2111-3540-8

Université de Montréal

"Evolution of C2H2-Zinc finger genes in mammalian genomes"

par "Hamsa Dhwani Tadepally"

"Département de Biochimie" "Faculté de Médecine"

Thèse présentée à la Faculté des études supérieures en vue de l'obtention du grade de Maitrise En Biochimie

"July 2007"

© "Hamsa Dhwani Tadepally", 2007

W 4 U58 2007 V-124

Direction des bibliothèques

AVIS

L'auteur a autorisé l'Université de Montréal à reproduire et diffuser, en totalité ou en partie, par quelque moyen que ce soit et sur quelque support que ce soit, et exclusivement à des fins non lucratives d'enseignement et de recherche, des copies de ce mémoire ou de cette thèse.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit d'auteur et des droits moraux qui protègent ce document. Ni la thèse ou le mémoire, ni des extraits substantiels de ce document, ne doivent être imprimés ou autrement reproduits sans l'autorisation de l'auteur.

Afin de se conformer à la Loi canadienne sur la protection des renseignements personnels, quelques formulaires secondaires, coordonnées ou signatures intégrées au texte ont pu être enlevés de ce document. Bien que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license allowing Université de Montréal to reproduce and publish the document, in part or in whole, and in any format, solely for noncommercial educational and research purposes.

The author and co-authors if applicable retain copyright ownership and moral rights in this document. Neither the whole thesis or dissertation, nor substantial extracts from it, may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms, contact information or signatures may have been removed from the document. While this may affect the document page count, it does not represent any loss of content from the document. Université de Montréal Faculté des études supérieures

Cette thèse intitulée :

"Evolution of C2H2-Zinc finger genes in mammalian genomes"

Présentée par : "Hamsa Dhwani Tadepally"

a été évaluée par un jury composé des personnes suivantes :

"Martine Raymond"

Président-rapporteur

"Muriel Aubry"

Directrice de recherche

"Gertraud Burger"

Co-directrice

"Nicolas Lartillot"

Membre du jury

Résumé

Les gènes de doigt de zinc de C2H2/Kruppel (C2H2-ZNF) encodent la plus grande classe des facteurs de transcription chez l'homme. Ces gènes constituent une des plus grandes familles de gène chez les mammifères et sont souvent trouvés sous forme de regroupements de gènes juxtaposés sur les chromosomes. Par une recherche extensive basée sur des similitudes de séquences visant à d'identifier l'ensemble des gènes C2H2-ZNF du génome humain, nous avons assemblé un répertoire complet de 718 gènes C2H2-ZNF humains. Les gènes C2H2-ZNF ont été classifiés en sous-familles en fonction des domaines effecteurs Nterminaux aux quels ils sont associés. Nous avons constaté que la sous-famille encodant un domaine KRAB comprend ~ 45% de tous les gènes C2H2-ZNF et est par conséquent la plus grande sous-famille de gènes à motifs doigt de zinc. De plus, nous avons identifié 81 regroupements de gènes C2H2-ZNF qui correspondent à $\sim 70\%$ de tous les gènes C2H2-ZNF. Presque 90% des gènes C2H2-ZNF appartenant aux sous-familles KRAB et SCAN sont trouvés sous forme de regroupements. Pour mieux comprendre l'évolution des gènes C2H2-ZNF, nous avons par la suite assemblé un répertoire complet de tous les regroupements de gènes C2H2-ZNF humains ainsi que de leurs contre-parties dans les régions synténiques des génomes de chimpanzé, de souris, de rat et de chien. Une analyse systématique de ce répertoire chez ces mammifères a révélé qu'il existe une variation dans le nombre de regroupements et de gènes faisant partie de ces regroupements parmi les primates, les rongeurs et les canins. Cette variation suggère que ces gènes ont évolué de façon différentielle chez les mammifères. Des études phylogénétiques de plusieurs regroupements de gènes C2H2-ZNF choisis indiquent qu'outre une duplication

iii

différentielle, la perte de gènes dans certaines espèces a conduit à des répertoire différents de gènes C2H2-ZNF chez les mammifères. En plus des variations spécifiques aux espèces dans le nombre de gènes, nous avons également mis en évidence une variation chez des orthologues dans le nombre de motifs de doigt de zinc et la présence de domaines effecteurs, ces derniers étant souvent perdus par dégénération. En conclusion, sur la base principale de ces résultats et de l'étude de la structure exon-intron des gènes C2H2-ZNF, nous proposons un nouveau modèle pour l'évolution de leurs sous-familles selon lequel les sous-familles les plus anciennes seraient dans l'ordre SCAN > SCAN-KRAB > KRAB.

Abstract

The C2H2/Kruppel zinc finger genes (C2H2-ZNF) encode the largest class of transcription factors in humans. These genes constitute one of the largest gene families in mammals and are often found in clusters. Using an extensive similarity search on the human genome to identify all C2H2-ZNF genes, we assembled a comprehensive repertoire of 718 human C2H2-ZNF genes. The genes were grouped into subfamilies based on the N-terminal effector domains they were associated with. We found that the KRAB-domain encoding subfamily constitutes ~ 45% of the total C2H2-ZNF genes and hence is the largest subfamily of zinc finger genes. In addition to this, we also identified 81 C2H2-ZNF clusters which constitute ~ 70% of the total genes. Almost 90% of the C2H2-ZNF belonging to the KRAB and SCAN subfamilies were found in clusters. We then assembled a comprehensive repertoire of all the human C2H2-ZNF clusters and their syntenic counterparts in chimpanzee, mouse, rat and dog genomes. A systematic analysis of all the syntenic clusters revealed a variation in the numbers of clusters and the genes within clusters among primates, rodents and canines indicating differential patterns of evolution in mammals. Evolutionary analysis of few selected C2H2-ZNF syntenic clusters in the five mammals studied suggested that not only differential duplication, but also gene loss has led to different repertoires in mammalian genomes. In addition to lineage- and species-specific variation in the number of genes, we also find a variation among orthologs in the number of zinc finger motifs and in the presence of the effector domains, the later being often lost by sequence degeneration. Finally, based on the above results and on the analysis of the exonintron structure of the various C2H2-ZNF genes, we propose a model for the evolution of

v

their subfamilies suggesting that the more ancient subfamilies are in sequential order SCAN > SCAN-KRAB > KRAB.

Keywords: C2H2/Kruppel, zinc finger, gene family, tandem repeats, gene duplication, gene loss, evolution.

List of abbreviations

DNA: Deoxyribonucleic Acid

RNA: Ribonucleic Acid

BTB: Broad-Complex, Tramtrack and Bric-a-bric

POZ: Pox virus and Zinc finger

KRAB: Kruppel Associated Box

SCAN: SRE-ZBP, CTfin51, AW-1 and Number18 cDNA

KRI motif: KRAB Interior motif

Ig: Immunoglobulin

ZNF45: Zinc finger 45 (protein or gene)

ZNF91: Zinc finger 91 (protein or gene)

BLAST: Basic Local Alignment Search Tool

MUSCLE: Multiple Sequence Comparison by Log-Expectation

OR: Olfactory Receptor

 V_H and V_L domains: Heavy & Light chains of the Variable domain of Immunoglobulin molecule

KRAB C2H2-ZNF: C2H2-Zinc finger proteins associated with a KRAB domain

SCAN C2H2-ZNF: C2H2-Zinc finger proteins associated with a SCAN domain

BTB C2H2-ZNF: C2H2-Zinc finger proteins associated with a BTB domain

KAP-1: KRAB associated protein 1

TIF1β: Transcription Intermediary Factor 1β

List of definitions

Homology: This is a concept that signifies common ancestry.

Orthologs: Genes in different species, which are similar to each other and originated from a common ancestor, regardless of their functions through a speciation event.

Paralogs: Genes that are derived from a duplication event, in the same species or different species. They may or may not have the same function.

Gene duplication: Duplication of a region of DNA that contains a gene; it may occur as an error in homologous recombination, a retrotransposition event, or duplication of an entire chromosome.

Phylogenetic tree: This is also called an evolutionary tree, and shows the evolutionary interrelationships among various species or other entities that are believed to have a common ancestor.

Synteny: This describes a common order of genes, especially between related species.

Acknowledgements

Questions and Answers are what life at the university seems to be about. While trying to answer the questions about zinc fingers during my thesis, I also seem to have learnt a lot about myself. These three years at UdeM have been a wonderful learning experience both academically and personally.

First and foremost, I would like to thank my thesis supervisor, Muriel Aubry for accepting and offering me the chance to be her student and work on zinc fingers and for all the guidance and encouragement. For teaching me that what you learn during the whole process of research is as important as the end result. For supporting me when I was struggling with my courses in French. For all the days and nights of constant guidance she gave me for the thesis and for all the weekends at North Hatley. For giving me the opportunity to go to the SMBE 07, which by far has been the most exciting experience of my life. Dr.Muriel, thank you very much for everything. This experience has made me the confident person I am today.

Gertraud Burger, my co-supervisor for her valuable guidance and suggestions. For giving me the opportunity to interact with everyone from the Bioinformatics group and supporting me to let me continue in the Masters program.

Franz.B.Lang, Nicolas Lartillot, Herve Philippe, Henner Brinkmann and Amy Hauth for all the helpful guidance, discussions and constructive comments. Allan Sun for the assistance with the hardware and software problems I had.

My labmates, Patricia, Delphine, Xavier, Imene, Phuong and Hadrian for all the help, for being so nice and always making me feel welcome in the lab.

I would like to thank my friends Uma, Reena and Ekta for supporting me during the difficult times I had. Karthik for being my computer guru. My girls Lakshmi, Gayatri, Sujata, Shivani and Ramaa for taking care of me and putting up with me during the difficult times of my thesis. Siva for helping me out at the university every time I had a problem. Nagu who always let me take my frustrations and bad moods on him and for always being there to talk. Preethi and Kavitha for just being my friends.

Last but not the least; this entire experience would be at most an unfulfilled dream were it not for my loving family. I would like to express my gratitude to my parents, Dr.Nagender Swamy and Vijaya Lakshmi for supporting my dreams and aspirations, for letting me take my own decisions, make mistakes, learn and grow. My sister Vamsee Priya, my brother Charan for always being there for me and always taking care of me no matter what and my brother-in-law Sanjay.

Table of contents

 \cap

 \bigcirc

Identification of the Jury :ii
Résuméiii
Abstract v
Table of contents
List of Figures ix
List of Supplementary Figuresxi
List of Tables xii
List of Supplementary Tablesxiii
List of abbreviations xiv
Acknowledgementsxvi
Chapter 1.INTRODUCTION 1
1.1 Transcription Factors
1.2 The C2H2 zinc finger gene family6
1.2.2 The tandemly organized C2H2 zinc finger motif7
1.2.3 The N-terminal regulatory domain of C2H2 zinc finger proteins
1.3.Gene families and Gene duplication
1.3.1 Gene Families 15
1.3.2 Gene Duplication and Gene Loss: Two important evolutionary mechanisms
guiding the evolution of gene families in mammals18
1.4 Inferring gene duplication and gene loss
1.5 Previous Studies addressing zinc finger gene evolution

1.6 Hypothesis and Objective
Chapter 2. ARTICLE
Evolution of C2H2-zinc finger genes in mammals: Species-specific duplication and loss at
the level of clusters, genes and their functional domains
Chapter 3. DISCUSSION 145
3.1 The C2H2-ZNF genes in the human genome147
3.2 Variation in the numbers of C2H2-ZNF genes in mammalian clusters
3.3 Evolution of C2H2-ZNF genes in mammals through differential expansion and loss
3.4 Evolution of the C2H2-ZNF genes through duplication or loss of zinc finger and N-
3.4 Evolution of the C2H2-ZNF genes through duplication or loss of zinc finger and N- terminal effector motifs
 3.4 Evolution of the C2H2-ZNF genes through duplication or loss of zinc finger and N-terminal effector motifs
3.4 Evolution of the C2H2-ZNF genes through duplication or loss of zinc finger and N- terminal effector motifs 152 3.5 Birth and Death model of evolution 153 3.7 A few concerns to the study 156
3.4 Evolution of the C2H2-ZNF genes through duplication or loss of zinc finger and N-terminal effector motifs1523.5 Birth and Death model of evolution1533.7 A few concerns to the study1563.8 Merits of the study159
3.4 Evolution of the C2H2-ZNF genes through duplication or loss of zinc finger and N-terminal effector motifs1523.5 Birth and Death model of evolution1533.7 A few concerns to the study1563.8 Merits of the study1593.9 Perspectives160

 \bigcirc

0

 \bigcirc

List of Figures

INTRODUCTION and DISCUSSION

ARTICLE

Figure 1: Flowchart of the analysis procedure of C2H2-ZNF genes and clusters
Figure 2: Distribution of all the singletons and clustered genes from the various human
C2H2-ZNF sub-families and gene composition of the C2H2-ZNF clusters
Figure 3: Differential expansion and loss of C2H2-ZNF clusters in five mammalian
genomes
Figure 4: Evolutionary scenarios in the phylogenetic tree

Figure 5: Phylogenetic analysis of C2H2-ZNF genes in cluster 19.12 of human and its
syntenic counterparts in other mammals76
Figure 6: Physical maps showing the organization of the human C2H2-ZNF from cluster
19.12 localized on 19q13.4 and its syntenically homologous counterparts in other mammals
Figure 7: Variation in the numbers of zinc finger motifs in mammals and in the presence of
conserved N-terminal domains in orthologs 80
Figure 8: Model for the evolution of the SCAN, SCAN-KRAB and KRAB C2H2-ZNF
subfamilies

 \bigcirc

 \bigcirc

List of Supplementary Figures

ARTICLE

 \bigcirc

Supplementary Figure 1: Distribution of intergenic distances between 718 C2H2-ZNF in
the human genome
Supplementary Figure 2: Comparison of the number of C2H2-ZNF genes in the 40 human
clusters containing at least 3 C2H2-ZNF and their syntenic counterparts in four other
mammals

List of Tables

INTRODUCTION

List of Supplementary Tables

ARTICLE

Supplementary Table S1: Comprehensive catalogue of the 718 C2H2-ZNF genes in the
human genome
Supplementary Table S2: Comprehensive summary of the organization of all C2H2-ZNF
found as singletons or in clusters on each human chromosomes and classified with respect
to the various C2H2-ZNF sub-families112
Supplementary Table S3: Gene organization of the 81 human C2H2-ZNF clusters113
Supplementary Table S4: Comprehensive catalogue of the C2H2-ZNF genes from the 81
human clusters and their syntenic counterparts from other mammalian genomes
(chimpanzee, mouse, rat and dog)115

Chapter 1. INTRODUCTION

 \square

1.1 Transcription Factors

A very important problem in biology is trying to understand the mechanisms by which particular genes are expressed in a temporal or a tissue-specific manner. The process through which a DNA sequence is copied by an RNA polymerase enzymatically to produce complementary RNA is called Transcription.

The transcription process in prokaryotes and eukaryotes differs in the fact that an RNA polymerase alone can initiate transcription in prokaryotes. In contrast, eukaryotes have a much more complex transcriptional regulatory mechanism. In addition to the RNA polymerase, eukaryotic genes need an initial assembly of transcription factors at the promoter (Pabo and Sauer 1992).

Transcription factors are proteins involved in the regulation of gene expression by binding to the promoter elements upstream of genes. They are composed mainly of two functional regions 1) a DNA-binding domain and 2) an Effector domain.

The DNA-binding domain consists of amino acids that recognize specific DNA bases generally near the start of transcription. Based on its structure, the DNA-binding domain is classified into different types as detailed in Table I.

- 1. Zinc finger
- 2. Helix-turn-helix
- 3. Leucine zipper domain
- 4. Winged helix
- 5. ETS domain

- 6. Helix-loop-helix
- 7. Immunoglobulin fold

In addition to a DNA-binding domain, transcription factors also contain an effector domain. This domain often interacts with proteins to either inhibit or activate transcription. Transcription factors can thus act as transcriptional activators or repressors that control gene expression by acting directly on the RNA-polymerase-containing complex bound at proximity of the transcription initiation sites and/or on proteins involved in the assembly of chromatin, the complex of DNA and proteins that make up chromosomes (Roberts 2000). Transcription factors bring about these changes either by themselves or indirectly by recruiting co-factors that are called co-repressors or co-activators (Roberts 2000) depending on their effect on transcription. Co-repressors or co-activators do not bind DNA directly, but are recruited to the gene by the effector domain of transcription factors.

Table 1: Different types of DNA binding domains

DNA-binding domain	Example
Zinc finger A zinc finger has two antiparallel β strands and an α helix. Two cysteines and two histidines interact with a zinc ion to form a finger like structure. Example: The two cysteines on the beta-strand in green can be seen interacting with the two histidines in orange on the alpha-helix. The interacting zinc ion is shown in red in the center.	Cys Hus COOH
 Helix-Turn-Helix: This is a major structural unit capable of binding DNA. It has two alpha-helices which are joined by a short stretch of amino acids (turn). Example: Helix-turn-helix (green and yellow) of bacteriophage lambda, which binds to DNA (blue and cyan). 	
Leucine zipper domain: It consists of a short alpha helix with a leucine residue at every seventh position. Example: The Ap-1 dimer formed by Fos and Jun homologous proteins. The leucine zipper motif has two α -helices which look like a zipper with the leucine residues (in Green) lining the zipper.	

1.2 The C2H2 zinc finger gene family

Of the many large families encoding transcription factors that have been identified, zinc finger genes of the C2H2 type constitute the largest one (Schuh, Aicher et al. 1986; Bellefroid, Lecocq et al. 1989). The C2H2 motif encoded in these genes typically includes two cysteines and two histidines coordinating a zinc ion. This motif was first identified in the TFIIIA of Xenopus *leavis* and later in the Krüppel drosophila segmentation gene (Miller, McLachlan et al. 1985; Schuh, Aicher et al. 1986). Thus, the C2H2 zinc finger genes are often referred to as TFIIIA/Kruppel type of zinc finger genes.

Known to constitute one of the ten largest gene families [**Pfam database**], these zinc finger genes are found not only in eukaryotes but also in prokaryotes. Members of C2H2 zinc finger family have now been identified in all kingdoms of life i.e. eubacteria, archaebacteria, protists, fungi, animals and plants (Bouhouche, Syvanen et al. 2000; Moreira and Rodriguez-Valera 2000). Throughout evolution, there has been a massive expansion in the numbers of the C2H2 zinc finger genes (Lander, Linton et al. 2001; Venter, Adams et al. 2001). Noticeably, human beings are predicted to have more than 700 zinc finger genes often found in a clustered organization (Bellefroid, Lecocq et al. 1989; Looman, Abrink et al. 2002).

While most of the C2H2 zinc finger genes characterized have been described as genes encoding transcription factors which bind to DNA, some are also known to encode RNA binding proteins that may thus participate in RNA metabolism or maturation (Theunissen, Rudt et al. 1992; Grondin, Bazinet et al. 1996).

1.2.1 Structure of the proteins encoded by C2H2 ZNF genes

The C2H2 zinc finger transcription factors generally consist of two essential regions 1) the C2H2 zinc finger region containing in most instances several zinc finger motifs organized in tandem and 2) the N-terminal regulatory domain

1.2.2 The tandemly organized C2H2 zinc finger motif

The C2H2 zinc finger proteins are composed of zinc finger motifs which form the zinc finger region of the protein. Each motif is a highly conserved sequence of 28 amino acids ($CX_{2.4}CX_3FX_5LX_2HX_{3.4}HTGEKPYX$, where X is any amino acid). Each motif is separated from the following one by a highly conserved linker region (TGEKPYX, where X is any amino acid) (Miller, McLachlan et al. 1985; Wolfe, Nekludova et al. 2000; Looman, Abrink et al. 2002). The basic conserved C2H2 zinc finger structural unit includes two cysteines and two histidines which interact with a zinc ion and are essential for the proper folding of the motif into a finger like structure (See Figure 1) (Looman, Abrink et al. 2002). C2H2 zinc finger proteins are composed of one or more tandemly organized zinc finger motifs. The number of zinc finger motifs in the protein varies from one to more than 30 in a few cases (Ruiz i Altaba, Perry-O'Keefe et al. 1987).

Figure 1: The basic structural unit of a C2H2 zinc finger protein.

(A) The C2H2 zinc finger motif is present in tandem in the protein. Three zinc finger motifs are connected by a conserved linker region (TGEKPY). The two cysteines and two histidines which interact with a zinc ion including the other conserved residues are shown with their single letter codes. The residues involved in DNA binding are shown in grey.

(B) The three-dimensional structure of a zinc finger binding domain. Two anti-parallel β -strands and one α -helix interact with a zinc ion as shown in the figure.

Nuclear magnetic resonance spectroscopy (NMR) was used to determine the threedimensional structure of the C2H2 zinc finger motif (Lee, Gippert et al. 1989; Omichinski, Clore et al. 1990). Two beta strands and one alpha helix form an independently folded domain with a compact globular structure (See Figure 1). The zinc ion, that is tetrahedrally coordinated between two invariant pairs of cysteines and histidines, connects the β -sheet and the α -helix. Four amino acids on the surface of the α -helix in the zinc finger motif make base specific contacts with three to four bases in the major groove of the DNA helix (Frankel, Berg et al. 1987; Parraga, Horvath et al. 1988; Omichinski, Clore et al. 1992; Krishna, Majumdar et al. 2003). Although the zinc finger domain has been described as nucleic acid binding domain, not all the zinc finger motifs are involved in DNA or RNA binding. For example, in ZBRK1 zinc finger protein, only the first few fingers are involved DNA binding and all the others in protein-protein interactions (Zheng, Pan et al. 2000).

1.2.3 The N-terminal regulatory domain of C2H2 zinc finger proteins

In addition to the zinc finger region, C2H2 zinc finger proteins are also associated with an N-terminal regulatory domain (Figure 2), which regulates subcellular localization and the gene expression by acting as either a repressor or an activator by itself or by associating with other factors (Collins, Stone et al. 2001). The regulatory domains associated with C2H2 Zinc finger proteins are

- i. BTB/POZ domain
- ii. KRAB domain
- iii. SCAN domain

i. The BTB domain

The BTB domain (**B**road-Complex, Tramtrack and **B**ric-a-bric) also known as the POZ domain (Pox virus and Zinc finger) is a 120 amino acid conserved domain found to be associated with both DNA and actin-binding proteins. The BTB domain is involved in protein-protein interactions (Collins, Stone et al. 2001). As a part of DNA binding proteins, the BTB/POZ domain is known to be a dimerization domain which, in a few cases also recruits co-repressors (such as N-CoR, SIN3A or SMRT) and acts a repression domain. When found in association with C2H2 zinc finger transcription factors, the BTB domain is generally located N-terminal to the zinc finger region. Thus, by mediating oligomerization and in some instances interaction with co-factors, the BTB domain can lead to chromatin remodeling and change in gene expression (Melnick, Carlile et al. 2002).

ii. The Krüppel-Associated Box (KRAB) domain

Another well known example of an N-terminal regulatory domain associated with C2H2 zinc finger proteins is the Kruppel-Associated Box or the KRAB domain (Bellefroid, Poncelet et al. 1991; Rosati, Marino et al. 1991). KRAB domains are almost always associated with C2H2 zinc finger proteins. An exception to this scenario is the SSX family of proteins. These proteins are associated with a "SSX KRAB domain" which is distantly related to the KRAB domain from C2H2 zinc finger proteins (~ 49% similar) but are not associated with zinc fingers (Collins, Stone et al. 2001; Urrutia 2003).

Unlike the C2H2 zinc finger proteins which are present in organisms ranging from bacteria to humans, the KRAB domain as seen in C2H2 zinc finger proteins is present only in vertebrates, more specifically in tetrapods (Looman, Abrink et al. 2002). However, a recent study identified a sea urchin homolog to the mammalian Meistez protein which includes a tandem array of C2H2 zinc finger motifs, a SET domain and a sequence with some similarity to the "SSX-KRAB domain" (Birtle and Ponting 2006). This suggests the presence of the KRAB domain in the common ancestor of echinoderms and vertebrates. A further study of these proteins in fungi and plants identified a 26 amino acid motif called the KRI motif which was found to be similar to the alpha-helical regions of KRAB and present in all eukaryotes. This indicated that the KRI motif was present in the last common ancestor of animals, plants and fungi and is the progenitor of the KRAB domain.

The KRAB domain is most abundant in mammals (Lander, Linton et al. 2001; Venter, Adams et al. 2001; Waterston, Lindblad-Toh et al. 2002). For example, about onethird of the mouse C2H2-ZNF are associated with KRAB (Benn, Antoine et al. 1991; Waterston, Lindblad-Toh et al. 2002). The KRAB domain is mostly associated with more than 5 C2H2 zinc finger motifs in a protein, justifying the name "Multifingered protein" (Bellefroid, Poncelet et al. 1991). Many genes encoding the KRAB containing proteins are found in a clustered organization as opposed to the ones found as singletons (Bellefroid, Marine et al. 1993; Shannon, Kim et al. 1998; Chung, Schafer et al. 2002; Rousseau-Merck, Koczan et al. 2002; Hamilton, Huntley et al. 2003).

The KRAB domain is ~75 amino acids long and is divided into two boxes. Box A (~38 amino acids) and Box B (~32 amino acids) (Looman, Abrink et al. 2002; Urrutia 2003). A variant of the B box, called b box also exists. Some C2H2 zinc finger proteins have another box following the A box, called the C box (21 amino acids). Each of these boxes is encoded by different exons and separated by introns of varying lengths (Looman, Hellman et al. 2004). The KRAB domain functions as a potent repressor of transcription (Margolin, Friedman et al. 1994). The KRAB A box plays an important role in repression by binding to co-repressors, while the KRAB B box doesn't have transcriptional activity but is known to enhance the repression activity of the A box (Witzgall, O'Leary et al. 1994). The process of transcription repression is mediated by KAP-1, also called transcription intermediary factor 1β (TIF1 β) which is a co-repressor that interacts with KRAB A (Friedman, Fredericks et al. 1996; Germain-Desprez, Bazinet et al. 2003). The KRAB domain of C2H2 zinc finger proteins recruits the KAP1 co-repressor to DNA, which results in the formation of a heterochromatin like complex and leads to gene silencing (Pengue, Calabro et al. 1994; Kim, Chen et al. 1996; Moosmann, Georgiev et al. 1996; Pengue and Lania 1996).

iii. The SCAN domain

The SCAN domain like the KRAB domain is another vertebrate specific domain only associated with C2H2 zinc finger proteins (Williams, Khachigian et al. 1995; Looman,

Abrink et al. 2002). The SCAN domain was estimated to be associated with 10% of the total C2H2-ZNF present in the human genome (Collins, Stone et al. 2001; Edelstein and Collins 2005). Also known as the LeR domain because of its leucine rich primary structure, the SCAN domain is named after the four proteins it was initially identified (SRE-ZBP, CTfin51, AW-1 and Number18 cDNA) (Urrutia 2003). In addition to being associated with the C2H2 zinc finger proteins, the SCAN domain containing proteins are sometimes associated with a KRAB domain having the organization SCAN-KRAB-(C2H2)_x or in very few cases KRAB-SCAN-KRAB-(C2H2)_x (Edelstein and Collins 2005; Huntley, Baggott et al. 2006).

Structural studies on the SCAN domain indicate that it has ~ 84 amino acids and is found to have three to five α -helices which are delineated by one or more proline residues. Proline residues are also present before and after the SCAN domain (Stone, Maki et al. 2002). The SCAN domain is a homo and hetero-dimerization domain mediating proteinprotein interactions by self association and formation of heterodimers between SCAN family members (Sander, Haas et al. 2000; Schumacher, Wang et al. 2000). The importance of the dimerization for the transcriptional activity of SCAN-C2H2 zinc finger protein has not been clearly established.

KRAB A

VTFEDVAVYFSQEEWGLLDPAQRNLYRDVMLENY RNLVSL

KRAB B GLQVSKPDLITKLEQGEEPWIVKREIARATSP

KRAB b GHQLFKHDXISQLEREEKLWMMKXATQRGDSSX

KRAB C **GKKWKDQNIEEEYQNPRRNLR**

SCAN

PDPEIFRQRFRQFCYQETPGPREALSRLRELCHQ WLRPEVHTKEQILELLVLEQFLTILPKELQAWVQ EHHPESGEEAVTLLEDLERELDEPGQQV

BTB

LQNPSHPTGLLCKANQMRLAGTLCDVVIMVDSQE FHAHRTVLACTSKMFEILFHRNSQHYTLDFLSPK TFQQILEYAYTATLQAKAEDLDDLLYAAEILEIE YLEEQCLKML

B

Figure 2: The Regulatory domains associated with C2H2 Zinc finger proteins.

(A) The different combinations of domains associated with zinc finger proteins are shown. Zinc finger proteins generally have three main regions: The Regulatory domain, the Spacer and the Zinc finger region. (B) The consensus sequence of the domains KRAB (A, B, b and C boxes), SCAN and BTB. The residues essential for binding KAP1 and thus for repression are shown in KRAB A underlined in red.

1.3 Gene families and Gene duplication

1.3.1 Gene Families

A gene family corresponds to a set of genes that are grouped based on their shared homology, biological or biochemical activity, sequence motifs or similarities in structure. Because they consist of a large number of genes, gene families are the most informative systems to study evolutionary dynamics of genes. Nuclear genomes have many multigene families and their studies provide clues to the evolutionary forces that have shaped these genomes (Ohta 2000; Thornton and DeSalle 2000). Mammalian genomes in particular have large numbers of genes organized in gene families (Demuth, Bie et al. 2006). Some gene families have uniform copy numbers of genes in all species (Thornton and DeSalle 2000), while there are gene families like the Immunoglobulin gene family, the Olfactory receptor gene family and the C2H2 zinc finger gene family which have a large variation in the number of genes across different species . The variation in the gene numbers of these families and diversity in function, suggests that gene duplication and/or gene loss have played an important role in shaping different mammalian genomes.

i. The Olfactory Receptor gene family

Olfactory receptor (OR) genes form the largest known multigene family in mammalian genomes (Glusman, Bahar et al. 2000) and code for membrane receptors that are responsible for olfaction, the sense of smell. OR genes are present in various vertebrates ranging from lampreys to humans. The OR proteins belong to the G-protein coupled receptor family which have seven transmembrane domains. OR genes are divided into 2 classes based on their protein sequence similarity (Glusman, Bahar et al. 2000; Fuchs, Glusman et al. 2001). Of the two classes, Class I genes first identified in fish but also found in mammals are specialized in water-soluble odorants and the Class II genes specialized for airborne odorants are specific to tetrapods.

The number of the OR genes is quite varied in different genomes. Rodents have nearly twice as many as the number present in human, chimpanzee or dog (Niimura and Nei 2005). The Human genome has more than half of the ~900 OR genes as pseudogenes. In contrast, the mouse genome has ~1300 OR genes of which only one-fourth are pseudogenes. Studies on the human, chimpanzee and mouse OR gene repertoires indicate that there are species-specific expansion and pseudogenization signifying different selection pressures in humans, chimpanzees and mouse owing to their different sensory requirements (Sharon, Glusman et al. 1999; Glusman, Yanai et al. 2001; Lapidot, Pilpel et al. 2001; Gilad, Man et al. 2005; Niimura and Nei 2005). Evolutionary analysis of the human, mouse and chimpanzee datasets indicate the presence of clustered organization which is generally well conserved in these genomes. Analyses of the clusters indicate that there are tandem arrays of the OR genes which appear to have arisen by tandem duplication and several chromosomal rearrangements. The difference in the numbers of OR genes in human and mouse has been attributed to gene duplication and loss events (Sharon, Glusman et al. 1999; Niimura and Nei 2005).

ii. The Immunoglobulin gene family

The immunoglobulin gene family represents an example where its two subfamilies, the immunoglobulin heavy variable region sub-family and immunoglobulin light chain variable region subfamily, have co-evolved by varying in gene number and extent of diversity in different species (Sitnikova and Su 1998). An immunoglobulin molecule is a tetramer with two identical heavy chains and two identical light chains which form a Yshaped structure. Each of these chains has a variable (V) and constant (C) domain. The V_H and V_L domains have the complementarity determining regions, called the CDRs which form the sites of interaction with antigens. Analyses of these two sub-families of genes from various species of amniotes identified that these gene families have diversified throughout the course of evolution (Sitnikova and Su 1998). Different coordinated loss and duplication events have led to different species-specific gene repertoires.

iii. The C2H2 zinc finger gene family

In addition to the above mentioned gene families, the C2H2 Zinc finger gene family is another example of a large multigene family with varying number of genes in different species. Over the course of evolution, this gene family has expanded drastically in mammalian genomes (e.g. \sim 400 in mouse and \sim 700 in human) (Venter, Adams et al. 2001; Waterston, Lindblad-Toh et al. 2002). Several studies involving these genes in the human genome have indicated that tandem duplication events are responsible for the

clustered organization of this family (Shannon, Kim et al. 1998; Elemento and Gascuel 2002; Elemento, Gascuel et al. 2002; Tang, Waterman et al. 2002; Bertrand and Gascuel 2005; Huntley, Baggott et al. 2006). A few instances of evolutionary studies of these genes, within the human genome and among a few mammalian genomes document cases of species-specific duplication (Dehal, Predki et al. 2001; Shannon, Hamilton et al. 2003; Huntley, Baggott et al. 2006).

All these examples of gene families suggest variation in number among different species involving different duplication and loss events. The gene family size could vary based on the functional relevance of the gene family in the organism. These examples also indicate the importance of studying the gene families to give clues on the evolutionary mechanisms which led to different sizes of gene families.

1.3.2 Gene Duplication and Gene Loss: Two important evolutionary mechanisms guiding the evolution of gene families in mammals

Considering the extremely large numbers of genes constituting gene families (Demuth, Bie et al. 2006), it is interesting to study their organization and the evolutionary mechanisms that created them. A study integrating the information from spatial organization of the genes with the phylogenetic relationships between the genes combined with evolutionary information of the species would help provide clues about the evolution of the gene families.
In the context of using phylogenetic studies to analyze the evolutionary relationships between genes in gene families, one significant term that features in all studies is "Homology". Homology forms the central and basic concept of comparative genomics but is also a term that is often misrepresented and misinterpreted. The term homology was introduced by Richard Owen in 1848, where he defined homology as "the same organ under every variety of form and function" (Francis Darwin 1903) . The importance of structure and function is emphasized more in this definition. In an attempt to give an evolutionary explanation to homologous structures, Darwin defined homology as "A structure is similar among related organisms because those organisms have all descended from a common ancestor that had an equivalent trait" (Darwin 1837) (Figure 3).

When put in the context of molecular sequence comparison, in today's times, homology¹ refers in an abstract way to a relationship which implies a possible common ancestry and should be differentiated from identity² or similarity³ of sequences. However, to be substantiated, homology must be confirmed by appropriate phylogenetic studies. It is important to note that homology does not say anything about functional similarity (Thornton and DeSalle 2000))(Fitch 2000).

^{131 -}

¹ Homology: A hypothesis that signifies common ancestry between sequences (nucleotide or amino acid) which is primarily based on sequence similarity.

²Identity: The extent to which two (nucleotide or amino acid) sequences are invariant.

³ Similarity: The extent to which nucleotide or protein sequences are related. The extent of similarity between two sequences can be based on percent sequence identity and/or conservation

Figure 3: Darwin's evolutionary tree.

The figure is Charles Darwin's first ever sketch of an evolutionary tree from his book titled "First Notebook on Transmutation of Species (1837)". There are three major types of homology in a phylogenetic context which are orthology, paralogy and xenology. *Orthology* as described by Fitch in 1970 is the relationship between two genes in two different species which originated from a common ancestor. Two homologous sequences are considered to be "orthologous" if a speciation event separates them. In contrast, *Paralogy* signifies the relationship between two genes which have been formed by a gene duplication event. *Xenology*, another type of homology relationship describes the relationship between two genes which have been transferred between two species by horizontal gene transfer.

Studying the homologous relationships of genes within and between various genomes and differentiating between orthologs and paralogs is a central aspect of comparative genomics. *Figure 4* shows a very simple explanation of the difference between orthologs and paralogs. The genes A1, B1 and B2 have evolved from an ancestral gene by speciation followed by a duplication event in species B. Gene A1 from species A is an ortholog of gene B1 and gene B2 in species B illustrating that one gene in a particular species may have more than one ortholog in the other. Gene B1 and gene B2 in species B, which were formed by gene duplication, are paralogs to each other.

Figure 4: Schematic representation of speciation and duplication

Genes A1, B1 and B2 are formed from an ancestral gene by a speciation and duplication event. Gene A1 from species A has two orthologs in species B, genes B1 and B2. B1 and B2 are paralogs.

Figure 5 depicts different evolutionary scenarios that one encounters while studying the evolution of genes in gene families are depicted to explain the relationships between genes in terms of orthologs, paralogs and gene loss. An ancestral gene undergoes duplication in species 0 to give the genes, A, B and C. This is followed by a speciation event with genes A1, B1 and C1 in Species 1 and genes A2 and B2 in Species 2. The gene A1 is an ortholog of A2 and B1 is an ortholog of B2. The gene C1 does not have a corresponding ortholog, as the Species 2 lost the gene after speciation. The genes A1, B1 and C1 are paralogs within species 1 and, A2 and B2 are paralogs within species 2. Furthermore, as explicitly pointed out recently by Fitch (Fitch 2000) and as often ignored, gene A1 (species 1) is also a paralog of gene B2 (species 2), gene B1 (species 1) is a paralog of gene A2 (species 2) and gene C1 is paralog of gene A2 and B2 (species 2). From these explanations, it is clear that orthologs are homologous genes residing in different species, while paralogs may not only refer to the homology relationship between genes from the same species but also from different species. It is essential to understand that both orthologs and paralogs are free to diverge and do not necessarily always have the same function (Thornton and DeSalle 2000).

Figure 5: Schematic representation of different evolutionary processes shaping the gene families in different species.

Gene duplication, speciation and loss lead to the formation of genes A1, B1, C1 in species 1 and A2 and B2 in species 2.

1.4 Inferring gene duplication and gene loss

That two genes are homologous is a hypothesis that needs to be studied and analyzed to be able to derive the relationships between the genes to be either orthologs or paralogs. Studying and analyzing the relationships between gene families i.e. evaluation of orthology or paralogy requires a well formulated approach. In order to be able to postulate theories on how related genes evolved from an ancestral gene i.e. by gene duplication, gene loss or by speciation, one needs to assess homology relationships using a well founded phylogeny.

The first step in assessing homology is a sequence alignment of the molecular sequences be it nucleotides or amino acids. This gives a preliminary measure of possible homology which can then be assessed using a phylogeny. A well supported phylogeny gives the evolutionary relationships between the genes in relation to one another. Comparison of a gene phylogeny between genes with the taxonomic relationships between species, allows gene duplication and loss events to be assessed and roughly dated. As an example, *Figure* 6 shows the different scenarios of gene duplication event resulted in species 2, 3 and 4 created the paralogous gene groups A, B and eventually C. In a hypothetical situation, suppose the genes 2A, 3C and 4B are missing from the gene tree. Assuming that the studied sequences were derived from completely sequenced genomes, the missing genes could either be due to a loss of genes or their possible pseudogenization in the respective species. That the gene duplication occurred prior to speciation can still be

resolved by superimposing the gene tree with the species tree. Reconciliation between the species and the gene tree will help resolve the absence of genes 2A, 3C and 4B as can be seen in *Figure 6B*. This kind of study can hence be used to infer the evolution of genes belonging to gene families within and among species in a phylogenetic context.

Figure 6: Inferring gene duplication and loss events from a gene tree in comparison with the species tree.

(A) A gene tree showing the phylogeny between genes belonging to species 1, 2, 3 and 4. Genes are represented as A, B, C and D. A gene duplication represented as x occurred prior to the speciation event leading to Species 2, 3 and 4.

(B) A species tree showing the relation between species 1, 2, 3 and 4.

(C) A hypothetical situation where the genes 2A, 3C and 4B are missing from the tree as shown in red. Reconciliation of the phylogenetic tree from (A) with the species tree from (B) helps identify the not only the duplication event but also the missing genes to be able to infer loss. Adapted from (Thornton and DeSalle 2000)

1.5 Previous Studies addressing zinc finger gene evolution

About 2000 of the \sim 30,000 genes in the human genome code for transcription factors (Venter, Adams et al. 2001). C2H2-ZNF are the most common of all the eukaryotic transcription factors present in the human genome (encoded by \sim 700 genes). Owing to these facts, the C2H2 zinc finger gene family has been considered to be an evolutionary playground for genes to develop and differentiate and hence is an interesting family to study (Looman, Abrink et al. 2002).

The studies pertaining to C2H2-ZNF have mostly been restricted to those associated with a KRAB domain and more specifically to the human genome. A recent study identified 423 KRAB C2H2-ZNF loci organized into 65 clusters on the human genome (Huntley, Baggott et al. 2006). Evolutionary studies involving these KRAB C2H2-ZNF genes indicated that the evolutionary relatedness within and among clusters was not only associated with physical proximity evolving through tandem duplications but also through distributed duplication and post-duplication rearrangement events, which have led to the dramatic increase in the gene numbers of this family in humans (Hamilton, Huntley et al. 2003; Hamilton, Huntley et al. 2006; Huntley, Baggott et al. 2006). Though present in clusters, the KRAB C2H2-ZNF are not co-regulated and they show different patterns of expression (Huntley, Baggott et al. 2006).

A study of one KRAB C2H2-ZNF gene cluster on human chromosome 19, suggested an evolutionary model showing the presence of certain beta-satellite repeat structures symmetrically ordered with the zinc finger genes in the cluster which have coevolved with the cluster accommodating the expansion of the genes within this cluster (Eichler, Hoffman et al. 1998).

A statistical analysis using phylogenetic models on four human C2H2-ZNF clusters on chromosome 19 indicated that positive selection is the driving force involved in the diversification of the KRAB C2H2 zinc finger genes (Schmidt and Durrett 2004).

Not much is known about the evolutionary histories of these genes in different mammalian genomes and very few studies have been carried out to comparatively analyze their evolution. A preliminary report on species-specific expansion of these genes, resulted from one study on a C2H2-ZNF cluster on human chromosome 19 and its syntenically homologous cluster on mouse chromosome 7 (Shannon, Hamilton et al. 2003). A study on the evolution of members of the primate-specific ZNF91 KRAB subfamily, which are mainly found in a chromosome 19 cluster, revealed that this gene subfamily evolved before the split of humans and apes. But after the split, these genes have continued to evolve differentially be it through tandem duplications or segmental duplications, leading to species-specific genes (Dehal, Predki et al. 2001; Hamilton, Huntley et al. 2006).

Inspite of several studies dealing with these genes, there has never been a comprehensive study on the C2H2-ZNF genes and their evolution or their functions. In

order to systematically define and analyze the extent of species-specific duplication and the role of gene loss in the evolution of these genes, it is important to conduct a comprehensive study of these gene clusters in mammalian genomes to obtain clues on their evolution and their possible implications on functions specific to each species.

1.6 Hypothesis and Objective

Previous studies on zinc finger genes have provided evidence that zinc finger genes have undergone a huge expansion in vertebrate genomes, with a specific increase in humans. Studies have shown that these genes have been subjected to expansion through tandem duplication and also of the existence of species-specific duplication events (Shannon, Kim et al. 1998; Shannon, Hamilton et al. 2003; Hamilton, Huntley et al. 2006; Huntley, Baggott et al. 2006). A contribution of gene loss in the evolution of C2H2 zinc finger genes has been suggested but never tested rigorously.

The main objective of this thesis is to systematically determine to what extent zinc finger genes are submitted to species-specific expansion and to assess the potential contribution of gene loss in the evolution of this gene family in mammals. To this end, we have:

1. Assembled a curated database of all C2H2-ZNF genes in the human genome and identify all the C2H2-ZNF clusters in the human genome

- 2. Searched for syntenically homologous clusters in other completely sequenced mammalian genomes, namely chimpanzee, mouse, rat and dog genomes.
- 3. Performed a phylogenetic analysis of C2H2-ZNF genes from the syntenically homologous clusters.
- 4. Performed a reconciliation of both phylogenetic analyses and physical maps of the clusters with the species tree accounting for the evolutionary history of the species in order to infer gene loss and gain.

These studies should allow us to determine the nature of evolutionary events that shaped this large gene family in mammals. In particular, this study will help us to better infer orthology in the various mammals and better understand the evolution and relationships between the different C2H2-ZNF subfamilies.

Chapter 2. ARTICLE

 \bigcirc

Evolution of C2H2-zinc finger genes in mammals: Species-specific duplication and loss at the level of clusters, genes and their functional domains.

Hamsa Dhwani Tadepally, Gertraud Burger and Muriel Aubry*

Department of Biochemistry, Université de Montreal, C.P.6128, Succ.Centre-Ville, Montreal, QC, H3C 3J7, Canada

To whom correspondence and reprints should be addressed: Muriel Aubry, Ph.D. Department of Biochemistry Université de Montréal C.P. 6128, Succ. Centre-Ville Montréal, H3C 3J7 Canada

Key words: C2H2/Kruppel, zinc finger, gene family, tandem repeats, gene duplication, gene loss, evolution.

ABSTRACT

C2H2 zinc finger genes (C2H2-ZNF) constitute the largest class of transcription factors in humans and one of the largest gene families in mammals. Often arranged in clusters in the genome, these genes are thought to have undergone a massive expansion in vertebrates by a process involving tandem duplication. However, this view is based on limited datasets restricted to single chromosome or a specific subfamily of C2H2-ZNF genes. Here, we present the first comprehensive study of the dynamic evolution of the C2H2-ZNF family in mammals. We assembled the complete repertoire of human C2H2-ZNF genes (718 in total), about 70 % of which are organized into 81 clusters across all chromosomes. Based analysis on an of their N-terminal effector domains. we identified SET- and HOMEO domain-encoding C2H2-ZNF genes as members of two new C2H2-ZNF subfamilies. We searched for the syntenic counterparts of human clusters in other mammals for which complete gene data are available: chimpanzee, mouse, rat and dog. Cross-species comparisons show a large variation in the numbers of C2H2-ZNF genes within homologous mammalian clusters suggesting differential patterns of evolution. Phylogenetic analysis of selected C2H2-ZNF clusters reveals that differences in C2H2-ZNF gene repertoires across mammals not only originate from differential gene duplication but also gene loss. Further, we find variations among orthologs in the number of zinc finger motifs and association of the effector domains, the later often undergoing sequence degeneration. Based on these results and an analysis of the exon-intron organization of genes from the large SCAN and KRAB domains-containing subfamilies, we propose a new model for the evolution of these subfamilies.

This manuscript includes two supplementary Figures and four supplementary Tables

INTRODUCTION

The human genome sequence uncovered a large number of gene families often arranged in a clustered organization (Ohta 2000; Thornton and DeSalle 2000; Venter, Adams et al. 2001). C2H2 zinc finger (C2H2-ZNF) genes make up ~ 2 % of all the human genes and represent the second largest gene family in humans after the odorant receptor family (Lander, Linton et al. 2001) (Schuh, Aicher et al. 1986; Bellefroid, Lecocq et al. 1989; Messina, Glasscock et al. 2004). The first identified members of the C2H2-ZNF family are *Xenopus* TFIIIA and Drosophila Kruppel and thus genes of this family are often called zinc finger genes of the TFIIIA or Kruppel type (Miller, McLachlan et al. 1985; Schuh, Aicher et al. 1986).

Most of the characterized C2H2-ZNF genes code for transcription factors which bind DNA through their zinc finger region; others bind RNA and their exact function is yet unknown (Theunissen, Rudt et al. 1992; Grondin, Bazinet et al. 1996). The zinc finger region is composed of a basic structural unit of 28 amino acids (CX₂₋₄CX₃FX₅LX₂HX₃₋₄HTGEKPYX, where X is any amino acid), called the zinc finger motif, that is often repeated in tandem. The two cysteines and two histidines in this motif interact with a zinc ion, stabilizing the proper folding of this motif (Klug and Rhodes 1987; Lee, Gippert et al. 1989; Rhodes and Klug 1993). C2H2-ZNF proteins often contain an effector domain always located N-terminal to the zinc finger region, such as the KRAB (Kruppel-Associated-Box), SCAN (SRE-ZBP, CTfin51, AW-1 and Number18 cDNA) and BTB (Broad-Complex, Tramtrack and Bric-a-bric) domains. The first two domains are vertebrate-specific (Bellefroid, Poncelet et al. 1991; Rosati, Marino et al. 1991; Collins, Stone et al. 2001), while BTB is also present in insects. The KRAB domain includes the box KRAB A (~38 amino acids) involved in transcriptional repression and often a second box, usually KRAB B (~32 amino acids) or in few cases KRAB b or KRAB C (~21 amino acids) box (Witzgall, O'Leary et al. 1994; Looman, Abrink et al. 2002; Urrutia 2003; Looman, Hellman et al. 2004). The KRAB A box and the second KRAB B, b or C box are encoded by separate exons, which are alternatively spliced. The SCAN, also called the leucine-rich (LeR) domain (~ 84 amino acids) (Stone, Maki et al. 2002) mediates proteinprotein interactions through dimerization (Sander, Haas et al. 2000; Schumacher, Wang et al. 2000). The BTB domain (~ 120 amino acids) is a dimerization domain that also acts as a repression domain in some cases (Melnick, Carlile et al. 2002). In contrast to the SCAN and KRAB domains which are only present in C2H2-ZNF proteins, the BTB domain is also found as a part of actin-binding proteins (Collins, Stone et al. 2001). C2H2-ZNF proteins are grouped into different subfamilies based on the type of N-terminal effector domain present.

Initial studies on the C2H2-ZNF gene family focused on human chromosome 19, which is particularly enriched in clusters of these genes (Bellefroid, Marine et al. 1993; Eichler, Hoffman et al. 1998). More recent studies dealt more specifically with the KRAB subfamily (Mark, Abrink et al. 1999; Looman, Abrink et al. 2002; Shannon, Hamilton et al. 2003; Huntley, Baggott et al. 2006). The current view is that C2H2-ZNF genes have undergone a massive expansion during vertebrate evolution by a process involving tandem duplication (Dehal, Predki et al. 2001; Looman, Abrink et al. 2002; Hamilton, Huntley et

al. 2003; Shannon, Hamilton et al. 2003; Hamilton, Huntley et al. 2006; Huntley, Baggott et al. 2006). Yet, this view may be biased because it is extrapolated from small subsets of C2H2-ZNF genes.

In this report, we reconstructed a global picture of the evolution of the C2H2-ZNF gene repertoires during mammalian speciation, based on a comprehensive catalogue of all human C2H2-ZNF genes and their syntenic counterparts present in clusters in other mammals. Our study clearly demonstrates that this gene family expanded and contracted not only in human but across mammals and in a lineage-specific fashion. In addition, we discovered evolutionary change of individual C2H2-ZNF orthologs involving both differential duplication of zinc finger motifs and loss of N-terminal effector domains. Speciation of mammals is characterized by divergent evolutionary trends at the level of individual C2H2-ZNF genes as well as the entire family. This led us to propose a model for the evolution of SCAN, SCAN-KRAB and KRAB subfamilies and points to the importance of comparing complete repertoires rather than C2H2-ZNF genes from specific subfamilies for gaining insights into the possible orthologous relationships between genes from various genomes.

METHODS

Collection of human C2H2 zinc finger genes

We conducted an extensive similarity search to identify the complete repertoire of C2H2-ZNF genes in the human genome (assembly NCBI 36). First, we identified all the genes annotated as C2H2 and/or Kruppel zinc finger genes by performing an initial text term search via Entrez (www.ncbi.nlm.nih.gov). Second, we used PROSITE (http://www.expasy.com) to identify all the proteins which had a zinc finger motif of the C2H2 type as well as the N-terminal effector domain, if present.

From these searches, the genomic coordinates, chromosome number, position on the chromosome, number of fingers and identified domains were collected for each of the gene and protein sequences (initial dataset). A TBLASN (e-value cutoff 1e-3) (Gertz, Yu et al. 2006) search was done against the genome using each of the gene sequences from the initial dataset as a query. The blast hits were used to generate the final dataset of all the identified C2H2-ZNF genes (Supplementary Table S1).

Identification of C2H2-ZNF gene clusters in the human genome

We analyzed the relative positions of C2H2-ZNF genes in the human genome in order to identify the C2H2-ZNF clusters. A distribution of the distances between neighboring C2H2-ZNF genes in the human genome is presented in Supplementary Figure S1. Two consecutive C2H2-ZNF genes are said to belong to a cluster if the distance between them is \leq 500 kb regardless of the presence of other genes within the cluster , a threshold classically used in gene family studies (Niimura and Nei 2003). Clusters were determined for each human chromosome.

Identification of mammalian C2H2-ZNF clusters syntenically homologous to human clusters

We searched for clusters homologous to the human C2H2-ZNF clusters (i.e. syntenically homologous clusters) in other mammals for which complete genome sequences are available. The assemblies used for *Pan troglodytes*), *Mus musculus*, *Rattus norvegicus* and *Canis familiaris* were chimpanzee Pan Tro- 2.1, mouse NCBI m36, rat RGSC 3.4 and dog Can Fam 2.0. We used the linkage maps of Ensembl (http://www.ensembl.org); assignment of syntenic clusters is based on the genes flanking each human cluster and which were mapped in all the species. Four flanking genes at each extremity were mapped in most instances. Then, we conducted TBLASTN analysis of the syntenic regions comprised between the flanking genes, using as queries the amino acid sequence of the zinc finger region from all the known human C2H2-ZNF genes from the corresponding region. A hit with e-value $\leq 1e$ -4 confirmed the respective homologous clusters in the five mammalian genomes. A comprehensive catalogue of the human C2H2-ZNF clusters and their syntenic counterparts in other mammals is compiled in Supplementary Table S4.

Phylogenetic analysis

Phylogenetic analysis was conducted using the amino acid sequences of the zinc finger region (identified using PROSITE) of C2H2-ZNF genes from selected human clusters and their syntenically homologous clusters in chimpanzee, mouse, rat and dog. A multiple sequence alignment of the zinc finger regions of the C2H2-ZNF genes was generated using the program MUSCLE (Edgar 2004). The alignments were edited to remove gaps using the program GBLOCKS (Castresana 2000). Maximum Likelihood (ML) and Bayesian Inference (BI) methods were used to infer the phylogenetic trees and estimate the clade support. For ML analysis, the program RAxML (RAxML-VI-HPC Version 2.2.1) (Stamatakis, Ludwig et al. 2005) employing the WAG model of amino acid substitution was used to reconstruct the best tree. Bootstrapping of 100 datasets was implemented. The program Mr.Bayes v.3.1 (Huelsenbeck and Ronquist 2001) to test the robustness of the topology of the tree inferred through ML. One million generations were run and the trees were sampled after every 10 generations.

To determine appropriate outgroups for our analysis, we searched the nr database to look for close homologs in non-mammals using TBLASTN (e-value cut off 1e-4). In addition to the Xfin sequence from *Xenopus laevis*, we obtained a set of zinc finger genes from Chicken *(Gallus gallus, Assembly WASHUC2)* specifically selected for each human C2H2-ZNF cluster based on an extensive similarity search. To select the chicken outgroup, a TBLASTN (e-value cutoff 1e-4) search was done against the chicken genome using each of the human C2H2-ZNF sequences derived from the selected cluster of interest as a query. The top 10 hits for each query sequence were all analysed using a CD-HIT analysis (Identity threshold = 100%, 95% and 90%) (Li, Jaroszewski et al. 2001) to produce a final set of non-redundant representative chicken sequences, all used as a part of the outgroups.

Sequence analysis to confirm the loss of domains

In the case where loss of a domain was suspected, we conducted an extensive sequence analysis to rule out the possibility that these domains would have been missed either due to a frame-shift or inadequate exon-intron splicing of the gene and thus acid translation, preventing recognition by PROSITE inappropriate amino (http://www.expasy.com). Firstly, for each particular C2H2-ZNF genes where loss of an N-terminal domain was suggested, we systematically collected the nucleotide sequence of the region ranging from the stop of translation of the previous gene to the start of translation of the next gene. We conducted a TBLASTN search of this region using the amino acid sequence of the domain of interest (present in the corresponding orthologs and the consensus of the domains selected from randomly selected sequences) as a query to confirm the absence of the domain in the C2H2-ZNF gene of interest. Secondly, we obtained the exon-intron structure of these genes using the Ensembl Genome Browser (http://www.ensembl.org). In order to search for exonic or intronic sequences which may exhibit significant identity with the nucleotide sequence of the domain of interest. For this purpose we conducted a BLAST analysis of the individual exon and intron sequences with the nucleotide sequence of the various domains that are present in the corresponding orthologs.

Flowchart of the study

Figure 1 summarizes the flowchart of our analysis procedure of C2H2-ZNF genes and clusters in mammals.

RESULTS

Compilation of a comprehensive catalogue of human C2H2-ZNF genes

Previous studies reported the existence of at least 564 C2H2-ZNF genes in the human genome and suggested that this family may include approximately 700-800 genes (Bellefroid, Lecocq et al. 1989; Bellefroid, Poncelet et al. 1991). As a first step to study the evolution of C2H2-ZNF genes, we established a comprehensive catalogue of the C2H2-ZNF genes in the human genome. By conducting an extensive similarity search (see Methods), we identified 718 C2H2- ZNF genes (compiled in Supplementary Table S1). Of the 718 genes, 66 are annotated as pseudogenes in GenBank. For all genes, we determined their exact position on the chromosomes, their orientation, the number of finger motifs and the effector domains.

These genes are distributed across all chromosomes of the human genome (Supplementary Table S2). As reported earlier, chromosome 19 has the highest number (Venter, Adams et al. 2001) and density of C2H2-ZNF genes, including 40 % (289) of the 718 human C2H2-ZNF genes, whereas this chromosome corresponds to only 2.1 % of the human genome. More than half (58%) of the C2H2-ZNF genes encode conserved N-terminal domains, the KRAB, SCAN and BTB domains (Figure 2A), typically involved in transcriptional regulation (Kim, Chen et al. 1996; Collins, Stone et al. 2001) and form different C2H2-ZNF subfamilies. Further, we discovered two additional domains typical of transcription regulators, the SET and HOMEO domains that are also encoded by C2H2-ZNF genes. While the KRAB subfamily represents almost half of the C2H2-ZNF genes (45%), SET and HOMEO C2H2-ZNF genes together with members of all the other

subfamilies account for only a small percentage (~12%) of the C2H2-ZNF genes (Figure 2A).

Clustered organization of human C2H2-ZNF genes

It was reported earlier that chromosome 19 is particularly rich in tandemly duplicated C2H2-ZNF genes and that KRAB C2H2-ZNF genes, are clustered on several other chromosomes (Dehal, Predki et al. 2001; Rousseau-Merck, Koczan et al. 2002). In order to trace the duplication history of the entire C2H2-ZNF repertoire, we studied the distribution of these genes across the whole human genome. Two consecutive C2H2-ZNF genes were considered to belong to a cluster if the distance between them is ≤ 500 Kb, regardless of the presence of other genes or pseudogenes within the cluster (see Methods). Using this definition, we identified 81 human C2H2-ZNF clusters accounting for 72 % of the total number of C2H2-ZNF genes (518 of the 718) (Supplementary Tables S2 and S3). The remaining genes are dispersed as singletons. Among these clusters, 31 % include exclusively tandemly organized C2H2-ZNF genes with no other intervening genes (Figure 2B, Supplementary Table S3). The number of C2H2-ZNF genes per cluster ranges from 2 to 76 with an average of 6. As illustrated in the Figure 2B, about 75 % of the total number of C2H2-ZNF clusters has between two to six genes. Consistent with previous reports, chromosome 19 not only has the largest number of C2H2-ZNF clusters (Supplementary Table S2) but also hosts the largest clusters (>12 genes) (see Figure 2B and Supplementary Table S3).

We find that the large majority of KRAB (89 %) and SCAN (90 %) types of C2H2-ZNF genes are arranged in clusters (Figure 2A and Supplementary Table S2). This contrasts with the BTB subfamily of C2H2-ZNF genes or those lacking regulatory domains which occur more often as singletons in the genome. An analysis of the composition of individual clusters revealed that two-third of the clusters contains a mixture of various C2H2-ZNF subfamilies ('mixed clusters', Supplementary Table S3). The few clusters made up of a single C2H2-ZNF gene subfamily ('pure clusters') are of small size (< 4 genes).

Identification and comparison of syntenic C2H2-ZNF clusters across mammals

With the ultimate goal to study the evolution of zinc finger genes, we identified and compiled clusters in completely sequenced mammalian genomes (i.e. chimpanzee, mouse, rat and dog) that are syntenically homologous to those of human. Syntenically homologous clusters were identified by the genes flanking each cluster. Then, all the C2H2-ZNF genes found within the delimited syntenic regions were identified using a TBLASTN search (see Methods). The 81 human C2H2-ZNF clusters and their syntenic counterparts in other mammals are listed in Supplementary Table S4, which also includes information on the orientation of the genes in the clusters, their associated domains, the number of zinc finger motifs and the flanking genes.

Primates (*Homo sapiens* and *Pan troglodytes*) stood out for their large number of both C2H2-ZNF clusters and genes within them, as compared to rodents (*Mus musculus*

and *Rattus norvegicus*) and *Canis familiaris* (Figure 3A). The most parsimonious explanation is that a large expansion of C2H2-ZNF genes occurred in primates, and more particularly in human (518 genes in human *versus* 397 in chimpanzee) after divergence from rodents and canines. Rat has slightly less C2H2-ZNF genes than dog (7%), but 25% less than mouse. Considering the evolutionary relationship of the species (Figure 3A), these data suggest that not only species-specific duplication events, as reported earlier (Dehal, Predki et al. 2001; Hamilton, Huntley et al. 2003; Shannon, Hamilton et al. 2003), but also loss of family members (suggested here in rodents) may have occurred during the evolution of mammals. Differential species-specific expansion was reported previously for a subset of genes from the human ZNF45 subfamily on chromosome 19 compared with its mouse counterpart (Shannon, Hamilton et al. 2003). Furthermore, expansion of the human KRAB C2H2-ZNF subfamily was also shown earlier based on draft versions of the genomes of chimpanzee, mouse and dog (Huntley, Baggott et al. 2006). However, evidence of C2H2-ZNF gene or cluster loss could not be definitively obtained in these studies as it required detailed analysis of more than two completely sequenced genomes.

Comparing individual syntenic clusters in the mammalian genomes

To distinguish whether differences in the number of C2H2-ZNF clusters are due to species-specific gene gain or loss, we systematically compared individual syntenic clusters in the five mammalian genomes studied. The results of this analysis point to a differential evolutionary history in mammals. About 60 % of the human clusters (49) have syntenically homologous counterparts in all the species studied indicating that these C2H2-ZNF clusters

predate the divergence of dog, rodents and primates (Supplementary Table S4 and Supplementary Figure S2). In addition, we found (i) primate specific clusters (14 including 2 human specific clusters), (ii) clusters, present in primates and dog, that were lost in rodents (8 clusters including 3 present in mouse but absent in rat) and (iii) clusters present in primates and rodents but absent in dog (10 clusters) (examples in Figure 3B). Essentially all the primate clusters have larger number of genes than rodent or dog clusters which reflects a global primate-specific expansion of C2H2-ZNF (Supplementary Figure S2). Further, in 40% of all primate clusters, those from human contain more C2H2-ZNF genes than those from chimpanzee. This indicates that most of the evolutionary changes (duplication and/or loss) occurred late in the primate branch. A similar pattern was seen in rodents, where almost all mouse C2H2-ZNF clusters exhibit more genes than their syntenic rat clusters. While these results illustrate that the C2H2-ZNF gene family is rapidly and independently evolving within different lineages, insights into the role of gene duplication and/oss in the history of this gene family required rigorous phylogenetic analysis.

Phylogeny of C2H2-ZNF clusters in mammalian genomes

For addressing the relative contribution of gene duplication and loss in the evolution of C2H2-ZNF genes in mammals, we focused our study on selected large human C2H2-ZNF clusters and their syntenic counterparts in four other mammals. We expected that larger clusters would be more informative and possibly more representative of the whole genomes. Because of the clarity of evolutionary scenarios observed in the tree, we present here a detailed phylogenetic analysis of the second largest human C2H2-ZNF cluster (43 genes) located on chromosome 19q13.4, that we named cluster 19.12, and of its syntenic clusters (Supplementary Table S3 and S4) in other species. For phylogenetic analysis, we used the predicted amino acid sequences of the zinc finger regions. Genes annotated as pseudogenes in Genbank or genes containing less than three zinc finger motifs were not considered in the phylogenetic analysis (noise is expected to be too high if sequences of only 56 amino acids corresponding to 2 fingers motifs or less were included). Our total data set of C2H2-ZNF sequences from the human cluster 19.12 and their syntenic homologs in chimpanzee, mouse, rat and dog consists of 101 protein sequences, including the outgroup sequences from Xenopus and Chicken. We constructed a phylogenetic tree using Maximum Likelihood and Bayesian methods. We subdivided the tree into three groups (Figure 5) based on the kind of evolutionary scenarios observed i.e. one-to-one and one-to-many orthologous relationships between genes as well as gene loss as defined in Figure 4. The number of C2H2-ZNF sequences from each species is highlighted for each group. Two of these groups are monophyletic with significant (\geq 95%) support in both the Maximum Likelihood and Bayesian analysis (Group I and III).

A detailed analysis of the tree revealed four clades that underwent species-specific expansion, and two clades, with gene loss in some species. For example, a dog-specific expansion is seen in the monophyletic Group I, which includes three clustering genes from human (hZNF331), chimpanzee (pZNF331) and dog (cZNF331) which in turn grouped within a larger clade containing nine additional C2H2-ZNF genes from dog. In addition, this clade indicates a loss in rodents, due to the absence of mouse or rat genes. Group I alone illustrates how both species-specific duplication in dog and loss in rodents can

account for the higher number of genes seen in dog C2H2-ZNF clusters as compared to rodents.

Group II shows more pronounced expansion in human as seen in several clusters. For example, one of the primate-specific clades includes 17 human genes and 7 chimpanzee C2H2-ZNF genes (Figure 5). Of the 17 human genes present in the clade, only 6 genes show a one-to-one orthologous pairing with chimpanzee genes. Another well supported clade includes a single human gene (hZNF677) clustered with two dog genes (LOC484331 AND LOC476394). In this clade, the absence of a chimpanzee or rodent counterparts to these three genes suggests a loss in these species. For chimpanzee, however, loss by pseudogenization is possibly involved (see physical maps described below); note that the percentage of C2H2-ZNF genes annotated as pseudogenes was higher in chimpanzee that in human C2H2-ZNF clusters (62, Supplementary Table S4).

In group III, the relationship of the four rodent genes with the dog and primate genes could not be resolved (bootstrap values < 95 %). However, a rodent-specific clade revealed a mouse-specific duplication exhibiting a higher number of C2H2-ZNF genes in mouse than rat, as seen in several other cases in our study.

Superimposition of the phylogenetic trees with the physical maps of clusters

Comparison of gene trees, species tree and physical map information of cluster 19.12 genes and its syntenic homologs provide better insights into the processes underlying the evolution of the C2H2-ZNF clusters. The phylogenetic tree obtained for cluster 19.12 (Figure 5) suggests a simultaneous differential expansion and loss of C2H2-ZNF genes throughout evolution. In perfect agreement with the phylogenetic tree, genes of the monophyletic groups I and III were found to be physically clustered together on the chromosomes across mammals (Figure 6). Evidence for a tandem duplication event is provided by the comparison of the relationship within C2H2-ZNF genes of Group I on the tree with their spatial relationships in the physical maps that showed that the sequences of the dog clade form a tandem array on the chromosome (Figure 5). In addition to tandem duplication of individual genes within this group, e.g. cLOC484324 and cLOC484323 (Figure 5) which are next to each other on the chromosome and exhibit the same orientation (Figure 6), we also discovered tandem duplication of multiple genes. For instance, three genes (LOC482273, LOC611599, LOC480782/ orientation -, +, +) appear as a tandem repeat of three other genes (LOC611583, LOC484328, LOC484326/ orientation -, +, +) in this group (Figures 5 and 6).

The group II mainly contains primate-specific C2H2-ZNF genes that cluster on the phylogenetic tree in two well supported clades (\geq 97 % bootstrap) and a sub-group of weaker support (93% bootstrap). Almost all these genes also cluster physically together on the chromosome. Human orthology assignments for ten of the twelve chimpanzee genes from group II (underlined in Figure 6) were corroborated by two lines of evidence i.e. from the phylogeny, which was supported by the topology on the chromosome. Furthermore, genes from 7 out of 10 of the C2H2-ZNF ortholog pairs from this primate-specific cluster exhibit the same number of zinc finger motifs and the same type of N-terminal motif.

Species-specific variation in the number of finger motifs and the presence of Nterminal conserved domains

When analysing the C2H2-ZNF genes from the 81 human clusters and their syntenic homologs in mammals, we noticed that the average number of zinc finger motifs varied depending on the C2H2-ZNF gene subfamilies. Noticeably in all the mammalian species studied, genes with KRAB and SCAN-KRAB motifs have a higher number of zinc finger motifs than those from the other subfamilies (Figure 7A). For example, member of the KRAB subfamily have an average of 10 to 17 zinc finger motifs, while members of the BTB subfamily have only 2 to 3 (Figure 7A). We also noted species-specific variation in the number of zinc finger motifs within mammalian C2H2-ZNF genes. In particular, dog tends to have a much higher number of zinc finger motifs in most C2H2-ZNF gene subfamilies (Figure 7). Strikingly, LOC484264, a dog KRAB C2H2-ZNF gene exhibits 70 zinc finger motifs which is to our knowledge the highest number of zinc finger motifs to be reported for a zinc finger gene. Study of cluster 19.12 (Figure 5) illustrates more specifically the trend of dog genes to exhibit more zinc finger motifs; the dog LOC484338 gene (group III), for example, has six times more zinc finger motifs than its human ortholog. Furthermore, the dog gene LOC484326 has nearly twice as many motifs as its closest paralog LOC480782 (group I) (Figure 5). This indicates a quite recent and drastic expansion of zinc finger motifs within dog C2H2-ZNF genes, after the separation of dog from rodents and primates. In several cases, the C2H2-ZNF mammalian orthologs revealed differences in their numbers of finger motifs even within primate or within rodent lineages (Figure 7B and Supplementary Table 4).

In addition to the difference in the number of finger motifs in C2H2-ZNF orthologs and paralogs, we also found a variation in the presence of the N-terminal effector domains. As an example, orthologs of the C2H2-ZNF genes in the human cluster 6.2 show a variation in the presence of the KRAB or SCAN domains (Figure 7B), suggesting frequent and multiple losses and/or gains of KRAB and SCAN domains during evolution. To reconstruct these events, we analyzed in detail the exon-intron structure and sequences of these genes (See Methods). Serendipitously, this analysis led us to the observation that a large majority of the C2H2-ZNF containing a SCAN-KRAB or SCAN domain had each a typical exon-intron organization (Figure 7C). For example, both human genes, ZNF192 (SCAN-KRAB) and ZNF187 (SCAN) and their respective orthologs in other species (Figure 6B) share the predominant exon-intron organization most typical of SCAN-KRAB and SCAN C2H2-ZNF, respectively. While the dog LOC488318 has only a SCAN domain, its corresponding orthologs in human, mouse and rat have a SCAN-KRAB. When the nucleotide sequence of the exon which would have been predicted to encode a KRAB domain in dog (third exon after the SCAN) was compared with those of human, mouse and rat, the dog sequence exhibits a high conservation at the nucleotide level (>82 %) but no significant similarity at the amino acid level. This indicates that the loss of the KRAB domain in dog was due to sequence degeneration. Similarly, while the chimpanzee ZNF187 and its rat ortholog encode a SCAN domain, a degenerate SCAN domain was identified in the corresponding exon of their human and mouse orthologs. For the human SCAN-KRAB ZNF307 gene, we noticed that it exhibits an exon-intron organization typical of SCAN-KRAB C2H2-ZNF (Figure 7C) whereas its orthologs in the chimpanzee, mouse and rat encode solely a SCAN domain and present an exon-intron structure more typical of SCAN C2H2-ZNF. However, it was found that, in chimpanzee, a sequence similar to the KRAB sequence (99% at the nucleotide level) was embedded in the intron preceding the exon encoding the zinc finger domain. No KRAB related sequence could be detected in the rodent orthologs even with a detailed analysis of their sequences. Thus, either the KRAB sequence was gain in the primate lineage or lost in the rodent lineage. For reasons explained in the discussion, we believe that loss, rather than gain, is a more likely hypothesis.

DISCUSSION

Comparative studies in genome research focused on the extensive similarities existing between the human genome and the genomes from various other model organisms which provide valuable insights into biological function and aetiology of human diseases. However, differences existing among genomes have received less attention inspite of the importance they may have in the physiological, morphological and behavioural distinctive traits observed among species. A few studies on various gene families, such as the odorant receptor family, pointed out to some differences existing between genes of closely related species (Sitnikova and Su 1998; Lapidot, Pilpel et al. 2001; Niimura and Nei 2003; Gilad, Man et al. 2005; Niimura and Nei 2005). Our study of the C2H2-ZNF gene family reveals that there is an extensive variation of the C2H2-ZNF gene content and organization in the genomes from various mammals as well as in the domain composition of orthologous genes among species. It also provides the first clear demonstration of the contribution of gene loss in the C2H2-ZNF family during evolution which occurs at the level of clusters, genes and their functional domains. We provide the first genome scale confirmation of the rapid evolution of C2H2-ZNF gene clusters that occurs independently within related species which also supports conclusions drawn from smaller-scale studies on individual genes, clusters and C2H2-ZNF subfamilies (Dehal, Predki et al. 2001; Shannon, Hamilton et al. 2003; Hamilton, Huntley et al. 2006; Huntley, Baggott et al. 2006).
Substantial variation in the C2H2-ZNF gene family size and clustering across mammals

We report here the first complete catalogue of all human C2H2-ZNF gene clusters and their syntenic homologs in chimpanzee, mouse rat and dog. This catalogue reveals that in human, a large proportion of the genes from the C2H2-ZNF family (>70%) are organized in clusters. Comparative studies of the five mammalian genomes indicated that the total number of genes found in clusters varied considerably from 172 in rat to 518 in human (number of genes found in clusters in human > chimpanzee > mouse > dog > rat). Significantly, human and mouse have a larger number of clustered C2H2-ZNF genes (>30%) as compared to chimpanzee and rat, respectively, indicating that independent evolutionary events occurred after the divergence of the two primates (within the last ~ 6 -10 million years) and two rodents (within \sim 30-46 million years). We distinguish two kinds of events: first, a variation in the number of C2H2-ZNF genes in syntenically homologous clusters and second, the existence of lineage- and species-specific clusters in primates, rodents and canines. This can be accounted for by independent evolution of C2H2-ZNF genes in these closely related species. Previous studies focusing on KRAB C2H2-ZNF from chromosome 19 had identified and analyzed a primate-specific cluster (Mohrenweiser 1998) including members of the primate-specific ZNF91 subfamily of C2H2-ZNF (Hamilton, Huntley et al. 2006). Other studies on the KRAB C2H2-ZNF subfamily identified a differential expansion between a human KRAB C2H2-ZNF cluster and its syntenic counterpart in mouse (Shannon, Hamilton et al. 2003) and more recently other species-specific expansions based on draft of various mammalian genomes (Huntley, Baggott et al. 2006). We illustrate and confirm at a larger scale the existence of an ongoing process of genome dynamics with several lineage- and species-specific rearrangements and continuous repertoire expansion taking place independently in all evolutionary branches, particularly in primates. This finding was only possible through the analysis of a complete catalogue of all the subfamilies of C2H2-ZNF clusters and their syntenic counterparts in mammals.

Gene duplication and loss: Two counteracting forces in the evolution of C2H2-ZNF genes

An overview of 81 human C2H2-ZNF clusters identified here revealed that a third of them are pure clusters (with 2 to 24 C2H2-ZNF genes), i.e. they are not interspersed with other genes. Earlier observations of pure C2H2-ZNF gene clusters have led to the hypothesis that C2H2-ZNF genes in primates have expanded massively by tandem duplication (Bellefroid, Marine et al. 1993; Eichler, Hoffman et al. 1998; Elemento and Gascuel 2002; Schmidt and Durrett 2004; Bertrand and Gascuel 2005; Huntley, Baggott et al. 2006). We revisited this question based on our catalogue of human C2H2-ZNF clusters and their syntenic counterparts in chimpanzee, mouse, rat and dog. Here, we confirmed gene duplication and loss based on a reconciliation of both physical maps and the surperimposition of gene trees onto the known species tree (Page and Charleston 1997). Our results clearly show that both gene gain and gene loss events have occurred multiple times and independently in all the mammals studied. Combined with physical map data, our phylogenetic studies indicate that the expansion of C2H2-ZNF genes evidenced during the evolution of the five species studied results from the combined action of single-gene duplication and multiple gene duplication (for instances, duplication of all or part of the genes within a cluster). These duplication events were however counteracted by the loss of individual genes or clusters as exemplified in several cases where related genes or clusters found in primates and canine were absent in both or in any of the two rodents studied. This study represents the first clear demonstration of the involvement of gene and cluster loss in the evolution of C2H2-ZNF genes and suggests that during mammalian evolution the duplication events outnumbered the loss events. Our results provide convincing support that the C2H2-ZNF gene family evolved according to the "Birth and Death" model as proposed by Nei and colleagues (Nei, Gu et al. 1997; Nei 2000). According to this model, new genes are created by duplication including tandem duplication and block gene duplication (birth). While certain copies remain relatively unchanged in the genome for a long time, others diverge functionally by acquiring a new function. Some get deleted from the genome or become pseudogenes following deleterious mutations (death through elimination or inactivation). In the case of C2H2-ZNF genes pseudogenization seems to be limited, as suggested by expression studies and statistical analysis showing positive selection based on the analysis of specific clusters (Schmidt and Durrett 2004; Huntley, Baggott et al. 2006). This makes the C2H2-ZNF family different from the other gene families such as the olfactory receptor gene family (Glusman, Yanai et al. 2001; Niimura and Nei 2003) . Noticeably, gene loss by pseudogenization was prominent for the olfactory receptors with humans accumulating a higher number of olfactory receptor pseudogenes as compared to other primates and mouse (Sitnikova and Su 1998; Lapidot, Pilpel et al. 2001; Niimura and Nei 2005). These variations in the numbers of pseudogenes and functional genes have been associated with the differential chemosensory dependence in these species (Sharon, Glusman et al. 1999; Quignon, Kirkness et al. 2003). In comparison, besides the fact that they are known to function as regulator of transcription, the functions of only a few C2H2-ZNF proteins are known (Krebs, Larkins et al. 2003). Further studies of C2H2-ZNF genes in mammals could shed light on the functional consequences of different repertoires of these genes in different species. Until now, the clustered organization of these genes has made knock-out studies in animal models inefficient, possibly due to redundancy. However, based on a better knowledge of the organization/content of C2H2-ZNF genes in the various genomes, large chromosomal deletions of pure C2H2-ZNF clusters or other types of gene disruption or targeting approaches could provide insights into the functions of these genes in different animal models.

Evolution of C2H2-ZNF genes through gain and loss of finger motifs and N-terminal effector domains

Evidence of the variation in the numbers of zinc finger motifs among orthologs was previously reported for a subset of human chromosome 19 C2H2-ZNF genes and their mouse homologs (Looman, Abrink et al. 2002). It was shown that this variation is due to both differential duplication of finger motifs and loss due to degeneration. In our study, such variation in the number of zinc finger motifs among orthologs was observed recurrently among all mammals. Since the zinc finger motifs appears as a flexible motif with the ability to bind DNA, RNA and/or proteins, changes in the zinc finger motif sequences and number within C2H2-ZNF genes could differentially alter binding specificities and thus protein function. Both changes in the number of C2H2-ZNF genes and in the number of finger motifs encoded by orthologous genes may be determinant in species-specific related function.

The rapid evolution of the C2H2-ZNF genes observed in the mammalian lineage was not limited to the variation in the number of genes and zinc finger motifs. Variation in the presence of N-terminal effector domains, such as SCAN or KRAB, was observed in orthologs and could be accounted for by either gain or loss of these motifs in the various species. Loss by sequence degeneration of both the SCAN and the KRAB sequences was confirmed in several cases in our study. In some cases, neither loss nor gain could be resolved. A puzzling question remains however if one assumes that gain of KRAB and SCAN sequences can occur recurrently within C2H2-ZNF genes. It is indeed difficult to explain that these effector domains are always found in association with and N-terminal to the zinc finger motifs of C2H2-ZNF proteins and that the SCAN domain is always positioned N-terminal to the KRAB domain of SCAN-KRAB C2H2-ZNF proteins. Interestingly, by analyzing the exon-intron structure of C2H2-ZNF genes from the clusters, we found that most SCAN C2H2-ZNF and SCAN-KRAB C2H2-ZNF genes have each a typical exon-intron structure (Figure 7C and Figure 8A). This suggests that the acquisition of a SCAN and KRAB sequences by C2H2-ZNF genes corresponds most likely to singular events. This led us to propose the model described in Figure 8. Considering that the SCAN domain is found in all vertebrates and is more ancient than the KRAB domain only found in tetrapods, we suggest that first a SCAN-C2H2 ZNF gene was formed in an ancestor of vertebrates through the gain of SCAN sequence and that later, after the emergence of the tetrapods, the gain of a KRAB sequence by a SCAN C2H2-ZNF gene gave rise to a SCAN-KRAB C2H2-ZNF gene (Figure 8B). These two gain events possibly occurred through an exon-shuffling mechanism. Diversification of the C2H2-ZNF repertoires from each subfamily then occurred dynamically through on-going gene duplications and loss by deletion or degeneration of the SCAN and/or KRAB sequences. As implied by this model, the birth of the SCAN-KRAB C2H2-ZNF subfamily occurred earlier than that of the KRAB C2H2-ZNF subfamily. This was consistent with previous data showing that SCAN-KRAB-ZNF genes do not group together on one evolutionary clade but intermix with KRAB-ZNF genes in phylogenetic trees of the KRAB sequence (Looman, Abrink et al. 2002; Huntley, Baggott et al. 2006) (Huntley, Baggott et al. 2006). On the whole, our model is in agreement with the fact that C2H2-ZNF orthologs often belong to different C2H2-ZNF subfamilies and that we observed intermingling of C2H2-ZNF genes from the SCAN, KRAB and SCAN-KRAB subfamilies in many C2H2-ZNF clusters. Our study clearly indicated that the evolution of C2H2-ZNF subfamilies is tightly linked and stresses that the assignment of proper orthology requires comprehensive analysis of all C2H2-ZNF genes rather than the individual analysis of specific C2H2-ZNF subfamilies. It also points to the importance of loss/contraction and secondary simplification whose role in the dynamics of evolution is often underestimated. The underlying mechanisms in the expansion of C2H2-ZNF genes and the functional consequences of the important changes (gain and loss) occurring in their repertoires of various mammals are unclear. These variations, for example, may be at the advantage of complex organisms by providing more subtle and species-specific control in gene expression for morphogenesis or cognitive functions.

ACKNOWLEDGEMENTS

The authors thank Franz B. Lang for suggestions and help in phylogenetic analysis and Nicolas Lartillot (Universite de Montreal) for constructive comments on tree building and datasets. We also acknowledge Herve Philippe, Henner Brinkmann and Amy Hauth for critical discussions and Allan Sun for assistance in hardware and software installations. This work was supported by a grant from Natural Sciences and Engineering Research Council of Canada (to M.A). M.A is a Chercheur National from the Fonds de la recherché Sante du Quebec (FRSQ) and G.B is an associate from CIFAR (Canadian Institute for Advanced Research).

REFERENCES

- Bellefroid, E. J., P. J. Lecocq, et al. (1989). "The human genome contains hundreds of genes coding for finger proteins of the Kruppel type." <u>DNA</u> 8(6): 377-87.
- Bellefroid, E. J., J. C. Marine, et al. (1993). "Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells." <u>Embo J</u>
 12(4): 1363-74.
- Bellefroid, E. J., D. A. Poncelet, et al. (1991). "The evolutionarily conserved Kruppelassociated box domain defines a subfamily of eukaryotic multifingered proteins." <u>Proc Natl Acad Sci U S A</u> 88(9): 3608-12.
- Bertrand, D. and O. Gascuel (2005). "Topological rearrangements and local search method for tandem duplication trees." <u>IEEE/ACM Trans Comput Biol Bioinform</u> 2(1): 15-28.
- Castresana, J. (2000). "Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis." <u>Mol Biol Evol</u> **17**(4): 540-52.
- Collins, T., J. R. Stone, et al. (2001). "All in the family: the BTB/POZ, KRAB, and SCAN domains." <u>Mol Cell Biol</u> **21**(11): 3609-15.
- Dehal, P., P. Predki, et al. (2001). "Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution." <u>Science</u> **293**(5527): 104-11.
- Edgar, R. C. (2004). "MUSCLE: multiple sequence alignment with high accuracy and high throughput." Nucleic Acids Res 32(5): 1792-7.
- Eichler, E. E., S. M. Hoffman, et al. (1998). "Complex beta-satellite repeat structures and the expansion of the zinc finger gene cluster in 19p12." <u>Genome Res</u> 8(8): 791-808.

- Elemento, O. and O. Gascuel (2002). "An efficient and accurate distance based algorithm to reconstruct tandem duplication trees." <u>Bioinformatics</u> **18 Suppl 2**: S92-9.
- Gertz, E. M., Y. K. Yu, et al. (2006). "Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST." <u>BMC Biol</u> 4: 41.
- Gilad, Y., O. Man, et al. (2005). "A comparison of the human and chimpanzee olfactory receptor gene repertoires." <u>Genome Res</u> **15**(2): 224-30.
- Glusman, G., I. Yanai, et al. (2001). "The complete human olfactory subgenome." <u>Genome</u> <u>Res</u> 11(5): 685-702.
- Grondin, B., M. Bazinet, et al. (1996). "The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix." J Biol Chem 271(26): 15458-67.
- Hamilton, A. T., S. Huntley, et al. (2003). "Lineage-specific expansion of KRAB zincfinger transcription factor genes: implications for the evolution of vertebrate regulatory networks." <u>Cold Spring Harb Symp Quant Biol</u> 68: 131-40.
- Hamilton, A. T., S. Huntley, et al. (2006). "Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes." <u>Genome Res</u> 16(5): 584-94.
- Huelsenbeck, J. P. and F. Ronquist (2001). "MRBAYES: Bayesian inference of phylogenetic trees." <u>Bioinformatics</u> **17**(8): 754-5.

- Huntley, S., D. M. Baggott, et al. (2006). "A comprehensive catalog of human KRABassociated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors." <u>Genome Res</u> **16**(5): 669-77.
- Kim, S. S., Y. M. Chen, et al. (1996). "A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins." <u>Proc Natl Acad Sci U S A</u> 93(26): 15299-304.
- Klug, A. and D. Rhodes (1987). "Zinc fingers: a novel protein fold for nucleic acid recognition." <u>Cold Spring Harb Symp Quant Biol</u> **52**: 473-82.
- Krebs, C. J., L. K. Larkins, et al. (2003). "Regulator of sex-limitation (Rsl) encodes a pair of KRAB zinc-finger genes that control sexually dimorphic liver gene expression." <u>Genes Dev</u> 17(21): 2664-74.
- Lander, E. S., L. M. Linton, et al. (2001). "Initial sequencing and analysis of the human genome." Nature **409**(6822): 860-921.
- Lapidot, M., Y. Pilpel, et al. (2001). "Mouse-human orthology relationships in an olfactory receptor gene cluster." <u>Genomics</u> **71**(3): 296-306.
- Lee, M. S., G. P. Gippert, et al. (1989). "Three-dimensional solution structure of a single zinc finger DNA-binding domain." <u>Science</u> 245(4918): 635-7.
- Li, W., L. Jaroszewski, et al. (2001). "Clustering of highly homologous sequences to reduce the size of large protein databases." <u>Bioinformatics</u> 17(3): 282-3.
- Looman, C., M. Abrink, et al. (2002). "KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution." <u>Mol Biol Evol</u> 19(12): 2118-30.

- Looman, C., L. Hellman, et al. (2004). "A novel Kruppel-Associated Box identified in a panel of mammalian zinc finger proteins." <u>Mamm Genome</u> **15**(1): 35-40.
- Mark, C., M. Abrink, et al. (1999). "Comparative analysis of KRAB zinc finger proteins in rodents and man: evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes." <u>DNA Cell Biol</u> 18(5): 381-96.
- Melnick, A., G. Carlile, et al. (2002). "Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors." <u>Mol Cell Biol</u> **22**(6): 1804-18.
- Messina, D. N., J. Glasscock, et al. (2004). "An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression." <u>Genome Res</u> 14(10B): 2041-7.
- Miller, J., A. D. McLachlan, et al. (1985). "Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes." <u>Embo J</u> 4(6): 1609-14.
- Nei, M., and Kumar S. (2000). <u>Molecular Evolution and Phylogenetics</u>, New York: Oxford University Press.
- Nei, M., X. Gu, et al. (1997). "Evolution by the birth-and-death process in multigene families of the vertebrate immune system." <u>Proc Natl Acad Sci U S A</u> 94(15): 7799-806.
- Niimura, Y. and M. Nei (2003). "Evolution of olfactory receptor genes in the human genome." <u>Proc Natl Acad Sci U S A</u> **100**(21): 12235-40.
- Niimura, Y. and M. Nei (2005). "Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice." <u>Gene</u> **346**: 13-21.

Ohta, T. (2000). "Evolution of gene families." Gene 259(1-2): 45-52.

- Page, R. D. and M. A. Charleston (1997). "From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem." <u>Mol Phylogenet Evol</u> 7(2): 231-40.
- Quignon, P., E. Kirkness, et al. (2003). "Comparison of the canine and human olfactory receptor gene repertoires." <u>Genome Biol</u> 4(12): R80.

Rhodes, D. and A. Klug (1993). "Zinc fingers." Sci Am 268(2): 56-9, 62-5.

- Rosati, M., M. Marino, et al. (1991). "Members of the zinc finger protein gene family sharing a conserved N-terminal module." <u>Nucleic Acids Res</u> **19**(20): 5661-7.
- Rousseau-Merck, M. F., D. Koczan, et al. (2002). "The KOX zinc finger genes: genome wide mapping of 368 ZNF PAC clones with zinc finger gene clusters predominantly in 23 chromosomal loci are confirmed by human sequences annotated in EnsEMBL." <u>Cytogenet Genome Res</u> 98(2-3): 147-53.
- Sander, T. L., A. L. Haas, et al. (2000). "Identification of a novel SCAN box-related protein that interacts with MZF1B. The leucine-rich SCAN box mediates hetero- and homoprotein associations." <u>J Biol Chem</u> 275(17): 12857-67.
- Schmidt, D. and R. Durrett (2004). "Adaptive evolution drives the diversification of zincfinger binding domains." <u>Mol Biol Evol</u> **21**(12): 2326-39.
- Schuh, R., W. Aicher, et al. (1986). "A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene." <u>Cell</u> 47(6): 1025-32.
- Schumacher, C., H. Wang, et al. (2000). "The SCAN domain mediates selective oligomerization." J Biol Chem 275(22): 17173-9.

66

- Shannon, M., A. T. Hamilton, et al. (2003). "Differential expansion of zinc-finger transcription factor loci in homologous human and mouse gene clusters." <u>Genome</u> <u>Res</u> 13(6A): 1097-110.
- Sharon, D., G. Glusman, et al. (1999). "Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes." <u>Genomics</u> 61(1): 24-36.
- Sitnikova, T. and C. Su (1998). "Coevolution of immunoglobulin heavy- and light-chain variable-region gene families." <u>Mol Biol Evol</u> **15**(6): 617-25.
- Stamatakis, A., T. Ludwig, et al. (2005). "RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees." <u>Bioinformatics</u> 21(4): 456-63.
- Stone, J. R., J. L. Maki, et al. (2002). "The SCAN domain of ZNF174 is a dimer." <u>J Biol</u> <u>Chem</u> 277(7): 5448-52.
- Theunissen, O., F. Rudt, et al. (1992). "RNA and DNA binding zinc fingers in Xenopus TFIIIA." <u>Cell</u> **71**(4): 679-90.
- Thornton, J. W. and R. DeSalle (2000). "Gene family evolution and homology: genomics meets phylogenetics." <u>Annu Rev Genomics Hum Genet</u> 1: 41-73.
- Urrutia, R. (2003). "KRAB-containing zinc-finger repressor proteins." <u>Genome Biol</u> 4(10): 231.
- Venter, J. C., M. D. Adams, et al. (2001). "The sequence of the human genome." <u>Science</u> 291(5507): 1304-51.

Witzgall, R., E. O'Leary, et al. (1994). "The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression." <u>Proc Natl Acad Sci U S</u>
<u>A</u> 91(10): 4514-8.

Figure 2: Distribution of all the singletons and clustered genes from the various human C2H2-ZNF sub-families and gene composition of the C2H2-ZNF clusters

Distribution of all the singletons and clustered genes from the various human C2H2-ZNF sub-families and gene composition of the C2H2-ZNF clusters.

A) The number of genes belonging to the various C2H2-ZNF subfamilies are shown as well as the proportion of genes found as singletons or as part of clusters. C2H2-ZNF genes associated with KRAB and SCAN domains are more often found to be clustered. S-K= C2H2-ZNF containing both a SCAN and a KRAB domain. NONE= C2H2-ZNF without any conserved domain associated. The percentage distribution is mentioned on top of each bar for each sub-family.

B) The number of C2H2-ZNF clusters is shown with respect to the number of genes present in each cluster. The proportion of clusters composed of solely C2H2-ZNF without any intervening gene or with intervening genes other than C2H2 ZNF (Non-C2H2-ZNF) is also represented. A star (*) identifies large clusters present on chromosome 19. Figure 3: Differential expansion and loss of C2H2-ZNF clusters in five mammalian genomes

Differential expansion and loss of C2H2-ZNF clusters in five mammalian genomes.

A) Evolution of the C2H2-ZNF repertoires in primates, rodents and dog. The number of C2H2-ZNF clusters and the total number of C2H2-ZNF found in these clusters are mentioned on the species tree. Since *Xenopus laevis* and *Gallus gallus* C2H2-ZNF are used as an outgroup in phylogenetic studies, these species are also positioned on the tree.

The figure indicates the primate-specific increase in the number of C2H2-ZNF as compared to rodents and dog.

B) A graphical representation of different scenarios seen in the evolution of human C2H2-ZNF clusters and its syntenically homologous C2H2-ZNF clusters in chimpanzee, mouse, rat and dog. The human clusters selected and named on the graph as well as their syntenic counterparts were 1) present in all species, 2) primate-specific, 3) lost in rodents or 4) absent in dog. For each human C2H2-ZNF cluster named on the graph, the first number indicates the chromosome number and the second is the number attributed to that cluster on the chromosome. Supplementary Figure S2 provides a more comprehensive graphical representation including the 40 human clusters that contain at least 3 C2H2-ZNF and their syntenic counterparts in the four other mammals. Figure 4: Evolutionary scenarios in the phylogenetic tree

Evolutionary scenarios in the phylogenetic tree

The different kinds of evolutionary scenarios seen in the phylogenetic tree are shown. A) Species tree showing the evolutionary relationship between the species, 1, 2, 3 and 4. B) A species-specific gain of genes appears as a clade including a single homolog from one species and multiple homologs from the other. Phylogeny between genes S1 gene, S2 gene, S3 gene and S4 gene from species 1, 2, 3 and 4 respectively. Gene gain in species 4 is observed. C) Species-specific gene loss appears as the absence of a corresponding ortholog for one species on the tree and is deduced from the evolutionary relationships of the species considered with the other species. Loss of the corresponding gene (S3 gene) in species 3.

Figure 5: Phylogenetic analysis of C2H2-ZNF genes in cluster 19.12 of human and its

syntenic counterparts in other mammals

76

Phylogenetic analysis of C2H2-ZNF genes in cluster 19.12 of human and its syntenic counterparts in other mammals.

A phylogenetic tree was built using the amino acid sequences corresponding to the zinc finger regions of the various human C2H2-ZNF from cluster 19.12 and their syntenic counterparts in chimpanzee, mouse, rat and dog. The tree was generated using a maximum likelihood method (RaxML) and verified using a bayesian method (Mr.Bayes). 346 sites from 101 sequences (including the 20 outgroup sequences from chicken and *Xenopus*) were used in the analysis. The tree is divided into three major Groups (I-III). A tabulation of the number of genes present in each group is indicated for each species (h: human, p: chimpanzee, m: mouse, r: rat, c: dog. The bootstraps values are indicated for each node on the tree. A small black circle is also represented at each node in cases where the posterior probability value is equal to 1.00. This cluster contains only C2H2-ZNF genes that are either from the KRAB subfamily or that do not encode any conserved N-terminal domain. Next to the name of each C2H2-ZNF gene, the presence of an N-terminal KRAB domain is indicated by a K and number of zinc finger motifs is mentioned. A clear evidence of differential expansion is seen in primates and dog. Loss of C2H2-ZNF in the rodent lineage is also observed.

Figure 6: Physical maps showing the organization of the human C2H2-ZNF from cluster 19.12 localized on

19q13.4 and its syntenically homologous counterparts in other mammals

78

Physical maps showing the organization of the human C2H2-ZNF from cluster 19.12 localized on 19q13.4 and its syntenically homologous counterparts in other mammals. For the large C2H2-ZNF cluster 19.12 and its syntenically homologous counterparts in chimpanzee, mouse, rat and dog, each C2H2-ZNF genes is represented by an open arrow which indicates its orientation on the chromosome strands; this excludes the pseudogenes whose name appears in parenthesis. For these clusters which contain only C2H2-ZNF that are from the KRAB subfamily or that do not encode any conserved N-terminal domain, the presence of a conserved N-terminal KRAB domain is indicated by as square positioned in front of the open arrow representing the gene. Genes identified as orthologs, based on the phylogenetic tree and physical maps, are underlined and are aligned vertically on their respective chromosomes. Dotted lines separate the genes belonging to Group I, Group II and Group III defined in the phylogenetic tree (Figure 5). The two species specific groups from dog and primates are seen in Group I and Group II, respectively. Figure 7: Variation in the numbers of zinc finger motifs in mammals and in the presence of conserved N-terminal domains in orthologs

80

Variation in the numbers of zinc finger motifs in mammals and in the presence of conserved N-terminal domains in orthologs.

A) The average number of zinc finger motifs was calculated for all the C2H2-ZNF from the 81 human clusters identified and their corresponding syntenically homologous clusters in the other mammals; for each species, the average number for the total C2H2-ZNF (All) and for members of the various C2H2-ZNF sub-families (KRAB, SCAN, SCAN-KRAB, BTB, HOMEO, SET and, NONE = no conserved domain associated) is presented. For each category, the number of genes in each species is listed above the bars in the following order (human, chimpanzee, mouse, rat and dog).

B) For the human C2H2-ZNF cluster 6.2 (chromosome 6p22.1) and its syntenically homologous counterparts in chimpanzee, mouse, rat and dog, each C2H2-ZNF genes is represented by an open arrow which indicates its orientation on the chromosome strands; this excludes the pseudogenes whose name appears in parenthesis. For these clusters which contain C2H2-ZNF that are from the KRAB or SCAN subfamily or that do not encode any conserved N-terminal domain, the presence of a conserved N-terminal is indicated by as square for a KRAB domain or an open circle for a SCAN domain both being positioned in front of the open arrow representing the gene. Genes identified as orthologs, based on the phylogenetic tree and physical maps, are aligned vertically on their respective chromosomes. Cases where domain shuffling was observed among orthologs from the different mammals are marked by a grey box.

81

C) Exon-Intron organization of most human C2H2-ZNF from the SCAN-KRAB and SCAN subfamilies. 80% of the human SCAN-KRAB C2H2-ZNF (11/14) and 55% of the SCAN C2H2-ZNF (16/29) found in clusters have the presented exon-intron structures shown. The exons encoding the SCAN, KRAB (A box) and ZNF are indicated.

Figure 8: Model for the evolution of the SCAN, SCAN-KRAB and KRAB C2H2-ZNF subfamilies

Model for the evolution of the SCAN, SCAN-KRAB and KRAB C2H2-ZNF subfamilies

A) Sequential events of exon shuffling leading to the birth of SCAN-C2H2-ZNF and SCAN-KRAB C2H2-ZNF subfamilies. Most of the SCAN-C2H2-ZNF and the SCAN-KRAB C2H2 ZNF have the exon-intron structure shown (boxes represent exons). Birth of new families may have occurred by an exon shuffling mechanism leading presumably first to the acquisition of a SCAN domain by a C2H2-ZNF and later of a KRAB domain by a SCAN-C2H2-ZNF. Most SCAN-KRAB C2H2-ZNF have a single exon placed in between the exon encoding the KRAB A box (identified as KRAB) and the exon encoding the zinc finger domain (ZNF). This exon encodes in most instances the so-called KRAB B, b, or C boxes.

B) Dynamic evolution of C2H2-ZNF after birth of the SCAN and SCAN-KRAB subfamilies through gene duplication and recurrent loss of effector domains. A first SCAN C2H2-ZNF appeared in an ancestor of vertebrates following the gain of a SCAN domain by a C2H2-ZNF (in grey box); duplication then led to the establishment of the SCAN C2H2-ZNF subfamily. The gain of a KRAB domain at the emergence of tetrapods by a SCAN C2H2-ZNF gave rise to a SCAN-KRAB C2H2-ZNF (in grey box). This was followed by duplication and establishment of the SCAN-KRAB subfamily. Loss of SCAN domain by deletion or degeneration from some SCAN-KRAB C2H2-ZNF genes followed in many instances by duplication led to the expansion of the KRAB C2H2-ZNF. Duplication and loss of SCAN or KRAB domains by deletion or degeneration from SCAN, SCAN-KRAB

and KRAB C2H2-ZNF subfamilies are seen as a recurrent theme shaping the repertoires of the C2H2-ZNF subfamilies.

Supplementary Figure 1: Distribution of intergenic distances between 718 C2H2-ZNF in the human genome

Supplementary Figure 1: Distribution of intergenic distances between 718 C2H2-ZNF in the human genome.

Supplementary Figure 1

Distribution of intergenic distances between 718 C2H2-ZNF in the human genome. The intergenic distances between the consecutive C2H2-ZNF on each chromosome was calculated for each C2H2-ZNF of the human genome. For the 718 C2H2-ZNF, the number of C2H2-ZNF found within the range of intergenic distances indicated on the x axis is plotted on the y axis. For example, there are 108 C2H2-ZNF within 10 to 20 Kb from a consecutive C2H2-ZNF. Supplementary Figure 2: Comparison of the number of C2H2-ZNF genes in the 40 human clusters containing at least 3 C2H2-ZNF and their syntenic counterparts in four other mammals

Supplementary Figure 2A

Supplementary Figure 2B

Supplementary Figure 2

Comparison of the number of C2H2-ZNF genes in the 40 human clusters containing at least 3 C2H2-ZNF and their syntenic counterparts in four other mammals. For each human C2H2-ZNF cluster named of the graph, the first number indicates the chromosome number and the second is the number attributed to that cluster on the chromosome. C2H2-ZNF clusters with six or more (A) and three to five (B) genes in human and their syntenic counterparts Chimpanzee, Mouse, Rat and Dog. This figure provides evidence of C2H2-ZNF differential species-specific expansion and gene loss in rodents.
Supplementary Table S1

Comprehensive catalogue of the 718 C2H2-ZNF genes in the human genome.

сř	¹ Position ²	Cluster ³	Pseudo ⁴	Name ⁵	Description ⁶	Domain ⁷	F ^a 0 ^a l	¹⁰ Start ¹¹	Stc	p ¹²
-	1p36.3			HKR3	GLI-Kruppel family member HKR3	втв	11 + 6	88 656269	8 657	71926
-	1p36.21			PRDM2	Retinoblastoma protein interacting ZNF	SET	4 + 2	718 139039	37 14(024162
-	1p36.2-p36.1			ZBTB17	Zinc finger and BTB domain containing 17	BTB	13 - 8	03 161409	51 16	175101
-	1p36			ZNF436	Zinc finger protein 436	KRAB	12 - 4	70 235590	55 239	567466
-	1p36.11	1.1a		ZNF593	Zinc finger protein 593		+	16 263610	96 26:	369951
-	1p36.11	1.1b		ZNF683	Zinc finger protein 683	,	4	09 265607	12 26	571853
-	1p35.1	•		ZBTB8	Zinc finger and BTB domain containing 8	втв	2 +	12 327773	59 328	344129
-	1p34.3			ZNF31	Zinc finger protein 31(KOX 29)	SCAN	10 + 9	77 337108	46 337	734582
	1p34.2	1.2a		ZNF643	Zinc finger protein 643	KRAB	+ 6	32 406883	66 407	701939
-	1p34.2	1.2b		ZNF642	Zinc finger protein 642	KRAB		05 407158	89 407	734602
-	1p34.2	1.2c		ZNF684	Zinc finger protein 684	KRAB	+	78 407698	20 407	86425
-	1p34.2	,		ZNF691	Zinc finger protein 691	,	2 + 2	84 430848	67 43(90735
-	1p34.1	1.3a		ZNF393	Zinc finger protein 393		ი + ღ	89 443571	09 443	373399
-	1p34.1	1.3b	€	LOC128208	similar to dJ675G8.1 (novel zinc finger protein)	,		452725	86 456	386366
-	1p32.3			GLIS1	GLIS family zinc finger 1		5 - 6	20 537444	94 539	372465
-	1p22.2			ZNF644	Zinc finger protein 644	ſ	з - -	327 911534	43 912	60259
-	1p22			GF11	Zinc finger protein Gfi-1	,	6 - 4	22 927129	09 927	25021
-	1q22	,		ZBTB7B	Zinc finger protein and BTB domain 7B	BTB	4 + 5	39 153253	548 153	3256078
-	1q25.1	,	<u>→</u>	ZBTB37	Zinc finger and BTB domain containing 37	BTB	רי + י	61 172104	155 172	109404
-	1q25.3			ZNF648	Zinc finger protein 648		10 - 5	68 180290	328 180	297470
-	1q31.1	1	€	LOC441918	similar to Zinc finger protein 132		י + י	183273	244 183	1280109
-	1q31.2		€	LOC391146	similar to zinc finger protein 101	ı		189694;	321 189	695464
-	1q31.3			ZBTB41	Zinc finger and BTB domain containing 41	втв	14 - 9	09 1953894	437 195	436295
T	1q32.1	,		ZNF281	Zinc finger protein 281		4 - 8	95 198642(043 198	645789
-	1q42.13	1.4a		ZNF678	Zinc finger protein 678	,	15 + 5	25 2258178	867 225	910754
-	1q42.13	1.4b		Gm127	Similar to zinc finger protein ZFP	KRAB	7 - 7	14 2259518	873 225	961023
-	1q43	,		LOC441927	similar to zinc finger protein 532	,	2 - 1	79 2405406	526 240	546819
-	1q44-qter			ZNF238	Zinc finger protein 238	BTB	4 + 5	31 2422812	208 242	287401
-	1q44	1.5a	⋺	ZNF695	Zinc finger protein 695	KRAB	, ,	33 2451754	487 245	237946
-	1q44	1.5b		ZNF670	Zinc finger protein 670	KRAB	9 - 3	39 2452667	710 245	308692
-	1q44	1.5c		ZNF669	Zinc finger protein 669	KRAB	9 - 4	34 2453299	916 245	334251
<u>•</u>	1q44	1.5d		ZNF124	Zinc finger protein 124 (HZF-16)	KRAB	7 - 2	39 2453858	326 245	401941

245430449 245561668 247110337 180434312 219232599 247119894 10125737 44972846 207738859 213723303 95213792 110569031 121466321 3374118 95245078 0112414 27699467 71515697 95188990 27457097 30634137 10534042 12684076 42934136 12959288 44494166 44516816 22186054 40556047 14599979 44612561 44677280 10504881 14664967 44740327 245419499 245530245 247099153 247110828 110109590 110552807 144834358 180014954 207653774 219210883 213579589 121266327 10101133 27453606 60531806 71412397 73371570 95177127 95194910 95236998 22150080 10541508 44457410 27659397 40493641 40522534 42675878 42922406 44512201 44601460 12953061 44641515 44571717 44665259 44729142 1258 1524 1031 + 1029 249 519 + 452 779 425 426 + 128 544 741 512 541 567 486 400 524 653 471 302 526 145 439 + 519 544 422 371 + 754 + 331 371 . 10 -. . + + , . + + + . + + + + + 5 22 0 8 10 4 13 9 ÷ 4 S 12 ю 0 æ 8 SCAN-KRAB SCAN-KRAB SCAN-KRAB SCAN-KRAB KRAB KRAB KRAB KRAB KRAB KRAB KRAB KRAB KRAB B-cell CLL/lymphoma 11A(zinc finger protein) Zinc finger protein, subfamily 1A, 2(Helios) Similar to zinc finger protein ZFP1 **GLI-Kruppel family member GLI2** Similar to zinc finger protein 135 Similar to zinc finger protein 532 similar to Zinc finger protein 492 Similar to zinc finger protein 533 Similar to zinc finger protein532 Similar to zinc finger protein 285 Similar to zinc finger protein 621 Zinc finger protein 2(A1-5) Early growth response 4 Zinc finger protein 692 Zinc finger protein 513 Zinc finger protein 512 Zinc finger protein 638 Zinc finger protein 514 Zinc finger protein 533 Zinc finger protein 445 Zinc finger protein 496 Zinc finger protein 672 Zinc finger protein 142 Zinc finger protein 619 Zinc finger protein 651 Zinc finger protein 662 Zinc finger protein 660 Zinc finger protein 620 Zinc finger protein 621 Zinc finger protein 167 Zinc finger protein 197 Zinc finger protein 502 Zinc finger protein 35 Kruppel-like factor 11 Kruppel-like factor 7 OC729806 .OC344065 .OC343938 .OC442049 -OC285346 -OC442041 -OC389099 .OC339903 ZNFN1A2 ZNF533 ZNF619 ZNF496 ZNF638 ZNF142 ZNF513 **ZNF672 ZNF512** BCL11A **ZNF514 ZNF620** ZNF621 ZNF651 **ZNF662 ZNF445** ZNF167 ZNF660 **ZNF197 ZNF692 ZNF502** KLF11 **ZNF35** EGR4 ZNF2 GL12 KLF7 € 3 2.3a 2.3b 2.1a 2.2a 2.2b 2.2c 3.1c **3.3a** 1.6a 1.6b 2.1b 3.1a 3.1b 3.2a 3.2b 3.2c 3.3b **3.3**c **3.3**d 3.3e 3.39 1.5e 1.5f 3.3f 2p13.2-p13.1 2q31.2-q31.3 3p22.3-p21.1 2q34-q35 3p22-p21 3p21.32 3p21.32 3p21.32 3p21.31 2q21.2 2p23.3 2p23.3 2q11.1 3p24.3 3p22.1 3p22.1 3p22.1 3p22.1 2p16.1 2q11.1 2q11.2 3p22.1 3p22.1 2q13 2q32 3p21 2p13 2q13 2q14 1q44 1q44 2q34 1q44 2p25 1q44

~ ~ ~ ~

.

Tadepally et.al

_																															_			
44753579	48287484	62334061	75917386	88273912	102878607	115439115	116348817	126576781	127558926	148607097	148617196	180536014	180272278	188946169	194357460	78099	239748	301265	359047	4374410	9087407	38376796	57493097	142375301	189163193	25741	16518894	32480601	42504182	43211593	71839005	137832903	150264584	176426364
44746128	48257649	62330399	75841490	88271165	102850978	115436168	115540207	126433609	127544168	148586527	148609871	180524245	180224196	188921859	194355947	43227	196418	252840	321617	4342879	9048008	38342212	57468799	142361547	189153919	12667	16504628	32390213	42460563	43157399	71774990	137829080	150254157	176382303
262	421	459	907	299	1053	273	668	794	416	334	447	485	288	706		648	274	,	474	765	178	345	1097	320	310	498	477	1074		510	744	543	604	294
+	+	•	'	+	1	,	,	•	•	•	+	+	ľ	,	•	+	+	,	+	+	ı	+	+	+	+		1	•	1	+	•	+	,	+
თ	4	9	÷	~	1	7	5	4	3	4	4	5	2	9	•	18	9	•	1	7	ı	3	9	1	ę	16	•	•	'	4	1	З	12	4
,	KRAB		KRAB		втв		BTB		•	1	ÿ	•		втв	ŀ	KRAB			KRAB	BTB	KRAB		8	ž	ii.	9		,	ž		ĩ	•	KRAB	ı
Zinc finger protein 501	Zinc finger protein 589	Zinc finger protein 312	Zinc finger protein 717	Zinc finger protein 654	Zinc finger and BTB domain containing 11	Zinc finger protein 80	Zinc finger and BTB domain containing 20	Zinc finger protein 148	Kruppel-like factor 15	Zic family member 4	Zic family member 1	Zinc finger protein 639	P53 target zinc finger protein	Zinc finger protein 51	88 Similar to zinc finger protein 161	Zinc finger protein 595	i6 Similar to zinc finger protein 595	54 Similar to zinc finger protein 595	Zinc finger protein 141	Zinc finger protein 509	07 Similar to zinc finger protein 596	Kruppel-like factor 3	RE1-silencing transcription factor	Zinc finger protein 330	Zinc finger protein 42	Zinc finger protein 62 homolog	Zinc finger protein 622	Zinc finger RNA binding protein	34 similar to zinc finger protein 35	Zinc finger protein 131	Zinc finger protein 366	Zinc finger protein 225	Zinc finger protein 300	Zinc finger protein 346
ZNF501	ZNF589	ZNF312	ZNF717	ZNF654	ZBTB11	ZNF80	ZBTB20	ZNF148	KLF15	ZIC4	ZIC1	ZNF639	WIG1	BCL6	LOC2853(ZNF595	MGC2635	LOC6542!	ZNF141	ZNF509	LOC4410(KLF3	REST	ZNF330	Zfp42	ZFP62	ZNF622	ZFR	LOC4421	ZNF131	ZNF366	EGR1	ZNF300	ZNF346
															€			€						-					€					
3.3h			1.			3.4a	3.4b	•		3.5a	3.5b	3.6a	3.6b	ı	0	4.1a	4.1b	4.1c	4.1d		۲		•		٠	ð	٠	1		1	a a	į.	×	×
3n21.31	3p21	3p14.2	3p12.3	3p11.1	3q12.3	3p12-qter	3q13.2	3q21	3q13-q21	3q24	3q24	3q26.32	3q26.3-q27	3q27	3q29	4p16.3	4p16.3	4p16.3	4p16.3	4p16.3	4p16.1	4p14-p15.1	4q12	4q31.1-q31.2	4q35.2	5p15.33	5p15.1	5p13.3	5p12	5p11-p12	5q13.2	5q35.3	5q33.1	5q35.2
~	, ო	e	e	ლ	e	e	3	e	e	3	. ന	e	e	e	3	4	4	4	4	4	4	4	4	4	4	S	S	ŝ	5	5	5	2	ഹ	5

178090309 178292816 178244021 178326040 178394655 178440301 109214949 109911133 144371236 28233215 151804791 27447283 27477205 27548858 28309239 28442503 28475487 29081016 33393472 33533299 43445159 38030633 26767741 28165320 28205836 28245348 28327981 8353960 28429951 28663091 29756866 31977748 35371738 57143057 4957467 178071128 178300830 178383412 178420213 178219607 178255522 144303132 109213585 09890412 151777365 28217695 28301049 28320469 28400493 28454973 28647386 29070573 29748239 31975373 33390173 33530334 87921986 26744497 27433581 27474095 27526506 28200366 28237530 28342872 28425738 35335488 43411786 57019470 28154551 4934111 1325 2099 1013 2895 605 612 522 685 269 + 394 604 574 634 473 461 554 578 545 325 406 538 508 459 570 402 751 + 485 348 463 385 407 697 514 13 + 13 + + + + + • + + . + + ī . . + + . 42 <u></u> 33 7 ÷ 6 7 ი ß ß o 2 SCAN-KRAB SCAN-KRAB SCAN SCAN SCAN KRAB KRAB KRAB KRAB KRAB KRAB SCAN SCAN SCAN SCAN KRAB KRAB BTB BTB BTB Zinc finger and BTB domain containing 24 (ZNF450) BTB BTB Similar to dJ153G14.3 (novel C2H2 type ZNF) similar to hypothetical protein 9630041N07 Zinc finger and BTB domain containing 12 Zinc finger and BTB domain containing 9 Zinc finger and BTB domain containing 2 Similar to zinc finger protein 192 similar to zinc finger protein 259 Similar to zinc finger protein 16 Zinc finger protein 57 homolog Zinc finger protein 2 homolog Zinc finger protein PLAGL1 Zinc finger protein 354B Zinc finger protein 354C Zinc finger protein 354A Zinc finger protein 322A Zinc finger protein 454 Zinc finger protein 204 Zinc finger protein 184 Zinc finger protein 165 Zinc finger protein 435 Zinc finger protein 192 Zinc finger protein 193 Zinc finger protein 323 Zinc finger protein 305 Zinc finger protein 452 Zinc finger protein 311 Zinc finger protein 318 Zinc finger protein 307 Zinc finger protein 187 Zinc finger protein 306 Zinc finger protein 451 Zinc finger protein 292 Zinc finger protein 297 Zinc finger protein 76 DKFZp686E2433 .OC346157 .0C442240 -OC222701 LOC441192 ZNF354C **CNF354A** ZNF354B ZNF322A ZNF204 ZNF184 ZNF165 ZNF435 ZNF192 ZNF305 ZNF318 **ZNF193** ZNF187 **ZNF323 ZNF306** ZNF452 ZNF297 **2BTB24 ZNF454 ZBTB12** ZBTB9 **ZNF292 ZNF307 ZNF311 ZNF451** ZNF76 PLAG1 ZFP57 ZBTB2 ZFP2 ₽ 5.1b 5.1c 5.1d 5.1e 6.2g 6.2h 6.3b 6.1a 6.1b 6.2a 6.2b 6.2d 6.2e 6.2k 6.3a 5.1a 6.2c 6.2f 6.2 5.1f 6.2] 6.21 6p21.33-p21.31 6p22.2-p21.3 5p21.3-p21.2 5pter-p12.1 6p21.31 6p21.31 6p21.32 6p21.33 6p22.1 6p22.1 6p22.1 6p21.3 5q35.3 5q35.3 5q35.3 5q35.3 6p21.3 6p21.3 6p22.1 6p22.1 6p12.1 5q35.3 5q35.2 6p21.3 6p22.1 6p21.3 6p22.1 6p21.3 7p22.1 6p22.1 3q25.1 6q15 6q21 6q21 6q25 10 10 S LO ø ø ø φ ø ω ø ø ø

Tadepally et.al

Tadepally et.al

																													_				_			_
5428044	5853913	6437162	6467482	6713023	6713094	42241712	50438053	55782642	56309501	56708371	57211513	57343922	57533597	63364744	63446960	63660923	63808839	63931140	64028773	64088849	64090719	64503433	98923153	98935813	98969380	99012012	9267976	99473339	99500599	99499406	99500106	99801106	100003106	111770320	121731835	148418720
5426140	5829273	6428035	6435920	6700537	6696844	41970196	50411724	55754540	56308323	56661026	57191263	57320482	57501998	63346841	63429463	63617697	63763946	63892241	64001101	64075795	64089025	64476203	98908451	98928790	98940232	98993981	99052507	99451155	99485353	99517266	99500406	99800106	100001106	111633879	121729287	148397513
303	517	563	1393	ı	697	1580	519	430	392		878		495	411	438	530	783	262	504	383	483	586	425	561	839	491	544	563	473	410	1163	345	267	438	471	782
•	+	+	+ 2	+	- 2	'	+	+	+ 2	•	- 0	•	5 +	+	+	2 -	4	+	+ ღ	•	- Э	4 +	+	•	+ ღ	+	+	+	+	1	+	+	+	+	•	2 ·
'	.,		v -	,	-		7	J		'	Ţ	'	•	0,	0,	-		G	-	0,	-	-	ω	AB 7	AB 1	9	~	9	80	ω	AB -	en	4	N	ιΩ	-
	KRAB		KRAB		KRAB			KRAB			KRAB		KRAB	KRAB	KRAB	KRAB			KRAB	KRAB	•	KRAB	KRAB	SCAN-KR	SCAN-KR		,	KRAB	KRAB	KRAB	KRAB-KR	KRAB	KRAB	,	,	KRAB
LOC441193 Similar to zinc finger protein 469	ZNF815 Zinc finger protein 815	DKFZp434J1015 hypothetical protein DKFZp434J1015	DKFZp547K054 hypothetical protein DKFZp547K054	LOC442283 Similar to zinc finger protein 11b	ZNF325 Zinc finger protein 325 (ZNF12)	GLI3 GLI-kruppel family member GLI3	ZNFN1A1 Zinc finger protein, subfamily 1A, 1	ZNF713 Zinc finger protein 713	LOC442311 Similar to zinc finger protein 43	LOC222032 Similar to zinc finger protein 208	ZNF479 Zinc finger protein 479	LOC340223 Similar to zinc finger protein 479	ZNF716 Zinc finger protein 716	ZNF679 Zinc finger protein 679	LOC728927 Similar to zinc finger protein 92	ZNF680 Zinc finger protein 680	ZFD25 Zinc finger protein (ZFD25) (ZNF588)	ZNF138 Zinc finger protein 138	ZNF273 Zinc finger protein 273	ZNF117 Zinc finger protein 117	H-plK Kruppel-related zinc finger protein	ZNF92 Zinc finger protein 92	ZNF789 Zinc finger protein 789	ZNF394 Zinc finger protein 394	ZFP95 Zinc finger protein 95 homolog (mouse)	ZNF655 Zinc finger protein 655	ZNF498 Zinc finger protein 498	ZKSCAN1 Zinc finger protein 36	ZNF38 Zinc finger protein 38	ZNF3 Zinc finger protein 3	LOC643641 Hypothetical protein LOC643641	LOC649746 Hypothetical protein LOC649746	LOC567641 Hypothetical protein LOC567641	ZNF277 Zinc finger protein (C2H2 type) 277	FEZF1 Zinc finger protein FEZ	ZNF786 Zinc finger protein 786
				€						⋺		⋺																								
_			~	~	-					~	~	~			~		-	0		<i></i>	~		_	~		-	~		~	~		~				
7.15	7.1b	7.28	7.2t	7.20	7.20	•	•		7.38	7.3t	7.30	7.30	7.3e	7.48	7.4b	7.40	7.40	7.46	7.4f	7.4ç	7.41	7.4i	7.58	7.5b	7.50	7.50	7.5e	7.5f	7.5g	7.5h	7.6a	7.6b	7.60	,	•	7.78
7n22.1	7p22.1	7p22.1	7p22.1	7p22.1	7p22.1	7p13	7p13-p11.1	7p11.2	7p11.2	7p11.2	7p11.2	7p11.2-p11.1	7p11.1	7q11.21	7q11.21	7q11.21	7q11.2	7q11.21-q11.23	7q11.21	7q11.2	7q11.21	7q11.21	7q22.1	7q22.1	7q22	7q22.1	7q22.1	7q21.3-q22.1	7q22.1	7q22.1	7q22.1	7q22.1	7q22.1	7q31.1	7q31.32	7q36.1
-	. ~	2	7	~	~	~	~	~	~	~	~	2	~	2	2	~	~	2	2	2	2	~	2	2	2	2	2	2	2	~	2	2	2	~	~	2

_																																			
148454311	148511052	148554267	148583630	148625325	148783306	148825727	148952751	149101228	187339	7226546	7856224	12263633	12261425	28299896	47816648	77940711	81595322	94728501	103737128	106885943	116750402	120612050	124055936	124355728	126060809	135794463	144416250	144430476	144451539	144809731	144849515	145952607	145981498	146006265	146039409
148430809	148454441	148553199	148567707	148590195	148759394	148800818	148875178	149092385	172382	7188906	7821316	12237465	12214635	28259021	47815662	77778835	81561003	94576479	103730188	106400323	116489900	120561696	123863082	124329877	126054733	135559213	144400484	144420982	144444971	144802973	144838650	145948140	145969309	145995065	146023807
- 752	+ 642	+ 671	+ 495	+ 546	- 831	- 644	- 595	- 595	+ 504	- 178	+ 300	, +	+ 301	- 513	, +	+ 3571	+ 847	+ 293	- 480	+ 1151	- 1281	1	+ 837	- 873	+ 529	- 1243	+ 198	+ 376	+ 374	+ 536	+ 369	- 293	- 549	+ 492	+ 686
19	ø	ŝ	4	4	თ	4	12	12		•	•	,	•	-	•	2	2	ი	e	2	-	•	-	-	12	13	4	7	6	13	2	2	12	10	14
KRAB	,	•	KRAB	KRAB	KRAB	ı	,		,	HOMEO-4	BTB	,	,	ı	ı		HOMEO-3	HOMEO-4	,		ı	,	,	ı	KRAB	ı	KRAB	KRAB	KRAB						
Zinc finger protein 425	Zinc finger protein 398	Zinc finger protein 282	Zinc finger protein 212	Zinc finger protein 783	Zinc finger protein 777	Zinc finger protein 746	Zinc finger protein 767	Zinc finger protein 467	Zinc finger protein 596	Similar to zinc finger protein 75	Zinc finger protein 705B	Zinc finger protein 705C	Similar to zinc finger protein 10	Zinc finger protein 395	Similar to zinc finger protein 92	Zinc finger homeodomain 4	Zinc finger and BTB domain containing 10	Similar to zinc finger protein 317	Kruppel-like factor 10	zinc finger protein, multitype 2	Zinc finger transcription factor TRPS1	Similar to zinc finger protein 532	Zinc fingers and homeoboxes 2	Zinc fingers and homeoboxes 1	Zinc finger protein 572	Zinc finger protein 406	Zinc finger protein 41 homolog	GLI-Kruppel family member GLI4	Zinc finger protein 696	Zinc finger protein 623	Zinc finger protein 707	Zinc finger protein 251	Zinc finger protein 34	Zinc finger protein 517	Zinc finger protein 7
7NF425	ZNF398	ZNF282	ZNF212	ZNF783	ZNF777	ZNF746	ZNF767	ZNF467	ZNF596	LOC283202	ZNF705B	ZNF705C	LOC441341	ZNF395	LOC392215	ZFHX4	ZBTB10	LOC442392	KLF10	ZFPM2	TRPS1	LOC392264	ZHX2	ZHX1	ZNF572	ZNF406	ZFP41	GLI4	ZNF696	ZNF623	ZNF707	ZNF251	ZNF34	ZNF517	ZNF7
									 			€			€							€								-					
7 7h	7.7c	7.7d	7.7e	7.7f	7.79	7.7h	7.7i	7.7]	¥	ï		8.1a	8.1b	ı	÷	R	r,	•6	•	9 9 0	2.000		8.2a	8.2b	•		8.3a	8.3b	8.3 c	8.3d	8.3e	8.4a	8.4b	8.4c	8.4d
7ri36 1	7q36.1	8p23.3	8p23.1	8p23.1	8p23.1	8p23.1	8p21.1	8q11.1	8q21.11	8q13-q21.1	8q22.2	8q22.2	8q23	8q24.12	8q24.12	8q24.13	8q24.13	8q24.13	8q24.22	8q24.3	8q24.3	8q24.3	8q24.3	8q24.3	8q24.3	8q24.3	8q24.3	8q24							
~	. ~	2	2	2	2	2	7	2	 8	8	80	8	8	8	8	8	8	8	8	80	8	80	æ	8	æ	8	8	8	80	æ	8	8	8	æ	8

146097632 146147078 146196311 103212763 108813628 109291576 113379945 114814293 14858817 115852293 124715430 124733600 128637318 128687979 98656210 129247471 96103545 98220490 38580149 37455396 10782063 11582207 34680111 99001731 38225869 38388310 42172713 38186492 38300744 38452286 42368286 **1935447** 38213031 4142183 3817455 146077337 146126548 124710150 146172603 08665199 109286956 113327260 114799221 114843995 115678380 124720199 03200984 128607182 28662244 129226482 39433814 40761412 41578833 94648172 98190057 98557968 98619094 98999358 37428111 96080861 38157905 38212553 38223526 38341276 42367418 3817676 38278801 38423281 42151534 3808188 - 1059 + 2506 560 682 335 - 819 816 350 669 626 470 775 677 603 683 402 530 630 + 256 861 532 283 579 810 525 424 441 467 498 456 561 597 . , 10 ï . . + • • + . . . + + . + + + , + . • 5 9 17 21 5 18 13 4 ÷ 16 6 13 16 2 2 e 4 12 2 9 Ģ 4 8 4 4 œ SCAN-KRAB KRAB BTB BTB BTB **B**TB BTB Zinc finger and BTB domain containing 26 Zinc finger and BTB domain containing 34 Zinc finger and BTB domain containing 5 Zinc finger protein 37 homolog (mouse) KRAB box zinc finger pseudogene Zinc finger protein 647 (ZNF250) Similar to zinc finger protein 135 Similar to zinc finger protein 658 hypothetical protein LOC169834 Similar to zinc finger protein 91 GLIS family zinc finger 3 Zinc finger protein 658B Zinc finger protein 297B Zinc finger protein 322B Zinc finger pseudogene Zinc finger protein 658 Zinc finger protein 510 Zinc finger protein 782 Zinc finger protein 189 Zinc finger protein 618 Zinc finger protein 484 Zinc finger protein 169 Zinc finger protein 462 Zinc finger protein 483 Zinc finger protein 482 Zinc finger protein 367 Zinc finger protein 248 Zinc finger protein 33a Zinc finger protein 37a Zinc finger protein 37b Zinc finger protein 16 Zinc finger protein 79 Zinc finger protein 25 Kruppel- like factor 6 Kruppel-like factor 4 -OC642914 -OC653501 -OC169834 3A393J16.4 OC401642 3A775A3.1 ZNF658B ZNF322B ZNF297B ZNF510 ZNF782 ZNF189 ZNF483 ZNF33A ZNF37A ZNF484 ZNF169 ZNF482 **ZBTB26** ZNF248 ZNF367 ZNF462 ZBTB34 **ZNF658** ZNF618 ZNF37B **ZNF647** ZBTB5 ZNF16 ZNF79 GLIS3 ZFP37 ZNF25 KLF4 KLF6 ÷ € € 10.1b 10.1c 10.1d 10.1e 10.1a 10.1f 10.2a 10.2b 8.4e 8.4g 9.1a 9.1b 9.1c 9.1d 9.2a 9.2b 9.3a 9.3b 9.4a 9.4b 8.4f . 9q22-q31 9q33-q34 9q22.33 9q22.33 10q11.21 9q22.32 9q22.32 9q22.33 10p11.2 10q11.21 0p11.21 0p11.2 9q33.2 0p11.2 9q22.31 9q31.2 8q24.3 8q24.3 Bq24.3 9p13.2 9q31.3 9q33.2 9p24.2 9p13.1 10p15 10p11 10p11 9p12 9p12 9q31 9q32 9q32 9q32 9q34 5 5 5 5 <u>5</u> 5 10 10 5 6

6

σ б σ σ 6 ŋ σ თ σ σ ດ σ σ

ი σ

.

Tadepally et.al

Tadepally et.al

			_			_						_																						
42453998	43298636	43383913	43433358	43464332	44820780	47993872	64101777	76831431	79164538	97912480	124758311	134976656	3356891	6935854	6998117	9506188	23768482	32413653	46684037	58145091	58149778	62278190	71232113	77774385	113626608	123117573	129689717	6668930	8223909	42690385	47030844	53064748	54717887	56152312
42404561	43252288	43371801	43421881	43459313	44815928	47975095	63803957	76827915	79149361	97879494	124741955	134972413	3336572	6904230	6977125	9439089	23767378	32365900	46678944	58103225	58103225	62275011	71196287	77774116	113435659	123100207	129601789	6645904	8216417	42687843	47022179	53049187	54704791	56140201
778	421	458	402	273	224	340	462	646		1483	420	252	557	517	606	626	653		720	570	529	574	178	90	673	648	539	516	300		438	366	544	1106
'	+	•	+		+	+	+	•	+	+	٠	+	ľ	+	,	+	+		+	+	+		,		+		+		+	•	,		+	+
16	e	ი	÷	7	ŝ	2	'	-	•	4	4	e	10	4	1	7	15		10	4	•	2	•	ი	თ	œ	2	9	ç	•	ŝ	ო	4	S
KRAB	KRAB	•	KRAB	ı	•	ı	•	•				1	KRAB	SCAN-KRAB	KRAB	،	KRAB					BTB	KRAB		BTB	SCAN-KRAB	BTB	,	KRAB		KRAB	,	ı	ı
Zinc finger protein 11b	Zinc finger protein 487	Zinc finger protein 239	Zinc finger protein 485	Zinc finger protein 32	Zinc finger protein 22	Zinc finger protein 488	Zinc finger protein 365	Zinc finger protein 503	Similar to zinc finger protein 532	Zinc finger protein 518	zinc finger protein, subfamily 1A, 5	zinc finger protein 511	zinc finger protein 195	zinc finger protein 215	zinc finger protein 214	zinc finger protein 143 (clone pHZ-1)	similar to dJ568F9.1 (zinc finger protein 133	Kruppel like zinc finger protein	zinc finger protein 408	zinc finger protein 91 homolog (mouse)	zinc finger protein 91 homolog (mouse), CNF	zinc finger and BTB domain containing 3	similar to zinc finger protein 596	Zinc finger protein 75C	zinc finger and BTB domain containing 16	zinc finger protein 202	BTB(POZ) domain containing 15	zinc finger protein 384	Zinc finger protein 705A	zinc finger protein 75b	Zinc finger protein 641	zinc finger protein 385	zinc finger protein, subfamily 1A, 4	Glioma-associated oncogene homolog
ZNF11B	ZNF487	ZNF239	ZNF485	ZNF32	ZNF22	ZNF488	ZNF365	ZNF503	LOC399783	ZNF518	ZNFN1A5	ZNF511	ZNF195	ZNF215	ZNF214	ZNF143	LOC341002	ZNF	ZNF408	ZFP91	ZFP91-CNTF	ZBTB3	LOC440053	ZNF75C	ZBTB16	ZNF202	ZBTB15	ZNF384	ZNF705A	ZNF75B	ZNF641	ZNF385	ZNFN1A4	GLI
									€									€												÷				
10.2c	10.3a	10.3b	10.3c	10.3d		•	,					ı	ı	11.1a	11.1b				,	11.2a	11.2b			ı			,	ı				,		
10q11.2	10q11.21	10q11.22-q11.23	10q11.21	10q22-q25	10q11	10q11.22	10q21.2	10q22.2	10q22.3	10q24.1	10q26	10q26.3	11p15.5	11p15.4	11p15.4	11p15.4	11p14.3	11p13	11p11.2	11q12	11q12.2	11q12.3	11q13.4		11q23.1	11q23.3	11q24.3	12p12	12p13.31	12q13	12q13.11	12q13.13	12q13	12q13.2-q13.3
9	9	9	6	9	1	10	10	10	10	10	10	10	11	;	=	1	11		1	11	11	11	1	1	1	1	1	12	12	12	12	12	12	12

12	12q24.31			ZNF664	Zinc finger protein 664		+ 0	261	123023623	123065922
12	12q24.33	12.1a		ZNF605	zinc finger protein 605	KRAB	17 -	641	132008120	132042941
12	12q24.33	12.1b		ZNF26	zinc finger protein 26 (KOX 20)	KRAB	13 +	533	132073129	132099226
12	12q24.33	12.1c		ZNF84	zinc finger protein 84 (HPF2)	KRAB	19 +	738	132124239	132146261
4	12q24.32-q24.33	12.1d		ZNF140	Zinc finger protein 140	KRAB	10+	457	132167110	132194333
12	12q24.33	12.1e		LOC440122	similar to KRAB zinc finger protein 6D	KRAB	9	224	132206943	132208683
12	12q24.33	12.1f		ZNF10	zinc finger protein 10 (KOX 1)	KRAB	+	573	132217287	132246124
12	12q24.33	12.1g		ZNF268	zinc finger protein 268	ı	24 +	947	132268068	132289534
13	13q22.1	13.1a		KLF5	Kruppel like factor 5		+ ო	457	72531143	72549677
13	13q22	13.1b		KLF12	Kruppel like factor 12		۔ ج	402	73158150	73606043
13	13q32.3	13.2a		ZIC5	Zic family member 5 (odd-paired homolog, Drosopt	hir-	4	639	99415452	99422179
13	13q32	13.2b		ZIC2	Zic family member 2 (odd-paired homolog, Drosopt	hil-	4	532	99432320	99437020
13	13q32.1	ı		DZIP1	zinc-finger protein DZIP1	ı	• -	780	99600736	99601385
14	14q11.1			LOC441666	similar to ZNF43 protein	KRAB	17 -	645	18241488	18260616
14	14q11			ZNF219	zinc finger protein 219	ı	۰ 9	722	20628076	20636639
14	14q11.2	14.1a		ZFHX2	Zinc finger homeobox 2	HOMEO-3	4 '	1517	23059904	23065839
14	14q11.2	14.1b		ZNF409	zinc finger protein 409	1	' -	862	23066981	23090692
14	14q22.1		€	ZNF405P	zinc finger protein 405 pseudogene	ı	:		50240463	50241980
4	14q23-q24	14.2a		ZBTB25	Zinc finger and BTB domain containing 25	BTB	2	435	64023308	64040307
14	14q23.3	14.2b		ZBTB1	zinc finger and BTB domain containing 1	втв	2+	644	64041174	64070161
14	14q24.3			ZNF410	zinc finger protein 410	ı	5 +	478	73423339	73468556
4	14q32.2			BCL11B	B-cell CLL/ zinc finger protein		- 9	894	98705377	98807575
4	14q11.1-q12			SALL2	Sal-like 2	•	7	1007	21059071	21075177
15	15q12			KLF13	Kruppel-like factor 13	,	+ സ	288	29406375	29457394
15	15q15.3	,		ZNF690	Zinc finger protein 690	SCAN	י 9	851	41440563	41449400
15	15q22.31			ZNF609	Zinc finger protein 609	,	+	1411	62578672	62765320
15	15q24			ZNF291	Zinc finger protein 291		י י	1399	74427592	74963247
5	15q24	15.1a		BTBD1	BTB (POZ) domain containing 1	BTB	•	482	81476179	81527110
5	15q25.2	15.1b		BNC1	Zinc finger protein basonuclein	•	ч З	994	81715659	81744472
15	15q25.2	15.2a		ZFP29	Zinc finger protein 29 (ZSCAN2)	SCAN	14 +	614	82945253	82967951
15	15q25-q26	15.2b		SCAND2	SCAN domain containing protein 2	SCAN	+	306	82975695	82985528
15	15q25.3	15.2c		ZNF592	Zinc finger protein 592	ı	4	1267	83092584	83147530
15	15q26.1	15.3a		LOC390636	Similar to zinc finger protein 495 (pseudo)	3	2 +	133	88280506	88281204
15	15q26.1	15.3b		ZNF710	Zinc finger protein 710	3	1+	664	88345756	88425029

16 16	15q26.1	15.3c	ZNF774	Zinc finger protein 774	- 12	+ 483	88696546	88705719
16	16p13.3		ZNF598	zinc finger protein 598		- 904	1987769	1999764
	16p13.3	16.1a	ZNF206	zinc finger protein 206	SCAN 14	- 725	3078896	3082862
16	16p13.3	16.1b	ZNF205	zinc finger protein 205	KRAB 8	+ 554	3102607	3110519
16	16p13.3	16.1c	ZNF213	zinc finger protein 213	SCAN-KRAB 5	+ 459	3125140	3132806
16	16p13.3	16.1d	ZNF200	zinc finger protein 200		- 395	3212343	3225410
16	16p13.3	16.1e	ZNF263	zinc finger protein 263	SCAN-KRAB 9	+ 683	3273488	3281461
16	16p13.11	16.1f	ZNF75A	Zinc finger protein 75a	KRAB 5	+ 296	3295485	3308575
16	16p13.3	16.1g	ZNF434	Zinc finger protein 434		- 485	3372086	3391026
16	16p13.3	16.1h	ZNF174	zinc finger protein 174	SCAN 3	+ 407	3391245	3399365
16	16p13.3	16.1i	ZNF597	zinc finger protein 597	- 7	- 424	3426111	3433491
16	16p13.3	16.2a	GLIS2	GLIS family zinc finger 2	-	+ 524	432226	4327803
16	16p13.3	16.2b	ZNF500	zinc finger protein 500	SCAN 5	- 480	4740816	4757167
16	16p12.1		ZNF694	Zinc finger protein 694	SCAN-KRAB 6	- 967	25154823	25176343
16	16p11.2	16.3a	ZNF553	zinc finger protein 553	- 12	+ 618	30314558	30318216
16	16p11.2	16.3b	ZNF768	Zinc finger protein 768	- 10	- 520	30442826	30445411
16	16p11.2	16.3c	ZNF747	Zinc finger protein 747	KRAB -	- 191	30450280	30453695
16	16p11.2	16.3d	ZNF764	Zinc finger protein 764	KRAB 7	- 408	30472586	30477085
16	16p11.2	16.3e	ZNF688	Zinc finger protein 688	KRAB 2	- 276	30488508	30491229
16	16p11.2	16.3f	ZNF785	Zinc finger protein 785	KRAB 7	- 405	30499495	30504511
16	16p11.2	16.3g	ZNF689	Zinc finger protein HIT-39 (ZNF689)	KRAB 11	- 500	30522187	30529183
16	16p11.2	16.3h	ZNF629	zinc finger protein 629	- 19	- 105	30697271	30706024
16	16p11.2	16.3i	ZNF668	Zinc finger protein 668	- 16	- 619	30979672	30993005
16	16p11.2	16.3j	ZNF646	Zinc finger protein 646	- 29	+ 183;	30993269	31002334
16	16p11.2	16.4a	LOC342426	similar to zinc finger protein 267	- 13	- 580	31520510	31522350
16	16p11.2	16.4b	ZNF267	zinc finger protein 267	KRAB 14	+ 743	31632096	31680365
16	16q12	•	ZNF423	zinc finger protein 423	- 23	- 128	48082022	48418419
16	16q13	,	ZNF319	zinc finger protein 319	- 15	- 582	56586074	56591263
16	16q22	16.5a	ZNF23	Zinc finger protein 23 (KOX 16)	KRAB 17	- 643	70039000	70053618
16	16q22	16.5b	ZNF19	Zinc finger protein 19 (KOX 12)	KRAB 10	- 458	70065563	70080742
16	16q22.3		ZFP1	zinc finger protein 1 homolog (mouse)	-	+ 352	73739926	73763486
16	16q24	16.6a	ZNF469	zinc finger protein 469	-	+ 344(87021380	87034666
16	16q24.2	16.6b	ZFPM1	zinc finger protein, multitype 1	- 2	+ 100	87047226	87128890
16	16q24.3		ZFP276	ZNF276 homolog (mouse)	- 4	+ 539	88314934	88333811
17	17p13.2	17.1a	ZFP3	zinc finger protein 3 homolog (mouse)	- 13	+ 502	4922478	4940393

147948834 6413189 6497883 53420614 11841414 27721583 32020391 35273967 20341412 31178405 5561963 14122429 21186114 31092357 31142072 31211299 43821492 54804689 70762386 72296128 2811671 74859182 5028416 5283313 4017816 7328241 1814496 966702 2869474 1967121 2786469 2805036 2829501 2895930 3820026 44727485 15544054 6464776 27414039 31974917 35174724 14094724 20895889 31075017 31124298 31200659 11821487 16395426 53403909 20341044 31169957 43807731 54681041 70474282 72198625 74841263 72665104 4949755 5279379 1936447 5023554 2818333 3755010 3996217 7303421 803399 2770917 2792482 2851964 2884217 444 22 - 1120 1311 - 1013 2852 + 1300 - 549 + 1301 1001 + 1558 - 754 - 865 478 540 122 275 423 368 333 766 628 10 + 521 509 606 521 449 525 939 697 555 545 584 252 487 9 + 456 + + . + + , + + + , . . + . 5 44 9 24 15 33 9 5 2 25 æ 2 ß 8 ŝ 6 4 N 4 SCAN-KRAB SCAN-KRAB KRAB SCAN KRAB KRAB SCAN SCAN SCAN KRAB KRAB KRAB KRAB KRAB BTB BTB BTB **BTB** BTB zinc finger and BTB domain containing 4 zinc finger protein 161 homolog (mouse) Zinc finger and BTB domain containing 7 zinc finger protein, subfamily 1A, 3 similar to zinc finger protein 586 BTB/POZ-zinc finger protein-like zinc finger protein 18 (KOX 11) zinc finger protein 24 (KOX 17) Similar to zinc finger protein Zinc finger protein 77 (pT1) BTB domain containing 2 zinc finger protein 403 zinc finger protein 519 Zinc finger protein 555 Zinc finger protein 556 zinc finger protein 232 zinc finger protein 594 zinc finger protein 286 zinc finger protein 287 Zinc finger protein 624 zinc finger protein 207 Zinc finger protein 652 zinc finger protein 161 zinc finger protein 397 zinc finger protein 271 zinc finger protein 396 zinc finger protein 532 Zinc finger protein 407 zinc finger protein 516 zinc finger protein 236 Zinc finger protein 554 zinc finger protein 521 Kruppel-like factor 16 Zinc finger protein 57 Sal-like 3 -OC441816 ZNFN1A3 KIAA1086 ZNF519 ZNF207 **ZNF403** ZNF652 ZFP161 ZNF516 ZNF555 **ZNF232 ZNF594** ZNF286 ZNF287 ZNF624 ZNF161 ZNF521 ZNF397 ZNF271 ZNF396 ZNF532 ZNF407 ZNF236 ZNF554 ZNF556 **ZBTB7A** ZBTB4 BTBD2 ZNF18 SALL3 ZNF24 APM-1 KLF16 ZNF57 ZNF77 19.1aa 19.1ab 19.2aa 19.2ab 19.2ac 19.2ad 19.2ae 19.3aa 19.3ab 17.2b 18.1b 17.1c 17.2a 18.1a 18.1c 18.1d 18.2b 17.1b 18.2a 18pter-p11.2 17p13-p12 18q22-q23 18p11.21 17q21.32 17p13.1 17p11.2 18q12.2 18q21.32 17p11.2 17p11.2 17p11.2 17q11.2 18q11.2 18q11.2 18q21.1 19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 17p13 17q12 17q21 17q22 18q12 18q12 18q12 18q23 18q23 18q23 18 18 18 18 19 19 19 19 17 17 17 17 17 17 17 17 17 17 1 18 18 18 18 18 18 18 18 18 18 19 19 19 19 17

580	2 -		eter i i														4	4	0	-	-	10	-	0	-	\sim	-	0	N-	_	ŝ	10		h 🚽	· •	0
2037	749191		8482224	8794565	9135084	9281384	9315521	9353866	9407234	9470279	9510303	9556209	9592899	9632550	9667794	9740410	1147765	1159097	1162425	1171073	1175430	11780306	1180603	1184130(1188614	11922578	11952214	1199011(12028127	1204963	12086495	12112116	10100500	12161064	12266637	1230550
7020791	7487075		8482032	8781382	9112073	9265957	9295928	9334696	9384272	9438003	9499683	9537292	9580131	9620341	9661814	9729151	11455246	11569327	11611591	11693080	11738907	11770400	11801554	11837844	11859670	11896900	11936869	11986573	12015620	12036528	12064078	12103803	12116705	12134919	12219007	12289291
130	481	210	312	402	595	642	538	321	549	790	554	390	417	354		533	615	461	187	610	626	437	595	499	149	742	397	673	578	666	615	536	306	2000	637	476
+	+ + 2 _	-	•	'	+ °	- 9	+	+	4	4 -	2 -	- 0	- 0	•	'	2 -	•	+	+	- 9	+ 6	+ v	5 +	+	+	+	+	, 6	5 '	+	+ 9	، ص	,	- + 7	، ن	
KPAR 1			,	KRAB 9	KRAB 1	KRAB 1	KRAB 1	KRAB 7	KRAB 1	KRAB-KRAB 1	KRAB 1		•	5	•	KRAB 1	- 4	KRAB 1	9	KRAB 1	,		KRAB 1	KRAB 1	KRAB -	KRAB 2	KRAB 8	KRAB 1	KRAB 1	KRAB 8	÷.	KRAB 1		KRAR	KRAB 1	а плам
Zina finaer protein 557	Zinc finner protein 358	Zine finan ambin 300 Zine finan ambin 414	Zinc tinger protein 414	Zinc finger protein 558	Zinc finger protein 317	Zinc finger protein 699	Zinc finger protein 559	Zinc finger protein 177	Zinc finger protein 266	Zinc finger protein 560	Zinc finger protein 426	Zinc finger protein 121	Zinc finger protein 561	Zinc finger protein 562	Similar to zinc finger protein 561	Hypothetical protein LOC162993	Zinc finger protein 653	Zinc finger protein 627	Similar to hypothetical protein FLJ38281	Zinc finger protein ZFP-36	Zinc finger protein 441	Zinc finger protein 491	Zinc finger protein 440	Zinc finger protein 439	Zinc finger protein 69	Zinc finger protein 700	Zinc finger protein 440 like	Zinc finger protein 433	Similar to zinc finger protein 709	Hypothetical protein FLJ14959	Hypothetical protein LOC388507	Zinc finger protein 20 (KOX 13)	Zino finanzantain 606	Zinc finger protein 236 Zinc finner protein 136	Zinc finger protein 44 (KOX 7)	Zino financi andala E60
7NIE667	ZNE35R	ZNE414	ZNF414	ZNF558	ZNF317	ZNF699	ZNF559	ZNF177	ZNF266	ZNF560	ZNF426	ZNF121	ZNF561	ZNF562	μ LOC729648	LOC162993	ZNF653	ZNF627	LOC401898	HSZFP36	ZNF441	ZNF491	ZNF440	ZNF439	ZNF69	ZNF700	ZNF440L	ZNF433	LOC729747	FLJ14959	ZNF788	ZNF20	ZNIEG26	ZNE136	ZNF44	
0 400	0.4ab		9.288	9.5ab	9.5ac	9.5ad	9.5ae	9.5af	9.5ag	9.5ah	9.5ai	9.5aj	9.5ak	9.5al	9.5am 1	9.5an	9.6aa	9.6ab	9.6ac	9.6ad	9.6ae	9.6af	9.6ag	9.6ah	9.6ai	9.6aj	9.6ak	3.6al	3.6am	3.6an	9.6ao	9.6ap	4000	a.uay		
Ŧ			-	-	-	-	-	-	-	-	-	-	-	-	÷	÷	*	÷	-	÷	f	Ŧ	Ť	Ť		÷	÷	÷	÷		÷	÷				
10n12 0	190133-0132	10012 0	19013.2	19p13.2	19p13	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19p13.2	19q13.43	19p13.3-p13.2	10513.2	19013 2-013 13	19n13.2	10012.2									
10	<u>, 1</u>	<u>n</u> 0	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	9	<u> </u>	6	

Tadepally et.al

21033493 21099736 21160645 9906766 20540439 20636246 20782245 20925343 21304052 21512565 21742163 22447337 2373052 2456632 2523317 2582595 2601676 2856239 14692772 5421762 16299337 9652138 19704921 19793560 19807882 9865293 19977814 20091937 20172670 20399602 21383441 21810810 21963552 22064570 22155823 22396874 2412824 12497540 9757648 19996186 21056849 21116728 21480303 21697408 21779592 22401608 - 1130 12351256 12401520 12435743 12547645 12582753 2859017 14661870 19640663 19682282 19805375 19837714 19872787 20049817 20139023 20367763 20518768 20619349 20765278 20995337 21265803 21371798 21945325 22027189 22153733 22363750 15392824 16296651 20897934 - 1752 34 - 1167 542 671 553 576 - 444 693 + 335 809 641 529 362 10 + 66510 + 436 + 281 + 275 + 620 + 463 177 15 + 595 12 + 400 576 563 + 103 674 535 588 572 + 355 19 - 642 11 - 498 657 + 570 92 17 + 19 ı . 17 + + + , . , . . . ÷ ī . ŧ + . 0 4 22 2 15 26 9 5 ო 1 5 æ 2 5 42 2 13 19 ო ო 6 *с*о æ **KAB-KRAB** KRAB-KRAB KRAB KRAB **KRAB** KRAB Widely-inter spaced zinc finger motifs Hypothetical protein LOC148206 Similar to zinc finger protein 429 Similar to zinc finger protein 506 Similar to zinc finger protein 492 Similar to zinc finger protein 93 Similar to zinc finger protein 91 Zinc finger protein 14 (KOX 6) Zinc finger protein 43 (HTF6) Zinc finger protein 506 Zinc finger protein 486 Zinc finger protein 430 Zinc finger protein 100 Zinc finger protein 676 Zinc finger protein 709 Zinc finger protein 101 Zinc finger protein 505 Zinc finger protein 682 Zinc finger protein 708 Zinc finger protein 493 Zinc finger protein 429 Zinc finger protein 799 Zinc finger protein 443 Zinc finger protein 564 Zinc finger protein 490 Zinc finger protein 791 Zinc finger protein 333 Zinc finger protein 253 Zinc finger protein 626 Zinc finger protein 431 Zinc finger protein 208 Zinc finger protein 257 Zinc finger protein 85 Zinc finger protein 90 Zinc finger protein 66 Kruppel-like factor 1 Kruppel-like factor 2 -OC730008 -OC163233 -OC148198 _OC441843 FLJ44894 ZNF101 ZNF140 ZNF506 ZNF253 ZNF505 ZNF486 ZNF564 ZNF490 ZNF791 ZNF333 ZNF430 ZNF714 ZNF431 ZNF708 ZNF682 **ZNF443 ZNF709 ZNF626 ZNF493 ZNF429 ZNF100 ZNF208** ZNF676 ZNF799 ZNF90 ZNF66 ZNF85 ZNF257 ZNF43 KLF1 KLF2 ZIN € 19.7am 19.6aw 19.6ba 19.7ae 19.7ag 19.7ah 19.7ak 19.7an 19.7ao 19.7ap 19.7aq 19.7as 19.7aw 19.7az 19.6ax 19.6bb 19.7aa 19.7ab 19.7ac 19.7ad 19.7au 19.7av 9.6av 19.6ay 19.6az 19.7af 19.7ai 19.7aj 19.7al 19.7ar 19.7at 19.7ax 19.7ay 19.7az 19p13.13-p13.12 19p13.13-p13.11 19p13.2-p13.13 19p13.3-p13.2 19p13.1-p12 19p13.1-p12 19p13.11 19p13.11 19p13.2 19p13.2 19p13.2 19p13.2 19p13.2 19p13.1 19p13.1 19p13 19p12 19q13 19p12 19p12 19p12 19p12 88 19 9 19

22642312 22833075 22977818 23258859 23370089 23490947 23661782 23733479 23807139 23807853 23910116 24103022 35740805 36462015 37570413 39818566 39869137 39925613 39955960 40008745 40049676 40127912 40143044 40899780 41384792 41421506 41519002 41601390 41659358 41711012 41756030 41811339 41849579 41904066 41955571 42021121 22744624 41630415 41996710 + 1132 22608966 23333876 23627812 23889628 24061816 36457693 37528393 39860439 39916933 39940819 39985078 40109724 40139098 40895670 41364889 41411488 41550715 41693770 41727130 41820123 41930509 22730847 22781774 23196873 23466157 23718000 23806558 23807338 35555168 39817307 40049101 41574701 41788061 41872142 22949451 + 1300 - 1036 1191 - 1081 - 1090 651 636 345 + 478 533 418 171 + 353 953 + 507 588 417 542 553 12 - 499 532 412 550 616 568 576 587 2 + 487 292 458 563 + 193 13 -+ 10 + • + , . 18 + 10 + + , . + + . . ï 1 ī ï . . • ÷ 33 12 5 28 30 35 4 16 4 13 13 7 32 13 9 4 9 æ 6 2 ŝ HOMEO SCAN KRAB **KAB** BTB Zinc finger protein 91 (HPF7, HTF10) Similar to Zinc finger protein 208 Zinc finger protein 181 (HHZ181) Hypothetical protein LOC342892 Hypothetical protein LOC388536 Similar to zinc finger protein 430 Similar to zinc finger protein 539 Similar to zinc finger protein 539 Similar to zinc finger protein 239 Similar to zinc finger protein 396 Similar to zinc finger protein 113 Similar to zinc finger protein 43 Zinc finger protein 30 (KOX 28) Similar to zinc finger protein 91 **Sonadotropin inducible TRF** Zinc finger protein 675 (TIZ) Zinc finger protein 14-like Testis zinc finger protein Zinc finger protein 536 Zinc finger protein 302 Zinc finger protein 492 Zinc finger protein 725 Zinc finger protein 681 Zinc finger protein 254 Zinc finger protein 537 Zinc finger protein 507 Zinc finger protein 599 Zinc finger protein 565 Zinc finger protein 146 Zinc finger protein 545 Zinc finger protein 566 Zinc finger protein 260 Zinc finger protein 529 Zinc finger protein 382 Zinc finger protein 567 Zinc finger protein 92 Zinc finger protein 99 -OC643825 -OC441848 -OC646895 -OC730084 _OC730087 -OC441847 -OC342892 -OC646864 -OC388523 MGC62100 ZNF724P ZNF254 ZNF599 ZNF681 ZNF536 ZNF537 ZNF302 ZNF181 ZNF146 ZNF545 ZNF529 **ZNF725** ZNF675 **ZNF507 ZNF492** ZNF565 ZNF566 **ZFP260 ZNF382** ZNF567 ZNF30 GIOT-1 ZNF91 ZNF92 ZNF99 ZFP14 TZFP Э € € Э 19.9a m 19.8ab 19.9ab 19.7az 19.7az 19.7az 19.7az 19.7az 19.7az 19.8aa 19.8ac 19.8ad 19.8ae 19.8ag 19.8ah 19.9aa 19.9ac 19.9ad 19.9ae 19.9ag 19.9ah 19.9ak 19.7az 19.7az 19.7az 19.7az 19.7az 19.7az 19.7az 19.8af 19.9af 19.9ai 19.9aj 19.9al 19p13.1-p12 19q13.13 19q13.12 19q13.11 19q13.11 19q13.11 19q13.11 19q13.12 19q13.12 19q13.11 19q13.11 19q13.11 19q13.11 19q13.12 19q13.1 19q13.12 19q13.12 19q13.12 19q13.12 19q13.12 19q13.12 19q13.11 19q13.1 19p12 19q12 19p12 19p12 19p12 19p12 19p12 19p12 19p12 19q12 19p12 19p12 19p12 19p12 ø 19 5 19 10 19 19 19 19 19 19 19 19 19 19 19 19 19 19 6 6 6 6 19 9 9 9 6 19 39 19 19 19 19 19 19

12181436 12355455 12393293 12426414 42547197 12575806 12650179 12796836 12777513 42838153 12874992 43002122 15215355 45248079 47277544 47424193 18732130 48795996 49079956 19121397 19163701 19194317 19209912 19229100 19263982 19283463 19304317 19328824 12180341 12312502 12668082 12720601 19044884 42062311 42902531 12956231 15280891 42879116 49016379 42033103 42173736 42156286 12332844 12367562 42517420 12553899 42593902 42651822 12689538 42734148 12746995 42815229 12850491 42921028 15194869 45232104 45272263 47266358 47416332 48729166 48792384 49068497 49147237 49180195 49198949 49221356 49248004 49309381 42261222 42409206 42974701 49108621 49268137 49290337 519 245 706 488 439 688 714 769 475 659 609 686 536 374 660 609 327 696 607 721 836 833 607 896 670 170 852 552 682 617 538 451 482 370 707 417 474 22 + + 2 17 + 20 -+ . ++ + + + 1 ŧ . + + + , + + + + + + + + + , ī + + ÷ . ī ı + ï + 33 **с** 2 2 6 33 23 7 2 18 17 13 0 19 æ 23 17 19 g 15 5 18 15 42 9 9 6 4 8 8 ŝ KRAB Similar to Hypothetical zinc finger protein Similar to hypothetical protein FLJ32191 GLI-kruppel family member HKR1 Hypothetical protein LOC163131 Hypothetical protein LOC284323 Similar to zinc finger protein 569 Zinc finger protein LOC653284 Hypothetical protein FLJ37549 Zinc finger protein 585B Zinc finger protein 585A Zinc finger protein 345 Zinc finger protein 568 Zinc finger protein 420 Zinc finger protein 383 Zinc finger protein 569 Zinc finger protein 570 Zinc finger protein 540 Zinc finger protein 571 Zinc finger protein 607 Zinc finger protein 573 Zinc finger protein 546 Zinc finger protein 574 Zinc finger protein 526 Zinc finger protein 575 Zinc finger protein 283 Zinc finger protein 155 Zinc finger protein 230 Zinc finger protein 223 Zinc finger protein 225 Zinc finger protein 527 Zinc finger protein 576 Zinc finger protein 284 Zinc finger protein 224 Zinc finger protein 404 Zinc finger protein 221 Zinc finger protein 222 Zinc finger protein 45 -OC401915 -OC653284 -OC390927 .OC284323 ZNF585B =JL37549 ZNF585A ZNF780B ZNF569 ZNF540 ZNF573 ZNF546 ZNF574 ZNF527 ZNF571 ZNF526 ZNF576 ZNF155 ZNF570 ZNF283 ZNF230 ZNF345 ZNF568 **ZNF420** ZNF383 ZNF607 **ZNF575** ZNF404 ZNF222 **ZNF223 ZNF225 ZNF221 ZNF284 ZNF224** ZFP30 **ZNF45** HKR1 19.11a m 19.10ab 19.11ab 19.11ad 19.11ae 19.11ao 19.10aa 19.10ac 19.11aa 19.11ac 19.11af 19.11ag 19.11ah 19.11an 19.11aj 19.11al 19.11ai 19.11ak 19.9be 19.9au 19.9aw 19.9ax 19.9ay 19.9az 19.9ba 19.9bb 19.9bc 19.9bd 19.9bf 19.9ao 19.9ap 19.9aq 19.9as 19.9av 19.9an 19.9ar 19.9at 19q13.12-q13.13 9q13.2-q13.32 19q13.12 9q13.12 19q13.12 19q13.12 19q13.13 19q13.12 19q13.12 19q13.31 19q13.31 19q13.31 19q13.31 19q13.2 19q13.2 19q13.2 19q13.2 19q13.2 19q13.31 19q13.31 19q13.1 19q13.1 19q13.2 19q13.2 19q13.2 19q13.2 19q13.2 19q13.2 8 5 19

Tadepally et.al

																														_							
	49354127	49373678	49433260	49471308	49501010	49552666	49597605	49669406	49696395	50271528	52739966	53482675	55243845	56784803	57083009	57084301	57112852	57140817	57181880	57203270	57223429	57243885	57290830	57335003	57366556	57487788	57520987	57561923	57613469	57634511	57708794	57750693	57779861	57795214	57833450	57885574	57924947
	49337618	49361089	49408531	49455916	49482440	49522546	49581648	49654547	49671701	50266599	52715759	53466466	55221024	56766343	57066365	57100059	57109726	57122500	57159406	57186400	57208391	57228490	57259531	57308967	57349937	57464636	57492263	57540494	57592933	57624252	57706025	57738331	57765340	57791719	57807443	57847611	57899284
-	200	803	799	670	738	907	590		692	475	792	417	871	711	478	505		581	532	731	585	652	924	781	936	468	516	462	628	674	365	903	465	207	516	626	705
,	+ თ	+ ი	+ 6	+	- 9	- 2	- -	+	2 -	•	•	+	+	+ 2		- 0	•	5 +	'	- ნ	, -	- 1	•	י די	5 -	+ 0	+ 5	+	+ 2	+ 2	+ 5	+	+	+	5 -	4 -	- 1
	KRAB 1	KRAB 1	KRAB 1	KRAB 8	KRAB 1	KRAB 1	KRAB 1		KRAB 1	9	-	KRAB 4	KRAB 2	KRAB 1	KRAB 8	KRAB 1	,	KRAB 1	KRAB 8	KRAB 1	KRAB 1	KRAB 1	1	KRAB 2	KRAB 2	KRAB 1	KRAB 1	KRAB 9	KRAB 1	KRAB 1	, -	- 2	KRAB 9	، ۲		KRAB 1	KRAB 1
	Zinc finger protein 234	Zinc finger protein 226	Zinc finger protein 227	Zinc finger protein 233	Zinc finger protein 235	Zinc finger protein 228	Zinc finger protein 285	1 Similar to zinc finger protein 285	Zinc finger protein 180 (HHZ168)	Zinc finger protein 342	Zinc finger protein 541	Zinc finger protein 114	Zinc finger protein 473	Zinc finger protein 175	Zinc finger protein 577	Zinc finger protein 649	1 Similar to zinc finger protein 84	Zinc finger protein 613	Zinc finger protein 350	Zinc finger protein 615	Zinc finger protein 614	Zinc finger protein 432	'1 Hypothetical protein LOC284371	Zinc finger protein 616	Similar to zinc finger protein 616	Zinc finger protein 766	Zinc finger protein 480	Zinc finger protein 610	Zinc finger protein 528	Zinc finger protein 534	Zinc finger protein 578	Similar to zinc finger protein 600	Zinc finger protein 701	Zinc finger protein 137	Zinc finger protein 83 (HPF1)	.0 Similar to zinc finger protein 160	Zinc finger protein 611
	ZNF234	ZNF226	ZNF227	ZNF233	ZNF235	ZNF228	ZNF285	LOC14771	ZNF180	ZNF342	ZNF541	ZNF114	ZNF473	ZNF175	ZNF577	ZNF649	LOC44186	ZNF613	ZNF350	ZNF615	ZNF614	ZNF432	LOC28437	ZNF616	FLJ16287	ZNF766	ZNF480	ZNF610	ZNF528	ZNF534	ZNF578	ZNF808	ZNF701	ZNF137	ZNF83	LOC72984(ZNF611
								÷									÷																				
-	19.11ap	19.11aq	19.11ar	19.11as	19.11at	19.11au	19.11av	19.11aw	19.11ax	1		8	ŧ	19.12aa	19.12ab	19.12ac	19.12ad	19.12ae	19.12af	19.12ag	19.12ah	19.12ai	19.12aj	19.12ak	19.12al	19.12a m	19.12an	19.12ao	19.12ap	19.12aq	19.12ar	19.12as	19.12at	19.12au	19.12av	19.12aw	19.12ax
	19q13.31	19q13.2	19q13.32	19q13.31	19q13.2	19q13.2	19q13.32	19q13.31	19q13.2	19q13.2	19q13.32	19q13.32	19q13.33	19q13.4	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13.41	19q13	19q13.41	19q13.41	19q13.41	19q13.41	19q13.4	19q13.3	19q13.41	19q13.41
_	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	8
_				_		_	_	_						_	_	-																					

61680555 57994974 58052682 58076918 58188596 58298488 58327957 58348858 58357489 58411160 58430450 58549611 58579145 58607074 58653326 58689358 58773147 30687662 30690747 50783999 50802705 30806316 30827753 30846648 50848801 31324461 31364074 31396157 51412381 61431471 31450678 31582709 61628212 57981828 58112874 58157926 31596701 57959279 58302945 58388415 58408040 58574446 58590209 58644962 58662809 58716183 60679511 60688406 60780711 60794558 60803542 60823919 60844204 60846798 61290544 61344368 61392870 61409239 61571320 61607530 61643012 57992474 58033684 58075392 58101230 58144446 58163317 58260992 58334460 58449923 58507227 61424491 61447224 61586460 + 1048 206 496 818 555 839 + 136 584 523 14 + 408 12 + 463 562 264 323 + 172 + 197 382 447 358 496 517 569 610 722 665 469 509 682 651 129 678 27 + 920 24 + 425 19 + 692 327 241 + 324 20 -20 -+ + 11 -11 -, 10 -+ 11 -+ 10 -÷ , ı • ī + + . . . 5 18 15 18 4 15 20 8 2 17 **с** 8 4 ω 4 ო ŝ ß ŝ S KRAB KRAB KRAB KRAB KRAB KRAB KRAB KRAB KRAB SCAN SCAN SCAN SCAN SCAN KRAB KRAB KRAB KRAB KRAB KRAB Similar to zinc finger protein and SCAN 5 Similar to zinc finger and SCAN 5 Similar to zinc finger protein 600 Similar to zinc finger protein 495 Hypothetical protein LOC91664 K562 leucine zipper like protein Zinc finger protein 28 (KOX 24) FLT3-interacting zinc finger 1 Zinc finger SCAN domain 5 Zinc finger protein 816 Zinc finger protein 415 Zinc finger protein 818 Zinc finger protein 813 Zinc finger protein 579 Zinc finger protein 600 Zinc finger protein 702 Zinc finger protein 160 Zinc finger protein 347 Zinc finger protein 665 Zinc finger protein 677 Zinc finger protein 525 Zinc finger protein 765 Zinc finger protein 761 Zinc finger protein 331 Zinc finger protein 628 Zinc finger protein 524 Zinc finger protein 784 Zinc finger protein 580 Zinc finger protein 581 Zinc finger protein 787 zinc finger protein 583 Zinc finger protein 667 Zinc finger protein 468 Zinc finger protein like zinc finger protein 444 zinc finger protein 542 zinc finger protein 582 -OC388559 -OC649137 -OC646698 -OC342933 -OC91664 **ZSCAN5** ZNF160 ZNF415 ZNF347 ZNF665 ZNF818 ZNF677 ZNF525 ZNF765 ZNF813 ZNF331 ZNF628 ZNF579 ZNF524 ZNF784 ZNF581 ZNF787 ZNF583 ZNF600 ZNF468 ZNF320 **ZNF816 ZNF761** ZNF580 ZNF444 **ZNF542** ZNF667 **ZNF702** ZNF582 ZNF28 KLP1 FIZ1 19.13a m 19.12bm 19.12bn 19.12bo 19.12bp 19.12bq 19.13aa 19.13ab 19.13ad 19.13ae 19.13ag 19.13ah 19.13an 19.13ap 19.13aq 19.12ay 19.12ba 19.12bb 19.12bc 19.12bd 19.12be 19.12bf 19.12bg 19.12bh 19.12bi 19.12bj 19.12bk 19.12bl 19.13ac 19.13af 19.13aj 19.13ak 19.13al 9.12az 19.13ai 9.13ao 19.13ar 19q13.3-q13.4 19q13.41 19q13.42 19q13.42 19q13.41 19q13.42 19q13.41 19q13.42 19q13.42 19q13.42 19q13.42 19q13.42 9q13.42 19q13.42 19q13.42 19q13.42 19q13.42 19q13.42 19q13.42 19q13.42 19q13.42 19q13.43 19q13.43 19q13.43 19q13.41 19q13.41 19q13.42 19q13.43 9q13.43 19q13.43 19q13.43 19q13.43 19q13.43 19q13.41 13.41 19q13.4 1<u>9</u>d 40 19 9 19 19 19 19 19 19 19 19 19 19 19 19

62743943 62750155 62845948 62930795 63119756 61732082 61759982 61781931 31827362 61876058 62043887 62043876 62348382 32422351 62465479 32496618 62533956 62563078 62582739 62604598 62624983 62648665 62680750 62697860 62711338 62774746 62795570 62811444 62826536 62882317 62892991 62912391 62961337 62983757 63018093 63071765 63092226 62456615 62483745 62782055 61742129 61768362 61866765 62015615 62337276 62593030 62672766 52690945 62730505 62787440 62803065 62817440 62872115 61711024 61798504 61977742 62523689 62554487 62566691 62614359 62646590 52703121 62759537 62836396 52885217 62904779 62954023 62972850 63075442 63110026 62394681 52922931 63010264 63053081 12 - 1588 559 533 510 449 626 868 17 + 717 13 + 489 5 - 527 11 - 472 627 377 562 600 17 + 662 + 442 627 381 594 654 534 407 575 659 9 + 402 17 + 691 9 + 487 13 + 599 10 + 427 12 + 564 4 + 433 476 575 - 489 10 + 402 15 + 14 -++ 13 + 15 + + + 15 + 12 -10 + . 16 + + + 11 + 1 1 . + ï . 3 13 5 9 ი 8 9 9 æ 3 KRAB-KRAB KRAB KRAB KRAB SCAN KRAB SCAN KRAB Zinc finger protein 28 mouse homolog Hypothetical protein BC37295_3 Zinc finger and SCAN domain 4 Zinc finger protein 17 (KOX 10) zinc finger protein 71 (Cos26) Zinc finger, imprinted 3 Paternally expressed 3 Zinc finger protein ZIK1 Zinc finger, imprinted 2 Zinc finger protein 805 Zinc finger protein 272 Zinc finger protein 543 Zinc finger protein 304 Zinc finger protein 548 Zinc finger protein 749 Zinc finger protein 773 Zinc finger protein 549 Zinc finger protein 416 zinc finger protein 471 Zinc finger protein 470 zinc finger protein 264 Zinc finger protein 547 Zinc finger protein 772 Zinc finger protein 419 Zinc finger protein 550 Zinc finger protein 530 Zinc finger protein 134 Zinc finger protein 211 Zinc finger protein 671 Zinc finger protein 776 Zinc finger protein 586 Zinc finger protein 552 Zinc finger protein 587 Zinc finger protein 814 Zinc finger protein 551 Zinc finger protein 154 Zinc finger protein 417 BC37295_3 ZSCAN4 ZNF805 ZNF272 ZNF543 ZNF304 ZNF574 ZNF548 ZNF175 ZNF749 ZNF419 ZNF773 ZNF549 ZNF550 ZNF416 ZNF530 ZNF134 ZNF264 ZNF551 ZNF154 ZNF587 ZNF814 ZNF470 ZNF772 ZNF671 **ZNF552** ZNF417 **ZNF471** ZNF211 ZNF776 ZNF586 ZFP28 ZNF71 PEG3 ZIK1 ZIM3 ZIM2 € 19.13aw 19.13bm 19.13ba 19.13be 19.13bh 19.13bn 19.13bo 19.13bp 19.13bq 19.13bu 19.13bw 19.13cb 19.13cc 19.13as 19.13au 19.13av 13ax 19.13ay 19.13az 19.13bb 19.13bc 19.13bd 19.13bf 19.13bg 19.13bi 19.13bj 19.13bk 19.13bl 19.13br 19.13bs 19.13bt 19.13bv 19.13bx 19.13by 19.13bz 9.13ca 9.13at 19q13.43 19q13.4 19q13.4 19q13.4 19q13.43 19q13.43 19q13.43 19q13.43 19q13.43 19q13.4 88 6 9 9 19 9 19 9 19 9 19 6 19

33138552 33150889 3326526 3326528 33272588 33416739 33416739 33457285 3345706 3345710 33457285 3345710 33555932 3555932 35565932 35565932 35661011 3566577 35664409 3567273 356677 35661011 3566577 356677 356777 3566773 356777 3566777 04823 437778 7986521 8245640 8245640 8259192 00259192 4005842 4005842 4005842 44075601 44575601 8038830 9852421 8038830

-		_						
19	19q13.43	19.13cd	ZNF418	Zinc finger protein 418	KRAB	16 - 676	63125064	ò
19	19q13.43	19.13ce	ZNF256	Zinc finger protein 256	KRAB	15 - 627	63144013	ю
19	19q13.4	19.13cf	ZNF606	Zinc finger protein 606	KRAB	16 - 792	63180252 (ö
19	19q13.43	19.13cg	ZSCAN1	Zinc finger and SCAN domain containing 1	SCAN	3 + 408	63237246	ö
19	19q13.4	19.13ch	ZNF135	Zinc finger protein 135	KRAB	16 + 658	63262424	ö
19	19q13.43	191.13ci	ZNF447	Zinc finger protein 447	SCAN	2 - 510	63287018	ö
19	19q13.43	19.13cj	ZNF329	Zinc finger protein 329	ı	12 - 541	63329507	ö
19	19qter	19.13ck	ZNF274	Zinc finger protein 274	KSK	5 + 653	63386208	ö
19	19q13.43	19.13cl	ZNF544	Zinc finger protein 544	KRAB	13 + 715	63432646	ö
19	19q13.43	19.13cm	ZNF8	Zinc finger protein 8	KRAB	7 + 575	63482130	ó
19	19q13.43	19.13cn	HKR2	GLI-Kruppel family member HKR2	SCAN	8 + 491	63530197	ö
19	19q13.43	19.13co	ZNF497	Zinc finger protein 497	1	14 - 498	63557537	ø
19	19q13.43	19.13cp	LOC116412	Hypothetical protein BC012365	ı	8 - 531	63570549	ø
19	19q13.43	19.13cq	ZNF584	Zinc finger protein 584	KRAB	8 + 421	63611875	ø
19	19q13.4	19.13cr	ZNF132	Zinc finger protein 132	KRAB	18 - 706	63635994	φ
19	19q13.43	19.13cs	ZNF324B	Zinc finger protein 324B	KRAB	9 + 544	63654783	ø
19	19q13.43	19.13ct	ZNF324	Zinc finger protein 324	KRAB	9 + 553	63670275	φ
19	19q13.43	19.13cu	ZNF446	Zinc finger protein 446	SCAN	3 + 450	63679607	ø
19	19q13.43	19.13cv	ZNF499	Zinc finger protein 499	втв	4 - 511	63716709	Q
19	19q13.2-q13.4	19.13cw	ZNF42	Zinc finger protein 42	SCAN	13 - 734	63765096	ø
19	19q13.2	19.13cx	ZNF93	Zinc finger protein 93	KRAB	17		
υc	20n13		SCRT2	Sratch homolon 2 zinc finner orotein	1	5 - 307	590240	C C
6	20042		ZNE342	Zino finanziantoin 242	av a v	10 600	2410462	· c
	20013 20nter-611-23	- 20.15	ZINF343 7NE320	Zino finger protein 343 Zino finger protein 330		920 - 71 V	24 10403 1 7052706	- V
2 0	20n11 23-n11 22	20.1a 20.1h	ZNF133	Zinc imger protein 338 Zinc finger protein 133	- KRAR	4 - 2/3 15 + 653	18217157	
3 2	20p12.3-p11.21	2	ZNF336	Zinc finger protein 336	BTB	10 + 711	23293021	- N
20	20p11.21		ZNF337	Zinc finger protein 337	KRAB	20 - 751	25602851	2
20	20q11.21		PLAGL2	Zinc finger protein PLAGL2		6 - 496	30243968	3
20	20q11.22		ZNF341	Zinc finger protein 341	,	12 + 847	31783469	3
50	20q11.1-q11.23		SCAND1	SCAN domain containing protein 1	SCAN	179	34004960	õ
20	20q11.21-q13.12	20.2a	ZNF335	Zinc finger protein 335	ı	13 - 1342	44010699	4
20	20q13.12	20.2b	ZNF663	Zinc finger protein 663	ı	1 - 106	44476274	4
20	20q13.12	20.2c	ZNF334	Zinc finger protein 334	KRAB	14 - 680	44563114	4
20	20q13.1-q13.2		SNAI1	Zinc finger protein snail homolog	ı	4 + 264	48032934	4
20	20q13.13-q13.2	20.3a	SALL4	Sal-like 4	3	7 - 1053	49833988	4
662	20q13.2	20.3b	ZFP64	Zinc finger protein 64 homolog		13 - 645	50133957	ñ

 \odot

0

136481925 152270249 119276279 134305623 134325004 73245219 84415024 51633043 42303519 57640635 55533560 61907300 23385465 42172660 15054750 5761696 19091970 20135748 21193505 21204613 22423279 30072249 30765974 24142549 46289820 17158338 47227289 47666550 47748321 47815739 49325222 56328255 57953792 452598 119268635 136476012 152262060 134247385 134306387 - 1048 51617017 55505630 20101693 56275632 73242135 61846322 23383998 42091454 42280009 15713058 19078478 21168767 21198060 22413772 30051790 30751319 24077824 46243490 47114926 47191347 47581245 47802547 49316398 57634994 57950922 84385694 47719194 1500757 450078 - 1066 13 - 1507 663 589 - 543 542 779 639 326 615 11 - 446 - 687 323 661 803 799 + 761 + 672 510 + 467 376 + 572 805 581 506 657 359 + 518 18 -13 + + 15 -1 12 + + + 1 ī . + + , + + ÷ • + • 4 7 3 Ξ ĉ 5 2 ო ~ 2 ø ß ო ი ŝ ω თ SCAN-KRAB SCAN KRAB KRAB KRAB KRAB KRAB KRAB KRAB KRAB BTB SET **BTB** BTB BTB втв Zinc finger and BTB domain containing 33 Zinc finger protein of the cerebellum 3 Zinc finger protein Np97 pseudogene zinc finger protein 299 pseudogene Zinc finger, X-linked, duplicated B Zinc finger, X-linked, duplicated A Zinc finger protein 295 (ZBTB21) Similar to zinc finger protein 532 BTB (POZ) domain containing 4 similar to zinc finger protein 91 Zinc finger protein X-linked Zinc finger protein CTCF-T Similar to Sal-like protein 1 Zinc finger protein 298 Zinc finger protein 217 Zinc finger protein 279 Zinc finger protein 280 Zinc finger protein 278 Zinc finger protein 673 Zinc finger protein 157 Zinc finger protein 630 Zinc finger protein 449 Zinc finger protein 275 Zinc finger protein 70 Zinc finger protein 75 Zinc finger protein 74 Zinc finger protein 69 Zinc finger protein 73 Zinc finger protein 41 Zinc finger protein 81 Zinc finger protein 21 Kruppel-like factor 8 Zinc finger protein 6 **ZBTB30** -OC139163 -OC343927 _OC391288 -OC260337 ZNF299P PRDM15 ZNF295 SUHW2 SUHW1 ZNF278 ZNF674 ZNF275 ZNF157 **ZNF630 ZBTB33 ZNF217** CTCFL BTBD4 ZNF73 ZNF69 ZNF81 ZNF449 ZNF74 ZNF70 ZNF41 ZNF21 ZNF75 ZXDB HIC2 ZXDA KLF8 ZNF6 ZIC3 ZFX **→** → Э 22.1a 21.1a 21.1b 22.1b X.1d X.1b X.1c X.2b X.1a X.1e X.2a X.3a X.3b X.4a Xp22.11-p11.23 Xq21.1-q21.2 Xp11.1-11.3 22q11.23 20q13.31 20q13.33 22q11.22 22q11.21 21q22.3 21q22.3 22q11.21 22q11.2 22q11.1 22q11.2 22q12.2 Xp11.23 Xp11.23 Xp11.21 Xp11.21 20q13.2 21q21.1 22q11.1 Xp21.3 Xp11.2 Xp11.23 Xq13.2 Xp11.3 Xp11.1 Xq26.3 Xq26.2 Xq26.3 Xq23 Xq28 22p 읒 20 20 20 333 $\times \times \times \times \times$ $\times \times \times$ \times × × × × × × \times

		X.4b		LOC139735	Similar to zinc finger protein 92 KRAB	+ ∞	495	152336765	152340280
	•			ZFY	zinc finger protein, Y-linked	12 +	801	2863546	2909891
.223 -		-	÷	ZNF381P	zinc finger protein 381, Y-linked pseudogene	+		23605570	23606703
.223 Y.1a	Y.1a	-	÷	LOC392603	similar to Zinc finger protein 43 (Zinc protein HTF6) -	+	1	25235272	25240390
.23 Y.1b	Y.1b	-	÷	LOC442486	similar to zinc finger protein 91	י י		25540738	25545902

For each C2H2-ZNF in the dataset

¹ Chromosome number

- ² Position on the chromosome
- If the gene belongs to a cluster, the cluster number is indicated : The first number indicates the chromosome ³ The cluster number to which the gene belongs '-' for a gene found as a singleton rather than a cluster.
 - in the gene belongs to a cluster, the cluster number is indicated . The maximumen indicates the choin number, The second number indicates the number of the cluster on the chromosome.
- For example, a cluster number 1.1 indicates Chromosome1.Cluster1
- ⁴ Status as a pseudogene as reported in Genbank. ' Ψ' Identified as a pseudogene
 - ⁵⁶ The name of the C2H2-ZNF and its description
- ⁷ The domain associated with the C2H2-ZNF : KRAB, SCAN, SCAN-KRAB, BTB, HOMEO, SET an without
 - an encoded conserved N-terminal domain (Φ)
- ⁸ The number of zinc finger motifs present
 - ⁹ The orientation
- ¹⁰ The amino acid sequence length
- ^{11 12} The start and stop of translation

Supplementary Table S2

Comprehensive summary of the organization of all C2H2-ZNF found as singletons or in clusters on each human chromosome and classified with respect to the various C2H2-ZNF sub-families.

							C2	H2	ZNF	^z sut	o-fan	nili	es				
	Total		No. C2H2-ZNF in	KF	AB	SCAN	I-KRAB	SC	AN	B	ГВ	S	ET	но	MEO	1	ø
Chr	No. C2H2-ZNF	No. Clusters	Clusters	' S	' C	S	С	S	С	S	С	S	С	s	С	S	С
1	36	6	17	1	9		1	1		7		1				9	7
2	17	3	7	1	2											9	5
3	30	6	20	2	5		3			2	1					6	11
4	10	1	4	1	2					1						4	2
5	15	1	6	1	5											8	1
6	28	3	16	1	2		2		7	3	2					8	3
7	47	7	41	1	27		2									5	12
8	30	4	16	3	6					1				1	2	10	8
9	23	4	10	5	3	1				3	2					4	5
10	22	3	13		8											9	5
11	15	2	4	3	1	1	1			3						4	2
12	15	1	7	2	6											6	1
13	5	2	4												ļ	1	4
14	10	2	4	1							2				1	5	1
15	12	3	8					1	2		1					3	5
16	33	6	27		10	1	2		3							5	12
17	13	2	5	1	1	1	1		1	1						5	2
18	14	2	6	1					3	2						5	3
19	289	13	279	3	185		1		13		4			1		6	76
20	18	3	7	2	2			1		2						6	5
21	3	1	2								1		1			1	
22	10	1	2	2						2						4	2
х	19	4	11	1	6		1		1	1						6	3
Y	4	1	2				<u> </u>									2	2
Total	718	81	518	32	280	4	14	3	30	28	13	1	1	2	3	130	177

¹ No. of C2H2-ZNF without an encoded conserved N-terminal domain (ø), found as singletons (S) or in C2H2-ZNF clusters (C)

Gene organization of the 81 human C2H2-ZNF clusters.

		No. Of	Clusters with	Order of the genes from the	
Cluster ¹	Position	C2H2-ZNF	Solely C2H2-ZNF	different C2H2-ZNF subfamilies ²	Cluster composition ⁴
1.1	1p36.11	2	No	ø/ø	Pure
1.2	1p34.2	3	No	K/K/K	Pure
1.3	1p34.1	2	No	ø/ø	Pure
1.4	1q42.13	2	No	ø/K	Mixed
1.5	1q44	6	No	K/K/K/K/S-K	Mixed
1.6	1q44	2	Yes	ø/ø	Pure
2.1	2p23.3	2	No	ø/ø	Pure
2.2	2q11.1	3	Yes	K/K/ø	Mixed
2.3	2q13	2	No	Ø/Ø	Pure
3.1	3p22.1	3	Yes	ø/K/K	Mixed
3.2	3p22.1	3	No	ø/K/K	Mixed
3.3	3p21.32	8	Yes	S-K/K/S-K/ø/S-K/ø/ø/ø	Mixed
3.4	3q13.2	2	No	ø/B	Mixed
3.5	3q24	2	Yes	0/0	Pure
3.6	3q26.32	2	No	0/0	Pure
4.1	4p16.3	4	Yes	K/ø/ø/K	Mixed
5.1	5a35.3	6	No	K/K/ø/K/K/K	Mixed
6.1	6p22.1	2	No	ø/K	Mixed
6.2	6p22.1	12	No	S/S/S-K/ø/S/S-K/ø/S/S/S/S/K	Mixed
6.3	6p21.3	2	No	B/B	Pure
7.1	7p22.1	2	No	a/K	Mixed
7.2	7p22 1	4	No	a/K/a/K	Mixed
7.3	7p11.2	5	No	ala/K/a/K	Mixed
7.4	7a11 21	9	No	K/K/K/a/a/K/K/a/K	Mixed
7.5	7022 1	8	No	K/S-K/S-K/a/a/K/K/K	Mixed
7.6	7022 1	3	Yes	K/K/K	Pure
77	7036 1	10	No	K/K/K/K/K/K/K/k/a/K-K	Mixed
81	8p23.1		No	ala	Pure
82	8024.13	2	No	H/H	Pure
83	8a24.3	5	No	alalalK	Mixed
84	8n24.3	7	No	a/K/K/K/K/a/K	Mixed
0.4	902232	, А	No	a/K/K/a	Mixed
92	9031.2	2	No	ala	Pure
0.2	9032	2	Vec	oll	Mixed
9.4	9033.2	2	Vee	B/B	Pure
10.1	10011 21	6	Vec	K/a/a/K/K/K	Mixed
10.1	10011.21	3	No	a/K/K	Mixed
10.2	10011.21	1	Ves	Kalkia	Mixed
11.1	11015.4		Vos	C.K/K	Mixed
11.0	11012.0	2	Vec	3-IVA	Bure
12.1	12024.22	7	Vec	KIKIKIKIA	Fule
12.1	12424.00	,	Ne		Nixeu
10.1	10422.1	2	INU	0/0	Pure
14.1	14-11.0	2	Yes	0/0	Pure
14.1	14011.2	2	Yes	H/Ø	Mixed
14.2	15-04	2	Tes	D/B	Pure
15.1	15024	2	INO	B/Ø	Mixed
15.2	15025.3	3	NO	5/5/0	Mixed
15.3	15q26.1	3	No	Ø/Ø/Ø	Pure
16.1	16p13.3	9	No	S/K/S-K/ø/S-K/K/ø/S/ø	Mixed

	Clusters		C2H2-ZNF			
ıl Ű	81		518	Yes= 25 ; No = 56		Pure= 29 ; Mixed= 52
	Y.1	Yq11.23	2	No	ø/ø	Pure
	X.4	Xq28	2	No	ø/K	Mixed
	X.3	Xq26.3	2	Yes	S-K/S	Mixed
	X.2	Xp11.1	2	No	Ø/Ø	Pure
	X.1	Xp11.23	5	No	K/K/K/K/K	Pure
	22.1	22q11.22	2	No	Ø/Ø	Pure
	21.1	21q22.3	2	No	Se/B	Mixed
	20.3	20q13.2	2	Yes	Ø/Ø	Pure
	20.2	20q13.12	3	No	ø/ø/K	Mixed
	20.1	20p11.23	2	No	K/ø	Mixed
1	19.9	19q13.12	32	No	³ 23K/1B/8ø	Mixed
-1	19.8	19q13.11	8	No	³ 3K/S/3ø	Mixed
	19.7	19p13.11	40	No	³ 28K/12ø	Mixed
	19.6	19p13.2	28	No	³ 21K/7ø	Mixed
	19.5	19p13.2	14	No	³ 9K/5ø	Mixed
	19.4	19p13.2	2	No	K/ø	Mixed
1	19,3	19p13.3	2	No	ø/B	Mixed
	19.2	19p13.3	5	Yes	K/K/K/K/K	Pure
	19.13	19g13.43	76	No	³ 43K/1S-K/12S/1B/19ø	Mixed
	19.12	19q13.41	43	No	³ 30K/13ø	Mixed
	19.11	19q13.31	24	Yes	³ 19K/5ø	Mixed
1	19.1	19p13.3	2	No	ø/B	Mixed
	19.1	19q13.2	3	Yes	K/K/K	Pure
	18.2	18q23	2	No	Ø/Ø	Pure
1	18.1	18q12	4	Yes	S/ø/S/S	Mixed
	17.2	17p11.2	2	No	S-K/K	Mixed
	17.1	17p13.2	3	No	@/S/Ø	Mixed
	16.6	16q24.2	2	Yes	ø/ø	Pure
	16.5	16q22	2	Yes	K/K	Pure
	16.4	16p11.2	2	No	ø/K	Mixed
	16.3	16n11 2	10	No	³ ø/ø/5K/ø/ø/ø	Mixed
Ĩ	16.2	16p13.3	2	No I	ø/S	Mixed

Tota

¹ For the cluster name, the first number correspond to the chromosome on which the cluster is found and the second to the number attributed to the cluster.

² Sequential order of the genes from the different C2H2-ZNF subfamilies such as KRAB (K), SCAN (S), SCAN-KRAB (S-K), SET (Se), HOMEO (H) and without an encoded conserved N-terminal domain (Ø)

³ For the very large clusters, the number of C2H2-ZNF from each subfamilies is specified (eg: 23 K means that 23 consecutive genes from the KRAB-C2H2-ZNF subfamily are found in the cluster).

⁴ 'Pure' = The cluster is composed of C2H2-ZNF from a single subfamily;
'Mixed' = different subfamilies of C2H2-ZNF are present in the cluster.

Note: 'Pure' clusters with solely tandemly repeated C2H2-ZNF are in grey

Supplementary Table 4

0

Comprehensive catalog of the C2H2-ZNF genes from the 81 human clusters and their syntenic counterparts from other mammallan genomes (Chimpanzee, Mouse, Rat and Dog)

Ô

Human Chictar 1 1	ſ	Chimpanzee	Motise	Rat	Dog	Γ
	T					I
h chr1		p chr1	m cnr4	r cnro	c curz	
0	0 L 0	0 1 0			0	0
FG TRIM63 PDIK1L		FG TRIM63 POIKIL	FG Trim63, Pdik 1/	FG Trim63, Pdik11	FG TRIM63, PDIK1L	
GRAP1		GRAP1	Grap 1	Grap 1	GRAP1	
ZNF593	+	ZNF593 - 1 +	Zfp593	Zfp593_pred	- LOC487360 - 1	+
ZNF683	4	ZNF683			LOC487354 - 4	
FG LINZB, UHUUN HMGN2		HMGN2 HMBU3	Hmgn2	Hmgn2	HMGN2	
Human Cluster 1.2	Γ	Chimpanzee	Mouse	Rat	Dog	Π
h chr1	Γ	p chr1	m chr4	r chr5	c chr15	
FG.ZMPSTE24.COL3A	0 1 0	FG. ZMPSTE24 LOC456791 D F O	FG: Zmpste24, Col9a2 D F O	FG Zmpste24, Col942 D F C	D FG: LOC607622. D F	0
LOC388621,SMAP1L		LOC748691. SMAP1L	Smap 1/	Smap 11	LOC607609 LOC482458	
ZNF643	+ 6 ¥	ZNF643 - 9 +	Zfp69 K 9		LOC482457 K 1	
ZNF642	+ 6 ¥	ZNF642 K 9 +			LOC482454 K B	'
ZNF684	+ © +	LOC456797 K B +				
FG. LOC728633, RIMS3		FG. LOC748746, RIMS3	FG Rims3 Nfyc	FG Rims3 Nfyc	FG.LOC607486	
NEYCKONCH		LOC456799, KCNO4	Konq4	Kcnq4	LOC475312, LOC482451	٦
Human Cluster 1.3	ſ	Chimpanzee	Mouse	Rat	Dog	
h chr1		p chr1	m chr4	m chr5	c chr15	
FG ATP6VOB, BAGALT L	0 LL 0	FG ATP6VOB BAGALT D F O	FG Ap6vob,Bagatt2 D F O	FG Applevob Bagari2 D F	UFG: ATP6VOB, BAGALT UF	5
2 CCD24 SLC6A9		2 CCD24 SLC6A9	Sic6a9	Sicea9	2,CCD24,SLC6A9	5
KLF17	+ 8 11	KLF17 * 3 +	Kif17 · 3 ·	Z1p393_pred 3	- KLF17	*
LOC128208	م					
					-	
dialvad tavinu 23		C DIAAPT PRNDID	FG Drant Provin	FG Dran t. Princip	FG DMAP1, PRNPIP	
			Turners	Tmom63	THEMS	
TMEM53	-	IMEMD3	(memos	COLIBULI	1 INCINO	1

)				
Cluster 1.4	Chimpanzee D chr1	Mouse m chr11	Rat 1 chr10	Dog c chr14
28PA D F - 15 K 3	0 FG CDC42BPA D F CTD-2901 + LOC469695 - 15	0 FG Cde42bpa Crit-29di +	FG Cric+220/a Ciel-294/	FG CDC/28PA D F O CTD-29DI
4, MPN2	FG JMJD4, MPN2 WNT9A	FG Jimid4 Writ9a	FG Jimpd4 Writ9a	FG JMJD4, MFN2 WNT9A
Cluster 1.5	Chimpanzee	Mouse	Rat	Dog c chr11
Sccret 4.AHCTFi D F 4.AHCTFi D F K 9 806 K 10 805 K 10 805 K 10	Состаяти странисти Состаятии Состаятии Состаятии Состаятии с сост	O FG The2m, Scopeth G m1306, Alveth BC050078 K 12 Zfp496 SK 5	Erntein Scooth D F O Gariados, Aberti S 5 - 2110496	FG LOC480182 D F O LOC480165 S 5 -
1. OR2811	FG CIAS1, OR2B11 OR2W5	FG Clas1. Oth222 LOC668157	FG Clast, Oht222 LOC668157	FG_CIAS1, OH2B11 OR2W5
Cluster 1.6	Chimpanzee	Mouse	Rat	Dog
	p chr1	m chr11	r chr10	c chr16
227, OA5BU1 D F - 13 - 5	6 6 0A27227.0A58U1 D F SH38P6L + 2NF672 - 13 - 2NF692 - 13	o FG Octezz7 D F (Snabp51 + Ztj6572 - 13 - - Ztj6582	FG 0/2/227 D F 0 Shabps/ Zip6572 - 13 - + Zip692 - 5 +	FG 0A27227, 0A58U1 D F 0 SH3BFsL LOC482699 - 12 + LOC482698 - 3 -
2	FG. PGBD2	FG Pgbd2	FG Pgbd2	FG PGBD2
Cluster 2.1	Chimpanzee	Mouse	Rat	Dog
	p chr2	m chr5	r chr6	c chr17
7. GTF3C2 D F	0 FG MPV17, GTF3C2 D F EIF284, SNX17	0 FG Grisc2, Ereby D F (Six17) FG GH3c2, EH2b4 D F O Shut 7 Thurst 0	FG MPV17, GTF3C2 D F O EIF2B4 SNX17
S .	+ ZNF512	+ Ztp512 - 2	RGD156152 2 .	LOC608296 - 1 +
3121 XAB1	FG CCDC121, XAB1	FG Xab1. Supiti	FG Xab1, Suptri	FG CCDC121, XAB1 SUPTTL

Tadepally et

Human Cluster 2.2		Chimnanzaa	W	ouse	Γ	Rat		Dog	
Unitidit Ciuster 2.2		CUINTDUZCE			Ι				Γ
h chr2		p chr2	E	1 chr2		r cnrs		c curi /	
FG TEKT4 LOC442148	0 1	P.G.TEKTA, MAL	F O FG	3. Tekna, Mai	D L O	FG Tekta Mai	D F O	FG LOC483056	DFO
MAI MRPS5		MRPS5	W	055		Mrps5		MAL_LOC475746	
ZNF514	. ч Ч	LOC470431 K	7 . 2	lp661	6 Х	Zfp661	е У	LOC611670	K 7 +
ZNF2	+ 6 ¥	ZNF2 K	+ თ					LOC483055	K 28 -
LOC344065	0	- LOC459400	+ 80						
FG PROMP KONIP3		FG PROM2 KONIP3	F	3 Prom2.Kcnio3		FG Prom2.Kcnip3		FG LOC611664	
FAHD2A		FAHD2A	, Fa	thd2a		Fahd2a		LOC609135,LOC425745	
Human Cluster 2.3		Chimpanzee	W	ouse		Rat		Dog	
h chr1		p chr1							
FG ADRAPH ASTL	L L	D FG ADRA28, ASTL D	F O F	3 ADRA28, ASTL	D F O	FG. ADRA2B, ASTL	D F O	FG ADRA2B, ASTL	D F O
DUSP2		DUSP2	ā	USP2		DUSP2		DUSP2	
LOC343938	- - -								
LOC442041	a S								
			_				2		
FG NCAPH		FG NCAPH	ŭ	3 NCAPH		FG:NCAPH		FG NCAPH	
LINCR		LINCH	a	NCR		LINCR		LINCH	
						Dat		000	ſ
Human Cluster 3.1		Cnimpanzee	2	louse		180		final	
h chr3		p chr3	2	ı chr9		r chr8		c chr23	
FG MYRIP EIF18	D F C	DIFG EIFIB.ENTPD3 D	F O F	S MYRIP, EIF 18	D F O	FG MYRIP EIF 18	0 1 0	FG:MYRIP_EIF1B	0 1 0
ENTPD3 RPL14		LOC735759.LOC735578	ü	hpd3 Rpl14		Entpd3, Rpl14		ENTPD3. APL14	
ZNF619	- 10 +	LOC470797 2K	56 +						
ZNF620	+	LOC470799	ю 11						
ZNF621	к Ч								
:		2. 140 Sec.							
FG_LOC645807,LOC651625 MRPS31P1_CTNN31		CTNN31	<u>1 8</u>	a_LOCOADOV, LOCO3 1923 RPS31P1, CTNN31		MAPS31P1, CTNN31		MRPS31P1, CTNN31	
Human Cluster 3.2		Chimpanzee	N	louse		Rat		Dog	
h chr3		p chr3	u	ı chr9		r chr8		c chr23	
			2 0	Cardle Cet013	- - -	EG Caroor Set810	C 11 C	FG UPR1 SEC22C	0 1 0
CC401 9 NICTO		SCIRI 2 NKTR		a: sececu, so rois kitr	- - -	Nktr) -)	SS18L2. NKTR	
ZNF651	т сс ,	ZNF662 K	- N + 8	fo651	+ 8 8	RGD1562434	+ 8 8		
ZNF662			 - >						
LOC339903	 ¥								
FG.SNRK. TMEM16K		FG.SNRK, TMEM16K		G Surk. Tmem16k		FG Snrk, Tmem16k		FG.SNRK, TMEM16K	
ABHDS		ABHD5	4	bhd5		Abhd5		ABHD5	

 \cap

Human Cluster 3.3		Chimpanzee	Mouse	Rat	Dog
h chr3		p chr3	m chr9	r chr8	c chr23
FG. SNRK, TMEM16K	0 F 0	C FG SNRK, TMEM16K D F (D FG. Snrk. Trnem t6K D F	O FG. Surk, Tmem16K D	F O FG. SNRK, TMEM16K D
ABHD5, FLJ36157		ABHDS, FLJ36157	Abhds, LOC666218	Abhd5, LOC666218	ABHD5
ZNF445	SK 14 -	- ZNF445 SK 4	Z1p445 SK 12	RGD1559144 SK	12 - ZNF445 SK
LOC285346	K 12 -	- ZNF167 ¥ 23	+ Ztp167 S 11	+ Znf167 s	22 +
ZNF167	SK 13 +	+ ZNF35	+ Z1p660	+ Zfp105	11 +
ZNF660	- 10 +	+ ZNF502 - 14	+ Zfp105 8 11	+	
ZNF197	SK 22 +	+ LOC470807 9	+		
ZNF35	; =				
ZNF502	- 14 +	<u>.</u>			
ZNF501	+ 6	+			
FG KIAA1143 KIF15		FG KIAA1143 KIF15	FG 1110059G10Rik Kill15	FG 1110059G10RiK, Kin15	FG TMEM42, KIF15
TMEM42 TGM4		TMEM42, TGM4	Treem42 Tgm4	Tmem42. Tgm4	
Human Cluster 3.4		Chimpanzee	Mouse	Rat	Dog
h chr3		p chr3	m chr16	r chr11	c chr17
	u 1			D FG DMM1	
				Emo	DRD3
ZNF80	. 7 .	LOC470886	Zbtb20 B 5	+ Zbtb20 B	5 .
ZBTB20	в 5-	- ZBTB20 B 5			
EPdP5 53		FG GAP43	FG Gap43	FG Gap43	FG GAP43
LSAMP		LSAMP	Leamp	Lsamp	LSAMP
Human Cluster 3.5		Chimpanzee	Mouse	Rat	Dog
h chr3		p chr3	m chr9	r chr8	c chr23
FG PLSCR2 PLSCR1	ц С	D FG PLSCR2 PLSCR1	FG Plscr2	FG Pisci2	FG PLSCR2,PLSCR1
PLSCR5		PLSCR5	Plscr5	PlaceS	PLSCR5
ZIC4	4	LOC470956	- Zic4 64	+ Zic4	4 + LOC485704
ZIC1	4	+ LOC460759 4 4	+ Zic1 4	- Zic1	4 - LOC611554
FG RPL38P1_AGTR1		FG RPL38P1, AGTR1	FG Rp(38p1	FG Rp138p1	FG RPL38P1, AGTR1
CPB1		CPB1	Cpb1	Cpb1	CPB1

Tadepally et

Human Cluster 3.6		Chimpanzee	Mouse		Rat	Dog		
h chr3		p chr3	m chr3		r chr2	c chr34		
FG ZMAT3. PIK3CA	0 F (D FG ZMAT3, PIK3CA D F	O FG Zmat3 Ptk3ca	0 F 0	FG Zmat3. Pik3ca	F O FG ZMAT3	PIK3CA	л С
K CNMB3 MIC1	c	KCNMB3	Win1	e .	Wia1	2 - WIG1		N
ZNF639	ν ιΩ , ,	ZNF639	+ Zfp639	+ 	Zfp639	5 + ZNF639		- 5 +
FG MFN1.		FG MFN1. GNB4	FG Mfn1 Gnb4		FG Mint Gnb4	FG MFN1		
Human Cluster 4.1		Chimpanzee	Mouse		Rat	Dog		
h chr4		p chr4	m chr5		r chr1	c chr23		
FG LOC737253	0 F 0	D FG LOC737253 D F	0 46 700737253	D F O	FG LOC737253 D	F 0 FG LOC737	253	ц П О
ZNF595	А 18 1	+ ZNF595 K 18						-
MGC26356	+ 9 9	+ ZNF718 K 11						
LOC654254		- LOC461038						
ZNF141	× 11 -	+ ZNF721 K 28						
FG PIGG		FG PIGG I OC461041. ATP51	FG Pigg		FG. Pigg	FG PIGG LCC461041.	ATPSI	
			indiv.	1]
Human Cluster 5.1		Chimpanzee	Mouse	Π	Rat	Dog		Π
h chr5		p chr5	m chr11		r chr10	c chr11		
FG COL23A1 MHPLS0P3	с С	D FG. COL25A1, CLK4 D F	0 FG:Col23a1	D F O	FG:Col23a1	F 0 FGILOC607554	-	л С О
CLK4			Cike		CIN4	LOC474645		
ZNF354A	K 13 -	- ZNF354A K 13	_ Ztp354a	K 13 +	Zfp354a K	13 + ZNF594		K 35 -
ZNF354B	K 13	+ ZNF354B K 13	+ Zfp354b	K 13 -	RGD1560080 KK	13 LOC4746	20	X 24 -
ZFP2	- 13 -	+ ZNF71 K	+ Zfp2	• 6 •	RGD156327 K			
ZNF454	K 12,	+ ZFP2 K 11	+ Zfp454	K 12 -	Zfp354c K	20 E		
DKFZp686E2433	K 13 -	+ ZNF454 - 12	+ 9630041N07Rik	K 13 -				
ZNF354C	K 11	+	Ztp354c	X E				
FG ADAMTS2		FG GRM6, ADAMTS2	FG Adamts2		FG Adamts2	FG LOC481	453	
LOC391859			Rufy1		Rufy 1	LOC482454		

0

Tadepatly et

Human Cluster 6.1		Chimpanzee	Mouse	Rat	Dog
h chr6		p chr6	m chr13	r chr10	c chr35
FG. POM121167, FKSG83	0 L 0	FG. POM121167, FKSG83 D F (0 FG Pom12162 D F 0	FG Pom12162 D F O	FG: POM121167, FKSG83 D F O
PP1-153G14 3		HP1=153G14 3	Fksg83	Fksg83	RP1-153G14 3
LOC346157	+ 6	LOC472231 9	+ Z1p184 K 19 +	Zfp184 K 19 +	LOC478746 - 9 +
ZNF184	K 19 -	ZNF184 K 19			
FG HISTIH2A1		FG HISTIH2A1	FG HISTIH2A1	FG HISTIH2A1	FG HISTIH2A1
HIST1H3H.HIST1H2AJ		HIST1H3H, HIST1H2AJ	HISTIH3H HISTIH2AJ	HIST1H3H.HIST1H2AJ	HISTIH3H HISTIH2AJ
Human Cluster 6.2		Chimpanzee	Mouse	Rat	Dog
h chr6		p chr6	m chr13	r chr17	c chr35
FG-OR2B7P,OR2B8P	DFO	EG LOC471910 D F (0 FG:0(#1370,0(#1369 D F 0	FG OH+1370, OH+1369 D F O	FG:LOC611561, D F O
ORIFIZP		LOC462510	Oit+42 Oth 1368	Oth 42 Oth 1368	LOC488312. Cor2y2
ZNF165	+ 9 S	ZNF165	- Zfp96 5 8	Zfp192 SK 10 +	LOC611561 +
ZNF435	5 4 +	LOC471912	Zfp306 S 7	Znf307 SK 3 -	LOC488316 - 8 +
ZNF192	SK 9 +	LOC471914	- Zfp187 💿 7	Znf187 SK 7 +	LOC488318 S 15 +
LOC222701	+ • •	ZNF193 S 5	+ RP23-298F22.2 S 7	Zfp307 S 7 +	
ZNF193	+ so so	ZNF307 - 7	- Zfp102 SK 9	Zfp96 - 8 -	
ZNF307	SK 7 🤅	ZNF306 S 7	+		
ZNF187	*	ZNF96 S 18			
ZNF323	5 6 .	ZNF390 S 5			
ZNF306	S 7 +	ZNF452	1		
ZNF305	s 11 .	ZNF311 K 14			
ZNF452	י א ג				
ZNF311	K 14				
PG-ORDW1 ORDPID		FG I OCA71926	FG Oth 1366 Oth 1365	FG Off+1366. Off+1365	FG:LOC488327
LOC646260		LOC471927	Offr 1364	Oth 1364	LOC488328
Human Cluster 6.3		Chimpanzee	Mouse	Rat	Dog
h chr6		p chr6	m chr17	r chr20	c chr12
FG WDR46, PFDN6	۵ ۵	FG WDR46 PFDN6 D F	OFG Warde Plane DF O	FG War46 Plan6 D F O	FG WDH46, PLUNG U F U
RGL2 TAPBP		RGL2 TAPBP	Rgi2, Tapbp	Rgl2. Tapbp	HGL2 TAPBP
ZNF297	ः २ 8	ZNF297 B 2	- Zbtb22 B 3 +	ZDtb22 B 3 +	LOC607900 B 2 .
ZBTB9	81+	28789 8 1	+ Zbtb9 B 9 -	Zbtb9 B 9	LOC607940 B 1 +
FG BAKI ITPR3		FG BAK1 ITPR3	FG Bak1, ttpr3	FG Bak1. Ipr3	FG BAK1. ITPR3
0		8			

 \cap

0

Tadepally et

human Cluster /. I h chr7 FG_SLC2944									
h chr7 FG SLC2944		VIIIIIpurace	1	acnow	Ĩ	עמו	T		
FG SLC29A4		p chr7	-	m chr5		r chr12		c chr23	
	С Ц	FG SLC29A4	0	-G. Sk29a4	DFO	FG Skc29a4	L L	FG_SLC2944,	ц П П
	26	K1441866		(1441856	_	KIAA1856		KIAA1856	
LOC441193	69 55	LOC441193							
ZNF815	+ 0	ZNF185 K	+ m						
				C Breed Mat		FG Pres Nut		FG PMS2_JTV1	
EFEAKT		EIFZAKI		Sil2ak1		Eitzakt		EIF2AK1	
Human Cluster 7.2		Chimpanzee	Ē	Mouse		Rat		Dog	
h chr7		p chr7		m chr5		r chr12		c chr6	
									1
FG RACI DAGLB	0 L 0	FG. RAC1, DAGLB D	ч 0 ш	-G. Rac1, Dag1b	0	FG. Ract, Dagtb D	0 L	FG RACI DAGLB	L 0
KDELK2 GRID21P		KDELK2, GRID21P	<u> </u>	Grd2ip		Grid2ip		KDELK2 GRID21P	
DKFZp434J1015	+	LOC742263 K	15 +	Gm792	- 2 -	RGD1563095	+ 20		
DKFZp547K054	(15 +	LOC472281 K	15 +	Zfp316	K 15 -	Zfp316	₀ 15 +		
LOC442283	•	ZNF325 K	15	Zfp12	K 15 +	RGD1564396 K	15 😒		
ZNF325	< 15 -								
ax: 370, 053780, 53		EG-ORYE30 OR7F136P		-G Or7e39 Or7e1360		FG 0r7e39 0r7e1360		FG OR7E39, OR7E136P	
OR7E59P		OR7E59P		Dr.7e59p		Or7e59p		ORTESSP	
			1						
Human Cluster 7.3	Γ	Chimpanzee	Ē	Mouse		Rat		Dog	
h chr7		p chr7							
FG COL23A1,MRPL50P3	0 L	FG. COL2341,MHPL50P3 D	0 L						
CLK4		CLK4							
LOC442311	12 +	ZNF479 K	10 -						
LOC222032	•	ZNF716 K	12 +						
ZNF479	(10 -								
LOC340223	1								
ZNF716	< 12 +								
FG HISTIH2A1		FG HISTIH2A1							
HIST1H3H.HIST1H2AU		HIST1H3H HIST1H2AJ							

 \cap

Tadepatly et

1		Ob for a new of	ſ			Dat	ſ	000	Γ
Human Cluster 1.4		Cnimpanzee	Ι	asnow		1ai	T	600	T
h chr7		p chr7							
FG 10C285900 L0C402273	0 1 0	FG.LOC472386.LOC463343	D F O						
LOC442320		LUC4/238/							
ZNF679	+ 6 +	ZNF679	+ 60 ¥						
LOC728927	+ 6 ¥	LOC472390	K 10 +						
TNEED	K 10	ZNEGRO	K 13 1						
	2	10030061	- 						
ZFU25	- 24 +	- LUC/3830/	÷ N						
ZNF138	+ 9	- ZNF273	K 13 +						
ZNF273	K 13 +	LOC463440	100						
7NE117	0 X		2						
	י ת								
H-pik	13								
ZNF92	K 14 +								
FG: LOC644500, LOC03491		FIG. LUUDH4000 LUUDUUU							
LUCTURE C					1				
							ĺ		
Human Cluster 7.5		Chimpanzee		Mouse		Rat		Dog	
				m ahrf	ſ	r chr19	Γ	c chr6	
n cnr/		p curr							
									ŝ
FG PDAP1, BUD31	L L D	FG PDAP1 BUD31	DFO	F.G. Pdapt Bud31	L 0	FG.MGC108785 D	0 ⊾	FG LOC489860.LOC489859	L L D
DTOD COCCA TECH		DTCD 1 CBCE 1 ATDE (2		Dird? Creft		1 OCGOD41		1 OC479742 1 OC606757	
PILUT.CPSF4,AITOK			:				,		, , ,
ZNF789	×	LOC737149	+ ¥	Ztp99	-	s Fredra	+ _	LUC4/3/4:	* \ \
ZNF394	- × ×	LOC463573	SK 7	Zfp95 S	K 12 +	Z1095 S	12 .	LOC489856	SK 12 -
		16000		76-0610	1	Zineke	5	100489855	. 7
06417	+ 5L VS		+ 51 22	cendia					- 1
ZNF655	9	LOC463577	:	LOC666311	+	ZN1498 S			
ZNF498	+ ~ .	ZKSCAN1	SK 6 +	LOC667050	2			LOC489849	2 9 XS
TKSCANI	u X	00463584	c 7 +	1 00630654	•			LOC489848	S 7 -
	-				а 1 2				
ZNF38	+ ∞ ¥	1 ZN13	R N						
ZNF3	, 8								
FG COPSEMCM7		EG COPSEMCM7		FG-Coos6 Mcm7		FG Cops6.Mcm7		FG COPS6.MCM7	
ADMAT TAFE		APAMIT TAFE				Andm1 Tal6		AP4M1 TAF6	
]		1]
							ſ		
Human Cluster 7.7		Chimpanzee		Mouse		Rat		Dog	
h chr7		p chr7		m chr6		r chr4		c chr16	
FG FZH2 BNV5	0 F C	FG EZH2 BNV5	DFO	FG:Cull.Ezh2	Ó L	FG:Cult Ezh2 D	0 L	FG. EZH2 RNY5	0 1 0
PDIAL COYCEP		PDIA4 COYGRP1		Rrd Prlind		Brid. Pdia4		PDIA4_COX6BP1	
	-		:	302-72	a	000155010	0	1 00 489789	00 7
ZNF/86	K 15	- LUC4/2581	K 15 -	Z1D/80	6) 10		0		
ZNF425	K 19	- ZNF425	- 18 -	Z1p398	+	Z1D282	'n	LUC462/85	4 4
ZNF398	×	+ ZNF398	K 8 +	Zfp282	+ 5	Zfp212 K	4	LOC610802	X 4
ZNF282	γ v	+ ZNF282	ж + +	Ztp212	* *	LOC681104	12	LOC482786	് റെ ¥
ZNF212	А 4 +	+ ZNF212	K 4 +	AI894139	+ 9	RGD1304879	4	LOC610814	, «
ZNF783	4 4	LOC463826	K 4 +	ztp797	. 6	RGD156605	6	LOC610822	+
7NE777	. o	1.00745595	•	Zfn746	4	RGD1306209 K	4	LOC482787	- 12 -
ZNF746	 	LOC463827	+ a X	Ztp467	0	RGD130696 K	,		
ZNE767	- ÷	100463820	- ·		2	100500110	12		
ZNE467	1 5	LOC463832	r X			LOC68127 K			
CINENCIAL ACTOR	2	FG ATBONES ACTR	+ - -	EC: America?/ mct		EG América / m.61		FG-1 OC482989	
FG. ATPOVUEZLAU MUD				LG. Aponuccentrol		La Approactico			
LARC61 RARRES2		LRRC61,RARHESZ		Ram952		Rarres2		LOC610852,LUC4/333	

 \bigcirc

0

Tadepally et

Human Cluster 8.1		Chimpanzee	Wouse	Rat		Dog	
h chr1		p chr1	m chr11	r chri	0	c chr16	
FG DEFB130	0 1 0	FG DEFB130 D F (D FG EG654465 D F	E O FG De	1041 DFO	FG DEFB130	0 7 0
LOC389631 LOC441341	00 00 00 00 00 00						
FG RPL38P1, AGTR1 CPB1		FG RPL38P1, AGTR1 CPB1	FG Agtr1 Cpb1	FG Ag Cpb1	tr1	FG RPL38P1, AGTR1 CPB1	
Human Cluster 8.2		Chimpanzee	Mouse	Rat		Dog	
h chr8		p chr8	m chr15	r chrì		c chr13	
FG SNTB1, HAS2	0 1 0	FG SNTB1, HAS2 D F (O FG Sntb1, Has2	FG Sn	b1, Has2	FG SNTB1, HAS2	DΕΟ
HASNT, MRPS36P3	:	HASNT, MHPS36P3	EdgEsdW	Mrps36	ip3	HASNT, MHPS36P3	י - ב
	+ * 	ZHX1			 - I	LOC475089	
FG ATAD2		FG ATADZ	FG Atad2	FG At	ld2	FG ATAD2	
Human Cluster 8.3		Chimpanzee	Mouse	Rat		Dog	
h chr8		p chr8	m chr15	r chri	2	c chr13	
FG LY6E, HHCM	L L L	EGLYEE, HHCM D F (D FG. Lyse, Hhcm D F	F O FG Ly6	e, Hicm D F O	FG Ly6e, Hham	DFΟ
T V6H			Ly6h	Ly6h		LyGh	
2FP41	 - -	TNE623	+ Zip41		50893		
ZNF696	- + - 50 -	ZNF707 K 6	+ Ztp707 K	5 + 5 4			
ZNF623	- 13 +						
ZNF707	K 7 +						
FG.BREA2, MAPK15 FAM83H		FG:BHEAZ, MAPK15 FAM83H	FG. Brea2, Mapk15 Farn83h	Fam83	eaz, mapkis h	ru preaz, mapkip Fam83h	

	ſ		1.621.22	Γ		ſ	200	ſ
Human Cluster 8.4		Cnimpanzee	mouse	T	Hai	1	pug.	
h chr8		p chr8	m chr15		r chr7		c chr13	
					I			89
FG:RECOL4,LRRC14, D	о ц	FG.RECOL4,LRRC14, D F (FG.Recold,Lrrc14	0 L 0	FG.Recold,Lrrc14 D	0	5 LOC482101 LOC482102	
LRRC24,KIAA1688		LRRC24,KIAA1688	Lrrc24		Lrrc24		OC482103	
ZNF251	7 -	LOC742563 K 14	- Zfp251	K 12 -	Znf251 K	12 .	LOC475129	K 15 -
ZNF34 K	12 -	ZNF34 K 12	Ztp7	K 16 +	Zfp647 K	13 -	LOC482106	K 10 ·
ZNF517 K	10 +	ZNF7 K 14 .	+ Ztp647	K 13 -			LOC482107	K 12 +
ZNF7 K	14 +	ZNF250 K 13					ZNF347	K 20 -
ZNF647 K	13 -	ZNF16 - 17						
ZNF16	17 -	LOC747863						
LOC642914 K	10 -							
		EG 1 OCARAAZB	FG 1110038F14Bik		FG 1110038F14Rik		5.LOC10016,LOC482110	
CBOH33		LOC464479	Trued10P		Tmed10P	-7.	LOC482111	
Human Cluster 9.1		lChimoanzee	Mouse		Rat	Γ	Dog	Γ
h chra		n chra	m chr13		r chr17	Γ	c chr1	
FGHSD1783 D	ц	FGHSD1783	D FG. Hsd17b3	D F O	FG Hsd1 b3 D	0	EG.HSD1783,	D F O
SI Casho		SI C35D2	Sicasd2		Skc35d2		SLC35D2	
	ç	7NE367	7tn367	1 0 0	Ztn367	+	LOC476295	+ 2 .
ZNEE10	4 \$							
	2							
ZNF782 K	14 -	LOC742564 K 13						
ZNF322B	Ē	ZNF322B - 11						
FG KIAA 1529, TDRD7		FG KIAA1529, TDRD7	FG Tard7		FG Idm7			
TMOD1_NCBP1		TMOD1, NCBP1	Trod1, Ncbp1		Trood1 Ncbp1		Trood 1. Ncbp1	
Human Cluster 9.2		Chimpanzee	Mouse		Rat		Dog	
h chr9		p chr9	m chr4		r chr5		c chr15	
	L L	EG ECMD TAC2 D F (D FG Frmd Tac2	DFO	FG Fcmd. Tac2 D	0	FG FCMD, TAC2	л Г О
	-							
TMEM38B		TMEM38B	Trnem38b		1 mem380		I MEMJUB	
ZNF462	+ 60	ZNF462 - 9	+ Zfp462	+ 6 ,	Zfp462	+ 5	LOC481655	+ 50
KLF4	۳	LOC464640 - 3	- Kit4		Kif4 -	6	LOC481657	5
							92 U.J. 40 U.J. 40 U.J.	
FG ACTL78 ACTL7A		FG ACTL7B, ACTL7A	FG Actin		FL ACITO		רט ארובים, ארוביא	
KBKAP		IKBKAP	Jkbkap		lkbkap		KBKAP	

Human Cluster 9.3		Chimpanzee	Γ	Mouse		Rat		Dog	
h chr9		p chr9		m chr4		r chr5		c chr11	
FG SNX30, TSCOT	0 7 0	FG SNX30, TSCOT	DFO	FG Snx30, Tscot	с 1 0	FG Snx30. Tscot	0 1 0	FG SNX30, TSCOT	0 1 0
LOC169834 ZFP37	· 13 - K 12 -	ZFP37	K 12 -	Zfp37	K 12	Zfp37	K 12 -		
FG SLC31A2. FKBP15 SLC31A1. CDC26		FG SLC31A2 FKBP15 SLC31A1, CDC26		FG_Sk31a2,FHbp15 Cdc26		FG_Sk31a2,Fkbp15 Cdc26		FG_SLC31A2, FKBP15 SLC31A1, CDC26	
Human Cluster 9.4		Chimpanzee		wouse		Rat		Dog	
h chr9		p chr9		m chr2		r chr3		c chr9	
FG PDCL ACH2	DΕO	FG PDCL RC3H2	л Ч О	FG, Pdci, Rc3h2	DFO	FG Pdcl, Rc3h2	DFO	FG. PDCL. RC3H2	ΡFΟ
ZNF482 ZBTB26	67 69 4 4 1 (1)	ZNF482 ZBTB26	00 00 4 4 * *	Zfp482 Zbtb26	00 02 4 4 1 1	Zfp482 Zbtb26	00 00 4 4 00 7	ZNF482 ZBTB26	80 60 4 4 3 (3)
FG RABGAP1 GPR21		FG RABGAP1, GPR21		FG Rabgap1, Gpr21		FG Rabgap1, Gpr21		FG RABGAP1, GPR21	
Human Cluster 10.1		Chimpanzee		Mouse		Rat		Dog	
h chr10		p chr10							
FG LOC646352 ANKRD20A LOC219752	0 1 0	FG. LOC646352,ANKRD30A LOC219752	DFO						
ZNF248 BA775A3.1	× +	ZNF248 LOC466277	K 8 K 12 ·						
BA393J16.4 ZNF25	· ×	ZNF33A ZNF37A	K 16 K 16 + +						
ZNF33A ZNF37A	х х 15 + 5 + +								
FG LOC646419 LOC646423,LOC646426		FG:LOC646419 LOC646423,LOC646426							

()

עמווומנו כוחפונו וחיד		Clinipanzee		acnow		191	500		
h chr10		p chr10				5			
FG CCNYL2 MGC16291 LOC401642 ZNF378 7NF178	С <u>,</u> х х г , 5 е ;	FG. CCNYL2 MGC16291 LOC450411 LOC740109	С - С - О						
FG. DUXAP3 BMSI. RET	2	FG. DUXAP3 BMS1. RET							
Human Cluster 10.3		Chimpanzee		Mouse		Rat	Dog		
h chr10		p chr10	Γ	m chr6		r chr4	c chr28		
FG.GALNACT-2, HASGEF1A	L L	FG:GALNACT-2, HASGEF1A	0 1 0	FG. Rasgelta, Frydd	0	FG Raspelta, Fayda D F	O FG:GALNACT-2, RASGEF1, D F O		
FXYD4.HNRPF ZNF487	τ τ Υ	EXYD4.HNRPF LOC745336	× +	Hnrpf Zfp239	- 2 -	Hntpf Zfp637	FXYD4 HNHPF		
ZNF239 7NE485	6 F	ZNF239 I OC745499	5 F	Zfp637	÷ 1				
ZNF32		ZNF32	* 2.03						
FG. HNRPA3P1		FG. HNRPA3P1		FG Hnrpa3p1		FG Hnipa3p1	FG: HNRPA3P1		
CXCL12		CXCI 15		Cxc112		Cxcl12	CXCI 12		
Human Chiefer 11 1		Chimoanzaa	Γ	Morree		Rat	Dog		
					ſ	r abed	c chr31		
			c u		C 11				
FG UHIDAZ, UHZUZ	2				-		OR2D3 OR1DA4		
DHZU3. OHIDA4 ZNF215	SK 4	ZNF215	SK 4 +	Cicute .			LOC485362 - 4 +		
ZNF214	к Н	ZNF214	K 11 -				LOC485363 K 11 -		
FG NLKP14 HNRNPG-T		FG NLKP14, HNRNPG-T		FG Nikp14		FG NIkp14	FG NLKP14, HNRNPG-T		
SYT9		SYT9		Syt9		Syrt9	SYT9		
Human Cluster 11.2		Chimpanzee		Mouse		Rat		Dog	
---------------------	--	---------------------	-------------	---------------------	-------------------	---------------------	--------------	---------------------	-------------
h chri		a chri		m chr11		r chr10		c chr16	
FG OR5B12, OR5B21	ц Ц	0 FG-0R5B12, 0R5B21	DFO	FG Orsb12	0 F 0	FG Orsb12	D F O	FG-OR5B12, OR5B21	DFΟ
TPXN		LPXN		Грхп		Грхи	_	LPXN	
ZFP91	4	+ ZFP91	+ +	Zfp91	4 +	Ztp91	+ +	LOC475962	• 4
ZFP91-CNTF	545 	+			_				
FG GLYAT		FGGLYAT		FG Ghat		FG Ghat		FGGLYAT	
GL YATL2		GLYATL2		Glyatt2		Glyatt2		GL YATL2	
Human Cluster 12.1		Chimpanzee		Mouse		Rat		Dog	
h chr12		p chr12		m chr5		r chr12		c chr5	
					1		į		(1
FG CHFR	L 0	0 FG:LOC452391	0 L 0	FG. Colr	0 L. 0	FG. Chtr		FG CHFH	- - -
ZNEGOS	K 17	ZNE26	K 13 +					LOC486220	K 17 -
ZNF26	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ ZNF84						LOC486219	K 13 -
ZNF84	K 19	+ ZNF140	+ 15 X						_
ZNF140	K 10	+ ZNF268	K 24 +			3			
LOC440122	9 9								
ZNF10	÷	+							
ZNF268	- 24	• •							
FG End Of Chromsome		FG End Of Chromsome		FG End Of Chromsome		FG End Of Chromsome		FG End Of Chromsome	_
			1						
									ſ
Human Cluster 13.1		Chimpanzee		Mouse		Hat		Dog	
h chr13		p chr13		m chr14		r chr15		c chr22	
			C 4	FG Dacht	DFO	FG Dacht	0 11 0	FG DACH1	D F O
ניטער ביוע	-	0153	-	Dis 3		Dis3		DIS3	
KI ES	, ,		+	KIIIS	+ 0	K#5	+ 0	KLF5	+ m
KLF12		- KLF12		KI12	е	Kif12		KLF12	
FG GCG-172 BIMDR	5	FG GCG-172, BIMD6		FG Gca-172. Bimd6	8	FG Gcg-172, Bind6		FG GCG-172, BIMD6	
TBC1b4		TBC164		The the		The the		TBC1b4	
Human Cluster 13.2		Chimpanzee		Mouse		Rat		Dog	
h chr13		p chr13		m chr14		r chr15		c chr22	
FG TM9SF2, CLYBL	ш О	O FG TM9SF2, CLYBL	0 1 0	FG Tm9sf2, Clybl	D F O	FG TmBst2, Ciybi	0 f 0	FG TM9SF2, CLYBL	DFΟ
				-		ļ		201	
ZIC5	4		* *	ZIC5 ZIC5	ि न च च २ २	2165	4 4 4 4	ZIC2	· ·
	ľ	FG PCCA RPS261		FG Pcca. Ros261	3	FG Pcca, Rps26		FG PCCA, RPS26L	
TMTC4		TMTC4		Trutc4		Trntc4		TMTC4	

Õ

0

							ľ	
Human Cluster 14.1		Chimpanzee		Mouse	-	Rat		Dog
h chr14		p chr14		m chr14	È	chr15		c chr8
FG MYH6, MYH7 NGDN	0 F 0	FG MYH6, MYH7,NGDN D	ΓO	FG Myh6. Myh7 D	F O F	G Myh6. Myh7	ц О	FG MYH6 MYH7 NGDN D F O
				Ngdn	<u>< r</u>	Vgdn		
ZFHX2 ZNF409	- 0 4 ғ म]	ZFHXZ			4		4	
FG THTPA, AP1G2	-	FG THTPA. AP1G2		FG Thipa, Ap1g2	-	.G. Thipa. Ap1g2		FG; THTPA, AP1G2
JPH4		JPH4	1	Jph4	Ì	lph4	٦	JPH4
			ſ		ľ		ſ	
Human Cluster 14.2		Chimpanzee	T	Mouse	1	Hat	T	<i>D</i> 0g
h chr14		p chr14		m chr112	-	chr6		c cura
FG ESR2 MTHFD1	л С С	FG ESR2, MTHFD1 D	л F О	FG Esr2, Mthtd1 D	F O F	G Esr2. Mithid1 D	0 L	FG ESR2, MTHFD1 D F O
AKAPS		AKAP5		Akaps	4	Vap5		AKAP5
ZBTB25	8 8	ZBTB25	3 2 .	Zbtb25 B		Zbtb25 B	∾	LOC490730 B 2 -
ZBTB1	+ ~	ZBTB1 B	3 2 +	Zbtb1 B	+	Zbtb1 B	+ N	LOC490731 B 2 +
FG HSPA2 NUP50P1		FG HSPA2 NUP50P1		FG Hspa2,Nup50p1	**	-G. Hspa2, Nup50p1		FG HSPA2,NUP50P1
PLEKHG3 SPTB		PLEKHG3. SPTB		Spitb	-	Sptb	٦	PLEKHG3, SPTB
Human Cluster 15.1		Chimpanzee		Mouse	-	Rat		Dog
h chr1		p chr1		m chr11	_	chr10		c chr16
	(- C		0 0		C L	FG WHDCI HOWERS D F D
FG WHUCI HOMERS	-		5	Forwards	-	G. 110041	-	FAMINAA
FAMIDIAT	,	FAMIUSA						
BIBUT	 	BNC1	 	Brici	 	and a	 	
FG SH3GL3 ADAMTSL3		FG SH3GL3 ADAMTSL3		FG Sh3gl3, Adamisl3	-	-G. Sh3gl3, Adamtsl3		FG SH3GL3, ADAMTSL3
]		1			
Human Cluster 15.2		Chimpanzee	ſ	Mouse	ſ	Rat	Γ	Dog
h chr15		h chr15		m chr7	Ì	r chr1		c chr3
FG 1.0C4403021.0C48163	1 1 0	 FG_LOC440302LOC388163 D	P F O	FG. LOC440302LOC388163 D	ц 0 ц	.G. LOC440302/LOC388163 D	0 LL	FG LOC44030210C388163 D F 0
FL.40113. E202	, 1	FLJ40113. E202		FLJ40113, E202	-	*L.40113, E2O2		FLJ40113, E2O2
ZFP29	S 14 +	ZSCAN2	3 14 +	Zscan2 s	14 +	LOC686118 S	+	LOC488749 S 21 +
SCAND2	ຸ ເວ	SCAND2		Ztp592	4	zfp592 -	4	LOC488751 - 4 +
ZNF592	4	LOC453608	•					
FG ALPK3, SLC28A1		FG. ALPK3, SLC2BA1, PDF84		FG: ALPK3. SLC28A1. PDF8A	<u></u>	FG. ALPK3, SLC28A1. "DEBA		FG. ALPK3, SLC28A1, PDE8A
LIVEON		1 1111			1]	

 \bigcirc

0

0

Human Cluster 15.3		Chimpanzee		Mouse		Rat		Dog	
h chr15		p chr15	Γ	m chr7		r chr1		c chr3	
					_				
FG:MESP2, ANPEP	D F C	D FG.MESP2, ANPEP D	0	FG.MESP2, ANPEP	0 1	FG MESP2, ANPEP	0 - -	FG.MESP2 ANPEP	0 L 0
AP3S2		AP3S2		AP3S2		AP3S2		AP3S2	
LOC390636	- 2	+							
ZNF710	E Th	+							
ZNF774	- 12	+							
FG.IOGAP1, CRTC3		FG:/OGAP1, CRTC3		FG.IOGAP1. CRTC3		FGIOGAP1, CHTC3		FG:IQGAP1 CRTC3	
BLM. FURIN		BLM, FURIN		BLM, FURIN		BLM, FURIN		BLM. FURIN	
Human Cluster 16.1		Chimpanzee		Mouse		Rat		Dog	
h chr16		p chr16		m chr17		r chr10		c chr6	
	ц с		5	FG. Thac6. Mma25	0 1	F.G. Thocé, Mmp25	D F O	FG:LOC490047	0 LL D
	-)	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						LOC490046	
TNETAR	14	1.0C747677 S	14	Ztp206	S 14 +	Zfp206	S 14 +	LOC490045	S 15 +
ZNF205	: a	+ ZNF205 K	+	Zfb13	80 У	Zfp13	8	LOC479870	K 13 -
ZNF213		+ ZNF213	+	Z1p213	SK 5 -	Znf213	. 5 S	LOC490040	SK 9 +
ZNF200	ы ис 5 - ис		۰ د	Zfb40	K 19 -	Ztp263	6 S	LOC490042	s S
ZNF263	ь б ХХ	+ ZNF263	+ 6 ¥	LOC545191	. 5	Znf174	s	LOC490035	56.
ZNF75A	s N N	+ LOC453861 st	K 5 +	LOC433078	+ + +	Ztp597	+ 2 -		
ZNF434	9 S	. ZNF434 S	. 9 (1300003B13Rik	K 11 +				
ZNF174	с S	+ ZNF174 S	+ 00 (2)	Ztp758	K 13 +				
ZNF597	- 7	- LOC467889	- 2 -	633041620	K 10 +				
FG.FLJ14154,LOC646174		FG.FLJ14154,LOC646174		FG Cluap1		FG Cluap1		FG LOC609456	
LOC390671,CLUAP1 NOD3		LOC390671, CLUAP1, NOD3		Nod3		Nod3		LOC=79868,LOC490033	
									ſ
Human Cluster 16.2		Chimpanzee		Mouse		Rat		Dog	
h chr16		p chr16		m chr16		r chr10		c chr20	
FG ADCY9 SRL	ű.	O FG ADCY9. SRL	E O	FG Adcy9. Srl	0 1 0	FG Adcy9. Srl	0 4 0	FG ADCY9, SHL	0 1 0
TEAPA		TFAP4		Ttap4		Ttap4		TFAP4	
GLIS2	4	+ GLIS2	4 +	Glis2		Glis2_pred		LOC490028	
ZNF500	ы s	ZNF500 S							
FG SEPT12, ROGDI		FG SEPT12.ROGDI		FG Sept12		FG Sept12		FG SEPT12, ROGDI	
				Brodi		Roadi			-

Tadepally et

Human Cluster 16.3		Chimoanzee		Mouse		Rat	Γ	Dog	
							I	+	Ţ
h chr16		p chr16		m chr7		r cnri		couro	
FG CD28P2.TBC 1D108	4 0	FG CD2BP2.TBC1D10B	DFO	FG Cd2bp2, Tbc1d10b	0 4 0	FG:Cd2bp2,Tbc1d10b D	ц С	FG CD2BP2, TBC1D10	BDFO
WVI DE SEDTI		MVI PF SEPT1		Mvtof Seot1		Mvlot Sept1		MYLPF,SEPTI	
ZNEER2	ţ	1 00740214	10 1	Zfn553	. 12	RGD1561639		LOC489901	- 12 -
ZNIE768	, 7 7			Zfn771	ι α 	RGD1305903		LOC489906	K 17 +
	⊇ . 3		0	745769	Ş	1 OC601885		1 OC489908	+ ~ ¥
	 		1 1 2 1 2 3	LIPTOO	2 0	I OC691887		LOC607501	· + : ·
ZNF/04	×		* 		ה ב				: 1
ZNF688	, N X	LOC467950	2K 9	313001902ZHIK	н Ч			LOC403310	+
ZNF785	≻ ¥	LOC467951	* 1	E430018J23Rik	60	Hft39		LUC489911	+ 6 ¥
ZNF689	K 11	ZNF629	• 19 🤅	Ztp764	, e X	Zfp629		LOC489914	+ 19 +
ZNF629	19	LOC467958	- 15	Zfp688	•	Zfp668		LOC489920	- 16 +
ZNF668	91 .	ZNF646	- 29 +	Zfp689	, ч			LOC489922	- 28 -
ZNEGAG	00			Ztn629	- 19 -				
	0			Zingge	, 1				
				ERDADOMO1	2 2				
					, ,				
FG VKORC1 LOC647097		FG LOC467959,BCKDK		FG VkorC1 Bckdk		FG VkorC1.Bckdk			
BCKDK MYST1 PRSSB		PRSSB		Myst1, Prss8		Myst1, Prss8			
Human Cluster 16.4		Chimpanzee		Mouse		Rat		Dog	
h chr16		p chr16		m chr5		r chr1			
FG PPP2CBP	L D	FG PPP2CBP	DFΟ	FG Ppp2cbp	L L D	FG Ppp2cbp D	0 L.	FG PPP2CBP	0 F 0
VN1R3		VN1R3		Vntr3		Vn1r3		VN1R3	
LOC342426	. 12	LOC743274	- 12 -	Ztp267	K 14 +	Zfp267 K	14 +		
ZNF267	K 14	ZNF267	K 14 +						
FG-LOC647126,		FG LOC647126,		FG.LOC647126,		FG:LOC647126,		FG LOC647126.	
LOC388248		LOC388248		LOC388248		LOC388248		LOC388248	
Human Cluster 16.5		Chimpanzee		Mouse		Rat		Dog	
h chr16		p chr16		m chr8		r chr19		c chr5	
FG ABBA1, VAC14	ц Ц	FG ABBA1. VAC14	DFO	FG Abba1, Vac14	۳ ۵	FG Abba1, Vac14 D	F 0	FG ABBA1, VAC14	0 1. 0
				City Colling		Hidin Catto		HYDIN CAL 82	
HYUN, CALBZ	:		!		5	"Ptacto area	4	100480720	2 22
ZNF23	K 17	- LUC468017	K 17 -	210d12	+ 91 ¥		+ e	- 00 4001 50	2
ZNF19	А 5	ZNF19	К 10 -					LUC489/21	- 01 X
FG CHST4. TAT		FG CHST4, TAT		FG Chst4		FG ChsM		FG CHST4, TAT	
MARVELD3		MARVELD3		Tat, Marveld3		Tat, Marveld3		MARVELD3	

 \bigcirc

 \bigcirc

 \bigcirc

					1		f		ſ
Human Cluster 16.6		Chimpanzee	Ŵ	ouse	Ĩ	at	1		T
h chr16		p chr16	E	chr8	<u> </u>	chr19	0	: chr5	
	1				0			C C464	C LL LL
FG SLC7A5 CA5A	0 L	FG SLC7A5,CA5A D	F 0 75	Skc7a5, Ca5a U F	2		5		2
BANP		BANP	Ban	, di	B.	du	<u> </u>		
ZNF649	+ ო	ZNF649 - :	3 + Cu	n22 ** 4	<u>, ר</u>	JC691499	+	000483000	4
ZFPM1	2 +	ZFPM1 - 1	2 + Zfp	5M1 + 2	<u>-</u> +	0C691504 - 2	+		
FG NHN1, IL 17C		FG NHN1. IL17C	õ	Nhn1, #17c	2	S Nhn1 N17C	ц_	G NHN1 R117C	
CYBA		CYBA	Cyb	B	ŝ	rba	9	YBA	
Human Cluster 17.1		Chimpanzee	Mo	ouse	8	at		Dog	
h chr17		p chr17	E	chr11	Ĩ.	chr10	0	: chr5	
						1			(1
FG KIFIC GPR1728 L	0 L	FG KIF1C, GPR1728 D	F 0 FG	Kilte D F	0	Kifte UF	5	G'NIFTC, GFH1/28	2
			ê i	1728	30	011728		OC 480460	5
ZFP3	+ m	LOC468455	13 + 21	- 13	+		+	70400400-	2
ZNF232	ო	LOC455260 S	۰ دo						
ZNF594	22	ZNF594	- 25						
FG UNO5783 RABEP1		FG UN05783, HABEP1	FG	Und5783	ŭ,	5. Und5783	<u>u.</u> ,	G UNO5783 RABEP1	
NUP88	-	NUP88	NUL	088	Ň	1988	4	UP-88	
					ł		ľ		
Human Cluster 17.2		Chimpanzee	Mc	ouse	5	at	1	bod	
h chr17		p chr17	E	chr11	<u>,</u>	chr10	<u> </u>	chr5	
			3	1					
U8B.TRPV2	0 L	D UBB.TRPV2 D	F 0 76	. U80- DF	0	1 00 080 E	2 (2	188.1 HPV2	5 - -
SNORD49B		SNORD49B	E :	20	r i	pv2	<u>, , , , , , , , , , , , , , , , , , , </u>		
ZNF287 S	K 14 🔬	ZNF287 SK 1	14 - ZfF	p287	Ñ	Ip287	1	INF28/	
ZNF624	< 21 -	ZNF624 K 2	21 -						
FG RNASEH1P2		FG RNASEH1P2	ភ្	Rnaseh1p2	Ľ.	3 Rnaseh1p2	u.	G RNASEH1P2	
					┥		1]
					ł		ľ		ſ
Human Cluster 18.1		Chimpanzee	WC	ouse	Ĩ	Bf	╡	bor	
h chr18		p chr18	E	chr18	ð	chr18	<u> </u>	chr/	
	5 1		0 1	Alold Deca	0	S Note Orra	0	G LOC490491	L L O
FG NOL4, DINA	- -		5)	Corre		OCJONAR OCJONAR7	
MAPREZ		MAPHEZ	Wa	prez	5 1		3 4		-
ZNF397	+ 9 0	LOC455370 S	+ 6	6 S /620	<u>4</u> +				+ ·
ZNF271	+ -0	LOC455372 S	- C2	230097124Hik S	<u>'</u>	E Sezda	+	20100400-	+ + n
ZNF24	4	LOC468520 - 2	20 + Zf	p35 - 16	× ×	ip191 s 4	•		
ZNF396	5 7 7	ZNF24 S	4 - Zt	p191 S 4	÷				
		ZNF396 S	N						
FG:GALNT1, LOC648532		FG:GALNT1_LOC648532	ភូ	i Gaint1,	ų,	3 Gahrti,		G LUC480161	
PISRS		PISAS	Pr	Srs	4	15rs	μ	newarian	

 \bigcirc

Human Cluster 18.2		Chimpanzee		Mouse		Rat	Dog		Π
h chr18		p chr18		m chr18		m chr18	c chr		
FG TSHZ1, LOC284274	0 1 0	FG TSHZ1, LOC284274	л П О	FG Tshz1	0 1 0	FG Tshz1	F 0 FG TSI	4Z1, LOC284274 D	F O
LOC728662	- 2	LOC728662 ZNF516	2 12 13	Zfp516	- 7	RGD1306817	7 - LOCA	83930	- 1
ZNF236	25 +	ZNF236	1 25 +	Zfp236	- 29 +	Zfp236	30 + LOC4	83929	+ 06
FG MBP GALR1		FG MBP, GALR1		FG Mbp. Gairt		FG Mbp Gairt	FG. ME	IP. GALR1	
Human Cluster 19.1		Chimpanzee		Mouse		Rat	Dog		Τ
h chr19		p chr		m chr10		r chr7	c chr	16	
FG ATPD8B3, REXOI	0 F 0	FG ATPD8B3. REXOI	DFΟ	FG Apd8b3, Revol	DFO	FG Apd8b3. Rexo1 D	0 1		
KLF16	en I	KLF16	6 6 1	KI116	÷ 3 ÷	LOC690820	+ 6		
BTBD2	8	BTBD2	8	Btbd2	8	RGD1566094 B	÷		
FG MKNK2, MOBKL2A		FG MKNK2, MOBKL2A		FG Mknk2 Mobkl2a		FG Mknk2, Mobki2a			
Human Cluster 19.2	ļ	Chimpanzee		Mouse		Rat	Dog		
h chr19		p chr19		m chr10		r chr7	c chr	20	
FG. SLC39A3,SGTA	۵ ۱	FG. SLC39A3,SGTA	0 F 0	FG Sgta	C L L	FG Sgta D	F O FG SL	CIBAR,SGTA D	ч С
THOP1		THOP1		Thop 1		Thop 1	DHU	_	
ZNF554	× × ¥	- ZNF554	- 7 +						
ZNF555	K 15 4	LZNF555	× 15 +						
ZNF556	т 60 ¥	LZNF556	+ 6 ¥						
ZNF57	K 13 4	F ZNF57	K 13 +						
ZNF77	K 12	- ZNF77	K 12 -				9		
FG TLE6		FG TLE6		FG The6		FG 77e6	7 94 7 20	E6	
ne2		1152		11e2		1182	!		1

Tadepality et

					ŀ			
Human Cluster 19.3		Chimpanzee		Mouse	-	rat	boa	
h chr19		p chr19		m chr11	-	chr10	c chr20	
	ц С		C 4	EG-Mbdat2	1 0 1	G Mbd3/2 D F	O FG MBD3L2	0 1 0
ZNF557	. e	+ ZNF557	, ,				ZNF557	K 10 +
ZNF358	бл 	+ LOC455655	+ 6				ZNF358	+ 66 -
FG MCOLN1. PNPLAG		FG MCOLN1, PNPLA6		FG. Mcaint	-	G Mcaln1	FG-MCOLN1, PNPLA6	
KIAA153.PCP2		KIAA 153, PCP2		Pcp2	-	2cp2	KIAA153,PCP2	
Human Cluster 19.4		Chimpanzee		Mouse	-	Rat	Dog	
h chr19		p chr19		m chr17		· chr9	c chr20	
	u C	0 50 1414 5401	C L	FG Vavi	0	-G Vav1 D F	O FG: VAV1,EMR1	D F O
	-	EMPA		Find	4	Enre	EMR4	
ZNF557	4 10	+ ZNF557	K 10 +				ZNF557	K 10 +
ZNF358	6 ,	+ ZNF358	+ 6 .					
FG. MCOLN1, PNPLA6		FG. MCOLNI, PNPLAG		FG. Mcoin 1	_	-G. Mcoin 1	FG. MCOLNI, PNPLA6	
KIAA 1543. XAB2		KIAA1543, XAB2		Xab2	Î	(ab2	KIAA1543, XAB2	
Human Cluster 19.5		Chimpanzee		Mouse		Rat	Dog	
h chr19		p chr19		m chr17		r chr8	c chr20	
FG. MARCH2, HNRPM	u O	O FG. MARCH2, HNRPM	DFO	FG Hnpm D	10 1	-G Hnrpm D F	O FG: MARCH2.HNRPM	0 1 0
PRAM1		PRAM1		Pramt	-	⁵ ram1	PRAM1	
ZNF414		- LOC743829	:	Zfp414	+	Zfp101 K 15	- LOC611636	-
ZNF558	6 У	- LOC468704	, е Х	Zfp101 K	15 -	Zfp81 K 13	- ZNF558	К9-
ZNF317	K 13	+ ZNF317	K 13 +	Zfp81 K	13			
ZNF699	K 16	- LOC744819	к Ч					
ZNF559	÷ ¥	+ ZNF177	K 7 +					
ZNF177	≻ ¥	+ ZNF266	K 14					
ZNF266	X 14	- ZNF560	KK 14					
ZNF560	K 14	- ZNF426	K 12 +					
ZNF426	K 12	- ZNF121	- 10					
ZNF121	. 10	- ZNF561	K 10 -					
ZNF561	- 10	- LOC455686	K 11 -					
ZNF562	6	•0						
LOC729648	× ×	,						
LOC162993	K 12	•						
FG_UBE2L4 FBXL1 UBL5		FG_UBE2L4, FBXL1, UBL5		FG Ube24 Fbx112		FG Uba24 FbxI12	FG UBE2L4,FBXL1,UBL5	
PIN1.OLFM2		PIN1 OLFM2		Ubls. Pint	~	Ubl5 Pint	PINT, ULTM2	

 \bigcirc

Human Cluster 19.6		Chimpanzee		Mouse		Rat	Бол	
h chr19		p chr19		m chr9	~	r chr8	c chr20	
FG.RGL3.PRKCSH D	0 11	FG. AGL3, PAKCSH	DFO	FG Prkcsh D	F O F	-G Pricesh D F C	D FG LOC484941	L L
ELAVL3		ELAVL3		Elavi3		Elavi3	LOC484940	
ZNF653	4	ZNF653	- 4 -	Zfp653	4	Zfp653	LOC484939	4 4
ZNF627 K	;	LOC468723		9530015io7Rik K	+ 51		LOC611075	X : 15
LOC401898	+ 9	LOC455735		Ztp809 K	+ ~			
HSZFP36 K	16 1	HSZFP36	. 16 .	BC050092 K	•) = !		000tot000	2
ZNF441	+ 5	LOC468/2b			2			
	2 9	ZNEAD						
	+ ;		+ · ·					
ZNEGO K	+ +	1 DC468730	+ •					
		LOC468731	K 19					
ZNF440L K	· +	ZNF208	K 39 +					
ZNF433 K	19	ZNF136	+					
LOC729747 K	15 -	ZNF44	K 15 -					
FLJ14959 K	+	ZNF443	K 18					
ZNF788	16 +	LOC468733	K 36 -					
ZNF20 K	13 -	ZNF564	K 15					
ZNF625		ZNF490	K 13					
ZNF136 K	4	LOC468735	+ 16 +					
ZNF44 K	16 -	LOC455740	1000		-		~	
ZNF563 K	80							
ZNF442 K	4							
ZNF799 KK	26							
ZNF443 K	- 19							
ZNF709 K	61							
ZNEG64	9							
ZNF490 K	. 5							
ZNF791 K	+ 11							
KLF1 .								
FG MAN2B1. MORG1	,	FG MAN2B1 MORG1		FG Man2b1 Morg1	~	FG Man2b1, Morg1	FG MAN2B1	
DHPS FBXW9		DHPS, FBXW9		Dhps	-	Ohps	MORG1	
Human Cluster 19.7		Chimpanzee		Mouse	-	Rat	Dog	
h chr19		p chr19		m chr8	-	r chr16	c chr20	
	C u	56 GMB	ц С	FG Amt2at	о Ц	FG Am13a1 D F C	0	
ATP1341		ATP13A1)	Grnip	J	Gmp		
ZNF101 K	10 +	ZNF101	K 10 +	D330038006Rik K	12	MGC72612 K 9	+	
ZNF140 K	19 -	ZNF208	K 36 -	9830167H18Rik K				
ZNF506 K	80	ZNF93	K 15 +	1200003107RIK K	12 -			
LOC730008	+ ന	ZNF91	K 37 +	EG636741 K	10 +			
ZNF253 K	+ ო	ZNF85	+	A1449175 K	ი თ			
ZNF505 K	17 +	ZNF430	K 12 +	D10627 K	t <u>5</u>			
ZNF682 K	=	LOC455891	+					
ZNF90 K	13	ZNEGE	× 7 4 +					
ZNF485	+	ZNF83	× 4		_			
LOC163233 K	ם קייי ייי	ZNF90	· + · ·					
ZNF626 K	11	ZNF429	+ , ,					
ZNF66	+ ©	ZNF492	K 12 -					
ZNF85 K	15 +	ZNF100	K 12 -					
ZNF430 K	12 +	ZNF43	:		-			

2NF714	- 12 +	ZNF208 K 36 -				
CNF431	K 12 +	LOC468804 K 9 +				
ZNF708	K 15	ZNF43 K 16 -				
ZNF493	+ + +	ZNF93 K 34 -				
CNF429	K 17 +	LOC740583				
CNF100	K 12 -	LOC468806 - 5 +				
ZNF43	K 22 -	ZNF675 K 14 -				
CNF208	K 34	LOC468808 K 16 -				
CNF257	K 12 +	LOC740901 - 5 +				
ZNF676	K 15 -	LOC455907 - +				
.0C148198	K 13 -					
-OC441843	+ , ,				1	
ZNF492	K 28 +					
ZNF99	K 30 -					
-OC646864	+ ≻ ¥					
-OC388523						
ZNF724P						
2NF91	K 35 -					
ZNF725						
ZNF675	K 14 -					
ZNF681	. 16					
OC EAEROF	2 e					
LOC730087	•	-				
ZNF254	Υ 4					
EG CTP251 HOCRES1		FG CTP25! UOCRFS1	FG Ctb25i, Uacrts1	-G Ctp25i, Uqcrfs1		
			Pand	2004		
-Ora, record		rors, reentry				
Human Cluster 19.8		Chimpanzee	Wouse and	Rat	Dog	
h chr19		p chr19	m chr7	- chr1	c chr1	
	ц с		FG (that D F OI	-G uba2 D F O	FG LOC611942LOC484594 D F O	
	-			Alter A	00476490	
WTIP LOC284402	c	WIPLOCE844	dava		LOC484590 K 28 -	
ZNE302	יים איז מ צי	ZNE302			LOC484586 K 13 +	
ZNE181	- 1 - 1	ZNF181 K 11 +				
ZNF599	. 4 т	LOC468825				
LOC643825		+ ZNF30 K 16 +				
LOC441848	1	LOC468828 K 13 -				
ZNF30	- 18 -					
ZNF92	13					
FG GRAMDIA, SCN18		FG GRAMDIA, SCNIB	FG Gramdta, Scntb	-G Gramota, Scntb	FG SCNNIB	

	Í					ſ			0.2	
Human Cluster 19.9		Chimpanzee		Mouse			Hat		hon	
h chr19		p chr19		m chr7			r chr1		c chr1	
FG-COX6B1.UPK1A D	Ū L	FG:LOC455974 LOC455975	DFO	FG Cox6b1, Ukp1a, Ckap1	۵	о 1	FG Cox6b1, Ukp1a, Ckap1	с ц	FG.LOC612644.LOC4845	79 D F C
CKAP1, CAPNS1, COX741		LOC468844		Capns 1, Cox 7a 1			Capns1, Cox7a1			
TZFP	+ N	LOC455976	K 12 -	Zbtb32	œ	~	Znf382	K 10 +	LOC484577	8
ZNF565 K	12	LOC455977	K 11	Zfp146	0	-	zZfp260	- 13 +	LOC484564	ຕ
ZNF146	10 +	LOC455978	K 23 +	5930415A09Rik	¥	+ თ	RGD1563239	K 33 -	LOC484561	K 27 +
ZFP14 K	13	LOC468846	K 23 +	Zfp260	•	12+	RGD1560682	× 5	LOC484559	K 10 +
ZNF545 K	13 .	LOC455979	2K 34 ·	Zfp566	¥	- 2	Z1p569	¥ 7 +	LOC484548	K 12 +
ZNF566	1	LOC468848	K 10 +	Ztp82	¥	13	Zfp74	K 18 -	LOC484547	- 53 -
ZFP260	13 -	LOC455983	K 13 +	Zfp14	¥	13	LOC499120	K 39 +	LOC484545	K 35 -
ZNF529	1	ZNF208	K 39 +	Zfp568	ZK	+	Ztp84	K 23 +	LOC484542	т Ж З
ZNF382 K	10 +	ZNF567	× - + + + + + + + + + + + + + + + + + +	LOC625421	¥	94 23			LOC484541	K 15 +
GIOT-1 K	12 -	ZNF461	K 12 +	Ztp74	10	-			LOC484540	۲
ZNF567 K	15 +	ZNF382	K 10 -	Zfp383	3	+			LOC484538	K 33 -
LOC342892 K	32 -	ZNF529	к + +	Ztp27	¥	ខ				
MGC62100 K	13 -	ZNF260	13 +	B230312118Rik	ĸ	19 +				
ZNF345	15 +	ZNF566	K 8 +	BC027344	¥	5				
ZNF568 K	12 +	ZNF545	K 13 +	6330581L23Rik	¥	13 +				
LOC653284	12 +	ZFP14	K 13 +	Zfp30	¥	t €				
ZNF420 K	19	HKR1	K 13 +	Zfp84	¥	+ =				
ZNF585A K	23	ZNF569	K 39 -							
ZNF585B	- 53	ZNF571	K 17 -							
ZNF383 K	+	ZFP30	K 13 -							
HKR1 K	+ 61	LOC468857	K 15 -							
ZNF527 K	12 +	ZNF607	K 20 -							
ZNF569 K	18	LOC468859	К9.							
ZNF570 K	+ =									
LOC390927 K	* •0									
ZNF540 K	17 🐺									
ZNF571 K	- 11 -									
ZFP30 K	13 -									
FJL37549	9									
ZNF607 K	- 20									
ZNF573	- 61									
LOC401915	+ ®									
FG NVD SP11 SIPA1L3		FG'LOC468860,LOC468861		FG 4930432E11Rik			FG 4930432E11Rik		FG LOC484537	
DPF1, PPP1R14A		LOC468862		Dpt3.Ppp1r149	1		Dpf3.Ppp1r149		LOC612600,LOC484	36

 \cap

	İ								
Human Cluster 19.10		Chimpanzee		Mouse		Rat		Dog	
h chr19		p chr19		m chr7		r chr1		c chr1	
							1		- (1 1
FG. FBL FCGBP	L L	FG. FBL, FCGBP	0 1 0	FG. Fbl. Fcgbp	0	FG. Fbi, Fcgbp	- - -	FG. FBL FCGBP	5
PSMC4		PSMC4		Psmc4		Psmc4		PSMC4	-
ZNF546	K 22 +	ZNF546	K 22 +	C130069109Rlk	K 18 -	1LOC685610	K 15 -	ZNF546	+ 53 ¥
ZNF780B	K 23 -			Ztp780b	K 22	LOC685578	+ + X		
LOC284323	K 17 -			1700049G17Rik	22	LOC499110	K 8 +		
				4732475C15Rik	K 18 +				
				Ztn59	K 16 +				
				4033436131DIV					
				VIU 171074564	+				
				Zfp60	+ 1 9 +				
				CO30039L03Rik	K 17 +				
FG MAP3K10, TTCHB		FG MAP3K10, TTC9B		FG Map3k10, Ttc9b		FG Map3k10, Thc9b		FG MAP3K10, TTC9B	
CNTD2		CNTD2		Cntd2		Cntd2		CNTD2	
Human Chister 10 11		Chimnanzee	l	Mouse		Rat		Dog	2.6
			l						
h chr19		c chr19							
		EG KCMMA	с С	FG Krnnd	0 1 0	FG Kcnn4	0 F 0	FG KCNN4	DFO
LC VCWV4	י ב ב		- -						
L YPD5		LYPD5		Lypd5		cpdA7	1		-
ZNF283	х 15	LOC468907	K 15 +	Zfp180	+	Ztp180	- 12 +	LOC484460	- 19 -
ZNF404	K 15 -	ZNF45	14	Zfp112	K 12 +	Zfp112	- 13 +	LOC484461	К 31 -
ZNF45	K 18 -	ZNF221	K 15 +	Ztp235	K 15 +	RGD1560762	K 15 +	LOC484463	K 26 ·
ZNF221	K 15	ZNF155	K 12 +	Zfp114	K 12 +	Zfp111	K 19 .	LOC612388	X 15 +
ZNF155	K 12	ZNF230	K 10 +	Ztp111	K 18 -	RGD1564214	× °	LOC613011	К 16 -
ZNF230	K 10	ZNF222	K 10 +	Zfp109	K 17	LOC499094	К 8 У		
ZNF222	К 10	ZNF223	X 10 +	Zfp108	K 13 +	Zfp94	о 5		
ZNF223	K 10	ZNF224	K 18 +	Zfp93	K 13 +	LOC680802	رة 13 -		
ZNF284	Х 4	ZNF225	K 47 +	Zfp61	80 80				
ZNF224	K 18	ZNF227	K 19 +	Zfp94	к т	<u>_</u>			
ZNF225	K 18	LOC468909	÷						
ZNF234	K 19	ZNF228	K 30 -						
ZNF226	K 19	ZNF285	K 11 S						
ZNF227	K 19	LOC456109	19 14 14						
ZNF233	ж 8	LOC468912	5 10 14						
ZNF235	K 16 .	ZNF180	K 12 -						
ZNF228	K 17								
LOC147711									
ZNF180	K 12 .								
FG CEACAM20		FG CEACAM20		FG Ceacameo		FG Ceacam20		FG CEACAM20	

 \cap

Tadepally et

			ſ		ſ		F		
Human Cluster 19.12		Chimpanzee		Mouse		Hai		hoo	
h chr19		p chr19		m chr7		r chr1	<u> </u>	c chr1	
FG SIGLECT2 SIGLECP11	0 1 0	FG SIGLEC12 SIGLECP11	р Г О	FG 2210412E05Rik	F 0	FG 2210412E05Rik D	ц 0 ш	-G:TOC611716,LOC47639	6 D F 0
		SIGI ECE SIGI ECP12		LOC434181.Cd33		LOC434181.Cd33	7	OC611696,LOC61170	0
ZNF175	K 15 +	LOC456251	K 15 +	BC043301	K 22 +	RGD1309564 K	1 + 1	LOC611692	K 20 +
ZNF577	 	ZNF649	K 10 -	Ztp719	X 15 +			LOC484341	K 37 +
ZNF649	10 - Х	LOC468981	K 16 -	4933405K07Rik	K 11 +		_	LOC491432	6.
LOC441861	•	ZNF613	+ ~				=	LOC611669	K 12 -
ZNF613	K 12 +	ZNF615	K 17 -					LOC484338	K 50 -
ZNF350	к 8 8	ZNF614	K 11 -				_	LOC484333	K 12 -
ZNF615	X 19	ZNF432	K 16 -					LOC484331	K 16 +
ZNF614	к 11 -	ZNF616	K 21 -				_	LOC476394	K 17 -
ZNF432	K 17 -	LOC456261	K 25 -				_	LOC482273	K 13 -
LOC284371	•	LOC748970	K 10 +				_	LOC611599	K 16 +
ZNF616	K 21 -	ZNF480	K 12 +				-	LOC480782	K 18 +
FLJ16287	K 25 -	LOC468984	ε,				-	LOC611590	* 4 +
ZNF766	K 10 +	LOC468985						LOC611583	K 14 -
7NF480	K 12 +	LOC468988	K 17 +				_	LOC484328	K 14 +
ZNE610	- + 	LOC748568						LOC484326	K 34 +
		1 OC 456 491					_	LOC484324	K 17 +
ZNF320	с ч с с с ч		K 24 +			_		LOC484323	K 11 +
		ZNE701						ZNF331	K 12 -
SNF5/B	+ 21 (- ZNF/UI							
ZNF808	+ N		4 4 +						
ZNF701	4 0 4	ZNF600	- 20 -						
ZNF137	+ 50 ,	LOC456267							
ZNF83	- 15 -	ZNF320	K 12 -						
LOC729840	K 14 .	LOC456268	-						
ZNF611	K 17 -	ZNF160	100						
ZNF600	20 -	LOC456426	3						
ZNF28	. 18 -	LOC456269	10.0						
ZNF468	K 11 -	LOC456270	•						
ZNF320	K 12 -	ZNF468	K 19 +						
LOC388559	20 18 -	- ZNF331	К 10 +						
ZNF816	K 15 -		(_					
ZNF702	ي ،								
ZNF160	K 20 .								
ZNF415	К 11 -								
ZNF347	K 20 -								
ZNF665	K 18 ·						-		

 \bigcirc

 \bigcirc

0

138

ZNF818 ZNF677 LOC91664 ZNF525	X X X X 2 2 7 2 7 2 7 2 7 2 7 7 7 7 7 7 7 7 7 7	+ (+ +							
ZNF765 ZNF761 ZNF813	X	+ + +							
ZNF331	¥. ₽	+						EG 1.00384370	
FG LOC284379 DC2 DPRX		FG LOC284379 DC2, DPRX		FG Dc2 Dpr		ru ucz upix		DC2. DPRX	
Human Chister 19.13		Chimoanzee		Mouse		Rat		Dog	
h chr19		p chr19		m chr7		r chr1		c chr1	
FC BPI 28 LIBE25	L 0	O FG RPL28.UBE25	0 1 0) FG Rpi28. Ube2s	ц Ц	C FG Rpi28, Ube2s	л Ц С	FG RPL28,UBE2S	ΒFΟ
ISOC2		ISOC2		lsoc2		lsoc2		150C2	
ZNF628	- 17	7 + ZNF628	+ 89 ,	Z1p628	् 19	+ Ztp628	9	LOC484294	- 16 -
KLP1	•	+ ZNF579	8	Zfp579	æ :	- Znt5/9 DCD1306350	+ · • 3 // //	LUC484293	, 4 1 4
ZNF579 E171	• •	LUC4563U/		Zfp524	= 4 02 •	- RGD1565485	। িব ি	LOC611259	
ZNF524	4	+ LOC456308	- 20	6430526N21Rik	× 20	+ LOC691396	- 20	LOC611254	- 4 -
ZNF784	ی ب	- LOC737491	4	Zfp784	9	- RGD1565545	+ 9 7	LOC484286	- 7 +
ZNF580	ю ,	+ ZNF444	S 4	- Zfp580	9 9 9	+ Zfp580	8	LOC611205	S 4 5
ZNF581	4	+ LOC456317	9 9	Zfp787	~ ·	- RGD1310536	+ - 		K 12 +
ZNF787	~ · ·	- LOC/38992	יי חי ער הי	ZID444	о и 4 и	+ 2004444	יי הו י מימ	LOC611144	2K 14 -
LNF444 LOC342933	ათ. ოთ	ZSCAN5		Zipsir	n 7	+ RGD1562044	, m +	LOC612850	K 24 -
LOC649137	0 0 0	+ LOC469022	К 12 1	Zfp583	K 12	LOC691269	K 15 -	LOC484275	- 23 +
ZSCAN5	s S	- LOC469023	K 10	Ztp78	K 11	+ RGD1562235	K 15 -	LOC484269	- 9 XS
LOC646698	s S	+ LOC469024	X :	+ Zfp28	× 4,	+ LOC691168	 	LOC4763/1	K 25 +
ZNF542 ZNE582	е 5	1 + ZNF00/	х х 5 б	Zim1	ч म П У	- LOC308320	+ + 0 00 4 X	LOC484264	K 70 -
ZNF583	: ¥	2 + ZFP28	2K 15 -	Peg3	₽	- RGD1563793	K 7 +	LOC484257	, К К В
ZNF667	×	5 - ZNF470	K 15 .	+ LOC637583	e X	+ RGD1308782	к л.	LOC484255	S 4 .
ZNF471	×.	5 + ZNF71	K 13	5730403M16Rik	∾ × 1	- LOC691135	Х Х 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 3 3 3 3	1 OC491462	· 10 · 1
ZFP28	¥. ≍ ∺ £		S 12	Zto418	K 14	+ LOC690887	х 15 1 1 1	LOC610966	- 10 +
ZNF71	: 2	3 + LOC740808	N	BC023179	¢0	- LOC690661	K 19 -	LOC610960	5 4 4
BC37295_3	÷,	4 ZIM3	K 1	- LOC665507	4 30	- LOC690543	+ + ¥	LOC484250	K 32 +
ZIM2	Υ	LOC469033	•	LOC628297	×	- RGD1560046	K 19 +	LOC484247	+ 86 Y
PEG3	s 1	2. ZNF264	•	- LOC665609	2 (g 17 3		, 9 , 9		× ×
ZIM3	×: ₽		• •		6 ¥ 0		4 1 2 2 4 1	I 0C484238	SK 17 +
ZNF264	x x	3 + 2NF547	 	+ 15 G 397	0 00 4	+ Ztp53	K 15 - X	LOC484234	- 12 +
ZNF272	 - ¥	+ ZNF17	× 12	+ EG545912	0 4	Zfp54	K 30 +	LOC476367	(Sł 11 -
ZNF543	¥	3 + LOC469041	K 10	- EG545913	5 4	- prdm7	чс 1	LOC484226	SK 27 +
ZNF304	¥	5 + ZNF419A	•	- EG665848	0 4			LOC484224	× •
ZNF574	X 7) + ZNF549	К 15		. v	+ 1		LOC484220	a v ₽ ₩ + +
2111-0-10	2	+		-	ļ				

Tadepally et

																																												FG LOC653789
								_	_	_	_	_	_	_		_																												
																																												FG-LOC653789
5 4 5	K 13 -	K 15 +	- 12 -	SKK 5 +	K 7 +	+ 8 S	K 9 +	S 3 +	B 4 -	S 13 -			_																															
LOC665913	Zfp551	Zfp606	Zfp329	Zfp110	Zfp128	Zscan22	Ztp324	Zfp446	Zbtb45	Mzf1																																		FG LOC653789
(12 -	× 22 +	•	× 15 -	× 15 .	× 16 -	+ , s	5 4 -	- 12 -	+ ທ 2	- 1 - 1 - 1	+ + ¥	+ 8 S	- 14 -	8	* 80 *	- 17 -	+ , ¥	- 17 +	+ 5 3	•	S 13 -																							
ZNF416	ZNF211	ZNF551	LOC741520	ZNF256	ZNF606	LOC469048	LOC456340	ZNF329	ZNF274 ***	LOC456344	ZNF8	LOC742219	ZNF497	LOC456346	ZNF584	ZNF132	LOC742660	ZNF324	ZNF446	LOC456352	ZNF42																							FG-LOC653789
17 +	17 +	10	+ 11	+ 6	15 +	8	12 -	+ 6	13 +	10 +	12 +	4	16 +	10 -	10	10 +	10 +	8	13 +		13 -	- 91	15 -	16 -	+ E	16 +	2	12	1 2 1	13 +	+ 2	+	14	8	+ 8	18 -	+ 6			+" m	4	13 -	17 -	
¥	×	×	×	¥	¥	¥	¥	¥	¥	Ť	¥	S	¥	×	¥	(*	¥	¥	¥	r.	¥	¥	×	¥	сл I	¥	S	2	-	¥	¥	S	•	*	¥	×	¥	: א	2 1	<i>i</i>	8	S	¥	
ZNF175	ZNF749	ZNF772	ZNF419	ZNF773	ZNF549	ZNF550	ZNF416	ZIK1	ZNF530	ZNF134	ZNF211	ZSCAN4	ZNF551	ZNF154	ZNF671	ZNF776	ZNF586	ZNF552	ZNF587	ZNF814	ZNF417	ZNF418	ZNF256	ZNF606	ZSCAN1	ZNF135	ZNF447	ZNF329	ZNF274	ZNF544	ZNF8	HKR2	ZNF497	LOC116412	ZNF584	ZNF132	ZNF324B	ZNE32A		ZNF446	ZNF499	ZNF42	ZNF93	FG LOC653789

 $^{\circ}$

					0.0
Human Cluster 20.1		Chimpanzee	mouse	Har	60 <i>1</i>
h chr20		p chr20	m chr2	r chr3	c chr24
	1				
FG SNX5	-				
PTMAP3		PTMAP3	Pimap3	Ptmap3	PIMAP3
ZNF339	4	ZNF339 - 4	- Zfp339 - 4 🛛	Zfp339 - 4	- 7 - 7 - 7 - 7
ZNF133	K 15	+ ZNF133 K 15	+ Zfp133 K 15 +	Zfp133 K 15	+
FG POLR3F, RBBP9		FG POLR3F, RBBP9	FG Poir31, Rbbp9	FG Pokat, Rbbp9	FG POLR3F RBBP9
Human Cluster 20.2		Chimpanzee	Mouse	Rat	Dog
h chr20		p chr20	m chr2	r chr3	c chr24
FG NEVRL2. RTSA	ц. О	OFGNEVAL2 ATSA DF	U FG. Nevri2, Atsa U F U	FG. Nevri2, Hisa	
PLTP	ļ			74-236	
ZNESS	2 ·		- Zfn334 K 14 .	Zfn334 K 14	ZNF334 K 14 -
	- :	ZNE334			
EG SICIAA TPS WK	<u>*</u> c	FG SLC13A3 TP53RK	EG Tasak	FG Te53rk	FG SLC13A3, TP53RK
SLC2A10. EYA2		SLC2ATD, EVAZ	Sic2a10. Eva2	Sk2a10, Eva2	SLC2A10, EVA2
Human Cluster 20.3		Chimpanzee	Mouse	Rat	Dog
h chr20		p chr20	m chr2	r chr3	c chr24
FG HNFATC2, ATP9A	۳. ۵	OFG HNFATC2 ATP9A D F	O FG Hntarc2, Apga D F O	FG Hntarc2 App3a D F	O FG HNFATC2 ATP9A D F O
SALL4	- 1	- SALL4 - 7			
ZFP64	- 13	ZFP64 - 13 сс Евраяр Марсатра	- Z1p64 - 13 - 13 - 13 - 13 -	Z1p64	FG. ERP28P, MRPS33P4
Human Cluster 21.1		Chimpanzee	Mouse	Rat	Dog
h chr21		p chr21	m chr16	r chr11	c chr31
FG HMX1. TMPR552	ц О	OFG HMX1. TMPRSS2 D F	OFG Hmx1. Tmprss2 D F O	FG Hmx1, Tmprss2 D F	O FG HMX1, TMPRSS2 D F O
RIPK4		RIPK4	Ripk4	Ripk4	RIPK4
PRDM15	Se 14	PRDM15 Se 14	- Prdm15 Se 14	Prdm15 Se 1	LOC610905 Se 14 2
ZNF295	B 6	. ZNF295 B 6	- Zfp295 B 6 🧉	Zfp295 B 6	. LOC487775 B 6 -
FG UMODL1, ABCG1		FG UMODL1 ABCG1	FG Umodit. Abcg1	FG Umodit, Abcg1	FG UMODL1, ABCG1
TFF3, TFF2		TFF3, TFF2	TH2	TH2	TFF3, TFF2

 \bigcirc

0

0

Tadepally et.

1 Churder 22 1		Čh(mnan zao	Mouce		Rat	Dog	Γ
numbri Ciusiei 22.1			DCD041	Ī			
h chr22		p chr22	m chr10		r chr10	c chr16	
FG UMODL1, ABCG1	۲ ۲	FG UMODL1, ABCG1 D F	E O FG Umodit, TH3	0 1	FG Umodit, Tit3 D F	O FG UMODL1. ABCG1	D F O
TFF3		TFF3	-	li 1		TFF3	
SUHW2 SUHW3	e e Ris	SUHW2 SUHW1	2munz	8) -			
			-				
FG IGLV2-34, IGLV2-33		FG 16LV2-34, 16LV2-33	FG Pam12111		FG Pom12111	FG 1GL V2-34, 1GL V2-33	
POM121L1, BCRL4		POM121L1,BCRL4	Bcrl4		Bcrl4	POM121L1 BCRL4	٦
						0.02	ſ
Human Cluster X.1		Chimpanzee	Mouse	Ţ	Hat	Pog	Ī
h chrX		p chrX	m chrX		r chrX	c chrX	
	u 2		= 0 EG thety Pokt	р F О	FG Ubets Parkt D F	O FG UBE1, PCTK1	D F O
FG UBEL FUIKI	2			,	lisent t	USP11	1
	5	70511	7th182			LOC612509	K 12 +
	¥ !					1 OCARORAG	К 18 -
ZNF41	× 8	CNF41 K 1					2 S
ZNF81	X 13		+				+ 2 :
ZNF182	K 15 .	- ZNF182	£			LOC491864	× 14
ZNF630	K 13	LOC473594	•			LOC491865	Х 13 -
FG:SSX6 psiSSX2		FG.SSX6.psiSSX2	FG Ssxa1		FG Ssxa1	FG.SSX6,psiSSX2	
LOC653317		LOC653317	Ssxa2		Ssxa2	LOC653317	
Human Cluster X.2		Chimpanzee	Mouse		Rat	Dog	٦
h chrX		p chrX	m chr		r chr	c chr	
FG SPINZA, FAAH2	L D	PLE SPINZA, FAAH2 D	F O FG Spin2a	D F O	FG Spin2a D F	O FG SPINZA, FAAH2	л С
			Faah2		Faah2		
ZXDB	6	+ ZXDB	+ 0			LOC491912	+ თ
ZXDA	60 ,	ZXDA	- 6				
FG KRT8P17.		FG KRT8P17.	FG Krt8p17		FG Krt8p17	FG KRT8P17,	
LOC653588		LOC653588				LOC653588	1

			ſ				Ī	200	Γ
Human Cluster X.3		Chimpanzee		Mouse		Hat		<i>voy</i>	T
h chrX		p chrX		m chrX		r chrX		c chrX	
FG CXort48,LOC728470	с 0 0	FG CXort48,LOC728470	0 F 0	FG CXort48	D F O	FG CXort48	0	FG CXort48.LOC728470 D	0 L
LOC650024		LOC650024						LOC650024	
ZNF75	SK 5 -	ZNF75	SK 5 -	Zfp449	S 7 +			LOC611850 SK	+ 10
ZNF449	s 7 +	ZNF449	S 7 +					LOC492160 S	+ ~
FG DDX268		FG DDX26B		FG Ddx26b		FG Ddx26b		FG DDX26B	
									1
Human Cluster X.4		Chimpanzee	Γ	Mouse	Γ	Ret	Γ	Dog	
h chrX		p chrX		m chrX		r chrX		c chrX	
FG ANMAGA, WAGEAT	D F C	FG ANMAGA.WAGEA1	л П О	FG Anmaga Magnat	0 F 0	FG Anmaga Magea 1 D	О L	٥	0 1
ZNF275	+ = %	ZNF275	+ 11 +	Zfp275	- 11 +	Ztp275	+	LOC492233	+ 61
LOC139735	ж 89 Ж	LOC739968	+ 8	Ztp92	+ 6 ¥				
FG TREX2, UCHLSIP		FG TREX2, UCHLSIP		FG Trex2 Uchl5ip		FG Trex2 Ucht5p		FG TREX2, UCHLSIP	
							1		
Human Cluster Y.1		Chimpanzee		Mouse		Rat		Dog	
h chrY		p chrY							
FG HTFFY4B BPY2B	L L	FG HTFFY4B BPY2B	D F O						
LOC392603	94 (1)		1 G (2)						
LOC442486	ा (क) (क)		त द ि						
FG BPY2C. TTTY4C		FG BPY2C, TTTY4C							

 $^{\circ}$

Supplementary Table S4

Comprehensive catalogue of the C2H2-ZNF genes from the 81 human clusters and their syntenically homologous clusters from other mammalian genomes (Chimpanzee, Mouse, Rat and Dog).

For the 81 human (*h*) C2H2-ZNF clusters and their corresponding syntenically homologous clusters in chimpanzee (*p*), mouse (*m*), rat (*r*) and dog (*c*), this table provides the cluster number, the position on the chromosome, the flanking genes (*FG*), the names of the C2H2-ZNF from the cluster (in bold), the domain associated (D) (K = KRAB, S = SCAN, S-K= SCAN-KRAB, B = BTB, H = HOMEO, Se = SET and , ' Φ ' = no domain associated), the number of zinc finger motifs present (F), the orientation (O).

Chapter 3.

0

DISCUSSION

Many studies in biology focus on the extensive similarities between the genomes of human and model organisms, to extract insights into the molecular mechanisms and aetiology of human diseases. Our investigation of the C2H2-ZNF gene family in mammals reveals that there is an extensive variation of the C2H2-ZNF gene content and genomic organization as well as the domain composition of orthologous genes among species. In addition, our study is the first to provide a clear demonstration of the important contribution of gene loss in the evolution of C2H2-ZNF family and to demonstrate the rapid evolution of C2H2-ZNF genes that occurs between related species, our observations at the genomic scale provide insights into C2H2-ZNF gene evolution that confirm conclusions drawn from smaller-scale studies on individual genes, clusters and C2H2-ZNF subfamilies.

The major contributions of our study are:

- i. The extensive analysis of all the C2H2-ZNF genes in the human genome.
- ii. A comprehensive and systematic analysis of all the human C2H2-ZNF clusters and the identification of their syntenically homologous counterparts in other mammalian genomes.
- iii. The distinction of species-specific expansion and loss in C2H2-ZNF clusters and genes in all mammals.
- iv. The identification of variation in the number of zinc finger motifs and the presence or absence of the conserved N-terminal domains associated with C2H2-ZNF mammalian orthologs.

- v. The tracing back of different evolutionary patterns of the C2H2-ZNF gene family within primates and rodents.
- vi. The establishment of a model reconstructing the history and evolution of the SCAN, SCAN-KRAB and KRAB subfamilies.

In brief, our study reveals that the multiple and independent duplications and losses of C2H2-ZNF genes and their effector domains within different lineages and species has shaped and diversified C2H2-ZNF repertoires in mammals.

3.1 The C2H2-ZNF genes in the human genome

Earlier studies of C2H2-ZNF genes focussed on human chromosome 19 (Eichler, Hoffman et al. 1998; Dehal, Predki et al. 2001; Looman, Abrink et al. 2002; Shannon, Hamilton et al. 2003) and KRAB C2H2-ZNF subfamily in human (Huntley, Baggott et al. 2006). In contrast, our study provides a comprehensive and systematic analysis of all the C2H2-ZNF genes (Supplementary Table S1) in the human genome. We identified and analyzed the organization of 718 C2H2-ZNF genes in the human genome and classified them into different subfamilies of C2H2-ZNF (KRAB-C2H2-ZNF, SCAN-C2H2-ZNF, BTB-C2H2-ZNF and those without a conserved N-terminal domain). We also discovered two new C2H2-ZNF subfamilies, the HOMEO and SET subfamily which have a limited number of members (5 and 2, respectively) possibly due to a more recent appearance or to a different rate of duplication and loss. Consistent with previous reports (Rousseau-Merck, Koczan et al. 2002; Huntley, Baggott et al. 2006), we observed a massive clustering of the C2H2-ZNF on the human genome. More than 70% of the genes are organized into clusters on the human genome. However, in addition to the earlier reported clusters on human chromosome 19, (Venter, Adams et al. 2001; Huntley, Baggott et al. 2006), we also located a substantial amount of clusters (83%) on the other chromosomes of the human genome (Supplementary Table S2). Interestingly, the distribution of C2H2-ZNF genes is positively biased toward chromosome 19, harbouring 40% of all C2H2-ZNF genes in humans. Most of the human C2H2-ZNF genes are organized into clusters (500) with more than 60% of these clusters containing intermixed sets of genes from different subfamilies (Supplementary table S3).

The above observations were only possible through the study of all the C2H2-ZNF sub-families at the whole genome level.

3.2 Variation in the numbers of C2H2-ZNF genes in

mammalian clusters

A systematic and comprehensive analysis of the human C2H2-ZNF clusters and its syntenic counterparts in the chimpanzee, mouse, rat and dog genomes, allowed us to gain insights into the evolution of all the C2H2-ZNF gene subfamilies in mammals (Supplementary Table S4). The criterion to identify homologous clusters in syntenic regions was based on the flanking genes identified for each human cluster. Interestingly, this analysis revealed a high variation in the number of C2H2-ZNF genes within syntenically homologous clusters of mammals. Considering primates, humans have 518 C2H2-ZNF forming 81 clusters whereas chimpanzee has only 397 C2H2-ZNF organized into 79 clusters. This suggests that almost all the C2H2-ZNF clusters in human have a syntenic counterpart in chimpanzee. However, humans have 30 % more C2H2-ZNF genes within the identified clusters than chimpanzee implying that C2H2-ZNF genes are evolving differently within the primate lineage. A similar pattern was observed within the rodent lineage, where mouse and rat have 232 and 172 C2H2-ZNF organized into 62 and 58 clusters, respectively. A differential expansion of C2H2-ZNF genes, particularly striking in primates was evident in mammals (human>chimpanzee>mouse>dog>rat for the number of genes within clusters and human>chimpanzee>mouse>rat>dog for the number of clusters) (Figure 2 and Supplementary Table S4). A closer look at the individual syntenic clusters in mouse, rat and dog indicates many cases where dog has more number of genes than rodents and more specifically than rat (Supplementary Figure S2).

Our study indicates that C2H2-ZNF genes are indeed rapidly evolving genes as evident for example within the primate and rodents lineages. The differential expansion observed in the various species may be accounted both by differential duplication and/or loss. If the high numbers of C2H2-ZNF genes found in human as compared to chimpanzee suggest an expansion specific to human through tandem duplication, it seems that this difference is not solely due to duplications but also involves loss in chimpanzee as seen in many gene families (Fortna, Kim et al. 2004). In agreement with this, there are more pseudogenes in chimpanzee clusters (as annotated in Genbank) than in the corresponding human clusters. Thus, the variation in the numbers of C2H2-ZNF genes observed within primates could be attributed to both gene duplication and loss due to deletion or pseudogenization, gain being more predominant in human and loss in chimpanzee. Interestingly, a variation in the number of C2H2-ZNF genes is also evident in rodents. However, in this case in almost all the clusters, mouse has either a higher or equal number of C2H2-ZNF as compared to rat. Altogether, our study suggests that in addition to lineage-or species-specific increase in the numbers of the C2H2-ZNF genes, loss of these genes has also played a very important role in the evolution of this gene family. The evaluation of the relative contribution of gene duplication and loss requires detailed phylogenetic studies.

3.3 Evolution of C2H2-ZNF genes in mammals through

differential expansion and loss

Phylogenetic analyses of human C2H2-ZNF clusters with their syntenic counterparts from other mammals provided a better estimation of the relative contribution of gene duplication and loss in the analyzed clusters.

For example, the phylogenetic analysis of the C2H2-ZNF genes from human cluster 19.12 and its syntenically homologous clusters in mammals combined with the physical maps of these clusters gives us insights into the gene rearrangement mechanisms that could have taken place during evolution. Consistent with previous individual reports of lineage-specific expansion, more specifically of KRAB C2H2-ZNF genes (Dehal, Predki et al. 2001; Shannon, Hamilton et al. 2003; Huntley, Baggott et al. 2006), a primate lineage-specific expansion but also a dog specific expansion and a mouse duplication of C2H2-

ZNF genes were clearly identified . In all species, tandem duplication was found responsible for the species-specific increase in the number of C2H2-ZNF genes as confirmed by the fact that the genes that group together in the tree are almost always physically clustered together in the cluster on the chromosome. Furthermore, the orientations of the genes belonging to the same clade in the phylogenetic tree and their orthologs were almost always the same. In a few instances, however, the orientations of the genes belonging to the same clade were different and genes within syntenic clusters were inverted in a few instances, revealing a lot of possible gene rearrangements. Clear evidence of gene loss was also obtained by analyzing cluster 19.12 and other clusters. Considering that rodents are evolutionarily more related to primates than dog, an absence in rodents of C2H2-ZNF clusters or genes, that are present in primates and dog, suggests a

loss in rodents. Several examples of genes loss in rodents were obtained. The phylogenetic analysis also indicated loss of genes in chimpanzee by pseudogenization as suggested above.

Altogether our studies indicate a predominant role of gene gain by tandem duplication over gene loss for the evolution of C2H2-ZNF genes in mammals. It should however be pointed out that more definitive conclusions about the pseudogene status of the various C2H2-ZNF genes and on the role of these genes requires detailed functional investigation of the individual genes.

3.4 Evolution of the C2H2-ZNF genes through duplication or loss of zinc finger and N-terminal effector motifs

In accordance with a previous study on the average number of zinc finger motifs from a few plant (1), yeast(1.5), nematode (2.5), insect (3.5) and human (8) C2H2-ZNF (Venter, Adams et al. 2001), an in depth analysis of the zinc finger motifs associated with the C2H2-ZNF genes found in clusters in human and their syntenic genes in chimpanzee, mouse, rat and dog indicated that there is a significant variation in the number of zinc finger motifs associated with C2H2-ZNF genes in these mammalian species. Noticeably, the C2H2-ZNF genes from dog were found to encode a higher average of zinc finger motifs as compared to the other mammals studied. It is possible that an increase in the number of fingers within genes could confer advantageous additional functionality to the C2H2-ZNF genes through a diversification of the possible nucleic acid and protein interactions.

We also observed a variation in the presence of N-terminal effector motifs, such as SCAN or KRAB among orthologs, accounted by either gain or loss of these motifs. However, loss of N-terminal effector domains by sequence degeneration was confirmed in several cases in our study. A thorough analysis of the exon-intron structure of C2H2-ZNF genes indicated a typical conserved exon-intron organization for C2H2-ZNF genes associated with a SCAN-KRAB. Based on these observations, we propose a model of evolution of C2H2-ZNF sub-families involving independent gain events of a SCAN and KRAB domain each by an exon-shuffling mechanism and subsequent gene duplications and loss of effector motifs by deletion or degeneration of the SCAN and/or KRAB domain.

3.5 Birth and Death model of evolution

It was suggested from a study of a few chromosome 19 C2H2-ZNF clusters that C2H2-ZNF genes evolve by positive selection (Schmidt and Durrett 2004). Our results and analyses of the human C2H2-ZNF clusters and their syntenic counterparts in other mammals suggests a "Birth and Death" model of evolution similar to that proposed by Nei and coll. (Nei, Gu et al. 1997; Nei 2000) (See Figure 7B). According to this model, new genes are created by duplication including tandem duplication and block gene duplication (birth). While some of them might acquire a new function and thus diverge functionally, the others may remain relatively unchanged in the genome for a long time. Again others become pseudogenes following deleterious mutations or get deleted from the genome (death through inactivation or elimination). Though functional information is known for only a handful of C2H2-ZNF proteins, the variations in the numbers C2H2-ZNF genes that we found throughout the evolution of mammals and our phylogenetic analysis points to duplication and loss as a guiding force in the evolution of these genes.

Figure 7: Birth-and-death model of evolution.

The figure shows the two models associated with the evolution of multigene families. Open circles represent functional genes and closed circles represent pseudogenes.

(A) In concerted evolution, related genes belonging to the ancestral species evolve in a concerted manner rather than independently in both Species 1 and Species 2.

(B) Birth and Death Model of evolution, where the genes evolve differently by duplication, few are maintained in the genome for longer, while the others are deleted or become pseudogenes.

3.6 C2H2-ZNF gene family: An analogy with the Olfactory Receptor gene family

The olfactory receptor genes constitute the largest mammalian gene family with more than 1000 members in human. However, 60% of these genes are pseudogenes. In contrast to this, the olfactory receptor gene family in mouse comprises of roughly the same number of genes as human, though the number of pseudogenes is only 20% (Glusman, Yanai et al. 2001; Niimura and Nei 2003; Niimura and Nei 2005). Comparative analyses of this gene family in human, mouse and non-human primates have revealed that differential expansion and loss have guided the evolution of this gene family (Sharon, Glusman et al. 1999; Lapidot, Pilpel et al. 2001). However, human counterparts have accumulated a lot of mutations, leading to the numerous pseudogenes in comparison to mouse or any other nonhuman primate. This is associated with the reduced chemosensory capacity in humans.

The olfactory receptor and the C2H2-ZNF gene families show similar patterns of evolution. Differential gene expansion and loss have played an important role in the evolution of both gene families in mammals. However, in contrast to the olfactory receptor genes, C2H2-ZNF genes apparently do not accumulate pseudogenes in humans irrespective of their large number. Studies on human C2H2-ZNF clusters have indicated that these genes are rapidly evolving through positive selection and may acquire new functions after duplication (Schmidt and Durrett 2004; Huntley, Baggott et al. 2006).

By making a correlation between the number of olfactory genes in human and mouse and their functions in the respective organisms, we do understand that a reduced chemosensory dependence in primates and non-human primates as compared to mouse can be responsible for the large number of pseudogenes in human. Presently, the lack of large scale analysis of the expression profile and function of C2H2-ZNF genes preclude the establishment of such type of conclusions. The extremely high number of human C2H2-ZNF genes, the species-specific expansions and loss in mammals leading to differential evolution within primates and rodents, when put in perspective with functional information of these proteins could give us interesting insights into the evolution of this gene family.

3.7 A few concerns to the study

We must acknowledge here three possible sources of bias in our study.

First, errors in reporting the number of genes due to improper sequencing and annotation in the available databases could be a primary source of bias to our study. However, we did only consider genomes like human, chimpanzee, mouse, rat and dog which are >94% complete to minimize significantly this source of bias.

A second concern is that the loss of C2H2-ZNF clusters or genes that we see among the species could be due to the fact that the genes were dispersed onto different chromosomes due to translocation. Though we do accept this as a possibility, we conduct an extensive analysis to rule out this possibility for the clusters we studied in depth. For example, in group I of the phylogenetic tree (Figure 5; Article) of the human cluster 19.12 and its syntenic clusters in chimpanzee, mouse, rat and dog, we observe three orthologs (hZNF331, pZNF331 and cZNF331) from human, chimpanzee and dog. There is no rodent counterpart for these genes, which suggests a loss in rodents. To rule out the possibility that these genes were dispersed onto other regions of the genome by translocation, we conduct an extensive homology TBLASTN search of the mouse and rat genomes using each of the three orthologs from human, chimpanzee and dog as a query. For the three queries, the top most blast hit was Zfp14 from mouse and LOC97124 from rat. We included these two sequences into the dataset used for the phylogenetic analysis (see Methods; Article) of cluster 19.12 in human and its syntenic counterparts in chimpanzee, mouse, rat and dog. The phylogenetic tree revealed that the two mouse and rat sequences group with the three orthologs from human, chimpanzee and dog in group I. However, a closer look at the sequence similarity between these sequences (< 60%) suggests that they cannot be orthologs and the grouping we see could possibly be because of the fact that they were the closest to the query sequences used

The third and final concern is that considering the extremely large numbers of C2H2-ZNF in the human genome, we cannot rule out the possibility of pseudogenes. Though we do not conduct an extensive search to look for possible pseudogenes, an analysis of the open reading frames of the C2H2-ZNF genes considered in this study with their translated sequences suggest that most of them are most likely not pseudogenes. A distribution curve (Figure 8) of the amino acid sequence length of the various C2H2-ZNF genes shows that almost all of the sequences have large open reading frames potentially translated and functional.

Figure 8: Plot of the amino acid sequence lengths of all the C2H2-ZNF in the human genome

3.8 Merits of the study

Our study provides a comprehensive insight into the evolution of C2H2-ZNF throughout several mammalian genomes. To summarize, the merits of our study are as follows.

- A good range of species, with completely sequenced genomes was considered to analyze the evolution of C2H2-ZNF genes in mammals.
- A stringent phylogenetic analysis of the syntenic clusters in human, chimpanzee, mouse, rat and dog was performed using both maximum likelihood (RAxML) and bayesian (Mr.Bayes) methods. Noticeably, unlike other studies on C2H2-ZNF which use Xfin as an outgroup (Looman, Abrink et al. 2002; Shannon, Hamilton et al. 2003; Huntley, Baggott et al. 2006), we conduct an extensive search to include chicken (*Gallus gallus*) homologs in addition to Xfin as an outgroup. The chicken sequences are considerably closer as an outgroup to the species studied (human, chimpanzee, mouse, rat and dog).

The phylogenetic relationships we observed between C2H2-ZNF genes in the syntenic clusters from the different species was found consistent with the overall picture of the number of genes in the species and with the physical maps of the clusters.

• A model for the evolutionary relationship of SCAN, SCAN-KRAB and KRAB C2H2-ZNF subfamilies is proposed providing a possible explanation for previously unresolved questions in the field.

159

3.9 Perspectives

The following studies could be done as a future approach, to what is already known.

- The compilation of comprehensive catalogues of the C2H2-ZNF gene repertoires in chimpanzee, mouse, rat and dog. The detailed comparison of the organization and numbers of C2H2-ZNF in complete repertoires.
- The stringent phylogenetic analysis of these repertoires to gain insights into the various detailed mechanisms, which have taken place during the evolution of this gene family in mammals.
- The more detailed analysis of the physical mapping of genes within clusters to gain insight into the molecular mechanisms involved in the expansion of these genes. This could include the analysis of the possible repeated sequences that are bordering these C2H2-ZNF and that may be involved in this phenomenon, the analysis of the orientation, distances between genes and exon-intron organisation.
- The more comprehensive study of pseudogenes

Clearly, more detailed bio-informatics and functional studies are still required for a better understanding of the driving force behind the expansion of C2H2-ZNF genes in mammals.

REFERENCES

- Bellefroid, E. J., P. J. Lecocq, et al. (1989). "The human genome contains hundreds of genes coding for finger proteins of the Kruppel type." <u>DNA</u> 8(6): 377-87.
- Bellefroid, E. J., J. C. Marine, et al. (1993). "Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells." <u>Embo J</u> 12(4): 1363-74.
- Bellefroid, E. J., D. A. Poncelet, et al. (1991). "The evolutionarily conserved Kruppelassociated box domain defines a subfamily of eukaryotic multifingered proteins." <u>Proc Natl Acad Sci U S A</u> 88(9): 3608-12.
- Benn, A., M. Antoine, et al. (1991). "Primary structure and expression of a chicken cDNA encoding a protein with zinc-finger motifs." <u>Gene</u> **106**(2): 207-12.
- Bertrand, D. and O. Gascuel (2005). "Topological rearrangements and local search method for tandem duplication trees." <u>IEEE/ACM Trans Comput Biol Bioinform</u> 2(1): 15-28.
- Birtle, Z. and C. P. Ponting (2006). "Meisetz and the birth of the KRAB motif." <u>Bioinformatics</u> 22(23): 2841-5.
- Bouhouche, N., M. Syvanen, et al. (2000). "The origin of prokaryotic C2H2 zinc finger regulators." <u>Trends Microbiol</u> **8**(2): 77-81.
- Castresana, J. (2000). "Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis." <u>Mol Biol Evol</u> **17**(4): 540-52.
- Chung, H. R., U. Schafer, et al. (2002). "Genomic expansion and clustering of ZADcontaining C2H2 zinc-finger genes in Drosophila." <u>EMBO Rep</u> 3(12): 1158-62.
- Collins, T., J. R. Stone, et al. (2001). "All in the family: the BTB/POZ, KRAB, and SCAN domains." <u>Mol Cell Biol</u> **21**(11): 3609-15.

Darwin, C. (1837). The First Notebook on Transmutation of Species.

Dehal, P., P. Predki, et al. (2001). "Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution." <u>Science</u> **293**(5527): 104-11.

- Demuth, J. P., T. D. Bie, et al. (2006). "The evolution of Mammalian gene families." <u>PLoS ONE</u> 1: e85.
- Edelstein, L. C. and T. Collins (2005). "The SCAN domain family of zinc finger transcription factors." <u>Gene</u> **359**: 1-17.
- Edgar, R. C. (2004). "MUSCLE: multiple sequence alignment with high accuracy and high throughput." <u>Nucleic Acids Res</u> **32**(5): 1792-7.
- Eichler, E. E., S. M. Hoffman, et al. (1998). "Complex beta-satellite repeat structures and the expansion of the zinc finger gene cluster in 19p12." <u>Genome Res</u> 8(8): 791-808.
- Elemento, O. and O. Gascuel (2002). "An efficient and accurate distance based algorithm to reconstruct tandem duplication trees." <u>Bioinformatics</u> **18 Suppl 2**: S92-9.
- Elemento, O., O. Gascuel, et al. (2002). "Reconstructing the duplication history of tandemly repeated genes." <u>Mol Biol Evol</u> **19**(3): 278-88.
- Fitch, W. M. (2000). "Homology a personal view on some of the problems." <u>Trends Genet</u> **16**(5): 227-31.
- Fortna, A., Y. Kim, et al. (2004). "Lineage-specific gene duplication and loss in human and great ape evolution." PLoS Biol 2(7): E207.
- Francis Darwin, A. C. S. (1903). <u>More letters of Charles Darwin: A record of his work in a</u> series of hitherto unpublished letters.
- Frankel, A. D., J. M. Berg, et al. (1987). "Metal-dependent folding of a single zinc finger from transcription factor IIIA." <u>Proc Natl Acad Sci U S A</u> 84(14): 4841-5.
- Friedman, J. R., W. J. Fredericks, et al. (1996). "KAP-1, a novel corepressor for the highly conserved KRAB repression domain." <u>Genes Dev</u> 10(16): 2067-78.
- Fuchs, T., G. Glusman, et al. (2001). "The human olfactory subgenome: from sequence to structure and evolution." <u>Hum Genet</u> 108(1): 1-13.
- Germain-Desprez, D., M. Bazinet, et al. (2003). "Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells." J Biol Chem 278(25): 22367-73.
- Gertz, E. M., Y. K. Yu, et al. (2006). "Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST." <u>BMC Biol</u> 4: 41.
- Gilad, Y., O. Man, et al. (2005). "A comparison of the human and chimpanzee olfactory receptor gene repertoires." <u>Genome Res</u> **15**(2): 224-30.
- Glusman, G., A. Bahar, et al. (2000). "The olfactory receptor gene superfamily: data mining, classification, and nomenclature." <u>Mamm Genome</u> **11**(11): 1016-23.
- Glusman, G., I. Yanai, et al. (2001). "The complete human olfactory subgenome." <u>Genome</u> <u>Res</u> 11(5): 685-702.
- Grondin, B., M. Bazinet, et al. (1996). "The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix." J Biol Chem 271(26): 15458-67.
- Hamilton, A. T., S. Huntley, et al. (2003). "Lineage-specific expansion of KRAB zincfinger transcription factor genes: implications for the evolution of vertebrate regulatory networks." <u>Cold Spring Harb Symp Quant Biol</u> 68: 131-40.
- Hamilton, A. T., S. Huntley, et al. (2006). "Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes." <u>Genome Res</u> 16(5): 584-94.
- Huelsenbeck, J. P. and F. Ronquist (2001). "MRBAYES: Bayesian inference of phylogenetic trees." Bioinformatics 17(8): 754-5.
- Huntley, S., D. M. Baggott, et al. (2006). "A comprehensive catalog of human KRABassociated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors." <u>Genome Res</u> **16**(5): 669-77.
- Kim, S. S., Y. M. Chen, et al. (1996). "A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins." <u>Proc Natl Acad Sci U S A</u> 93(26): 15299-304.
- Klug, A. and D. Rhodes (1987). "Zinc fingers: a novel protein fold for nucleic acid recognition." <u>Cold Spring Harb Symp Quant Biol</u> **52**: 473-82.

- Krebs, C. J., L. K. Larkins, et al. (2003). "Regulator of sex-limitation (Rsl) encodes a pair of KRAB zinc-finger genes that control sexually dimorphic liver gene expression." <u>Genes Dev</u> 17(21): 2664-74.
- Krishna, S. S., I. Majumdar, et al. (2003). "Structural classification of zinc fingers: survey and summary." <u>Nucleic Acids Res</u> **31**(2): 532-50.
- Lander, E. S., L. M. Linton, et al. (2001). "Initial sequencing and analysis of the human genome." <u>Nature</u> **409**(6822): 860-921.
- Lapidot, M., Y. Pilpel, et al. (2001). "Mouse-human orthology relationships in an olfactory receptor gene cluster." <u>Genomics</u> **71**(3): 296-306.
- Lee, M. S., G. P. Gippert, et al. (1989). "Three-dimensional solution structure of a single zinc finger DNA-binding domain." <u>Science</u> 245(4918): 635-7.
- Li, W., L. Jaroszewski, et al. (2001). "Clustering of highly homologous sequences to reduce the size of large protein databases." <u>Bioinformatics</u> 17(3): 282-3.
- Looman, C., M. Abrink, et al. (2002). "KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution." <u>Mol Biol Evol</u> 19(12): 2118-30.
- Looman, C., L. Hellman, et al. (2004). "A novel Kruppel-Associated Box identified in a panel of mammalian zinc finger proteins." <u>Mamm Genome</u> **15**(1): 35-40.
- Margolin, J. F., J. R. Friedman, et al. (1994). "Kruppel-associated boxes are potent transcriptional repression domains." <u>Proc Natl Acad Sci U S A</u> **91**(10): 4509-13.
- Mark, C., M. Abrink, et al. (1999). "Comparative analysis of KRAB zinc finger proteins in rodents and man: evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes." <u>DNA Cell Biol</u> 18(5): 381-96.
- Melnick, A., G. Carlile, et al. (2002). "Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors." <u>Mol Cell Biol</u> 22(6): 1804-18.
- Messina, D. N., J. Glasscock, et al. (2004). "An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression." <u>Genome Res</u> 14(10B): 2041-7.

- Miller, J., A. D. McLachlan, et al. (1985). "Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes." <u>Embo J</u> 4(6): 1609-14.
- Moosmann, P., O. Georgiev, et al. (1996). "Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1." Nucleic Acids Res 24(24): 4859-67.
- Moreira, D. and F. Rodriguez-Valera (2000). "A mitochondrial origin for eukaryotic C2H2 zinc finger regulators?" <u>Trends Microbiol</u> **8**(10): 448-50.
- Nei, M., and Kumar S. (2000). <u>Molecular Evolution and Phylogenetics</u>, New York: Oxford University Press.
- Nei, M., X. Gu, et al. (1997). "Evolution by the birth-and-death process in multigene families of the vertebrate immune system." <u>Proc Natl Acad Sci U S A</u> 94(15): 7799-806.
- Niimura, Y. and M. Nei (2003). "Evolution of olfactory receptor genes in the human genome." Proc Natl Acad Sci U S A 100(21): 12235-40.
- Niimura, Y. and M. Nei (2005). "Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice." <u>Gene</u> **346**: 13-21.

Ohta, T. (2000). "Evolution of gene families." Gene 259(1-2): 45-52.

- Omichinski, J. G., G. M. Clore, et al. (1990). High-resolution three-dimensional structure of a single zinc finger from a human enhancer binding protein in solution. Biochemistry. **29:** 9324-34.
- Omichinski, J. G., G. M. Clore, et al. (1992). "High-resolution solution structure of the double Cys2His2 zinc finger from the human enhancer binding protein MBP-1." Biochemistry 31(16): 3907-17.
- Pabo, C. O. and R. T. Sauer (1992). Transcription factors: structural families and principles of DNA recognition. <u>Annu Rev Biochem</u>. **61:** 1053-95.
- Page, R. D. and M. A. Charleston (1997). "From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem." <u>Mol Phylogenet Evol</u> 7(2): 231-40.
- Parraga, G., S. J. Horvath, et al. (1988). "Zinc-dependent structure of a single-finger domain of yeast ADR1." <u>Science</u> 241(4872): 1489-92.

- Pengue, G., V. Calabro, et al. (1994). "Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins." <u>Nucleic Acids Res</u> 22(15): 2908-14.
- Pengue, G. and L. Lania (1996). "Kruppel-associated box-mediated repression of RNA polymerase II promoters is influenced by the arrangement of basal promoter elements." <u>Proc Natl Acad Sci U S A</u> 93(3): 1015-20.
- Quignon, P., E. Kirkness, et al. (2003). "Comparison of the canine and human olfactory receptor gene repertoires." <u>Genome Biol</u> 4(12): R80.
- Rhodes, D. and A. Klug (1993). "Zinc fingers." Sci Am 268(2): 56-9, 62-5.
- Roberts, S. G. (2000). "Mechanisms of action of transcription activation and repression domains." Cell Mol Life Sci 57(8-9): 1149-60.
- Rosati, M., M. Marino, et al. (1991). "Members of the zinc finger protein gene family sharing a conserved N-terminal module." <u>Nucleic Acids Res</u> **19**(20): 5661-7.
- Rousseau-Merck, M. F., D. Koczan, et al. (2002). "The KOX zinc finger genes: genome wide mapping of 368 ZNF PAC clones with zinc finger gene clusters predominantly in 23 chromosomal loci are confirmed by human sequences annotated in EnsEMBL." <u>Cytogenet Genome Res</u> 98(2-3): 147-53.
- Ruiz i Altaba, A., H. Perry-O'Keefe, et al. (1987). "Xfin: an embryonic gene encoding a multifingered protein in Xenopus." Embo J 6(10): 3065-70.
- Sander, T. L., A. L. Haas, et al. (2000). "Identification of a novel SCAN box-related protein that interacts with MZF1B. The leucine-rich SCAN box mediates hetero- and homoprotein associations." J Biol Chem 275(17): 12857-67.
- Schmidt, D. and R. Durrett (2004). "Adaptive evolution drives the diversification of zincfinger binding domains." <u>Mol Biol Evol</u> **21**(12): 2326-39.
- Schuh, R., W. Aicher, et al. (1986). "A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene." <u>Cell</u> 47(6): 1025-32.
- Schumacher, C., H. Wang, et al. (2000). "The SCAN domain mediates selective oligomerization." J Biol Chem 275(22): 17173-9.

- Shannon, M., A. T. Hamilton, et al. (2003). "Differential expansion of zinc-finger transcription factor loci in homologous human and mouse gene clusters." <u>Genome</u> <u>Res</u> 13(6A): 1097-110.
- Shannon, M., J. Kim, et al. (1998). "Tandem zinc-finger gene families in mammals: insights and unanswered questions." DNA Seq 8(5): 303-15.
- Sharon, D., G. Glusman, et al. (1999). "Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes." <u>Genomics</u> 61(1): 24-36.
- Sitnikova, T. and C. Su (1998). "Coevolution of immunoglobulin heavy- and light-chain variable-region gene families." <u>Mol Biol Evol</u> **15**(6): 617-25.
- Stamatakis, A., T. Ludwig, et al. (2005). "RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees." <u>Bioinformatics</u> 21(4): 456-63.
- Stone, J. R., J. L. Maki, et al. (2002). "The SCAN domain of ZNF174 is a dimer." <u>J Biol</u> <u>Chem</u> 277(7): 5448-52.
- Tang, M., M. Waterman, et al. (2002). "Zinc finger gene clusters and tandem gene duplication." <u>J Comput Biol</u> 9(2): 429-46.
- Theunissen, O., F. Rudt, et al. (1992). "RNA and DNA binding zinc fingers in Xenopus TFIIIA." Cell 71(4): 679-90.
- Thornton, J. W. and R. DeSalle (2000). "Gene family evolution and homology: genomics meets phylogenetics." <u>Annu Rev Genomics Hum Genet</u> 1: 41-73.
- Urrutia, R. (2003). "KRAB-containing zinc-finger repressor proteins." <u>Genome Biol</u> 4(10): 231.
- Venter, J. C., M. D. Adams, et al. (2001). "The sequence of the human genome." <u>Science</u> **291**(5507): 1304-51.
- Waterston, R. H., K. Lindblad-Toh, et al. (2002). "Initial sequencing and comparative analysis of the mouse genome." <u>Nature</u> **420**(6915): 520-62.

- Williams, A. J., L. M. Khachigian, et al. (1995). "Isolation and characterization of a novel zinc-finger protein with transcription repressor activity." <u>J Biol Chem</u> 270(38): 22143-52.
- Witzgall, R., E. O'Leary, et al. (1994). "The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression." <u>Proc Natl Acad Sci U S</u> <u>A</u> 91(10): 4514-8.
- Wolfe, S. A., L. Nekludova, et al. (2000). "DNA recognition by Cys2His2 zinc finger proteins." <u>Annu Rev Biophys Biomol Struct</u> 29: 183-212.
- Zheng, L., H. Pan, et al. (2000). "Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1." <u>Mol Cell</u> 6(4): 757-68.