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RÉSUMÉ:

Récemment, l’intérêt pour l’étude du métabolisme des cellules cancéreuses et

pour sa participation au développement tumoral s’est accru du fait de l’augmentation

des risques de cancers chez les personnes obèses. En effet, plusieurs études

épidémiologiques ont indiqué un lien entre obésité et cancers mais les mécanismes

moléculaires impliqués sont largement inconnus. Chez les personnes présentant une

résistance â l’insuline due à l’obésité, la métabolisation des acides gras libres (AGL)

par les adipocytes devient insuffisante, causant une augmentation du taux sanguin en

AGL. Peu de données permettent de comprendre comment les tissus et spécialement

les tumeurs gèrent ce surplus de nutriments.

Ces dernières années, notre laboratoire a étudié les effets des AG

alimentaires sur la prolifération et la mort de cellules issues de tumeurs mammaires

humaines en culture. Le but de cette étude était de rechercher la base biochimique de

l’action anti-apoptotique de l’oléate, un acide gras mono-insaturé à longue chaîne,

sur des cellules provenant de cancer du sein humain. Nous nous sommes

particulièrement concentrés sur le rôle de l’accumulation des triglycérides (TG)

induite par le traitement à l’oléate sur l’apoptose provoquée par l’absence de sérum

et de facteurs de croissance (FC) sur deux lignées cellulaires tes cellules MCF-IOA,

cellules immortalisées non-transformées épithéliales humaines et les cellules MDA

MB-231, lignée de cellules issues de cancer du sein humain. Les métabolismes des

AG, des 1G et du glucose, en parallèle avec la survie cellulaire à long terme en

absence de sérum et de FC ont été étudiés sur des cellules traitées avec de l’oléate.

L’effet de l’oÏéate a été étendu à plusieurs autres lignées cancéreuses mammaires

MDA-MB-468, T-47D, MCF-7.

Nous avons montré qu’un traitement de 3 à 24 h avec l’oléate empêche

l’apoptose induite par l’absence de sérum et de FC et favorise la survie cellulaire à

long terme suite au traitement de 3 des 4 lignées cellulaires mammaires humaines.

La survie de ces lignées cellulaires dans ces conditions a été associée à une
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augmentation du stockage des TG. Nos résultats suggèrent que les stocks en TG dans

les cellules tumorales telles que les MDA-MB-23 1 ne sont pas inertes et au contraire

subissent un cycle constant et rapide de lipolyse des TG en AGL et re-estérification

des AGL en TG (cycle TG/AGL). Ce cycle des TG/AGL qui a augmenté de manière

dépendante de la dose d’oléate, demeure élevé durant plusieurs jours (8-10 jours)

après le retrait de l’oléate et il est parallèle à la survie cellulaire en absence de sérum.

Le métabolisme du glucose reste élevé dans les cellules MDA-MB-23 I protégées de

Ï’apoptose due à l’absence de sérum, fournissant une grande quantité de glycérol-3-

phosphate nécessaire à l’estérification des AGL.

Ces résultats sont en accord avec l’interprétation que le cycle des TG/AGL

joue un rôle dans l’effet anti-apoptotique de l’oléate. Nous proposons 2 mécanismes

complémentaires pour expliquer comment un cycle élevé des TG/AGL pourrait

favoriser la survie des cellules tumorales. Le premier impliquerait le récepteur

membranaire aux acides gras couplé aux protéines G, GPR4O, et le second est basé

sur notre modèle de travail reliant l’augmentation du cycle des TG/AGL au maintien

de rapport NAD/NADH intracellulaire nécessaire à la survie des cellules

tumorales.

Mots clés cancer sur sein, survie cellulaire, acides gras, triglycérides, lipolyse,

cycle des TG/AGL, GPR4O



V

ABSTRACT:

Recently, there has been a renewed interest in metaboiism and its

participation in the deveiopment of cancers, due to a major increase in obesity.

Severai epidemiologicai studies iinking obesity with cancer have been published, but

the molecular mechanisrns invoived are largely unknown. In the obesity-induced

insulin resistant state, trapping of dietary free fatty acids (FFA) in adipocytes

becomes inefficient, causing elevated blood FFA levels in the fed state, when thcy

are not needed for energy production. Littie is known how various tissues, especially

tumors, deal with this surplus of fuels.

For the iast severai years, our laboratory has been studying the effects of

common nutrient fatty acids on proliferation and death of human breast tumor ceils

in culture. The aim of the present smdy was to investigate the biochemicai basis for

the antiapoptotic action of long chain monounsaturated fatty acid oleate in human

breast cancer cells. We focused specifically on the role of TG accumulation induced

by treatment with oleate in the protection from apoptosis induced by serum and

growth factor (GF) withdrawal in two ceil unes: the MCF- 1 OA non-transformed

hurnan breast epithelial cdl strain and the human breast tumor ccli line MDA-MB

231. The rnetabolism of FfA, TG and glucose, in parallel with long-term ccli

survival in the absence of serum and additional GF, was investigated in ceils treated

with exogenous oleate. The results were extended to a panel of human breast cancer

ccli unes: MDA-MB-46$, T-47D, MCF-7.

We have shown that short-term (3-24 h) treatrnent with oleate prevents

apoptosis and promotes long-term ceil survival in the absence of serum, GF and

exogenous oleate, in three out of four hurnan breast turnor cdl unes. The iong-term

serurn-free survival in these ccli unes was associated with a high capacity to store

TG. Our data suggest that TG stores in tumor cells like MDA-MB-23 1 are not inert

and instead undergo constant rapid turnover. This TG/FFA cycling which was found

to be markedly up reguiated in a dose dependent mamier in response to short-terrn
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oÏeate treatment remained stably elevated for many days and corresponded with

long-term serum-free celi survival (8-10 days). Glucose rnetabolisrn remained higli

in serum starved MDA-MB-23 1 celis rescued from apoptosis by short-terrn

treatment with oleate, providing glycerol-3-phosphate needed for FFA esterffication.

The resuits are consistent with the interpretation that TG/FFA cycling plays a

role in the antiapoptotic effect induced by treatment with oleate. We propose two

possible, but not mutually exclusive explanations, as to how the elevated TG/FFA

cycling could promote tumor celi survival. One may involve signaling via the ce!!

surface G protein coupled receptor GPR4O and the second one is based on our

working model, which links up regulated TG/FFA cycling with the maintenance of

intracelÏular NAD7NADH ratio needed for tumor ccli survival.

Key words: breast cancer, ce!! survival, fatty acids, triacy!glycero!, lipolysis,

TG/FFA cycle, GPR4O
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1.1 foreword

The development of cancer lias been pcrceived as a microevolution during

which ceils acquire genetic changes and are subsequently selected for growth

advantage. Evolution is shaped by environmental pressures as much as by genetic

variations. Thus, the growing tumors and metastases are influenced by surrounding

tissues and stroma as well as by many soluble factors, like hormones and

metabolites. Whule the contribution of strorna to the dcvelopment of cancers lias

been recently explored and tlie importance of hormones and growth factors is well

established, the influence of metabolism on tumorigenesis in comparison has been

relatively neglected. Recently, however, due to the major increase in obesity, studies

focusing on the contribution of metabolism to the development of cancer have

increased in number. Severat epidemiologicaÏ studies linking obesity with cancers

have been published but the molecular rnechanisms involved are Iargely unknown.
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1.2 Cancer researcli in the post-genomic era

The development of cancer involves a complex sequence of events that

usuaiiy occurs over many years. The Iast five decades of the 20th centuiy were

rnarked by the astonishing development of molecular bioiogy, initiated by the

discovery of the structure of DNA [1] and cuiminated with the sequencing of the

human genome [2, 3]. The prevailing paradigm in cancer research during this time

was the somatic mutation theory (SMT) of cancer. According to SMT,

carcinogenesis takes place at the cellular level and the multi-step process of cancer

development occurs through the graduai acquisition of genetic alterations in

individual epithelial ceil. The process of tumor development is thus perceived as

analogous to Darwinian evolution, in which a succession of genetic changes and

selection for growth advantage leads to clonai expansion of cancer celis [4, 5].

Studies of various mutations that occur during cancer deveiopment heiped to identify

a number of basic features of cancers, such as self-sufficiency in growth signais,

insensitivity to growth inhibitory signais, evasion of apoptosis, limitless replicative

potentiai, sustained angiogenesis, and tissue invasion and metastasis [reviewed in 6].

Although SMT stiil remains the most widely accepted, alternative concepts

are emerging. One of them is a the tissue organization field theory (TOFT)

[reviewed in 7, 8]. According to TOFT, the graduai deterioration of tissue

organization is the main cause of tumor progression. The concept of TOFT

originated from 19th century research on the ceilular pathoiogy of cancer [9].

Interestingly, the abnonriai appearance of cancer specimens observed with the light

microscope is stili the main criteria used in breast cancer diagnosis [reviewed in 10].

The tissue microenvironment or strorna which consists of fibroblasts, endotheliai

celis forming biood vessels, adipocytes and immune celis embedded in an

extracellular matrix, together with the basement membrane (BM), which separates

the epithelium from the stroma, have profound influence on epithelial tumor

indtiction. In support of the lOFT theory are the observations that non-transforrned,

genetically normal ceils can express a malignant phenotype when exposed to aitered

stroma. Thus, normal human breast epithelial organoids from reduction
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mammoplasty can form tumors when grown as xenografts in immunocompromised

mice, in the presence of altered hurnan mammaiy fibroblasts [11, reviewed in 121.

On the other hand, pre-malignant breast epithelial celis undergo growth arrest and

fonu polarized alveolar structures similar to normal epithelia in the presence of a

reconstructed basement membrane [13]. The most compelling evidence supporting

TOFT was provided by Maffini et al. [14]. They removed mammary epithelium from

fat pads (stroma) of experirnental rats and placed them in culture. One group of

experimental animais and some epithelia from primary cultures were treated with

carcinogen. Subsequently, the mammary tissue was reconstructed in treated and

untreated rats using either carcinogen-treated or untreated mammary epitheliai ceils

from primary culture. Ail animais which were treated with carcinogen and thus

contained carcinogen-treated stroma, developed epitheliai tumors, regardless of

whether or flot the mammary epithelium used to reconstruct their mamrnary tissue

was exposed to carcinogen [14, reviewed in 15].

Another thcory of cancer, which is becoming increasingly popular, is the

stem ceil theory of cancer. Originaily inspired by the 19th century embryoiogy, the

theory is based on the fact that there are similarities in signaling pathways between

embryonic and cancer celis. Jt suggests that cancers arise from stem celis, which are

present in ail tissues and are necded for tissue renewal [reviewed in 16, 17].

The molecuiar biology studies in the field of cancer over the past five

decades revealed a remarkable cornpiexity of the processes invoived in tumor

development. Recent reexarnination of concepts alternative to SMT reflects the

necessity to look at tumor progression from many angles and at many levels of celi

and tissue organization.
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Breast cancer

1.3.1 Statistics

Breast cancer is the most common cancer diagnosed among women (afler

non-melanoma skin cancer) and is the second icading cause of cancer death after

lung cancer according to the National Cancer Institute [1$]. An estimated number of

22,300 new cases wiIl be diagnosed and over 5,300 death from this disease will

occur in Canada in the year 2006 [19]. Based on current rates, 12.7 % of women

bom today (1 in 8) wilt be diagnosed with breast cancer and 30% ofthem will die of

the disease. it is important to emphasize, however, that the risk of breast cancer

increases sharply with age. Thus, a 35-year-old woman has a risk of Ï in 2,500, a 50-

year-old woman has a risk of 1 in 50 and only at age 85 will the risk actually be 1 in

8. Breast cancer is the leading cause of death in Arnerican women between ages 50

and 55 [20].

Breast cancer incidence in U.S as well as in Canada has been rising steadily.

Although better diagnosis and an aging of the population may be partially

responsible for that, the increase seems to reflect a real trend and suggests possible

involvement of environmental and life style factors in the developrnent ofthe disease

[20]. In spite of the increase in breast cancer incidence, in many countries rnortality

rates declined during the 1990s [19, 21] (Figure 1 and 2). This is encouraging and

likely reflects improvements in managing the disease, such as early screening and

broader use of appropriate treatments.
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Figure 1. Trends since 1977 in age-standardized rates for breast and lung

cancer among women in Canada.

Rates were standardized to the age distribution of the 1991 Canadian population.

Data from Surveillance Division, CCDPC, Public Health Agency of Canada.

Source: Canadian Cancer Statistics. Canadian Cancer Society/ National Cancer

Institute of Canada, www.cancer.ca
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Figure 2. Trends since 1950 in age-standardized (25-69 years) death rates*,

comparing breast and selecteil other types of cancer, among women in UK and

USA.

*The age-standardized rate is the mean of the seven separate rates in the 5-year age

ranges 35-39 up to 65-69. Data from WHO statistics on death and on population

estimates.

Source: Early Breast cancer Irialists’ Collaborative Group (2005) Lancet 365:1687-

1717

USA 19r,0-2CA)1

1950 l90 1970 1500 10C 2010
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1.3.2 Breast cancer as û genetic disease

One of the main risk factors for breast cancer is a family histoiy, which

suggests an inherited component in the development of the disease. Around 5—10%

of ail cases and 25—40% of cases in younger patients (under the age of 35 years)

have a hereditary origin [22]. Two major susceptibility gdnes, which were identffied

about ten years ago, are BRCA1 and BRCA2 [23, 24]. Carriers of mutations in these

genes are also at increased risk for the development of ovarian cancer [25 reviewed

in 26]. Both mutations are highly penetrant. The chromosomal location of BRCAY

and BRCA2 genes and the structures of proteins coded by the genes are known, but

their functions are stili being investigated. They are both tumor suppressors involved

in the maintenance of genome stabiiity. BRCA1 is implicated in DNA repair,

transcriptionaÏ regulation, cell-cycie progression and meiotic sex chromosome

inactivation while BRCA2 is an essentiai component of the complex responsible for

homologous recombination [27]. Both mutations account for substantial proportions

(20 % each) of ail familiar cases [28]. Additional known familiar susceptibihties to

breast cancer include mutations in other tumor suppressors such as CHEK2, a gene

encoding the protein kinase required for DNA repair and replication, which accounts

for 5% of ail familiar cases, and TP53 gene encoding the p53 protein responsible for

celi cycle arrest during DNA damage and involved in the regulation of apoptosis.

Mutations in TP53 (Li-fraumeni syndrome) are responsible for about 1% of ail

familiar cases. A small fraction of other cases are related to mutations in PTEN

(Cowden’s syndrome), LKB1 (Peutz-Jeghers syndrome) or ATM (ataxia

telangiectasia-mutated gene) [28]. ATM encodes yet another protein kinase that acts

as a tumor suppressor. Activated via damage to DNA, ATM stimulates DNA repair

and btocks ce!! cycle progression. One mechanism through which this occurs is

ATM dependent phosphorylation of p53. Despite the evident progress in

understanding the genetic causes of breast cancer, the genetic bases of the rnajority

(54 %) of ail familiar predispositions are stili not known [29].

It shou!d be noted that while the majority of known mutations predisposing

to breast cancer are irnplicated in the maintenance of genome integrity, two of the
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predisposing factors for breast cancer (PTEN and LKB 1) are also linked to nutrient

uptake and the regulation of metabolism. Their place in the network of nutrient

sensing and signaling for survival is shown in Figure 3.

1.3.3 Non-geneticjàctors involved in breast cancer deveÏopment - estrogens

Breast cancer is a heterogeneous disease in its clinical, genetic and

biochemical profile. It arises from the epithelium of the mammary gland (milk

producing lobules and ducts, whicb transport rnilk to the nipple). Malignant

transformation of the stromal components (fibroblasts, endothelial ceils forrning

blood vessels and adipocytes) is very rare and it is flot included in this category [20].

There is evidence that estrogens, the steroid hormones essential for development and

function of a normal mammary gland, play an important roTe in the development of

breast cancer. Thus, the risk ofthe malignancy is related to the cumulative exposure

to endogenous and exogenous estrogens and includes: early menarche, tate age of

menopause and honiional therapy after menopause.

Estrogens are steroid hormones produced primarily by ovaries, with some

contribution from the placenta, adipocytes and adrenal glands. They act mainly

through two nuclear receptors ERa and ER3, which are ligand-inducible

transcription factors and are both expressed in breast tissue [30]. Two thirds of ail

breast cancers express ERa, which is believed to be responsible for tumor celis

proliferation [31]. Curiously, however, the proliferating cells in a normal marnmary

gland rarely express steroid hormone receptors t31 ,32]. This apparent paradox is stili

the subject of debatc [33, 34]. Nevertheless, antiestrogen therapies are being

developed and have been found to be very effective for treatment of this mahgnancy

as well as successful in chemoprevntion for high-risk patients, such as those showing

abnormnal breast histology or carriers of a genetic predisposition [21, 35]. Cunent

antiestrogene strategies include: (a) antiestrogens, such as tamoxifen, that inhibit

estrogen binding to its main target, ERa, (b) aromatase inhibitors, that prevent

synthesis of endogenous estrogens, and (c) pure antiestrogens, such as flulvestrant,

that block the action ofestrogens [36].
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Although very successftil, endocrine therapies are still the subject of

intensive research for at least two reasons:

(1) They have to be designed in such a way so that they do flot interfere with other

aspects of women’s health. This is especially true for long-term chemopreventive

therapies. Estrogens influence physiology of reproductive and cardiovascular

systems, metabolism of bones and the integrity of the central nervous system. The

new category of therapeutic agents currently being devetoped for breast cancer

treatment, selective estrogen receptor modulators (SERMs), may be suitable for

endocrine therapy [36, 37]. These are nonsteroidal agonists/antagonists of estrogens

action. It is anticipated that the effects of these drugs may vary depending on the

target tissue. Indeed, tamoxifen, a widely used breast cancer therapeutic drug, is the

first of this type. It acts as an antagonist in the breast to prevent breast cancer

progression and as an agonist in the bone to preserve bone density.

(2) The second challenge facing endocrine therapies is the development of

resistance. Some ER-positive breast cancers do not respond to antiestrogen therapy

(intrinsic resistance), while others stop responding after long-terrn therapy (acquired

resistance). Interestingly, tumors that acquire resistance (30 to 50 % of treated ERa

positive tumors) retain the expression of the receptor. Resistance to endocrine

therapies is a complex phenomenon, which may involve many different mechanisms

[38]. For example, the direct interaction between signaling through ERa and several

other transduction pathways can convert the inhibitoiy effects of the tamoxifen-ERa

complex into a stimuÏatoiy effect. Cross-talk between signaling from ERa and

HER2/neu (EGFR type receptor and the common oncogene in breast cancer), rnight

be involved in dnig resistance of tumors overexpressing this ceil surface receptor

[36, 39] . In addition, ERa activity could be reguÏated by phosphorylation mediated

directÏy by Akt [40]. The signaling from HER2/neu involves the PI3K/Akt pathway

activation as wel[. As discussed later in this chapter, this pathway is implicated in the

upregulation of glucose uptake and the stimulation of lipogensis in many tumor ceils.

Interestingly, there are indications that interfering with lipogensis by inhibiting fatty

acid synthase (FAS), the final enzyme responsible for the synthesis of fafty acids

(FA), can alter upstream signaling form ERa. This suggests that lipid metabolisrn
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itself may be an important factor involved in the estrogen response of breast cancer

celi [41].

1.3.4. Breast cancer as a climnic disease — cancer dormancy

Ihe risk ofrecurrence for cancer patients is the highest within five years after

diagnosis and more then haif of the patients develop metastasis during this time.

Breast cancer belongs to the srnall group of cancers that have a relatively unusual

risk of late recurrence, even 20 years after diagnosis. The other cancers belonging to

this group are melanoma, non-Hodgkin’s lymphoma and renal carcinoma [42]. The

early relapse and late relapse seem to occur through different mechanisms. The

characteristic feature of a late relapse is that it occurs in two stages, an early stage,

when there is no expansion of tumor ceils and the late stage characterize by

exponential tumor growth. The earty phase of relative tumor quiescence followed by

late recurrence bas been called cancer or tumor dorrnancy[42]. Cancer dormancy is

flot well understood and it is extremely difficuit to study due to the veiy low

numbers of doniiant cancer ceils. By applying sensitive irnmunocytochemistry, one

can detect disseminated tumor ceils (DTC; one cell per bone marrow aspirate) in the

bone marrow of 20-40°/ of cancer patients that do flot show signs of metastasis [43].

Other very sensitive methods can identify circulating tumor ceils (CTC) from

the blood. They allow the detection of I celi per 20 ml of blood in about 36 % of

cancer patients that do not show clinical signs of disease [42]. The diagnostic value

of DTC and CTC detection is not yet clear. Considering that about 20 % of patients

will relapse after long-term remission, the phenomenon is worth serious

consideration. The late relapse has a stochastic characteristic and currently there are

no tests that can predict which patients are at risk for recurrence. Persistence of DTC

or dc in the body of cancer patients suggests that cancer may be considered as a

chronic disease.

We have already mentioned that environmental and life-style factors may be

involved in breast cancer development. Considering the possible chronic character of

the disease, prevention may be an important therapeutic option. Consistent with this
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view, the life-style factors, such as obesity. diet and exercise, were shown to

markedly affect breast cancer risk and survival after diagnosis.

1.3.5 Obesity and the risk ofdevetoping cancer

EpidemiotogicaÏ studies suggest that obesity is a metabolic disorder that

affects the development of many different types of tumors. including colon, breast

(postmenopausal), endometrium, kidney (renal ce!!), oesophagus (adeno-carcinoma),

gastric cancer, pancreati c, gallbladder, I iver, non-Hodgkin’ s iymphoma, leukemia,

multiple myeloma, rectum, ovary and prostate [reviewed in 44, 45]

Although the molecular mechanisms linking cancer promotion with obesity

are sti!! not understood, the association is strong. Thus, obese individuaÎs with a

body mass index above 30 kg/m2 (BMI, defined as weight in kiiograms divided by

height in meters squared) have an overali increased risk of developing many types of

cancer ofapproximately 1.5 to 2 fold and an over 3 fold increased risk ofdeveloping

cancers of the endometrium and oesophagus. Overweight postmenopausal women

have a 1.66 fold increased risk of developing breast cancer [45]. The parameters

indicating metabolic dysfunction, such as insulin resistance, visceral adiposity,

hypertriglyceridemia and hyperglycemia, were ail shown to correlate with an

increased risk of developing breast cancer [46-49]. Overweight women have not

only an elevated risk of developing breast cancer, but also an increased chance of

cancer recurrence (1.8-1.9 fold) and increased mortality (1.4-1.6 fold) [50 reviewed

in 51]. Obesity appears to be strongly related to mortality in women with estrogen

receptor-negative breast cancers, for which there exist fewer therapeutic options

[52].

1.3.6 Excessive adipositv and its contribution to cancer

Fat deposits in different anatomical sites of obese individuals are unequal.

Upper-body fat, including visceral and abdominal subcutaneous deposits, strongly

coiielates with increased risk for the development of insulin resistance, diabetes and

cancer [47]. The accumulation of fat in the upper body is controlled by various

factors, including heredity (about 50%) and sex (more common in males than in
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fernales), and is closely associated with glucose intolerance, hyperinsulinemia,

hypertriglyceridemia and other features of what is called metabolic syndrome or

syndrome X [53]. A causal Iink between visceral obesity and various disorders has

been difficult to determine. There is evidence that visceral adipose tissue is more

dynamic and has a higher lipolytic activity. The increased release of free fatty acids

(fFA) from visceral adipose tissue to the portal vein, which drains directly into the

liver, could cause liver dysfunction. However, it is also likely that visceral obesity is

not harrnful by itself but is a sign of an underlying metabolic phenotype, which

manifests itself in an altered adipose tissue distribution [reviewed in 53].

It bas been recognized that the storage and release of fat is not the only

function of adipocytes. These cells also participate in physiological horneostasis

through the production of hormones and cytokines, which can act in autocrine,

paracrine or endocrine fashion (for examples: leptin, resistin, adiponectin, tumor

necrosis factor a (TNFa), interleukin-6 (IL-6) and apolipoproteins [54]. The

endocrine function of adipocytes in obese individuals may well be one of the factors

contributing to the development of neoplasia [44]. This is particularly true for brcast

cancer in postrnenopausal women, since their adipose tissue is also the main source

of estrogen [55]. Adipocytes are major components of human breast tissue, making

up about 90 % of their volume. It bas been shown that in postmenopausal women,

local estrogen Levels in breast tumors could be as much as 10 times higher than in the

circulation [56]. Obesity-related breast cancers are also more often ER-positive [57].

It was proposed that various signaling pathways activated by adipocytes may

crosstalk with each other and with signaling from the ER and synergistically

promote tumorigenesis [55].

Obesity is also independently positively linked to elevated blood ffA levels,

which have been irnplicated in the development of pathologies such as insulin

resistance and tissue lipotoxicity [58 reviewed in 59, 60, 61].
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1.3.7 Metabolic inter’entions (diet and exercise) can ilnprove sttn’ival in breasi

cancer patients

Metabolism can affect the progression of cancer. The recent studies showed

that dietary interventions such as a decrease in dietary fat or the promotion of energy

expenditure by means of an increase in physical exercise can improve survival in

postrnenopausal women who have been treated for early-stage breast cancer.

Remarkably, only a few hours of exercise a week (3 to 5 hours of walking) can

reduce the risk of death from breast cancer by up to 50% [62] and decreased dietary

fat (to 20%, from about 40% of total calories from fat, which reflects the typical

Western diet), can reduce the risk of tumor recurrence for ail breast cancer patients

by 24%, and for patients with estrogen receptor-negative breast cancer by 42% [63].

The efficacy of these interventions is comparable to that of established adjuvant

therapies. Thus, the risk reduction of recurrence after hormone therapy is estirnated

at about 50% for estrogen receptor-positive cancers [64] and treatrnent with

Trastuzumab, the monoclonal antibody inhibiting the activity of HER2/neu tyrosine

kinase receptor (often amplified in breast cancers) reduces mortality by 33% [65].

1.4 Metabolism and the contro] of celi survival

1.4. 1 Growth factors regulate cell survival be inhihiting apoptosis and by directly

controlling cell access to nutrients

The nutritional environment of most celis in the body of heatthy individuais

is highiy regulated. The individual celis within the body are usuaiiy not limited for

growth by the extracellular concentration of glucose, fatty acids (FA) and other

nutrient substrates. ihus, cell survivai, growth and proliferation are mainly

controiied by the signals from exogenous growth factors (GF) rather than nutrient

substrates [66]. CelIs within multicellular organisms are constantly exposed to

numerous signais from their surroundings, including soluble factors, signals from the

extracellular matrix or the signais from neighboring cells. GF signaling is

responsible for the balance between ccli accumulation and cell death within tissues.
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Individual ceils require GF signaling to maintain their surviva! and in the absence of

those permissive signais they undergo apoptosis. They also require GF to initiate ce!!

division. During tumorigenesis, individual celis acquire mutations in the signaling

pathways that a!!ow them to avoid apoptosis and proliferate in the absence of GF [6].

Recently, Thompson et al. showed that Gf also contro! the access to extrace!!uiar

nutrients in individuai ceils. They showed that when ceiÏs are withdrawn from GF,

the rates of uptake of glucose and amino acids decrease and the transporters for iron

(transferrin receptor), as wel! as cholesterol (LDL receptor), are also down regu!ated

[67, 68]. Finally, they dernonstrated that when Rab7 (which regulates endocytic

membrane traffic and mediates the intemalization and degradation of nutrient

transporters) was inhibited, GF-deprived celis displayed protonged, growth factor

independent ce!1 surviva!. Therefore, GF reguiate celi survivai by inhibiting

apoptosis as we!1 as by direct!y control!ing ce!! access to nutrients [69].

1.4.2 Signating via Akt serine/threonine kinases regutates celi survivat by severaÏ

mechctnisnis

Thompson et al. hypothesized that cancer ceils have to acquire autonomy for

uptake of nutrients in order to become ful!y transforrned. They showed that

activation of the Akt farniÏy of serine/threonine kinases, often triggered by oncogenic

alterations in GF signaiing, promotes increased nutrient uptake [70, 71 reviewed in

72]. Thus, they were the flrst to reveai that Akt can contro! celi survival by

contro!!ing ce!!ular metabo!ism.

Akt serine/threonine kinases are activated in many types of cancers and this

activation leads to enhanced resistance to apoptosis [73]. Signaling via Akt can

induce ce!! growth and division in addition to survival. Sorne of the survival

signaling pathways overlaps with the mitogenic pathways, but some are distinct. A

recent review on ceil cycle reguiation by Akt was published by Brazi! et al [74] and

reviews on regu!ation of ce!l survival by Akt signaling can be found in Harnrnenrian

et al. and in Mc Corniick [75, 76]. Figtire 3 briefly summarize the cuiTent know!edge

regarding Akt induced regulation of ce!! surviva!, and can be described as fo!lows.

Akt can be activated by signais from various tyrosine kinase receptors in breast
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cancers, sucli as the HER2 oncogene. Activated Akt increases ce!! survival by

inhibiting various proapoptotic targets, such as TSC1/2, IKKa, FOXO and Bad [761.

In addition, Akt activation promotes ce!! survival by stimulating ce!!ular g!ucose and

fatty acid metabolism. Akt activates g!ycolysis, presumably by stabilizing HIF-1

transcription factor [77], which in turn is responsib!e for the upregulation of a!1 the

glycolytic enzymes (for detailed discussion see section 1.5.2). In addition to this, Akt

may directly activate the expression of several enzymes invotved in metabolism of

glucose, including glucose transporters, hexokinase [7$] and phosphofructokinase 1

and 2 [79]. The intracellular metabolism of glucose and FA are tightly

intercomiected (for detai!ed discussion sec section 1.6.3). Akt activition of glycolysis

will resuit in the production of more substrate for FA synthesis. Thus, Akt was

shown to activate enzymes involved in FA synthesis via SREBP-! [$0] and it can

direct!y phosphoiylate ACL, the enzyme cata!yzing the first step in conversion of

glycolytically-derived citrate to cytosolic acetyl CoA ta precursor of FA, cholesterol

and isoprenoid synthesis) [8!]. There is evidence that upregulation of FA synthesis

itself could be important for cancer ce!! surviva! but the mechanisms are not yet

understood [$2].

.4.3 CeÏls can sense changes in the ÏeveÏs ofinani’ nutrients and cciii adapt their

metaboÏism

As discussed above, the ce!!ular metabo!ism of g!ucose and fatty acids may

be directly up regulated by growth factors to promote the survival of pro!iferating

ceils. However, it lias long been recognized that individual ce!ls are a!so able to

sense their metabolic status independent of GF. Such homeostatic responses are

evolutionarily conserved [$3]. For example, a deciine in the ce!lu!ar ATP/ADP ratio

resuits in activation of AMPK, which tums on ATP-generating catabolic pathways

while turning off ATP-consuming processes (ccl! growth) (Figure 3).

Activated AMPK can adjust the activities of various metabo!ic enzymes by

phosphorylation and may also modulate intrace!!u!ar signa!ing for ccli growtb and

division [84]. A recent discovery is that celis may also sense their NAD7NADH

ratio. It was demonstrated that the yeast !ongevity protein Sir2 (sirtuin) is a NAD
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dependent histone deacetylase [$5]. Rernarkably, sirtuins are highly conserved in

evolution, and are implicated in the controt of metabolism and lifespan in yeast,

wornis and flues, particularty in the effects of calorie restriction (CR) on longevity

[86]. Mammalian sirtuin (SIRIY) inhibits apoptosis by direct deacetylation of

FOXO, p53 or Bax-binding partner Ku-70 [87,8$]. The exact mechanism of

regutation of sirtuins in humans is not wetl understood and its coimection to

NAD/NADH ratio stiil needs to be clarffied.

Another protein involved in sensing and communicating the metabolic status

of celis is mTOR (Figure 3), the mammalian kinase which is a target of rapamacin.

mIOR is located downstream ofAkt. h is known to respond to arnino acid starvation

and regulates protein translation. However, mTOR also integrates signais regarding

celiular metabolism and energy status by communication with AMPK and by

directiy responding to ATP leveis. In addition, mTOR controls aspects of glucose

homeostasis and recent studies suggest that it may aÏso control fat metabotism

[reviewed in 89]. The physiological function of mTOR is the control of cellular

growth (increase in celi mass). mTOR is also involved in the response to starvation

by controlling degradation of cellular content, including organelles, to ensure

survival under nutrient-depleted conditions, a process known as macroauthophagy.

The yeast TOR protein can forrn two types of complexes, TOR complex 1 (TORd)

and TOR complex 2 (TORC2). TORCI is sensitive to rapamycin and it regulates the

timing of ccli growth. TORC2 is insensitive to rapamycin and regulates spatial

growth (where ceil wilÏ grow). One interesting aspect of mTOR signaling is the

recently discovered existence of a negative feedback loop from nutrient sensing to

the insulin-responsive Akt signaling pathways. Thus, mTOR is emerging as a very

important factor in the control of flot only ceil growth but also ceil survival and

metabolism [89].
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Figure 3. Akt signaling for celi survival
Akt inactivates by phosphorylating proteins, which are directly or indirectty involved
in the induction of apoptosis (Bad, IKKa, FOXO). Akt signais through the
mammalian target of rapamycin (mTOR) by inactivating its repressor, tuberous
scierosis complex (TSC1/2). TSC1/2 is a tumor suppressor mutated or deleted in
several cancers [90]. Interestingly AMPK can activate the complex having an
antagonistic effect on mTOR function. Akt activates directly or indirectly glycolysis
and lipogenesis. This resuits in changes in the leveis of important metabolites (AMP,
NAD+), wbich can signal back via proteins sensitive to their levels (AMPK and
SIRT1 respectively) to modulate metaboiism and/or celi survival. Hexokinase (HK)
directly prevents apoptosis by binding to the mitochondriai outer membrane. Black
unes indicate inhibition and red airows indicate stimulation. Transcription factors are
encircled, metabolites are green and tumor suppressors are in blue.
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1 .4.4 Some inetabolic enz’ines direct!y participate in signaling for ce!! sun’ival

The interesting aspect of upregulation of glycolysis in the context of the

control of ccli survivai is that glycolytic enzymes themselves can directiy participate

in antiapoptotic effects. The best-known exampie of this is hexokinase (HK) (Figure

3), which binds with high affinity to the outer mitochondriai membrane and interacts

with other mernbrane-associated proteins, including VDAC to inhibit apoptosis [91,

92]. In fact, rnany enzymes involved in glycolysis have additional, nonglycolytic

functions, which include transcriptionai reguÏation, stimulation of ccii motiiity,

apoptosis [reviewed in 93], and even DNA repair [94]. Glycolysis is one ofthe rnost

ancient metabolic pathways, and these recently discovered nonglycolytic functions

of glycolytic enzymes may reflect an evoiutionaiy strategy, designed to coordinate

rnetabolism with other ceilular functions.

1.5 New concepts regarding the role of glucose metabolism in tumorigenesis

1.5.1 Glucose metabolisin is ttp regttlated in tuinor celÏs: the Warbttrg effect

Cancer ceiis show major changes in the rnetabolisrn of glucose. While the

majority ofnon-transforrned ceiis use oxidative phosphorylation in mitochondria for

energy production and switch to glycolysis oniy upon oxygen deprivation (hypoxia),

tumor ceils show high glycoiytic rates and rely on glycolysis for energy production

even in the presence of oxygen. Up-reguiation of both glucose uptake and giycoiysis

are common features of many cancers and have application in noninvasive cancer

imaging used for diagnosis and staging of turnors by positron emission tomography

(PET) [95]. This test uses radioiabeled glucose analogs to detect differentiai glucose

uptake by fast-growing tumors and metastases.

The reason for the metaboiic switch to giycolysis in the presence of oxygen

in tumors, the so-caiied “Warburg effect”, is stili not ciear. Over 70 years ago

Warburg proposed that the effect is a resuit of mitochondriai dysfunction [96] and

developed a cancer theory based on altered metabolism [97]. However, according to

the generally accepted views, aiterations in turnor ccii metaboiisrn are symptoms of
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transformation or response to the turnor’s microenvironment rather than a cause of

cancer. Thus, the Warburg’s theory was neyer accepted.

1.5.2 The transcrttion factor HIf-1 coordinateÏy reguÏates an integrated response

to Ïow oxygen and a switch to high glvcolysis

Growing tumors are often hypoxic due to insufficient blood supply. Thus, up

regulation of glycolysis could occur in response to hypoxia and could be an

adaptation to hostile tumor environment. The ceilular response to oxygen deprivation

is controlled by the transcription factor: hypoxia-inducible factor 1 (HIF-1), which

regulates a rnuitiplicity of genes, including those coding for ail of the giycoiytic

enzymes, and others encoding paracrine growth factors such as vascular endotheiial

growth factor (VEGF). Activation of these genes assures an integrated response to

Iow oxygen, including a switch to high giycolysis and recruitment of new biood

vessels [9$].

1.5.3 Tumor suppressor genes and oncogenes are invoÏved in the upregiclation of

glvcoÏys’is: the Warhttrg effect re-examined

HIF-1 is degraded in the presence ofoxygen. Disruption ofHIF-l’s oxygen

dependent degradation leads to its constitutive activation. Interestingly, recent data

shows that HIFI could be activated by factors other then tumor environment and

that it may possibly play a crucial role in the process of transformation [99]. First of

ail, it was demonstrated that genes involved in the control of HIF- 1 degradation

function as ciassicai tumor suppressors ta germiine mutation in one aiiele

predisposes carriers to develop tumors in specific organs). Three genes of this type

were identified: the von-Hippel-Lindau (VHL) gene, which predisposes carriers of

gerniline mutations to kidney, blood vessel and adrenal tumors, and two genes

encoding enzymes of the tricarboxylic acid cycle: succinate dehydrogenase (SCD)

and fumarate hydratase (Fil), which predispose calTiers of germtine mutations to

hereditary paraganglioma and Ieiomyomato sis/renal ccli cancer syndromes,

respectively [reviewed in 100, 101]. Moreover, HIF-l could be detected in non

hypoxic areas of tumors [102] being stabilized in response to stimulation by a
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growth factor, such as insulin-like growth factor (IGF), or in ceils transformed by

oncogenes including v-Src, c-Src, ras or HER 2 [reviewed in 103].

Stabilization of HIF-1 is flot the only way in which ceils can acquire higli

glycolytic rates. Some oncogenes can directly activate glycolytic enzymes. So far

two examples are known: MYC and Akt oncogenes. In the case of MYC, it was

shown that several key glycolytic genes have highÏy conserved Myc binding sites.

Myc directly binds to their promoters and transactivates them in non-hypoxic

conditions [104]. The exact mechanisrn involved in activation of glycolysis by Akt is

flot known, but it appears to be independent of HIf-1 [70, 105]. Akt is involved in

redirecting cellular metabolism in response to growth factors stimulation or

oncogenic alterations to support ce!! growth and proliferation [reviewed in 72].

The present views on up-regulation of glycolysis in cancer ceils are

surnmarized in Figure 4 [103]. Thus, it seems clear that the up-regulation of

glycolysis that is so often observed in cancer celis may flot be just an adaptive

phenomenon, since it could be autonomously acquired during tumor progression. Its

contribution to tumorigenesis, however, is stiil controversial and flot widely accepted

[106].
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Figure 4. CeIl autonomous oncogenic alterations and adaptation to hypoxia
contribute to tumor aerobic gIyco1ysi

The figure denotes a tumor mass that could have sustained genetic alterations that
activate either AKT or MYC, resulting in ceil autonomous activation of aerobic
glycolysis. In the case of MYC, which encodes a transcription factor, glycolytic
genes are directly activated. As the tumor mass continues to enlarge, diffusion
limitation causes local hypoxia that induces the HIF- 1. HIF- 1, in turn, activates the
glycolytic genes as well as factors such as VEGF, which induces angiogenesis. The
glycolytic pathway is shown on the right. Genes affected by either HIF-l or MYC
are indicated by unes. For MYC, the thickness represents the level of direct binding
ofMyc to glycolytic genes.

Source: Kim, J.W., Gardner, L.B. and Dang, C.V. (2005) Dnig Discovery Today:
Disease Mechanisms 2 (2): 233-238.
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1.6 Overview of FFA metabolism and ïts regulation

1.6. 1 Control offfA Ïevels in the bÏood

The level of FFA (those which are flot components of circulating

triacylglycerols, Figure 5) in the blood is highly controÏÏed between 0.1 - 0.2 mM

[107]. After a meal, FFA released from dietary fat are absorbed by enterocytes that

une the smali intestine [102]. Inside the enterocytes, they are esterified to form

triacylglycerols (TG) and then are exported into the circulation as chylomicrons.

They are released from chylomicrons after hydrolysis mediated by lipoprotein

lipases (LPL), which are produced by adipose tissue and muscles, and then secreted

to the surface of capillary endotheliat celis nearby. In fed state, the majority of FfA

released from chylomicrons will be taken up by adipocytes and immediately re

esterified to form storage TG inside the ceil. Thus, the multistep process of trapping

dietary FFA inside adipocytes consists of sequential cycles of esterification and

lipolysis. In normal individuals, this complex process is almost 100% efficient 1 h

afier a meal and the efficiency then decreases to 10-30% by 6 h [109]. This allows

for a graduai release of FFA into the blood at longer times after the mea!. Thus, the

FfA levels in the blood are highest in a fasted state (over-night fast) when they are

needed as a fuel in various tissues. Lipolysis in adipocytes is calTied out by the

highly regulated enzyme hormone sensitive lipase (HSL) and other associated

lipases [110, 111].

Obesity is often linked to insulin resistance, which is flot well understood,

and manifests itself in an inability of various tissues to respond to insulin signaling

[reviewed in 112]. In the obesity-induced insulin resistant state, trapping of dietary

FFA in adipocytes becomes inefficient, causing elevated blood FFA levels even in

the fed state. In this situation, higher than normal amounts of FfA are available to

rnany tissues and organs, even though they do flot need them for energy production

[54]. Little is known how these tissues deal with the surplus ofFFA fuel. For human

tissues other than adipocytes, liver, skeletal muscles, heart and pancreatic 3-ceHs.

there is littie or no data describing the metabolism of FFA, their rate of oxidation,
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esterification, formation of lipid stores or lipolysis in the healthy or obese states.

Considering the profound influence of obesity, diet and life-style on the developrnent

of breast and other types of cancer, as welI as development of metabolic syndrome

and diabetes, more knowledge is needed regarding FfA metabolism in different

normal and tumor tissues.
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Figure 5. Structure of selected fatty acids and common complex lipids

A, Model molecules and chemical structure of common FA: palmitate (C 16:0) and

oeate (C18:1) B, Structure of most common polyunsamrated fatty acids: linoleic

acid (C1$:2) and linolenic acid (C1$:3) C, Structure of triacylgtycerol (TG) D,

Structure of phosphatidylcholine, a common membrane glycerophopholipid.

Source: Lodish H, Berk A, Zipursky L, Matsudaira P, Baltimore D, Darneil J:

Molecular Celi Biology. Fourth edition. W.H. Freeman and Company (2000)
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1 .6.2 Intracellular metaboÏism ojexogenous fFA: introduction

FA are the simplest lipids, consisting of long aikyl chains with a terminal

carboxyl group. Most FA in human body exist in complex form, as storage TG as

wetl as structural phospholipids (PL) (figure 5). Circulating FFA (those which are

flot components of complex lipids) are bound to serum albumin and their level in the

blood is tightly controlled [107]. The transport ofFfA into celis is believed to occur

via passive diffusion as well as by protein mediated transmembrane transport [113,

114]. Once inside the ce!!, FFA are activated to the corresponding fatty acyl-CoA

(FA-CoA) by acyl-CoA synthetase (ACS). The fate of FA-CoA subsequently varies

between tissues and depends on the overait metabolic state of the body as wel[ as on

the individual needs of different specialized ceils [115]. When esterified with

glycerol-3-phosphate (G3P), FA-CoA are preserved in the form of storage TG or can

be chaimeled to form phospholipids. Enzymes, which initiate the esterification

process, are called G3P acyl transferases (GPAT) [116]. Alternatively, FA-CoA can

be transported to mitochondria by carnitine palmitoyl transferase 1 (CPT 1) and

oxidized, generating ATP and CC2 [117]. Thus, FA, like glucose, are fuel substrates.

1.6.3 Coordinate regutation of glucose and FFA metaboflsm in the bodv and

within an individual ce!!

The metabolic pathways of the fuel substrates: FFA and glucose are

interdependent and reciprocally regulated. Utilization of glucose and FfA by

different tissues within the body is largely coordinated by insulin but the fine-tuning

is brought about by various intracellular mechanisms. Hence, elevated glucose

concentration stimulates pancreatic f3-celts to secrete insulin, which suppresses

lipolysis in adipocytes, preventing release of FFA. Ibis eliminates competition for

fuel substrates in peripheral tissues (muscles). Thus, in healthy individuals, FFA

becorne the major fuel substrate only when glucose and insulin concentrations are

low [107, 11$, 119]. Fine-tuning mechanisms, which allow individual cells to sense

the availability of fuels and adjust their metabolic pathways accordingly, include the

inhibitory effect of etevated FFA concentrations on glucose metabotism described in
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skeletal muscles by Randie et al [120], and the inhibitory effect of high glucose

concentration on fatty acid oxidation discovered by McGarry and Foster [121]. The

McGarry’s effect described in hepatocytes is briefly illustrated in Figure 6. When

glucose is abundant, ceils in various tissues, in particular liver celis, have an elevated

glycolytic rate and produce large amounts ofpyruvate, which enters the tricarboxylic

acid (TCA) cycle in mitochondria. TCA cycle intermediates are replenished and the

surplus is transported from the mitochondrial matrix back to the cytoplasm in the

form of citrate. Citrate is then metabolized by a sequence of cytoplasmic enzymes:

ATP citrate lyase (ACL), acetyl CoA carboxylase (ACC) and finally fatty acid

synthase (FAS) to produce endogenous fatty acids. MalonyÏ-CoA, which is an

intennediate in this process, acts as an allosteric inhibitor of CPT I. Therefore, the

presence of malonyl-CoA signals the abundance of glucose in liver cells that begin

to produce endogenous FA from glucose and shuts off oxidation of the newly forrned

FFA, prornoting their esterification and storage. Inhibition of CPI I by malonyl-CoA

will also prevent oxidation of exogenous FFA if they are available.

An additional level of complexity to this intracellular metabolic regulation is

added by signaling from AMP-activated protein kinase (AMPK). AMPK is an

evolutionarily conserved sensor and regulator of energy balance in celis. It becomes

activated by phosphorylation when levels of AMP increase, indicating a reduced

ATP/ADP ratio. Actïvated AMPK turns on ATP-generating catabolic pathways

while tuming off ATP-consuming processes (in particular celi growth) in response to

an energy crisis. Thus, it will induce oxidation ofFFA when glucose is not providing

enough energy or in the situation of high energy consumption (muscle contraction)

[122, 123]. lnterestingly, the upstream kinase responsible for AMPK activation is a

turnor suppressor LKB1, responsible for the developmcnt ofbenign intestinal tumors

(Peutz-Jeghers syndrome) and predisposing carriers to malignant cancers in other

tissues (including a breast) [124]. The deregulation of the AMPKImalonyl-CoA fuel

sensing and signaling network bas been proposed to be involved in the developrnent

of the metabolic syndrome, which predisposes to several chronic disorders, including

obesity, diabetes, hypertension and premature atherosclerosis t 125].
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Exogenous FFA become activated inside the celi by ACS to form FA-CoA, which
can be further metabolized in mitochondria to produce ATP. CPT-1 catalyzes the
first rate-limiting step of its transport to mitochondria. Atternatively, fA-CoA can be
esterified to glycerol-3 phosphate to fonri storage TG or PL. When glucose is
available, it is metabolized via glycolysis and the TCA cycle to produce ATP. At
high glycolytic rates, the TCA cycle will be replenished and the surplus will be
transported from the mitochondrial matrix back to the cytoplasrn in the form of
citrate. Citrate is a precursor for de novo FFA synthesis. MaÏony-CoA, an
intermediary metabolite between citrate and FFA, is an allosteric inhibitor of FFA
oxidation. Its levels can also be controlled by AMPK, which inactivates ACC by
phosphorylation.

f.I.’
t OLLAlE)

Figure 6. Intracellular metabolism of glucose and FA are interdependent
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1 .6.4 Storage oJffA and TG, lipoïvsis and TG/FFA eveling

Although most ceils in the body are able to esterify FFA to produce TG,

surplus dietary FFA are stored almost exclusively in lipid droplets of adipocytes in

the form of TG. Liver ceils and adipocytes are speciatized in the synthesis of TG,

which can be hydrolyzed when FFA are needed as fuel (between meals). In healthy

individuals, some storage of TG occurs in skeletal and cardiac muscles in addition to

adipocytes and liver. However, this ïs only for local needs [126].

TG stored in lipid droplets can be hydrolyzed to produce fFA and glycerol.

This process (lipolysis) lias been mostly studied in adipocytes, whcre it is canied out

by the highly regulated enzyme, hormone sensitive lipase (HSL) in addition to other

less smdied lipolytic enzymes in particular, adipose TG lipase (ATGL) [reviewed in

111]. FFA that are released from TG by lipolysis can be immediately re-esterified

within the ceH to form TG again. Lipolysis and re-esterification arc two opposite

processes involved in what is refeiied to as intracellular TG/fFA cycling [127, 12$].

TG in lipid droplets of adipocytes are constantly turning over with an average half

life of a few days [126]. Celtular TG/FFA cycling can occur in all tissues containing

TG stores. It is a multi-step, complex cycle involving many enzymes. As shown in

Figure 7, at least one enzyme activates FFA to form FA-CoA [129], then at least five

others are involved in the sequential esterification of FA-CoA onto the glycerol

backbone [116], and subsequently at least three different lipases are involved in the

sequential hydrolysis of the esterification products: triacylglycerols (TG),

diacylglycerols (DAG) and monoacylglycerols (MG) [111]. TG/FFA cycling is

considered to be a “futile cycle”, since it’s main outcome is the consumption of

energy (production of 1 molecule of TG consumes 6 molecules of ATP). However,

this process allows preservation of intracettular FA pools when they are flot oxidized

for energy production, and has been Ïinked to thermogenesis in brown adipose tissue

[130].
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figure 7. Schematic illustration of the intracellular TG/fFA cycle

TG/FFA cycling consists of sequential reactions of esterification (left) and

hydrolysis (lipolysis shown to the right). The cycle is supplied by free fatty acids

(FFA) from exogenous and/or endogenous sources and by glycerol-3-phosphate

(G3P) (green arrows). Ihe cycle can be depleted at several steps (red arrows). Thiis,

fatty acyl-CoA (FA-C0A) can be channeled to oxidation in mitochondria and

intermediates in triacylglycerol (TG) synthesis may be channeled to the production

of phospholipids (PL). FfA released by tipolysis can be secreted outside the ceit or

irnrnediately re-csterified.
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A comprehensive literature searcb revealed that there are no publications

describing data on lipolysis or on TG/FFA cycling in cancer celis. 1G are stored

within cytoplasmic lipid droplets (LD). LD are macromolecular lipid assemblies

consisting of hydrophobic core of neutral lipids (TG, DAG, and sterol esters)

surrounded by a monolayer ofphospholipids. Their presence in mammalian ceils has

been associated with the storage and transport of energy (FA). Ihus, they are present

in adipocytes, liver and muscle celis. However, most, if flot ail mammalian ceils can

form LD in some circumstances, such as exposure to exogenous oleate [131].

Recently, it became apparent that some proteins are tightly associated with LD in

various ce!! types. These proteins include those involved in LD biogenesis,

trafficking and mobilization (such as lipases) as welI as caveolin and others, which

are not directly involved in metabolism [132]. Formation of LD resuits in

redistribution of caveolin from the plasma membrane to the surface of LD. Thus, it

appears that LD are flot just drops of fat, but instead are dynamic organelle-like

structures that might be involved in modulating signal transduction from ce!! surface

receptors [reviewed in 132, 133, 134].

1.7 Alteration of Iipid metabolism in cancer ceils

1.7.1 Overexpression offattv acid synthase (FA S) and upreguÏation of tipogenesis

Many cancers are able to synthesize FA endogenously and express high FAS

activity. A!though the complex interrelations between glucose and FFA metabolism

are well known (described above), the research on FAS in cancers has largely been

perfoniied independently from investigations in glucose metabolism. It was shown in

1953 that neoplastic tissues have high !evels of fat synthesis in vitro [135]. However,

interest in this phenomenon was only generated in 1994, when it was discovered that

the oncogenic antigen-5 19 (OA-5 19) that is Ïinked to poor prognosis in breast cancer

patients is actually the FAS enzyme [136]. Subsequently, FAS was found to be

overexpressed in other types of turnors, including prostate, colon, ovarian,
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endometrial and thyroid, and to be a marker of a more advanced disease [reviewed in

$2].

The mechanism involved in overexpression of FAS in cancers is not well

understood. There is evidence that the whole pathway of fatty acid synthesis is up

regulated and that ail its key enzymes, including ACL and ACC (see Figure 6), are

also overexpressed [137]. Severai studies demonstrated that the sterol regulatory

element binding protein Ïc (SREBP ic) might participate in upregulation of this

pathway [80,138-140]. SREBP le is a member of a family of transcription factors,

which play an important role in normal celi physiology as they co-ordinate lipogenic

gene expression and celtular iipid homeostasis [reviewed. in 141, 142].

Overexpression of FAS correlates with elevation in levels of SREBP ic in various

ceils in culture that are stimulated with androgen, EGF or transformed with H-ras,

suggesting that the activation of signaling pathways leading to proliferation induces

lipogenesis via SREBP ic [80, 137, 13$].

Interestingly, high FAS activity is linked to proliferation flot only in turnors.

FAS is essential in ernbryonic development [143] and it is highly expressed in

rapidty proliferating tissues tikc the endometrium [144]. The signaling upstrearn of

SREBP le in tumor ceils may involve the PI3K/Akt pathway, which was shown to

be implicated in the upregulation of FAS in different celis and tumors [145-147].

The central role of Akt in the coordinated stimulation of glucose and fatty acid

rnetabolism is illustrated in Figure 8, which shows an integrated vicw of the cancer

ceil metabolism [72].
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Figure 8. Akt signaling coordinately stimulates glucose and fatty acid
metabolism
Akt activation downstream of growth receptor tyrosine kinease (RTK) signaling
upregulates glycolysis to fuel FA synthesis and inhibits FA oxidation. Increased
glucose uptake through the Glut 1 transporter and increased glucose catabolism
through activation ofthe glycolytic enzymes hexokinase (HK), phosphofructokinase
I (PFK-1) and PFK-2. lead to a high flux of glucose carbons into the mitochondria
as pyruvate (pyr). This Ieads to the formation of citrate, which is then transported to
the cytosol and cleaved by ACL to generate cytosolic acetyl CoA, the precursor of
FA, cholesterol and isoprenoid syntheses. ACL is an Akt phosphorylation target and
its levels are increased downstream of Akt activation coordinately with those of
lipogenic enzymes, including acetyl ACC and FAS. This increase can be attributed
to increases in the activity of SREBP-1. The NADPK essential for fatty acid and
cholesterol synthesis can be produced from the pentose phosphate pathway (PPP)
downstream of glucose-6-phosphate generation by HK. fligh activities of ACL and
ACC, coupled with high levels of citrate, lead to high amounts of malonyl CoA,
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which is an allosteric inhibitor of CPT-1, the enzyme responsible for the
transiocation of FA into the mitochondria for FA oxidation (FAO). In addition, Akt
phosphorylates and inactivates the transcription factor F-box protein subclass A
FoxA2, which normally activates CPT-1 to stimulate FAO. Overa!!, Akt favors
anabolic processes (glycolysis and fatty acid synthesis) and inhibits catabolic
processes (fatty acid oxidation). ECM: extracellular matrix; OOA, oxaloacetate.

Source: Hatzivassiliou G et al. (2005) Drug Discovery Today: Disease Mechanism

2(2): 255-262.

1.7.2 Positive feedback regttÏation between Ïtogenesis and signctÏingfrom varions

receptors

As discussed above, stimulation of ce!! proliferation by signaling initiated

from celi surface receptors and honiiones causes up regulation of FAS activity. A

common oncogene in breast cancer ceils involved in the stimulation of ccli

proliferation is HER2 (erbB2/neu), an EGFR type receptor. Transcription ofthc FAS

gene is directly downstream of HER2/neu signa!ing, as it was shown in an

immorta!ized hurnan mammary epithelial ce!! une H16N2 overexpressing HER2

gene [14$]. Interestingly, inhibition of FAS activity marked!y reduces expression of

this oncogene in breast and ovarian cancer ce!! unes (SK-Br3, BT-474, MDA-MB

453 and SK-0v3) [149]. At least two other reports described a similar response to

the inhibition of FAS. Thus, dep!etion of FAS protein by RNAi resuits in loss of

ERa in the human endometriat adenocarcinoma celi line (Ishikawa cells) [1501 and

chemica! inhibition of FAS down-regu!ates phospho-Akt in ovarian carcinorna ceils

(SK-0v3) [!46]. These may suggest the existence of a positive feedback regulation

between FAS activity and the expression of ce!! surface receptors. The rnechanisrn

responsib!e for this feedback regu!ation is presently unknown.

1.7.3 Imaging ofÏtids and their inetaboiltes in cancer ceÏÏs

Lipids and other metabotites within the body and in cultured ceils are

detectable with noninvasive techniques like magnetic resonance spectroscopy
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(MRS). This technique, particularly clinical ‘H MRS imaging, repeatedly shows

important differences in choline phospholipid metabolites of malignant versus

benign breast tissues [151]. Recent evidence suggests that increased activity of

choline kinase and phospholipase C in breast cancer ceils could contribute to the

effect [152]. Although, the molecular basis for the effect is stiil flot well understood,

choline metabolism is already considered as a potential target for anticancer therapy

[153, 154].

1.7.4 DietaiyJatty acids and cancer

Human ceils are able to synthesize most of their FA de novo from glucose,

but to a large extent dietary supply determines the composition of FA in body lipids.

Many animal studies have been conducted to determine how different types of

dietary fat affect the risk of developing cancer. They clearly demonstrated that flot

only quantity but also the type of fat is an important modulator of mammary

tumorigenesis. A particularly important role in this process was assigned to the

essential FA, those that cannot be synthesized by humans. These are ornega w-3 and

w-6 polyunsaturated fatty acids (PUFA), which contain a double bond near the

methyl end of the molecule (Figure 5). The animal studies indicated that PUFA

inhibit carcinogenesis, especially u-3 fatty acids present in fish. However, the

epidemiological studies in humans on the relationship between fish in the diet and

cancer risk arc flot very consistent, so the effect of PUFA on cancer prevention in

humans remains unclear [reviewed in 155]. AIl FA can be oxidized in mitochondria

or peroxisomes to produce energy, but PUFA can also be metabolized by other

specialized enzymes, such as cyclooxygenases (COX), lipooxygenases and

cytochrome P450 monoxygenases, to produce eicosanoids, which are short-tived,

hormone-like lipids (eg. prostaglandins, leukotrienes, thromboxanes and

docosanoids). They have a wide array of biological activities, from modulation of

inflarnmatory and immunological responses to effects on cell growth and

differentiation. Dietary PUFA and their metabolites are also natural ligands of the

peroxisome proliferator-activated receptors (PPARs), which act in a similar manner

to other nuclear hormone receptors and transcription factors [reviewed in 156, 157].
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The PPARs influence the expression of genes invoÏved in the control of ceil growth

and differentiation. Thus PUFA could affect tumorigenesis in many different ways

[reviewed in 158, 159]. However, more epidemiological studies are needed to clarify

their effects on tumorigenesis.

Epidemiological studies on the effect of individuat FA on breast

carcinogenesis are extremely difficuit to do in humans. The assessment of FA intake

from reported dietary intake is very complex since converting food items into their

FA content may be cornplicated by the fact that same foods may vary in their FA

composition over the years due to different methods of food production and

processing. One way to overcorne this type of probtems is to use biomarkers of

dietary FA intake such as FA composition of adipose tissue, erythrocyte membranes,

serum and plasma. Meta-analysis of published resuits correlating the composition of

FA in biological samples with breast cancer risk suggest that w-3 PUFA protect

while monounsaturated FA (MUFA) and saturated FA (SFA) increase the risk of

developing breast cancer [160].

1.7.5 Effects ofcommon ,iutrient/ztti; acids on breast cancer ceÏÏs in culture

For the last several years our laboratory has studied the effects of exogenous

FFA on hurnan breast tumor ceils in culture. We have studied the effects ofthe long

chain saturated FA palmitate (C 16:0) and the monounsaturated FA oleate (C18:1) on

ceil proliferation and ceil death. These are the most common dieta;y FA and are also

the main FA in ail tissues (for example mouse adipose tissue consists of 48% oleate

and 18% palmitate). It is important to emphasize that these two FA are not the direct

substrates for the above-mentioned oxidative enzymes which metabolize PUFA,

neither are they good ligands for PPARs, although oleate was shown to activate

PPARa [161].

The focus of our research has been on the effects of these FA as fuel

substrates on breast cancer celi survival and proliferation. We have shown that they

have profound effects on human breast cancer ceiis in culture. Palmitate induces

apoptosis in a number ofbreast cancer celi lines and oleate has the opposite effect; it

promotes ceil proiiferation and prevents apoptosis induced by palmitate [162].
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Studies on the toxicity of palmitate in various celi systems have suggested

that the most likely reason for its proapoptotic action is the stimulation of ceramide

synthesis. Examples include hematopoietic cells [163], f3-cells [164],

cardiomyocytes [165] and astrocytes [166]. The resuits published from our

laboratory have shown that ceramides may flot be responsible for the apoptotic effect

ofpalmitate on breast cancer celis. The effect is most likely related to a deficiency in

mitochondrial cardiolipin (CL) brought about by an inadequate supply ofunsaturated

FFA and increased CL turnover during exposure to exogenous palmitate. We have

found that palmitate and oleate are channeled to different metabolic pathways, and

oleate protects against lipotoxicity induced by palmitate by channeling this saturated

FA into intracellular lipid storage pools and by sustaining the synthesis of CL for

mitochondrial membrane integrity [167].

1 .7.6 fattv acids inav exert their effects bv binding to G-pmtein-coupÏed receptors

It was recently demonstrated that FFA could act as signaling molecules by

activating G-protein-coupled receptors (GPCR). Medium and long chain FFA are

ligands for GPR40 and short chain fatty acids are ligands for GPR41 and GPR43

[reviewed in 168]. Another receptor (GPRI2O), for long chain unsaturated fatty

acids, was recently discovered in the intestine [169]. GPR4O is exprcssed mainly in

the human pancreas and possibly also in the brain. The GPCRs responding to other

lipids [reviewed in 170] and various metabolites, including nicotinic acid and TCA

cycle intermediates, such as succinate (GPR91) and a-ketoglutarate (GPR99), form a

growing family of tissue specific receptors which might be involved in the

coordination of the metabolism between different parts of the body [171, 172].

We have dernonstrated expression of GPR4O in human breast cancer ceils.

Our data suggest that the effects of oleate on human breast cancer cells may involve

signaling via this celi-surface G protein coupled receptor and activation of the P13 K

AKT survival pathway [173].
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1 .7.7 Accunitilation of TG induced bv oÏeate inay have more generat significance

in celi deatÏi/survivaÏ pathwavs

We already mentioned that palmitate and oleate are chaimeled to different

metabolic pathways, and that oleate is a particularly good precursor for 1G

formation. It is flot clear why the metabolism ofthese two common FA would be so

different, but it appears that this is a general phenomenon. Thus, the observations

regarding the accumulation of lipids induced by oleate, the toxicity of paimitate, and

the protective role of oleate versus palmitate were previously reported in other ccli

types: cardiornyocytes [174], human skin fibroblasts [175] and lymphocytes [176].

However, these studies did flot deal with the mechanism and biological significance

of this protection.

Evidence that TG rather then exogcnous oleate, protect against ccli death

induced by saturated FA, comes from studies on overexpression of stearoyl-CoA

desaturase, the enzyme responsible for synthesis ofunsaturated FA from endogenous

saturated precursors. The studies showed that elevated endogenous levels of

monounsaturated FA resuit in the resistance to palmitate-induced lipotoxicity. In the

same study it was also demonstrated that impaired of 1G synthetic activity sensitize

to lipotoxicity induced by both saturated and rnonounsaturated FA [177]. Therefore,

the accumulation of 1G promoted by exogenous and/or endogenous oleate may have

an adaptive function and protect tissues against lipotoxicity.

We as well as other investigators have observed that monounsaturated fatty

acids may also be protective against apoptosis induced by factors other than

paimitate. For exampie, oleate prevents apoptosis induced by serum withdrawal in

MDA-MB-231 human breast cancer cells [162] and palmitoteate (C16:i) protects

against apoptosis induced by serum withdrawal and cytokines in rat 13-ceÏls [178].

This may suggest that accumulation ofTG induced by oleate may have more general

significance in ccli death/survival pathways.

The link between TG accumulation and ccli death/survival pathways is

circumstantial at the moment. In the above mentioned studies (including our own)

1G were produced by addition of oleate, but oleate was always present in the

medium. Thus, one can argue that the antiapoptotic effect observed was exerted by
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exogenous oleate itsetf, for example by signaling via the ceil-surface G protein

coupled receptor and activation ofthe PI3K-AKT survival pathway.

1.8 The aïm ofthe present study

In the last decade, there has been a renewed interest in the metabolism of

cancer celis. The exciting new findings obtained recenfly can be sumrnarized as

follows: 1) signaling pathways induced by GF affect metabolism, and just as

importantly, metabolic pathways such as lipogenesis can modulate the

expressionlfunction of GF; 2) changes in metabolism observed in tumor celis are flot

just passive homeostatic adjustments to transformation or adaptation to the tumor

microenvironrnent, they are induced by oncogenic mutations and can actively

contribute to tumor progression; 3) some of the regulators of metabolism are tumor

suppressors, which can promote the development of tumors and 4) metabolism of

glucose and fatty acids contributes in various ways to the antiapoptotic effects of

oncogenes. Clearly, celi metabolism is becoming an exciting area of research and the

elucidation of the Iinks between basic metabolic pathways and survivat pathways

may offer new therapies for cancer.

Breast cancer is one of those cancers for which life-style factors, such as

obesity, diet and exercise, were shown to influence the risk of cancer development

and have an impact on survival after diagnosis, but the molecular mechanisms

involved are largely unknown. The endocrine function of adipocytes may well be

one of the factors contributing to the development of breast cancer in obese

postrnenopausal wornen, since their adipose tissue is the main source of estrogen and

can directly affect breast cancer progression. However, obesity is also independently

positively Ïinked to eÏevated bïood FFA tevels, which have been implicated in the

development ofvarious pathologies. The most common dietary FA and the main FA

in our tissues are oleate and palmitate. We have evidence that oleate is a particularly

good precursor for TG formation and it protects breast tumor ceils against apoptosis

induced by palmitate or by serum withdrawal.
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The aim of the present study was to address the foliowing hypothesis: FA

(especially oleate) present in excess in the blood of breast cancer patients

suffering from metabolïc conditions such as obesity or metabolic syndrome,

contribute to the progression of breast cancer by promoting accumulation of

TG in cancer celis, whïch help them to survive in unfavorable conditions, such

as in the absence of appropriate GF.

As it was mentioned above, some of the effects of oleate and palmitate that

we observed in breast turnor ceil unes were already described in different ccli types,

including cells flot derived from tumors (neonatal cardiomyocytes, human fetal skin

fibroblasts and mouse lymphocytes). We needed to determine if the effects that we

investigated were specific to cancer ceils or were more generai and common to both

cancer and non-cancer ccli types. Thus, it was of interest to include as a control in

our smdy, the MCF-IOA ccli strain, which is derived from normai human breast

epitheliai tissue. Therefore, our model system consisted of two ceil unes: the MCF

1OA non-transformed human breast epithelial ccli strain, and the human breast tumor

ce!! !ine MDA-MB-23 1. Thc studies wcre further extended to a pane! of wel!

characterized human breast tumor ccli unes: MDA-M3-468, T-47D and MCF-7. The

survival and proliferation of MCF-1OA ceils in culture is controlted by several GF,

including epidermal growth factor (EGF), hydrocortisone. insulin, in addition to

other serum factors present in 5% fetal bovine serum (FBS). In contrast, MDA-MB

231 cells (and other breast turnor cells) can grow without the presence of the growth

factors (EGF, hydrocortisone and insulin), but stili require the unknown serum

factors present in 5 ¾ FBS to survive and proliferate in vitro. Thus, MDA-MB-23 1

celis arc more autonomous, consistent with their origin from advanced, highly

metastatic breast tumor.

Using these mode) celis we addressed direct)y the question of 1G being

involved in ccii survivai pathways. TG were produced inside the ceils by exposure to

exogenous oleate and then oleate was removed from the medium. This simple

manipulation aliowed comparison between cells containing eievated TG ieveis,

easily detectabie under microscope as lipid droplets, and the control, untreated ceiis.
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Since ccli survival is governed mainly by GF it seems reasonable to address the

protective role of TG against death induced by withdrawal of serum and exogenous

GF. Our model system was used to address the following specific questions:

#1: Could treatment with oleate and elevated TG content protect non

transformed, less autonornous MCF-1OA celis against celi death induced by serum

and GF withdrawal?

#2: Is elevated intracellular TG content in human breast cancer celis

responsible for protection against serum withdrawai induced apoptosis and which

mechanisrn(s) might be invotved in this protection?

Here, we present evidence from this modet system, which suggests that ccli survivai

in GF-dependent norrnaI” celis cannot be altered by oleate, wbile survival of more

autonomous turnor celis may be modulatcd by this ftiel/nutrient. Our data in vitro is

consistent with the proposed hypothesis about possible contribution of rnetabolism to

the progression ofbreast cancer.



CHAPTER II

METHODOLOGY
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Materials

Fatty acid sodium saits were purchased from Nu-Check, Prep (Elysian, MN).

F etal bovine serum (FBS) was from Invitrogen (Carlsbad, CA) and was heat

inactivated at 56°C for 30 min. Fatty acid-free BSA (Fraction V, 96% essential FFA

free), was obtained from Sigma (St-Louis, MO). [1-’4C] palmitic acid (55

mCi/mmol) was purchased from Perkin-Elmer Life Sciences (Boston, MA). [1-’4C]

oleic acid (60 mCi/mmol), D-[U-14C] glucose (317 mCi/mmol), and D-[5-3H]

glucose (17 Ci/mmol) were obtained from Amersham Biosciences (Baie d’Urfé,

Quebec, Canada). [l,2’4C] acetic acid, sodium salt (ll3mCi/mrnol) was obtained

from ICN (Costa Mesa, Califomia) and (+)-Etornoxir, Na-sait was obtained from

HHAC Labor Dr. Heusler GmbH (Stutensee, Germany).

Special Solutions

5% BSA sterile solution was prepared by dissolving BSA (fatty acid-free) in

Krebs-Ringer bicarbonate buffer containing 10 mM HEPES/pH 7.4 (KRBH). The

pH was adjusted as necessary and the solution was flltered through a 0.22-tm filter.

The solution was stored at 4°C for a week or at -20°C for 2-3 months.

Unlabeled alburnin-bound fatty acids (oleate and palmitate) were prepared as

foilows: fatty acids sodium saits (?99% purity) were stirred with 5% BSA (fatty

acid-free) at 37°C for 16 h, then the suspension was filtered through a 0.22-jim filter,

and the fatty acid concentration was rneasured using a NEFA C kit (Wako Chemicals

USA, Inc. Richmond, VA). Concentration of stock solutions was adjusted to 4 mM,

using 5% BSA. FFA stocks were stored frozen in aliquots and thawed only once.

Celi Lines and Culture Conditions

Tumorigenic human breast cancer ceIl unes MDA-MB-23 1, MDA-MB-468,

T-47D and MCF-7, and the non-tumorigenic ceil strain derived from normal human

epithelial cells MCF-1OA, were obtained from the American Type Culture
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Collection (Manassas, VA). Celis were routinely cultured at 37°C in a humidified

atmosphere with 5% C02 in a 50/50 mixture of DuÏbecco’s modified Eagte’s Medium

and Rams F-12 (DMEM/F12; Wisent; St-Bruno, Quebec) containing 2 mM

glutamine and 5% heat-inactivated fBS. For MCF-1OA ceils, DMEM/F12 was

supplemented with insulin 10 tg/mi, hydrocortisone 0.5 ig/m1 (both from Sigma,

St-Louis, MO) and recombinant human epidermal growth factor (EGF) 20 ng/rni

(Invitrogen).

Ail experiments were perfonued in minimai essential media (MEM) (phenol red

free; Sigma-Aldrich, Oakville. ON, Canada) as described beiow. Thus, MDA-MB

23 1 cells were cultured in MEM medium containing 5% fetal bovine serum (FBS),

which will be referred to in this thesis as “turnor celI Growth Medium” (tGM) and

MCF-1OA ceils were cultured in MEM medium containing 5% fetal bovine serum

(FBS) and aiso the above-mentioned defined growth factors (insuiin, hydrocortisone

and EGF). This medium wiii be referrcd to in this thesis as “normal ceti Growth

Medium” (nGM). Apoptosis was induced in both ccli types by piacing them in

“Experimental Medium” (EM), which was a MEM medium without serum or added

growth factors

Treatment Protocols

Treatment protocols used are indicated in figure tegends. When iwo ccli

types were compared, they were treated with the saine pro tocol.

The rnajority of experirnents with MDA-MB-231 cetis were performed as foiiows:

celis were plated in triplicate in 25 cm2 flasks at a low density of I x i0 cells per

flask in a growth medium (tGM). MCF-YOA celis, when used for comparison, were

piated at 2.5 x i05 cells/flask in nGM. After two days of growth, celis were washed

with PBS and the medium was replaced with 1M for 18 h. After this period of GF

starvation, the medium was replaced with fresh 1M containing albumin-bound oieate

at concentrations ranging from O to 400 tM completed with 0.5% BSA. The final

concentration of fatty acid free BSA was adjusted to 0.5%. For long-tenu survival
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experiments, MDA-MB-23 Ï celis were cultured in EM, after exposure to oleate for

24 h, and media were changed daily.

The majority of experiments with MCF-YOA celis (sections 4.1.2 and 4.1.3) were

performed as follows: celis were plated in triplicate, in 25 cm2 flasks at a density of

2.5 x i05 cells/flask in a growth medium (nGM). MDA-MB-231 ceils when used for

comparison were plated at 1 x i05 cells/flask in tGM. After 24 h growth, the media

was replaced with the fresh growth media containing albumin-bound oleate at

concentrations ranging from O to 400 tM completed with 0.5% BSA. The final

concentration of fatty acid free BSA was adjusted to 0.5%. Then cells were washed

with PBS and subjected to GF starvation in fresh EM.

Celi Counting

b determine the number of adherent celis, culture dishes were washed with

PBS and treated with trypsin for 2 min. lml of 0.05% solution of trypsin containing

0.53 mM EDTA (Wisent; St. Bnrno, Quebec) was used per 25 cm2 flask. The ceils

were collected with additional 2 ml of MEM containing 0.1 % BSA and immediately

counted using a hemocytometer. Ceil number was calcutated from a mean value

obtained after counting celis in five individual squares. The number of celis in each

square was usually between 50-100.

Ce!! Protein Assay

Celis were grown in individual 25 cm2 flasks, washed once with PBS at

room temperature (RT) and scraped using a plastic cell scraper in 3 ml PBS at RT.

The celis were collected by centrifugation at 1,500 rpm (400 x g) for 5 min at RI

and the celi pellet was lysed with 100 pi of lysis buffer containing 6.25 mM Tris pH

6.8 and 2% SDS and 6 M urea. The solution was sonicated on ice, 2 x 10 sec, using a

sonicator at maximum setting (Vibra Cell; Sonics & Materials Inc., Danbmy, CI).

Protein concentration was deterrnined using a BCA Protein Assay kit from Pierce

(Rockford, IL) with albumin as a standard.
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Caspase 3 Assay

Caspase 3 activity as an index of apoptosis was determined in celi lysates

prepared from individual cultures using the protocol described in CaspACE’TM

Fluoremetric assay system (Promega, Madison, WI) with Ac-DEVD-AFC as the

caspase-3 substrate (BIOMOL; Plyrnouth Meeting, PA). Briefly, after treatment both

adherent and unattached celis were harvested and combined. After sedimentation at

500 x g for 10 mm, the cells were washed twice with ice-cold PBS, lysed for 10 min

on ice with a ceil lysis buffer containing: 10 mM Tris-HC1/pH 7.5; 10 mM

NaH2PO4/NaHPO4; 130 mM NaCI; 1% Triton x-100; 10 mM sodium pyrophosphate

and centrifuged (10 mm, 15,000 x g, 40 C) to remove nuc[ei and debris. Fifty tg of

proteins were incubated with 50 tM Ac-DEVD-AFC at 30° C. Fluorescence was

analyzed using a FluoStar-Optima microplate reader (BMG Lab Technologies,

Offenbtirg, Germany) in fluorescence mode using an excitation wavelength of 380

nm and an ernission wavelength of 505 nm. The reaction was allowed to proceed for

30 min with a reading every minute. Caspase-3 activities were determined by

calculating the siope of the reaction over 30 min.

Fatty Acid and Glucose Oxidation

Fatty acid oxidation was determined by measuring the amount of ‘4C02

liberated fiom samples incubated with [1-’4C] palmitic acid or [1-14C] oleic acid

using a modified procedure described in reference [179]. Briefly, cells were grown

according to experimental procedure in duplicate 25 cm2 flasks. Then, media were

discarded and replaced with 0.9 ml of fresh MEM containing 0.1% BSA and

incubated at 37°C for 30 min in a C02 incubator. Subsequently, 100 tl ofthe IOX

reaction mix (prepared freshly 2 h in advance and containing 10 mM camitine, 1

mM patmitate, 4% BSA and 0.5 iCi per culture flask of labeled fatty acid) was

added to each flask. The flasks were immediately sealed with rubber senim viat

stoppers. The stoppers were fitted with plastic tubes containing folded glass fibre
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lifter paper (Whatman GF/B) saturated with 0.15 ml of 5% KOH. The sealed flasks

were incubated for 1 h at 37°C. Control blank flasks contained ail reagents without

celis. The reaction was stopped by injecting 0.3 ml of 40% perchloric acid through

the serum stopper into each flask with a syringe and the flasks were then shaken

gently for 24 h at RT. filters were then rernoved and placed into scintillation vials

containing scintillation liquid. Radioactivity was counted 24 h later, using a liquid

scintillation counter (Tri-Carb 2100TR). Resuits were expressed as nanomoles of

FFA released/h/mg of celi protein.

Glucose oxidation was rneasured by determining the release of 4CO2 from

[U-’4C] glucose. The experimental setup to capture 4CO2 was as described above for

FFA oxidation. Ceils wete preincubated in 0.9 ml MEM medium (with or without

serum or with 0.1% BSA) for 30 min at 37°C in a COE incubator (5% C02 and 95%

air) aller which 100 tl aliquot of D-[U-14C] glucose diluted in MEM was added to

each flask (0.5 tCi/flask). The flasks were then sealed and incubated for 1 h at 37°C.

The reaction was stopped and the radioactivity captured by the filters was measured

as described above. The results were expressed as nmol of glucose oxidized/h/rng of

protein.

Glucose Utilization

Glucose utilization was measured as described in [180]. Briefly, cells were

grown in duplicate 25 cm2 flasks according to experimental procedures. The media

were discarded and ce ils were preincubated with 0.9 ml of MEM media for 30 min at

37°C under C02, then 100 il ofD-[5-3H] glucose in MEM media (1 mCi/flask) was

added per flask and the cells incubated for 1 hr at 37°C. Adding 0.3 ml of 40%

perchioric acid (PCA) to each ftask stopped the reaction. 300 fl of ceil culture

supernatants were then spotted onto glass liber filters (Whatman GF/B) and placed

inside the caps of scintillation vials. The vials containing 600 tl of water were

closed and left at RT for 3 days. Radioactive watcr evaporated from the filter

samples and equilibrated with the water in the vials. Radioactivity was determined as

described above after addition of 5 ml of scintillation fluid to each flask and ciosing
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the flask with new caps. The resuits were expressed as cpm/h/mg of protein. Protein

concentration was measured in ce!! extracts obtained from separate flasks treated in

parallet but without addition of radioactive glucose or PCA (see celi protein assay).

Lïpogenesïs

CeÏÏs were grown according to experirnentaÏ procedure in duplicate 25 cm2

flasks. Then media were discarded and replaced with 1 ml of fresh MEM containing

0.1% BSA and incubated at 37°C for 1 h in a C02 ïncubator. Subsequently, 5 d of

the 5 times diluted [1 ,2 ‘4C] acetic acid (1 rnCi/flask) was added to each flask and the

ceils were incubated for 4 1w at 37°C in a C02 incubator. Cetis were then harvested

on ice by scraping, washed twice with cold PBS and lipids were extracted as

described below. The exfracted lipids were dried under N2, dissolved in a small

volume of chloroform and analyzed by TLC as described below.

Lipid Extraction

Lipids were extracted from cells as described in reference [181]. Briefly,

celis were harvested on ice by scraping, transferred to glass tubes and washed twice

with 3 ml of cold PBS. After centrifugation at 500 x g for 5 min at 4°C, celi pellets

were resuspended in 3 ml ofrnethanol/chloroforrn mixture (2:1), vortexed and left at

4°C for 16 h. After this penod of extraction, 0.8 ml ofPBS, imi of 1 M NaCI and 1

ml of chlorofonn were added to each tube. Tubes were vortexed again and

centrifuged at 500 x g for 5 min at 4°C to separate water the phase from the organic

phase. The organic phase (at the bottom of the tube) was aspirated using glass

Pasteur pipette and transferred to clean glass tube. The organic phase was then

washed once with a mixture of I M NaC1/methanol (9: 1) and collected as described

above. The organic phase containing total lipids was stored at -20°C in closed tubes,

under N2.
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Thïn Layer Chromatographv (TLC) of Neutral Lipids

The extracted lipids were dried under N2, dissolved in 30 t1 of chloroforrn

and 15 d was spotted on silica gel TLC plate (Whatman). The plate was then

developed in a closed chamber containing mixture of petroleum ether: diethyl ether:

glacial acetic acid (70:30:1). Lipids were visualized by staining with iodine vapors

and classes of lipids were identified by comparison with standards (Sigma-Aldnch

Corp., St. Louis, MO). Radioactively Iabelcd lipids were visualized by

autoradiography.

Triacylglycerol Assay

Cellular TG content was determined using the GPO-Trinder kit (Sigma

Diagnostics, St-Louis, MO) and samples were prepared as described in reference

[182]. MDA-MB-231 celis were pi ated in 75 cm2 flasks at 3x105 cells/flask. Three to

four flasks were prepared to obtain cell numbers needed for an assay (two million

celis were required for each sample). Cells were harvested on ice by scraping,

washcd twice with cold PBS and lipids were extracted as described above. The

extracted Ïipids were dried under N2, dissolved in 100 jil of 2% v/v Thesit detergent

(Sigma, St-Louis, MO) in chÏoroforrn, dried again under N2, and resuspended in 50

tl of water. The samples were then vortexed and sonicated in a water bath sonicator

(Crest Tru-Sweep (50/60 Hz), Trenton, NJ) for 15 min at RT. Two hundred jil of

GPO-Trinder kit reagent vas added directly to each sample tube, mixed gently and

incubated for 5 min at 37°C. The reaction mixture was transferred to a 1.5 ml

microfuge tube and centrifuged at 10,000 rpm at 4°C for 5 min. The supematants

were transferred to a 96 welI plate and the OD measured at 540 nm using a

microplate reader (Bio-Rad 3550). Triolein (glyceryl trioleate; Sigma-Aldrich) was

used as a standard.
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Lipid Droplets Staining

Lipid droplets were visualized by staining with Ou Red O. The stock solution

was prepared by dissolving 300 mg Ou Red O (Allied Chemical) in 100 ml of 99%

2-propanol. The working solution was prepared freshly by diluting the stock solution

with water (3:2), kept at RT for 10 min and filtered through a 0.22 trn filter (Corning

PIES filter). Cells grown in Petri dishes (60 mm) were washed twice with 5 ml PBS

and incubated with 3 ml of Oil Red O working solution for 15 min at RT with gentle

shaking. The staining solution was removed and the cells were then washed once

with PBS, and fixed with 10% fornialin (Anachemia) for 25 min. The ceils were then

washed again with PBS and stained for 5 min with Harris Hematoxilin (Sigma

Aldrich). 3 ml of 10% glycerol in PBS was added to each dish to prevent drying.

Photomicrographs were taken from a representative field using an inverted

microscope (Nikon Eclipse TE300) at 400X magnification and a digital camera

(Nikon CoolPix 990).

Lipolysïs

MDA-MB-23 1 cells were plated in 75 cm2 flasks at 3 x 1 ceÏls/flask. Three

to four flasks were prepared to obtain ceil numbers needed for an assay (two million

celis were required for each sample). Cells were trypsinized, pooled, resuspended in

senim-free MEM medium containing 0.1% BSA and counted. The ceils were then

resuspended in fresh MEM medium containing 0.5% BSA at a density 2 x 106

cells/100 pi and incubated in 48 well plates (100 pJ/well) for 3 h at 37°C in a C02

incubator. S amples were then transferred to Eppendorf tubes and centrifuged at

1,500 rpm for 5 min at 4°C. The supernatants were collected and frozen at -80°C.

The rate of lipolysis was rneasured using two complementary assays. Glycerol

released from the cells to culture media was measured in triplicate using the

Triglyceride GPO-Trinder kit (Sigma Diagnostics, St-Louis, MO) and the amount of
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FFA released was measured in duplicate using the Wako NEFA test kit (Wako

Cliemicals USA, Inc. Richmond, VA). ResuÏts were expressed as nmol glycerol or

FFA released/h/106 celis.

FACS Analysis

DNA staining for FACS analysis was perfonried as described in reference

[183]. Briefty, cells were harvested by trypsinization, washed with PBS containing

0.1% BSA at 4°C and fixed with 70% ethanol for 10 min at -20°C. They were then

collected by centrifugation (1,000 rprn per 5 mm) and resuspended in staining buffer

prepared by adding NP4O (0.6% v/v) and 36 tg/mÏ RNase to a I x dilution of a 20 x

stock (1.17 g of sodium chloride, 2.13 g of sodium citrate, and 0.10 g ofpropidium

iodide in 100 ml of water, pH 7.6 adjustcd with acetic acid). Stained cefls (10,000)

were analyzed with a flow cytorneter (FACS SCAN, Beckton Dickinson) and ceil

cycle analysis was perforrned using Celi Quest Pro software.

Statistical Analv sis

Statistical significance was calculated with the Student’s t-test. A P-value of

<0.0 1 was considered significant.



CHAPTER III

RESULTS
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3.1 Elevated intracellular TG content is associated with resistance to

apoptosis in MDA-MB-231 breast cancer celis but flot in MCf-1OA non

transformed celis

3.1.1 Seruin-,free survivaÏ ofMDA-MB-231 breast cancer ceÏÏs afler treatment with

oleate correÏates with the formation of intraceÏtuÏar Ïipid dropÏets

Senim withdrawal is known to induce apoptosis in ceils that require GF for

survival. We have shown that exogenous oleate added to culture media promotes the

accumulation of triacylglycerols (TG) [167] and protects MDA-M3-231 ceils from

apoptosis induced by serum withdrawal [162]. To determine if treatment with oteate

and e!evated TG content could protect non-transforrned, !ess autonornous ceils

against ce!! death induced by serum and GF withdrawal, we perforrned experiments

with human non-transformed breast epithelial celis MCF-1OA. These cel!s require

both uncharacterized growth factors present in 5% FBS, as we!! as defined growth

factor supplements, including EGF, hydrocortisone, and insulin, to promote ce!!

growth. They are therefore cultured in MEM medium containing 5% FBS and also

the above-rnentioned growth factors. This medium wilI be referred to in this thesis as

normal ce!! Growth Medium tnGM) as opposed to tumor ce!1 Growth Medium

(tGM) used for culturing MDA-MB-231 celis and containing 5% FBS as the only

supplement.

Figure 9A shows that treatment of MDA-MB-23 1 cells with oleate for 24 h,

foltowing 24 h of senim starvation, prevents apoptosis (caspase-3 activation) that

occur after placing these ceils in senirn-free conditions. In contrast, the presence of

oleate has no effect on survivat ofMCF-1OA ce!!s. They enter apoptosis after being

transfelTed to serum and GF-free medium regardless of the presence of oleate

(Figure 9B). We therefore perforrned rnetabo!ic studies to try to understand how

oleate protected MDA-MB-23 1 celis and not MCF- 1 OA ce!!s from apoptosis induced

by withdrawal of GF and serum. For the sake of sirnplicity, MEM medium without

any additives (no serum and no defined GF) wilI be cal!ed Experimental medium

(EM).
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A

ÏWDA-MB-23 1

B

MCF-JOA

figure 9. Effect of treatment with 100 jiM oleate on apoptosis induced

by serum and Gf withdrawal in MDA-MB-231 and MCF-1OA ceifs

MDA-MB-231 human breast tumor celis (A) and MCF-IOA human breast

epithelial ceils (B) were grown in con-esponding growth media (GM);

tumor celi Growth Medium (tGM) and normal celi Growth Medium (nGM),

respectively, as described in Methods. Ceils were placed in Experimental

Media (EM) for 24 h to starve for senmi and GF, and then were treated with

100 tM oleate (bound to 0.5% BSA) for 24 h in fresh EM (light grey bars).

Controls included O tM oleate (0.5% BSA only) (white bars) and

coiiesponding growth media (dark grey bars). Caspase-3 activity was

assessed in celi lysates prepared from individual cultures at the end of

experiment. The data represent the mean and SE for two independent

experiments performed in duplicate (n=4).
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In various tissues, exogenous oleate, once taken up by the ceil, can be

chaimeled to oxidation or esterification, depending on the overali metabolic state of

the body and the needs of an individual celi. Figure I OA shows that MDA-MB-23 Ï

celis have an aÏmost 30-fold lower rate of oleate oxidation compared to MCF-IOA

celis. On the other hand, exposure to 100 iiM oleate causes the formation of lipid

droplets in MDA-MB-231 (f igure lOB) but flot in MCf-YOA ceils (Figure IOC).

Since the main components of lipid droplets are storage TG, the appearance of lipid

droplets is a marker of oleate esterification and formation of TG. Thus, our results

show that MDA-MB-23 1 breast turnor celis, which have a reÏatively tow rate of fatty

acid oxidation and a relatively high capacity for esterification and for storage of TG

in lipid droplets, are protected by oleate from apoptosis induced by withdrawal of

serum. In contrast, MCF-1OA non-transfomed breast epithelial celis, which have a

relatively high rate of fatty acid oxidation and a retatively low capacity for

esterifciation and storage of 1G, are not protected by oleate from apoptosis induced

by withdrawal of serum and Gf.
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Figure 10. Differential oleate metabolism in two ceil types: MDA-MB-231

and MCF-1OA

Celis were grown and treated as in Figure 7 legend. A, Oleate oxidation was

deterrnined by measuring the release of radioactive C02 from [1-14C] labeled

oleate at the end of 24 h serum and GF starvation period. The data represent the

mean and SE for two independent experirnents performed in duplicate (n4). B,

C, Representative photomicrographs (400X) of MDA-MB-23 1 (B) and MCF- 1 OA

(Ç celis stained with Ou Red O to visualize neutral lipids after 24 h treatrnent

with 100 iM oleate.
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3.1.2 Lipid dropiez’ Jàrination does flot protect non-transformed MCF-1 OA

ceÏÏsJoin apoptosis indttced bv serum cmd GF withdrawaÏ

We tested whether MCF- 1 OA celis would produce lipid droplets when treated

with elevated concentrations of oleate. The celis were grown in nGM and then

treated with a range of physiological oteate concentrations (100 jiM and 400 rM) for

24 h in nGM. Figure 9 shows that 400 iM oleate induced formation of lipid droplets

in MCF-1OA celis, suggesting that these ceils are abÏc to esterify fatty acids and store

TG in Iipid droplets when treated with sufficiently high oleate concentrations. For

comparison, MDA-MB-23 1 ceils fornied lipid droplets when treated with both 100

tM and 400 .tM oleate (figure 11). Furthermore, the size of the lipid droplets

increased with increasing oleate concentrations. After the treatrnent with oleate, ceits

were washed with PBS and shifted to Experimental Medium (EM), which contains

no serum or added growth factors for 4$ h. MDA-M3-23 Ï ceils containing droplets

were completely protected from apoptosis induced by 48 h incubation in EM (Figure

12A). It is important to point out that this protection occurred in the absence of

exogenous oleate (48 h after treatrnent with oleate). In contrast, MCf-1OA cetis,

even though they initially contained lipid droplets (after treatment with 400 uM

oteate) were not protected against apoptosis when placed in EM for 48 h (Figure

12B).

Thus, MDA-MB-23 1 ceils when treated with oleate forrned lipid droplets and

become resistant to apoptosis. The formation of tipid droplets however was flot

associated with the resistance to apoptosis in non-transfornied MCF-YOA hurnan

breast epithelial celis.
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Figure 11. Effect of treatment with 100 cM and 400 iM oleate on Iipid

droplet formation in two celi types: IVIDA-MB-231 and MCF-1OA

Celis were grown in colTesponding growth media as described in Methods.

The ceils were treated with the indicated concentration of oleate in growth

media for 24 h and representative photomicrographs (400X) of MDA-MB

23 1 and MET- 1 OA celis stained with Cil Red O were taken.
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Figure 12. Effect of treatment with 100 iM and 400 iM oleate on

apoptosis in two ce!! types: MUA-MB-231 and MCF-1OA

Celis were grown and treated as in Figure 9 legend. Then, MDA-MB-231

(A) and MCF-1OA ceils (B) were washed in PBS and incubated for 4$ h in

EM (lacking serum and GF) to induce apoptosis. After this incubation

period, caspase-3 activity was assayed in celi lysates. The data represent the

mean and SE for two independent experirnents performed in duplicate

(n=4).
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3.1.3 Inhibition offat oxidation in Mcf-]OA ceils does not impmve their sttn’ivctt

in Gf-free conditions

The resistance to apoptosis in celis treated with oleate appeared to be

inversely corretated with the rate of fatty acid oxidation in our mode! ccli unes (see

Figure 10). Therefore, we asked whether the inhibition of fatty acid oxidation couid

affect the survival of MCF- 1 OA cells after they formed lipid droplets with elevated

oleate concentration. Figure 13A shows that 200 nM etomoxir, an iireversible

inhibitor of CPT I, the enzyme that catalyzes the rate limiting step in fatty acid

oxidation, does flot prevent apoptosis induced by GF withdrawal in MCF- 1 OA ceils

treated with 400 tM oleate. Etomoxir reduced fatty acid oxidation by more than 90

% in these ceils (Figure 13B). Thus, although the rate of fatty acid oxidation in

etornoxir treated MCF-1OA cet!s was similar to that of MDA-MB-231 celis, this did

flot render them resistant to apoptosis induced by serum and GF withdrawal.

3.1 .4 Glttcose ,netabolism is Gf dependent in MCF- 10 A celis and Gf independent

in MDA-MB-231 cetts

fatty acids and glucose are both flic! substrates and their metabolic pathways

are interdependent. The rate of glucose uptake, and in consequence glucose

rnetabolism is down regulated in many ce]I types when GF are withdrawn [67,68].

We decided to verify this in both ccli lines by detenriining the effect of the

Experimental Medium on the rate of glycolysis (glucose utilization) and the rate of

glucose oxidation. Figure 14A and 3 shows that in MCF-IOA celis gLucose

metabolisrn (both utilization and oxidation) is down reguiated by about 65%, 24 h

after serum and GF withdrawal. In contrast, glucose metabolism in MDA-MB-231

celis is not altered in EM (Figure 14C and D). MDA-MB-231 ce!!s have a high rate

of glucose rnetabolism, which is typical for cancer celis. At basal conditions (in

corTesponding growth media) glucose utilization and glucose oxidation were

respectively 1.8 fold and 2.7 fold higher in MDA-MB-231 celis compared to MCF

1OA celis.
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figure 13. Effect of etomoxir, an inhibitor of fat oxidation, on apoptosis

induced by serum and GF withdrawal in MCf-1OA ceils

A, Ceils were grown in a growth medium (nGM) for 24 h and incubated

without or with 400 iiM oleate in fresh growth media for another 24. Then

ceils were washed with PBS, and exposed to EM, which did flot contain

oleate, with or without 200 nM etomoxir for 48 h. After this incubation

period, caspase-3 activity was measured in ceil lysates prepared from

individual cultures. B, Fatty acid oxidation was deterrnined in control

conditions (no oleate) by measuring the release of radioactive C02 from [1-

14C] labeled palmitate 2 h after the addition of etomoxir. The data represent

the mean and SE for two independent experiments perforrned in duplicate

60

MCf- 1 OA-ffA Oxidatïon

5

4

A B

MCf-1OA - Apoptosis

100

80

60

40

20

o
Oleate

Etomoxir

3

7

1

+ +

o

+ - + - +

(n=4).



61

Glucose Utiizatïon Glucose Oxidation

MCf-JOA A B

16 U.

13- 13-

“ Ï 12

10 E 10-

8

J i __j I
nGM EM n(I Efs1

MDA-MB-231 C D

I-rH

Ï

_______

‘ Ï I
tGII EM tGM EM

Figure 14. Effect of growth media vs. experîmental media on glucose

metabolism in MCF-1OA and MDA-MB-213 ceils

MCF-IOA ceils (A, B) aiid MDA-MB-213 ceils (C, D) were grown in a

colTesponding growth medium (nGM or tGM respectively) for 24 h, washed with

PBS, and incubated in EM for another 24 h. Glucose utilization (release oftritiated

water from D-[5-3H]-glucose (A, C) and glucose oxidation (release of labeled C02

from D-[U-14C] glucose (B, D) were deterrnined as described in Methods.

Measurements were performed in GM before transferring celis to EM and then in

EM, 24 h later. The data represent the mean and SE for two independent experirnents

perfomied in duplicate (n=4).
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3.2 Upreguation of TG[FFA cycling by oleate is assocîated with Jong-term

growth factor independent survival of MDA-1’1E-231 ceils.

3.2.1 MDA-MB-231 ceÏts show Ïzigh rates of TG/FFA vcÏing in serttm-free

conditions

The ability of MDA-MB-23 1 celis to efficiently esterify oleate for storage as

TG is illustrated in Figure 15A. Total intracellular TG content ofthe ceils was found

to increase in a dose dependent maimer in response to 24 h treatment with increasing

concentrations of oleate. TG stored in lipid droplets can be hydrolyzed to produce

FFA and glycerol. This process (tipolysis) has been rnostly studied in adipocytes,

where it is carried out by the highly regulated enzyme, hornione sensitive lipase

(HSL) in addition to other less smdied tipolytic enzymes such as ATGL [111]. ffA

that are reteased from TG by tipotysis can be imrnediately re-esterifled within the

ceil to form 1G again. Lipolysis and re-esterification are two opposite processes

invoÏved in what is refelTed to as intracellular TG/FFA cycling [127,128].

Lipolysis in MDA-MB-23 1 cetts was studied using two complementary

assays, in which the amounts of gtycerol and fFA released into the celi media from

the breakdown of 1G were compared (Figure 15B and Table I). Figure 15B shows

that MDA-MB-231 ceils have a high rate of lipolysis as measured by glycerol

released relative to their total 1G content. Moreover, their rate of lipolysis increased

drarnaticaîly with exposure to increasing concentrations of exogenous oleate.

Following a 24 h incubation with the highest concentration of exogenous oleate

tested (400 1iM), cellular 1G content was determined to be 52 nmol/106 cells and

glycerol released during 1 hr was 35 nmol/106 ceÏÏs. The resutts presented in Table I

and Figure 153 suggest that MDA-MB-231 cells mtist re-esterify FFA very

efficiently and have very active TG/FFA cycling.
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Figure 15. Effect of oleate

Lipolysis in N’IDA-MB-231 celis

Ceils were grown in a growth medium (tGM), washed with PBS and placed in

Experirnental Medium (EM) for 24 h to starve for growth factors as described in

Methods. Then the celis were treated with the indicated range of oleate

concentrations (bound to 0.5% BSA) for 24 h in fresh 1M. At the end of the

treatment period, TG content (A) and lipolysis rate (B) were measured as described

in Methods. The data represent the mean and SE for two independent experiments

perforrned in duplicate (n=4).
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Table I: Comparison between the cellular 1G content after treatment with

different oleate concentrations and the rate of lipolysis of MDA-MB-231 celis

measured by two complementary methods (glycerol release and FFA release)

MDA MB 231 ceils were grown in a growth medium (tGM), washed with PBS and

placed in Experirnental Medium (EM) as described in Methods for 24 h to starve for

growth factors. Then celis were treated with the indicated range of oleate

concentrations (bound to 0.5% BSA) for 24 h in fresh EM. At the end of the

treatment period, 1G content and lipolysis rate (sec Methods) were measured by two

compïementary rnethods. The resuits show that glycerol released from lipolysis

greatly exceeds the amount of FfA released (instead of being 1/3 the amount),

suggesting that FFA are retained inside the celis and most tikely irnrnediately re

esterified to TG. The data represent the means and SE for two independent

experiments perforrned in duplicate (n=4).

TG content
(nmols/106 ceils)

Rate of Lipolysis

[OleateJ (pM) Glycerol released FfA released
(nmolslh/106 celis) (nmols/h/106 ceils)

o

33

100

400

2.78 ± 0.25

4.76 ± 0.37

18.25 ± 1.38

52.28 ± 3.62

3.91± 1.51

12.72 ± 1.38

21.48 ± 1.45

35.8 ± 1.32

<0.5

0.56 ± 0.22

0.84 ± 0.39

3.13 ±0.18
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The data presented in Table I show the rate of lipolysis rneasured by the two

complernentary rnethods and reveals that the values are flot stoichiometrically related

as might be expected. For the celis treated with 400 iM oleate, we found only 3.13

nmol/h/106 cells of fFA released, instead of 3 x 35.8=107.4 nmol/h1106 ceils

calculated from the results obtained usÏng glycerol release (1 molecule of TG is

cornposed of 1 glycerol and 3 FFA motecules). The rate of FFA oxidation in MDA

MB-231 ceils (approximately 0.05 nmol/hul 06 cells) cannot explain the discrepancy

between the arnount of glycerol and FFA released. The resuits therefore indicate that

>95% of FFA are indeed recycled back to TG in these ceils rather than being

oxidized. The net effect is that these hurnan breast cancer celis when exposed to

exogenous oleate, both synthesize and maintain TG in lipid droplets very efficiently

(Figure iSA), in spite of a very high rate of lipolysis (Figure 15B). These resuits

suggest that both anus of the TG/FFA cycling pathway, esterification and lipolysis

are very active and that the entire pathway is rnarkedly upregulated by oleate in

MDA-MB-23 1 tumor ceits.

3.2.2 Short—terni oleate treatinent promotes long—terni serum—free ceÏl survival in

MDA -MB-231 hiunan breast tumor ceÏÏs

To test the hypothesis that the presence of elevated levels of intraceltular TG

induced by exposure to exogenous oleate might be involved in the protection against

apoptosis induced by serum withdrawal, we studied the long-terni survival of MDA

MB-231 cells exposed briefly to oleate. After a 24 h treatment with various

concentrations of exogenous oleate in EM, the cells were maintained in EM for an

additional eight days (with daily changes of media) and the live adherent ceils were

counted daily. Figure I 6A shows that senirn-starved cells without oleate treatment

died, however oleate-treated ceils survived for many days. Short-term (24 h)

treatment with 400 M oleate afforded complete protection against apoptosis

induced by serum withdrawal for at Ieast 10 days, while lower concentrations of

oleate provided partial protection in a dose dependent maimer.
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Figure 16. Effect of short-term oleate treatment on long-term serum

free survival and celi cycle dïstribution of MDA-MB-231 celis

A, Celis were grown in growth medium (tGM), washed with PBS (Day 0),

and pÏaced in experimental medium (EM) for 24 h (Day 1). CelIs were

treated with a range of oleate concentrations (0-400 .tM) in EM for 24 h
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(Day 2) transferred to fresh EM, and cultured for up to $ days in EM.

Viable celis were counted daily (see Methods) and the results were

expressed as the mean number of live adherent cefls/flask. The data

represent the mean and SD from 3 separate flasks in a representative

experiment, which was repeated two tirnes. B, FACS analysis for DNA

content was performed on the indicated days using propidium iodide.

Resuits for cells treated with 100 jiM oleate are shown with untreated

control cultures for comparison. The percentages of cells in the different

phases ofthe ccli cycle are shown inside the panels.

The percentage of live adherent MDA-MB-231 ceils on Day 10 after the 24 h

treatment with 400 1iM oleate was 10$ ¾ relative to the cell number on Day Ï

(Figure 16A). This suggests that celis protected from apoptosis by treatrnent with

oleate were proliferating at a very low rate, if at alt. Using FACS analysis, we

deterrnined the ccii cycle distribution of serum starved and oleate treated MDA-MB

23 1 cells from Day I until Day 4 post serum withdrawal and compared these with

the ccli cycle distribution of cells grown in tGM (Figure 16B). A graduai decrease in

the percentage of cells in Gi phase of the ceit cycle was observed with a

concomitant increase in the percentage of cells in S and G2/M phases. Together,

these resuits (Figure 16A and Figure 16B) suggest that the celis rescued from

apoptosis by oleate did not proliferate due to difficulty completing ccli division.

Figure 17 shows that treatrnents as short as 3 h with 100 tM oleate protected

human breast cancer celis from apoptosis induced by withdrawal of serum. This

short pulse of oleate prevented activation of caspase-3 for up to 24 h. Remarkably,

even a one-hour pulse was partially protective against apoptosis.

The resuits indicate that a short pulse of a physiologicai concentration of

exogenous oleate protects MDA-MB-23 I human breast cancer ceils from apoptosis

induced by serum withdrawal. The survival effect is oleate dose dependent and long

lasting. Surviving ceils slow down their proiiferation and tend to accumulate in the S

and/or G2/M phases of the cdl cycle.
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Figure 17. Effect of a short pulse of 100 iM oleate on apoptosîs induced

by serum withdrawal in MDA-MB-231 ceils

Celis were grown in growth medium (tGM), placed in EM for 24 h, and

washed with PBS. Ceils were treated with 100 tM oleate for a range of

time periods (1, 3, 6 and 24 h). They were then washed with PBS and

incubated with fresh EM until the 24 h tirne point. Caspase-3 activity was

assessed on total cells at the 24 h time point for all cultures. The data

represent the mean and SE for two independent experirnents performed in

duplicate (n=4).
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3.2.3 Short-terni oteate treatment cotises a long—Ïasting change in cettular Ïipid

metabotism in MDA-MB-23] cetis

Figure 18 shows that short-term (24 h) treatment of serum-starved MDA

MB-23 1 ceils with 100 jtM oleate leads to long-terrn stable (at least 7 days) elevated

intracellular TG content (Panel A) and elevated lipolysis rate (Panel B). Thus,

lipolysis remained high, between 20 and 17 nmol/h/106 celis, from Day 2 until Day

7, whereas within the same time period, cellular TG content was tnoderately

lowered, from 20 to 12 nmol/106 ceils. This suggests that during the 7 days post

oleate treatrnent, the cellular TG pool continued to turnover at a high rate because of

very active TG/FFA cycling.

3.2.4 MDA-MB-23] ceÏÏs rescuedfrom apoptosis bi’ oleate and cultured in serum

free conditions maintain a high rate of glttcose oxidation

Continuous TG/FFA cycling requires a constant supply of glycerol-3-

phosphate, which can be produced by gtycolysis. It was therefore important to assess

the metabolism of glucose in MDA-MB-231 ceils rescued from apoptosis by oleate.

MDA-MB-23 1 cells have a high rate of glucose metabolism compared to MCF- 1 OA

and, contrary to these non-transforrned celts, they maintain a high glucose oxidation

rate after serum and GF withdrawal (Figure 14 and 19A). The measurements of

glucose oxidation at Day 2, 48 h after serum withdrawal were performed on live

adherent ceils only (not on total cells), because at this time, the cells were begiming

to enter apoptosis. At Day 3 post serum withdrawal, MDA-MB-23 1 celis rescued by

short-terni treatment with oleate still maintained a high glucose oxidation rate, while

the maj ority of non-treated celis t> 90%) had detached from the dishes and were

dead as deterrnined by Trypan Blue staining. Thus, elevated glucose metabolism in

MDA-MB-23 I celis most likely provides glycerol-3-phosphate needed for fatty

acids esterification and remains the main energy source in MDA-M3-23 1 celis

rescued from apoptosis by short-terrn treatrnent with oleate. It is therefore unlikely

that FFA released from droplets by lipolysis are needed as an alternative energy

source (via fatty acid oxidation in mitochondria) to promote survival of these cells in
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the absence of serum. Consistent with this hypothesis, MDA-MB-23 1 cells were

found to have a veiy low rate ofFFA oxidation (Figure 1OA).

3.2.5 MDA-MB-231 ceÏÏs rescuedfronz apoptosis by oÏeate and cuttured in serum

free conditio,is svnthesize de izovofattv acids

We have shown that the cellular 1G content of MDA-MB-23 1 celis increased

and the rate of lipolysis was upregulated by oleate in a dose dependent manner and

both effects persisted for days after oleate rernoval. This implies that during this tirne

TG/FFA cycling was actively going on. We have also shown data suggesting that

fatty acids are being recycled to maintain continuous synthesis of TG. However, the

recycling of fatty acids is not comptetely efficient. Sorne of FFA released during

lipolysis can be secreted outside the celi (1-2% as shown in Table I). Some fatty

acids can be cbanneled to phospholipid synthesis. It was shown that MDA-MB-231

celis incorporate equal amounts of [4C]-labeled oleate into TG and phospholipids

during 1 h incubation [167]. Finally, sorne fatty acids are oxidized in mitochondria

and peroxisornes. In spite of the above pathways that served to reduce available FFA

for recycling, and the absence of oleate in EM to supply the 1G pool in these celis,

oleate treatment promoted the survival of MDA-MB-23 1 ceils for many days. Thus

we hypothesize that MDA-MB-23 1 celis synthesize FFA de novo from glucose. We

have shown that MDA-MB-231 celis rescued from death by treatment with oleate

metabolize glucose at a high rate; therefore it is likely that they producc sufficient

arnounts of pyruvate required for anaplerosis and de novo fatty acid synthesis. We

suggest that newly synthesized fatty acids could supply the pool of endogenous FfA

contributing to maintenance ofthe stable 1G levels in these cells. Figure 19 B shows

that indeed MDA-MB-23 1 ceïls rescued from death by short—term treatment with

oleate, synthesize fatty acids de novo from acetate, and produce TG containing these

newly synthesized FFA.
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Figure 18. Long-term effect of 24 h treatment wïth 100 iM oleate on

TG content and lipolysis rate in MUA-MB-231 celis

A, B, Ceils were grown in growth medium (tGM), placed in EM for 24 h,

washed with PBS, and treated with 100 jtM oleate for 24 h in EM.

Subsequently celis were cultured for up to 7 additional days in EM. Total

cellular TG content (A) and lipolysis rate (B) in adherent celis was

determined at the indicated tirne points. The data represent the mean and SE

for two independent experiments perfonned in duplicate (n=4).
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Figure 19. Long-term effect of 24 h treatment with 100 tM oleate on

glucose oxidation rate and lipogenesis (fat synthesis) in MUA-MB-231

ceils

A, B, Ceils were grown in growth media, placed in EM for 24 h, washed

with PBS, and treated with 100 tM oleate and O tM oleate (0.5% BSA) for

another 24 h. Subsequently, cells were cuttured for up to 7 additional days

in EM. A, Glucose oxidation was measured on the indicated days (see

Methods) in MDA-MB-23Ï celis. Oxidation rate in MCF-10A cells is also

shown for comparison. The data represent the mean and SE for two
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independent experiments perforrned in duplïcate (n=4). B, Lipogenesis was

measured in MDA-MB-213 celis on Day 7 as described in Methods. The

autoradiogram shown represents a TLC plate on which total lipid extracts

were separated. The markers used to identify the different class of lipids

were non-radioactive; they were visualized by staining with iodine vapors.

Abbreviations: CE, cho!esterol ester; DAG, diacylglycero!; FA, fatty acids;

PL, phospholipids; 1G, triacyÏglycerol.

3.2.6 HigÏz capacitv b store TG is corretated with enÏzanced serum-free surviva! in

various human brecist cancer ce?? hies

The effect of oleate treatrnent on ce!! survival was tested in three other

hurnan breast cancer ce!! !ines; together with the non-transformed human breast

epithelia! ce!! strain MCF- 1 OA (Figure 20). The design of the experirnent was similar

to that shown in Figure 16A and ce!ls were counted on Day 6. Ihe resu!ts are

expressed as a percentage of the ce! J number at Day 1 (before the addition of o!eate).

It should be noted that each of the different celi unes had different growth

characteristics. MCF-1OA was the only cel!s une in our panel that needed

supplementaiy GF for surviva! and proliferation in vitro. As shown in Figure 9 and

12, MCF-1OA celis were veiy sensitive to serum withdrawal and were not protected

by oleate treatment when maintained in EM. T-47D and MDA-MB-468 human

breast tumor celis responded similarly to oleate treatrnent as did MDA-MB-23 Y

ceits, although the three ce!! !ines differed in their sensitivity to serum withdrawa!,

with MDA-MB-23 1 being the rnost sensitive. Oleate treatment had no effect on ccli

survival in the absence of GF of the fourth ce!l une tested, MCF-7. The three ce!!

unes that responded to oleate treatrnent accurnuÏated high leve!s of ce!lular 1G when

exposed to 100 iM oleate (Figure 2 lA), whereas the ce!! une that did not respond to

oleate (MCF-7) had low tota! TG content, as did MCF-1OA ce!!s. These resu!ts

further confirm that a high capacity to store TG is associated with enhanced serum

free ce!! survival after treatrnent with oleate in three of four human breast cancer ce!!

unes tested.
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FFA esterification to forrn complex lipids, in particular TG, represents one of

two main metabo!ic pathways for fatty acids within the celi, the other being fatty

acid oxidation. It was of interest to examine the relative rate of fatty acid oxidation

in our panel of celi unes. We expected to see an inverse correlation between

oxidation and esterification. Figure 21B shows that MDA-MB-231 and T-47D ceil

unes, which have high capacity to store TG, had a low intrinsic fatty acid oxidation

rate, whi!e MDA-MB-468, MCF-7 and MCF-ÏOA ce!! !ines showed high fatty acid

oxidation rates. $urprisingly however, MDA-ME-468 celis (but not MCF-7) a!so

had a high capacity to produce TG when exposed to exogenous o!eate. Thus, the rate

of fatty acid oxidation of the different human breast cancer ce!! !ines tested was

variable (high and low) and did flot correlate with the ability to store cel!u!ar TG or

the !ong-term serurn-free surviva! after short-term treatrnent with o!eate.
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Figure 20. Effect of short-term oleate treatment on long-term serum

free survival of a panel of human breast ceil unes and control MCF

1OA ceils

Celis were grown in growth medium (tGM), washed with PBS, and then

placed in EM for 24 h (Day 1). The celis were treated with a 100 jiM oleate

for another 24 h in EM (Day 2), and then cultured for 6 days in EM. Viable

cetis were deterrnined on Day 6 as described in Methods and the long-terni

sentm-free ccli survival was catculated as the mean percentage of the ceti

number at Day 1 (grey bars). Untreated controls received 0.5% BSA (white

bars) and were also calculated the sarne way. The data shown are the means

and SE for 2-4 independent experiments performed with triplicate flasks per

experiment per cdl type (n=6 for T-47D, n=9 for MDA-MB-231. n=12 for

MDA-M3-46$, n=8 for MCF-7 and n=6 for MCF-IOA). , p <0.01 versus

respective control.
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Figure 21. Effect of short-term oleate treatment on cellular TG content

and FFA oxidation of a panel of human breast ceil unes and control

MCF-IOA celis

A, Ceils were grown in growth media (tGM), washed with PBS, placed in

EM for 24 h (Day 1), treated with a 100 tM oleate in EM for another 24 h

(Day 2), and immediately assessed for TG content. B, Fatty acid oxidation

rate was determined on Day Ï as described in Methods. The data in Panel A

and B represent the mean and SE for two independent experiments

performed in duplicate (n=4).
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4.1 Upregulation of TG/FfA cycling by oleate may be involved in the

maintenance of Iong-term serum-free survival of human breast cancer celis

We have shown that the common nutrient fatty acid oleate prevents apoptosis

and promotes tong-terni celi survival in the absence of growth factors in three out of

four human breast turnor ccli unes (MDA-MB-231, MDA-MB-468, and T47D). The

ceils were protected for many days from apoptosis and death induced by serum

withdrawal, by short-term (3-24 h) treatment with physiological concentration of

oleate (100 1iM). This long-terni survival effect occurred in the absence of

exogenous oteate and was associated with the accumulation of TG. The period of

survival was oleate dose dependent as shown in MDA-MB-23 1 ceils, even though

oleate was no longer present in the media. The cells proliferated very slowly if at ail

in serurn-free conditions, suggesting that treatment with oleate influences mainly ccli

survival with little effect on cdl proliferation. After short-term treatrnent with oleate,

the cellular TG pool enlarged and the rate of lipolysis (measured as glycerot released

into the culture medium) increased in a dose dependent mairner. Subsequentiy, both

TG levels and the rate of lipolysis rernained high for a tong period of time (8-10

days).

MDA-MB-23 1 cells have very efficient TG/fFA cycling. Thus, they recycle

fFA to maintain elevated 1G content in spite of very active ongoing lipolysis. This

suggests that they atso have a very high rate of FFA esterification. Despite the

absence of serum, glucose rnetabolism remains high in MDA-MB-23 1 cells rescued

from apoptosis by short-term treatment with oleate. Thus, glucose serves as the main

energy source and provides the glycerol-3-phosphate needed for FFA esterification.

It is attractive to propose that the abihty to efficiently esterify oleate and to maintain

elevated TG content, due to upregulated TG/FFA cycling, plays a role in the

antiapoptotic effect induced by treatment with oleate. Moreover, it may also be

involved in the maintenance of long-term survival of hurnan breast cancer cells in

the absence ofserum.

Cettular IG/FfA cycling occurs in rnany tissues. It is a multi-step, complex

cycle involving many enzymes. h lias been considered a “futile cycle” since its main
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outcome is the consumption of energy (the production of I molecule of TG

consumes 6 molecules of ATP). However, it al!ows the preservation of intracellular

pool of fatty acid, when they are flot oxidized for energy production and bas been

linked to thermogenesis in brown adipose tissue [130]. The present study suggests a

novel role for TG/fFA cycting, which is enhancernent of human breast cancer celi

survival.

4.2 Oleate cannot modify survival of GF-dependent non-transformed ceils

The relationship between the regulation of cellular metabotic pathways and

the signaling pathways for ce!! survival and proliferation is not well understood and

is on!y beginning to be discovered. Surviva! of non-transforrned MCF-1OA celis

depends on the presence of EGF, hydrocortisone and insuÏin in the culture medium.

We have shown that glucose metabo!ism decreases considerab!y in these celis in

senim and GF-free conditions. Dowmegulation of the rnetabo!isrn of glucose in

MCF-IOA ceils upon withdrawa! of GF is consistent with the notion that GF

regu!ates celi survival by controlling celi access to nutrients in addition to inhibiting

apoptosis [75,184]. Thus, MCF-1OA ceils cou!d suffer from atrophy when they are

withdrawn from GF, even in conditions of nutrient abundance. MDA-MB-23 1 breast

cancer celis, on the other hand, maintain a high rate of glucose oxidation even in

serum-free conditions. Thus, we wou!d like to propose that o!eate can promote

survival of certain cancer ceils like MDA-MB-23 1 that acquire upregu!ated and GF

independent rnetabolisrn of glucose. In contrast, it cannot modify surviva! of GF

dependent ceils like MCF-1OA. This is consistent with the hypothesis described

above, wbich suggests that oleate induced protection against ceil death involves

upregulation of TG/FFA cyc!ing. TG/FFA cycling requires a source of gÏycerol-3-

phosphate for continuous FFA esterification. This requirement can be met in ce!!s

like MDA-MB-23! at sentm-free conditions, but not in MCF-IOA celis, which

downregulate the rnetabolism of glucose upon withdrawal ofserum and GF.
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4.3 Model of Alternative NAD+ regeneration system linking TG/FFA cycling

to the metabolism of glucose

We have shown that the 1G pool in MDA-MB-23 1 ceils is relatively

constant for a long period of time after short-term treatrnent with oleate. Our data

shows that TG/FFA cycling is upregutated and de novo fatty acid synthesis could

supply the FFA pooL that is required for cycling. We have shown that the rate of

lipolysis is also constant, and depends on celÏular 1G content. Figure 22 presents a

schernatic model, which describes how we think the metabolic pathways for FFA,

1G, glucose, and NAD are linked into a larger metabolic circuit that can be

upregulated by the initial supply of exogenous oleate. FFA are esterifled to forrn 1G.

The increase in the 1G content is proportional to exogenous oleate dose. The 1G

pool is not inert but is constantly turning over due to high rates of both lipolysis and

esterification involved in TG/FFA cycling. The rate of cycÏing increases as a

function of the original exogenous oleate concentration. Cycling needs G3P for

esterifcation to produce 1G. the production of which is coupled to NAD

regeneration. Therefore, the high rate of TG/FFA cycling sets the high rate of NAD

regeneration, which in tum maintains the high rate of glycolysis. This allows the

production of sufficient amounts of pyrnvate required for anaplerosis and de novo

fatty acids synthesis. De novo synthesized FFA support 1G production and

completes the circuit.
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Figure 22. Model of the Alternative NAD Regeneration System, which

sets a stable rate for cytoplasmic NAD regeneration

Exogenous FFA (oleate) enter the celi and are activated to forrn FA-CoA,

which is esterified to glycerol-3-phosphate (G3P) to forrn TG. Cellular TG

content increases proportionally to the exogenous oleate dose. The 1G pool

is not inert but is constantly turning over due to high rates of both lipolysis

and esterification involved in TG/FFA cycling. The rate ofTG/FfA cycling

increases as a function of the original exogenous FFA (oleate)

concentration. TG/FfA cycling needs G3P, the production of which is

coupled to NAD regeneration. Therefore, the high rate of TG/ffA cycling

sets the stable rate of cellular NAD regeneration, which in turn allows the
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maintenance of a high rate of glycolysis. This aflows the production of the

sufficient amounts of pyruvate required for anaplerosis and de novo FFA

synthesis, which can supply the pool of FFA and contribute to continuing

TG/FFA cycling. FFA released from the ceil can bind to GPR4O, the fFA

receptor, to initiate intracellular signaling cascade.

Abbreviations: FBP, fructose 1,6-bi phosphate; GAP, glyceraldehydes-3-

phosphate; DHAP, dihydroxyacetone phosphate; G3, glycerol-3 -phosphate;

TCA, tricarboxylic acid cycle; MAL-CoA, malonyl CoA; FFA, fatty acids;

FA-CoA, Fatty acyl CoA; TG, triglycerides.

4.4. TG/FFA cycling might preserve the pool of FFA to ensure long-term

signaling via GPR4O

As it was mentioned above, MDA-MB-23 1 breast cancer celis appear to have

acqtiired autonomy in controlling their access to glucose, but their apoptotic

machinery can stili respond to a lack of serum growth factors. The best-studied

system responsible for cell survival and extracellular nutrient uptake is the

PI3K/AKT pathway [reviwed in 73]. Our previous work [173], as well as that of

others [185], demonstrated that this pathway could be stimulated via the G protein

coupled FFA receptors GPR4O and GPR12O. It is possibte that the antiapoptotic

effect described here, which involves upregulation of TG/FFA cycling, is also in part

GPR4O mediated. Thus, TG/FFA cycling which preserves the pool of fFA inside the

ceils foi- long periods of tirne would ensure the continuous availability of srnall

arnounts of FFA released into the medium upon lipolysis, for binding to the GPR4O

receptor and activation of the survival signaling cascade.
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4.5. Relevance of the oleate-induced long-term survival effect to cancer

The human breast cancer ce!! unes used in this study are derived from

metastases, so they represent aggressive, advanced breast turnors [186]. The ability

of oleate to modify their survival in vitro appears to be independent of their ER

status. However, it seems to be positively con-eiated with their invasiveness. Thus,

two ce!! unes, which responded to oleate, were estrogen receptor tER) negative

(MDA-MB-231, MDA-MB-468), whuie another one was ER positive (T-47D).

Furthermore, MCF-7 celis that did flot respond to oleate at ail are the ieast invasive

of the cancer ccli unes used in this study, while MDA-MB-23 1 ceils, which were the

rnost responsive to oleate, are known to be the rnost invasive [187]. Additional

experirnents are required to determine whether the response to oleate might provide

a good prognostic marker of breast cancer ceil invasiveness.

MDA-M3-23 1 celis rescued from death by treatrnent with oleate were viable

for long periods of time but blocked in ceti division. In this respect, they resemble

disseminated turnor celis (DTC), which have been detected in the bone marrow of

patients with breast tumors [188]. Most DTC are not activcly proliferating and

rernain in a state of “domiancy” for many years [reviwed in 43]. The Persistence of

DIC is associated with a poor clinicai outcome [189]. It wouÏd be tempting to

speculate that oleate couid contribute to the survival of DTC via upregulating

TG/FFA cyciing. Furtherrnore, we suggest that upreguiation of TG/FfA cycling,

which may confer resistance to apoptosis, may aiso contribute to the drug resistance

common in DTC [190]. More evidence, especially studies in vivo with prirnary

tumors and metastasis, are needed to verify if the TG/FFA cycle couid be indeed a

marker of tumor invasiveness or could contribute to DIC survival and/or drug

resistance.
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4.6. Search for markers which could identify cancer phenotype sensitive to

treatment with oleate

Celis with a higli capacity for FFA esterification can be identified

phenotypicalty under the light microscope following exposure to 100 tM exogenous

oleate for 24 h and staining with Ou Red O to visualize lipid droplets (lipid bodies)

in the cytop!asm. Alt three ce!! unes protected from apoptosis induced by GF

withdrawal by short-term (24 h) treatment with 100 !.tM oleate contained many lipid

droplets in the cytoplasm (data shown oniy for MDA-MB-23 1 cells) and showed

elevated TG content. Thus, it is tempting to speculate that the presence of lipid

dropiets may be a marker for resistance to apoptosis in tumor celis. However, MCF

7 breast cancer ceils, as we!l as MCf-1OA non-transformed ceils, which were flot

protected from apoptosis by the treatrnent with oleate, produced large droplets when

the fFA concentration in the medium was increascd to 400 jiM oleate (data shown

for MCF- I OA celis only). When extrapolating this to the in vivo situation, we predict

that obese, insulin resistant cancer patients, who have constantly elevated levels of

FFA in the b!ood, may contain Iipid droplets in many ce!! types in the body,

including tumor ce!ls, but this may not indicate that these ceÏ!s are capable to

upregutate their TG/FFA cycle and becorne resistance to apoptosis. Thus, the

presence of !ipid droplets per se may not be a good marker for resistance to

apoptosis in breast tumor ce!!s. A low rate of FFA oxidation, which is often

corretated with the high capacity for esterification may flot be a good marker either.

Three out of four breast cancer cet! unes tested showed an inverse colTelation

between their capacity for oleate esterification and their rate of Ff A oxidation

(MDA-MB-231, T47-D and MCF-7). However, the two main metabolic pathways

for FFA metabolism, oxidation and esterification, may flot be rnutual!y exctusive in

ai! hurnan breast tumor celis since MDA-MB-468 had both a relatively high abllity

for oleate esterification and a high FFA oxidation rate. According to our data

possible markers for the antiapoptotic phenotype described in this thesis cou!d be a

combination of a high giyco!ytic rate and a high rate of lipo!ysis. This however,

needs further investigation using more defined ce!! modeis such as non-transfonned
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breast epithelial ceils that stably express myristoylated Akt, to test if upregulation of

aerobic glycolysis brought about by Akt activation could lead to stable long-term

upregulation of lipolysis and long-term Gf-free survival after short-terrn treatment

with oleate [70, reviewed in 191].

4.7 Conclusions

The data described here suggest that the metabolism of fatty acids plays an

active role in the control of breast cancer ce!! survivat. We have found that the

common nutrient fatty acid oleate prevents apoptosis and promotes Iong-term celi

survival in the absence of serum in three out of four human breast tumor ce!! unes

tested. The long-terrn senim-free survival of these cell unes is associated with a high

capacity to store TG and is oleate dose dependent. We propose that the ability to

efficiently esterify oleate and to maintain elevated TG content due to upregulated

TG/FFA cycling may play a role in the antiapoptotic effect induced by treatment

with exogenous oleate and may be involved in the maintenance of long-term GF-free

survival of human breast tumor celis. This is the first report proposing a role of the

TG/FFA cycle in cancer ce!! survival. We also propose that treatment with oleate

may protect tumors, which have acquired GF independent and upregulated

metabolism of glucose from apoptosis. The in vitro resuits presented here provide

support for epidemiological studies which show a positive correlation between

elevatcd oleate content in breast tissue and increased breast cancer risk [192,193].

They are also consistent with recent reports showing that dietary fat reduction

signiflcantly reduces (up to 42%) the risk of tumor recurrence in postmenopausal

women [63]. Further studies are required to elucidate how the complex TG/FFA

cycle is regulated in breast tumor ceils, particularly how the TG/FfA cycle is linked

to GF signaling and how it may enhance ceil survival in GF independent cancer

cells. As well, further studies are needed to elucidate whether upregulated TG/FFA

cycling promotes tumor ce!! survival by NAD+ regeneration and/or FFA signaling,

possibly via GPR4O or another FFA receptor. It would also be important to
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determine whethcr our in vitro resuits are relevant to human breast cancer ceil

metabolism in vivo, for both primary tumors and their metastases.

Ihe important points to retain from this work can be summarized as follows:

1) Metabolic and signaling pathways for ce!! survival and proliferation are

intertwined and the GF status of the ceils may deeply influence their response to

nutrients. 2) The metabolisrn of fuel substrates, glucose and FFA, is coordinately

regulated in individual ce!!s, thus suggesting that FFA metabolism should be studied

in the context of the metabolisrn of glucose. 3) Cancer cells, which become GF

independent may be vuinerable to the nutritional environrnent, may flot be able to

deal with the lack of some basic nutrients like glucose (they are glucose dependent)

or they may be susceptible to overabundance of nutrients. In other words, they may

be incapable to adjust their rate of rnetabolism to their energetic requirements,

particularly under conditions like celi cycle arrest, when these requirements

markedly decline. 4) The rnetabolism of FFA is different in cancer cells versus

normal, non-transfomied celis, and it may vary between individual cancers.

However, it may also vary between different stages of cancer development, and thus

may have a prognostic potentiat. Further research in the area of glucose and FFA

rnetabolisrn may help to design novel strategies for cancer staging and classification

independent forni existing ones and may help to design cancer prevention strategies

based on diet and therapies that directly or indirectly rnodify tumor cdl rnetabolism

to reduce tumor ceil survival.
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Abstract

We previously showed that exogenous oleate protects MDA-MB-231 human

breast cancer ceils against palmitate-induced apoptosis in part by increasing

esterification of this free fatty acid (FFA) into trïacylgtycerol (TG). The aim of

this study was to better understand the mechanism wliereby oleate protects

human breast cancer celis against apoptosis induced by serum withdrawal. 11w

metabolism of FFA, 1G and glucose, in parallel with long-term ceil survival in

the absence of serum, was investigated in I’IDA-MB-231 celis treated with

exogenous oleate. Ihe results were extended to a panel of human breast cancer

ceil lînes (MDA-MB-468, T-47D, MCF-7) and the non-transformed celi strain

1’ICF-1OA. Short-term (3-24 h) exposure of MDA-MB-231 ceils to exogenous

oleate resulted in dose dependent long-term (10 days) serum-free survival and

correlated with accumulation of 1G in Iipid droplets. Ihe cetiular 1G content

increased and the rate of Iipolysïs was upregulated by oleate in a dose

dependent manner and both effects persïsted after oleate removal. Rapid 1G

lipolysis and FFA reesterification, supported by high rates of glycolysis that

provides the glycerol backbone for 1G synthesis, are consistent with the

presence of very active TG/FfA cycling in human breast cancer ceils. Only the

cancer celi unes capable of accumutating 1G showed Iong-term serum-free

survival after treatment with oleate. The resuits suggest that upregulation of

1G/FFA cycling induced by short-term treatment with oleate may be involved

in maintenance of human breast cancer ceil survivat and may provide one of

the links between lipid metabolism and cancer.
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Introduction

Epidemiological evidence indicates that obesity increases the risk of

developing several diseases, including breast cancer (rev. in 1, 2, 3). Excess

adiposity is considered harniful because it is associated with increased plasma

triacylglycerols (TG) and free fatty acids (FFA) (4) that contribute to ectopic

deposition of lipids in nonadipocytes. This abnormal fat deposition is irnplicated in

the development of insulin resistance and lipotoxic tissue damage (5, rev. in 6, 7, 8).

The long chain saturated FA palmitate (C16:0) and the rnonounsaturated FA oleate

(C 18:1) are the rnost common FA in our diet, blood, and other tissues. Lipotoxicity

in vitro is induced by palmitate but flot by oleate (5, 9, 10). In addition, oleate

protects against apoptosis in vitro and prevents insulin resistance in vivo (11).

We previously showed that oleate supplementation leads to TG accumulation

in MDA-MB-231 ceils and protects against lipotoxicity by chaimeling saturated FFA

to the intracellular lipid storage pool and by sustaining the synthesis of cardiolipin

for mitochondrial membrane integrity (9). In addition, ceils with increased capacity

for unsaturated FA synthesis (ceils overexpressing stearoyl-CoA desaturase), which

have increased endogenous levels of monounsaturated fatty acids, are resistant to

palmitate-induced Iipotoxicity, whereas cetls with impaired TG synthetic activity are

sensitive to lipotoxicity induced by both saturated and monounsaturated FFA (12).

Therefore, accumulation of TG prornoted by exogenous and/or endogenous oleate

may have an adaptive function and protect against Iipotoxicity.

Monounsaturated FFA may also be protective against apoptosis induced by

factors other than palmitate. For example, the monounsaturated FFA palmitoleate is
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protective against apoptosis induced by serum withdrawal and cytokines in rat f3-

cells (13) and oleate prevents apoptosis induced by serum withdrawal in MDA-MB

231 ceils (10). Protection by oleate against apoptosis induced by serum withdrawal

might involve signaling via the ceil-surface G protein coupled receptor GPR4O and

activation ofthe phosphatidylinositol 3-kinase/Akt survival pathway (14).

FFA and glucose are both fuel substrates and their metabolic pathways are

interdependent and often reciprocally reguÏatcd (rev. in 15). Warburg (16, 17)

showed over 70 years ago that cancer ceils have increased rates of glucose

rnetabolism. However, it was shown only recently that oncogenic mutations are

directly responsible for some ofthese changes (18, 19) and that glucose metabolism

and survival pathways are intertwined (rev. in 20, 21). Tumor ceils have both

elevated glycolytic and synthetic processes in order to meet the need for continuous

growth (rev. in 22, 23). Little is known, however, how these changes in glucose

metabolisrn affect the metabolism of FFA or TG. The question becomes especially

important in the context of obese individuals and obese cancer patients where both

fuels may be available in excess.

The aim of the present study was to better understand the biochemical basis

of the antiapoptotic action of oleate in human breast cancer celis. Specifically, we

addressed the question of how the metabotism of oleate and 1G accumulation could

be involved in protection of human breast cancer ceils against apoptosis induced by

serum withdrawal. The metabolism of oleate, 1G and glucose were examined after

short-term oleate treatment (24 h) and retated to Iong-term (8-10 days) cdl survival

in the absence of serum growth factors or FFA. We show that hurnan breast cancer



celis treated with oleate respond by upregulating their level of TG/FfA cycling and

that this response correlates with oleate induced long-term serum-free survival in

those ce!! unes which also have an etevated capacity for fat storage.
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Resuits

Short— Terni Olectte Treatment Promotes Long— Tei-m Serum—free CelÏ SurvivaÏ

Long-term survival of MDA-MB-23 I celis exposed briefly to oleate was

measured. After 24 h exposure to various concentrations of exogenous oleate, the

celis were maintained in culture without senim or oleate for an additionaï eight days

(with daily changes of media) and the live adherent cef f s were counted daily. f igure

lA shows that serum-starved celis without oleate treatment dieU whereas oleate

treated ceils survived for many days. Short-term (24 h) treatment with 400 iM oleate

afforded complete protection against apoptosis induced by serum withdrawal for at

least 10 days, while lower concentrations of oleate provided partial protection in a

dose dependent manner.

The percentage of live adherent MDA-MB-231 celis at Day 10 post 24 h

treatment with 400 iM oteate was 108.4 % relative to the ce!! number at Day 1 (Fig.

lA). This suggests that celis protected against apoptosis by treatment with oleate

were pro!iferating at a very low rate, if at att. Using FACS ana!ysis, we examined the

celi cycle distribution of serum-starved and o!eate-treated MDA-MB-23 1 cel!s from

Day I unti! Day 4 post serum withdrawa! and compared these with the 5% FBS

control at Day 2 (fig. lB). A gradua! decrease in the percentage of celis in GI phase

ofthe ce!! cycle was observed with a concomitant increase in the percentage ofcells

in S and G2/M phases. Together these resuits (Fig. lA and B) suggest that ceils

protected against apoptosis by oleate did not pro!iferate due to difficu!ty comp!eting

their celi cycle.
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Figure 1C shows that treatments as short as 3 h with 100 tM oleate protected

human breast cancer ceils against apoptosis induced by serum withdrawal. This short

pulse of oleate prevented activation of caspase-3 for up to 24 h. Remarkably, even a

one-hour pulse was partially protective against apoptosis.

The results indicate that a short pulse of a physiological concentration of

exogenous oleate protects human breast cancer cells against apoptosis induced by

serum withdrawal. The survival effect is oleate dose dependent and long lasting.

Surviving celis slow down their proliferation and tend to accumulate in the S and/or

G2/M phases ofthe celi cycle.

MDA -MB-231 Celis Have a High C’apacity To Store TG as Lipid Droplets

Figure 2A shows that a 24 h exposure of MDA-MB-23 t cetis to

physiological concentrations of 100 iiM and 400 jiM ofoleate bound to BSA causes

the formation of many intracellular tipid droplets. The lipid droplet materiat that was

stained by Ou Red O increased proportionally with increasing oleate concentration.

Control ceils (flot exposed to oleate) formed few if any Iipid droplets. The ability of

MDA-MB-23 1 cells to efficiently esterify oleate for storage as TG is illustrated in

Fig. 23. Total intracetiutar TG content of the cells was found to increase in a dose

dependent manner in response to 24 h treatrnent with increasing concentrations of

oleate.

MDA -MB-231 CelÏs Hctve High Rates ofTG/fFA CycÏing
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TG stored in lipid droplets can be hydrolyzed to produce FFA and glycerol.

This process (lipolysis) has been mostly studied in adipocytes, where it is carried out

by the highly regulated enzyme hormone-sensitive lipase in addition to other less

known lipolytic enzymes (rev. in 24). FFA that are released from TG by lipolysis

can be immediately reesterified within the ceil to form 1G again. Lipolysis and

reesterification are two opposing processes involved in what is referred to as

intracellular TG/FFA cycling (25, rev. in 26).

Lipolysis in MDA-MB-23 1 cclls was measured using two cornplementary

assays in which the amount of either glycerol or fFA released into the cell media

from the breakdown of TG was analyzed (Fig. 2C and Table 1). Figure 2C shows

that MDA-M3-231 celis have a high rate of lipolysis as measured by glycerol

released relative to their total TG content. Moreover, the rate of lipolysis increased

dramaticaÏly with exposure to increasing concentrations of exogenous oleate. Thus,

following 24 h of incubation with the highest concentration of exogenous oleate (400

tM), cellular 1G content was 52 nmol/106 ceils and glycerol released during 1 hi

was 35 nmol/106 ceils. This suggests that MDA-MB-231 cells reesterify FFA very

efficiently and have very active TG/FFA cycling.

The data presented in Table I shows the rate of lipolysis measured by the two

methods and reveals that the values are not stoichiometrically related as might be

expected. For the cells treated with 400 jiM oleate, we found only 3.13 nmol/h1106

cells of FFA released, instead of 3 x 35.8=107.4 nmol/h/106 cells calculated from the

results obtained using glycerol release (1 molecule of 1G is composed of I glycerol

and 3 FA). The rate of FFA oxidation in MDA-MB-231 ceils (0.05 nrnol/h/106
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ceils) cannot explain the discrepancy between the arnount of glycerol and FFA

released. The resuits therefore indicate that >95% of FFA are indeed recycled back

to TG in these celis rather than being oxidized. The net effect is that these ceils when

exposed to exogenous oleate, both synthesize and maintain TG in lipid droplets very

efficiently (Fig. 2B) in spite ofa very high rate oflipolysis (Fig. 2C).

Short-tenu Oteate Tnecttment, which Pmtects MDA -MB-23] CeÏÏs against Apoptosis,

Causes a Long-lasting change in ceÏÏuÏar Lipid Metabotism

Figure 3 shows that short-term (24 h) treatment of serurn-starved MDA-MB

231 ceils with 100 jiM oleate leads to long-tcrm stable (at least 7 days) intracellular

TG content (Fig. 3A) and elevated lipolysis rate (f ig. 3B). Thus, lipolysis remained

elevated between 20 and 17 nmol/h/106 cetis from Day 2 until Day 7, whereas within

the same time period, cellular TG content was moderately lowered from 20 to 12

nmol/106 celis. This suggests that during the 7 days post oleate treatrnent, the cetiular

TG pool continued to turnover at a high rate because ofvery active TG/FFA cycling.

MDA -MB-23] Ceils Protected against Apoptosis Lw Oleate and Cultured in Serum

free conditions, Maintain u High Rate of Glucose Oxidation

A number of growth factors-dependent ceils downiegulate their metabolism

of glucose when growth factors are withdrawn (27). It was therefore important to

assess the rnetabolisrn of giticose in MDA-MB-231 celis under senim-free

conditions. Continuous TG/FFA cycling requires a constant supply of glyceroÏ-3-

phosphate, which can be produced by gtycolysis. Figure 3C shows that MDA-MB
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23 1 cells have a high rate of glucose metabolism, a characteristic typical of rnany

cancer celis. In control conditions (presence of serum) MDA-MB-23 I celis exhibited

160% higher glucose oxidation compared to non-transformed breast epithelial celis

MCF-IOA. In addition, MDA-MB-231 cells maintained a high glucose oxidation

rate until Day 2 post serum withdrawal, contrary to MCF-IOA celis that

downregulated glucose rnetabolisrn by 65% 24 h after withdrawal of serum and

growth factors. The latter measurernents are probably overestimated since they were

perforrned on live adherent cells (flot on total ceils) because, at Day 2 post serum

withdrawal, the cells began to enter apoptosis. At Day 3 post serum withdrawal,

MDA-MB-23 1 cells protected by short-term treatrnent with oleate still maintained a

high glucose oxidation rate, while the majority of non-treated celis (> 90%) had

detached from the dishes and were dead as determined by Trypan Blue staining (see

f igure lA).

Thus, elevated glucose rnetabolism in MDA-MB-231 celis most likely

provides gÏycerol-3-phosphate needed for FFA esterification and remains the main

energy source in MDA-MB-231 ceils protected agaifist apoptosis by short-terrn

treatrnent with oleate. It is therefore unlikely that FFA released from droplets by

lipolysis are needed as an alternative energy source (via FFA oxidation in

mitochondria) to promote survival of these cells in the absence of serum. Consistent

with this, MDA-MB-23 1 cells were found to have a very low rate of FFA oxidation

(Fig. 4C).
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High C’apacitv to Store TG Is Correlated With Enhanced Serum-Free Cet! Surviva!

in Various Httman Breast Cancer C’ett Lines

The effect of oleate treatrnent on ce!! survival was tested in three other

human breast cancer ceil unes, together with the non-transformed hurnan breast

epithelial celi une (MCF-1OA) (Fig. 4). The design of the experiment was sirnilar

to that shown in Fig. lA and celis were counted on Day 6. The resuits are

expressed as percentage of control culture ce!! number at Day 1 (before addition

ofoleate). It should be noted that each ofthe different ceil unes had different

growth characteristics. The MCF-1OA non-transforrned celis were dependent on

both serum and growth factors for survival and were flot protected by oleate

treatment in the absence ofthese additives (Fig. 4A). T-47D and MDA-MB-468

celis responded sirniÏar[y to oleate treatment as did MDA-MB-23 1 cells,

although the three cel! !ines differed in their sensitivity to serum withdrawal,

with MDA-M3-23! being the rnost sensitive. Oleate treatrnent in the absence of

serum had no effect on the survival of the fourth ceil une tested, MCF-7. The

three ce!! unes that responded to oleate treatment accumu!ated high !eve!s of

cetiular TG, as shown in Fig. 4B, whereas the ce!l une that did flot respond to

oleate (MCF-7) had low total TG content, as did MCF-1OA celis. These resuits

further confirrn that high ce!!ular TG content is associated with enhanced serum

free celi survival after treatment with oleate in three of four hurnan breast cancer

ccli unes.

FFA esterification to fonu complex lipids, in particular TG, represents one of

two main rnetabo!ic pathways for FFA within the ce!!, the other being FFA
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oxidation. It was of interest to examine the relative rate of FFA oxidation in our

panel of ceti unes. We expected to see an inverse correlation between oxidation and

esterification. Figure 4C shows that MDA-MB-23 1 and T-47D ceil lines, which have

high 1G content, had a tow intrinsic FFA oxidation rate, while MDA-MB-468. MCf

7 and MCF-IOA celi unes showed high FFA oxidation rates. Surprisingly, however,

MDA-MB-462 celis had both a high FfA oxidation rate and a high TG content after

exposure to exogenous oleate. Ihus, the rate of FFA oxidation of the different

human breast cancer ceil unes tested was variable (high and low) and did not

correlate with the cellular 1G content or the ability for long-terni serurn-free survival

induced by treatment with oleate.
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Discussion

We found that three out of four hurnan breast cancer ce!! unes tested (MDA

MB-231, MDA-MB-468, and T47D) were protected for many days against apoptosis

and death induced by serum withdrawal by short-term (24 h) treatment with o!eate.

These ceils pro!iferated very siow!y if at ail, suggesting that treatment with o!eate

influences main!y celi survival with littie effect on ceil pro!iferation. The iong-tem

serurn-free survival in these human breast cancer celi unes was associated with

elevated TG content and was o!eate dose dependent. After short-term treatment with

o!eate, the ce!!ular TG pool increased significantly and the rate of lipolysis

(measured as glycero! re!eased into the culture medium) was upregulated.

Subsequent!y, both TG !evels and the rate of !ipo!ysis remained high for a long

period oftime (8-10 days). These resuits demonstrate that MDA-MB-231 celis have

very efficient TG/FFA cyc!ing, allowing maintenance of e!evated TG content in

spite of very active ongoing Iipo!ysis. Glucose metabolism remained high in serum

starved MDA-MB-23 1 cei!s protected against apoptosis by short-term treatment with

oleate, providing glycerol-3-phosphate needed for FFA esterification and being the

main energy source in these ceils. Thus, it is attractive to propose that elevated

TG/FfA cycling after exposure to exogenous oleate is involved in the maintenance

of Iong-term serum-free surviva! of human breast cancer cei!s.

Cellular TG/fFA cycling occurs in rnany tissues. It is a multi-step, complex

cycle involving many enzymes. At least one enzyme activates FFA to fonu FA-CoA

(2$), then at !east five others are involved in sequential esterification of fA-CoA to

glycerol backbone (29); subsequent!y at !east three different lipases are invo!ved in
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lipolysis (24). TG/FFA cycling is considered to be a “futile cycle” since its main

outcome is the consumption of energy (production of 1 molecule of 1G consumes 6

molecules of ATP). However, this process allows preservation of intracellular FA

pools when they are flot oxidized for energy production and has been linked to

thermogenesis in brown adipose tissue (30). The presefit study suggests a nove! role

for TG/FFA cycling, which is enhancement of human breast cancer cet! survival. A

model illustrating this relationship is shown in Figure 5 and is exp!ained below.

The mode! is based on the fact that many cancer celis, including the MDA

MB-231 celi une used in this study, show increased glycolytic rate. This aÏÏows

rapidly proliferating cancer celis to use glycolytic intermediates for synthesis of

nucleic acids and amino acids, and atso supplies their energy needs. In addition,

glycolysis-derived pynivate carbons are transported from the mitochondriat matrix to

the cytoplasm in the form of citrate, which becomes a precursor for de novo FFA

synthesis. Thus, cancer ceils are fu!ly prepared for continuous growth and

proliferation by being able to synthesize rnany of their substrates and complex

molecules de novo from glucose. The weakness of the efficient cancer ce!! synthetic

machine, however, is that the high glycolytic rate requires constant regeneration of

cytosotic NAD. In many ce!! types, lactate dehydrogenase (LDH) is a key enzyme

involved in this process. LDH oxidizes pyruvate to lactate with sirnultaneous

regeneration ofNAD from NADH, and lactate is secreted from the ce!!. Our model

in Figure 5 proposes that rapid TG/FFA cyc!ing provides a second (alternative) route

for NAD’ regeneration.
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fle esterificadon phase of TG/FFA cycle requins glyceroi-3-phosphate

(G3P). G3P is produce by G3P dehydrogenase (GPDH) from dihydroxyacetone

phosphate (DRAP) widi simultaneous regeneration of NAJY from NADH. We

propose bat channeling of G3P to FFA esterification to form TG followed by rapid

hydrolysis and release of glycerol from die ccli, allows die system to mn

continuously as long as FFA for nesterificadon are available. A very efficient

recycling of FFA in !vffiA-MB-231 ceils presewes die intraceliular pool of FA. In

addition de novo synthesis of FA can possibly also supply die pooL fie alternative

NAD regenention system described here and shown in Fig. 5 enhances tumor ccli

sunrival by setting a stable rate of cytopiasmic NADt regeneration, which would

otherwise be limiting and cause cancer ccli apoptosis and deadi.

It was ncendy postulated bat signaling for ccli survival might involve

confroliing ccli access to nubien in addition to inhiMfing apoptosis (21, 31, 32).

frOA-?vffl-231 breast cancer celis appear to have acquired autonomy in confroliing

diefr access to glucose, but dieir apoptotic machineiy can stiui respond to a lack of

semm powth &ctors. fie best-studied system responsible for ccli sunrival and

exaceliular nuffient upake is die phosphatidylinositol 3-kinase/Akt padiway (rev.

in 33). Our previous work (14) as wei as bat of odiers (34) demonsfrated bat dis

padiway could be stimulated via die G protein coupled FFA receptors, GPR4O and

GPR12O. It is possible diat die sunrival effcct dcscribed here, which involves up

regulation of TGIFFA cycling, is also in part GPR4O-mediated. flus, TG/FFA

cycling by preserving die pool of FA inside die ceils for long periods oftime would

assure continuing availability of small amounts of FFA reieased into die medium
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upon lipolysis, for binding to the GPR4O receptor and activation of the survival

signaling cascade.

The human breast cancer ceil unes used in this study derived from

metastases, so they represent aggressive, advanced breast tumors (35). Two ofthose,

which responded to o!eate are estrogen receptor (ER) negative (MDA-MB-231,

MDA-MB-46$) whule one is ER positive (T-47D). Furthermore, MCF-7 celis, which

did flot respond to oleate at ai!, are the !east invasive of the cancer ce!! !ines used in

this study. MDA-MB-23 1 celis, which were the rnost responsive to oleate, are

known to be the most invasive (36). Thcrefore, the ability of oleate to modify human

breast cancer celi survival in vitro appears to be independcnt of their ER stahis,

however it may be positively correlated with their invasiveness.

MDA-MB-23 1 cells protected against death by treatrnent with o!eate

were viable for !ong periods of tirne but blocked in ceit division. In this respect they

resemble disseminated tumor ceils, which have been detected in the bone manow of

patients with breast tumors. Most are flot actively pro!iferating and remain in a state

of”dornancy” for rnany years (rev. in 37). Persistence of disseminated turnor celis is

associated with a poor clinica! outcome (38). It is tempting to speculate that oleate

cou!d contribute to the survival of disseminated tumor celis via upregu!ating

TG/FFA cycling. Furthermore, upregulation of TG/FFA cycting, which confers

resistance tu apoptosis may also contribute to drug resistance common for

disserninated tumor ce!!s (39). More evidence, especially studies in vivo with

primary tumors and metastasis are needed to verify if increased rate of TG/F FA
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cycling couÏd indeed be a marker of tumor invasiveness or could contribute to

disseminated tumor ceils survival and/or drug resistance.

The in vitro resuits presented here provide support for epiderniological

studies, which show a positive correlation between elevated oleate content in breast

tissue and increased breast cancer risk (40, 41). Thcy are also consistent with the

recent evidence suggesting that obesity is associated with increased breast cancer

recurrence and rnortality, and that life style interventions, like dietary fat reduction,

significantly improve surviva! in postmenopausal women (42). Further work is

required to determine whether enhanced TG/FFA cycling promotes turnor ce!!

survival by NAD+ regeneration and/or FFA signaling, possib!y via GPR4O or

another FFA receptor, and whether our in vitro rcsu!ts are relevant to hurnan breast

cancer cell rnetabotisrn in vivo.
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Material and Methods

MateriaÏs

FFA sodium saits were purchased from Nu-Check, Prep (Elysian, N’ÎN). Fetal bovine

serum (FBS) was from Invitrogen (Carlsbad. CA) and was heat-inactivated at 56°C

for 30 min. FFA-free BSA (Fraction V, 96% FFA-free, was obtained from Sigma

(St-Louis, MO). [1-14C]palmitic acid (55 mCi/mmol) was purchased from Perkin

Elmer Life Sciences (Boston, MA). D-[U-14C] glucose (317 mCi/mmol) was

obtained from Amersham Biosciences (Baie d’Urfé, Québec, Canada). Unlabeled

and labeted albumin-bound fatty acids (oleate and palmitate) were prepared as

previously described (9).

CeÏÏ Lines ctnd Cuttitre Conditions

The tumorigenic human breast cancer ceil unes. MDA-MB-23 I, MDA-MB-468, T

47D and MCF-7, and the non-tumorigenic celi une derived from normal human

epithelial ceils MCF-1OA, were obtained from the American Type Culture

Collection (Manassas, VA). Celis were cultured at 37°C in a humidified atmosphere

with 5% C02 in a 50/50 mixture of Dulbecco’s modified Eagle’s Medium and Ham’s

F-12 (DMEM/F12; Wisent; St-Bruno, Québec) containing 2 mM glutamine and 5%

heat-inactivated FBS. For MCF-IOA cetts, DMEM/F12 was supptemented with

insulin 10 ig/rn1, hydrocortisone 0.5 tg/m1 (both from Sigma, St-Louis, MO) and

recombinant human epidermal growth factor 20 ng/ml (Invitrogen). Ah experiments

were performed in minimal essential media (MEM) as described below.
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ExperimentaÏ Procedure for OÏeate Treatment

Ceils were plated in triplicate in 25 cm2 flasks at a low density of I x i05

celis per flask in MEM (phenol red-free; Sigma-Aldrich, Oakville, ON, Canada)

supplernented with 5% heat inactivated FBS. For total TG content and lipolysis

measurements, ceils were similarly plated in 75 cm2 flasks at 3x105 celis per flask.

Afier two days of growth, ceils were washed with PBS and the medium was replaced

with fresh MEM with no additives for 1 8 h. After this period of serum starvation, the

medium was replaced with fresh MEM (serum/growth factor free) containing

albumin-bound oleate at concentrations ranging from O to 400 jiM complemented

with 0.5% BSA. For long-term survival experiments after exposure to oleate for 24

h, celis were cultured in MEM without serum, growth factor, BSA or FFA, and

media were changed daily.

Caspase 3 Assay

Caspase 3 activity as an index of apoptosis was determined in ccli lysates

prepared from individuai cultures using the protocol described in CaspACETM

Fluorernetric assay system (Promega, Madison, WI) with Ac-DEVD-AFC as the

caspase-3 substrate (BIOMOL; Plyrnouth Meeting, PA). Ceil protein concentration

was detennined using the BCA Protein Assay kit (Pierce; Rockford, IL) with BSA as

standard.

Fatly Acid and Glucose Oxidation
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Fatty acid oxidation was determined as the amount of 14QQ, liberated from

samples incubated with [1-11C] palmitic acid or [1-’4CJ oleic acid using a modified

procedure described by (43). Briefly, celis were grown according to experimental

procedure for oleate treatment in duplicate 25 cm2 flasks. Then, media were

discarded and replaced with 0.9 ml of fresh MEM containing 0.1% BSA and

incubated at 37°C for 30 min in a C02 incubator. Subsequentty. 100 t[ of the IOX

reaction mix (prepared freshly 2 h in advance and containing 10 mM camitine, 1

mM palmitate, 4% BSA and 0.5 1iCi per culture flask of Iabeled FA) was added to

each flask. The flasks were immediately sealed with rubber serum vial stoppers. The

stoppers were fitted with plastic tubes containing folded glass fiber ifiter paper

(Whatrnan GF/B) saturated with 0. 15 ml of 5% KOK. The sealed flasks were

incubated for 1 h at 37°C. Control blank ftasks contained ail reagents without cells.

The reaction was stopped by injecting 0.3 ml of 40% perchloric acid through the

serum stopper into each ftask with a syringe and the flasks were then shaken gently

for 24 h at RT. Filters were then removed and placed into scintillation vials

containing scintillation liquid. Radioactivity was counted 24 h later, using a liquid

scintillation counter (Tri-Carb 2100TR, Perkin Elmer). Resuits were expressed as

nmot ofFFA released/h/rng of celt protein.

Glucose oxidation was measured by determining the release of ‘4C02 from

[U-’4C] glucose. The experimental setup to capture 14C02 was as described above for

FFA oxidation. Cells were preincubated in 0.9 ml MEM medium (with or without

serum or with 0.1% BSA) for 30 min at 37°C in a C02 incubator (5% CO and 95%

air) after which lOOp.t aliquot of D-[U-14C] glucose diluted in MEM was added to
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each flask (0.5 jiCi/flask). The flasks were then sealed and incubated for 1 h at 37°C.

The reaction was stopped and the radioactivity captured by the filters was measured

as described above. The resuits were expressed as nmol of glucose oxidized/h/mg of

protein.

Triglyceride Assay

Cellular TG content was deterrnined using the GPO-Trinder kit (Sigma

Diagnostics, St-Louis, MO) and samples were prepared as described by (44). Two

million celis harvested on ice by scraping were washed twice with cold PBS and

lipids were extracted as described (45). The extracted lipids were dried under N2,

dissolved in 100 pi of 2% v/v Thesit detergent (Sigma, St-Louis, MO) in chloroform,

dried again under N2, and resuspended in 50 t1 of water. The samples were then

vortexed and sonicated in a water bath sonicator (Crest Tru-Sweep (50/60 Hz),

Trenton, NI) for 15 min at RT. Two hundred pi of GPO-Trinder kit reagent was

added directly to each sampte tube, mixed gently and incubated for 5 min at 37°C.

The reaction mixture was transferred to a 1 .5 ml microfuge tube and centrifuged at

12,000 x g at 4°C for 5 min. The supernatants were transferred to a 96 well-plate and

the OD measured at 540 nui using a microplate reader (Bio-Rad 3550). Triolein

(glyceryl trioleate; Sigma-Aldrich) was used as standard.

Lipid DmpÏets Staining

Lipid droplets were visuaïized using staining with Oit Red O. Stock solution

was prepared by dissolving 300 mg Oil Red O (Atlied Chernical, Brighton, UK) in
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100 ml of 99% 2-propanol. Working solution prepared freshly by diluting the stock

solution with water (3:2) was kept at RT for 10 min and filtered through a 0.22 trn

filter (Corning PES filter). Celis in duplicate Petri dishes (60 mm) were washed

twice with 5 ml PBS and incubated with 3 ml of Cil Red O working solution for 15

min at RT with gentie shaking. The ceils were then washed once with PBS and fixed

with 1 0% formalin (Anachemia, Lacune, QC, Canada) for 25 min. The celis were

washed again with PBS, stained for 5 min with Harris Hematoxilin (Sigrna-Aldrich)

diluted 50% with PBS, washcd with PBS, and 3 ml of 10% glycerol in PBS was

added to each dish to prevent drying. Photornicrographs were taken from a

representative field using an inverted microscope (Nikon Eclipse TE300) at 400X

magnification and a digital camera (Nikon CoolPix 990).

Lipolysis

Celis were grown in 2 x 75 cm2 flasks, trypsinized, pooled, resuspended in

serum-ftee MEM medium containing 0.1% B$A and counted. The celis were then

resuspended in fresh MEM medium containing 0.5% BSA at a density 2 x 106

cells/100 jil and incubated in 48 weIl-plates (100 .d/well) for 3 h at 37°C in a C02

incubator. Samples were then transfetied to Eppendorf tubes and centriftiged at

1,500 rpm for 5 min at 4°C. The supernatants were collected and frozen at -80°C.

The rate of lipolysis was measured using two different assays. Glycerol released

from the celis was rneasured in triplicate using the Triglyceride GPO-Trinder kit

(Sigma Diagnostics, St-Louis, MC). Total FFA reteased were deterrnined in
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duplicate using the Wako NEFA test kit (Wako Chemicals USA, Inc. Richrnond,

VA) and expressed as miiol glycerol or FFA released/h/106 celis.

FACS Anali’sis

DNA staining for FACS analysis was perforrned as described (46). Briefly,

celis were harvested by trypsinization, washed with PBS plus 0.1 % BSA at 4°C and

the cells were fixed with 70% ethanol for 10 min at -20°C. They were then collected

by centrifugation (300 x g, 5 mm) and resuspended in staining buffer prepared by

adding NP4O (0.6% v/v) and 36 ig/m1 RNase to a 1 x dilution ofa 20 x stock (1.17 g

of sodium chloride, 2.13 g of sodium citrate, and 0.10 g ofpropidium iodide in 100

ml of water, pH 7.6 adjusted with acetic acid). Stained cetls (10,000) were analyzed

with a flow cytorneter (FACS SCAN, Beckton Dickinson) and ceil cycle analysis

was performed using the Cell Quest Pro software.

StatisticaÏ A nalvsis.

Statistical signfficance was calculated with the Student’s t-test. A P-value of

<0.0 1 was considered significant.
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Table 1. The Rates of Lipolysis in Oleate-Treated MUA-MB-231 Celis

Evaluated by Measurements of the Amounts of Glycerol or FFA Released into

the Medium.

Oleate (pM) TG content Glycerol released FFA released
(nmol/106 ceils) (nmollh/106 celis) (nmol/h/106 ceils)

0 2.78±0.25 3.91±1.51 <0.5

33 4.76 ± 0.37 12.72 ± 1.3$ 0.56 ± 0.22

100 18.25±1.38 21.48± 1.45 0.84±0.39

400 52.28 ±3.62 35.8± 1.32 3.13 ±0.18

Note: Celis were senim-starved for 24 h and then treated with oleate for another 24

h. Immediately after oleate treatment, ceils were collected for lipid extraction and for

detenriination ofthe rate of lipolysis as described in Methods. The data represent the

means and SE for two independent experiments perforrned in duplicate (n=4).
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Figure Legends

Figure 1: Effect of short-term oleate treatment on long-terni serum-free survival and

ce!! cycle distribution of MDA-MB-23 1 cells. A. Two days after seeding (Day O),

celis were serum-starved for 24 h (Day 1) and treated with a range of oleate

concentrations (O-400 !IM) for 24 h (Day 2). CelIs were cultured for up to 8 days in

medium without serum and oleate and, viable cells (celis excluding tlypan blue),

were counted daily. Ceil survival is expressed as the mean number of live adherent

cells/flask. The data represent the mean and SD for a representative experiment

(n=3), which was repeated two times. B. FACS analysis for DNA content is shown

for control cells grown in 5% FBS (Day 2) or for oleate-treated cells collected at

various days. C. Celis serum-starved for 24 h were treated with 100 !IM oleate for a

range of times (O-24 h). Ceils were then washed with PBS and incubated with

medium containing no serum. Caspase-3 activity was assayed on total celis at the 24

h time point. The data represent the mean and SE for two independent experirnents

performed in duplicate (n=4).

Figure 2: Relationship between short-term oleate treatrnent and cellular lipid droplet

formation, total cell 1G content, and lipolysis rate in MDA-MB-231 ceils. Ceils

serum-starved for 24 h were treated with a range of oleate concentrations (O-400

tM) for 24 h A. Representative photornicrographs of Oil Red O-stained celis are

shown (400X). Contro! cells were grown in media containing 5% fBS. B and C. At

the end of oleate treatment, cells were imrnediately assayed for TG content (B) or
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lipolysis rate (C). The data represent the mean and SE for two independent

experirnents perfornied in duplicate (n=4).

figure 3: TG content, lipolysis rate and glucose oxidation in MDA-MB-231 celis

treated with oleate and rnaintained in serurn-free conditions. A, B and C. CeIls

serum-starved for 24 h were treated with 100 iM oleate for 24 h. Then, they were

cultured for up to 7 additional days in medium without serum and oleate. Total

cellular TG content (A), lipolysis (B) or glucose oxidation (C) of adherent ceils was

determined at specffic days. Glucose oxidation is expressed as nrnol/h/mg of protein.

Glucose oxidation in MCF-10A cells is also shown for comparison (C). The data in

ail panels represent the mean and SE for two independent experirnents perfonned in

duplicate (n=4).

Figure 4: Effect of short-terrn oleate treatment on long-term serum-free survival,

cellular TG content and ffA oxidation in a panel of human breast cell lines. A. Cells

serum-starved for 24 h were treated with 100 jiM oleate for 24 h. They were then

cultured for 6 days in medium without serum or oleate. At Day 6 the number of

viable cells was determined and the long-term semrn-free survival was calculated as

the mean percentage of controÏ at Day I (before addition of oleate). The data are the

means and SE for 2-4 independent experiments performed with triplicate flasks per

experiment (n=6 for T-47D, n=9 for MDA-MB-231, n=12 for MDA-MB-468, n$

for MCF 7 and n=4 for MCF-IOA). ‘, p <0.01 eeitts respective control. B. After 24

h of serum starvation, cells were treated with a 100 iM oleate for 24 h and assaycd
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for TG content C. Fatty acid oxidation was measured afier 24 h of serum starvation.

For (B) and (C), the data represent the mean and SE for two independent

experiments performed in duplicate (n=4).

Figure 5: Mode! illustrating the possible link between TG/FFA cycling and breast

cancer ccli growth!survival. Exogenous FFA after entering the ce!! are activated to

form FA-CoA (Step #1) and esterified to form TG (Step #2). Cellular TG content

increases proportionally to exogenous oleate dose. The TG pool is flot inert but is

constantly tuming over due to high rates of both lipolysis and reesterification

involved in TG/FFA cyciing (Step #3). The rate of TG/FFA cycling increases as a

function of the original exogenous FFA (oleate) concentration. TG/FFA cycling

needs G3P, production of which is couplcd to NAD regeneration (Step #4).

Therefore, the high rate of TG/FFA cyciing sets the stable rate of cellular NAD

regeneration, which in tum allows the maintenance of a high rate of glycolysis. This

aliows the production of sufficient amounts of pyruvate (Step #5) required for

anaplerosis (Step #6) and de novo FA synthesis (Step #7), which can supply the

intraceilular pool of FA and contribute to continuing TG/FFA cycling.
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