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SOMMAIRE

Ce travail décrit le développement postnatal des courants postsynaptiques

excitateurs (CPSEs) dans les neurones épineux moyens (MS) du noyau accumbens

(nAcb) du rat in vitro ainsi que les effets neuromodulateurs de l’acétylcholine (ACh) et

de la dopamine (DA) en utilisant la technique whole-cell patch-cÏamp.

Les CPSEs, évoqués par une stimulation électrique, ont été enregistrés dans plus

de 500 neurones du nAcb pendant le développement postnatal à partir du jour de la

naissance (jour postnatal 0; P0) jusqu’à P71. Un CPSE a été identifié dans tous les

neurones enregistrés et à tous les âges, démontrant que des synapses excitatrices

fonctionnelles étaient déjà présentes dans le nAcb le jour de la naissance. Dans la

majorité de neurones (80%), les CPSEs avaient deux composantes distinctes. La première

atteignait un maximum entre 4 et 2lms après le début de stimulus, avait une relation ‘R

VM linéaire et était sensible au CNQX. La seconde composante pouvait être mesurée

entre 20 et 138 ms après le début de stimulus, avait une relation IR-VM en y avec un

maximum autour de —40 mV et était sensible à l’APV. Ces caractéristiques montrent que

la composante précoce des CPSEs étaient médiée par des récepteurs de type AMPA/KA

tandis que la deuxième était médiée par des récepteurs de type NMDA.

Pendant les premiers jours suivant la naissance, l’amplitude des CP$Es était

relativement petite. Par la suite, les CPSEs ont augmenté progressivement jusquTà la fin

de la deuxième semaine postnatale. À partir de ce moment, l’amplitude de la composante

précoce s’est stabilisée jusqu’à l’âge adulte alors que celle de la composante tardive a

commencé à diminuer pour devenir virtuellement nulle dans les préparations provenant

d’animaux âgés de plus de 3 semaines. Le rapport entre l’amplitude de la composante
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tardive et celle de la composante précoce a augmenté graduellement durant les deux

premières semaines et a par la suite diminué de façon marquée. Ces résultats suggèrent

que l’expression de CPSEs médiés par les récepteurs NMDA est prédominante durant la

deuxième semaine du développement postnatal dans le nAcb.

Nous avons trouvé que l’Adi produisait deux effets médiés par différents types

de récepteurs sur les CPSEs. L’ACh diminuait les CPSEs en agissant sur des récepteurs

muscariniques tandis qu’elle augmentait les CPSEs en agissant sur des récepteurs

nicotiniques. Cependant, l’effet excitateur produit par l’activation des récepteurs

nicotiniques était généralement masqué par les effets inhibiteurs muscarmniques en

absence d’un antagoniste de ces derniers. Donc, l’activation des interneurones

cholinergiques dans le nAcb pourrait produire une excitation nicotinique rapide et une

inhibition muscarmnique plus lente.

La DA, par une action sur les récepteurs de la famille Dl, produisait une

diminution importante du rapport entre les CPSEs médiés par des récepteurs NMDA et

ceux médiés par les récepteurs AMPAJKA en inhibant davantage les CPSEs médiés par

les récepteurs NMDA. En effet, l’inhibition produite par la DA sur les CPSEs NMDA

était comparable à celle produite par l’APV, un antagoniste spécifique des récepteurs

NMDA. Les effets de la DA sur les CPSEs ne semble pas impliquer la protéine kinase A

ni la protéine kinase C, parce que cette action était résistante aux inhibiteurs de protéines

kinases H89 et Ro-32-0432.

Les agonistes cholinergiques et dopaminergiques ont changé le rapport des

réponses à des stimuli pairés (paired pulse ratio) sans toutefois modifié la conductance

membranaire ni la réponse des neurones au glutamate en présence de TTX, suggérant que
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leurs effets sur les CPSEs étaient principalement médiés par des mécanismes

présynaptiques. Cependant, les effets postsynaptiques de l’ACh et et de la DA ont pu être

masqués par la présence de QX-314 dans la pipette d’enregistrement car cette substance

bloque certains canaux ioniques K et Na qui auraient pu être modulés par l’Adi et la

DA.

En résumé, cette recherche démontre que les réponses synaptiques médiées par les

récepteurs NMDA atteignent leur maximum pendant la seconde semaine du

développement postnatal et pourraient jouer un rôle important dans les processus

développementaux dépendant de l’activité. La modulation des CPSEs NMDA et

AMPAJKA pendant cette période par la DA et l’ACh suggèrent que ces substances

pourraient jouer un rôle déterminant aussi pendant cette période.

Mots-clés : CPSE, développement postnatal, Acétylcholine, dopamine, récepteur
AMPA!KA, récepteur NMDA, noyau accumbens, courant postsynaptique excitateur



SUMMARY

This work describes the postnatal development of excïtatory postsynaptic currents

(EPSCs) of medïum spiny neurons (MS) in nucleus accumbens (nAcb) suces of rat as

well as the modulations of two classic neurotransmitters dopamine (DA) and

acetylcholine (ACh) on EPSCs using whole-cell patch-clamp technique.

EPSCs were evoked by local electricai stimulation in 509 nAcb neurons during

postnatal development from the day of birth (postnatal day 0; P0) to P71. An EPSC was

found in ah recorded neurons of ail ages, showing that functional excitatory synapses

were aiready present in the nAcb on the day of birth. In majority of neurons (80%) the

EPSCs had two distinct components: an early component with a peak between 4 and 21

ms after stimulus onset, linear IR-Vm and sensitive to CNQX and a late one that was

found from 20 to 138 ms after stimulus onset, had a V-shape IR-Vm relationship with a

peak around —40 mV and sensitive to APV. These characteristics demonstrate the eariy

and late components of the EPSC were mediated by AMPA and NMDA receptors

respectively. During the first few days after birth, the amplitudes of both early and late

components of the EPSCs were relatively smail and then started to increase untii the end

of the second postnatal week. Whereas the early component of the EPSC appeared to

stabilize from that point on, the late component began to decrease in samples from

animais aging more than 3-week-old. In addition, the ratio between the amplitudes of

late and early components followed a developmental pattem gradualiy increased during

the first two postnatal weeks followed by a decrease dramatically. Together, these results

show that there is a dominant expression of NMDA receptor-mediated EPSC during the

postnatal development in nAcb.
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Two remarkable differential actions of ACh were found on the EPSCs by two

types of ACh receptors. ACh depressed EPSCs through muscarinic Ml receptors,

whereas it enhanced EP$Cs through nicotinic receptors, suggesting that nAcb cholinergic

interneurons may produce a fast nicotinic excitation and slow muscarinic inhibition.

However, nicotinic receptor-mediated effects were usually masked by muscarinic

receptor-mediated actions in our experimental condition in vitro. Moreover, we also

found that the inhibitory effects of ACh on NMDA receptor- but not on AMPA receptor

mediated EPSCs significantly increased during the first two postnatal weeks.

DA, through an action on D1-like receptor, distinctly decreased the ratio of

NMDA receptor- to AMPA receptor-mediated EP$Cs, rnimicked the effect of APV on

EPSCs and abolished almost completely NMDA receptor-mediated EP$Cs with minimal

effect on AMPA receptor-mediated EPSCs. The DA-induced depression of EPSCs did

not involve either protein kinase A or protein kinase C, because this action was resistant

to the protein kinase inhibitors H29 and Ro-32-0432.

Both cholinergic and dopaminergic agonists altered the ratio of paired-pulse

stimulation-evoked EPSCs, but did not change input conductance of membrane of MS

neurons. Also both of transmitters had no effect on glutamate injection-evoked EP$Cs in

the presence of TTX and QX-3 14, suggesting their modulation on EPSCs is mainly

presynaptic in the postnatal development of nAcb. However, in accordance with the

effect of QX-3 14 on membrane potentials during the modulation of ACh, and distinct

change in the ratio of NMDARIAMPAR-EPSCs during the modulation of DA, it is

suggested that there are postsynaptic effects of ACh and DA either in the nAcb during the

postnatal development. This work shows that NMDA receptor-mediated synaptic
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responses are dominant during postnatal development and that DA and ACh effectively

modulate NMDA receptor-mediated currents, indicating that NMDA receptor-mediated

synaptic events may play important roles in postnatal development. The modulations of

NMDA receptor- and AMPA receptor-mediated EPSCs by DA and ACh may be

important for activity-dependent developmental processes or other plasticity in the nAcb.

In addition, quite significant modulation of NMDA receptor-mediated EPSCs by ACh

and DA during postnatal development could be important for the study in the etiology of

schizophrenia.

Key words: Nucleus accumbens, Excitatory postsynaptic currents, Postnatal
developrnent, Cholinergic and dopaminergic modulation, NMDA receptor, AMPA
receptor, Pre and postsynaptic modulations.
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INTRODUCTION

1. Overview

The nucleus accumbens (nAcb) is an important point of convergence for different

afferents originating in limbic structures (Lopes da Silva, 1984; Pennartz and Kitai, 1991;

Pennartz et al., 1994; O’Donnell and Grace, 1995; Finch, 1996). Several of these

pathways are thought to be glutamatergic and to provide an excitatory drive by activating

NMDA andlor AMPA!KA receptors necessary to trigger firing activity in nAcb neurons

(Kombian and Malenka, 1994). In addition, the nAcb receives a dense dopaminergic

input from the ventral tegmental area (VTA), and this system lias been implicated in drug

addiction and other neuropsychiatric disorders (Ungerstedt, 1971; Schiistrom et al.,

1 998a,b). The nAcb also contains a small population of cholinergic interneurons, whicli

play an important role in modulating glutarnatergic transmission (Sugita, et al., 1991;

Hersch, et al., 1994; Zhang and Warren, 2002; de Rover et al., 2002).

The nAcb lias been proposed to serve as an interface between the limbic system

and the extrapyramidal motor system (Mogenson et al., 1980; Mogenson and Yim, 1981;

Poweli and Leman, 1976; Yang and Mogenson, 1984; Yim and Mogenson, 1982).

Studies have provided evidence for the involvement of the nAcb in a number of functions

including motivation (Mogenson et al., 1980; Robbins and Everitt, 1996; Swerdlow and

Koob, 1987), attention (Solomon and Staton, 1982; van den Bos et al., 1991), and reward

(Apicella et al., 1991; Colle and Wise, 1988; Robbins and Everitt, 1996; fantin and

Bottecchia, 1984; OÏds, 1990). Recent studies have shown its involvement in learning

and plasticity (Parkinson et al., 2000). Moreover, the nAcb may be involved in mediating

some of the therapeutic actions of antipsychotic drugs that inactivate the mesencephalic
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dopaminergic ceils that project to this region when administered chronically (Chiodo and

Bunney, 1983; White and Wang, 1983). Chaotic neurotransmissions in the nAcb could

be a critical determinant in some neuropsychiatrie disorders, including schizophrenia,

Tourett’s syndrome and drug addiction (Koob and Nestier, 1997; Wise, 1998).

furthermore, selective loss of cholinergic interneurons in the nAcb has also been

observed in schizophrenia (Hoit et al., 1999) and Alzheimer’s disease (Lehéricy et al.,

1989). Additionally, an alteration of dopaminergic transmission is thought to play a key

role in psychiatrie disorders (Sokoloff et al., 1992), such as, dopaminergic hyperfunction

has been implicated in schizopbrenia (Gray et al., 1995; Joyce, 1993; Joyce and Meador

Woodruff, 1997). Interest in understanding cholinergic and dopaminergic mechanisms in

controlling or regulating motor and psychological function in mammals has been growing

since acetylcholine (ACh) and dopamine (DA) were postulated to play a role in the

pathophysiology described above.

Ionotropic glutamate receptors-mediated events including excitatory postsynaptic

currents (EPSC) play a crucial role in synaptogenesis and formation of neuronal circuitry,

as well as in synaptic plasticity including long-term potentiation (LTP) and long-term

depression (LTD). However, excessive activation of glutamate receptors might induce

excitotoxic neuronal celi death, which is thought to contribute to neurodegeneration

(Choi, 1992; Lipton and Rosenberg, 1994). Defects in glutamatergic transmission in the

nAcb are thought to be involved in the pathophysiology of schizophrenia (Carlsson and

Clarlsson, 1990a, b; Olney and Farber, 1995; Meador-Woodruff and Healy, 2000).

However, during postnatal development, the characteristics of EP$C and its modulation
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by classic neurotransmitters ACh and DA in the nAcb remain largely enigmatic. The

present thesis atternpts to provide some answers to these questions.

2. Anatomical and functional characteristics of the nucleus accumbens

Because of its similarities including cytoarchitecture, neurochernistry and afferent

and efferent connections with the dorsal striatum, the nAcb is usually considered as a

ventromedial extent of the striatum or the ‘ventral striatum” (Heimer and Wllson, 1975;

Heimer et al., 1997; Swanson and Cowan, 1975). Based on studies of its connectivity

and distribution of neurotransmitters and chemical markers, the nAcb can be divided into

two teilitories (Groenewegen and Russchen, 1984; Heimer et al., 1991; Brog et al., 1993;

Zahm and Heimer, 1993). The portion ofthe nAcb surrounding the anterior commissure

is known as the core where enkephalin and opioid receptors are rich, and strong

immunoreactivity for calcium-binding protein, calbindin D28k (CaB) is found. The

rnedio-ventral region of the nAcb is called the sheil in which dense concentrations of

substance P (SP), dynorphin, and tyrosine hydroxylase (TH) overlaping enkephalin- or

CaB-poor zones are exhibited (Zahm and Brog, 1992; Jongen-Relo et al., 1994).

[Figure 1. The anatomical location ofthe nAcb]

2.1. Composition oftlie nucleus accumbens

2.1.1. Innervations and projections

The major afferents of the nAcb arise primarily from limbic structures including

the prefrontal cortex (PfC), hippocampus, basal amygdaloid complex and midline

thalamic nuclei (Groenewegen et al., 1982, 1987; Jayaraman, 1985; Kelley and



Figure 1. An anatomical indication ofthe nAcb and its subterritories

A. A parasagittal section of rat whote twain. B. A drawing shows mainly parts offorebrain

to match the sagittal section. nAcb, nucleus accumbens (highlight areas); aca, anterior

commissure; VP, ventral pallidum; CPu, caudate-putamen. The circles flhled with white color

indicate the sites where recordings were done in nAcb. The circles fllled with black color show

the places in which ttie stimuli were given for evoked responses. C. Coronal section through the

forebrain ofthe rat showing SP immunoreactivity. Note that a border between the core(Co) and

the dorsally adjacent main part ofthe striatal complex, CPu can not be identifled, whereas the

border between the Co and the shell(Sh) is distinct (arrowheads). (Paxions and Watson, 1986;

De Olmos and Heimer,1999).
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Domesick, 1982; KeIIey and Stinus, 1984; Kelley et al., 1982; Krayniak et aI., 1981;

Newman and Winans, 1980; Phillipson and Griffiths, 1985; Meredith et al., 1990). These

inputs are ail thought to be glutamatergic. The nAcb also receives inputs from the ventral

pallidum, dopaminergic VTA, serotonergic median raphe nucleus, and the noradrenergic

celi group located in the nucleus ofthe solitary tract (Groenewegen et al., 1987; Brog et

al., 1993; Berendse et al., 1992). The output of the nAcb is GABAergic and is primarily

directed to the ventral pallidum (Hakan et al., 1992; Yang and Mogenson, 1985; Zahm

and Heimer, 1990), which is involved in the activation of voluntary movements (Heirner

et al., 1994; $werdlow and Koob, 1987). This input-output organization suggests that the

nAcb somehow provides a centre for Ïimbic integration with motor systems driven by the

ventral pallidum (Beninger et al., 1983; Lopes da Silva et al., 1984; Mogenson et al.,

1980). In addition, the nAcb also projects to the VTA and the media! part of the

substantia nigra pars compacta (Heimer et al., 1991; Mogenson et al., 1983; Nauta et al.,

1978; Swanson and Cowan, 1975).

The core of the nAcb has been reported to receive its main cortical input from the

prelimbic PFC (Brog et al., 1993; Sesack et aÏ., 1989; Berendse et al., 1992; Montaron et

al., 1996), and dorsal subiculum (Brog et al., 1993). It also appears to project to the

dorsal portion of the ventral pallidum (Zahm and Heimer, 1990; Heimer et al., 1991).

The sheli receives its major inputs from the infralimbic PFC and the ventral subiculum

(Kelley and Domesick, 1982; Brog et al, 1993; Yang and Mogenson, 1984; Sesack and

Picel, 1990; Aylward and Totterdel!, 1993) and sends projections to the ventro-medial

part ofthe ventral pallidum.

[Figure 2. Diagram with inputs and outputs ofthe nAcb]
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Figure 2.
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Figure 2. Diagram with inputs and outputs of the nAcb

Schematic representation of the input-output relationships of clusters of neurons in the nAcb.

A. Different clusters of neurons (ensembles?) receive different combinations of converging

inputs and project to distinct targets, including the ventral pallidum, the lateral hypothalamus,

and the ventral mesencephalon. B. The various (limbic) cortical and subcortical structures

that project to the nAcb are strongly and, in a number of cases, reciprocally interconnected.

Note that the nAcb, via the ventral pallidum and the mediodorsal thalamic nucleus is involved

in a closed thalamocortical-basal ganglia loop. nAcb, nucleus accumbens; MD, mediodorsal

thalamic nucleus; P’vÇ paraventricular thalamic nucleus. (Groenewegen et al., 1999).

ventral pallidum

prefrontal cortex

ventral pallidum
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2.1.2. Neuron types

As described in series of remarkable studies of the neostriatum (Bolam et al.,

1984; Kawaguchi, 1992, 1993; Kawaguchi et al., 1989, 1990), the nAcb also consists of

five different types of neurons in accordance with the neurochemical, morphological and

physiological characteristics (Chang and Kital, 1985; Hedreen, 1981). Two types ofthe

celis have been described with some details (Sesack and Pickel, 1990; O’Donnell and

Grace, 1993). They are the GABAergic medium spiny (MS) neurons, which are the only

identified projection neurons in the nAcb, and the large aspiny (LA) neurons, which are

cholinergic intemeurons. In addition to MS neurons, two other types of GABAergic

interneurons have been identified: the fast spiking (FS) neurons and cairetinin containing

fleurons. A third type, identified as the low threshold spike (LTS), which could also be

GABAergic, contains somatostatin, neuropeptide Y and NO as co-transmitters.

2.1.2.1. MS neurons

The principal neurons in the nAcb are the projection MS neurons (8-15 tm),

which make up approximately 95% of all neurons (Chang and Kital, 1985). MS neurons

appear to use GABA as one oftheir primary neurotransmitters (Fisher et aI., 1986) along

with several peptides as co-transmitters such as $P and neurotensin (Penny et al., 1986).

MS neurons are by far the most frequently encountered celi type during physiological

recordings and are recognizable by their strikingly large inward rectification during

application of hyperpolarizing current pulses and their low RMP (around —80 mV).

When recorded in vivo, MS neurons show a pattem of spontaneous activity consisting of

long periods of silence separated by brief episodes of firing. Intracellular recordings in

vivo in the nAcb (O’Donnell and Grace, 1995; Yim and Mogenson, 1988; Finch, 1996)
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have shown that the suent and active episodes correspond to two different stable states of

the membrane potential 10-20 mV apart: a hyperpolarized suent state around -$0 mV and

a depolarized active state around -60 rnV. The shifis in membrane potential are relatively

rapid (5 mV/s or more), of large amplitude, appear spontaneously in vivo and can last

100-500 ms. MS neurons fire only during the depolarized state with the spikes often

occurring in bursts.

In nAcb suces maintained in vitro, the RMP of M$ neurons is around -$0 to -90

mV, corresponding to that of the hyperpolarized periods seen in vivo in normal animais

and no depolarizing episodes are observed (Belleau and Warren, 1995, 2000). Because in

the preparations in vitro neurons receive much iess synaptic input than they do in vivo, it

is unlikely that the membrane potential on MS neurons is maintained by barrages of

inhibitory postsynaptic potential (IPSP). This suggests that the hyperpolarized state

observed in vivo is flot due to tonic inhibition, but rather because of a lack of excitation.

furthermore, Belleau and Warren (1995) found that GABAA receptor mediated IPSPs are

depolarizing at RMP in vitro, showing that the hyperpolarized membrane potential of MS

neurons is below the chloride ion equilibrium and may not resuit from GABAA mediated

inhibition. Following lesion or reversible inactivation of subicular inputs in vivo, MS

neurons remains in the hyperpolarized state. This suggests that the depolarized state

requires the integrity of hippocampal inputs in the nAcb (O’Donnell and Grace, 1995).

2.1.2.2. LA neurons

LA neurons are actually a group of giant cholinergic cells. This neuronal subtype

has long been recognized as a separate cell type since it has a large somatic size (20-
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60 cm) and an extensive aspiny dendritic tree that is much larger than those of MS

neurons (Meredith et al., 1989; Kawaguchi, 1992; Zhou et aÏ., 2002). An important step

for their identification as intemeurons was the discovery that they were the only source of

ACh and choline acetyltransferase (ChAT) in the nAcb, since ventral and dorsal striatum

inputs are devoid of any other cholinergic afferent (McGeer et al., 1971; Bolam et al.,

1984). The RMP of LA neurons is more depolarized and doser to firing threshold than

that of M$ neurons. Consequently, they will fire more readily when injected with

depolarizing current. Their firing pattems show littie adaptation, but their firing

ftequency is limited by a large and long afierhyperpolarization (Beleau and Warren,

2000). Presumably, when they fire action potentials, they release ACh, which in turn

modulate the excitability of the other neuronal elements of the nAcb by acting on ACh

receptors. LA neurons are recognizable by their time-dependent rectification causing a

large depolarizing sag in response to hyperpolarizing current pulses and the presence of a

large and long duration spike afterhyperpolarization. The axonal fields of LA neurons

are also more extensive than that of other accumbal neuronal elements and make most of

their synapses with MS neurons (Izzo and Bolam, 198$; Phelps et al., 1985). In the

dorsal striatum, LA neurons also receive convergent excitatory postsynaptic potentials

(EP$Ps) from cortical and thalamic stimulations (Wilson et al., 1990; Lapper and Bolam,

1992) that are probably mediated by both NMDA and AMPA types of glutamatergic

receptors (Kawaguchi, 1992).

2.1.3. Synaptic framework in the nucleus accumbens

In the nAcb, DA and glutamate, which come from extrinsic sources, and ACh and

GABA from local circuit fleurons, are all capable of in±luencing the activity of accumbal
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MS neurons. In the core region, the inputs onto spines and distal dendrites generally

arise from extrinsic sources, whereas the synapses situated more proximally on dendrites

or perikarya corne frorn intrinsic sources (Meredith, 1999). By contrast, in the caudal

medjal sheli M$ neurons receive a mixture of intrinsic and extrinsic contacts, both

distally and proximally. An important part of the intrinsic innervation of MS neurons is

from other MS ceils or from the local circuit neurons, such as LA neurons.

The primary asymmetrical input is from excitatory, presumably glutamatergic

axons of cortical and thalamic origins. Inputs to both the core and sheli regions arise

frorn the amygdala and prefrontal area (Sesack and Pickel, 1992; Jolmson et al., 1994).

The lateral or medial entorhinal areas project prirnariÏy to the core, whereas the

hippocampus innervates neurons primarily in the shell (Meredith, 1999; Meredith et al.,

1993). Neurons in both midline and intralaminar thalarnic nuclei project topographically

to the core and sheÏl, where they make asyrnmetrical contacts with dendrites and spines

(Groenewegen et al., 1991; Meredith et al., 1993; Dube et al., 1988). Extrinsic inputs

frorn dopaminergic centres, or intrinsic contacts such as those containing ACh provide

additional but minor asymmetrical axospinous innervations to MS neurons.

Glutarnatergic nerve terminals make asymmetrical synaptic contacts with MS neurons,

and asymmetrical synaptic specializations occur most commonly on the heads of

dendritic spines and symmetrical inputs, along dendritic shafis, at the necks of spines, and

on perikaryal membranes (Bolam, 1984; Meredith et al., 1993).

MS neurons also represent the main synaptic target of LA neurons (Graybiel,

1990; Izzo and Bolam, 1988). Cholinergic nerve terminals frequently form symmetrical

synapses on their perikarya, dendrites and spines of MS neurons (Meredith and Chang,
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1994), whereas the DA terminais are aiways found in a position proximal to those with

glutamate, and, as such, are effective in gating signais from widely separated cortical

areas. However, ultrastructural studies of cholinergic neuron innervation in the nAcb

also suggest that ACh might regulate the release of other transmitters via presynaptic

rnechanisms, through a non-junctional or volumic mode of transmission (Contant et al.,

1996).

The converging projections from glutamatergic and dopaminergic sources have

been shown to synapse concurrently on dendrites of the same MS output neurons and

axo-axonal juxtaposition between converging terminals bas also been found (Bouyer et

ai., 1984; Totterdel and Smith, 1989; Sesack and Pickel, 1990). Neuroanatomicai

investigations demonstrate clearly that most dopaminergic afferents end directly on the

MS neurons (freund et al., 1984), although cholinergic interneurones do also receive

some dopaminergic inputs (Chang, 1988; Kubota et al., 1987).

[Figure 3. A diagram with synaptic organization]

2.2. Membrane properties of MS neurons during postnatal development

The morphologicai and functional maturation of the nAcb probably depends on

the interaction between the maturation of its neuronal elements and its innervation by

extrinsic glutamatergic and other neuromodulatory inputs. It is iikely that the disturbance

of one or the other of these elements during a critical developmentai period could lead to

pathological states (Lipska et al., 1993, 1998; Weinberger and Lipska, 1995). Recent

findings by Beiieau and Warren (2000) reveaied that around the time of birth and during

the first postnatal weeks, the membrane and firing characteristics of MS neurons are quite
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Figure 3. A diagram with synaptic organization
Schematic diagrams of the synaptic wiring of
typical cote (A) and sheil (B) neurons in nAcb.
Rectangular boxes surround extrinsic inputs, and
dotted unes surround connections that originate
tocaily, either from other medium spiny neurons
(MSNs) or local circuit neurons (LCNs).
Enkephalin (ENK)-positive terminais end
signiflcantly more often on spine necks in the sheli
than in the core. Excitatory amino acids (EAA) are
used by cortical and thalamic (thai) inputs.
Tyrosine hydroxylase (TH) represents the presumed
dopaminergic input. Note that proximal synapses in
the cote arise predorninately from local neutons
(principal and intemeurons) and distai connections.
ChAT-immunoreactive neurons, which are ptesumabiy cholinergic, receive cortical inputs (EAA) onto

distal small dendrites but thalamic aiso (EAA) terminais proximaiiy on the celI body or proximal dendrites.

ChAT-positive endings contact other ChAT-positive dendrites. The cholinergic interneurons aiso contact

the dendrites ofMSN (C). GAD, glutamate decarboxylase; hippo, hippocampus (Meredith, 1999).

to extrinsic target
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different from those observed later. These characteristics changed rapidly during first 3

postnatal weeks, at which point they resembie those found in aduits. Both whole-cell

membrane resistance and membrane time constant decreased more than four-foid during

this period. During the first postnatal week, the current-voltage relationship of ail

encountered MS neurons was linear over a wide range of membrane potentials above and

below RMP. Through the second postnatal week, the proportion of neurons displaying

inward rectification in the hyperpolarized range increased steadily. Afier P15, ail

recorded MS neurons displayed significant inward rectification. At ail ages, inward

rectification was blocked by extracellular cesium and tetra-ethylammonium (TEA) but

flot by 4-aminopyridine (4-AP), suggesting that inward rectification was mediated by the

same currents in young and mature MS neurons. M$ neurons fired single and repetitive

N&’/K action potentials as early as Pi. Spike threshold and amplitude remained constant

tbroughout development in contrast to spike duration, which decreased significantly over

the same period. Depolarizing current pulse from rest showed that immature MS neurons

fired action potentials more easily than their older counterparts.

The resuits suggest that young and adult nAcb MS neurons integrate excitatory

synaptic inputs differentiy because of differences in their membrane and firing properties.

These findings provide important insights into signal processing within nAcb during this

critical period of development (Belleau and Warren, 2000).

Characteristics such as absence of inward rectification and consequent higher

input resistance have aiso been demonstrated in cat M$ neurons in dorsal striatum during

the neonatal period (Cepeda et al., 1991). The maturation of these properties has a

similar time course in both species, becoming essentially aduit-like by the end of the third
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postnatal week. Tepper and colleague (199$) found that the proportion of neurons that

exhibited inward rectification increased steadily throughout postnatal development and

reached a plateau by the end of the third postnatal week but stiil had not reached aduit

levels by the fifih postnatal week in rat striatum. The investigations from various groups

have suggested that K currents were responsible for inward and outward rectification in

MS neurons (Nisenbaum et al., 1994; Nisenbaum and Wilson, 1995; Belleau and Warren,

2000). In addition, the mean RMP of MS neurons in the nAcb are —60 mV during the

first postnatal week and below —$0 mV after P21 (Belleau and Warren, 2000).

Compared to adults, membrane input resistance of MS neurons in neonatal rats is

higher in the nAcb. However, input resistance decreased with postnatal development in

MS neurons in the nAcb is closely correlated with inward rectification. The concomitant

decrease in input resistance with age implies an increase in ion channel density. Cells

displaying inward rectification display significantly more negative RMP than that of

neurons lacking inward rectification (Belleau and Warren, 2000).

Despite their more depolarized membrane potential, no spontaneous activity in

MS neurons in neostriatum in younger animals has been observed in vitro (Tepper et al.,

1998; Napier et al., 1985; Tepper and Trent, 1993).

Discrete up and down states, as described in adult MS neurons in vivo (O’Donnell

et al., 1999; Stem et aÏ., 1997; Wilson and Kawaguchi, 1996) are absent in young

neonates. A nominal condition for the appearance of membrane potential bistabiÏity in

MS neurons is the presence of a more negative RMP such as that found in vitro in mature

MS neurons (Tepper et al., 199$). The functional differences between young and mature
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MS fleurons could be important throughout a period during which activity-dependent

development and stabilization of synaptic inputs is probably occurring in the nAcb. The

nAcb receives putative excitatory glutamatergic input from various sources that are flot

fully developed at birth, so the nAcb is likely to complete its development in parallel with

those structures (Belleau and Warren, 2000).

3. An overview of ionotropic glutamate receptors and their properties

Glutamate receptors mediate most of the excitatory synaptic transmission and

play a crucial role in synaptogenesis and formation of neuronal circuitry as well as in

synaptic plasticity including LTP and LTD. However, excessive activation of glutamate

receptors might induce excitotoxic neuronal celI death and is also thought to contribute to

neurodegeneration following a wide range of neurological insuits including ischemia,

trauma and epileptic seizures (Lipton and Rosenberg, 1994; Ozawa at al., 199$). The

glutamate receptors are divided into two distinct groups, ionotropic and metabotropic

receptors (Nakanishi, 1992; Seeburg, 1993; Hollmann and Heinemann, 1994). The

ionotropic receptors are further subdivided into three groups: u-amino-3-hydroxy-5-

methyl-4-isoxazolepropionate (AMPA), kainate (KA) and N-methyl-D-aspartate

(NMDA) receptor channels on the basis of agonist specificities. However, since neither

agonist nor antagonist clearly distinguished between AMPA and KA receptors in earlier

time, they were ofien collectively referred to as non-NMDA receptors. AMPA receptors

mediate the majority of fast excitatory synaptic transmissions (Hollmann and Heinemann,

1994; Borges and Dingledine, 199$; Dingledine et al., 1999). KA receptors contribute to

postsynaptic responses at excitatory synapses and can also modulate presynaptic

neurotransmitter release at some synapses (Frerking and Nicoil, 2000), whereas NMDA
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receptors are crucial for the induction of specific forms of synaptic plasticity and play

important roles in modulating synaptic strength, ceil death and in several

neuropsychiatric disorders (Hollmann and Heinemaim, 1994; Dingledine et al., 1999;

Malenka and NicolI, 1999). The metabotropic receptors are coupled to G-proteins, and

regulate the production of intracellular messengers (Ozawa et al., 199$).

3.1. Glutamatergic receptors-mediated EPSCs

At most central synapses, both AMPA and NMDA receptors are activated during

synaptic transmission. Several lines of evidence suggest that AMPA and NMDA

receptors are co-localized and commonly activated by glutamate liberated into the

synaptic cleft (Jones and Baughman, 1991; Clements et al., 1992). EP$Cs commonly

have both AMPA and NMDA receptor-mediated components. The AMPA receptor

mediated EP$C (AMPAR-EPSC) bas rapid kinetics of channel gating, whereas NMDA

receptor-mediated EPSC (NMDAR-EPSC) has much siower rise and decay times relative

to the AMPAR-EPSC (Hestrin et aI., 1990; Lester et al., 1990; Keller et al., 1991).

According to these different kinetics, it is believable that the AMPA receptor has a

relativeÏy low affinity for glutamate and becomes unbound very quickly afier the

clearance of the transmitter, whereas the NMDA receptor has much higher affinity,

resulting in prolonged binding during which the channel can open repeatedly (Hestrin et

al., 1990; Lester et al., 1990; Lester and Jahr, 1992).

3.2. AMPA receptors

AMPA receptors are ligand-gated channels usually considered to be permeable to

Na and K and mediate fast excitatory synaptic transmission in central neurons
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(Hollmann and Heinemann, 1994). AMPA receptors are encoded by four genes

designated G1uRÏ through GIuR4 and exist in Ca2timpermeable and Ca2-permeable

forms. AMPA receptors assembled from G1uR1, G1uR3 and G1uR4 alone or in

combination are permeable to Ca2 and have doubly rectifying current-voltage

relationships. The presence of G1uR2 subunits render heteromeric AMPA receptor Ca2-

impermeable (Hollmann et al., 1991, 1989; Verdoorn et al., 1991; Nakanishi, 1992;

Seeburg, 1993; Hollmann and Heinemann, 1994). G1uR2 subunits forming channels with

other GIuR subunits are Ca2timpermeable and electrically linear or outwardly rectifying

(Pellegrini-Giampietro et al., 1997). The dominance of the G1uR2 subunit in determining

permeability to Ca2 and other divalent ions is attributed to the presence of a positively

charged arginine in place of a glutamine residue within the M2 domain (Hume et al.,

1991; Bumashev et al., 1992). Thus, the GIuRY and GluR3 to GIuR2 ratio may be taken

as a predictor of formation of Ca2-permeable AMPA receptors (Pellegrini-Giampietro et

al., 1992). Different studies have demonstrated marked developmental changes in

glutamate receptor subunit expression in rat brain (Pellegrini-Giampietro et al., 1991;

Standley et al., 1995). In the neocortex, striatum and cerebellum, the

G1uR1+GIuR3/GÏuR2 ratio is high at early postnatal stages and decreases monotonically

2+
with age, suggesting that a larger proportion of Ca -permeable channels is formed

during early neonatal than during aduit life. In the hippocampus, the ratio increases from

P7-P21, afier which time it declines. Thus, the synthesis of G1uR2 could provide a

developmental mechanism regulating Ca2 permeable AMPA receptors at crucial times

(Pellegrini-Giampietro et al., 1997).
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2,3-benzodiazepines act as AMPA receptor-selective antagonists. 0f these

compounds, the drug GYK153655 stands out as the most selective (Paternain et al., 1995;

Wilding and Huettner, 1995). Quinoxalinediones such as 6-cyano-7-nitroquinoxaïine-

2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) are potent competitive

antagonists at non-NMDA receptors (Honoré et al., 1988). In addition, 2,3-Dioxo-6-

nitro- 1,2,3 ,4-tetrahydrobenzo [f] quinoxaline-7-sulfonmide (NBQX) is a potent, selective

and competitive AMPA receptor antagonist.

3.2.1. AMPA subunits and flip or flop isoforms during development

Each of the GIuRÏ-G1uR4 subunits exists in two different forms, “flip” and

“flop”, created by alternative spiicing of a 115-base pair region immediately preceding

the M4 segment (Sommer et al., 1990). DeveloprnentaÏ and regional differences in

expression of the alternative spiice variants, flip and flop, have been demonstrated using

in situ hybridization histochemistry (Sommer et al., 1990; Monyer et al., 1991).

AMPA receptor subunits are expressed predominantly in the flip form in

embryonic brains. The flop form is expressed at low levels prior to P8, and gradually

increases throughout the brain, reaching aduit levels by P14, and then co-expresses with

the flip form in several structures. Thus, excitatory neurotransmission in the adult brain

appears to be mediated mainly by AMPA receptors carrying the flop module. AMPA

receptors of the flip form are more resistant to desensitization than those of the flop form

(Partin et al., 1995; f leck et al., 1996), whereas receptors ofthe flop form show a faster

desensitization rate than those with the flip form (Mosbacher et al., 1994). Recently,

Seifert et al. (2000) have observed that the lowest sensitivity of AMPA receptors to KA
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and NBQX began at P18, and suggested that these changes reflect a lower abundance of

G1uR1 at that developmental stage. A decrease of potentiation of receptor currents by

cyclothiazide (CTZ), a selective AMPA receptor modulator to distinguish functionally

between flip/flop variants, an acceleration of the recovery from CTZ potentiation and a

faster and more complete desensitization of glutamate-evoked currents suggest an up

regulation of flop spiice variants with increasing age in P3-45 rats in hippocampal CAl

neurons (Seifert et al., 2000). Several unes of evidence suggest that a reduction in flip

form expression is likely to explain the developmental changes of AMPA receptor

kinetics (Lawrence and Trusseil, 2000).

3.3. KA receptors

The KA receptors are encoded by two gene families, KAI/KA2 and GIuR5-7.

Both of which have signfficant structural homology to AMPA receptors, U1uR1-4

(Contractor et al., 2000). KA receptors that contain edited G1uR5 subunits display a

significantly reduced Ca2 permeability, a linear or slightly outwardly rectifying current

voltage relationship and a single low conductance as well as a highly significant increase

in the permeability to chloride ions (Chittajallu et al., 1999). KA receptors contribute to

the EPSCs in response to glutamate and have been proposed to modulate synaptic

transmission through an inhibitory presynaptic action (frerking and NicolI, 2000;

Frerking et al., 2001). In the nAcb, functional KA receptors are abundantly expressed

and can be activated by exogenous application of KA, but they do flot directÏy participate

in glutarnatergic synaptic transmission evoked by electrical stimulation of cortical

afferent fibers in the MS neurons. Activation of KA receptors in the nAcb inhibits
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excitatory synaptic transmission including AMPAR- and NMDAR-EPSCs via a

presynaptic mechanism (Casassus and Mulle, 2002; Crowder and Weiner, 2002).

Selective antagonists for KA receptors including NS-102, GYK152466, GYKI

53655, LY29355$ and LY294486 are providing novel pharmacological tools to allow the

differentiation not only between AMPA and KA receptors but also between individual

KA receptors comprising or containing G1uR5 subunits (Chittajallu et al., 1999).

3.4. NMDA receptors

The NMDA receptor is a heteromeric protein complex constituting a cationic

channel and several modulatory sites. It is a ligand-gated and voltage-dependant channel,

which is highly permeable to Ca2. NMDA receptors are characterized by voltage

dependent block by Mg2, and at RMP it remains largely blocked by Mg2. In addition to

the membrane depolarization required to remove the Mg2 block, NMDA receptors

require the simultaneous binding of both glutamate and the co-agonist glycine for

efficient gating (Ravenscrofi and Brotchie, 2000). Tonic currents through the receptor

only occur when the neuronal membrane is depolarized (Mayer et al., 1984; Nowak et al.,

1984) with a high permeability to Ca2 (MacDermott et al., 1986; Mayer and Westbrook,

1987) and slow gating kinetics, i.e., NMDAR-synaptic transmission occurs slowly and

lasts for a prolonged period compared to AMPAR-currents (Lester et al., 1990). During

synaptic transmission, EPSC generated by NMDA receptor activation occurs with slow

rise and an exceptionally slow decay time, which exceeds that of AMPAR-EPSC by

several orders of magnitude. NMDA channels first open about 1 Oms afier glutamate is
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released into the synaptic clefi, and then last hundreds of milliseconds until glutamate

unbinds from the receptor (Behe et al., 1999; Dzubay and Jahr, 1996).

In extemal medium containing physiological concentrations of Mg2 (1 mM),

the NMDAR-current is maximal between —20 and —30 mV, and is reduced at more

hyperpolarized potentials despite the increased electrical driving force. The inward

current is negligible at —$0 mV, and the I-V relationship of the NMDA response thus

exhibits a clear negative siope conductance between —$0 and —30 mV. The negative

slope conductance is eliminated by removing Mg2 from the extemal solution (Mayer et

al., 1984; Nowak et al., 1984).

3.4.1. Glycine, a co-agonist

Glycine is a co-agonist of the NMDA receptor (Johnson and Ascher, 1987). The

NMDA response is markedly potentiated by glycine in cultured central neurons. NMDA

responses were flot detected without glycine in the external solution. This implies that

glycine is not simply a strong potentiator of the NMDA response, but is absolutely

necessary to enable the NMDA receptor channel to enter the open state, it thus plays a

role as a co-agonist. However, NMDA responses are stili detectable because of the

presence of endogenous glycine. 7Cl Kyn could almost completely abolish NMDA

responses by competitively displacing glycine from its binding site (Kemp et al., 1988;

Vyklicky et al., 1990).

3.4.2. NMDA receptor subunits and developmental regulation
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The NMDA receptor consists of a NRI, NR2 and two NR3 subunits. The NR2

includes NR2A, NR2B, NR2C and NR2D subunits (Hoiimann, 1999; Moriyoshi et ai.,

1991; Das et al., 1998; Ikeda et ai., 1992; Kutsuwada et al., 1992; Meguro et ai., 1992;

Monyer et ai., 1992; Ishui et al., 1993). Ail NMDA receptors appear to function as

heteromeric assembiies composed of multiple NR1 subunits in combination with at ieast

one type of NR2. The NR3 subunit does flot form ftmctionai receptors aione, but co

assembles with NR1/NR2 complexes (Das et ai, 1998; Perez-Otano et ai, 2001).

The time course of decay of NMDAR-EPSCs and the apparent affinity of the

receptors for glutamate are both strongiy influenced by the identity of the NR2 subunits

invoived. The functionai properties of NMDA receptor channels such as the degree of

voitage-dependent Mg2 biock and deactivation kinetics depend on which of the four

NR2 is assembied. Diheteromeric NMDA receptors containing NR2A or NR2B subunits

generate ‘high-conductance’ channel openings with a high sensitivity to biockade by

Mg2, whereas NR2C- or NR2D-containing receptors give rise to ‘low-conductance’

openings with a iower sensitivity to extracelluiar Mg2. The deactivation times follow the

sequence: NR2A<2C2B«2D. Thus, a brief application of glutamate onto NR1/NR2A

assembiies generates a macroscopic current with a deactivation time constant of tens of

ms, compared with severai seconds for NR1/NR2D receptors (Monyer et al., 1994;

Wyllie et ai., 1998; Vicini et al., 199$).

The NR2 subunits are regulated developmentaiiy in rodent brains (Watanabe et

al., 1992; Monyer et ai., 1991). NR2B and NR2D subunits predominate in the neonatal

brain, but over the course of development these are suppiemented with, or replaced by

NR2A and in some regions by NR2C subunits (Monyer et ai., 1994; Akazawa et ai.,



24

1994). At embryonic stages, the NR2B subunit is found in most brain regions, whereas

the NR2D subunit is present in the diencephalon and brainstem. Soon afier birth, NR2A

mRNA is found in most regions, whereas NR2C appears later and is predominant in the

cerebellum (Monyer et al., 1994; Akazawa et al., 1994). A general trend shows that the

contribution ofNR2B subunit is decreasing during development, which is associated with

an increasing contribution of NR2A-containing NMDA receptors to synaptic current.

Additionally, when NR2A is expressed, it almost aiways co-expresses with NR2B at P3-

P9 ages in some brain regions. Neurons expressing NR2A subunit mRNA have faster

NMDAR-EPSCs than celis not expressing this subunit, regardless of postnatal age.

Expression of NR2A subunit mRNA in cortical neurons at even low levels seems

sufficient to alter the NMDA receptor time course. Generally, the proportion of celis

expressing NR2A and displaying fast NMDAR-EPSCs increase developmentally (Flint et

al., 1997).

3.4.3. Components of subunits determine properties of NMDA receptors

Mg2 inhibition of NMDA currents (Nowak et al., 1984) is almost exclusively

displayed by receptors containing NR1/NR2A or NR1/NR2B subunits (Kutsuwada et al.,

1992; Monyer et aI., 1992). NMDA receptors containing NR2C exhibit a low sensitivity

to Mg2, which would be expected to allow these NMDA receptors to operate at more

negative membrane potentials than conventional NR2A/B-containing receptors. This

difference may explain, in part, the ability of antagonists with moderate selectivity for

NR2AJB- or NR2C!D-containing receptors to differentially block LTP and LTD in the

hippocampus (Hrabetova et al., 2000). In external solution containing 1 mM Mg2, the

current response was largest at —25 mV in the NR2A/B two-receptor channels, whereas it
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was around —45 mV in the NR2C/D two receptor channels. Furthermore, the blockage by

Mg2 on the inward current is much stronger in the range between —25 and —20 mV for

the former than the latter (Monyer et al., 1994). The main functional properties, such as

the sensitivity to Mg2 and ifenprodil, and the time course of synaptic current suggest that

most receptors are composed ofNRl and NR2B subunits (Plant et al., 1997).

Recent studies found that NR1 subunits also strongly influence NMDA receptor

properties. For example, the pH sensitivity of NMDA receptors is determined by the

presence of exon 5 of the NR1 subunits. At physiological pH, spiice variants that include

exon 5 are fiully active, whereas those lacking exon 5 are partially blocked (Traynelis et

al., 1995). Most importantly, it lias been shown that spiicing of exon 5 can influence the

deactivation properties of NMDA receptors (Rumbaugh et al., 2000). Unlike NR2A-

containing receptors (Vicini et al., 199$), the deactivation time of recombinant NR2B-

containing receptors is dependent on whether or not NR1 contains the exon 5 insert. The

deactivation rate is roughiy four times faster for NRI-lb/NR2B (exon-5-containing)

receptors than for the NR1-YaJNR2B (exon-5-iacking) receptors. This observation may

well be relevant to the change in time course of the NMDAR-EPSC decay that occurs at

many synapses during development (Laurie and Seeburg, 1994).

A graduai replacement or suppiementation of NR2B by NR2A during postnatal

development has been implicated in the speeding of NMDAR-EPSC decay—a

phenomenon ofien linked with the ability of neuronal circuits to exhibit experience

dependent synaptic plasticity (Constantine-Paton and Cline, 199$). for example, the

NMDAR-EPSCs in the visual cortex are sensitive to NR2B-selective antagonists,

ifenprodil, when the NMDAR-EPSC decay is slow at P3-P5. This sensitivity is lost by
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P7 when the NMDAR-EPSC decays more rapidly. Therefore, to test EPSC sensitivity to

ifenprodil has been a reliable indicator for NR2B subunit-containing NMDA receptors.

Reversibly, NR2A/NR2B subunits ratio appears to be an indicator of NMDAR-EPSCs

decay (Quinlan et al., 1 999a).

Investigation suggests that native nAcb NMDA receptors are composed of

NR1/NR2B and maybe to a lesser extent ofNRl/NR2A subunits, although a combination

of these three subunits is also possible (Chazot and Stephenson, 1997; Le Greves et al.,

1997).

3.4.4. Single channel properties during development

The native NMDA receptor channel has 5O pS conductance levels when open

and 4OpS sublevels in various central neurons (Nowak et al., 1984; Jahr and Stevens,

1987; Ascher et al., 1988). farrant and colleagues (1994) have shown that the single

chaimel properties of the NMDA receptor in cerebellar granule celis markedly changes

during early developrnent. At an early stage (before P13), most openings were of the

5OI4OpS state. In contrast, the majority of channel openings (65%) were to the lower

conductance state (—33I2OpS) at P19-23. Expression studies have shown that both

NR1/NR2A and NR1/NR2B NMDA receptors have 5O/4O pS openings (Stem et al.,

1992; Tsuzuki et al., 1994), whereas NRÏ/ NR2C and NR1/NR2D receptor openings

have lower conductance (—35/2O pS) (Stem et al., 1992; Wyllie et al., 1996). These

resuits strongly suggest that changes in single channel properties of the NMDA receptor

during early developrnent is due to developmental changes in expressions of the NR2

subunits. These findings are consistent with the resuits from cerebellar granule ceils in
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which at P7 the single channel conductance of the NMDA receptor is predominantly

-50/40 pS. At P30, the iow-conductance (—34/1 8pS) channels become dominant, and

very few high-conductance chaimels are detected (Takahashi et ai., 1996).

It is most likeiy that the high-conductance channeis are produced predominantly

by NR1/NR2B and NR1/NR2A combinations in immature and mature animais,

respectively, since in situ hybridization studies have shown that NR2A is expressed

relatively late postnataliy whereas NR2B is expressed transiently during the eariier stage

in cerebeliar granule celis (Watanabie et ai., 1992; Monyer et ai., 1994).

D-2-amino-5-phosphonovalerate (D-APV), 7-chlorokynurenic acid (7C1 Kyn),

Mg2, and MK-$01 are different NMDA receptor antagonists (Ozawa et ai., 199$).

Additionally, Ifenprodii and a group of reiated compounds, such as, Haloperidol and

CP 101, 606 are selective antagonists of NR2B-containing NMDA receptors, whereas

PPDA is a competitive inhibitor ofNR2C and NR2D subunits (Culi-Candy et ai., 2001).

Ifenprodii seiectively block NR2B-containing NMDA receptors in a non-competitive,

voltage-independent, activity-dependent manner (Constantine-Paton and Cime, 199$;

Moriyoshi et ai., 1991; Sugihara et al., 1992).

4. Cholinergic receptors

The neurotransmitter ACh is reieased from vesicies in presynaptic nerve terminais

and influences functionai and behaviorai states through its actions at metabotropic

muscarinic ACh receptors (mAChRs) andlor ionotropic nicotinic ACh receptors

(nAChRs) (Guo and Chiappineiii, 2000). f ive mAChR subtypes (M1-M5) have been

identified by molecular cioning (Cauifieid and Birdsall, 199$). Although a number of



2$

subunits of neuronal nAChRs (u2-Œ9, f32-f34) have been cloned, and several subtypes of

nAChRs are known in brain, a complete nomenclature has flot yet been achieved due to

the numerous combinations of these subunits that can form native nAChRs (Sargent,

1993). Responses mediated by nAChRs are aiways excitatory, occur rapidly, and are

blocked by d-tubocurarine. In contrast, muscarinic responses can be either excitatory or

inhibitory, depending on the mAChR subtype mediating the response and the type of G

protein to which the mAChR is coupled (Brown et al., 1997; felder, 1995). These

responses have longer latency of onset and can be blocked by atropine or scopolamine.

In some brain regions, mAChRs are co-localized with nAChRs, suggesting that

cholinergic modulation is complex in the CN$ (Quirion et al., 1994). One important

function of ACh receptors (AChRs) localized on or near presynaptic terminals is its role

in modulating neurotransmitter release (Caulfield, 1993; Wonnacott, 1997).

4.1. Cellular localization of cholinergic receptors

4.1.1. Muscarinic ACli receptors

Ml receptors are distinctly expressed in the nAcb (Mash and Potter, 1986; Biake

et al., 1991; Kohler et al., 1995; Kushida et al., 1995; Adem et al., 1997).

Immunocytochemistry and in situ hybridization studies of mAChRs in the neostriatum

including nAcb suggest that probabiy all neurons express mAChRs but different types of

neurons appear to express different types of mAChRs. Studies agree that Ml mAChR is

the most abundant, being detected in the soma of 7$-85% neurons displaying the

characteristics of MS neurons (Bemard et al., 1992; Hersch et al., 1994; Weiner et al.,

1990). M4 receptors are found in a subset of putative MS neurons: ail those containing
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substance P and 39% of those containing enkephalin (Bemard et ai., 1992), suggesting

that a subset ofMS fleurons express only Ml receptors whereas others express both Ml

and M4 receptors. At subcellular leveis, immunocytochemicaiiy labeled Ml receptors

were enriched in spiny dendrites, at postsynaptic densities and on a small number of axon

terminais forming asymmetrical synapses. M4 receptor protein was also found on axon

terminais that formed asymmetrical synapses (Hersch et al., 1994). These findings are

interesting since neostriatal asymmetricai synapses are known to originate primariiy from

giutamatergic cortical, thalamic, and subthaiamic afferents. This iocalization suggests the

presence of postsynaptic mAChRs close to synapses using excitatory amino acids as their

primary neurotransmitter.

Most somatostatin (putative LTS intemeurons) and neurotensin containing

neurons express Ml receptor gene but only a few express M4 receptor mRNA. In

contrast to Ml receptor, M2 receptor protein was found in only 2.5% of neostriatal

neurons and those had characteristics of LA neurons. Many of these were found on axon

terminais, usually making symmetricai synapses with somata, dendritic shafis and spines

whereas a minority contacted terminais forming asymmertrical synapses on spines or

dendrites (Hersch et al., 1994). In situ hybridization studies showed that, in addition to

M2 receptors (Bemard et al., 1992; Weiner et ai., 1990; Yan and Surmeier, 1996), a large

proportion of putative cholinergic neurons also contained M4 receptor mRNA while

some may have contained Ml mRNA (Bemard et al., 1992; Yan and Surmeier, 1996).

M3 receptor protein was only found in a distinct population of smail dendrites and some

axon terminais forming asymmetrical synapses. These findings indicate that mAChR

proteins are concentrated postsynaptically on non-cholinergic and cholinergic neurons.
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In addition, each receptor subtype is also found on presynaptic terminais making both

asymmetrical and symmetrical synapses, suggesting that ACh probably modulate

neurotransmitter release and that M2 receptors are the predominant muscarinic

autoreceptor (Hersch et al., 1994). Other studies also suggested that ACh varicosities in

the nAcb were presumably involved in a non-j unctionai or volumic mode of transmission

(Contant et al., 1996).

4.1.2. Nïcotinic ACh receptors

Both anatomicai and neurochemical studies in the mid-1980s suggested that

nAChRs were localized at presynaptic sites within the peripheral nervous system and

CNS (Schwartz et al., 1984; Clarke et al., 1986; Vizi and Somogyi, 1989). Light and

electron microscopic studies, using radiolabled nAChR Ïigands and immunological

probes, revealed the presence of nAChR binding sites over the length of individual nerve

fibers and provided evidence for the anterograde shipment of nAChRs to synaptic

terminais (Ciarke et al., 1986; Torrao et al., 1996; Wonnacott, 1997). Furthermore,

studies looking at nAChR distribution following the destruction of presynaptic

projections provided strong anatomicai evidence for the localization of nAChRs on

presynaptic terminais (Clarke et al., 1986; Torrao et al., 1996). These findings have

recently received elegant confirmation in experiments using irnmuno-gold labeling of

neuronal nAChRs to demonstrate that a7 subunits were located on presynaptic terminais

within the PfC (Lubin and Aokie, 1998).

It is now clear that nAChR genes are expressed in neostriatal neurons, especiaily

the Œ3 and 2 subunits, with a restricted and heterogeneous pattern (Wada et ai., 1989).
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The localization of nAChRs in presynaptic structures in the CNS has received important

support from studies using synaptosomes preparations from a variety of brain regions

indicating that nAChRs are present in presynaptic membrane not from only the nAcb but

also other parts of CNS, including striatum, PfC, hippocampus, thalamic, and

hypothalamic nuclei (Wonnacott, Ï 997).

4.1.2.1 Subunit composition offunctional nicotinic ACh receptors

With the binding of ACh or other agonists, nAChRs allow cations to flow through

an intrinsic channel, generally resulting in depolarization of the neuron. To date, 13

different neuronal nAChR subunits (a2-ulO and f32- f34) have been identified (Le Novère

and Changeux, 1995). The neuronal nAChR subunits can be divided into subfamilies

based on sequence homology and phylogeny (Le Novère and Changeux, 1995), as well as

pharmacological and physiological properties. al-u6 combined with f32-f34 would

comprise one family and Œ7-Œ8 would comprise the second. u9 has distinct

pharmacological properties and is likely to be part of a third family. functionally,

nÀChRs can be divided into those containing the f32 subunit which combine with

different Œ subunits, forming receptor with the highest affinity for nicotine (Picciotto et

al., 1995), and those containing the f34 subunit which also combined with various cL

subunits, forming receptors with 10-100 times Iower affinity for nicotine (Luetje and

Patrick, 1991). f34/cL3 subunit-containing nAChRs are highly expressed in the peripheral

nervous system and appear to be essential for fast synaptic transmission in the autonomic

ganglia (Xu et al., 1999). In contrast, the subtypes of nAChR expressed most commonly

in the brain are made of f32/cL4 subunits and Œ7 subunits and bind to a-bungarotoxin

(flores et al., 1992; Hill et al., 1993; Wada et al., 1989; Zoli et al., 1995).
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5. Muscarinic ACh receptors and synaptic transmission in the nucleus accumbens

Over the last ten years, the use of in vitro brain suce preparation to record single

nAcb neuron and the availability of more selective pharmacological compounds to isolate

the function of various neurotransmitter receptors have enabled researchers to understand

the contribution of different transmitters in the generation and modulation of the neuronal

activity in the nAcb.

5.1. Activities of muscarinic receptors modulate the function of MS neurons

Each identified neuronal population in the nAcb is under the direct control of the

ACh neurons through the expression of mAChRs, in particular the Ml receptor (Adem et

al., 1997; Kohler et al., 1995; Bemard et al., 1992). 0f five subtypes of mAChRs, the

Ml, M3 and M5 receptors subtypes activate phospholipase C (PLC) that release inositol

1 ,3,5-triphosphate (1P3) and diacylglycerol (DAG) from membrane phospholipid

(Berridge and Irvine, 1984). Conversely, the M2 and M4 receptor subtypes inhibit

adenylate cyclase tAC) (Hulme, 1990). Application of muscarinic cholinergic agonists

has been found to produce either excitatory or inhibitory effects on the MS neurons.

5.1.1. Modulation of ionic conductance by activating muscarinic ACh receptors

Muscarine predominantly reduces inward rectifier conductance and causes

membrane depolarization of MS neurons. These effects are competitively antagonized by

pirenzepine, a selective Ml receptor antagonist, indicating involvement of the Ml

receptor in nAcb M$ neurons (Uchimura and North, 1990; Hsu et al., 1996).

Additionally, carbachol can aÏso act at Ml muscarinic receptors to reduce the membrane

K conductances and excite MS neurons (Hsu et al., 1996).
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In vitro studies in rat corticostriatal suce preparations show that low concentration

of muscarine which does flot alter the membrane potential and input resistance of MS

neurons, increases excitability by enhancing the membrane depolarization and inward

current produced by the application ofNMDA but not ofAMPA (Calabresi et al., 1998).

This facilitatory effect is not affected by TTX, suggesting a postsynaptic site of action,

and is mimicked by neostigmine. This indicates that endogenous ACh may also enhance

responses to NMDA. The pharmacological analysis of this phenomenon also suggests

the involvement of Ml receptors. In fact, this facilitatory action has been antagonized by

pirenzepine and mimicked by McN-A-343, a selective Ml receptor agonist.

InterestingÏy, McN-A-343 also increases the duration of the glutamate-mediated EPSPs

elicited by the stimulation of corticostriatal fibers. However, this occurs only in the

absence of Mg2 ions from the externat bathing solution, suggesting the involvement of a

NMDA component in corticostriatal synaptic potentials. This provides further

confirmation that Ml receptor activation might selectively exert a positive and

modulatory role on NMDAR-potentials. Additionally, muscarinic agonists have been

reported to decrease the responsiveness of dorsal striatal neurons to excitatory inputs

(Dodt and Misgeld, 1986; Akaike et al., 1988; Malenka and Kocsis, 198$). In cultured

rat dorsal striatal neurons, Akins et al. (1990) found that muscarinic agonists shifted the

voltage-dependence of the A-current activation and inactivation towards more negative

membrane potentials, in addition to increasing its peak conductance. Thus, in the

presence of muscarinic receptor agonists at reÏatively hyperpolarized membrane

potentials, this allowed the A-cunent to suppress excitatory inputs and further slow the

discharge rate.
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High-voltage-activated Ca2 current through striatal MS neurons appear to be

another postsynaptic target of mACbR agonists. Current-clamp experiments performed

on rat striatal suces show that the activation of mAChRs significantly reduces the

duration of Ca2 dependent plateau potentials (Misgeld et al., 1986). More recently,

whole-cell patch-clamp experiments with acutely isolated striatal neurons showed that

rnAChR agonists reduce Ca2 currents via two distinct signaling pathways depending on

pertusis-toxin-insensitive G proteins and is responsible for the inhibition of L-type Ca2

channels (Howe and Surmeier, 1995).

5.2. Activation of muscarinic receptors modulate glutamate release

In the nAcb, the depression of excitatory synaptic transmission mediated by

presynaptic mAChRs has also been demonstrated (de Rover et al., 2002; Pennartz and

Lopes da siiva, 1994; Sugita et al., 1991). Stimulus-evoked EPSPs can reversibly be

attenuated by muscarine or carbachol, and this action is completely antagonized by

atropine or pirenzepine, indicating that the effect of muscarinic receptor agonist on

EPSPs is mediated by Ml receptor. Carbachol induces no alteration of glutamate-evoked

depolarization while suppressing EPSPs in the same neuron, suggesting the involvement

of a presynaptic mechanism in muscarinic inhibition (Peimartz and Lopes da siiva, 1994).

The action of mAChRs activation on the release of excitatory and inhibitory

transmitters has also been studied. Both glutamate- and GABA-mediated synaptic

potentials are reduced in a dose-dependent manner by mAChR agonists. A heterogenous

population of mAChRs seems to be involved in this cholinergic action on glutamatergic

and GABAergic nerve terminais. Sugita et al. (1991) have shown that muscarine and
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ACh inhibited the release ofboth excitatory arnino acids and GABA through M3 and Ml

receptors in the nAcb, respectively via distinct presynaptic mechanisms.

In the striatum, early studies in vivo demonstrated that iontophoretically applied

ACh to striatal neurons produced both excitatory and inhibitory effects: ACh increased

the spontaneous firing rate but reduced the EPSPs (Bemardi et al., 1976). Takagi and

Yamamoto (1978) reported that cholinergic agonist or physostigmine exerted inhibitory

effects on single unit activity induced by local stimulation ofthe striatum in vitro without

affecting glutamate-induced firing activity. These extracellular experiments suggest that

ACh and carbachol have presynaptic inhibitory effects on striatal neurons (Takagi and

Yamamoto, 1978).

5.3. ACh release regutated by muscarinic ACh receptors in LA neurons

lames and Cubeddu (1987) reported that muscarinic agonists limited ACh release

in the dorsal striatum. Later, two different physiological actions of mAChR activation

have been described on LA intemeurons. Both actions resulted in the inhibition of LA

neurons activity, confirming that ACh regulates its own release via the activation of

muscarinic autoreceptors. The first action ofmAChRs activation described in cholinergic

intemeurons is the inhibition of both N- and P-type Ca2 channels mediated by M2

receptors via the stimulation of a G-protein dependent intracellular pathway (Yan and

Surmeier, 1996). As Ca2 channels take part in the regulation of neurotransmitter release,

the inhibition of these currents might, at least partially, explain the inhibitory effect of

ACh on its own release. More recently, the existence of a novel mechanism has been

proposed to underlie the mAChR-mediated modulation of ACh release in the dorsal
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striatum (Calabresi et al., 1998). Intracellular recordings from identified LA neurons in

vitro, combined with focal stimulation, reveals a mAChRs dependent IPSP, suggesting

that the release of endogenous ACh from presynaptic nerve terminals inhibits LA neuron

activity by activating muscarinic autoreceptors located in their somato-dendritic region.

This IPSP appears to be mediated by the opening of K channels since it was blocked by

barium and reversed at the K equilibrium potential. This inhibitory effect also appears

to be mediated by M2 receptors, as it is blocked by methoctramine, but flot by

pirenzepine. furthermore, the membrane hyperpolarization mediated by nerve-terminal

stimulation can be mimicked by the exogenous application of muscarine and

oxotremorine, but flot by McN-A343 (Calabresi et al., 1998).

6. Activation of nicotinic ACh receptors facilitates synaptic transmission in the CNS

It has been proposed that the rote of nAChRs in the CNS is to prirnarily modulate

synaptic transmission rather than to mediate it (Gray et al., 1996; McGehee et al., 1995).

Several effects of nicotine in the brain appear to be mediated through the

neurornodulatory potentiation of different neurotransmitters including norepinephrine,

DA, GABA, serotonin, ACh, and glutamate (MacDermott et al., 1999; McGehee and

Role, 1996; Wonnacott et al., 1989).

6.1. Facilitation of glutamate release by presynaptic nicotinic ACh receptors

Nicotinic facilitation of glutamate release has been reported in different areas of

the CN$ (Toth et al., 1993; McGehee et al., 1995; Guo et al., 1998; Radcliffe and Dani,

1998; Girod et al., 2000; Fisher and Dani, 2000; Reid et al., 2000; Schilstrom et al.,

2000). Nicotine lifts extracellular glutamate levels in the nAcb (Reid et al., 2000) and the
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dorsal striatum (Toth et al., 1993). DMPP, a specific nAChR agonist, has also been

found to increase the frequency of CNQX-sensitive postsynaptic currents in CN$ via

presynaptic action on nAChRs located on glutamatergic terminais (Bordey, et al., 1996).

In addition, nAChRs have been found expressing on glutamatergic terminais in olfactory

bulb culture, where they have been shown to modulate glutamate release and

subsequently modulate excitatory transmissions (Aikondon, et al., 1996). Studies have

shown that nicotine not only enhances AMPAR-synaptic transmission (McGehee et al.,

1995), but NMDAR-synaptic transmission (Aramakis and Metherate, 1998) as well in the

CNS during postnatal development by presynaptic mechanisms. $everal lines of

evidence also suggest that ACh may directly or indirectly influence the excitability of

neurons in the nAcb (Gauchy et al., 1991).

The addictive effects of nicotine are largely attributed to its efficacy in eliciting

DA release in the nAcb whereas the purported effects of nicotine on memory, attention,

and arousal may reside in its potent facilitation of glutamate release at hippocampal and

habenula-interpeduncular synapses (Dani, 2003; Mansvelder and McGehee, 2002;

Balfour, 2002; Vogt and Regehr, 2001; Shim et al., 2001; Radcliffe and Dani, 1998)

Characteristics of the presynaptic nAChRs that facilitate glutamate release

implicate different nAChR subtypes (Gray et al., 1996; McGehee et al., 1995; Guo et al.,

1998). The nicotine- and ACh-induced enhancement of evoked and spontaneous

glutamate release often appears to be mediated by a7-containing receptors. These sites

are gated by nanomolar concentrations of nicotine and are blocked by both MLA and

ŒBgtX. Furthermore, rapid, repeated high-dose exposure of glutamatergic synapses to

ACh could elicit a sustained potentiation of synaptic transmission (Girod et al., 2000).
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The selective, pharmacological targeting of Œ7-containing nAChR subtypes iS of

particular importance in view ofthe reported decreases in cholinergic projections and a7-

containing receptors in pathological conditions involving cognitive and/or attentional

deficits, such as Aizheimer’s disease and schizophrenia (Benowitz, 1996; Lindstrom,

1997; Lloyd et al., 199$).

6.2. Facilitation of dopamine release by presynaptic nicotinic ACh receptors

High density and affinity nAChRs are present on terminais of dopaminergic

projections to the nAcb (Clarke and Pert, 19$5). Recent studies have consistentiy

demonstrated that nicotine elicits DA release in the nAcb by activating nAChRs (Sziraki

et ai., 1999; Jolmson et al., 2000; Seppa and Ahtee, 2000; Gaddnas et al., 2002; $him et

al., 2001; Green et al., 2001; De Villiers et al., 2002; Mogg et al., 2002). The role of

these nAChRs in regulating DA release was originally investigated in synaptosome

preparations (Rapier et al., 198$; 1990; Grady et al., 1992; Marks et al., 1993; E1-Bizri

and Clarke, 1994). Nicotine evoked and increased the firing of mesencephalic

dopaminergic neurons (Picciotto et aï., 199$; Pidoplichko et al., 1997) and stimuïated the

release of DA from nAcb by acting on f32-containing nAChR (Picciotto et al., 199$).

Nicotine elicits a robust increase in DA release from synaptosomes or suces that persists

for several seconds or minutes, depending on the concentration of applied nicotine

(Rapier et al., 1988, 1990; Roweli, 1995; Sacaan et ai., 1995). In addition, the activation

of nAChRs at the preterminal location of the axon elicits action potential firing that

consequently opens voltage-dependent Ca2 channels in the terminals to enhance

transmitter release. Biocking action potentials by TTX rernoves heterosynaptic

modulation of DA release by nicotine agonists (Marshail et al., 1996). Soiiakov and
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Wonnacott (1996) demonstrated further that voltage-gated Ca21 channels contribute to

nAChR-mediated facilitation of DA release.

Microdialysis in vivo demonstrated that nicotine can augment DA levels and may

be due in part to activation ofnAChRs on DA terminais. This is because nicotine-elicited

DA release cari be seen in purified synaptosome preparations from the nAcb that are

highly enriched in presynaptic elernents (Grady et al., 1992; Roweii, 1995; Wonnacott et

al., 1990). Although injection of a nicotinic agonist directly into the DA terminal fields

of the nAcb can stimulate DA release, the strongest effects of nicotine appear to be on the

DA cell bodies of the VTA (Mifsud et al., 1989). Nicotine self-administration also

resuits in the increased expression of Fos-related antigens in the nAcb (Merlo-pich et al.,

1997), which are transcription factors that may be involved in neuroadaptation foilowing

chronic treatment with drugs of abuse (KeIz et al., 1999; Nye and Nestler, 1996).

Nicotine reinforcement has been studied in knock out mice lacking the 22 subunit

of the nAChRs (Picciotto et al., 1998). In the absence of the 22 subunit, neurons in the

DA system are grossly normal, but nicotine fails to induce DA release in the nAcb, and

DA neurons in the VTA become unresponsive to nicotine. Nicotine self-administration is

also abolished in these mice, suggesting that the 22 subunit is an important component of

the nAChR mediating nicotine reinforcement.

Studies using glutamatergic receptor antagonists along with K7-selective subunit

antagonist, MLA in rats have suggested that K7 subunit-containing receptors localized

presynaptically on glutamatergic afferents in the VIA contribute to the stimulation of DA

release in the nAcb (Schilstrom et al., 1998a,b). It is worth mentioning that even afier

continuous 50-day administration, nicotine stili continues to activate nAChRs regulating
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accumbal DA release and mecamylamine reduced the DA output in nicotine-treated mice

(Gaddnas et al., 2002). Mecamylamine can fully antagonize the effect of nicotine in a

non-competitive way, while the antagonism by MLA and dihydro-f3-erythoidine (DHt3E)

can be reversed for nicotine-induced DA release (Clarke and Reuben, 1996). Blockade

of NMDA receptors in the VTA attenuates the enhancing effect of nicotine on

extracellular levels of DA in the nAcb. Moreover, pretreatment with MLA in the VTA

abolished nicotine-induced DA releasing in the nAcb, indicating a role for Œ7 nAChRs in

this mechanism (Mogg et al., 2002).

On the other hand, the effects of nicotine on evoking DA release have also been

demonstrated using different nAChR agonists. Epibatidine, an agonist of nAChR,

significantly increased DA output and elevated the concentration of DOPAC, and also

tended to elevate that of HVA in the nAcb. (Seppa and Ahtee, 2000). Nomicotine, a

tobacco alkaloid and an active nicotine metabolite, can stimulate DA release from nAcb

in a nicotinic receptor-mediated manner (Green et al., 2001).

In addition, finding nicotine-induced stimulation of major reward system of the

brain involving the activation of NMDA receptors (Shilstrom et al., 1 998a, b; Sziraki et

al., 1998) indicates the possible involvement of the nAChRs in psychiatric diseases such

as schizophrenia. Considering the nicotinic action of clinically used antidepressants, the

results also suggest that nAChR activation may be involved in major depression (Salin

Pascual and Drucker-Colin, 1998).

6.3. Facilitation ofACh release

Nicotine-induced ACh release has been reported in several areas of the CNS
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including interpeduncular nucleus and striatum (Grady et al., 2001) in mice,

thalamocortical terminais in prefrontal cortex (Lambe et al., 2003), striatai suces of rats

(Sandor et al., 1991 a, b) in which nicotine induces release of ACh from LA neurons in a

TTX-sensitive manner, suggesting a postsynaptic and /or presynaptic nAChR-driven

positive feedback. The increase in both ACh and glutamate release appears to be

mediated by u7 subunit-containing nAChR as it can be blocked by Œ-bungarotoxin and is

greatly dirninished in the presence of antisense oligonucleotides targeted to the a7

subunit (Picciotto et al., 199$; Pidoplichko et al., 1997).

6.4. Pre- but not post-synaptic nicotinic ACh receptors mediates the facilitation

Recording of nAChR channels and nicotine-induced Ca2 influx in intact

presynaptic terminais provides strong evidence that direct activation of presynaptic

autoreceptors and heteroreceptors, rather than being retrograde mechanisms, actually

modulates transmission at sites where nAChRs are expressed on both pre- and

postsynaptic structures (Coggan et ai., 1997; Gray et al., 1996). These studies, and others

demonstrating that nAChR-mediated synaptic facilitation is dependent on pre- but flot

postsynaptic changes in internai Ca2, indicate that the nicotinic modulation of synaptic

transmission is due to direct activation of nAChRs localized on the presynaptic terminais

per se. It is important to note that these studies do not address the role of postsynaptic

nAChRs in mediating “classical” synaptic transmission.

7. Dopaminergic modulation of neuronal excitability in the nucleus accumbens

7.1. Dopamine receptor subtypes
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DA receptors were originally differentiated into two major subtypes, Dl and D2

(Tarazi et al., 199$). Recent technical advances in molecular genetics led to the

discovery of additional DA receptor subtypes (D3, D4, D5). These proteins have

generally lower relative abundance and more restricted cerebral localization than the

classical Dl and D2 receptors, but many molecular and pharmacological similarities to

the original receptor types. Based on their similarities, DA receptors are considered to

form Di-like (Dl, D5) and D2-like (D2, D3, D4 and their variants) families. Di-like

receptors are positively coupled to AC through activating G protein (Gs/oj), and by

stimulating AC, elevating cytosolic cAMP. This second messenger, in tum, induces the

dissociation of the regulatory subunit from cAMP-dependent protein kinase A (PKA).

By phosphorylating targeted proteins, PKA alters a variety of cellular functions. There is

also evidence that Dl and D5 receptors can activate other classes of G proteins, such as

G0 and G proteins (Sidhu, 1998). D2-like receptors are thought to exert an opposite

influence on AC activity. These receptors activate G!0 proteins which inhibit AC.

7.2. Dopaminergic receptor expression in the nucleus accumbens

five subtypes of DA receptors have been detected in the nAcb. Dl and D3

receptors are more abundant in the nAcb than in the dorsal striatum and are correlated

with the expression ofSP (Lu et al., 1998; $chwartz et al., 199$; Tarazi et al., 199$). D2

receptor expression appears to 5e correlated with enkephalin expression in the nAcb. D4

and D5 receptor expression is much lower (Sibley, 1995) and the resuits from Yan and

Surmeier (1997) suggested robust D5 receptor expression by nAcb LA neurons.

7.3. Dopaminergic modulation of neuronal activities in the nucleus accumbens
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7.3.1. Modulation ofïonic conductance

Several studies have demonstrated that DA or DA receptor agonists modulate

ionic conductance in the nAcb. DA could cause three types of membrane responses

specifically. These are hyperpolarization, depolarization and hyperpolarization followed

by a depolarization in nAcb neurons of guinea-pig brain suces (Uchimura et al., 1926).

further studies revealed that the DA-induced hyperpolarization is produced by an

activation of the Dl receptor and involved an increase in K conductance, whereas DA

induced depolarization was generated by the activation of the D2 receptor accompanied

by a decrease in K conductance (Uchimura et al., 1986). Zhang et al. (2002) recently

found that Dl receptor stimulation suppresses N- and P/Q-type Ca2 cunents by

activating a cAMP/PKAlprotein phosphatase signaling system and that repeated cocaïne

treatment reduces N- and R-type, but flot P/Q- or L-type currents. In addition to

modulating K and Ca2 currents, DA probably also affect Na currents. Amphetamine,

an indirect DA agonist promoting DA release, inhibits field potentials and Na currents in

rat nAcb neurons (Huang and Lin, 1998). Also repeated cocaine injections reduced

whoÏe-ceÏÏ Na currents in nAcb suce preparations. freshÏy dissociated nAcb neurons

from cocaine-pretreated rats also exhibited diminished Na cunent density and a

depolarizing shifi in the voltage-dependence of Na channel activation (Zhang et al.,

1998). Like in the nAcb, Dl receptors modulating Na current has also been found in the

dorsal striatal cells (Schiffmann et al., 1995). Consistent with the findings in the nAcb,

either DA or SKf3 8393, a Dl receptor agonist, produced a reversible inhibition of action

potential discharge evoked by intracellular depolarizing current pulses. This inhibitory
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effect was antagonized by the Dl receptor antagonist in dorsal striatum (Calabresi et al.,

1987, 198$).

7.3.2. Modulation of synaptic transmission

Several studies have found that DA depressed excitatory synaptic transmission in

the nAcb by acting on Dl receptors (Pennartz et al., 1992; Harvey and Lacey, 1996;

Nicola et al., 1996; Nicola and Malenka, 1997, 1998). The Dl receptor-mediated

reduction of EPSPs/EPSCs observed in vitro appears to be a presynaptic effect because

the paired-pulse ratio was increased by DA (Pennartz et al., 1992; Nicola et al., 1996).

DA also reduced the frequency of spontaneous miniature EPSCs (Nicola et al., 1996).

The inhibitory effect of DA does flot appear to be dependent on elevated cAMP levels, in

spite ofa clear enhancement ofEPSC by forskolin (Harvey and Lacey, 1996; Nicola and

Malenka, 1997). In contrast, several studies in vitro in the dorsal striatum have found

that DA enhanced NMDAR-synaptic or iontophoretic responses via the activation of Dl

receptors (Cepeda et al., 1993, 1998; Levine et al., 1996a, b), whereas other groups failed

to find a facilitatory effect of Dl -like receptor activation on NMDAR-responses in the

dorsal striatum (Calabresi et al., 1995; Nicola and Malenka, 1998). Stimulation of

excitatory afferents evokes a dual component EPSP/EPSC mediated by AMPA receptors

and NMDA receptors in MS neurons (Chang and Kitai, 1985; Pennartz et al., 1991;

Kombian and Malenka, 1994). A provocative suggestion is that DA can have distinct

effects on these two components depending on the subtype of DA receptor activated.

Specifically, D2 receptor activation has been reported to reduce AMPAR-EPSPs as well

as the response to iontophoretically applied glutamate or AMPA (Cepeda et al., 1993;

Hsu et al., 1995; Levine et al., 1996b), whereas Dl receptor activation is reported to
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enhance synaptic or iontophoretic NMDAR-responses (Cepeda et al., 1993, 1998; Levine

et al., 1996a, b). On the other hand, Levine et al. (1996b) found that AMPAR-EP$P was

not be altered by Dl receptor activation.

Calabresi and colleagues (1995) have reported no effect of DA and Dl or D2

receptor agonists on the responses of dorsal striatal ceils to iontophoresed AMPA or

NMDA. Consistent with these observations, no effects of DA on excitatory synaptic

responses in field potential or whole-cell recording from dorsal striatal region was found

(Malenka and Kocsis, 1988; Nicola and Malenka, 1998), despite the discovery of robust

effects of DA on excitatory responses in nAcb region of the striatal-nAcb suce (Nicola

and Malenka, 1998).

The inhibitory effect of Dl receptor activation on excitatory transmission appears

to be mediated by presynaptic mechanism (Pennartz et al., 1992; Harvey and Lacey,

1996; Nicola et al., 1996; Nicola and Malenka, 1997, 1998) whereas a postsynaptic

mechanism is stiÏÏ the subject of some controversy. Based on the findings that adenosine

Al receptor antagonists blocked the effects of DA on EPSCs, and that postsynaptic Dl

receptor activation increased synaptic NMDAR-responses, Harvey and Lacey (1997)

concluded that the enhanced NMDA current was responsible for the release of adenosine,

which presynaptically inhibited glutamate release. This hypothesis is consistent with the

anatomical localization of Dl receptors on postsynaptic dendritic spines and shafis of

nAcb ceils (Huang et al., 1992; Yung et al., 1995; Caillé et al., 1996). However, DA

enhancement of NMDAR-EPSCs could flot be replicated (Nicola and Malenka, 1997;

Zhang and Warren, 1998). In experiments with isolated EPSCs, we found that DA (50

tM) strongly inhibits NMDAR-EPSCs and moderately inhibits AMPAR-EPSCs in the
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nAcb suces from young rats (Zhang & Warren in preparation, see chapter IV of present

thesis).

8. Aims of the present study

The present study was performed in order to examine the characteristics of nAcb

EPSCs and their modulation by ACh and DA during postnatal development in rats. The

experiments were carried out in MS neurons of the nAcb suces using whoÏe-celÏ patch

clamp recording technique in postnatal rat (PO-P71). The feature of postnatal

development of EPSCs was selected as a terminal point in these experiments. The

present thesis is composed of three articles, which have been publislied or will be

submitted to joumals for publication and presented in Chapter II, III, and IV,

respectively.

As reviewed above, glutamatergic receptors and their mediated EPSCs have been

suggested to be one of the most important excitatory drive in the nAcb, whereas ACh and

DA appear to be two important neurotransmitters in modulating nAcb function. Previous

study lias shown that the physiological properties of MS neurons during postnatal

development becorne adult-like only by the end of the third postnatal week, suggesting

that nAcb function is different during early postnatal period from that in adults (Belleau

and Warren, 2000). Presumably, there is a critical period of synapses formation and

consolidation during which the transitory deprivation of some of nAcb afferents will

produce an imbalance between the strength of different inputs and lead to a pathological

state.



47

Thus, it would be important, first to determine whether there is any change in

glutamatergic receptors-mediated EPSCs during early postnatal development, and to

characterize the features of NMDAR- and AMPAR-EP$Cs during this period. The

second part of the present thesis investigated the cholinergic modulation of EPSCs during

postnatal development using different cholinergic receptor agonists and antagonists. In

the third part of this thesis, we studied the modulatory role of the doparninergic systerm

on EPSCs during early synaptic development. We found that NMDAR-EPSCs are the

largest during the second postnatal week and decline during the following weeks,

suggesting that NMDA receptor may play a critical role during synaptic maturation

during postnatal development. DA preferentially inhibited NMDAR-EPSCs compared to

AMPAR-EP$Cs. These effects were mediated by Dl type receptor mainly through both

pre and postsynaptic mechanisms. Activation of the cholinergic receptors produced a

dual modulatory function, e.g. an excitatory nicotinic action and an inhibitory muscarinic

effect on EPSCs during postnatal development. Our results reveal predominant

expressions of NMDAR-EPSCs and the contrasting effects of Ml receptor and nACbR

on EP$Cs as well as the inhibitory effect of activating Dl receptors on NMDAR-EP$Cs

during postnatal development. Presynaptic mechanism mediates the actions of ACh. Pre

and postsynaptic mechanisms may be involved in the effects of DA on excitatory

synaptic transmission. Predominant expression ofNMDA receptors and hyperfunction of

the dopaminergic system during early postnatal development might play a pivotai role in

the etiology of the schizophrenia (Joyce and Meador-Woodruff, 1997).



CHAPTER II
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ABSTRACT

We recorded excitatory postsynaptic currents (EPSCs) evoked by local electrical

stimulation in 243 nucleus accumbens (nAcb) neurons in vitro during postnatal

development from the day of birth (postnatal day O; P0) to P27 and in young aduits rats

(P59-P71). An EPSC sensitive to glutamatergic antagonists was found in ail neurons. In

the majority ofneurons (189/243), the EPSC had two distinct components: an early one

sensitive to 6-cyano-7- nitroquinoxaline -2,3-dione (CNQX) and a late one that was

sensitive to d-2-amino-5- phosphonovaleric acid (APV) showing that early and late

components of the EPSC were mediated by AMPA/KA and NMDA receptors

respectively. During the flrst few days afier birth, the amplitude of both the early and late

components ofthe EPSC were relatively small and then began to increase until the end of

the second postnatal week. Whereas the characteristics of the early component appeared

to stabilize from that point on, the late component began to decrease in amplitude and

becamevirtually absent in preparations from more than 3-week-old animals. In addition,

the ratio of the late to early component amplitudes of the EPSCs followed a

developmental pattem parallel to that of the late component showing an increase during

the flrst two postnatal weeks followed by a decrease. Together, these results show the

presence oftransiently predominant expression ofNMDA receptor-mediated EPSCs over

AMPAJKA receptor-mediated EPSCs during the first 3 postnatal weeks. The time frame

could represent a critical developmental period ofthe nAcb.

Key Words: Nucleus accumbens; development; excitatory postsynaptic currents;

NMDA receptor; AMPA/KA receptors; plasticity; schizophrenia.
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RÉSUMÉ

Nous avons enregistré les courants postsynaptiques excitateurs (CPSE5) évoqués

par une stimulation électrique locale dans 243 neurones du noyau accumbens (nAcb) in

vitro pendant le développement postnatal à compter du jour de la naissance (jour

postnatal 0; P0) jusqu’à P27 ainsi que chez de jeunes rats adultes (P59-P71). Un CP$E

sensible aux antagonistes glutamatergiques a été identifié dans tous les neurones. Dans la

majorité des neurones (189/243), le CPSE comprenaient deux composantes distinctes:

une précoce sensible au 6-cyano- 7-n itroquinoxaline-2, 3-dione (CNQX) et une tardive

sensible à la d-2-amino-5-phosphonovaleric acid (APV) démontrant qu’ils étaient

respectivement médiés par des récepteurs de type AMPA/KA et NMDA. Pendant les

premiers jours après la naissance, l’amplitude des deux composantes des CPSEs étaient

relativement petite et ont ensuite augmenté jusqu’à la fin de la deuxième semaine

postnatale. Alors que les caractéristiques de la composante précoce se sont stabilisées à

partir de cet âge, l’amplitude et la durée de la composante tardive ont commencé à

diminuer et elle est devenue difficile à évoquer dans des préparations d’animaux âgés de

plus de 3 semaines. En outre, le rapport entre l’amplitude de la composant tardive et de la

composante précoce du CPSE a suivi un modèle développemental semblable à celui de la

composante tardive montrant une augmentation pendant les deux premières semaines

postnatales suivie d’une diminution. Ensemble, ces résultats montrent la présence d’une

expression prédominante des CPSE médiés par des récepteurs NMDA pendant les 3

premières semaines postnatales. Cette période pourrait représenter une période critique

dans le développement postnatal du nAcb.



Mots-Clés : Noyau accumbens; développement; courants postsynaptiques excitateurs;
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INTRODUCTION

Developmental plasticity in the central nervous system bas been well documented

in the visual and somatosensory systems where there is a critical period during which

typical development depends upon normal sensory input from the environment (Wiesel

and Hubel, 1963; Rhoades et al., 1990). The absence of appropriate peripheral input

during that period leads to irreversible alteration of perception. Presumably, sirnilar

processes operate throughout the neuraxis during postnatal development but they bave

been seldom documented outside sensory systems. Just as the lack of normal inputs in

sensory systems during the critical period leads to altered perception, the lack of normal

inputs in limbic structures could lead to mental disorders and constitute the organic basis

of some psychiatric ilinesses that may involve neurodevelopmental processes (Raedler et

al., 199$).

The nucleus accumbens (nAcb) is a part of the limbic system believed to be a

center for tbe integration of limbic and motor systems. It is a major target of the

subiculum and the prefrontal cortex, as well as other limbic structures including the

entorbinal cortex, the amygdala and midline thalamic nuclei (Kelley et aI., 1982;

Groenewegen et al., 1987; Phillipson and Griffiths, 1985; Groenewegen et al., 1982;

Krayniak et al., 1981; Groenewegen et al., 1980; Newman and Winans, 1980; Kelley and

Domesick, 1982; Jayaraman, 1985). These afferents are thought to be primarily

glutamatergic and some of them including those from prefrontal cortex, hippocampal

formation and amygdala converge on single nAcb projection neurons, the medium spiny

(MS) neurons (O’Donnell and Grace, 1995). Interactions between these different inputs,

combined with the intrinsic properties of MS neurons (Wickens and Wilson, 199$;
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Wilson and Kawaguchi, 1996) result in the expression of two stable membrane potential

states in these fleurons: a hyperpolarized state during which MS neurons are suent, and a

depolarized state during which they are active (O’Donnell and Grace, 1995). To achieve

this higb degree of functional integration, the glutamatergic innervation of the nAcb bas

to be finely tuned during development. Presumably, a transitory deprivation of some of

nAcb afferents during the critical period of synapses formation and consolidation will

produce a long lasting imbalance between different inputs and lead to pathological states.

In the present study, we have exarnined the excitatory postsynaptic currents (EPSCs)

during early postnatal development and found that the NMDA receptor-mediated EPSCs

are expressed transiently in nAcb neurons, reaching their maximum toward the end of the

second postnatal week to become virtually absent by the end of the third postnatal week.

We suggest that the time during which NMDA receptor-mediated EPSCs are present

constitute a critical period during which the disturbance of nAcb inputs could lead to

permanent loss of function. Parts of the present study have been published in abstract

form (Zhang et al., 1998; Zhang and Warren, 1999).
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METHODS

Suce preparation. Detailed procedures appear elsewhere (Belleau and Warren, 2000).

Briefly, 400itm parasagittal suces containing the nAcb were obtained from the day of

birth (P0) up to P71 rats. Suces were incubated for at least one hour before recording

was started in a submerged type chamber superfused with room temperature artificial

cerebrospinal fluid (ACSf) containing (in mM) 126 NaCÏ, 26 NaHCO3, 10 dextrose, 3

KC1, 1.3 MgSO4. 2.5 CaCI2, 1.25 NaH2PO4 with a pH of 7.4 when bubbled with a gas

mixture of 95% 02 and 5% C02. The nAcb was visualized with a stereo microscope

using the anterior commissure, the neostriatum, the septum and the ventricles as

landmarks based on Paxinos and Watson (1986).

Recording aitd etectrical stimulation. Whole-cell recording was achieved using the

blind patch-clamp technique (Blanton et al., 1989) with an Axoclamp-2B amplifier

(Axon Instruments) in single electrode voltage clamp mode. Recording pipettes had a

resistance between 3 and 6 MQ when fihled with a solution containing (in mM) 135 CsF1,

2 MgC12, 1 CaC12, 11 EGTA, 10 HEPES and 2 K2-ATP with a pH of 7.3 ±0.05. QX314

(5 mM; Alomone Laboratories) and 0.3% neurobiotin were routinely added to the

recording solution to block voltage-dependent Na channels and to label recorded

fleurons. The potential reference on the Axoclamp-2B was adjusted to zero prior to

achieving whole-cell configuration. Data acquisition was realized using pClamp 6.0

software (Axon Instruments). Local electrical stimulation was accomplished by using a

monopolar tungsten microelectrode placed at least 2mm away from the recording

eÏectrode either within nAcb or just outside its border. In order to adjust the stimulus
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strength, the voltage was gradually increased until the postsynaptic response at a holding

membrane potential of -70mV reached its maximum. The stimulus was then decreased to

get a stable response that was around 90% of the maximum. With the membrane

potential holding at -7OmV, the synaptic response was recorded at membrane potentials

between -100 to +4OrnV in 2OmV increments using 350ms voltage steps that were

administered every 8-20s depending on the age of the preparation. A single anodal

electrical stimulus (0.lms, 3-7V) was superimposed at l5Oms into the voltage step. Four

to eight traces were recorded at each membrane potential (Vm) and averaged offline.

Pharmacological agents used to isolate EPSCs including bicuculline methiodine (BMI),

d-2-arnino-5 -phosphonovaleric acid (APV) and 6-cyano-7- nitroquinoxaline-2,3 -dione

(CNQX) (all obtained from Tocris) were added to the superfusing medium to final

concentrations of 10, 50 and 2OiiM, respectively.

Analysis. Data analysis was done utilizing Cambridge Electronic Design software. The

amplitude of the evoked synaptic current (IR) was pÏotted as a function of Vm at two

different time points: one at an early point corresponding to the peak of the inward

current recorded at -1 OOmV, and a later one at a point when the fast inward current

recorded at -lOOmV had decayed into a slow depolarizing plateau almost parallel to the

baseline (e.g. Fig. 1). At the time the later component of the response was measured, the

early component had decayed by an average of 89%. The offset potential, measured

upon electrode withdrawal from the cell, was accounted for by assuming that it drifted in

a linear fashion with time from the start of the recording session. Ah membrane potential

values have been corrected for hiquid junction potentials of -1 4mV (Barry, 1994).

Throughout the text, membrane potentials are reported to the closest 1 OmV whereas exact
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membrane potentials have been used for calculations. Statistical analysis was performed

using SigmaStat (SPSS Inc.) and, when necessary, raw data were logarithmically

transformed to fulfihi the requirements of parametric statistical tests. Non-parametric

statistical tests were used only if this procedure failed (Sokal and Rohif, 1995). Results

are presented as mean ± standard error.

liorpltotogy. Following electrophysiological experiments, suces were placed in a

fixative containing 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 for 24 hours.

Some suces were cryoprotected in a 30% glucose solution and re-sectioned 60tm thick

on a freezing microtome whereas most slices were whole processed for neurobiotin using

standard procedures. Sections and suces containing labeled celis were imaged using a

CCD camera (Dage model DC330) mounted on a microscope (Nikon model Optiphot 2)

using 4x, 1 Ox and 40x objectives and the images were stored on a computer using Image

Pro Express software (Media Cybemetics). Cell body measurements were made using

Image Pro Express software. Final images montages were assembled using Corel Photo

Paint software using images taken with a lOx objective and printed using a dye

sublimation printer (Sony model UP-5600MD). Neurons filled during other series of

experiments on the development of the nAcb (Zhang and Warren, 1999, 2002) have been

included in the present analysis.
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RESULTS

Postsynaptic currents evoked by local electrical stimuli of nAcb were recorded in

over 243 nAcb fleurons in suces from animais between P0 and P71. In a subset of 41

neurons recorded in preparations from comparable ages (between Pi and P71) in normal

ACSf, the addition of BMI (lOj.tM) produced a 46 + 3mV positive shifi in the reversai

potential of evoked postsynaptic currents from -38 ± 4mV to 8.4 ±3.7mV, suggesting that

a significant GABAA-mediated component was present eariy afier birth and throughout

the postnatal period examined. With BMI present in the bathing solution, postsynaptic

currents were completely abolished when the glutamatergic receptor antagonists CNQX

(20tM) and APV (50iM) were added to the superfusing medium (e.g. Fig.1B)

suggesting that under these conditions postsynaptic currents consisted of isolated

ionotropic glutamatergic EPSCs. Following these initial experiments, BMI (10j.iM) was

routinely added to the ACSf in order to isolate and record glutamatergic excitatory

postsynaptic currents (EPSCs). IRVm relationships of EP$Cs were obtained from

recording 243 nAcb neurons in 84 experiments using nAcb suces obtained from P0-P27

(231 cells) and P59-P71 (12 celis) animais.

(‘haracteristics and nature oftlte EPSCs

EPSCs could be readily evoked in preparations ofthe nAcb from P0 animals and

they were found in ail recorded neurons, aithough their characteristics changed

substantially during the postnatal period. The most commonly encountered type of

response consisted of an early, fast, inward current having a linear relationship with the

membrane potential, foiiowed by a late and extended inward current having a non-linear

relationship with membrane potentiai. An example of postsynaptic cunents recorded
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between holding membrane potentials of -100 and +4OmV with corresponding IRVm

curves from a representative neuron is shown in figure lA, lefi and right panels

respectively. In this case, an inward current with a peak occurs 13 ms afier the stimulus

rapidly developed at membrane potentials -4OmV and below (fig. lA, Early labeled

vertical dotted line). This early, inward current decayed with a similar time course at

membrane potentials between -100 and -6OmV (3 lower traces) whereas at -4OmV the

decay of the response was altered by a second inward current having a much siower time

course (f ig. lA, Late labeled dotted une). The IRVm curves (fig. lA, lower panel)

showed that the early current had a close to linear relationship with the membrane

potential (r = 0.986 in this case), whereas the late current was virtually absent at negative

membrane potentials and became apparent only at membrane potentials -4OmV and

above. The early postsynaptic current had a constant peak latency and appeared to decay

at the same rate at membrane potentials below -4OmV, suggesting that late inward current

contamination was minimal at these membrane potentials (e.g. fig. 1).



Figure 1.
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figure 1. A. Postsynaptic currents recorded in a nAcb neuron from a P15 suce preparation

(left) and corresponding IRVm curves measured l3ms (early) and lO6ms (late) after the stimulus

(right). The early inward current at -1 OOmV peaked 1 3ms after the stimulation, whereas the late

response was measured 93ms later, when the early inward current had almost completely

decayed. The IRVm relationship of the early inward current was linear (r = 0.986, a= 11.429, b =

30.56), whereas the late component was voltage-dependent with a peak around -4OmV in the
negative membrane potential range. B. Effects of ionotropic glutamatergic antagonists on the

EPSCs recorded in a neuron from a Pli preparation. The upper row shows the response traces

recorded between -1 2OmV and +2OmV in incremental steps of 2OmV before (Control), during

the bath application of CNQX (20p.M; CNQX) and CNQX and APV (50tM; CNQX + APV).

The lower row shows the IRVm relationships measured at the time point labeled Early (8ms after

stimulus onset) and Late (4Oms after stimulus onset) in the first panel of the upper row before

and during the application ofglutamatergic antagonists.
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The characteristics of the early component of the EPSCs were measured at the

membrane potential of -1 OOmV in order to minimize possible contamination by the late

component as the latter appeared virtually absent at this membrane potential. At —100

mV, the early postsynaptic current peaked 4-2lms (9.5 ± 0.2ms, n243) afier electrical

stimulus onset and decayed to a small steady state plateau in 13-126ms (40 ±lms,

n=243). The late component of the response was measured after the early component of

the EPSCs had decayed, 20-13$ms (49 ±lms, n=243) afier stimulus onset in order to

reduce contamination by the early component of the EPSC as rnuch as possible. Under

these conditions, a late EPSC with a non-linear V-shaped current-voltage relationship,

typical of currents mediated by NMDA receptors, was found in 189 neurons. In the

remaining 54 cells, no non-linear current-voltage relationship could be found at these or

longer latencies. No statistically significant difference was found between neurons

displaying a late EPSC and neurons lacking one for the peak latency ofthe early response

(9.3 ± 0.2ms vs 10.2 + 0.4ms respectively; T = 7280.5, p = 0.129), its decay time (39 ±

ims vs 41 ±3ms respectively; t 0.0697, df= 241, p 0.944) and its amplitude (269 ±

l4pA vs 221 ± l8pA respectively; t = 2.013, df= 241, p 0.052), suggesting that the

early response was similar in neurons with and without a late response.

The peak amplitude of the early component of the EPSC was measured at a

membrane potential of -1 OOmV and that of the late current at the membrane potential at

which it appeared to be in the negative range of membrane potentials (usually —4OmV or

-2OmV, e.g. f ig. lA) and afier the early response had decayed. With these measuring

parameters, the early component of the response was on average larger than the late

component, being -265 ±l4pA (n= 243) vs -125 ±$pA (n1$9) respectively (t 12.077,
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df= 430, p <0.00 1).

Overail, the characteristics of the EPSCs strongly suggested that early and late

components of the EPSC represented glutamatergic AMPA/KA and NMDA receptors

mediated responses respectively. These assumptions were tested by adding the specific

glutamatergic antagonists CNQX and APV to the superfusing medium. A representative

example recorded in a neuron from a Pli preparation substantiating this hypothesis is

shown in figure 1. During the control period preceding the administration of an

antagonist (f ig. 1 B, Coittro! labeled panel), the EPSC characteristically comprised an

early and a late component. The addition of the AMPA!KA receptor antagonist CNQX

to the superfusing medium completely abolished the early component of the response at

ail membrane potentials, while producing only marginal effects on the late component

(Fig. lB, CNQX labeled panel). further addition of APV, abolished the late response

leaving no detectable postsynaptic current (Fig. 13, CNQX + APV labeled panel). The

IR-V11 relationships of the early and laie component before and during antagonists

superfusion are shown in the bottom lefi and right panels of Figure 1 B respectively.

CNQX was tested in 33 neurons and produced a decrease of the early component

of the response averaging 91 ± 2% (ranging from 46 to 100%) whereas APV produced an

average decrease of the late component of $5 ± 5% (ranging from 44 to 100%) when

tested in 14 neurons displaying a late component. From these results we concluded that

the early EPSC was mainly mediated through activation of AMPA/KA receptors,

whereas the late component was mediated by the activation ofNMDA receptors.

Aithough the largest effects of CNQX and APV were on the early and late

components of response respectively, there were some significant exceptions to the
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pattern described above, especially in preparations from very young animais. In some

celis, CNQX and APV non-selectively antagonized both the early and late components of

the response. figure 2A illustrates such a case in which APV reversibly decreased both

the late and early components of the EP$C in a neuron recorded from a P2 animal

preparation. During the control period (fig. 2A, Control labeled panel) both an early and

late component of the EPSC was apparent in the current traces, as well as in the

corresponding ‘R Vm curves. When APV was added to the superfusing medium, both

the early and late components of the EPSC were completely abolished (fig. 2A, APV

labeied panel) and these effects were reversible (fig. 2A, Wash labeled panel). APV

produced similar effects, within the range of those produced by CNQX on the early

component of the EPSC (74 ± 7%; ranging from 45 to 98%) in 9 of 21 neurons with an

early component that were tested; 7 of these neurons were recorded in preparations from

animais less than a week old. These results suggest that in some neurons, the EPSC was

mediated only by NMDA receptors.
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In some neurons, CNQX appeared to abolish both the early and late components

of the EPSCs. It produced a significant reduction (69 ± 7%; ranging from 54 to 97%) of

the late response in 5 of 17 neurons tested. An example is shown in figure 2B. During

the control period, the EPSC comprised an early and a late component, which were both

abolished when CNQX was added to the superfusing medium. Following wash out of

CNQX, the addition of APV antagonized only the late component whereas the early

component appeared unaffected. These resuits show that in some cases CNQX could

reduce significantly the late NMDA receptor-mediated component ofthe EPSCs.

Deve!opmeuta! characteristics ofpostsynaptic ctcrrents

In neurons in which the EPSC consisted of both early and late components, the

ratio between the two components appear to vary significantly and this was related to the

age of the preparation. To illustrate that point, we have characterized the EPSCs

according to the relative apparent magnitude ofthe late component ofthe response.

Type I response

In a subset of 25 neurons (10% of the sample), the peak inward current was flot

observed when the membrane potential was held at -1 OOmV but was seen at a more

depoÏarized membrane potential of -60 or -4OmV. Concurrently with the increase in peak

cunent, the response became broader, and the latency to peak often increased by several

milliseconds between - I OOmV and more depolarized membrane potentials. This kind of

response was named Type I.

f igure 3A shows a representative Type I response recorded from a P3 neuron. In

the current traces of the response (fig. 3A upper panel), only an early fast inward current

was evoked by local electrical stimulation at a holding membrane potential of -1 OOmV.
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At -6OmV, this response reached its maximum, increasing by more than 40% as

compared to the response obtained at -lO0mV. There was no change in peak latency of

the early response between -100 and -6OmV although the response appeared broader

because of a siower decay rate. In contrast, at -4OmV, the peak of the response was

delayed by several milliseconds as compared to more negative membrane potentials

because of a much siower rise time. The decay rate of the response was also much

siower at -4OmV and overali. The response was much broader due to the full

developrnent of the late component. The lower panel of Figure 3A shows a plot of the ‘R

Vm relationship of the responses shown in the upper panel. It is apparent that there was a

marginal late component in the response below -4OmV, whereas between -40 and +4OmV

the IRVm of the late response was linear and reversed around OmV. The early response

IVm curve was linear and parallel to that of the late one between -60 and +4OmV where

it appeared to saturate and reach a plateau at more hyperpolarized potentials. $imilar

observations were made in 25 neurons and the increase in the peak EPSC between -

lOOmV and more depolarized membrane potentials ranged from 9 to 322pA with an

average of $2 + l6pA (n = 24). In addition, as the membrane was depolarized, the

response peak was delayed in 23 neurons by an average of 19 + 6ms.

In terms of amplitude and time course, Type I responses had on average the

smallest early component with the longest time to peak and decay time of ail 4 types of

responses (Table I). In contrast, they displayed the largest late component amplitude and

this even if it was measured l0-lSms later than in Type II and III responses on average

(see below). Consequently, the ratio between late and early components was the highest

at 0.85 in Type I responses.
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from a deveiopmentai point of view, Type I responses were under represented

until P3 and were most ofien encountered between P3 and P13. They were rarely

encountered in preparations from more than 2- week-oid animais (fig. 4A).

Figure 4.

I
j

I
I

4

2

o

—I

2

o

-2

-4

A-Typel

Postnatal age (days)

I
I

Cl)

I

6

4

2

o

-2

-4

9

6

3

0

-3

B- Type2

Postnatal age (days)

Postnatal age (days)

Figure 4. Distribution of Type I (A), Type 11(B), Type III (C) and no late response (D)

neurons as a function of postnatal age. Each graph represents the difference between the

number of neurons of each type sampled on a given postnatal day and the number of

neurons expected if it was identical to the daily distribution of the whole sampÏe.

Upward and downward bins indicate that respectively more and less neurons ofthis type

were sampled than expected on this specific postnatal day. The curves are polynomial

regressions to underscore trends in the data. The last two bins of each graph (marked by

an asterisk) represent fleurons sampled on P21-27 and P59-71 respectively. Note that no

neurons were sampled on P18. Number ofneurons were 25, 7$, $6 and 54 for A, B, C
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Postnatal age (days)
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Type II response

In a second group of neurons (n = 78; 32% of sample), the largest inward current

was recorded at the most hyperpolarized membrane potential. However, as the

membrane was depolarized, the rise time of the EP$C noticeably increased, delaying the

peak of the response by several milliseconds when the late component of the response

reached its maximum around -4OmV (fig. 35, upper panel). The average shift in peak

response between holding membrane potentials of -100 and -4OmV was 20 ± ims (n =

7$) and appeared to be independent of the age of the animal used for suce preparation.

The IRVm relationships of Type II responses resembled that of Type I responses. As

with Type I responses, the IR-V1 curve of the early component apparently saturated at

hyperpolarized membrane potentials, whereas at depolarized membrane potentials, it was

parallel to the non-voltage dependent portion ofthe late component IRVm curve (Fig. 3B,

lower panel).

Type II responses were characterized by an early component 37% larger on

average than Type I responses, whereas the late component of the EP$Cs was not

significantly smaller than that of Type I resulting in an average late to early ratio of 0.53

(Table I). In terms of postnatal ages, Type II responses appeared to be under represented

between P0 and P6 but were the most cornmonly found in preparations from animals

between P7 and P14 (Fig. 4B).

Type III response

In 86 neurons (35% ofthe sample), the late response was relatively small and was

apparent only as a continuation of the early response at membrane potentials above -

6OmV (Fig. 3C, upper panel). In contrast with Type I and II responses, the rise time of
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the early peak response was constant at ail membrane potentials. Consequentiy, no delay

in the peak response was observed between hyperpolarized and depolarized membrane

potentials. Despite the small size of the late response, its IRVm curve was ciearly V

shaped with a peak usually around -4OmV (fig. 3C, Iower panel). The early component

IRVm curve was close to a single straight une passing through the origin.

The amplitude of the late component of Type III responses was about haif that of

Type I and II responses, while the amplitude of the early component was comparable to

that of Type II neurons (Table I), resuiting in a comparatively small late to early

component ratio of 0.3 2. This response type was also characterized by the shortest early

response tirne to peak and decay time.

Type III responses were most ofien recorded during the first and third postnatal

week, whereas they were comparatively less common during the second postnatal week.

As with all neurons with a late EPSC, they were rarely recorded in preparations from

animals older than 3 weeks (Fig. 4C).

No tate response

In 54 neurons (22% of the sample) no late EPSC could be positively identified

(not shown). In these neurons, no apparent late response was present, and the IRVm

curve measured after the decay of the response at -1 OOmV was close to parallel to the

abscissa. The AMPA/KA receptor antagonist CNQX was tested in 11 neurons of this

type (P1-P71) and produced a large reduction of the EPSC at all membrane potentials

with an average of 95 ±1% ($5 to 100%), suggesting that in these neurons, the EPSCs

were exclusively mediated by non-NMDA type ofreceptors.

The amplitude of the responses lacking a late component was smaller than the
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early component of Types II and III responses but slightly larger than that of Type I

(Table I). The range of response amplitudes of neurons lacking a late component largely

overlapped with that of the early response of neurons expressing a late response. This

indicates that the absence of a late response was flot likely the resuit of deficient afferent

fibers activation.

Neurons lacking a late response were most commonly encountered before P5

(16/45; 36%) or afler P16 (24/33; 73%), whereas they were only seldom encountered

between P5 and P15 (14/165; 8%; Fig. 4D). After P 20, the EPSC comprised only an

early component in 17 out of 19 responses recorded, showing that under the present

conditions, very few neurons expressed NMDA receptor-mediated EPSC afier the third

postnatal week.

When the ratio between the late and early components ofthe EPSC was plotted as

a function of postnatal age a clear developmental pattem emerged: the late to early

response ratio increased up to around P12 and decreased afterwards to become virtually

equal to zero during the 4th postnatal week and adulthood (Fig. 5). These results indicate

that the ratio between NMDA and AMPA/KA receptor-mediated current was largest

during the second postnatal week whereas AMPA/KA receptor-mediated currents largely

dominated the responses later during development and adulthood.
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In addition to the ratio between the late and early components of the EP$C, other

characteristics of EPSCs changed significantly over the first three to four postnatal

weeks. The latency to peak of the early component of the EPSC substantially increased

during the first four postnatal weeks and was even longer in aduits (Fig. 6A). It averaged

8.8 + 0.2ms (n = 105) during the flrst postnatal week and reached 13.8 ± 0.$ms (n12) in

aduits, the increase being statistically significant (T = 1239, p<O.00l). These data have

to be carefully interpreted for two reasons: the regression coefficient between postnatal

age and response delay was small even though it was significant (F ig. 4A legend), and

developmental factors explain only 4.6% of the variation in the delay. The increase in

the decay tirne of the early response was slightly more robust, the regression explaining

about 10% ofthe variation (Fig. 6B). This measure averaged 33 ± lms during the first

postnatal week and increased steadily to reach 55 ± 6ms in the aduit, a 22ms increase that

was statistically significant (t = 4.578, df= 115, p<O.001). In addition, the decay time of

the early response was positively correlated with the amplitude of the response recorded

at -lOOmV (r = 0.21$, F = 11.442, p < 0.00 1), suggesting that part of the increase in

duration of the response was due to an increase in its amplitude (see below), i.e., larger

responses tended to have longer decay tirne. As a consequence of the increase in both

early response peak latency and early response decay, the latency at which the late

component of the EPSC was measured was significantly delayed with age (Fig. 6C) but

yet sufficient enough to have a substantial incidence on the measurements of the late

component because of its comparatively slow decay.



Figure 6.

75

0 5 10 15 20* Adult

Postnatal age (days)

B- Early response decay

10

0 5 10 15 20* Adult

Postnatal age (days)

Figure 6. Characteristics of the
early and late responses as a
function of postnatal age. A.
lime to peak of the early
response from the electrical
stimulus onset. A statistically
significant linear correlation was
found between time to peak and
postnatal age (r = 0.20$, F =

10.315, p0.OOl5). B. Decay
time from peak to a steady state
plateau of the early response at
an online membrane potential of
-lOOmV. A statistically
significant linear correlation was
found between decay time and
postnatal age (r 0.308, F =

23.962, p<O.001). C. Delay
between electrical stimulus
onset and the steady state of the
early response at which time the
late response was measured. A
statistically significant 2’
degree polynomial correlation
was found between time delay
and postnatal age (r = 0.24, F =

13.99$, p<O.001). Each filled
circle and bar represents the
average ± SEM for neurons
recorded on the corresponding
postnatal day on the abscissa.
Number of cells per postnatal
day ranged from 2 to 26 with an
average of 11.0 ± 1.5. No
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In most celis, we could not detect the presence of a NMDA receptor-mediated

component in the compound EPSCs in preparation from animais more than three weeks

old. This is in contrast to several studies (e.g. Martin et al., 1999; Martin et al., 1997b;

Martin et al., 1997a; Pennartz et al., 1991a) that reported the presence of NMDA

receptor-mediated EPSCs in mature nAcb. To verify for the presence of NMDA

receptor-mediated EPSCs in older animai, we have recorded EPSCs in preparations from

animais during their fourth postnatal week with CNQX in the bathing medium. In ail

neurons tested using adequate stimulus pararneter, we coutd record NMDA receptor

mediated EPSCs of amplitude comparable with those recorded in younger (Fig. 7A).

Whereas EPSCs were comparable in amplitude, those recorded during the fourth

postnatal week were found to be much shorter than those recorded during the second

postnatal week (Fig. 7A right panel and 73). Despite the fact that a substantial NMDA

receptor-mediated EPSC could be evoked in the presence of CNQX, the presence of an

NMDA component could not be cieariy identified in the compound EPSC (fig. 7C).

Morphotogy

A total of 310 neurobiotin fi lied MS neurons were recovered from the present and

other series of similar experiments (Zhang and Warren, 1999, 2002). In neonatal rats,

MS neurons appeared quite different from those described in aduit animais. During the

first 10 postnatal days, the dendrites appeared reiatively thin, varicose ami aÏmost

completeiy aspiny (Figs. $A and 83). The slendemess ofthe dendrites was particularly

marked during the first few postnatal days during which the dendrites were so thin that

they could be barely detected between the small varicosities (fig. 8A). By the end of the

first postnatal week, dendrites stiii had a varicose appearance but both the varicosities and
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Figure 7. A. NMDA receptor-mediated EPSCs recorded at a holding membrane potential of

-2OmV in preparations from P12 (left panel) and P25 (middle panel) animais with CNQX (2OjiM)

and BMI (10tM) present in the bathing medium. The right panel shows the overlay of the

responses scaled on the amplitude of the P25 response. B. Average decay time constant of

isolated NMDA receptor-mediated EPSCs recorded during the second (n8) and fourth postnatal

week (n=9). The time constant was measured by fitting a single exponential on the decay phase of

the EPSCs. C. Compound response from the same P25 neuron shown in A at holding membrane

potentials of -100 and -2OmV in the absence of CNQX. Note the absence of an obvious NMDA

receptor-mediated component at -2OmV.
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dendritic shafis appeared larger (Fig. $B). During the second postnatal week, the

dendrites gradually lost their varicose appearance and by P14, the dendrites of the

rnajority of neurons unbroken continuous appearance (Fig. $C) and celi displaying an

immature appearance were rarely encountered during the third postnatal week and neyer

afterwards (Fig. $D). In addition, dendrites of more mature ceils (e.g. Fig. $C and 8D)

were more convoluted than at earÏier stages (e.g. Fig. 8A and $13) and the dendritic fleld

appeared to growth slightly during the first three postnatal weeks although we did not

measure it.

We did not observed dendritic spines on highly varicosed dendrites but they were

consistently present on dendrites from P12 and older neurons. Their density was very

low at the beginning but appeared to increase until the end of period studied (P31)

without apparently reaching a density comparable to the one found in adult MS neurons.

The axon was also labeled in several neurons and it could oflen be followed for several

hundreds iim (Fig. 8C and $D, arrows). In these cases, it aiways branched within the

nAcb before a single brandi was seen leaving the nucleus and this even at the younger

ages.

The cdl body ofMS neurons increased in size during the postnatal period covered

by the present study as shown by the positive correlation between ceil body perimeter and

area and postnatal age (Fig. 9A and 9B). The somatic area increased by 24% between the

first and third postnatal week from an average of 126 ± 5jim2 to 156 ± l3jim2 (t 2.656,

dfz= 174, p = 0.009). In contrast, there was no change in the number ofprimary dendrites

during the same period (Fig. 9C).
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DISCUSSION

We recorded electricaily evoked EPSCs in nAcb neurons using suce preparations

from rat pups (between P0 to P27) and young aduit animais (P59 to P7 1). An EPSC was

found in ail recorded neurons (n = 243) demonstrating that functionai excitatory synapses

are aiready present in the nAcb at the time of birth. At ail ages, the EPSCs were sensitive

to giutamatergic antagonists. confirming that they were mediated by excitatory amino

acids. Additionally, in a majority of neurons (189/243), the EPSC consisted of two

distinct components: an eariy one with a peak between 3.6 and 21 ms afier stimulus

onset, and a iate one that became apparent oniy at depolarized membrane potentiais. The

early and iate components of the EPSC had IRVm relationships characteristic of

AMPA/KÀ and NMDA receptor-mediated currents respectively, and were generally

sensitive to specific receptor antagonists. However, in some ceiis from young

preparations, both components could be abolished by oniy one type of antagonist.

During the first few days afier birth, the amplitude of both AMPA/KA and

NMDA receptor-mediated EPSCs was relativeiy smali and then started to increase until

the end of the second postnatal week. Whereas the amplitude of the AMPAJKA receptor

mediated response appeared to stabilize from that point on, the NMDA receptor-mediated

response decreased rapidiy during the foiiowing days and becarne virtualiy absent afler

the end of the third postnatal week. In addition, the ratio between the NMDA and

AMPA!KA receptor-mediated responses foliowed a deveiopmental pattem parailei to that

of the NMDA receptor-mediated response, showing an increase during the first two

postnatal weeks foÏÏowed by a decrease. This was also reflected in the distribution of

response types with age. Responses with comparativeiy large NMDA receptor-mediated
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components were found mainly in preparations from P7 to P14 animais, whereas those

showing small or no NMDA receptor-rnediated components were more commonly found

in preparations younger than P7 and older than P14. Together, these resuits show that

there is a preeminent expression of NMDA receptor-mediated EPSC during the second

postnatal week in the nAcb. NMDA receptor-mediated currents have been shown to play

an important rote during the activity-dependent developmental phase in severai regions of

the neuraxis (Murphy, 2003; Yoshimura et al., 2003; Savicc et al., 2003; $hibata et al.,

2003; Schramm et al., 2002; Stegenga and Kalb, 2001; Luthi et al., 2001). The relative

importance of NMDA receptor-mediated currents during the second postnatal week

suggests that it could play a similar role in the nAcb during that time. The end of the

second postnatal week corresponded aiso with the morphological maturation of MS

neurons and the appearance of spines on their dendrites suggestive of intense synapse

formation. This period also overlaps with the period of active maturation of membrane

and firing properties of nAcb projection MS neurons (Belleau and Warren, 2000)

implying a synchronization in the maturation of the inputloutput organization of the

nAcb.

Validiry of tite observations. Glutamatergic EPSCs could be evoked from the day of

birth, showing that functional glutamatergic innervation of the nAcb is already underway

before parturition. During the first two postnatal weeks, the amplitude of the EPSC

increased suggesting an active maturation of nAcb gtutamatergic innervation during that

period. The fact that NMDA receptor-mediated currents decreased afler the second

postnatal week to be rarely observed afier the third postnatal week, suggest that most of

postsynaptic ionotropic glutamatergic neurotransmission in mature nAcb is mediated by
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AMPA!KA type of receptors. The observation that the peak amplitude and duration of

AMPA!KA-mediated currents during the 3’ and 4th postnatal weeks did flot statistically

differ from that recorded in adults does flot necessarily imply that glutamatergic

innervation of the nAcb is mature at this time. Further maturation and consolidation of

the innervation may occur without significant changes in the amplitude of the response

by a process involving an equilibrium between synapse formation and pruning.

In some neurons, both the early and late components of the response were

abolished by APV, suggesting that the EPSC was mediated only by NMDA receptors. In

addition, these results suggest that part of the NMDA receptor-mediated response

recorded at hyperpolarized membrane potentials was less sensitive to Mg2 block. This is

in agreement with the finding that the subunit composition of NMDA receptors is

developmentally regulated and that NR2D subunits relatively resistant to Mg2 block are

predominantly expressed during early postnatal stages (Ben An et al., 198$; Dunah et al.,

1996; Kirson et al, 1999; Kleckner and Dingledine, 1991; Kuner and Shoepfer, 1996;

Laurie et al., 1997; Monyer et al., 1994; Morrisett et al., 1990; Pollard et al., 1993;

Wenzel et al., 1996). In some neurons, CNQX aboÏished both the early and late

component of the response. These effects may have been mediated by an action of

CNQX on the glycine binding site ofthe NMDA receptor (Lester et al., 1989; Pellegrini

Giampietro et al., 1989).

We did not pharmacologically isolate each ofthe two components ofthe EPSC in

ail neurons to measure isolated AMPA/KA and NMDA receptor-mediated currents. Our

resuits suggest that there was a significant contribution by NMDA receptor-mediated

currents to the early component ofthe response at depolarized membrane potentials. This
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problem was circumvented by measuring the AMPA/KA receptor-mediated current at a

hyperpolarized potential when the NMDA receptor-mediated current was minimal.

Sirnilarly, we measured the late component only afier the early response had decayed in

order that our data exclusively represented NMDA receptor-mediated responses, although

with this method it was flot possible to measure the peak of the NMDA receptor

mediated current. But the decay time of the late component of the response was very

long and the NMDA response was very close to its peak at the time measurements were

made (e.g. fig. 2). We can conclude that our measurements represent fair representation

of the amplitude of AMPAJKA and NMDA receptor-mediated postsynaptic currents in

the nAcb.

Glutamatergic neurotransmission in the nAcb originates exclusively from extemal

structures including the media! prefrontal cortex, the subiculum and the amygdala (Kelley

et al., 1982; Groenewegen et al., 1987; Phillipson and Griffiths, 1985; Groenewegen et

al., 1982; Krayniak et al., 1981; Groenewegen et al., 1980; Newman and Winans, 1980;

Kelley and Domesick, 1982; Jayaraman, 1985). We have used local electrical

stimulation to evoke glutamatergic EPSCs in the nAcb and presumabÏy, we have

indiscriminately activated afferents of various origins. Consequently, it is impossible to

know if the innervation from different sources follows different deveÏopmental pattems

and/or time courses. Alternatively, it is possible (although unlikely) that our results

represent the postnatal development of one specific group of afferents. Nevertheless, the

present resuits clearÏy show that at least one source of glutamatergic afferents involve

transient expression of NMDA receptor-mediated EPSCs in developing nAcb. future

experiments should examine the development of individual afferents.
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It is likely that the pattern of change in NMDA receptor-mediated currents that we

found reftect an actual weakening in NMDA receptor-mediated current occurring in

maturing nAcb. This is supported by the fact that while the NMDA receptor-mediated

component of the EPSC decreased, the AMPA!KA receptor-mediated response remained

constant, ruling out the possibility that the change was due to improper stimulation of

afferents or a decrease in the density of the innervation. In addition, the fact that there

was a strong correlation between the amplitude of the early and late components,

combined with the stabiiity of the early response, also suggest a weakening of the NMDA

receptor-mediated current with aging. This is in agreement with other studies reporting

that NMDA receptor-mediated responses were weak in preparations of the nAcb from

young aduits in vitro under normal conditions (Pennartz et al., 1991b; Martin et ai.,

1 997b; Martin et ai., 1 997a). Substantiai NMDA receptor-mediated responses could oniy

be recorded by using high stimulus intensity and paired-puise stimulation in conditions

where inhibition was reduced (Martin et al., 1997a; Rajadhyaksha et al., 199$) underlying

the weakness of NMDA receptor-mediated postsynaptic currents in aduit nAcb. The

difference between developing and mature animais suggest that NMDA receptors play

different roles in young and aduit animais, participating activeiy in fast glutamatergic

neurotransmission at early deveiopmental stages and being confined to a

neuromodulatory role at later stages. Furthermore, there is rnuch evidence that a

substantial proportion of NMDA receptors are located on giutamatergic terminais rather

than on nAcb postsynaptic neurons in mature nAcb (Grace, 1991).

The most striking change in M$ neurons morphology was observed in individuai

dendrites which were essentiaily aspiny and highly varicose during the first 10-12
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postnatal days. In addition, the soma of MS neurons slightly increased in size over the

period studied. These finding are in close agreement with those observed in the dorsal

striatum in the same specie (Tepper and Trent, 1993; Tepper et al., 199$). In the dorsal

striatum, the third postnatal week corresponds with the period during which there is the

greatest increase in axospinous asymmetric synapses (Hattori and McGeer, 1973; Tepper

et al., 1998), a period corresponding with the relative decline in NMDA receptor

mediated EPSC in the present study.

functionat sigiijjïcance

The gross development of the brain is genetically guided. In contrast, the fine

tuning of synaptic organization is ofien activity-dependent, allowing the individual to

adapt to the prevailing environment. It is now well accepted that some fine tuning of

neuronal connectivity also occurs in mature organisms but for the most part, it occurs

during postnatal developmental stages and ofien irreversible.

The glutamatergic innervation of the nAcb lias its origin in several preponderant

limbic structures although the exact timing of arrivai of the fibers from those locations is

not known. We can assume that there will be some competitionlcooperation among these

different inputs that will presumably follow Hebbian rules (Hebb, 1949). The

involvement of NMDA receptor-mediated currents in such mechanisms lias been

recognized for a number of years (Collingridge and Singer, 1990) and they could play a

similar role during nAcb development.

The different sources of glutamatergic innervation of the nAcb are known to each

have specific functions and to be active under specific behavioral circurnstances related

to environment. Presurnably, depending upon the environmental context during synapse
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formation, some of these inputs miglit be over active during a critical period and produce

an imbalance between the different inputs, eventually resulting in a pathological state at

later stages. Recent studies in which an imbalance between the different glutamatergic

inputs to the nAcb have been produced by lesioning specific pathways at P7 have resulted

in behavioral changes in the aduit that were accompanied by biochemical changes in the

nAcb during adulthood (Flores et al., 1996a; flores et al., 1996b; Lipska et al., 1993;

Weinberger and Lipska, 1995; Lipska et al., 199$). This suggests that such processes

might be involved in pathological states.
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RÉSUMÉ

Nous avons étudié les effets modulateurs des agonistes cholinergiques sur les courants

postsynaptiques excitateurs (CPSEs) dans des neurones du noyau accumbens (nAcb)

pendant le développement postnatal. Les enregistrements ont été obtenus dans des

tranches provenant des rats âgés de un jour (jour postnatal Î, Pi) à P27 en utilisant la

technique whole-celÏ patch-cÏamp. Les CPSEs ont été produits par une stimulation

électrique locale, et toutes les expériences ont été réalisées en présence du bicuculline

methchÏoride dans le milieu extracellulaire et avec du QX-3 14 dans la pipette

d’enregistrement. Dans ces conditions, les courants postsynaptiques étaient composés de

CPSEs glutarnatergiques comprenant deux composantes médiés par des récepteurs

AMPAIKA et de NMDA. L’addition d’acétylcholine (ACh) ou de carbachol (CCh)

produisait une diminution de 30-60% des deux composantes des CPSEs. Par contre,

l’ACh produisait une augmentation (35%) des CPSEs lorsqu’administrée en présence

d’atropine; un antagoniste des récepteurs muscariniques. Les effets excitateurs de l’ACh

en présence d’atropine ont pu être reproduits par un agoniste des récepteurs nicotiniques,

l’iodure 1,1 -diméthyl-4-phényÏ-piperazinium (DMPP), et pouvaient être bloqués par la

mécamylamine, un antagoniste des récepteurs nicotiniques. Les effets antagonistes de

l’atropine pouvaient être reproduits par le pirenzepine, suggérant que la dépression

muscarinique des CPSEs implique des récepteurs muscariniques de type Ml/M4. En

outre, les effets inhibiteurs de I’ACh sur les CPSEs médiés par le récepteur NMDA ont

augmenté significativement pendant les deux premières semaines postnatales alors que

les effets sur les CP$Es AMPA!KA sont demeurés stables. Nous avons constaté que,

dans les présentes conditions expérimentales, les agonistes cholinergiques ne produisaient
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aucun changement dans la conductance membranaire, la constante de temps des CPSEs

AMPA!KA ni sur les réponses évoquées par application de glutamate exogène en

présence de tétrodotoxine. Par contre ils ont produit des changements sur le rapport des

réponses à des stimuli pairés, suggérant que leur action était médiée principalement par

des mécanismes présynaptiques. Lorsque le QX-3 14 a été omis de la solution interne de

l’électrode d’enregistrement, le CCh a produit des changements dans le potentiel de repos

des neurones et à augmenté le nombre de potentiels d’action produit par une injection

intracellulaire de courant, suggérant que le QX-3 14 bloquait les effets cholinergiques

postsynaptiques. Ensemble, ces résultats suggèrent que l’ACh peut diminuer ou

augmenter la neurotransmission glutamatergique dans le nAcb en agissant respectivement

sur les récepteurs muscariniques et nicotiniques situés sur les terminaisons

glutamatergiques. La modulation cholinergique de la neurotransmission médiée par les

récepteurs AMPA!KA et NMDA dans le nAcb pendant le développement postnatal

pourrait jouer un rôle important dans les processus développementaux dépendant de

l’activité.

Mots-Clés : Acétylcholine; récepteur muscarinique, récepteur nicotinique, courant

excitateur postsynaptique, mécanisme présynaptique
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Zhang, Liming, and Richard A. Warren. Muscarinic and nicotinic
presynaptic modulation of EPSCs in the nucleus accumbens during
postnatal development. J Neurophysiol 88: 3315—3330, 2002;
10.1152/jn.01025.2001. We have studied the modulatory effects of
cholinergic agonists on excitatory postsynaptic currents (EPSCs) in
nucleus accumbens (nAcb) fleurons during postnatal development.
Recordings were obtained in suces from postnatal day 1 (P1) to P27
rats using the whole celi patch-clamp technique. EPSCs were evoked
by local electrical stimulation, and alt experiments were conducted in
the presence of bicuculline methchloride in the bathing medium and
with QX-314 in the recording pipette. Under these conditions,
postsynaptic currents consisted of glutamatergic EPSCs typically con
sisting of two components mediated by AMPAlkainate (KA) and
N-methyl-D-aspartate (NMDA) receptors. The addition of acetylcho
line (ACh) or carbachol (CCh) to the superfusing medium resulted in
a decrease of 30—60% of both AMPAIKA- and NMDA-mediated
EPSCs. In contrast, ACh produced an increase (35%) in both
AMPAJKA and NMDA receptor-mediated EPSCs when administered
in the presence of the muscarinic antagonist atropine. These excitatory
effects were mimicked by the nicotinic receptor agonist 1,1 -dimethyl
4-phenyl-piperazinium iodide (DMPP) and blocked by the nicotinic
receptor antagonist mecamylamine, showing the presence of a cho
linergic modulation mediated by nicotinic receptors in the nAcb. The
antagonistic effects of atropine were mimicked by pirenzepine, sug
gesting that the muscarinic depression of the EPSCs was mediated by
M11M4 receptors. In addition, the inhibitory effects of ACh on NMDA
but flot on AMPAIKA receptor-mediated EPSC significantly in
creased during the first two postnatal weeks. We found that, under our
experimental conditions, cholinergic agonists produced no changes on
membrane holding currents, on the decay time of the AMPAIKA
EPSC, or on responses evoked by exogenous application of glutamate
in the presence of tetrodotoxin, but they produced significant changes
in paired pulse ratio, suggesting that their action was mediated by
presynaptic mechanisms. In contrast, CCh produced consistent
changes in the membrane and firing properties of medium spiny (MS)
neurons when QX-3 14 was omitted from the recording pipette solution,
suggesting that this substance actually blocked postsynaptic cholinergic
modulation. Together, these results suggest that ACh can decrease or
increase glutamatergic neurotransmission in the nAcb by, respectively,
acting on muscarinic and nicotinic receptors located on excitatoiy termi
nals. The cholinergic modulation of AIVPAJKA and NMDA receptor
mediated neurotransmission in the nAcb during postnatal development
could play an important role in activity-dependent developmental pro-
cesses in refining the excitatoly drive on MS neurons by gating specific
inputs.

INTRODUCTION

The nucleus accumbens (nAcb) constitutes the major portion
of the ventral striatum and is an important point of convergence
of information originating in several limbic structures, includ
ing the prefrontal cortex (PfC), the amygdala, the hippocam
pus, and the midiine thalamic nuclei (Groenewegen et al. 1980,
1982, 1987; Jayaraman 1985; Kelley and Domesick 1982;
Kelley and Stinus 1984; Kelley et al. 1982; Krayniak et al.
1981; Newman and Winans 1980; Phullipson and Griffiths
1985). These projections, believed to be mainly glutamatergic,
are tbought to mediate their excitatory drive by acting on
N-methyl-D-aspartate (NMDA) and AMPAlkainate (KA) glu
tamatergic receptors (DeFrance et al. 1985; finch 1996;
Kombian and Malenka 1994; Nicola et al. 1996; ;Yim and
Mogenson 1982 Zhang and Warren 1999). The primary output
of the nAcb is to the ventral pallidum (Hakan et al. 1992; Yang
and Mogenson 1985), which is involved in the activation of
voluntary movements (Heimer et al. 1994; Swerdlow and
Koob 1987). This inputloutput organization suggests that the
nAcb is an important interface between motivational and motor
systems driven by the ventral pallidum (Beninger et al. 1983;
Lopes da Silva et al. 1984; Mogenson et al. 1980). The nAcb
is known to be involved in reinforcement aspects of behavior
(Cador et al. 1991; Joseph and Hodges 1990; Wise and Bozarth
1987) and could be implicated in a number of psychiatric
diseases, such as schizophrenia (Csernansky et al. 1991; Grace
1992; Matthysse 1983; Snyder 1973) and Tourette’s syndrome
(Braun et al. 1993; Comings 1987).

The only class of neurons that project outside the nAcb are
the medium spiny (MS) fleurons, which are GABAergic and
account for about 95% of the neuronal population. In addition,
the nAcb contains small populations of interneurons including
the large aspiny (LA) neuron, which is the only known source
ofacetylcholine (ACh) in the nAcb (Meredith and Chang 1994;
Meredith and Wouterlood 1990; Meredith et al. 1989; Phelps et
al. 1985). Cholinergic systems have been implicated in funda
mental aspects of human behavior including memory, motiva
tion, and motor behavior (File et al. 1998; Gotti et al. 1997).
Interest in understanding cholinergic mechanisms involved in
the control and regulation of motor and higher brain functions
bas been growing ever since the neostriatal cholinergic system
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was postulated to play a role in the pathophysiology of several

diseases. Alterations in the leveis of ACh and cholinergic

receptors have been linked to neumiogical and neuropsycho

logical diseases including schizophrenia and Parkinson’s dis

ease (Gotti et aI. 1997; Lena and Changeux 1997; MacDermott

et al. 1999). Selective loss of cholinergic neurons in the nAcb

in schizophrenia and Alzheimer’s disease has also been dem

onstrated (Hok et al. 1999; Lehéricy et al. 1989).

In the nAcb, LA neurons establish synaptic contacts with

MS neurons (Contant et al. 1996) as well as with glutamatergic

terminais (Meredith and Wouterlood 1990). The action ofACli

is mediated by nicotinic and muscarinic receptors, which are

both present in substantial amounts in the nAcb and dorsal

striatum (Bernard et al. 1992; Clarke et al. 1984; Court and

Perry 1995; Hersch and Levey 1995; Hersch et al. 1994; Levey

et al. 1991; Schuiebs and Robner 1995). Consistent with the

cellular location of cholinergic muscannic receptors (Wei et al.

1994), ACh has been found to modulate glutamatergic neuro

transmission in MS neurons by acting on presynaptic musca

rinic receptors (Pennartz and Lopes da Silva 1994; Sugita et al.

1991) and to increase the excitability of MS neurons by acting

on muscarinic postsynaptic receptors (Sugita et al. 1991;

Uchimura and North 1990). The role of nicotinic receptors in

modulating the activity of MS neurons lias flot been investi

gated.
It has been proposed that the major role of nicotinic cholin

ergic receptors in the CNS, including the nAcb, is to modulate

synaptic transmission by controlling neurotransmitter release

rather than by exerting direct postsynaptic actions (Gray et aï.

1996; MacDermott et al. 1999; McGehee et al. 1995; Wonna

cott 1997). Nicotine has been found to facilitate the release of

diverse neurotransmitters, including GABA (Guo et al. 1998;

Léna et al. 1993), glutamate (Fisher and Dani 2000; Girod et al.

2000; Guo et al. 1998; McGehee et al. 1995; Radcliffe and

Dani 1998; Toth et al. 1993), ACh (McGehee et al. 1995),

dopamine (Auta et al. 2000; Puttfarcken et al. 2000; Rapier et

al. 1988, 1990; Sharpies et aI. 2000), and 5-HT (Reuben and

Clarke 2000). Whereas nicotine can enhance glutamatergic

neurotransmission, it has also been found to differentially

modulate AMPAIKA and NMDA receptor-mediated synaptic

transmission (Aramalds and Metherate 1998). In the striatum,

including the nAcb, nicotine has been found to increase neu

ronal glutamate release (Kaiser and Wonnacott 2000; Reid et

al. 2000; Toth et al. 1992, 1993). The presence of nicotinic

receptors on glutamatergic terminais in the nAcb is also sup

ported by the fact that glutamatergic neuronal populations

known to project to the nAcb express high levels of several

nicotinic receptor subunit mRNAs, whereas a comparatively

low expression of these subunits is found in the nAcb itself

(Quik et al. 2000; Wada et al. 1989, 1990).

The goal of the present study was to understand how ACh,

through an action on both muscarinic and nicotinic receptors,

modulates glutamatergic neurotransmission in the nAcb. Our

findings suggest that ACh acts on both muscarinic and nico

tinic presynaptic receptors to moduïate glutamatergic neuro

transmission, but whereas muscarinic receptor activation de-

presses excitation, nicotinic receptor activation enhances

glutamatergic neurotransmission. Parts of the present study

have appeared in abstract form (Zhang and Warren 2000).

M E T H O D S

Suce preparation

The procedures used to obtain nAcb suce preparation have been
described elsewhere (Bel]eau and Warren 2000). Briefly, 400-im
parasagittal suces containing the nAcb were obtained from rat pups on
the day following birth (Pi) up to P27. Slices were incubated for at
least Ï h before recording was undertaken in a submerged-type cham
ber superfused with room temperature (22—25°C) artificial cerebro
spinal fluid (ACSf) containing (in mM) 126 NaCI, 26 NaHCO3, 10
dextrose, 3 KC1, 1.3 MgSO4, 2.5 CaCI2, and 1.25 NaH2PO4 with a pH
of 7.4 when bubbled with a gas mixture of 95% 02-5% C02. The
nAcb was visualized with a stereo microscope using the anterior
commissure, the neostriatum, the septum, and the ventricles as land-
marks based on Paxinos and Watson (1986).

Recordiitg

Whoie ceil recording was achieved using the blind patch-clamp
technique (Blanton et al. 1989). Pipettes were pulled from thin wall
borosilicate capillary glass with a P-$7 micropipette puller (Sutter
Instrument). The pipettes had a resistance of 3—5 Mfi when fihled with
a solution containing (in mM) 140 potassium gluconate, 2 MgCI2, 0.1
CaCl2, 1.1 EGTA, 10 HEPES, 2 K2-ATP (ATP), and 0.5 guanosine
trisphosphate (GTP). Biocytin (0.3%) and QX-314 (2 mM; Alomone
Labs) were routinety added to the recording solution to label recorded
neurons and to minimize voltage-sensitive Na channels generating
action potential, respectively. The pH of the recording solution was
adjusted to 7.3 with $N KOH solution, and its final osmolarity was
adjusted to 285—290 mosmollkg. Neurons were recorded in continu
ous single-etectrode vottage-clamp mode with an Axoclamp 2B am
plifier (Axon Instruments). The output of the amplifier was fed to a
LPF 200A DC amplifier/filter (Warner Instruments) and digitized at
0.5—10 kHz with a real-time acquisition system Digidata 1200 (Axon
Instruments). Data acquisition was achieved using the pClamp 6.0
software (Axon Instruments), and off-une analysis was performed

with pClamp 6.0 and Cambndge Electronic Design softwares. The
resting membrane potential (RMP) was measured as soon as the
whole cdl configuration was achieved, and the offset potential, mea
sured on withdrawal of etectrode from the celi, was accounted for

assuming that it drifted in a linear fashion with time from the start of

the recording session. A — 10-mV correction for liquid junction po
tential was routinely added to membrane potential measurements

(Spigelman et al. 1992).

Synapric stimulation

Excitatory postsynaptic currents (EPSCs) were evoked by means of

a monopolar tungsten microelectrode placed close to the border of the

nAcb, 0.5—1.0 mm away from the recording electrode. The stimuli

consisted of single 0.l-ms, 3- w 6-V cathodal pulses delivered at 15-s

intervals. Paired-pulse stimulation with the same parameters and

separated by 50 ms were used in some experiments to distinguish

between pre- and postsynaptic mechanisms. Ail experiments were

performed with bicuculline methochloride (BMI) 10 M present in

the superfusing medium solution to block GABAA receptor-mediated

synaptic currents aiid to isolate glutamatergic-mediated EPSCs

(Zhang and Warren 1999). Under these conditions, the addition of

glutamatergic antagonists completely abolished synaptic responses

(e.g., Fig. 1), and in no cases did we observed evidence that the

stimulus directly activated the neuron under study. In ail experiments,

the membrane potential was clamped on-line at —70 mV, and the

EPSCs were recorded at potentials between —100 and +40 mV using

incremental steps of 20 mV.
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mV
-120-10 -80 -50 -40 -20

-200

—•— Control
—‘V— CNQX
—— CNQX+APV

FIG. I. Nature of the excitatory postsynaptic current (EPSC) evoked by
local electrical stimulus in the presence of bicuculline methochlodde (BMI, 10
M). A: current traces of the response evoked by single local electrical
stimulus and recorded at holding membrane potentials of —40 and —100 mV
before glutamatergic antagonists application (1) and during superfusion with
6-cyano-7-nitroquinoxalene-2,3-dione (CNQX; 20 jiM; 2) and CNQX and
2-amino-5-phosphonovaleric acid (APV; 50 jiM; 3). Recordings were obtained
in a medium spiny (MS) neuron from a P3 animal. Current traces represent the
average of $ sweeps. B: current-voltage relationship of Oie response f’R”m)
between — 120 and 20 mV. The early component was measured 9 rus after Oie
stimulus as indicated in A, left vertical dotted line. The late component was
measured 43 ms after the stimulus as indicated in A, right vertical dotted line.

Phannacological agents

The following phannacological agents were used: 6 cyano-7-nitro-
quinoxaline-2,3-dione (CNQX; 20 iM), (+)-2-amino-5-phosphono-
pentanoic acid (APV; 50 j.tM), carbachol (CCh; 50 jiM); ACh (100
jtM); atropine sulfate (10 M); pirenzepine HC1 (10 M); 1,1-
dimethyl-4-phenyl-pïperazinium iodide (DMPP; 10 MM); mec
amylamine HC1 (MMA; 10 LM). CNQX and APV were obtained
from Tocris Cookson; Ccli, atropine, pirenzepine, DMPP, and
mecamylamine were from Research Biochemicals International; and
ACh was from Sigma. Drngs, with the exception of CNQX, which
was dissolved in dimethlysulfoxide (DMSO), were made up as 10 mlvi
stock solutions in dîstilled water (ACh on the day of use) and diluted
with external solution to final concentration just before their addition
to the perfusion medium. The final concentration of DMSO during
CNQX administration was 0.1%. Under our expenmentai conditions,
the fui] effect of choiinergic agonists on the response occurred 5—7
min following their addition to Oie bathing medium and no recording
was made before a drug had been perfused for at least 15 min.
Antagonists were added to Oie superfiising medium at least 15 min.
and then a baseline was recorded before the addition of agonista. In
several cases atropine was present in Oi ACSf throughout Oie ex
periment. The suce was superfused with control ACSF for at least 30
min to allow washout of a drug before a new baseline was recorded.
In some experiments, suces were incubated for 2 h in Oie presence of
Oie antagonist (mecamylamine) prior to experimentation to enable full
penetration of the dmg into Oie slice. Synaptic currents were stored as
Oie on-une average of four to eight events at each membrane potential
before, during, and after drug administration.

Statistics

Statistical analysis was performed with SigmaStat software (SPSS)
using paired Student’s t-test to compare Oie response before and

during the application of agonists and antagonists. Probability values
of <0.05 were considered statistically significant. Ail numerical data
are expressed as means ± SE. Neurons that could flot be unambigu
ously classified as MS based on their physiological characteristics
(Belleau and Warren 2000) and morphological appearance were ex
cluded from statistical analysis.

RESULTS

Whole celi voltage-clamp recording was obtained from 127
MS neurons in suces from rats between Pi and P27. Most ceils
(n = $6) were recofded in preparations from P5 to P15 ani

° mais, a time frame dunng which relatively large NMDA
mediated responses can be more readily evoked (Zhang and
Warren 1999). The membrane and firing characteristics of MS

-50 neurons were similar to those previously reported for animais
of comparable age (Belleau and Warren 2000). In addition, 79

-100 neurons fiiled with biocytin were examined under light micros
pA copy and displayed features that have been previously attrib

-150 uted to MS neurons from animais of similar age (Tepper et al.
199$).

Characteristics of gtutamatergic EPSCs

Typicaily, postsynaptic currents evoked by local electrical
stimulation in the presence of Oie GABAA receptor antagonist
BMI consisted of a compound glutamatergic EPSC comprising
an early and a late component mediated, respectiveiy, by Oie
activation of AMPAIKA and NMDA receptors (Fig. 1). We
characterized postsynaptic EPSCs in 91 neurons; the EPSC in
79 displayed an early and a late component, whereas only an
early component was found in the remaining 12.

The eariy EPSC peaked bctween 3.6 and 21 ms. after stim
ulus onset at a holding membrane potential of —100 mV, had
a linear relationship with Oie membrane potential and reversed
around O mV (n = 91). In contrast, Oie maximal amplitude of
Oie late EPSC occurred much later, was usually observed at
holding membrane potentiais of —20 or —40 mV, displayed a
nonlinear relationship with voltage, and aiso reversed around O
mV (n = 79).

Figure 1 shows a representative example of an EPSC re
corded in a preparation from n P3 animal on which specific
glutamatergic antagonists were tested. During the control pe
riod (Fig. lAi), the early EPSC peaked 9 ms. after the stimulus
onset at a holding membrane potential of —100 mV, and Oie
response decayed to baseline within 35 ms. The current voltage
relationship (IVm) of Oie early EPSC was linear at membrane
potentiaus between —80 and 20 mV, but Oie response appeared
to saturate at membrane potentials below —80 mV (Fig. lB]).
Bath application of Oie AMPA/KA receptor antagonist CNQX
completely abolished Oie early component of Oie FPSC, and
there was virtua]ly no residual postsynaptic current at ail mem
brane potentials at Oie latency the early response was measured
(Fig. 1, A2 and Bi).

The late component, measured after Oie early component
had decayed, increased at membrane potentiais between —100
and —40 mV and reached its maximum usualiy at —40 or —20
mV. At more depolarized membrane potentials, it decreased
and reversed pouarity around O mV (Fig. 1, A and B, 2), a
current-voltage relationship typical of NMDA receptor-medi
ated current. The further addition of the NMDA receptor
antagonist APV to the superfusing medium compuetely abo]

1. Control
A

B

2.CNQX 3.CNQX÷APV

1. Early 2. Late

50
mV

-120 -100 -80 -60 -40 -20

-50

-100

-150
pA
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ished the late EPSC (Fig. 1A3), demonstrating that it was

mediated by NMDA-type receptors. In the presence of CNQX

alone, the NMDA receptor-mediated EPSC was recorded in

isolation showing that measurements of the Ïate component of

the EPSC made on the compound EPSC were close to the peak

of the NMDA-mediated EPSC and represented mostly NMDA

receptor-mediated current (Fig. 1A2). Also, note there was no

residual postsynaptic current in the presence of CNQX and

APV, showing that glutamatergic EPSCs were effectively iso

lated by the addition of BMI to the superfusing medium.

CNQX and APV were tested together in four other fleurons

producing similar resuits. In addition, CNQX and APV were

tested individually in 17 and 14 neurons, respectively, produc

ing an inhibition of the early and late components of the

response of 91 ± 2 and 85 ± 5%.
In most neurons, the effects of cholinergic agonists and

antagonists were assessed at holding membrane potentials usu

ally between —100 and 40 mV in steps of 20 mV. The

AMPAIKA-mediated EPSC was measured at the peak of the

early component of the EPSC at a holding membrane potential

of —100 mV, when the amplitude of the late component was
minimal (Fig. lA, left vertical dotted unes), whereas the effects

on NMDA receptor-mediated currents were measured at a

latency at which the early component recorded at a holding

A Effects of CCh

membrane potential of —100 mV had decayed (Fig. lA, right
vertical dotted unes).

Effects of chotinergic agonists

The addition of the general cholinergic agonists ACh or CCh
to the superfusing medium in the presence of BMI typically
produced a decrease of both the early and late components of
the EPSC. A representative example of this effect is shown in
Fig. 2A. In this case, the amplitude of the early and late
component of the EPSC recorded at —100 and —20 mV,
respectively, was reversibly reduced by 38 and 40% dunng the
application of CCh. Similar results were observed in 15 other
neurons, while CCh produced no effects on the EPSC in one
case. The effects of CCh on the early and late components of
the EPSC as a function of holding membrane potential are
summarized in Fig. 28. The amplitude of the early component

of the EPSC was significantly reduced at holding membrane

potentials between —100 and —20 mV by an average of

39—46% (n = 16). The magnitude of the effect of CCh on the
early component of the EPSC did flot vary significantly with

holding membrane potential (F = 0.220, P 0.926, df = 4,).
No significant changes were observed at more positive mem

brane potentials because the EPSCs were small and the ampli

tudes were more variable. CCh also produced a reduction of

99

3. Wash 4. 1 + 21. Control 2. CCh

-2OmV

-lOOmV

5Oms

B EffectsofCCh
1. Early response 2. Late response

mV
-60 -40 -20 Max. 20

C Effects of ACh

*

* n=14

—.-— Control
*

—o-— CCh *

no. 2. Effect of cholinergic agonists on the EPSC. A: current

traces of the tesponse evoked by single local electrical stimulus

tecorded at holding membrane potentials of —20 and — 100 mV

before (1), during (2), and after (3) superfusion with carbachol

(CCh, 50 jcM). 4: the overlay of the responses before and during

CCh application. Current traces represent the average of 8

sweeps. BMI (10 rM) was present in the superfusing medium

throughout recording. Recordings were obtained from a MS

fleuron in a preparation from a P8 animal. Left and right vertical

100 arrows in I indicate where the early and late responses were

respectively measured. B: average IRV,,, of the early (n = 16; 1)

50 and late (n 14; 2) recorded before and during superfusion with

CCh. C: average IRVm of the early (n = 28; 1) and tate (n = 26;

2) components of the EPSC recorded before and during super-

fusion with acetylchoiine (ACh). In 2 neurons tested with CCh

and 2 tested with ACh, the EPSC consisted only of an early
-50

A
component, and these were included in the average of the early

component. The JVm of the late response were aligned on the

-100 holding membrane potential at which the response was maxi

mum before averaging (usually at —20 or —40 mV). Astedsk

indicates a statistically significant difference between control and

agonist treatment at this holding membrane potential (Student’s

t-test, P < 005).1. Early response

mV
-tOO -80 -60 -40 -20

2. Late response
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the late component of the EPSC, which generally appeared to
be of larger magnitude than that observed on the early com
ponent, averaging 45—72% (n = 14) at holding membrane
potentials at which a statistically significant effect was ob
served. Indeed, the effect of CCh was statistically smaller on
early responses recorded at —100 mV than on late responses
measured at their maximal amplitude (inhibition of 45 ± 5 and
66 ± 6%, respectively; t 3.40$, P 0.002, df = 2$).

ACh (100 JLM) was tested in 33 neurons; it produced a
reduction of the EPSC in 28 celis and no change in the
remaining 5. The inhibitory effects of ACh appeared smaller
than those produced by CCh on the early component of the
EPSC (Fig. 2C1), ranging from 29 to 38% (n 28), although
the difference was flot statistically significant at any membrane
potential (0.418 t .667, 0.1 P 0.678, df = 42). As
observed for CCh, the magnitude of the effects of ACh did flot
vary significantly with holding membrane potenfial (F
0.700, P 0.594, df = 4). The effects of ACh on the late
component of the EPSC ranged from 26 to 44% at membrane
potentials at which a significant inhibition was observed (Fig.
2C2). No significant difference was found between the effect
of ACh on the late component at the membrane potential at
which the responses were largest and on the early component
recorded at —100 mV of the EPSC (inhibition of 44 ± 4 and
38 ± 5%, respectively; t = 0.866, P 0.396, df 52),
although the effect of ACh on the late component of the
response was significantly smaller than that produced by CCh
(t = 2.779, df = 38, P 0.008; 44 vs. 68%, respectively) at
the membrane potential at which the late EPSC was largest.

b validate our experimental assumption that the effects of
cholinergic agonists on the early and late components of the
EPSC accurately represented the effects on AMPA/KA and
NMDA receptor-mediated EPSCs, we studied the effects of
ACh on pharmacologically isolated AMPAIKA and NMDA
mediated EPSC using APV (50 tM) and CNQX (20 p.M),
respectively. In these experiments, ACh produced an inhibition
on AMPAJKA and NMDA receptor-mediated EPSCs of a
magnitude comparable to the effects observed on the early and
tate components of the compound EPSC. The AMPAIKA
receptor-mediated EPSC peak was reduced by 40—45% at
membrane potentials between —100 and —20 mV (n = 7; Fig.
3A) and the NMDA receptor-mediated current by 61% at the
membrane potential at which the response was the largest (n
4; Fig. 35), thus confirming the observations made on com
pound EPSCs. In general, the effects of CCh and ACh were
fully reversible after 10—30 min of washing with control
ACSF.

Together, these results indicate that the activation of cholin
ergic receptors results in a net depression of both AMPAJKA
and NMDA receptor-mediated EPSCs in nAcb MS neurons,
whereas in some cases, the inhibition appeared larger on the
NMDA than on the AMPAIKA mediated response.

Effects of muscarinic receptor antagonists

To identify the type of receptors mediating the inhibitory
action of cholinergic agonists, ACh was administered along
with specific cholinergic receptor antagonists. We first tested
the effects of the general muscarinic receptor antagonist atro
pine (10 M). When administered alone, atropine produced an
increase in both tise early and late components of the EPSC in

—e— Control (APV)

—O-- ACh

—e-— Control (CNQX)

—O— ACh

FIG. 3. A: average IR•Vm of the AMPA/KA receptor-mediated EPSC re
corded in the presence of APV (50 M) and BMI (10 jcM) before (control) and
during (ACh) the addition of ACh (100 M) to the superfusing medium (n
7). B: average peak response of the N-methyl-D-aspanate (NMDA) receptor
mediated EPSC in the presence of CNQX (20 jM) and BMI (10 iM) before
(control) and during (ACh) the addition of ACh (100 jcM) to the superfusing
medium (n = 4). , a statistically significant difference between control and
agonisÉ treatment at this holding membrane potential (Student’s t-test, P <

0.05).

five cells tested (Fig. 4A), suggesting that endogenous ACh
produced a significant inhibition of the EPSC in our prepara
tion. Interestingly, when concomitantly applied with atropine,
ACh produced a further enhancement of the EPSC in most
neurons tested instead of a decrease, as observed when general
cholinergic agonists were administered alone.

figure 43 shows an example of the effects produced by ACh
administered in the presence and absence of atropine. In this
case, atropine was first added to the superfusing medium for 15
min (Fig. 43]) and, when ACh was added, a significant en
hancement of both the early and late components of the EPSC
was obsen’ed (Fig. 432). Following the washout of atropine,
the same dose of ACh produced a significant decrease of the
EPSC (Fig. 453) as compared with the atropine period and
following the washout of ACh (Fig. 434).

The effects of ACh in the presence of atropine were tested in
18 neurons; a significant enhancement of the early component
of the EPSC averaging 33% was observed in 13 (72%) neu
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mV 25
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-25

- -150 —.— Control
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rons, -whereas ACh in the presence of atropine produced no

significant change in the remaining 5 (fig. 4C). Similarly, the

late component of the response was increased by an average

36% (at the membrane potential at which the response was

largest) in eight of fine neurons tested, with no significant

change observed in the remaining celi. Because ACh alone

reduced the amplitude of evoked EPSCs whule producing an

increase when given in combination with atropine, we con

cluded that muscarinic receptor activation mediated inhibitory

effects that masked an excitation possibly mediated by nico

tinic receptors.
To identify the pharmacologicai type of muscarinic recep

tors mediating the inhibitory effects of cholinergic agonists, we

tested the effect of CCh in the presence of the M1/M4 receptor

antagonist pirenzepine. In three of four cases, CCh applied in

the presence of pirenzepine (10 M) produced no effect on the

early component of the EPSC (110 ± 10%) whiie it produced

an increase of the early response of 70% in the remaining case.

following washout of pirenzepine (103 ± 12% of control),

CCh alone produced n significant decrease in ail four celis

relative to controi (—33 ± 5%). CCh in the presence of

pirenzepine produced similar effects on the late response: an

increase was observed in two ceils (24 and 31%, respectively),

but no significant change in a third one. Following washout of

pirenzepine (iii ± 14% of controi), CCh alone produced a

decrease in the late response of 36—53% in the three neurons

tested. In conclusion, pirenzepine appeared to mimic the an-

FIG. 4. Effects of the muscarinic receptor antagonist atro
pine on ACh inhibition of the EPSC. A: average IRVm of the
early (n = 5; 1) and late (n = 5; 2) components of the EPSC
recorded before and during superfusion with atropine (10

.rM). Asterisk, statistically significant difference between con-

trot and atropine treatment at Éhis holding membrane potential

(Student’s t-test, P < 0.05). The increases produced by atro

pine ranged from 35 to 46% on the early response and were of

54% on the late response. B: current traces of the response
evoked by single local electrical stimulus recorded at holding

membrane potentials of —20 and —100 mV during superfu

sion with atropine (10 sM; 1), with atropine and ACh (100

j.rM; 2), with ACh following washout of atropine (3) and

following washout of ACh (4). Current traces represent Ihe

average of 8 sweeps and BMI (10 M) was present in the

superfusing medium throughout recording. Recordings were

obtained from a MS neuron in a preparation from a P5 animal.

Left and right vertical arrows in BI indicate where the early

and late responses tvere measured, respectively. C: average

IRV of the early (n = 13; 1) and late (n = 8; 2) components

of the EPSC recorded during superfusion with atropine and

atropine with ACh. In 5 neurons, the EPSC consisted only of

an early component and these were included in the average of

the early component. The IgVr,, of the late response was

aligned on the holding membrane potential at which the re

sponse was maximum before averaging (usually at —20 or

—40 mV). Asterisk, a statistically significant difference be

tween atropine and atropine with ACh treatment at this holding

membrane potential (Student’s t-test, P < 0.05).

tagonistic effects of atropine, suggesting that the M11M4 recep

tor mediated much of the inhibitory effects of cholinergic
agonists.

Effects of the nicotinic receptor agonist

b corroborate the existence of nicotinic receptor-mediated

modulation of excitatory neurotransmission in the nAcb, we

tested the specific nicotinic agonist DMPP (10 jiM) with

atropine (10 jM) present in the bathing medium throughout

the expenments. DMPP was tested on both the composite

EPSC (n = 9) and pharmacoiogically isolated AMPAJKA (n

7) and NMDA (n = 4) receptor-mediated responses. Data from

the two types of experiments were combined because simiiar

results were obtained. As shown in a characteristic example in

Fig. SA, DMPP produced an enhancement of the EPSC that

was simiiar to the one observed with ACh and CCh adminis

tered in the presence of atropine. DMPP increased the ampli

tude of the eariy AMPA/KA component of the EPSC in 13 of

the 16 neurons (8 1%) tested and that of the late component in

12 of 13 neurons (92%) by an average of 37 ± 4% (19—80%)

and 59 ± 8% (1$—107%), respectively. Resuits are summa

rized in fig. 53. Statistically significant effects were observed

at membrane potentials below —40 mV for the eariy response

and only at the membrane potentiai at which the late response

was maximal for the iate responses. The effect of DMPP was

statisticaily iarger on the maximum of the late component of
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1. Atropine 2. DMPP + Atropine 3. DMPP Wash 4. 1 + 2
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the EPSC than on the eariy one recorded at a holding mem
brane potenfial of —100 mV (t5 = 2.423, df = 23, P = 0.024).
DMPP was aiways administered in the presence of atrophie,
showing that the enhancements were independent of musca
rinic mechanisms. In addition, DMPP produced no changes in
either the early or late components of the EPSC in four neurons
when administered in the presence of the nicotinic receptor
antagonist mecamylamine (Fig. 5C).

Effects of ACh as function ofpostnatal age

We have recorded neurons from Pi to P27 animais, but most
celis were recorded in preparations from P5 to P15 animais,
and only with ACh we recorded a significant number of neu
rons over a range of postnatal ages sufficient to perform a
developmentai analysis (P3—P15, n = 33). The magnitude of
the inhibition produced by ACh as a function of postnatal age
is presented in Fig. 6 for both the early and late responses. The
effects of ACh on the early component of the EPSC did flot
change with postnatal age, but those on the iate component
increased significantly during the first two postnatal weeks. In

the same group of neurons, we found no statisticaily significant
changes in the amplitude of either the early (r = 0.135, df
26, P 0.492) or late (r 0.073, df = 24, P = 0.72 1)
component of the EPSC.

Locus of the cholinergic modulations of evoked EPSCs

To identify the iocus (pre- or postsynaptic) of action of
choiinergic agonists, we compared several features of our
recordings in the presence and absence of cholinergic agonists.
Dur evidence suggests that the effects produced by both mus
carinic and nicotinic agonists were exciusiveiy mediated by
presynaptic mechanisms in the present study. First, we ob
served that ACh, DMPP, or ACh in the presence of atropine
did not consistently produced changes in the holding mem
brane current at holding membrane potential between —100
and +40 mV (Fig. 7), suggesting that cholinergic agonists
produced no change in input conductance. Similar results were
obtained using steady-state current-vokage curves generated
by slow voltage ramps between —100 and +40 mV (not
shown). Second, ACh produced no change in the decay time
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Ï
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2. Mecamylamine 3. DMPP Wash 4. 1 + 2
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FIG. 5. Effects of nicotinic agonist and antagonist on tise
early and laie EPSCs in tise presence of atropine. A: current
traces of tise response evoked by single local electrical Stim

ulus recorded at holding membrane potentials of —40 and
—100 mV before (1), during (2), and after (3) superfusion
with the nicotinic receptor agonist 1,1-dimethyl4-phenyl-
piperazinium iodide (DMPP; 10 1iM). 4: tise overlay of tise
responses before and during DMPP application. Current
traces represent the average of $ sweeps and BMT (10 M)
and atropine (10 M) were present in tise superfusing me
dïum throughout recording. Recordings were obtained from a
MS fleuron in a preparation from a P14 animal. Left and right
vertical arrows in I indicate where tIse early and late te
sponses were measured, respecfively. B: average IRVm of tise
early (n = 13; 1) and late (n = 12; 2) components of tise
EPSC in which DMPP produced an increase of tise response
and fecorded before and during superfusion with DMPP. Tise
‘R4”m of the late response was aligned on the holding mem
brane potential ai which tise response was maximum (usually
at —20 or —40 mV) before averaging. In 1 fleuron, tise EPSC
consisted only of an early component and it was included in
tise average of tise early componenc Tise IRVm of tise late
response was aligned on the holding membrane potential at
wisich tise response was maximum before averaging (usually
ai —20 or —40 mV). Astensk, s statistically significant
difference between atropine and DMPP + atropine treatment
at this holding membrane potential (Student’s t-test, P <

0.05). C: current traces of tise response evoked by single local
electrical stimulus recorded at holding membrane potenfials
of —40 and —100 mV during superfiision with
mecamylamine (1), mecamylamine and DMPP (2), and after
washout of DMPP (3). 4: tise overlay of the responses dudng
mecamylamine and mecamylamine with DMPP application.
Recordings were obtained from a MS neuron in a preparation
from a P6 animal. Other conventions are the same as in A.
Tise scale bars in A also apply to C.
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(T) of the evoked EPSC measured by fitting a single exponen
tial to the isolated AMPA response (i.e., recorded in the pres
ence of APV) at holding membrane potential of —100 mV
(12.2 ± 1.4 and 13.2 ± 1.9 ms during control and during ACh
administration, respectively, n = 7, P > 0.4) or —40 mV
(12.6 ± 1.3 and 13.3 ± 1.6 ms during control and during ACh
administration, respectively, n = 7, P> 0.7). Third, we used
a paired-pulse protocol with a 50-ms interval between stimuli
to discriminate between pre- and postsynaptic mechanisms
(d’Alcatara et al. 2001; Hoffman and Lupica 2001; Mulder et
aI. 1996, 1997; Pennartz et al. 1991; Robbe et al. 2001; Zucker
1989). We found that the ratio (PPR; 2nd EPSC amplitude/lst
EPSC amplitude) significantly changed during administration
of agonists, thus suggesting presynaptic mechanisms. In the
presence of ACh (n = 7), the amplitude of the first and second
evoked EPSCs both decreased, but the second response de
creased b a larger extent, resulting in a decrease in the PPR
(Fig. sA). In contrast, during the application of DMPP (n = 6),
the amplitude of evoked EPSCs increased but the second
response increased more, resulting in an increase in the PPR
(Fig. SB). Fourth, we found that ACh produced no effects on
the response evoked by pressure ejection of glutamate in the
vicinity of neurons in the presence of tetrodotoxin (TFX; fig.
$C). Together, these results suggest that under the present
experimental conditions muscarinic and nicotinic receptors
agonists produced no detectable postsynaptic effects in the

nAcb and that the present resuits reflect an action on presyn
aptic receptors.

Several studies in the nAcb and dorsal striatum have de
scribed direct postsynaptic effects on the passive and/or active
membrane properties of MS neurons mediated by muscarinic
receptors (Gabel and Nisenbaum 1999; Galarraga et al. 1999;
Hsu et al. 1996, 1997; Pineda et al. 1995; Sugita et al. 1991;
Uchimura and North 1990; see also Pennartz and Lopes da
Silva 1994) consistent with the distribution of muscarinic re
ceptor (Bemard et al. 1992; Weiner et al. 1990; Yan and
Surmeier 1996). Several factors could explain the discrepan
cies between these studies and the present resuits, including the
fact that we used whole celi patch clamp recording and that
experiments were performed at room temperature. We found
that under the present expenmental conditions, cholinergic
agonists produced a direct effect on the membrane andJor finng
properties of MS neurons when QX-314 was omitted from the
pipette solution, figure 8D shows an example of the effects
produced by CCh (50 M) under these conditions. In this case,
CCh produced a membrane depolarization of 21 mV. Intracel
lular depolarizing current pulse that was subthreshold during
control readily evoked spiking when CCh was added to the
bath, and the number of action potentials increased in response
to suprathreshold current injection. These resuits suggest the
that the presence of QX-314 into the recording pipette oc
cluded the postsynaptic effects mediated by muscarinic recep
tors.

DISCUSSiON

We have studied the effects of cholinergic agonists on iso
lated EPSCs in nAcb MS neurons. Broad-spectmm cholinergic
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ito. 6. Effects of ACh as a function of postnatal age. A: magnitude of the
inhibitory effects of ACh on the early component of the EPSC recorded at a

holding membrane potential of —100 mV as a function of postnatal age (n =

28). No statistically significant correlation was found between the magnitude
of the effects of ACh and postnatal age (r = 0.265, df = 26, P = 0.172;

“

B: magnitude of the inhibitory effects of ACh on the late component of the
EPSC at tise holding membrane potential at which the response was maximal

as a function of postnatal age (n = 26). A statistïcally significant correlation

was found between the magnitude of the effects of ACh and postnatal age (r =

0.556, df =24, P 0.003; —). ., the effect observed for individual neuron in
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FIG. 8. Locus of the effects of cholinergic agonist on EPSCs.
A: effects of ACh on PPR. Current traces of the responses
evoked by a pair of single local electrical stimuli 50 ms apart at
holding membrane potentials of —100 mV before (1) and during
(2) superfusion with ACh (100 jiM). 3: tIse overlay of the
responses before and during ACh application; tIse amplitude of
the 1 st response in the presence of ACh was scaled tu match tise
amplitude of die lst response during control. Note that tIse 2nd
response proportionalty decreased more than the isi response in
die presence of ACh and diat there is no apparent changes in die
time course of die EPSCs. Current traces represent die average
of 8 sweeps and BMI (10 .rM) was present in the supeffusing
medium throughout recording. 4: die average amplitude of die
PPR from 7 neurons before and during superfusion widi ACh.
PPR was statistically larger in die presence of ACh dian during
control condition (t = 3.045, df 6, P = 0.023). B: effects of
DMPP on PPR. Conventions are die same as in A. Note that die
2nd response proportionatly increased more than the lst re
sponse in die presence 0f DMPP and diat there is no apparent
changes in die time course of die EPSCs. PPR vas statistically
larger in tise presence of DMPP than during control condition
(t = 3.660, df = 5, P = 0.015). C: current traces of tise response
evoked by local pressure ejection of glutamate (1 mlvi) from a
patch pipette before (1) and during (2) superfusion with ACh
(100 M) at a holding membrane potential of —100 mV in die
presence of tetrodotoxin (1 jrM) and BMI (10 jM). 3: die
overlay of die responses recorded in] and 2. 4: the amplitude of
die peak response recorded at a holding membrane potential of
—100 mV for 3 neurons before and during supcrfusion widi
ACh. D: effect of die cholinergic agonist carbachol on die
membrane and firing properties of MS fleurons. Voltage Te
sponses evoked with intracellular current pulses of 15 (top) and
75 pA (bottom) from resting membrane potential before (]),
during (2), and afier (3) tise addition of carbachol (50 rM) to die
superfusing medium. In dis case, die addition of carbachol
produced a 21-mV depolarization of the membrane potential.
Recordings were obtained under die same experimental condi
tions as die other neurons in die present study widi tise exception
that QX-3 14 was omitted from the pipette solution.

agonists ACh and CCh produced a reduction of both
AMPA/KA and NMDA receptor-mediated components of the
EPSC. In contrast, in the presence of the muscarinic receptor
antagonist atropine, cholinergic agonists produced an increase
of the EPSC, suggesting that the inhibition of the EPSC was
mediated by muscarinic cholinergic receptors and that, under
the present expenmentaÏ conditions, an excitatory effect me
diated by nicotinic cholinergic receptors was masked by mus
carinic-mediated inhibition. The effects of atropine were gen
erally mimicked by the antagonist pirenzepine, suggesting that
the inhibitory effects of cholinergic agonists were mediated in
part by M11M4 type of muscarinic receptor. DMPP, a specific
nicotinic receptor agonist, produced an enhancement of the
EPSC. However, this effect was blocked by mecamylamine,
demonstrating the presence of a modulation of the EPSC
mediated by nicotinic receptors. Cholinergic agonists appar
ently produced no postsynaptic effects, but produced consistent
changes in the paired-pulse ratio. Conversely, they produced
no effects on responses evoked by brief glutamate ejection in
the vicinity of the recorded neurons in the presence of TfX,

showing that the cholinergic agonists were acting on presyn
aptîc receptors, probably located on glutamatergic terminals.
Because cholinergic agonists produced direct effects on the
membrane and firing properties of MS neurons when QX-3 14
was omitted from the pipette recording solution, intracellular
QX-314 could constitute an interesting pharmacological tools
for studying presynaptic mechanisms. Together, these resuits
suggest that ACh modulates glutamatergic neurotransmission
by decreasing glutamate release via an action on pfesynaptic
muscarinic receptors or by increasing glutamate release via
nicotinic receptors. These contrasting effects of ACh on single
neurons emphasizes the complexity of cholinergic modulation
of glutamatergic neurotransmission in the nAcb. In addition to
its presynaptic effects on glutamatergic neurotransmission,
ACh produces a direct modulation of the membrane and firing
properties of MS neurons and is also known to modulate the
release of other neurotransmitters in the nAcb. We suggest that
ACh may play an important role in the nAcb by gating gluta
matergic excitation. This function may be important for syn
apse formation and consolidation during postnatal develop
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ment as weIl as in controlling MS neurons membrane
bistability in mature nAcb.

Locus of cholinergic receptors

Our resuits suggest that both muscannic depression and
nicotinic potentiation of EPSCs were mediated by an action on
cholinergic receptors located on giutamatergic terminais. We
found that neither CCh and ACh or DMPP altered the input
conductance nor changed the time course (the hse or decay
phase) of EPSCs. Cholinergic agonists also produced consis
tent changes in the paired-pulse ratio in agreement with an
action mediated by presynaptic mechanisms (d’Alcatara et al.
2001; Hoffman and Lupica 2001; Mulder et al. 1996, 1997;
Pennartz et al. 1991; Robbe et al. 2001; Zucker 1989). fur
thermore, ACh produced no effects on the response evoked by
exogenous glutamate dunng blockade of synaptic transmission
with TTX. In contrast, CCh produced marked effects on the
membrane and firing properties of MS neurons when QX-314
was omitted from the pipette recording solution. We conclude
that the modulation of EPSCs by cholinergic agonists was
mediated by presynaptic mechanisms. Our findings are in
general agreement with studies on the effects of muscarinic
agonists on glutamatergic neurotransmission in both the nAcb
(Pennartz and Lopes da Silva 1994; Sugita et al. 1991) and the
dorsal striatum (Akaike et aI. 1988; Barrai et al. 1999; Her
nandez-Echeagaray et al. 1998; Hsu et aI. 1995; Malenka and
Kocsis 1988), whereas, to our knowledge, there have been no
reports on the modulation of glutamatergic neurotransmission
by nicotinic receptor in either structure.

In agreement with Pennartz and Lopes da Silva (1994), we
observed no changes in the passive membrane properties of
MS neurons in the presence of cholinergic agonists, whereas
several studies on the nAcb and dorsal striatum have described
direct postsynaptic effects on the passive andlor active mem
brane properties of MS neurons mediated by muscarinic recep
tors. These observations suggest that postsynaptic activation of
muscarinic receptors enhanced the excitability of MS neurons
by producing membrane depolarization (Hsu et al. 1996; Su
gita et al. 1991; Uchimura and North 1990) and an increase in
input resistance (Galarraga et al. 1999; Hsu et al. 1996; Pineda
et al. 1995; Uchimura and North 1990) likely by reducing K
conductances including inward rectifying (I) and persistent
(t) (Gabel and Nisenbaum 1999; Galarraga et al. 1999; Hsu
et al. 1996, 1997; Pineda et al. 1995). These resuits are con
sistent with the membrane potential depolarization we ob
served when QX-314 was omitted from the pipette solution
that likely resulted from the suppression of these K conduc
tances. Postsynaptic effects mediated by muscarinic receptors
were typically blocked by pirenzepine and attributed to the
activation of M1 receptors. These observations are consistent
with the distribution of muscarinic receptors in the nAcb and
striatum where M1 receptors are primarily found postsynapti
cally on MS neurons (Bemard et al. 1992; Weiner et al. 1990;
Yan and Surmeier 1996).

Because muscarinic receptors are coupled to G protein
(Caulfield and Birdsall 1998), one possibility is that by using a
whole ceil recording technique, we washed out some elements
of the second-messenger system necessaiy for the expression
of postsynaptic effects even though ATP and GTP were always
included in the pipette solution. Altematively, we routinely

added QX-314 to the recording pipette solution to block action
potential generation. We found that by omitting QX-314 from
the pipette recording solution, cholinergic agonists modulated
the membrane and firing properties of MS fleurons, suggesting
that QX-314 occluded the postsynaptic effects of cholinergic
agonists. In addition to blocking voltage-gated Na channels,
QX-3l4 is also known to inhibit G-protein-gated K conduc
tances (Aireja and Aghajanian 1994; Andrade 1991; Lambert
and Wilson 1993; Nathan et al. 1990; Otis et al. 1993;
Slesinger 2001) and may have occluded muscarinic postsyn
aptic effects on K conductances (Gabel and Nisenbaum 1999;
Galarraga et al. 1999; Hsu et al. 1996, 1997; Pineda et al.
1995). This hypothesis is consistent with recent findings show
ing that intracellular QX-314 blocks muscannic M1 and M3
receptor signaling pathways expressed in Xenopus oocytes
(Hollmann et al. 2000, 2001). The present resuits suggest that
internal QX-314 may aiso block the signaling pathway of
native muscarinic receptors and that it could be a useful phar
macologicai tool to isolate presynaptic mechanisms in the
study of the muscarinic cholinergic system or other neurotrans
mitter systems modulating G-protein-gated K conductances.
further studies would be needed to test these hypothesis.

To our knowledge, this is the first study reporting a
modulation of glutamatergic neurotransmission mediated by
nicotinic receptors in the nAcb or other neostriatal struc
tures. Some of the previous studies on the nAcb and dorsal
striatum have limited their scope to muscarinic receptor
mediated modulation of excitatory neurotransmission (B ar
ral et al. 1999; Calabresi et al. 1998; Hernandez-Echeagaray
et al. 1998; Sugita et al. 1991). In studies in which general
cholinergic agonists were used, none reported an increase in
excitatory neurotransmission in the presence of muscarinic
antagonists (Hsu et ai. 1995; Pennartz and Lopes da Siiva
1994), whereas Akaike et al. (1988) found that nicotine
produced no effect on excitatory postsynaptic potentials
(EPSPs) in the caudate nucieus of aduit rats.

The presence of functional presynaptic nicotinic receptors
in the nAcb and dorsal striatum has been documented (see
Lendvai and Vizi 1999; MacDermott et ai. 1999). Recent
studies in other regions of the CNS have found that nicotinic
agonists potentiated glutamatergic neurotransmission pre
sumabiy by acting on presynaptic receptors located on glu
tamatergic terminais (Aramakis and Metherate 1998; Gil et
al. 1997; Girod et al. 2000; Gray et al. 1996; Radcliffe and
Dani 1998; McGehee et al. 1995; Vidai and Changeux 1993)
in agreement with the present findings. Nicotine has also
been found to exert direct postsynaptic excitation on some
specific neuronal populations, including interneurons in the
cerebral cortex (McCormick and Prince 1986; Porter et al.
1999; Roerig et ai. 1997) and hippocampus (frazier et al.
1998; Jones and Yakel 1997; McQuiston and Madison
1999), dopaminergic neurons in the ventral tegmental area
(Calabresi et al. 1989; Pidoplichko et al. 1997), retinal
ganglion celis (Feller et ai. 1996), and in brain stem nucleus
ambiguus (Zhang et al. 1993), but we found no evidence for
a similar action in nAcb MS neurons. Nicotinic receptors are
ligand-gated channels independent of second-messenger
system and would flot be occluded by QX-3l4 in the same
way as muscarinic receptors.
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Muscarinic depression of EPSCs

Few studies have examined the modulatory role of ACh on
glutamatergic neurotransmission in the nAcb. Pennartz and
Lopes da Silva (1994) reported that in ventral striatal slices
muscarine and CCh reversibiy attenuated the EPSP through
presynaptic mechanisms and that this action was completely
antagonized by atropine or pirenzepine in agreement with our
findings. They aiso found that increasing endogenous levels of
ACh with acetylcholinesterase inhibitors resuited in a decrease
in the EPSP in accordance with our finding that endogenous
ACh exerted a tonic depression of EPSC, as suggested by the
increase in the EPSC produced by atropine alone in our prep
aration. Sugita et al. (1991) also reported that cholinergic
muscarinic receptor activation depressed glutamatergic neuro
transmission in the nAcb through presynaptic mechanisms.

Comparable results have been obtained in the dorsal stria
tum, a structure that shares several anatomical and physiolog
icai characteristics with the nAcb and in which cholinergic and
muscarinic agonists have been found to decrease the respon
siveness of MS neurons to excitatoiy inputs, presumably by
acting on presynaptic muscarinic receptors (Akaike et al. 1988;
Barrai et al. 1999; Hernandez-Echeagaray et al. 1998; Hsu et
ai. 1995; Maienka and Kocsis 1988). Therefore our findings
that muscarinic receptors depressed giutamatergic EPSCs by
acting on presynaptic receptors are in general agreement with
previous studies.

Previous studies on the nAcb and dorsal striatum made no
attempt to examine the possibility that cholinergic agonists
exerted differentiai modulation of AMPAJKA and NMDA
receptor-mediated excitation. We found that the activation of
muscarinic receptors depressed both AMPAJKA- and NMDA
mediated EPSCs and that with CCh the depression was larger
on the NMDA than on the AMPAJKA receptor-mediated com
ponent. The larger depression of the NMDA-mediated re
sponse couid be the result of rundown of the NMDA response
in vitro, but the fact that we observed a larger increase in the
NMDA receptor-mediated component than on the AMPA/KA
mediated response with nicotinic receptor agonists suggests
that this was not the case. Altematively, it is possible that the
effects are mediated by different types of muscarinic receptors
for which ACli and CCh have different binding characteristics.

There are no highiy selective antagonists for muscarinic
receptor subtypes (Caulfield and Birdsall 1998), and we did not
perform extensive pharmacological studies to identify the sub
type of muscarinic receptor involved in the inhibition of the
EPSC. We found that pirenzepine, which acts predominantly
on M1 and M4 receptors, mimicked mucli of the effects of
atropine. These resuits are in agreement with those of Pennartz
and Lopes da Silva (1994). Others have suggested that mus
carinic receptor-mediated inhibition in the nAcb and dorsal
striatum were mediated by M3 (Hsu et al. 1995; Sugita et al.
1991) or M2-M3 (Hemandez-Echeagaray et al. 199$) receptors.
A subset of M1, M3, and M4 muscarinic receptors are found on
axon terminais forming asymmetrical synapses (Hersch and
Levey 1995; Hersch et al. 1994) and provide an anatomical
basis for the presynaptic modulation of giutamatergic neuro
transmission by ACh. In contrast, the M2 receptor appears to be
located on axon terminals making symmetricai synapses, sug
gesting that they do flot participate in the modulation of exci
tatory input. M1 and M3 receptors mRNA are found in cortical

and hippocampal pyramidal fleurons as well as in the amygdala
and thalamus (Bucldey et al. 198$; Wei et al. 1994), and these
structures could be the source of presynaptic muscarinic recep
tors located on glutamatergic terminais in the nAcb.

Nicotinic potentiation of EPSCs

ACh and CCh not only act on muscarinic receptors but also
activate nicotinic receptors. Under the present experimental
conditions, nicotinic receptor-mediated excitation became ap
parent only when appropriate muscarinic receptor antagonists
were added to the superfusing medium, suggesting that nico
tinic receptor-mediated excitation was masked by a predomi
nant muscarinic inhibition. furthermore, the application of
DMPP mimicked the enhancing effects produced by general
cholinergic agonists in the presence of atropine or pirenzepine,
and this effect was blocked by mecamylamine, a specific
nicotinic receptor antagonist, showing that the potentiation of
the EPSC was mediated by the activation of nicotinic recep
tors. To our knowledge, this is the first demonstration that
glutamatergic neurotransmission is modulated by nicotinic pre
synaptic receptors in the nAcb.

The presence of presynaptic nicotinic cholinergic receptors
bas been documented in both the nAcb and dorsal striatum (see
Lendvai and Vizi 1999; MacDermott et aI. 1999). Our findings
are in agreement with several recent studies showing that the
activation of presynaptic nicotinic cholinergic receptors facil
itates glutamatergic neurotransmission in different regions of
the CNS (e.g., Aramakis and Metherate 1998; Girod et al.
2000; Gray et al. 1996; Guo et al. 1998; McGehee et al. 1995).
These studies suggested that facilitation of glutamatergic neu
rotransmission was mediated by nicotinic receptors containing
the a subunit. Our results suggest that another type of nicotinic
receptor is involved in the nucleus accumbens because recep
tors containing the a subunit are insensitive to mecamylamine
(e.g., MacDermott et al. 1999). Our results are supported by
recent findings showing that nicotine increases glutamate re
lease in the nAcb via n mecamylamine-sensitive nicotinic
receptor (Reid et al. 2000).

Several studies have demonstrated that local nicotinic recep
tor activation increased dopamine release in the nAcb (Fu et al.
2000; Hildebrand and Svensson 2000; NiseIl et al. 1994a,b)
raising the possibility that some of the effects we observed
were indirectly mediated through the dopaminergic system.
This appears unlikely because nicotinic-evoked dopamine re
lease in the nAcb has been found to be insensitive to
mecamylamine but is sensitive to subunit antagonists (Fu et
al. 2000), suggesting that a different type of nicotinic receptors
control glutamate and dopamine release in the nAcb.

We have found that nicotinic agonist enhanced both
APMA/KA and NMDA receptor-mediated EPSCs but that the
effect was statisticaily larger on NMDA- than on AMPA/KA
mediated response. This is in partial agreement with Aramairis
and Metherate (1998), who found that in rat auditory cortex
during postnatal development nicotine selectively enhanced
NMDA receptor-mediated EPSP while producing no change in
AMPAIKA receptor-mediated EPSP. The authors concluded
that nicotinic receptors were located on glutamatergic termi
nals at synapses containing only NMDA receptors, whereas the
present resuits suggest that nicotinic receptors are located on
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terminais containing both AMPAJKA and NMDA receptors,
whereas a subclass contains only NMDA receptors.

Aramalds and Metherate (1998) reported that nicotinic mod
ulation of NMDA receptor-mediated EPSC was only observed
in preparations from animais less than 19 days old. In the
present study, we used animais of an age comparable to those
used by these authors, whereas previous studies on the nAcb
and dorsal striatum used aduit animais. This raises the possi
bility that nicotinic modulation of glutamatergic transmission
is also developmentally regulated in the nAcb. Indeed, the
expression of different nicotinic receptor subunit mRNA ap
pears to be developmentally regulated in the nAcb as well as in
brain regions providing glutamatergic innervation to the nAcb
(Aubert et al. 1996; Cimino et al. 1995; Fiedier et al. 1990;
Hellstrom-Lindahl et al. 1998; Shacka and Robinson 199$;
Zhang et al. 1998), suggesting that nicotinic modulation may
vary with the stage of development. We found that the inhib
itory effects of ACh increased during the first two postnatal
weeks. This developmental change could result from an in
crease in the number of muscarinic receptors on glutamatergic
terminais or, altematively, in a decrease in nicotinic receptors.
Further experiments are needed to explore these possibilities.

Functional considerations

The nAcb constitutes an important point of convergence of
information from several limbic structures, including the pre
frontal cortex (PFC), the amygdala, the hippocampus and mid
line thalamic nuclei (Groenewegen et al. 1980, 1982, 1987;
Jayaraman 1985; Kelley and Domesick 1982; Kelley and Sti
nus 1984; Kelley et al. 1982; Krayniak et al. 1981; Newman
and Winans 1980). These afferent systems, which are believed
to be glutamatergic, are thought to mediate their excitatory
drive mainly through AMPAJKA and NMDA glutamatergic
receptors (Defrance et al. 1985; Finch 1996; Kombian and
Malenka 1994; Nicola et al. 1996; Yim and Mogenson 1982;
Zhang and Warren 1999). Because we used local electrical
stimulation, the EPSCs recorded in the present study were
probably evoked by the activation of these pathways. Our
results as well as these of others show that ACh exerts complex
control over the excitability of nAcb MS neurons by acting at
both pre- and postsynaptic levels. At presynaptic level, we
found that ACh can increase or decrease the efficacy of incom
ing glutamatergic input possibly by controlling glutamate re
lease through an action on nicotinic and muscarmnic receptors,
respectively. Postsynaptically, ACh increases the excitability
and responsiveness of MS neurons by acting on postsynaptic
muscarinic receptors located on MS neurons.

We studied the effects of cholinergic agonists during post
natal development between Pi and P27. During that period, the
intrinsic and firing properties of nAcb MS neurons mature and
appear to become aduit-like only by the end of the third
postnatal week (Belleau and Warren 2000). In addition, during
the first 10 postnatal days, nAcb MS neurons are essentially
aspiny and possess varicose dendrites, whereas they assume an
adult spiny appearance only toward the end of the third post
natal week (unpublished observation). Similar developmental
changes were found in MS neurons in the developing dorsal
stnatum and were accompanied by a large increase in the
density of excitatory synapses, particularly on spines (Sharpe
and Tepper 1998; Tepper and Trent 1993; Tepper et al. 199$).

Presumably, excitatory synapse formation and consolidation is
also taldng place in the nAcb during the postnatal period.
During postnatal development, behavioral experience is
thought to shape and refine neural circuits tbrough activity
dependent mechanisms (Aamodt and Constantine-Paton 1999;
Collingridge and Singer 1990; Fox et al. 1999), and the dis
ruption of both glutamatergic and cholinergic functions bas
been shown to reduce developmental plasticity in some regions
of the neuraxis (Aramakis et al. 2000; Bear and Singer 1986;
Bear et al. 1988, 1990; Brooks et al. 1997; Cantallops and
Routtenberg 1999; Iwasato et al. 2000). In adult animais, the
normal function of MS neurons involves the interactions be
tween their intrinsic properties and their glutamatergic inputs,
whereas different glutamatergic inputs from different sources
appear to have different functions in initiating MS neuron
activation (O’Donnell and Grace 1995). Part of this organiza
tion could be triggered by activity-dependent mechanisms in
volving glutamatergic neurotransmission, especially when me
diated by NMDA-type receptors (Craig and Lichtman 2000).
Indeed, functional glutamatergic innervation of MS neurons is
already present on the day of birth and NMDA receptor
mediated EPSCs are preponderant dunng the first two postnatal
weeks, whereas AMPAJKA receptor-mediated EPSCs predom
mate in juvenile and adult animais (Zhang and Warren 1999).
The cholinergic modulation of glutamatergic neurotransmis
sion during the postnatal period possibly contributes to the
maturation and refinement of the glutamatergic innervation of
the nAcb. In addition, glutamatergic innervation of the nAcb is
topographically organized and ACh could participate in the
refinement of this organization by turning on and off specific
inputs in the nAcb.

Dismption of some of the glutamatergic inputs to the nAcb
during early postnatal development (P7) bas been found to
produce enduring behavioral changes (Al Amin et al. 2001;
Flores et al. 1996a,b; Lipska et ai. 1993; Sams-Dodd et al.
1997; Weinberger and Lipska 1995; Wood et al. 1997; see also
Lipska et al. 1998) as well as changes in dopaminergic recep
tors (Baca et ai. 1998; Flores et al. l996a,b) and dopamine
release (Lilkank et al. 1999) in the nAcb. Typically, these
changes are expressed only after puberty, and, interestingly,
the same lesions at P14 or in aduit animais produced no
comparable changes (Wood et ai. 1997), suggesting that there
is a critical penod during which developmental plasticity can
be expressed in the nAcb.
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ABSTRACT

We studied the effects of dopamine (DA) on glutamatergic excitatory

postsynaptic currents (EPSCs) of medium spiny (MS) neurons in nucleus accumbens

(nAcb) during postnatal development using whole-cell patch-clamp technique in vitro.

The EPSCs evoked in MS neurons by local nAcb stimuli displayed both early and late

ionotropic glutamate receptor-mediated components that could be respectively abolished

with specific AMPA/KA and NMDA receptors antagonists. The addition of DA to the

supefusing medium produced a marked decrease of the evoked EPSCs. The AMPA!KA

receptor-mediated response was on average abolished by 40% whereas the NMDA

receptor-mediated component of the response was decreased by 91%, an effect

comparable to the effect produced by specific NMDA receptor antagonist. The effects of

DA on evoked EPSCs were mimicked by the D1-like receptor agonist, SKF 38393 and

were antagonized by the D1-like receptor antagonist SCH 23390 but flot by the D2-like

receptor antagonist sulpiride or by clozapine. DA did flot change either the membrane

input conductance nor the characteristics of PSCs evoked by the local administration of

glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio

of evoked EPSCs at a holding membrane potential of -lOOmV but flot at -4OmV. The

action of DA was resistant to protein kinase inhibitors H89 and Ro-32-0432, suggesting

that DA-induced EPSCs depression did not involve protein kinase A nor C. These resuits

suggest that the inhibitory effects of DA on EPSCs are mediated by both pre and

postsynaptic mechanisms in the nAcb. The present resuits show that the activation D1-

like dopaminergic receptors modulates glutamatergic neurotransmission by preferentially
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abolishing NMDA receptor-mediated EPSCs by acting independently of PKA and PKC

through both pre- and postsynaptic mechanisms.

Key Words: Nucleus accumbens; excitatory postsynaptic currents; DA

modulation; NMDA and AMPA receptors; postnatal developrnent.
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RÉSUMÉ

Les effets de la dopamine (DA) sur la transmission glutamatergique dans les

neurones épineux moyens GABAergiques du noyau accumbens (nAcb) ont été examinés

dans des tranches de rat en utilisant la technique whoÏe-cell patch-clamp pendant le

développement postnatal. Les CPSEs évoqués par une stimulation locale dans le nAcb

comprenaient généralement deux composantes: une précoce médiée par des récepteurs

AMPA!KA et une tardive médiée par des récepteurs NMDA. L’ajout de DA a produit

une inhibition beaucoup plus importante de la réponse médiée par les récepteurs NMDA

(-92%) que de celle médiée par les récepteurs AMPA!KA (-40%). Les effets de la DA

sur les réponses NMDA étaient comparables à ceux produits par l’APV, un antagoniste

spécifique des récepteurs NMDA. Les effets de la DA sur les CPSEs pouvaient être

reproduits par un agoniste (SKF 38393 ) des récepteurs Dl-semblables et bloqué par un

antagoniste (SCH 23390) des mêmes récepteurs alors que les substances agissant sur des

récepteurs D2-semblables ne produisaient aucun effet. La DA a changé le rapport des

réponses à des stimuli pairés, mais n’avait aucun effet sur les propriétés membranaires

des neurones étudiés ou sur les réponses évoquées par l’injection de glutamate en

présence de tétrodotoxine. Ces résultats suggèrent que les effets de la DA étaient

principalement médiés par des mécanismes présynaptiques pendant le développement

postnatal. La dépression des CPSEs induite par la DA ne semble pas impliquer la

protéine kinase A ni la protéine kinase C car elle était résistante aux inhibiteurs de

protéines kinases H89 et Ro-32-0432. Ces résultats démontrent que l’activation des

récepteurs dopaminergiques Dl-semblables dans le nAcb diminue la libération de
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glutamate et suppriment de préférence les CPSEs médiés par les récepteurs NMDA

pendant une étape cruciale du développement postnatal.

Mots-Clés noyau accumbens, courants postsynaptiques excitateurs, modulation DA,

récepteur NMDA, développement postnatal
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INTRODUCTION

Nucleus accumbens (nAcb) which forms the ventral part of the striatum has been

proposed to serve as an interface between the limbic system and the motor system

(Mogenson et al., 19$0; Groenewegen et al., 1996). While the nAcb receives a dense

glutarnatergic innervation from the prelimbic cortex and different limbic structures,

including the hippocampus and amygdala (for review, see Zahm and Brog, 1992; Finch,

1996; Groenewegen et al., 1996; Heimer et al.. 1997), it also receives a massive

doparnine (DA) input from ventral tegmental area (VTA) of midbrain. An important

feature of these glutamatergic and dopaminergic afferents to the nAcb is that they

converge on the same dendritic spines of medium spiny (MS) GABAergic projecting

neurons (Bouyer et al., 1984; Totterdell and Smith, 1989; Seaack and pickie, 1990;

Johnson et aI., 1994; Meredith, 1999). This closed spatial relationship suggests a

possible interaction between the glutamatergic and dopaminergic systems at the pre

and/or postsynaptic levels. Behavioral studies have shown that interactions between DA

and glutamatergic synaptic transmission, particularly those rnediated by NMDA

receptors, play a key role in animal behaviors associated with the nAcb (see

Vanderschuren and Kalivas, 2000; Baldo et al., 2002). Recent finding of D1/NMDA

receptor complexes in striatal and hippocampal tissue indicates possible direct protein

protein interactions between D1 and NMDA receptors (Lee et al., 2002).

In the nAcb, expression of the NMDA receptor-dependent form of long-term

potentiation has been demonstrated (Pennartz et al., 1993; Kombian and Malenka, 1994;

Schramm et al., 2002) and plasticity withïn nAcb is thought to mediate instrumental
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leaming processes and many aspects of drug addiction in which coincident activation of

NMDA and dopamine D1 receptors is required (Kelley et al., 1997; Smith-Roe and

Kelley, 2000; Baldwin et al., 2000; Hemandez et al., 2002). The nAcb may thus

constitute a locus where NMDA receptors promote drug reinforcement (Maldve et al.,

2002). In addition to aspects of instrumental learning and drug addiction, the nAcb

appears to be involved in a number of functions such as motivation, attention and reward

(Mogenson et al., 1980; Kalivas and Nakmura, 1999) under the control of the mesolimbic

dopaminergic system (Willner et al., 1991).

Despite the well-known role of nAcb DA in the modulation of motivated

behaviors, and despite recent advances in the understanding of cellular and molecular

aspects of dopaminergic and glutamatergic receptor interaction (Lee et aÏ., 2002), the

precise mechanisms underlying DA and NMDA receptors interaction to be reflected on

EPSCs in the nAcb rernain unclear. Some studies reported that the activation of D1

receptors enhanced NMDA receptor-mediated EPSCs (NMDAR-EPSCs) in dorsal striatal

suces (Cepeda et al., 1993; Cepeda and Levine, 1998; Levine et al., 1996a, b), while

others reported that D1 receptor agonists attenuated NMDAR-EPSCs in MS striatal

neurons in culture (Lee et cl., 2002; Lin et al., 2003). Additionally, certain investigators

reported that DA or D1 receptor agonists potentiate NMDAR-EPSCs in the nAcb suces

(Harvey and Lacey, 1997; Chergui and Lacey, 1999), while others reported no significant

rnoduÏatory effects of DA on NMDAR-EPSCs (Nicola and Malenka, 199$; Beurrier and

Malenka, 2002). Although electrophysiological studies in brain suces have shown that

activation of D1 receptors inhibit glutamatergic synaptic transmission in the nAcb by a
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presynaptic action (Higashi et al., 1989; Pennartz et al., 1992; Harvey and Lacey, 1996;

Nicola et al., 1996; Nicola and Matenka, 1997, 1998; Beurrier and Malenka, 2002), the

inhibitory effect of DA on EPSCs by presynaptic locus via the D1 receptor was only

determined on the compound current levels, in particular, on AMPAJKA receptor

mediated EPSCs (AMPAJKAR-EPSCs) in the nAcb. A substantive effect of DA on

pharmacologically isolated NMDAR- and AMPA!KAR-EPSCs remains unknown.

In a previous study, we showed that ACh presynapticaLly modulated

AMPA/KAR- and NMDAR-EPSCs in a parallel fashion in the nAcb (Zhang and Warren,

2002). In an effort to clarify how the NMDAR- and AMPA!KAR-EPSCs rnight be

affected in the nAcb by dopaminergic innervation, we investigated the effect of DA on

NMDAR and AMPA!KAR-excitatory synaptic transmission in this region. Our resuits

demonstrate that DA depresses the excitatory input onto MS neurons probably by

activation of pre- and postsynaptic D1-like receptors. While DA depressed the elicited

AMPA!KAR-EPSCs in MS neurons by 40% of control, evoked NMDAR-EPSCs were

almost cornpletely abolished.
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MATERIALS AND METHODS

Suce preparation The procedure used for preparing suces has been previously described

(Belleau and Warren, 2000; Zhang and Wanen, 2002). One to 20-day-oid (P1-P20)

Sprague Dawley rat pups of either sex were used in the present experiments. P5 and

younger pups were anaesthetized by hypothermia whereas P6 and older animais were

anesthetized by inhalation of methoxyfluran vapor in a closed environment. Once deeply

anesthetized, animais were decapitated and their brains were quickiy removed and

transferred to chilled, oxygenated artificiai cerebrospinal fluid (ACSF) in which NaCY

had been replaced by equivaient osmoiarity of sucrose and containing (in mM) sucrose

252 (NaC1 126 in standard ACSF); KC1, 3; NaH2PO4, 1.25; MgSO4 7 H20, 1.3; CaC12,

2.5; NaHCO3, 26; and glucose, 10, and saturated with a gas mixture of 95% 02 and 5%

CO2. four hundred jim thick suces comprising the nAcb were cut in the parasagittai

plane using a vibrating microtome (Campden Instruments). Suces were transferred to a

submerged type of recording chamber ami continuousiy superfused with standard ACSF

at room temperature (20-22°C) at a rate of 1 .Smi/min. The nAcb was visualized under a

stereomicroscope (Leica Inc.) using the anterior commissure, the neostriatum, the septum

and the ventricles as iandmarks based on Paxinos and Watson (1986). The suces were

incubated at ieast one hour before recording.

Recording Whoie-cell recording was achieved using the ‘biind’ patch-clamp technique

(Bianton et ai., 1989). Pipettes were puiied from thin waii borosiiicate capillary giass on

a P-$7 micropipette pulier (Sutter Instrument). The pipettes had a resistance of 3-5MQ

when fiuied with a solution containing (in mM) potassium gluconate, 140; MgCI2, 2;
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CaC12, 0.1; EGTA, 1.1; HEPES, 10; K2-adenosine trisphosphate (ATP), 2; guanosine

trisphosphate (GTP), 0.5 and 0.3% neurobiotin. The pH was adjusted to 7.3 with KOR

solution, and final osmolarity was 290-300 rnosmol/kg. QX314 (5mM; Alomone

Laboratories) was routinely added to the recording pipette solution to prevent voltage-

sensitive Na channels from generating action potentials.

Whole-cell recordings were made with an Axoclamp 2B amplifier (Axon

Instruments) in continuous single-electrode voltage-clamp mode. The output of the

amplifier was fed into a LPf 200A DC amplifier/filter (Warner Instruments Corp.) and

digitized at 0.5 to 10 kHz with a real-time acquisition system Digidata 1200 (Axon

Instruments). Data acquisition was achieved using the pClamp 6.0 software (Axon

Instruments). Pipettes capacitance was optimally adjusted before whole-cell

configuration was achieved. The resting membrane potential was measured just after

rupturing the cell membrane and the offset potential, measured upon withdrawal of the

electrode from the celi, was accounted for assuming that it drifted in a linear fashion with

time from the start of the recording session. We did flot correct for liquid junction

potential, which for a pipette containing 140 mM potassium gluconate amounts for an

additional potential shifi ofaround —lOmV (Spigelman et al., 1992).

Synaptic stirntdatioît and drugs application Excitatory postsynaptic currents (EPSCs)

were evoked by 0.lms, 3 to 6V cathodal pulses deÏivered at 15 sec intervals to the

cortical tissue towards the rostral pole of the nAcb, using a monopolar tungsten

stimulating microelectrode placed on the slice superficial layer, 0.5-1.0 mm from the

recording electrode. In some experiments, the paired-pulse stimulation with the same
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parameters and separated by 50 msec were used to distinguish between pre- and

postsynaptic mechanisms. In order to isolate glutamate receptor-mediated EPSCs, ail

experiments were performed in the presence of (-) bicuculline methiodide (BMI, 10 iM)

in bath solution to block GABAA receptor-mediated synaptic currents. BMI was applied

30 min before obtaining whole-cell configuration to insure a complete diffusion in the

slice tissue. In ail experiments the EPSCs were recorded from online voltage-clamped

potentials between -100 to +4OmV in 2OmV increment from a holding membrane

potential of -7OmV. Local application of glutamate (10 mM) onto nAcb was conducted

using a patch pipette connected to a Picospritzer (General Valve Corporation) under

differential interference contrast and infrared optics using pressure pulses of 1 5psi lasting

5-10 msec.

The following pharmacological agents were applied through the superfiising

AC Sf: 6 cyano-7-nitroquinoxaline-2,3-dione (CNQX); (+)-2-amino-5-

phosphonopentanoic acid (APV) and (-) bicuculline methiodide all obtained from Tocris

(Bristol, UK); dopamine HC1, S-(-)-5 -amino-sulfonyl-N- [(1 -ethyl-2-pyrrolidinyl)-

methyl] -2-methoxybenzamide (sulpiride), (4aR-trans)-4,4a,5 ,6, 7,8,$a,9-octahydro-5-

propyl- 1 H-pyrazolo [3,4-g] quinoline [(-)-quinpirole hydrochloride]; (±)- 1 -phenyl-2,3 ,4,5-

tetrahydro-( 1 H)-3 -benzazepine-7,8-diol (SKF-3 $393); R(+)-7-chloro-8-hydroxy-3-

methyl- 1 -phenyl-2,3 ,4,5 -tetrahydro- 1h-3 -benzazepine hydrochloride [(+)-SCH-23 390];

9-(tetrahydro-2furyl) adenine (SQ 22536) which have been obtained from RBI (Natick,

MA); clozapine from Sigma; Ro-32-0432; H89 and forskolin from Calbiochem (La Joua,

CA). Most drugs were made up as 10 mM stock solutions in distilied water (dopamine
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on the day of use) and diluted with AC$f solution to final concentration just before

addition to the perfusion medium. The same procedure was used for CNQX except that it

was initially dissolved in dimethysulfoxide (DMSO, final concentration 0.1%).

Antagonists were applied for at least 15 min before application of agonists. In the cases,

of H89 and Ro-32-0432, slices were incubated for 2-4 hours with the antagonists prior to

experimentation to allow enough time for the drug to equilibrate within the suce tissue.

Current measurernents Data analysis was done using Signal 2.1 software (Cambridge

Electronic Design). The amplitude of the evoked synaptic current was plotted as a

function of voltage at two points: one at the peak of inward current recorded at -lOOmV,

and another later one at a point when the fast inward current at —100 mV had just decay

to base line. This point was usually close to the maximal amplitude of the late component

as recorded in the presence of the AMPAJKA receptor antagonist CNQX and no

postsynaptic current was observed at this point at holding membrane potential -100 mV

under these conditions (Mayer et al., 1984; Mayer and Westbrook, 1987).

Statistics Statistical analysis was performed using Sigmastat 2.0 software (SPSS) and the

effects of dopaminergic compounds on evoked EPSCs were tested using paired t-test

unless otherwise stated (P values of less than 0.05 were considered as statistically

significant). All numerical data are expressed as mean ± standard error of the mean

(S.E.M). Neurons that could flot be unambiguously classified as MS cells using

physiological and morphological parameters were excluded from statistical analysis.
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RESULTS

Whole-cell voltage-clamp recording was obtained from 154 physioiogicaliy

identified M$ neurons (ODonneli and Grace, 1993; Beileau and Warren, 2000; Zhang

and Warren, 2002) in suces from rat pups between Pi and P20. The membrane and firing

characteristics of MS neurons were similar to those previously reported for animais of

comparable age (Belleau and Warren, 2000). In addition, 58 neurons fihled with

neurobiotin were examined under light microscopy and displayed features that have been

previously attributed to MS neurons from animais of similar age (Tepper et al., 1998).

Ail labelled neurons appeared to be located in the core region ofthe nAcb.

Characteristics ofgtutamatergic EPSCs

As previously described (Zhang and Warren, 2002), local electrical stimulation in

the presence of the GABAA receptor antagonist BMI evoked an EPSC in ail recorded

neurons. Typically, the EP$C consisted of a compound glutamatergic EPSC comprising

an early and a late component mediated respectively by the activation of AMPA!KA and

NMDA receptors.

Figure 1 shows a representative example of an EPSC recorded in a preparation

from a P20 animai on which specific glutamatergic antagonists were tested. During the

control period (Fig. lA panel 1), the early EPSC peaked 9 msec after the stimulus onset

at a holding membrane potential of—i00 mV and the response decayed to baseline within

45 msec. The current-voltage relationship (IRVm) of the early EPSC was close to linear

and reversed at a membrane potential around OmV (Fig. I B panel 1). Bath application of

the AMPA/KA receptor àntagonist CNQX completely abolished the early component of
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the EPSC and there was virtually no residual postsynaptic current at ail membrane

potentials at the latency in which the early response was measured (Fig. lA panel 2 and

Fig. lB panel 1).

The late component, measured afier the eariy component had decayed, increased

at membrane potentials between —100 and —40 mV and reached its maximum usually at —

40 mV or —20 mV. At more depolarized membrane potentials, it decreased and reversed

polarity around O mV (Fig. lA and Fig. lB panel 2), a current-voitage relationship typicai

of NMDA receptor-rnediated current. The addition of the NMDA receptor antagonist

APV to the superfusing medium completely abolished the late EPSCs (Fig. 1 panel 3),

demonstrating that it was mediated by NMDA-type receptors. In the presence of CNQX

alone, the NMDAR-EPSC was recorded in isolation showing that measurements of the

late component of the EPSC made on the compound EPSC were close to the peak of the

NMDAR-EPSC and represented mostly NMDA receptor-mediated current (Fig. lA panel

2). Also, note there was no residual postsynaptic current in the presence of CNQX and

APV, showing that glutamatergic EPSCs were effectively isolated by the addition ofBMI

to the superfusing medium (Fig lA panel 4 and Fig. 13). CNQX and APV were tested

together in 4 other neurons producing similar resuits. In addition, CNQX and APV were

tested individually in 17 and 14 neurons respectively producing an inhibition of the early

and late components ofthe response by 91± 2% and 85 ± 5%.

[Figure 1]

In most neurons, the effects of dopaminergic agonists and antagonists

were assessed at holding membrane potentials usually between -100 and +4OmV in steps
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Figure 1. Pharmacologically isolated excitatory postsynaptic currents (EPSCs). A. Two distinct

components of the EPSCs were evoked by local electrical stimulation in the presence of 10 tM of

the GABAergic antagonist BMI in MS neurons depending on the holding membrane potentials.

Before an application of glutamatergic receptor antagonists (1); during the presence of CNQX (20

tM) (2); during the application ofAPV (50 jiM) (3) during the presence of CNQX and APV (4).

Recordings were obtained in a P20 animal. Current traces represent the average of 6 sweeps. B.

The 1Rm reÏationship of the response between —100 and +40 mV. The early component was

measured 9ms afier the stimulus as indicated by the lefi dotted line in A. The late component was

measured 50 ms after stimulus as indicated by right dotted line in A.
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of 2OmV. The AMPA/KAR-EPSC was measured at the peak of the early component of

the EPSC at a holding membrane potential of —100 mV, when the amplitude of the late

component was minimal (lefi vertical dotted unes in Fig. lA) whereas the effects on

NMDA receptor-mediated currents were measured at a latency at which the early

component recorded at a holding membrane potential of —100 mV had decayed (right

vertical dotted unes in Fig. lA).

Effects of dopaminergic agonists

Exposure of suces to 50 tM of dopamine for s-10 min resulted in a perceptible

decrease in the amplitude of both CNQX- and APV-sensitive current components of

evoked EPSCs. This decrease in EPSC amplitude significantly occurred in holding

membrane potentials between —lOOmV and —2OmV and was completely reversible and

repeatable once dopamine was washout and reapplied. A representative example of this

effect is shown in Figure 2A. In this case, the early and late components of the EPSCs

recorded at —lOOmV and —2OmV, respectively, were reversibly reduced by 41% and 72%

during the application of DA. Similar results were obtained in 78 other fleurons, and DA

produced no effects on the EPSC injust one case. The effects of DA on the early and late

components of the EPSC as a function of holding membrane potential are summarized in

Figure 213. The amplitude of the early component of the EPSC was significantly reduced

at holding membrane potentials between —lOOmV and —2OmV by an average of 5 1-45%

as weÏl as at positive membrane potentials. DA also produced a reduction of the late

component of the EPSC, which were generally of larger magnitude than that observed on

the early component, averaging 66-57% between —4OmV and O mV. [Figure 2J
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Figure 2. Effect of dopaminergic agonist on the EPSCs. A. Current traces of the response
evoked by single electrical stimulus recorded at holding membrane potentials of — OOmV and -

2OmV. Before (1), during (2), and afier (3) superfusion with dopamine (DA 50 iM). The
overlay (4) shows the responses before and during DA application. Current traces represent the

average of 6 sweeps. Recordings were obtained in a suce from a P7 animal. The arrows in (1)

indicate where the early and late responses were measured. B. Average IR-Vfl relationship of

the early (n=z 80; 1) and late (n=80; 2) recorded before and during superfusion with DA.

Asterisks indicate a statistically significant difference between control and agonist treatment at

this holding membrane potential (Student’s t-test, *p<o.os).
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Doparnine reduced tite ratio ofNMDAR-EP$Cs to AMPA/KAR-EPSCs

In the study on compound EPSCs, we found that both early and late components

ofEPSCs were significantly inhibited by 50 tM ofDA. To investigate the efficacy of

DA on AMPA/KAR-EP$Cs and NMDAR-EPSCs, we also examined the ratio ofthe late

component to the early component ofthe EPSCs.

In 67 fleurons, we found that application of 50 iM DA significantly reduced the

late to early component ofEPSC ratio by an average of 50% from 28 ± 2% during control

to 14 ± 3% with DA (paired t-test, P< 0.01, n = 67, Fig. 3B). This effect was present

throughout the developmental period studied (Fig. 3). Our data demonstrates that DA

decreased the late to early component of EP$Cs ratio in all of ages and that DA more

effectively reduces NMDAR-EPSCs than AMPA/KAR-EP$Cs rather than decreasing

them both equally.

jFigure 31

To further test the inhibitory effect of DA on NMDAR-EPSCs, we compared its

inhibitory effect with a specific NMDA receptor antagonist, APV on the late component

ofthe EPSCs in 4 cells. We found that DA was as potent as APV in reducing the late

component ofthe EPSCs (144 ± 54 pA in control, 26 ± 13 pA in DA, average inhibition

82%: 117 ± 43 pA in control and 15 ± $ pA in APV, average inhibition 87% (Fig. 4C).

Figure 4A show a representative example of the effects produced by DA and APV in the

same late component of the EPSCs.

[Figure 41
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Figure 3. DA (50 iM) decreased ratio of late to early component of the EPSCs. A.
Representative traces taken from holding membrane potentials of —1 OOmV and -4OmV

in a MS neuron from a P15 animal suce in the presence or absence of DA (50 jiM)
respectively. B. Averaged late to early component ratio from 67 neurons during

control and DA application (Student’s t-test; F<0.01, n =67). C. Late to early

component ratio as a function of postnatal age (Student’s t-test; n = 65; ** p< or =

0.01; * p< or = 0.05). The number of celi at each age is indicated in the brackets. DA

is specifically preferential to attenuate NMDAR-EPSCs. Dotted lines in A indicate the

sites where EPSCs were measured.
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Figure 4. The inhibitory effects of DA and APV on late component of compound EPSCs.

A. Inhibito;y efficacy of DA (50 p.M) and APV (50 1iM) is shown in a representative

neuron in which evoked EPSC was mainÏy mediated by NMDA receptors. Before (1),

during (2), and after (3) DA perfusion, 4 during APV; overlay (1+2, 5) and overlay (3+4,

6). B. The IR-Vfl relationship for the representative neuron. Dotted unes in A indicate

sites where current amplitudes were measured and displayed in B. C. % inhibitions

produced by DA and APV on late EPSCs were compared in 4 neurons at a holding

membrane potential of —40 mV between the effect of DA and APV (Student’s t-test, P

>0.05, n= 4).
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DA inltibited both isotatedNliDAR-EPSCs andAMPA/K4R-EPSCs

Because it was reported that DA exerted opposite rather than a parallel

modulatory effects on AMPA/KAR-EPSCs and NMDAR-EPSCs i.e. DA potentiated

NMDAR-EPSCs and depressed AMPAIKAR-EPSCs in the nAcb (Harvey and Lacey,

1997; Chergui. and Lacey, 1999) whereas others reported that DA produced no effect on

NMDAR-EPSCs (Nicola and Malenka, 1998; Beurrier and Malenka, 2002). We tested

the effect of DA on pharmacologically isolated AMPA!KAR-EPSCs and NMDAR

EPSCs using CNQX (20 iM) and APV (50 tM) in the presence of the GABAA receptor

antagonist BMI (10 tM). The studies on isolated EPSCs further confirmed that DA (50

iM) had a profound inhibitory effect on NMDAR-EPSCs. In the presence of AMPAJKA

receptor antagonist, CNQX, DA potently inhibited NMDAR-EPSCs in ail 5 isolated

neurons. In control recordings, the NMDAR-EPSCs amplitude averaged —77 ± $ pA.

During bath application of 50 iM DA for $ mm, the amplitude of the NMDAR-EPSCs

was significantly reduced to 7 ± 5 pA (the peak amplitude of NMDAR-EPSC was

decreased by 91%, paired t-test. F< 0.01, n = 5, fig. 5C). figure SA shows a

representative ccli in which the isolated NMDAR-EPSC was strikingly inhibited.

jFigure 5]

DA (50 tM) atso significantly reduced the amplitude of stimulus-evoked

AMPAIKAR-EPSCs, but only by 40% of control. In control recordings (holding

membrane potential —1 OOmV), the EPSC amplitude averaged -241± 45 pA. During bath

application of 50 jiM DA for 8 mi the amplitude ofAMPA/KAR-EPSCs was



134
Figure 5.

A

NMDA EPSC
1 Control 2 Dopamine 3 Washout 4 1+ 2

B
Lms
1/ Ï

NMDA EPSC
1 Control 2 Dopamine 3 Washout 4 1+ 2

-400
, DA5OiM

0 -S
-

-20 -300 ‘%t •
w-40 & • m

-60 -200 ••• ..
-80

-100 -100
0,0 5,0 10,0 15,0 20,0 25,0

Time (mm)

Figure 5. DA inhibited both NMDAR-EPSCs and AMPA!KAR-EP$Cs. A. DA (50 1iM)
potently inhibited NMDAR-EPSCs in the presence of CNQX. Original traces evoked by
electrical stimulus were taken from holding membrane potentiai —20 mV and represent the
average of 6 sweeps. BMI (10 jiM) and CNQX (20 j.iM) were present in the superfusing

medium throughout recording. Before (1), during (2), and afler (3) DA. 4 is an overÏay of 1
and 2. B. DA (50 tM) also significantiy inhibited AMPA/KAR-EPSCs isoiated with APV (50

1iM) and BMI (10 1iM). Before (1), during (2) after (3) DA (50 tM), and 4 is an overlay from 1

and 2. C. The IR-VIl reiationship at membrane potential from —1 OOrnV to 4OrnV was measured

in the absence and presence of DA on isolated NMDA currents. DA (50 iM) used in bath for

10 min attenuated most ofNMDAR-EPSCs at ail holding membrane potentiais (Student’s t-test,

n = 5, ** F<0.01). The dotted unes in panels A and B label the sites for the measurement of ‘R

Vm relationship. D. Tirne course of DA inhibition of AMPA/KAR-EPSCs from panel B. E.
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significantly reduced to -144 + 25pA (fig. 5E, paired t-test, P<0.05; n = 7). figure 5B

shows a typical example of the inhibitory effect of DA on AMPA!KAR-EPSCs at a

holding membrane potential of —1 OOmV traces and figure 5D shows time course of the

effect.

Inhibition ofDA on EPSCs is inediated by a Dj-!ike receptor

To identify the DA receptor subtype responsible for the inhibition ofEPSCs, we

examined the effects of D1- and D2-like receptor agonists and antagonist on stimulus

evoked EP$Cs. Like DA, SKf 38393 (10 tM), an agonist of D1-like DA receptors,

decreased the early EPSC peak amplitude by 43% of control at holding membrane

potential —lOOmV (-304 ± 131 pA in control and —173 ± 76 pA, in SKf 38393, n = 5)

and the late EP$C amplitude by 53% at holding membrane potential —4OmV (-5 1± 23 pA

in control and 24 +15 pA in SKf 38393, see table I). Figure 6A shows a representative

example of the inhibitory effect of SKf 38393 on the early and late components of the

EPSCs. In contrast, the D2-like receptor agonist quinpirole failed to suppress EPSCs in

the same concentration (n=4; data flot shown). Concomitantly, the D2-like receptor

antagonist sulpiride (10 1iM) failed to prevent the 40% depression-induced by DA (n =

4), which is not different from the observed decline in the absence ofthe antagonist (-224

± 22 pA in control, and —112 + 14 pA in DA at —100 mV, n = 4). In addition, clozapine

(10 1aM), an antagonist of D2-like dopamine receptors and certain 5-HT receptors, failed

to block the inhibitory effect of DA (Student’s t-test, P> 0.05, n = 9, see table I), further

excluding the possibility that D2-like receptor may be involved. However, the D1-like

receptor antagonist SCH 23390 (10 jiM) antagonized the depressant action of DA (50
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tM) to 87% ofcontrol (-205 ± 44 pA in control and —179 ± 33 pA in DA in the presence

ofSCH 23390) at holding membrane potential —100 mV, and to 91% of control (-65 ± 15

pA in control and —59 + 15 pA in DA) at —20 mV (Student’s t-test, P> 0.05, n = 9),

respectively. Figure 6C shows a representative ceil in which D1 receptor antagonist $CH

23390 (10 tM) blocked the inhibitory effect of DA on compound EPSCs, whereas DA

alone suppressed much of the EPSC. Figure 6D summarizes the effect of DA in the

presence or absence of D1 receptor antagonist SCH 23390 at holding membrane potential

—100 mV and —20 mV in 9 neurons We also found that low concentrations of $CH

23390 (1 or 5 iM) only decreased partially the inhibitory effect ofDA (n = 20, data flot

shown).

[Figure 61

We attempted to characterize the signal transduction pathways mediating the

effects ofDA (Snyder et al., 199$). H89 (20 tM), a ceil-permeable, selective and potent

inhibitor of protein kinase A (PKA) in both pipette and bath failed to block the inhibitory

effect ofDA on both early and late components ofthe EPSCs in the presence ofH$9 (n

7, see table I). Ro-32-0432 (10 iiM), a selective celi-permeable inhibitor of protein

kinase C (PKC) could not abolish the inhibitory effect ofDA (n = 3, see table I). We also

examined the role of the cAMP pathway by activating adenylate cyclase tAC) with

forskolin. Forskolin (10 1iM) increased AMPA!KÀR-EPSCs and NMDAR-EPSCs, and

also appeared to partialÏy antagonize the inhibitory effect of DA (n 5, see table I), but,

Q$22536 (100 tM), an antagonist ofAC, had no effect on the inhibitory effect ofDA (n

= 3, see table I). We also tested the effect of DPCPX (500 nM), an A1 receptor
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Table I

The effects of DA on EPSCs in the presence of different antagonists and forskolin

Early EP$Cs (pA) Late EPSCs (pA)
(-1 OOmV) (-2OmV)

Antagonists n Control DA(5OtM) Control DA(5O.iM)

SuÏpfride lOjiM 4 -150 ± 26 -92 ± 30 -59 ± 6 -37 ± 6

Clozapine lOjiM 9 -228±34 -91±20 -87±24 -21±14

QS22536 100jM 3 -165±8 -14±7 -50±9 -8±0

H89 20.iM 7 -331±124 -152±67 -141±58 -39±25

Ro320432 1OiM 3 -158±29 -92±20 -51±20 -13±4

Forskolin 1OiM 4 -266±38 22O±12* -153±21 1O2±12*

* indicates P>0.05 (student’ t-test)
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antagonist (see Harvey and Lacey, 1997) in a few celis and no significant effect was

found (data flot shown).

Pre andpostsynaptic rnechanisms are in volved in tite attenuation ofEPSCs by DA

The mechanism underlying DA inhibitory effect on EPSCs may involve a

decrease in glutamate release (presynaptic) and/or change in membrane conductance

(postsynaptic). To identify the site of action of DA, we compared different

characteristics ofthe EPSCs before and during DA administration.

An alteration in the paired-pulse ratio (PPR) is thought to imply presynaptic

mechanisrn of action (Zucker, 1989; Regehr and Stevens, 2001). To determine if the

locus of dopamine-dependent inhibition of the EPSC amplitude in MS neurons is pre- or

postsynaptic, we examined the effects of DA on the paired-pulse stimulation-evoked

EPSCs (stimuli with 50 ms interpulse interval) comparing the change of PPR i.e. the 2nd

response to the 1st response (EPSC2/EPSC1) at a holding membrane potential —lOOmV.

We found that in the presence of DA both the first and second evoked EPSCs were

decreased but a relatively greater reduction in the amplitude of the first EPSC was

observed resulting in an increase in the PPR (in control recordings, PPR was 1.3 ± 0.05;

during bath application ofDA, it was 1.6 ± 0.14, paired t-test, P< 0.05, n = 12, Fig. 7A

and A’). However, the PPR of the late component recorded at a holding membrane

potential of—4OmV was not altered during application ofDA. The PPR was 2.2 ± 0.14 in

control recordings condition, while during bath application of DA, PPR was 2.3 ± 0.14

(Fig. 73 and B’, paired t-test, P> 0.05, n = 12). EPSCs induced at a holding membrane

potential of —4OmV are largely mediated by NMDA receptors. The fact that the PPR of
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the laie response does flot change suggests that the inhibition of NMDAR-EPSCs by DA

is mainly mediated by postsynaptic mechanisms. This implies that the major locus of

inhibition by DA may be different for AMPA/KAR and NMDAR-EPSCs.

Change in membrane current conductance is considered to be one of criteria for a

postsynaptic effect. We measured the membrane conductance before and during the

application ofDA (50 iM) at eight holding membrane potentials in 50 neurons and found

no statistically significant change in membrane conductance during the application of DA

at any membrane potential tested (fig. 7C, in control recordings, membrane conductance

was 33 ± 4 pA, during bath application of DA, membrane conductance was 34 ± 4 pA at

holding membrane potential —1 OOmV; in holding membrane potential —4OmV, control

membrane conductance was 16 + 2 pA, while bath application of DA, membrane

conductance was 23 + 4 pA. paired t-test, P> 0.05, n = 50). This suggests that no

intrinsic property of the membrane altered during the application of DA.

Change in the time course of synaptic response may be an indicator for detecting

a presynaptic or postsynaptic effect. We rneasured the tirne course of synaptic responses

for AMPA!KAR-EPSCs in 9 cells before and during application of DA. The results

indicate that DA did not produce significant changes in the decay time (t) of the evoked

EPSCs (in controt: 10.94 ± 1.2 ms, in DA 12.64 ± 3.1 ms at holding membrane potential

—100 mV, paired t-test, n = 9, F> 0.05). The decay of the EPSC in the presence of DA

could be perfectly fitted with the controls (data flot shown).

Steady-state current-voltage curves generated by changing membrane potentials

showed that DA did not change the I-V relationship configuration over the voltage range
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tested in early compound EPSCs (from —100 to +40 mV) although EP$Cs were depressed

to some extent (fig. 2, n 80).

Finally, effects of DA (50 jiM) on postsynaptic response evoked by pressure

application of glutamate (10 mM) were studied at a holding membrane potential of —

1 OOmV. DA (50 iM) neither reduce the mean peak amplitude of glutamate-evoked

response nor changed the kinetic curve of the currents, indicating the depression of

EPSCs produced by DA was flot mediated by postsynaptic mechanisms on glutamate

receptor (fig. 7 D and D’. 120 ± 10 pA in control; 121± 10 pA in DA, Student’s t-test,

F>0.05, n 5).

In sumrnary, DA decreased the NMDAR-EPSCs to AMPA/KAR-EPSCs ratio in

all age groups but did flot change the PPR of NMDAR-EPSCs at a holding membrane

potential of —4OmV, suggesting that the inhibition of NMDAR-EPSCs by DA might be

mediated predominantly by postsynaptic mechanisms. DA significantly altered the PPR

of the AMPA/KAR-EPSC at a holding membrane potential of —100 mV. In addition,

there was no change in membrane conductance at any holding membrane potential levels

and no effect of DA was observed on glutamate-induced EPSC at holding membrane

potential of —1 OOrnV, suggesting that the inhibition of DA on AMPA!KAR-EPSC

occurred at presynaptic sites.

jFigure 7J
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DISCUSSION

Our resuits support the notion that the EPSC evoked by local stimulus in the nAcb

is composed of both early and late components. 50 1iM of DA strongly inhibited

NMDAR-EPSCs, whereas only slightly but signiflcantly, reduced the amplitude of

AMPA/KAR-EPSCs by acting on D1-like receptors. Previous studies have shown that

depression of EPSCs or EPSPs produced by DA was mediated by AMPAJKA receptor

and our findings are consistent with these resuits (Higashi et al., 1989; Pennartz, et al.,

1992; Harvey and Lacey, 1996, 1997; Nicola and Maïenka, 1997, 1998). Our finding

that DA produced a much stronger inhibition of NMDAR-EPSCs is, to our knowledge,

the first report to demonstrate a preferential depression of NMDAR-EPSCs by DA in the

nAcb. In contrast with previous studies, we did not find that the inhibitory effect of DA

involved PKA or PKC pathways under our experimental conditions.

DA inhibited bot!, NMDAR-EPSCs andAMPA/KAR-EPSCs in the nAcb

Intra-nAcb infusion of amphetamine reduces levels of extracellular glutamate,

suggesting that the dopaminergic system may inhibit glutamate release (Kalivas and

Duffy, 1997). Although no axo-axonal synaptic contacts between dopaminergic

terminals and limbic cortical afferents exist, there is considerable evidence to indicate

that their inputs terminate on the same spines of MS neurons and ofien in close

apposition (Smith and Bolam, 1990; Bouyer et aÏ., 1984; $esack and Pickel, 1990). This

indicates that they interact on a common target-MS neurons to modulate the function of

MS projecting neurons and that dendritic spines of MS neurons is a potential site for
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physiological interactions between DA and glutamate in the nAcb (Antonopoulos et al.,

2002).

DA receptors expression changed during postnatal development in the nÂcb

(Teicher et al., 1991; Lu et al., 1998; Schwartz et al., 1998; Tarazi et al., 1999;

Antonopoulos et al., 2002). The density tevels of D1-like receptor increases from P7 to

P28, then declines by 20-40% afier P35 to remain unchanged until P60. Excessive D1-

like receptors are eliminated during maturation of the nAcb (Tarazi et al, 1999). The

major finding of the present study is that the activation of DA receptors (Di-like)

preferentially inhibited NMDAR-EPSCs in the nAcb in vitro during postnatal

development. Our conclusion is based on several findings: (1) the ratio of NMDAR

EPSCs to AMPA/KAR-EPSCs amplitude was significantly decreased by DA; (2) the

effect of DA on NMDAR-EP$Cs was as pronounced as that of the NMDA receptor

antagonist, APV, and (3) the inhibitory efficacy of DA on isolated NMDAR-EPSC

amplitudes in the presence of CNQX and BMI was over 90% of the control. However,

the present finding contradicts the results obtained by Harvey and Lacey (1997) who

reported that DA, via the activation of D1-like receptor, enhanced NMDAR-EPSCs in the

nAcb slices. Stili, others have not observed this effect (Nicola and Malenka, 1998;

Beurrier and Malenka, 2002). The conclusion for potentiation of NMDAR-EPSCs by

DA (Harvey and Lacey, 1997) was based on the presence of A1 receptor antagonist,

DPCPX, but we could flot replicate these finding. However, the actual effect of DA on

NMDAR-EPSCs was inhibitory in the absence of DPCPX (Harvey and Lacey, 1997).

Chergui and Lacey (1999) again reported that D1 agonist increased NMDA inward
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current in 50% of the celis and this enhancement was blocked by Ro-32-0432, a PKC

inhibitor. This is in contrast with our present resuits. The discrepancy in the effect of

DA on NMDAR-EPSCs in our study and others are perhaps due to the methods used in

different studies or to the fact that our study was concluded during early postnatal

developrnent. Chergui and Lacey (1999) elicited NMDA cunents by inj ecting NMDA

while membrane potentials was heid at —90 mV. However, in our experimental protocol

we found neither NMDAR-EPSCs at comparable holding membrane potential could be

evoked nor the NMDA current was pharmacologically isolated. However, inhibition by

DA of both AMPA!KAR- and NMDAR-EPSCs is compÏetely consistent with the

findings in the subicular nucleus (Behr et al., 2000) and in striatal MS neurons (Lin et al.,

2003). Inhibitory effect of DA on NMDA currents has also been demonstrated in striatal

and hippocampal neurons (Lee et al., 2002).

Botit pre- andpostsynaptic mechanism were involved in inhibition ofEPScs by DA

DA receptors are distributed on both the presynaptic glutamatergic terminais and

postsynaptic membrane of MS neurons in the nAcb (Lu et al., 199$; Schwartz et al.,

1998; Tarazi et al., 199$; Antonopoulos et ai., 2002). Therefore, DA may exert its

inhibitory action on stimulus-evoked EPSCs by either an alteration of the postsynaptic

glutamate receptors or a decrease in presynaptic glutamate release, or a combination of

both pre- and postsynaptic mechanisms.

Our flndings suggest that the synaptic mechanisrns by which DA depresses

NMDAR-EP$Cs and AMPA/KAR-EPSCs are complex and may be somewhat different.

We examined the changes in the PPR during DA application as an indication of pre- or
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postsynaptic mechanisrn. In the paired-pulse paradigm of DA inhibition, if DA acts

presynaptically to reduce the probability of glutamate release from presynaptic terminals,

then the ratio of the second EPSC to the first EPSC (EPSC2/EPSC1) amplitude should be

altered. In contrast, if DA acts postsynaptically, the amplitude of EPSC1 and EPSC2

should be reduced to the same degree, and therefore the ratio would remain unchanged

(Kline et al., 2002). Bath application of DA greatly reduced EPSC, but had less effect on

EP$C2 at a holding membrane potential of —1 OOmV, suggesting that DA promotes a

decrease in presynaptic quantal release, rather than a decrease in postsynaptic glutamate

sensitivity of AMPA!KA receptor. DA significantly altered the paired-pulse depression

ratio, but neither changed membrane conductance nor effected the extrinsic glutamate

induced currents at holding membrane potential of —1 OOmV, suggesting that DA inhibits

AMPA!KAR-mediated current through presynaptic mechanisms. Our resuits are

consistent with those of previous investigators studying DA inhibition on EPSCs in the

nAcb (Nicola and Malenka, 1997, 1998; Harvey and Lacey, 1996, 1997; Pennartz et aï.,

1992; Higashi et al., 1989). In addition, PPR changes attributed to DA application in

relatively hyperpolarized membrane potentials have also been observed in the nucleus of

the solitary tract (Kline et al., 2002), in subicular neurons (Behr et al., 2000), in

supraoptic nucleus (Price and Pittman, 2001) and in parabrachial nucleus (Chen et al.,

1999). Paired-pulse facilitation is due to residual free Ca2 in the presynaptic terminal

left unbuffered from the first pulse and summates with Ca2 influx from the second

stimulus, enhancing the probability of transmitter release with the second pulse.

Therefore, the magnitude of the second response is typically larger (Santschi and Stanton,
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2003). A change in the ratio of these amplitudes by DA, in the absence of changes in

postsynaptic input resistance, is thought to reflect a presynaptic mechanism (Debanne et

al., 1996; Zucker, 1989; Zucker and Regehr, 2002; Kiine et al., 2002). However, in

testing PPR at a holding potential of —4OmV we found that DA neither increased nor

decreased PPR at —4OmV, i.e. the amplitude of EPSC1 and EPSC2 were reduced to the

same degree. No significant PPR alteration at this holding membrane potential suggests

that the inhibition of NMDAR-EPSCs by DA may flot be mediated by a presynaptic

mechanism and could also involve postsynaptic mechanisms.

The larger effect of DA on NMDAR-EPSC may be due to either a specific

postsynaptic inhibitory action of DA on NMDA receptors or may be related to a higher

affinity of glutamate for AMPA!KA receptors than for NMDA receptor. In the latter

case, a low concentration of glutamate would activate more AMPA than NMDA

receptors so that the ratio of NMDAR-EP$Cs to AMPA/KAR-EPSCs can be decreased

only by decreasing glutamate release via presynaptic mechanisms. However, in fact,

NMDA receptors have a much higher affinity for glutamate than do AMPA receptors and

the concentration of glutamate achieved in the synaptic clefi may often be sufficient to

activate NMDA, but not AMPA receptors (Kullmaim and Asztely, 199$; Isaacson, 1999).

We proposed that DA-induced depression of EPSCs is probably due to a decrease in

presynaptic glutamate release and a simultaneous attenuation of the function of

postsynaptic NMDA receptors. This proposal is consistent with recent findings in

cultured striatal and hippocampal fleurons (Lee et al., 2002; Lin et al., 2003). Lee et al.

(2002) found that D1 receptor agonist treatment significantly reduced the number of



148

NMDA receptors on the ceil surface. When D1 receptors are activated, NMDAR-EPSCs

are inhibited by direct protein-protein interaction (Lee et al., 2002).

Tite inhibitory effect ofDA on EPSCs did flot ht volve PK4 and PKCpathways

In our study, we observed that activation of AC by forskolin potentiated both

NMDA and AMPA!KA receptor-mediated responses. This finding is consistent with

observations from other investigating in the nAcb (Harvey and Lacey, 1996; Brundege

and Williams, 2001). A study in the striatum also showed that NMDA responses were

potentiated afier stimulation of PKA (Blank et al., 1997; Colwell and Levine, 1995).

However, we found that the inhibitory effect of DA on the EPSCs was flot antagonized

by the AC inhibitor, SQ 22536. In the presence of forskolin (10 jiM), the ability of

dopamine to depress synaptic transmission was flot significantly altered (Harvey and

Lacey, 1996). Although some studies report that PKA and PKC mediate the effect of DA

(by D1 receptor) on NMDA-evoked currents (Chergui and Lacey, 1999; Snyder et al.,

1998), these flndings on involvement of PKA or PKC are always related D1 receptors

enhancement of the currents evoked by NMDA agonists in the nAcb. We did flot observe

the enhancement action of DA on stimulus evoked NMDA currents nor found any

involvement of PKA or PKC signal transduction pathway in the inhibitory effect of DA.

In addition, the lack of change in EPSC decay time constants and no change in membrane

cunent conductance of the postsynaptic cell while membrane potential was clamped

between —100 and 4OmV may indicate the effect of DA on EPSCs is independent of any

effect on intrinsic properties ofthese neurons (Lee et al., 2002). Blocking the PKA signal

transduction pathway by incubating suces in bath for 2-4 hours and in pipette with H89
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(2OjiM) could flot prevent the depression of EPSCs by DA, indicating the inhibitory

effect of DA on EPSCs was flot rnediated via PKA route (Friedman et al., 1997; Deveney

and Waddington, 1995; Wang et al., 1995). Also, Ro-32-0432, a PKC inhibitor failed to

antagonize the inhibitory action of DA, exciuding the possibility that PKC was involved

in DA inhibitory process under our experimental conditions (Friedman et al., 1997; Lee

et al., 2002). Consistent with our observations, D1 and NMDA receptors exhibited an

inhibition of NMDA receptor-mediated currents upon D1 receptor activation by a D1

receptor agonist in whole-cell patch-clamp recordings from hippocampal, striatal

fleurons, and HEK-239 ceils coexpressing D1 and NMDA receptors, has been

demonstrated (Lee et al., 2002; Lin et al., 2003). The effect of D1 receptor agonist could

flot be attributed to either PKC or PKA activation, and was independent of G-protein

mediated D1 receptor signaling (Lee et al., 2002). This result suggests that D1 receptors

modulate NMDAR-EPSCs independent of PKA and/or PKC activation although

numerous studies have demonstrated that NMDA receptor function may be regulated by

G protein-coupled receptors, including D1 receptors, through the activation of PKA/PKC

dependent pathways (reviewed in Greengard, 2001).

Other possibilities could also explain why we found no involvernent of PKA and PKC in

the effects produced by DA. First, PKA and PKC may only be involved in the

enhancement of the response induced by DA. Second, it is possible that some enzyme

systems involved in the PKA and PKC pathways were washout by the whole-cell

recording protocol. Third, in order to prevent voltage-sensitive sodium channels from

generating action potentials, we applied QX314 in the recording pipette solution.
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Blockade of sodium and potassium channels by QX3 14 may partially affect postsynaptic

response. This appeared to be the case in cholinergic modulation of EPSCs (Zhang and

Warren, 2002). fourth, the inhibitory effect of DA on NMDAR-EPSC is possibly

independent of the PKA and/or PKA system. We consider this the most probable

mechanism for the inhibition of DA on NMDAR-EPSCs. More importantly, recent

evidence provided by Lee and colleages (2002) shows that the modulation of NMDA

receptors may be mediated through the regulation of NMDA receptor numbers on the cet!

surface, and that the D1/NR2A coupling may play a role in the regulation of NMDA

receptor expression on the ce!! surface. In addition, several previous findings also show

that amphetamine inhibits the NMDA receptor-mediated responses by directly interacting

with NMDA receptor/channel complex (Yeh et al., 2002) and a direct blockage of

NMDA chaimels by DA (Castro et ai, 1999).

The D1-like receptor agonist SKf 38393, but flot the D2-tike receptor agonist

quinpiro!e, mimicked the action of DA. Consistent with these results, the D2-like

antagonist sulpiride failed to inhibit the depressive effect of DA and the D2-!ike receptor

antagonist!antiosychotic drug clozapine as well. However, the D1-like receptor

antagonist SCH 23390 could block the action ofDA at a concentration of 10 j.iM, but not

of I or 5 iM. This relatively high concentration of SCH 23390 needed to antagonize the

action of DA may be explained by its competitive nature (Weiss et al., 1985). The

concentration of DA used in this study may be re!ated to the in vitro conditions of the

experirnent. The demonstrabie effects, however, were obtained afier 8-10 min of DA

perfusion. In addition, rapid oxidation (Sutor and ten Bruggencate, 1990) as well as
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uptake of DA may reduce the final concentration of DA at its site of action. In agreement

with other studies in the nAcb (Chergui and Lacey, 1999) and studies in the parabrachial

nucleus (Chen et al., 1999), we found that similar concentrations were necessary to elicit

effects ofDA on synaptic responses in in vitro conditions.

Fttnctionat implications

Our previous work on glutarnatergic receptors-mediated EPSCs (Zhang and

Warren, unpublished) and other studies in the distribution of D1 receptors (Tarazi et ai,

1999; Antonopoulos et al., 2002) have found that both NMDAR-EPSCs and D1 receptor

are predorninantly expressed in the nAcb during early postnatal development. The

synchronization ofNMDAR-EPSCs and Dl receptors during postnatal development may

play a pivot role in neural plasticity (Pennartz et al., 1991, 1993; Kombian and Malenka,

1994; Schramm et al., 2002). As appetitive instrumental leaming requires coincident

activation of NMDA and D1 receptors (Smith-Roe and Kelley, 2000) and D1 receptor

activation decreases the ethanol sensitivity of NMDA receptors in the nAcb (Maldve et

al., 2002); D1 and D5 receptor activation is required for LTP (Kerr and Wickens, 2000)

and D1 receptor-dependent trafficking of NMDA receptors to postsynaptic sites in the

neostriatum has also been found (Dunah and Standaert, 2001). These findings suggest

that NMDA receptors and 1 receptors are interactive, inter-regulated to maintain a

balance (Cepeda and Levine, 199$; Lee et al., 2002). Hyperactivity of NMDA receptor

mediated function may resuit in an excitotoxicity due to Ca2 overload (Dawson et al.,

1991; Chen et al., 1992; Ferreira, 1996; Aarts et al., 2002). On the other hand, an

excessive DA may attenuate NMDA receptor-mediated function and so decreases Ca2
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influx to the neurons during postnatal development, affecting plasticity. Recent

hypotheses about the pathophysiology of schizophrenia have posited defects in excitatory

amino acid transmission (e.g. Carlsson and Clarlsson, 1990; coyle, 1996; Olney and

Farber, 1995; Do et al., 1995; Faustrnan et al., 1999; Tsai et al., 1995; reviewed by

Meador-Woodruff and Healy, 2000). NMDA receptor antagonists produce effects in

normal human subjects that resemble schizophrenic symptoms (Krystal et al., 1999) and

drugs that alter glutamate transmission can ameliorate schizophrenic symptoms (Javitt et

al., 1994; Tsai et al., 199$), suggesting defects in excitatory amino acid transmission. As

schizophrenia is associated with a hyperfunction of the dopaminergic system (Gray et al.,

1995; Joyce, 1993; Joyce and Meador-Woodruff, 1997), an enhanced DA-induced

depression of the excitatory drive onto nAcb celis may cause imbalance in the related

neurocircuits in earlier ages. Considering the fact that antagonists at DA receptors have a

much higher antipsychotic potency, the nAcb may represent a potential site of such

action. Just as schizophrenia often emerges during late adolescence or early adulthood,

predominant NMDA receptors and DA receptors expressed in early postnatal

developrnent might play a pivotal role in the etiology ofthe schizophrenia.
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GENERAL DISCUSSION

Experimental aim and resuits

Schizophrenia is a severe mental disease that could resuit from abnormalities in

early brain development (Weinberger, 1995; Caimon, 1996; Woods, 1998; Isohanni et al.,

2001; Remsclmidt, 2002). The clinical syndrome produced by glutamatergic

dysfunction, especially more pronounced NMDA receptor hypofunction, has been

suggested as a possible substrate of the pathophysiology of schizophrenia (Carisson and

Carisson, 1991; Meador-Woodruff and Healy, 2000; Newcomer and Krystal, 2001). In

addition, discovering the distinct difference of physiological properties of the MS

neurons during postnatal development from adulthood (Belleau and Warren, 2000) as

well as an increased volume in the nAcb resulted from a neuronal death following

prenatal cortical neurodevelopmental disturbances (Lauer et al., 2001), is the major

motivation of the present work.

In the present study, we found that EPSCs evoked by local electrical stimulation

in the nAcb had both AMPAR- (early) and NMDAR- (late) components. The late

component increased to a maximum towards the end of the second postnatal week, and

then decreased until it could be hardly detected after the third week. However, during

pharmacological blocking of AMPAR-EPSCs, NMDAR-EPSCs could also be detectable

even during fourth week with a faster decay time than during the early postnatal period.

These resuits suggest that NMDAR-EPSCs are predominantly expressed during early

postnatal developrnent in the nAcb. Additionally, the ratio of amplitude of late to early

component was decreased during the same period, which is in agreement with the finding

that the expression of postsynaptic NMDA receptors is downregulated during postnatal
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development (Bellingham et al., 1998; Futai et al., 2001; Isaacson and Walmsley, 1995).

ACh decreased or increased glutamatergic transmission by respectively acting on

muscarinic and nicotinic receptors probably located on excitatory terminais. Muscarinic

depression of the EPSCs was mediated by M1/M4 receptors and nicotinic facilitation of

the EPSCs was mecamylamine-sensitive. In addition, the inhibitory effect of ACh on

NMDAR- but not on AMPAR-EPSC significantly increased during the first two postnatal

weeks. Acting on Dl receptors, DA strongly inhibited NMDAR-EP$Cs while

moderately reducing AMPAR-EP$Cs. The ratio of amplitude of the late component to

the early components was significantly decreased, and the PPR was increased by DA at

the hyperpolarized membrane potentials. Since the action of DA was resistant to the

protein kinase inhibitors H$9, Ro-32-0432 and the cAMP antagonist, QS22536,

suggesting the inhibitory action of DA was independent of an action mediated by

AC/PKA or PKC systems.

Expression of NMDA receptor subunits and the performances of EPSCs

Our results show that EPSCs evoked by local electrical stimulation in the nAcb

have both AMPAR- and NMDAR-components. NMDAR-component increased to a

maximum during the second postnatal week, and then decreased until it could hardly be

detected after the third postnatal week. However, during blockade of the AMPAR

component, the NMDAR-component could be detected at later ages but with a faster

decay time than that during the early postnatal period.

Our findings indicate that NMDAR-EPSCs are predominantly expressed during

postnatal development. The changes in NMDAR-EPSC kinetics in our observation is

consistent with the findings in other brain areas (Joshi and Wang, 2002; Flint et aL. 1997;
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Fox, 1995) and appear matched to the gene expression of NMDA receptor subunit

mRNA during postnatal development in the neostriatum (Lau et al., 2003), visual and

auditory cortex as well as in the thalamus (Cao et al., 2000; Hsieh et al., 2002). During

the development of glutamatergic transmission in the sensory cortex, the proportion of

synapses with detectable AMPAR-current increases, and the decay kinetics of NMDAR

current become faster. The change in NMDA receptor kinetics is believed to result from

a developmental switch in the subunit composition of NMDA receptors. The NRÏ

subunit combines with various NR2A-D subunits to produce receptor subtypes with

different kinetics. 0f these, NR2A subunit-containing NMDA receptors have the faster

decay times, whereas NR2B subunit-containing receptors have the siower decay times. A

general trend shows that the contribution of the NR2B subunit is decreasing during

development, which is associated with an increasing contribution of NR2A subunit

containing NMDA receptors to synaptic current. A graduai replacement or

supplementation ofNR2B by NR2A during postnatal development has been implicated in

the speeding of NMDAR-EP$C decay—a phenomenon often linked with the ability of

neuronal circuits to exhibit experience-dependent synaptic plasticity (Constantine-Paton

and Cime, 1998). We found that NMDAR-component increased to a maximum during

the second postnatal week, and then decreased, suggesting a graduai increase in NR2B

subunit-containing NMDA receptors until the end of the second postnatal week. These

late EPSCs during the second postnatal week are supposed to be distinctly decreased if

ifenprodil was used.

Following the second postnatal week, NMDAR-EPSCs could be detected with a

faster decay time, suggesting that the proportion of NR2A subunits-containing NMDA
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receptors increased and gradually replacing or supplementing NR2B subunits after the

second postnatal week. The kinetics ofNMDAR-EPSC became shorter gradually due to

more insertion of NR2A subunits so that its peak overlapped with the peak of AMPAR

EPSC in the compound EPSCs. Unmasked by AMPA receptor antagonist, NMDAR

EPSC was re-detectable even in later postnatal week.

A decrease in NMDAR-EPSC decay time with maturity has been described in

other regions of the CNS (Carmignoto and Vicini, 1992; Hestrin, 1992; Takahashi et al.,

1996). This decrease appears to be correlated with the appearance of NR2A subunits

(Flint et al., 1997; Takahashi et al., 1996), and the expression of NR2A is increased by

activity (Quinlan et al., 1999; Vallano et al., 1996). Thus, during postnatal development,

there is an increased proportion of the NR2A subunit-containing NMDA receptor

accompanied by a decreased proportion of NR2B (Yoshii et al., 2003). It has been

further shown that the mature kinetics (decay time constant, lOOms) are characteristic of

NMDA receptors composed of NR1 and NR2A subunits, whereas the immature form

(350ms) is the characteristic of the receptors with NRÏ and NR2B subunits (Williams et

al., 1993).

NMDA receptor and synapsogenesis

We found in the morphological study that MS neurons are essentially aspiny from

P0 to P10, and possess varicose dendrites, whereas they assume an adult spiny

appearance only toward the end of the third postnatal week. These changes are

concomitant with the evolution ofNMDAR-EPSCs during the development.

Ca2 influx through glutamate receptors is thought to play a critical role in

neuronal synaptogenesis and in the formation of neuronal circuitry during early
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development (McDonald and Johnston, 1990). The NMDA receptor has been proposed

to be the first glutamatergic receptor to appear during synaptogenesis (Baba et al., 2000;

Durand et al., 1996; Isaacet al., 1997; Petralia et al., 1999). A large body ofevidence has

shown that disturbing the function of the NMDA channel during development can

severely disrupt the wiring of defined neural circuits. It can also disrupt the

developmental upregulation of the receptor protein itself and possibly many other

molecular components of the synapse (Constantine-Paton, 1994). Studies further

demonstrated that NMDA receptor mediates control of protein synthesis at developing

synapses (Scheetz et al., 2000). Activation of NMDA receptors increases the translation

of Œ Ca2/ca1modu1in dependent kinase II and the phosphorylation of eukaryotic

elongation factor II during activity-dependent synaptic changes (Scheetz et al., 2000).

Activation of the NMDA receptor also plays a role in structural plasticity. Studies on the

development of axonal and dendritic arbors in the developing tectum also showed that

early synaptic activity mediated by NMDA receptors promotes the growth of dendritic

arbor in xenopus laevis tadpoles (Rajan and Cline, 199$), facilitating the formation of

additional synaptic contacts (Cline, 2001). The NMDA receptor antagonist suppressed

the transient increase in dendritic arbor at the beginning of the second postnatal week in

the supraoptic nucleus neurons of rats (Chevaleyre et al., 2002). Conversely, application

of NMDA increased dendritic branches in slices of P3-P6 rats. Their effects were

inhibited by blockade of electrical activity, voltage-gated Ca2 chaimels, or intracellular

Ca2 mobilization (Chevaleyre et al., 2002). Exposure of the developing brain during the

period of synaptogenesis to anesthetic agents that block NMDA receptors can trigger

widespread apoptotic neurodegeneration (Jevtovic-Todorovic et al., 2003). On the other
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hand, chronic blockade of NMDA receptors in hippocampal suce cultures during early

postnatal development resuits in a lower threshold for the induction of LTP ($avicc et al.,

2003) and leads to a substantial increase in synapse number and resuits in a more

complex dendritic arborization of CAl pyramidal celis (Luthi et al., 2001). Consistently,

chronic blockade of NMDA receptors delays the maturation of NMDA cunents and

increases the sprouting capacity of ipsilateral retinocollicular axons without disrupting

their early segregation (Colonnese et al., 2001; Colonnese et al., 2003). These opposing

resuits suggest that NMDA receptors may also be critical for the shaping and refinement

of the structural and functional properties of neuronal circuits during early postnatal

development (Luthi et al., 2001).

Glutamate promotes proliferation of striatal neuronal progenitors by an NMDAR

mechanism. Low concentrations of NMDA increased proliferation, whereas high

concentrations were toxic (Luk et aI., 2003). Moreover, nicotine sensitization increases

dendritic length and spine density in the nAcb (Brown and Kolb, 2001), suggesting it

plays an important role in the nAcb during postnatal development.

Paired-pulse ratio and presynaptic mechanisms

The paired-pulse protocol (PPP) has been widely applied to the identity of

presynaptic mechanisrns (Zucker, 1989, 1999; Kamiya and Zucker, 1994). It was used in

our project to distinguish pre or postsynaptic sites at which ACh and DA could modulate

EPSCs. The amplitudes of two EPSCs evoked by the PPP differ depending mainly on

release probability of transmitters including the synaptic state during the moment of the

anival of the second spike (Dittman et al., 2000; Saviane et al., 2002). In general, the

srnaller amplitude is the probability of release to the first pulse, the more facilitated
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amplitude is the response to the second pulse. This phenomenon is known as paired

pulse facilitation (PPf). In contrast, if the amplitude of the second response is depressed

or smaller than the first one, it is called the paired-pulse depression (PPD) (Steven and

Wesseling, 1998). Studies have shown that the probability of release depends on both

residual Ca2 and the size of the available vesicles pool. The interplay between these two

factors at the moment of arrival of the second spike would determine the direction of the

paired-pulse modulation, i.e. PPF or PPD. The PPF observed in the majority of neurons

in stationary conditions is accounted for by the residual Ca2 hypothesis, according to

which the small fraction of Ca2 entering the terminal during the first spike increases the

probability of transmitter release to a second action potential (Zucker, 1989) when

vesicles pool is in constant. The PPD is presented at an entry of release sites into

refractory states to depress transmitter release (Dittman et al., 2000; Dobrunz et al., 1997;

Steven and Wesseling, 199$). This could be due to either the depletion of the readily

releasable transmitter pool ($teven and Wesseling, 199$) or to residual Ca2 following

the first stimulus depressing the Ca2 influx produced by the second stimulus (Kirischuk

et al., 2002). Or both could occur afler sustained depolarization of the presynaptic

terminal (Wu and Borst, 1999; Dittman and Regehr, 1998). Obviously, both PPF and

PPD are presynaptic phenomenonna (Zucker, 1989; Wu & Saggau, 1997; Dittman et al.,

2000). Presynaptic inhibition of ellcited transmitter release is rnainly due to a reduction

of presynaptic Ca2 influx through specffic Ca2 channel types (Wu and Saggau, 1994,

1997). A reduction in release probability predicts an increase in the PPR that has shown

to be enhanced when the extracellular Ca2/Mg2 ratio was lowered (Debanne et al., 1996;

Canepari and Cherubini, 1998; Regehr and Stevens, 2001; Bellingham and Walmsley,
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1999). In our experiments, both ACh and DA altered PPR in MS neurons, indicating the

involvement of presynaptic mechanisms. Facilitation of PPR by DA suggests that DA

acts mainly through a reduction of the presynaptic Ca2 influx (Wu and Saggau, 1997).

The reduction in PPR produced by ACh can be attributed to either residual Ca2 binding

to a molecular site intimately involved in regulating the probability of vesicle release or

changes in size ofthe readily releasable pool ofvesicles (Wu & Saggau, 1997; Dittman et

al., 2000) or both factors. Additionally, depletion of a pool of readily releasable vesicles

during repetitive presynaptic activity is a basic mechanism for the induction of short-term

synaptic depression (Schneggenburger et al., 2002). Wu & Borst (1999) also found that

the maintained synaptic transmission during tetanic stimulation is due to a rapid

replenishment of reluctant vesicles into the releasable pool, the release of which is

facilitated by the increase in residual Ca2 during the train. In fact, the average release

probability of vesicles in the releasable pool is lower during synaptic depression. In

addition, our finding on PPR changes of AMPAR- but flot NMDAR-EPSCs probably

suggests that the effect of DA on NMDAR-EPSCs involved postsynaptic sites, because

presynaptic manipulations should produce parallel changes in AMPAR- and NMDAR

EPSCs (Poncer and Malinow, 2001).

Direct interaction betiveen NMDA receptor and Dl receptor

Synaptic NMDA receptors play critical roles during brain development, plasticity,

and pathology (Constantine-Paton and Cime, 1998; Dingledine et al., 1999; Zoghbi et al.,

2000). The NMDA receptor is not a static resident of the synapse. Rather, the number

and composition of synaptic NMDA receptors can be regulated (Wenthold et al., 2003),

suggesting that a rapid regulation of postsynaptic NMDA receptors is one of the
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mechanisms underlying developmental plasticity in the brain. In the study of the

modulation of DA on NMDAR-EPSCs, we observed the ratio of amplitude of the late to

the early component of EPSCs was decreased by the presence of DA. This suggests that

the inhibitory action of DA on NMDAR-EPSCs was at least partially mediated by

postsynaptic mechanisrns. Since synaptic transmission affected from purely presynaptic

mechanisms should have produced parallel changes in AMPAR- and NMDAR-EPSCs

(Poncer and Malinow, 2001; Von Gersdorff et al., 1997; Tong and Jahr, 1994; Perkel and

Nicoll, 1993). One possibility is that postsynaptic effects of DA on Dl receptor are

voltage-dependent and are scarcely effective at —lOOmV, but at —4OrnV. Another

possibility is that DA causes a decrease in the number of NMDA receptors. A

downregulation in the number of NMDA receptors produced by DA has been

demonstrated in MS celis in the striatum (Lee et aI., 2002). Indeed, Dl receptors co

localized with NMDA receptors in the postsynaptic density (PSD) in the striatum suggest

a direct interaction between Dl and NMDA receptors (Salter, 2003; Lee et al., 2002;

Scott et al., 2002; Barria and Malinow, 2002; f iorentini et al., 2003). In particular, that

Dl receptor is apparently associated with both the NR1 and NR2A subunits, but flot with

the NR2B subunit (Fiorentini et al., 2003). The D1 receptor does not interact with NR2B

subunits in striatal PSD, probably explaining the postsynaptic effect of DA without

obviousÏy affecting the kinetics ofNMDAR-EPSCs in our resuits.

Several unes of evidence indicate that different levels of synaptic NMDA receptor

activation with corresponding degrees of Ca2 influx can lead to multiple effects. Low

level of NMDA receptor activation produces synaptic depression, while higher levels of

activation produce synaptic potentiation (Cummings et al., 1996; Zucker, 1999). Even
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higher levels of activation can Iead to ccli death (Choi, 1995). Thus, the number and

properties of NMDA receptors at a synapse must be under optimal control in order to

allow the appropriate amount of Ca2 entry. Therefore, the interaction between NMDA

and Dl receptors in MS neurons could be one ofthe mechanisms directing the trafficking

of Dl and NMDA receptors to specific subcellular compartments. Recent observation

shows that NMDA and Dl receptors partially overlap in the subcellular distribution and

are assembled as oligorneric units in the endoplasmic reticulum and transported to the ceil

surface as a preformed complex (fiorentini et al., 2003). Delivery ofboth Dl and NMDA

receptors to the synapses is dependent on glutamate transmission (Barria and Malinow,

2002; Scott et al., 2002), suggesting that direct protein-protein interactions might direct

the trafficking of these receptors to the same subcellular domain. Activation of Dl

receptor decreased the number of NMDA receptors, which resuits in the inhibition of

EPSCs (Lee et al., 2002). In contrast, activating NMDA receptors also alters the balance

between Dl and D2 receptor signaling recruiting Dl receptors to the plasma membrane

and spines without effecting on the distribution of D2 receptors (Scott et al., 2002). A

study has shown the NR2A rnRNA levels exhibited significant increases in DA

deficiency postnatal mice in the nAcb (fragioudaki et al., 2003), indicating that DA

exhibits an inhibitory control on the expression ofNMDA receptor subunits.

NMDA receptor trafficking and use-dependent expression

To remove or insert certain receptors or partial components of the receptors in

accordance with the requirement is one of the tasks of receptor trafficking. The gradual

replacement of NR2B subunits by NR2A during postnatal development is a typical use-
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dependent expression of regulation. Synaptic trafficking of NMDA receptors is tightiy

reguiated by synaptic activity and has subunit-specific fuies with functionally important

consequences (Barria and Malinow, 2002). for exampie, astrocytes express functional

NRI and NR2B afier anoxia in vitro or ischemia in vivo (Krebs et ai., 2003).

LTP and LTD strongiy depend on NMDA receptor activity and are

developmentally regulated in the nAcb (Peimartz et al., 1993; Kombian and Malenka,

1994; Schramm et al., 2002). However, LTP prornotes a rapid surface expression of

NMDA receptors in a PKC- and Src-family-dependent manner. Insertion of NMDA

receptors may 5e a key step in regulating synaptic piasticity (Grosshans et ai., 2002). It

was reported that activation of mGluRl regulates NMDA receptor trafficking by two

opposing processes, i.e. either activation of mGluR acceierates NMDA receptor

trafficking, resuiting in the insertion of NMDA receptors and increasing NR1 surface

expression (Lan et ai., 2001) or activation of rnGIuR stimuiates dendritic protein

synthesis and LTD, ieading to a rapid intemaiization of NMDA receptors from synapses

in the hippocampus (Snyder et ai., 2001).

Interaction of transmitters in the nucleus accumbens

In the nAcb, DA and glutamate, which come from extrinsic sources, as well as

ACh and GABA from iocai circuit neurons, are au capable of influencing the activity of

accumbal MS neurons. In the core region, the inputs onto spines and distai dendrites

generaiiy arise from extrinsic sources, whereas the synapses situated more proximaliy on

dendrites or perikarya corne from intrinsic sources (Meredith, 1999). The most common

sites of convergence for corticoaccumbal and dopaminergic terminais are dendritic shafis
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and spines of MS neurons with a distance between terminais of less than 2 microns

(Kotter, 1994). Glutamate transmission is inhibited by the activation of Dl or Ml

receptors and is potentiated by the activation of nicotinic receptors in the nAcb (Kalivas

and Duffy, 1997; Charara and Grace, 2003; Kombian et al., 2003; Chergui and Lacey,

1999; Harvey and Lacey, 1997; Harvey and Lacey, 1996; Beurrier and Malenka, 2002;

Nicola and Maïenka, 1998; Nicola et al., 1996; Pennartz et al., 1992; Thomas et al., 2001;

Zhang and Warren, 2002; de Rover et al., 2002; Sugita et ai., 1991; Pennartz and Lopes

da Siiva, 1994). The inhibitory effects of ACh on NMDAR- but not on AMPAR-EPSC

significantly increased during the first two postnatal weeks in our observation. This resuit

is parallel to the expression of NMDAR-EPSCs as well as to the appearance of dendritic

spines during early postnatal development. Possibly, the predominant expression of

NMDA receptors is capable of leading to a positive feedback of ACh release or promotes

the expression of muscarinic receptors in the nAcb. Other studies have shown that the

activation of NMDA receptors induced the release of ACh in the nAcb and striatum

(Jones et al., 1987; Buchholzer and Klein, 2002) as well as in the pontine reticular

formation (Lydic and Baghdoyan, 2002).

In addition to the interaction between NMDA and ACh, other interactions wiÏI be

helpful for us to understand nAcb sufficiently. Studies have shown that the cholinergic

celi ablation enhances long-lasting behavioral changes in cocaine addiction whereas ACh

enhancement prevented addictive behaviors to cocaine and morphine (Hikida et al., 2001,

2003). Systemic morphine decreases extracellular ACh and increases DA, indicating that

ACh and DA aci oppositely and that cholinergic activity could be under inhibitory DA

control in the nAcb (Ressell et al., 1989; Rada et al., 1991; Wedzony et al., 1988).



176

Systemic administration of amphetamine leaded to an increase in extracellular ACh and

DA levels while the concentration of GABA gradually decreased (Lindefors et al., 1992;

Arnold et al., 2000). further study demonstrated that amphetamine administration in the

nAcb induced a bidirectional change in ACh release that was dependent on dose and

opposing effects of nAcb Dl and D2 activation. Comparatively, low doses of

amphetamine caused a Dl receptor-dependent increase in ACh release whereas higher

doses of amphetamine resulted in a D2 receptor-mediated decrease (Keys and Mark,

1998). In contrast, the activation of muscarinic M4 receptors exerted a direct inhibitory

control on Dl receptor signaling (Onali and Olianas, 2002), and stimulation ofMl/4 also

inhibited amphetarnine-induced DA release in the nAcb (Ichikawa, 2002).

Several studies have shown that the activation of nicotinic receptors increase

accumbal DA overflow in rats (Imperato et aI., 1986; Di and Imperato, 1988; Johnson et

aI., 2000) whereas mecamylamine decreased accumbal DA output in mice treated

chronically with nicotine (Gaddnas et al., 2002). Interestingly, nicotine-induced DA

release was flot only abolished by antagonist of nicotinic receptors in the nAcb (Niseil et

al., 1994; Fu et al., 2000) but could also be attenuated either by the administration of

NMDA or nicotinic receptors antagonists into the VTA (Schilstrom et al., 2000;

Schiistrom et al., 1998; Fu et al., 2000). DA response to a relatively low dose of nicotine

depends on the tonic activation of NMDA receptors in the VTA (fu et al., 2000).

Additionally, DA release resulting from NMDA receptor activation in the nAcb of rats is

partially rnediated by NO (01mo et al., 1995). Interestingly, recent studies have also

found that stimulating Dl receptors increases G1uR1 phosphorylation and G1uR1 surface

expression in postnatal nAcb MS neurons in culture (Chao et al., 2002a, b).
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NMDA receptors and shizophrenia

Schizophrenia is a chronic, severely disabling brain disorder with symptomatic

onset in early adulthood. Hyperdopaminergic and hypoglutamatergic mechanisms are

presently two basic hypotheses of schizophrenia (Zoghbi et al., 2000). Postmortem

studies have revealed variable alterations in glutamate receptors and their modulators in

schizophrenia. Several clinical trials indicate that agents enhancing NMDA receptor

function via the glycine modulatory site reduce negative symptoms and can improve

cognitive function in schizophrenics (Tsai and Coyle, 2002). Evidence implicating

dysfunction of glutamatergic neurotransmission rests largely on the finding that

antagonists of the NMDA receptor, especially the dissociative anesthetics like

phencyclidine and ketamine, reproduce the cardinal symptomatic features of

schizophrenia as well as the physiological manifestation of schizophrenia such as

hypofrontality, impaired prepulse inhibition and enhanced subcortical DA release (Tsai

and Coyle, 2002; Coyle et al., 2002; Marino and Coim, 2002; Millan, 2002; Greene,

2001). Recent studies have shown that NMDA receptor subunits (NR1, NR2B and

NR2C) and P$D proteins are abnormally expressed in some cortical regions in

schizophrenia and in the thalamic nuclei having reciprocal connection with limbic

regions that have been implicated in schizophrenia (Meador-Woodruff and Healy, 2000;

Hisham et al., 2000; Clinton et al., 2003), suggesting that glutamatergic dysfunction may

occur flot only at the level of receptor expression but also within intracellular signal

transduction pathways associated with NMDA receptor (Clinton et al., 2003; Kajimoto et

al., 2003). It has been suggested that early neonatal blockade of NMDA receptors in

intact anirnals leads to the developmental disturbances to situational perception and
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assessment of incoming sensory information (Latysheva and Raevskii, 2003; MiIlan,

2002; Ikonomidou et al., 1999; Deutsch et al., 199$). An endogenous peptide, N-acetyl

L-aspartyl-L-glutamate, Fias been found to antagonize NMDA receptors in a manner

similar to known psychotogenic agents like ketamine or phencyclidine (Greene, 2001).

$elective blockade of NMDA-dependent LTP of the recurrent inhibitory circuit may

disrupt particular aspects of information processing involving leaming andlor memory,

consistent with the generation of abnormal associations in the hippocampus (Greene,

2001).

Cholinergic functions appear also abnormal in schizophrenia. Muscarinic

receptor avaiïability was significantly less, and positive symptoms of schizoplirenia are

conelated negatively with muscarinic receptor availability in the striatum and frontal

cortex, indicating that the muscarinic system that modulates the NMDA receptor couïd be

involved in the pathophysiology of schizophrenia (Coppola and Weinberger, 2003).

Further, the presence of abnormal expression and function of the neuronal nicotinic

receptor gene family in schizophrenia bas been also reported (Leonard et al., 1998;

Simosky et al., 2002).

The DA hypothesis of schizophrenia bas been fruitful in producing a deeper

understanding of pathophysiology of schizophrenia. In CAl pyramidal neurons,

activation of D2 receptors depressed excitatory transmission mediated by NMDA

receptors. This depression resulted from the quinpirole-induced release of intracellular

Ca2 and enhanced Ca2-dependent inactivation of NMDA receptors. The DA receptor

mediated depression was dependent on the “transactivationt’ of platelet-derived growth

factor receptor [3. Therefore, receptor tyrosine kinases transactivation provides a novel
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mechanism of communication between dopaminergic and glutamatergic systems and

might help to explain how reciprocal changes in these systems could be linked to the

deficits in cognition, memory, and attention observed in schizophrenia and attention

deficit hyperactivity disorder (Kotecha et al., 2002). Additionally, the finding of DA

NMDA receptor complex and the direct interaction between DA and NMDA receptors in

limbic regions will probably be an important progress in the study of schizophrenia (Lee

et al., 2002; Scott et al., 2002; Fiorentini et al., 2003).
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mechanism of action of DA to decrease evoked EPSCs and ACh to decrease or
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dopaminergic input from the ventral tegmental area (VTA). Cholinergic neurons
are domestic in nAcb. Schematic also showing a proposed mechanism of change of
NMDA receptor subunit components during the postnatal development and while
DA receptors are activated in the nAcb. Arrows indicate the trafficking directions

of NMDA receptor subunits (expression on membrane surface or intemalization).
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