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SUMMARY

One of the hallmarks that distinguishes Human Immunodeficiency Virus

Type 1 (HIV-1) from other oncoretroviruses is its capacity to productively infect

nondividing ceils. At the molecular level, this ability of HIV-1 to infect non

dividing celis was attributed to the karyophulic properties of the HIV-1

preintegration complex (PIC). How HIV-1 PIC successfully enters the nucleus

and what viral and cellular factors are involved in this process have been the focus

of many recent studies. Here, we studied the functional roles of two HIV-1

elements, the central DNA flap and integrase (IN), in the nuclear import by: 1)

investigating the impact of the central DNA flap on HIV-l nuclear import and

viral replication; 2) analyzing the contribution of different regions in the C-

terminal domain of HIV-1 IN to it nuclear localization as well as their effects on

virus infection; 3) detecting the interaction of HIV-1 IN with importin 7 (Imp7)

and analyzing its functional role in IN nuclear accumulation.

A factor proposed to regulate HIV-1 nuclear import is the special structure

presented in the reverse transcribed viral DNA, called the central DNA flap. It is

a region of triple-stranded DNA created by two discrete haif-genomic fragments

with a central strand dispiacement event controlled in cis by a central polypurine

tract (cPPT) and a central termination sequence (CTS) located in the 3’- region of

IN gene during HIV-1 reverse transcription. The exact impact of the central DNA

flap on the early steps of HIV-1 infection is stiil an open question. In this study,

we took advantage of the ability of Vpr-RT-IN fusion proteins to trans

complement RI and IN defects of HIV-1 viruses, and delineated RT and IN gene

sequences that are important for HIV-1 replication in single-round replication

system. Our resuits revealed that the presence of central DNA flap element

confers a 5- to 8-fold infectious advantage to single-cycle replicating virus in a

variety of cellular systems. We further investigated the impact of the central

DNA flap on HIV-1 reverse transcription, nuclear import and integration by PCR



111

C
analysis. The resuits indicated that the central DNA flap enhances the

establishment of HIV-1 infection in single-round replication assays primarily by

facilitating nuclear import of proviral DNA.

HIV-1 IN plays a key role in viral cDNA integration into the host

chromosome. In addition to its role for viral DNA integration, it has also been

shown to assist other critical steps of early stage HIV-l replication, including

reverse transcription and nuclear import of viral DNA. IN has been well

documented to possess karyophulic properties. By using mutagenic analysis, we

defined that the tri-lysine regions 235WKGPAKLLWKGEGAVV and

211KELQKQITK in the C-terminal domain of HIV-1 IN contributed to its

karyophilic property, while mutations at the arginine/lysine rich region

(262RRKAK) had no significant effect. Analysis of their effects on viral infection

in a VSV-G pseudotyped RT/IN trans-complemented HIV-1 single cycle

replication system reveaied that ail three C-terminal mutant viruses (KK215,9AA,

KK240,4AE and RK263,4AA) exhibited more severe defect of infectivity than IN

class I mutant D64E in HeLa-CD4-CCR5-3-Ga1 ceils, and in dividing as well as

nondividing C8166 T celis. By analyzing viral cDNA synthesis, nuclear import,

and integration, we found that the two tri-lysine regions, especially the region

KK215,9AA, significantly impaired nuclear import step, whereas ail C-terminal

mutants inhibited viral reverse transcription to different extents. Taken together,

these resuits indicated that the C-terminal domain of HIV-1 IN plays an important

role for both HIV-1 reverse transcription and that viral DNA nuclear import and

different regions in this domain may be preferentially involved in eacli of these

early steps during HIV-1 replication.

Next, we investigated the potential mechanism(s) involved in the action of

HIV-1 IN during HIV-1 nuclear import. We demonstrated that HIV-1 IN, but flot

MAp17, specifically interacts with cellular nuclear import receptor Imp7 in the

cells. Genetic analysis revealed that the C-terminal domain of IN is the region

responsible for interaction between IN with Imp7, and an IN mutant
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(KK240,4AA/RK263,4AA) disrupted the Imp7-binding ability of the protein.

Using a VSV-G pseudotyped HIV single-cycle replication system, we

demonstrated that the IN/imp7 interaction deficient mutant completely inhibited

the replication of HIV-1 and displayed impairment at both viral reverse

transcription and nuclear import steps. Moreover, transient knockdown of Imp7 in

both HIV-1 producing and target celis resulted in 2.5 to 3.5-fold inhibition of HIV

infection. Altogether, our resuits indicate that HIV-1 IN specifically interacts

with Imp7 and this viral/cellular protein interaction contributes to an efficient

HIV-1 infection.

Altogether, our studies indicate that the HIV-1 central DNA flap and IN

are two important factors for HIV nuclear import in both dividing and

nondividing ceils. Moreover, we demonstrated that the two tri-lysine regions in

the C-terminal domain of HIV-1 IN play an important role for viral DNA nuclear

import, but the 262RRKAK region appears preferentially involved in reverse

transcription and perhaps integration. In order to understand the mechanism

invoÏved in IN action during early viral replication, we found that HIV-1 IN

specifically interacts with cellular nuclear import receptor Imp7 in vivo and this

viral/cellular protein interaction contributes to an efficient HIV-1 infection. Both

regions (235WKGPAKLLWKG and 262RRKAK) within the C-terminal domain of

IN are important for efficient IN/Imp7 interaction. Further studies are required to

determine the exact functional role of IN-Imp7 interaction and to identify other

cellular importing that may be necessary and/or coordinate with Imp7 to

contribute to HIV-1 IN action during HIV-l nuclear import and replication.

Key words: Integrase, the central DNA flap, HIV-l PIC, Nuclear Import,

Importin 7
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RÉSUMÉ

Une des caractéristiques qui différencient le virus de l’immunodéficience

humaine de type 1 (VIH-1) des autres oncorétrovirus est sa capacité à infecter des

cellules non-mitotiques de façon productive. Au niveau moléculaire, cette

habileté du VIH-1 a été attribuée aux propriétés karyophiles de son complexe de

préintégration (CPI). L’étude du mécanisme permettant au CPI du VIH-1 de

pénétrer dans le noyau et l’identification des facteurs viraux et cellulaires

impliqués dans ce processus ont fait l’objet de plusieurs recherches récentes. J’ai

analysé dans l’étude présente les rôles fonctionnels de deux éléments du VIH-1, le

flap central de l’ADN et l’intégrase (IN) dans l’import nucléaire des 3 façons

suivantes s 1) en étudiant l’effet du flap central de l’ADN sur l’import nucléaire

du VIH-1 et la réplication virale; 2) en analysant la contribution des différentes

régions du domaine C-terminal de l’IN du VIH-1 sur la localisation nucléaire de

la protéine ainsi que leurs effets sur l’infection virale; 3) en étudiant l’interaction

de l’IN avec importine 7 (Imp7) et en analysant son rôle fonctionnel dans

l’accumulation de IN dans le noyau.

Un des facteurs proposés pour la régulation de la translocation nucléaire

du VIH-1 est une structure particulière présente dans l’ADN viral rétrotranscrit, le

flap central de l’ADN. Le flap central est une région d’ADN à trois brins créée

par deux fragments discrets semi-génomiques avec un événement de déplacement

de brin central contrôlé en cis par la séquence centrale de polypurine (cPPT) et

une séquence de terminaison centrale localisée dans la région 3’ du gène IN

durant la transcription inverse du VIH. L’impact précis du flap central de l’ADN

sur les étapes précoces de l’infection par le VIH-1 est une question qui demeure

controversée. Dans cette étude, nous avons pris avantage de la capacité des

protéines de fusion Vpr-RT-IN à trans-complémenter les défectuosités de la RT et

de l’IN virales et nous avons identifié les séquences des gènes de la RT et de l’IN
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qui sont importantes pour la réplication du VIH-1 dans un système de réplication

à cycle unique. Nos résultats révèlent que la présence de l’élément flap central de

l’ADN confère un avantage au niveau du pouvoir infectant, qui est de 5 à $ fois

plus élevé pour un virus se répliquant pendant un seul cycle dans de multiples

systèmes cellulaires. De plus, nous avons étudié l’impact du flap central de

l’ADN sur la transcription inverse du VIH-1, l’import nucléaire et l’intégration

par une analyse de’PCR. Les résultats indiquent que le flap central de l’ADN aide

av développement d’une infection par le VIII-1 dans des tests de réplication à

cycle unique, principalement en facilitant l’import nucléaire de l’ADN proviral.

L’IN du VIII-l joue un rôle primordial dans l’intégration de l’ADNc viral

dans le chromosome hôte. En plus de son rôle dans l’intégration virale, il a été

démontré que l’IN est impliquée dans d’autres étapes cruciales au début de la

réplication du VIII-l, incluant la transcription inverse et l’import nucléaire de

l’ADN viral. Il est bien documenté que l’IN possède des propriétés karyophules.

Par une analyse de mutagenèse, nous avons déterminé que les régions triple-lysine

23WKGPAKLLWKGEGAVV et 211KELQKQITK du domaine C-terminal de

l’IN du VIII-l contribuent à son caractère karyophile, tandis qu’une mutation au

niveau de la région riche en arginine/leucine (262RRKAK) n’a aucun effet

significatif. L’analyse de leur effet sur l’infection virale dans un pseudotype du

VSV-G exprimant RT/IN et qui trans-complémente le système de réplication à

cycle unique du VIH-1 révèle que les trois virus ayant des mutations au C-

terminus (KK215,9AA, KK240,4AE et RK263,4AA) ont une défectuosité plus

importante au niveau du pouvoir infectant qu’un mutant d’IN de classe 1 D64E

dans des cellules HeLa-CD4-CCR5-Ç3-Gal, et que dans des cellules T C$166

mitotiques et non-mitotiques. En analysant la synthèse de l’ADNc viral, l’import

nucléaire et l’intégration, nous avons déterminé que les deux régions tri-lysine, et

surtout la région KK215, 9AA, ont un effet détrimental significatif sur l’import

nucléaire, tandis que tous les mutants C-terminaux ont inhibé la transcription
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inverse virale à des degrés variables. Ces résultats mis ensemble indiquent que le

domaine C-terminal de l’IN du VIH-1 joue un rôle important et pour la

transcription inverse et pour l’import nucléaire de I’ADNc du VIH-1. De plus,

différentes régions de ce domaine pourraient préférentiellement être impliquées

dans chacune de ces étapes précoces de la réplication du VIH-1.

Nous avons ensuite tenté de déterminer le(s) mécanisme(s) potentiel(s)

impliqué(s) dans le rôle joué par l’IN du VIH-1 durant l’import nucléaire du VIH

1. Nous avons démontré que l’IN du VIH-1, et non Mapl7, interagit

spécifiquement avec le récepteur de l’import nucléaire Importine 7 (Imp 7) dans

les cellules hôtes. Étonnamment, le domaine de l’IN responsable de l’interaction

avec Imp7 est localisé dans le C-terminus de la protéine, un mutant IN

(KK240,4AA/RK263,4AA) affecte négativement son habileté de liaison à Imp7

de façon significative. L’analyse de l’effet de ce mutant sur l’infection virale dans

un pseudotype de VSV-G qui trans-complémente le système de réplication à cycle

unique du VIH-1 révèle un inhibition complet de la réplication virale et un effet

détrimental sur la transcription inverse virale et l’import nucléaire.

De plus, l’inactivation transitoire d’Imp7 dans les cellules productrices ou cibles

réduit l’infection avec le VIH de 2.5-3.5 fois. Ces résultats mis ensemble

indiquent que l’interaction entre la protéine virale IN du VIH et la protéine

cellulaire Imp7 est important pour l’efficacité de l’infection avec le VIH.

Ces études indiquent que le flap central de l’ADN et l’IN du VIH-1 sont

deux facteurs importants pour l’import nucléaire du VIH dans les cellules

mitotiques et non-mitotiques. De plus, nous avons démontré que les deux régions

de tri-lysine du domaine C-terminal de l’IN du VIH-l jouent un rôle important

dans l’import nucléaire de l’ADN viral, mais que la région 262RRKAK est

préférentiellement impliquée dans la transcription inverse et peut-être aussi dans

l’intégration. Quant au mécanisme d’action de l’IN durant la réplication virale
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précoce, nous avons déterminé que l’IN du VIII-1 interagit spécifiquement avec

le récepteur de l’import nucléaire cellulaire Imp7 in vivo et l’interaction entre ces

protéines virales et cellulaiers est important pour l’efficacité de l’infection ave le

VIH. Deux régions (235WKGPAKLLWKG et 262RRKAK ) dans le domaine C-

terminal de l’IN sont important pour un interaction efficace entre IN et Imp7.

D’autres études sont nécessaires pour déterminer le rôle fonctionnel précis de

l’interaction IN-Imp7 et d’identifier d’autres importines cellulaires qui pourraient

être requises avec ou sans Imp7 pour l’action de l’IN du VIII-l pendant l’import

nucléaire et la réplication du VIH-1.

Mots Intégrase, le flap central de l’ADN, VIH-1 CPI, import nucléaire,

Importine 7.
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Chapter I

Literature review
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HIV-1 is the cause of acquired immune deficiency syndrome, AIDS.

Twenty years following its discovery, the virus remains a major threat to public

health and a challenge for drug development. Currently HIV-1 infects an

estimated 40 million individuals worldwide. The present therapeutic drug

strategies such as highly active anti-retroviral therapy (HAART) that target the

viral enzymes reverse transcriptase (RI) and protease (PR) have been successful

in siowing disease progression and reducing the incidence of AIDS and AIDS

related mortality. However, these therapies, whule suppressing HIV-1 replication

to undetectable levels, still cannot eradicate the infection. Therefore, the anti-HIV

treatment needs to be continued throughout the patient’s life. Due to the

occurrence of toxicity, metabolic disorders and the emergence of drug resistant

HIV strains, alternative treatment strategies are urgently required.

Indeed, extensive efforts have been made for the development of effective

therapeutic agents to block the function of another HIV-1 enzymatic molecule,

integrase (IN), and/or to target other HIV-1 replication steps, including HIV-1

nuclear translocation—a process critical for HIV replication. Moreover, much

research lias also been focused on the definition of specific interactions between

HIV-1 and cellular proteins and trying to open an opportunity to block HIV

replication.

In this chapter, a mini-review of HIV-1 replication cycle will be provided.

Afterwards, the discussion will be focused primarily on the research progress on

HIV-1 nuclear import including the roles of the DNA flap and IN, and also on the

IN’s structure, its multiple functions as well as its cellular co-factors. finally, a

brief review of HIV-l IN inhibitors (INIs) will be provided.

1.1 111V-1 GENOME AND REPLICATION CYCLE

1.1.1 HIV-1 genome and viral proteins:

HIV-1 belongs to family retroviridae, genus lentivirus. The mature HIV

virion is an enveloped, roughly spherical particle with a diameter of 1 lOnm. The
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genome consists of two identical linear positive-sense single stranded RNA

molecules enclosed by a conical capsid composed of viral protein, p24. The viral

RT, IN, nucleocapsid (NC) protein and also some regulatory and accessory viral

proteins are enclosed in the capsid (Fig.I. 1 .A).

A. 20

Vpr, Net anil p6

B.

___ _____

gp4l
5’LTR

______ ____________

3’LTR

•

___

I

_ _

Ga
Nef

/ jN\

LZ — [Z
MA c. NC p6

Fig.I.1. 111V-1 genome and virion structure. A. Schematic representation of
mature HW-1 particle. Position of the proteins and genomic RNA are indicated.
B. Organization of the HW-1 genome and its structure and enzymatic gene
products.

The HIV-1 genome is encoded by a 9-kb RNA that encodes structural and

non-structural proteins (Fig.I. 1 .B). The structural genes include gag (group

specific antigen), pol (polymerase), and env (envelope glycoprotein). The gag

gene encodes a polyprotein precursor, Pr55 Gag that is cleaved by the viral

protease (PR) to the mature Gag proteins matrix (MA or pi 7), capsid (CA or

p24), nucleocapsid (NC or p7), and p6. Two spacer peptides, p2 and pi, are also

PR RT ]T

Pci

gpl2O

I I

Vpu \

Vpr I I

Rev

Tat EE
vif
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generated upon p55Gag processing. The pol-encoded enzymes are initially

synthesized as part of a large polyprotein precursor, p160GagPol whose synthesis

resuits from a rare frame shifting event during p55Gag translation. The individual

pol-encoded enzymes, PR, RI, and IN, are cleaved from Pr16O”°’ by the viral

PR. The envelope glycoprotein is also synthesized as a polyprotein precursor,

gpl6O, which is processed by a cellular protease into the surface (SU) Env

glycoprotein gpl2O and the transmembrane (1M) glycoprotein gp4l. The Gag

proteins and Env proteins make up the core of the virion and outer membrane

envelop, respectively, and p01 proteins provide essential enzymatic functions and

are also encapsulated within the particle. Two genomic-length RNA molecules

are packaged in the particle (Fig.I.1).

In addition to the gag, pol and env genes, HIV-1 also encodes a number of

regulatory and accessory proteins: Tat is critical for transcription from the HIV-1

LTR and Rev plays a major role in the transport of viral RNAs from the nucleus

to the cytoplasm. Vpu, Vif, Vpr and Nef have been termed “accessory” or

“auxiliary” proteins to reflect the fact that they are flot uniformly required for

virus replication in vitro. However, in vivo, these proteins contribute, to varying

degrees, to efficient virus replication and disease induction.

Vpu (Viral protein U) is an $1 amino acid integral membrane

phosphoprotein that is unique to HIV-1 (Cohen, Terwilliger et al. 198$; Strebel,

Klimkait et al. 1988). It performs two major functions during HIV-1 replication:

1) it enhances the release of virus particles (Terwilliger, Cohen et al. 1989), and

2) promotes the degradation of CD4 through the host ubiquitin/proteasome

pathway (Margottin, Bour et al. 1998).

Vpr (viral protein R), a 14-kDa, 96 amino acid protein, is incorporated

efficiently into virions by a specific interaction with the p6 gag protein (Cohen,

Dehni et al. 1990; Paxton, Connor et al. 1993; Kondo, Mammano et al. 1995;

Yao, Kobinger et al. 1999). Vpr can rapidly and efficiently arrest ceil in G2

phase, induce apoptosis, weakly stimulate gene expression from the HIV LTR and
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might play a foie fl nuclear import of the viral preintegration complex (PIC)

(Heinzinger, Bukinsky et al. 1994; Connor, Chen et al. 1995; Nie, Bergeron et al.

199$; Vodicka, Koepp et al. 1998).

Vif (viral infectivity factor) is a basic protein of 23kDa which is packaged

into virions and is required in virus-producing celis during the late stages of

infection to enhance viral infectivity by 10-to-1000 fold (Strebel, Daugherty et al.

1987; Kao, Akari et al. 2003). Vif mutation can cause profound defects in virus

infectivity. The defective phenotype is ceil-type dependent and is determined by

the virus-producing ceil. Thus, certain celi unes (for example HeLa, COS, 293T,

SupTi, CEM-SS and Jurkat) are “permissive” for Vif mutants; virus produced

from these celi unes is fully infectious regardless of the target ceil used. In

contrast, other celi types (macrophages, primary human T ceils and some

restrictive T ceil line) are “non-permissive” (Borman, Quillent et al. 1995;

Madani and Kabat 2000). This ceil-type specificity suggests that host factors play

a role in Vif function. In 2002, Sheehy et al. found that non-permissive celis

contain an anti-viral cellular factor termed APOBEC3G (A Poliprotein B mRNA

editing Enzyme-Catalytic Polypeptide-like 3G), and that the anti-viral action of

APOBEC3G is thwarted by Vif (Sheehy, Gaddis et al. 2002). The current

mechanism proposed for protection of the virus by HIV-1 Vif is to induce

APOBEC3G degradation through an ubiquitination-dependent proteasomal

pathway, thereby occluding its incorporation into the virion (Liu, Yu et al. 2004).

Nef (negative factor) is a 27kDa, membrane-associated phosphoprotein.

its membrane binding is dependent upon a myristic acid moiety covalently

attached to the N-terminus of the protein. Nef has been detected at low levels in

viral particles, where it localizes to the virion core. Several primary Nef functions

have been reported: 1) down regulation of CD4 and major histocompatibility class

I (MHC I) molecules from the ceil surface; 2) stimulation of virus infectivity; 3)

modulation of cellular activation pathway.
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1.1.2 HIV-1 replication (fig.I.2): The life cycle of HW proceeds through a

series of events that can be divided into two distinct phases: “early” and “late”.

The early phase refers to the steps from ceil binding to the integration of viral

DNA into the host chromosome, whereas the late phase begins with the

expression of viral genes and goes through the release and maturation of viral

particles. Along this joumey, 11W-1 hijacks the cellular machinery, while at the

same time counteracting cellular defenses.

1). Virus Entry: The entry process consists of receptor binding followed by

coreceptor binding, and ultimately membrane fusion allowing the viral core to

enter the cell. First, the viral gpl2O binds specifically to CD4. This causes

Supportad by i

Fig.I.2. Schematic representation of the HIV-1 lïfe cycle. 11e major steps in
the early and late stages of the replication cycle are indicated
(www.HlVwebstudy.org, Copyright 2004, University of Washington. Ail rights
reserved)
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conformational changes in gpl2O, which then exposes coreceptor binding sites.

Depending on the viral tropism, determined by the V3 loop of gpl2O, cellular co

receptors CCR5 or CXCR4 are engaged. It is at this point when fusion pore

formation begins (Markosyan, Cohen et al. 2003). The gp4l ectodomain adopts a

hypothetical extended conformation; the fusion peptide at the N-terminus of gp4l

inserts directly into the target celi lipid bilayer. The N- and C-helices of the gp4l

ectodomain fold into a highly stable six-lieux bundie, bringing the membranes in

apposition and allowing membrane fusion to occur and subsequently deliver HIV

core to the cytoplasm (Melikyan, Markosyan et al. 2000).

2). Uncoating and reverse transcription: The events that follow viral

penetration into host celis known as uncoating, require the viral core to undergo a

partial and progressive disassembly in order to release viral gene and leads to the

generation of reverse-transcription complexes (RTCs). The uncoating process of

HIV-1 is poorly understood. It is possible that the penetration process itself may

trigger the uncoating process. However, specific cellular or viral factors may also

play a role during this event (Dvorin and Malim 2003).

It is suggested that initiation of reverse transcription is coupled to the

onset of uncoating of the viral core (Zhang, Dornadula et al. 2000). The viral

RNA genome is reverse transcribed by the virion-packaged RT enzyme,

generating a linear double-stranded DNA molecule (Fig.I.9). The fidelity of the

reverse transcription is influenced by the presence of cellular protein APOBEC3G

(Goncalves, Korin et al. 1996; Mangeat, Turelli et al. 2003; Mariani, Chen et al.

2003; Zhang, Yang et al. 2003). HIV-1 Vif counteracts the antiretroviral effect of

the cellular protein APOBEC3G by reducing its expression and incorporation into

progeny virions (Sheehy, Gaddis et al. 2002; Kao, Khan et al. 2003; Mariani,

Chen et al. 2003). Since viral protein Nef enhances viral DNA synthesis, it lias

been proposed to act either at the level of viral uncoating or reverse transcription

only when it occurs by fusion at the plasma membrane (Aiken and Trono 1995;
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Aiken 1997). In addition, the host protein cyclophulin A (CypA) was found to

enhance HIV infectivity during early post-entry events by counteracting the

inhibitory activity of human host restriction factor Refi and allowing reverse

transcription to be completed (Towers, Hatziioannou et al. 2003).

In the case of retroviruses, after penetration into the host celis, viruses have

to reacli their sites of replication, the nucleus. Research lias shown that HIV-1

cores use microtubules to transport its genome toward the ceil nucleus (McDonald,

Vodicka et al. 2002). It is during this time that the RTC and PIC are formed. The

precise composition of HIV-1 RTCs and PICs is stili a matter of debate. It should

be noted that PICs are usually defined as the preintegration competent complexes,

whereas reverse transcription is incomplete in RTCs. Most studies show that PICs

contain viral DNA, viral proteins PR, RT, IN, Vpr, NC and host proteins such as

the high mobility group protein HMGI (Y) and the human lens epithelium-derived

growth actor/transcription coactivator p75 (LEDGF/p75) (Farnet and Bushman

1997; Liano, Vanegas et al. 2004).

3). Nuclear import: The HIV-1 cDNA, associated to viral and cellular proteins,

lias to cross the nuclear membrane to reach the host chromatin for its integration.

The mechanism by which the PIC transiocates into the nucleus remains to be

defined. It is recognized that HIV-1 PIC enters the nucleoplasm through the

nuclear pore complex (NPC) by active transport (Weinberg 1991; Bukrinsky, I.N.

et al. 1992). The current model is that the HIV proteins present in PICs harbors

karyophilic properties, either directly by bearing nuclear localization signal (NLS)

or indirectly by interacting with karyophilic cellular proteins. The viral proteins

MA, Vpr and IN, and a DNA structure, the central DNA flap, have been

implicated in the HIV-1 nuclear import (Bukrinsky, Haggerty et al. 1993;

Heinzinger, Bukinsky et al. 1994; Gallay, Hope et aI. 1997; Nie, Bergeron et al.

1998; Vodicka, Koepp et al. 1998; Haffar, Popov et al. 2000; Zennou, Petit et al.

2000; de Noronha, Sherman et al. 2001). Besides the role of viral proteins in
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HIV-1 nuclear import, further studies are clearly required to elucidate additional

cellular proteins involved in this step. HIV-1 nuclear import will be discussed in

much greater detail in part 1.3.

4). Integration: The viral-encoded enzyme IN will catalyze the insertion of the

linear, double-stranded viral DNA into the host celi chromosome. Although the

process of proviral integration has been intensively studied with in vitro assays,

the molecular basis of in vivo integration and the selection of integration sites

remain poorly understood. Recent studies have given a global picture of

integration preferences of retroviruses such as HIV-1 and murine leukemia virus

(MLV), revealing that proviral integration of both retroviruses preferentially

occurs in genes highly transcribed by RNA Pol II (Schroder, Shinn et al. 2002;

Wu and Marsh 2003). Interestingly, HIV-1 proviruses are found on the entire

length of the transcriptional unit, whereas MLV integration events distribute

evenly upstream and downstream of the transcriptional start site of actively

transcribed genes, ±lkb from the CpG islands. The regional preferences of HIV-l

along the host genome, in the absence of sequence specificity, strongly suggest

the existence of tethering mechanisms between components of the PIC and

cellular partners, directing the PIC to its final destination (Bushman 2002;

Bushman 2003). In fact, Ciuffi et ai, found that the cellular protein LEDGF/p75

affects the choice of target sites for HIV-1 integration (Ciuffi, Llano et al. 2005).

The 111V-1 integration reaction will be discussed in much greater detail in part 1.4.

5). Gene Expression (Fig 1.3): Following nuclear import of the viral PIC and

prior to integration, the viral DNA can be found in the nucleus in three forms:

linear DNA, 1-LTR, or 2-LTR circles (Farnet and Haseltine 1991; Bukrinsky, I.N.

et al. 1992; Wu 2004). Nef, Tat and Rev are produced in basal amounts from

these DNA forms through activation of LTR promoter by cellular factors such as

nuclear transcription factor icB (NF-icB) (Aiken and Trono 1995; Wu 2004).
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Transcription of the HIV provirus is characterized by an early, Tat-independent

phase and a late, Tat-dependent phase. In the absence of the viral transactivator

Tat, a series of short transcripts are produced due to inefficient elongation by the

recruited RNA pol II and the HIV promoter is strictly under the control of the

local chromatin environment and cellular transcritption. This process resuits in the

synthesis of basal amounts of Tat protein (Kao, Calman et al. 1987; Jordan,

Defechereux et al. 2001). RNA synthesis is greatly increased when Tat is present.

Tat activates transcription through binding to TAR element of LTR and to other

transcriptional activators of cellular origin (Harrich, Ulich et al. 1996; Harrich and

Hooker 2002). Transcription from the HIV-f LTR leads to the generation of a

large number of viral RNA that fail into three major classes, unspliced RNAs,

single-spliced mRNAs and multiply spliced mRNA (fisher, Feinberg et al. 1986).

The unspliced and partially spliced mRNAs are transported to the cytoplasm by

viral protein Rev which binds to a structure called RRE (Rev responsive element)

present in unspliced or partially spliced RNA (Pollard and Malim 199$). The

single-spliced env gene is used for translation of the precursor protein gpl6O,

which is glycosylated within the endoplasmic reticulum. The unspliced RNAs are

used for translation of Gag and Gag-Pol polyproteins and also serve as viral

genomic RNA for progeny. Then, the assembly process starts.

6). Viral assembly: The major player in virus assembly is the Gag precursor

polyprotein, p55Ga (Freed 1998). The HIV-1 uncleaved Gag polyprotein

contains three domains that play very important roles in the assembly and budding

processes. These domains are referred to as the membrane targeting (M),

interaction (I) and late (L) domains. The M domain is located within the MA

region, which is myristylated on its N-terminal glycine thereby targeting Gag to

the plasma membrane. Once Gag bas arrived at the plasma membrane, it must

engage in Gag-Gag (as well as Gag-lipid and Gag-RNA) interactions to enable the

assembly of progeny virions to take place. The I domain is responsible for Gag
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Figure 1.3. The model of transcription from pre-integrated viral DNA and
provirus. Following nuclear import (stepl) and prior to integration, the non
integrated DNA, in the forms of linear, 1-LTR- or 2-LIR-circles, is active in
transcribing ail three classes of viral transcripts (step2). The multiply spliced,
early transcripts such as tat, nef and i-ev are also translated into products. The
non-spliced and singly spliced viral transcripts encoding viral structural proteins
are flot translated. Following viral integration (step3), post-integratÏon
transcription initiates (step4). Expression of these transcripts leads to production
ofprogeny virions (step5).

monomer interaction and is located within the C-terminus of CA, the p2 spacer

peptide, and the N-terminal portion of NC (Freed 1998; Sandefur, Smith et al.

2000; Derdowski, Ding et al. 2004). After translation, the Env protein migrates

and inserts into the plasma membrane. Gag and Gag-PoI also move to the cellular

membrane and start to assemble directed by the Gag polyprotein (Sandefur, Smith

et al. 2000; Barreca, Lee et al. 2003; Derdowski, Ding et al. 2004). In addition,

full-size genomic RNA is packaged into the immature core. The specific

encapsidation of retroviral RNAs into virus particles is mediated by interactions

between the packaging signal in RNA and the NC domain of Gag (Berkowitz,

*
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Ohagen et al. 1995; Damgaard, Dyhr-Mikkelsen et al. 1998; De Guzman, Wu et

al. 1998; Kleiman and Cen 2004). So MA forms the inner sheli of the particle,

located just under the viral membrane. CA forms the conical capsid that encloses

the viral genomic RNA. NC interacts witli the viral RNA within the capsid.

During virus assembly, CypA is also packaged into HIV virions by binding to the

N-terminal domain of CA and was found to enhance HIV infectivity during early

post-entry events (Luban, Bossoit et al. 1993; Franke, Yuan et al. 1994; Braaten,

Aberham et al. 1996).

7). Budding: Once the virion is assembled successfully, the viral membrane must

separate (bud) from the cellular membrane. Retroviral budding is mediated by the

L-domain located in the p6 region of Gag (Wills and Craven 1991; Huang,

Orenstein et al. 1995). Deletion of p6, or mutations within a highly conserved

Pro-Thr-Ala-Pro (PTAP) motif located near the N-terminus of p6, resulted in a

marked effect in budding where viruses are unable to pinch off from the plasma

membrane (Gottiinger, Dorfman et al. 1991; Huang, Orenstein et al. 1995).

Additionally, the L domain requires modification by mono-ubiquitylation to

mediate budding (Vogt 2000; Mroy, Tuvia et al. 2005). The identification of

PTAP motif led to studies that identified a cellular protein, TSG1O1, that interacts

with this L domain. TsglOl and the vacuolar protein-sorting pathway are essential

for HIV-1 budding (Garrus, von Schwedler et al. 2001). The realization that the

vesicular sorting system mediates HIV-1 budding lias led to the suggestion that

budding can also take place in MVBs (Multivesicular bodies), which clearly

appearsto be the case in macrophages (Orenstein, Meltzer et al. 1988; Meilman

and Steinman 2001; Raposo, Moore et al. 2002; Thery, Zitvogel et al. 2002).

Thus, there are now two major models for HIV-1 budding. One is the lipid raft

budding model (Nguyen and Hildreth 2000). The other model is the Trojan

exosome hypothesis (Gould, Bootli et al. 2003), which is largely based on the

evidence that HIV-1 assembles in the MVB and buds into this compartment in
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primary macrophages. Nevertheless, advances in the past several years have

revealed that key components of the cellular endosomal sorting machinery are

critical for budding. The information on the PTAP-TSG1O1 interaction site

provides the impetus for studies aimed at developing small-molecule inhibitors

that block the Gag-TSG1O1 interaction and thereby impair virus budding.

8). Maturation: During or shortly after virus release from the plasma membrane,

the viral PR cleaves the Gag and Gag-Pol polyprotein precursors to generate the

mature Gag and Pol proteins (Fig.I.1.B). The most visible outcome of HIV-1

maturation is that virion morphology is converted from containing an electron

lucent center to containing an electron-dense, conical core. The failure of the

virion to mature properly is associated with a complete loss of infectivity. Studies

showed that extensive regions of Pot are required for efficient HIV polyprotein

processing and particle maturation (Ross, Fuerst et al. 1991; Ouillent, Borman et

al. 1996). HIV-i Vif protein lias been shown to inhibit the proteolytic activity of

HIV-1 protease in vitro and in bacteria, a function assigned to its N-terminal

domain (Kotler, Simm et al. 1997; Baraz, Friedier et al. 1998; Potash, Bentsman

et al. 1998; friedler, Blumenzweig et al. 1999).

1.2 NUCLEAR TRANSPORT IN THE CELL

1.2.1. Gateway to the nucleus: The nuclear pore complex

The only means for proteins and RNA-protein complexes (RNPs) to move

between the nucleus and cytoplasm in order to perform their normal celi functions

is through the nuclear pore complex (NPC). NPCs are huge, symmetric structures

present in the double membrane of the nuclear envelope that has a mass of

6OMDa and composed of relatively few (30) proteins termed nucleoporins (Nups)

in vertebrates (Cronshaw, Krutchinsky et al. 2002). Electron microscopy (EM)

has revealed the elaborate structure of NPC, which are consisting of at least three

separate structural elements: (I) Cytoplasm fibers, (II) the central core, and (III)
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the nuclear basket (fig.L4). There is a single channel through which ail transport

proceeds. The diameter of the channel appears to be flexible, and can expand

from lOnm to 25nm to transiocate large cargos.

There are three groups of Nups: 1) those that are composed of integral

membrane proteins and are believed to play a role in NPC assembiy and

anchoring of NPC to the membrane; 2) structural Nups; and 3) those that contain

phenylalanine-glycine (FG) repeats. The FG-repeat Nups make up about haif the

mass of the NPC and most are distributed symmetricaliy, although a few are

found only on the nuclear or cytoplasmic face. It has been shown that

karyopherins (Kap) can associate directly with FG repeats (Ryan, McCaffery et

al. 2003), and that there are as many as 200 FG-repeat Nups per NPC,

representing a large number of Kap-binding sites (Rout, Aitchison et al. 2003). A

study revealed that adenovirus 2 binds directly to the CAN/Nup214 nucleoporin

(Trotman, Mosberger et al. 2001). Recently, by using Nup98-depleted NPC by

the interfering RNA (siRNA) technique, Ebina et ai, showed that Nup98 on the

NPC specificaily participates in the nuclear entry of HIV-1 cDNA (Ebina, Aoki et

al. 2004).

1.2.2 Import to the nucleus

The central pore of the NPC only permits free passive diffusion of

molecules smailer than 9 nm in diameter. In order for large molecules to enter the

nucleus at a physiologicaily useful rate, they must be actively transported by

using kap and other soluble factor, inciuding the small GTPase Ran (Macara

2001; fried and Kutay 2003; Weis 2003). A broad spectrums of macromolecules

cross the nuclear envelope, including mRNAs, tRNAs, ribosomal proteins,

ribosomal subunits, snRNP and many soluble proteins and also viral gene of

many nuclear-replicating viruses. Mthough viruses can wait in the cytosol until

the celi undergoes mitosis, this restricts infection to dividing ceils and so is of
limited use for most viruses. Therefore, some viruses have deveioped strategies
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Figure 1.4. The nuclear pore complex (NPC). The NPC is shown and the
central channel through which transiocation is thought to occur. The ‘virtual
gating’ model suggests that the NPC consists of an aqueous channel and that the
narrow constraints of this channel and the filamentous fG repeats of some
nucleoporines fiinction as an entropic barrier against diffusion. In contrast, the
‘hydrophobic exclusion’ model suggest the hydrophobic FG repeats weakly
interact with each other to form a ‘selective sieve’. Both models would facilitate
the selective exclusion ofproteins.

to deliver their genomes through the envelope of the interphase nucleus, which

allows the infection of nondividing and terminally differentiated celis.

Nuclear localization signais (NLSs): The most common mechanism employed

by the celi to control molecules entering the nucleus is the use of nuclear

localization signals tNLSs). The first signal sequence for nuclear import was

identified in the simian virus 40 (SV4O) large-T antigen, which consists of a short

stretch of basic amino acids (PKKKRKV), designated as the basic type NLS.



16

Classic NLS are divided into two groups, monopartite including SV4O T antigen

NLS and the more hydrophobic monopartite c-myc NLS (PAAKRVKLD).

Another group is bipartite NISs which consist of two stretches of basic amino

acids separated by a spacer region, e.g. KRPAAIKKAGQAKKKK. Many viral

capsid proteins contain NLSs which behave as nuclear import cargo, such as

herpes simplex virus type 1 (HSV-1), parvovirus, influenza viruses and HIV-1

(O’NeiÏl, Jaskunas et al. 1995; Wang, Palese et al. 1997; Haffar, Popov et al.

2000; Lombardo, Ramirez et al. 2002; Steiz, Rucker et al. 2002). However,

although many capsid proteins may bind viral nucleic acid, there is very littie

information on the import of the actual protein-nucleic acid complex.

Importin a: Cytosolic proteins bearing a NLS are imported into the nucleus by

the importin a/Ç3 heterodimer (or karyopherin a/). Importin a (also known as

Karyopherin a), a -60kDa protein, is the import adaptor and can recognize and

bind to the classical NLS on cytoplasmic proteins bound for the nucleus, then

bind to the pore-docking protein (Adam, Adam et al. 1995). In Saccharomyces

serevisiae, importin-Œ is called karyopherin-a, srplp and KAP6O, and is coded by

the gene SRP1 (Pemberton, Blobel et al. 1998). The homologues in humans have

been denoted hSRP1, hSRPŒ and hSRP1y (Nachury, Ryder et al. 1998),

importin-al, a2 and a4 respectively (Herold, Truant et al. 1998). The basic

importin c structure is a cylindrical super lieux consisting of ten armadillo

(ARM) repeats (Kobe, Gleichmann et al. 1999). Examination of the structure of

importin-a reveals several interesting features: the NH2 terminal contains a basic

stretch of highly conserved amino acid residues (10-55) comprising the importin

I binding (IBB) domain, the central NLS-binding domain with ten ARM repeats,

and the C-terminus contains an acidic domain which binds to the cellular

apoptosis susceptibility gene product (CAS), the function of which is to export

importin c from the nucleoplasm (Fig.I.5) (Kutay, Bischoff et al. 1997; Herold,
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Truant et al. 1998). The IBB domain serves a dual role. It binds to importin-f3 to

Importin Œ C1assici1 basic NLS bmding

I CAS

_____________________________

binding

[mB f ARMrtpeats I__
lOt]tARM
repeat

Importin
Nucleoporm Bin ding site

/J///7/7/]/7/7/7///7/7ÏÏ/7/7Ï7/7/7/7/7
RauGlPEinding liuportin OEBinding

Figure 1.5. The domain structures of importin ci and importin f3. Different
functional dornains and binding partners of importin Œ and importin f3 are
indicated.

target the complex to the NPC for the transiocation (Gorlich, Kraft et al. 1996;

Moroianu, Blobel et al. 1996; Weis, Ryder et al. 1996) but it also can form an

intramolecular interaction with the cNLS-binding pocket of importin Œ in the

absence of cNLS cargo. A single round of importin Œ-mediated import can be

divided into six steps, which include the formation of a ternary complex with

cNLS cargo and importin f3 in the cytoplasm; importin f3 mediated binding of

temary complex to docking site at the periphery of the NPC and transiocation

through the NPC; dissociation of the temary complex, triggered in part by the
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figure.I.6. The nucleocytoplasmic shuttiing cycle of importun cx. (i) importin
cx forms a ternary complex with importin b and cargo (blue circles). (ii)The
ternary complex docks at the NPC and (iii) translocates into the nucleus.
(iv)Binding of Ran-GTP triggers the dissociation of the temary complex. (y)

importin cx binds to the exportin CAS-Ran-GTP complex and is exported to the
cytoplasm. (vi) Ran-GAP-stimulated hydrolysis of GTP by Ran triggers the
dissociation of the exportin complex and releases free importin cx into the
cytoplasm from another transport cycle.

to the cytoplasm bound to the exportin CAS-RAN-GTP and finally release of free

importin cx to the cytoplasm (Fig.I.6.).

Importïn-f3: A 97 kDa import factor was found to bind to both importin-cx and

several xFxFG nucleoporins, revealing its role in docking the basic import

binding of small nuclear GTPase RAN-GTP to importin f3; recyciing of importinŒ

Cytoplasm Nucleus

(j)•e (ii)

4

complex to a docking site on the nuclear pore complex in an energy- and
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temperature-independent process. Importin- lias been renamed importin-3 1 or

karyopherin-f31, since it has been found to be the first member of a large super

family of importin-3 homologues, with 14 members in yeast alone and more than

20 in mammalian celis (Pemberton, Blobel et al. 1998; Adam 1999). These

receptors are generally large (90-l3OkDa) acidic proteins and contain multiple

tandem helical repeats termed HEAT repeats (HEAT domains are named after the

proteins in which similar sequences were first identified: huntingtin, elongation

factor 3, the A subunit of protein phosphatase 2A, and the Ton kinase). Ail have

in common an N-terminal Ran binding domain(Fig.I.5). Most of importin-

family members function in nuclear import (importins), nuclear export (exportins)

or bidirectional nuclear transport. Recent studies have extended the role of

importin-f3 to regulating the assembly of the nuclear envelope, mitosis and

replication (Wiese, Wilde et al. 2001; Harel, Orjalo et al. 2003; Yamaguchi and

Newport 2003).

Importin-31 is unique among the importin-3 family in its use of importin

a as an adaptor for binding substrates that contain the cNLS (Pemberton, Blobel

et al. 1998). Other members of importin-f3 family bind their substrates directly.

Importin-1 can also import substrates such as retroviral proteins Rev and Tat in

HIV, cyclin Bi, and parathyroid homone-related protein (PTHrP) without binding

importin-a (Lam, Briggs et al. 1999; Moore, Yang et al. 1999; Truant and Cullen

1999). Full-length importin-1 consists of 19 HEAT repeats that form a compact

super helical cou. Each HEAT repeat is made of two helices (A and B) connected

by a loop. The A helices are located on the outside of the protein and form the

convex face, whereas B helices, located inside, form the concave face (Cingolani,

Petosa et al. 1999). The N-terminal (HEAT 1-10) and C-terminal (7-19) region

bind RanGTP and IBB domain separately, whereas NPC binding sites occur on

the convex face of importin-j3(Fig.I.5). The overall protein coils into a short super
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helix, with extensive interaction surfaces both on the insïde and outer side of the

super lieux. Five proteins or protein fragments have been co-crystallized with f3: a

fragment of importin a (Cingolani, Petosa et al. 1999), RanGTP (Vetter, Arndt et

al. 1999), a fragment of the transcription factor cargo protein SREBP-2 (Lee,

Sekimoto et al. 2003), the PTHrP (Cingolani, Bednenko et al. 2002), and a short

run of FG repeats from the yeast nucleoporin Nspl(Bayliss, Littlewood et al.

2000). Aithougli the structures for recognition of non-classic NLSs by importin f3

have not yet been determined, structural analyses show that each protein uses a

different binding site on importin f3 and a different mode of interaction. In the

structure of importin f31 complex with the NLS of PTHrP, the N-terminal set of

HEAT repeats is used, enabling simultaneous binding of importin Œ and the NLS

of PTHrP (Cingolani, Bednenko et al. 2002). Another structure of importin f31

bound to SREBP-2, a helix-loop-helix zipper (HLHZ) transcription factor, shows

that HLHZ domain requires importin f31 to adopt a more open confirmation and to

use more hydrophobie interactions than in its complexes with importin c or

PTHrP (Lee, Sekimoto et aI. 2003). It appears that the spring-like super helical

importin f3 has an inherently large degree of flexibility (Stewart 2003). Therefore,

it is clear that, by using different binding sites combined with adopting distinct

conformations, one importin f3 can recognize more than one type of NLSs which

it uses to recognize its many partners.

Ran and the termination of transport: After transiocation though the

NPC, importin -cargo complexes encounters RanGTP. This interaction is crucial

for termination of the transport cycle. In the case of import receptor, RanGTP

binding in the nucleus triggers dissociation of the import receptor-cargo complex,

thus releasing cargo into the nucleus, and the import receptors return to the

cytoplasm as RanGTP-receptor complexes (Fig.I.6). The Ran GTPase cycle is a

key to promoting the directionality of nuclear transport. Ran is an extremely
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abundant and soluble GTPase localized predominantly inside the nucleus

Nucleus A

GTP GDP
ç

Ran GEF/RCC1

RanBP1
RanGAP/Pna 1

Pi

Figure 1.7. The Ran GTPase Cycle. Ran is maintained as RanGTP in the
nucleus by the activity of the Ran guanine nucleotide exchange factor (RanGEf
or Rccl) and as RanGDP in the cytoplasm by the Ran GTPase activating protein
(RanGAP or Rnalp) associated wïth Ran-binding proteini (RanBP1).

at steady state, and, like alI small GTPases, it has very low nucleotide hydrolysis

and exchange activity on its own (Meichior and Gerace 1998; Moore 1998).

Ran’s associations with different cellular proteins are dependent upon the

nucleotide that is bound to it. Regulatory proteins increase the rates of nucleotide

exchange and nucleotide hydrolysis, allowing Ran to cycle between the GTP- and

GDP-bound states at a physiological rate. A guanine nucleotide exchange factor

(RanGEf) promotes release of guanine nucleotides, allowing Ran to acquire GTP.

RanGEF is localized within nuclei throughout interphase and is bound to

chromatin. A Ran GTPase activating protein (RanGAP) stimulates nucleotide

o
RanGDP

!

RauGDP

Cytoplasm

+

RanGTP
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hydrolysis. RanGAP and its coactivator, Ran-binding protein 1 (RanBP1), are

localized in the cytosol during interphase (Matunis, Coutavas et al. 1996;

Mahajan, Deiphin et al. 1997) (Fig.I.7). The localization of Ran’s regulators

would suggest that Ran is primarily GTP-bound in the nucleus and GDP-bound in

the cytoplasm. It would also suggest that Ran moves between these

compartments in order to undergo a complete round of GTP binding and

hydrolysis.

Crossing the channel: How does the karyopherin-cargo move through the NPC?

One of the most important functional requirements for importin f3 in mediating

nuclear transport is their ability to bind specially to many nucleoporin that contain

consecutive FG-repeats (Radu, Moore et al. 1995). Severa! models have been

proposed to explain the mechanism of NPC gating and karyopherin-cargo

transiocation through the NPC (Weis 2003).

In the “virtual gating” model, the NPC consists of an aqueous channel, and

the narrow constraints of this channel and the filamentous FG repeats function as

entropic barriers to diffusion. Binding of Kaps to the FG repeats enables them to

overcome the entropic barrier, to access the channel and to diffuse through the

NPC (Fig.L4) (Rout, Aitchison et al. 2000; Rout, Aitchison et al. 2003). The

second mode! suggests that the hydrophobic FG repeats interact weakly with cadi

other to form a ‘selective sieve’. These interactions enable the selective exclusion

of proteins that cannot dissolve into the sieve, but the hydrophobic nature of Kaps

enables them to enter the sieve and cross the NPC (Fig.I.4) (Ribbeck and Gorlich

2002). Another model suggests that Kaps travel along an affinity gradient of

Nup-binding sites, encountering Nups of increasing affinity during translocation

(Ben-Efraim and Gerace 2001; Pyhtila and Rexach 2003).

Overali, the common properties that define a karyopherin directly

delineate the transport meclianism: substrate binding, interaction with Nups,

cytoplasmic-nuc!ear shuttiing and RanGTP binding.
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1.2.3 Nuclear Import of Viral DNA Genomes

Nuclear entry of DNA viroses: Viruses have found multiple strategies to deliver

this incoming genome into the nucleus. Large DNA viruses, such as adenoviruses

(AU) and herpes simplex virus (HSV), dissociate the genome from the capsid

prior to nuclear import. The AU particles directly dock to the NPC protein

CAN/Nup214, located at the cytoplasmic filaments (Wisnivesky, Leopold et al.

1999; Trotman, Mosberger et al. 2001). At this position, a series of disassembly

factors are recruited, including the nuclear histone Hi, the Hi import factors

importin E3 and importin 7, and the heat shock protein Hsp7O. These factors

facilitate the spatially controlled capsid disassembly at the NPC and are required

for import of the viral genome (Saphire, Guan et al. 2000). In contrast to Ad,

after importin 13-mediated NPC docking, HSV-1 capsid injects DNA into the

nucleus by cytosol-dependent way (Dasgupta and Wilson 1999; Ojala, Sodeik et

al. 2000). Small DNA viruses are thought to maintain their genome in an

encapsulated state until they arrive in the nucleus. Parvovirus and hepatitis B

virus (HBV) capsids are smaller than 35nm in diameter. In the case of

autonomous parvovirus minute virus of mouse (MVM) and human HBV, the

cytosolic capsids undergo conformational changes that expose NLSs and enable

capsid interactions with importins. This increases the affinity to the NPC, and

leads to viral capsid translocation through the NPC. The mechanisms of capsid

disassembly in the nucleoplasm are unknown (Lombardo, Ramirez et al. 2000;

Mabit, Breiner et al. 2001; Lombardo, Ramirez et al. 2002; Vihinen-Ranta, Wang

et al. 2002).

Nuclear entry of RNA viruses: Influenza viruses are enveloped animal vinises

with a segmented, negative-sense RNA genome and need to enter the nucleus to

make use of the nuclear splicing machinery. The nucleoprotein (NP) constitutes

the major protein component of the viral ribonucleoprotein (vRNP) and it forms a
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proteinaceous core around which the RNA is wrapped in a helical fashion.

Available evidence shows that helical vRNPs enter the nucleus in an intact form

through nuclear pores (Martin and Helenius 1991; Kemler, Whittaker et al. 1994).

The length of the individual vRPNs varies from 20 to 80 nm depending on the

size of the RNA. However, the diameter of the rod-shaped particles is small

enough (10-2Onm) to allow active passage of vRNPs if tliey move lengthwise

through the pore. NP is generally though to enter the nucleus using basic-type

NLSs that localize at its N-terminus and interaction with importin a (O’Neill,

Jaskunas et al. 1995; Wang, Palese et al. 1997; Stevens and Barclay 1998).

For access to the nucleus, most retroviruses rely on disassembly of the

nuclear envelope during mitosis. Onco-retroviruses, like the Moloney murine

leukemia virus (MoMLV), can infect only dividing celis, while avian retroviruses,

such as Rous sarcoma virus, are partially restricted to dividing ceils. Human

foamy virus might have some ability to infect ceils in interphase, although there is

controversy on this issue (Roe, Reynolds et al. 1993; Lewis and Emerman 1994;

Saib, Puvion-Dutilleul et al. 1997; Hatziioannou and Goff 2001). In contrast, the

lentiviruse, sucli as HIV-1, infect dividing and nondividing ceils by using an

active nuclear import pathway (Bieniasz, Weiss et al. 1995). This topic will be

discussed in more detail in Part 1.3.

1.3 111V-1 PIC NUCLEAR IMPORT.

HIV-l life cycle requires the integration of viral DNA into the host cell’s

genome to form provirus. To achieve this, the viral reverse-transcribed DNAs

must enter the nucleus as a part of a large preintegration complex (PIC). The size

of retroviral PICs is estimated to be roughly equivalent to the size of eukaryotic

ribosome such that they cannot be transported passively into the nucleus through

nuclear pore complexes (NPCs) (Vodicka 2001; Greene and Peterlin 2002).

However, the lentiviruses such as HIV-1 have evolved sophisticated mechanism

the ensure efficient transport of their genome into the nucleus of non-dividing
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ceils, including macrophages and quiescent T lymphocytes (Gartner and Popovic

1990; Weinberg 1991). It is known that HIV-1 is able to infect non-dividing ceils

because its PIC has a mitosis-independent nuclear import capability (Bukrinsky,

I.N. et al. 1992; Lewis 1992; Lewis and Emerman 1994; Bukrinsky and Haffar

1998; de Noronha, Sherman et al. 2001; Le Rouzic, Mousnier et al. 2002). This

ability is one of the liallmarks that distinguishes HIV-1 from oncoretroviruses

(Weinberg 1991; Lewis 1992; Roe, Reynolds et al. 1993; Lewis and Emerman

1994). Particularly, this feature has been shown to be important for the

establishment of HIV-1 replication and pathogenesis in exposed hosts, since the

infection of post mitotic ceils including tissue macrophages, mucosal dendritic

ceils and quiescent T ceils is essential flot only for viral transmission and

dissemination, but also for the establishment of persistent viral reservoirs

(Meltzer, Skillman. D.R. et al. 1990; Innocenti, Ottmann et al. 1992; Ho,

Cherukuri et al. 1994).

At the molecular level, the ability of HIV-1 to infect non-dividing ceils

has been attributed to the karyophilic properties of HIV-1 PICs. Altliough a

detailed compositional and stoichiometric description of HIV-1 PICs lias yet to be

attained, a number of viral proteins, including IN, matrix (MApl7gag), Vpr, and

RT, have been identified to be associated with this nucleoprotein complex. There

are several possibilities for the molecular mechanisms of PIC nuclear import.

First, proteins that remain associated with the viral genome after uncoating may

mediate PIC import into the nucleus, and this may be assisted by specific cellular

factors. Interestingly, three viral proteins, MA, IN and Vpr, have been proposed to

play significant roles in HIV-1 nuclear import (Bukrinsky, Haggerty et al. 1993;

Heinzinger, Bukinsky et al. 1994; Gallay, Swingler et al. 1995; Gallay, Swingler

et al. 1995; Yao, Subbramanian et al. 1995; Gallay, Hope et al. 1997; Vodicka,

Koepp et al. 1998; Zhou, Lu et al. 1998; Zennou, Petit et al. 2000). Second, the

retroviral genome itself may contain nuclear targeting elements. Recently, a

unique DNA structure, named the central DNA flap, was also shown to play a role
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in PIC nuclear import (Zennou, Petit et al. 2000). The third possibility lias been

raised by the observation that HIV-1 Vpr causes transient bulges in the nuclear

envelope and thus might locally open the gate for nuclear entry of PIC

independent of NPC (de Noronha, Sherman et al. 2001).

Factors that effect PIC entry into nucleus

1.3.1 Matrix (MA): MA was the first protein implicated in HIV-1 nuclear import

in non-dividing ceils (Bukrinsky, Haggerty et al. 1993). MA was originally

shown to contain a sequence at its N-terminus similar to basic NLS

(25GKKKYKLKH) (Bukrinsky, Haggerty et al. 1993). h was subsequently shown

that recombinant GST-MA fusion protein, as well as MA in the uncoated viral

nucleoprotein complex, can bind importin a and that binding only occurs when

there is an intact N-terminal basic domain (Gallay, Stitt et al. 1996). However,

several later reports questioned the role of MA in HIV-1 nuclear import as viruses

lacking MA-NLS stili replicate in non-dividing celis even at reduced levels

(Freed, Englund et al. 1995; Fouchier, Meyer et al. 1997; Reil, Bukovsky et al.

1998). Interestingly, a following study identified a second NLS in the C-terminal

region of MA, and functional analysis revealed that mutations of both MA NLSs

resulted in impairment of nuclear import in non-dividing celis (Haffar, Popov et

al. 2000). A nuclear export signal (NES) was also identified in MA, since the

fusion protein MA-GFP is redistributed from the cytoplasm to the nucleus in the

presence of leptomycin B (an inhibitor of nuclear export) (Dupont, Sharova et al.

1999; Depienne, Roques et al. 2000). It was suggested that the C-terminal

tyrosine phosphorylation of MA also plays a role in the regulation of the

localization and nuclear import of the PIC (Gallay, Swingler et al. 1995). Thus,

while MA is required for efficient nuclear import of HIV-1 PIC, the mechanism is

flot clear and its role appears to be nonessential. It is very likely to be only one of

several factors regulating this process.
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1.3.2 Vpr: Vpr is another HIV-1 encoded protein associated with viral PIC

nuclear import in non-dividing ceils (Heinzinger, Bukinsky et al. 1994; Connor,

Chen et al. 1995; Nie, Bergeron et al. 1998; Vodicka, Koepp et al. 1998). Vpr is a

96-amino acid polypeptide that is packaged into progeny virions through its

interaction with the C-terminal p61 domain of Pr55 Gag precursor protein. It is

localized predomïnantiy in the nucleus and at the nuclear envelope (Vodicka,

Koepp et al. 1998; Kamata and Aida 2000). Deletion of Vpr decreased transport

of the viral genome to the nucleus as determined by 2-LIR circie and decreased

infection of macrophages (Heinzinger, Bukinsky et al. 1994). However, while no

conventional NLS is detectabie in Vpr, two independent signais, one in the N-

terminal a heiicai region and the other in the carboxyi haif of the protein, have

been impiicated in Vpr nuclear import (Lu 1993; Di Marzio, Choe et al. 1995;

Yao, Subbramanian et aI. 1995; Jenkins, McEntee et al. 1998; Zhou, Lu et al.

1998; Sherman, de Noronha et al. 2001). Jenkins et aï. reported that the Vpr

nuclear localization pathway appears to be distinct from the classical NLS- and

M9-dependent nuclear import pathways (Jenkins, McEntee et al. 199$), whiie

others found that Vpr directly interacts with importin Œ (Popov, Rexach et al.

199$; Vodicka, Koepp et al. 1998; Kamata, Nitahara-Kasahara et al. 2005) and

nucleoporin hCG1 (Fouchier, Meyer et al. 1998; Le Rouzic, Mousnier et al.

2002). Interestingly, it was shown that binding of Vpr to importin et increased the

affinity of MA interacting with importin et, suggesting that the formation of such

a trimetric complex may increase the karyophilic potential of the HIV-1 PICs

(Popov, Rexach et ai. 199$). More recently, Vpr expression lias also been shown

to induce transient buiges in the nuclear envelope, whicli may create a channel

between the nucleus and the cytoplasm and may facilitate HIV-1 PIC nuclear

import (de Noronha, Sherman et al. 2001). Such a model proposes that, after

reverse transcription, the PICs remain cytosolic, but in close proximity to the

nuclear envelope. Vpr wouid dissociate from the PIC and enter the nucieus. The
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nuclear Vpr could then induce bursting and resealing of the nuclear envelope,

with the concomitant entrapment of PICs within the nucleus. However, since

HIV-1 is not a typical lytic virus, it is uncertain if the Vpr-mediated nuclear

envelope disruption is enough to allow PIC passage. Moreover, while Vpr plays

an important role in HIV replication in tissue macrophages, it does not appear to

have a significant role in HIV growth in cycling T celis, PBMC, naïve T celis and

growth-arrested indicator celis (Bouyac-Bertoia, Dvorin et al. 2001; Eckstein,

Sherman et al. 2001).

1.3.3 Integrase: Viruses lacking Vpr and MA-NLS stili replicate in non-dividing

celis, although at reduced levels, and so another viral determinant was sought.

Gallay et al. first showed that HIV-1 IN was able to localize in the nucleus and

associate with importin Œ in an in vitro binding assay, suggesting that IN may

contribute to viral nuclear import (Gallay, Hope et al. 1997). Consistently, the

karyophilic feature of IN was further confirmed by different groups using various

IN-fusion proteins, including GFP-IN, BSA-IN and pyruvate kinase (PK)-IN

fusions (Pluymers, Cherepanov et al. 1999; Petit, Scliwartz et aI. 2000; Tsurutani,

Kubo et al. 2000; Bouyac-Bertoia, Dvorin et al. 2001; Depienne, Mousnier et al.

2001; Limon, Devroe et al. 2002; Lu, Limon et al. 2004). Moreover, the

contribution of IN to HIV-1 nuclear import lias been documented in several

reports (Bouyac-Bertoia, Dvorin et al. 2001; Ikeda, Nishitsuji et al. 2004).

Interestingly, even though the nature of the pathway used by IN was flot known,

these studies found that the nuclear import function of IN is essential for

productive HIV-1 infection of botli dividing and non-dividing ceils. This

unexpected resuit suggests that the nuclear entry of HIV-1 PICs in dividing ceils

may not be a passive process. Consistent with this, it was reported that the

nuclear import of HIV-1 PICs might be mitosis-independent in cycling celis

(Katz, Greger et al. 2003).



29

In an attempt to characterize the karyophilic feature of IN, a study by

Gallay et al. suggested that two regions in IN (186KRK and 211KELQKQITK) may

constitute a bipartite NLS motifs since mutants K1860 and Q214/216L in these

regions lost the protein nuclear localization and their ability to bind to

karyopherin Œ in vitro (Gallay, Hope et al. 1997). However, while the study by

Petit et al. confirmed their nuclear localization resuits (Petit, Scliwartz et al.

2000), other researchers could not prove the importance of these mutants for

protein nuclear localization and/or their roles in viral nuclear import; rather they

appear to contribute to reverse transcription and/or integration (Petit, Schwartz et

al. 2000; Tsurutani, Kubo et al. 2000; Bouyac-Bertoia, Dvorin et al. 2001; Lu,

Limon et al. 2004). Moreover, while Bouyac-Bertoia et al. reported a

noncanonical NLS within the catalytic core domain of IN (Bouyac-Bertoia,

Dvorin et al. 2001), later reports were unable to confirm this observation (Dvorin,

Beli et al. 2002; Limon, Devroe et al. 2002). In addition, the mechanism(s)

involved in IN nuclear localization is also controversial. By using in vitro binding

assays, several studies have shown that IN interacts with importin ci. (Gallay,

Hope et al. 1997; fassati, Gorlich et al. 2003; Armon-Omer, Graessmann et al.

2004), while Depienne et al. revealed that IN nuclear accumulation in vitro

neither involve importin CL, f31, and f32-mediated pathways, nor GTP hydrolysis

(Depienne, Mousnier et al. 2001). Moreover, other studies have implicated

nuclear translocation of IN to nucleus by its interaction with a cellular component

LEDGF/p75 (Cherepanov, Maertens et al. 2003; Maertens, Cherepanov et al.

2003). However, recent studies revealed that LEDGF/p75-IN interaction appears

to be essential to tether IN to host chromosomes for viral DNA integration and to

protect it from proteasomal degradation, rather than to IN nuclear transiocation

(Liano, S. et al. 2004; Liano, Vanegas et al. 2004; Emiliani, Mousnier et al. 2005).

Based on similarity to importin f3, a family of nuclear import receptors,

including importin 7 (Imp7), were discovered and shown to contribute
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specifically to nuclear transport of a wide variety of proteins and RNAs into and

out of the nucleus (Pollard, Micliael et al. 1996; Gorlich, Dabrowski et al. 1997;

Gorlich and Kutay 1999). Imp7 (formerly called RanBP7) was initially identified

as one of importin receptors which can mediate nuclear import of ribosomal

proteins in mammalian ceils (Gorlich, Dabrowski et al. 1997; Jakel and Gorlicli

1998). Unlike other importins, such as importin 5, that is in sequence clearly

related to Imp3, Imp7 is more distantïy related, and significant homology to imp3

is restricted to the N-terminal Ran-binding domain (Gorlich, Dabrowski et al.

1997). More recent studies have also demonstrated that Imp7 is involved in

nuclear transiocation of the glucocorticoid receptor (freedman and Yamamoto

2004) and Imp7 can form a heterodimer complex with ImpI3, that is a functional

complex for bind to histone Hi and mediate its nuclear import (Jakel, Albig et al.

1999; Bauerle, Doenecke et al. 2002). Intriguingly, a recent study by Fassati et

al. showed that Imp7 mediates HIV-1 PIC nuclear import in vitro (Fassati,

Gorlich et al. 2003). Their study also suggested that the action of Imp7 in HIV-i

PIC nuclear import may be through its binding to HIV-i IN, since their in vitro

binding assay indicate that recombinant IN could pull down Imp7 from HeLa ceil

lysates (Supplementary materials in (Fassati, Gorlich et al. 2003). Moreover, in

the same system, they also sliowed that IN was able to pull down Impu, Impf3 and

transportin. Therefore, it is stili unclear whether the co-puil down of different

karyopherins with IN was through their direct interaction or derived from a

nuclear import complex. Overail, even though extensive studies have been

dedicated to this specific research field, the contribution of HIV-1 IN to viral PIC

nuclear import remains to be defined.

1.3.4 The central DNA flap: HIV-1 nuclear import has also been found to require

structural determinants present in the viral DNA. The reverse-transcribed HIV-1

genome contains a short triple-stranded overlap (the central DNA flap), which is

formed during plus-strand DNA synthesis. Plus strand DNA is synthesized as two



31

discrete haif-genomic segments. A central copy of the polypurine tract cis-active

sequence (cPPT, over overlaps with the integrase coding gene), present in ail

lentiviral genomes, initiates synthesis of a downstream plus strand. The upstream

plus strand segment initiated at the 3’PPT will, afier a strand transfer, proceed

until the center of the genome and terminate at the central termination sequence

(CTS), which ejects HIV-1 RT at this site. Thus, the final product of HIV-1

reverse transcription is a linear DNA bearing in its center a 99-nucleotide plus

strand overlap, the central DNA flap (Fig.I.8). Early studies suggested that

Mutations in the cPPT or CTS severely impair HIV replication (Chameau, Mizon

et al. 1992; Chameau, Mirambeau et al. 1994). Subsequent studies have revealed

that the central DNA flap acts as a cis-determinant of HIV-1 DNA nuclear import

(Zennou, Petit et al. 2000). Zennou and colleagues engineered an HIV genome

that contained mutations in the cPPT whule otherwise maintaining reverse

transcription and the integrity of the integrase gene. Ibis DNA flap mutant of

HIV was impaired in single-round infection assays and replication was reduced in

both dividing and growth-arrested cells. These mutant HIV-1 genomes

accumulated at the vicinity of the nuclear membrane. Finaily, the investigators

showed that by inserting a central cis-acting DNA flap into an HIV-based vector

lacking a PPT, one could greatly enhance the infection of growth-arrested cells.

Other studies also have reported that the central DNA flap conferred an infection

advantage of approximately 2 to 10 fold on single-round HIV-1-derived lentiviral

vectors, thus suggesting that the centrai DNA flap facilitated early step(s) of

lentiviral transduction (Parolin, Taddeo et al. 1996; Follenzi, Ailles et al. 2000;

Sirven, Pflumio et al. 2000; Dardalhon, Herpers et al. 2001; Park and Kay 2001;

Zennou, Serguera et al. 2001; Maele, Rijck et al. 2003). However, following

studies provided evidence that the central DNA flap did flot play a role in either

PIC nuclear import or HIV-1 replication, as the reduction of replication is rather

small and seems to be strain dependent (Dvorin, Bell et al. 2002) (Limon,



32

Nakajima et aI. 2002). Thus, the exact impact of the central DNA flap on the

HW-1 infection is stiil an open question that remains to be clarified.

tRNA
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Figure 1.8. A schematic representation of the reverse-transcription process of
111V-1 RNA. The generation of the central DNA fLAP in HW-1 cDNA is
repersentated. PBS, primer-binding site; cPPT, central polypurine tract; 3 ‘PPT,
3’ polypurine tract.

Altogether, even though much work trying to explain the importance of

several viral elements such as MA, Vpr, IN and central DNA flap for the ability

of lentiviruses to infect non-dividing cells, the resuits are controversial and none

of the described NLSs in those elements seems to be essential for infection of

non-dividing (fouchier, Meyer et al. 1997; freed, Englund et al. 1997; Dvorin,

Beil et al. 2002; Limon, Nakajima et al. 2002; Petit, Schwwartz et al. 2000; Reil,



33

Bukovsky et al.1998; Yamashita and Emerman, 2005). It is possible that the

effect of the different NLS are redundant, and therefore HIV stiil retained some

ability to infect non-dividing ceils because of the presence of other NLS on other

proteins. Another explanation is that events in the viral lifecycle other than

nuclear import may be more important in determining the ability of a given

retrovirus to infect non-dividing ceils. The association of CA with incoming

virions is different for MLV than it is for H1V since capsid (CA) is tightly

associated with intracellular complexes of MLV, but not HIV. Yamashita et al.

suggested that CA is a dominant determinanat of retrovirus infectivity in

nondividing celis (Yamashita and Emerman, 2004). They hypothesized that

uncoating, rather than nuclear import might be the rate-limiting step in the ability

to infect non-dividing celis if incoming virions can enter the nucleus only after

uncoating lias proceeded (Yamashita and Emerman, 2006; Dismuke et al. 2006).

So, the possible mode! is that CA alters the accessibility of the PIC to cellular or

viral factors that determine nuclear entry and thereby determines the fate of

nuclear transport in nondividing celis.

1.4 Integrase and Integration

Integration of retrovira! DNA into the host genome is a distinguishing

feature and essential step of HIV-1 rep!ication and is mediated by viral IN, a 32-

KD protein generated by protease-mediated cleavage of the C-terminal portion of

the HIV-1 Gag-Pol polyprotein. Integration can be subdivided into two steps: (i)

“3’-end processing”. In the cytoplasm, IN removes two or three nucleotides from

the initially blunt 3’ termini of both strands of full-length, linear viral DNA,

generating a preintegration substrate with 3’ -recessed ends; (ii) “strand transfer”.

In the nucleus, N couples the 3’-recessed DNA ends to the 5’overlianging termini

of the cleaved cellular DNA. Cellular repair machinery completes the integration

process by removing the unpaired dinucleotides from 5’-ends of the viral DNA
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and fuis the gap between viral and target DNA (Chow, Vincent et al. 1992). for

the integration reaction, divalent metal ions such as Mn2 or Mg2 are required but

no source of energy is needed (d’Angelo, Mouscadet et al. 2001). Purified IN can

carry out “3’ -end processing” and strand transfer reaction in vitro when combined

with short synthetic oligonucleotides that mimic the viral DNA ends and a

divalent metal ion. IN also catalyzes a reaction, known as disintegration, which is

essentially the strand transfer reaction in reverse (Chow, Vincent et al. 1992).

1.4.1 The structure ofHIV-1 IN

HIV-1 IN proteins are composed of three structurally and functionally

distinct domains: an N-terminal, zinc-finger-containing domain (residues 1-50,

NID), a core domain (residues 50-212, CCD), and a relatively nonconserved C-

terminal domain (residues 212-288, CTD) (fig.I.9.). Unfortunately, the complete

three-dimensional bioactive structure of HIV-1 integrase is stiil unknown because

of its low solubility. However, the structures of the three separate domains have

been solved by X-ray crystallography or NMR spectroscopy. Structures also exist

for the core domain plus N-terminal domain (Wang, Ling et al. 2001) and for core

domain plus the C-terminal domain (Chen, Krucinski et al. 2000).

The core domain of IN (CCD): There are three highly conserved residues in the

central core domain of HIV-1 IN, Asp64, Asp 116 and Glu ‘52(the D,D-35-E motif)

(Fig.I.9). Mutation any one of these residues block the enzyme activity,

demonstrating their key role in catalysis. The core domain alone can catalyze the

disintegration reaction, but both N- and C-terminal domains are required for 3’-

end processing and strand transfer (Schauer and Billich 1992; Bushman,

Engelman et al. 1993; Engelman, Bushman et al. 1993; Vink, Oude Groeneger et

al. 1993; Mazumder, Engelman et al. 1994; Kulkosky, Katz et al. 1995). A

systematic replacement of the hydrophobic residues resulted in a mutant, f185 K,

which had considerably improved solubility of the core domain and led to its
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crystal structure (Jenkins, Hickman et al. 1995). The central feature of the

structure is a five-stranded f3 sheet flanked by six helical regions (fig.I.10). Two

core domains associate to form a two-fold axis related dimer. This domain of IN

belongs to a superfamily of polynucleotide transferases that includes RNaseH and

the bacteriophage MuA transferase (Rice and Mizuuchi 1995). The loop (residues

140-152) that is adjacent to the active site region is flexible and is quite difference

in many of the structures (Dyda, Hickman et al. 1994).

The N-terminal domain of IN (NTD): The N-terminal domain (1-50) of HIV-1

IN contains a highly conserved HHCC (H12, H16, C40, C43) motif, which binds

one equivalent of zinc, stabilizing the interaction between the helices and overail

IN structure, as well as promoting the formation of higher-order IN multimers

(Zheng, Jenkins et al. 1996). Mutation of the two cystines in the HHCC motif in

HIV-l also affects 3’-processing and strand transfer (Engelman and

Craigie 1992). The Structure of the N-terminal domain of HIV-l IN is highly u

helical, with the monomer consisting of four helices. A hydrophobic core

stabilizes the upper region of the structure while the lower region is stabilized by

Zn2 coordination. The structure of the N-terminal plus core domains (residues 1-

212) for an HIV-1 triple mutant (W131D, f139D, f185K) lias been determined

(Wang, Ling et al. 2001). The crystals contain four monomers per symmetric

unit. The linker region joining the N-terminal and core domains (residues 47-55)

is disordered in all four structures.

The Ctermina1 domain of IN (CTD): The C-terminal domain has five strands

arranged antiparallel to form a f3 barrel which adopts an SH3-like fold and bas

been shown to bind DNA non-specifically (Vink, Oude Groeneger et al. 1993;

Lodi, Ernst et al. 1995; Eijkelenboom, Sprangers et al. 1999). The crystal

structure of the two domain HIV-1 integrase, residues 52-288 lias also been

determined by X-ray crystallography (Chen, Krucinski et al. 2000). Two C-
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terminal domains are related to each other by 90° rotation relative to their two

3processing and transfer

- NonspecificZn+brnding Dismtegration
DNAbindfng

• . . —v — C-terminal 4—
4— N-terminal —a 4— Catalybc core domain

• domamdomam
12 16 4043 50 64 116 152 212 288

HH D D F

K116 Q209 W235 R263
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L Q C N

Figure.I.9. Three domains of IN and Conserved sequences in the carboxyl
terminus of retroviral IN. Region L is only conserved in the lentiviruses; region
C and N are conserved in ail retroviruses, although the consensus sequences differ
between the lentiviruses and the nonlentiviruses. Q is glutamine-rice/basic region
in the lentiviruses. The polypurine tract cis-active sequence (cPPT) and the central
termination sequence (CTS) are located at the L and Q region.

fold axis. Within the dimer, the catalytic core domains form the only dimer

interface, and the C-terminal domains are located 55 A° apart. A 26-aa Œ-helix,

a6, links the C-terminal domain to the catalytic core.

1.4.2 Characterization of the DNA-binding domain of HIV-1 IN.

Current experimental evidence from photocrosslinking and mutagenesis

suggest that ail three domains interact with DNA: The core domain is responsibie

for sequence-specific recognition of the iast six base pairs of viral LTR ends

(Lafemina, Callahan et al. 1991; Ellison and Brown 1994; Jenkins, Esposito et

a11997; Esposito and Craigie 1998; Gao, Butler et al. 2001). The C- domain is
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responsible for nonspecffic binding of more distal bases of the LTRs

(Jenkins, Esposito et al. 1997; Esposito and Craigie 1998; Heuer and Brown

1998). The N-terminal domain is in close proximity to target DNA 5’ to the site of

integration (Heuer and Brown 1998) but the first 26 residues of HW-1 IN are flot

required for DNA binding (Mumm and Grandgenett 1991; Mazumder, Neamati et

al. 1996). More recently, Luca L.D. et al generated the three-domain protein

viral DNA complex through an automated docking algorithm (De Luca, Vistoli et

ai. 2005). They suggested that the viral DNA interacted with ail three IN domains

and the arnino acids which formed direct interactions with the viral DNA were

residues K156, K159, K160, K186, K188 in the catalytic core domain of chain B,

a6 C

a2

figure 1.10. Ribbon diagram of the core domain of HW-1 N. f3 strands and a
helices are marked. Two residues of the D,D-35-E motif, Asp64 and Asp116, are
shown as baII-and-stick models.
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R20 in the N-terminal domain of Chain B, and 8230, R231, W244, K263, and

K264 in the C-terminal domain of Chain A.

Numerous studies have analyzed HIV-1 mutants altered at IN active-site

residues (the D,D-35-E motif) that resuit in class I replication-defective mutants,

which are specifically blocked at the integration step. Resuits of IN-DNA photo

cross-linking, footprinting, and in vitro enzyme assays reveled other conserved

catalytic core domain residues are likely to contact viral and target DNA during

integration (Heuer and Brown 1997; Jenkins, Esposito et al. 1997; Esposito and

Craigie 1998; Gerton, Ohgi et al. 199$; Heuer and Brown 1998; Appa, Shin et al.

2001; Dirac and Kjems 2001; Harper, Skinner et al. 2001). The conserved

residues and structural features of the CCD Phe’39-Gln’46 flexible ioop and

abutting Ser’47-Val 165 alpha-helix are likely important for DNA binding during

HIV-1 replication. Specifically, K159, Y143, and Q148 cross-linked to viral

DNA substrates (Jenkins, Esposito et al. 1997; Esposito and Craigie 1998) and

Q62, N120 likely contact viral and target DNA respectively during integration

(van Gent, Groeneger et al. 1992; Esposito and Craigie 1998; Gerton, Ohgi et al.

1998; Chen, Wei et al. 1999). By analysising the roles of these residues in HIV-1

replication, studies showed that almost ah singly substituted viral DNA

interacting mutants retained some capacity to replicate, which is different to

active-site mutations wherein a single amino acid substitution is sufficient to

render HIV-1 replication defective (Lu, Limon et al. 2005). An interesting

finding is that mutations that reduced the binding of IN to viral cDNA, such as the

N144Q, PYNP (position 142-145—*KL), and KKK156, 159, 16OAAA, resulted in

severe impairment of virus infectivity, most likely by affecting the nuclear import

of viral cDNA (Ikeda, Nishitsuji et al. 2004). For the C-terminal domain,

experiments showed that IN 220-270 binds to both viral DNA as well as non

specific DNA, and two amino acid residues, arginine 262 and leucine 234, are

critical to DNA binding (Lutzke, Vink et al. 1994; Lutzke and Plasterk 1998).
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1.4.3 Persistence and expression of unintegrated HIV-1 UNA

Reverse-transcribed linear viral cDNAs have two fates besides bona fide

integration, none of which are precursors to integration: a. the conversion to 1 or

2-LTR circles by liomologous or host celi nonhomologous DNA end-j oint system

(farnet and Haseltine 1991); b. auto-integration to form defective, rearranged

DNAs (Shoemaker, Hoffman et al. 1981; Brussel, Mathez et al. 2003). Recent

analyses have concluded that circular forms of DNA are stable intracellularly, and

undergo dilution only on celi division (Butier, Jolinson et al. 2002; Pierson, Zhou

et al. 2002; Brussel, Mathez et al. 2003; Bushman 2003). The persistence of

unintegrated HIV-1 DNA in celis and its role are important but stiil unclear. Li et

al suggested that the double-stranded ends of unintegrated linear viral cDNA

mimic chromosomal breaks and may induce apoptosis (Lewis 1992). In order to

avoid death, the ceil may rapidly convert linear viral cDNA into circles, so class I

IN mutant viruses generate higher levels of LTR circle when compared to the

wild type (WT). In fact, large levels of circular forms of unintegrated HIV-1

DNA have been detected in the brains of some patients with AIDS dementia

(Pang, Koyanagi et al. 1990). Also, unintegrated circular viral DNA, particularly

2-LTR circles, in the mononuclear ceils of infected patients appears to be

associated with high levels of plasma HIV-1 RNA, rapid decline in CD4 count,

and clinical progression ofAIDS (Panther, Coombs et al. 1998).

Although chromosomal integration is believed to be essential for HIV-1

life cycle (Panther, Coombs et al. 1998), evidence of HIV-1 gene expression

from unintegrated DNA has accumulated for integration mutant viruses

(Stevenson, Haggerty et al. 1990; Ansari-Lari, Donehower et al. 1995; Engelman

and Craigie 1995; Wiskerchen and Muesing 1995; Wu and Marsh 2001; Poon and

Chen 2003; Saenz, Loewen et al. 2004). Mutations of any of three residues that

participate in the catalytic center (D64, D116, and E152) of HIV-1 IN produce

phenotype that only affect integration steps (class I mutation). Ceils infected with

class I mutants contain higher levels of unintegrated DNA circles than do wild
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type infected ceils, and class I HIV-1 IN mutants display 11.5 to 18% of WT

activity in the multinuclear activation of galactosidase indicator (MAGI) assay

(Ansari-Lari, Donehower et al. 1995; Engelman, Englund et al. 1995; Wiskerchen

and Muesing 1995). Single-round replication of class I IN mutants carrying the

luciferase gene (Luc) in the nef position produced 0.2 and 3.6%, respectively, of

the level of WT luciferase in RD ceils and HeLa celis (Masuda, Planelles et al.

1995; Poon and Chen 2003); in the latter case, the author demonstrated that HIV

1 Vpr can enhances expression from unintegrated HIV-1 DNA. More recently,

some expressions of tat transcripts, rev, or the rev — dependent structural proteins,

were found from unintegrated class I IN mutant HIV-1 DNA in resting T celis

(Wu, Wakefield et al. 2001). furthermore, Nakajiam et ai. examined the

infection properties of class I IN mutant HIV-1 in different T-cell unes and

primary celis and found two celi limes (MI-4 and C8166) that showed spreading

infections. MT4 ceils even permitted serial passage of virus (Nakajima, Lu et al.

2001). Whether gene expression from unintegrated DNA plays a role in HIV-1

pathogenesis and the development of AIDS dementia in vivo is stili an open

question. Recent studies demonstrated that expression from unintegrated HIV-1

DNA lias biological significance (Wu and Marsh 2001), and prevalent

unintegrated HIV-1 DNA can be detected in vivo (Pang, Koyanagi et al. 1990;

Chun, Carruth et al. 1997; Teo, Veryard et al. 1997).

1.4.4 Characterization of class II IN mutants

IN is expressed as part of the Gag-Pol polyprotein precursor, which plays an

important role in virion assembly and is essential for the formation of infectious

virions. Mutagenesis of the C-terminal region of Pr160 Gag-PoI (IN domaïn) lias

been associated with defects in virion assembly, release, maturation, and protein

composition (Shin, Taddeo et al. 1994; Ansari-Lari, Donehower et al. 1995;

Engelman, Englund et al. 1995; Bukovsky and Gottiinger 1996; Quillent, Borman

et al. 1996; Engelman, Liu et al. 1997). Moreover, these defective viruses are
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also impaired in early steps of the virus life cycle, sucli as uncoating, viral DNA

synthesis and nuclear import of PIC (Engelman, Englund et al. 1995; Masuda,

Planelles et al. 1995; Cannon, Byles et al. 1996; Leavitt, Robles et al. 1996;

Engelman, Liu et al. 1997; Gallay, Hope et al. 1997; Wu, Liu et al. 1999; Bouyac

Bertoia, Dvorin et al. 2001). These IN mutants are classified as Class II mutants.

In contrast to class I IN mutants, which are specifically blocked at the integration

step, the class II mutants cause pleiotropic defects at multiple stages of viral

replication other than integration and such mutations may alter virus replication

through various mechanisms in the viral life cycle.

Due to the pleiotropic nature of the class II IN mutants, assays to detect

viral DNA synthesis, nuclear entry or integration have been developed and used

to characterize the precise determinants in IN that cause each defect and

understand a full function of IN.

For integration step, besides in vitro integration assay, the Alu-PCR, a

nested PCR method with primers to the LTR and to repetitive Alu-elements found

throughout the human genome can detect a bona fide integration in vivo (Chun,

Stuyver et al. 1997). Since reduced integration can resuit from decreased reverse

transcription or nuclear import, Mu-PCR assays are not aiways useful for

dissecting the function of IN at the virus replication level. To directly analyze the

integration function of IN, the Vpr-IN complementation assay can also be used to

investigate the infectivity defects and catalytic activities of class I and class II IN

mutants. Studies showed that the infectivity of integration-defective HIV-1 can

be restored by incorporating WT IN or class II IN mutants, such as V165A, into

assembling particles as Vpr-IN fusion protein (Fletcher, Soares et al. 1997; Wu,

Liu et al. 1999), suggesting that these class II IN mutants do not specifically affect

the integration step. Furthermore, analysis the cDNA synthesis and nuclear

import profiles of replication-defective IN mutant viruses in cycling and

nondividing ceils are also essential for understanding the functional role of IN in

111V-1 replication.
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Reverse transcription is a multiple step process requiring two template

switches to generate full-length duplex cDNA (fig.I.9). b analysis the cDNA

synthesis, in addition to Southern blot, PCR primers can be designed to quantify

specific steps in the sequential process (Julias, Ferris et al. 2001). Moreover, an

RQ-PCR (Real-time Quantitative Polymerase Chain Reaction) assay with LTR

and gag-specific primers has been used to quantify leveis of fulI-iength and nearly

full-iength late reverse transcription products (Limon, Nakajima et al. 2002).

Nuclear entry of viral genomes is a prerequisite for viral integration.

Detection of 2 LTR circle, is the most widely used assay for monitoring nuclear

transiocation of the PIC (Lewis 1992). Previous resuits established that class II

IN mutant viruses were defective for two-LTR circle formation (Ansari-Lari,

Donehower et al. 1995; Engelman, Englund et ai. 1995; Leavitt, Robies et ai.

1996; Engelman, Liu et al. 1997; Limon, Devroe et al. 2002). Although the

defective nuclear import might be a phenotype common to ail class II mutant

(Limon, Devroe et ai. 2002), other resuits indicated that reduced levels of reverse

transcription might in large part account for the observed reductions in two-LTR

circle formation (Leavitt, Robles et al. 1996). On the other hand, a higher level of

two-LTR does flot mean increased nuciear import. As previously reported, class I

IN mutant, which have normal reverse transcription and PIC nuclear import,

formed more 2-LIR circles than the WT virus by blocking the access of linear

cDNAs to the integration end point (Engelman, Englund et al. 1995; Wiskerchen

and Muesing 1995; Leavitt, Robles et al. 1996). Therefore, by using the methods

described above, simultaneous analysis of the effect of IN on different steps of

viral replication becomes possible.

IN mutations influence the production of viral DNA

Although reverse transcription is catalyzed by RI, and it can occur in vitro

with recombinant RI, template, and primer, the process is more complex in vivo.

In infected celis, reverse transcription takes place in the context of a nucleic acid
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protein complex that includes other viral and cellular factors. In addition to be

affected by several viral factors, including MA, nucleocapsid, Nef, and Vif

(Aiken and Trono 1995; Harrich, Ulich et al. 1997; Kiernan, Ono et al. 1998;

Dettenhofer, Cen et al. 2000), the reverse transcription can also be influenced by

IN (Tasara, Maga et al. 2001). Mutations in the HIV-1 IN coding sequence have

been shown to impair viral DNA synthesis in infected celis. Deletion of entire IN

(AIN) or a small portion (A22) of its C-terminus reduces the amount of early viral

DNA products detected by PCR, and viruses containing either point mutations in

the N-terminal zinc finger (H12L/AJC, H16V/A/C) or the central domain (f185A)

exhibit a similar phenotype (Engelman, Englund et al. 1995; Masuda, Planelles et

al. 1995; Engelman, Liu et al. 1997; Liu, Wu et al. 1999; Wu, Liu et al. 1999). Up

to now, the mechanism by which IN mutations influence the production of viral

DNA is flot clear. Some studies demonstrated that a physical interaction exists

between RT and IN of HIV-1 and MLV in vitro and this interaction is not

mediated by nucleic acid bridging (Hu, Court et al. 1986; Wu, Liu et al. 1999;

Tasara, Maga et al. 2001). Another report demonstrated that monoclonal

antibodies generated against the minimal DNA binding domain in the C-terminus

of IN block the interaction of recombinant IN and RT (Ishikawa, Okui et al.

1999). Recently, by using coimmunoprecipitation and GST pull down assays,

two reports indicate that the C-terminal domain of IN is involved in interaction

with RT, and C13OS IN mutant virus abolished the ability of the virus to initiate

reverse transcription presumably by disrupting the protein recognition interface of

the C-terminal domain and abolishing its ability to interact with RT (Tan, Zhu et

al. 2004; Zhu, Dobard et al. 2004).

IN mutations influence the nuclear import of viral DNA

There are three conserved regions, which were designated regions L, C,

and N (FigI.10), located in the IN downstream of residue 179 in HIV-1 (Cannon,

Byles et al. 1996). Region L is only found in the lentiviruses, while C and N are
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conserved in ail retroviruses. The region between sequence L and C contains a

notable concentration of glutamine and basic residues in the lentiviruses and was

designated region Q. Cannon et al. showed that IN mutant viruses within motif L

(K186Q) and Q (Q214L, Q216L) abolished HIV-1 infectivity but did not affect

particle production, morphology, reverse transcription, or nuclear import in T cell

unes (Cannon, Byles et al. 1996). In 1997, Gallay first reported that IN

recognized importin-a via a bipartite NLS, NLS (KRK188) and NLSD

(KELQKQITK219), in the L and Q regions since IN mutants K186Q and/or

Q214L/Q216L resulted in the loss of interaction with karyopherin-Œ and exhibited

a cytoplasmic localization (Gallay, Hope et al. 1997). However, the following

studies on the subcellular localization of NLS and NLSD mutant proteins were

controversial. Although Petit et al. showed that alteration of L and Q sequence,

either alone or in combination (K1$6Q; QQ214,6LL; K186Q/ QQ214,6L),

resulted in the loss of nuclear accumulation of IN, other studies observed an

effective nuclear localization of these mutant IN by using GfP-IN fusion proteins

(Petit, Schwartz et al. 2000; Tsurutani, Kubo et al. 2000). In the context of viral

infection, ail studies confirmed the NLS and NLS mutant viruses were

replication defective, but they failed to reveal evidence of altered nuclear

localization in both dividing and non-dividing cells (Petit, Schwartz et al. 2000;

Tsurutani, Kubo et al. 2000). Instead, the replication defect was suggested to

reside at the levels of reverse transcription (Tsurutani, Kubo et al. 2000),

integration (Petit, Schwartz et ai. 2000) or postnuclear entry (Lu, Limon et ai.

2004). However, a recent study by Lu et aï. observed that infection of a Q region

mutant (K215A/K219A) induced more than 3-fold iower luc activity compared to

class I IN mutant D64N/D1 16N (Lu, Limon et al. 2004), suggesting there was a

reduced level of viral DNA in the nucleus, which is accessible for tat and nef

(Luc) expression. Moreover, their study revealed that, in the context of VSV-G

pseudotyped virus infection in Jurkat celis, 2-LTR circle DNA levels of

K215A/K219A and Q214L/Q216L were significantly lower than V165A and
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C13OG, even though the inhibition of viral reverse transcription mediated by these

mutants was comparable (Lu, Limon et al. 2004).

For region C and N mutant viruses, most of them, such as K236E,

L241A, L242A, K244A, E246K/A, K264E, R262A/R263A, R262A/K264A,

K266A/E, were also replication defective and displayed reverse transcription

defects and reductions of 2-LTR circles (Lu, Limon et al. 2004). The most

plausible mutation is at W-235, which is conserved only in the lentivirus. While

the W235A or W235E mutant lias been sliown to abolish viral replication, mutant

W235F is replication competent (Engelman, Englund et al. 1995; Cannon, Byles

et al. 1996; Leavitt, Robles et al. 1996). It is not clear where the block lies for

W235A/E since the mutants have normal reverse transcription and nuclear import

and in vitro integrase activity. It was suggested that the defect might occur during

integration in vivo (Leavitt, Robles et al. 1996).

In 2001, the V165 and R166 residues in HIV-1 IN were shown to be

critical for its NLS function (Bouyac-Bertoia, Dvorin et al. 2001). But

reassessments of these V165/R 166 functions by use of IN mutants V165A/R166A

in several studies showed these mutants are class II IN mutant which are primarily

defective in integration steps (Dvorin, Beil et al. 2002; Limon, Nakajima et al.

2002). Recently, mutants V165A and R166A were identified to be defective for

binding to cellular protein LEDGF/p75 by His6-tag pull down assay (Cherepanov,

Ambrosio et al. 2005). Interestingly, another IN mutant in the same region,

Q16$A, which also disrupted the interaction with LEDGF/p75, abolished the

chromosomal targeting of IN without affecting its catalytic activity, resulting in

integration and replication-deficient viruses. Furthermore, the mutation did not

affect the nuclear import of HIV-1 IN (Emiliani, Mousnier et al. 2005).

Moreover, the effects of mutations at key residues for viral cDNA

recognition (PYNP at positions 142 to 145, KKK156, 159,160) were evaluated in

the context of viral replication and the biochemical properties of the recombinant

protein (Ikeda, Nishitsuji et al. 2004). These studies indicated that mutations such
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as N144Q, PYNP/KL or KKK156, 159,160/AAA, which reduced the binding of

IN to viral cDNA, resulted in severe impairment of virus infectivity, most likely

by affecting the nuclear import of viral DNA. IN residue C 130 also lias been

implicated in HIV-1 nuclear import through affecting IN multimerization more

than functioning as an NLS per se (Petit, Schwartz et al. 2000). But following

study reveals that HIV-1 C13OG was defective for reverse transcription and is not

essential for replication (Lu, Limon et al. 2004).

Taken together, until now, no IN mutant was clearly shown to principally

block the nuclear import step. It appears that, by using typical viral infection

system and analysis assays, it is difficuit to draw a conclusion about which

regions of IN contributes to nuclear import of HIV PIC due to the pleotropic

effect of IN on viral replication. Hence, more studies are required in order to

elucidate the exact role of IN in PIC nuclear import.

IN mutations influence virion morphology, release, and!or assembly

Defective viral particle assembly and release is one of the phenotypes

associated with pleiotropic class II mutant (Bukovsky and Gottlinger 1996;

Engelman 1999). Lack of IN can markedly affect HIV-1 particle production

(Bukovsky, Song et al. 1999). Substituting Lys for Plie-185 dramatically

increased the solubility of recombinant IN but affected particle assembly and

release (Jenkins, Engelman et al. 1996; Engelman, Liu et al. 1997). HIV-1

IN/H12N, IN1-234, IN1-4 contained approximately 3-to 10-fold reductions in

levels of RT and IN and also affected the appearance of virus particles, such as

immature rings or aberrant mature particle (Engelman, Englund et al. 1995).

1.4.5 Cellular proteins involved in HIV-1 integration

The integration of viral cDNA into the host chromosome is an essential

step in the HIV-1 life cycle. The key protein for retroviral integration is IN.
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However, a variety of cellular proteins have been put forward as important

partners in the estabiishing the integrated provirus in the infected ceils. Examples

include the barrier-to-autointegration factor (BAF) (Lewis and Emerman 1994;

IZee and Craigie 1998), high-mobility group protein Al (HMGa1) (farnet and

Bushman 1997), integrase interactor 1(INI-1) (Kalpana, Marmon et ai. 1994;

Young 2001), DNA-PK (Daniel, Katz et al. 1999), DNA repair protein hRAD18

(Mulder, Chakrabarti et al. 2002), a celiular acetyltransferase p300 (Cereseto,

Manganaro et ai. 2005), and most recently, Yens epithelium-derived growth

factor/p75 (LEDGF/p75) (Busschots, Vercammen et al. 2005). Among them,

BAF, INI-1 and LEDGF/p75 have been studied in detail as the co-factors of

retroviral integration.

The barrier-to-autoïntegration factor (BAF): This factor is a smail (10-kDa, 89

aa.) human protein, dimers of which bind directly but nonspecifically to double

stranded DNA (Cai, Huang et al. 1998; Zheng, Ghirlando et al. 2000; Lee,

Haraguchi et al. 2001). The finding that lamina-associated polypeptide (LAP-2),

a nuclear LEM (named for LAP2, emerin, and MAN1)-domain protein associated

with lamina, interacts with BAF in a yeast two hybrid system suggests possible

role of BAF in nuclear structure organization (furukawa 1999). The potentiai

role of this protein for retroviral integration stili remains to be answered. BAF

has been reported to protect M.MLV PIC against suicidai autointegration (Lee

and Craigie 1998) or promote efficient intermolecular DNA recombination once a

suitable chromosomal target site is located (Suzuki and Craigie 2002). In vitro

integratlon assay indicated that recombinant human BAF protein restored both the

integration activity of salt-disrupted HIV-1 PIC and the unique protein-DNA

structure at the ends of HIV-1 by MM-PCR footprinting (Mu-mediated PCR

footprinting) (Chen and Engelman 1998). Moreover, BAF was found present at

low stoichiometry in HIV-1 virions and can bind directly to p55 Gag and MA

(Mansharamani, Graham et al. 2003). However, the important role of BAF in
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HIV-1 replication is questioned by a study that showed that BAF expression is

very 10w or flot detected in thymus and peripheral leukocytes, which are

important target celis for HIV-1 infection (Mansharamani, Graham et al. 2003).

Integrase interactor 1(INI1): INI1/hSNF5 is one of the proteins that directly

interact with IN and are incorporated into virion (Kaïpana, Marmon et al. 1994;

Morozov, Yung et al. 1998). It is a homologue of yeast transcription factor SNF5

and is a component of the ATP-dependent chromatin-remodeling mammalian

SWI/SNF complex (Wang, Cote et al. 1996). This 385-amino-acid protein has

three highly conserved regions including two direct imperfect repeats, repeati

(Rptl) and repeat 2(Rpt2), a C-terminal coiled-coil domain, and homology region

(HR3). The Rptl region is necessary and sufficient to bind to HIV-1 IN

(Morozov, Yung et al. 1998). The incorporation of INI1/hSNF5 into HIV-1

virions is directly correlated with its ability to exclusively interact with HIV-1 IN

but not with other retroviral IN. At present it is unclear whether INI1 is really

required for HIV-1 replication. However, studies demonstrated that INI1-

deficient celis produced low amounts of virions that were poorly infectious,

indicating that this protein is required for proper assembly of HIV-1 (Yung, Sorin

et al. 2001). Recently, a fragment of IN1/hSNF5 (S6) (residues 183-294)

spanning the minimal IN interaction domain was found to profoundly inhibit virus

particle production of HIV-1 in a dominant negative manner (Yung, Sorin et al.

2004). Therefore, INI1 may play a role during the post-integration steps of HIV-1

replication.

Lens epithelium derived growth factor (LEDGF/p75): A novel cellular protein

which directly interacts with HIV-1 IN and targets HIV-1 DNA integration is

LEDGFp75. By using co-immunoprecipitation and yeast-two-hybrid analysis,

LEDGF/p75 was identified as a binding partner of HIV-1 IN and the binding
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region was located at its C-terminus (Cherepanov, Maertens et al. 2003; Turlure,

Devroe et al. 2004; Emiliani, Mousnier et al. 2005).

The protein is predominantly localized in the nucleus, where it is

associated with the chromosomes (Nishizawa, Usukura et al. 2001). The gene

encoding LEDGF/p75 also encodes a smaller spiice variant, p52, which shares a

region of 325 residues with LEDGF/p75 at the N-terminus but contains eight

additional amino acids (Ge, Si et al. 1998). Both proteins function as a survival

factor and a transcriptional co-activator in the ceil, but p52 fails to interact with

HIV-1 IN in vitro or in living celis (Maertens, Cherepanov et al. 2003).

LEDGF/p75 contains 530 amino acids and several functional domains. In the N-

terminal region of it, a PWWP (for Pro-Trp-Trp-Pro) domain of 92 residues is

present that functions as protein-protein interaction domain and/or DNA-binding

domain (Stec, Nagi et al. 2000; Qiu, Sawada et al. 2002). A functional NLS

(‘46RRGRKRKAEKQ’56) was found by deletion mapping and site-directed

mutagenesis (Maertens, Cherepanov et al. 2004; Vanegas, Liano et al. 2005). A

conserved IN-binding domain (IBD) of 80 amino acids (residues 347-429) was

mapped to the C-terminus (Cherepanov, Devroe et al. 2004). The structure of the

IBD lias been resolved by nuclear magnetic resonance (Cherepanov, Ambrosio et

al. 2005) and is a compact right-handed bundie composed of five Œ helices.

LEDGF/p75-binding site on IN was also studied and both the N-terminal zinc

domain and the central core domain of IN were found to be involved in the

interaction with LEDGF/p75 (Maertens, Cherepanov et al. 2003). Furthermore,

Class II IN mutants V165A, R166A and L172A/K173A were most defective for

bindingto LEDGf/p75 by His6-tag pull down assay (Cherepanov, Ambrosio et

al. 2005). In addition, in vitro integration assays with PIC showed that

endogenous LEDGf/p75 is a component of HIV-1 and FIV PIC (Liano, Vanegas

et aI. 2004).
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What is the functional role of LEDGf/p75 in HIV-1 replication?

LEDGf/p75 lias been shown to associate with HIV-1 IN in human ceils

(Cherepanov, Maertens et al. 2003). By using siRNA knock-down technique,

initial studies suggested that endogenous LEDGF/p75 was both necessary and

sufficient for accumulation of HIV-1 IN into the nucleus (Maertens, Cherepanov

et al. 2003). Moreover, a single amino acid change in the NLS motif of

LEDGF/p75 (K15OA) was able to exciude the mutant LEDGF/p75 protein from

the nucleus and abolish nuclear import of HIV-1 IN (Maertens, Cherepanov et al.

2004). Therefore, a possible role of LEDGF/p75 in nuclear import or,

alternatively, in chromosomal tethering was initially proposed (Maertens,

Cherepanov et al. 2003). However, in direct nuclear import assay, recombinant

HIV-1 IN is stili actively imported in the nucleus in the absence of LEDGF!p75

(Emiliani, Mousnier et al. 2005). More importantly, addition of a proteasome

inhibitor to celis defective for LEDGF/p75 restores IN accumulation in the

nucleus, suggesting that knock-down of LEDGf/p75 leads to a reduction of IN

expression, likely resulting from proteasome activity, as LEDGF/p75 has been

shown to increase the stability of HIV-1 IN in the ceils by preventing proteasomal

degradation (Liano, Delgado et al. 2004; Emiliani, Mousnier et al. 2005).

Recently, in fluorescent correlation spectroscopy experiments, LEDGf/p75 was

found to stimulate the binding of 111V-1 IN to DNA (Busschots, Vercammen et al.

2005). This in vitro resuit suggests that LEDGF/p75 more likely functions as a

tethering factor for 111V IN to the chromosomes, which can explain the apparent

nuclear accumulation of HIV-1 IN and association to mitotic chromosome.

Moreover, Ciuffi et al found that LEDGF/p75 affects the choice of target sites for

HIV-1 integration in ceils (Ciuffi, Llano et al. 2005).

Mutagenesis was employed to elucidate the role of LEDGf/p75 in HIV-1

replication. An IN mutant Q168A was identified to abolish interaction with

LEDGF/p75 through a random mutant IN library in a yeast-two-liybrid assay
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(Emiliani, Mousnier et al. 2005). Mthough the Q168A recombinant IN displayed

wild type IN activity in vitro, viruses containing IN Q168A were defective for

replication due to a specific block at the integration step, whereas the nuclear

import was flot hampered. On the other hand, despite the mass of biochemical

data implicating a role for LEDGF/p75 in HIV-1 replication, attempts to reduce

the intracellular level of LEDGF/p75 protein using transient and stable siRNAs

failed to ascribe a genetic link between endogenous levels of LEDGF/p75 protein

and HIV-1 replication (Liano, Vanegas et al. 2004; Vandegraaff, Devroe et al.

2005). One explanation for why HIV-1 replicated in celis knocked-down for

LEDGF/p75 expression is that relatively high residual levels of LEDGF/p75

protein within these cells might function to support normal levels of integration.

On the other hand, with carefully controlled experiments, Vandekerckhove et a. I

showed 3-5 fold decrease of HIV infection by transient or stable knockdown of

LEDGF/p75 expression and confirmed the importance of LEDGF/p75 for HIV-1

replication (Vandekerckhove, Christ et al. 2006). Ail of these studies suggest that

siRNA technology is limited and should be performed carefully in order to

evaluate the role of cellular proteins in ceil culture

1.4.6 HIV-1 IN inhibitors (INIs)

Currently, there are three distinct mechanistic classes of drugs to combat

HIV infection: inhibitors of the HIV-1 reverse transcritptase and protease

enzymes and inhibitors of HIV entry. The therapeutic drug strategies such as

HAART, that target the viral enzymes reverse transcriptase (RI’) and protease

(PR), have been successful in increasing patient lifespan and suppression of HIV

f RNA plasma levels for a prolonged periods of time. However, viral replication

is incompletely suppressed and drug resistance, patient adherence, and toxicity are

serious challenges for HÀART. On the other hand, viral entry is a complex

process that can be divided into three steps: adsorption, co-receptor binding, and

fusion. Each of these steps offers the potential for therapeutic intervention, and
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severai entry inhibitors are in preclinical or clinicai trial (O’Hara and Oison 2002).

From this broad class of potentiai inhibitors, one drug, enfuvirtide (ENf) or

fuzeon, a fusion inhibitor, has gained approval from the FDA (Miller, Rouer et al.

2004). But ENF is durrently used as a salvage therapy owing to its prohibitive

production cost and low oral bioavaiiabiiity.

IN, the third of virai enzymes is the most promising of the new targets in

preciinicai or eariy ciinical trials. IN is an essentiai part of the viral replication

cycle. There is no mammalian homologue to this enzyme and the IN region of the

pOl gene is more conserved than either the RT or PR coding regions. Ail these

features make IN an especially attractive drug target. Several new compounds that

target specific integration steps have been identified and developed.

Strand transfer inhibitors (511): The STI binds to the IN portion of the

viral IN-DNA complex within the enzyme’s catalytic DDE in the context of the

viral PIC afier reverse transcription. However, the 3’-processing step can stiil

occur and the STI bound PIC complex (STI-IN-viral DNA) enters the nucleus of

the infected ccli. Once in the nucleus, the presence of the STI blocks the IN

enzymes’s catalytic site and the STI-IN-virai DNA compiex cannot bind to the

cellular DNA (Hazuda, Feiock et al. 2000). By random screening, compounds that

contained a distinct f3 diketo acid motiety (DKAs: 4-aryl-2,4-diketobutanic acid)

were found to possesse a unique ability to specificaliy inhibit the DNA strand

transfer step of integration (Hazuda, Biau et ai. 1999; Hazuda, Felock et al. 2000;

Pais, Zhang et ai. 2002; Johnson, Marchand et al. 2004; Svarovskaia, Barr et al.

2004). Sus DKA derivatives, that are represented by naphthyridine carboxamide

compounds L-870,810 and L-870,812, were developed. L-870,810 was active

against viral strains exhibiting muitidrug resistance to the currently licensed

antiviral agents (Hazuda, Anthony et al. 2004). It was one of the first INIs to

reach phasel clinical trails, but the development of this drug was haited because
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of toxicities observed in animais (Littie S 2005). L-900,612 (MK-0518) is a new

naphthyridine derivative and an upgraded compound from L-870,810. MK-0518

had promising early clinical trial resuits and lias been advanced along the

developmental pipeline entering phase 3 trials (Grinsztejn B 2006). MK-0518

had potent antiretroviral activity with 56% to 72% of patients achieving an HIV

RNA level of less than 50 copies per milliliter at week 16 (Grinsztejn B 2006).

Another STIs, GS-9137 (Dihydroquinoline-3-carboxylic acid), is now in clinical

phase 2 (Dejesus E 2006).

3’-Processing Inhititor versus nuclear transtocation inhibitor

Styiytquinolines: Styrylquinolines act both on 3’-processing and to a lesser extent

strands transfer activities and FZ41 is the most potent compound from this group

(Bonnenfant, Thomas et al. 2004). Tyrylquinolines have a unique mode of action,

inhibiting the interaction between IN and cellular factors and competing for the

LIR substrate (Zouhiri, Mouscadet et al. 2000; Bonnenfant, Thomas et aI. 2004).

Futhermore, Mousnier and colleagues demonstrated in vitro that fZ41 specifically

and efficiently inhibited the nuclear import of IN in digitonin-permeabilized celis,

which suggest that tyrylquinolines likely inhibit the interaction between IN and a

celiular factor required for nuciear import of PIC (Mousnier, Leh et al. 2004).

Tyrylquinolines class of compounds are very promising, liowever, better

corroboration of the specific viral target in ceil culture is needed.

IN-DNA binding Inhibitors: Among 5 -H-pyrano-dipyrimidines compounds, V

165, which inhibited both HIV replication in celI culture and IN activity in

enzymatic assays at micromolar concentrations, is the most potent IN-DNA

binding inhititor (Pannecouque, Pluymers et al. 2002). V-165 prevent assembly

of a stable complex between IN and viral DNA and consequently the next step of

integration, 3 ‘processing. V 165 retained its activity when test against various

drug-resistant HIV-1 strains (Pannecouque, Pluymers et ai. 2002). Given the

unique mode of action of pyrano-dipyrimidines and the lack of cross resistance to
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DKAs, these agents may be good canadidates for further clinical development

(Pannecouque, Pluymers et al. 2002; Fikkert, Van Maele et al. 2003; Witvrouw,

Pannecouque et al. 2004).

Other INIs: There are a few other INIs in preclinical development, including

host celi DNA repair protein inhibitor theophylline, nuclear import inhibitor ITI

367, antimicrobial peptide indolicidin, fungal polyketide mycelium integrasone

and carbazole derivatives NIID.
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OBJECTIVES 0F THIS STUDY

One of the features that distinguish HIV-1 and other lentiviruses from

oncoretroviruses is their capacity to productively infect nondividing ceils at the

molecular level, the dichotomy between HIV-1 and oncoretroviruses has been

attributed to the karyophuiic properties of HIV PIC. The current mode! for HIV-1

nuclear entry is that the viral factors present in PICs contain nuclear localization

signais that engage the cellular transport proteins, which direct the PIC through

the nuclear pore. Several HIV-1 proteins, including MAp17, IN and Vpr, have

been reported to have karyophilic properties and were shown to contribute to

nuclear transiocation of viral PICs (Bukrinsky, Haggerty et al. 1993; Heinzinger,

Bukinsky et al. 1994; Connor, Chen et al. 1995; Gallay, Stitt et al. 1996; Gallay,

Hope et al. 1997; Bukrinsky and Haffar 1998; Bouyac-Bertoia, Dvorin et al.

2001). In addition, a cis-acting element designated the central DNA flap, located

in the 3’ region of the pol gene sequence, was initially suggested to contribute to

HIV-1 nuclear import in both dividing and nondividing celis (follenzi, Ailles et

al. 2000; Sirven, Pflumio et al. 2000; Zennou, Petit et al. 2000). However, several

later reports have shown that the effects of the central DNA flap appear to be

virus strain and host celi dependent (Dvorin, Bel! et al. 2002; Limon, Nakajima et

al. 2002). Therefore, the exact impact of the central DNA flap on HIV-1 infection

is stili an open question that remains to be clarified.

HIV-1 IN is a critical virai enzyme that catalyzes integration of virai

cDNA into host chromosome. In addition, it has been demonstrated to have

karayophilic property and was shown to be involved in the efficient nuclear

import of HIV-1 PIC. However, up to now, the nuclear localization signais in IN,

as well as the mechanism underlying IN nuclear import stili remain to be

determined. Two regions in IN (186KRK and 211KELQKQITK) were initially

proposed to constitute a bipartite NLS motif, since mutants K1860 and
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Q214/216L lost the protein nuclear localization ami their ability to bind to

karyopherin u in vitro (Gallay, 1997). But following studies did flot reveal the

importance of these IN mutants on HIV-1 nuclear import (Petit, Schwartz et al.

2000; Tsurutani, Kubo et al. 2000; Lu, Limon et al. 2004). More recently, fassati

et al revealed that imp7 may contribute to HIV-1 PIC nuclear import using an in

vitro nuclear import assay, and suggested that this cellular protein may interact

with IN (Fassati, Gorlich et al. 2003). However, a recent study indicated that

transient siRNA mediated knockdown of Imp7 had no effect on HIV-1 and SIV

nuclear import in macrophages (Zielske and Stevenson 2005). Thus, more studies

are required to define region(s) in IN that are essential for protein and PIC nuclear

import and to elucidate the mechanism involved in the IN action for HIV nuclear

import.

The goal of my study is to investigate the functional roles of the central

DNA flap and IN during the early stage of HIV-1 replication, especially whether

and how these factors contribute to the nuclear import of HIV DNA. The specific

objectives include:

1. To investigate the precise impact of the central DNA flap on the HIV-1

infection and elucidate which step of viral replication is affected. This study

includes two parts: 1) To generate a RT/IN trans-complement single-cycle

replication system. This system will allow us to introduce mutations for

disrupting DNA flap elements without affecting the enzymatic function of IN.

2) To investigate the importance of the central DNA flap for an efficient

HIV-1 replication. The effect of DNA flap on early steps of HIV single-cycle

replication, including reverse transcription, nuclear import and integration,

will be analyzed by using specific PCR and southern blot assays.

2. To define the region(s) in IN that are essential for it nuclear localization as

well as their contribution to HIV-1 PIC nuclear import and virus infection. 1)

Mutagenic analyses, including deletion and substitution methods, will be used

to investigate the contribution of different regions in HIV-1 IN to protein
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nuclear localization. 2) To evaluate the impact of nuclear localization

defective IN mutants on HIV-1 single-cycle repiication as well as their effects

on viral DNA nuclear import.

3. To elucidate the molecular mechanism(s) involved in IN’s action during HIV

PIC nuclear import. This study wili focus on the potential interaction of HIV

1 integrase (IN) with different cellular nuclear import receptors, including

Imp7, by using a cell-based co-immunoprecipitation assay, and will also

analyze the impact of this viral/cellular protein interaction on HIV repiication

By using different approaches presented in this proposai, we hope to reach a

more complete understanding of the actions of HIV-1 IN and the central DNA

flap during the viral life cycle. Resuits from these experiments should provide

valuabie information for designing new and effective therapeutic approaches

against HIV-1 before its integration.
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Chapter II

Assessment of the Role of the Central DNA Flap in

Human Immunodeficiency Virus Type 1 Replication

using a Single-Cycle Replication System.
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ABSTRACT

Safe live-attenuated lentivirus capable of undergoing a single-round of

replication constitutes a useful tool to study issues related to lentivirus dynamics

and primary viral entry in vivo in animal models. As a proof of concept, we have

tested and characterized a HIV-1 trans-complementation system consisting of RI

and IN-defective HxBc2-derived proviral constructs and an expression plasmid

encoding a Vpr-RT-IN fusion protein. In order to delineate the minimal pol gene

sequence required in cis for efficient single-cycle replication, we performed a

systematic deletion analysis of RI and IN gene sequences. Deletion of up to 2193

base pairs (bp) ofpol gene sequence comprising ofRT and 5’ N gene sequences

was found to have no impact on HIV-1 gene expression and virus replication in

this RI/IN trans-complemented single-cycle replication system. In contrast,

maintenance of a 194 bp fragment corresponding to a region located at the 3’end

of IN, which contains the central polypurine tract (cPPT) and the central

termination sequence elements, was found to confer a 5- to 8-fold infectivity

advantage to single-cycle replicating virus in a variety of cellular systems

including MAGI ceils and dividing and nondividing T celI unes. Introduction of

mutations in the cPPT, which were reported to prevent the formation of the

central DNA flap during reverse transcription, lead to a 5- to 7-fold decrease of

viral production upon infection of human peripheral blood mononuclear cells

(PBMC5). Furthermore, PCR analysis of reverse transcription, proviral DNA

nuclear import and integration revealed that disruption of the cPPT affects by

approximately seven-fold the level of late reverse transcribed products

accumulating in the nucleus and as a consequence interferes with efficient

proviral DNA integration. Overail, this study provides evidence that the central

DNA flap enhances the establishment of HIV-1 infection in single-round

replication assays primarily by facilitating proviral DNA nuclear import.
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INTRODUCTION

The complexity of human immunodeficiency virus (HIV-1) replication is

attributed in a large part to the intricate interpiay that takes place between cis

acting sequences present on viral nucleic acids and viral or host ceil proteins that

function in trans. The HIV-1 pol gene encodes three enzymatic proteins

inciuding protease (PR), reverse transcriptase (RT) and integrase (IN), which play

critical roles during specific stages of the virus infection cycle. Soon after virus

entry, RT catalyzes the conversion of the viral RNA genome into double-stranded

proviral DNA while IN mediates proviral DNA integration into the host celi

genome (for review, see (Coffin 1990; Golf 1992; Farnet and Bushman 1996;

Greene and Peterlin 2002). Even though extensive in vitro biochemical and

mechanistic studies have greatiy contributed to a better understanding of the

primary function and mode of action of RT and IN enzymes, studies performed in

the context of HIV-1 infectious proviral clones have revealed that some mutations

and/or internai deietions in RT or IN can significantly alter steps other than

reverse transcription or integration such as virus assembly, release, or even

inactivate virus infectivity (Ansari-Lari, Donehower et al. 1995; Engelman,

Englund et al. 1995; Ansari-Lari and Gibbs 1996; Bukovsky and Gottlinger 1996;

Gallay, Hope et al. 1997; Petit, Schwartz et al. 2000). These pleiotropic

phenotypes resuiting from mutagenic analysis suggest that RT and IN may play

other roles, which are independent of their enzymatic activities. Furthermore, it

cannot be excluded that introduction of mutations in RT and/or IN sequences may

simultaneousiy affect cis-acting element(s) present within the pol gene sequence

that are required for efficient virus replication. Several studies have reported that

RT and/or IN enzymatic defects within HIV can be restored in trans either by

expression of RT in newly-infected celis or through Vpr-mediated virion

incorporation of Vpr-RT-IN or Vpr-IN fusion proteins (Ansari-Lari and Gibbs

1996; Fletcher, Soares et al. 1997; Peng, Pan et al. 1997; Wu, Liu et ai. 1997).
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Interestingly, although this functional Vpr-RT-IN trans-complementation was

shown to efficiently restore the infectivity of virus harboring premature stop

codons in RT or IN open readïng frames, trans-complementation of virus

containing deletions in RT and/or IN sequences were found to reestablish viral

infectivity very poorly (approximately 5 to 6 % of wild type virus infectivity

levels) (fletcher, Soares et al. 1997; Wu, Liu et al. 1997). These resuits suggest

that other viral determinant(s) in pol gene sequence and/or synchronized

expression and maturation of RT and/or IN from the Gag-Pol precursor

polyprotein are required for efficient viral replication. Hence, assessing the

requirement of HIV-1 p0! gene sequence necessary for HIV-1 replication

independently of enzymatic activities encoded by pol remains an important aim to

fully understand the complexity of the HIV-1 replication cycle.

Retroviral replication requires the integration of reverse trancribed

proviral DNA into the host ceil genome. Prior to integration, viral reverse DNA

transcripts must access the nucleus as part of a large ribonucleoprotein complex,

named the preintegration complex (PIC). The lipid bylayer surrounding cellular

nuclei contains numerous nuclear pore complexes (NPCs) that allow

macromolecules of small diameter size (9 nm) and molecular weight

(approximately between 40- to 60-kDa) to passively diffuse in and out of the

nucleus (Nakielny and Dreyfuss 1999). The size of retroviral PICs is estimated to

be roughly equivalent to the size of an eukaryotic ribosome such that they cannot

be transported passively into the nucleus through NPCs (reviewed in (Greene and

Peterlin 2002). Hence, oncoretrovirus, such of Moloney murine leukemia virus

(MoMuLV), are believed to reach host celi chromosomes by timing proviral DNA

nuclear transport with dissolution of the nuclear membrane that occurs at mitosis

(Roe, Reynolds et al. 1993; Lewis and Emerman 1994). Indeed, MoMuLV

productive infection requires cell to go through mitosis, although replication

defective MoMuLV mutants were recently identified as being blocked at the

nuclear import step in dividing target ceils (Yuan, fassati et al. 2002). In contrast
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to oncoretroviruses, HIV-1 and other lentiviruses do flot depend on host ceil

mitosis to mediate the nuclear transiocation of their PIC (Weinberg 1991; Lewis

and Emerman 1994; Bukrinsky and Haffar 1998; de Noronha, Sherman et al.

2001; Le Rouzic, Mousnier et al. 2002; Maertens, Cherepanov et al. 2003). As a

consequence, HIV-1 lias the capacity to infect nondividing celi populations sucli

as macrophages, mucosal dendritic celis, and nondividing T ceils, which are

believed to be critical for viral transmission, disease pathogenesis, and the

establishment of persistent virus reservoirs. At the molecular level, HIV-1 PIC

nuclear transport through intact NPCs was shown to occur by an active and

energy-dependent process that involves the karyophulic properties of several PIC

associated viral proteins, including Matrix (MAp17), IN and Vpr (Bukrinsky,

Haggerty et al. 1993; Heinzinger, Bukinsky et al. 1994; Gallay, Hope et al. 1997;

Fouchier, Meyer et al. 1998; Nie, Bergeron et al. 199$; Vodicka, Koepp et al.

199$; Haffar, Popov et al. 2000; Bouyac-Bertoia, Dvorin et al. 2001; de Noronha,

Sherman et al. 2001). In addition, a cis-actÏng element named the central DNA

flap was also shown to contribute to the nuclear import of HIV-1 proviral DNA in

both dividing and nondividing ceils (Zennou, Petit et al. 2000). The central DNA

flap is a region of triple-stranded DNA created by two discrete haif-genomic

fragments with a central strand dispiacement event controlled in cis by a central

polypurine tract (cPPT) and a central termination sequence (CTS) during HIV-1

reverse transcription (Chameau, Alizon et al. 1992; Chameau, Mirambeau et al.

1994). HIV-1 viruses carrying an inactivated cPPT or CTS were reported to

exhibit a considerable impairment of viral replication in different dividing and

nondividing target ceils (Chameau, Alizon et al. 1992; Chameau, Mirambeau et

al. 1994), presumably because of a defect at the level of the nuclear import of the

PIC (Zennou, Petit et al. 2000). This observation raised the interesting possibility

that retroviral PICs might interact with specific host factors to gain nuclear access

even in ceils that are actively dividing. However, these results have been put into

questions recently by two studies (Dvorin, Beil et aI. 2002; Limon, Nakajima et
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al. 2002), which provided evidence indicating that the central DNA flap did not

play a major role in either PIC nuclear import or HIV-1 replication in a variety of

ceil unes. Interestingly, in contrast to these studies that used replication

competent virus, numerous other studies have reported that the central DNA flap

conferred an infection advantage of approximately 2 to 10 fold on single-round

HIV-1-derived lentiviral vectors, thus suggesting that the central DNA flap

facilïtated early step(s) of lentiviral transduction (Parolin, Taddeo et al. 1996;

Follenzi, Ailles et al. 2000; Sirven, Pflumio et al. 2000; Dardalhon, Herpers et al.

2001; Park and Kay 2001; Zennou, Serguera et al. 2001; MaeÏe, Rijck et aï.

2003). The exact impact of the central DNA flap on the early steps of HIV-1

infection is stili an open question that remains to be clarified.

In this study, we took advantage of the ability of Vpr-RT-IN fusion

proteins to trans-complement RI and IN proteins-defective HIV-1 viruses to

delineate pOl gene sequences, specifically RI and IN, that are important for HIV

1 replication in single-round replication assays. Our resuits reveal that the central

UNA flap element confers a 5- to 8-fold infectious advantage to single-cycle

replicating virus in a variety of cellular systems. We further investigated the

impact of the central DNA flap on HIV-1 reverse transcription, nuclear import

and integration by PCR analysis. Our resuits indicate that the central DNA flap

enhances the establishment of HIV-1 infection in single-round replication assays

by primarily facilitating nuclear import of proviral DNA.
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MATERIAL AND METHODS

HIV-1 proviral constructs and plasmids. The HIV-1 provirus plasmid

HxBruR used in thïs study is a chimera made between two closely related

proviruses HxBc2 and BRU/LAI (Yao, Subbramanian et al. 1995). The

phenotype of this molecular clone is 5’ LIR gag+ ?o1+ vi[ vpr taï rev+ vpu

env nef3’ LTR (Yao, Subbramanian et al. 1995). The RT and IN-defective

provirus W/Rf was constructed by replacing the first two amino acids of the RT

reading frame of HxBruR with two premature stop codons (TGATAG) using a

two-steps polymerase chain reaction (PCR)-based method (Yao, Subbramanian et

al. 1995). The 5’ primer (5’-GCAGCTAGCAGGGAGACTAA-3’) corresponds

to a sequence located near the natural NheI site in RT (nucleotide (ut) position

3467, +1= start of BRU initiation of transcription) while the 3’ primer (5’-

CCTAATAAGGCCTYFCTfA-3’) is derived from a sequence located near the

StuI site in vif (nt position 4987). Complementary oligonucleotide primers

containing two stop codons (TGATAG) in place of the first two amino acids of

the RI reading frame were used to generate a mutated NheI-StuI PCR fragment.

The resulting DNA fragment was then digested with NheI and Sud and subcloned

into an intermediate vector that contains an ApaI (nt position 1552)-SalI (nt

postion 5367) fragment derived from HxBru. finally, the Apal-SalI fragment

containing the two premature stop codons in RI was cloned back into the

HxBruR proviral construct. b construct IN gene-deleted proviruses R/R1

/AIN/flap+ and R7RIJAIN/flap, we first generated two PCR fragments using each

of two 5’-oligos containing an engineered NheI site at nucleotide positions 4328

or 4522 (+1= start of BRU initiation of transcription) in IN gene sequence (5’-

NheI-cPPT: 5’ -ATCrFAAGCTAGCAGTACAATG-3’; 5’ -NheI-cPPT: 5’-

GGAAAGGGCTAGCAAAGCTCCT-3’) and a 3’-oligo (5’-

CAGGAGCTCAGTCTAGGATCTACTGGC-3’) derived from sequence located



65

o
near nucleotide 5416 at the end of vpr. Both PCR fragments contain a natural

SalI site (nt position 5367) in vpr. Following digestion with SalI, each of these

PCR fragments were inserted into the R7RI proviral plasmid which was first

digested with BspMl (nt position 3904), treated with Klenow fragment of DNA

polymerase I to fil the 5’end, and digested with SalI restriction enzyme. The

resulting proviral constructs R7RI7AIN/flap+ and R7RI7AIN/flap carry

respectively 416 and 610 bp deletions in the IN gene sequence. In the R7RF

/AIN/flap provirus, the cPPT and CIS elements Iocated in the 3’ region of the IN

gene were deleted (as shown in Fig. lA). b generate R7RI-861, R7RI-179$, and

R7ARI proviruses, ApaI-NheI PCR-amplified fragments were first generated

using a 5’-oligo corresponding to nucleotide sequence located near the natural

ApaI site (nt position 1552) in gag (5’-ATTGCAGGGCCCCTAGG-3’) and a 3’-

oligos derived from sequence located near nucleotide positions 2135, 2530 or

3467 in RI in which an engineered NheI site was introduced (5’-

ICCGCTAGCTGGATCCACTGGTACAGrFTCAATAGG-Y 5’-

GTYFACGCTAGCGATGGTAAATGCAG-3’; 5’-

TAATCTAGACTCCCTGCTAGCTGCCCCAT-3’). Each PCR fragment was

cloned into the W/Rf/AIN/flap proviral vector using the natural ApaI site and the

engineered NheI sites (at nt positions 432$, +1= start of BRU initiation of

transcription) introduced 5’ to the cPPT element. Ail provirai constructs were

subsequently analyzed by DNA sequencing to confirm the presence of mutations

or deletions.

To generate a piasmid expressing a Vpr-RT-IN fusion protein, we

inserted a PCR-amplified Vpr cDNA into a SVCMV-in vector (Yao, Mouland et

al. 199$) to generate SVCMV-in-R. This Vpr cDNA contains at the 3’end two

additional codons encoding two glycine residues and a XbaI site that replaces the

stop codon of vpr. A PCR-amplified RI and IN gene cDNA containing an

engineered SpeI site in front of the RI reading frame and a natural Stul site (nt
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position 4987) after IN gene was digested with SpeI and StuI and cloned in frame

with Vpr into SVCMV-in-R plasmid. The resulting construct was named

SVCMV-Vpr-RT-IN (shown in Fig. lA).

Celi unes, antïbodies and chemicals. Human embryonic kidney 293T

and HeLa-CD4-LTR/-f3-gal ceils were maintained in Dulbecco’s Modified Eagles

Medium (DMEM) supplemented with 10% fetal caïf serum (FCS) and 1%

penicillin and streptomycin. The human T-lymphoid MT4 and C8166 celis were

maintained in RPMI-1640 medium. PBMCs were isolated from the blood of

healthy aduit volunteers by sedimentation in Ficoli-Hypaque (Sigma-Aldrich

Canada mc, Oakville, Ontario). Isolated PBMCs were stimulated with 0.1%

phytohemaglutinin (PHA) and maintained in RPMI 1640 supplemented with 5%

of IL-2. The HIV-1 positive human serum 162 and anti-HIVp24 monoclonal

antibody used in this study were previously described (Yao, Subbramanian et al.

1995). 3’-Azido-3’deoxythymidine (AZT) and Aphidicolin, a DNA polymerase

alpha inhibitor, were obtained from Sigma Inc.

Transfection and the production of virus stocks. DNA transfection in

293T celis was performed using the standard calcium phosphate DNA

precipitation method. To produce virus stocks, supernatants from HIV-1

transfected 293T celis were collected at 48 h post-transfection and subjected to

ultra-centrifugation (42,000 mm for 1 hour at 4°C) to isolate virus. Quantification

of virus stocks was determined by p24 measurements using an HIV-1 p24 ELISA

Kit (purchased from the AIDS Vaccine Program of the Frederick Cancer

Research and Development Center) or by RT activity assay (Yao, Mouland et al.

1998). To evaluate the infectivity of virus, equal amounts (15 ng of p24

antigen/well) of virus were used to infect HeLa-CD4--Gal ceils. The number of

infected ceils was evaluated by the MAGI assay 48 hours post-infection (p.i.), as

described previously (Kimpton and Emerman 1992).

Immunoprecipitation analyses. Transfected 293T celis were starved in

methionine-free DMEM for 30 min at 48 h post-transfection and then
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metaboiicaily labeled with 200 Ci of [35S]methionine for 16 h. Labeled viruses

were isoiated, lysed and immunoprecipitated using anti-HIV-1 serum (162), as

described previously (Yao, Subbramanian et al. 1995).

Infection, [311]-thymidine uptake assay and celi cycle profile

cytometry anaJysis: To arrest C8166 T celis in G1 phase, 0.5x106 of ceils/mi

were cultured in the presence of aphidicolin (1.3tg/ml). At different time

intervais, ccli division was analyzed by a previousiy described [3HJ-thymidine

uptake assay (Li, Simm et al. 1993). Ceil cycle profile was also analyzed as

previously described (Yao, Mouland et al. 1998).

b infect dividing and nondividing cells, C$166 T ceils were pre-treated

with 1.3 ig/ml of aphidicolin for 24 hours. Treated and non-treated celis were

then infected with equivalent amounts of trans-complemented virus (65 ng

24gag,106 cells) for 8 hours. Infected ceils were washed and cultured in the

absence or presence of the same concentration of aphidicolin. After 16 hours of

infection, 10 iM of AZT was maintained in ail ccii cultures in order to compare

ail virus infection (including the replication-competent control virus) in a single-

cycle replication manner. At 48 hours p.i., viral production in supernatants was

evaiuated by HIV4 p24 ELISA.

To infect MT4 and human PBMCs, equivaient amounts of trans

compiemented virus (65 or 135 ng of HIV-1 24gag1106 cells) were incubated with

celis for 8 hours. At different time points, viral production levels were monitored

by measurement of HIV-1 p24 antigen in cadi infected cdl culture supernatant by

HIV-1 p24 ELISA.

PCR analysis of HIV-1 reverse transcription products and the

integrated proviral DNA: Human PBMCs (lx 106) were infected with equal

amounts of trans-complemented virus (135ng p24/106ce11s) by spinoculation at

480 x g for 2 h. Cells were then washed three times and resuspended in RPMI

containing 5% IL-2. At different time points after infection, equal number (2x106
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celis) of PBMCs were collected, washed twice with PCR washing buffer (20mM

Tris-HC1, pH$.O, lOOmM KC1), and lysed in lysis buffer (PCR washing buffer

containing 0.05% NP-40, 0.05% tween-20). Lysates were then incubated at 56°C

for 30 min with proteinase K (100 ig’ml) and at 90°C for 10 min prior to phenol

chloroform DNA purification. To analyze viral DNA associated with the nucleus

or the cytoplasm, a subcellular fractionation of infected PBMC was performed as

described previously (Simon and Malim 1996). To quantify viral cDNA from

each sample, ail lysates were seriaily diluted 5-fold and subjected to PCR

analysis. The primers used to detect late reverse transcription products were as

follows: 5’-LTR-U3, 5’-GGATGGTGCTTCAAGCTAGTACC-3’ (nt position

8807, +1= start of BRU of transcription initiation); 3’-Gag 5’-

ACTGACGCTCTCGCACCCATCTCTCTC-3’ (nt position 329). The probe for

southem blot detection was generated by PCR with a 5’-LTR-U5 oligonucleotide,

5’-CTCTAGCAGTGGCGCCCGAACAGGGAC-3’ (nt position 173) and the 3’-

Gag oligo. PCR was carried out using lx HotStar Taq Master Mix kit (QIAGEN,

Mississauga, Ontario) and the program in which an initial heat activation step of

15 min at 95°C was followed by 40 cycles of denaturation at 95°C for 30 sec,

annealing at 58°C for 1 min and extension at 72°C for 1 min.

Integrated proviral DNA was detected in ceil Jysates by a modified nested

Alu-PCR, in which following the first PCR, a second PCR was carried-out to

amplify a portion of the HIV-1 LTR sequence from the first Alu-LTR PCR

amplified products. The first PCR was carried out using primers including 5’-Alu

oligo (5’-TCCCAGCTACTCGGGAGGCTGAGG-3’) and 3’-LTR oligo (5’-

AGGCAAGCTrFATrGAGGGCTTAAGC-3’) (nt position 9194) located

respectiveiy in the conserved region of human Mu sequence and in HIV-1 LTR.

The primer used for both of the second nested PCR and for generating a probe are

5’NF 5’-CACACACAAGGCTACTT’CCCT-3’ and 3’-NI: 5’-

GCCACTCCCCAGTCCCGCCC-Y (Chun, Stuyver et al. 1997).
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To allow quantitative comparison of viral DNA contents in each reaction

mixture, the R7 Rf/t\RI plasmid was used as standard for total HIV cDNA PCR

detection. The plasmid was diluted in uninfected PBMC cellular DNA equivalent

to the test samples. For detection of integrated viral DNA, each primer pair as

described above was used in parallel to detect integrated viral DNA from serially

diluted ACH-2 ceils, which contain one viral copy/cell, in a background of

uninfected PBMC cellular DNA. Detection of human -2-adrenergic receptor

(132-AR) and 3-globin genes was carried-out by PCR and used to estimate the

DNA content of extracted chromosomal DNA preparations, as described

previously (Simon and Malim 1996; forget, Yao et al. 199$). The primers used

for PCR are: 5’-132-AR, 5’-TAGGCCTFCAAAAGAAGACCTGC-3’; 3’-f32-AR,

5’ -CGTCTACTCCAGGGTCflTCAG-3’; 5’ -3-globin, 5’-

CAACTTCATCCACGTFCACC-3’; 3 ‘-f3-globin, 5’-

GAAGAGCCAAGGACAGGTAC-3’. Mitochondrial DNA was also amplified to

standardize the ceil-equivalent amounts of DNA extracted in cytoplasmic samples

by using primers Ml: 5’-GACGTTAGGTCAAGGTGTAG-3’ and M2: 5’-

GGTfGTCTGGTAGTAAGGTG-3’), which are described previously

(Vandegraaff, Kumar et al. 2001).

Ail final PCR products were electrophoresed through 1.2% agarose gel

and visualized by ethidium bromide staining or transferred to Zetaprobe nylon

membrane (BioRad, Mississauga, Ont), subjected to Southern hybridization by

using specific PCR DIG-Labeling probes (Roche Diagnostics, Lavai, Que), and

visualized by a chemiluminescent method. Densitometric analysis was performed

using a Molecular Dynamics Personal densitometer and the Image Quant software

version 3.22.
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RESULTS

1. Requirement ofpot gene sequence for efficient HIV-1 single cycle infection.

The long-term objective of this study was to develop a single-cycle

replication system to study issues related to lentivirus dynamics and primary viral

entry in vivo in animal models. Initial feasibility studies were done using HIV-1

given the availability of basic reagents and molecular biology data. This single-

cycle replication system consists of a replication-defective proviral construct

carrying mutations or/and deletion in pol that can be complemented in trans with

RT and IN using Vpr-mediated trans-incorporation, thus leading to viral particles

that can undergo a single-round of replication. One important goal in designing

and developing such a single-cycle replication system was of course to eliminate

the possibility of recombination events that would generate replication-competent

virions during viral production. It is therefore in the course of these studies that

we initiated the characterization of minimal RT and IN gene sequences necessary

and sufficient for maintaining efficient single-cycle replication.

First, we generated a RT and IN-defective HIV-l provirus (R-/Rf) with an

intact pal gene sequence by replacing the first two amino acids of RI with two

premature stop codons (TGA TAG) in a Vpr- and Nef-defective HxBc2-derived

HIV-1 provirus (R) (Yao, Subbramanian et al. 1995). An expression plasmid

encoding a Vpr-RI-IN fusion protein (CMV-R-RT-IN) was also made to trans

complement the RI and IN enzymatic activity defects (fig.II.1A). Irans

complernented viruses were produced upon transfection of 2931 ceils with R7Rf

and CMV-R-RI-IN plasmids. Consistent with a previous report (Wu, Liu et al.

1997) the RI and IN-defective R7Rf virus was found to be infectious in MAGI

assay only when R7Rf virus were trans-complemented with RI and IN during

viral production (FigII.1B, left panel). Maximum infectivity of trans

complemented R7RI virus reached between 40 and 50 % of wild type level (R
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virus) when the R7Rf proviral constmct and the Vpr-RT-IN expression plasmid
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Fig.II.1. Effect of HIV-1 IN and RT gene sequence on the infectivity of RT/IN trans
complemented virus. A). Schematic structure of HW-1 proviruses carrying
mutation and deletions in the pol gene sequence and of the plasmid encoding the
Vpr-RI-IN fusion protein. Provirus R7RI was constmcted by replacing the first
two amino acid of RT with two premature stop codons (TGATAG) in HxBruW
(W) provirus. In R7RI7AIN/flap provirus, a 610 bp fragment of IN gene
sequence (including cPPT/CTS) was deleted. The R7RI7zIN/flap, W/RI-861, W
/RI-1 798, and R7ARI proviruses carry different RT and/or iN gene sequences
deletions but contain thel94 bp sequence in the 3’ end region of IN, which
harbors the cPPT/CTS cis-acting elements. B) The infectivity of the trans
complemented virus produced in 293 T ceils was evaluated by MAGI assay. C).
b evaluate Vpr-mediated trans- incorporation of RI and IN in viral particles,
radiolabeled virus were isolated from ceil supernatants, lysed,
immunoprecipitated with anti-HIV antibody and analyzed by 12.5% of SDS
PAGE.

were transfected at a molar ratio of 1:4. b test the efficiency of Vpr-mediated

RI and IN trans-incorporation, transfected 293T celis were radiolabeled and the

resulting viral particles analyzed for viral protein content by immunoprecipitation
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using anti-HIV-l serum. Immunoprecipitation analysis reveaÏed that, as expected,
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the R7Rf viral particles did flot contain any RT and IN proteins (Fig.II.1C, lane

3), whereas the trans-complemented R7Rf virus incorporated RI and IN proteins

at levels comparable to the W virus positive control, which expresses RI and IN

in cis (Fig.IL1C, compare lane 4 to lane 2). Interestingly, it was noted that

significant amounts of unprocessed p55a accumulated in R7RF viral particles

(Fig.II.1C, compare lanes 3 and 4 to lane 2). Ibis maturation defect is likely to

resuk from impairment of protease activation given that the Gag-pol polyprotein

precursor was truncated by early termination of RI and IN. This impairment of

virus maturation was also found to be augmented in conditions where the R7Rf

provirus was trans-complemented with the Vpr-RT-IN constructs presumably

because of a saturation effect of protease due to over-expression of protease

cleavage sites present in CMV-Vpr-RT-IN (fig.II.1C, compare lanes 4 and 3).

Ihe 50 to 60% reduction of viral infectivity observed between trans

complemented R7RF virus and the R positive control is thus, likely a resuit of the

viral maturation impairment (fig.II. 1 B).

We next analyzed the requirement of RI and IN gene sequences for virus

replication using this Vpr-RT-IN trans-complementation system. A series of RI

and/or IN gene deleted proviruses derived from the R7RI provirus were

constructed (Fig.II. lA). In the R7RI7AIN/flap provirus, a 610 bp sequence

encompassing a large part of the IN gene and including the cPPT and CIS cis

acting sequences (from nt 3912 to 4522, +1 corresponds to the transcription

initiation site of the BRU strain), which were previously shown to play an

important role in HIV-1 replication, were deleted (Chameau, Alizon et al. 1992;

Chameau, Mirambeau et al. 1994; Dardalhon, Herpers et ai. 2001). In R7Rf

/iMN/flap provirus, a smaller deletion of 494 bp was introduced, thus leaving

intact a 194 bp sequence at the 3’ end of the IN gene. This 194 bp IN sequence

contains the cPPI/CTS elements. b further test the impact of RI gene sequence
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on virus repiication, different regions of RI gene sequence were further deleted

based on the R7RI7AIN/flap provirus and designated as W/RI-861, W/RI-1798,

and W/ARI (Fig.II.1A). In the W/z\RI provirus, ail the RI and IN gene sequences,

except the 194 bp containing the cPPT/CTS sequences, were deleted (deletion of

2193bp).

The infectivity of each trans-complemented RI and/or IN gene deleted

virus, was analyzed by MAGI assay. Deletion of the 3’ region of IN

encompassing the cPPI/CIS elements resulted in a substantial decrease of viral

infectivity, which varied from 5- to 7-fold as compared to the trans-complemented

RRf virus (Fig.IL1B, left panel). Ihis sharp decrease of viral infectivity was flot

due to variation in the level of RI and/or IN trans-incorporated in viral particles

since they were found to be similar in both trans-complemented viruses

(Fig.II.1C, compare lane 7 and lane 5). In contrast, maintenance of a 196 bp in

the 3’ region of IN gene sequence, which includes the cPPI/CTS elements (R7RI

/AIN/flapj restored infectivity to a level similar to that of trans-complemented R

/Rf virus (Fig.II.1B, left panel), thus confirming previous reports (Follenzi, Ailles

et al. 2000; Dardalhon, Herpers et al. 2001; Zennou, Serguera et al. 2001; Maele,

Rijck et al. 2003) indicating that the cPPI and CTS cis-acting elements confer an

infectious advantage to lentiviral-based single-cycle replication systems.

Interestingly, deletion of RI gene sequences had no impact on viral infectivity as

long as the 194 bp sequence in the 3’ end region of IN was intact. As shown in

Fig.II.1B (right panel), the infectivity of trans-complemented W/RI-861, R7RI-

1798 and W/ARI viruses was comparable to that of trans-complemented R7Rf

virus. Analysis of RI and IN trans-incorporation levels in these RI and IN gene

deleted viruses did not reveal major differences as compared to the trans

complemented R7Rf virus (data not shown).
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2. Single-cyc]e replication of RT/IN trans-complemented virus in divïding

and non-dividing CD4 T-cells.
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Fig.II.2. Single cycle replication of trans-complemented RT/IN gene-deleted
viruses in dividing and nondividing CD4 C8166 T ceils. A) To analyze
aphidicolin-rnediated blockage of cellular DNA synthesis, C8 166 lymphocytes
were incubated at 0,5x106 cells/ml in the presence aphidicolin (1.3jig!rril) and
[3HJthymidine (1ICi/ml). At different time intervals, ceils were lysed and the
DNA-bound radioactivity was analyzed using a liquid scintillation counter. B)
The ceil cycle Gi arrest of aphidicolin-treated celis was confirmed by
measurement of the cellular DNA content with FACScan. C) The aphidicolin
treated (right panel) or non-treated C8 166 celis (left panel) were infected with
equal amounts of the wild type and trans-complemented HIV-1 viruses. Viral
production from each infected culture was monitored by measurement of HW-1
p24 antigen in the supernatants using p24 ELISA assay, 48 hours post
infection. The resuits are representative of two independent experiments.
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We next tested the single-cycle replication potential of the RT/IN trans

complemented viruses in the presence or absence of the 194 bp fragment

encompassing the cPPT/CTS cis-acting element (R7Rf, W/ARI and R7Rf

/AIN/flap) in dividing and nondividing CD4 T-cells. Previous studies have

shown that aphidicolin-growth arrested C8166 ceils were susceptible to flap (Li,

Simm et al. 1993; Zennou, Petit et al. 2000). To ensure that aphidicolin-treated

C8166 celis were arrested at the Gi phase of the ceÏl cycle, we measured

[3HJthymidine incorporation at different time intervals (Fig.II.2A) and analyzed

the ceil cycle profile at 18 h post-treatment (Fig.II.2B). Resuits of figure 2A and

B confirm a complete blockage of cellular DNA synthesis and a Gi arrest of

C8166 ceils by aphidicolin treatment. The aphidicolin-treated (for 24 h) or non

treated C8166 ceils were infected with equal amounts of trans-complemented

virus. AZT (10 tM) was maintained in ail celI cultures after 16 h of infection in

order to compare virus infection during a single-cycle of replication. At 48h post

infection (p.i.), supernatants were collected and viral production was monitored

by measurement of virion-associated p24 antigen using HIV-1 p24 ELISA assay.

The data from figure 2C reveal that wt, trans-complemented W/Rf and W/ARI

viruses lead to a productive single-cycle infection in both dividing and

nondividing C8166 celis. Consistent with the resuits obtained by MAGI assay

(Figli. lB), infection with trans-complemented W/Rf and R/ARI viruses produced

similar amounts of virus, yet virus production was two-fold lower relative to the

levels detected with wild type (R) virus (fig.II.2C). In contrast, the trans

complemented R7Rf/AIN/flap virus replicated six- to seven-fold lower than W

/RL and R/ARI vinises in both dividing and non-dividing C8166 celis (fig.II.2C).

Overali, these experiments confirm that the 3’ region of the IN gene sequence

harbors cis-acting determinants(s) that enhance substantially the replication of

HIV-1 toward dividing and nondividing CD4+ T cells in the context of single-
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cycle infection system, while other RI and IN gene sequences are clearly

dispensable.

3. The cPPT contributes to efficient sïngte-cycle replication of trans

complemented RT/IN gene deleted virus.

b further confirm that cis-acting element(s) in the 3’ region of fl\J gene

sequence contribute to efficient single-cycle replication, we introduced a 10 bp

substitution in the cPPI element in the W/ARI provirus and generated a cPPI

defective mutant designated W/ARI/cPPI (Fig.II.3A). Ihese specific mutations

in the cPPT element have previously been reported to prevent the formation of the

central DNA flap during reverse transcription (Zennou, Petit et al. 2000; Dvorin,

Beil et al. 2002; Limon, Nakajima et al. 2002). Prior to testing the infectivity of

trans-complemented W/ARI/cPPT virus, the levels of trans-incorporated RT and

IN was examined by radiolabeling and immunoprecipitation in both the cPPT

mutant and control viruses as described in figure 11.1. Similar levels of virion

associated RI, IN, p24gag and p55a were detected in trans-complemented R7RF,

W/ARI and W/ARI/cPPT virus preparations (Fig.II.3B), suggesting that the cPPT

mutations had no significant effect on virus assembly and RI and IN trans

incorporation. b compare the replication potential of trans-complemented W

/ARI/cPPI and W/ARI viruses, CD4 M14 celis and PHA-stimulated human

PBMC (h-PBMC) were infected with equal amounts of each virus stock for 8

hours and, at different time intervals, virion-associated p24gag antigen levels in the

supernatant were measured by anti-p24 ELISA. Disruption of the cPPI was

found to decrease substantially viral replication in both M14 I ceils and activated

PBMC. Ceils infected with the trans-complemented W/zRl/cPPI viruses were

found to produce 5- to 7-fold fewer viruses than ceils infected with the trans

complemented R7ARI control virus (Fig. IL3C and D). Interestingly, this

reduction in viral replication observed with the cPPI mutant (R7ARI/cPPI) was
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comparable to that obtained with the IN gene deletion mutant (RJRI7AIN/flap)

(Fig.II.2). Hence, we conclude that the central DNA flap is the necessary

determinant in the 3’ region of IN gene sequence that contributes to efficient

single-cycle replication of trans-complemented virus.

R.IRJ.

___________________

LTR Vit Env LTR

ELI

_____

PR >v - RI
R /R;

Ï*,w,_
i’4

R-/RLkpp1.
- IN

.
p24

Wr(t) TilT AAA AŒ MA 0GO 00G
rPPT- CTTCAAGCGCcGC GGTGGT

1 2 3 4

D.
s)

PBMC
— R-/R1

R-lR1kppt-

/:7
Days post-iafcction

Fig.II.3. The central DNA flap contributes to efficient single-cycle replication
of trans-complemented RT/IN gene-deleted virus. A). Schematic structure of
RT/IN gene-deleted HIV-1 provirus (R7ARI) and cPPT mutant (R7ARI/cPPT).
The cPPT element was inactivated by introduction of ten nucleotide substitution
mutations, as indicated. B) b compare trans-incorporation of RI and IN, 35S-
methionine-radiolabeled virus were collected from different co-transfected 2931
cells, lysed and analyzed with anti-HIV immunoprecipitation. To test the
replication potential of each virus stock, CD4+ M14 T cells C) or PHA
stimulated human PBMCs D) were infected with equal amounts of R7zxRI or W
/ARI/cPPI viruses. At different time intervals after infection, viral production
was monitored by measurement of HIV-1 p24gag antigen in the supernatants with
p24 ELISA assay. Results are representative of two independent experiments.
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4. Effect of the central DNA flap on 111V-1 proviral DNA integration in h-

PBMC.

b investigate the mechanism(s) underlying the action of the central DNA

flap during single-cycle replication, we first analyzed the efficiency of proviral

DNA integration in h-PBMC infected with cPPT or cPPT trans-complemented

ACH-2 Ceil

u

ç

R-I/ RI R-L\RLcPPT

T —

,r •-

2500 1250 500 250 50 25 (copies of intcgnited DNA)

fours post-Ïnfectlon

Fig.II.4. Effect of the central DNA flap on 111V-1 proviral DNA integration
in human PBMC. A). Human PBMCs were infected with W/ARI or W
IRI/cPPT virus (125 ng p24/106 celis). At 24 and 36 hours p.i., ceils were lysed
and serial-diluted ceil lysates were analyzed by two-step Alu-PCR and Southem
blot for specific detection of integrated proviral DNA from infected PBMC
(Upper panel) or the ACH-2 cells as quantitative control (lower panel). B).
Quantitative analysis of integrated proviral DNA in single-cycle infection. Bands
in panel A were quantified by laser densitometry and the number of integrated
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proviral DNA copy/cell was determined using the PCR-generated standard curve
ofACH-2 cetis.

viruses using a previously described sensitive Alu-PCR technique (Chun, Stuyver

et al. 1997). Results reveal that the levels of integrated proviral DNA detected in

the W/ARJ/cPPT sampÏe were five to seven-fold lower than those detected in the

R7RI sample at both 24 and 36 hours p.i. (fig.II.4A and B), indicating that

dismption of the central DNA flap reduces significantly proviral DNA integration

during single-round HIV-1 replication. Interestingly, this significant decrease of

proviral DNA integration correlated well with the 5- to 8-fold replication defect

observed with the cPPT-defective virus, indicating that the central DNA flap

contributes to efficient viral single cycle replication by acting on early stage(s) of

viral replication at and/or prior to viral integration.

5. Effect of central DNA flap on tate reverse transcribed DNA products and

viral cDNA nuclear import in h-PBMC.

b further investigate at which early step(s) of the infection cycle the

central DNA flap acts, we analyzed total amounts of viral cDNA present at

different early time points following infection ofh-PBMC with equal amounts of

R7t.RI or R7ARI/cPPT viruses. As shown in figure II.5A, at 6 hours p.i., similar

amounts of total viral cDNA were detected in R7cRI and R7RI/cPPT infected

cells (4.9 copies/cell versus 4.6 viral copies/cell) (Fig.II.5B), suggesting that both

trans-complemented virus entered celis with similar efficiencies and underwent

uncoating and reverse transcription with comparable rates. In contrast, between 6

and 24 hours p.i., total amounts of late cPPT reverse transcribed products

decreased at a rate that was clearly different from viral cPPT cDNA products. At

12 h and 24 h p.i, levels of viral cPPI cDNA were reduced by approximately

45% and 40% as compared to the levels of cPPT cDNA, which stayed quite

stable during the same time interval (approximately between 87% and 88% of

their levels at 6 hours) (fig.II.5A and B). At later time points (between 24h and
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48h), boli cPPT and cPPT viral cDNAs decreased at similar rates most probably

as a resuit of the dilution of unintegrated viral cDNA that occurs upon celi

division. This difference in the rate of viral cDNA decrease detected between W

/ARI and W/zRI/cPPT infection was not due to intrinsic variation between

samples since similar levels of a control cellular DNA (2-AR gene) was detected

by PCR in each sample (Fig.II.5A, lower panel). These resuits indicate that the

central DNA flap does not interfere with the rate of reverse transcription step per

se but appears to influence the rate of accumulation of total viral cDNA product.
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Fig.II.5. Effect of the central DNA flap on the steady state levels of HIV-1
reverse transcription products. A). Human PBMCs were infected with trans
complemented R7ARI and W/ARI/cPPT viruses (125 ng of p24/106 ceils) for 2
hours., the AZT (10 iM) pre-treated PBMCs were used as negative control. At
each indicated time point, the total DNA was extracted and then, serial dilutions
of extracted DNA were analyzed for late reverse transcription products by PCR
using LTR-Gag primers and with Southern blot(A, left). HIV-1 late reverse
transcription products detected in the left panel were quantified by laser
densitometry. The diagram at the right shows the number of HIV-1 cDNA copies
per ceIl as determined using the PCR-generated standard curve (A, riglit). These
resuits are representative of those obtained in two experiments. B). Serial diluted
R-/i\RI plasmid DNA was used as a standard for DNA copy quantification (lower
right panel). To monitor cellular DNA levels in each sample, the cellular 32-AR
staining (lower left panel).
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Fig.II.6. The central DNA flap facilitates viral cDNA nuclear import. Upper
panel: Hurnan PBMCs were infected with identical amounts of R7RI and W
/ARI/cPPI viruses. At 24 hours pi., 2x106 ceils were fractionated into
cytoplasmic and nuclear fractions as described in Materials and Methods. The
amounts of viral DNA in the cytoplasmic and nuclear fractions were analyzed by
PCR using H IV-1 LTR-Gag primers and visualized by ethidium bromide staining.
Meanwhile the R7ARI plasmid DNA was used as a template dung PCR as
positive control (pc). Lower panel: Purity and DNA content of each subcellular
fraction were monitored by PCR detection of human globin gene and
mitochondrial DNA and visualized by ethidium bromide staining (N. Nuclear
fraction; C. cytoplasmic fraction). gene was amplified by PCR and visualized by
ethidium bromide

In parallel, we analyzed viral cDNA nuclear import by subcellular

fractionation and subsequent detection of viral cDNA associated with nuclear or

cytoplasmic fractions as previously described (Simon and Malim 1996). Human

PBMCs were infected with equivalent amounts of trans-complemented W

/ARJ/cPPT or R7zRI vimses and cytoplasmic and nuclear fractions were isolated

from the same number of cells at 24 hours p.i. Ah fractions were then analyzed

by PCR and the presence of total viral DNA was visualized by ethidium bromide

staining. Resuits of figure II.6A reveal that at 24 h p.i. Total amounts of viral

N C N C

f f f f ffi f

-globin gene

cDNA in the R7ARI infected sample (including cytoplasmic and nuclear
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fractions) were approximately three-fold higher than those detected in the W

/ARI/cPPT infected sample, thus confirming the data obtained in figure 11.5.

Interestingly, while approximately 75% of total viral cDNA was detected in the

nuclear fraction of R!t\RI infected celis; only 30% of total viral cDNA was

detected in the nucleus of R7ARI/cPPT infected ceils (Fig.II.6,upper panel).

Moreover, the absolute levels of nuclear associated viral cDNA levels were

approximately seven-fold higher with the wild type virus than with the cPPT

defective virus. The integrity of the fractionation procedure was validated by

detection of mitochondrial DNA and 3-globin DNA, which were found solely in

the cytoplasm and the nucleus respectively (Fig.II.6, lower panel). In addition,

levels of mitochondrial and -globin DNAs were similar in both W/ARI and W

/ARI/cPPT subcellular fractions confirming that equivalent amounts of nuclear

and cyctoplasmic fractions were analyzed. Overali, these resuits indicate that the

central DNA flap influences the transport and the accumulation of late reverse

transcribed products in the nucleus during single-cycle infection.

DISCUSSION

In this study, we have investigated the impact of HIV-1 RT and IN gene

sequences on HIV-1 replication independently of RT and IN functions using a RT

and IN trans-complemented single-cycle replication system. Our results reveal

that a 194 bp sequence located at the 3’end of IN gene is necessary for efficient

HIV-1 single-cycle replication in dividing and nondividing T ceils, while a

deletion of up to 2193 bp of RT and 5’ IN gene sequence has minimal impact on

HIV-1 gene expression and virus replication in this system. Mutagenic analysis

further indicate that mutations in this critical 3’ region of IN gene sequence,

which target the central DNA flap element cPPT, interfere with single-round

replication in T celis and h-PBMCs, indicating that the central DNA flap

constitutes an important determinant for efficient HIV-1 replication. In an
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attempt to assess the role of the central DNA flap in this single-cycle replication

system, we systematically analyzed by PCR the reverse transcription, proviral

DNA nuclear import and integration steps of the infection cycle. Our data reveal

that disruption of the central DNA flap interferes with the transport and the

accumulation of total reverse transcribed DNA products in the nucleus.

Establishment of HIV-1 infection in dividing and nondividing ceils

depends on the ability of the viral PIC to actively translocate into the nucleus and

to integrate into host chromosomes. Several viral proteins including Matrix

(MAp17), IN and Vpr have been shown to contribute to efficient viral PICs

nuclear import in nondividing cells by interacting with components of the host

ceil nuclear import machinery via putative nuclear localization signais found

within these viral proteins (Bukrinsky, Haggerty et al. 1993; Heinzinger,

Bukinsky et al. 1994; Gallay, Hope et al. 1997; Vodicka, Koepp et al. 1998;

Haffar, Popov et al. 2000; Bouyac-Bertoia, Dvorin et al. 2001). In addition, it

hasbeen reported that formation of the central DNA flap is necessary for HIV-1

replication in both dividing and nondividing ceils presumably because this cis

acting sequence acts as a determinant of HIV-1 PIC nuclear import (Zennou, Petit

et al. 2000). However, this important role of the central DNA flap in HIV-1

repiication and nuclear import lias been questioned by two recent studies (Dvorin,

Beil et al. 2002; Limon, Nakajima et al. 2002), which compared the infectivity

and nuclear localization phenotypes of replication-competent wild type and flap

defective viruses and found that the central DNA flap did flot play a major role in

either PIC nuclear import or HIV-1 replication in a variety of ceil unes. Although

these studies did flot find that the central DNA flap played a significant role in the

viral life cycle in immortalized ceil unes, they stili observed a modest replication

delay in PBMCs. In contrast, using a single-cycle infection system, we found that

the central DNA flap indeed contributes to efficient single-round replication of

RT/IN trans-complemented virus in different celi types including MAGI ceils,
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MT4 and C8166 T ceil unes as well as in h-PBMCs (Fig.I1.1-3). RT-IN trans

complemented virus harboring mutations that were reported to prevent the

formation of the central DNA flap displayed a level of replication that was

decreased by 5- to 8-fold as compared to trans-complemented virus containing an

intact central DNA flap (Fig.II.2 and 3). These resuits differ from previously

published work using replication-competent virus where the requirement for the

DNA flap was found to be either absolute (Zennou, Petit et al. 2000) or marginal

(Dvorin, Beil et al. 2002; Limon, Nakajima et al. 2002) but are consistent with the

findings reported by several previous studies that showed that the central DNA

flap conferred an infection advantage of 2- to 10-fold on VSV-G pseudotyped

single-round HIV-1 vectors (Parolin, Taddeo et al. 1996; Follenzi, Ailles et al.

2000; Sirven, Pflumio et al. 2000; Dardaihon, Herpers et al. 2001; Park and Kay

2001; Zennou, Serguera et al. 2001; Maele, Rijck et al. 2003). It was suggested

by Zennou et al. (Zennou, Petit et al. 2000) that the central DNA flap was flot

absolutely essential in single-round HIV-1 vectors because the smaller size of the

vector genomes precluded the absolute requirement for the DNA flap during

nuclear import. Clearly, in the case of our replication system, the lack of an

essential role of the central DNA in viral replication cannot be attributed to the

size of the viral genome given that our central DNA flap-defective proviral

constructs were comparable in size to wild type virus and stili replicated albeit at

low levels (fig.II.2 and 3). On the basis of our resuits, we conclude that tlie

central DNA flap is flot essential for HIV-1 replication but rather lias an

enhancing effect on HIV-1 single-round replication in both dividing and

nondividing ceils. However, it is stili unclear why this substantial defect in

single-round infectivity caused by disruption of the DNA flap does not translate

into a detectable difference wlien replication kinetic is monitored using replication

competent virus as shown recently (Dvorin, Beli et al. 2002; Limon, Nakajima et

al. 2002). Clearly, more studies in this area are required to understand this

discrepancy.
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In an attempt to understand the mechanism(s) underlying the effect of the

central DNA flap during HIV-1 single cycle replication, we analyzed by PCR the

amount of integrated proviral DNA in the presence or absence of the central DNA

flap. Our resuits clearly show that disruption of the DNA flap resuits in a 5- to 7-

fold decrease in proviral DNA integration (Fig.II.4). This significant defect of

proviral DNA integration correlates well with the decreased single-cycle

replication potential (5-to 8-fold) observed with trans-complemented flap

defective virus. Hence, it is clear that the central DNA flap contributes to

efficient single-cycle viral replication by acting on early stage(s) of HIV-1

infection cycle at and!or prior to viral integration. To further understand this

effect of the central DNA flap, we analyzed the total late reverse transcribed DNA

products over time during cPPT or cPPT single-cycle viral infection and

determined the distribution of total viral cDNA in the nucleus and the cytoplasm.

Quantification of total reverse transcribed viral cDNA indicates that the central

DNA flap does not signifïcantly influence the amount of viral transcripts

produced at early time points (6 hours) but contributes to maintenance of higli

level (approximately 2-3 fold) of viral cDNA up to 24 hours p.i., as compared to

flap-defective virus (figJI.5 and 6). Interestingly, analysis of the subcellular

distribution of total viral cDNA indicates that this effect of the central DNA on

total viral cDNA levels reflects primarily an accumulation of viral cDNA in the

nuclear fraction; approximately 7-times more viral cDNA was found associated

with the nucleus with the cPPT virus as compared to the cPPT virus and

proportionally, 2 to 3-times more total viral cDNA was found associated to the

nucleus with the wild type virus (Fig.II.6). Consistent with findings made by

several previous reports using either replication-competent virus or single-round

HIV-1 vector transduction systems (Follenzi, Ailles et al. 2000; Zennou, Petit et

al. 2000; Maele, Rijck et al. 2003), our results indicate that the central cDNA flap

enhances the establishment of HIV-1 infection by facilitating the nucÏear import

of proviral DNA. Moreover, our data indicate also that this process lias a
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stabilizing or/and a protective effect on viral cDNA. Indeed, it is possible that the

central DNA flap may contribute to a correct conformation of viral cDNA and/or

be implicated in the recruitment of liost ceil proteins to form a functional PIC

capable of effective proviral DNA nuclear import. Absence of an intact central

DNA flap may lead to immature PIC where viral cDNA is less stable or subject to

rapid degradation. In this regard, it lias recently been reported that the central

DNA flap region of viral cDNA was resistant to DNAse I digestion when viral

PIC complexes were isolated from the cytoplasm of infected ceils at 10 hours,

whereas it was sensitive to degradation when complexes were isolated at 8.5

hours after infection (Khiytani and Dimmock 2002). Altogether, these

observations point toward a possible role of the central DNA flap in the

maturation and/or the stability of PICs; such a role is likely to influence viral

cDNA stability and nuclear import.

This positive (2-3 fold) effect of the central DNA flap on the accumulation

of total viral cDNA transcrïpts was not observed by other studies that used

lentiviral transduction systems (Follenzi, Ailles et al. 2000; Zennou, Serguera et

al. 2001; Maele, Rijck et al. 2003). This difference may be due to the different

target ceils tested in these studies or alternatively to difference in the structure of

the vector systems. for instance, the HIV-1 envelop was used for virus entry in

h-PBMC in this study, whule others used VSV-G pseudotyped viruses in HeLa,

293T celis and human neuroepithelial progenitors (follenzi, Ailles et al. 2000;

Zennou, Serguera et al. 2001; Maele, Rijck et al. 2003). In that regard, HIV-1

virus pseudotyped with VSV-G are known to mediate infection through distinct

entry and post-entry pathways which do not entirely mimic early HIV-1 infection

processes (Aiken 1997), thus possibly explaining this difference. Interestingly, a

similar difference in the rate of decline of wt and cPPT-defective total viral cDNA

was observed by Limon et al. (Limon, Nakajima et al. 2002) in infected PBMC

although the effect was not as pronounced as in our study.
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By delineating the minimal pol gene sequences necessary for efficient

HIV-1 single-cycle replication, we have generated a RT/IN gene-deleted (2193

bp) HIV-1 vector, which can be efficiently transduced in different CD4 ceils

including human PBMC upon trans-complementation with Vpr-RT-IN fusion

proteins. The large deletion in RT and IN gene sequence ensures that this HIV-1

vector, which expresses most HIV-1 proteins including the envelope

glycoproteins, is unable to spread and replicate whule at the same time minimizes

possibility of generating replication-competent virus by recombination. We

believe that further optimization of this HIV-1 single-cycle replication vector

system and adaptation into the SIV or SHIV models will provide valuable tools to

identify in vivo the initial target celis involved in primary virus infection as well

as to evaluate precisely viral dynamics in animal models.
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Chapter III

Contribution of tlic C-terminal tri -lysine regions of

human immunodeficiency virus type 1 integrase for

efficient reverse transcription and

viral DNA nuclear import
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ABSTRACT

In addition to mediating the integration process, HIV-1 integrase (IN) lias

also been implicated in different steps during viral life cycle including reverse

transcription and viral DNA nuclear import. Although the karyophulic property of

HIV-l IN has been well demonstrated using a variety of experimentai approaches,

the definition of domain(s) and/or motif(s) within the protein that mediate viral

DNA nuclear import and its mechanism are stiil disputed and controversial. In

this study, we performed mutagenic analyses to investigate the contribution of

different regions in the C-terminal domain of HIV-1 IN to protein nuclear

localization as well as their effects on virus infection. Our analysis sliowed that

repiacing lysine residues in two highly conserved tri-lysine regions, which are

located within previously described Region C (235WKGPAKLLWKGEGAVV)

and sequence Q (211KELQKQITK) in the C-terminal domain of HIV-1 IN,

impaired protein nuclear accumulation, while mutations for RK263,4 had no

significant effect. Analysis of their effects on viral infection in a VSV-G

pseudotyped RT/IN trans-compÏemented HIV-l single cycle replication system

revealed that ail three C-terminal mutant viruses (KK215,9AA, KK240,4AE and

RK263,4AA) exhibited more severe defect of induction of p-Gal positive ceils

and luciferase activity than an IN class I mutant D64E in HeLa-CD4-CCR5-3-GaY

celis, and in dividing as weil as non-dividing C8166 T ceils, suggesting that some

viral defects are occurring prior to viral integration. Furthermore, by analyzing

viral DNA synthesis and the nucleus-associated viral DNA level, the resuits

clearly showed that, aithougli ail three C-terminai mutants we tested inhibited

viral reverse transcription to different extents, the KK240,4AE mutant exhibited

most profound effect on this step, whereas KK215,9AA significantly impaired

viral DNA nuclear import. In addition, our analysis could not detect viral DNA

integration in each C-terminal mutant infection, even thougli tliey displayed
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various low levels of nucleus-associated viral DNA, suggesting that these C-

terminal mutants also impaired viral DNA integration ability. Ml of these results

indicate that, in addition to being involved in HIV-1 reverse transcription and

integration, the C-terminal tri-lysine regions of IN also contribute to efficient viral

DNA nuclear import during the early stage of HIV-1 replication.

INTRODUCTION

The integrase (IN) of human immunodeficiency virus type 1 (HIV-1) is

encoded by the pol gene and catalyzes integration of viral cDNA into host

chromosome, an essential step in HIV-1 replication. In addition to mediating the

integration process, HIV-1 IN also participates in different steps during viral life

cycle, including reverse transcription and viral DNA nuclear import (Engelman

and Craigie 1995; Engelman, Englund et al. 1995; Bukovsky and Gottiinger 1996;

Gallay, Hope et al. 1997; Nakamura, Masuda et al. 1997; Wu, Liu et al. 1999;

Ikeda, Nishitsuji et al. 2004). During early phase of the HIV-1 replication cycle,

after virus entry into target celis, another p01 gene product, reverse transcriptase

(RI), copies viral genomic RNA into double-stranded cDNA which exists within

a nucleoprotein preintegration complex (PIC). The PIC also contains viral

proteins including RI, IN, nucleocapsid (NC, p9), Vpr and matrix (MA, p17) and

this large nucleoprotein complex is capable of actively translocating into the celi

nucleus, including that of non-dividing celis (reviewed in reference (Piller, Caly

et al. 2003). This feature is particularly important for the establishment of HIV-1

replication and pathogenesis in exposed hosts, since the infection of postmitotic

ceils including tissue macrophages, mucosal dendritic ceils as well as non

dividing T ceils may be essential flot only for viral transmission and

dissemination, but also for the establishment of persistent viral reservoirs.

HIV-1 IN is composed of three functional domains, an N-terminal domain,

a central catalytic core domain and a C-terminal domain, ail of which are required
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for a complete integration reaction. The N-terminal domain harbors an HHCC

type zinc binding domain and is implicated in the multimerization of the protein

and contributes to the specific recognition of DNA ends (Ellison, Gerton et al.

1995; Lee, Xiao et al. 1997; Heuer and Brown 1998). The core domain of IN

contains the highly conserved DDE motif which is important for catalytic activity

of the protein (Engelman and Craigie 1992; van Gent, Groeneger et aI. 1992).

The C-terminal domain was shown to possess nonspecific DNA binding

properties (Eijkelenboom, Lutzke et al. 1995; Lutzke and Piasterk 1998). Some

mutations within this region cause a drastic ioss of virus infectivity without

affecting the enzymatic activity of IN in vitro (Eijkelenboom, Lutzke et ai. 1995;

Engelman, Englund et al. 1995; Wiskerchen and Muesing 1995; Lutzke and

Plasterk 199$; Lu, Limon et al. 2004). There are three conserved sequences in the

C-terminus of IN that are essential for HIV-1 replication. Regions C

(235WKGPAKLLWKGEGAVV) and N (239VVPRRKAK) are conserved in ail

known retroviruses and the 211KELQKQITK motif fails within the so—called

glutamine-rich based region (sequence Q) of lentiviruses (Cannon, Byles et al.

1996). Alteration of each of the three sequences such as Q214L/Q216L,

K215A1K219A, W235E, K236A/K240A, K244A/E246A, RRE263-5AAH

resulted in loss of viral replication (Wiskerchen and Muesing 1995; Cannon,

Byles et ai. 1996; Petit, Schwartz et al. 2000; Lu, Limon et aI. 2004). However,

the mechanism(s) underlying the ioss of viral infectivity remains controversial.

A number of studies have demonstrated the karyophulic properties of IN

implicating that this protein may piay an important role for PIC nuclear import

(Gallay, Hope et al. 1997; Petit, Schwartz et al. 1999; Pluymers, Cherepanov et al.

1999; Tsurutani, Kubo et al. 2000; Bouyac-Bertoia, Dvorin et al. 2001; Depienne,

Mousnier et aI. 2001). However, the definition of nuciear localization signais

(NLSs) in IN as well as their contribution to HIV-1 PIC nuclear import stili

remains to be determined. Previous report has suggested an atypical bipartite

NLS (186KRK and 211KELQKQITK) by showing that IN mutants K186Q and
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Q214/216L in these regions Iost the protein nuclear localization and their ability

to bind to karyopherin Œ in vitro (Gallay, Hope et al. 1997). However, in attempt

to analyze the effect of these mutants during HIV-1 replication, other studies did

flot reveal the importance of these IN mutants (K186Q and Q214/216L) for viral

nuclear import; rather they appear to be required for reverse transcription,

integration or undefined post-nuclear entry steps (Petit, Schwartz et al. 2000;

Isurutani, Kubo et al. 2000; Lu, Limon et al. 2004). Also, another IN amino acid

sequence 11GOVRDQAEHLK (aal6l-173), was initially identified as an atypical

NLS, which is required for viral DNA nuclear import (Bouyac-Bertoia, Dvorin et

al. 2001). However, reassessments of this putative NLS function failed to

confirm this conclusion (Dvorin, Beli et al. 2002; Limon, Devroe et al. 2002).

Some reports have also acknowledged that IN localization could resuit from

passive diffusion of the protein and its DNA binding property (Kukolj, Jones et al.

1997; Devroe, Engelman et al. 2003), but DNA binding alone does not fully

explain a rapid, ATP- and temperature-dependent nuclear import of IN (Depienne,

Mousnier et al. 2001). It lias recently been reported that the nuclear transiocation

of HIV-1 IN can be attributed to its interaction with a cellular component, liuman

lens epithelium-derived growth factor/transcription coactivator p75 (LEDGF/p75)

and LEDGF/p75 was also shown to be a component of HIV PIC (Maertens,

Cherepanov et al. 2003; Liano, Vanegas et al. 2004). However, wliether this

IN/LEDGF/p75 interaction plays an important role for HIV-1 nuclear import still

remains to be elucidated, since HIV-1 infection and replication in LEDGf!p75-

deficient ceils was equivalent to that in control cells, regardless whether cells

were dividing or growth arrested (Llano, Vanegas et al. 2004). Thus, even though

extensive studies have been dedicated in this specific researcli field, the

contribution of HIV-1 IN to viral PIC nuclear import remains to be defined.

In this study, we have performed substitution mutational analysis to

investigate the contribution of different C-terminal regions of IN to protein

nuclear localization and their effects on HIV-1 replication. Our results showed
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that mutations of lysine residues in two tri-lysine regions, which are located

within previously described Region C and sequence Q (Cannon, Byles et al. 1996)

in the C-terminal domain of HIV-1 IN, impaired protein nuclear localization,

whiie mutations of arginines at amino acid position of 263 and 264 in the distal

part of the C-terminal domain of IN had no significant effect. Moreover, we

assessed the effect of these IN mutants during HIV-1 single cycle infection

mediated by VSV-G pseudotyped RT/IN trans-complemented viruses. Results

showed that, whiie ail three C-terminai mutant viruses differentiaily affected

HIV-1 reverse transcription, the KK240,4AE mutant exhibited most profound

inhibition on this step, whereas KK215,9AA significantly impaired viral DNA

nuclear import.

MATERIAL AND METHODS

Construction of different IN expressors and HIV-1 RT/IN defective

provirus. The fuii-length wild-type HIV-1 IN cDNA was amplified by

polymerase chain reaction (PCR) using HIV-1 HxBru strain (Yao, Subbramanian

et ai. 1995) as template and an engineered initiation codon (ATG) was placed

prior to the first amino acid (aa) of IN. The primers are 5’-IN-HindIII-ATG (5’-

GCGCAAGCTTGGATAGATGTFTYTAGATGGAA-3’) and 3’ -IN-Asp7 18 (5’-

CCATGTGTGGTACCTCATCCTGCT-3’). The PCR product was digested with

HindIII and Asp718 restriction enzymes and cloned in frame to 5’ end of EYFP

cDNA in a pEYFP-N1 vector (BD Biosciences Clontech) and generated a IN

YFP fusion expressor. Aiso, cDNA encoding for truncated IN (aa 50 to 28$ or aa

1 to 212) was amplified by PCR and aiso cloned into pEYFP-N1 vector. The

primers for generation of 1N50-288 cDNA are 1N50-HindIII-ATG-5’(S’-

GCGCAAGCTTGGATAGATGCATGGACAAGTAG-3) and 3 ‘-IN-Asp718 and

primers for amplifying IN1-212 cDNA are IN-HindIII-ATG-5’ and IN-212-

XmaI-3 ‘(5’-CAATTCCCGGG’FfFGTATGTCTGTrTGC-3). IN substitution

mutants INKl5,9-YFP, INj4o,4-YFP and INR63,4-YFP, were generated
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by a two-step PCR-based method (Yao, Kobinger et al. 1999) by using a 5’-

primer (5’-IN-HindIII-ATG), a 3’-primer (3’-IN-Asp718) and complementary

primers containing desired mutations. Amplified IN cDNAs harboring specific

mutations were then cloned into pEYFP-N1 vector. To improve the expression of

each IN-YFP fusion protein, ail IN-YfP fusing cDNAs were finalÏy subcioned

into a SVCMV vector, which contains a cytomegalovirus (CMV) immediate early

gene promoter (Yao, Kobinger et al. 1999).

To construct HIV-1 RT/IN defective provirus NLlucABglz\RI, we used a

previously described HIV-1 envelope-deleted NL1ucABg1D64E provirus as the

backbone (kindly provided by Dr. Irvin S.Y. Chen). n this provirus, the nef gene

was replaced by a firefly luciferase gene (Poon and Chen 2003). The ApaI/SalI

cDNA fragment in NL1ucBg1D64E was replaced by the corresponding fragment

derived from a HIV-1 RT/IN deleted provirus R7ARI (Ao, Yao et al. 2004) and

generated a RT/IN deleted provirus NL1ucABgÏARI, in which RT and IN gene

sequences were deleted while a 194-hp sequence harboring cPPT/CTS cis-acting

elements was maintained. To restore HIV-1 envelope gene sequence in

NLlucABglz\RI provims, the SalI/BamRI cDNA fragment in this provirus was

replaced by a corresponding cDNA fragment from a HIV-1 envelope competent

provirus R7ARI (Ao, Yao et al. 2004) and the resulting provirus is named as

NL1ucARI. To functionally complement RT/IN defects of NL1ucABg1ARI, a

CMV-Vpr-RT-IN fusion protein expressor (Ao, Yao et al. 2004) was used in this

study. Co-transfection of NLIucABg1ARI, CMV-Vpr-RT-IN and a vesicular

stomatitis virus G (VSV-G) glycoprotein expressor resuits in the production of

VSV-G pseudotyped HIV-1 that can undergo for single cycle replication in

different ceil types (Ao, Yao et al. 2004). To investigate the effect of IN mutants

on viral replication, different mutants KK215,9AA, KK240.4AE, RK263,4AA or

D64E were introduced into CMV-Vpr-RT-IN expressor by PCR-based method as

described above and using a 5’-primer corresponding to a sequence in RT gene
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and including a natural NheI site (5’-GCAGCTAGCAGGGAGACTAA-3’), a 3’-

primer (3’-IN-stop-PstI, 5’- CTGTFCCTGCAGCTAATCCTCATCCTG-3’) and

the complementary oligonucleotide primers containing desired mutations. Ail IN

mutants were subsequently analyzed by DNA sequencing to confirm the presence

of mutations or deletions.

Celi unes and reagents. Human embryonic kidney 293T, HeLa and

HeLa-CD4-CCR5-3-Gal celis were maintained in Dulbecco’s Modified Eagles

Medium (DMEM) supplemented with 10% fetal caif serum (FCS). Human

C8166 T-lymphoid celis were maintained in RPMI-1640 medium. Antibodies

used in the immunofluorescent assay, immunoprecipitation or western blot are as

foiiows: The HIV-1 positive human serum 162 and anti-HIVp24 monoclonal

antibody used in this study were previously described (Yao, Mouland et al. 199$).

The rabbit anti-GfP and anti-IN antibodies were respectiveiy obtained from

Molecuiar Probes Inc and through AIDS Research Reference Reagent Program,

Division of AIDS, NIAID, NIH. Aphidicolin was obtained from Sigma Inc.

Ccli transfection and immunofluorescence assay. DNA transfection in

293T and HeLa ceils were performed with standard calcium phosphate DNA

precipitation method. For immunofluorescence analysis, HeLa ceils were grown

on glass coverslip (12 mm2) in 24-weil plate. After 4$h of transfection, celis on

the coverslip were fixed with PBS-4% paraformaldehyde for 5 minutes,

permeabilized in PBS-0.2% Triton X-100 for 5 minutes and incubated with

primary antibodies specific for GFP or 111V-1 IN followed by corresponding

secondary fITC-conjugated antibodies. Then, ceils on the coverslip were viewed

using a computerized Axiovert 200 inverted fluorescence microscopy (Becton

Deckson mc).

Virus production and infection. Production of different single-cycle

replicating virus stocks and measurement of virus titer were previously described

(Ao, Yao et al. 2004). Briefly, 293T ceils were co-transfected with RT/IN

defective NL1ucABg1ARI provius, a VSV-G expressor and each of CMV-Vpr-RT
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IN (wt/mutant) expressor. b produce HIV-1 envelope competent single cycle

replicating virus, 2931 celis were co-transfected with NLYucARI and different

CMV-Vpr-R1-IN (wt/mutant) expressors. After 48 hours of transfection,

supernatants were collected and virus titers were quantified by RI activity assay

(Yao, Kobinger et al. 1999).

b test the effect of IN mutants on virus infection, equal amounts of virus

were used to infect HeLa-CCR5-CD4-f3-Gal celis, dividing and non-dividing

C8166 T ceils. To compare the infection of each viral stock in HeLa-CCR5-CD4-

r-Gal cells, numbers of infected ceils (-Ga1 positive ceils) were evaluated by the

MAGI assay 48 hours post-infection (p.i.) as described previously (Kimpton and

Emerman 1992). To infect CD4+ T celis, dividing or aphidicolin-treated non

dividing C8166 T ceils (with 1.3 iWml of aphidicolin) were infected with

equivalent amounts of single cycle replicating viruses (5cpm/cell) for 2 hours.

Then, infected celis were washed and cultured in the absence or presence of the

same concentration of aphidicolin. At 48 hours post-infection, 1x106 ceils from

each sample were collected, washed twice with PBS, lysed with 50 itl of

luciferase lysis buffer (Fisher Scientific mc) and then, 10 tI of celi lysate was

subjected to the luciferase assay by using a TopCount®NXTTM Microplate

Scintillation &Luminescence Counter (Packard, Meriden) and the luciferase

activity was valued as relative luciferase units (RLU). Each sample was analyzed

in duplicate and the average deviation was calcul ated.

Immunoprecipitation and Western blot analyses. For detection of IN

YFP fusion proteins, 2931 cells transfected with each IN-YFP expressor were

lysed with RIPA lysis buffer and immunoprecipitated using human anti-H1V

serum. Then, immunoprecipitates were run in 12% SDS-PAGE and analyzed by

Western blot using rabbit anti-GFP antibody. b analyze virion-incorporation of

IN and virus composition, 2931 cells were co-transfected with NUucABg1ARI

provirus and each of CMV-Vpr-RT-IN (wt/mutant) expressors. After 48 hours,
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viruses were collected, lysed with RIPA lysis buffer and immunoprecipitated with

human anti-HIV serum. Then, immunoprecipitates were run in 12% SDS-PAGE

and analyzed by Western blot with rabbit anti-IN antibody and anti-p24

monoclonal antibody.

HIV-1 reverse-transcribed and integrated DNA detection by PCR and

Southern blotting. C8166 T celis were infected with equal amount of the wt or

IN mutant viruses for 2 hours, washed for three times and cultured in RPMI

medium. b detect total viral DNA synthesis, at 12 hours post-infection, equal

number (lx 106 celis) of ceils were collected, washed twice with PCR washing

buffer (2OmM Tris-HC1, pH8.0, lOOmM KC1), and lysed in lysis buffer (PCR

washing buffer containing 0.05% NP-40, 0.05% Tween-20). Lysates were then

incubated at 56°C for 30 min with proteinase K (100 ig/ml) and at 90°C for 10

min prior to phenol-chloroform DNA purification. To detect viral cDNA from

each sample, ail lysates were seriaily diluted 5-fold and subjected to PCR

analysis. The primers used to detect late reverse transcription products were as

following: 5’-LTR-U3, 5’-GGATGGTGCrfCAAGCTAGTACC-3’ (nt position

8807, +1= start of BRU of transcription initiation); 3’-Gag 5’-

ACTGACGCTCTCGCACCCATCTCTCTC-3’ (nt position 329). The probe for

southern blot detection was generated by PCR with a 5’-LTR-U5 oligonucleotide,

5’-CTCTAGCAGTGGCGCCCGAACAGGGAC-3’ (nt position 173) and the 3’-

Gag oligo. PCR was carried out using lx HotStar Taq Master Mix kit (QIAGEN,

Mississauga, Ontario), as described previously (Ao, Yao et al. 2004).

b analyze nucleus- and cytoplasm-associated viral DNA, a subcellular

fractionation of infected C$166 T cells (2x106) was performed after 24 hours of

infection, as described previously (Simon and Malim 1996). Briefly, infected

cells were pelleted and resuspended in ice-cold PCR lysis buffer (washing buffer

containing 0,01% NP-40). After a 5-min incubation on ice, the nucieus was

pelieted by centrifugation, washed twice with PCR wash buffer, and lysed in lysis

buffer (0,05% NP-40, 0,05% Tween-20). Then, both cytoplasmic sample
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(supernatant from the first centrifugation) and the nuclear sample were treated

with proteinase K and used for PCR analysis, as described above.

Integrated proviral DNA was detected in ceil lysates by a modified nested

Mu-PCR (Ao, Yao et al. 2004), in which following the first PCR, a second PCR

was carried-out to amplify a portion of the HIV-1 LTR sequence from the first

Alu-LTR PCR-amplified products. The first PCR was carried out by using

primers including 5’-Alu oligo (5’-TCCCAGCTACTCGGGAGGCTGAGG-3

and 3’-LTR oligo (5’-AGGCAAGCTTfA’FTGAGGGCrfAAGC-3’) (nt position

9194) located respectively in the conserved region of human Alu sequence and in

HIV-1 LTR. The primer used for both of the second nested PCR and for

generating a probe are 5-NI: 5’-CACACACAAGGCTACTTCCCT-Y and 3’-NI:

5’-GCCACTCCCCAGTCCCGCCC-3. As a controi, the first and second PCR

primer pairs were also used in parallel to detect integrated viral DNA from

serially diÏuted ACH-2 ceils, which contain one viral copy/cell, in a background

of uninfected C8166 cellular DNA.

To evaluate the DNA content of extracted chromosomal DNA

preparations, detection of human 3-globïn gene was carried-out by PCR, as

described previously (Simon and Malim 1996). Ail final PCR products were

electrophoresed through 1.2% agarose gel and transferred to hybridization transfer

membrane (GeneScreen Plus, PerkinElmer Life Sciences), subjected to Southern

hybridization by using specific PCR DIG-Labeling probes (Roche Diagnostics,

Lavai, Que) and visualized by a chemiluminescent method. Densitometric

analysis was performed using a Personal Molecular Imager (Bio-Rad) and

Quantity One software version 4.1.

RESULTS

1. The C-terminal domain of HIV-1 integrase (IN) is required for the nuclear

Iocalization of IN-YFP fusion protein.
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In this study, we first investigated the intracellular localization of HIV-1

IN and delineated the region(s) of IN contributing to its karyophilic property. A

HIV-1 IN-YFP fusion protein expressor (CMV-IN-YFP) was generated by fusing

a full-length HIV-1 IN cDNA (amplified from HIV-1 HxBru molecular clone

(Yao, Subbramanian et al. 1995) to the 5’ end of YfP cDNA in a CMV-IN-YfP

expressor, as described in Materials and Methods. Transfection of CMV-IN-YFP

expressor in 2931 ceils resulted in the expression of a 57 kDa IN-YFP fusion

protein (Fig.III.1B, lane 2; Fig. 2B, lane 1), whereas expression of YFP alone

resulted in a 27 kDa protein (Fig.III.2B, lane 5). Given that HeLa celis have well

defined morphology and are suitable for observation of intracellular protein

distribution, we tested the intracellular localization of YFP and IN-YFP by

transfecting CMV-IN-YFP or CMV-YFP expressor in HeLa celis. ASter 48 hours

of transfection, celis were fixed and subjected to indirect immunofluorescence

assay using primary rabbit anti-GFP antibody followed by secondary FITC

conjugated anti-rabbit antibodies. Resuits showed that, in contrast to a diffused

intracellular localization pattern of YFP (data flot shown), the IN-YFP fusion

protein was predominantly localized in the nucleus (Fig.IIL1C, a1), confirming

the karyophilic feature of HIV-1 IN.

b delineate the karyophilic determinant in HIV-1 IN, two truncated IN

YFP expressors CMV-1N50288-YFP and CMV-1N1212-YFP were generated. In

CMV-1N50288-YFP, the N-terminal HH-CC domain of IN (aa 1-49) was deleted

and in CMV-1N1212-YFP, the C-terminal domain (aa 213-288) was removed

(Fig.IIL1A). Transfection of each truncated IN-YFP fusion protein expressor in

293T ceils resulted in the expression of 1N50288-YFP and 1N1212-YFP at

approximately 52 kDa and 48 kDa molecular mass respectively (Fig.III.1B, lanes

3 and 4). We next investigated the intracellular localization of truncated IN-YFP

fusion proteins in HeLa ceils by using indirect immunofluorescence assay, as

described above. Resuits showed that the 1N50288-YFP was predominantly

localized in the nucleus with a similar pattern as the wild-type IN- YFP fusion
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Fig.III.1. Subcellular localization of the wild-type and truncated 111V
integrase fused with YFP. A) Schematic structure of 11W-1 ïntegrase—YFP
fusion proteins. Full-length (i-288aa) HIV-i integrase, the N-terminus-truncated
mutant (51-228aa) or the C-terminus-truncated mutant (i-212aa) was fused in
frame at the N-terminus of YFP protein. The cDNA encoding for each IN-YFP
fusion protein was inserted in a SVCMV expression plasmid. B) Expression of
different IN-YFP fusion proteins in 293T celis. 293T celis were transfected
with each IN-YFP expressor and at 48 hours of transfection, ceils were lysed,
immunoprecipitated with anti-HW serum and resolved by electrophoresis through
a 12.5% $DS-PAGE followed by Western blot with rabbit anti-GfP antibody.
The molecular weight markers are indicated at the left side of the gel. C)
Intracellular localization of different IN-YFP fusion proteins. HeLa ceils
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protein (Fig.III.1C, compare bi to ai). However, 1N1212-YfP fusion protein was

excluded from the nucleus, with an accumulation of the mutant protein in the

cytoplasm (fig.III. iC, ci). These resuits were also further confirmed by using

rabbit anti-IN antibody immunofluorescence assay (data not shown). Taken

together, our data show that the C-terminal domain of HW-1 IN is required for its

nuclear accumulation.
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were transfected with each HIV-1 IN-YFP fusion protein expressor and at 48
hours of transfection, ceils were fixed and subjected to indirect
immunofluorescence using rabbit anti-GfP and then incubated with fITC
conjugated anti-rabbit antibodies. The localization of each fusion protein was
viewed by fluorescence microscopy with a 50X ou immersion objective. Upper
panel is fluorescence images and bottom panel is DAPI nucleus staining.

2. Two tri-lysine regions in the C-terminal domain of IN are involved in the

protein nuclear localization.

The C-terminal domain of HIV-1 IN contains several regions that are

highly conserved in different HIV-1 strains, including Q, C and N regions

(Cannon, Byles et al. 1996). Interestingly, in regions Q and C, sequences of

211ELQJQIT and 236iGPAKLLWK possess high similarity in terms of

numbers and position of lysine residues and therefore, we term them proximal tri

lysine region and distal tri-lysine region, respectively (Fig.III.2A). Ail of these

lysine residues are highly conserved in most HIV-1 strains (Kuiken, Foly et al.

2001). To test whether these basic lysine residues couid constitute for a possible

nuclear localization signai for IN nuclear localization, we specifically introduced

substitution mutations for two lysines in each tri-lysine region and generated

INKls,g-YfP and INK4o,4-YfP expressors (fig.III.2A). In the consewed N

region, there is a stretch of four basic residues among five amino acids (aa)

262RRKAK. To characterize whether this basic aa region may contributes to IN

nuclear localization, we replaced an arginine and a lysine at positions of 263 and

264 by alanines in this region and generated a mutant (INRg63,4-YFP). The

protein expression of different IN-YFP mutants in 293T ceils showed that, like

the wild type IN-YfP, each IN-YFP mutant fusion protein was detected at similar

molecular mass (57 kDa) in SDS-PAGE (Fig.III.2B, lanes 1 to 4), while YfP
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alone was detected at position of 27 kDa (lane 5). Then, the intracellular
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Fig.III.2. Effect of different IN C-terminal substitution mutants on IN-YFP
intracellu]ar ]ocalization. A) Diagram of HPV-1 N domain structure and
introduced mutations at the C-terminal domain of the protein. The position of
lysines in two tri-lysine regions and introduced mutations are shown at the bottom
of sequence. B) The expression of the wild-type and mutant N-YFP fusion
proteins were detected in transfected 293T celis by using immunoprecipitation
with anti-HIV serum and Western blot with rabbit anti-GFP antibody, as
described in figure 1. The molecular weight markers are indicated at the left side
of the gel. C) Intracellular localization of different 11W-1 N mutant-YfP fusion
proteins in HeLa celis were analyzed by fluorescence microscopy with a 50X oll
immersion objective. The nucleus of HeLa ceils was simultaneously visualized
by DAPI staining (lower panel).

localization of each N mutant was investigated in HeLa celis by using similar

methods, as described above. Results showed that, while the wild type N-YFP

and Np634AA-YfP stili predominantly localized to the nucleus (fig.III.2C, al

and dl), both Nc15,9p-YfP and NKJc4o,4-YFP fusion proteins were shown

IN
212

1,2 •

to distribute throughout the cytoplasm and nucleus, but with much less intensity
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in the nucleus (Fig.III.2C, al and bi). These data suggest that these lysine

residues in each tri-lysine regions are required for efficient HIV-1 IN nuclear

localization.

3. Production of VSV-G pseudotyped 111V-1 IN mutant viruses and their

effects on HIV-1 infection.

Given that two di-lysine mutants located in the C-terminal domain of IN

are involved in HIV-1 IN nuclear localization, we next evaluated whether these

IN mutants would affect the efficiency of HIV-1 infection. b specifically

analyze the effect of IN mutants in early steps of viral infection, we modified a

previously described HIV-1 single-cycle replication system (Ao, Yao et al. 2004)

and constructed a RT/IN/Env gene-deleted HIV-1 provirus NUucABg1ARI, in

which the nef gene was replaced by a firefly luciferase gene (Poon and Chen

2003). Co-expression of NL1ucABg1ARI provirus with Vpr-RT-IN expressor and

a vesicular stomatitis virus G (VSV-G) glycoprotein expressor will produce viral

particles that can undergo a single-round of replication, since RT, IN and Env

defects of provirus will be complemented in trans by VSV-G glycoprotein and

Vpr-mediated RT and IN trans-incorporation (Ao, Yao et al. 2004). This single

cycle replication system allows us to introduce different mutations into IN gene

sequence without differentially affecting viral morphogenesis and the activity of

the central DNA Flap. After different IN mutations KK215,9AA, KK240,4AE

and RR263,4AA were introduced into Vpr-RT-IN expressor, we produced VSV

G pseudotyped HIV-i IN mutant virus stocks in 293T celis. In order to

specifically investigate the effect of IN mutants on early steps during HIV-1

infection prior to integration, an IN class I mutant D64E was also included as

control. After each viral stock was produced (as indicated in fig.III.3A), similar

amounts of each virus stock (quantified by virion-associated RI activity) were

lysed and virus composition and trans-incorporation of RI and IN of each virus

stock were analyzed by Western blot analysis with anti-IN and anti-HIV
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antibodies, as described in Materials and Methods. Resuits showed that ail VSV

G pseudotyped IN mutant viruses had similar levels of Gagp24, IN and RT, as

compared to the wild-type virus (fig.I1I.3A), indicating that trans-incorporation of

RI and IN as well as HW-1 Gag processing were flot differentially affected by

the introduced IN mutations.
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Fig.III.3. Production of different sing]e-cycle replicafing viruses and their
infection in HeLa-CD4-CCR5-j-Ga] celis. A). To evaluate the trans
incorporation of RT and IN in VSV-G pseudotyped viral particles, viruses
released from 2931 ceils transfected with NLlucz\BglRI provirus alone (lane 6)
or cotransfected with different Vpr-RT-IN expressors and a VSV-G expressor
(lane 1 to 5) were lysed, immunoprecipitated with anti-HIV serum. Then,
immunoprecipitates were mn in 12% SDS-PAGE and analyzed by Western blot
with rabbit anti-IN antibody (middle panel) or anti-RI and anti-p24 monoclonal
antibody (upper and iower panel). B). The infectivity of trans-complemented
viruses produced in 293 T ceils was evaluated by MAGI assay. HeLa-CD4-
CCR5-LTR-f3-Gal ceils were infected with equal amounts (at 10 cpmlcell) of
different IN mutant viruses and after 48 hours of infection, numbers of E3-Gal
positive celis (infected celi) were monitored by X-gal staining. Error bars
represent variation between duplicate samples and the data is representative of
resuits obtained in three independent experiments.

b test the infectivity of different IN mutant viruses in HeLa-CD4-CCR5-

LTR-13-Gal celis, we first compared the infectivity of VSV-G pseudotyped wild

type virus and the D64E mutant virus. At 48 hours post-infection with equivalent

amount of each virus stock (at 1 cpm RI activity/ceil), the number of f3-Gal
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positive celis was evaluated by MAGI assay, as described previously (Kimpton

and Emerman 1992). Resuits showed that the number of infected celis (f3-Gal

positive celis) for D64E mutant reached approximately 14% of the wild type level

(data flot shown). This resuit is consistent with a previous report showing that, in

HeLa MAGI assay, the infectivity level of class I IN integration-defect mutant

was approximately 20 to 22% ofwild type level (Wiskerchen and Muesing 1995).

It indicates that, even though the IN mutant D64E virus is defective for

integrating viral DNA into host genome, tat expression from nucleus-associated

and unintegrated viral DNAs can activate HIV-1 LTR-driven f3-Gal expression in

HeLa-CD4-CCR5-LTR-13-Gal celis. Indeed, several studies have already shown

that HIV infection leads to selective transcription of tat and nef genes before

integration (Engelman, Englund et al. 1995; Wu and Marsh 2001; Brussel and

Sonigo 2004). Therefore, this HeLa-CD4-CCR5-LTR-f3-Gal celi infection system

provides an ideal method for us to evaluate the effect of different IN mutants on

early steps of viral infection prior to integration. We next infected HeLa-CD4-

CCR5-LTR-3-Gal celis with different VSV-G pseudotyped IN mutant viruses at

higher infection dose of 10 cpm RT activity/cell and numbers of n-Gal positive

ceils were evaluated by MAGI assay after 48 hours of infection. Interestingly,

resuits showed that the IN mutant D64E virus infection induced the highest level

of r-Gal positive celis, whereas infection with viruses containing IN mutants

KK215,9AA, KK240,4AE or RK263,4AA yielded mucli lower levels of n-Gal

positive ceils, which only reached approximately 11%, 5% or 26% of the level of

D64E virus infection (fig.III.3B). Based on these resuits, we reasoned that these

IN C-terminal mutants blocked infection mostly by affecting earlier steps of HIV

1 life cycle, such as reverse transcription and/or viral DNA nuclear import steps,

which are different from the action of D64E mutant on viral DNA integration.

4. Effect of IN mutants on viral infection in dividing and non-dividing C8166
T ceils.
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b further test whether these C-terminal mutants could induce similar

phenotypes in CD4 T ceils, we infected dividing and non-dividing (aphidicolin

treated) C8166 CD4 T celis with equal amounts of VSV-G pseudotyped IN

mutant viruses (at 5 cpm of RT activity/cell). Since ail IN mutant viruses contain

a luciferase (luc) gene in place of the nef gene, viral infection can be monitored by

using a sensitive luc assay which could efficiently detect viral gene expression

from integrated and unintegrated viral DNA (Poon and Chen 2003). Mter 48

hours of infection, equal amounts of ceils were lysed in 50 jil of luc lysis buffer

and then, 10 jil of cell lysates was used for measurement of luc activity, as

described in Materials and Methods. Resuits showed that the D64E mutant

infection in dividing C8166 T celis induced 14.3x104 RLU of luc activity

(Fig.III.4 A), which was approximately 1000-fold lower than that in the wild type

virus infection (data flot shown). This level of luc activity detected in D64E

mutant infection is mostly due to nef gene expression from the unintegrated DNA

(Poon and Chen 2003). In agreement with the finding by MAGI assay described

in figure 3, the Luc activity detected in KK215,9AA, KK240,4AE and

RK263,4AA mutant samples were approximately 13%, 5% and 36% of level of

D64E mutant infection (Fig.III.4A). In parallel, infection of different IN mutants

in non-dividing C8166 T ceils was also evaluated and similar resuits were

observed (fig.III.4B).

To test whether these IN mutants had similar effects during HIV-1

envelope-mediated single cycle infection, we produced virus stocks by co

transfecting 293T ceils with a HIV-1 envelope-competent NLIucARI provirus

with each Vpr-RT-IN mutant expressor, as described in Materials and Methods.

Then, dividing CD4 C8166 ceils were infected with each virus stock (at 10 cpm

RT activity/cells). At 48 hours post-infection, celis were collected and measured

for luc activity. Resuits from figure III.4C showed that, similar to results obtained

from VSV-G pseudotyped virus infection (Fig.III.4A), the Luc activity detected in

ceils infected by HIV-1 envelope competent KK215,9AA, KK240,4AE and
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RK263,4AA mutant viruses were approximately 13.5%, 6% and 29% of level of

D64E mutant infection (Fig.III.4C). Ml of these resuits confirm the data from

HeLa-CD4-CCR5-LTR-f3-Gal infection (Fig.III.3) by using either VSV-G- and

HIV-1 envelope-mediated infections and suggest again that the significantly

attenuated infection of KK215,9AA, KK240,4AE and RK263,4AA mutant

viruses may be due to their defect(s) at reverse transcription and/or viral DNA

nuclear import steps.
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fig.III.4. Effect of IN mutants on viral infection in dividing ami nondividing
C8166 T celis. To test the effect of different IN mutants on HIV-1 infection in
CD4+ T celis, dividing (panel A) and non-dividing (aphidicolin-treated, panel B)
C8166 T celis were infected with equal amount of VSV-G pseudotyped IN mutant
viruses (at 5 cpm/cell). For evaluation of the effect of different IN mutants on
HIV4 envelope-mediated infection in CD4+ T celis, dividing C8166 T ceils were
infected with equal amount of HIV-1 envelope competent IN mutant viruses (at 10
cpm/cell) (panel C). Mter 48 hours of infection, HIV-1 DNA-mediated luciferase
induction was monitored by luciferase assay. Briefly, the same amount (106 celis)

of ceils was lysed in 50 u! of luciferase lysis buffer and then, 10 jil of celi lysate
was subjected to the luciferase assay. Error bars represent variation between
duplicate samples and the data is representative of resuits obtained in three
independent experiments.

5. Effects of IN mutants on reverse transcription, vira] DNA nuclear import
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AIl resuits so far suggest that these C-terminal mutants might significantly

affect early steps during HIV-1 replication. To directly assess the effect of these

IN C-terminal mutants on each early step during viral infection, we analyzed the

viral DNA synthesis, their nuclear transiocation and integration following each IN

mutant infection in dividing C8166 celis. Levels of HIV-1 late reverse

transcription products were analyzed by semi-quantitative PCR after 12 hours of

infection with HIV-l specific 5’-LTR-U313’-Gag primers and Southern blot, as

previously described (Simon and Malim 1996; Ao, Yao et al. 2004). Also,

intensity of amplified HIV-1 specific DNA in each sample was evaluated by laser

densitometric scanning of bands in Southern blot autoradiograms (Fig.III.5A).

Resuits showed that total viral DNA synthesis in both KK215,9AA and

RK263,4AA infection reached approximately 61% and 46% of that of the wild

type (wt) virus infection (Fig.III.5A and B). Strikingly, in KK240,4AA sample,

detection of viral DNA synthesis was drastically reduced, which only reached

21% of viral DNA level in WT sample (Fig.III.5A and B). These results indicate

that ail three C-terminal mutants negatively affected viral reverse transcription

during viral infection and KK240,4AA mutant exhibited most profound effect.

Meanwhule, the nucleus- and cytoplasm-associated viral DNA levels were

analyzed at 24 hours post-infection in C8166 T ceils. The infected celis were first

gently lysed and separated into nuclear and cytoplasmic fractions by using a

previously described fractionation technique (Simon and Malim 1996). Then,

levels of HIV-1 late reverse transcription products in each fraction were analyzed

by semi-quantitative PCR, as described above. Resuits revealed differential

effects of C-terminal mutants on HIV-1 DNA nuclear import. In the wt, D64E and

RK263,4AA virus-infected samples, there were respectiveiy 70%, 72% and 68%

of viral DNA assocïated with nuclear fractions (fig.III.5C.(upper panel, lanes 1

and 2; 3 and 4; 9 and 10) and D). for KK240,4AE mutant, approxïmately 51% of

viral DNA was nucleus-associated (Fig.III. 5C (upper panel, lane 7 and 8) and D).

Remarkably, in KK215,9AA infected sample, viral cDNA was found
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predominantly in the cytoplasm and only approximately 21% of viral DNA was

associated with the nuclear fraction (Fig.III.5C (upper panel, lane 5 and 6) and D).

A. B

/

__

— —

_

Ihp-

- o — n fl
C. .,- ç

f. N _U .N. _L X
— I

.

111.1

1 5 6 10 Il

5 — 6 ft —
—

______________________

lb:bp

Nuekus CtupIasm ‘.
‘

1dohin enc

Fig.III.5. f ffects of dîfferent IN mutants on HIV-1 reverse transcription and
DNA nuclear import. Dividing C8166 T celis were infected with equal amounts
of different HIV-1 N mutant viruses. A) At 12 hours post-infection, 1x106 ceils
were lysed and the total viral DNA was detected by PCR using HIV-1 LTR-Gag
primers and Southern blot. B) Levels of HIV-1 late reverse transcription products
detected in panel A were quantified by laser densitometry and viral DNA level of
the wt virus was arbitrarily set as 100%. Means and standard deviations from two
independent experiments are presented. C) At 24 hours post-infection, 2x106 ceils
were fractionated into cytoplasmic and nuclear fractions as described in Materials
and Methods, The amount of viral DNA in cytoplasmic and nuclear fractions were
analyzed by PCR using HW-1 LTR-Gag primers and Southern blot (upper panel,
N. nuclear fraction; C. cytoplasmic fraction). Purity and DNA content of each
subcellular fraction were monitored by PCR detection of human globin DNA and
visualized by specific Southem blot (lower panel). D). The percentage of nucleus
associated viral DNA relative to the total amount of viral DNA for each mutant
was also quantified by laser densitometry. Means and standard deviations from two
independent experiments are shown.
Meanwhile, the integrity of fractionation procedure was validated by detection of

3-gIobin DNA, which was found solely in the nucleus and levels of this nucleus
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associated cellular DNA were similar in each nuclear sample (Fig.III.5C, lower

panel).
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Fig.III.6. Effect of IN mutants on 111V-1 proviral DNA integration. Dividing
C8166 T celis were infected with equal amounts of different HW-1 iN mutant
viruses. At 24 hours post-infection, 1x106 celis were lysed and serial-diluted celi
lysates were analyzed by two-step AÏu-PCR and Southern blot for specific
detection of integrated proviral DNA from infected celis (Upper panel). The
DNA content of each lysis sample was also monitored by PCR detection of
human f3-globin DNA and visualized by specific Southem blot (middle panel).
The serial-diluted ACH-2 celi lysates were analyzed for integrated viral DNA and
as quantitative control (lower panel). The resuits are representative for two
independent experiments

Even though the C-terminal mutants were shown to significantly affect

HIV-1 reverse transcription and/or nuclear import, the various low levels of

nucleus-associated viral DNA during the early stage of replication (Fig.III.5C)

may stiil be accessible for viral DNA integration. To address this question, 1x106

dividing C8 166 T celis were infected with equivalent amounts of each single

cycle replicating virus stock (5cpmlcell), as indicated in figure 6 and after 24

hours of infection, the virus integration level was checked by using a previously

described sensitive Alu-PCR technique (Ao, Yao et al. 2004), Results revealed
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that, while the wt virus resulted in an efficient viral DNA integration (Fig.III.6,

upper panel; lanes 1 and 2), there was no viral DNA integration detected in D64E

mutant (lanes 3 to 4) and in ail three C-terminal mutant infection samples (lanes 5

to 10), although similar levels of cellular 3-g1obin gene were detected in each

sample (Fig.III.6, middle panel). These results suggest that, in addition to

affecting HIV-1 reverse transcription and nuclear import, all three C-terminal IN

mutants tested in this study also negatively affected viral DNA integration.

Overali, ail of these resuits indicate that ail three IN C-terminal mutants are

belonged to ciass II mutants, which affected different early steps during HIV-1

replication. Among these mutants, the KK240,4AE showed the most profound

inhibition on reverse transcription and the KK215,9AA, and to a lesser extent,

KK240,4AE, impaired viral DNA nuclear transiocation during early HIV-1

infection in C8166 T ceils.

DISSCUTION

In this study, we performed mutagenic studies to analyze different regions

in the C-terminal domain of HIV-1 IN that contribute to protein nuclear

iocalization as well as their effects on virus infection. First, our analyses showed

that specific lysine mutations introduced in two highly consewed tri-lysine

regions in the C-terminai domain of HIV-1 IN impaired protein nuclear

accumulation. Second, infection experiments revealed that ail three C-terminal

mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA) exhibited more

severe defect of induction of f3-Gal positive ceils and luc activity, as compared to

an IN ciass 1 mutant D64E virus, in CD4 HeLa-13-Gal ceils, dividing and non

dividing C8166 T ceils. It suggests that ail three C-terminal mutant virus

infections may have defects at steps prior to integration. Further analysis of total

viral DNA synthesis, viral DNA nuclear import and integration indicates that ail

three C-terminal mutants displayed a class II mutant profile. Even though ail of
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them reduced viral reverse transcription levels, the mutant KK240,4AE showed

the most profound inhibitory effect. In addition, the mutant KK215,9AA, and to a

lesser extent, KK240,4AE, impaired viral DNA nuclear transiocation. These IN

mutant-induced defects do flot appear to resuit from various effects of mutants on

Gag-Pol processing and maturation given that RT and IN were complemented in

trans in this HIV-1 single-cycle infection system. Rather, the effect of different

IN mutants on reverse transcription and viral DNA nuclear import is likely

originated from a role of mutants within the maturing PIC complexes.

Previous work by Gallay et al., have proposed an atypical bipartite NLS

(‘86KRK and 211KELQKQITK) in HIV-1 IN by finding that IN mutants K186Q

and Q214/216L lost their karyophilic feature and their ability to bind to

karyopherin Œ in vitro (Gallay, Hope et al. 1997). Even though these resuits were

confirmed by Petit and colleagues by studying the intracellular localization of

HIV-1 FÏag-IN (Petit, Schwartz et al. 2000), other studies, using GFP-IN fusion

protein, did not reveal the importance of K186Q and Q214/216L mutations for

HIV-1 IN nuclear localization (Tsurutani, Kubo et al. 2000; Devroe, Engelman et

al. 2003; Lu, Limon et al. 2004). Therefore, the definition of region(s) in HIV-1

IN contributing to the protein nuclear localization is stiil controversial. In this

study, we investigated the intracellular localization of several IN-YFP fusion

proteins including the C-terminal-deletion mutant 1N121 2-YFP, substitution

mutants INKl5,g-YFP and INKIc24O,4-YFP and found that ail of these IN

fusion mutants impaired protein nuclear accumulation. It suggests that two C-

terminal tri-lysine regions 211KELQKQITK and 236KGPAKLLWK contribute to

IN nuclear localization. Interestingly, the study by Maertens et al also showed

that the fusion of HIV-1 IN C-terminal fragment alone with GFP rendered fusion

protein to be exclusively in the nucleus, speculating that the C-terminal domain

may have a role in HIV-1 nuclear import (Maertens, Cherepanov et al. 2003).

However, at this moment, we stili could not exciude the possibility that the IN

nuclear accumulation could be facilitated by the DNA binding ability of IN
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protein, as suggested by Devroe et al (Devroe, Engelman et al. 2003). It has to be

noted that two studies have previously observed the nuclear localizatïon of GfP

IN fusion proteins although the C-terminal domain of IN was deleted from the

fusion protein (Tsumtani, Kubo et al. 2000; Maertens, Cherepanov et al. 2003). it

has also been shown that botS N-terminal zinc binding domain and the central

core domain of HIV-1 IN are involved in its interaction with a cellular protein,

human lens epithelium-derived growth factor/transcription coactivator p75

(LEDGF/p75) and this IN/LEDGF/p75 interaction is required for GFP-IN nuclear

localization (Maertens, Cherepanov et al. 2003). However, our deletion analysis

by using IN-YFP fusion protein failed to reveal the importance of botS N-terminal

and core domains for IN nuclear localization (Fig.III.1). One explanation for this

discrepancy could 5e different orientations of fusion proteins used in our study

(IN-YFP) and other studies (GFP-IN). It is possible that different forms of fusion

proteins may differentially affect the ability of IN to interact with LEDGf/p75

and consequently affect their ability for nuclear targeting. Therefore, it would be

interesting to test whether INKicI5,9-YFP and INK4o,4,-YFP could loss their

ability to interact with LEDGF/p75. These studies are underway.

An important question that needs to 5e addressed is the impact of nuclear

localization-defective IN mutants on HIV-1 replication. Given that most IN

mutants characterized so far are classified as class II mutants that cause

pleiotropic damage including defects in viral morphogenesis, reverse transcription

and integration (Nakajima, Lu et al. 2001; Lu, Limon et al. 2004), we used a

previously described VSV-G pseudotyped HIV-1. RT/IN trans-complement

single-cycle replication system (Wu, Liu et al. 1997; Ao, Yao et al. 2004) to

minimize differential effects of IN mutants on virus maturation. AIso, in our

infection experiments, a specific integration-defective class I mutant D64E virus

was introduced in order to monitor the viral gene expression from unintegrated

HIV-1 DNA species that are already translocated into nucleus during virus
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infection. It is known that certain levels of selected viral gene expression (tat and

nef) from unintegrated viral DNA species are detected during this Class I mutant

infection (Engelman, Englund et al. 1995; Wu and Marsh 2001; Brussel and

Sonigo 2004). Interestingly, our infection analysis revealed that more profound

infection defects were found for ail three IN C-terminai mutant viruses

KK215,9AA, KK240,4AE and RK263,4AA than D64E mutant virus in Hela

CD4-CCR5-F3-Gal ceils, dividing and non-dividing C8166 T celis (fig.III. 3 and

4). These results suggest that these C-terminal IN mutants may affect early steps

such as reverse transcription and/or nuclear import and consequently resuit in a

reduced level of viral DNA in the nucleus, which is accessible for tat and nef

expression, To understand the mechanism(s) underlying replication defects of

each C-terminal mutant, levels of total reverse transcription were anaÏyzed during

eariy viral infection. Consistent with a previous study (Wu, Liu et al. 1999),

infection with D64E mutant virus did flot affect reverse transcription as compared

to wt virus infection. However, ail three C-terminal mutants display various

levels of impaired HIV-1 reverse transcription (Fig.III.5A and B). The mutant

KK240,4AE showed strongest inhibition of reverse transcription (22% compared

to the wt level (100%)), while mutants KK215,9AA and RK263,4AA reached to

61% and 46% (Fig.III.5A and B). These data indicate that ail of these IN

mutants, especially KK240,4AA, negatively affect reverse transcription at early

viral infection. Consistently, recent studies have shown that the C-terminal

domain of IN contributes to efficient reverse transcription and this domain of IN

was able to bind to heterodimeric RT (Wu, Liu et al. 1999; Relu, Joshi et al. 2004;

Zhu, D5bard et al. 2004). It is possible that these C-terminal mutants, especially

for KK240,4AE, may disrupt the interaction between IN and RT and resuit in

decreased viral cDNA synthesis.

Subsequently, we examined levels of nucleus- and cytoplasm-associated

viral DNA during early virus infection. Results clearly show that the nuclear
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localization defective mutant KK215,9AA leads to significantly reduced levels of

viral DNA in the nucleus, as compared to the wt and D64E viruses (Fig.I1I. 5C

and D). It suggests that the Q region is in fact important for HIV-1 nuclear

import. Consistently, a recent study by Lu et al also observed that infection of

K215AJK219A mutant induced more than 3-fold lower luc activity compared to

class I IN mutant D64N/D116N (Lu, Limon et al. 2004). Moreover, similar to our

experimental system, their study reveaÏed that, in the context of VSV-G

pseudotyped virus infection in Jurkat ceils, 2-LTR circle DNA levels of

K215A/K219A and Q214L/Q216L were significantly lower than other mutants

V165A and C13OG, even thougli the inhibition of viral reverse transcription

mediated by these mutants were comparable (Lu, Limon et al. 2004). In addition,

KK240,4AE mutant also showed a modest impairment of viral DNA nuclear

import (Fig.III.5C and D). In fact, this mutant exhibited the most profound

infection defect, compared to other two mutants (KK215,9AA and RK263,4AA)

(Fig. 3 and 4). This may be due to combined effects of this mutant on both

reverse transcription and viral DNA nuclear import, as shown in Fig.II1.5. One

interesting question is wliether sucli profound infection defect of KK240,4AE

mutant virus could be due to a structural alteration by replacing glutamic acid (E)

for lysine at position of 244. It seems to be unlikely since 1) the effect of this

mutant on nuclear import was not as dramatic as KK215,9AA mutant (as shown

in Fig.III.5); 2) Wiskerchen et al have reported that infection of MAGI ceils with

two other IN mutants K236A/K240A and K244A’E246A mutants, that are located

in the same region as our KK240,4AE mutant, resulted in O and 4 3-Ga1 positive

ceils, while infection of class I IN mutants produced 700 to 1400 f3-Gal positive

ceils (Wiskerchen and Muesing 1995). Ah of these observations suggest that this

region indeed plays an important role for IN activities during early stage of virus

infection prior to integration. Ahso, it lias to be noted that aithougli similar

inhibition of reverse transcription was seen for KK215,9AA and RK263,4AA

mutants, RK263,4AA mutant induced two to three fold higher level of 13-Gal
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positive ceils and luc activity than KK215,9AA mutant (Fig. 111.3 and 4). This is

expected since KK215,9AA affected both reverse transcription and nuclear

import, whule RK263,4AA mutant only impaired reverse transcription (Fig.III.5).

In addition, our analysis could flot detect viral DNA integration in each C-

terminal mutant infection (Fig.III.6), even though they displayed various low

levels of nucleus-associated viral DNA (Fig.III.5C). It suggests that these IN

mutants may also negatively affect viral integration during their infection.

Alternatively, it could be possible that these mutants may have additional

defect(s) at an undefined postnuclear entry step that is required for viral DNA

integration, as suggested by Lu et al (Lu, Limon et al. 2004). Consistently, their

recent reports have shown that several IN mutants in same regions, including

K215A/K219A, E244A and R262A/K264A, completely Iost virus replication

ability in CD4+ Jurkat T cells (Lu, Limon et al. 2004; Lu, Ghory et al. 2005).

Up to now, the mechanism(s) underlying the action of HIV-1 IN in viral

PIC nuclear import is stiil unclear. Since IN is a component of viral PIC, at least

two factors may affect the contribution of IN to viral PIC nuclear import: first, IN

needs to directly or indirectly associate with viral DNA and/or other PIC

associated proteins in order to participate in driving viral DNA into the nucleus;

second, IN needs to have a NLS and/or bind to other karyophilic proteins for

nuclear transiocation. Any mutation disrupting one of these two abilities would

affect IN’s action for viral DNA nuclear import. A recent study evaluated the

effect of several IN core domain mutants targeting key residues for DNA

recognition on HIV-1 replication and indicated that, while all of these IN mutants

maintained their karyophulic properties, viruses harboring these mutants stiil

severely impaired viral DNA nuclear import (Ikeda, Nishitsuji et al. 2004). In our

study, both KK215,9AA and KK240,4AE mutants clearly lost their karyophilic

properties and negatively affected viral DNA nuclear import. However, it is stili

premature to define these regions acting as IN NLS, even though a previously
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described IN mutant Q214/216L, whïch ïs also Iocated in proximal tri-lysine

domain, lias been sliown to reduce IN-karyoplierin Œ interaction in vitro (Gallay,

Hope et al. 1997). More studies are required for further characterization of

molecular mechanisms underlying the action of these IN mutants during HIV-1

DNA nuclear import.
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Chapter IV

Interaction of Human Immunodeficiency Virus Type 1

Integrase with the Cellular Nuclear Import Receptor

Importin 7 and its Impact on Viral Replication
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ABSTRACT

Similar with ail other viruses, Human Immunodeficiency Virus Type 1

(HIV-1) depends heaviiy on celluiar factors for its successful infection. In this

study we have investigated the interaction of HIV-1 integrase (IN) with severai

nuclear import factors by using co-immunoprecipitation assay. Our resuits

showed that IN interacts specifically with Imp7 in the ceils, but not binds to

importin $ (Imp8) and importun Œ (Rchl). In contrast, another HIV-1 karyophilic

protein MAp17, that was capable of binding Rchl, was unabie to interact with

Imp7, suggesting that these two HIV-1 proteins may interact with different

celluiar pathways during HIV-1 repilcation. Genetic anaiysis revealed that the C-

terminal domain of IN is the region responsible for interaction between IN with

Imp7, and an IN mutant (KK240,4AA/RK263,4AA) disrupted the Imp7-binding

ability of the protein, suggesting that both regions (235WKGPAKLLWKG and
269 RRKAK) within the C-terminai domain of IN contributed to efficient IN/Imp7

interaction. Using a VSV-G pseudotyped HIV single-cycle repiication system,

we demonstrated that the IN/imp7 interaction deficient mutant compietely

inhibited the replication of HIV-1 and dispiayed impairment at both viral reverse

transcription and nuclear import steps. Moreover, transient knockdown of Imp7 in

both HIV-1 producing and target celis resuited in 2.5 to 3.5-fold inhibition of HIV

infection. Altogether, our results indicate that HIV-1 IN specificaiiy interacts

with Imp7 and this virai/ceiiular protein interaction contributes to an efficient

HIV-1 infection.
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INTRODUCTION

To carry out a successful infection, HIV-1 takes advantage of various host

cellular proteins and cellular pathways. The interactions between cellular proteins

and viral components take place during various steps of the HIV-1 life cycle

including viral DNA nuclear import. The most striking feature of HIV-1 is its ability

to replicate in nondividing celis, which depends on the capacity of the virus to

transport its cDNA, as a part of a large preintegration complex (PIC), from the

cytoplasm to the nucleus by an active and energy-dependent process (1-3).

However, the mechanism by which the PIC transiocates across the nuclear

membrane into the nucleus of nondividing celis is stiil not fully understood. It has

been shown that three HIV-1 PIC-associated proteins including MAp17, IN and Vpr

possess karyophilic properties, and contribute to nuclear transiocation of viral PICs

into the nucleus. This action is accomplished through their interactions with

karyophilic cellular proteins, thereby directing the PIC through the nuclear pore (4-

10). In addition, a cis-acting element named the central DNA flap located in the 3’

region of the pol gene sequence was also shown to contribute to HIV-1 nuclear

import in both dividing and nondividing cells (11-14).

Nuclear import of proteins in mammalian ceils can be mediated by several

distinct pathways. Importin u!f3 heterodimer meditates nuclear import of protein

harboring a classical nuclear localization signal (NLS), which either contains a

cluster of basic amino acids or two basic clusters (bipartite NLS) (for reviews see

(15,16)). Also, importin f3 (Impf3) was shown to bind to and import proteins, such

as HIV-1 Tat, Rev and HTLV Rex, independently of the importin u (Impu) (17-21).

Similarly, transportin, an impf3-related receptor, imports its substrates (hnRNP

proteins) by directly binding to the glycine-rich M9 domain of the protein (22,23).

Moreover, based on the similarity to Impf3, several other nuclear import receptors,

including improtin 7 (Imp7) and importin 8 (Imp8), have also been identified (24).
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Imp7 was one of several cellular importins that bind and mediate nuclear import of

ribosomal proteins in mammalian ceils and it was also found to transiocate other

proteins such as glucocorticoid receptor and histone Hi into the nucleus (18,25-27).

In the case of histone Hi, Jakel et al have demonstrated that two receptors, Imp3

and Imp7 form a heterodimer, and this complex is a functional unit required for the

nuclear import of histone Hi. Imp 8 bas also shown to contribute to the nuclear

import of signal recognition particle protein 19 (28). However, whether and how

these cellular proteins contribute to the nuclear import of HIV-1 PIC during the

early stage of viral infection remains to be defined.

HIV-1 integrase (IN) is a 32-kDa protein that plays a key role in viral cDNA

integration into the host chromosome. In addition, this viral protein has also been

shown to contribute to other steps during the early stage of HIV-1 replication,

including reverse transcription (29,30) and viral DNA nuclear import (7,10,3 1,32).

Even though IN lias been well documented to possess karyophilic properties

(7,10,33-35), the mechanism by which HIV-1 IN contributes to the nuclear import

of the viral PIC is stiil not fully understood. Some previous studies have showed

that IN is capable of binding to ImpŒ in in vitro binding assays (7,36,37), but the in

vitro nuclear import assay results concerning whether ImpŒ plays a role in the

nuclear transiocation of IN and/or HIV-1 DNA is still controversial (33,37,38). A

cellular component, human lens epithelium-derived growth factor/transcription

coactivator p75 (LEDGF/p75) was initially implicated in contributing to the nuclear

translocation of HIV-1 (39,40). However, the following study came to the

conclusion that the interaction of IN with LEDGF/p75 may flot be required for IN

nuclear localization (41). Several studies have further identified that LEDGF/p75 is

important for tethering IN as well as the viral PIC to chromosomal DNA and

contributes to controlling the location of HIV DNA integration (41-43). In attempts

to search for other cellular factor(s) involved in HIV-i nuclear import, Fassati et al

have reported that Imp7 contributes to HIV-1 PIC nuclear import through an in vitro

nuclear import assay. Their study also showed that small interfering RNA (siRNA)
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mediated Imp7-knockdown inhibited HIV-1 replication (38). In addition, their in

vitro binding assay showed that recombinant IN could pull down several cellular

nuclear import receptors including ImpŒ, Imp3, Imp7 and transportin from HeLa

ceil lysates, suggesting that the action of Imp7 for HIV-1 PIC nuclear import may be

through its binding to HIV-1 IN (Supplementary materials in (38)). However, a

recent study by Zielske et al., did not reveal the impact of Imp7 knockdown on

HIV-1 and SIV nuclear import in macrophages (44). Therefore, the functional role

of Imp7 action during HIV-1 replïcation remains to be defined.

In this study, we have investigated the interaction of HIV-1 IN with

several cellular importins by using a cell-based co-immunoprecipitation assay.

Our resuits indicate that HIV-1 IN, specifically interacts with Imp7, but flot with

ImpŒ (Rchl) and Imp8, and this IN/Imp7 interaction takes place in ceils. We also

showed that another HIV-1 karyophilic protein MAp17, that is capable of binding

Rchl, was unable to interact with Imp7. In addition, our mutagenic analysis

demonstrated that two regions (235WKGPAKLLWKG and 262RRKAK) in the C-

terminal domain of IN are critical for its Imp7-binding ability. In attcmpt to

elucidate the contribution of the IN/Imp7 interaction to HIV-1 replication, our

resuits indicate that an Imp7-binding defective IN mutant virus lost infectivity and

displayed defects during both reverse transcription and nuclear import. Moreover,

our experiments revealed that HIV-1 produced from Imp7-depleted ceils

exhibited 2.5 to 3.5-fold reduced infection in Imp7-knockdown susceptible cells.
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MATERIAL AND METHODS

Construction of different viral and cellular protein expressors-To

generate CMV-YfP-IN fusion expressor, the full-length wild-type HIV-1 IN cDNA

was amplified from HIV-1 HxBru provirus (45) by polymerase chain reaction

(PCR) using 5’-BgflI primer (5’-GCCAGATCTTTCrfAGATGGAATAGATAAG-

Y) and 3’-BamHI primer (5’-CTAAACGGATCCATGTTCTAA-3’). The amplified

HIV-1 IN fragment was cloned in frame to 3’ end of EYfP cDNA in a pEYFP-Cl

vector (BD Biosciences Clontech). The CMV-IN-YFP and CMV-1N50288-YFP

expressors used in the study were previously described (32). To construct different

CMV-YFP-IN deletion mutants, cDNA fragments encoding aa f-212 andl-240 of

IN were generated by PCR with 5’-BgllI primer and 3 primers (5-

CAArfCCCGGGrFrGTATGTCTGTTTGC-3; 5-

CCAGACCCGGGrfGCTGGTCCTrTCCA-3) and was inserted into pEYFP-C1

vector at BgÏfl and XmaI sites. Different IN substitution mutants were generated by

a two-step PCR-based method (46) by using 5’ -BgllI primer, 3’ -XhoI primer and

complementary primers containing desired mutations. The amplified IN cDNAs

harboring specific mutations were then cloned into pEYFP-C1 vector. To generate

HIV-1 provirus NL4.3-BruABgl/Luc, the sequence from ApaI to SalI site (nt 1556

to nt 5329, +1= start of NM.3 initiation of transcription) in a RT/IN/Env defective

HIV-1 provirus NLlucABgl/ARI (32) was replaced by the corresponding sequences

of HIV-1 provirus HxBru (45). The genotype of this molecular clone is 5’ LTR

+ + .+ + + + + - -gag pot vtf vpr tat rev vpu env nef 3 LTR.

The pGEX-Imp7 and pGEX-IImp8 plasmids encoding for Xenopus Imp7

and human Imp8 cDNAs were generously provided by Dr. Yamamoto (26) and used

as PCR templates for constructing CMV-T7-Imp7, CMV-T7-ImpS plasmids The

cDNA encoding Rch-1 was amplified from a pET-21-Rchl. The amplified Imp7,

Imp8 and Rch-1 fragments were digested with BamHI and NotI and cloned at 3’

end of T7-tag in a SVCMV-T7 vector. The MAp17G2A cDNA was generated by
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PCR from HIV-l provirus HxBru using primers (5’ primer: 5-

ATAGCTAGCGAGATGGCTGCGAGA-3; 3’ primer: 5-

CTGCGGATCCGGGTAATTTTGGCTGAC-3) and the second amino acid glycine

was changed to alanine. Then, the CMV-MAG2A-YFP was constructed by inserting

a HIV-l MAG2A cDNA in frame at 5’ ofYfP cDNA in the CMV-YFP-N1 plasmid

(BD Biosciences Clontech). Ail newly-contructed expressing plasmids were

subsequently analyzed by DNA sequencing to confirm the sequence and the

presence of mutation and/or deletions.

Antibodies and chemicals-Antibodies used in immunoprecipitation or

western blot are as follows. The purified rabbit anti-GFP polyclonal antibody,

mouse monoclonal anti-GFP antibodies were obtained from Molecular Probes Inc.

The mouse anti-17 antibody was obtained from Novagen Inc (Darmstsdt, Germany).

The rabbit anti-human Imp7 antibody was kindly provided by Dr. A. Fassati (38).

The rabbit anti-IN antibodies (Cat No. 757) and the purified recombinant 111V-

1NM.3 IN protein (Cat No. 9420) were obtained through AIDS Research Reference

Reagent Program, Division of AIDS, NIAID, NIH. The human anti-HIV serum was

kindly provided by Dr. Eric A. Cohen and described previously (45). The ECLTM

HRP-conjugated donkey anti-rabbit IgG and the sheep anti-mouse IgG were

purchased from Amersham Biosciences. The western blot detection ECL kit was

purchased from PerkinElmer Life Science (Boston, MA). CHAPS (3-((3-

cholamidopropyl)-dimethylammonio)- 1 -propane-sulfonate) was purchased from

Sigma Chemical Co.

Celi culture and transfection-Human embryonic kidney 2931 ceils and

HeLa-3-ga1-CD4/CCR5 ceils were maintained in Dulbecco’s Modified Eagles

Medium (DMEM) supplemented with 10% fetal caif serum (FCS) and 1% penicillin

and streptomycin. The CD4 C8166 celis were maintained in RPMI-1640 medium

containing 10% FCS and antibiotics. DNA transfection in 2931 cells was performed

with standard calcium phosphate DNA precipitation method. After 48 hours of

transfection, cells were hawested and ready for different experiments.
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IN/Imp7 binding assays using immunoprecipitation (IP) and western

blot (WB)-To test protein expression and the protein-protein interaction in

mammalian celis, 293T ceils were transfected or co-transfected with corresponding

protein expression plasmids. After 48 h of transfection, celis were lysed with a

CHAPS lysis buffer (199 medium containing 0.5% CHAPS and a protease inhibitor

cocktail (Roche)) on ice for 30 min and clarified by centrifugation at 13,000 rpm for

30 min at 4°C. Then, the supernatant was subjected to IP with rabbit anti-GFP or

the corresponding antibody. Immunoprecipitats were resolved by 10% SDS-PAGE

gel followed by western blot using mouse anti-T7 or mouse anti-GFP antibodies,

respectively. Also, the total T7-tagged protein expression in celi lysates was

sequentially immunoprecipitated with mouse anti-T7 antibody followed by western

blot using the same antibody.

To test the interaction of HIV-1 IN with endogenous Imp7, 293T ceils were

mock-transfected or transfected YFP or IN-YFP expression plasmids and the same

IP and WB protocols were used as described above, except using rabbit anti-Imp7

antibody to check the bound endogenous Imp7. Meanwhule, non-transfected 293T

ceil lysate was loaded directly in SDS-PAGE gel as positive control.

In Vitro Binding Studies - b produce GST, GST-Imp7 proteins, the E. cou

BL21 celis transformed with pGEX-4T-GST or pGEX-4T-GST-Imp7 plasmids were

cultured in LB medium (0.1 mg’ml ampicillin). Protein expression was induced by

adding isopropy1-1--D-thiogalactopyranoside (1 mM) for 3 h at 37 °C. Bacteria

were harvested, suspended in 35 ml of ice-cold column buffer, and broken by

sonication (five 30-s pulses at 100 watts, Sonics & Materials, Inc.). The resulting

lysates were centrifuged for 30 min at 13000 rpm and pass through a glutathione

sepharose 4B column (Amerham Pharmacia Biotech mc). After being washing by

column buffer, the bound GST and GST-Imp7 proteins were eluted by glutathione

buffer (lOOmM reduced gluthathione (Roche), l2OmM NaC1, lOOmM Tris-HC1 pH

8.5). Finally, the eluted protein was dialyzed in PBS to remove high concentration

of glutathione.
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For in vitro binding experiments, the equal amounts of recombinant GST or

GST-Imp7 protein were incubated with a recombinant HIV-1 IN in 199 medium

containing 0.1% CHAPS, for 2 hours at 4 °C. Then, 100 jil of glutathione-sepharose

4B beads were added and incubated for additional one hour. The beads were washed

and the bound proteins were eluted with 50 mM glutathione, loaded onto a 12.5%

SDS-PAGE for western blot analysis with rabbit anti-IN antibodies.

Transient knockdown of Imp7 in 2931 and HeLa-f3-ga]-CD4/CCR5 celis

- 293T ceils and HeLa-p-gal-CD4/ccR5 ceils were plated at 2x105 cells/well in 6-

well plates and transfected at the next day with 100 pmol of Imp7-specific small

interfering RNA (siRNA) duplex (1P07-HSS116173) with LipofectamineTM

RNAiMAX Reagent (Invitrogen). Mter 18 h of first transfection, another Imp7

siRNA duplex (1P07-HSS116174) was transfected again into celis. These two

Imp7-siRNA duplexes (Stealth RNAi), 1P07-HSS116173 and 1P07-HSS116174,

were synthesized by Invitrogen Inc and the targeting sequence are respectively

corresponding to Imp7 mRNA nucleotides 1990-2013 (5’-

uAAGcAGAuucccucAAocuGuuGo-3’), and to Imp7 mRNA nucleotides

610-633 (sense 5’-AAUGcUGcAUUGCUGGcUACcAAUGG-3’). In parallel,

transfection of a scramble RNA (sc-RNA) (purchased from Santa cruz

Biotechnology) was used as control. After 48 and 72 hours post-transfection, ceils

were used for different HIV-1 provirus transfection and virus infection, respectively.

Virus production and infection — To test the effect of Imp7-binding

defective mutant on HIV replication, a vesicular stomatitis virus G (VSV-G)

glycoprotein pseudotyped single-cycle replicating virus were produced in 293T

celis, as described previously (32). Briefly, 293T celis were transfected with a

RT/IN defective HIV-1 provirus NUucABg1ARI, each CMV-Vpr-RT-IN

(wt/mutant) expressor and a VSV-G expressor. Introduction of IN mutations into

CMV-Vpr-RT-IN expressor was through a PcR-based method as described

previously (32). To produce viruses from Imp7-siRNA- or sc-RNA-transfected
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celis, the same amount of ceils transfected with imp7 siRNA or scramble RNA were

re-plated at 36 h after the first transfection, and after additional 12 h, celis were

transfected with different HIV-1 proviruses. After 48 hours of provirus transfection,

viruses were collected from the supernatant through an ultracentrifugation, and virus

titers were quantified by using HIV-1 p24 Mtigen Capture Assay Kit (jurchased

from The NCI-Frederick AIDS Vaccine Program).

To infect CD4+ C8166 T ceils, equal amounts of viruses (adjusted by

amount of virion-associated p24) were incubated with C8166 T ceils at 37°C for 4 h.

At different time points post-infection, 1x106 celis from each sample were

collected, lysed with 50 jil of luciferase lysis buffer (Fisher Scientific mc). 10 tl of

ce!! lysate was subjected to the luciferase assay by using a TopCount®NXTTM

Microplate Scintillation &Luminescence Counter (Packard, Meriden) and the

luciferase activity was valued as relative luciferase units (RLU). Each sample was

analyzed in duplicate and the average deviation was calculated. To test the effect of

Imp7 knockdown on HIV-1 infection, at 72 h after being transfected with Imp7-

siRNA or sc-RNA, HeLa-13-gal-CD4/CCR5 ceils were infected with equal amounts

of different viruses in the presence of DEAE-Dextran (20 ig/ml). At 48h post

infection, the HIV-1 infection were monitored by measurement of the luc activity

level and/or the amount of 13-Gal positive ceils, as described previously (47).

HIV-1 reverse-transcribed and nuclear imported DNA detection by PCR

and Southern blotting - C8166 T ceils were infected with equal amount of the

VSV-G pseudotyped INwt or mutant viruses for 2 h, washed with PBS and cultured

in RPMI medium. At 12 or 24 hours post-infection, equal number (1x106 ceils) of

ceils were collected and processed for detecting total viral DNA synthesis or

nucleus- and cytoplasm-associated viral DNA by PCR and southern blotting, as

described previously (32).
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RESULTS

1. 111V-1 IN interacts with Imp7, but not with Imp$

b investigate the interaction of HW-1 IN with different cellular nuclear import

factors, we first tested the interaction of HIV-1 IN with cellular nuclear import

receptors Imp7 and trnp$, by using a celI-based co-immunoprecipitation (co-IP)

assay. SVCMV-T7-Imp7 and -Imp8 expressing plasmids were constructed by

inserting Irnp7 and Imp8 cDNAs into a SVCMV-T7 vector at the 3’ end ofa T7 tag

encoding sequence (f ig.IV.IA), as described in experimental procedures. Also, a

previously described 111V-1 IN-YfP fusion protein expressor CMV-IN-YfP (32)

and a CMV-YfP expressor were used in the study and showed in figure lA. First,

the expressions of these proteins were checked by transfecting each of these

plasmids into 2931 ceils, and processed using anti-GfP or anti-17

immmunoprecipitation (IP), followed by western blot with corresponding

antibodies. Resuits showed that IN-YFP and YfP were detected at positions 58 and

27 kDa respectively (Fig.IV.IB, lanes 2 and 3), while 17-Imp7 and T7-Imp8 were at

positions that ranged between 110 to 130 kDa (fig.IV.1B, lanes 4 and 5).

b test whether IN-YFP could bind to different importins, the YFP or IN-YFP

expressor ‘vas co-transfected with each importin expressor in 2931 ceils, as

indicated in f ig.ÏC. After 48 h, celis were lysed with CHAPS lysis buffer (199

medium containing 0.5% CHAPS), and immunoprecipitated using rabbit anti-GfP

antibody. Precipitated complexes were mn on an SDS-PAGE, followed by western

blot with anti-17 antibody (fig.IV. 1C, upper panel). Interestingly, resuits revealed

that, whÏle YfP protein did not co-precipitate with any importin (fig.W.1C, upper

panel, lane 1,2), the IP of IN-YfP specffically co-pulled down T7-Imp7 (Fig.IV.ÎC,
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Lane 3), but flot T7-Imp8 (fig.IV. 1 C, lanes 4). Meanwhile, the immunoprecipitated
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Fig. IV.1. Interaction of HIV-1 IN and importin 7. A) Schematic representation
of constrncts of N-YFP, T7-Imp7 and -Imp8. for IN-YfP, a full-length wild-type
HW-1 IN was fused in frame to the N-terminus of EYfP. for T7-Imp7 and Imp8, a
17-tag (9 arnino acids) was fused in frame to the N-terminus of Imp7 and Imp8. B)
Expression of IN-YFP and T7-Imp7 and T7-Imps. Celi lysates from about 6x1
293T celis transfected with CMV-YfP, CMV-1N-YFP or indicated importin
expressors were analyzed by immunoprecipitation (IP) with rabbit anti-GfP
antibody followed by western blotting using mouse anti-GFP antibody (lanes 1 to 3)
or IP with mouse anti-T7 antibody followed by western blotting using the same
antibody (lanes 4 and 5). C) The in vivo co-IP assay. CMV-IN-YfP was co
transfected with plasmid T7-Imp7 (lane 3) or T7-Imp8 (lane 4) into 2x106 2931
ceils. As a control, CMV-YFP also was co-transfected with each importun
expressing plasmid (lanes 1 and 2). After 48 h of transfection, ceils were lysed by
0.5% CHAPS buffer and immunoprecipitated with rabbit anti-GfP antibody. The
immunoprecipitated complexes were resolved by 12.5% SDS-PAGE and
immunoblotted with either mouse anti-17 antibody (upper panel) or mouse anti-GfP
antibody (middle panel). The unbound 17-Imp7 and T7-Imp8 were also checked by
sequential IP with anti-17 antibody followed by immunoblotting with the same
antibody (lower panel).

12345
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IN-YfP and YfP in each sampie respectively were checked by anti-GfP western

blot, and sirnilar leveis of each protein were detected (Fig.IV.1C; middle panel,

lanes 3, 4). To mie out the possibility that the co-precipitated 17-Imp7 was due to

differentiai levels of importin expression in each transfection sampte, the ceil lysates

were processed using sequentiai IP with anti-17 antibody followed by anti-17

Western blot, and the resuits showed similar expression levels of each importin in

different samples (Fig.IV.1C; lower panel). Ail of these resuits indicated that IN

specificaliy interacts with Imp7, but flot with ImpS.

2. HIV-1 IN interacts with Imp7 in the ceils

The next question we asked was whether the 1N/Imp7 interaction occurs in

the ceils or after cells had been lysed. To address this question, IN-YfP or 17-Imp7

expresser was individually transfected into different 293T ceii cultures, as indicated

in figure 2A. After 48 hours, celis from two transfected cultures were mixed, iysed

with 0.5% CHAPS iysis buffer and incubated in 4°C for two hours. Then, the

presence of IN/Imp7 interaction in the celi iysate was checked by anti-GfP IP,

followed by anti-17 western blot. In parailel, celis co-transfected with both TN-YfP

and T7-Imp7 expressers were mixed with the same amounts of mock-transfected

celis and processed identicaliy. Strikingly, the co-precipitated T7-Imp7 was oniy

detected in co-transfected ceil lysate, but not in mixed celi lysate from individuaily

transfected celi samples (fig.IV.2A, upper panel, compare lane 2 with 3). Ihese

results clearÏy indicate that the interaction of JN-YfP and T7-Imp7 takes place in

the cells. Again, the specific detection of IN/Imp7 compiex in co-transfected cells,

was not due to the varying levels of expression of IN-YfP or 17-Imp7 protein in the

different sampies (Fig.IV.2 A, middle panel and iower panel; lanes 2 and 3). b

further test the interaction between IN-YfP and endogenous Imp7, 2931 celis were

transfected with CMV-YFP or CMV-IN-YFP expressor, lysed by 0.5% CHAPS
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lysis buffer and immunoprecipitated with anti-GfP. The co-precipitated

endogenous Imp7 was checked by western blot with a rabbit anti-human Imp7

A. Mixture ofcells B.

293T ceils
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Fïg.IV. 2. 111V-1 IN interacts witli endogenous Imp7 and the IN-Imp7
interaction takes place in the ceils and in vitro. A) IN-Imp7 interaction in the
celis. The TN-YFP and 17-Imp7 plasmids were co-transfected (lane2) or transfected
individually (lane3) into 293T ceils. After 4$ h, celis were mixed accordingly, lysed
and analyzed with co-IP using the same procedure as fig.1C. Upper panel: co
precipitated Imp7; Middle panel: Ihe expression of flJ-YFP; Lower panel: the
unbound Imp7. B) fl’J interacts with endogenous Imp7. 10x106 2931 ceils were
mock-transfected (lane 1) or transfected with CMV-YFP (lane 2) and CMV-IN-YFP
(lane 3). After 4$ h oftransfection, ceils were lysed and analyzed by co-IP Using the
same procedure as Fig.1.C. In parallel, 0.5x106 of non-transfected 293T ceils were
lysed with the same lysis buffer and loaded in SDS-PAGE as positive control (PC).
Upper panel: the endogenous Imp7 and co-precipitated endogenous Imp7; Middle
panel: The expression of YFP and IN-YFP. C) In vitro interaction between iN and
Imp7. Left panel: GST (lane 1) and GST-Imp7 (lane 2) were expressed in E cou and
affinity-purified from glutathione-sepharose 4B colume and shown by the
Coomassie Blue staining. Right panel: Equal amounts of GST (lane 2) and GST
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Imp7 (lane 3) were incubated with a purified recombinant HIV-1 IN followed by
GST-pult down and analyzed on SDS-PAGE gel by western blot with rabbit anti-IN
antibodies. The bound IN, in both of dimmer and monomer forms were indicated at
the nght side ofthe photograph.

antibody. Meanwhile, the non-transfected 2931 ceIl lysates were directly loaded

into SDS-PAGE as the positive controÎ (fig.IV.2B, lane 1). We found that IN

YfP, but not YfP, was able to pull down the endogenous Imp7 (Fig.IV.2B, upper

panel, compare lane 4 to tane 3), indicating that IN-YfP interacts with endogenous

Imp7 in 293T ceils.

The following question that needed to be addressed was whether IN binding

to Imp7 could be through a direct protein interaction. We produced the purified

recombinant GST and GST-Imp7 proteins in an E cou expression system, and the

purified protein in each sample was tested by directly loading protein samples in an

SDS-PAGE, and verified by Coomassie Blue staining of the gel (Fig.IV.2C, left

panel) and by western blot with specific anti-Imp7 antibody (data flot shown). b

test the direct interaction of IN and Imp7 in vitro, similar amounts of purified GST

and GST-Imp7 were incubated with a purified recombinant HIV-1 IN in 199

medium containing 0.1% CHAPS for 2 h at 4 °C, followed by an additional one

hour incubation with glutathione-sepharose 4B beads. Then, the bound protein

complex was eluted out with 10 mM glutathione, and loaded onto a 12.5% SDS

PAGE gel, followed by western blot analysis with anti-IN antibodies. Resuits

showed that the purified H IV-1 IN, in both of dimmer and monomer forms, was able

to specifically interact with GST-Imp7, and flot with GST (fig.IV.2C, right panel).

Thus, the binding of iN to Imp7 may be through a direct protein/protein interaction.

4. Differential binding ability of 111V-1 IN and MAp17 to impŒ (Rchl) and

Imp7

The importin a113 nuclear translocation pathway has been implicated in assisting

with HIV-1 nuclear import (6,7). Several HIV-l proteins, including MAp17, Vpr
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and IN have been shown to be able to interact with ImpŒ in in vitro binding assays

(6,7,36,38,48). In this study, we attempted to test whether HIV-1 IN could interact

with Rchl, a member of the human importin Œ family (49), by using co-IP assay. A

T7-tagged Rehi expressing plasmid (CMV-T7-Rchl), and an HW-1 MAp17G2A

mutant-YfP fusion protein expressing plasmid (CMV-MAG2A-YfP) were

constructed. In MAp 1 7G2A-YFP, the second amino acid glycine in MAp 17 protein

was replaced by alanine, and this MAp 17 mutant was previously shown to capable

of binding to Rchl in a cell-based co-IP system (6). After TN-YFP or MAG2A-YFP

were co-expressed with 17-Rchl in 293T ceils, their interaction with Rchl was

analyzed using the same co-IP and western blot protocols, as described in figure 1.

Consistent with previous report (6), MAG2A-YfP was shown to be able to bind to

17-Rchl (fig.W.3A; lane 4). However, IIST-YFP did flot show any interaction with

T7-Rchl (fig.W.3A, lane 3). In contrast, while T7-Imp7 co-precipitated with IN

YFP, no T7-Imp7 was detected in the immunoprecipitated MAG2A-YfP sample

(fig.IV.3B, compare lane 4 to 3). These results suggest that HIV-1 N and MAp17

may interact with different cellular nuclear import factors during HIV-1 replication.
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Fig. IV.3. Differential binding ability of HIV-1 MAp17 and IN to cel]u]ar
importins Rchl and Imp7. A) HW-1 MAp17G2A, but flot N, binds to T7-Rchl.
2931 ceils were co-transfected by CMV-T7-Rchl with YfP (lane 2), IN-YFP (lane
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3) or MApI 702A-YfP expressor (lane 4) and followed by the co-IP assay. Upper
panel shows the co-precipitated T7-Rchl; Middle panel: the expression of YFP, IN
YFP or MApI 7G2A-YFP; Lower panel: the unbound T7-Rchl. B) HIV-1 IN, but flot
MApI 7G2A. binds to Imp7. 293T celis were co-transfected with YfP (lane2), IN
YfP (lane3) or MAp17G2A-YfP (lane4) plasmid and T7-Imp7 expressor and
followed by the co-IP assay. Upper panel shows the co-precipitated T7-Imp7;
Middle panel: the expression of YFP, IN-YFP or MApI7G2A-YfP; Lower panel: the
unbound T7-Imp7.

5. Delineation of region(s) of HIV-1 IN required for its interaction with Imp7

To delineate which region(s) within HIV-1 IN is required for its Imp7-binding,

we first tested a previously described IN N-terminal deletion mutant (CMV-1N50..

288-YfP) expressor (32) (fig.IV.4A) for Imp7-binding. The co-IP analysis revealed

that, similar to the IN-YfP, the 1N50288-YFP bound efficiently to T7-Imp7 as well

(fig.IV.4B, compare lane 5 to lane 4), indicating that the N-terminal domain of IN

is flot required for the IN/Imp7 interaction.

To test the core domain and the C-terminal domain of IN for their contribution

towards Imp7-binding, we constructed three YfP-IN expressors, including CMV

YfP-flSlwt and two IN C-terminal deletion mutants (CMV-YfP-INI-212 and CMV

YfP-IN1-240) (f ig.IV.4A). With the CMV-YfP-INwt expressor, the PCR

amplified 1-11V-1 IN full length cDNA, was placed in frame at the 3’ end of the YFP

cDNA, whiÏe for CMV-YFP-IN1-212 and CMV-YfP-IN I-240, sequences encoding

for the last 76 and 48 aa of IN was removed respectively. Expression of each YfP

IN fusion protein along with its ability to bind Imp7 was tested in 2931 cells by co

transfecting each YfP-IN fusion protein expressor with the T7-Imp7 plasmid. The

YFP-INwt, YFP-IN 1-212 and CMV-YFP-IN 1-240 fusion proteins were detected at

molecular weights ranging approximately from 47 to 58 kDa (fig.IV.4C, middle

panel, lanes 3 to 5). Interestingty, the co-JP experiments reveaÏed that whule YfP

INwt efficiently bound to 17-Imp7, two IN C-terminal deletion mutants were unable

to bind to T7-Irnp7 (fig.IV.4C, upper panel, compare lane 3 to lanes 4 and 5),
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suggesting that the C-terminal region encompassing residues 240 and 28$ is

required for IN interacting with Imp7.
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Fig.IV.4. Deletion analysis for the necessary region(s) of HIV-1 IN for its
interaction with Imp7. A) Schematic representation 0f 1N-YFP and YfP-IN
truncated proteins used for binding assay. B) The N-terminal domain is dispensable
for IN-Imp7 interaction. The YfP (lane 3), TN-YfP (lane 4) and 1N50288-YFP (lane
5) were co-expressed with T7-Imp7 in 2931 cells. In parallel, the YFP and TN-YFP
were cotransfected with 17-expressor as negative control (lanes 1 and 2). Upper
panel: the co-precipitated T7-Imp7; Middle panel: the expression of YFP, TN-YFP
and IN502-YFP. Lower panel: the unbound 17-Imp7. C) The C-terminal domain is
required for IN-Imp7 interaction. The YFP-IN full—length protein (lane 3), YFP
IN1-212 (lane 4), YFP-IN1-240 (lane 5) were co-transfected with T7-Imp7
expressor in 293T cells and their Imp7-binding was analyzed by using the same
protocol as described in figure 1C. Upper panel: co-precipitated T7-Imp7. Middle
panel: Expression of YFP, YFP-TN and YFP-IN mutants. Lower panel: unbound T7-
Imp7.
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6. Critical amino acids required for efficient IN/Imp7 interaction

To further identify the amino acids in the IN C-terminal region required for

Imp7-binding, several IN mutants in the form of YfP-IN fusion proteins were

constructed (fig.IV.5A). Mutants YFP-1N240,4AA, YFP-1N263,4AA and YFP

INKKRK were designed to target a tri-lysine region t235 WKGPA240KLLW244KG),

andlor an arginine/Iysine rich region (262RRKAK). Previous studies have implicated

that these tri-lysine and arginine/lysine rich regions are involved with efficient

HIV-1 reverse transcription, viral DNA nuclear import and/or integration (32,34).

The YfP-1N249, 5OAA and YfP-1N258A were constructed to target highly

conserved residues valine and lysine at positions 249, 250 and 258 (fig.IV.5A). An

iN core domain mutant YFP-INKR186,7AA was also included in this study, since

it was previously implicated in assisting HIV-i nuclear import (7). Each YfP-IN

mutant plasmid was co-transfected with the T7-Imp7 expressor in 293T celis, and

processed by the co-IP assay to test each protein’s Imp7-binding ability. Resuits

revealed that while other fN mutants did not affect the ability to bind Imp7 (f ig.W.

5B, lanes 4, 5, 10), the YFP-1N263,4AA mutant significantly impaired the ability

of IN to bind Imp7, and the YFP-1NKKRK mutant was unable to interact with imp7

(Fig.IV.5B, lanes 9 and 10). Thus, ail these results indicate that both tri-lysine

region (235WKGPA240KLLW244KG) and the arginine/lysine rich region

(262RRKAK) is required for efficient interaction between IN and lmp7.

6. Effect of Imp7-binding defective IN mutant on HIV-1 infection in CD4+

C$166 T ceils

Given that IN mutant INKKRK lost its Imp7-binding ability, we next examined

the effect ofthis IN mutant on HIV-1 replication. This mutant was introduced into a

previously described VSV-G pseudotyped HIV-1 single-cycle replication system

(13,32). Briefly, the INKKRK mutant was first introduced into a CMV-Vpr-RT-IN

expressor. Then, the VSV-G pseudotyped HIV-1 single cycle replicating virus

(vKKRK) was produced in 293T ceils by co-transfection with CMV-Vpr-RT



137

1NKKRK, an R1/IN-deleted 11W provirus NL1ucBgl/zRI and a VSV-G
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Fig. IV. 5. The critical amino acid in the C-terminal domain of IN required for
efficient IN/Imp7 interaction. A) Diagram of 11W-1 N domain structure and
introduced mutations at the C-terminal domain cf the protein. The positions of
introduced mutation are shown at the bottom of sequence. B) Requirement of amino
acids in the C-terminal domain of IN for efficient IN/Imp7 interaction. The YfP
(lanes 2 and 7), YFP-lNwt (lanes 3 and 6) and different YFP-IN mutant expressors
were co-transfected with T7-Imp7 expressor in 2931 cells and after 48 h of
infection, celîs were lysed with CHAPS lysis buffer and the JN/Imp7 interaction for
each iN mutant was analyzed by using the same protocol as described in figure ÎC.
Upper panel: co-precipitated T7-Imp7. Middle panel: Expression ofYfP, YFP-Nwt
and YFP-IN mutants. Lower panel: unbound 17-Imp7. The position of each
immunoprecipitated and co-precipitated proteins were indicated on the right side cf
the gel.
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in parallel as controls. After each virus stock was harvested, the trans-incorporation
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of RI and IN as well as the Gag composition in the viral particle was analyzed using
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Fig.IV.6. Imp7-binding defective IN mutations disrupted HIV-l single-cycle
replication and affected both reverse transcription and viral nuclear import. A) 2931
celis were transfected with a RI, iN and Env deleted HW-1 provirus NLÏucABgIART with
different Vpr-RT-IN (wtlmutant) expressors and a VSV-G expressor. The produced virus
particles (lane Ï to 3) were lysed and directly loaded in 12% $DS-PAGE and analyzed by
Western blot with human anti-HW semm. The positions of HW-1 Gag, RT and IN proteins
are indicated. B) The CD4 C8 166 ceils were infected with the wt, vD64E or vKKRK
viruses. At different time intervals afier infection, the equal amount (1x106) of celis was
collected and cell-associated luciferase activity was measured by luciferase assay. C) Effect
of Imp7-binding defect mutant on HW- 1 reverse transcription and DNA nuclear import. At
24 h post-infection, 2x106 C8166 celis were gently lysed and fractionated into the
cytoplasmic and the nuclear fractions. The amount of viral DNA in both fractions were
analyzed by PCR using HW-l LTR-Gag primers and Southem blot. Nuc. nuclear fraction;
Cyt. cytoplasmic fraction, The purity and DNA content of each subcellular fraction were
monitored by PCR detection ofhuman globin DNA and visualized by specffic Southem blot
(lower panel). D) The total amounts of viral DNA (left panel) and the percentage of
nucleus-associated viral DNA relative to the total amount of viral DNA (right panel) for
each infection sample was also quantified by laser densitometry. Means and standard
deviations from two independent experiments are shown.
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western blot with a human anti-HIV positive serum. Resuits showed that similar

amounts ofRT, IN and Gagp24 were detected in each virus preparation (Fig.IV.6A).

Then, equa] amount of each virus stock (as adjusted by amounts of HIV-1 Gagp24)

was used te infect CD4 C8166 celis. At different time intervals, the luciferase (luc)

activity in equal amounts ofcells was measured, as shown in figure 68. Since D64E

mutant virus (vD64E) is unable to mediate viral DNA integration, its infection

expressed very low Ïuc activity, which only reached 0.8% of the luc activity level

detected from the wt virus infection (fig.IV.6B). Interestingiy, the luc activity

detected frein the vKKRK virus infection was considerably Iower than that of the

D64E mutant virus at different time points (Fig.IV.6B), indicating that the vKKRK

virus lost its replication abitity in CD4+ C8166 ceils.

To test at which step the Imp7-binding defect mutant virus infection was

affected, the cytoplasm- and nucleus-associated viral DNA leveis were analyzed at

24 heurs pest-infection, using semi-quantitative PCR and southern blot. For the

vKJKR1( virus infection, the level of total viral DNA (including the cytoplasm- and

nucleus-associated viral DNA levels) was reduced by approximately 60%,

compared to the total viral DNA level detected from the wt virus infection

(Fig.IV.6C, upper panel, compare lanes 5 and 6 to lanes I and 2, and D, left panel).

Moreover, resuits indicated that for the wt and vD64E virus infections,

approximateiy 73 and 77% of viral DNA were associated with nuclear fractions

(Fig.W.6C (upper panel, lanes 1 to 4) and D, right panel). However, during

vKKRK infection, only 44% of viral DNA was nucieus-associated (F ig.W.6C

(upper panel, lanes 5 and 6) and D, right panel). The integrity of the fractionation

procedure was aise validated by detection of -globïn DNA, which was found

solely in the nucleus, and leveis of this cellular DNA were similar in each nuclear

sample (Fig. tV.6C, lower panel). Taken together, ail of these resuits indicate that

the Imp7-binding defect mutant virus vKKRK was unable to replicate in C8166

celis and displayed impairment at both viral reverse transcription and nuclear

import.
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7. Effect of Jmp7-knockdown on HIV-1 replication

b further elucidate the contribution of Imp7 to HIV-1 replication, we also

investigated the effect of srnaÏl interfering RNA (siRNA)-mediated Imp7-

knockdown on HIV-1 replication. First, we tested the efficiency of Imp7

knockdown, the tmp7-siRNA (100 pmol) was introduced into 2931 and HeLa-13-

Gal-CD4/CCR5 ceils once a day for two days (Fig.IV.7A) and at different time

intervals, equal amounts of cells (0.5 x106 cefls) were collected and monitored for

Imp7 expression. Western blot resuits reveaÏed that Imp7 protein expression were

progressiveÏy decreased over the course of the experiments. At 48 hours following

the first lrnp7-s1RNA transfection, the Imp7 protein level was reduced to

approximately 30%, and at 96 hours, the level of Imp7 expression was reduced to

<10% in both 293T and HeLa-f3-Gal-CD4/CCR5 celis (Fig.W.7B).

Next, we tested the effect of Imp7 knockdown on HW-1 infection. To avoid

the possibility that Imp7 might have effect on the late stage of viral replication

and/or be packaged into viral particles and thus playing a role in subsequent viral

infection, we flrst produced a VSV-G pseudotyped HIV-1 (NL4.3-Brut\Bgl/luc+)

from Imp7-s1RNA- or scramble RNA (sc-RNA)-transfected 2931 cells. Ihe Imp7

protein expression in siRNA transfection celis was to < 10% (at 96 hours of siRNA

transfection) when the viruses were collected. Then, viruses (si-virus and sc-virus)

produced from 1m7-siRNA- or scRNA-transfected 2931 ceils were normalized by

HIV Gagp24 levels and used to infect siRNA-treated and sc-RNA-treated HeLa-

Gal-CD4/CCR5 celis (target celis) (fig.IV.7A). Results in figure 7C showed that

there were no significant lue activity differences detected in sc-RNA- and si-RNA

treated target celis after being infected with sc-virus (fig.IV.7C, bars 1 and 2) or in

the sc-RNA-treated ceils being infected by si-virus (FigIV.7C, bar 3). However,

when siRNA-treated HeLa-J3-Gal-CD4/CCR5 ceils were infected with si-virus, the
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luc activity was reduced to approximately 37% of the wt infection level (fig.W.7C,

compare bar 4 to bar 1).
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Fig. 7. SiRNA-mediated silencing of Imp7 inhibits 111V-1 infection. A)
Experimental design for the duration of si-RNA treatments and HW-1
transfection and infection. B) siRNA-mediated silencing of Imp7 in 293T and
HeLa-f3-Gal-CD4/CCR5 celis. Celis were transfected with 20 nM of siRNA at O
and 1$ hours. After 48, 72 and 96 hours post initial transfection, the Imp7
expression levels in each celi une was verified by Western blot with anti-Imp7
antibody (upper panel). Meanwhile, the expression of Œ-tubulin was also verified
(lower panel). C) 293Tcells were treated with sc-RNA or si-imp7 once a day for
two days and used to produced VSV-G-pseudotyped HW-1 viruses containing
luciferase gene (sc-virns and si-virus). Both vii-uses were then used to infect
HeLa-f3-gal-CD4/CCR5 celis that have been treated with Imp7-siRNA or
scramble RNA for 72h. After 48h postinfection, the luciferase activity was
measured. The resuits are representative for three independent experiments. D)
sc-RNA or si-imp7 treated HeLa--Gal-CD4/CCR5 celis were infected with the
wt HxBru virus produced from sc-RNA- or si-imp7-treated HeLa celis. After 48h
postinfection, viral Infection was evaluated by MAGI assay. The results are
representative for two independent experiments.
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These observations were further extended to HIV-1 envelop-mediated viral

infection. HIV-1 envelope competent si-flxBru and sc-RxBm viruses were

produced in Imp7-siRNA and sc-RNA-treated HeLa-3-Ga1-CD4/CCR5 celis by

transfecting with a HÏV- HxBm provirus (45) and used to infect the Imp7-

siRNA and sc-RNA-treated HeLa-43-Gal-CD4/CCR5 celis at 72 h post

transfection, The numbers of 3-Gal positive celis were evaluated by MAGI assay

at 48h post infection. As expected, when Imp7-siRNA-treated HeLa-3-Ga1-

CD4/CCR5 celis were infected with si-virus, the f3-Gal positive ceil level was

significantly reduced to approximately 27% of the wild type infection level

(FigIV.7D, compare bar 4 to bar Î). Whereas, the 3-Gal positive ceit levels for

sc-virus infection in siRNA-treated ceils and for si-RNA virus infection in the

control celis were slightly decreased to 76% and 70% of the wt infection level

(fig.IV.D, compare bars 2 and 3 to bar 1). Ail of these resuits indicate that the

knockdown of Imp7 in both HIV-1 producing and target celis impaired HIV-1

infection.

DISCUSSION

HIV- 1 [N is a key enzymatic molecule which has been shown to contribute to

different steps during the early stage of HIV-1 replication, including reverse

transcription, viral DNA nuclear Ïmport and integration. Even though the exact

mechanisms underlying the action of IN during each of these critical early steps is

not fully understood, accumulative evidence indicates that IN is capable of

interacting with different viral and cellular proteins at various steps during HIV-l

replication. This viral protein is well documented to possess karyophilic properties,

and mutagenic analysis lias revealed that some IN mutants significantly affect HIV-1

nuclear import (7,10,31-34,50). Several studies have showed that IN is capable of
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binding to impa and/or Imp7 in in vitro binding assays, suggesting that 111V-1 IN

may recruit these ceilular nuclear import factors during 111V-1 nuclear import

(7,36,3 7). However, whether these cellular factors contribute to 111V-1 DNA nuclear

import and reptication stiil remains controversial (33,37,38,44). In this study, we

have used a ceIl-based co-IP approach to investigate the interaction occurring

between HÎV-l IN and several cellular nuclear import factors. Our resuits cleariy

show that HIV-1 IN, in both IN-YFP and YFP-IN fusion protein forms, speciflcaliy

interacts with lmp7, but is unable to bind to Imp$ and ImpŒ (Rchl). This specific

IN/Imp7 interaction was further confirmed by using tandem affinity purification

tagged IN (TAP-IN) (data flot shown). To mie out the possibility that the 1N/Imp7

interaction could be an artifact of overexpression of these proteins in celis, the IN

YfP was transfected alone in 293T celis and co-IP resuits demonstrated that the

endogenous Imp7 also was co-precipitated with JN-YfP, but not with YfP alone.

Furthermore, our in vitro binding experiments revealed that the purified GST-Imp7

was able to pull down purified recombinant HIV-1 TN in both dimmer and monomer

forms. Thus, ail of these studies provide evidence that 111V-1 IN specifically

interacts with lmp7.

Another 1-11V-1 karyophilic protein MApI7 was also implicated in HIV-1 nuciear

import. However, unlike IN which was shown to be required for 111V-1 nuclear

import in both dividing and nondividing celis, MAp1 7 contributes to 111V-1 nuclear

import mainly in non-dividing celis (see reviews in (2,51). It impiicates that these

two viral proteins may utilize different nuclear import pathways during viral

repiication. In this study, we have compared the binding ability of these two 111V-1

proteins to lmp7 and lmpŒ (Rchl). Interestingly, in contrast to iN, the MAp17 was

unable to interact with Imp7 (fig.IV.3). On the other hand, while IN failed to bind to

Impa (Rchl), MAp17 was shown to interact with Impcç which conformed the

previous observation by Galiay et al., showing that 111V-1 MApI 7 bound to Rchl in

a co-IP experimental approach (6). These observations suggest that HIV-1 IN and
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MApI7 may interact with different celtutar machineries during HIV nuctear import

and/or replication. Whether these viral/cellular protein interactions may synergize to

assist with the HIV-1 replication, especially in non-dividing celis, remains an

interesting question to be addressed.

Our deletion analysis identified that the Imp7-binding site(s) lies in the C-

terminal dornain of IN. The function of the C-terminal domain of IN was originally

ascribed to that of nonspecific DNA binding, leading to suggestion that this domain

may contribute to chromosomal DNA recognition during viral DNA integration (52-

54). In addition, several recent studies indicate that the C-terminal domain of IN

contribute to multiple steps during the early stage of HIV-1 replication, including

reverse transcription, nuclear import and/or the postnuclear entry step(s)

(30,32,34,55,56). In this study, two regions 235WKGPAKLLWKG and 262RRKAK

within the C-terminal domain of IN were identified to contribute to the IN/Imp7

interaction. To investigate the effect of the fl’J/Imp7 interaction on HIV-l

replication, a VSV-G pseudotyped HIV-l virus (vKKRK) containing the Imp7-

binding defect IN mutant was produced. Infection analysis revealed that the

vKKRK virus induced even lower luc activity than that of the integration-defective

class I mutant D64E virus, indicating that this virus is replication defective. Further

analysis showed that the Imp7-binding defective virus displayed impairments at

both viral reverse transcription and nuclear import (Fig.IV.6C and D). Since this

virus was shown to be non-infectious in C8166 cells (Fig. W.6B), it is expected that

this mutant virus also affect virus integration. Consistently, previous studies has

already shown that several IN mutants targeting these positively charged residues

inhibited HIV-1 integration (32,55). Given that most IN class II mutants cause

pleiotropic damage during viral replication (55-57), we could not conclude that

these defects were solely resulted from the lose of the TN/imp7 interaction.

However, it is conceivable that the TN/imp7 interaction may have contributed to

these critical steps during HIV-1 replication.
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Another approach to validate the functional role of the IN!Imp7 interaction in

111V-l replication is to directly target Imp7 expression within susceptible celis.

Fassati et al previously showed that siRNA-mediated knockdown of endogenous

Imp7 inhibited 111V infection (38). However, a recent study by Zielske et al., did

not reveal an inhibitory effect oflmp7 knockdown on 111V-1 nuclear import (44). It

is worth to note that these studies were mainly focused on the wild type HIV-1

infection in lrnp7-knockdown susceptible ceils. It could not mie out the possibiÏity

that Imp7 might have effect on late stage of virus replication and/or be packaged

into viral particles and playing a role in subsequent viral infection. Indeed, the study

by Zielske et aï., observed a slight decrease of 2-LTR formation in Imp7-depleted

target cells infected with viruses produced from a single-dose si-Imp7 treated cells

in which Imp7 mRNA level was reduced to 77% at the time of virus collection (44).

In this study, we have compared infections in si-RNA- or sc-RNA—depleted ceils

with viruses, which were produced from either siRNA- or sc-RNA-depleted 293T

celis. Interestingiy, resuits showed that depletion of Imp7 in both HIV-1 producing

and target celis lead to 2.5 to 3.5-fold decrease of 111V-1 infection, as measured by

either HIV-l-induced lue activity and the amount of J3-Gal positive ceils (fig.IV.7C

and D). However, such reduced 11W-1 replication was not observed for the infection

of imp7-depÏeted celis with normal virus or the infection of normal ceils with

viruses produced from Imp7-depÏeted celis. Ail these results ïndicate that Imp7

contributes to an efficient HIV-1 replication. However, at this moment, the

mechanisrn underiying the inhibitory effect of imp7 knockdown on viral replication

stili remains to be defined and more detailed studies are currently under way to

address this question.

It shoutd also be noted that the Imp7 knockdown in producer-target ceil

combination system only induced 2.5 to 3.5-folU reduction of viral infection. This

result Ieads us to consider several possibilities. It could be possible that 111V-l [N

may have the ability to interact with multiple cellular nuclear import factors, and

dissociation of one of them could not abolish 11W-1 replication. Similarly, it was
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shown that the cellular ribosomal protein and the glucocorticoid receptor both utilize

Imp7 and Impa/Imp3 as its nuctear import receptors (18,26). Another possibiÏity

could be that IN interacts with a nuclear import receptor complex, in which Imp7

may act as an accessory cofactor. Indeed, previous studies have demonstrated that

Imp7 is capable of forming a heterodimer with ImpJ3, and this heterodimeric

complex has a higher binding affinity for histone Hi (25,27). Interestingly, it was

also shown that the Imp/RanGTP interaction appears to be essential for histone HI

import, whule Ran-binding of Imp7 is dispensable (27). In addition, the limitation of

siRNA knockdown technology used for this particular study should also be under

consideration, since Imp7- siRNA treatment could not erase residual levels of Imp7

from ceils, and such low amount of Imp7 may stiil be recruited by IN to support a

lower level I-11V-1 infection. Therefore, a genetic knock-out celi une will be

required to address the impact of Imp7 on HIV-1 infection, as is being proposed by

Vandegraaff et al., for the role of LEDGF/p75 in HIV-l replication (58).

Nevertheless, several unes of evidence from this study implicate the participation of

Imp7 during I-11V-1 infection and importantly, the identification of imp7-binding

regions in the C-terminal domain of H1V-l IN may provide opportunity for us to

dismpt this viral/cellular protein interaction and consequently attenuate HIV-1

infection. Also, more detailed studies should be carried out to fully understand how

this cellular nuclear import receptor contributes to efficient HW-1 replication.
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GENERAL DISCUSSION AND FUTURE DIRECTION

One key step in HIV-1 replication is the translocation of the viral genome

from the cytoplasm to the nucleus to integrate viral DNA into the host celi

chromosomes to form provirus. Oncoretroviruses require mitosis for the viral

integration machinery to access the host ceil DNA (Roe, Reynolds et al. 1993). In

contrast, lentiviruses such as HIV-1 are able to productively infect non-dividing

ceils, including macrophages or quiescent T lymphocytes since its PIC lias a

mitosis-independent nuclear import capability (Bukrinsky, I.N. et al. 1992; Lewis

1992; Lewis and Emerman 1994; Bukrinsky and Haffar 1998; Bukrinsky and

Haffar 1998; de Noronha, Sherman et al. 2001; Le Rouzic, Mousnier et al. 2002);

(Weinberg 1991; Bukrinsky, I.N. et al. 1992). This lias been shown to be

important for viral persistence and pathogenesis in infected liost, since the

infection of post mitotic ceils is essential not only for viral transmission and

dissemination, but also for the establishment of persistent viral reservoirs

(Meltzer, Skillman. D.R. et al. 1990; Innocenti, Ottmann et al. 1992; Ho,

Cherukuri et al. 1994).

HIV-1 PIC, composed of viral RNNDNA associated with viral pro teins

MA, NC, RT, IN, Vpr as well as cellular proteins, displays a diameter of 56nm.

That greatly exceeds tlie 25nm central channel of nuclear pore complexes (NPC).

Therefore, HIV PIC must traverse the NPC by active, energy-dependent import

mechanism rather than passive diffusion. This complex contains the information

that ïs necessary for nuclear localization and the enzymatic machinery required

for integration. Recent studies have shown that three HIV-1 proteins, MA, Vpr

and IN, may contribute to HIV-1 DNA nuclear localization and also revealed

nuclear import signais in these viral gene products. In addition, a HIV-1 DNA

structure determinant, the central DNA flap, has also been implicated to
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contribute to efficient nuclear targeting of HIV-1 PIC. More interestingly, several

studies have shown that HIV-1 IN and the DNA flap play important role in both

dividing and non-dividing ceils during HIV-1 nuclear import.

The HIV-1 central DNA flap is an unusual DNA structure, which

corresponds to a triple-stranded intermediate created during the reverse

transcription. Zennou and colleague revealed that the central DNA flap is

necessary for HIV-1 replication in both dividing and nondividing celis

presumably because it acts as a nuclear import signal for the PIC (Zennou, Petit et

al. 2000). However, two other later studies showed that cPPT mutant viruses were

stiil able to efficiently replicate, casting doubt on the importance of the central

DNA flap in HIV-1 nuclear import (Dvorin, Beil et al. 2002; Limon, Nakajima et

al. 2002). According to ouf study, by using a RT-IN trans-complement single

cycle replication system, we confirmed the importance of the central DNA flap by

showing that it is necessary and sufficient for efficient HIV-1 replication in

divïding and nondividing celis. Our resuits also indicated that the central DNA

flap enhances the establishment of HIV-1 infection in single-round replication

assays by primarily facilitating nuclear import of proviral DNA. Different from

the data reported by Zennou and Dvorin et. al., we found that the central DNA

flap was important but flot essential for viral infection of dividing and nondividing

ceils, which are consistent with the findings of several previous studies that

showed that the central DNA flap conferred an infection advantage of 2- to 10-

fold on VSV-G pseudotyped single-round HIV-1 vectors. However, the

mechanism by which the central DNA flap contributes to the transport of HIV-1

PIC through the NPC remains unclear. It was proposed that the DNA flap might

induce viral DNA to adopt a conformation that permit or facilitate the viral DNA

transport through the nuclear pores. But recently, a study showed that the

position of the DNA flap is flot essential for its function in the context of HIV-1-

derived lentiviral vector (De Rijck, Van Maele et al. 2005). It is also possible that
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the DNA flap formation is a signal that can initiate the total structure changes of

PIC, which allow this big complex to more efficiently cross the nuclear envelope.

Alternatively, the DNA flap may be involved in nuclear import by interacting

with nuclear import receptor as well as nucleoporins (Nups) or associating with

viral protein(s) of the PIC to support this process.

In our study, we developed a RT/IN gene-deleted (2139) HIV-1 vector,

which can efficiently transduce in CD4 ceils upon trans-complementation with

Vpr-RT-IN fusion proteins. Using this system, we can analyze the functional role

of cis-acting elements in RT/IN gene regions, such as cPPT and CIS, without

affecting their enzymematic function. It also allows us to introduce different IN

mutations into Vpr-RT-IN expressor without differentially affecting viral

morphogenesis and the activity of the central DNA Flap. Moreover, the large

deletion in RT and IN sequence ensures that this HIV-1 vector is able to spread

and replicate whule at the same time minimizes the possibility of generating

replication-compent virus by recombination. Further optimization of this HIV-1

single-cycle replication system wiIl provide valuable tools to evaluate precisely

viral dynamics in animal model and to develop vaccine approach against HIV-1

infection.

IN appears to be another important player for HIV-1 PIC nuclear import.

It is a key protein for viral DNA integration and has karyophilic property. It was

found that the nuclear import function of IN was essential for the productive HIV

1 infection of both dividing and non-dividing ceils (Bouyac-Bertoia, Dvorin et al.

2001; Katz, Greger et al. 2003), which suggest that nuclear entry of HIV-1 PIC

during mitosis may flot be a passive process. However, questions have been raised

concerning the molecular mechanism surrounding the karyophilic property of IN.

Even though a non-classical bipartite NLS (‘86KRK and 211KELQKQITK) has

been proposed for IN (Gallay, Hope et al. 1997), follow-up studies could not

prove the importance of this bipartite NLS since some mutants in these two

regions still localized in the nucleus and/or did flot play a role in viral nuclear
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import (Petit, Schwartz et al. 2000; Tsurutani, Kubo et al. 2000; Bouyac-Bertoia,

Dvorin et al. 2001; Lu, Limon et al. 2004). Moreover, some in vitro data

suggested that nuclear localization of IN did flot involved members of the

karyopherin family of nuclear import receptors and was independent of GTP

hydrolysis and Ran (Depienne, Mousnier et al. 2001). It was also proposed that

IN nuclear localization might resuit from its ability to bind DNA (Devroe,

Engelman et al. 2003). Hence, more studies are required to elucidate the exact

functional rote and mechanism of IN in HIV-1 PIC nuclear import.

In an attempt to define the essential region(s) in IN for protein nuclear

localization, we have performed mutagenic analysis to study the intracellular

localization of several IN-YfP fusion proteins including the C-terminal-deletion

mutant 1N1212-YFP, substitution mutants INKl5,91-YFP, INK1c4o,4AE-YFP and

INR63,4-YFP. We found that lysine residues in two regions (211KELQKQITK

and 235WKGPAKLLWK) in the C-terminal domain of HIV-1 IN contributed to

the karyophulic property of the protein. Consistent with us, Maertens et al also

showed that the fusion protein of HIV-1 IN C-terminal fragment alone with GFP

was localized to the nucleus, suggesting that the C-terminal domain may have a

role in HIV-1 nuclear import (Maertens, Cherepanov et al. 2003). The mechanism

underlying the nuclear localization function of IN C-terminus is stili unclear.

Since IN need have a NLS and/or bind to other haryophilic protein(s) for nuclear

transiocation, the two tri-lysine regions in the C-terminal domain of IN might be

involved in the interaction with cellular nuclear import receptors(s). Thus, it is

interesting to investigate the interaction between IN and cellular nuclear import

receptor(s) such as Impa, Impf3, Imp7 and the contribution of the interaction to the

nuclear import of HIV-1 PIC. On the other hand, it was suggested that the IN

nuclear accumulation could be facilitated by its affinity for DNA (Devroe,

Engelman et al. 2003). Because the C-terminal domain (213-288) is the least

conserved of three domains of IN and binds DNA nonspecifically (Bushman,

Engelman et al. 1993; Engelman, Bushman et al. 1993; van Gent, Vink et al.
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o
1993), we could flot exciude the possibility that the IN C-terminal substitution

mutants may change their ability to bind DNA or to alter their DNA target ability,

which would consequently affect IN nuclear accumulation. To obtain further

information about the DNA binding ability of IN mutants, we can use

biochemical subcellular fractionation experiment to check whether INK15,9 or

INK4o,4AE stili can enter the nucleus but without associating with chromatin.

We next evaluated the impact of nuclear localization-defective IN mutants

on HIV-1 replication by using previously described HIV-1RT/IN trans

complement single-cycle replication system that comprised a RT/IN/Vpr/Env

gene-deleted HIV-1 provirus, in which the nef gene was repiaced by a firefly

luciferase gene, and a Vpr-RT-IN expressor. There were three interesting

findings from our infection data. first, ah three IN C-terminal mutant viruses

(KK215,9AA, KK240,4AE and RK263,4AA) could flot rephicate in Hela-CD4-

CCR5-r3-Gal ceils, dividing and non-dividing C8166 T ceils. Compared with

D64E, the much lower levels of 3-Gal positive ceils and Luc activity of three IN

C-terminal mutants suggest that they may affect early steps such as reverse

transcription and/or nuclear import and consequently resuit in a reduced level of

viral DNA in the nucleus. Second, by using semi-quantity PCR and Southern blot,

We found that ail of these IN mutants, especially KK240,4AA, negatively

affected reverse transcription step. Previous studies have demonstrated that IN

was required for reverse transcription in infected ceils and have shown the C-

terminal domain of IN was able to bind to heterodimeric RT in in vitro (Wu, Liu

et al. 1999; Hehi, Joshi et al. 2004; Zhu, Dobard et al. 2004). It is possible that

these C-terminal mutants, especially for KK240,4AE, may disrupt the interaction

between IN and RT and result in decreased viral cDNA synthesis. Our resuits

provide useful information for further studies aim at understanding the dynamics

of RT-IN interactions during viral reverse transcription in vivo. Finaliy, Our

results demonstrated that the two tri-lysine mutants, especially KK215,9AA,

significantly impaired nuclear import step of HIV-1 replication. KK215,9AA,
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KK240,4AE and RK263,4AA viruses are Class II IN mutant viruses since they

affect multiple steps of the viral replication cycle. However, the truth that

KK215,9AA significantly impaired viral DNA nuclear import suggests that the

region 211KELQKQITK is in fact important for helping direct PICs to nucleus.

The mechanism underlying the action of these IN mutants during HIV-1 DNA

nuclear import stiil requires further investigation.

How does HIV-1 IN contribute to viral PIC nuclear import? It lias been

known that protein transiocation from cytoplasm to nucleus can be mediated by

different nuclear import pathway. In addition to the classic importinŒ (ImpŒ)

mediated nuclear transport pathway, importinl3 (Impf3) was sliown to bind to and

import proteins independently of impa including HIV-1 Tat, Rev and HTLV Rex.

Moreover, Imp7 and Imp$ have been found to contribute to the nuclear import of

ribosomal proteins (Jakel and Gorlich 1998), glucocorticoid receptor (freedman

and Yamamoto 2004), histone Hi (Jakel, Albig et al. 1999; Bauerle, Doenecke et

al. 2002), signal recognition particle protein 19 (Dean, von Alisen et al. 2001).

Therefore, we hypothesis that HIV-1 IN could interact with cellular nuclear

import receptor(s) and contribute to the nuclear import of HIV4 PIC.

By using a cell-based co-immunoprecipitation approach, we have

investigated the potential interactions of HIV-1 IN with several cellular nuclear

import factors. Our resuits have clearly shown that HIV-1 IN, in both IN-YFP and

YFP-IN fusion protein forms, specifically interacted with Imp7, but not Imp8 and

ImpŒ. More interestingly, our deletion analysis indicated that the Imp7-binding

sites lies in the C-terminal domain of IN. Strikingly, the substitute mutation

analysis revealed that two regions 235WKGPAKLLWKG and 262RRKAK within the

C-terminal domain of IN contribute to the IN/Imp7 interaction. Even though the

infection analysis revealed that the vKKRK virus containing the Imp7-binding

defect IN mutant is replication defective, the virus displayed impairments flot only

at nuclear import but also at viral reverse transcription. On the other hand, our
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resuits showed that depletion of Imp7 in both HIV-1 producing and target ceils lead

to 2.5 to 3.5-fold decrease of HIV-1 infection, indicationg that Imp7 in fact

contributes to an efficient HIV-l replication. However, the mechanism underlying

the inhibitory effect of Imp7 knockdown on viral replication stiil remains to be

defined. Futhermore, this resuit a leads us to consider the possibility that HIV-1 IN

may have the ability to interact with multiple cellular nuclear import factors, and

dissociation of one of them could flot abolish HIV-1 replication.

More recently, by using different experimental condition, we further

demonstrated an interaction between HIV-1 IN and Imp (including endogenous

imp3). There are two interesting findings from our study: 1) The genetic analysis

indicated that the region, which is responsible for IN interacting with Impf3,

located again in the C-terminal domain of IN; 2) Immunoprecipitation of IN could

simultaneously pull down both endogenous Imp3 and Imp7. Therefore, the most

plausible hypothesis at this time is that IN may recruit different cellular nuclear

transport machineries, including Imp3 and Imp7, to ensure an efficient HIV-1

nuclear import in both dividing and non-dividing cells. However, there are some

remaining questions regarding the role of IN interaction with Imp7 or ImpJ3 that

need to be addressed in the future study.

First, how does the C-terminal domain of IN coordinate with two cellular

importins and contribute to an efficient HIV-1 nuclear import? To address this

question, we can perform more detailed mutagenic analysis to define the critical

domain(s) and amino acid(s) in the C-terminal domain of IN for these

viral/cellular protein interactions. Second, is there the possibility that IN interacts

with a previously described Imp3/Tmp7 heterodimer? The answer for this question

has important implication for understand molecular basis of how different

importins contribute to IN’s action during HIV-1 replication. Fortunately, it was

known that the last 30 aa of Imp7 was a critical binding site for Imp3 and deletion

of this region completely abolished its Imp3-binding ability (Bauerle, Doenecke
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et al. 2002). So, construction of a T7-Imp7 with last 3Oaa deletion and co-JP

experiment should give us more information. Third, whether Impa is required for

Imp-IN interaction? If co-IP system have detect that IN also binds to Impa in

the same condition of the IN/Impf3 interaction, the competition experiment by

using SV4O T antigen NLS or Imp3-binding (IBB) domain of Impa will provide

an opportunity for us to fiirther exciude this possibility that IN directly binds to

Impu. finally and most importantly, how to validate the functional role of the

interaction of IN with Imp7 and ImpI3 for HIV-1 nuclear import and replication?

We can analyze the effect of Imp3- and Imp7-binding defective IN mutant(s) on

viral nuclear import and replication. Another valuable approach is to directly

target Impf3 and Imp7 expression. Even though siRNA-mediated knockdown of

Imp7 inhibits HIV-1 nuclear import and infection has been controversial (Fassati,

Gorlich et al. 2003; Zielske and Stevenson 2005), it is possible that knock-down

one such factor in the ceil may flot be sufficient to affect HIV-1 infection since

our resuits revealed that HIV-1 IN interacts with two cellular nuclear import

receptors.

Taken together, the currently available data suggest that HIV IN plays an

important role in the nuclear import of the PIC, but requires the supports of the

DNA flap, MA and Vpr proteins. It will be important to investigate how these

factors coordinate with each other in order to maximize the capacity of HIV-1 to

transiocate into the nucleus of infected ceils. We believe that ail of those

proposed studies will help us better understand the HIV-1 replication cycle and

teacli us how to stop the infection.
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In this study, reverse transcriptase (RT)- and integrase (IN).defective human immunodeficiencv virus type
1 (HIV-1) was transcomplemented with Vpr-RT-IN fusion proteins to delineate pot sequences important for
HW.1 replication. Our resuits reveal that a 194-bp sequence encompassing the 3’end of the IN gene and
containing the central DNA flap is necessary and sullicient for efficient 111V-1 single-cycle replication in
dividing and nondividing ceits. furthermore, we show that the central DNA flap enhances 11W-1 single-round
reptication by five- to sevenfold, primarily by facilitating nuclear import of proviral DNA. In agreement with
previous reports, our data support a functional role of the central DNA flap during the early stages cf 111V-1
infection.

The cornplexity cf human immunodeficiency virus type 1
(HJV-1) repiication is attributed in large part to the intricate
interplay that takes place between cLs-acting sequences present
on virai nucleic acids and vira] or host ccii proteins that func
tion in trans (22). The HIV-1 pot gene encodes three enzmatic
proteins, including protease, reverse ttanscriptase (RT), and
intcgrase (iN), which piay critical raies during specific stages cf
the virus infection cycle. Soon after virus entry, RT catalyzes
the conversion cf the viral RNA genome into double-stranded
provira] DNA, while IN mediates proviral DNA integration
into the host ccli genome (for n review, sec references 10, 15,
and 21). Even though extensive in vitro biochemical and mech
anistic studies have greatiy contributed to n better understand
ing of the primary ftinction and mode of action cf RT and IN
enzymes, studies performed in the context of HIV-1 infectious
proviral clones have revcaled that some mutations and/or in
ternai deletions in RT or IN can signiflcantly alter steps other
than reverse transcription or integration, such as virus assem
bly or release, or even inactivate virus infectivity (1, 2, 4, 14, 20,
35). These pleiotropic phenotypes resulting from mutagenic
analysis suggest that RT and IN may play other roles which are
independent of their enzymatic activities. Furthermore, intro
duction of mutations in RT and!or IN sequences may simu]ta
neously affect a cis-acting element(s) present within the pci
gene sequence that is requircd for efficient virus replieation.

In contrast to oncoretroviruses, I-11V-1 and other lentiviruses
have the capacity to infect nondividing ccli populations, such as
macrophages, mucosal dendritic celis, and nondividing T cells.
since they do flot depend on host ccli mitosis to mediate the
nuclear transiocation of their preintegratiofi complex (PIC) (5,
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12, 27. 28, 31, 40). At the molecular level. HIV-1 PIC nuclear
transport was shown te proceed through intact nuclear pore
complexes by an active and energy-dependent mechanism that
involves the karyophilic preperties of several PIC-associated
viral proteins, inciuding Matrix (MAp17), IN. and Vpr (3, 6.
12, 19, 20. 23, 24, 32, 39). In addition. a cis-acting element
dcsignated the central DNA tlap locatcd in tiw 3’ region of the
pot gene sequencc was aiso shown te contribute te the nuclear
import of HIV-I provirai DNA in hoth dividing and nondivid
ing cefls (45). The centrai DNA flap is a rcgion cf triple
stranded DNA created hy two discrete haif-genomic fragments
with a central strand disp]accment event conlrolled in cis by a
central polypurine tract (cPPT) and a central termination se
quence (CTS) during HIV-1 reverse transcription (7. 8).
HIV-] viruses carrying an inactivated cPPT or CTS
portcd to exhibit a considerable impairment of virai rephcation
in different dividing and nondividing target celis (7. 8), pre
sumably because of a defect al the icvel of the nuclear import
of the PIC (45). However, these resuits have been put into
question recently by two other studies (13, 29), which provided
evidence indicating that the central DNA llap did not play a

major role in cither PIC nuciear importer HIV-1 rcpiication in
a variety of cdl unes. Interestingiy, in contrast te these studies
that used rcplication-cornpetcnt viruscs, numerous other stud
les have reported that the central DNA flap conferred a trans
duction advantagc cf approximately 2- to 10-fold on HIV-1-
derived lentivirai vectors. thus suggesting that the central DNA
flap facilitatcd an eariy step(s) in ientiviral infection (11. 17, 30.
33, 34, 37, 46). The exact impact of the centrai DNA flap on the
early steps of HIV-1 infection is stiil an open question that
remains to be clarifled.

Requirement of pot gene sequence for efficient 11W-l single-
cycle infection. In order to investigate the impact cf the 111V-1
p0! gene sequence on virus replication, wc gencrated a pre
viously descrihed 111V-l RT and IN transcomplemented
rcplication system (16. 41). An RT- and IN-defective HIV-1
provirus (R/R1) with an intact pal gene sequence vas con-
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FIG. 1. Effect of the 111V-1 IN and RT gene sequences on the infectivity of RT/IN-transcomplemented virus. (A) Schematic structure of 111V-i

( proviruses carrying a mutation and/or deictions inpol and of the plasmid encoding the Vpr-RT-IN fusion protein. Provirus R/R1 was constructed
by replacing the first two amino acids of RT with two premature stop codons (TGA TAG) in HxBruR(R) provirus. In R/R1/MN/flap
provirus, a 610-bp fragment 0f the IN gene sequence (including cPPT/CTS) vas deleted. The R/RI/MN/flap, R/RI-861, R/RI-1798, and
R/RI proviruses harbor different deictions within the RT and/or IN gene sequences but contain the 194-hp sequence in the 3’-end region of
IN, which harbors the cPPT/CTS cis-acting elements. PR. protease. (B) The infectivity of trans-complemented virus produced in 293T ceils was
evaluated by MAGI assay. Equal amounts (15 ng of p24 antigen) of the different viruses svere used to infect HeLa-CD4-F3-Gal cells, and the
number of infected cells was monitored hy X-Gal (5-hromo-4-chloro-3-indolyl--D-galactopyranoside) staining. The infectivity (% infectivity) of
each virus stock was calculated as the ratio of the number of p-Gal-positive ce]Is relative 10 the number of p-Gal-positive cells obtained with the
wt virus (R). The numbcr of p-Gal-positive cells dctected with the R virus rangcd between 33f) to 410 and was set at 100%. Thc results are
representative of three independent experiments. (C) b evaluate Vpr-mediated transincorporation of RT and IN in viral particles, radiolabeled
viruses were isolated from cdl supernatants. lysed, immunoprecipitated with anti-111V antibodies, and analyzed by sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (12.5% aciylamide). LTR, long terminal repeat.

structed by repiacing the flrst two amino acids of RT with two
premature stop codons (TGA TAG) in a Vpr- and Nef-defec
tive HxBc2-derived 111V-1 provirus (R) by using a two-step
PCR-based method (44). To transcomplement the RT and IN
defect of 111V-1 virus, a Vpr-RT-IN fusion protein expression
plasmid (CMV-R-RT-IN) was also made by inserting a PCR
amplified 111V-1 RT and IN gene cDNA in frame with Vpr
into the SVCMV-Vpr plasmid (44) (fig. lA). It has been
shown that H1V-1 RT and IN enzymatic defects can be re
stored in trans through Vpr-mediated virion incorporation of
Vpr-RT-IN fusion protein, leading to production of viral par
ticles that can undergo a single-round replication (16, 41). To
test the infectivity of the transcomplemented RT- and IN
defective virus, 293T ceils were transfected with R!R1 pro-
virus or cotransfected with CMV-R-RT-IN plasmid by using
the calcium phosphate DNA precipitation method (42). In
parallel, the wild-type (wt) provirus (R—) was used as a positive
control. At 48-h posttransfection, virus stocks were generated

(ELISA) kit (AIDS Vaccine Program of the frederick Cancer
Research and Development Center) as descrihed previously
(43). Then the infectivity of each virus vas examined hy infect
ing HeLa-CD4--galactosidase (HeLa-CD4-[-GaI1) ceils with
equal amounts (15 ng of p240 antigen/well) of virus and

evaluated by MAGI assay 48-h postinfection (p.i.), as de

scribed previously (26). Consistent with a previous report (41),

RT- and IN-defective R/R1 viruses wcre fotind to be infec
tious by MAGI assay only when they were transcompiemented

with RT and IN during viral production, reaching ïnfectivity

leveis corresponding 10 40 10 50% of the wt level (R virus)

(Fig. lB, lcft panel). To test thc efficiency of Vpr-mcdiated RT

and IN transincorporation, transfected 293T ceils were radio

labeled and the resulting viral particles were analyzed for viral

protein content by immunoprecipitation by using anti-111V-1
serum (42). Results reveal that, as expected, the R—/RI— viral

particles did flot contain any RT or IN proteins (Fig. 1C, lane
3). whereas the transcomplemented R!R1 virus incorpo

rated RT and IN proteins at levels comparable to those for tise
wt R virus (fig. 1C, compare lane 4 to lane 2). Interestingly,
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C it was notcd that signihcant amounts of unprocessed
accumulated in R!RI viral particles (Fig. le. compare lanes
3 and 4 to lanc 2). This maturation defcct is likely to rcsult
from an impairment of protease activation, given that the Gag
Pol pelyprotein precursor was truncated by early termination
of RT and IN and is helieved to be responsible for the observed
50 to 60% recluction of virus infectivity (Fig. lB).

We next analyzed the requirement of RT and IN gene se
quences for virus replication hy using this Vpr-RT-IN trans
complcmcntation system. A scries of proviruscs with deletions
cf the RT and!or IN gene derived from the R7R1 provirus
wcrc constructcd as indicatcd in fig. lA. In the R!RI/IN!
llap prnvirus. a 610-hp sequence encompassing a large part of
the IN gene and including the cPPT and CTS cis-acting se
quences (from nucleotide 3,912 to 4,522; +1 corresponds te
the transcription initiation site of the BRU strain), which were
previousty shown to play an important role in HIV-1 replica
tien, were deleted (7, 8, 11). In the R/R1/.IN/flap provi
rus, a smallcr deletion of 494 bp tvas introduced, thus leaving
intact a 194-hp sequence, including cPPT/CfS elements at the
3’ end of the IN genc. Te further test the impact of [lic RT
gene sequence on virus replication, diffèrent regions of the RT
gene sequence were further deleted, based on die R/R1/
MN/flap provirus and designated R/R1-861, R/RI-1798,
and R/RI (Fig. lA). In the RIRI provirus, ail the RT and
IN gene sequences except the 194 bp containing the cPPT/CI’S
sequenceswere deleted fa deletion of 2,193 bp). The infectivity
of cadi transcomplemented virus with a delction of thc RT

( and!or IN gène was analyzed by MAGI assay. Deletion of tic
3’ region of IN encompassing tic cPPT/CTS clcments resulted
in a substantiai five- to sevenfold decrease of virai infectivity
compared to that oftlic transcompiementcd RR1 virus (Fig.
lB, lèft panel). This sbarp decrease in viral infectivity was not
due to variation in the levels of RT and/or IN transincorpo
rated into viral particies, since they were found to be similar in
both transcomplemented viruses (Fig. le, compare lanes 7 and
5). In contrast, maintenance of a 194-hp sequence in the 3’
region of tic IN gene sequence. which inciudes tie cPPT/CFS
clcmcnts (R/RI/IN!fiapj. rcstorcd infcctivity [o a levci
similar to that of tic transcomplemented R/R1 virus (Fig.
lB, lcft panel). Interestingly, deletion of RT gène sequetices
(R/RI-$61, R IRI-179$, and R7RI) had no impact on viral
infectivity as long as die 194-hp sequence in the 3’ end region
of IN was intact (fig. lB, right panel). Furthermore, mainte
nance cf this 194-hp fragment vas found to confer a six- to
sevenfoid infectivity advantage to single-cycle replicating virus
in dividing and aphidicolin growth-arrested C8166 T cells (data
not shown). OveraiL these resuits indicate that the 3’ region of
[lie IN gene sequence barbets cLv-acting determinantsfs) that
substantiaily enhance die replication of HIV-1 toward dividing
and nondividing CD4’ T ceils in tic context of a single-cycle
infection system, whule other RT and IN gcne scquenccs are
cleariy dispensable.

The cPPT contributes to efficient HIV-1 single-cycle repli
cation. To further confirm that cis-acting element(s) in the 3’
region of the IN gene sequence contribute tu efficient single-
cycle replication, we introduced a 10-bp substitution in the
cPPT element in tic R/RI provirus and generated a cPPT
defective mutant designatcd R/RI/cPPT (Fig. 2A). These
specific mutations in the cPPT element have previously heen

rcported te prcvcnt die formation of tic central DNA llap
during reverse transcription (13, 29, 45). Prier to testing virus
infectivity, the lcvcls of transincorporatcd RI and IN in both
the cPPT mutant and the control virus were examined hy
radiolabeling and immunoprecipitation as descrihed in Fig. 1.
Similar levels cf virion-associated RT, IN, p245”-, and p55.t”

were detected in transcomplemented R/R1, R/.XRI, ancl
R/RI,’cPPT virus preparations (Fig. 2B). To compare the
replication potential of [ranscomplemented R/RI/cPPT
and R/RI viruscs. CD4’ MT4 cclls and phytohemaggltiti
nin-stimulated human peripheral hlood mononuclear ceils (h

PBMCs) werc infcctcd with equal amounts of cach virus stock
fer 8 h, and at diflerent time intervals, virion-associated p24

antigen leveis in the supernatant were measured hy anti-p24
EL1SA. Disruption of tic cPPT tvas found to decrease hy fivè

te sevenfold viral replication in hoth M14 I cells ami activated
h-PBMCs compared to that in the trans-complemented R/
XRI centrol virus (Fig. 2e and D). Hence. we conclude tiat
tic central DNA flap is tic ncccssary dctcrminant in the 3’
region of tic IN gene sequcnce tiat contrihutes [o efficient
singic-cycic virus replication.

Effect or the central DNA llap on Iate-reverse-transcribed
DNA products, vira) cDNA nudear import, and proviral UNA
integration in h-PBMCs. Te investigate tic mechanism(s) un
derlying tic action cf tic central DNA flap during single-cycle

repiication, we first analyzed die efflciency of proviral DNA
integration in h-PBMCs infected with cPPT’ or cPPT
transcompicmcnted viruses by using a prcviously dcscribcd,
sensitive. twe-step Alu-PCR technique (9). Resuits reveal tiat
levcls of intcgratcd proviral DNA dctcctcd in tic R/\RI/
cPPT sampie were ive- to sevenfold lower tian those de
tccted in tic R/R1 sampic at both 24- and 36-h pi. (Fig. 3A
and B). Interestingly. tus significant decrease in proviral DNA

integration correlated weli with tic ive- tu sevenfold replica

tien defect observed with tic cPPT-defective virus, indicating
tiat tic central DNA flap contrihutes tu efficient viral single-
cycle repiication tiy acting on an early stage(s) cf virai replica
tien at and/or prier te virai integration. Te futtier invcstigate
at whici carly stcpfs) of [lic infcction cycic tic central DNA
flap acts, we analyzed tic total amounts of viral cDNA present
at diffcrcnt carly time points by PCR follotving infection of
h-PBMCs with equai amounts of R/RI or R/R1!cPPT
viruses. Brictly. an equai number (2 x 106 ceils) of i-PBMCs
were ivsed in lysis buffer (20 mM Tris-HC1 [pH 8.01, 100 mM
KG. 0.05% NP-40, 005% Twcen 20) and trea[ed witi protein
ase K (100 ig’mi) prior te pienoi-chleroferm DNA purifica
tion. lien fivefold-serialiy diiuted DNA samples were sub
jcctcd te PCR analysis witi spccific primcrs f5’-U3, 5’-GGÀ
TGGTGCTTCAAGC’TAGTACC-3’. and 3-Gag. 5’-ÀCTGA
CGCTCTCGCACCCATCTcTcTC-3’) and furtier anaiyzcd
hy Soutiern hlotting hy using speciic PCR DIG-Laheiing probes
(Roche Diagnostics, Lavai, Quchec, Canada). As shewn in Fig.
4A, at 6-h p.i.. similar amounts of total virai cDNA were de
tected in R/Rl- and R/RI/cPPT-infected ceils (3.9
copies/celi versus 4.6 viral copies/celi). suggesting that hoti
transcomplemented viruses entered ceils with similar efficien
cies and undenvent uncoating and reverse transcription at
comparable rates. In contrast, hetween 12- and 24-i pi., total
amounts of late cPPI revcrse-transcrihcd preducts dccrcascd

at a rate tiat was cleariy different from that of viral cPPT’
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C. D.
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FIG. 2. The central DNA flap contributes to efficient HIV-1 single-cycle replication. (A) Schematic Structure of HIV-I provirus with the R1/IN
gene deleted (R/ARI) and the cPPI mutant (RARIicPPI). The ePPT element was inactivated by introduction of ten nucleotide substitution
mutations, as indicated. (B) Tu evaluate Ri and IN transincorporation, t35Si-methionine-radiolabeled viruses were eollected from transfected
293T cells, lysed, and analyzed by immunoprecipitation hy using anti-HTV antihodies. in test the replication potential ot each virus stock, CD4
MT4 T celis (C) or PHA-stimulated human PBMCs (D) tvere infected with equal amounts of R/ARI or R!ARl!cPPT viruses. At different time
intcrvals after infection, viral production was monitored in the supernatants by measurement of HTV- I p24 antigen by using a p24 ELISA assay.
Thc results are representative of two independent experiments.

cDNA products. At 12-h and 24-h pi, levels of viral cPPT
eDNA were reduced by approximately 45 and 40% compared
to the levels of cPPT4 cDNA, which stayed quite stable during
the same time interval (between approximately $7 and 88% of
their levels at 6 h) (Fig. 4A). At Iater time points (between 24
and 4$ h), both cPPT and cPPT viral cDNAs decreased at
similar rates, most probably as a result of the dilution of un
integrated viral cDNA that occurs upon celi division. This
difference in the rate of viral cDNA decrease detccted betwcen

R/RI and R/RI/cPPT infection was flot due to intrinsic
variation bctween samplcs, sincc similar levels of a control
cellular DNA (human -2-adrenergic receptor [32-AR1 gene)
were detected by PCR in each sample (Fig. 4B, left panel).
These resuits suggest that the central DNA flap does flot in
terfere with the rate of the reverse transcription step per se but
appears to influence the rate of accumulation cf total viral
cDNA product.

In parallcl, we analyzed viral cDNA nuclear import by sub
cellular fractionation and subsequent detection of viral cDNA

associated with nuclear or cytoplasmic fractions as previously

described (36). Human PBMCs were infected with equivalent

amounts of transcomplemented R/RI/cPPT or R/RI
viruses, and cytoplasmic and nuclear fractions were isolated

from the same number of cells at 24-h p.i. AIl fractions were

then analyzed by PCR as described in the legend to Fig. 4A.

The presence of total viral DNA was visualized by ethidium
bromide staining, and the staining intensity of each amplified
DNA product was quantifled by using n Chemilmager 5500

system with AlphaEaseFC software (Alpha Innotech Corpora
tion). The results shown in Fig. 4C (upper panel) reveal that at
24-h p.i. total amounts of viral cDNA in the R/RI-infected
sample (including cytoplasmie and nuclear fractions) were ap
proximately threefold higher than those detected in the R1
R1/cPPT infected sample, thus confirming the data oh
tained from Fig. 4A. Interestingly, while approximately 75% of
total viral cDNA was detected in the nuclear fraction of R/
R1-infecled cells, only 30% of total viral cDNA was found in
the nuclei cf R/RI!cPPT-infected cells (fig. 4C, upper
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A.
R-/L\ RI R-h.\RIIcPPT
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FIG. 3. Effect of the central DNA flap on I-11V-Ï proviral DNA integration in h-PBMC. (A) h-PBMCs were infected with R/.RI or
R!Rl/cPPT virus (125 fig of p241106 celis). At 24- and 36-h pi., the ceils were lysed. and serially diluted ccli lysates were analyzed by two-step
Aiu-PCR and Southern blotting for specillc detection of integrated proviral DNA from infected PBMCs (upper panel) or from ACH-2 celis as the
quantitative controi (]ower panel). (B) Quantitative analysis of integrated provirai DNA in single-cycle infection. The hands in pane] A were
quantified by laser densitometry, and the number of integrated provirai DNA copies per cdl was determined hy using the PCR-eenerated standard
curve derived from ACH-2 ceils.

panel). Moreover, the ahsolute levels of nuclear-associated
viral cDNA were approximately sevenfold higher with the wt
virus than with the cPPT-defective virus. The integrity of the

fractionation procediire svas validated by detection of mito
chondrial DNA and 3-globin DNA, as described previously
(18, 36, 38). Resuits showed that mitochondria] and 3-globin
DNAs were found solely in the cytop]asm and the nucleus,
respectiveiy (Fig. 4C, lower pane]). In addition. levels of each
of these control cellular DNAs were similar in both R/ARI
and R/ARIIcPPT subcellu]ar fractions, confirming that equiv
aIent amounts of nuclear and cyctoplasmic fractions were an
alyzed.

Several recent studies have investigatcd the role of lhc cen
tra] DNA flap in HIV-1 rephcation and nuclear import and
have reached conflicting conclusions (11. 13, 17, 29, 30, 33, 34.
37, 45, 46). In this study, we reexamined this question by using
RT and IN transcomplemented HIV-I- viral particles capable
of a single round of replication. Our resuits reveal that the
central DNA flap was not essentia] to HIV-1 replication but

G
conferred a live- to sevenfold infectiviW advantage to single-
cycle replicating viruses in a variety of cellular systems, includ
ing MAGI cclls. MT4. dividing and nondividing C8166 T-ce]]

unes, and h-PBMCs (Fig. land 2 and data not shown). These

results are consistent with Ondings reported hy several previous

studies that the centra] DNA llap conferred a transduction
advantage of 2- to i0-fo]d on vesicu]ar stomatitis virus-G

pseudotyped HIV-1 vectors (11, 13, 17, 29, 30, 33, 34, 37, 45,
46). At this point, it is stil] unclear why this substantial defect

in single-round infectivity caused by disruption of the DNA

flap dues flot translate into a detectab]e difference when the
replication kinetic is monitored by using replication-competent
virus, as shown recently (13, 29). C]ear]y, more studies in this

area are required to understand this discrepancy.
In an attempt tu undcrstand the rncchanism(s) underlying

the eftect of the centra] DNA flap during HIV-i single-cycle

rep]ication, wc analyzed by PCR thc amoun] of intcgrated
proviral DNA in the presence or absence of the centrai DNA
ilap. Our results clcariy show that disruption of the DNA flap

results in a five- to sevenfold decrease in provira] DNA inte

gration (Fig. 4), suggesting that the central DNA flap contrih

utes to efficient single-cycle viral replication by acting on an

cari)’ stage(s) of the HIV-1 infection cycle at and/or prior to

viral integration. Wc further ana]yzcd total late-revcrsc-tran

scrihed DNA products over time during cPPT or cPPT

single-cycle vira] infection and dctermined the distribution of

total viral cDNA in the nucleus and the cytoplasm. Our resuits
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FIG. 4. Effect of the central DNA flap on I-11V-l cDNA nuclear import. (A) h-PBMCs were infccted with transcomplcmented R%RI (cPPT )
and R/RI/cPPT (cPPT) viruses (125 ng of p241106 ceils) for 2 h. As the negative control, 3’-azido-3’-deoxythymidine (AZT; 10 jiM)

pretreated PBMCs were infected with the same amounts of transcomplemented R1RI virus. At each indicated time point, serial dilutions of
extracted total DNA were analyzed for latc-reverse-transcription products hy PCR by using long terminal repeat (LTR)-Gag primers and Southern
blotting. HIV-1 late-reverse-transcription products detected in the left panel were quantified by laser densitometiy. The diagram at the right shows
the number of HIV-1 cDNA copies per celI as detemiined by using the PCR-generated standard curve (B, right panel). These results are
representative of those ohtained in two independent experiments. Serially diluted R-/RI plasmid DNA was used as a standard for DNA copy
quantification (right panel). Tu evaluate cellular DNA levels in each sample, the cellular 2-AR gene was amplified hy PCR and visualized by
ethidium bromide staining (left panel). (C) At 24-h pi., 2 X i0 infected h-PBMCs were fractionated into cytoplasmic and nuclear fractions as
described previously (36). The amounts of viral DNA in the cytoplasmic and nuclear fractions were evaluated by PCR by using HIV-1 LTR-Gag
primers and were visualized by ethidium bromide staining. The R/ARI plasmid DNA was used as a PCR-positive control (pc) (upper panel). In
parallel, the purity and DNA content of each subcellular fraction were evaluatcd by PCR detection of the human globin gene and mitochondrial
DNA and were visualized by ethidium bromide staining (lower panel). N, nuclear fraction; C, cytoplasmic fraction.

reveal that the presence of the central DNA flap dues not
signiflcantly influence the amount of viral transcripts produced
at early time points (6 h) but contributes primarily to an ac
cumulation of viral cDNA in the nucleus (Fig. 4). These results
are consistent with findings made by scvcral previous studies
using either replication-competent viruses or single-round
HIV-1 vector transduction systems that the central cDNA flap
enhances the establishment of HIV-1 infection by facilitating
the nuclear import of proviral DNA (17, 30, 45).

In addition to the effect on viral cDNA nuclear import, our
data also suggest that the presence of the central DNA flap
might have a stabilizing and/or a protective effect on viral

Ç cDNA (Fig. 4). lndeed, it is possible that the central DNA flap
might contribute tu a correct conformation of viral cDNA
and/or be implicated in the recruitment of host cell proteins to

form a functional PIC capable of effective proviral DNA nu
clear import. Absence of an intact central DNA flap might lead
tu immature PIC where viral cDNA is less stable or subject to
rapid degradation. In this regard, it has recently been reported
that the central DNA flap rcgion of viral cDNA was resistant
tu DNase I digestion when viral PIC complexes were isolated
from the cytoplasm uf infected ceils at 10 h, whereas it vas
sensitive to degradation when complexes were isolated at 8.5 h
after infection (25). Alternatively, it may alsu be possible that

the presence of the central DNA flap positively modulates the
stability of viral cDNA in the nucleus. lnterestingly, a similar
difference in the rate of decline of wt and cPPT-defective total
viral cDNA was observed hy Limon et al. (29) in infected
PBMCs, although the effect was not as pronounced as in our
study. Altogether, these observations point toward a possible
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roic of the central DNA flap in the formation and maturation

of J-11V-1 PICs: such a role is likely to influence viral cDNA

stability and nuclear import.
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Abstract

Background: In addition to mediating the integration process, HIV- I integrase (IN) bas also been

implicated in different steps during vital life cycle including reverse transcription and viral DNA nuclear

import. Although the karyophilic property of HIV-l IN has been well demonstrated using a variety of

expecimental approaches, the definition of domain(s) and/or motif(s) within the protein that mediate viral

DNA nuclear import and its mechanism are still disputed and controversial. In this study, we performed

mutagenic analyses to investigate the contribution of different regions in the C-terminal domain of HIV- I

IN to protein nuclear localization as well as their effects on virus infection.

Resuits: Our analysis showed that replacing lysine residues in two highly conserved tri-lysine regions,

which are located within previously described Region C (235WKGPAKLLWKGEGAW) and sequence Q
(2HKELQKQITK) in the C-terminal domain of HIV-I IN, impaired protein nuclear accumulation, while

mutations for RK2634 had no significant effect. Analysis of their effects on viral infection in a VSV-G

pseudotyped RT1IN trans-complemented HIV- I single cycle replication system revealed that aIl three C-

terminal mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA) exhibited more severe defect of

induction of 13-Gal positive ceils and luciferase activity than an IN class I mutant D64E in HeLa-CD4-

CCR5-13-Gal cells, and in dividing as well as non-dividing C8 166 T cells, suggesting that some viral defects

are occurring prior to viral integration. Furthermore, by analyzing viral DNA synthesis and the nucleus

associated viral DNA Ievel, the results clearly showed that, although aIl three C-terminal mutants inhibited

viral reverse transcription ta different extents, the KK240,4AE mutant exhibited most profound effect on

this step, whereas KK2I5,9AA significantly impaired viral DNA nuclear import. In addition, our analysis

could not detect viral DNA integration in each C-terminal mutant infection, even though they displayed

various low levels of nucleus-associated vital DNA, suggesting that these C-terminal mutants also impaired

viral DNA integration ability.

Conclusion: AIl of these results indicate that, in addition to being involved in HIV- I reverse transcription

and integration, the C-terminal tri-lysine regions of IN also contribute to efficient viral DNA nuclear

import during the early stage of HIV- I replication.
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C
Eackground
The integrase (IN) of human immunodeficiency virus
type 1 (H IV-1) is encoded by the pol gene and catalyzes
integration of viral cDNA into host chromosome, an
essential step in Hl\’-l repiication. In addition to mediat
ing the integration process, HIV-1 IN also participates in
different steps during viral life cycle, including reverse
transcription and viral DNA nuclear import l1-6l. During
earlyphaseofthe HIV-1 repiication cycle, after virus entry
into target celis, another p0t gene product, reverse tran
scriptase (RT), copies viral genomic RNA into double
stranded cDNA which exists within a nucleoprotein pre
integration complex (PIC). The PIC also contains viral
proteins including RT, IN, nucieocapsid (NC, p9), Vpr
and matrix (MA, p17) and this large nucieoprotein com
plex is capable of activeiy transiocating into the ceil
nucleus, including that of non-dividing ceils (reviewed in
reference 171). This feature is particuiarly important for
the establishment of H1V-1 replication and pathogenesis
in exposed hosts, since the infection ofpostmitotic ceils
including tissue macrophages, mucosal dendritic celis as
well as non-dividing T ceils may be essential not only for
viral transmission and dissemination, but also for t.be
establishment of persistent vital reservoirs.

HIV-1 IN is composed ofthree functional domains, an N-
terminal domain, a central cataiytic core domain and a C-
terminal domain, ail ofwhich are required for a complete
integration reaction. The N-terminal domain harbors an
HHCC-type zinc binding domain and is implicated in the
multimerization ofthe protein and contributes to the spe
cific recognition of DNA ends t8-101. The cote domain of
IN contains the highiy conserved DDE motif which is
important for catalytic activity of the protein [11,12]. The
C-terminal domain was shown to possess nonspecific
DNA binding propenies 113,141. Some mutations within
this region cause a drastic loss of virus infectivity without
affecting the enzymatic activity of IN in vitro [2,13-16].
There are three conserved sequences in the C-terminus of
IN that are essential for HIV-1 replication. Regions C
(235WKGPAKLLWKCEGAW) and N (259WPRRKAK) are
conserved in ail known retroviruses and the
21 1KELQKQITK motif fails within the so-called glutamine
rich based region (sequence Q) oflentivimses 1171. Alter
ation of each of the three sequences such as Q214L/
Q216L, K215A/K219A, W235E, K236A/K240A, K244A/

E246A, RRE2G3-5AAH resulted in loss of viral replication

115-181. However, the mechanism(s) underiying the Ioss
of viral infectivity remains controversial.

A number of studies have demonstrated the karyophitic

properties of IN impiicating that this protein may play an
important role for PIC nuclear impon [3,19-231. How
ever, the definition of nuclear iocalization signais (NLSs)
in IN as weil as their contribution to HIV-1 PIC nuclear

import stiil remain to be determined. Previous report bas
suggested an atypical bipartite NLS (‘86KRK and
2ILKELQKQITK) by showing that IN mutants Ki 66Q and
Q2 14/21 6L in these regions lost the protein nuclear local
ization and their inability to bind to karyopherin a in vitro

131. However, in attempt to analyze the effect of these
mutants during H1V-1 replication, other studies did flot
reveal the importance of these IN mutants fK186Q and
Q214/216L) for viral nuctear import; rather they appear
to be required for reverse transcription, integration or
undefined post-nuclear entry steps [16,18,23]. AIso,
another IN amino acid sequence IICQVRDQAEHLK
(aalGt—173), was initialiy identified as an atypical NLS,
which is required for virai DNA nuciear import 1191 How

ever, reassessments ofthis putative NLS frmnction failed to
conflrm this conclusion 124,25 1. Some reports have also
acknowiedged that IN iocalization couid result from pas
sive difftision ofthe protein and its DNA binding property

[26,271, but DNA binding aione does flot fully explain a
rapid, ATP- and temperature-dependent nuciear impon of
IN [20]. It bas recentiy been reported that the nuclear
transiocation of H1V-1 IN can be attributed to its interac
tion with a cellular component, human lens epitheiium
derived growth factor/transcription coactivator p75
(LEDCF/p75) and LEDGF/p75 was also shown to be a
component of HIV PIC [28,29]. However, whether this
IN/LEDCF/p75 interaction plays an important roie for

H 1V-1 nuclear impon stiil remains to be elucidated, since
HIV-1 infection and repiication in LEDCF/p75-deflcient

celis was equivalent to that in control ceils, regardless
whether celis were dividing or growth arrested [291. Thus,

even though extensive studies have been dedicated in this
specifïc research fleld, the contribution of H IV-1 IN to
viral PiC nuciear import remains to be defined.

In this study, we have performed substitution mutational
analysis to investigate the contribution of different C-ter
minai regions of IN to prrnein nuclear locaiization and
theireffects on HIV-I replication. Our results showed that

mutations of lysine residues in two tri-lysine regions,

which are located within previously described Region C
and sequence Q [17f in the C-terminal domain ofHIV-1
IN, impaired protein nuclear iocalization, whiie muta

tions ofarginines at amino acid position of 263 and 264
in the distat part of the C-terminai domain of IN had no
significant etfect. Moreover, we assessed the effect ofthese
IN mutants during [11V-1 single cycle infection mediated
by VSV-G pseudotyped WF/IN trans-complemented
viruses. Resuits showed that, whiie ail three C-terminal
mutant viruses differentially affected FiIV-1 reverse tran
scription, the KK240,4AE mutant exhibited most pro
found inhibition on this step, whereas KK215,9AA
significantiy impaired virai DNA nuclear import.
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C
Resufts
The C-terminai domain of H1V- I integrase (IN) is required
for the nuclear Iocalization cf IN-YFP fusion protein

In this study, we first investigated the intracellular Iocali
zation ofHIV-i IN and delineated the region(s) of IN con
tributing to its karyophilic property. A H IV-l IN-YfP
fusion protein expressor (CMV-IN-YFP) was generated by
fusing a full-tength HIV-1 IN cDNA (amptified from HIV
1 HxBru molecular clone 130]) to the 5’ end ofYfP cDNA
in a CMV-IN-YfP expressor, as described in Materials and
Methods. Transfection of CMV-IN-YfP expressor in 293T
celis resulted in the expression ofa 57 kDa IN-YFP fusion
protein (Fig. lB, lane 2; fig. 2B, lane 1), whereas expres
sion of YFP alone resulted in a 27 kDa protein (fig. 28,
lane 5). Given that HeLa cells have welI-defined morphol
ogy and are suitable for observation ofintracellular pro
tein distribution, we tested the intracellular localization of
YfP and IN-Yf P by transfecting CMV-IN-YfP or CMV-YfP
expressor in HeLa celis. After 48 hours of transfection,
ceils were fixed and subjected to indirect immunofluores
cence assay using primary rabbit anti-GfP antibody fol
lowed by secondaiy fITC-conjugated anti-rabbit
antibodies. Resuits showed that, in contrast to a diffused
intracellular localization pattern ofYFP (data flot shown),
the IN-YFP fusion protein was predominantly localized in
the nucleus (fig IC, ai), confirming the karyophilic fea
tureofHlV-i IN.

b delineate the karyophilic determinant in HIV-1 IN, two
tmncated IN-YfP expressors CMV-1N50 268-YfP and CMV
1N1_212-YFP were generated. In CMV-tN50 288-YFP, the N-
terminal HH-CC domain of IN (aa 1—49) was deleted and
in CMV-1N1_212-YfP, the C-terminal domain (aa 213—
288) was removed (Fig. lA). Transfection of each trun
cated IN-YfP fusion protein expressor in 293T cetis
resulted in the expression of 1N50_238-YFP and 1N1_212-YfP
at approximately 52 kDa and 48 kDa molecular mass
respectively (Fig. 15, lanes 3 and 4). We next investigated
the intracellular Iocalization of tmncated tN-YFP fusion
proteins in HeLa ceils by using indirect immunofluores
cence assay, as described above. Resuits showed that the
1N50288-YfP was predominantiy locatized in the nucleus
with a similar pattern as the wild-type IN-YfP fusion pro
tein (Fig. 1C, compare bi to ai). However, lN1_212-YFP
fusion protein was excluded from the nucleus, with an
accumulation ofthe mutant protein in the qrtoplasm (fig
1C, ci). These resuits were also frirther confirrned by using
rabbit anti-IN antibody immunofluorescence assay (data
flot shown). Taken together, our data show that the C-ter
minal domain of HIV-i IN is requited for its nuclear
accumulation.

Two tri-Iysine regions in the C-terminal domain of IN are

involved in the protein nucleor Iocalization

The C-terminal domain of HIV-1 IN contains several
regions that are highly conserved in different HIV-1
strains, including Q, C and N regions 1171. lnterestingly,
in regions Q and C, sequences of 21 ‘KELQKQITK and
256KGPAKLLWK possess high similarity in terms ofnum
bers and position oflysine residues and therefore, we term
them proximaI tri-lysine region and distal tri-Iysine
region, respectively (fig. 2A). Ail of these lysine residues
are highly conserved in most HIV-1 strains 1311. To test
whether these basic Iysine residues could constitute for a
possible nuclear Iocalization signal for IN nuclear locali
zation, we speciflcally introduced substitution mutations
for two lysines in each tri-Iysine region and generated

INKK2Is9,-YfP and INKI<2404Àt-YfP expressors (Fig. 2A).

In the conserved N region, there is a stretch of four basic

residues among five amino acids (aa) 262RRKAK. b char
acterize whether this basic aa region may contributes to IN
nuclear Iocalization, we replaced an arginine and a lysine
at positions of 263 and 264 by alanines in this region and
generated a mutant (INRK2G34AA-YFP). The protein expres
sion of different IN-VFP mutants in 2931 cells showed

that, like the wild type IN-YFP, each IN-YfP mutant fusion
protein was detected at similar molecular mass (57 kDa)

in SDS-PACE (Fig 2B, lanes I to 4), while YFP alone was
detected at position of 27 kDa (lane 5). Then, the intrac
ellular Iocalization ofeach IN mutant was investigated in
HeLa celis by using similar methods, as described above.
Results showed that, while the wild type IN-YfP and

INRK2s34-YFP stili predominantly Iocalized to the
nucleus (fig. 2C, ai and dl), both INKK2s\-YfP and

INKI(2404AE-YfP fusion proteins wete shown to disttibute

throughout the cytoplasm and nucleus, but with much

Iess intensity in the nucleus (Fig 2C, al and bi). These

data suggest that these lysine residues in each tri-Iysine

regions are required for efficient HIV-i IN nuclear
localization.

Production of VSV-G pseudotyped H/V- I IN mutant viruses

and their effects on HIV- I infection

Given that two di-lysine mutants Iocated in the C-termi
nal domain of IN are invotved in HIV-1 IN nuclear local

ization, we next evaluated whether these IN mutants
would affect the efficiency ofHIV-I infection. b specifi
cally analyze the effect of IN mutants in early steps ofviral
infection, we modified a previously described HIV-i sin
gle-cycle reptication system 1321 and constructed a RT/IN/
Env gene-deteted HJV-l provims NLlucBgltRI, in which

the nef gene was reptaced by a firefly luciferase gene 1331.
Co-expression of NLtuczBgliRl provirus with Vpr-RT-IN

expressor and a vesicular stomatitis virus C (VSV-G) glyc
oprotein expressor witl produce vital particles that can
undergo a single-round of replication, since RT, IN and
Env defects ofprovirus wiII be complemented in trans by
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Figure I
Subcellular Iocalization of the wild-type and truncated HIV integrase fused with YFP. A) Schematic structure of
H IV-I integrase-YFP fusion proteins. FuII-Iength (I—288aa) H IV-I integrase, the N-terminus-truncated mutant (5 I—228aa) or
the C-terminus-truncated mutant (I—21 2aa) was fused in frame at the N-terminus of YFP protein. The cDNA encoding for
each IN-YFP fusion protein was inserted in a SVCMV expression plasmid. B) Expression of different IN-YFP fusion proteins in
293T cells. 293T celis were transfected with each IN-YFP expressor and at 48 hours of transfection, cells were lysed, immuno
precipitated with anti-HIV serum and resolved by electrophoresis through a 12.5% SDS-PAGE followed by Western blot with
rabbit anti-GFP antibody. The molecular weight markers are indicated at the Ieft side of the gel. C) Intracellular Iocalization of
different IN-YFP fusion proteins. HeLa ceils were transfected with each HIV- I IN-YFP fusion protein expressor and at 48
hours of transfection, celis were fixed and subjected to indirect immunofluorescence using rabbit anti-GFP and then incubated
with FITC-conjugated anti-rabbit antibodies. The Iocalization of each fusion protein was viewed by Fluorescence microscopy
with a 50x oh immersion objective. Upper panel is fluorescence images and bottom panel is DAPI nucleus staining.

VSV-G glycoprotein and Vpr-mediated RI and IN trans
incorporation [321. This single cycle replication system
allows us to introduce different mutations into IN gene
sequence without differentially affecting viral morpho
genesis and the activity ofthe central DNA Flap. After dif
ferent IN mutations KK215,9AA, KK240,4AE and
RR263,4AA were introduced into Vpr-RT-IN expressor, we
produced VSV-G pseudotyped HIV-1 IN mutant virus
stocks in 293T cells. In order to specifically investigate the

effect of IN mutants on early steps during HIV-1 infection
prior to integration, an IN class I mutant D64E was also
included as control. After each viral stock was produced
(as indicated in Fig. 3A), similar amounts of each virus
stock (quantified by virion-associated RT activity) were
lysed and virus composition and trans-incorporation of
RT and IN of each virus stock were analyzed by Western
blot analysis with anti-IN and anti-HIV antibodies, as
described in Materials and Methods. Results showed that
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ail VSV-G pseudotyped IN mutant vimses had similar lev
els of Gagp24, IN and RT, as compared to the wild-type
virus (fig. 3A), indicating that tians-incorporation of RT
and iN as well as HIV-1 Gag processing were flot differen
tially affected by the introduced IN mutations.

To test the infectivity of different IN mutant viruses in
HeLa-CD4-CCR5-LTR-[3-Gal ceils, we first compared the
infectivity ofVSV-G pseudotyped wild type virus and the
D64E mutant virus. At 48 hours post-infection with equiv
aient amount of each virus stock (at 1 cpm RT activity/
ceil), the number of j3-Gal positive ceils was evaluated by
MAGI assay, as described previously 134]. Resuits showed

that the number ofinfected ceils ([3-Gal positive celis) for
D64E mutant reached approximately 14% of the wild
type level (data flot shown). This resuit is consistent with
a previous report showing that, in HeLa MAGI assay, the
infectivity level ofclass t IN integration-defect mutant was
approximately 20 to 22% cf wild type level [15]. It mdi
cates that, even though the IN mutant D64E virus is defec
tive for integrating viral DNA into host genome, tat
expression from nucleus-associated and unintegrated viral
DNAs can activate H1V-1 LTR-driven [3-Gai expression in
HeLa-CD4-CCR5-LTR-[3-Gal celis. indeed, several studies
have already shown that HIV infection leads to selective
transcription of tat and nef genes before integration
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Figure 2
Effect of different IN C-terminal substitution mutants on IN-YFP intracellular Iocalization. A) Diagram of HIV- I
IN domain structure and introduced mutations at the C-terminal domain of the protein. The position of lysines in two tri
lysine regions and introduced mutations are shown at the bottom of sequence. B) The expression of the wild-type and mutant
IN-YFP fusion proteins were detected in transfected 293T celis by using immunoprecipitation with anti-HIV serum and West
ern blot with rabbit anti-GFP antibody, as described in figure I. The moleculat weight markers are indicated at the Ieft side cf
the gel. C) Intracellular Iocalization of different HIV- I IN mutant-YFP fusion proteins in HeLa ceils were analyzed by fluores
cence microscopy with a 50x oil immersion objective. The nucleus of HeLa ceils was simultaneously visualized by DAPI staining
(Iower panel).
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Figure 3
Production of different single-cycle replicating viruses and their infection in HeLa-CD4-CCR5-13-Gal celis. A).
Ta evaluate the trans-incorporation of RT and IN in VSV-G pseudotyped vital particles, viruses released from 293T celis trans
fected with NLIucABgIARI provirus alone (lane 6) or cotransfected with diffetent Vpr-RT-IN expressors and a VSV-G
expressor (lane I ta 5) were Iysed, immunoprecipitated with anti-HIV serum. Then, immunoprecipitates were run in 12% SDS
PAGE and analyzed by Western blot with rabbit anti-IN antibody (middle panel) or anti-RT and anti-p24 monoclonal antibody
(upper and lower panel). B) The infectivity of trans-complemented viruses produced in 293 T cells was evaluated by MAGI
assay. HeLa-CD4-CCR5-LTR-3-GaI cells wete infected with equal amounts (at 10 cpm/cell) of different IN mutant viruses and
after 48 hauts of infection, numbets of 13-Gal positive cells (infected ceIl) were monitored by X-gal staining. Error bars repre
sent variation between duplicate samples and the data is representative of results obtained in three independent experiments.

[2,35,361. Therefore, this HeLa-CD4-CCR5-LTR-13-Gal ce!!
infection system provides an ideal method for us to
evaluate the effect of different IN mutants on early steps of
viral infection prior to integration. We next infected HeLa
CD4-CCR5-LTR-13-Cal ceils with different VSV-G pseudo
typed iN mutant viruses at higher infection dose of 10
cpm RT activity/celI and numbers of 13-Cal positive ceils
were evaluated by MACI assay after 48 hours of infection.
lnterestingly, resuits showed ±at the IN mutant D64E
virus infection induced the highest level of 13-Gal positive
celis, whereas infection with viruses containing IN
mutants KK215,9AA, KK240,4AE or RK263,4AA yielded
much lower levels of f3-Gal positive ceits, which only
reached approximately 11%, 5% or 26% of the level of
D64E virus infection (Fig. 3B). Based on these results, we
reasoned that these IN C-terminal mutants blocked infec
tion mostly by affecting eariier steps of HIV-1 life cycle,
such as reverse transcription and/or viral DNA nuclear
impon steps, which are different from the action ofD64E
mutant on viral DNA integratïon.

Effect of IN mutants on virai infection in dividing and non
dividing C8166 T celis
To further test whether these C-terminal mutants could
induce similar phenotypes in CD4÷ T ceils, we infected
dividing and non-dividing (aphidicolin-treated) C8 166
CD4 T ceils with equal amounts of VSV-G pseudotyped
IN mutant viruses (at 5 cpm of RT activïty/cell). Since ail
IN mutant viruses contain a luciferase (luc) gene in place
ofthe nef gene, viral infection can be monitored by using
a sensitive luc assay which could efficiently detect viral
gene expression from integrated and unintegrated viral
DNA 1331. After 48 hours of infection, equal amounts of
cells were lysed in 50 al ofluc lysis buffer and then, 10 al
ofcell lysates was used for measurement ofiuc activity, as
described in Materiais and Methods. Resuits showed that
the D64E mutant infection in dividing C8166 T ceils
induced 14.3 x 10 RLU of luc activity (Fig. 4A), which
was approximately 1000-fold lower than that in the wild
type virus infection (data flot shown). Ibis level of luc
activity detected in D64E mutant infection is mostly due
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Figure 4
Effect of IN mutants on viral infection in dividing and nondividing C8 166 T ceils. To test the effect of different IN
mutants on HIV-l infection in CD4+ T celis, dividing (panel A) and non-dividing (aphidicolin-treated. panel B) C8i66 T cells
were infected with equal amount of VSV-G pseudotyped IN mutant viruses (at 5 cpmlcell). For evaluation of the effect cf differ
ent IN mutants on HIV- I envelope-mediated infection in CD4+ T cells, dividing C8 166 T ceils were infected with equal amount
of HIV- I envelope competent IN mutant viruses (at ID cpm/celI) (panel C) After 48 hours of infection, HIV- I DNA-mediated
luciferase induction was monitored by luciferase assay. Briefly, the same amount (106 cells) of cells was lyscd in 50 ul of luci
ferase lysis buffer and then, 10 al of celi lysate was subjected te the luciferase assay. Error bars represent variation between
duplicata samples and the data is representative of results obtained in three independent experiments.

to nefgene expression from the unintegrated DNA 133]. In
agreement with the finding by MAGI assay described in
figure 3, the Luc activity deteaed in KK215,9AA,
KK240,4AE and RK263,4AA mutant samples were approx
imately 13%, 5% and 36% oflevel of D64E mutant infec
tion (fig. 4A). in parallel, infection of different IN
mutants in non-dividing C8 1661 cells was also evaluated
and similar resuits were observed (Fig. 4B).

To test whether these IN mutants had similar effects dur
ing H1V-1 envelope-mediated single cycle infection, we
produced virus stocks by co-transfecting 293T ceils with a
HIV-1 envelope-competent NLluccRI provirus with each
Vpr-RT-IN mutant expressor, as described in Materials and
Methods. Then, dividing CD4 C8166 celis were infected
with each virus stock (at 10 cpm RT activity/cells). At 48
hours post-infection, ceils were coliected and measured
for luc activity. Resuits from figure 4C showed that, simi
lar to resuits obtained from VSV-C pseudotyped virus
infection (fig. 4A), the Luc activity detected in celis
infected by H1V-1 envelope competent KK215,9AA,
KK240,4AE and RK263,4AA mutant vii-uses were approxi

mately 13.5%, 6% and 29% of level of D64E mutant
infection (fig. 4C). Ail of these resuits confirm the data
from HeLa-CD4-CCR5-LTR-13-Gat infection (fig. 3) by
using either VSV-C- and HIV-1 envelope-mediated infec
tions and suggest again that the significantly attenuated
infection of KK215,9AA, KK240,4AE and RK263,4AA
mutant viruses may be due to their defect(s) at reverse
transcription and/or viral DNA nuclear impon steps.

Effects of IN mutants on reverse transcription, viral DNA
nuclear import and integration
Ail resuits so far suggest that these C-terminal mutants
might significantly affect early steps during H 1V-1 replica
tion. To directly assess the effect of these IN C-terminal
mutants on each early step during virai infection, we ana
lyzed the viral DNA synthesis, their nuclear transiocation
and integration following each IN mutant infection in
dividing C8166 ceils. Levels of HIV-1 late reverse tran
scription products were analyzed by semi-quantitative
PCRafter 12 hours of infection with HIV-1 specific 5’-LTR-
U3/3’-Gag primers and Southern blot, as previously
described 132,371. Also, intensity of ampiified HIV-l
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Figure 5
Effects of different IN mutants on HIV-I reverse transcription and DNA nuclear import. Dividing C8166 T ceils
were infected with equal amounts of different HIV- IN mutant viruses. A) At 12 hours post-infection, I X 106 cells were Iysed
and the total viral DNA was detected by PCR using HIV- I LTR-Gag primers and Southern blot. B) Levels of HIV- I late reverse
transcription products detected in panel A wete quantified by laser densitometry and viral DNA level of the wt virus was arbi
trarily set as 00%. Means and standard deviations from two independent experiments are presented. C) At 24 hours post
infection, 2 X 106 cells were fractionated into cytoplasmic and nuclear fractions as described in Materials and Methods. The
amount of viral DNA in cytoplasmic and nuclear fractions were analyzed by PCR using HIV- I LTR-Gag primers and Southern
blot (upper panel, N. nuclear fraction; C. cytoplasmic fraction). Purity and DNA content of each subcellular fraction were mon
itored by PCR detection of human globin DNA and visualized by specific Southern blot (lower panel). D). The percentage of
nucleus-associated viral DNA relative to the total amount of viral DNA for each mutant was also quantified by laser densitom
etry. Means and standard deviations from two independent experiments are shown.

specific DNA in each sample was evaluated by laser
densitometric scanning of hands in Southern blot autora
diograms (fig. 5A). Resuhs showed that total viral DNA
synthesis in both KK215,9AA and RK263,4AA infection
reached approximately 61% and 46% ofthat of the wild
type (wt) virus infection (Fig. 5A and 5B). Strikingly, in
KK240,4AA sample, detection of viral DNA synthesis was
drastically reduced, which only reached 21% of viral DNA
level in WT sample (fig. 5A and 5B). These results indicate
that all three C-terminal mutants negatively affected viral

reverse transcription during viral infection and
KK240,4AA mutant exhibited most profound effect.

Meanwhile, the nucleus- and cytoplasm-associated viral
DNA levels were analyzed at 24 hours post-infection in
C8 166 T celis. The infected celis were first gently lysed and
separated into nuclear and cytoplasmic fractions by using
a previously described fractionation technique [37]. Then,
levels ofHIV-1 late reverse transcription products in each
fraction were analyzed by semi-quantitative PCR, as
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C
described above. Results revealed differential effects of C-
terminal mutants on H1V-1 DNA nuclear import. In the
wt, D64E and RK263,4AA virus-infeaed samples, there
were respectively 70%, 72% and 68% ofvirai DNA associ
ated with nuclear fractions (fig. 5C (upper panel, lanes 1
and 2; 3 and 4; 9 and 10) and 5D). For KK240,4AE
mutant, approximately 51% of viral DNA was nucieus
associated (Fig. 5C (upper panel, lane 7 and 8) and 5D).
Remarkably, in KK215,9AA infected sample, vital cDNA
was found predominandy in the cytoplasm and oniy
approximately 21% of vital DNA was associated with the
nuclear fraction (Fig. 5C (uppet panel, lane 5 and 6) and
5D). Meanwhiie, the integtity of fractionation procedure
was validated by detection of -giobin DNA, which was
found soleiy in the nucieus and levels ofthis nucleus-asso
ciated cellular DNA were similar in each nuclear sample
(fig. 5G, lower panel).

Even though the C-terminal mutants were shown ta sig
nificantiy affect HIV-1 reverse transcription and/or
nuclear import, the various low levels of nucieus-associ
ated viral DNA during the early stage of replication (Fig.
5G) may stiil be accessible for viral DNA integration. To
address this question, 1 x 106 dividing C8166 Tcells wete
infected with equivalent amaunts ofeach single cycle rep
licating virus stock (5 cpm/celi), as indicated in figure 6
and after 24 hours of infection, the virus integration level
was checked by using a previously descnbed sensitive Alu
PGR technique [321, Results revealed that, while the wt
virus resulted in an efficient viral DNA integration (Fig. 6,
upper panel; lanes 1 and 2), there was no viral DNA inte
gration detected in D64E mutant (lanes 3 ta 4) and in ail
three C-terminal mutant infection sampies (lanes 5 to
10), aithough similar leveis ofcellular 3-globin gene were
detected in each sampie (fig. 6, middle panel). These
resuits suggest that, in addition ta affecting HIV-1 reverse
transcription and nuclear impoli, ail three G-terminal IN
mutants tested in this study also negatively affected vital
DNA integration. Overali, ail ofthese results indicate that
ail t.hree IN C-terminal mutants are beionged ta class il
mutants, which affected different early steps during HIV-1
repiication. Amang these mutants, the KK240,4AE
showed the mast profaund inhibition on reverse tran
scription and the KK215,9AA, and ta a lesser extent,
KK240,4AE, impaired viral DNA nuclear transiocation
during early HIV-1 infection in C8166 T celis.

Discussion
In this study, we performed mutagenic studies to analyze
different regions in the C-terminai domain of HIV-1 IN
that contribute ta protein nuciear iocaiization as well as
their effects an virus infection. First, aur analyses showed
that specific lysine mutations introduced in twa highly
canserved tn-iysine regians in the C-terminal damain of
HIV-1 IN impaired protein nuclear accumulation. Second,

infection experiments revealed that ah three G-terminal
mutant viruses (KK2 1 5,9AA, KK240,4AE and RK263,4AA)
exhibited more severe defect of induction of -Gat posi
tive ceils and luc activity, as compared ta an IN ciass I
mutant D64E virus, in CD4 HeLa-13-Cai ceiis, dividing
and non-dividing G8166 Tcelis. It suggests that ail three
C-terminal mutant virus infections may have defects at
steps priar to integration. further anaiysis of total virai
DNA synthesis, viral DNA nuclear import and integration
indicates that ail three C-terminal mutants dispiayed a
class II mutant profile. Even though ail af them reduced
viral reverse transcription levels, the mutant KK240,4ÂE
showed the most profound inhibitory effect. In addition,
the mutant KK215,9AA, and to a iesser extent,
KK240,4AE, impaired viral DNA nuciear transiocation.
These IN mutant-induced defects do not appear ta result
from various effects of mutants on Cag-Poi processing
and maturation given that RT and IN were compiemented
in trans in t.his FIIV-1 single-cycle infection system. Rather,
the effect of different IN mutants on reverse transcription
and viral DNA nuclear impoli is Iikely originated from a
raie af mutants within the maturing PIC complexes.

Previous work by Gallay et al., have proposed an atypical
bipartite NLS (‘56KRK and 21KELQKQITK) in HIV-1 IN
by finding that IN mutants K186Q and Q214/216L lost
their kaiyophiiic feature and their abiiity to bind ta kary
apherin a in vitro [3J. Even though these resuits were con
firmed by Petit and coileagues by studying the
intraceiiular iocaiization of [11V-1 ftag-IN F181, other
studies, using GfP-IN fusion protein, did not reveal the
importance ofKl86Q and Q214/21 6L mutations for H1V-
f IN nuclear iocalizatian 116,23,27]. Therefore, the defini
tian ofregion(s) in HIV-1 IN contributing to the protein
nuciear lacaiization is stiil controversial. In this study, we
investigated the intracellular iocalization af several IN
YfP fusion proteins inciuding the C-terminai-deietion
mutant iN1_212-YFP, substitution mutants INKK2ISSAA-YFP
and INKK24O4ÀE-YFP and found t.hat ail ofthese IN fusion
mutants impaired protein nuclear accumulation. It sug
gests that two G-terminai tri-lysine regions
211KELQKQITK and 236KCPAKLLWK cantribute ta IN
nuclear iocalization. Interestingly, the study by Maertens
et aï also showed that the fusion of [11V-1 IN C-terminai
fragment alone with CfP rendered fusion protein ta be
exciusiveiy in the nucieus, speculating that the C-terminal
domain may have a role in HIV-l nuclear impoli (28].
However, at this moment, we stiil could flot exclude the
possibiiity that the IN nuciear accumulation couid be
facilitated by the DNA binding abiiity of IN protein, as
suggested by Devroe et al [27]. It bas ta be noted that twa
studies have previously observed the nuciear lacalizatian
af CfP-IN fusion proteins although the C-terminal
domain af IN was deleted from the fusion protein
[23,28]. Ii bas also been shawn that bath N-terminal zinc
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Figure 6
Effect of IN mutants on HIV- I proviral DNA integration. Dividing C8 166 T celis wete infected with equal amounts of
different HIV-l IN mutant viruses. At 24 hours post-infection, I X l0 ceils were Iysed and serial-diluted celI lysates were ana
Iyzed by two-step AIu-PCR and Southern blot for specific detection of integrated proviral DNA ftom infected ceils (Upper
panel). The DNA content of each lysis sample was also monitored by PCR detection of human 3-globin DNA and visualized by
specific Southern blot (middle panel). The serial-diluted ACH-2 celi lysates wete analyzed for integrated viral DNA and as
quantitative control (lower panel). The results are representative for two independent experiments.

binding domain and the central core domain ofHlV-1 IN
are involved in its interaction with a cellular protein,
human lens epithelium-derived growth factor/transcrip
tion coactivator p75 (LEDGF/p75) and this IN/LEDCF/
p75 interaction is required for CFP-IN nuclear localiza
don [28]. However, our deletion analysis by using IN-YFP
fusion protein failed to reveal the importance of both N-
terminal and core domains for IN nuclear localization
(Fig. 1). One explanation for this discrepancy could be
different orientations offiision proteins used in our study
(IN-YFP) and other studies (CFP-IN). It is possible that
different forms of fusion proteins may differentially affect
the ability of IN to interact with LEDCF/p75 and conse
quently affect their ability for nuclear targeting. Therefore,
it would be interesting to test whether INKK21S 9-YFP and
INKK24O4AE-YFP could loss their ability to interact with
LEDGF/p75. These studies are underway.

An important question that needs to be addressed is the
impact of nuclear Iocalization-defective IN mutants on
HIV-1 replication. Given that most IN mutants character
ized so far are classified as class II mutants that cause plei
otropic damage including defects in viral morphogenesis,
reverse transcription and integration 116,38], we used a
previously described VSV-C pseudotyped HIV-1 RT/IN
trans-complement single-cycle replication system [32,39j
to minimize differential effects of IN mutants on virus
maturation. Also, in our infection experiments, a specific
integration-defective class I mutant D64E virus was intro
duced in order to monitor the viral gene expression from
unintegrated HIV-Ï DNA species that are already translo
cated into nucleus during virus infection. It is known that
certain levels ofselected viral gene expression (tat and nef)
from unintegrated viral DNA species are detected during
this Class I mutant infection 12,35,3 61. Interestingly, our
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infection analysis revealed that more profound infection
defects were found for ail three IN C-terminal mutant
viruses KK215,9AA, KK240,4AE and RK263,4AA than
D64E mutant virus in Hela-CD4-CCR5-13-Gal celis, divid
ing and non-dividing C8166 T celis (fig. 3 and 4). These
resuits suggest that these C-terminal IN mutants may
affect early steps such as reverse transcription and/or
nuclear impon and consequently resuit in a reduced level
ofviral DNA in the nucleus, which is accessible for tat and
nef expression, b understand the mechanism(s) underly
ing replication defects of each C-terminal mutant, levels
of total reverse transcription were analyzed during early
viral infection. Consistent with a previous study (61, infec
tion with D64E mutant virus did flot affect reverse tran
scription as compared to wt virus infection. However, ail
three C-terminal mutants display various levels of
impaired HIV-1 reverse transcription (fig. 5A and 5B).
The mutant KK240,4AE showed strongest inhibition of
reverse transcription (21% compared to the wt level
(100%)), while mutants KK215,9AA and RK263,4AA
reached to 61% and 46% (Fig. 5A and 5B). These data
indicate that ail of these IN mutants, especialiy
KK240,4AA, negativeiy affect reverse transcription at early
virai infection. Consistently, recent studies have shown
that the C-terminal domain of IN contributes to efficient
reverse transcription and this domain of IN was able to
bind to heterodimeric RT [6,40,41J. It is possible that
these C-terminal mutants, especialiy for KK240,4AE, may
dismpt the interaction between IN and RT and resuit in
decreased viral cDNA synthesis.

Subsequently, we examined leveis of nucieus- and cyto
plasm-associated virai DNA during eariy virus infection.
Resuits clearly show that the nuclear localization defective
mutant KK215,9AA leads to significantly reduced levels of
virai DNA in the nucieus, as compared to the wt and D64E
viruses (fig. 5C and 5D). It suggests that the Q region is in
fact important for HIV-1 nuclear import. Consistently, a
recent study by Lu et al aiso observed that infection of
K215A/K219A mutant induced more than 3-fold lower
iuc activity compared to class I IN mutant D64N/D1I6N
[161. Moreover, similar to our experimental system, their
study revealed that, in the context of VSV-G pseudotyped
virus infection in Jurkat ceils, 2-LTR circle DNA leveis of
K215A/K219A and Q214L/Q216L were significantly
lower than other mutants V1G5A and C13OG, even
though the inhibition of viral reverse transcription medi
ated by these mutants were comparable [161. in addition,
KK240,4AE mutant also showed a modest impairment of
vital DNA nuclear import (fig. 5C and 5D). In fact, this
mutant exhibited the most profound infection defect,
compared to other two mutants (KK215,9AA and
RK263,4AA) (fig. 3 and 4). This may be due to combined
effects of this mutant on both reverse transcription and
viral DNA nuclear import, as shown in fig. 5. One inter-

esting question is whether such profound infection defect
of KK240,4AE mutant virus couid be due to a structurai
alteration by replacing glutamic acid (E) for lysine at posi
tion of 244. It seems to be unlikely since 1) the effect of
this mutant on nuclear import was flot as dramatic as
KK21S,9AA mutant (as shown in fig. 5); 2) Wiskerchen et
al have reported that infection of MAG1 celis with two
othet IN mutants K236A/K240A and K244A/E246A
mutants, that are located in the same region as our
KK240,4AE mutant, resutted in O and 4 3-Gai positive
celis, while infection of class I IN mutants produced 700
to 1400 f3-Gal positive cells 1151. Ail ofthese observations
suggest that this region indeed piays an important tole for
IN activities during eariy stage of virus infection prior to
integration. Also, it has to be noted that although simiiar
inhibition of reverse transcription tvas seen for
KK215,9AAand RK263,4AA mutants, RK263,4AA mutant
induced two to three fold higher level of 3-Cal positive
ceils and luc activity than KK215,9AA mutant (Fig. 3 and
4). This is expected since KK215,9AA affected both reverse
transcription and nuclear import, whiie RK263,4AA
mutant only impaired reverse transcription (Fig. 5). In
addition, our analysis could flot detect viral DNA integra
tion in each C-terminal mutant infection (fig. 6), even
though they displayed various iow levels of nucleus-asso
ciated vital DNA (fig. 5C). It suggests that these IN
mutants may also negatively affect vital integration during
their infection. Mternativeiy, it could be possible that
these mutants may have additional defect(s) at an unde
fined postnuclear entry step that is required for viral DNA
integration, as suggested by Lu et al [16]. Consistently,
their recent reports have shown that several IN mutants in
same regions, including K215A/K219A, E244A and
R262A/K264A, completely lost virus replication ability in
CD4+ JurkatTcelis 116,421.

Up to now, the mechanism(s) underlying the action of
HIV-1 IN in viral PIC nuclear import is stiil unclear. Since
IN is a component of viral PIC, at least two factors may
affect the contribution of IN to viral PIC nuclear import:
first, IN needs to directly or indirectly associate with vital
DNA and/or other PIC-associated proteins in order to par
ticipate in driving viral DNA into the nucleus; second, iN
needs to have a NLS and/or bind to other karyophilic pro-
teins for nuclear translocation. Any mutation disrupting
one of these two abilities would affect lNs action for vital
DNA nuclear import. A recent study evaluated the effect of
several IN core domain mutants targeting key residues for
DNA recognition on H IV-1 replication and indicated that,
while ail ofthese IN mutants maintained their karyophilic
properties, viruses harboring these mutants still severely
impairedviral DNAnuciearimport 141. In ourstudy, both
KK215,9AA and KK240,4AE mutants clearly lost i.heir
karyophilic properties and negatively affected viral DNA
nuclear import. However, it is stiil premature to define
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these regions acting as IN NLS, even though a previously
described IN mutant Q214/216L, which is aiso located in
proximal tri-lysine domain, lias been shown to reduce IN
karyopherin a interaction in vitro 131 More studies are
required for funher characterization of molecular media
nisms underiying tir action of these IN mutants during
H IV-1 DNA nuclear impon.

Conclusion
Taken together, the resuits presented here highuight that
ail three C-terminal mutants tested in this study resulted
in drastic loss of viral ïnfectivity that were due to defects
in different eariy steps of virai repiication. Specific lysine
mutations introduced in the tri-lysine regions ofthe C-ter
minal domain of HIV-1 IN, especialiy for KK215,9AA,
impaired protein nuclear accumulation and HIV-1 PIC
nuclear import. Aithough ail of C-terminal mutants inhib
ited viral reverse transcription to different extents,
KK240,4AE mutant exhibited most profound effect on
this step. These resuits suggest that tir tri-lysine regions
(2I1KELQKQITK and 23GKGPAKLLWK) in the C-terminai
of IN are important for HIV-1 reverse transcription and/or
nuclear import. More studies are underway to furtier
characterize the mechanisms involved in the action of
these regions during early steps ofHIV-1 replication.

Materials and methods
Construction of different IN expressors and HIV-I RTIIN
defective provirus
The full-length wild-type HIV-1 IN cDNA was amplified
by polymerase chain reaction (PCR) using HIV-1 HxBru
strain [30] as tempiate and an engineered initiation codon
(ATG) was placed prior to the first amino acid (aa) of IN.
The primers are 5-IN-HindIII-ATC (5-GCGCAAGCIT-
CGATAGATGI11IIAGATGGAA-3) and 3’-IN-Asp7 18
(5 -CCATGTCTGGTACCrCATCcFGCF-3). The PCR
product was digested with HindIII and Asp718 restriction
enzymes and cloned in frame to 5 end of EYfP cDNA in
a pEYFP-N1 vector (BD Biosciences Clontech) and gener
ated a IN-YfP fusion expressor. Also, cDNA encoding for
tmncated IN (aa 50 to 288 or aa 1 to 212) was amplified
by PCR and also cloned into pEYfP-N1 vector. The prim
ers for generation of IN50288 cDNA are 1N50-Hindttl-
ATG-5 (5- CCGCAAGCFrGGATAGATGCATGGACAAG
TAG-3) and 3-IN-Asp718 and pnmers for ampiifying
IN 1-212 cDNA are IN-HindIII-ATG-5 and IN-2 12-XmaI-
3(5-CAATTCCCGGGTTFGTATGTCTGTFTGC-3). IN
substitution mutants INKK2lss,-YFP, INKK24O4AE-YFP and
INRK2G34-YFP, were generated by a two-step PCR-based
method 1431 by using a 5-primer (5-IN-HindIlI-ATC), a
3-primer (3-IN-Asp718) and complementary primers
containing desired mutations. Amplified IN cDNAs bar
boring specific mutations were then cloned into pEYfP
N1 vector. To improve the expression of each IN-YFP
fusion protein, ail IN-YFP fusing cDNAs were finally sub

cloned into a SVCMV vector, which contains a cytomega
lovirus (CMV) immediate early gene promoter [43].

b construct HIV-1 RT/IN defective provirus NL1ucB-
gIRI, we used a previousiy described HIV-1 envelope
deleted NLluczBgID64E provims as the backbone (kindly
provided by Dr. Irvin S.Y. Chen). In this provims, the nef
gene was replaced by a firefly Iuciferase gene 1331. The
ApaI/SalI cDNA fragment in NLJucBgID64E was repiaced
by the corresponding fragment derived from a HIV-1 RT/
IN deleted provirus R-/RI [32] and generated a RT/IN
deleted provirus NLIuct\BgliRl, in which RT and IN gene
sequences were deleted whule a 194-bp sequence harbor
ing cPVf/CfS cis-acting elements was maintained. To
restore HIV-1 envelope gene sequence in NLIucABgIARI
provirus, the SalI/BarnHI cDNA fragment in this provirus
was replaced by a corresponding cDNA fragment from a
HIV-1 envelope competent provims R/RI [32] and the
resulting provims is named as NLluczRI. b functionally
complement RT/IN defects ofNLluczBgIRl, a CMV-Vpr
RT-IN fusion protein expressor 1321 was used in this
study. Co-transfection of N LIucABgIARI, CMV-Vpr-RT-I N
and a vesicular stomatitis virus C (VSV-C) glycoprotein
expressor results in tir production ofVSV-C pseudotyped
HIV-1 that can undergo for single cycle replication in dif
ferent cr11 types [321. To investigate tir effect of IN
mutants on viral replication, different mutants
KK215,9AA, KK240.4AE, RK263,4AA or D64E were intro
duced into CMV-Vpr-RT-IN expressor by PCR-based
method as described above and using a 5-primer corre
sponding to a sequence in RI gene and inciuding a natural
NheI site (5-GCAGCTAGCAGGGAGACfAA-3), a 3-
primer (3-IN-stop-PstI, 5- CTGflCCfGCAGCFAATCCf
CATCCFG-3) and tir complementary oligonucleotide
primers containing drsirrd mutations. Ail iN mutants
wrre subsequrntly analyzed by DNA sequrncing to con
firm the prrsence of mutations or deirtions.

CeII unes and reagents
Human embryonic kidnry 293T, HeLa and HeLa-CD4-
CCR5-]3-Gai crus wrrr maintained in Dulbeccos Modi
fird Eagles Mrdium (DMEM) supplemrntrd with 10%
fetal calf serum (fCS). Human C8166 T-Iymphoid crils
were maintainrd in RPMI-1640 mrdium. Antibodies usrd
in the immunofluorescrnt assay, immunoprecipitation or
western blot are as follows: Tir HIV-1 positive human
srrum 162 and anti-HIVp24 monoclonal antibody usrd
in tus study were prrviously drscribrd [44]. Thr rabbit
anti-GFP and anti-IN antibodirs wrre rrsprctively
obtainrd from MoIrcular Probes Inc and througi AIDS
Rrsrarci Rrferrncr Reagent Program, Division of AIDS,
NIAID, NIH. Aphidicolin was obtainrd from Sigma Inc.
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C
Ceil tronsfection and immun ofluorescence assay
DNA transfection in 293T and HeLa celis were performed
with standard calcium phosphate DNA precipitation
method. for immunofluorescence analysis, HeLa celis
were grown on glass coverslip (12 mm2) in 24-weIl plate.
After48 h oftransfection, cells on the coverslip were fixed
with PBS-4% paraformaldehyde for 5 minutes, permeabi
lized in PBS-0.2% Triton X-100 for 5 minutes and incu
bated with primai-y antibodies specific for GFP or HIV-1
IN followed by corresponding secondai-y fliC-con jugated
antibodies. Then, celis on the coverslip were viewed using
a computerized Axiovert 200 inverted fluorescence micro
scopy (Becton Deckson mc).

Virus production ond infection
Production of different single-cycle replicating virus
stocks and measurement of virus titer wete previousty
described 1321. Briefly, 293T cetis were co-transfected with
RT/IN defective NLluczBgltRl provius, a VSV-G expressor
and each of CMV-Vpr-RT-IN (wt/mutant) expressor. To
produce HIV-1 envelope competent single cycle
replicating virus, 293T ceils were co-transfeaed with
NLluctRl and different CMV-Vpr-RT-IN (wt/mutant)
expressors. After 48 hours of transfection, supernatants
were collected and virus titers wete quantified by RT aaiv
ity assay 1431.

b test the effect of IN mutants on virus infection, equal
amounts of virus were used to infect HeLa-CCR5-CD4-13-
Cal ceils, dividing and non-dividing C8166 T cells. To
compare the infection of each viral stock in HeLa-CCR5-
CD4--Cal ceils, numbers of infeaed cells (3-Cal positive
celis) were evaluated by the MAGI assay 48 hours post
infection (pi) as described previously 1341. To infect
CD4+ T cells, dividing or aphidicolin-treated non-divid
ing C8166 T cells (with 1.3 tg/ml of aphidicolin) were
infected with equivalent amounts of single cycle replicat
ing viruses (5 cpm/cell) for 2 hours. Then, infected cells
were washed and cultured in the absence or presence of
the same concentration ofaphidicolin. At 48 hours post
infection, 1 x 106 cells ftom each sample were collected,
washed twice with P85, lysed with 50 ftl ofluciferase lysis
buffer (fisher Scientifjc mc) and then, 10 jil ofcell lysate
was subjected ta the luciferase assay by using a Top
CountNXTrt Microplate Scintillation & Luminescence
Counter (Packard, Meriden) and the luciferase activity
was valued as relative luciferase units (RLU). Each sample
was analyzed in duplicate and the average deviation was
calculated.

lmmunoprecipitation and Western blot analyses
For detection of IN-YfP fusion proteins, 293T cells trans
fected with each IN-YFP expuessor were lysed with RIPA
lysis buffer and immunoprecipitated using human anti
HIV serum. Then, immunoprecipitates were mn in 12%

SDS-PACE and analyzed hy Western blot using rabbit
anti-GfP antibody. b analyze vii-ion-incorporation of IN
and virus composition, 293T celis were co-transfected
with NLlucABglzRI provirus and each ofCMV-Vpr-Ri-lN
(wt/mutant) expressors. After 48 hours, viruses were col
lected, lysed with RIPA lysis buffer and immunoprecipi
tated with human anti-HIV serum. Then,
immunoprecipitates were mn in 12% SDS-PAGE and ana
lyzed by Western blot with rabbit anti-IN antibody and
anti-p24 monoclonal antibody or anti-H IV serum.

I-11V-l reverse-transcribed and integroted DNA detection
by PCR and Southern blotting

C8 166 T cells were infected with equal amount of the wt
or IN mutant vii-uses for 2 hours, washed for three times
and cultured in RPMI medium. To detect total viral DNA
synthesis, at 12 hours post-infection, equal number (1
106 cells) of cells were collected, washed twice with PCR
washing buffer (20 mM Tris-HCI, pH8.0, 100 mM KCI),
and Iysed in lysis buffer (PCR washing buffer containing
0.05% N P-40, 0.05% Tween-20). Lysates were then incu
bated at 56°C for 30 min with proteinase K (100 .tg/ml)
and at 90°C for 10 min prior to phenol-chloroform DNA
purification. To detect viral cDNA from each sample, ail
lysates were serially diluted 5-fold and subjected ta PCR
analysis. The primers used to detect late reverse transcrip
tion products were as following: 5’-LTR-U3, 5-CGAT-
GGTGCFFCAACCTACTACC-3 (nt position 8807, +1 =

start of BRU of transcription initiation); 3-Gag 5’-ACT-
CACGCfCFCGCACCCATCTCfCTC-3 (nt position 329).
The probe for southern blot detection tvas generated by
?CR with a 5’-LTR-US oligonucleotide, 5’-CTCTAGCAGT-
GGCCCCCGAACAGGGAC-3 (nt position 173) and the
3-Gag oligo. PCR was carried out using lx HotStar Taq
Master Mix kit (QIAGEN, Mississauga, Ontario), as
described previously 1321.

To analyze nucleus- and qrtoplasm-associated viral DNA,
a subcellular fractionation ofinfected C8166 T ceils (2
106) was performed after 24 hours of infection, as
described previously t371. Briefly, infected ceils were pel
leted and resuspended in ice-cold PCR lysis buffer (wash
ing buffet containing 0,1% NP-40). After a 5-min
incubation on ice, the nucleus was pelleted by centrifuga
tion, washed twice with PCR wash buffer, and lysed in
lysis buffer (0,05% N P-40, 0,05% Tween-20). Then, bath
qrtoplasmic sample (supernatant from the first centrifuga
tion) and the nuclear sample were treated with proteinase
K ai-id used for PCR analysis, as described above.

lntegrated proviral DNA was detected in celi lysates by a
modified nested Alu-PCR 1321, in which following the
first PCR, a second PCR was carried-out ta amplify a par-
tian of the HIV-1 LTR sequence from the first Alu-LTR
PCR-amplified products. The (lrst PCR was carried out by
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using primers including 5-Alu oligo (5’-
TCCCAGCfACFCGCCACCC[CACC-3’) and 3’-LTR
oligo (5’-AGCCAACCflTATTGAGCCCFfAACC-3’) (nt
position 9194) located respectively in the conserved
region of human Alu sequence and in HIV-1 LTR. The
primer used for both of the second nested PCR and for
generating a probe are 5-Nt: 5-CACACACAAGCGTACF-
TCCCT-3’ and 3-N]: 5’-GCCACFCCCCACTCCCGCCC-
3’. As a control, the first and second PCR primer pairs were
also used in paraliel to dètect integrated viral DNA from
serially diiuted ACH-2 celis, which contain one viral copy/
celi, in a background ofuninfected C8166 ceilular DNA.

To evaluate the DNA content of extracted chromosomai
DNA preparations, detection ofhuman f-globin gene was
carried-out by PCR, as described previousiy [37]. Ml final
PCR products were electrophoresed through 1.2% agarose
gel and transferred to hybridization transfer membrane
(CeneScreen Plus, PerkinEimer Lite Sciences), subjected
to Southern hybridization by using specific PCR D]G
Labeling probes (Roche Diagnostics, Lavai, Que) and
visualized by a chemiiuminescent method. Densitometric
analysis was performed using a Personai Moiecular
Imager (Bio-Rad) and Quantity One software version 4.1.
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