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fRENCH SUMMARY

Pour mon projet de maîtrise, j’ai étudié le rôle de l’acétylcholine rétinienne dans

le développement du système visuel. Les cellules amacrines ‘starburst’ (AS) sont les

seules cellules cholinergiques présentes dans la rétine et il a été démontré qu’elles

étaient cruciales pour l’établissement de la sélectivité à la direction dans la rétine du

lapin (Vaney et al, 1989). Chez le rat, néanmoins, le rôle de ces cellules dans

l’établissement de la sélectivité à la direction n’a pas été clairement démontré.

Pour déterminer l’influence des cellules AS sur la sélectivité à la direction des

neurones, nous avons injecté une immunotoxine (anti-VAChT:saporine) dans le vitré de

rats nouveau-nés. Cette dernière est spécifiquement dirigée contre le transporteur

vésiculaire de l’acétylcholine et devrait donc éliminer toutes les cellules cholinergiques

amacrines de la rétine. Lorsque les rats attaiguent l’âge adulte, nous avons fait des

enregistrements électrophysiologiques dans le colliculus supérieur (CS). Suite aux

enregistrements, l’analyse immunohistochimique a démontré que seule la moitié des

neurones cholinergiques était détruite. Nos résultats électrophysiologiques préliminaires

suggéraient qu’il n’y avait pas de différence majeure dans les propriétés des champs

récepteurs du CS, ce qui pourrait être dû à élimination partielle des cellules AS.

Nous sommes donc intéressés au développement des cellules AS, dans le but de

déterminer à quel moment l’injection de notre toxine causerait une élimination complète

de ces cellules. Nos injections, faites dans des rats d’âges différents (P0 à P60), ne

permettent pas de conclure dû à l’inefficacité de la toxine immunologique.
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ENGLISH SUMMARY

This project investigates the role of retinai acetylcholine in neuronal

deveiopment of the visual system. Starburst amacrine (SA) ceils are the oniy

cholinergic celis present in the retina and have been deemed crucial for direction

selectivity in the rabbit retina (Vaney et aÏ, 1989). In the rat, however, it is stili unclear

if SA celis are necessary for direction selectivity.

In order to determine the influence of SA neurons on direction seiectivity,

intravitreal injections of an immunotoxin (anti-VAChT saporin) were carried out on rat

pups. This toxin is specific for the vesicular acetyichoiine transporter, and therefore

shouM have eiiminated ail retinai cholinergic amacrine ceils (Gunhan et ai, 2002).

When rats reached aduithood, electrophysiologicai recordings were done in the superior

coiiicuius (SC). Foiiowing the recordings, immunohistochemistry was performed on the

retinae of these animais. Jnterestingiy, these retinae showed that oniy about 50% of

choiinergic neurons were eiiminated and preliminary resuits suggest that there was no

major difference between normai and toxin-treated animaIs in terms of receptive fieid

properties of the SC. This resuit could be attributed the partial eiimination of SA celis.

Aiming to obtain the fuii eiimination of SA ceils, we then focused on

determining the deveioprnentai course of SA celis, and when intravitreal injections of

the immunotoxin would aiiow for complete elimination of SA ceils from the retina.

from the resuits of injections performed on rats of various age groups (P0 to P60), no

conclusions couid be made definiteiy from this part of the study since the imumnotoxin

was ineffective in eliminating any choiinergic fleurons.
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1.1 The visuat system

Vision is the most fundamental of our senses. It allows us to recognize

visual cues from the world and respond appropriately. Although ail parts of the

eye are important for perceiving a good image, the most vital element for vision

is the retina. The retina is essentiafly a piece of brain tissue that gets direct

stimulation from the lights and images of the world. It translates the light into

newe signals and extracts useful information and ignores redundancies.

1.2 Theretina

1.2.] Structural organization and its development

The vertebrate retina is a laminated structure and is organized into five

layers: two synaptic layers — inner and outer piexiform layers — which are

interposed between three cellular layers — inner and outer nuclear layers and

ganglion cell layer. In the temporal arrangement of the retina (figure 1), the

photoreceptors cell bodies are first in line and they are iocated in the outer

nuciear layer. The inner nuclear layer contains the perikarya of horizontal cells

at its outer margin; the majority ofbipolar cell perikarya are found in the middle

ofthe layer; and most amacrine cell perikarya are found along the proximal
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Figure 1: Illustration showing the cellular organization of a vertebrate retina. Ihe solid

une black arrows show the direction in which light enters the eye. The dotted-line arrows

indicate the direction in which information is conveyed once the light ‘hits’ the

photoreceptors. TNL: inner nuclear layer; IPL: inner plexiform layer; ONL: outer nuclear

layer; OPL: outer plexiform layer. From: (Palmer, 1999).
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border. The Muller celis are found throughout the retina, from the outer nuclear

layer (ONL) to the inner margin of the retina. The outer plexiform layer (OPL)

and inner plexiform layer (IPL) are areas where synapses are made between

different cdl types. The IPL is further divided into two regions — sublamina a,

which is doser to the INL, and sublamina b, which is doser to the ganglion ceÏl

layer (GCL).

There are, however, exceptions to the aforementioned arrangement of

the retina. Horizontal and bipolar cells may be found in the ONL, ganglion

cells in the limer nuclear layer (INL), and amacrine cells in the GCL. These

cells are named displaced cells. Displaced amacrine cells are a common feature

ofmany retinae (Masland & Miils, 1979; Vaney, Peichi, & Boycott, 1981).

The retina is part of the central nervous system (CNS) and originates

from the neural ectoderm during development. Groups of progenitors leave the

celi cycle throughout retinal development to differentiate into one of seven cell

classes (Carter-Dawson & LaVail, 1979; Sidman, 1961; Young, 1985b; Young,

1 985a). Although there is considerable overlap between the generation periods

of most ceil classes, each retinal cdl type is generated at a certain time point.

Ganglion cells are the first neurons to be bom, followed by amacrine,

horizontal, cone photoreceptor cells, bipolar, and finally, Muller glial cells.

Generation of rod photoreceptor cells can be seen almost throughout

cytogenesis (Carter-Dawson et al., 1979; Sidman, 1961; Young, 19$5b; Young,

198 5a).
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1.2.2 Deveïopmental course of the rat retina

The retjna is a derivative of the fleurai tube. The two optic vesicies

deveiop very eariy in embryonic iife and then invaginate to form the optic cups

(Dowiing, 1 987b; Gnin, 1982). It is the neurai epithelium on the inner waii of

the optic cups that eventually becomes the retina. Imtially, both waÏis of the

optic cup are one ceil thick. These celis then divide to form a neuroepitheiial

layer many ceils thick which then differentiate into ail the retinal celis

(Dowiing, 19875).

In the rat, mitoses occur in the scierai zone of the retina at the centrai

and peripherai regions between embryonic day 9 (E9) and postnatai day (P13)

(Rapaport, 2004), with the peripherat retina lagging behind the center by, on

average, 1.9 days ± 11 hours. There is a deciine in mitotic activity beginning

approximateiy at P6, when ninety-five percent of ail retinai ceiis have been

generated. Ceil genesis siows sharply for the production of the finai five percent

of ceiis (Rapaport, 2004).

Ganglion ceiis (GC5) are the first retinai ceiis to be bom; iabeiing has

been seen as early as E9 (Rapaport, 2004); ninety-five percent of these ceils are

present by E19. These are cioseiy foiiowed by horizontal and cone

photoreceptor celis; first detected between E9 and F10 and ninety-five percent

detected at E 15/16 and El 8, respectively. Next in une are the amacrine celis,

which appear at E12 and are aimost fuliy expressed by P7 (Rapaport, 2004).

Rod photoreceptor genesis, starting at E18 and ending at approximateiy P13,
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precedes a final cohort consisting ofMuller and bipolar celis, which arise at E21

and are detected till P13 (Rapaport, 2004).

1.2.3 Functional organization and its development

The retina receives visual information that it segregates into two visual

streams: one beginning with rod photoreceptors, and the other with cone

photoreceptors. Rods are activated by dim-light conditions while cones

function in bright light and are responsible for colour vision. The division

between rod and cone vision allows for the extension of the range of

illumination conditions under which we can see.

The first synapse in the retina is between photoreceptors and bipolar celis.

Signais that represent local increments or decrements in luminance are separated

into two pathways and carried off by ON (depolarizing) and OFF

(hyperpolarizing) bipolar cells. These then synapse onto ganglion ceils

(Dowling, 1987a; Rodieck, 199$).

There are also lateral pathways involved in the visual stream. Figure 1

shows potentiai cell-to-cell interactions. In the OPL, there are horizontal celis

that may influence the processing of visual information via its interactions with

photoreceptors, bipolar celis, and with other horizontal cells (Haverkamp,

Grunert, & Wassie, 2000; Vardi, Morigiwa, Wang, Shi, & Sterling, 199$).

Another lateral pathway involves the amacrine celis located in the IPL. These



7

ceils exert their effect by interacting with bipolar ceils (Menger & Wassle,

2000) as well as with other amacrine celis.

1.2.3.1 Neurotransmitters and neuromodutators

In trying to understand the functional organization of the retina, questions

arise about retinal synaptic mechanisms. The processing of visual information

within the retina depends in large part on neurons interacting with each other via

discrete and specific sites called synapses. Chemical messengers, either

neurotransmitters (NTs) or neuromodulators (NMs) or both, relay information

between cells and between different types of celis (Pycock, 1985; Daw,

Brunken, & Parkinson, 1989).

There are over a dozen proven or presumed NT chemicals identified in the

mammalian retina. Each celi type in the retina has usually been correlated with

one or more NT(s) or NM(s); photoreceptors with glutamate, aspartate and

taurine, horizontal celis wiffi y-aminobutyric acid (GABA), taurine, and glycine,

GCs and bipolar celis with GABA and glutamate. However, the most

chemically diverse celis in the entire retina are the amacrine ceils; (Pourcho.

1996; Pycock, 1985) this is probably due to the diverse phenotypes of this

group. Different types of amacrine celis include AI and AIT ceils, dopaminergic

amacrine celis, and starburst amacrine celis. They participate in a variety of

excitatory and inhibitory circuits in the IPL. In keeping with the diversity of

function of these ceils, many transmitter substances have been associated with
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their pharmacology including acetylcholine (ACh), y-aminobutyric acid

(GABA), taurine, glycine, dopamine, and neuropeptides (ex. Substance P,

somatostatin, vasoactive intestinal polypeptide) (Pycock, 1985).

1.3 Amacrine ceils

Amacrine ceils as a whole were flrst discovered in the late 1 $$O’s. The

name ‘amacrine’ cornes from the Greek a-makrôs-inos meaning “without-long

fiber”, so called by Ramon y Cajal in 1883. Since their discovery, a wide variety

of subgroups have emerged based on morphology and pharmacology (Dowling,

1 987a). As previously mentioned, this morphologically diverse group of cells is

associated with a number of neurochemical agents and they are implicated in

many inhibitory and excitatory circuits.

1.3.] Starburst amacrine celis

Starburst amacrine (SA) celis are probabiy the best characterized of ail

amacrine cells. They have distinct characteristics that are found ubiquitously

across species, suggesting a highiy conserved roie in the retina.
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1.3.].] Characteristicproperties ofSA ceits

SA celis have a distinctive radially symmetrical morphology where the

primary dendrites are branched regularly and repeatedly, and are studded with

varicosities. This gives the ceils the appearance of starburst flreworks

(Famiglietti, 1983) (figure 2). There are two subpopulations of SA celis: one is

located in the TNL the other, forms a displaced population in the GCL. Both

populations extend their dendrites into the IPL with the processes from the INL

limited to sublamina a, and those from the GCL limited to sublamina b

(Famiglietti, 1983; Voigt, 1986; $chmidt, Wassle, & Humphrey, 1985; Rodieck

& Marshak, 1992). The density of these ceils is greatest at the area centralis

with a graduai decrease in number as we go towards the periphery, essentialiy

mirroring the distribution of GCs (Schmidt et al., 1985; Vaney et al., 1981;

Voigt, 1986; Rodieck et al., 1992).

1.3.2 Acetylcholine release by SA cells

ACh is one of the oldest and best understood NTs. It was first identified

as a NT in the peripheral nervous system (Dale, 1914; 1935) and then in the

central newous system. Later studies showed that it is also a NT in the

vertebrate retina (Neal, 1976). The synthesis and release of ACh is relatively
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Figure 2: Image of a starburst amacrine celi from a rabbit retina labeled with

Lucifer yellow. The dendrites are arranged radially around the celi body and are

studded with varicosities. From: Masland (1986).
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simple (Figure 3). It is synthesized in the cytoplasm from choline and acetyl co

enzyme A by the enzyme choline acetyltransferase (ChAT); this enzyme is

contained only in cells that synthesize ACh and is therefore a marker enzyme

that identifies cholinergic celis. Following synthesis, ACh is packaged into

synaptic vesicles via the vesicular acetylcholine transporter (yAChT); a proton

dependent transporter. ACh is stored in these vesicles until its release from the

presynaptic nerve terminal. Afier release, the ACh that is flot taken up by the

post-synaptic terminal is hydrolyzed by extracellular acetylcholinesterase

(AChE) to yield choline and acetate. The choline is taken back up into the

presynaptic neuron, and can be used to resynthesize ACh or to synthesize

phospholipids, which can be used as stores of choline.

1.3.3 Implications in direction selectivity

Direction selectivity is the ability of a ceil to interpret the direction of

stimulus movement; there are many neurons in the visual system with this

capability. The rabbit retina has been the focus of many studies on retinal

direction selectivity because it contains direction selective ganglion celis. Most

of the research has focused on the ON-OFF direction selective ganglion celis

which make-up ten percent of the GCs in the rabbit retina (Vaney, 2001). There

are four types of direction selective ganglion ceils; each responds preferentially

to image motion in one of the four cardinal ocular directions — upwards,

downwards, forwards, and backwards (Oyster & Barlow, 1967). It appears that
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Figure 3: Illustration depicting a cholinergic fleuron. Diagrammed here, is the

sequence of steps involved in the utilization of ACh as a NT. (1) Uptake of

choline from the synaptic clefi by the presynaptic celi. (2) ACh is synthesized

from choline and acetyl-coenzyme A (acetyl-SCo A) (acetate donor) by the

enzyme choline acetyltransferase (ChAT). (3) formation of a releasable pOol of

ACh. (4) Release of ACh from the presynaptic terminaI. (5) Interaction of ACh

with the postsynaptic cefl. (6) Degradation of unused ACh by

acetylcholinesterase (AChE) into choline and acetate.

from:

http://abdellab.sunderland.ac.uk/Lectures/Nurses/pics/cells/acetylcholine.jpg
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each point on the retina is covered by the four different subtypes of direction

selective ganglion celis whereas direction selective ganglion celis of the same

subtype span the retina in a territorial manner with little overlap of their

dendritic fields (Amthor & Oyster, 1995; Vaney, 1994).

There has been much debate on the locus of computation of direction

selectivity. Taylor and colleagues (2000) argued that the direction selective

ganglion ceil is the first element to be fully direction selective in the rabbit

retina while Borg-Graham (2001) argued that the ftrst direction selective

element is located somewhere earlier in the chain of synapses leading to the GC.

To date, this conflict remains unresolved however, the latter theory has been

extensively studied and the results are favourable.

One of the prime candidates for the laterally displaced element

responsible for direction selectivity is the cholinergic SA celis. The ON- and

OFF- SA ceils stratify at precisely the same levels in the IPL as do the ON- and

OFF direction selective ganglion ceils (Famiglietti, 1987; Famiglietti, 1992) and

within each stratum, the numerous overlapping processes co-fasciculate with

those of the direction selective ganglion ceils (Vaney & Pow, 2000; Tauchi &

Masland, 1985).

SA ceils receive bipolar and amacrine cell input over the whole dendritic

tree, although their output to GCs is restricted to the varicose distal ends

(Famiglietti, 1991). It is proposed that this proximodistal segregation of the

output and input synapses supplies the spatial asymmetry required for the

generation of direction selectivity assuming that dendrites on different sides of



SA ceils provide selective output to direction selective GCs with different

prefened directions (Vaney DI, 1989) (Figure 4). SA celis contain and release

both acetylcholine (ACh), an excitatory NT and GABA, an inhibitory NT

(Brecha, Johnson, Peichi, & Wassle, 1988; O’Malley, Sandeil, & Masland,

1992; Vaney & Young, 1988). Due to this fact it is proposed that each direction

selective GC would selectively receive from a SA celi, either a cholinergic input

located on the preferred side of the GC, or a GABAergic input located on the

nuli side. If the two mechanisms operated together in a push-pull fashion, a SA

celi process pointing in one radial direction would selectively excite a direction

selective GC with the same preferred direction and selectively inhibit an

overlapping direction selective GC with an opposite preferred direction

(Masland, 2003; Vaney, 1989).

It may be premature to relate results obtained in the rabbit to the rat as

the presence of direction selective ganglion ceils in the rat have yet to be

established. However, direction selective GCs have been found in the retinae of

other rodents such as the mouse (Yoshida et al., 2001; Weng, Sun, & He, 2005)

and squinel (Michael, 1968) and consequently may apply to the rat as well.
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figure 4: Selective SA celi outputs to direction selective GCs with different preferred directions.

The SA ceil (center - black) process pointing in one radial direction would selectively excite a

direction selective GC (blue, green, purpie, or pink) with the same preferred direction and

selectively inhibit an overlapping direction selective GC with an opposite preferred direction.

100 prn
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1.4 Superior coÏÏicuÏus

The visual system is believed to be divided into two streams: the

geniculocorticai stream, responsible for the analysis of stimulus feature (i.e.

form) (What pathway); and the superior colliculus, responsible for visual

attention and orientation as well as multisensory integration (Where pathway)

($chneider, 1969; Rhoades & Chalupa, 1977; Rhoades, 1991).

1.4.1 Anatomical organization

The SC is a sensorimotor structure whose equivalent in lower animais

(i.e. birds, reptiles) is the optic tectum. The SC appears as a large protrusion on

the midbrain and is made up of altemating fibrous and cellular iaminae. As with

many other mammais, the rat SC consists of seven layers which are usually

divided into two functionai divisions. 1) The superficial layers: these include

the zonai layer (Zo or layer I), the superficial gray layer (SuG or layer II), and

the optic layer (Op or layer III). 2) The deep layers: consisting of the

intermediate gray layer (mG or lamina IV), the intermediate white layer (InWh

or lamina V), the deep gray layer (DpG or lamina VI), and the deep white layer

(DpWh or layerVil) (Rhoades, 1991; Stem, 1981) (Stem and Meredith, 1991;

Paxinos, 1997) (Figure 5). The occurrence of visuai neurons in the SC declines

with depth in the structure. Neurons of the superficial layers are almost

exclusively visual, whiie those ofthe deeper laminae could fall into one ofthe
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Figure 5: Location and laminar organization of the rat superior colliculus. A

coronal section of the rat brain shows the laminar organization. The superficial

layers of the SC inciude: zonai layer (Zo), the superficial gray layer (SuG), and

the optic layer (Op), 2). The deep layers contain the intermediate gray layer

(mG), the intermediate white layer (InWh), the deep gray layer (DpG), and the

deep white layer (DpWh). From: Paxinos and Watson (1997).
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six following categories: visual, auditory, somatosensory, motor, bimodal (ex.

Visual-auditory), or multimodal (ex. Visual-auditory-somatosensory) (Rhoades

et al., 1977).

1.4.2 Functional organization

In rats, the superficial layers of the SC are almost uniquely innervated by

controlateral retinal inputs (Rhoades, 1991; Stem and Meredith, 1991). These

inputs generate an elegant retinotopic map on the superficial layers - ceils with

receptive fields in nasal visual space are located rostral, whereas celis with

receptive fields in temporal visual space are located caudal. Cells with receptive

fields in the upper visual field are located medially and those with receptive

flelds in the lower visual field are located laterally. Therefore the horizontal

meridian of the visual field runs rostral to caudal, and the vertical meridian runs

medial to lateral (Cynader & Berman, 1972; Siminoff, Schwassmann, &

Kruger, 1966). In most animals, there is also an overrepresentation ofthe central

visual area (fovea) on the SC. This overrepresentation is more pronounced in

certain animals such as cats and monkeys, and less so in others such as rodents

and hamsters (Rhoades et al., 1977; Rhoades, 1991).

The occurrence of visual neurons in the SC declines with depth in the

structure. Although the deeper laminae contain visual cells (Stem, 1976), this

part of the structure is more involved with other sensory processes (auditory and

somatosensory) and motor processes. The topographic maps for other
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modalities (ie. Auditory, somatosensory, motor) are similar to those found for

the visual fieid in the superficial layers (Stem and Meredith, 1991). This

overlay of sensory maps would allow for the visuai orienting of an animal

towards a novel stimulus (Rhoades et ai., 1977; Rhoades, 1991; Stem, 1981;

Stem and Meredith, 1991).

1.4.3 Afferences ofthe SC

The principal afferences to the SC come from the retina and the striate

and extrastriate visual cortex (Harvey & Worthington, 1990; Huerta and

Harting, 1984; Rhoades, 1991; Stem and Meredith, 1991). In certain animais,

for instance the rodent, the retinal inputs to the SC crossover almost completeÏy

(Lund, 1965). Over 90% of ganglion celis project toward the SC of the rat

(Linden & Perry, 1983). This means that the right hemisphere of the SC

contains a topographic representation of the lefi visuai fieid (derived from

inputs from the lefi eye), and the left hemisphere contains a topographic

representation of the right visual fieid (inputs from the right eye). As this

crossover of afferents is flot compiete, there are a few ipsilaterai retinal inputs

apparent (Siminoff et al., 1966; Lane, Ailman, & Kaas, 1971; Diao, Wang, &

Xiao, 1983). There has also been a binocular zone identified near the rostrai

pole of the SC (Tiao & Blakemore, 1976; finlay, Schneps, Wilson, &

$chneider, 1978; Rhoades & Chalupa, 1979; Stem & Dixon, 1979; Diao et ai.,

1983). The majority of direct retinal inputs terminate in the superficial layers of
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the SC. There are some inputs that go directly to the deeper laminae of the SC

however, most visual activity from this region is due to indirect retinal inputs

such as the visual cortex. These cortical afferences to the SC are probably

responsible for more complex characteristics of the receptive fields, such as

binocularity (Rhoades et al., 1977; Rhoades, 1991; Stem and Meredith, 1991).

There also exist projections going from one hemisphere to the other called

tecto-tectal projections. There have been studies that suggest that these

projections maybe inhibitory in nature (Goodale, 1973; Rhoades, 1991).

1.4.4 The mie ofthe SC in vision

The SC lias been implicated in visual attention and orientation,

multisensory integration, and in control of eye, pinnae and head movements

towards a stimulus (Rhoades et al., 1977; Stem and Meredith, 1991). These

roles of the SC are generally attributed to the deeper layers. The overwhelming

majority of axons that arise within the SC exit the structure en route to the

premotor and motor areas through which its sensorimotor role is expressed.

Nevertheless, il is stili unknown how the sensory signal in the SC is transformed

into its motor input (Stem and Meredith, 1991; Rhoades, 1991). Guitton and

Crommelinck (1994) proposed the foveation model in which visual information

would travel dorso-ventrally, from the superficial layers to deep layers, where

motor commands for ocular movement are initiated. The superficial layers are

also implicated in the orientation of vision towards a novel stimulus.
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Although it is generally the genicuiocortical system that is attributed

with the subversion of detailed analysis of stimulus features such as its form,

some studies show that the SC may also play a role in this analysis via

projections from the superficial layers of the $C towards the thalamus (Stem

and Meredith, 1991). Also stated by Stem and Meredith (1991) is the possibility

of the foie of the superficiai of the SC in the discrimination of visual ftow and

ieaming ofnew pattems (Stem and Meredith, 1991).

1.4.5 Direction selectivity in the SC

Direction selectivity is closeiy associated with SC fleurons, flot because

directionaiiy seiective ceiis do not exist in other structures, but because a high

proportion of SC neurons exhibit this property in many different species. Some

examples of different species displaying this property include the cat (Berman

& Cynader, 1972), mouse (Drager & Hubel, 1975), hamster (Finlay, Wilson, &

Sclmeider, 1979; Stem et al., 1979), rat (Fukuda Y, 1978), ground squirrel

(Michael, 1972), rabbit (Graham, Berman, & Murphy, 1982), and squirrel

monkey (Kadoya, Wolin, & Massopust, 1971). The preferred direction varies

from species to species. In the iguana (Stem & Gaither, 1981), hamster

(Rhoades & Chalupa, 1976), and mouse (Drager and Hubel, 1975), the preferred

direction is upward or upward and nasal. In contrast, the cat (Sterling &

Wickelgren, 1969) responds best to stimuli moving nasal to temporal whereas in
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the macaque monkey (Cynader et al., 1972; Goldberg & Wurtz, 1972) there

seems to be no preferred direction.

Studies in the rat have shown that about 12% ofvisual ceils demonstrate

a clear direction selectivity (Fukuda, 1978; Gonzalez, Perez, Alonso,

Labandeira-Garcia, & Acuna, 1992). While some researchers have noted a

preference for upward direction (Fukuda, 1978), others have found no apparent

tendency for a specific direction (Fortin et al., 1999).

The origin of direction selectivity in the $C is thus far unknown. It has

been suggested that direction selectivity originates in the visual cortex given

that cortical lesions in the cat have led to a decrease in direction selectivity in

the SC. However, studies donc in rats have shown that cortex activity appears

after the SC displays direction selective ceils (Fortin et al., 1999). In view ofthe

fact that over 90% of retinal projections in the rat are directed to the SC, it is

proposed to be the retino-collicular pathway that is important for the direction

selectivity found in the SC.
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1.5 The objective ofthis study

There were two main goals of this study. The first goal was the

characterization of the anti-VAChT:saporin immunotoxin effects along rat

development. Amacrine celis are the only cholinergic ceils present in the retina

(Chalupa & Gunhan, 2004). In order to determine the deveiopmentai course of

these celis, intraocular injections of an immunotoxin (saporin-VAChT) were

carried out on rats ofvarious age groups (from date ofbirth to aduithood). This

toxin is specific for the vesicular acetyicholine transporter and therefore

eÏiminates ail retinal cholinergic amacrine celis (Gunhan, Choudary,

Landerholm, & Chalupa, 2002).

The second goal was to determine the effect of cholinergic neurons on

SC ceil properties, most notably direction selectivity. Electrophysiological

recordings were performed to determine the influence of cholinergic amacrine

ceils on receptive field properties ofvisual neurons from the superior colliculus.



MATERIAL AND METHODS
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2.1 Experirnental model

Timed-pregnant and aduit Long Evans rats were obtained from Charles

Rivers Laboratories (St-Constant, Canada). The study was performed under the

guidelines established by the Canadian Council for the Protection of Animais

regarding the care and use of animais for experirnentai procedures. The study

involved 92 rats, male and female, of various ages (Table I and II). 0f the 92

rats, 22 were normal (i.e. did flot receive any intravitreal injections), 26 were

controls and received intravitreal vehicle injections (i.e. saline-injected), and 44

were treated and received intravitreal immunotoxin injections (i.e. toxin

injected). The amount of fluid injected depended on the age of the rat. The two

injected groups received injections at various ages and were raised to adulthood

before any immunohistochemistry was performed. This was done to determine

how the immunotoxin affected SA celis during different stages of their

developrnent. Ail 3 groups had subjects (normal, n 22; saline, n = 10; toxin, n

= 5) that had electrophysiological recordings done at the level of the SC. Ah

recordings were done once the animal reached adulthood.

2.2 Freparation ofanimalfor intravitreal injection

Since the effect of the novei immunotoxin against the vesicular

acetylcholine transporter (anti-VACliT) (immunotoxin was already diluted in

sterile saline) was to be tested on various postnatally aged rats, the anaesthesia
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Age at No. of Volume Age at Protocol
iijection subjects injected(’ul) sacrifice applied

Sati,ie-injected P4 $ 3 > P60 histoiogy

Toxin-injected P4 10-1 * 3 > P60 histoiogy

Table I: The group of subjects that were submitted to intravitreal injections

using the ‘old’ protocol. The protocol used in this group was that used by

Gunhan and colleagues (Gunhan et ai, 2002). These subjects had no

electrophysiologicai recordings done; only immunohistochemistry was

perfonried on the retinas.

* One subject died during the surgicalprocedure.
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Table II: The group of subjects that were submitted to intravitreal injections

using the ‘new’ protocol. The protocol used in this group was developed by the

laboratory of Dr. Casanova. Certain subjects had both electrophysiological

recordings done in the SC and immunohistochemistry of the retinas.

* Two subjects died during the surgical procedure.
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Age at No. of Volume Age at Protocol
iîUection subjects injected(u 1) sacrfice applied

Saline-injected P1 18 1.5-2 > P60 histology and
elecfrophysiology

Toxin-injected P1 6 1.5 P8 histology
6 1.5 >P60

P4 10 1.5-2 > P60 histology and
electrophysiology

P2 2 1.5 P9 histology
2 1.5 P16 histology

P6 2 2 P13 histology
2 2 P20 histology

P12 21* 2 P19 histology
21* 2 P26 histology

P60 1 3 P67 histology
1 3 P74 histology
2 5 P74 histology
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protocol employed varied with the age of the animal. Ail pups were handled in

sterile conditions since they would be replaced with the mother. Therefore, pups

were taken from the mother using sterile gloves and placed in a sterile surgical

mask for transportation to the incubator where they were placed on a disposable

underpad. One rat pup at a time was placed directly onto and covered with

cmshed ice to prevent the pup from moving — air pockets were present so the

animal could breath. Hypothermia was achieved in s-10 minutes for each pup.

Rats oÏder than P2 were anesthetized with isoflurane 4-5% for 5-7 minutes and

then isoflurane was reduced to 2%. Animais remained anesthetized for the

duration of the surgical procedure (approximately 3 minutes). Once the surgical

procedure was completed, pups were re-placed in the incubator until fully

awake and normal body temperature was achieved, then transferred along with

their mother using sterile gloves. Aduit rats were put back in their cage where

they once again became fully active. Exciuding anesthesia protocols, ail aspects

of surgery were the same for ail groups.

The anesthetized animal was placed under an operating microscope in

order to perform the surgery. If the animal was less than post-natal day 14

(P 14), an incision of the eyelid needed to be performed because the eyeiid was

stiil closed at this point; this was done using an ophthalmic scalpel (Micro

Feather). As this was the first study to attempt intravitreal injections in rats at

P0, it was necessary to devise a novel protocol in order to perform injections in

eyes of such small size. Our first protocol was developed by the laboratory of

Dr. Chalupa (Gunhan et ai, 2002) (i.e. ‘oÏd’ protocol). A scierai pilot hole at the
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most posterior region of the eye was made using a 30 gauge needle in order to

facilitate penetration of the underlying sciera, choroids, and retina by a biunt-tip

needie which is coimected to a lOpi glass syringe (Hamilton, Reno, NV) by

polyethylene tubing prefihled with distilled water prior to drawing up the fluid

(vehicle or immunotoxin). An air bubble was created between the distilled

water and the material being injected. The vehicle or immunotoxin was injected

into the vitreous chamber where the pilot hoie had already been made. This

route of administration avoided injury to other structures of the eye such as the

iris or lens. The volume of fluid injected into the animais eye varied being that

the size of the eye was dependant on the animais age (Table III). The injection

was performed at an oblique angle to the eye and was given slowly over 1 to 2

minutes to allow for diffusion of the fluid. Afier each injection, the eyelid was

resealed (if it had been surgically opened) using a tissue adhesive (VetBondTM,

3M) and an ophthalmic ointment (Neomycin and Polymyxin B Sulfates and

Bactracin Zinc, Bausch & Lomb®) was applied to prevent any infection. This

protocol proved to be inaccurate since it did not inject the required amount with

each injection. Therefore, a second intravitreal injection protocol was developed

in our laboratory during the course of this study. A scieral pilot hole was made

using a 31 gauge needle to ease penetration by a tapered glass micropipette

(inner diameter of 1.Smm) with a tip diameter of 25 to 30iim and a tip length of
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Age at Injection Volume injected (iii)

PO-P2 1.5-2

P6 2

P12 2

P21 3

>P60 5

Table III: Volume of an intravitreal injection varied with age of rat. The

volume of an intravitreal injection depended on the age of the rat since the size

of the eye increased with age.
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2.5mm (Figure 6). It was fourni that glass micropipettes were preferable to

metal needies because the tip diameter was smailer, the depth of injection was

casier to standardize, and the tapered pipette tip effectively seals the injection

site during injection, therefore reducing leakage of the injected fluid from the

eye. The tapered micropipette was connected to a 10 d glass syringe (Hamilton,

Reno, NV) by a 15cm long poiyethyiene tubing (Portex FiniBore, UK; outer

diameter of 0.8mm and inner diameter of 0.4mm) pre-filled with heavy minerai

oil (Rougier®) prior to drawing up the ftuid (saline or immunotoxin). All

junctions on this apparatus were sealed with epoxy ricin. Injections were

performed in the same manner as in the first protocol.

2.3 Testing ofanaesthesia protocols

We tested two different anaesthetics to determine which would be best

in order to perfonn electrophysiological recordings in aduit rats at the level of

the SC. We tested both ketamine and urethane. Ketamine 8Omg/kg (Wyeth

Ayerst Canada, Inc.) was injected intraperiteonally in 3 adult rats. Levels of

anaesthesia were determined by response to hindpaw pinch every haif hour and

maintenance doses of 80 mg/kg (intra-muscular) were given when required.

Another group of rats received an intraperitoneal (LP) injection of

urethane (Sigma®) 1250 — 1500 mg!kg at different concentrations (15%, 20%,

25%, 30%, 40%, 50%, 60%, 70%, and 80%). The same protocol for monitoring
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so as to avoid injury to the lens.
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anaesthesia levels used for ketamine experiments were employed here.

Maintenance doses consisted of 0.1 — 0.2m1 ofurethane l500mgIkg.

2.4 Freparation ofanimalfor electrophysiological recordings

The aduit animais were anesthetized witli an intraperitoneai injection of

urethane 30% (1.25-1.5g/kg) (Sigma®). A rectal probe and a heating pad placed

under the animal were used to ensure a constant body temperature of 37-37.5°C.

Hindpaw reflex and electrocardiogram (ECG) were regularly monitored in order

to maintain a proper level of anesthesia. Pupils were dilated with the use of

ophthaimic drops of atropine sulfate 1% (Isopto® Atropine). The comeas were

kept moist by periodically applying carboxymethylcellulose (Celluvisc®,

Allergan).

The animais were placed on a stereotaxic frame. Craniotomies were

performed over the contraiateral hemisphere of the eye being tested

(immunotoxin-injected; saiine-injected; untreated). Coordinates for the SC

were anywhere between —5 to —8mm Bregma and 0.5 to 3 medio-iateral (co

ordinates from Paxinos and Watson, 1997). The dura mater was then excised

and electrodes were lowered into the SC. The cortex was constantly irrigated

with artificial cerebrospinal fluid (aCSF) throughout the surgical procedure.

Finally, the cortex was covered with agar 2% to prevent drying out of the

cortex.
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2.5 Single-unit extracellular recordings

Extracellular recordings of single celis in the superior colliculus were

done using tungsten microelectrodes (A&M Systems, inc©., Carlborg,

Washington State, USA) of an impedance between 1 and 5ML The cellular

response was then amplified with the aid of an amplifier (Grass®, Astro-Med

Inc.) and transmitted to an oscilloscope (Kikusui®) ami audio monitor. The

cellular signal passes through HumBug® (Quest Scientific) — a system that

eliminated electrical signals from anaÏog signals. Action potentials were isolated

from the spontaneous activity using a window discriminator (WPI). The signal

was then fed to the acquisition program (Spike2. 15, CED Cambridge, UK) via

an analog digital interface (1401, CED). The responses were recorded as post

stimulus time histograms (PSTH) of 10 ms bin width.

2.6 Visual stimulation

The animal was placed parallel to a translucide screen 28.5cm away

from the eye being stimulated. Once a visual response was found, the receptive

field was first mapped and its limits were established using a manually

controlled stimulus projected onto a screen parallel to the animals eye using a

hand-held projector and an ophthalmoscope. Quantitative testing of each visual

ceil was then carried out using stimulation generation software, VPixx (Sentinel

Medical Research Corp., Quebec, Canada) mn by a Macintosh computer. The
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stimuli were back projected by a LCD projector (NEC) onto the translucide

screen parallel to the animal covering 800 x 107° of the visual angle. If the

receptive field for a given visual unit was found and mapped, the stimuli were

presented within the limits of its receptive field. Otherwise, full-screen stimuli

were presented to the visual celI. Once receptive field properties were

characterized, we proceeded to quantitatively analyze the cell’s properties

(spatial frequency, temporal frequency, contrast, preferred directionlorientation)

using sinusoidal drifting gratings. 1n order to determine the spontaneous activity

level of a cell, the activity for a blank screen of equal mean luminance was

quantified during each test. Each stimulus presentation lasted for 4 seconds and

was repeated 4 times. Presentations were randomly interleaved and only the

tested eye was exposed to the stimulus.

2.7 Receptivefleldproperties studied

The main property of interest for an individual fleuron was its preferred

direction. Each cell’s properties (spatial and temporal frequency and contrast)

were first optimized in order to determine the preferred directionlorientation.
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2. 7.] Direction selectivity

To determine the direction selectivity of a visual neuron, a driffing

sinusoidal grating was presented to the animal at various orientations (between

00 and 360°, intervals of 15° or 30°). The orientation curve reftects the mean

response of a celi (action potentials/second) to each of the orientations

presented. The bandwidth represents the degree of selectivity of the ceil for

orientation; it is represented in degrees and corresponds to the mid-width of the

curve measured at the mid-height of the curve. The orientation curve also

contains information relative to the direction selectivity of movement of the

tested cell. Although gratings presented at, for example, 00 and 1800, are

oriented in the same sense, they move in opposite directions. hi order to

quantify this property, a direction selectivity index (DI) is calculated with the

following formula:

response amplitudefor the non-preferred direction
— spontaneous activity

DI = 1 -

response amplitudefor the preferred direction
— spontaneous activily

The non-preferred direction is represented by the direction 180° ± 30° away

from the preferred direction. A neuron with a DI > 0.5 is considered to be
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selective for direction, and a celi with a DI < 0.5 is said to be non-selective for

direction (Casanova et ai, 1992).

2.7.2 Spatialfrequency

The spatial frequency (SF) is the number of cycles per degree. To

determine the preferred Sf of the ceii, various SFs are presented at the ceii’s

preferred direction. This test aiiows for the discovery of the preferred SF as well

as the spatial resoiution of the ceil. That is to say, the maximum frequency the

ceil is abie to respond to, as well as the minimum frequency that will elicit a

ceiiular response. The SF curve indicates the preferred SF and also the ievel of

seiectivity for this preference. The bandwidth is expressed in octaves and

corresponds to the fuii-width of the cuwe measured at the mid-height of the

curve. A ceil can have one of three types of responses which is represented by

the shape of its response curve; (1) bandpass ta Gaussian curve), where a cell

has an optimal SF; (2) iow-pass, where a celi responds with no attenuation to

iow SFs; and (3) high-pass, where a ceii responds with no attenuation to high

Sfs.

2.7.3 Temporalfrequency

Temporal frequency (TF) represents the number of cycles per second

(Hz). To determine the preferred TF of a ccli, we present a grating optimized for
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orientation!direction and spatial frequency at different TFs. The same methods

employed for spatial frequency were used in this instance to detenTiine the

optimal TF, degree of selectivity and temporal resolution.

2.7.4 Velocity

When the optimal spatial and temporal frequencies were available for a

cell, we were able to determine the preferred velocity of the cell. The velocity of

a stimulus was calculated by the following equation:

Spatialfrequency (c/°)

Velocity

Temporalfrequency (c/s)

2.7.5 Contrast sensitivity

In order to determine the contrast sensitivity of a ccli, the contrast level

of the stimuli was varied from O to 100% contrast and presented to the animal.

Under each stimulus condition, the action potentials of the cell were collected

for each repetition, averaged and normalized, where the maximal response for

each ceil was taken as 100%. The shape of the curve obtained allows for the

determination of the C50 (50% of the maximum response), contrast threshold,

and function — sigmoidal, log or linear.
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2.8 Verfication ofneuroanatomical sites ofrecordings in the $C

To prove ail recordings were done in the SC, electrolytic lesions were

performed along the electrode penetration. Using a lesion maker, a cunent of

5iA was passed through the electrode for four seconds, at three different

locations of penetration (moving from the most ventral to dorsal position). The

animal was euthanized at the end of the experiment using an overdose of either

halothane or isoflurane (via inhalation). The electrocardiogram (ECG) was used

to confirm the death of the animal. The animal was then subject to an injection

of heparin directly into the left ventricle of the heart. Following intracardial

perfusion ofthe animal using phosphate-buffer saline (PBS) 0. 1M at pH 7.3 and

parafonTialdehyde (PFA) 4%, the brain was removed and placed in PFA 4% for

24 hours. The brain was then transferred to a sucrose solution 10% (12 hours),

then 20% (12 hours), and finally 30% (12 hours). Finally, the brain was eut in

coronal sections of 40km thiclmess with the aid of a microtome (Leica). Half

the sections were treated with violet cresyl, the other half with a solution that

reveals the enzyme acetylcholinesterase (AChE). The SGS of the SC is an

AChE-rich layer, and therefore, has a darker appearance once treated with this

solution (Paxinos and Watson, 1986).
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2.9 Revelation ofcholinergic neurons of th e retina

Animais were euthanized with an overdose of halothane or isoflurane

(via inhalation) at ages ranging from P6 to aduit, and then perfused with PBS

and PFA 4%. The dorsal part of the eye was marked so as to keep note of the

orientation of the eye, and the eyecups were then removed. An incision was

made at the outer limit of the comea using an ophthalmic scalpel (Micro

Feather), and microscissors were then employed so the comea could be

removed. A PBS solution was used throughout the procedure to keep the eye

well hydrated. A notch was made at the marking indicating the dorsal part ofthe

eye. The eye was post-fixed in PfA 4% for 30 minutes; once removed from the

PFA 4% solution, the eye was rinsed with PBS solution. The lens was finally

excised and the eye placed in a sucrose solution 30% ovemight to cyroprotect

the tissue.

Ail retinal samples were processed for post embedding

immunohistochemistry according to the methods estabiished by Gunhan et al

(2002). The eyes were placed in frozen tissue embedding matrix (HistoPrep,

Fisher Scientific). A microtome was used to cut cross-sections of 20im, which

were then mounted on gelatine-coated siides. Cross-sections of the treated eye

and the contralateral control eye were placed on the same siide so that both eyes

would receive the same treatment. The siides were then placed in an incubator

at 37°C for 2 hours; this ensured that the cross-sections would stay mounted on

the slides during the course of the immunohistochemistry. The siides were then
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pre-incubated with a PBS solution containing normal donkey serum (NDS)

10%, (BSA) 2.5%, 0.5% Triton X-100 for 2 hours. These were then put through

a wash cycle, which involved rinsing with a mixture of 0.3% Triton X-100 in

PBS, followed by three washes in PBS. Goat anti-choline acetyltransferase

(ChAT) affinity purified polyclonal antibody (Chemicon International,

Temecuta, CA), the primary antibody, was diluted (1:50) in a blocking solution

containing (NDS) 10%, (BSA) 2.5%, triton-X 0.5% and cross-sections were

incubated with this solution overnight at 4%. The next day, these sections were

put through the wash cycle, and then incubated with a fluorescent secondary

antibody, fluorescein (FITC)-conjugated AffiniPure donkey anti-goat IgG

(Jackson ImmunoResearch Laboratories, Inc., Mississauga, ON), diluted 1:600

PBS-BSA for 1 hour at room temperature. Afier a final cycle, slides were

coverslipped with Vectashield mounting media (Vector Laboratories).

Fluorescence marked any retinal cholinergic neurons present and images of the

retinal siides were taken using a Leica (DMR) binocular microscope equipped

with a CCD camera (Retiga) 1300, Qlmaging.



RESULTS
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3.1 Introductoîy rernarks

Preliminaiy resuits of this study showed that two techniques employed in this

project had to be ameliorated before this study could be fully commenced.

firstly, we had difficulties with anaesthesia of aduit rats for electrophysiological

recordings. Secondly, immunohistological resuits demonstrated that there was

no elimination of cholinergic celis in the retina following intravitreal injections

of anti-VAChT:saporin immunotoxin. The first technique to be addressed was

the anaesthesia protocol empioyed for the electrophysiological study; the second

was the intravitreal injection protocol utilized for rat pups.

Once the technical problems were rectified we performed

electrophysiological recordings in the SC of normal and treated aduit animais.

Later histoiogical analysis of the retina of treated animais showed that a large

majority of cholinergic neurons were stili present when it was expected that

these ceiis would be compieteiy eliminated. This then led to our focus on the

developmentai course of cholinergic SA cells in the retina and how they were

affected by the anti-VAChT:saporin immunotoxin.
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3.2 TecÏmical improvernents in material and methods

3.2.1 Anaesthesia

Different anaesthesia protocols were tested on aduit rats to determine

which would be the most reliable to employ during electrophysiological

recordings in the SC. We attempted to anaesthetize aduit rats with two different

kinds of anaesthetics. Both had previously been used in rat electrophysiological

studies in the SC. The first experiment using ketamine 8Omg/kg

intraperiteonaily was flot successfiui in keeping the rat anaesthetized for periods

longer than an hour without giving the animal a maintenance dose at the end of

each hour. As experiments could last up to 10 hours or more, we found this

anaesthetic required the animal to be injected too ftequently during the course

of the experiment (ranging from 10-12 times, depending on the length of the

experiment). The other anaesthetic we tested vas urethane 1250 — l500mg!kg

intraperiteonaily. Here, we found that high concentrations levels (40 — 80%)

caused the animal to die within 2 - 4 hours after the initial injection, whiie low

concentrations (15 - 25%) required large amounts of solution to be injected

intraperiteonally. Finally, urethane 30% IP was considered the best anaesthetic

to use in our rats as it allowed animais to achieve anaesthesia rather quickly (10-

30 minutes) and maintenance doses (0.1 — 0.2 ml) were required only every 6 to

7 hours.



47

3.2.2 Intravitreat itUections

Initial intravitreal injections in this study were performed using the ‘old’

protocol supplied by Dr. L. Chalupa’s laboratory of University of California at

Davis. Resuits from this study demonstrated that there was no elimination of

cholinergic neurons. During the surgical procedure, we noticed that the amount

of immunotoxin reaching the eye was flot standardized and there was extensive

leakage once the injection was performed. This led us to develop a ‘new’

protocol for infravifreal injections. The new protocol was able to inject a precise

amount of the immunotoxin and produced no or very little leakage once the

procedure was completed (see Material and Methods section for a detalled

description ofboth protocols).

3.3 Effect of VAChT-saporin imniunotoxin using the new injection
protocol

Since the old protocol was ineffective, we developed a new protocol for

intravitreal injections (see Material and Methods section) and the following

resuits were obtained with this improved procedure.

Six rats received intravifreal injections of the VAChT-saporin

immunotoxin at Pi. Animais were euthanized one week later and retinae

processed to determine if the injections were successfiul. Figure 7 shows the

non-freated and immunotoxin-treated retinae from the same rat. The ChAT

immunoreactivity was clearly evident in both central and penpheral regions of

the non-freated retina (Figure 7A). ChAT Jabeling was most notable within the
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Figure 7: Cholinergic amacrine celis in the developing rat retina. The images

are vertical sections of P8 retinae from a rat treated at Pi. A) In central and

peripheral regions of the normal retina, there is heavy labellîng of ce!! bodies in

the GCL and 1NL. Also seen are the clear!y !abe!led dendritic arborizations in

the IPL. B) Almost complete elimination of immunoreactivity is noted in the

treated eye. There is some weak labelling of celi bodies stili present. GCL:

ganglion ce!! layer; 1NL: inner nuclear layer; IPL: inner plexiform layer.
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IPL as two distinct strata of cholinergic processes. Also noted was the labelling

of the soma of cholinergic neurons. In contrast, the immunotoxin-treated retina

(Figure 7B) showed a marked decrease in ChAT immunoreactivity with only a

few ceil bodies iabelled. The toxin had an effect on 5 out ofthe 6 subjects.

3.4 Impact ofretinal cholinergic ceils on activity in the SC

From the immunohistochemicai resuits of the prior experiment, it was

concluded that the VAChT-saporin immunotoxin was abie to eliminate the

majority of cholinergic amacrine neurons from the retina. Therefore, intravitreal

injections of the toxin were then performed in newbom rats. The animais were

raised to adulthood at which point electrophysiological recordings could be

performed. This was done so as to determine if the iack of SA celis would affect

the receptive field properties of visual ceils in the SC. Recordings were done in

27 aduit rats. 0f these, 22 were normal subjects and 5 were freated subjects who

had an infravifreal injection done at P2. Ail saline-injected rats died during

electrophysioiogical recording sessions and did not produce any resuits.

3.4.1 Physiologicat properties ofvisuaÏ SC neurons in normal rats

3.4.1.1 Direction selectivity

A total of 32 visual ceils were tested quantitatively for direction

seiectivity in normal subjects; 26 cells were found to be ‘orientation’ selective

and 6 ceils were not selective for any orientation. 0f these, oniy 19.2 % were
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direction selective celis (DI> 0.5). The distribution of DIs is presented in figure

$A; the mean direction index was 0.34 ± 0.24. li most direction selective

neurons, the preferred direction was very broadly tuned. Figure 8B illustrates

the bandwidth distribution in our population, showing most cells as being

broadly tuned (mean bandwidth 48.5 ± 24). Depicted in figure 9 is a typical

direction selective celI (A) and ‘orientation’ selective ce!! (3) encountered in a

norma! subject. The ‘orientation’ selective cell refers to a celi that responded

se!ectively to motion on one axis (ex. 00 and 180°). The direction se!ective cel!

rcsponded optimally to gratings with an orientation of 45°, but was broadly

tuned and had a bandwidth of 96.4° with a DI 0.74. The ‘orientation’ se1ective

celi was tuned broadly to gratings with an optimal orientation of 270°. It

responded slight!y more weakly to gratings of the same orientation but moving

in the opposite direction (90°). IFie DI for this celi was 0.17.

3.4.1.2 Spatialfrequency

27 visual ceils were tested for spatial frequency in normal rats and we

found that, genera!!y, visual neurons of the SC responded optimally to stimuli

with a !ow spatial ftequency (< 0.07 c/deg). The mean spatial frequency was

0.03 cl0. Among the neurons from the norma! group tested for SF, 14 had a low

pass response profile and 13 were broadly tuned for low frequencies. Figure 10

shows examples of typical response curves for SF found in our population.

Panel A represents a unit with a low pass response profile to increasing SF.

Panel B shows a bandpass cell with n prefened SF of 0.05 cl0. The mean

bandwidth of cells with bandpass spatial frequency tuning was 2.73 + 1.3
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Figure 10: Response of SC celis from normal rats to the spatial frequency of

drifiing gratings. A) Spatial ftequency tuning for a ccli with a lowpass response

profile. B) An example of a bandpass ccli tuned for a spatial frequency (0.05

cl0). Responses are shown as mean ± S.E.M and are represented by solid unes.

Dotted unes represerit spontaneous activity levels. C) Distribution of optimal

spatial frequencies show cells respond to SFs ranging from 0.005 to 0.09 cl0

with a mean optimal SF of0.026c/°.
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octaves. The distribution of optimal spatial frequencies is represented in figure

1OC. The optimal SFs for normal animais ranged from 0.005 to 0.09 c/deg, with

a mean optimal 8F of 0.O26cIdeg. This graph also points out that most cells

prefened a 8F of 0.01 c/°.

3.4.1.3 Temporalfreqttency

A total of 28 visual neurons from normal subjects were tested for

temporal frequency. 0f the 2$ celis, 10 were flot selective for any temporal

frequency, 14 were clearly selective for a particular frequency, and 4 had a low

pass response profile. The mean optimal temporal ftequency was 2.3 ± 0.99

c/sec, and the mean bandwidth was 2.2 ± 0.71 octaves. Representative examples

of a SC ceil response, as a function of temporal frequency, are presented in

figure liA and B. Panel C shows the distribution of optimal temporal

frequencies for the normal group, where there is a clear preference for a TF of 2

c/sec within the group of cells selective for TF.

3.4.1.4 Contrast sensitivity

23 celis were tested for the effect of contrast on the response of visual

ceils of the SC. An increase in celi response along with stimulus contrast

(ranging from O to 100%) was observed with a mean optimal contrast level of

$5.5 ± 12.3%. Figure 12 shows the normalized responses of 3 cells expressed as

the percentage of the maximal response, plotted against the stimulus contrast.

Response curves were either sigmoidal (n 4), log (n 10) or linear (n 9) in
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Figure 11: Temporal ftequency tuning and distribution of optimal TFs. A)

Example of a neuron with a lowpass response profile B) Illustration of a

bandpass ccli tuned for 2 Hz. Responses are shown as mean ± S.E.M and are

represented by solid lines. Dotted unes represent spontaneous activity levels. C)

The distribution profile for optimal TFs. The mean optimal Tf is 2.3 ± 0.99

c/sec. NP: no preference for a Tf.
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Figure 12: Response of a ceil as a function of stimulus contrast. 0f the 23 celis

tested for contrast, 17.5% had a sigmoidal response curve (A), 43.4% had a log

response curve (B), and 39.1% had a linear curve (C). Ail responses have been

normalized as the percentage ofthe maximal response.
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form. Optimal contrast levels for the sigmoidal, log, and linear response curves

were 0.764 ± 0.271, 0.81 ± 0.145, and 0.922 ± 0.0667 respectively; optimal C50

values were 0.565 ± 0.0578, 0.296 ± 0.0786, and 0.482 ± 0.0776, respectively.

Panel A depicts a sigmoidal response, where the ceil shows minimal response to

low confrast, sudden increase at medium contrast, and saturation at high

confrast. Panel B shows a logarithmic response with a graduaI increase in ceil

response with increasing contrast levels and a levelling off at high contrast. The

final response curve we found was linear (Panel C). The contrast required to

evoke a response 50% of the maximum, is defined as the C50. The mean C50 for

this group was 0.395 ± 0.161. figure 13 depicts the C50 distribution found in

normal animals. C50 values ranged from O to 70% contrast levels. This graph

shows that most ceils require a high level of contrast to reach half the maximum

response.

The mean optimal spatial ftequency was low and the mean temporal

frequency was high for the normal group. Therefore, in cases where both

conditions were optimized, 14 of 16 cells preferred stimuli presented at high

speeds (> 10 °/s). The mean optimal speed for the normal group was 209 ± 166

3.4.1.5 Cholinergic celis in the retinae ofnormal rats

The retinae of normal animals were flot subject to any

immunohistochemistry. It was believed that since these animals did flot receive

any intravitreal injections, their eyes and retinae would be normal.
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3.4.2 PhysioÏogical properties of visitai $C neurons in imnzunotoxin-treated
rats

Although the number of visual ceils coliected from the SC of immunotoxin

treated animais is very smali (n = 6), we treated these as prelirninary resuits and

made qualitative comparisons with ceils from normal animais.

3.4.2.] Direction selectivity

A total of 6 visual ceils were tested in immunotoxin-freated subjects.

One celI had no preference and 4 cells were ‘orientation’ selective. for the

‘orientation-selective’ neurons, the mean DI vas 0.317 ± 0.0912 and none were

found to be direction selective. f igure 14 shows a representative example of an

‘orientation’ selective cell encountered in a treated animal. The ccli was

selective for 75° and almost equally selective for the opposite direction of 255°.

The distribution of the DIs for both normal and toxin-treated rats is presented in

figure l5A. The mean bandwidth for immunotoxin-freatcd rats was 40.1 ±

16.5°, similar to that of normal subjects (48.5 ± 24°), as shown in figure 15B.

We also found a muiti-unit neuron in the toxin-freated group which we

were unable to analyse for direction selectivity. There appeared to be two

neurons present that were both ‘orientation’ selective but not direction selective.

3.4.2.2 Spatialfrequency

It would seem that elimination of cholinergic ceils from the retina did

flot affect the SF selectivity in toxin-treated animais. Among the few cells found
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in the treated group, 2 showed a low pass response profile and 4 were tuned for

low frequencies. Neurons with bandpass spatial frequency tuning exhibited a

mean bandwidth of 1.2 ± 1.12 octaves. Representative examples of a lowpass

(A) and a tuned (B) are illusfrated in figure 16.

The distribution of optimal spatial frequencies for both groups is

represented in figure 16C. As aforementioned, the optimal SFs for normal

animaIs ranged from 0.005 to 0.09 c/deg. Mean optimal $f was 0.026 + 0.26 cl0

for the normal group, while the small sample size of the treated animaIs had a

mean optimal SF of 0.026 ± 0.2 cl0. Sf for cells from the toxin-treated group

ranged from 0.007 to 0.05c/deg.

3.4.2.3 Temporalfrequency

AIl the cells from the treated group exhibited a tuning for low

frequencies (n 6). No major difference was noted in terms ofthe mean optimal

temporal ftequency for the normal and treated groups (2.3 ± 0.99 and 2.7 ± 0.82

Hz, respectively). The same being true for the mean bandwidth (2.2 ± 0.71 and

3.0 ± 1.2 octaves, respectively). Figure 1 7A depicts a typical example of a

temporal ftequency response cuwe found in this group. Figure 1 7B illustrates

the distribution of optimal temporal frequencies for the two groups studied. In

the normal group, there were a large proportion of cells which displayed no

preference for any TF. However, there was also another proportion that showed

a preference for 2 cycles/s. The same preference tendency was noted in the

small population ofcells found in the toxin-treated subjects.
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Figure 16: Response of SC celis to the spatial ftequency of drifting gratings

ftom treated rats. A) Spatial frequency tuning for a celI with a lowpass response

profile. B) An example of a bandpass cell tuned for a spatial frequency (0.05

cl0). Responses are shown as mean + S.E.M and are represented by solid lines.

Dotted unes represent spontaneous activity levels. C) Distribution of optimal

spatial frequencies show cells respond to Sfs ranging ftom 0.005 to 0.09 cl0 for

normal rats and 0.07 to 0.05 c/°. Shaded and white columns represent normal

and treated animals, respectively.
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In both groups, mean optimal spatial frequencies were low and mean

temporal ftequencies were relatively high. Hence, ceils responded selectively to

stimuli of high speeds. In the treated animais, ail cells showed a preference for

high speeds. Accordingly, the mean optimal speed for normal and treated

subjects was 209 ± 166 and 194 ± 154 O/, moderately similar for both groups.

3.4.2.4 Contrast selectivity

As was seen for the normal animais, treated subjects also showed an

increase in celi response along with stimulus contrast with a mean optimal

contrast ievel of $6.7 ± 15%. Response curves were either sigmoidal (n 3), log

(n 1), or linear (n = 2) in form. There were not enough celis in the toxin

group to make a significant comparison with the normal animais. Both groups

had similar mean C50 values (normal: 0.395 ± 0.16 1; treated: 0.463 + 0.0545).

C50 distributions for both normal and freated animais are illustrated in figure 18.

The distribution for treated animais followed the same trend noted in the normai

group, with ceils needing a high confrast level to evoke 50% of the maximum

response.

3.4.2.5 CÏzoÏinergic celis in immunotoxin—treated retinae

The retinae coiiected from the animaIs subject to electrophysiological

recordings (n 5) were then processed. Figure 19 shows cholinergic amacrine

celis in the postnatal retina of the rat using an antibody that recognizes a

cholinergic-specific marker, ChAT, in a VACliT-saporin immunotoxin-treated

and the contralaterai untreated eye. In the untreated eye, two distinct hands of
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Figure 19: Photomicrographs showing retinal sections of a Pi injected rat

processed for ChAT immunohistochemistiy at >P60. A) ChAT

immunoreactivity in ceils located in the IPL of the central and peripheral non

treated retina, respectively. B) Very weak immunoreactivity is detected in the

central and peripheral retina of a Pi toxin-treated animal. GCL: ganglion ceil

layer; IPL: inner plexiform layer; TNL: inner nuclear layer
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ChAT-immunoreactive processes were observed in the IPL (Figure 1 9A). Also

observed was the soma of two populations of ChAT-immunoreactive celis with

strong immunoreacfivity in the TNL and GCL. The immunotoxin-treated eye

displayed some ChAT-immunoreactivity (figure 1 9B), however, qualitative

analysis showed immunoreactivity to be reduced to 50% or less as compared to

the untreated eye. Regardless, this was flot the expected result as it was

hypothesized that the immunotoxin would eliminate ah or the majority of

chohinergic cehls.

Since ail treated animais were injected between Pi and P4, the resuits

suggested that Pi -P4 was not the most favorable age at which to perform the

VAChT-saporin immunotoxin injection since compiete elimination of

choiinergic neurons vas flot obtained. Consequentiy, it vas necessary to reveai

when was the best time to perfonn the immunotoxin injection in order to have

optimal eiimination of choiinergic fleurons.

3.5 Histology ofSC Ïesions

Elecftoiytic iesions were made aiong ail penetrations to aliow for a

reconstruction of electrode tracks. We were able to reconstruct lesions for

5 1.4% and 83.3% of penetrations in normai and treated animais, respectiveiy.

The majority of electrophysioiogicai recordings done in the SC of both groups

were restricted to the SuG (85.7% in normal; 80% in treated), the most dorsal

darkest (richest in AChE) layer of the SC. The remaining recordings were done

in a more ventral layer, the optic layer (Op).
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3.6 General observations on integrity ofiîjected eyes

Once the electrophysiological recordings were completed, both the

tested and confralateral eye were removed and compared. In general, if the

tested eye had been injected with immunotoxin, it was smalier in diameter when

compared to the confralaterai eye. At times, the comea of these eyes had a

scratch at the site of injection. The rest of the eye secmed relativeiy untouched

by the injection, with the lens being fully intact. The retina was intact and no

detachment from the back of the eye was noted.

3.7 Development ofcÏtolinergic neurons at various ages

It has already been established that there is a graduai increase of SA ceil

expression in the rat retina from E17 tili PiS (Kim et ai, 2000). We wanted to

determine the effect of VAChT-saporin immunotoxin at different

developmental stages.

3.7.] SA celi development one weekpost-immunotoxin treatment

Salient features in the development of ChAT-immunoreactive ceils,

detennined from microtome cross-sections, are iiiusfrated in figure 20. In ail

four age groups of rats treated with the immunotoxin (P2, P6, P12, P60; see

Tabie II) no significance difference in the pattem of ChAT immunoreactivity

was observed between a normal unfreated retina and a toxin-treated retina. The
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following description of retinal cholinergic ceil development applies for both

the normal and toxin-treated eye.

ChAT immunoreactive neurons were present as early as P2 in normal

retina. ChAT immunoreactivity was noted in celi bodies in the GCL and the

TNL, in the central and peripheral retina (Figure 20A and C). It was also

observed that there was extensive dendrite arborization of ChAT

immunoreactive ceils occurring very early in the P2 rat. The same pattem of

labeling was present in its counterpart that was immunotoxin-treated (Figure

203 and D).

By P6, ChAT immunoreactive somata were clearly observed in the GCL

and INL in ah of the normal (Figure 20E and G) and treated (Figure 20H)

retinae studied. ChAT immunoreactivity was well distributed in the IPE, with

better definition of its inner and outer boundaries.

By P12, the paffem of ChAT immunoreactivity was very similar to that

found in mature adult retinae. Present were two populations of ChAT

immunoreactive somata evenly distributed on both sides of the WL, and for the

most part, the two parallel bands of dendrites in the IPL were more intensely

stained than observed in carhier stages (normal: Figure 201 and K; treated:

figure 201 and K).

The paffem of ChAT imrnunoreactivity observed in adult retinae was

essentially similar to that found in P12 rats, with the exception of a decrease in

background staining (normal: Figure 20M and O; treated: Figure 20N and P).



77

Figure 20: ChAT-immunolabeling of developing cholinergic arnacrine ceils in

cross-sections of central and peripheral regions of the rat retina. Retinae of

normal eyes are on the lefi, with toxin-treated retinae on the rigïzt. AnimaIs were

treated at P2, P6, P12 and P60 and their retinae processed 1 week later. From

top to bottom, the images show ChAT-immunolabeling in central and peripheral

regions of the retina from normal and treated eyes at P2 (A-D), P6 (E-H), P12

(I-L), and in the aduit (M-P). GCL: ganglion ccli layer; IPL: inner plexiform

layer; TNL; inner nuclear layer
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4.] Methodological cojisiderations

4.1.1 Intravitreal iîyections

The protocol for intravitreal injections used in this study had to be

completely modified in order to obtain reliable resuits. The original protocol

was supplied by the laboratory of Dr. Chalupa. We used their set-up for our

primary injections, and our immunohistochemical resuits are shown in

Appendix I. The resuits ofthese injections showed that there was no elimination

of cholinergic neurons from the retina. Dr.Chalupa’s protocol did flot provide a

reliable means of injecting precise amounts of the toxin into the eye. There was

leakage of the toxin from the syringe even afler the needle was removed from

the eye. Also, at times, the toxin would be blocked in the syringe. Another

major problem with this system was the large size of the needles used to make

the pilot-hole (25 gauge) and to perform the intravitreal injection (30 gauge).

Consequently, the pilot-hole would be too big once the needle used for the

injection was inserted into the eye. This then caused leakage of toxin as well as

vitreous humour.

Thus, major modifications were made to the protocol. Firstly, we made

the pilot-hole with 31 gauge needles, using a new needle for each penetration;

we found that this prevented the use of a blunted-tip for subsequent

penetrations. In place of performing injections with a needle, a tapered

micropipette was used. This tapered tip created a tight seal with the pilot-hole
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and did flot allow for outflow of the toxin while the injection was being

performed. Finally, ail junctions of the syringe-tubing-micropipette system were

sealed with epoxy ricin. The system we developed in our lab was very reliable

and efficient in delivering the toxin to the eye as compared with the

recommended set-up developed by Dr.Chalupa’s team.

4.1.2 Anaesthesia

From our study, we determined the best anaesthesia protocol to use with

aduit rats for electrophysiological recordings in the SC was urethane 1250 —

1 500mg/kg at a concentration of 30%, given intraperiteonally. Many studies

have used urethane in rats when recording in the SC (Fukuda and Iwama, 1978;

Binns and Sait, 1997). We found that this anaesthetic worked very weii when

the iowest effective dose was given to the rat and overdoses caused rats to die

suddenly. Also, if these animais survived until recordings could be performed,

brain activity was depressed.

4.2 Justification ofthe animal model used

There are a number of reasons for choosing rats as subjects in visuai

experiments. For one, the rat visual system, though not as complex as other

mammais, is complicated enough to exemplify important principles of visual

function that are not well understood in other mammals. Yet, it is simple enough
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to permit those principles to be revealed, and therefore, throw light on many

questions pertaining to the visual system. Another reason for the use of rats is its

maturity rate. The rat reaches maturity very early as compared to other

mammals used in vision studies. Consequently, there is a distinct advantage in

using these animais in developmental studies; resuits can be obtained in a

couple of months, rather than years, as with cats or monkeys (Kennedy &

Dehay, 1993). It is also worthwhile to note that the rat litter size is relatively

large (ranging from 5 to 15 pups), and this permits the researcher to have infra

litter controls.

It is well established that the SC is extremely important for visuomotor

integration (Sprague & Meikle, 1965) and orienting behaviour (Goodale &

Murison, 1975). The rat is among the mammals whose SC is strongly developed

and characterized by a well-organized stratification. Our primary interest in the

$C is due to the fact that over 90% of the ganglion celis from the retina have

direct projections to the SC (Linden & Perry, 1983). This direct connection is

important because it allowed us to determine if the elimination of SA celis

would have an effect on the SC fleurons’ receptive field properties.

4.3 General observations

Our work indicates that P2 injections, while effective in eliminating SA

ceils in early stages of development, were flot effective in eliminating the
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majority of SA celis found in aduit rat retinae. However, our developmental

study was unable to derive any conclusion since the toxin was biochemically

ineffective (confirmed by biochemical analysis of the immunotoxin by Dr. L.

Chalupa’s lab). A further study would be needed to determine which

developmental stage is rnost appropriate for intravitreal injections so there

would be complete absence of starburst amacrine ceils at the aduit stage.

The resuits also indicated that the volume of immunotoxin injected plays

a crucial role in the overali integrity of the eye. Large quantities of

immunotoxin were seen to reduce the overall size of the eye and lens, as well,

the integrity ofthe lens was compromised. A possible cause for this eye damage

was the substantial increase of intraocular pressure. By reducing the volume of

intravitreal injection, we avoided an increase in pressure. This was an important

finding since the integrity of the eye was essential for visual stimulation during

electrophysiological recordings.

A comparison of receptive field properties of SC neurons from normal

and immunotoxin-treated rats was performed. Preliminary results indicate that

there is no major difference found between the two groups. However, there are

many factors that have to be considered before a definitive conclusion can be

made, such as the small population of cells we had in each group.
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4.4 Rationalefor the use ofanti-VAChT-saporin immunotoxin

There have been many other methods used to eliminate cholinergic neurons

ftom the retina. Gômez-Ramos et al (1990) used the AF64A toxin in the mouse,

while others have employed immunotoxin-mediated celi targeting (Kobayashi et

al., 1995; Yoshida et al., 2001) in transgenic mice, and stili yet others have used

the immunotoxin 192 IgG-saporin (Pizzo, Waite, Thal, & Winkler, 1999; Yan &

Johnson, 1989). However, ail these approaches have major drawbacks; the first,

causes inflammatory infiltrate and vascular alterations in treated retinae; the

second, requires the use of transgenic animais, and therefore, limits the

researcher to mice; and the third, is not specffic for retinal cholinergic cells as it

targets some ganglion and Muller guai celis.

The anti-VAChT-saporin immunotoxin fabricated by Dr. L. Chalupa’s

laboratory, is specific for retinal cholinergic neurons in the rat and ferret

(Gunhan, Choudary, Landerholm, & Chalupa, 2002; Gunhan, van der List, &

Chalupa, 2003). Since the target of this toxin is the VAChT and the transporter

is found only on cholinergic neurons, it makes this toxin highly specific.

4.5 Short-terin developrnent ofSA ceils after immunotoxin
treatment at F]

As aforementioned, the novel immunotoxin was designed to target

cholinergic cells. It is intemalized only by cholinergic neurons, which then leads

to the elimination of amacrine celis by transiational arrest of protein synthesis.
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Gunhan and colleagues (2002) demonstrated a selective loss of cholinergic

amacrine celis from the developing retina. In their study, rat pups had been

injected at Pi and euthanized at either P2 or P6. At P2, there was a marked

decrease in ChAT-immunoreactivity, and, at P6, there was complete elimination

of cholinergic ceils. These resuits were flot reflected in our study.

Information from the fabricant of this nove! immunotoxin (Dr. L.

Chaiupa’s iaboratory) stated that the toxin was stably availabie for

approximateiy 7 days once injected, and therefore, waiting more than one week

post-injection before perform immunohistochemical procedures wouid flot be

worthwhiie. Thus, six rats received intravitreal injections ofthe VAChT-saporin

immunotoxin at Pi. Animais were euthanized one week later and retinae

processed. figure 7 shows the non-treated and immunotoxin-treated retinae

from the same rat. The ChAT immunoreactivity was cleariy evident in both

central and peripherai regions of the non-treated retina. ChAT labelling was

most notable within the IPL as two distinct strata of cholinergic processes. Also

noted was the labeiling of the soma of choiinergic neurons. in contrast, the

imrnunotoxin-treated retina showed a marked decrease in ChAT

immunoreactivity with only a few ceil bodies iabelled. The toxin had an effect

for 5 out of the 6 subjects (Figure 7). This resuit flot was expected, since

Gunhan and colleagues (2002) noted complete elimination ofretinal cholinergic

ceiis at P6 afler toxin treatment at Pi.
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However, we hypothesized that over 90% loss ofretinal cholinergic celis

was sufficient to begin the electrophysiological recordings, as such a vast

amount ofthe target celis were eliminated.

4.6 Froperties of$C neurons

4.6.1 Direction selectivity

Direction selectivity is a property that is generally attributed to celis of

the primary visual cortex. However, it is also a property of the SC. The number

of direction seÏective ceils found in the SC varies from species to species. To

date, there have flot been extensive studies done on receptive field properties in

the rat. Fukuda and Iwama (1978) found 13.8% ofvisual cells from the SC were

selective for direction, while Gonzalez et al (1992) noted 16% of celis to be

direction selective. Studies also show there to be a bias for upward direction.

This has also been reported in the mouse (Drager & Hubel, 1975) and golden

hamster (Tiao & Blakemore, 1976).

Our findings in the normal rats coincjde with the study conducted by

Fukuda and Iwama (1978). We found that 12% of our visual ceils were

direction selective. While fukuda and Iwama (1978) found direction selective

ceils to prefer upward motion, we found no common preferred direction of

motion within our population of direction-selective ceils. This was not

surprising given our reïatively small sample size (n = 38).
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We expected the immunotexin to eiiminate ail starburst amacrine celis,

and therefore, the ceils hypothesized te be crucial for direction selectivity. Thus,

in the immunotoxin-treated animais we expected te encounter no direction

selective ceils, or at ieast, iess of them. In fact, eur preiiminary resuits in treated

rats showed that there were no direction selective neurons in the SC. However,

with a sampie population of oniy five celis, we can hardly state this finding to

be significant.

Irnmunohistochemistry done te the retinae of these animais showed that

flot ail the ChAT-immunoreactive ceils were destroyed. Actuaily, in the

majority of cases, approximateiy 50% of ChAT-immunoreactive somata and

dendrites were stiil present. This ceuid potentiaily mean that even a sufficient

ioss ef SA ceils couid be enough te affect the direction selectivity properties of

a celi; that is if we take our preiiminary resuits of no direction-selective ceils in

the treated animais to be representative of ail SC celis in treated animais.

4.6.2 Spatio-temporalproperties

Thus far, no electrophysiologicai studies have tried to determine

the optimal spatial and temporal frequencies of SC neurons of the rat. There

have been behavieurai studies done in the rat that indicate the SC can respond to

SFs ofup te 0.7 cl0 (Dean, 1981). Our study found the SF tuning ofSC neurons

covered a wide range (0.005 te 0.09 cl0), but values neyer went over 0.09 cl0.

With respect te temporal ftequency tuning, eur results shewed that celis prefer
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low frequencies in the range of 1 to 3 cyclesls. Similar resuits for 5F were found

in the visual cortex of the rat (Girman, Sauve, & Lund, 1999). Girman and

colleagues (1999) found the cortex to respond optimally to SFs of 0.08 cl0.

4.6.3 Contrast sensitivity

A large number of animais have been investigated via single celi

recordings to determine the contrast response function. Most contrast sensitivity

studies performed in the rat have focused on the geniculocortical visual pathway

(Powers & Green, 1978; Lennie & Perry, 1981; Silveira, Heywood, & Cowey,

1987). The superior colliculus is a subcortical visual structure that has flot been

heavily studied in this area.

The results of our study show that there is a clear relationship between

stimulus contrast and ccli response. The contrast response function

dernonstrated an increase in celi response with increasing stimulus contrast.

This held true for both the normal and toxin-treated animais. We can therefore

conclude that cells from the SC of the rat require high stimulus contrast in order

to elicit a reliable cellular response. Our findings support prior work done in the

rat visual cortex ($haw, Yinon, & Auerbach, 1975; Waterhouse, Azizi, Bume,

& Woodward, 1990; Girman et al., 1999), SC (Humphrey, 1968; Gonzalez,

Perez, Acuna, Alonso, & Labandeira-Garcia, 1991), retinal ganglion cells

(Powers et al., 1978), and lateral geniculate nucleus (Lennie and Perry, 1981)

which found celis responded optimally to contrast levels of greater than 80%. It
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could then be said that a common feature of the rat visuai system is the

requirement ofhigh contrast to trigger a cellular response.

4.7 Developmental course ofSA celis

4. 7.1 $hort-terrn versus iong-terrn effects ofthe immunotoxin

To detemiine if the immunotoxin was an effective in destroying ChAT

immunoreactive ceils, we performed injections at Pi and the animais were then

sacrificed at P8. We found that ChAT-immunoreactive were almost ail

eiiminated (Figure 7). Thus, we were able to confirm the efficiency of the

immunotoxin over short-term deveiopment.

Animais from the same litter with the same injection treatment were left

to mature until aduithood ( > P60) so electrophysiological recordings couid then

be performed. lmmunohistochemistry iater reveaied that about 50% of ChAT

immunoreactive celis were stiii present. There are a number of possible

explanations for the persistence of cholinergic ceils. For one, it is possible that

the mechanicai damage to the eye (ie. lens andlor ciliary epitheiium) during the

intravitreal injection caused the release of neurotrophic factors (Fischer,

Pavlidis, & Thanos, 2000). However, this is highiy unlikely since we took care

to inject in the posterior region of the eye and dissection of the eye revealed a

fuiiy intact lens.
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A second possible explanation for the remaining ChAT

immunoreactivity could be non-specific background staining. This reasoning is

highly uniikely since the staining was that of sornata and dendrites in regions

where SA celis are normally found (IPL, INL and GCL) and no other

cholinergic neurons have been found in the retina.

The final reasoning for the persistence of ChAT-immunoreactive celis is

the ‘birthdate’ of starburst amacrine ceils. Many studies have focused on the

development of retinal cholinergic neurons. As technology becomes more

sophisticated, cholinergic ccli generation has been detected to begin during

eariier stages and end much later in development than once thought. The most

recent study performed in rats by Rapaport et ai (2004) showed that amacrine

celis were formed as early as E14 and their ‘birth’ ends at about P13. These

resuits coincide with previous research done on the generation of amacrine celis

in rats (Kim, Ju, Oh, & Chun, 2000).

Since our injections were donc at Pi and the toxin was stably active for

one week once the injection was performed, the toxin was flot activeiy availabie

to eliminate SA ceils ‘bom’ after P8. It is highiy likeiy that the remaining

chotinergic ceils we see are ceils which were generated after P9. These

remaining ceils must form between P9 and P13, and therefore, were not affected

by the toxin which was inactive by this point. In order to achieve complete

elimination of amacrine cells, future studies should perform injection with this

immunotoxin afler P13 in the rat.
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4. 7.2 Developrnent ofSA ceÏls ai’ various stages ofpost-natal development

We wanted to investigate the action of the immunotoxin at different

stages of development. We performed injections at P2, P6, P12, and P60 and

euthanized the rats 1 week later. The results of this study were flot what we

expected. We found that there was no difference in ChAT-immunoreactivity

between the toxin-treated and normal eye (Figure 20). This was most likely due

to the ineffectiveness of the immunotoxin. Communications with Dr. L.

Chalupa told us that the immunotoxin was in the process ofbeing purified and it

was possible that we received an impure batch.

4.8 Conclusions

Our resuits showed that the immunotoxin was effective in eliminating

virtually all cholinergic ceils in short-term developrnent, which coincides witli

prior results found by Gunhan and colleagues (2002, 2003). However, there has

been no investigation into the effectiveness of this novel immunotoxin in long

term developrnent. We attempted to answer this question and our study suggests

that treatment with anti-VAChT:saporin immunotoxin before too early in

development (P2) does not allow for the elimination of retinal cholinergic

neurons in long-term development (>P60). Cholinergic cells first appear in the

retina at E14 and increase in number tiIl about P12 - P15 (Rapaport, 2004).

Therefore, in order to eliminate ah cholinergic cehls for long-term experiments
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where animais are kept until adulthood, injections should be performed

anywhere between P12 and P15.

Since SA cells have been implicated to be essentiai in direction

seiectivity, we studied electrophysiological properties of the superior colliculus

neurons which receive direct efferents from the retina and have comprise a

small population of direction selective celis. Investigation of SC neuron

properties in normal and treated animais did flot demonstrate any significant

difference between the two groups. It must be noted that the sample population

for both groups was very small.

4.9 Critics and prospectives

One of the major drawbacks for our study was the iimited avaiiability of

the immunotoxin. This toxin was not commercially available, and therefore, we

depended on the laboratory ofDr. L. Chalupa as suppliers ofthe toxin. At times,

we would have to wait months before the toxin was sent to us, and this greatly

hindered our progress in this study.

To make reliabie comparisons of the treated and normai eye, the same

regions of the retina must be compared. In our study, we approximated where

the center of the eye was and compared these regions. This method of

determining the center of the eye was highly inaccurate. In future studies, it is
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recommended to verify the center by determining die diameter of the eye and

making a transverse cut through the center of the eye before commencing the

ernbedding procedure required for irnmunohistochernistry.

Electrophysiological recordings at the aduit stage required a fully

functional and intact eye. We found that the volume of immunotoxin injected

greatly influenced the integrity of the eye. Therefore, ail injections were

perforrned with the srnallest volume oftoxin providing an effective dose.

Finaiiy, resuits from electrophysiological experiments involved only a

small population of ceiis, especially in the treated group. Subsequent studies

would need to increase the sample size SO definitive conclusions could be made.
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Appendix I: Cholinergic amacrine celis in the developed rat retina. The images

are vertical sections of aduit retinae from a P4 injected rat. The normal (A) and

toxin-treated (B) eyes show no difference in ChAT immunoreactivity. Ceil

bodies are present in the GCL and INL. These is also heavily labeled dendritic

processes in the IPL; two sublaminae are clearly labeled. GCL: ganglion celi

layer; INL: inner nuclear layer; IPL: inner plexiform layer.
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