE/MVB.

Infectivity of viral particles assembling intracellu]arly in the
presence of HLA-DR. We next evaluated whether virions as
sembling intracellularly upon HLA-DR expression retained
their infectivity. This is particularly important given that spe
cille cndosomal compartmcnts arc known to undcrgo acidifi
cation, a process that inactivates HIV infectivity (11). and
participate in the degradation pathway that leads to lysosomes
(17). To address this question, we adapted a recently described
strategy that was used to evaluate the infectious stability of
virions that assemble intracellularly in primary macrophages
(45). This approach uti]izes suprainhibitoiy concentrations (10
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FIG. 6. HLA-DR expression decreases HIV-1 release. (A) HEK 293T celis were mock transfected (M) or cotransfected with piasmids encoding
HLA-DR (DR+), TMtFM (TM), or empty vector (DR-) together with the HxBc2 provirus. Two days after transfection, cells were metabolically
Iabeled with [3’S]Met-Cys for 2 h, and Gag-associated products in cdl and virion lysates were immunoprecipitated using a mix of human anti-HIV
serum togethcr with a monoclonal anti-p24 Ah. (B) Quantitation of virus release efficiency. Data shown represent the average of at least four
independent experiments ± the standard deviation. (C) Analysis of viral release kinetics by puise-chase labeling analysis. Ccli and virion lysates
from HLA-DR and HLA-DR ceils were immunoprecipitated as for panel A after a 30-min metabolie labeling with [3SjMet-ys or at different
chase time intervais. (D) Gag preeursor processing is represented as the percentage of p5500-ussociated signal recovered from ccli lysates after
puise-chose analysis as described for panel C. p55sasassociated signal after 30 min of labeling (0-h chose) tvas arbitrarily set to 100%. Data shown
represent the average of five independent experiments ± the standard deviation. (E) Quantitation of viral release kinetics. Data from two
independent experiments were quantified using a Phosphorlmager equipped with ImageQuant software 5.0 and are shown as means ± standard
deviations. Viral release efficiency was calculated as descrihed in Materials and Methods. Gray lines, HLA-DR-expressing eells; black lines.
HLA-DR-negative cells.



Vol.. 80, 2006 MHC-II PROMOTES HIV-1 ASSEMBLY AND BUDDING TO MVB 9795

0W

‘l2li

)lfl)

. -H)

+ - + - + - +

- + + -
- + +

-
- + + + +

p.M) of the protease inhibitor IVS to b]ock de novo production
of infectious particles. In the presence of 10 iM lyS, process
ing of p55gag is completely inhibited and virus particles that
are produced are immature and hence noninfectious (45; Finzi
and Cohen, unpubïished). Conscquently, infectious virus re
covered from HIV-1-producing celis fo]lowing lyS treatment
should be formed prior to addition of the inhibitor. HEK 293T

G
celis cotransfccted with RxBc2 provirus and HLA-DR or
empty vectors were allowed to produce infectious virus for 24 h
prior to addition of IVS. Celis were homogenized and frac
tionatcd 24 h later to analyze ce]]-associated infectivity as de-

scribed in Materials and Methods. Since ccli disruption could
affect recovery of the intracellular pool of virus, PNS and pellet
fractions were analyzed for 3-hexosaminidase activity as a
marker for ccli lysis and endocytic organelie disruption (23)
(Fig. 7A). Consistent with the accumulation of intraceilular
viral particles (fig. 5 and 6), untreated HLA-DR-cxpressing
celis displayed more infectious activity (1.6-fold increase) in
their PNS comparcd to control ceils (Fig. 7B). lyS treatment
drasticafly reduced intracellular infectious activity in control
cells, thus suggesting that the bulk of cell-associated infectious
ac[ivity produced during the hrst 24 h posttransfection (before
adding IVS) was efticiently released in the extracellular me
dium in absence of HLA-DR. Nevertheless, some infcctious
activity (14%) vas stili detectahie in PNS and most probably
represents the background HIV-1 intracellular assembly de
tected in HEK 293T ceils (fig. 1 and 7C). Remarkably, lyS
treated HLA-DR-expressing cells retained four times more
infectious activity in their PNS than control cells (57% versus
14%) (fig. 7B). lnterestingly, analysis of 3-hexosaminidase
activity releascd in PNS was found to be comparable between
HLA-DR transfectants and control ceils (Fig. 7A), thus mdi
cating that differences observed in intracellular infectious ac
tivity cannot be attributed to variations in ccli disruption effi
ciency. Furthermore, analysis of Gag processing in untreated
or IVS-trcatcd cells supported our observation that MHC-Il
molecuies enhanced accumulation of mature virus particles
into intracellular compartments (fig. 7C). In the presence of
lyS, as expected, there was a clear inhibition of Gag process
ing, as visualized by the decreased levels of p25124 cleavage
products and increased accumulation of p55 (fig. 7C; com
pare lanes 1 and 2 and lanes 3 and 4). Strikingly, the inhibitory
effect of IVS on Gag processing vas iess efficient in HLA-DR
transfectants than in contrnl celis, as evidenced by the marked
accumulation of p251p24 (two- to threefold increase) in HLA
DR’ ceils relative to the control (Fig. 7C, compare lanes 4 and
2). These completeiy processed intracellular Gag products, by
definition, had to he produced during the 24-h time interval
before addition of the drug.

Aitogether, these resuits provide additional evidencc mdi
cating that mature virus particles aceumulate more efficiently
into intracellular compartments in the presence of HLA-DR
and demonstrate that virions released intracellularly within
HLA-DR-expressing ceils retain their infectivity potential.

DISCUSSION

In this study, we examined the role of MHC-II molecules in
HÏV-1 Gag targeting as weIl as in virus assembly and release.
Ectopic expression of classical MHC-1I molecules, such as
HLA-DR and -DQ, in nonlymphoid ccli unes was found to
promote Gag relocation to intracellular compartments that
contained late endosomal and MVB markers (fig. 1 to 3), in a
process that strictiy reiied on the presence of the cytoplasmic
taits of the and 3 chains of MHC-II moleculcs (Fig. 4 and 5).
This MHC-1l-mediated relocalization of Gag correlated with
an increased accumulation of mature viral particles in intra
cellular compartments (Fig. 5) and, as a consequence, resulted
in decreased virus production and release from the ccli surface
(Fig. 6). Importantly, viral particles assembling intraceilularly
in HL.A-DR-expressing celis retained their infectivity (fig. 7).
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FIG. 7. Virions assembling intracellularly in the prescnce of
l-ILA-DR remain infectious. HEK 293T ceils were cotransfectcd with
I-lxBc2 provirus and cmpty or I-ILA-DR vectors. IVS (10 iM) was
added to the culture medium 24 h posttransfection to bock production
of new infectious virus. Ces were homogenized 24 h later, and ccH
distuption efficiency was determined by measuring -hexosaminidase
activity in peflets (Olled bars) and PNS (empty bars) as descrihcd in
Materials and Methods (A). lnfectious activity svas assessed in the PNS
by MAGI assay (B). Data shown represent the average 0f two mdc-
pendent experiments ± the standard deviation. In parallel, Gag pro
cessing in each transfectant vas analyzed by Western blotting using a
monoclonal anti-p24 Ab (C). Data shown are representative of six
indepcndent experiments.
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Together, these resuits provide evidence suggesting that
MHC-II molecules promote assembly and budding of infec
tious l-11V-1 virions to LE/MVB and raise the possibility that
this process might be part of a normal pathway of VirUS pro
duction in cell types physiologically expressing MRC-II mole
cules, such as macrophages.

HIV-1 Gag contains motifs that are critical for its transport
to the plasma membrane (36) and for interaction with LEI
MVB (7, 27). Furthermore, recent evidence indicates that the
celI-type-dependent targeting of HIV-1 assembly to the plasma
membrane or LEIMVB can also be regulated by host celi
factors. For instance, the human ubiquitin ligase POSH, a
trans-Golgi network-associated protein (1), and more recently
phosphatidylinositol (4,5)biphosphate [P1(4,5)P,J, a member
of thc phosphoinositide family of lipids concentrated primarily
on the cytoplasmic leaflet of the plasma membrane (35, 48),
were found to regulate HIV-1 Gag targeting to the plasma
membrane, such that depleting hPOSH or cellular PI(4,5)P,
redirected virus assembly from the plasma membrane to IE
and inhibited virus release. lnterestingly, in the case of
MHC-11 molecules, it is the expression of a host celi factor
physiologically expressed in macrophages that relocalizes Gag
and viral assembly to LEIMVB in HeL.a or HEK 293T cells.
Nevertheless, MHC-1I-mediated relocation of viral assembly
to LE/MVB in HEK 293T cel]s resulted in a reduction of virus
release, as has been reported for hPOSH or cellular
([PI(4,5)P2J depletion.

How does expression of ciass 11 molecules result in a marked
accumulation of HIV-J into LEIMVB? One possibiiity is that
MHC-II molecules interact with a structural component of
HIV and retarget a fraction of viral assembly to intracellular
compartments following their transit into the endocytic path
way. MHC-II molecules, such as HLA-DR, have been reported
to be prcsent at the surface of the HIV-1 virion (5, 6) and,
based on a previous study, Env gp4l appears to be required for
efficient insertion of HLA-DR molecules vithin HIV-1 (41).
The mechanism underlying MHC-1I-mediated relocalization
of HIV-1 assembly and budding does not appear to invoive an
interaction between the viral envelope and HLA-DR, sincc the
effect of HLA-DR on Gag relocalization and viral particle
production was observed with proviral constructs lacking Env
(Finzi and Cohen, unpublished). Although this reditection
could also resuit from an interaction of Gag with HLA-DR, we
were unable to detect any specific interaction hetween these
molccciles in coimmunoprecipitation experiments (Finzi and
Cohen, unpublished). However. the lack of physical interaction
between HLA-DR and Gag does flot preclude the possibility
that the two molecules can interact functionally. In fact, it was
rcported that Gag can affect HLA-DR traDicking (15). In this
study. Gag expression was shown to be sufficient to speciflcally
restore defective transport of HLA-DR from intracellular
compartments to the ccli surface in a subclonc of the HUT7$
human T-cell line, suggesting that at some point Gag and
HLA-DR share the same trafficking pathway. Interestingly, it
vas reported that a significant pool of MHC-II molecules traf
fie to endosomal-lysosomal compartments by means of the cdl
surface (8, 29). Consequently, it is therefore possible that
MHC-1I-induced relocahzation of Gag into LEIMVB and sub
sequent accumulation of mature viral particles in these intra
cellular compartments couid result from an increased internaI-

ization of virions from the plasma membrane mediated by
HLA-DR rather than an enhanced targeting of Gag to LEI
MVB. Interestingly, a recent report indicates that expression
of a dominant negative form of dynamin (K44A), known to
inhihit clathrin-mediated endocytosis (47), prevented the ac
cumulation of Gag at intracellular sites in the absence of Vpu
in HeLa cells (32). Mthough our preliminary data indicate that
the effect of HLA-DR on viral release was not affected by
K44A expression, we did observe a partial reduction of Gag
relocalization to intracellular compartments under these con
ditions (Finzi and Cohen, unpublished), thus suggesting that a
pool of Gag retargeted by HLA-DR could be plasma mem
brane associated. Importantly, however, since Gag relocation
to intracellular compartments could flot be completely abol
ished upon K44A expression, this suggests that HL.A-DR may
also affect the ceflular localization of Gag by enhancing its
direct targeting to MVB.

Indeed, an alternative but not exclusive model to explain the
effect of MHC-I1 molecules on HIV-1 assembiy and budding to
intracellular compartments postulates that expression of
MHC-II may contribute to the formation or maturation of
compartments to which Gag molecules would be targeted.
Importantly, expression of MHC-1I molecules, such as HLA
DR, in HFK 293 cells was found to be sufficient to induce a
MIIC-like structure having a multilamellar and multivesicuiar
morphology and expressing CD63 and Lampi (4). Both types
of structures were proposed to reflect different maturation
states of MIIC (21). One might envision that formation and/or
maturation of MIIC-like compartments by MHC-II in HEK
293T cclls may provide additional internat membrane plat
forms toward which Gag can be targeted for assembly and
budding. Interestingly, treatment of Ui promonocytic cells
with gamma interferon, a strong upregulator of MHC-H ex
pression, was found to significantty increase the redirection of
virus assembly from the plasma membrane to intracytoplasmic
vcsicles (2). More studies are required to fully understand the
precise mechanism underiying thc effect of MHC-11 molecules
on HIV-1 assembly and release. Furthcrmore, experiments
aimed at depleting MHC-II molecules are currently in progrcss
to etucidate whether MHC-II influences Gag targeting and
assembly to MVB in primary macrophages and as such consti
tutes a cellular determinant governing HIV-1 production and
egrcss in this cdl type.
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Two cis-acting RNA trafficking sequences (heteroge
nous ribonucleoprotein A2 (hnRNP A2)-response ele
ments 1 and 2 or A2RE-1 and A2RE-2) have been identi
fied in 11W-1 vpr and gag mRNAs and were found to
confer cytoplasmic RNA trafficking in a murine oligo
dendrocyte assay. Their activities were assessed during
11W-1 proviral gene expression in COS7 celis. Single
point mutations that were shown to severely block RNA
trafficking were introduced into each of the A2REs. In
both cases, this resulted in a marked decrease in hnRNP
A2 binding to 111V-1 genomic RNA in whole celi extracts
and hnRNP A2-containing polysomes. This also resulted
in an accumulation of HW-1 genomic RNA in the nu
cleus and a significant reduction in genomic RNA encap
sidation levels. Immunofluorescence analyses revealed
altered expression patterns for pr5500C and particularly
that for Vpr. Vpr localization became almost completely
nuclear and this was reflected in a significant reduction
in virion-associated Vpr levels. These effects coincided
with late steps of the viral replication cycle and were
not seen at early time points post-transfection. Tran
scription, splicing, steady state RNA levels, and pr55°”°
processing were not affected. On the other hand, viral
replication was markedly compromised in A2RE-2 mu
tant viruses and this correlated with lowered genomic
RNA encapsidation levels. These data reveal new in
sights into the virus-host interactions between hnRNP
A2 and the 11W-1 A2REs and their influence on the pat
terns of 11W-1 gene expression and viral assembly.

This wark was supparted by grants fram the Cunadian Faundatian
far MilS Resunrch (ta A.J. M.), the Canadian Faundotian far Innova
tion (ta A. J. Mi, and grants fram the Canadian Institutes af Health
Research (CIHR) (ta A. J. M., A. W. C., B. C., and E. A. C.) and a Na
tional Institutes af Health Grant (ta W. F. C. R). The casts af publicu
tian of this article were defrayed in part by the payment af page
charges. This article must therefare ho hereby marked “adverfisement”
in accardance with 18 fISC. Section 1734 saleiy ta indicate this fact.

The an-lino version af this article (available at http:/iwww.jbc.arg)
cantains Supplementary Materials.

Supparted by studentships fram the Fondafion Cearges-Phenix and
Fonds pour la recherche en santé du Québec (FRSQ).

Supparted by a studentship fram the Natural Sciences and Engi
neering Research Cauncil af Canada.

° Recipient af a Canada Research Chair in Functianal Genamics.
° Recipients oC o Canada Research Chair in Retravirolagy.
/ A Schalar oC the FRSQ and the recipient afa New Investigator Award

fram the CIHR, Ta whnm correspondance shoold be addressed. Tel.:
514-340-8260; Fax: 514-340-7537; E-mail:

Human immunodeficiency virus type 1 (HW-1)’ is the causa
af acquirad immunodaflciency syndrome (AIDS). Transcription
oftha intagratad provirus producas ane primary 9-kb transcript
that is splicad ta produca threa siza classes oC RNA (1). The
smallast siza class, tha 2-kb RNAs, is constitutivaly exported ta
tha cytasol aarly in tha HW-1 raplication cycle and encodes far
tha ragulatory protains Tat, Rev, and Nef. Lata in tha raplica
tian cycle, the twa othar siza classes nfRNA, tha unsplicad, 9-kb
ganomic RNA and the singly spliced, 4-kb RNAs make thair
way ta tha cytosol due principally ta tha activity oC 11cv, which
binds ta the Rev rasponsiva clament (RRE( presant in thasa
RNAs (2). Whereas an abundant amaunt of information is
availabla about tha machanisms, callular cofactors, and ragu
lation invalved in Rav-mediatad RNA nucleocytoplasmic trans
port (3), vary little is understond about HW-1 RNA trafflcldng
fallawing Rav’s disangagamant in tha cytosol. Racant work
damanstratas a rala far the callular human Rav-intaracting
protain (hRIP) at this stop (4). Tha HIV-1 structural protain,
pr55G0e also plays ii rola at this lata stap by binding ta RNA via
it N-terminal matrix (MA) and C-terminal nuclancapsid (XC)
damains (57). pr55° association ta malacular motar proteins
(8) providas a machanism by which RNA trafficking is achiavad
within tha cytnplasm. In support af tha existence for a traffick
ing machanism ara data shawing that kinasins and micratu
bulas ara bath nacassary for tha trafficking af savaral HW-1
RNAs (9). Furthermara, racant observations ofMnlonay murino
laukemia virus and HW-1 indicata that vasicular trafficking an
microtubulas axists ta achiave cytosolic trafficking af ratraviral
campanants, including the RNA, ta sites afassambly (10—12).

Thara are anly a handful af examplas that implicata RNA
transport machanisms in human disaasa. In particular, expan
sion af CUG rapeats in the myotonic dystrnphy protain kinase
RNA laads ta its nuclaar sequastration (13, 14). Othar exam
plas includa RNAs that are axprassad in naural calls ta influ
ence mamory and plasticity. A dafact in myalinatian far in
stance is a characteristic oC multipla sclarasis and may ha the
rasult af aberrant RNA trafficking (15). Tha Fragile X mental
ratardation protein (FMRP) is involvad in RNA transport and
translatian (16), and tha absence of FMRP in fragila X syn

‘The abbreviatians used are: Hil/-1, human immunodeficiency virus
typa 1; REE, Rev responsive clament; nt, nucleatida; ET, reversa tran
scriptasa; PBS, phasphate-bofferad saline; FISH, fluorescence in situ
hybridizatian; RPA, RNase protection analysis; MilS, acquired immu
nadeficiency s3mdroma; A2RE, A2 rasponse alement; hnRNP, heterag
ennus ribanucleapratain; NC, aocleocapsid.
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drome coutd cause mRNAs to be de-repressed at the wrong
intracellular address or at an inappropriate time, leading to
alteratiuns in neuronal dendritic spines (17).

The iink between HW-i disease and the HW-i RNA iocaliza
tion and the cytoskeietai machinery is aiso very cumpeliing (18).
The use of Rev transdorninants fur exampie has underscored the
essential nature of Rev-mediated nucieucytoplasmic trafficking
of HW-i RNA for HW-i replication (19), and this pathway also
impinges on the cytoskeleton (20). Several Rev cufactors that are
critical to Rev ffinction interact with nuclear actin concomitant tu
RNA transport (21). HW-1 RNA trafficldng is dependent on
microtubules and kinesin expression (9, 22), and we have made a
link between lung-term non-progression to AIDS and the traffick
ing signais involved based on changes at the A8 nucleotide in the
A2RE-2 sequences from three non-progressors (9). HW-1 pr55’
and the quintessential RNA trafficking protein, Staufen, physi
cally interact (23), are found in association with Irinesins and are
both implicated in HW-i genomic RNA trafficking into assem
bling virus supporting a dependence on these for viral assembly
(8, 24, 25). Finally, viral entrv uf the HW-i reverse transcription
ribonucleoprotein complex depends on an intact cytoskeletal
network (26).

In general, the famiiy of hnRNP MB proteins (Ai, Aib, A2,
Bi) are involved in post-transcriptionai gene regulation includ
ing spiicing, RNA metabohsm, transport, and translation (27).
They contain several functional domains including RNA recog
nition motifs and the M9 nuclear imporUexport signal in the C
terminus. A general role ofthese proteins has been identified in
HIV-1 RNA spiicing regulatiun, binding to cis sequences on
HIV-1 RNA (28, 29). While recombinant hnRNP A2 has been
shown to modulate spiice site selection in in vitro splicing
assays (29) several studies demonstrate that members of this
family have specialized roles in transcription (30), in RNA
trafficking (9, 27, 31, 32) and members of this family also
respond differentially to hypoxia and stress (33, 34). Knock
down by siRNA also has differing degrees of effects on splicing
suggesting functional differences between related hnRNPs
(35). Furthermore, the localization and functions of these pro-
teins are not aiways confined to the nuclear compartment
where RNA prucessing and maturation occur in eukaryotes (33,
34, 36—38).

We have demonstrated that the association of hnRNP A2 to
two cis-acting RNA elements is important for cytoplasmic
HIV-1 RNA transport in a murine oligudendrocyte RNA traf
ficking system (9). Because HIV-1 RNA trafficking was found
tu be dependent un hnRNP A2 expression and selective bind
ing, we named these elements the hnRNP A2 respunse ele
ments 1 & 2 or A2RE-1 and -2 (9). In our earlier studies using
truncated RNAs, the A2RE-i and A2RE-2 were fuand tu act as
RNA transport signais in their respective gag and vpr RNAs.
Buth the A2RE-1 and A2RE-2 are selectively bound by hnRNP
A2 in vitro (9). Furthermore, both A2RE-1- and A2RE-2-cun-
taining HW-i RNAs were shuwn tu culucalize and cu-traffick in
RNA transport granules, suggesting that different HIV-1
RNAs are trafflcked by the same hnRNP A2-dependent mech
anism. Huwever, the A2RE-2-containing tut RNA, an mRNA
expressed early fuiluwing infection, was not transpurted effi
ciently, but gog and vpr RNA, RNAs that are expressed late in
the replicatiun cycle, were efflciently transported. This sug
gested that the signais encoded in these RNAs were contextuai
in the control uf cytuplasmic RNA transport by hnRNP A2 (32).
Tu explore the dependence of HIV-1 un the A2REs daring
HIV-1 replication we examined the reiatiunship between
hnRNP A2, the A2REs and the patterns ofHIV-1 gene expres

resuits reveal that the A2REs functiun in tbe contrul uf HW-1
gene expression and have an impact on the export of HIV-1
RNA into the cytosul, the intraceliular lucalizatiun of pr55°
and Vpr pruteins and cuntribute tu Vpr and genumic RNA
leveis in assemb)ing virions. In addition, we show that hnRNP
A2/A2RE-mediated RNA trafficking is important at a late stop
of the HIV-1 reph cation cycle.

EXPERIMENTAL PROCEDURES

DNA Provirol Constrvcts—A2RE-1 and -2 are iocated at nt 1192—
1213 and nt 6157—6178 in HxBc2-based proviral DNA, HxBru (39),
respectiveiy. The A2RE proviruses were generated by recombinant PCR
using HxBru as template. For A2RE-1, mutations were introduced in
internai antisense and sense ohgomers that span the A2RE-1 and 5’
SphI (SphI Sense: 5’-TCCAGTGCATGCAGGGCCTAT-3’) and 3’ ApaI
(ApaI Antisense: 5’-TTGCAGGGCCCCTAGGAAAAAG-3’) containing
flanking ofigomers were used for PUR amplification of a 586-hp frag
ment. The resultant PUR fragments were digested and cluned direc
tionaiiy intu the goy open reading frame tu replace wiid-type sequeoces.
The A2RE-2 proviruses were aisu generated by PUR mutagenesis using
a SalI-KpnI fragment in the vector pIIIEx7 (a Tut, Rev, and Nef ex
pressor) as template (40). Following relïgation into pIIIEx7 and selec
tion fur positive clones, a SalI-BamHl fragnwnt eas directionally in
serted into HxBru. A SphI-ApaI fragment frum a provims that harburs
two suent point mutations in the A2RE-1 (A5G, A8G) vas cloned intu
the provirus harboring A8G, T5C mutations in the A2RE-2 tu preduce
A2RE 4Mut provirus, harburing twa point mutations in each A2RE. In
some experiments the 4Mut proviros was used (Fig. 1). Transiunt
expression studies osing a Tat cDNA expressor construct harboring the
A8G, T5C mutations demunstrate that Tat is not expressed because tut
mRNA is nut translated.2 Becaose 4Mut harbors these motatiuns, we
supplied Tat in trous (41) tu make up for deficits in Tat synthesis. The
A8G mutations intruduced in the A2REs are suent in both vpr and goy
RNAs bot the AIRE-2 A8G changes the Tat 2nd amino acid in tbe
overlapping tat open ruading trame frum Glu2 tu G1y2. This mutation
does nut bave a repercussion un Tut structure as sbuwn by Rice et ol.
(42), on HIV-1 expression leveis, or prucessing (see Figs. M and 7B), or
on its ability tu transactivate tbe LTR.2 The abihty ut Tat tu interact
witb TAR RNA or cychn T binding is nut influenced by the N-terminal
dumain as shuwn previoosiy (43), and Rev expression levais are hkewise
unaffected (data nut shuwn). Tbe pruximity ut the AIRE-2 mutatiuos tu
sphcing ESS and ESE dues nut influence HW-1 RNA sphcing as we
show in in vitro spiicing assays using humuluguus (HW.1 sequences)
and heteroiugous (non HW-1 sequences) splicing sobstrates (data nut
shuwn).

Ioim unoprecipitotious, R T-PUR, ond Pulysome Jsulutiuo—COS7 or
293T colis were transfected with R’cBm or AIRE mutant provirusos.
36—40 b after transfection, tutai ccii lysates were prepared by using
Nunidet P-40 iysis buffer fur 30 min on ice, foliuwed by centrifugation tu
remuve celiuiar debris. An afiqout representing 25% ut the cdl iysates
was used in n Western biut anaiysis for Gag, hnRNP AI, or hnRNP Al.
Normalized amuonts ufceliuiar proteins were immunoprecipitated with
either n mouse anti-hnRNP AI or rabbit anti-hnRNP Al (44) (or rat
anti-hnRNP A3, Ref. 45 and data not shown) and tbe immunoprecipi
tations were verified in Western analyses prior tu ET-PUR. DNA was
digested with DNase I treatment from the remaining of the immono
precipitates (tnvitrugen, Mississauga, ON) foilowed by proteinase K
digestion and subsequent ENA purification by phenuWchiorofurm ex
traction and ethanol precipitation as described (25). Extracted RNA
was used in ET-PUR analysis fur genumic and sphced HW-1 RNAs
essentiaily as described before (23, 25) using the Tbermascript One
Step ET-PUR kit (Invitrogen), using primers to generate a 280-hp
fragment (for total spliced and unspiiced HIV-1 RNAs) or 450-hp frag
ment specific tu genomic, unspliced RNA. Fur input control, total RNA
was porified from 10% of lysates and used in ET-PUE analysis tu
amplify genomic Hill-1 orgopdh ENA (23). Immunoprecipitation using
preimmune mouse or rabbit seram and an RNase A-treated sampie
acre incloded as negative controls and tu monitor DNA contamination
in sampies and nonspecific immunuprecipitatiun. Totai celiular ENA
purified from HIV-1-transfected ceils served as o control in amplifica
tion and ET reactions. Interactions were caicoiated by relating the ratio
of immanuprecipitated genomic ENA tu the total bnENP AI or hnENP
Al signal obtained in the immunuprecipitatiuns in three separato cx
periments. The deviatiun from the average xvas caicuiated tu ho no mure
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than 5% for hnRNP A2 binding and 12% for hnRNP Al binding. Only
PCR signais that feu within the linear range of this assay were used in
the qoantitation.

Polysome isolation and immuaoprecipitation were performed essen
tially as described before (44). Polysomes were purified by stepwise
ultracentrifugation and an equai amount of polysomes, determined by
opticai density (OD), were controlied for gopdh RNA levels by RT-PCR.
Equai quantities of hnRNP A2-contaiaing polysomes were subse
quently immunoprecipitated using a mouse hnRNP A2 antiserum
(EF671 (44), and the purified RNA was used in RT-PCR anaiysis for
total and genomic HIT-1 RNA, as described above. -actin mRNA was
quantitated in immunoprecipitates by RT-PCR using the following 5’
and 3’ PCR primers: f3-Actin (sense): 5’-GTCGTCGACAACGGCTCCG-
GCATG; (3-Actin (aatisense): 5 ‘-CCflGGGGflCAGGGGGGCCTCGG,
which were designed to amplify a 300-bp fragment in both human and
mouso cDNAs. gopdh mRNA vas also identifiod in immunoprocipitates
using an PCR primer set as doscribod above.

Northern Blotting, Metobolic Lobeling, Irnrnunoprecipitotioo, ood
Westero Aoolyses—Wild-typo aad A2RE proviruses woro transfected in
COS7 or 293T colis. Total RNA vas extracted using TRIzol LS Reagent
(Invitrogen) from colis at 36—40-h post-transfoction, foilowod byNorth
ern biotting usiag a [32P]dCTP-labelod cDNA probe to tho HIT-1 un
transiatod rogion (25, 39, 46). A portion of the ceils ‘vas starved ia
methionine-free modium for 2 h and pulsod with 400 pCWml Trans
Label (1CN) for 20 min. Ceil and viral iysatos wore sequontially immu
noprecipitated using an anti-p24 (ABI Technologies, Inc) an anti-Vif
(from tho NIH MDS Resoarch Reference and Reagent Program; kindiy
providod by Dr. Bryan Cullon, an anti-Vpr (46), a rabbit anti-Rov
(raisod to rocombinant Rov protein, A. W. C.) and a rabbit anti-Tat
antisorum (25). For Western biot anaiysis on viral proparations, rabbit
anti-Vpr antisornm R3.7 (46) vas used at 1:500 in PBS with 53 dry
milk (Carnation).

hnrnuoofluorescence ond Fluorescence in Situ Hybridizution (FJSH)
Aoolvses—COS7 colis woro fixod in 4% paraformaldehydo in PBS for 20
min followed by pormoabihzation with 0.2% Triton X-100 for 10 min at
16—20- or 36—40-h post-transfoction doponding on tho oxperimont.
Colis wore washed with PBS, pH 7.2 and blocked with 10% dry milk in
PBS. Anti-p24 (to identify pr55°3 and its mature products(, anti-Vpr
and anti-Vif antisera (see abovo; and generously provided by Dr. IGaus
Strebol, National Institutos ofHealth for tho data presented in Supplo
mental Fig. Si-B) were used at 1:250. Secondary fluorophoro-conju
gated antisora (Alexa Fluor 488 and 564) woro obtained from Moiecular
Probes. For FISWimmunofluorescenco co-analysos experiments at 16—
20- or 36—40-h post-transfection, the FISH analysis vas performed
first. Foliowing fixation and permeabilization, colis were treated with
DNaso I (Invitrogen( for 30 min and washed. KS-polBru vas propared
by diroctional cloning ofa 236 bp PCR product encoding the p01 region
(nt 1724—1960) (5). An antisense RNA probe vas prepared by in vitro
transcription with digoxigenin-labeled UTP as suggested by the man
ufacturer (Roche Apphed Science) and as described (47). The proviral
constructs HxB2-M4 (kindly provided by Dr. Michael Green, Ref. 5) and
pMRev(-( (from the National Institutes of Hoaith KIDS Research Ref
erence and Reagent Program; kindly provided by Dr. Reza Sedaie, Ref.
48) wore used as controis. In some experiments the nucleic acid stain
(with a preference for RNA) SYTO14 (Molecular Probes) (49) vas used
at 1:400 in PBS to stain for total RNA in colis. Protein and RNA
locahzation patterns presented are representative of at least four mdc-
pendent oxperiments from 100 to 200 colIs per experimental condition.

Loser Scnornng Confocol Imoging Anolyses, ond Lange Processing—
Ail images were acquired by laser scanning confocai microscepy. Con-
focal laser microscopy vas performed on a Zeiss LSM 410 (CarI-Zeiss)
equipped with a Pian-Apochromat 63x ofl immersion objective and an
Ar/Kr laser. Mexa Fluor 488 and 568 images were obtained by scanning
the ceils with 488-nm and 568-nm lasers and filtering the emission with
5l5—540-nm and 575— 640-nm bandpassos, respectively. Red and greon
images were scanned sequentially to minimize cross-talk and thon they
were merged. The Differential Interference Contrast (DIC) images were
obtained by transmitted light using the 543 nm laser and in some
experiments shown this is presented as a blue background, the color
being artificiel but providos for increased resolution ofthe celi contour.
Images were digitized et e resolution of 512 X 512 pixels. The approx
imate confocel thickness is 1 pm. Ml images wero directly imported
Adobe Photoshop version 6, processed to generate monochromatic im
ages representing protein or RNA staining end thon imported into
Adobe Illustrator version 9 for figure montage shown in the article.

RNose Protection Anolysis (RPA)—To quantitate spliced end un
spliced RNAs in celluler extracts and purified viral preparetions, RPA
vas performed as we describod (50). Foilowing transfoction, RNA vas

isnlatod from oqual quantitios ofcollular extracts, or for purifled virus,
RNA vas isolated from equal quantities ofp24-nquivalonts quantitated
by o p24 ELISA (23) using TRIzol LS reagent. The radiolabeled RNA
probe complementary for HxBru was gel purified and prepared exactly
as describod (50) and dosigned to identify unspliced, spliced, and total
HIT-1 RNA in collular and viral RNA preparations (Si). RPA analyses
were porformed using the RPMI Kit as suggested by the manufacturer
(Ambion). Prntectod RNA fragments were separated on dennturing 5%
polyacrylamide/urea gels and quantitation of the autoradiographic sig
nals obtained was performed by scanning densitomotry with the Me
lecular Analyst software (Bio-Rad). The results prosented for genoinic
RNA encapsidation were rolated to the signais nbtained in HxBrn.
Student’s unpaired t test vas usod to test for significant difforences
between the means. p < 0.05 xvas judged significant.

in Vitro Splicing Assoys ond Annlysis ofHW-1 RNA 1.8- ond 4-kb
Spliced RNA Products—The homologous in vitro HIT-1 splicing con
structs, pHS1-X and pHS1-X-ESS4 were generousiy provided by Dr.
Marty Stoltzfus (University nf Iowa). In ordor to introduce tho A2RE-2
A8G mutation into pHSi-X, recombinant PCR was performed using the
sonse and antisonse oligomers harboring tho A8G mutation (in small
case), in the A2RE-2: sonse: 5’-GAAATGGgGCCAGTAGATCCT and
antisonso: (5’-AGGATCTACTGGCcCCATTTC). Flanking niigomers ha
bnring a 5’-XbaI restriction site (5’-ATATGCGGCCGCTCTAGAACTA-
GTGG) and a 3’-nhgomer harboring an XhnI site (5’-ATATGGCCCCC-
CCTCGAGTACTACTA) were used in the PCR. PCE products were
restrictod and thon cloned bock into the pHSl-X Bluescript SKII (Strat
ageno( backbnne. Clones woro verified by DNA soquencing. Splicing
activity xvas calculated as doscrihed previnusly by calcul ating tho un-
dine content in spliced RNA products (52). Heterologous A2RE splicing
constructs wero preperod by blunt-end cloning of 21-base pair A2RE-l
or A2RE-2 DNA duplexes in intron sequences. Twn blunt-ondod liga
tions were soquontiaily porfnrmod et unique EcoRV and Smai sites of
the parental transcriptionlsplicing vector 68.1. The control sphcing
vector that contains two copies of tho high affinity ARS hnRNP Al
binding elements at theso sites vas aise included in this assay (53). In
this case, tho inclusion oftwo ARS in intronic soquonces promotes distal
5’-spiice site utilization because of the binding hnRNP Al on those
elomonts. For both in vitro assays, radiolaboiod pro-mENAs vore pro
parod by in vitro transcnptinn in tho presonco of tni-methyl cap ana
logue and I32PiUTP (1000 Cdmmni; ICN), gel purified, and used in both
types of in vitro sphcing reactiuns et 15,000 cpm per roaction et 30 C
for 2 h oxactly as describod (54). Splicing products wero separated on
6% denaturing pnlyacryiemido gels and oxpnsed to film. Identification
of the single-splicod (4 kb and multiple-spiiced (1.8 kb) HIV-l RNAs
using RT-PCR vas perfnrmed oxactly as described rocently (1, 23).
These assays woro perfnrmed throe timos.

Vi roi Replicotion Anolysis, p24, ond Reverse Tronscription Assuys—
First round virai roplication kinetics xvas performed by infecting
500,000 MT4 colis with 300,000 cpm of wiid-type or A2RE mutant
viruses genereted in 293T ceils as doscnibed (39). At 2-dey intorvels,
ahqunts wore token for RT or p24 assay as doscnibod (25, 55). For
second round roplicetmon kinotics, oqual quantities of MT4 colis wore
infected with 10 ng of p24 nf virus from poak fractions, and aliquots
were cnliected et 2-dey intervals. At each timo point, colis were washed
and ropletod et 500,000.

For soquencing anoiysis, RNA vas oxtractod from 250 pi of ceii-froe
virai supornatant coiiected et the poak of viral production for wild-type
and each A2RE mutent using TRIzol LS accnrding to the manufactur
ors instructions. The RNA wes revorse-transcribod using tho Thermes
cript One-Step RT-PCR kit using an oligonuclontido sot (SphI Senso:
S’-TCCAGTGCATGCAGGGCCTAT-3’ and ApaI Antisonse: S’-TTG
CAGGOCCCCTAGGAAAAAG-3’) that amplifies e 586-hp PCR product
that oncompassos A2RE-l, or an oligonucleotido sot (SalI sonse: S’
GTCGACATAGCAGAATAGGC-3’ and Spol antisense: 5’-GCAATAG-
CAGCATTACTAGTTCTC-3’) that amplifies e 318-hp PCR product thot
oncompasses A2RE-2. The emphfied fragments wore then used in o
direct sequencing reactinn using tho Thormo Soquonaso Cycle Suquonc
ing kit (USB) and loaded on e denaturing 5% polyacrylamido gel for
enalysis.

Reol-tinie PCR tu Study Reverse Trnnscriptinn—Wiid-type and A2RE
virus were producod in 293T colis and usod to infect Heie-CD4-LTR-f3-
galactosidoso colis (P4 colis) (56). Reol-Timo PCR vas performod tu
idontify eariy minus-strand strong-stop DNA as described (57) with tho
fnllowing modifications. 100 ng of DNase-troated virus from 293T cefls
svas used to infect 1 X 10’ P4 coUs, and colis voro heiwestod et 8 h
post-mnfoction. DNA ‘vas isoiatod using e DNAoasy Tissue Kit (Qiagen),
and tho DNA was oluted with votor. Roai-timo PCR vos porformod
using LightCycler FostStart DNA Master SYBR Oroen I (Roche Apphed
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FIG. 1. Proviral clones used in this
study. Single A8G point mutations were
introduced in each A2RE element by re
combinant PCR mutagenesis as described
mder “Experimental Procedures.” A2RE-1
A8G (single suent point mutation in A2RE-
1); A2RE-2 A8G (single point mutation in
A2RE-2); 4Mut contains 2 single point mu
tations in each A2RE are at the 3rd posi
tiens of the codon in gag and upr open read
ing frames. See text for discussion on the
consequence on tot mENA and tat open
reading trame. The locations of the nucleo
tide substitutions in the A2REs are mdi
cated in red: or 4Mut (double point muta
tions in each A2RE).

A2RE-1 A8G
A2RE-1 ABG Iccc’AAocccu1—

A2RE-1

A2RE-2
—4G.,uGGAGccAGuAGAuccuAGj

A2RE-2 A86
A2RE-2 AGG [GACAAGGACcMMGAACCcu I-’. —4GAMUGGGGCCAGUAGAUCCUAGI

4Uut
A2RE-1 A5G,A8G A2RE-2 T5C,A$G

—4GWCGGGGCCAGUAGAUCCUAGI

Science) according to the manufacturer with 1 ng of genomic DNA in 2
pI, 2.8 rntt Mg2 as the final concentration in a final volume of 20 pl. A
first denaturation at 95 C for 10 min was followed by 45 cycles of 95 C
for 10 s, 68 °C for 5 s and 72 C for 6 s. The standard curve was
generated using linearized plasmid DNA, and this assay tvas linear
between 200 and iO DNA copies. Melting curve analysis showed a
single PUR product. The PUR products were also verified by gel
electrophoresis.

RESULTS

A2RE Mutagenesis Compromises the Interaction of hnRNP
A2 to HIV-1 Genomic RNA—The principal notion that hnRNP
A2 association to HW-1 RNA is critical for A2RE function vas
shown in n murine oligudendrocyte system (9). To test this in a
proviral expression context, we introduced mutations in the
A2REs in the context of proviral DNA shown in Fig. 1 and
expressed these in COS7 ceils. Whole cdl extracts were pre
pared from mock- and provirus-transfected celis as described
under “Experimental Procedures.” The expression levels of
pr55G0, hnRNP Ai, and hnRNP A2 were assessed prior to
immunoprecipitation in ccli lysates (Fig. 2A). Additional trans
fections were perforrned using HxBru for controls in the sub
sequent immunoprecipitation and RT-PCR analyses (iast 3
lanes: HxBru -‘-RNAseA, HxBru preimmune serum, and HxEru
Celi RNA). In order to determine if the A2RE mutations in the
HIV-1 RNA affected binding of hnRNP A2, it was immunopre
cipitated using a specific IgG-purified monoclonal antiserum,
EF67 (44) (Fig. 2B). This antiserum speciflcally immunopre
cipitates hnRNP A2 and a minor band for hnRNP Bi; the use
of a preimmune serum did net immunoprecipitate hnRNP A2
(Fig. 2B, test tane). The specificity of hnRNP A2 interaction
with the HIV-1 A2REs was important to address for two rea
sons. First is the rather promiscuous nature ofhnRNPs to bind
and modulate HW-i RNA splice site selection on adjacent ESS
and ESE elements as shown in in vitro splicing and interaction
assays, for example (28, 29, 59). The second reason is related tu
the fact that other hnRNPs (hnRNP Al and hnRNP A3) were
shown to bind to a sirnilar, yet not identical, A2RE elernent in
the ;nouse mbp mRNA (60). To verifr hnRNP binding specific
ity, hnRNP Al was aise immunoprecipitated from total cdl
extracts using a IgG-purified antiserum te hnRNP Al. This
antibody immunuprecipitated a principal band corresponding
to hnRNP Al (Fig. 2E). Inclusion ofa preimmune serum control
did net immunoprecipitate hnRNP Ai, but resulted in a large
background smear. Likewise, hnRNP A3 was immunoprecipi
tated but we could net efficiently immunoprecipitate this

hnRNP using our immunoprecipitation conditions (antibodies
were generousiy provided by Dr. Ross Smith, University of
Queensland). We next determined the quantity of genomic
RNA that was brought down in the hnRNP immunoprecipi
tates. First, the quantity of HIV-l genomic RNA was deter
mined prior to immunoprecipitation (as in fig. 2A) by semi
quantitative RT-PCR analysis in cellular lysates. gapdh mRNA
was amplified as a cellular RNA control (Fig. 2G). Either 25
cycles or 20 cycles vas used in the final RT-PCR analyses for
gapdÏi mRNA and genomic RNA, respectively, se that the sig
nais obtained wouid fali within the linear range of this assay.
RT-PCR vas performed on RNA isolated from equal quantities
ofcellular lysate (normalized for HIV-i genomic RNA as in Fig.
2C) to determine the quantity of hnRNP A2 associated te
genomic RNA in wild-type and A2RE A8G-expressing cells
following immunoprecipitation by either anti-hnRNP Al or
anti-hnRNP A2 (Fig. 2D). We found a significant reduction in
genemic RNA in the hnRNP A2 immunoprecipitate tby 35% in
A2RE-1 A8G and by more than 80% in A2RE-2 A8G (Fig. 2E);
there was no more than a 5% variation in three independent
experiments). Apprnximately equal quantities of genomic RNA
were co-precipitated with anti-hnRNP Al in ail proviruses
(range 83—112% wild-type levels; Fig. 2E). RNase A treatment
of the purified RNA prier te RT or the use of a preimmune
serum did net yield detectable PCR products and demonstrated
that the signals obtained wcre specific to the ce-immunopre
cipitation of hnRNP (Al or A2) and genomic RNA (Fig. 2D).
These data demonstrate that the specific point mutations in
troduced in each of the A2REs resulted in lowered hnRNP A2
binding while, in contrast, the association of hnRNP Al to
HIV-l RNA tvas flot affected by these introduced mutations.
Consistently, a lObp deletion immediately upstream of the tut
ESS2 that coincides with the A2RE-2 does flot affect hnRNP Al
association (59). These observations support the notion that
general hnRNP binding is not affected by the introduced A2RE
point mutations.

We demonstrate here that the A2RE mutants specifically
prevented hnRNP A2 binding in whole cell lysates to the HIV-1
RNA during proviral gene expression. The relative binding
efficiencies that we find here in COS7 celis correspond quanti
tatively ta the in vitro binding properties of hnRNP A2 to the
HIV-l A2REs that we have shown previously in that mutagen
esis of the A2RE-2 resulted in a more dramatic loss of hnRNP
A2 than that found for the A2RE-1 (9). Identical hnRNP A2/

Wlldtype IACMGGACCMMGAACCCU I— —1GMAUGGAGCCAGUAGAUCCUAd

ID
o
D
ono
(Do

o

D.
p
o

(O
D.

o
D

Dnn
(D
3
D
(D

(O

53
Q
Qo)



hnRNP A2/A2RE Association Influences HTV-1 Gene Expression 44145

FTG. 2. A2RE ASG blocks hnRNP A2
association to genomic RNA in whole
ceil lysates. A, COS7 celis were mock
transfected or transfected with HxBru,
A2RE-i A8G, or A2RE-2 A8G. Expression
levels of Gag proteins, hnRNP A2, and
hnRNP Ai in equal quantities ot whole
ceil extract (determined by Bradford pro
tein assay) are shown. The last three lix-
Bru lanes are included because lysates
derived from these transfections serve as
controis in the RT-PCR reactions shown
in C and D. B, hnRNP A2 and hnRNP Ai
were immunoprecipitated from the celi ly
sates in A and identffied by their respec
tive antiserum in Western biot analysis.
Approximateiy equal expression levels of
these hnRNPs were observed and the im
munoprecipitations were quantitative.
The use of a preimmune serum failed to
immunoprecipitate either hnRNP. C,
RNA vas extracted from ccli lysates in A,
and a one-step RT-PCR reaction vas per
formed ta quantitate input HW-1
genomic RNA and gapdh RNAs in subse
quent immunoprecipitation analysis. The
PCR cycle number was determined be
forehand in order that the signais ob
tained feil within the iinear range of the
reaction (25 cycles for HW-1 RNA and 20
cycles for gapdh RNA). D, from equai
quantities cf total ccli extracts shown in
C, either hnRNP A2 or hnRNP Ai (as
contrci) was immunoprecipitated using
specific antibodies (anti-hnRNP A2 or an
ti-hnRNP Ai). One-step RT-PCR was per
formed on the immunoprecipitates to
quantitate the amount of bound HW-i
genomic RNA. Mutagenesis of the
A2RE-1 or A2RE-2 blocked genomic RNA
association by 36 and 82%, respectively,
whiie this djd not affect hnRNP Ai asso
ciation. This determination was per
formed in three separate experiments and
the average cf these experiments is
shown in the histogram in E. A represent
ative experiment is shown here and there
was no more than a 5% deviation in the
values determined for hnRNP A2 and no
more than a 12% deviation for those cal
cuiated for hnRNP Al.

A2RE binding resuits for hoth the A2RE-1 and A2RE-2 were
obtained at 20-h post-transfection (data flot shown). While
hnRNP A2 can bind other HW-1 RNA elements with splicing
modulating properties, our data suggest that the association of
hnRNP A2 Ofl the A2REs represents a major binding event cf
hnRNP A2 since we can block this interaction by over 80% with
A2RE mutagenesis (Fig. 2E). These data aise suggest that the
A2RE RNA elements synergize te promote hnRNP A2 associ
ation te HIV-1 RNA via long range RNA interactions, since
mutagenesis cf either A2RE results in a loss cf the association
cf hnRNP A2.

A2RE Mutagenesis Resu tts in u Drainatie Change in HW-1
Genornic RNA Distribution—Abrogation cf hnRNP A2 binding
directly correlated to its capacity te promote RNA trafficking in
an oligodendrocyte system (9). Te test if this was the case
during proviral gene expression, we determined whether the
A2RE sequences had effects on the distribution cf HW-l RNA.
The A2RE previral mutants were individually transfected in

C, C, “ q
‘7

d- < ‘.‘> (

COS7 ceils and combined FISH using a pot-specific digexige
nin-labeled antisense RNA probe and immunofluorescence
analysis on pr55G vas performed foilowed by laser scanning
cenfocal microscopy at 40-h post-transfection (Fig. 3, panels
A—R). Mock-transfected celis did net have any appreciable
staining fer either genomic RNA cf pr55” (Fig. 3, panels
A—C). In wild-type HW-1., pr55° was found in a discrete,
punctate pattern throughout the cytosol (Fig. 3, panel E).
HIV-1 genomic RNA vas detected in the nucleus and dispersed
throughout the cytoplasm in a discrete, punctate pattern, like
the staining pattern obtained for pr55°, but there was no
significant overlap (Fig. 3, panels D—F). A miner change in the
cytosolic staining cf genomic RNA and pr55G distribution vas
feund in the A2RE-1 A8G mutant (Fig. 3, panels G—I). Mark
edly less cytosolic RNA staining was consistently observed in
this mutant. In ccntrast, HW-l genomic RNA was completely
sequestered te the nucleus in the A2RE-2 A80 mutant (Fig. 3,
panel J and Suppiemental Fig. Si-A). The distribution cf
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A2RE-1 A8G

FIG. 3. A2RE mutations alter HW-1 genomic RNA localization.
COS7 ceils were mock-transfected (ponds A—C), or transfected with
HxBru (wild type) (ponds D—F), A2RE-1 ASG panels G—I), A2RE-2 A8G
(panels J—L and S—U), pMRev(-) (panels M—O) or HxB2-M4 (panels P—R)
proviruses. Combined FISH and immunofluorescence analysis were
performed at 36—40 h (panels A—R) or 16—20 h (panels S—U) post
transfection. HIV-i genomic RNA (green) and prO5nue (red) were iden
tified by FISH and immunolluorescence analyses as described uncler
“Experimental Procedures.” Merged images are shown in left panels
(panels C, F, I, L, O, R, and U). Circles in panels A—C indicate ceil nuclei
in mock-transfected cells. A2RE-2 A8G expression results in a nuclear
localization ofgenomic RNA at a late replication step only. Panels V—Y,
SYTO14 nucleic acid staining (green) ofthe indicated proviruses did ont
show any noticeable changes in the distribution ofnucleïc acid staining
in the nucleus or in the RNA staining pattem found in the cytosol at
this time point (40 h) or at cacher time points tosted (20 h, not shown).
The cehi contours are outlined by s doshed yellow line. Sec also Supple
mental Fig. Si-A for additional examples of the A2RE-2 ASG
phenotype.

genomic RNA in A2RE-2 ASG was found to be virtuaily iden
tical to that observed in both pMRev(-) and HxB2-M4 (Fig. 3,
panels M and P). However, whiie pr55C expression is absent
in pMRev(-) (Fig. 3, panel N), tho pr55° staining pattern in
A2RE-2 ASO and HxE2-M4 wore found to bo similarly locahzed
to the perinuclear region (Fig. 3, panels K and Q) at this time
point (40 h). Strikingly, are did flot observe the same pattern of
prS5Gae and genumic RNA at an early time point post-trans
fection for A2RE-2 ASO (Fig. 3, panels S—U, sec below for
discussion). The distribution ofpr550 and genumic RNA was
identical to tho gene expression patterns in colis exprossing
wild-type virus at both 20 h (data not shown) and 40 h (Fig. 3,
panels D—F). These observations support the idea that genomic
RNA is expurted to tho cytosoi for translation and tho biuck
that resuits in genomic RNA nuclear sequestration occurs at a
lato rephcation stop ofthe HW-1 hfecycle. Similar observations
were made for Hx32-M4, a proviral mutant that harbors point
mutations in the nuclear export signal of MA (5) (compare Fig.

3, panels J—L and P—R). Those data aiso suggest that the A2RE
could represent a dominant signal for HW-i RNA localization
such that a point mutation within the A2RE-2 sequence ap
pears to interfere with the RNA nucleocytopiasmic export.
These altered localization patterns were observed despite oquai
Rev and pr55 expression lovels as determined by Western
and metabolic labeling experiments (Figs. M and 7E). While
pr55t0 locahzation was more perinuclear in appoaranco in
A2RE-2 ASG, it is nevertheless expressed at near wiid-type
leveis as shown in situ (Fig. 3,panel K) and in Western blotting
experiments (Figs. 2A and 7, A and B). This is in contrast tu
what we observe using a Rev-defective provirus in which
genomic RNA nover exits thn nucleus and is not translated tu
pruduce pr55’ (Fig. 3,panel IV). Thero were nu changes in the
general pattern uf total RNA staining as shown by SYTO14
staining (49) in the A2RE and Rev-defective pruviruses at
either of the time points tested (Fig. 3, panels V—Y).

HnRNP A2-cuntaining Polysumes Cuntain Redaced Levels uf
Genumic RNA—In situ and binding assays shuwed that HW-1
RNA was sequestered in the nuclous and aras not bound by
hnRNP A2 as a cunsoquence ufA2RE mutagonesis (Figs. 2 and
3). We therefure proceeded tu perfurm a ccli fractiunatiun anal
ysis tu determino if these observations wuuld bo reflected
within hnRNP A2-RNA complexes within tho cytusui. Aithuugh
hnRNP A2 is a preduminantly nuclear prutein, hnRNP A2 has
been found in tho cytosoi uf mammahan cells (36) and associ
ated tu several mRNAs in an hnRNP A2-containing population
ufpuiysumes (44). We prucoeded tu determinu huw much HIV-i
genumic RNA was assuciatod tu hnRNP A2-cuntaining puly
sumos using an immunuprecipitatiunlRT-PCR prucedure iden
tical tu that described in Brooks and Rigby (44). Cytusuhc
pulysumes were isulated frum pust-nuclear supernatants and
purifiod by ultracentrifugatiun frum COS7 colis transfected
with the A2RE pruviruses (Fig. 1). Total HW-1 RNA (sphcod
and unspliced) and gapdh mRNA levels were first evaluated in
pulysume extracts by semi-quantitative RT-PCR. Levels uf
these RNAs arere ail found tu bo constant (Fig. 4, A and B).
hnRNP A2 was thon specifically immunuprecipitated frum
equal quantities uf pulysumes (as determined by OD) as per
furmed abuve, and ievels uf HW-l genumic RNA were doter
mmcd by RT-PCR, as described previuusly (25) (Fig. 4C). In the
hnRNP A2 immunoprecipitate, markedly roduced levels (50 r
10%) uf genumic RNA arere found in hnRNP A2 puiysumai
fractions prepared frum celis expressing A2RE-1 ASG. A mure
significant reductiun ufgenumic RNA aras found in hnRNP A2
pulysumal fractions prepared frum colis expressing A2RE-2
A80 (70 ± 10%; Fig. 4G). RNase A treatment eliminated the
RT-PCR signal demunstrating that the signal ubtained aras due
tu cu-immunuprecipitated RNA. A positive cuntrul RNA puri
fied frum a arild-type (HxBru)-expressing ceiluiar lysate was
alsu inciuded in this assay. In urder tu demunstrato specificity,
a knuwn hnRNP A2 mRNA substrate in puiysumes, -actin
mRNA (44) aras quantitated in hnRNP A2 immunuprecipitates
by RT-PCR (Fig. 4D). Fulluaring immunuprecipitatiun, equai
quantities uf -actin mRNA arero found tu co-immunuprecipi
toto arith hnRNP A2, arhereas gapdh mRNA aras undotectable
in tho hnRNP A2 immunuprecipitates (nut shuarn) as domun
strated previously (44). Whiie hnRNP A2-cnntaining pulysumos
cuntain loss HW-1 gonomic RNA arhen the A2RE A8G pruvi
ruses are exprossed, the data shuwn in Fig. 4A suggost that
A2RE mutagenesis dues nut rosult in a genoral luss in HW-1
RNA association tu polysumes, arhich arould translate intu in-
efficient transiatiun uf HW-1 mRNAs and docreasod viral ex
pression levels (sec “Discussiun” boloar). Whiie pr55° synthe
sis is not detectahiy affected arhen the A2RE mutants are
expressed, there was alsu nu genorai effect un viral prutoin
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A HlV-1RNA1
(Input)

B gapdhRNA—*

C Genomic RNA —.

D B-actin RNA —*

Fie. 4. A2RE mutagenesis reduces the levels of HW-1 RNA in
the cytoplasmic polysome pool. Polysome purification and immuno
precipitation were performed on post-nuclear lysates of celis trans
fected with HxBru (wild type) provirus or the A2RE mutants as de
scribed under “Experimental Procedures.” A, from a corresponding
amaunt ef polysome extract (as determined by OD), RNA vas purified
prior to immunoprecipitation and was used in RT-PCR analysis to
amplify HW-1 RNA (total unspliced and spliced) using an oligomer set
to the TAR region and upstream of the major splice donor as described
previously (25). B, gopdh mRNA vas concomitantly quantitated by
RT-PCR from the same RNA preparation and serves here as a polysome
loading control prior ta hnRNP A2 immunoprecipitation analyses (23).
C, equal amount ofpolysome extract vas sobsequently immunoprecipi
tated with the anti-hnRNP A2 antiserum EF67 and RT-PCR vas per
formed using primers specific to unspliced, genomic RNA to determine
if A2RE mutagenesis affected genomic RNA association. D, amount of
the knawn hnRNP A2 ligand (44), -actin mRNA. vas aise identified in
the immunoprecipitate, and this vas found to be equal in all conditions.
Total cellular RNA from HxBru-transfected cells (HxBru Ceil RNAI
and RNase A treatment of the immunoprecipitate prior to RT-PCR
(HxBro + RNase A) served as controls in the amplification and RT
reactions.

Fia. 5. A2RE mutagenesis leads to reduced genomic RNA en
capsidation in progeny virions. A, RPA of virion-associated HIV-1
genomic RNA vas performed using a radiolabeled RNA probe cemple
mentary to RxBru pot RNA. RNA was isolated from HxBru (wild
type)-transfected cells and from equal quantities of virus and analyzed
by RPA to show unspliced (376 bp) and spliced HW-1 RNA (288 bp)
species. The total RNA corresponds to tbe region alter the last spiice
accepter site and reflects the ameunt et aIl spliced and unspliced HIV-1
RNAs (243 bp). In virus, genomic RNA is the predominant form iden
tifled in this analysis, and this corresponds to the total amount ofRNA
in virus. Virions isolated from both A2RE-1 A8G and A2RE-2 A8G
contained significantly reduced levels of genomic RNA. B, this histe
gram shows the average levels et RNA encapsidation in five independ
ent assays (±S.E.) with wild-type (HxBru) encapsidation levels set te
100%. Genomic RNA encapsidation in the A2RE mutants was signifi
cantly reduced C. p < 0.02). There was only 7% RNA encapsidation
lcompared with HxBru) in NC.XK14-T55 as expected 125).
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synthesis (Figs. 2 and 7, and data net shnwn). Our resuits that
show reduced levais of HIV-1 genomic RNA in hnRNP A2
cytoplasmic polysomes (Fig. 4G) are cnnsistent with the levels
of genomic RNA that are found in the cytosol as shown in our
FISH analyses of the A2RE mutants (Fig. 3, panels G and J).

A2RE Mutagenesis Results in n Significant Reduction of
Genomic RNA Encapsidntion in Frogeny Virions—We next de
termined if the nuclear sequestration of genomic RNA was
reflected in altered genomic RNA levais in virus particles. Te
address this question, COS7 cefls were transfected with wiid
type, A2RE-1 A8G, or A2RE-2 A8G DNA. A viral DNA harbor
ing a major deletion (ALysl4Thrao (K’4-T50)) in the NC region
of pr55Gwas expressed and included as a negative control for
genomic RNA encapsidation (25), and the resuits are presanted
in the histogram (Fig. 5B). RNA was purified from both cellular
and viral extracts as described under “Experimental Proce
dures.” Expression et pr55’ (or the truncated pr55G in the
case of NCAKMTadl constructs ‘vas verified by Western blet
ting using a rabbit anti-p24 antiserum (data net shown). RNase
protection analyses (RPA) were performed to quantitate sphced
and unspliced HIV-1 RNAs on equal quantities ofcellular RNA
and virus (normalizod by p24 ELISA as described, Ref. 23) and
as we described previously (50). The RPA analysis on equal
quantities of virus shown in Fig. SA demonstrates that the
nuciear sequestratien of HW-1 genomic RNA nbserved in
A2RE-2 A8G is reflected in a 61% (p < 0.02) decrease in
genomic RNA in progeny virions generated with A2RE-2 A8G
(Fig. 5, A and B). Genomic RNA encapsidation in the NCdK’4-
Tao mutant was decreased te 7 (±10%) wild-type levels, as
expected (Fig. 5B). We can aise conclude that the obsen’ed 43%
reduction in genomic RNA encapsidatien ofA2RE-1 A8G (p <
0.02, Fig. 5B) could also reflect the miner, yet detectable
changes in the cellular localisation patterns et genomic RNA

and pr55°” (Fig. 3, panels G—I). This could aise reflect the
importance of A2RE-1 and its interaction with hnRNP A2 in
the assembiy ofHW-1 virions, although this does net appear te
have any marked effects on viral replication as shown in the
rephcatien studies presented later in Fig. 8.

Tise Gellular Distribution ofHW-1 Proteins Is Mediated by
tise A2RE—The distribution of candidate proteins that are en
coded by A2RE-containing HW-1 RNAs, inciuding pr55°”, Vpr
and Vif was next examined by indirect immunofluorescence
analyses of wild-type and A2RE provirus-expressing ceils.
COS7 celis were transfected and flxed on glass coverslips.
Using antisera to Vpr and p24 (46), Vpr and pr55’ were
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Fia. 6. Expression of A2RE-2 AStI resuits in nuclear localiza

tion 0f Vpr during Hi’I-1 expression. Panels A—C, wild-type-ex
pressing ceils (HxBru), Vpr, and pr55° co-localize in discrete punctate
locations, mostly in the cytosol or at sites of viral assembly as assessed
in laser scanning confocal microscopy analysis shown haro. Panels D—F,
A2RE-i A8G suent mutation did ont markedly alter the localization of
Vpr or pr55-” in transfected celis, whereas in the A2RE-2 ASG (panels
G—I) and 4Mut proviruses (panels J—L), Vpr and pr55° locahzation
patteras were dramaticaHy altered. pr55°° distribution appeared more
granular and periauclear and Vpr xvas found exclasively distributed in
the nucleas. Vif distribution xvas examiaed in wild-type (panels M—O),
A2RE-2 AStI- (panels P—R), and 4Mut-transfected colis (panels S—U).
Vif cellular distribution showed diffuse cellular staining and was sim
ilar in ah conditions (sec alsa Supplemental Fig. Si-B). The staining of
pr55° appeared more granular and perinuclear similar ta that ob
tained la A2RE-2 ASG (as in panel K of Fig. 3). The cdl contours are
cutlined by a dashed yellou liae.

faund to ca-lacalize in punctate staining patterns in wild-type
HIV-i-expressing colis as showa by immunofluoroscence and
confacal micrascapy imaging analyses (Fig. 6, panels A—C).
There was no green or rod fluorescence signal when this anal
ysis vas performed with a preiminune rabbit serum (data flot
shown). Mutation of tho A2RE-i modostiy affected the iocaliza
tion patterns of pr55°’° (Figs. 6, panel E and 3, panel H) and
Vpr (Fig. 6, panel D) when closely comparod with wild-typo
exprossing colis. However, when the localization af Vpr was
assessed in colis oxpressing A2RE-2 ASG, Vpr was faund ta ho
aimost ccmpletely iocaiized ta the nuclous (Fig. 6, panel G). In
A2RE-2 ASG, pr55° shawed a strong porinuclear staining
iocalizatian and perinucloar staining (Figs. 6, panel H and 3,
panel K and sec Supplemental Fig. Si-A). 0f note is that xve
abservod twa pr55Gas staining pattorns when tho A2RE-2 ASG
was oxpressod and ana of these is roprosontod in Fig. 6, panel
H. In the first prSSGae staining pattorn, the more predaminant
lccahzation pattern was primarily perinuciear (Figs. 3, panel K
and 6, panel H and in Suppiemontai Fig. Si-A). In this case,
p55Ga appeared ta ho restricted ta the perinuclear space, but
vas nover detected in the nucieus. In —5% cf the colis absoswed

hawever, wo found nat only strang pr55’’° staining in the
perinuclear space but aise intense stainiag in the nuclealus
when A2RE-2 AStI was expressed (data nat shcwn). This is
shown by oxamplo in Fig. 6, ponds J—L that shows stroog
nucleolar expression cf pr55° when 4Mut was exprossed (Fig.
i). The Vpr and pr55 expressian patterns in 4Mut were
noarly idontical ta thaso abtained with A2RE-2 AStI and the
relative proportion cf pr55aae in (5%) aad out cf the nucleclus
(95%) was quantitatively similar. We dc nat understand at
present the reasons far the nucleolar soquestration cf pr55°3C,
but this bohaviar may relate ta nuclear NES function cf
pr55ae in genamic RNA nucloar export, espocially sinco the
A2RE and NES phenatypos are noarly identical with respect ta
HIV-i RNA distribution (Fig. 3). The specificity cf this effoct far
Vpr and pr55G is undorscared by tho cbsorvation that single
or double mutation cf the A2RE-2, which is contained in tho vif
mRNA, did not alter the localizatian of Vif in HIV-i-expressing
colis (Fig. 6, panels P and S and Supplomental Fig. Si-B) when
camparod with wild typo (Fig. 6, panel M).

Effects cf the A2REs on HJV-1 RiVA Splicing—The A2RE-2
AStI mutation falis within a rogion cf the HW-i RNA that
possessos adjacent oxan spiicing siloncer (ESS and oxan spiic
ing enhancer (ESE) olements. Whilo the A2RE-2 does not ce
incide with the tat ESS2 oloment (52), it oncompasses a re
cently idontified ESE elemont (59). HnRNPs have aise been
shcwn ta intoract with this regian in vitra and it xvas tanta
moant te ruio eut aoy offects of the A2RE-2 AStI mutaticn an
sphcing activity. Wo thorefore investigated the aChats cf the
A2RE and tho corrosponding nucleatido peint mutation an
sphce site soiection usiog threo different assays currootly usod
in investigations en HW-l RNA sphcing. Wo first testod the
A2RE-2 AStI mutation in a weii-characterized in vitra sphicing
assay using a hamologous, bona fide HIV-i sphcing construct
pHSi-X and a corrosponding ESS2 mutant pHSi-ESS4 (52).
Thoso coostructs wili test for any modulation cf ESS functioo
by the introduced A2RE-2 AStI mutatien. Their use xviii ahicw
us ta dotormine if tho intrcduced mutaticn in the A2RE-2
gonerates a oew ESE oloment if multiple spliced products are
observod on the gels, for example. Tho A2RE-2 AStI mutation
was introduced in pHSi-X by recambinant PCR ta gonorate
pHSi-XIA2RE-2 AStI. Nuciear extracts wore propared (6i) and
unifcrmly 32P-iabolod RNAs wore gonorated from linearizod
pHSi-X, pHSi-X, and pHSi-XJA2RE-2 AStI DNAs and gel
puHfiod. In vitro sphcing roactions wero carriod out as de
scribed proviausly ta idonti& effocts on sphcing activity (62).
The RNA substrato gonerated by pHSi-X shoxved fow sphcod
mRNA products as oxpected, while the RNA substrate frcm in
vitro transcription cf pHSi-ESS4, which bears 4 peint muta-
tians in the ESS2, showod a nctable onhancement in the
goneratian cf the spiiced mHNA, demcnstrating tho iawered
ESS activity (Rof. 63 and data net shown). In vitro sphcing cf
pHSi-XJA2RE-2 AStI resuited in a pattera that was idonticah
ta pHSi-X demanstrating that the A2RE-2 ASG mutaticn did
net influence ESS2 activity, gonorate an active ESE oioment
or influenco aiternato sphce accepter site usage in this
pro-mRNA.

Ta identilSr oach Hill-i RNA species, we aise usod an RT
PCH appraach follawed by gel oioctraphoresis (i, 23). This
anaiysis, whiio oniy semi-quantitativo, separates and identifies
by moiocular weight single- and muitiple-sphcod HIV-i RNAs
in donaturiog poiyacryiamide gels. RT-PCR was porfcrmod on
purifled total RNA fram colis transfocted with wiid-typo,
A2RE-i AStI, aod A2RE-2 AStI DNAs. Genomic RNA and the
sphcod HW-i RNAs woro idontifiod by RT-PCR fciiowod by
agaroso gel eiectrapharesis as described under “Exporimontal
Prcceduros.” Theso gel anaiysos demonstrate that tho intre
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ceil virus
FIG. 7. Gene expression levels of wild-type and A2RE provi

ruses. Celis were mock-transfected (lunes 1 and 5), transfected with
HxBru (tanes 2 and 6), A2RE-1 A8G (tan es 3 and 7), or with A2RE-2
A8G ((anes 4 and 8) proviruses. Viral protein expression levels were
assessed in cellular extracts (lunes 1—4) and in purified virus prepara
tians (tanes 5—8) following metabolic labeling using radiolabeled amino
acids. pr55°w, p25124, and Vpr, (A and B) or by Western analyses for
Vpr (C) as described under “Experimental Procedures.” HIV-1 genomic
RNA vas quantitated by Northern blot analysis (D). pr55 synthesis
and processing were not affected by A2RE mutagenesis (A and see Fig.
2A). However, Vpr virion incorporation vas found ta be reduced in bath
A2RE-1 md A2RE-2 A8G mutants as shown in metabolic labeling md
Western experiments (B and C, respectively). Rev and Vif expression
levels were assessed by immunoprecipitation analyses and these were
not influenced during A2RE proviral expression (data not shown).

duced A8G mutations in the A2REs did flot significantly alter
the abundance of the unspliced, 1.8 kb, and 4 kb transcripts
during HIV-1 proviral gene expression (data flot shown). Fur
ther detailed analyses of these transcripts also revealed that
there were no marked changes in the abundance or patterns of
HIV-1 singly-spliced (4 kb) and multiply spliced (1.8 kb)
mRNAs in experiments in which radiolabeled dCTP was in
cluded in the last 2 cycles ofthe PCR reaction (data flot shown)
(23). There were no general changes in the pattern or quanti
ties ofthe spliced RNA species.

A third splicing assay shown examined if either ofthe HIV-1
A2REs behaved like high affinity hnRNP Al-binding sites in
alternative spiice site selection. The model pre-mRNA used in
this last study contains portions ofexons 7 or 7B ofthe hnRNP
Al gene paired with the adenovirus L2 exon (54). While this
pre-rnRNA is spliced almost exclusively to the proximal 5-
spiice site, the inclusion of high-affinity binding sites for
hnRNP Al (ABS) promotes a shift toward the distal 5’-splice
site such that it becomes selected predominantly (data flot
shown). As shown previously, hnRNP A2 also binds ta this ABS
element to promote distal 5’-splice site utilization (54).
Pre-mRNAs carrying either the A2RE-1 or A2RE-2 element
were spliced predominantly to the proximal 5’-splice site sim
ilar to that obtained with the pre-mRNA 68.1 that contains no
ABS insert. These data demonstrate that hnRNP A2 is not
bound or is bound in a manner that does flot influence splicing
modulation, consistent with our RNA and expression analyses
(Figs. 2 and 7). In addition, our data demonstrate that while
hnRNP Al can efficiently modulate spiice site in this assay
when hnRNP Al high affinity sites (ABS) are present, the
A2REs do not possess hnRNP Al binding capacity, at least in
these in vitro splicing conditions. Our data also suggest that
the binding of additional factors to these elements may prevent
hnRNP A2 from modulating 5’-splice site selection. Mutagen
esis of the A2REs in this context also has no effect on the in
vitro splicing reactions. Immunodepletion or add-back type cx-
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perirnents also dernonstrated that hnRNP A2 lias no influence on
the splicing of A2RE-containing pre-mRNAs (data not shown).

Efforts of tise A2REs on HW-1 Gene Expression and Virion
incorporated Vpr—Since one of hnRNP A2 functions is ta de
repress translation of transported A2RE-containing transcripts
(64) ve determined if viral gene expression levels were influ
enced by the A2REs. pr55’° levels appeared to lie constant
and processing was normal in virions (Figs. 2A and 7A), con
firming our in situ analyses of pr55 (Figs. 3 and 6). When we
examined Vpr incorporation levels in purified virions by met-
abolie labeling (Fig. 73) or in independent studies by Western
analyses (Fig. 7C), Vpr virion incorporation was found ta lie
diminished in the A2RE-1 A8G and in a more pronounced
manner in the A2RE-2 A8G mutant, while there vas a small,
yet detectable increase in cellular Vpr levels (Fig. 73, lune 4),
likely because ofdecreased incorporation levels in virions. Sim
ilar to what we found earlier (Figs. 2 and 4), mutation of each
A2RE had graded effects, with the A2RE-2 A8G having the
most profound phenotype. Each A2RE element independently
influenced Vpr incorporation levels (Fig. 7, B and C), consistent
with the decreased or negligible levels of Vpr in the cytosolic
compartment during the expression ofthe proviral A2RE A8G
mutants (Fig. 6, panels D and G). The effects on Vpr localiza
tian (Fig. 6) and incorporation into virions (Fig. 7, 3 and C)
canna t be attributed to the RNA coding potential of either gag
or vpr RNA since the A2RE mutations are suent in both of
these mRNAs (but flot in tut mRNA; see later). In addition, Vpr
incorporation is flot influenced by genomic RNA encapsidation
levels as shown in earlier studies (65). Cellular Vif synthesis
levels corresponded ta those of pr55G0 but we could not detect
Vif in virions (data not shown). Its incorporation would likely
be compromised in the A2RE mutants duo to reduced genomic
RNA encapsidation levels (66). Finally, equal quantities of
steady-state HIV-l genomic RNA were found in transfected
total cell lysates (Fig. 7D) and this is refleeted in constant Gag
expression levels indicating that viral gene transcription or
RNA stability were flot altered with the introduced A2RE A8G
mutations.

Tise HTV-1 A2RE Influences Viral Reptication—Because of
the dramatic changes in viral RNA and protein distribution, we
investigated the impact of A2RE on viral replication. MT4
lymphocyte colis were infected with either wild-type or A2RE
viruses and viral production was measured every 2 days (Fig.
8A). At each time point, celis were washed and replated at the
same celi density. Wild-type HIV-l and A2RE-l A8G had iden
tical replication peaks at about 4 days post-infection, but
A2RE-l A8G showed a diminished peak in several of the ki
netics studies performed. The A2RE-2 A8G virus showed a
2—6-day replication delay depending on the experiment (Fig.
8A). For second round replication analyses, we isolated peak
virus and infected MT4 cells and measured viral replication
every 2 days. In the case of A2RE-2 A8G, there was a rapid
reversion to wild-type ldnetics in the second round of infection
(Fig. 83). Moreover, while we observed an even longer initial
delay of 6—10 days of 4Mut tin whicli the tut initiation codon is
mutated from AUG to ACG), sequence reversion occurred in
the 4Mut virus in the second round of infection and showed
wild-type kinetics (Table I). In support ofthe importance ofthe
A8 nucleotide of the A2RE-2 for HW-l replication, a G8A
reversion occurred in the A2RE-2 A8G virus. There was no
evidence for nucleotide reversions in the A2RE-l viruses. We
propose that the replication profiles are due to marked pertur
bations in viral protein and RNA gene expression patterns in
celis and virions (Figs. 3 and 6), similar ta what was concluded
for a MA RNA binding domain proviral mutant (6).

In order to determine if the obsen’ed replication profiles
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FIG. 8. Viral replication kinetics analysis of A2RE-1 and
A2RE-2 viruses in human T lymphocytes. Virus wildtype (HxBru),
A2RE-1 A8G, or A2RE-2 A8G) was produced in 293T celis and 300,000
cpm virus as determined by exogenous RT assay were used to infect
human MT4 cefls as described under “Experimental Procedurea” A,
viral production was followed every 1—2 days and assayed for reverse
transcriptase activity in the first round of infection. In the second round
of infection (B), equal amounts of purified cell-free virus from peak
fractions derived from experiments presented mA (10 ng ofp24-equiv-
alents) were used to infect MT4 cePs. Virus xvas harvested every 2 days
post-infection and assayed for RT activity. Sequence analysis shows
thnt a reversion to wild type occurs in the second round of kinetics
resulting from a G — A reversion in the A2RE-2 A8G sequence (Table
I). D, viral RNA svas purified from equal quantities of peak-minus-1
virus fractions shown in lst (A) and 2nd (B) round and used in RT-PCR
to quantitate genomic RNA. Numbers below gel represent quantity of
genomic RNA in virus relative to wild-type content (similor in lst and
2nd round of infection). An 80% recovery of genomic RNA svas observed
in the second round of infection in A2RE-2 A8G virus.

were attributable to genomic RNA content in virus, ive deter
mmcd the genomic RNA content in virus derived from the
A2RE-2 A8G virus 1 day before peak replication in the first and
second round of infection shown in Fig. 8, A and B. RT-PCR was
performed on purified viral RNA to identify unspliced, genomic
RNA as described under “Experimental Procedures.” In the
first round, there was a 65% decrease (average oftwo determi
nations) in viral genomic RNA in A2RE-2 A80 virus compared
with ivild-type levels (Fig. 7C; see also Fig. 5), wffich could
partly explain the replication profile obsen’ed (Fig. 7A). In the
second round, RT-PCR analysis of genomic RNA revealed an
almost complete recovery of genomic RNA content in the virus
to 80% that of wild type, and this conelated with wild-type
rephcation ofthe A2RE-2 A8G virus and reversion to wild-type
sequence at this time. These data support the notion that
genomic RNA encapsidation levels of the inoculating virus
were n major determinnnt in producing the replication delay of
this virus.

Quantitative Analysis of H1V-1 Reverse Transcription—In
order to confirm thnt genomic RNA content was n major deter
minant for the replication delay and was not the result of
defects in reverse transcription, minus-strand strong-stop DNA
(-sssDNA( ivas quantitated in cells by real-time PCR as de
scribed under “Experimental Procedures.” P4 cells were in
fected with ivild-type and A2RE virus generated in 293T cells.
At 8 h pos t-infection, genomic DNA was isolated and real-time
PCR was performed as described under “Experimental Proce
dures.” These analyses revealed that there ivas a strong quan
titative correlation (ra = 0.99) between genomic RNA content
in the infecting virus and the abundance of -sssDNA. These
analyses rule out any major effects of the A2RE mutations at
this early step of reverse transcription (data not shown). These
data collectively support the idea that the infectivity phenotype
is likely attributable to genomic RNA encapsidation levais and
virion-associated Vpr (Figs. 7, B and C and 8G).

DISCUSSION

The data presented in this manuscript demonstrate that the
hnRNP A2/A2RE association represents a commitment step for
HIV-1 RNA trafficking into the cytosol and subsequent down
stream trafficking events leading ultimately ta RNA encapsi
dation in progeny virions. Our previous work in which we show
that the association of hnRNP A2 to the H IV-1 A2REs is
necessary for RNA trafficking cleariy supports a rob in cyto
plasmic RNA trafficldng (9) while the present ivork does not
address this role. However, A2RE mutagenesis in both cases
blocks hnRNP A2 association to HIV-1 RNA (Fig. 2) and results
in dramatically reduced levaIs of genomic RNA in the cvto
plasm (Figs. 3 and 4). As a consequence, this results in signif
icantly reduced levels ofgenomic RNA in progeny virions (Fig.
5) late in the rephcation cycle. These data supporta role ofthis
interaction in nucleocytoplasmic export ofHW-1 RNA, consist
ent with the model in which hnRNP A2IA2RE association is
proposed ta facilitate RNA export from the nucleus (67). We
also show that this interaction has a dramatic effect on the
cellular localization ofpr55GSC, and in particular, an that ofVpr
(Fig. 6). While there is evidence that the A2RE of mouse mbp
enhances cap-dependent translation (64), ive have rubed eut
this possibility for the HIV-1 A2REs in several types of in vitra
translation assays.a hnRNP A2 is a predominantly nuclear
protein, but it is also found in streaming cytosohc compart
ments in human cells (36), consistent with its many functions
in RNA trafficking and translation.

Several members of ImRNP MB family of proteins possess
bath nuclear and cytoplasmic RNA trafficking functions in
several different organisms (37, 38, 68, 69). Lall et al. (37)
reported that sqd, a Drosophila hnRNP, is required for fiz
mRNA bocahzation in embryas. The -actin mRNA zipcode
binding proteins, Zbp2, homologous ta hnRNP, is n predomi
nantly nuclear protein that directs the localization of $-actin
mRNA (38) and in yeast, an exclusively nuclear protein, Loclp,
binds RNA zipcode sequences ofASHl mRNA and is required
for efficient cytoplasmic localization ta the bud tip (68). The
result that the hnRNP A2/A2RE interaction is important for
nuclear RNA export ivas completely unexpected. The data sug
gest that hnRNP A2 tags the HIV-1 RNA by binding ta it
(perhaps concomitant ta its roles in splicing regulation, soc
later) and a fraction remains associated during the export and
transport in the cytosol. Several recent data support the role of
RNA binding proteins, including hnRNPs, that tag RNAs in the
nucleus for subsequent post-transcriptional regulatioo (70—
73). In addition, a recent study domonstrates that hnRNP D
must first be imported into the nucleus ta have its effects on
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TamE I
Reversions during replicotzon ofA2RE virus

The results of sequencing analysis ofthe A2RE sequences in the viral genomes are shown. RNA was extracted from viral supornatants at peak
fractions in the first and second rounds ofinfection. The RNA vas reverse-transcribed, and the A2RE elements were seqnenced as described nnder
“Experimental Procedures.” Input represents the mutations in the initial proviral DNAs that were seqnenced in parallel.

Proviruses Jnpnt (DNA) First-round infection Secoad-cound infection

A2RE-1 A2RE-2 A2RE-1 A2RE-2 A2RE-1 A2RE-2
HxBru — — — — —

A2RE-1 A8G A8G
— A8G — A8G

A2RE-2 A8G — A8G — MG — R”
4Mut A5G, MG T5C, MG A5G,A8G 50% R A5G, A8G R

T5C, A8G
‘ Mntations that have reverted to wild-type phenotype are indicated by R.

mRNA turnover in the cytosol (74). Our RNA analyses shown
here demonstrate that the A2REs do not influence steady-state
HIV-1 mRNA (Figs. 2 and 7D) nor do their location in the
HIV-1 RNA correspond to any of the previously identified cia
repressor or post-transcriptional inhibitory elements that im
pact on HIV-1 post-transcriptional regulation (75, 76). Cumu
latively, hnRNP A2 function is first initiated in the nucleus and
this evont is important for its role in the cytoplasm, likely
playing roies in both nuclear and cytoplasmic trafficking and
localization of HIV-1 RNA.

One of nur major observations from the data presented in
this article is the impact of the A2RE-2 A8G on overriding the
nuclear export function of HW-1 Rev late in roplication. One
can envisage that the hnRNP A2/A2RE could impinge on the
function of Rev to export RRE-containing RNA to the cytosol.
This may be achieved in part by interference by unbound
hnRNP A2 on the RRE similar to the activity of the hnRNP
protein, RREBP49 on Rev fnnction (77) or the interference of
hnRNP Al on the HTLV-l Rex response element (78). Alter
natively, the dependence on the hnRNP A2IA2RE association
could aiso suggest that this protein-RNA complex is a pro
requisite for Rev function, perhaps by stabilizing HW-l RNA
protein complexes that are competent for nucleocytoplasmic
transport. The related hnRNP, hnRNP Al has also boen shown
to assemble on HW-l RNA to synergize with Rev to promote
unspliced RNA nucleocytoplasmic export (79) and to interact
with HW-l cis-acting repressor/inhibitory sequences (INS)
that cnuld impact on Rev fnnction (75). Neither of the A2RE
elements overlap nor was hnRNP A2 shown to interact with
these INS elements (76). Importantly, our data demonstrate
that this partial Rev-minus phenotype (partial because pr55G0e

is expressed) at this late step is not a result of aberrant spiicing
as we show in the several types ofheterologons and homologous
sphcing assays (data not shown). This partial Rev-minus phe
notype in which the genomic RNA is sequestered in the nucleus
is also observed when an HxB2-M4 MA NES proviral mutant is
expressed (Fig. 3, panel F and Ref. 5). MA NES- and hnRNP
A2IA2RE-mediated RNA trafficking constitute two trafficking
pathways, perhaps overlapping at several levels to play key
robs in the nucleocytoplasmic transport of genomic RNA late
in the replication cycle.

The activity of the hnRNP A2/A2RE and HW-l MA NES
RNA localization doterminants that promote genomic RNA
trafficking to the cytosol and eventual encapsidation can not be
completely blocked by a single nucleotide or amino acid point
mutation (Fig. 5)(5), suggesting that there are additional sig
nais that contribute to the final quantity of genomic RNA in
virions. Consistent with the current model of RNA trafficking
mechanisms in which multiple trans-acting proteins act in a
temporal and spatial manner (27, 80—82), our data favor the
idea that the hnRNP A2/genomic RNA association represents
une event in a chain of events that promotes the trafficking of
HIV-l genomic RNA from the nucleus to sites of viral assembly

and these steps likely involve the activity of a variety of HW-l
genomic RNA-binding viral and celluiar proteins including
Rev, MA or pr55°” and hnRNP A2 (9, 25, 47, 82—85). Consis
tentiy, recent data point tu a role of the cellular protein, hRIP
in the trafficiring ofHW-l RNA from a perinuclear space to the
cytoplasm (4).

While hnRNP A2 is a bona fide nuclear shuttling protein and
has multiple robs in RNA processing and transport (27), there
is no direct proof -except for the case that is presented in this
manuscript- that temporal functions exist for hnRNP A2 in the
context ofthe HW-l lifecycle. These functions may be defined,
however, by the efficiency of RNA spiicing early in infection
when multiple-spliced HIV-l RNAs are rapidly produced when
Rev is least abundant (86) and a Inter role of hnRNP A2 to
participate in the inhibition of splicing (when Rev levels are
elevated) to promote unspliced, genomic RNA export to the
cytosol for assembly. In support of this notion is the coupling
that ;vas proposed to exist between negative splicing regulation
ofHW-1 RNA and Rev-mediated nuclear export ofHIV-l RNAs
late in the replication cycle (83) as well as the effect of Rev on
overriding nuciear retention of intron-containing RNAs by the
splicing machinery during replication (87—89). A direct link
has aiso beon characterized between RNA nucleocytoplasmic
transport and splicing inhibition for histone H2a RNA matu
ration that is, in this case, mediated by an RNA trafficldng
sequence (90). Consistent with temporal activities of hnRNP
A2, its association to HW-l RNA is equally affected by A2RE
mutagenesis at 20 h post-transfection (data identical to those
presented in Fig. 2D) yet there is littie affect on the distribution
of gonomic RNA and pr55G5e at this oarly time (Fig. 3, panels
S—U). Total RNA staining is likowise unaffected by A2REs at
oithor time points (Fig. 3, panels V—Y and data not shown).
These rosuits suggest that the hnRNP A2/A2RE interaction is
functionally relevant but only at a specific time in the HIV-l
lifocycle and it has no effect on gonoral RNA export.

While it is suggested that hnRNPs are functionally rodun
dant proteins, sovoral linos of ovidenco also support special
ized functions for hnRNP proteins in addition to that re
ported for splicing. The casa in point is that for hnRNP A2. It
possesses robes in transcription, RNA maturation, splicing,
RNA transport, and its bocalization is difforentially affoctod
upon troatmont of cells with drugs that affect mothylation
and oxidativo stress (33, 34). HnRNP Al is not active nor can
it replace hnRNP A2 in A2RE-mediatod RNA trafficking and
thora is no availablo evidonco to suggest that hnRNP A3 has
such a rob oxcopt for its bocalization in mouse neuronal RNA
granules (45). Whilo both of thoso hnRNPs can bind mouso
mbp A2RE elements in vitro (45, 69), this has not boon shown
formally for tho HIV-l A2REs, which possess sovoral nucbe
otide difforoncos whon compared with tho mouso rnbp mRNA
A2RE (9). Furthormore, thoso studios have boon porformed
with murine or rat proteins, which might not necossarily
translate to human or the monkey ceils usod in this study.
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Nevertheless, we demonstrate here that the association of
hnRNP Al to HIV-l RNA was not affected in the A2RE single
point mutant (Fig. 2, and data flot shown at early time
points). We were not able to characterize hnRNP A3 binding
to HIV-l RNA because the antibody did not work in our
immunoprecipitation procedure (data not shown). Our recent
RNAi data also confirm functional differences between
hnRNP Al and A2 during HIV-l gene expression. Specific
targeting of hnRNP A2 gene expression and not that of
hnRNP Al by siRNA demonstrates that HIV-1 RNA traffick
ing is dependent on hnRNP A2 expression in HIV-1 express
ing cells.4 In support of these data are the noted functional
differences in activities between the hnRNP Al and A2 pro-
teins on SMN1 mRNA splicing (35) and the lack of effects of
the A2REs in our in vitro splicing assays (described above).

Our earlier work highlighted the co-trafficldng ofthe vpr and
gag RNAs in RNA transport granules mediated by their respec
tive A2RE (9). As shown in Figs. 6, panel G and 7, B and C,
A2RE-2 A80 expression resulted in an almost complete re
localization of Vpr to the nucleus as well as a significant de
crease in Vpr virion incorporation levels. While the prevention
ofthe pr55OEVpr interaction alone does not result in nuclear
re-import ofVpr during proviral gene expression (91), it is well
described to block Vpr incorporation (65, 92, 93) similar to the
results we obtain (Fig. 7, B and C). On the other hand, mu
tagenesis of the nuclear export signal to cause nuclear reten
tion of Vpr does not prevent the Vpr-Gag interaction in provi
rus-expressing ceils yet this reduces Vpr incorporation
significantly as shown recently (94). Because oor preliminary
studies demonstrate that the Gag-Vpr interaction is not influ
enced by A2RE mutagenesis (data not shown), the reasons for
the re-localization of Vpr to the nucleus and diminished incor
poration levels remain to be identifled. These phenomena could
be related to a loss of coordinated gag and vpr RNA trafficking
and their influence on expression patterns by the hnRNP A2-
dependent machinery or on Vpr NES activity. The nuclear
localization of Vpr would likely have a negative impact on the
function of the HIV-1 pre-integration complex as described
recently (94, 95).

Our genotyping analyses revea) the importance of the
A2RE-2 sequence, and in particular the A8 nucleotide, in
HIV-1 replication (Fig. 8). A rapid reversion to wild-type se
quence was found for A2RE-2 A8G (as well as the double
A8G,T5C mutant) and this correlated with an almost complete
recovery of genomic RNA content in A2RE-2 A8G virions (Fig.
8, B and C and Table I). This demonstrates that the genomic
RNA content in virus contributes significantly to the replica
tion profile found in the first round of replication. Vpr content
and localization likely normalized as a consequence of the
A2RE-2 sequence reversion at this time because replication
delays are characteristic of virus that is deflcient in Vpr (96,
97). An A8G polymorphism in the HIV-l A2RE-2 is extremely
rare (32) and we identified the 08 nucleotide ofA2RE-2 to be
associated with long-term non-progression to AIDS (9, 98). This
nucleotide substitution vas not maintained in culture by
A2RE-2 A8G. While these data do not rule out a contribution of
the Tat G1u2-01y2 amino acid change, however, the mutation
does not have any marked consequence on protein and RNA
expression levels (Figs. 2 and 7) and it is predicted that Tat
interaction with cyclin T would not be affected since this inter
action is mediated by a distal Tat domain.

The A2RE-l A80 phenotype deserves mention here because
it only had modest effects on genomic RNA localization and

modest effects on Vpr and genomic RNA encapsidation levels
(Figs. 3, 5, and 7). We consistently observed wild-type replica
tion ldnetics in T ceils (Fig. 8) and genotyping analysis did not
detect any sequence reversions in this element (Table I). Con
sistently, hnRNP A2 association was shown to be only partially
impaired on A2RE-1 A80 RNA in vitro (9) and in our study in
cells presented in Fig. 2D. Attempts to define a more severe
RNA trafficking andlor gene expression phenotype could not be
achieved even with the introduction of two sUent point muta
tions in the A2RE-l (using an A50/A80 mutant; data not
shown).2 This suggests that the A2RE-l contributes to the total
amount ofhnRNP A2 associated to HW-1 RNA, but mutagen
esis cannot completely remove it, producing the intermediate
phenotype observed. Mutagenesis of each A2RE individually
lowers hnRNP A2 binding (Fig. 2D) suggesting that these two
elements may cooperate in hnRNP A2 binding and could result
in RNA conformational changes ofHJV-l RNA or act additively
to influence function. This latter mechanism has been shown to
exist in a model in which proteins bridge 5’- and 3’-RNA ends
to promote efficient translation (99). Such a mechanism has
also been put into evidence for hnRNP Al such that hnRNP Al
bridges two distant regions ofthe RNA via high affinity binding
sites to promote intron excision (53). And in yeast, RNA trans
port ofASHJ mRNA is incrementally restored by the one-by
one addition of ASHI mRNA localization elements (100). For
HIV-l, multiple cis-acting RNA elements have been identified
to date and their concerted activities are important determi
nants for total HIV-l gene expression levels (75. 76, 82, 101).
RNA structures or RNA-protein complexes that are formed
potentially influence these and RNA conformation could be
important for total splicing, translation regulation and RNA
encapsidation levels (58, 102). It wili be important to determine
the interplay between these regulatory elements and further
analysis of the contributions of the A2RE-l to HIV-l gene
expression levels will be required.

There are several reasons why our data provide important
new information about virus-host interactions and HW-l RNA
trafficldng. First, the data presented here demonstrate that the
hnRNP A2/A2RE interaction represents a distinct determinant
for genomic RNA transport in cells expressing replication-com
petent HIV-l. Furthermore, one of the most striking observa
tions pro sented in this study is the temporal nature of A2RE
activity in the context of the HIV-l replication cycle such that
it is functionally important at a late stage of the replication
cycle coinciding with strong splicing inhibition and Rev-medi
ated RNA export to the cytosol. The data also provido the first
evidonco that tho hnRNP A2IA2RE interaction is functional in
non-neuronal cells thus it will be interesting to identify other
RNAs that require haRNP A2 for transport. Finally, it is clear
that several mechanisms exist to achieve the cytosolic localiza
tion of genomic RNA during HIV-l gene expression and
summod up, these include the activitios ofa variety ofdifferont
types of viral and cellular RNA-binding proteins such as Rev,
MA, hRIP, and hnRNP A2.
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