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Résumé

En 2002, les maladies cardiovasculaires ont constitué la plus grande cause de décès à

l’échelle mondiale, devançant le cancer et les maladies pulmonaires. L’infarctus du

myocarde (1M) est généralement la première manifestation d’une maladie

cardiovasculaire ischémique et il a été démontré que la pratique régulière d’exercices

constitue un moyen efficace pour diminuer plusieurs facteurs de risque associés au

développement de maladies cardiovasculaires tels l’hypertension, 1’ hypercholestérolémie,

l’obésité et la résistance à l’insuline. De plus, il a été démontré que le taux de survie à

l’issue d’un 1M est plus élevé chez les sujets actifs comparativement aux sujets

sédentaires, indiquant que l’exercice protège le coeur contre ce genre de stress.

Plusieurs études, principalement chez le Rat, ont effectivement démontré qu’un

programme d’entraînement en endurance d’une durée variant de trois à cinq jours jusqu’à

quatre mois apportait une protection cardiaque contre l’ischémie-reperfusion (I-R). Cette

protection se caractérise par une diminution du dommage tissulaire et par une meilleure

récupération de la fonction contractile en reperfusion. Cependant, les mécanismes

impliqués dans cet effet protecteur demeurent encore mal compris.

Par ailleurs, il est bien connu que la reperfusion d’un tissu ischémique peut engendrer des

dommages au niveau des mitochondries. Des dysfonctions mitochondriales qui résultent

en une diminution ou une abolition de la production d’ATP engendrent, affectent

directement ta fonction contractile et mènent éventuellement à la mort cellulaire par

nécrose. De plus, il est maintenant reconnu que la mitochondrie joue un rôle important
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dans la signalisation de l’apoptose par sa capacité à relâcher plusieurs protéines pro

apoptotiques qui sont normalement séquestrées dans la matrice mitochondriale ou

l’espace inter-membranaire. Plusieurs études menées au cours des dernières années ont

montré que l’ouverture du pore perméable de transition (PPT), un canal non spécifique à

haute conductance de la double membrane mitochondriale, était directement impliqué

dans les deux formes de mort cellulaire dans le coeur suite à une période d’I-R.

L’effet de l’entraînement sur la fonction mitochondriale et plus particulièrement sur la

régulation du PPT n’a jamais été exploré dans l’optique d’expliquer l’effet cardio

protecteur de l’exercice contre l’I-R. Les travaux effectués au cours de cette Maîtrise

avaient donc deux objectifs. Le premier objectif était de mettre sur pied la technique de

séquestration mitochondriale du [3H]deoxyglucose ([311]-DOG), une approche permettant

de quantifier l’ouverture du PPT in situ dans le coeur isolé du rat perfusé en mode

Langendorff. Le deuxième objectif était d’appliquer cette méthodologie pour déterminer

si l’entraînement à court terme (5 jours consécutifs de cours sur tapis roulant à une

intensité approximative de 75% du VO2max) diminue l’ouverture du PPT pendant la

reperfiision (40minutes) suite à une épisode ischémique (30minutes).

Les résultats obtenus ont montré que l’entraînement permettait de diminuer le dommage

mitochondrial tel que démontré par une moins grande perte du recouvrement de l’enzyme

citrate synthase dans la fraction mitochondriale suite à l’I-R. De plus, l’incorporation de

[3H]-DOG dans les mitochondries était de 30-40 % inférieure à celle retrouvée dans les

mitochondries cardiaques provenant d’animaux contrôles, indiquant une inhibition du



V

l’ouverture du PPT. Par contre, dans les conditions de perfusion utilisées, l’entraînement

n’a pas amélioré la récupération fonctionnelle et la relâche de LDH malgré une réduction

significative du dommage mitochondrial induit par le PPT.

Dans l’ensemble, les résultats de ce travail mettent en évidence que l’entraînement à

court terme peut atténuer le dommage mitochondrial et l’ouverture du PTP qui survient

en reperflision suite à une période d’ischémie. Par contre, dans les conditions

expérimentales utilisées, nous n’avons malheureusement pas été en mesure de déterminer

la contribution du PPT comme effet protecteur de l’entraînement à court terme contre les

dysfonctions contractiles et le dommage tissulaire, rapportés dans la littérature.

MOTS CLÉS: exercice, ischémie-reperfusion, cardioprotection, perméabilité

transitionnelle, deoxyglucose
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Summary

Ischemic heart disease claimed more lives worldwide in 2002 than any other single

disease. Myocardial ïnfarction is commonly the initial manifestation of ischemic heart

disease, and exercise training has been shown to decrease a number of the risk factors for

myocardial infarction including hypertension, hyperlipidemia, obesity, and insulin

resistance, and has also been reported to improve chance of survival in humans afier an

ischemic event. Although exercise has proven beneficial in terms of cardioprotection,

mechanisms for such an effect have yet to be elucidated.

Recent experimental studies have confirmed that both short-term (days) and long-term

(weeks to months) endurance exercises provide myocardial protection against ischemia

reperfusion (I-R) injury in rats. Specifically, short-term exercise (i.e. 1—5 bouts of

endurance exercise) reduces cardiac injury and enhances myocardial contractile recovery

from an I-R insuit as evidenced by an improved recovery of lefi ventricle developed

pressures. While it is widely accepted that exercise improves tolerance against

myocardial I-R, the mechanism(s) responsible for tins exercise-induced cardioprotection

remains elusive.

Reperfiision of the ischemic tissue has been implicated with oxidative modifications and

functional impairment of mitochondria. It is for this reason that many studies have

focused on the mitochondria as a potential key player in ischemia-reperfusion injury.

Indeed, failure to produce ATP as a resuit of mitochondrial dysfunction is believed to

mark the transition toward tissue necrosis and contractile failure during early reperfusion.
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In addition, mitochondria are known to play a key role in signalling apoptotic ceil death

through the release of several pro-apoptotic proteins that are normally confmed to the

mitochondrial matrix or inter-membrane space. Opening of the permeability transition

pore (PTP), a non-specific high conductance channel spanning the double membrane

system ofthe mitochondria is known to trigger both necrosis and apoptosis.

The effect of exercise training on many aspects of mitochondrÏal function, and

particularly on the regulation and behaviour of the PTP, has neyer been addressed in the

context of explaining the cardio-protective effect against I-R. Therefore, the goals of the

present Master’s thesis were to implement the mitochondrial [311J2-deoxyglucose

entrapment method, a technique that allows to quantify PTP opening in situ in the

isolated, Langendorff, perfused heart of rats and to apply this methodology to determine

whether short-term (5 consecutive days of treadmiil nmning at approximately 75%

VO2max) aerobic training reduces the occurrence of PTP opening during reperfusion (40

minutes) following an ischemic episode (30 minutes).

Resuits have shown that citrate synthase (CS) recovery was significantly greater in the

exercise trained compared to control, suggesting a reduction in mitochondrial damage.

furthermore, the incorporation of [3HJ-DOG within the mitochondria was shown to be

reduced by 3 0-40% in trained animais, indicating a reduction of PTP opening. However,

under the experimental conditions used, training did not resuit in a significant

improvement in functional recovery and LDH release despite a significant reduction in

PTP-induced mitochondrial damage, which is in contrast with several other reports.
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Taken together the present resuits provide evidence that short-term training can attenuate

mitochondrial damage and PTP opening which normally occurs in the heart following

ischemia-reperfusion. However, under the experimental conditions used, the contribution

of this mitochondrial protection to the protective effect of short-term training reported

could flot be established.

KEY WORDS: exercise, ischemia-reperfusion, cardioprotection, permeability

transition, deoxyglucose
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1 Introduction

Cardiovascular diseases (heart disease and stroke) are the leading cause of deaffi in Canada (36 %

of total mortality). Ischemic heart disease accounts for the greatest percentage of deaths at 20 %,

of which half are attributable to complications of acute myocardial infarction (29). The total cost

of cardiovascular disease, which is the leading cause of hospitalization for Canadian men and

women, was estimated at 19.8 billions $ in 1993, of winch more than a third was atbibutable to

coronary heart disease (4.8 billions $)(29). As a resuit, the socio-economical impact of ischemic

heart disease is great, underscoring the importance of primary prevention to reduce both the

mortality and costs associated with tins disease.

In tins regard, there exists a large body of epidemiological studies in humans to support the

notion that regular exercise is associated with a reduction in the incidence of cardiovascular

disease (CVD). Moreover, the survival rate of heart attack vicfims is greater in active individuals

compared with sedentary ones (29) (71). These beneficial outcomes are at least partly due to

systemic adaptations to regular exercise resulting in a reduction of several risk factors for the

development of CVD. These adaptations include a reduction in blood pressure, an improvement

of the plasma lipid profile, an amelioration of glucose tolerance and insulin sensitivity and

improved weight management (29, 46, 90).

In addition to these beneficial systemic effects, a number of studies using animal models have

shown that regular exercise is associated with an increased tolerance of the myocardium to

ischemia-reperfusion (I-R) injury (7, 22, 40, 64, 80, 85) (10, 21, 41-43, 61, 63, 65-67, 82, 83, 91,

92) and exogenous oxidative stress (91). Indeed both short-term (22, 40-42, 63-65, 67, 80, 92)
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and long-term (7, 10, 21, 43, 61, 66, $2, $3, 85, 91) aerobic training was shown to improve

functional recovery and reduce tissue damage in isolated ischemic-reperfused hearts (7) (10, 43,

61, 63-67, $0, 91, 92) or in hearts submitted to lefi ascending coronary artery ligation in vivo (21,

22, 40-42, $3, $5).

The cellular mechanisms underlying this improvement in myocardial tolerance to I-R are flot yet

well established. Studies performed over the recent years have focused on training-induced

adaptations in the expression of heat shock proteins (HSP’s) (61, 64, $0) (22, 67), antioxidant

defence systems (21, 41, 66, $2), sarcolemmal Ca2 handiing (7), myocardial energy metabolism

(10) and endothelial function (95). However, there is currently no clear consensus on the

respective role, mechanisms of action and relative importance of each of these components in

protecting the trained heart against I-R injury.

On the other hand, it is well established that mitochondria play a key role in ceil death following

I-R in several tissues including the heart. Indeed, failure to produce ATP as a resuit of

mitochondrial dysfunction is believed to mark the transition toward tissue necrosis and

contractile failure during early reperfusion (23, 26, 78). In addition, mitochondria are known to

play a key roTe in signalling apoptotic cell death through the release of several pro-apoptotic

proteins that are normally confined to the mitochondrial matrix or inter-membrane space (26, 28,

32, 39, 50). Although necrosis is the main form of celi death encountered following I-R,

apoptosis has been observed in celis located in periphery of the necrotic zone and which have

been less severely affected by I-R (15, 39).
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A number of experimental evidence accumulated over the recent years indicate that the opening

of the permeability transition pore (PTP), a high conductance non-specific channel spanning the

double membrane system of mitochondria is involved in triggering both forms of celi death

during reperfusion of the ischemic heart, particularly necrosis (14, 15, 39, 98). Direct

pharmacological inhibition of the PTP using cyclosporin A (CsA) and its analogs were shown to

improve functional recovery and reduce tissue damage following I-R. Moreover, cardio

protective strategies such as ischemic preconditioning (55), administration of pyruvate (60) and

the anti-oxidant anaesthetic propofol (56) were shown to mediate their beneficial effect at least

partly through a reduction of PTP opening providing further support for the important role of this

phenomenon.

Despite these evidences, the effect of exercise training on many aspects of mitochondrial

function, and particularly on the regulation and behavior of the MPTP lias neyer been addressed

in the context of explaining the cardio-protective effect against I-R. Therefore, the goals of the

present Master’s thesis were to implement a new technique that allows to quantify PTP opening

in situ in the isolated perfused heart and to apply this methodology to determine whether short

term aerobic training reduces the occurrence of PTP opening during reperfusion following an

ischemic episode. The mitochondrial entrapment technique developed by Halestrap and

colleagues was chosen based on the existing literature in ifie pcrfused heart. As for the training

mode! used, it was justified by several studies reporting that short-term training induces a robust

cardio-protection characterized by an increased functional recovery and a reduction in tissue

damage.
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The literature review included in this ffiesis will be divided in three sections. The first section

provides an overview on the mitochondrial PTP and its involvement in ischemia-reperfusion

injury in the heart. The second section focuses on the methodologies available to assess PTP

opening in situ in isolated perfused hearts. finaily, in the third section, the existing literature on

the cardio-protective effect of short-term training in rodent models and the possible underlying

mechanisms are reviewed.

2 The mitochondrïal permeability transition pore and ïts
role in ïschemïa-reperfusïon injury in the heart

2.1 In vitro studies on the mitochondrïal permeability transition

2.1.1 Conseguences of PTP opening on mitochondria in vitro

The mitochondrial permeability transition was initially described in isolated mitochondria in

order to explain a sudden increase of the inner membrane permeability to solutes in the presence

of a high calcium concentration ([Ca2j) (97). Although initially thought to be due to unspecific

membrane damage it is now widely accepted that this phenomenon is actually caused by the

opening of ifie PTP, a non-specific high conductance channel spanning the double membrane

system ofthe mitochondria.

Opening of the PTP causes an immediate collapse of the proton electro-chemicai gradient,

massive ATP hydrolysis through the reversai of the FoFlATPase and equilibration of solutes

with a molecular weight of less than 1500 Da (97). At least in vitro, this phenomenon induces

high amplitude swelling of the mitochondrial matrix ultimateiy leading to the rupture of the
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outer-membrane. PTP opening is also associated with the release of several pro-apoptotic

proteins usually confined to the inner membrane space including the mobile electron carrier

cytrochome e, apoptosis-inducing factor 1 (MF), Second mitochondria-derived activator of

caspases — direct inhibitor of apoptosis binding protein with low P1 (SmacIDIABLO),

endonuclease G (EndoG), the serine-protease OMI/HtrA2, and possibly some pro-caspases (26,

31, 32).

These proteins act at different sites and through different mechanisms to initiate a regulated

cascade of cellular dismantiement. Cytochrome c binds to APAF-1 and allows formation of the

apoptosome, leading to cleavage and activation of pro-caspase-9 thus ffiggering the proteolytic

caspase cascade (69). AIF (70) and endonuclease G (49) migrate to the nucleus where they cause

chromatin condensation as well as large scale nucleosomal DNA fragmentation. Smac/DIABLO

release in the cytosol potentiates some forms of apoptosis by neutralizing one or more members

of the inhibitory apoptosis proteins (IAP) (1). Finally OMI/HfrA2, through its interactions with

)UAP, is able to potentiate caspase activity.

2.1.2 Molecular identitv of the PTP

The actual molecular nature of the PTP is flot well established and is a subject of current debate.

However it is generally agreed that the PTP is formed by ifie assembly of a supramolecular

complex that spans the double membrane system of mitochondria (97, 98). In addition, the

proteins involved in this process usually carry specific physiological roles within mitochondria
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and their involvement in PTP formation requires the presence of adverse conditions (15, 39, 48,

62).

The most popular and documented hypothesis regarding the pore composition is that it is formed

by three core components (figure 1) (15): the adenylate transiocator (ANT) of ifie inner

membrane, the voltage-dependent anion channel (VDAC) of the outer membrane, and the matrix

enzyme cyclophilin-D (CypD). Under normal conditions, these proteins assemble at contact sites

between the two membranes where they allow ATP and ADP exchange between the matrix (15).

Under adverse conditions such as Ca2 loading and excessive levels of oxidative stress, these

proteins would transform into large conductance non-specific pores. This phenomenon would be

exacerbated by the binding of CypD to ANT. It should be noted that several proteins are believed

to interact with ANT and VDAC to promote or inbibit PTP opening including several kinases

(hexokinase, gÏycerol kinase, mitochondrial creatine kinase), and members of the Bd-2 family of

proteins (bid, bax and bd-2, bdlxL) (15).

However, an increasing amount of evidence suggests that ANT, VDAC and CypD are flot

obligatory components of the PTP (48, 62). Indeed, altemate models suggest that the PTP could

be formed by aggregates of misfolded proteins within the mitochondrial membranes that would

accumulate as a resuit of damage (48, 62). According to this hypothesis, the PTP could thus be

formed by a variety of mitochondrial proteins and flot exclusively of ANT, VDAC and CypD.

One of the implications of this model is thus that the composition of the PTP could vary

according to the tissue studied and the triggering conditions.
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2.1.3 Regulatorv properties of the PTP

The regulation of PTP opening is mediated by an array of different physiological effectors. Table

1 gives a summary of the factors that play a role in either activation or inhibition of the PTP.

Calcium accumulation in ifie matrix appears to be an absolute requirement for PTP opemng (14,

15, 98). In addition, a number of co-activators or antagonists further participate in pore

regulation. Cations such as H, Mg2, Sr, and Mn2 can compete with Ca2 for binding on the

PTP and thus act as inhibitors (3, 14). High levels of adenine nucleotides such as ATP and ADP

limit PTP opening, possibly by binding to the ANT (3, 14). In contrast, high levels of inorganic

phosphate significantly increase the susceptibility to Ca2tinduced PTP opening. A reduction in

membrane potential will also favour perrneability transition since the PTP behaves as a voltage

gated channel (14)). It is also well established that oxidation of the pyridine nucleotide pool

(NADH and NADPII) favours PTP opening. finally PTP opening can be inhibited by the

immuno-suppressant drug, cyclosporin-A (CsA) and its analogs (24, 35, 55) as well as by the

new compound sanglifehrin A (13, 55) ifiat prevent binding ofthe cyclophilin-D to other putative

PTP components.

2.2 Effect of ischemia-reperfusion on the PTP

2.2.1 Overview of the metabolic and ionîc consepuences of ischemia- reperfusion in the heart

In the heart submitted to ischemia, lack of oxygen and circulating substrates rapidly leads to the

abolition of oxidative phosphorylation, a rapid and important decrease in tissue ATP content and

accumulation ofADP, P and W (37)
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Table 1: Regulation ofPTP opening by an array of different physiological effectors

Agent/control point Open probability Reference

Matrix Ca2 Increased Hunter & Haworth (1979)
Duchen et al. (1993)

Matrix Mg2, Sr, Mn2 Decreased Hunter & Haworth (1979)

P1 Increased Hunter & Haworth (1979)

Oxidants Increased Crompton et al. (1987)
Crompton & Andreeva
(1993)

ATP Decreased Duchen et al. (1993)

ADP Decreased Crompton & Costi (1990)

Cyclosporin A (CsA) Decreased Crompton et aÏ. (1988)

Voltage Increased voltage leads Bernardi (1992)
to decreased probability

Matrix pH Decreased pH leads to Bernardi et aL (1992)
decreased probability

Surface Potential More positive leads to Broekemeier & Pfeiffer
decreased probability (1995)
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Accumulation of ADP will increase its conversion to IMP, adenosine, inosine and xanthine thus

leading to a depletion of tissue adenylates. Lack of ATP will bring contraction to a hait ami cause

a severe disturbance in ionic homeostasis, which is usually maintained by the action of the

Nat’K ATPase pumps. During ischemia, Na and Ca2 will thus accumulate in the cytosol (37).

Re-introduction ofoxygen and substmtes upon reperfiision ofthe ischemic region aÏlows a partial

or total recovery of electron flow through the respiratory chain and membrane potential (15). In

presence of high cytosolic Ca2, this will rapidly lead to an important accumulation of Ca2 in the

mitochondrial matrix (15). In addition, because ischemia causes damage to respiratory chain

enzymes, electron leaks through these damaged complexes leads to an increase in the production

ofreactive oxygen species (ROS) (15).

Therefore, figure 2 (15) demonstrates that most ofthe conditions required to ffigger PTP in vitro

in isolated mitochondria prevail in cardiac celis following I-R. Based on tins analysis, Crompton

(14, 15), Gnffiths (34, 35) and Halestrap (39) hypothesized that PTP opening occurred in the

heart during reperfusion and was a significant contributor to tissue damage and contractile

dysfimction.

2.2.2 Cardio-protective effects of pharmacoloqical PTP inhibitors

In support to tins hypothesis, several studies have shown that administration of the PTP inhibitor

CsA in perfused hearts or isolated cardiomyocytes protected against reperfusion injury. In

isolated perfused hearts, CsA administration was shown to resuits in an increased recovery of left
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figure 2: Involvement ofifie PTP in ischemia-reperfusion —induced ce!! death. Taken
from Crompton, M 1999. Lack of oxygen and circu!ating substrate rapid!y leads to
the abolition oxidative phosphory!ation and a rapid ATP content and accumulation of
P and H. Upon reperfiision, there is an excessive Ca2 uptake, which, coupled with
oxidative stress and prevai!ing high P and low ATP can provoke PI? opening.
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ventricular developed pressure (34, 35) (figure 3), a lower end diastolic pressure (34, 35) (figure

3), a reduction in infarct size (44) (figure 4), an improved recovery of adenylates homeostasis

(35), a reduction in cytochrome e release and activation of apoptosis (6) (figure 5) and a better

preservation of respiratory function in mitochondria isolated following I-R (6). Similarly, in

isolated cardiomyocytes, CsA administration during simulated ischemia-reperfusion was shown

to improve recovery of normal morphology and contractile activity (36) (25, 77).

While the effect of CsA in isolated mitochondria can unequivocally be attributed to PTP

inhibition, its cardio-protective effect when administrated in intact hearts or cardiomyocytes is

more difficult to interpret. Indeed, in addition to its effect on the PTP, CsA is a potent inhibitor of

calcineurin, a Ca2/calmodulin-dependent protein phosphatase, which has been involved in celi

death in the heart (86) (24).

However, studies performed with pharmacological agents that inhibit calcineurin but not ifie PTP,

or solely inhibit the PTP without affecting calcineurin provided resuits that are compatible with a

role of pore opening in I-R injury. Administration offK-506, a calcineurin inhibitor that does flot

interact with the PTP (33) was shown to have limited effects on infarct size (44), mitochondrial

cytochrome e release, caspase activation and DNA fragmentation in hearts submitted to I-R (6)

(Figure 5).

In contrast, administration of the CsA analog N-methyl-valine-CsA (24) and the new compound

sangÏifehrin A (13), which potently inhibit pore opening but have no effect on calcineurin, were

shown to improve the recovery of contractile function (13) and reduce tissue damage as measured
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Figure 3: Resuits of left ventricular developed pressure (LVDP) and end diastolic pressure
(EDP) following 15 minutes of reperfusion after 30 or 40 minutes of ischemia with or without
CsA. Adapted from Griffiths, 1993 #53. ** P<0.02, P<0.01 between reperfused and control
hearts.
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Figure 5: Mitochondrial cytochrome e content afier a period of ischemia. CsA protects heart
mitochondria from loss ofcytochrome c during ischemia but flot fK-506. Taken from Borutaite
et al. 2003. , statistically significant effect of ischemia (P <0.01), if compared to control. #,
statistically significant effect of CsA (P <0.05), if compared to treatment wiffiout CsA in the
same group.

No additions
CsA
FK-506

period 0f ischemia (mm)



17

by LDH release in the coronary effluent (13, 24) (Figure 6 & 7). Taken together tins

pharmacological evidence thus indicates that PTP opening occurs during reperfiision of the

ischemic heart and that its inhibition resuits in a significant improvement in contractile recovery

and a reduction in tissue damage.

2.2.3 Assessment of PTP opening in situ in the ischemic-reperfused heart

One limitation of the pharmacological approaches used in the above mentioned studies is that the

role of pore opening in ischemic injury is only inferred and PTP opening is not directly

quantified. Moreover without a direct index of MTP opening, it is not possible to determine

whether other cardio-protective strategies could mediate their effects through a reduction in the

occurrence of PTP opening. In order to circumvent these limitations, two research groups have

developed methods to estimate the extent of PTP opening that are applicable to studies in the

intact heart: the measurement of mitochondrial NAD release and the mitochondrial [3H]-

deoxygÏucose ([3HJ-DOG) entrapment technique.

2.2.3.1 Mitochondrial NAD release

NAD is a soluble electron carrier present at high concentration in the mitochondrial matrix.

Given its molecular weight, NAD is readily released from the mitochondria upon opening of the

PTP (24) (Figure 8). Once permeability transition has occurred, a significant amount ofNAD is
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Figure 6: $fA and CsA protect the ischemic rat heart from reperftision injury. Taken from
Clarke et al. 2002. In panel a, greater functional recovery ofthe SfA- and CsA-treated hearts
after a 30-min reperfiision is reflected in higher values for the LVDP and lower values for the
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value and were significantly greater (p <0.001) with either SfA or CsA treatment, whereas
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dehydrogenase (LDH) into the perfusate from the same hearts used in panel a was measured as
an indicator ofnecrotic celi death (,p <0.05 for CsA- or $fA-treated hearts versus controls).
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released in the outer mitochondrial membrane (24). The remaining NAD that escapes

degradation enters the cytosol, and if cellular integrity is altered, will be released in the coronary

circulation (24). Only one study lias made use of this technique to further document the role of

PTP opening in ischemia degraded by NAD glycohydrolase, an enzyme presumably located in

the inter-membrane space -reperfusion damage (24). Di Lisa et al. (24) submitted isolated

Langendorff-perfused hearts to a period of global ischemia of 30, 60 or 90 min followed by 30

minutes of reperfusion. NAD release in the coronary circulation was measured at regular

intervals during reperfusion and at the end of the experiments hearts were homogenized and

processed for isolation of mitochondria. NAD content was measured fluorimetrically in the

whole homogenate and the mitochondrial fraction using an alcohol dehydrogenase assay. These

values were compared to that measured in ftesffly isolated non-ischemic hearts. In hearts

reperfused following 90 minutes of ischemia, mitochondrial and whole tissue JJ contents

respectively decreased by 85 and 70 % compared to values obtained in non-ischemic hearts

(Figure 8). This was accompanied by a significant leakage of NAD in the coronary effluent. In

hearts perfused in the presence of the PTP inhibitors CsA and nmethyl-valine cyclosporin, these

phenomena were aftenuated (figure 8). Moreover, a significant correlation between NAD

release in the coronary effluent and the extent of tissue damage (as measured by the release of

LDH) was observed. Based on these evidences, Di Eisa et al. (24) concluded that PTP opening

was a causal event in the death of myocytes following I-R.

On the other hand, DiLisa et al (24) did flot report the results obtained in hearts submitted to

shorter periods of ischemia (i.e. 30 mm) that are more frequently used in the literature. While the

authors did not discuss this issue, preliminary work performed in our laboratory suggests that fuis
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might be due to the fact that the method failed to detect significant levels of PTP opening under

these conditions. Indeed, we observed that measurement of NAD using fluorescence methods

yield variable resuits due to a low signal/noise ratio. Consequently, in hearts submitted to 30 min

ischemia and 40 min of reperfusion, we consistently failed to detect significant and reproducible

changes in whole tissue and mitochondrial NAD content. In addition, given the relatively low

amount of NAD present in cardiac celis and because 30 min of ischemia is insufficient to cause

large scale necrosis, the amount of NAD released in the coronary effluent was well below

detection levels.

2.2.3.2 Mïtochondrial 13H1-deoxyglucose entrapment

Currently, one of the best strategies to directly assess PTP opening relies on the use of

fluorescence microscopy to visualize diffusion within the mitochondrial matrix of exogenous

fluorescent probes previously loaded in the cytosol. However, while this approach has provided

valuable information about the role of the PTP in ce!! death, its use is limited to isolated ce!!

models. for this reason, the group of Andrew Halestrap at the University of Bristol have made

use of the same general principle to develop a method that can be applied to Langendorff

perfused hearts and which relies on measurements of the incorporation in the mitochondrial

compartment of an exogenous radioactive probe previously loaded in cardiomyocytes.

2.2.3.3 Princïple

In order to select the appropriate probe to accurately track PTP opening in this setting, several

criteria had to be met.
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Indeed, the probe:

1. Has to enter cardiomyocytes in relatively large amounts using existing sarcolemmal

transporters,

2. has to display a relatively low level of toxicity to the celi,

3. has to exert a minimal effect on cellular metabolism,

4. has to remain relatively stable once within the cell i.e. its degradation by metabolic

pathway has to be minimal within the time frame ofthe study, and has

5. to enter the mitochondrial compartment only when ffie PTP opens and to stay within

mitochondria thereafler.

Based on these criteria, [3H1-DOG was selected as the probe of choice. Indeed, as a non

metabolizable glucose analog, [3HJ-DOG rapidly enters cardiomyocytes through glucose

transporters and is phosphorylated in [3HJ-DOG-6P in a step catalyzed by hexokinase. Because

[3HJ-DOG-6P degradation through non-specific dephosphorylation occurs slowly compared to its

uptake (54), [3HJ-DOG-6P can accumulate in significant amounts in the cytosol (Figure 9). This

is a key factor in order to obtain a measure of PTP opening that offers a reasonable signal/noise

ratio. On the other hand, because [3HJ-DOG phosphorylation results in Pi trapping, accumulation

of great amounts of [311]-DOG-6P can resuit in a rapid depletion of myocardial ATP and PCr

stores. However, this unwanted effect could be avoided if the [3H1-DOG concentration used is

maintained below 2 mM (52, 54). The concentration that has typically been used for the

measurement of mitochondrial [3HJ-DOG entrapment is of 0.5 mM (34, 37, 54-56, 60), well

below the concentration that will compromise energy homeostasis (52, 54).
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compared to its uptake, [3Hj-DOG-6P can accumulate in significant amounts in the cytosol.
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Regarding the selectivity of [3H]-DOG-6P as probes for PTP opening, studies have shown that

mitochondrial membranes have a low permeability for sugars in general. Indeed, when

mitochondria are isolated in presence of ‘4C mannitol, only a small fraction of ‘4C becomes

permanently associated with mitochondrial membranes. This amount represents 10-15 % of that

expected for ‘4C-mannitol uptake and complete equilibration (94). On the other hand, PTP

opening allows equilibration of solutes with a molecular weight of less than 1500 Da across

mitochondrial membranes. Given this property, one ofthe assays commonly used to monitor PTP

opening in vitro is to incubate mitochondria in a sucrose-based medium and to measure

mitochondrial swelling secondary to the diffusion of sucrose and F120 in the mitochondrial

matrix. Therefore, these properties insure that PTP opening in vivo will rapidly increase [3H]-

DOG-6P entrapment in mitochondria and that [3HJ-DOG-6P incorporation will be comparatively

much less important in the absence ofPTP opening (figure 10).

Another key aspect regarding the accuracy of the method is that [311J-DOG-6P has to remain

within mitochondria once PTP opening has occurred. In addition, accidentai PTP opening during

the mitochondrial isolation procedure must be minimal. In order to limit the potential problems

associated with these phenomena, Halestrap (34) proposed to homogenize heart tissues and

isolate mitochondria using a rapid method and to supplement the buffers with a high

concentration of EGTA (2 mM). Indeed, studies on isolated mitochondria have shown that once

PTP opening has occurred, addition of EGTA to chelate Ca2 is able to close open pores and

allow mitochondrial recovery (16).
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2.2.4 Experimental protocol:

Figure 10 presents the typical experimental protocol used for the assessment of PTP opemng

using the [3H]-DOG method. In practical terms, hearts are placed on the perfusion apparatus,

instrumented for measurement of hemodynamic parameters and perfused in the non-recirculating

mode with a normal Krebs-Henseleit (K-H) buffer. Following a period of stabilization, hearts are

perfused for 20 min with the same buffer supplemented with 0.5 mM of [3H]-DOG (0.1 .tCi/mi).

In order to maximize uptake of the tracer, the perfusion is performed in the re-circulating mode.

Following this loading period, perfusion is switched back to the non-circulating mode with the

[3H]-DOG-free K-H buffer in order to washout extracellular [3HJ-DOG. Ischemia is then

initiated and following reperfiision, hearts are rapidly processed for the isolation of mitochondria

and measurement of mitochondrial [3HJ-DOG entrapment.

2.2.4.1 Calculatîon of the (3H]-DOG index:

In order to achieve an accurate measurement of PTP opening, calculation of mitochondrial [3HJ-

DOG entrapment has to take into account several confounding factors.

The first factor is that total tissue uptake of [3HJ-DOG through GLUT-mediated transport can

vary between experiments, thus resulting in various levels of cytosolic [3H]-DOG-6P

accumulation. Similarly, depending on the severity of the damage induced by I-R, variable

amounts of [3HJ-DOG-6P could leak out of cardiomyocytes that have loss membrane integrity.
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failure to take this into account can lead to variations in the amount of mitochondrial [3HJ-DOG

incorporation that are flot related do differences in PTP opening.

The second factor is that the amount of mitochondria recovered following isolation varies

between days and according to the severity of I-R injury. Therefore, the total amount of [3HJ-

DOG recovered will be influenced by the amount of mitochondria isolated. for these reasons, the

PTP opening index (termed DOG index) is calculated as follows:

DOG index = iO x mito [3H1-DOG-6P per unit CS
tissue [3HJ-DOG-6P per g wet weight

In this calculation, mitochondrial [3HJ-DOG-6P measured in d.p.m. is expressed per unit of

citrate synthase. Ibis allows normalization for the amount of mitochondria recovered following

isolation. In addition, in order to account for variations in the amount of cytosolic [3H]-DOG-6P

present, mitochondrial [3H]-DOG-6P entrapment is expressed relative to tissue [3H]-DOG-6P per

g wet weight. Therefore, by expressing the DOG index as a ratio, the measure is not influenced

by loss ofcytosolic [3H]-DOG-6P.

On the other hand, one of the limits of the method is that PTP opening can only be measured in

mitochondria that retained sufficient integrity to survive the isolation procedure (55) (37). Indeed,

as discussed in our study, I-R induces a significant loss in the recovery of intact mitochondria

following isolation and the DOG index fails to consider PTP opening that occurred in

mitochondria that were lost. In order to take this phenomenon into account, recent studies have
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thus normalized the DOG index by the total amount of citrate synthase recovered in the

mitochondrial fraction by gram ofheart (55,37).

2.2.4.2 Role of the PTP inhibition in cardlo-protectïon:

This section will provide an overview of the resuits published in studies that have used the

mitochondrial [3Hj-DOG method to investigate various cardio-protective strategies.

2.2.4.2.1 Cyclosporin A and Sanglifehrin A:

The effect of administering CsA and SfA, two direct inhibitors of the PTP, to perfiised hearts

submitted to I-R has been investigated in two studies (34,55). Javadov et al. (55) have shown that

administration of CsA during ischemia and early reperfiision was associated with a 20%

reduction in the DOG index (figure 11 Panel A). As pointed out by the authors (37,34,55), this

relatively small effect of CsA on PTP opening is somewhat surprising given the strong potency

of CsA at inhibiting pore opening in isolated mitochondria.

However, as mentioned above (p 23), one limitation of the DOG index is that it fails to consider

PTP opening in mitochondria that were lost during isolation due to excessive damage, thus

underestimating true levels of pore opening. Because CsA allows to significantly affenuate the
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loss of intact mitochondria observed in response to I-R, this underestimation is aftenuated. This

phenomenon thus contributes to explain the apparently small effect of this drug on PTP opening.

When this difference is taken into account by normalizing the DOG index values by the amount

of citrate synthase recovered, the inhibitoiy effect of CsA on mitochondrial [3HJ-DOG

entrapment is more compatible with the known potency of this drug at inhibiting pore opening

(figure 11 panel B). Javadov et al. (55) have also shown that Sanglifehrin A (Sfa), a new agents

that inhibits the PTP by binding to cyclophilin D, also reduced PTP opening in ischemic

reperfused hearts (Figure 11).

2.2.4.2.2 Pyruvate and Propofol

Pyruvate supplementation was repeatedly shown to improve the functional recovery of the heart

following ischemia-reperfusion (9, 11) (20). Kerr et al. (60) investigated wheffier the protective

effect of pyruvate could be mediated by an attenuation of PTP opening. These authors reported

that administration of 10 mM pyruvate during ischemia and reperfusion reduced mitochondrial

[3HJ-DOG entrapment by 38% (Figure 12) and significantly retarded time to ischemic

contracture, improved the recovery of lefi ventricular developed pressure (Figure 12), and

lowered end diastolic pressure. However, in this study no aftempt was made to correct for

differences in the recovery of intact mitochondria.

Three main hypotheses have been suggested to explain how pyruvate could inhibit PTP opening

during reperfusion. The first hypothesis involves the fact that pyruvate allows maintenance of a

more acidic intracellular pH during reperfusion. The second hypothesis is that pyruvate, by virtue
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of its antioxidant properties (4, 20) could scavenge free radicals produced during reperfusion.

finally, ifie third hypothesis is that pyruvate oxidation in the mitochondria could favour a better

recovery of mitochondrial membrane potential (AP). Indeed, as described in section 2.1.3, an

acidic pH, low levels of oxidative stress and an increase in A’P ail favour the maintenance of the

PTP in the close conformation.

Similarly, the anaesthetic agent propofol (DIPRIVAN©, Zeneca Pharma), which is known for its

capacity to scavenge free radicals (27, 73), was shown to reduce mitochondrial [311]-DOG

entrapment by 26% and to improve functional recovery following I-R (figure 13) (56). This

inhibition of PTP opening in situ was at least partly due to a direct effect of mitochondna rather

than on infracellular modulators. Indeed, swelling assays performed on mitochondria isolated

from non-ischemic hearts treated with propofol showed that significantly more Ca2 was required

to open the PTP compared to that measured in mitochondria from control hearts.

Taken together, the studies on the cardio-protective effect of pyruvate and propofol thus suggest

that several pharmacological agents that are flot directly targeting the PTP structure could exert

their protective effects at least partly by affecting modulators of pore opening thus maldng the

PTP a central target for cardio-protective strategies.

2.2.4.2.3 Ischemic pre-conditioning

Ischemic pre-conditioning (IPC) is one of the most powerful physiological stress that can induce
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Figure 13: Effect ofpropofol treatment on the mitochondrial permeability transition and lefi
ventricular developed pressure (LVDP) during ischemia reperfusion. Adapted from Javadov et al.
2000. Significant differences between control and propofol-treated hearts (**P<0.025)

Non-Ischemic l-R Non-Ischemic l-R



35

endogenous mechanisms that protect the heart against subsequent periods of prolonged ischemia.

Typically, two episodes of brief ischemia (5 mm) intercalated with 5 min of reperfusion

significantly attenuates tissue damage and improves the recovery of contractile function during

reperfusion following periods of ischemia ranging between 20 to 30 min (44). Using ffie [3HJ-

DOG technique, Javadov et al. (55) reported that IPC was associated with a significant reduction

in the DOG index and an increase in the recoveiy of intact mitochondria following I-R (Figure

12). This inhibition of PTP opening by PC was also reported by other groups in perfiised hearts

(2), isolated cardiomyocytes (45) and mitochondria (2) using other methodologies.

The mechanisms by which IPC resuits in the inhibition of PTP opening are not yet defined and a

detailed discussion on this issue is beyond the scope of this thesis. Inhibition of PTP opening

could occur through an indirect mechanism by beneficially altering the intracellular milieu e.g. by

attenuating cellular Ca2 overload (72, 87), and ROS production (75, 79). In addition PC could

directly act at the level of mitochondria by beneficially altering factors that regulate PTP opening

such as Ca2 loading, ROS production, membrane potential, matrix p11 and matrix adenylates (2).

finally, opening of mitochondrial KATp channels, which are involved in the IPC signalling

cascade, could underlie some ofthese effects (53, 72).

3 Cardio-protection induced by short-term training

A number of studies using rodent models have provided strong evidence indicating that hearts

from trained animals are better protected against contractile dysfunction and tissue injury induced

by periods of ischemia ranging between 15 and 40 min followed by 15-30 min ofreperfusion (22,

40-42, 63-65, 67, 80, 92). While this beneficial effect has been demonstrated using training
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programs of various durations ranging from a few days to several weeks, the present review will

focus on short-term training. In a first section, the effect ofthis type oftrainjng on the recovery of

contractile function and tissue damage measured using various experimental models is presented.

finally, in a second section, the main hypotheses concerning the mechanisms involved in the

cardio-protective effect of short-term training are analyzed with an emphasis on how these could

5e linked to the regulation of the PTP.

3.1 AnimaI models and training paradigms

Table 2 provides an overview offfie type of animais, training paradigms and experimental models

used in the eight studies that have investigated the effect of short-tenu training on myocardial

protection against I-R (40-42, 63-65, 67, 92). In general, ail studies used treadmili nmning as the

training modality. Most protocols involved 1 to 5 consecutive days of running for a duration of

60 min at a speed 30 m/min with a siope of 0%. The only two exceptions are the studies by

Taylor et al. (92) and Lennon et al. (64) in which longer nmning periods (100 mm) and/or lower

speeds were used (18-20 m!min). Experiments were generally performed 24 h following the last

bout of exercise, except in the study by Lennon et al. (63) in which experiments were performed

up to 1$ days aller training cessation. Both maies and females have been studied and the two

genders appear to benefit from cardio-protection in response to this type of training. It should

however be noted that one controversial study reported that a single bout of exercise was

sufficient to induce cardio-protection against I-R in males but flot in females ($0), however this
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Table 2: Summary of short-term training studies

Authors Animais Training model Exp. mode]
Hamilton Female Sprague-dawley 3-5d, 60 mm, 30 m./min. 0% In vivo occi.
et al. 2001 (SD)-4 months lwk habituation at these sefting (5 24 h post

min + 10-15 min increase daily) exercise

Hamilton female SD- 3 months 5d, 60 mm, 30 m./min, 0% In vivo occi.
et al. 2003 lwk habituation at these sefting (10 24 h post

min +10-15 min increase daily) exercise

Hamilton Male SD- 4 months, 300- 3d 60 mm, 30 m./min, 0% In vivo occi.
et al. 2004 350g lwk habituation at these setting + 2 24 h post

d of rest exercise

Lennon et Male SD- 4 months, 300- 3d 60 mm, 30 m./min, 0% WH
al. (2004) 350g lwk habituation at these sefting + 2 24 h post

U of rest exercise

Lennon et Male SD- 6 months, 430- 3d 60 mm, 30 mimin or 18 mimin, WH
al. (2004a) 470g 0% 24 h post

lwk habituation at these seffing + 2 exercise
d ofrest

Lennon et Male SD- 4 months, 370- 3d 60 mi 30mlmin, 0% WH
al. (2004) 400g 5 d habituation (begin lOmin at

30mlmin, with daily increases of 10
min until 50 minlday were achieved

Taylor et Female $D- 5-7 months 1 or 3d, 1 O0min, 20m./min. 6% WH
al. (1999) no habituation 24 h post

exercise

Locke et al Male SD- 250-300g Male $D rats (250-300 g) Langendorff
(1995) 1 or 3 d 60 mm, 30 m.min-1, 0% 24 h post

no habituation described exercise
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study had received many comments and critiques (96). finally, the studies available can be

distinguished according to the experimental model used to document cardio-protection. The two

models that have been most frequently used are the ligation of the lefi ascending coronary artery

(LCA) in vivo (40-42) and the isolated working heart preparation (63-65, 92). As for the

Langendorff perfusion, it has only used once by Locke et al. (67).

3.2 Effect of short-term training on myocardial function after ischemia and on
markers of tissue damage

Studies using in vivo LCA occlusion, a model of regional ischemia-reperfusion, have shown that

short-term training resuits in a befter preservation of LVDP during ischemia and reperfusion, a

reduction in the occurrence of arrhythmia (figure 14) during reperfusion and a reduction in the %

ofrisk area infarcted (figure 15) (40) (41) (42).

A significant level of cardio-protection was also obtained with the isolated working heart

preparation (63-65, 92). Tins mode! allows to study cardiac performance without the confounding

effects of other organs systems, the systemic circulation, and a host of peripheral complications

(88). Another advantage over other isolated heart models such as the Langendorff preparation is

that it permits cardiac pump fimction to be measured while controlling cardiac filling pressure

and aflerload. Under these conditions, short-term training was found to increase the recovery of

cardiac output (CO) and hydraulic work (HW cardiac output x peak systolic pressure) by 24 to

57 % compared to that measured in hearts from sedentary control animaIs (Table 2) (63-65, 92).

Lennon et al. (63, 64) also reported a 50-62 % reduction in the release of LDH in the coronary

effluent, indicative of a better preservation of sarcolemmal integrity.
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figure 14: Effect of in vivo ischemia-reperfusion on arrhythmia scores. Taken from Hamilton et

al. 2004. Significantly different from S-C (P <0.05).
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Importantly, Lennon et al. (64) showed that an equal degree of cardio-protection could be

obtained using high (75 % VO2max) and low (55 % VO2max) training intensities. Moreover, the

same authors (63) have also showed that the cardio-protective effect induced by short-term

training lasted up to fine days afier training cessation, indicating that this was flot due to acute

changes induced by the last training session.

Interestingly, studies using the working heart mode! also reveal that the degree of cardio

protection provided by short-term training depends on the type of hemodynamic parameter

investigated. Indeed, while short-term training substantially increased the recovery of cardiac

output and hydraulic work during reperfusion, it had either marginal or no effects on the recovery

of heart rate (HR), systolic pressure (SP) and rate pressure product (RPP = HR x SP), which are

parameters that are typically measured in Langendorif heart preparation (Table 2). However, the

only study in which the Langendorif mode! was used reported that tbree consecutive days of

training resulied in a significant improvement in the recovery of LVDP and rates of pressure

development and relaxation (dp/dt max and mm) (67) (Figure 16). However, Locke et al. (67)

fai!ed to find a cardio-protective effect following one day of training whi!e Taylor et al. (92),

using the working heart mode!, were able to show a significant cardio-protection at this ear!y

stage. Taylor et al. (92) suggested that parameters such as CO and HW, which depend on

ventricular fihling, could be more sensitive to training adaptation compared to HR, SP and RPP.

Taken together, these studies thus indicate that training for short periods of time ranging between

1 and 5 days can confer a significant degree of cardio-protection against I-R, which can last up to

fine days afier exercise cessation. This protection is characterized by an improved ability to
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recover contractile function, by a reduction in fue occurrence of arrhythmias and a reduction in

tissue damage.

3.3 Mechanisms underlying the cardio-protective effect of short-term exercise
training

Currently, two general mechanisms were proposed to explain the protective effect of short-term

training against I-R induced contractile dysfunction and tissue injury. The first mechanism is

related to an up-regulation in the expression of heat-shock proteins, particularly those of the 70-

kDa family, while the second mechanism involves the upregulation of one or many antioxidant

defence systems.

3.3.1 Heat-shock roteins

3.3.1.1 Ovewiew of the heat-shock famlly ofproteins

Stress proteins are synthesized in response to variety of stressfiil conditions including elevated

temperature and oxidative stress ($4). Although there are two different classes of stress proteins,

heat shock proteins and glucose-regulated proteins, experimental work related to exercise

induced cardio-protection has only focused on the former.

Heat shock proteins (lISPs) are expressed in both prokaryotes and eukaryotes and can be

separated in a number of different groups based on their molecular weight: 1) small lISPs (8-32

kfla); 2) 40- to 60 kDa HSPs; 3) 70 kDa lISPs; 4) 90 kDa HSPs; and 5)100- to 110 kDa HSPs

($4)(Table 3). The prîmary functions of these stress proteins are to control protein folding, to
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prevent the denaturation and aggregation of intracellular proteins during stress, to accelerate the

breakdown of damaged proteins and to function as molecular chaperones based upon their

molecular weights.

Expression of HSPs is generally believed to be regulated at the level of transcription although

transiational steps may also be important (84). The promoter regions of 1-ISP genes have been

sequenced and shown to contain a higffly conserved cis-acting element, tenned the heat shock

element (HSE). This HSE is required to transduce the effects of cellular stress to the

transcriptional factors (HSFs).

There exist at least two distinct HSfs (11SF 1 and 11$F2) in mammals. 115F I is activated by heat,

heavy metals, reactive oxygen species, and other factors that denature proteins. HSf2 is activated

by hemin, used in heme-binding groups of myoglobin and catalase.

$tress-induced regulation of 115P transcription is mediated by HSf I binding to H$E. Activation

of 11Sf is a multi-step process including oligomerization of inactive monomers to trimers,

nuclear localization, HSf-DNA binding at the promoter region of the gene, final modulation of

11Sf leading to transcriptional competency.

3.3.1.2 HSP-mediated cardîo-protection:

The first evidences suggesting a role for heart shock proteins as a cardio-protective mechanism
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Table 3: Summary of different HSP groups and their primary functions

Name of stress Cellular Example(s) of cellular function Comments
protein location

Ubiquitin (member Cytosol Damaged proteins are conjugated Ubiquitin levels in
of small HSPs) to ubiquitin and targeted for ceils increase

degradation following cellular
injury

HSP4O Cytosol Molecular chaperones and HSP4O family of
regulators of HSP7O ATPase stress proteins
activity contains at Ieast 20

different proteins
HSP72 Cytosol Molecular chaperone, prevention Postulated to play

and of protein aggregation, and an important role in
nucleus refolding damaged proteins myocardial

protection against I
Rinjury

HSP73 Cytosol Molecular chaperone, prevention Importance of
and ofprotein aggregation, and 11SP73 in protection
nucleus refolding damaged proteins against I-R injury is

unknown
HSP9O Cytosol May function as a molecular At least two

chaperone during maturation of isoforms of HSP9O
steroid receptor: assists in the exist
folding of newly synthesized
peptides
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has corne from isolated hearts studies in which animais were submitted to whole body thermal

stress (15 min at 42 °C) 24-72 hours prior to the experiments. This type of maneuver induces an

important up-regulation in the expression ofmyocardial HSP’s particularly HSP 72 (19, 67, $9).

Several studies have shown that hearts from heat-shocked animais display an improved recovery

of contractile function and a reduction in tissue damage following I-R (19, 67).

further support for the cardio-protective property of HSP-70 has corne from studies in which this

protein was over-expressed in the heart using in vivo gene transfer technoiogy (57, 58, 89). These

studies have shown ifiat isolated perfused hearts from transfected animais had a significantly

greater recovery of LVDP and dt/dt min and max as well as a reduction in tissue leakage of

creatine kinase indicative of less tissue damage.

3.3.1.3 Mechanisms underlying HSP-medîated cardio-protectïon:

Jayakumar et al. (58) reported that HSP-70 overexpression in the heart was associated with a

significant protection of mitochondrial function against I-R injury. Indeed, oxidative

phosphorylation capacity in mitochondria isolated from post ischemic hearts was several fold

greater in H$P-70 transfected animais compared to control. Heat shock-induced mitochondrial

protection has also been reported in liver submitted to I-R (5). Interestingly, 11e and Lemasters

(47) recently observed that whoie body heat shock was able to suppress PTP opening in isolated

liver mitochondria presumably by increasing the expression of H$P 25, a mitochondrial

chapronin that could interact with denaturised proteins forming the pore structure. By preventing

mitochondrial damage and PTP opening, HSP’s could thus favor the recovery of normal ATP
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production following I-R and!or attenuate the release of mitochondrial proteins involved in

apoptosis signaling. In this regards, it is interesting to note ifiat HSP-70 also seems to have the

capability to bind and reduce cytochrome e, which could inhibit its release in the cytosol and the

subsequent activation of the caspase pathway. Similarly, Garndo et al. (30) have also shown that

HSP-70 can directly bind AIF, another mitochondrial protein involved in the activation of

apoptosis.

HSP-72 is also involved in protecting ion channels and pumps from dysfunction. At the level of

the sarcolemma, opening of KATp channels was shown to have a negative impact on the recovery

of the heart from I-R and fl$P-72-associated cardioprotection is believed to be at least partly due

to inhibition of KATp channel opening (51, 59). Recently, HSP-72 was also found to prevent

inactivation of sarcoplasmic reticulum Ca2 ATPase following heat stress by stabilizing the

nucleotide binding domain (93). However, protection against I-R was flot investigated in this

study.

Taken together these results thus indicate that the protective action of HSP’s against I-R injury

can probably be exerted at various sites within cardiomyocytes which will impact on the

maintenance of normal excitation-contraction coupling and energy production and contribute to

prevent activation ofifie mitochondrial celi deaffi pathways.

3.3.1.4 Implication of HSP’s in traininp-induced cardioprotection

Locke et al. (67) were the first to suggest that H$P’s could be involved in the cardio-protective

effect of short-term training. These authors have showri that three consecutive days of running
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induced a robust expression of H$P 72 that was comparable to that obtained following whole

body thermal stress. Moreover, the authors reported a significant correlation between HSP-72

expression levels and the improvement of functional recovery in isolated hearts submitted to I-R.

Several studies have confirmed this early finding since then (63, 64, 92). Lennon et al. (64) also

observed that the expression of HSP-72 at the mRNA and protein level was greater as the training

increased from a moderate (55 % VO2max) to a high intensity (75 % VO2max). However, the

higher levels of HSP-72 expression following high-intensity training did flot confer a stronger

cardio-protection. Indeed, the recovery of cardiac work and LDH release was similar in rats

trained at both intensities. These resuits thus suggested that the degree of HSP-72 expression is

flot necessarily a good indicator of the cardio-protective potential of a training program.

Consistent with this idea, Lennon et al (63) later reported that the effect of short-term training on

I-ISP-72 expression lasted up to three days following training cessation while the protection

against I-R injury lasted up to nine days. Moreover, Taylor et al. (92) reported that running

animais in a coid environment could aboiish the increased expression of IISP-72 following one

day of training. However, despite the absence of HSP-72 induction, hearts from exercised

animais displayed an improved recovery of contractile function following I-R. Taken together

these data thus indicated that while an increased expression ofHSP-72 is cardio-protective per se,

it does not appear to be essential to observe a cardio-protective effect following short-tenu

training. As mentioned by these authors, one of the corollaries is that training probably induces

multiple response that can resuit in protection against I-R injury and that when one response is

blocked the other ones can take over.
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3.3.2 Oxidative stress and antioxidant responses

Another longstanding hypotheses on the underlying mechanisms involved in traimng-induced

cardio-protection is that regular exercise resuits in an improved capacity of enzymatic and non

enzymatic antioxidant systems (12, 21, 27, 41). This adaptation would resuit in a reduction in

oxidative stress and resulting damage to key proteins, membrane lipids and DNA. With regard to

short-term training, several studies have reported a reduetion in oxidative damage to membrane

lipids as indicated by lower levels of $ isopostane and lipid hydroperoxydes following I-R in

hearts from animais that were trained for 3-5 days (40, 42). Hamilton et al. (42) also reported

lower levels of protein carbonylation and nitrosylation another evidence supporting the notion

that short-tenu training attenuates oxidative damage in response to I-R.

Currently, the mechanisms responsible for the lower level of oxidative damage in the trained

heart are largely unknown. In cardiomyocytes, several sources of ROS exist. Moreover, there are

several enzymatic and non-enzymatic systems involved in their degradation, and at any time the

level of oxidative damage depends on the rate at which ROS are produced and eliminated by

these various pathways.

Regarding pathways for ROS elimination, the studies available indicate that short-tenu training

increases the activity of some antioxidant systems. The most systematically reported adaptation is

an increase in the activity of superoxide dismutase (SOD), an enzyme responsible for the

dismutation ofthe highly toxic superoxide anion in H202, a relatively less noxious molecule (41).

Two isoforms of this enzyme exist, the cytosolic CulZn SOD and the mitochondrial Mn-SOD.
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The studies available indicate that short-terni training only affects the mitochondrial isoform (40-

42, 64), which could resuit in a reduction in oxidative damage to this organelle.

Interestingly, a recent study by Hamilton et al. (41) have shown that blunting training-induced

Mn-$OD upregulation using silencing RNA technology resulted in a significant reduction in the

protective effect of training on reperfusion arrhythmias. Ibis is the only study in wbich a causal

link between an increase in anti-oxidant capacity ami training-induced cardio-protection is

demonstrated.

On the other hand, short-tenu training has littie to no effect on the activity of other antioxidant

enzymes. Catalase, an enzyme converting F12O2 into H20, was shown to be slightly up regulated

(63, 64) or unchanged (40-42) following short-tenu training. As for glutathione peroxidase and

the glutathione pool, which are also involved in converting H202 to H20, they are apparently flot

affected by training (40-42). One question that remains unanswered is whether short-tenu

training can attenuate the rate of ROS production independent of changes in anti-oxidant

capacities.

3.4 Is the PTP ïnvolved in the protective effect of short-term training?

Although the effect of short-tenu training on ifie mitochondria in general and the PI? in

particular has neyer been assessed, we believe that some of the experimental evidence reviewed

in this thesis suggest that they could have a role in protecting the heart against I-R injury and

contractile dysfimction.
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A reduction in ROS production, especially at the mitochondrial level (40-42, 63, 64) could

directly favour the maintenance of the PTP in the close conformation as mentioned in table 1 of

section 2.1.3 as well as the article by Zoratti and Szabo. (97). In addition, by attenuating

oxidative damage to components of the respimtory chain, a reduction in ROS production could

favour a better recovery ofAP, winch will also reduce the likelihood of pore opening (97).

In addition to ROS, an increased expression of HSP’s could also resuit in the inhibition of the

PTP. Indeed, mitochondria were shown to be a direct target for H$P-70 mediated protection

against I-R injury (5, 57, 5$, $9) and induction of HSP expression was recently found to inhibit

PTP opening in isolated mitochondria (47). By protecting against ionic channel and pump

dysfunction (79,72,53,5 1), HSP overexpression in the trained heart could also indirectly

conffibute to inhibit PTP opening by reducing disturbance in ion homeostasis and thus Ca2

overload.

The experimental work performed in tins thesis directly aimed to determine whether following

short-term training PTP opening was reduced in the heart submitted to ischemia-reperfusion.
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Abstract

Opening of the mitochondrial perrneability transition pore (PTP) is known to occur during

reperfusion of the ischemic heart and to contribute to contractile dysfunction and tissue injury.

The purpose of the present study was to determine whether short-tenu training (treadmili running

for 5 days, 30 m.min1, 0%) in male SD rats reduces the occurrence of PTP opening in the

ischemic-reperfused heart. llearts from control (C) and trained (T) rats perfused in the

Langendorff mode were submiffed to ischemia-reperfusion (I-R: 30 and 40 min respectively). In

situ PTP opemng was quantified using the mitochondrial 2-deoxy [3H]glucose ([311]DOG)

entrapment method. following I-R, the recovery of intact mitochondria upon isolation was

significantly greater in T vs C hearts (11.7 ± 0.5 vs 9.1 ± 0.4 mU citrate synthase/g’ wet

ventricles, P 0.0 1). Training also reduced the entrapment of mitochondrial [3HJDOG

normalized for the loss of intact mitochondria (14.4 ± 1.4 vs 9.6 ± 0.8 [3HJDOG units, P 0.01).

However, under the experimental conditions used the recovery of contractile fiinction, coronary

flow and release of LDH in the coronary effluent were similar in both experimental groups.

Taken together, these results suggest that short-tenu training can confer mitochondrial protection

and reduce PTP opening.

IŒY WORDS

Ischemia-reperfusion injury

Isolated heart perfusion

2-deoxyglucose entrapment

MPTP

Exercise
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INTRODUCTION

The mitochondrial permeability transition pore was initially described in isolated mitochondria as

a sudden increase in the permeability to solutes of < 1500 Da (33). It is now largely recognized

ffiat this phenomenon is caused by the opening of a non-specific high conductance channel of the

muer membrane presumably formed by the association of cyclophilin D with the adenine

nucleotide transiocator tANT) and porrn (VDAC) as the core of the complex (33,34). Opening of

the PTP induces the loss of mitochondrial membrane potential (33), uncoupling of oxidative

phosphorylation, high amplitude swelling of the matrix and the release of sevemi pro-apoptotic

factors that are normally sequestered in mitochondria such as cytochrome e, AIF, Smac/Diablo,

endonuclease G and Omi/HtrA2 (14,26,27,33). for this reason, PTP opening has been implicated

in several models of necrotic and apoptotic celi deaffi in various tissues (14,26,27).

Accumulation of Ca2 in the matrix is the most important stimulator of PTP opemng (33).

However, the sensitivity of the PTP to Ca2 is increased by a variety of factors including elevated

matrix [P-J and pH, low [adenylates] and membrane potential (33), as well as an increased

oxidative stress and oxidation of the pyridine nucleotide pool. PTP opening was also shown to be

influenced by members ofthe bel-2 family ofproteins, with the pro-apoptotic bid and bax and the

antiapoptotic bd-2 and bclxj. acting as facilitators and repressors of PTP opening respectively (8,

28, 29, 30).

In the heart PTP opening was suspected to occur following ischemia-reperfusion (I-R) based on

the fact that several of the conditions required to observe PTP opemng in vitro prevail in cardiac

celis, particularly during early reperfusion (17, 1$). Development of in situ methods applicable
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for the measurement of PTP opening in the perfiised heart allowed confirmation of this

hypothesis. Indeed, measurement of mitochondrial entrapment of 2-deoxy [3H]glucose

([3HJDOG) and release of NAD (reviewed in (6)) has clearly shown that PTP opening occurs

during reperfusion following ischemia and can have deleterious effects on myocardial recovery.

Recently, ischemic preconditioning (IPC) was reported to inhibit PTP opening following I-R (2,

12,16). However, whether exercise training, another physiological stress capable of inducing

cardio-protection can reduce the occurrence of PTP opening has flot been investigated.

Therefore, in the present study the mitochondrial [311]DOG entrapment method was used to

detennine if short-tenn training reduced the occurrence of PTP opening in ischemic-reperfused

hearts and whether this was associated with cardio-protection.
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METHODS

Animal care

Ail experiments were conducted according to the directives of the Canadian Council on Animal

Care. Male Sprague-Dawley rats (Charles River, St-Constant, PQ, Canada) weighing

approximately 250 g were housed by pair and kept in a temperature, humidity, and light

controlled (12:12h light-dark cycle) environment. The animais were fed standard rat chow and

provided water ad libitum.

Exercise protocol

Following 2-3 days of habituation on the rodent treadmiil, animaIs ran 60 minld for 5 consecutive

days (30 m.min’ and O % slope) at an intensity corresponding to --‘75 % of VO2 max (24). Air

puffs and mjld electrical shocks were sporadically used in order to maxiniize nmning time.

Control animais consisted in age-, sex- and cage-matched sedentary rats.

Langendorffperfusion

Ah experiments were performed 4$ hours afier the last training session. Hearts from ketamine

xylazine (62:8 mg/kg) anesthetized rats were rapidly excised and immersed in ice-cold Henseleit

(KH) buffer (in mM: NaC1 119, KC1 4.8, MgSO4 1.2, NaHCO3, 24 K112P04 1.2, CaCi2 1.3,

glucose 11, pH 7.4). The aorta was cannulated and the coronary arteries perfiised with Kil buffer

in the Langendorif mode at a constant pressure of 70 mm 11g. The perfusion solution was

oxygenated with 95% 02— 5% C02 and maintained at 37 °C tbroughout the perfusion. Perfusion

pressure was monitored by use of an in-une pressure transducer connected to an in une data

acquisition system (Poweriab 8/30, ADinstruments, Colorado Springs, CO). Ventficular pressure
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was monitored via a separate pressure transducer connected to a fluid-fihled latex balloon inserted

in the lefi ventricle via the left atrium. The balloon was inflated to provide an end-diastolic

pressure of 5-8 mm Hg. Hearts were maintained in a water-jacketed chamber maintained at 37 oc

and global isothermic ischemia was induced by clamping the aortic ime. following 30 min of

ischemia, flow was re-established for 40 min. Coronary effluent was collected regularly

throughout the perfusion for measurements of coronary flow and determination of LDH release

which was expressed in mU.min’.g’ ofwet tissue.

Measurement ofMPTP opening in situ with 2-deoxy [3H]glucose

Measurement of mitochondrial [3H1DOG entrapment was performed as described in Griffiths and

Halestrap (6) with minor modification. After a 20-min penod of stabilization in the flow-through

mode, hearts were perfused for 30 min in the re-circulating mode with 100 mL of KH buffer

supplemented with 0.5 mM 2-deoxy [3HJglucose (0.1 jici.nil’). During tins period, perfusion

was performed at a constant flow of 10 ml.mùï’ in order to minimize differences in [3HJDOG

uptake between experiments. Perfusion was then returned to the constant pressure flow-through

mode with normal KH buffer for 15 min in order to wash-out extra-cellular [3H]DOG. Hearts

were then submitted to ischemia-reperfusion as described above or immediately processed for

isolation of mitochondria and determination of baseline [3HJDOG entrapment.

At the end of perfusion hearts were removed, weighted and homogemzed in 5 mL of ice-cold

sucrose buffer (in mM: sucrose 300, Tris-Hcl 10, EGIA 2, BSA 5 mg/mL, pH 7.4) with a

polytron homogenizer (seffing 3 for 5 sec) and volume was then completed to 40 mL. An aliquot

of the crude homogenate were retained for measurements of [3HJDOG and the remainder was
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immediately centriffiged at 800 g for 2 min to remove cellular debris. The surpematant was

recovered and centrifuged at 10000 g for 10 min. 11e mitochondrial pellet obtained was washed

in 30 mL of sucrose buffer containing no B$A and centrifuged at 10000 g for 10 min. The final

mitochondrial pellet was re-suspended in 0.5 mL of sucrose buffer without BSA. 100 1iL oftbis

mitochondrial suspension was retained for the measurement of citrate synthase activity (CS) and

the remainder used for the determination of [3H]DOG. In all buffers a high concentration of

EGTA was used in order to favour rapid PTP closure and entrapment of [3H]DOG (34). For ifie

measurement of [3HJDOG, crude homogenate and mitochondrial samples were mixed with an

equal volume of 5% (w/v) perchloric acid and centrifuged at 10 000 g for 2 min. Radioactivity of

the supematant (500 1iL samples) was counted in 10 mL of scintillant.

Mitochondriat [3H]DOG entrapment

Calculation ofthe DOG index was performed as described in Javadov et al. (16). This index was

expressed as follows:

DOG index = x mitochondrial [3HJDOG / tissue [3HJDOG.

where mitochondrial and tissue [3HJDOG are expressed in d.p.m per unit of CS and d.p.m per g

of wet ventricular tissue respectively. This calculation thus allows mitochondrial [3H1DOG

entrapment to be normalized for the concentration of mitochondria present in the mitochondrial

fraction and for possible differences in the tissue uptake of the tracer. In addition, this index was

corrected by the amount of CS recovered per gram of ventricle, which is an indicator of

mitochondrial yield (16). This correction provides a more valid index of PTP opening since it
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takes into account [3H]DOG entrapment in mitochondria that become totally disrupted as a resuit

of I-R and are flot recovered during isolation (7, 16).

Statisfical analyses

Resuits are expressed as means ± S.E.M. Difference between trained and control groups before

and afler ischemia were analyzed by means of a two way ANOVA. Tuckey post hoc tests were

performed to identify the location of significant differences when the ANOVA yielded a

significant f ratio. The Bonferonni correction was applied to the P value obtained to correct for

multiple comparisons. A corrected P value <0.05 was considered significant.
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RESULTS

Heart Perfusion:

Figure 1 shows ffie evolution of heart rate (HR) and lefi ventricular developed pressure (LVDP)

throughout the perfusion protocol in hearts submitted to ischemia-reperfusion. At the end of the

initial 20-min period of stabilization HR and LVDP were similar in both experimental groups.

Loading of hearts with [3HJDOG and subsequent washout resulted in a small decline in LVDP,

which reached statistical significance only in ifie control group. Similar results were obtained in

the hearts that were flot submitted to ischemia-reperfusion and which were used for the

measurement of baseline mitochondrial [3HJDOG entrapment (resuits not shown). Consistent

with previously published data using the [3H]DOG method (6,19) preliminary experiments

showed that recfrculation of the buffer more than the presence of DOG per se was responsible for

tins slight reduction of function.

Reperfiision following 30 min of global ischemia led to a progressive increase in contractile

function. However, no significant differences between control and trained hearts were observed

in the recovery of heart rate, LVDP, maximal and minimal dp/dt, and coronary flow (Table 1).

$imilarly, no significant difference was observed in the release of tissue LDH in the perfusate

(Figure 2).

Measurement ofmitochondriaÏ recoveiy and FTP opening:

Figure 3 shows the activity of citrate synthase recovered in the mitochondrial fraction per gram of

ventricular tissue. In hearts loaded with [3H]DOG but flot submitted to I-R, the CS activity

recovered ranged between 12-15 mU.g’ of wet ventricle and no significant difference was
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observed between the two experimental groups. Compared to non-isehemic hearts, the recovery

of CS was significantly reduced by 40 % in the control group submifted to I-R. In contrast the

loss of CS caused by I-R was only of 18% in the trained group.

It was previously shown that in hearts that are flot submifted to I-R, [3HJDOG incorporation in

mitochondria is low and probably represents a combination of a slow PTP-independent uptake of

[311]DOG into mitochondria and contaminant vesicular components in the mitochondrial fraction

(6). Consistent with these resuits, the mitochondrial DOG index was low in non-ischemic hearts

(figure 4A). Moreover, no significant differences were observed between the two experimentai

groups (11.8 ± 1.6 and 13.5 ± 1.6 DOG ratio units in C and T respectively, P = NS).

In hearts from control animais, I-R increased the DOG index 11 fold above baseline normoxic

values reaching 130 ± 12 DOG ratio units (figure 4A). In the trained group the DOG index

measured foliowing I-R (110 ± 7 DOG ratio units) was 16 % lower compared to the control

group, aithough this difference did not reach statistical significance (P0. 1). However, this index

does not take into account [3H]DOG entrapment in mitochondria that became totaiiy disrupted as

a resuit of I-R, therefore leading to an underestimation of ifie true extent of PTP opening (6,16).

Figure 4 B shows that when the difference in mitochondriai recovery (Figure 3) was taken in to

account, the inhibitory effect of training on mitochondriai [3HJDOG entrapment increased to 33

% (9.6 ± 0.8 vs 14.4 ± 1.4 DOG units respectively P< 0.05).
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DISCUSSION

Resuits from the present study provide evidence that short-term training can provide

mitochondrial protection against injury as evidenced by an enhanced recovery of intact

mitochondria following I-R. In addition, the [3HIDOG entrapment data indicates that

mitochondrial PTP opening during reperfusion is reduced in the heart of trained animais.

However, under our experimental conditions these beneficial changes were flot accompanied by

an improved recovery of contractile function and LDH release.

Mitochondrialprotection:

$everal studies using the [3H]DOG method indicate that an ischemia-reperftision protocol sùnilar

to the one used in the present study is sufficient to induce a significant alteration in mitochondrial

recovery and PTP opening (6, $, 16, 17, 19). Indeed, the recovery of intact mitochondria assessed

by CS activity was shown to be reduced by 22-34 % in response to 30 min of ischemia foiiowed

by 15-30 min of reperfusion (6, 16). This loss of mitochondria was accompanied by PTP

opening, as evidenced by a 3.5-5.6 fold increase in the mitochondrial [3HJDOG entrapment (6,

16). Data from the present experiments obtained in hearts of control animais are in une with these

resuits. Indeed, following I-R the recovery of CS was reduced by 40 % compared to values

obtained in non-ischemic hearts. In addition, this was accompanied by a substantial increase in

mitochondrial [3HJDOG entrapment (Figure 4).

To our knowledge, the effect of exercise training on mitochondnal integrity and PTP opernng in

the ischemic-reperfused heart has not been investigated before. However, the effect of other

physiological stresses such as ischemic-preconditioning (PC) has recently been studied by

several research groups (1, 12, 16). Javadov et al. (16) reported that IPC aboiished the loss ofC$
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activity following I-R and reduced by 52 % mitochondrial [3H]DOG entrapment corrected for CS

recovery. These data obtained in perfused hearts are consistent with resuits from studies on

isolated heart mitochondria (1) and cardiomyocytes (12) indicating that the susceptibility of the

PTP to Ca2 and oxidative stress is reduced following IPC.

In the present study, 5 consecutive days ofrunning was able to attenuate by 2 fold the loss of CS

recovery following I-R. Ibis improvement in mitochondrial yield was accompanied by a modest

16 % reduction in mitochondrial [3H]DOG entrapment, which did not reach statistical

significance. However, this reduction reached 33 % when the better recovery of intact

mitochondria was taken into account. Ibis phenomenon is similar to that observed following

administration of the PTP inhibitors cyclosporin A (6, 16) and sanglifehrin A (16) in perfused

hearts. Indeed, both inhibitors only reduce mitochondrial [3HJDOG entrapment by 17-21 %.

However, when the large improvement in the recovery of intact mitochondria observed with

these agents is taken into account, the reduction in mitochondrial [3HJDOG entrapment reaches

3 5-50 % (7).

The mechanisms by which training could inhibit PTP opening during reperfusion were not

investigated in the present study. A reduction in PTP opening could be due to training adaptations

that beneficially effect the concentration of intracellular modulators of PTP opening and/or alter

its regulatory properties directly at the mitochondrial level. The reduction in oxidative stress (9-

11, 2 1-23) and the increased expression of heat shock proteins (9, 11, 22, 23, 25, 32) reported

following short-term training could be a candidate mechanism. Indeed, it is well documented that

oxidative stress favours PTP opening in isolated mitochondria (33) and that freatment with agents



70

displaying anti-oxidant propefties inlilbit PTP opening in perfused hearts (17, 19, 31). Similarly,

increased expression of heat shock proteins decrease PTP opening in isolated liver mitochondria

(13) and attenuate I-R (1$) and 11202 (2) induced mitochondrial dysfimction in the heart. This

hypothesis however remains to be ascertained.

functionat recovery and tissue damage:

In ifie present study, training did not resuit in a significant improvement in functional recovery

and LDH release despite a significant reduction in PTP-induced mitochondrial damage. This

observation contrasts with several studies (9-11, 2 1-23, 25, 32) showing that 3 to 5 consecutive

days of treadmiil running at an intensity similar to that used in the present study improves

functional recovery and reduce tissue damage following a period of ischemia ranging between 20

and 30 min.

Although the reason for this discrepancy remains unclear, one possibility is that this is related to

loading of the hearts with [3HJDOG. 2-deoxyglucose is a non-metabolizable glucose analog

which, followmg phosphorylation by hexokinase, accumulates in celis as DOG-6P.

Accumulation of DOG-6P is known to resuit in a rapid depletion of myocardial ATP when DOG

is used at concentration higher than 2 mM (15). In the present study, the [DOG] used was well

below 2 mM (0.5 mM) and the accumulation of DOG-6P was not sufficient to induce significant

contractile dysfunction pnor to ischemia. However, during reperfusion, it cannot be excluded that

the presence of DOG-6P affected myocardial recovery to a greater extent in trained compared to

control animals.
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In addition to the possible effect of DOG, examination of the literature suggests that the

Langendorif preparation per se might flot be optimal for the observation of exercise induced

cardio-protection. Indeed, most (9-11, 21-23, 32), but flot ail (25) studies on the cardio-protective

of short-term training, used either in vivo left coronary occlusion or the isoiated working heart

preparation which more closely mimics normal loading conditions. hi addition, it is known that

the contractile parameters measured in Langendorif perfusions are flot as sensitive as the ones

that can be obtained with the working heart preparation (32). Tndeed, in studies using the working

heart mode! (2 1-23, 32) the recovery of cardiac output and hydmulic work is substantially

increased by short-term training (+26-57 % vs control) whiie heart rate, systolic pressure and rate

pressure product, which are the contractile indexes measured in the Langendorif perfusion, are

either unchanged or marginally improved (+0-10% vs control). In line with tins observation,

Lennon et al. (22) observed that 5 days of treadmili running at low intensity (1$ m.miiï1, 0%

slope) was able to increase the recovery of cardiac output and hydraulic work by 45 and 57 %

respectiveiy and to reduce the release of LDH by 62 %. In contrast, Libonati et al. (24) reported

that a similar training program (60 min per day, 20 m.min- 1, 0%) lasting 6 weeks had no effect of

the recovery of LDVP, rates of pressure development and LDH release in Langendroif perfused

hearts. A similar phenomenon could therefore account for the iack of effect of training on the

recovery of contractile function and LDH release observed in the present study.

Taken together the present resuits provide evidence that short-term training can attenuate

mitochondrial damage and PTP opening winch normally occurs in the heart foliowing ischemia

reperfusion. However, under the experimental conditions used, the contribution of tins
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mitochondrial protection to the protective effect of short-term training reported (9-11, 2 1-23, 25,

32) could flot be established.
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Figure legends

Figure 1: Contractile funcfion in I3HIDOG-loaded heart before ischemia and during

reperfusion. The figure shows the evolution of heart rate (J)anel A) and lefi ventricular

developed pressure (LDVP: panel B) in control and trained hearts that were submitted to

ischemia-reperfusion. For sake of clarity, the values obtained in hearts that were flot

submitted to I-R and were used for measurement of baseline [3HJDOG entrapment are

flot shown. following the initial 20-min period of stabilization in the flow-through mode,

hearts were re-circulated with [3HJDOG as indicated. Perfusion was switched back to the

normal flow-through mode for 15 min prior to ischemia in order to washout extra-cellular

[3HJDOG. a: Significantly different (P< 0.05) from pre-ischemic value at T 60 min

within the same experimental group.

Figure 2: Release of LDH in the perfusate before ischemia and during reperfusion.

The figure shows the release of LDH during reperfusion expressed relative to baseline

pre-ischemic (PI) values. The release of LDH was calculated by multiplying time

matched values of coronary flow (in mLmin’.g’ wet weight) and LDH concentration

measured in the perfusate (mU.mU’). Pre-ischemic (Pi) release of LDH was low (<10

mU.mhï’ .g1 wet tissue) and not significantly different in the control and trained groups.

a: Signiflcantly different (P< 0.05) from pre-ischemic value within the same experimental

group.

Figure 3: Effects of I-R and short-term training on the mitochondrial isolation yield.

The figure shows the recovery of citrate synthase (C$) in the mitochondrial fraction per



7$

gram of ventricular tissue in non-ischemic hearts (NI: n= 4 in each experimental group)

and hearts submitted to I-R (I-R: n of 11 and 9 in the control and trained groups

respectively). a: Significantly different (P< 0.05) from non-ischemic hearts within the

same experimental group. b: Significantly different (P< 0.05) from control.

Figure 4: Effect of I-R and short-term training on mitochondrial I3HJDOG

entrapment. Panel A shows the DOG index expressed as the ratio mitochondrial d.p.m. /

tissue d.p.m (see meffiods for ffirther details) in non-ischemic hearts (NI: n 4 in each

experimental group) and hearts submifted to I-R (I-R: n of 11 and 9 in the control and

trained groups respectively). Panel B shows the same DOG index normalized for the

activity of CS recovered in the mitochondrial fraction per g of ventricular tissue (see

figure 3). a: Significantly different (P< 0.05) from non-ischemic hearts within the same

experimental group. b: Significantly different (P< 0.05) from control.
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Tables Iegends

Table 1: Myocardial funcfion before ischemia and at the end of reperfusion in

hearts from control and trained rats. Data are presented as means ± SEM for a n of 11

and 9 hearts in the control and trained group respectively. a: Significantly different (P<

0.05) from pre-ischemic values within the same experimental group.
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Fig.2
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Fig.3
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