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SUMMARY

Reactive oxygen species (ROS) have been shown to mediate the effect of

several growth factors such as angiotensin II (Ail), epidermal growth factor

(EGf) and platelet-derived growth factor (PDGF). Endothelin-1 (ET-1) is an

important growth factor for vascular smooth muscle ceils (VSMC) which is

beheved to contribute to the pathogenesis of vascular abnormalities such as

atherosclerosis, hypertension and cardiac hypertrophy. However, a possible role

of ROS generation in mediating the ET-1 response on ERK1/2 and PKB, key

components of growth promoting and proliferative signaling pathways, has flot

been examined in detail. Therefore, the aim of the present study was to

investigate the involvement of ROS in ET-1-mediated activation of ERK1/2 and

PKB as well as Pyk2 in A-10 VSMCs. These cefis are obtained from rat

ernbiyonic thoracic aorta. Pyk2 is a non-receptor Ca2-dependent protein

tyrosine kinase and an upstream regulator of MAPK signaling. ET-1 stimulated

the phosphorytation of ERKÎ/2, PKB and Pyk2 in a dose and time-dependent

fashion with maximum response being elicited at 10 nM winch peaked at 5 min.

Treatment of VSMC with ET-1 resulted in an increase in the generation of ROS

that could be blocked with diphenyleneiodonium (DPI), an inhibitor ofNADPH

oxidase. furthermore, DPI pretreatment of ceils prior to stimulation with ET-1,

attenuated ET-1 enhanced phosphorylation of ERK1/2, PKB and Pyk2. N

acetylcysteine (NAC), another ROS scavenger, also exhibited a sirnilar

response. Moreover, DPI caused a decrease in the protein synthesis stimulated

by ET-1. These resuits demonstrate that ROS is a critical mediator of ET-1-

induced signaling events linked to hypertrophic and growth promoting pathways

inVSMC.

There is an emerging evidence suggesting that nitric oxide (NO), a

vasoactive substance, contributes to the regulation of several hormone-mediated

responses such as EGF, PDGF as well as ET-1 and exerts an anti-mitogenic and

anti-proliferative effect in vitro. However, the mechanism by winch NO
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antagonizes ET-1 effect remains unknow. Therefore, the aim ofthis study was to

determine if NO generation would modify ET-1 -induced signaling pathways

involved in cellular growth and proliferation in A-10 VSMC. NO effect has been

evaluated by measuring phosphorylation levels of ERKY/2, PKB and Pyk2 by

immunoblot. Treatment of A-10 ceils with S-nitroso-N-acetylpenicfflamine

($NAP), a NO donor, attenuated the ET-1-enhanced phosphorylation of

ERK1/2, PKB and Pyk2. Since, NO mediates principally its effect through a

cycic GMP/soluble guanylate cyclase pathway, we investigated the role of 8-

Br-cGMP, a non-metabolizable and ceil permeable analogue of cGMP, winch

exhibites a sirnilar effect to SNAP on ET-1-induced ERK1/2, PKB and Pyk2

phosphorylation. Furthermore, ODQ, an inhibitor of guanylate cyclase activity,

reversed the inhibitory effect of NO on ET-1-induced responses. SNAP also

appeared to decrease the protein synthesis induced by ET-1. Taken together,

these data demonstrate that NO attenuates selectively ERK1/2, PKB and Pyk2

phosphorylation induced by ET-1 via cGMP, winch antagonize the growth

promoting and proliferative effects of ET-1.

Key words: ET-1, ROS, NO, MAPKs, ERK1/2, PKB, Pyk2, A-10 ceils.
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SOMMAIRE

Les espèces réactives oxygénées modulent l’effet de plusieurs facteurs de

croissance comme l’angiotensine II (AIT), l’EGF (“epidermal growth factor”) et

le PDGf (“platelet-derived growth factor”). L’endotheline-l (ET-1) est un

important facteur de croissance pour les cellules du muscle lisse vasculaire

(“V$MC”) et contribue aux anormalités vasculaires, entre autre,

l’athérosclérose, l’hypertension ainsi que l’hypertrophie cardiaque. La

génération des espèces réactives oxygénées pourraient aussi jouer un rôle dans

l’activation des voies de signalisation activées par l’ET-l, en particulier

l’activation de ERKT/2 et de PKB. Ces deux composantes clés sont impliquées

dans la croissance et la prolifération cellulaire. Ainsi, le but de la présente étude

est d’évaluer la participation des espèces réactives oxygénées dans l’activation

de ERK1I2, PKB et Pyk2 induite par ET-1 dans les “VSMC” de lignée A-10.

Ces cellules sont obtenues à partir de l’aorte thoracique embryonnaire de rat.

Pyk2 est une protéine tyrosine kinase dépendante du calcium et constitue ainsi

un régulateur ascendant de la voie de signalisation des MAPKs. ET-1 a permis

de stimuler la phosphorylation de ERK1/2, PKB et Pyk2 de façon dépendante de

la concentration et du temps d’où une réponse maximale a été obtenue à 10 nM

et après une stimulation de 5 min. Le traitement des “VSMC” avec ET-1 a

augmenté la production des espèces réactives oxygénées, alors qu’une

diminution a été observée en présence du diphenyleneiodonium (DPI), un

inhibiteur de la NADPH oxydase. En outre, le prétraitement des cellules avec

DPI a permis d’atténuer la phosphorylation de ERK1/2, PKB et Pyk2 induite par

ET-1. Une réponse similaire a été observée en utilisant un autre antioxidant, le

N-acetylcysteine (NAC). De plus, DPI a inhibé la synthèse protéique stimulée

par ET-1. Ces résultats démontrent que les espèces réactives oxygénées sont des

médiateurs importants dans l’activation des composantes de la voie de

signalisation de ET-1, ce qui contribue à la croissance et à l’hypertrophie

cellulaire.
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Il a été suggéré que l’oxyde nitrique (NO), une substance vasoactive,

contribue à la régulation des réponses induites par plusieurs hormones comme

l’EGF, le PDGf et l’ET-l en exerçant un effet anti-mitogénique et anti

prolifératW in vitro. Cependant, le mécanisme par lequel NO antagonise l’effet

de ET-1 est à ce jour inconnu. Le but de cette étude est donc d’évaluer si la

génération de NO pourrait modifier les composantes de la voie de signalisation

de ET-1. L’effet de NO a été déterminé en mesurant les niveaux de

phosphorylation de ERK1/2, PKB et Pyk2 à l’aide d’immunobavardage. Le

traitement des cellules A-10 avec S-nitroso-N-acetylpenicifiamine (SNAP), un

donneur de NO, a permis d’atténuer la phosphorylation de ERK1/2, PKB et

Pyk2 induite par ET-1. Comme NO médie principalement son action par la voie

de GMPc/guanylate cyclase soluble, on a donc étudié le role du $-Br-GMPc, un

analogue du GMPc non-métabolisable et perméable à la cellule. Un effet

similaire à celui de SNAP a été observé. En outre, ODQ, un inhibiteur de

l’activité de la guanylate cyclase, a renversé l’effet de NO sur la

phosphorylation des composantes de signalisation stimulées par ET-l. SNAP a

permis aussi de diminuer la synthèse protéique induite par ET-1. Finalement, les

résultats démontrent que NO atténue sélectivement la phosphorylation de

ERK1/2, PKB et Pyk2 de la voie de signalisation de ET-1 par l’intermédiaire du

GMPc, ce qui antagonise les effets de ET-l soit la croissance et la prolifération

cellulaire.

Mots des: ET-l, ROS, NO, MÀPKs, ERK1I2, PKB, Pyk2, A-10 ceils.
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INTRODUCTION
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1.1 Endothelin

Endothelin, one of the most potent vasoconstrictors, was discovered by

Yanagisawa and co-workers (1) in 1988. It was characterized and cloned from

porcine aortic endothelial ceils (1) and exerts inotropic and mitogenic properties,

influences homeostasis of sait and water and stimulates the renin-angiotensin

aldosterone and sympathetic nervous systems (2,3,4). In fact, the overail effect

of the actions of endothelin is usually to increase vascular tone and biood

pressure. Endothelin also play an important role in the pathophysiology of

cardiac, vascuiar and renal diseases associated with regional or systemic

vasoconstriction (5) such as hypertension and atherosclerosis.

1.2 Structures of endothelins

Endothelin (ET) is a 21 aminoacid peptide winch exists in at least three

isoforms: ET-1, ET-2 and ET-3 (6,7). Ail ET isopeptides share a common

structure: two disuffide bonds (Cys’-Cys’5 and Cys3-Cys”), a cluster of tbree

polar charged side chains on aminoacid residues s-10 and a hydrophobic C-

terminus (residues 16-21) containing the aromatic indole side chain at Trp21.

ET-2 contains two aminoacid substitutions (Trp6-Leu7) and shares 90%

sequence homology with ET-1. ET-3 contains six aminoacid substitutions (Thr2,

Phe4-Thr5-Tyr6-Lys7 and Tyr’4) and shares 71 % sequence hornology with ET-1

and ET-2 (8,9). The hydrophobie C-terminus of ET is essential for its
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bioactivity, as well as the ioop configuration (9). ETs share close sequence

homology (- 67%) and similar bioactivities with the sarafotoxins, a group of

peptide toxins isolated from venom of some scorpions and snakes (8). The

disulfide bonds, polar side chains and hydrophobic C-terminus of ETs are

largely conserved in sarafotoxins (9) (Fig. 1.1).

NH3 Endothelin-1

EndotheUn-2

Endothelin-3

Figure 1.1 : Structures of endothelins. Dark circles indicate where
aminoacids differ from those ofendothelin-1. (Based on ref t$Î)
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1.3 Molecular genetics and regulation of generation of endothelin

Each member of the endothelin family possesses a separate gene that

encodes a specific precursor for the mature isoform (5). The 5’ upstrearn

promoter region of the genes contains binding sites for activating protein 1 and

nuclear factor 1, which are involved in transcriptional induction of mRNA for

endothelin- 1 by angiotensin II and transforming growth factor 3 (5,10). The 3’

untranslated region (3’-UTR) of the mRNA contains adenine-uracil-rich (AU

rich) sequences that regulate the stability of preproendothelin- 1 mRNA (5).

Generation of endothelin-1 is induced by many stimuli, including vasoactive

hormones, growth factors, hypoxia, shear stress, lipoproteins, free radicals,

endotoxin and cyclosporin (11) (Fig. 1.2). Production of endothelin-1 is

inhibited by stimuli that act to increase intracellular level of cyclic guanosine

monophophate (cGMP), including endothelium-derived nitric oxide,

nitrovasodilators, natriuretic peptides, heparin and pro staglandins (11).
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Figure 1.2 Regulation of ET-1 synthesis and its pathway of generation.

ANP = atrial natriuretic peptide; BNP = brain natriuretic peptide; CNP =

C-type natriuretic peptides; a.a = aminoacids. (Based on ref 5)
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1.4 Biosynthetic pathway

The initial product of the human endothelin- 1 gene is preproendothelin- 1,

a 212 aminoacid immature peptide (Fig. 1.2). Preproendothelin-1 is

proteolytically cleaved by a furin-like enzyme to form biologïcally inactive

intermediate, a 3$-aminoacid peptide termed big endothelin-1 (1,5). A protease

called, endothelin-converting enzyme (ECE), then cleaves Trp21-Va122 of big

endothelin-1 to form the mature 21-aminoacid ET-1 peptide (1,5,13). Processing

of big ET-1 to ET-1 is essential for its biological activity (1,5,14). Endothelin is

secreted by a constitutive pathway, but evidence also suggested that in some

ceils endothelin can be secreted by a pathway via secretory granules (15). The

pathway of secretion involves the rough endoplasmic reticulum, golgi cisternae,

golgi small exocytic vesicles directly beneath the plasma membrane (15).

1.5 Sites of eneration

Endothelial ceils are the major site of generation of endothelin- 1, tins

tightly correlates with the high expression levels of mRNA for

preproendothelin- 1 and the presence of intracellular converting enzyme in these

ceils (6,8,12). Human aortic vascular smooth muscle ceils express mRNA for

endothelin-1, but its production is 100 fold less than that in endothelial ceils (5).

Also, endothelin- I is produced by the afrway epithelial ceils, macrophages,

fibroblasts, cardiomyocytes, posterior pituitaly and central nervous system
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(6,8,11). Endothelin-2 is produced by the kidney and intestinal epithelial cefis,

and endothelin-3 by brain neurons and renal tubular epithelial cefls (6,8).

1.6 Plasma concentrations ofendothelins

Plasma concentrations of ET-1 is in the range 1-10 pmoVL in healthy

subjects (5,6). Plasma ET-2 and ET-3 are found at even Iower concentrations

(6). Therefore, under normal physiological conditions, endothelins are flot

circulating hormones; rather they act as autocrine and paracrine factors at

multiple sites in the body (6).

1.7 BioIoical actions ofendothelin-1

When injected in vivo, ET is the most potent vasoconstrictor agent yet

identffied (1,9) particularÏy in the brain (16), renal (17) and pulmonary

vasculature (18,19). Intraventricular injection of ET-1 induces a transient

increase in arterial pressure, respiratory rate and renal sympathetic nerve activity

followed by a long-term depression of these parameters (6,20). While,

intravenous bolus administration of ET-1 in different species leads to a short

lived decrease in vascular resistance followed by the long-term increase,

implicating a balancing act of dilator and pressor ffinctions for endothelins (6).

ET-1 exerts a positive chronotropic (21) and inotropic (22) action on human

heart, and also mediate cardiac hypertrophy (23) and rernodeling in congestive
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heart failure through its mitogenic properties (24). ET-1 has also mitogenic

effects on smooth muscle ceils (25), fibroblasts (26), macrophages (27),

mesangial ceils (31), and increases as well ceil proliferation (28,29,30,31).

1.8 Endothelin receptors

Endothelins exert their biological actions through the activation of two

receptor subtypes, ET-A and ET-3 (14,32). Both receptors beÏong to a large

family of transmembrane guanine nucleotide-binding protein-coupled receptofs

(GPCRs) (33). They contain seven transmembrane domains of 22-26

hydrophobic aminoacids in their --400-aminoacid sequences (14,32). Thefr N-

terminal region is extracellular and their C-terminal region is intracellular (7).

Type A receptors exist mainly in vascular smooth muscle ceils but is also found

in cardiomyocytes, fibroblasts, hepatocytes, adipocytes, osteoblasts and brain

neurons (22,3 2,34) and present higher affinities for ET-1 and ET-2 than for ET-

3 (6,14). Type B receptors exist predominantly in endotheial ceils and smooth

muscle ceils but is also found in cardiomyocytes, hepatocytes, fibroblasts,

osteoblasts, different epithelial celis and neurons (22,32,34) and have equal

subnanomolar affinities for ail endothelin peptides (6,14). Therefore, ET-1

binding to ET-A and ET-B receptors on srnooth muscle produces

vasoconstriction, celi growth and cefi adhesion (14,35). The binding of ET-1 to

endotheial ET-B receptors stirnulates the release of NO and pro stacydlin winch
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prevents apoptosis, inhibits ECE-1 expression in endothelia] celis and plays an

important role in ET-1 clearance (14,35).

1.9 Activation ofthe phosphoïnositide cascade by ET-1

following the binding of ET-1 b ils receptor, the hormone-receptor

complex activates Gq-protein which is the best characterized signaling

interaction with ET-A receptor (6,7). As with ail heterotrimeric G-proteins, Gq

consists of an Œ-subunit (aq, or related a-subunit, such as al 1), a member ofthe

-subunit family as weil as a member of the y-subunit family and is associated to

the membrane (36) (Fig. 1.3). In the inactive Gq heterotrimer, aq is ligated to

GDP. Exchange of GDP for GTP on aq leads to the dissociation of aq(GTP) and

y and both remain associated with the membrane (33). Thefr dissociation leads

to activation of phosphoinositide-specific phospholipase C (PLC ) (37,3$),

winch then hydrolyzes the membrane phospholipid, phosphatidylinositol-4’,5’-

bisphosphate [Ptdlns(4,5)P2J to two second messengers: hydrophobic

diacylglycerol (DAG), winch remains in the plane of the membrane, and soluble

inositol- 1 ‘,4’,5 ‘-trisphosphate [Jns( 1 ,4,5)P3J (37,3$). Ins( 1 ,4,5)P3 diffuses into

the cytoplasm and activates some calcium channels of the sarcoplasmic

reticulum, winch leads 10 an increase of Ca2 levels in the sarcoplasma and ceil

contraction (7,8). DAG together with Ca2 activates the phosphatidylserine

dependent protein kinase, protein kinase C (PKC) (39) (Fig. 1.3).
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Figure 1.3 : Special case of Gq-protein-coupled receptor in intracellular
signaling. (1) The binding of an agonist to a surface receptor, R, activates
phospholipase C through the intermediacy of what is shown here as (2) a Gq
protein. Phospholipase C catalyzes the hydrolysis of PIP2 to 1P3 and DG (3). The
water-soluble 1P3 stimulates the release of Ca2 sequestered in the endoplasmic
reticulum (4) winch in tum activates numerous cellular processes through the
intermediacy of calmodulin and its homologs (5). The non-polar DG remains
associated with the membrane, where it activates protein kinase C to
phosphorylate and thereby modulate the activities of a number of cellular proteins
(6). Tins latter activation process also requires the presence of the membrane lipid
phosphatidylserine (PS) and Ca2. PIP2 = phosphatidylinositol bisphosphate; 1P3
inositol triphosphate; DG = diacylglycerol. The green circles fflustrated in the
figure do flot apply to the special case of Gq-protein-coupled receptor. (Based on
ref 134)
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PKC is a family of serine/threonine kinases that is subdivided into three

groups. The classicai or conventionnai PKCs winch require DAG and Ca2

include the isoenzyrnes ci, f3 and ‘ (40). Novel PKC (nPKC) where the activities

are DAG-dependent though probably Ca2tindependent include the isoenzymes

, g, r, O, a and y and atypical PKC (aPKC) are independent of DAG and Ca2

and include and 7. isoenzymes (39).

1.10 Mechanisms ofET-1-induced activation ofMAPK cascade

The next process associated with exposure to ET-1 is the activation of a

member of the small GTP-binding protein family, Ras winch involves exchange

of GDP for GTP (41). Once activated, Ras-bound to membrane recruit the first

member of the mitogen-activated protein kinases (MAPK) calied Raf or

MAPKKK (42,43). Raf phosphorylates MEK/MAPKK at specilic

serine/threonine residues, winch in turn, phosphorylates ERK1/2 (MAPK42/44)

on threonine and tyrosine residues (42,43). MAPK are serine/threonine protein

kinases, winch are also activated in response to a variety of extemal stimuli such

as growth factors, hormones and stress (23,42,43). In a variety of ceil types,

activation of ERK1/2 leads to the phosphorylation of downstream cytosolic

regulatory proteins, such as p90’ winch phosphorylates ribosomai proteins and

participates in protein synthesis (44) (Fig. 1.4). Mso, ERK1/2 migrates from the

cytosoi to the nucleus and phosphorylates many transcription factors winch lead

to activation ofgenes invoÏved in growth and differentiation (181) (Fig. 1.4).
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Figure 14 : Schematic model showing key steps in ET-1-induced activation
of MAPK and PI-3KIPKB signaling. PTKs = protein tyrosine kinases.
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Several reports have demonstrated that ET-1 activates ERK1/2 signaling

pathway in many ceil types including cardiomyocytes (45), fibroblasts (2$),

glomerular mesangial ceils (31) and vascular smooth muscle ceils (VSMC) (46).

Activation of the ERK1/2 cascade is the best characterized. Although, ]NK and

p3$mapk are most strongly activated by cytotoxic cellular stress and are better

classffied as stress-activated protein kinases (SAPK). ET-1 also activates JNK

(c-Jun-NH2 terminal kinase) and p3 $mapk cascades to a lesser degree than ERK

in cardiomyocytes (45,47), VSMC (4$) as well as in mesangial ceils (49). In

addition, several other smafl G-protein families have been stimulated including

Rho, Rab and Ran (41). ET-1 activates members of the Rho family in

cardiomyocytes (50) and fibroblasts (51) which are positive regulators of

p3$mapk pathway (52). The remaining smafl G-proteins and thefr expression

characteristics have flot been investigated systenmticafly.

There is some evidence supporting the involvement of PKC in Ras

activation in many ce!! types including cardiomyocytes (53) and rat myometrial

celis (40). The nature of the connection between the two processes is obscure

and other pathways may operate. A possible role of a calcium-regulated

cytop!asmic proline-rich tyrosine kinase 2, Pyk2 (also known as related

adhesion focal tyrosine kinase (RAFTK), focal adhesion kinase-2 (FAK-2) and

ceil adhesion kinase [3 (CAK [3), calcium-dependent tyrosine kinase (CADTK)),

in the activation of MAPK has been suggested in primary astrocytes (54,55) and

rat kidney mesangial ceils (56). In severa! other ceil types, the Ca2- and PKC
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dependent Pyk2 activation (40,57) has been shown to link GPCRs to upstream

regulators of ERK1/2 MAPKs, such as Src, Shc, Grb2, son of the sevenless

(SOS) and the Ras guanosine nucleotide exchange factor (27,56,58,59).

Previous data had shown that ET-1 -induced association of Pyk2 through the

binding of its autophosphorylated Tyr-402 to the SH2 (Src-homology 2) domain

of c-$rc lead to c-Src activation in many ceil types including mesangial cefis

(56,5$) and cardiomyocytes (47,56,60). Activated c-Src bound to Pyk2 rnight

directly phosphorylate adjacent cellular proteins, such as pl3OCas. Once

tyrosine-phosphorylated, pl3OCas has been shown to act as docking protein to

recruit its effectors able to activate JNK (61,62) in cardiomyocytes (47).

Evidence suggested that ET-1 mediates EGf receptor (EGFR)

transactivation winch predominantly contributes to ERK activation, while Pyk2

contributed less in cardiomyocytes (60). Both kinases activation are mediated

tbrough PKC signaling (60). Conversely, a recent report demonstrated that ET

1-induced JNK activation is preferentially regulated by Pyk2, c-Src and the

pl3OCas/Crk complex but flot by EGfR (47). However, the regulation of

transactivation of EGFR is signfficantly different arnong ceil types. In VSMC,

EGFR transactivation has been shown to mediate the angiotensin II-induced

ERK activation (63). ET-1-induced transactivation of EGFR contributes to the

activation of Shc adapter molecule, leading to its interaction with Grb2 (64),

winch could then associate with SOS. $hc-associated Grb2ISOS induces

exchange of GDP for GTP on Ras (59) and ultimately activate ERK signaling
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(60,65). However, the invoïvement of Pyk2 in ET-1-induced signaling in

VSMCs has flot been yet deflned.
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1.11 Phosphatidylinositol-3 kinase cascade

Mother effector of Ras species, phosphatidylinositol-3 kinase (PI-3K) is

an enzyme that is implicated in a myriad of celiular processes. PI-3K activity

has been Iinked to cefi growth and transformation, differentiation, motffity and

survival (66,67). Ihe PI-3K group of lipid kinases catalyze the transfer of

phosphate from ATP to the 3’position of the inositol ring of the membrane

localized phosphoinositides. PI-3K phosphorylates at least three substrates:

phosphatidylinositol (Ptdlns), phosphatidylinositol-4-phosphate (Ptdlns-4-P)

and phosphatidylinositol-4,5-bisphosphate (Ptdlns-4,5-P2) and generates the

reaction products: Ptdlns-3-P, Ptdlns-3,4-P2 and Ptdlns-3,4,5-P3 respectively

(68). These phospholipids act as second messengers to activate several proteins

like PDK, PKB/Akt and p7OS6K (67,6$).

1.11.1 Classification ofPI-3Ks

PI-3Ks are divided into three classes based on their structure and

mechanism of regulation (69). Class I PI-3Ks generate Ptdlns-3-P, Ptdlns-3,4-

P2, Ptdlns-3,4,5-P3 and are activated by receptor tyrosine kinases and G-protein

coupled receptors (70). Class II PI-3Ks generate Ptdlns-3-P and Ptdlns-3,4-P2

and possess a lipid binding domain, whereas, Class III PI-3Ks generate Ptdlns

3-P only (70). Ptdlns-3-P is constitutively present in ail ceils and its levels do

not change following stimulation (70).
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1.11.1.1 Class I PI-3Ks

Class I PI-3Ks are famfly 0f heterodimeric proteins, each of which

consisis of a catalytic subunit of 110-120 kfla and a regulatory subunit of $5

kDa (66). Three mammalian catalytic PI-3Ks sharing 42-48% aminoacid

sequence identity have been cloned and are designated pli OŒ, pli 013, pli 06.

Each of these proteins interacts with the p85 regulatory subunits at the N-

terminal region, and contains a domain that binds to the smafl G-protein Ras, a

«PIK domaim> homologous to a region found in other phosphoinositide kinases

and a C-terminal catalytic domain (66,68). The catalytic p110 subunit possesses

both intrinsic kinase serine/threonine and phosphoinositide kinase activities

(69,71).

Two isoforms of p85, p$5Œ and p$5f3, have been purffied and cloned

(71,72). P85 subunits do flot possess any known enzymatic activity but are

composed of several domains with homology to those found in other docking

proteins. P85a and p85J3 contain an N-terminal Src-homology 3 (SH3) domain,

two or three proline-rich segments, a region of homology to GTPase-activating

proteins for the rho family of small G proteins (rho-GAPs) and two Src

homology 2 (SH2) domains (71). The inter-SH2 domain located between the

two SH2 domains is necessary and sufficient for interaction with the N-terminal

ofpllO catalytic subunits (71,72).
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1.11.2 Protein kinase B signaIin pathway

Several targets of PI-3K have been identffied, however, most widely

studied target is protein kinase B (PKB), also known as Akt ta product of akt

proto-oncogene). PKB is a serine/tbreonine kinase and three isoforms have been

identilied in mammalian system: PKBŒIAkt1, PKB[3/Akt2 and PKB1’/Akt3

(67,73,74). They are activated by dual phosphorylation on threonine (Thr308) and

serine (5er473) residues (73). AIl family members contain a central kinase

domain with specfficity for serine or threonine residues in substrate proteins

(73,74). N-terminal of PKB possesses a pleckstrin homology (PH) domain that

binds phospholipids. A short glycine-rich region that bridges the PH domain to

the catalytic domain follows the PH domain. The C-terminus of PKB is

hydrophobie and possesses a proline-rich domain (75).

The lipid products of PI-3K bind with high affmity and specfficity to the

PH-domain ofPKB with a preference ofPtdlns-3,4-P2 over Ptdlns-3,4,5-P3 (76).

Tins binding induces transiocation of PKB to the plasma membrane where

phosphorylation of Thr3O$ by Ptdlns-3,4,5-P3 dependent protein kinase-1

(PDK-1) and Ser473 by the hypothetical site PDK-2 is required for the

activation of PKB (76). Phosphorylation of both sites is mitogen- and PI-3K-

dependent (76). Several different targets of PKB have been identffled and

include members ofthe apoptotic cascade such as Bad (73,75), caspase (77) and

glycogen synthase kinase 3 (G$K-3) (7$) (Fig. 1.4).
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In mesangial ceils, ET-1 receptor activation has been shown to stirnulate

PI-3K phosphorylation through Ras (59). Also, in rabbit internai carotid artery

vascular smooth muscle ceils (ICA V$MCs), PI-3K appeared to be involved in

ET-1-induced Pyk2 tyrosine phosphorylation (79). Conversely, studies using

angiotensin II (Ail), a vasoactive peptide with similar effects to ET-1, have

suggested that Pyk2 regulates PI-3K cascade specffically via interaction of

Pyk2 with pl3OCas winch lead to their association with PI-3K in VSMC (65).

Recently, ET-I has been shown to slightly increase PKB phosphorylation in

cardiomyocytes (80). However, no direct activation ofPKB in response to ET-1

has been demonstrated in VSMC.

1.12 Role of endothelin in cardiovascular diseases

1.12.1 Endothetin in human hypertension

The haDmark of hypertension is an increase in peripheral vascular resistance

winch is considered to be related to an increase in tone of resistance arteries as

well as to structural changes or vascular remodeling ofthe blood vessels ($1,82).

Several forms of hypertension are mediated by high endothelin (ET) levels in the

circulation or by alterations in response to ET at the receptor level ($2,83).

Besides the abifities of ET to increase vascular tone, it also induces hypertrophy

in smooth muscle ceils and fiinctions as mitogen as well (8 1,84,85) (Fig. 1.5).
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Enhancement of generation of endothelin- 1 (ET-1) plays a rote in

hypertrophic remodeling of arteries in moderately to severely hypertensive

patients ($3). Also, this enhancement of ET-1 generation contributes to elevate

blood pressure and may explain the reduced responsiveness of arteries to ET-1

through downregulation of ET receptors. Recently, it lias been shown that sait-

sensitive hypertensive patients oflen have Iow plasma renin activity and thefr

endothelin in plasma responds in an exaggerated fashion with an increase afier

sodium depletion, in association with enhanced plasma catecholamines ($6).

This suggests a reiationship of the sympathetic system, sodium sensitivity and

reactivÏty of the endothelin system that may contribute to blood pressure

elevation in these subjects (81,82,87).

Proliferative effects of ET have been demonstrated in vascular smooth

muscle ceils (81,84,88) as well as in renal ceils such as mesangial ceils

(81,88,89). Thus, the capacity of endothelin to regulate contractile responses and

proliferation of vascular smooth muscle and its capacity to profoundly affect

renal ffinction make it a primary candidate as a mediator of hypertension.
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1.12.2 Endothelin in experimental hypertension

Most hypertensive animal models have normal or only silghtly increased

plasma endothelin levels (90). $everal studies have reported that in

deoxycorticosterone acetate (DOCA)-salt and aldosterone-sait hypertensive rats

(91,92), DOCA-salt treated spontaneously hypertensive rats (SHR) (93), DaM

sait-sensitive rats (94), one-kidney-one-chp Goldblatt hypertensive rats (95) and

stroke-prone SHR (96), there is overexpression of preproET- 1 mRNA in the

endotheium (97). In SHR (91,93,98), endothelin doesn’t seem to play an

important role, although increased vasoconstrictor response to ET-1 has

occasionally been reported in SHR (99).

Elevated vessel ET mRNA mediate structural effects such as vascular

hypertrophy due to its growth promoting properties (82). DOCA-sait

hypertensive rat arteries show severe vascular hypertrophy with prorninent

medial thickening (100) and overexpression of the ET-1 gene (101). However,

in SHR, littie vascular hypertrophy and no ET-1 gene expression are reported

(102). Overail, it seems that in the DOCA-salt hypertensive rat and in rats with

malignant hypertension, ET plays a more important role than in other models.

Tins suggests that ail animal hypertensive models are not the same. The different

hypertensive diseases have different etiologies in winch endothelin plays

different roles, but in more severe forms of hypertension, such as malignant, ET

plays a clear central role.
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1.12.3 Endothelin in atherosclerosis

Atherosclerosis involves injury of endotheial ceils, inflammation with

macrophage and monocyte infiltration of the vessel wall, release of cytokines

and growth factors, migration of smooth muscle celis to the intima, and lipid

accumulation in foam ceils (82). Evidence lias recently accrued suggesting

involvement of ET-1 in these processes leading to atherosclerosis development

and progression ($2). ET-1 is chemoattractant for monocytes and macrophages

and acts as a comitogen for vascular smooth muscle ceils together with growth

factors (103,104). Plasma and tissue ET are elevated in proportion to the

extension of atherosclerosis in patients with advanced disease (105). ET-B

receptors are upregulated in atherosclerotic human coronary arteries (106).

However, no change in ET-A and ET-B proportions in the media of coronary

arteries was detected (107). Rossi et al. (108) showed that atherosclerotic and

hypertensive individuals exhibited increased immunoreactive ET in the arteries.

Many components of human atherosclerotic lesions such as endothelial ceils,

macrophages, and smooth muscle ceils express ET-1 (109). Mechanisms

whereby increased ET-1 may contribute to atherosclerosis include stimulation of

migration of smooth muscle ceils (110) into the intima of vessels, activation of

inflammation in the vessel wall by stimulating cytokines and by increasing

oxidative stress (111).
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1.13 Reactive oxygen species and its implications in ET-1 signaling

During the last few years, evidence has accumulated to suggest that the

generation of reactive oxygen species (ROS) play a crucial role in the

development and the progression of vascular dysftinction (112). Under oxidative

stress conditions, excessive endogenous formation of ROS overcomes cellular

antioxidant defence mechanisrns, which results in ROS-iriltiated modification of

lipids, proteins, carbohydrates and DNA (112). ROS are very srnall, rapidly

diffusible, highly reactive molecules and include hydroxyl radicals (0H),

superoxide anion (0/) and non-radical derivative such as hydrogen peroxide

(H202) (Fig. 1.6). Endogenously, the main source of ROS is the mitochondria

winch converts 1-2 % of consumed molecular oxygen into superoxide anion

(113). In VSMCs and endothelial ceils, NADHINADPH oxidases represent the

most important source of 0/ (114). NADPH oxidase catalyzes the NADPH

dependent reduction of oxygen to 0/, winch is converted to H202 either by a

protonation reaction or by the action of superoxide dismutase (SOD). H202 is

reduced to F120 by catalase or glutathion peroxidase. Under certain conditions

and in presence of metals, I-1202 can generate the extremely active 01f via

Fenton or Haber-Weiss reaction (115) (Fig. 1.6).
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figure 1.6 : Key steps in the production of reactive oxygen species.

NADPH oxidase is a multicomponent enzyme. Several isoforms have been

found in the vascular wall (114). The plasma membrane-associated

flavocytochrome b55$ consists of two subunits: gp9lphox and p22phox (114),

and is the key catalytic component responsible for the transfer of electrons from

NADPH to molecular oxygen (116). P47phox, p67phox and a smafl GTP

binding protein, Rac, are the cytosolic components that transiocate from the

cytosol to the membrane during NADPH oxidase assembly (117). ET-1 has been

shown to activate NADPH oxidase, thereby increasing O{ levels in endothelial

ceils (11$) and stimulates O2 production in pulmonary smooth muscle ceils

(119). Recent findings also suggest that ET-1 can increase 0f levels via

activation ofNADPH oxidase in DOCA-sait rats (120).Whereas, growth factors

such as AH and PDGf have been shown to generate ROS in VSMCs (114,121).

Increased ROS generation has bcen associated with a variety of

cardiovascular pathologies (122) including hypertension (123) and

atheroscierosis (124). Pathogenesis of cardiovascular diseases by activating
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ROS are thought to participate in the cellular signaling pathways responsible for

promoting ceil growth (125) and proliferation (30,126,127). It has been

demonstrated that ET-1 induces JNK and p38mapk activation through ROS

generation but not ERK1/2 (30). These flndings are consistent with those of Fei

et aL (128), who demonstrated that JNK activation but flot ERK1I2 activation by

ET-1 was signfflcantly inhibited by antioxidants in rat smooth muscle ceils.

Conversely, a recent study demonstrated the involvement of ROS in ET-1-

induced activation of ERKI/2 pathway as well as JNK and p3$mapk in cardiac

fibroblasts (127). However, the contribution of ROS in ET-1-induced ERKY/2

activation is controversial and remain to be claril’ in VSMC. In addition, ROS

have been shown to regulate PKB signaling pathway in human hepatorna ceil

(126) as well as in VSMC (115). But whether ROS stimulate PKB activity in

response to ET-1 has flot been yet elucidated. More evidence have suggested

that Pyk2 is activated in presence of 11202 (129). However, a possible role of

ROS in mediating the ET-1 response on Pyk2 and whether NADPH oxidase is

involved in the generation of ROS by ET-1 are questions that stifi need to 5e

answered.

1.14 Nitrïc oxide

Nitric oxide (NO) is a free radical that was previously described as a non

prostaglandiri, endothelium-derived relaxing factor (EDRF) (14,130,131) and is

involved in the regulation of a large number of biological processes (14,130).
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Initial efforts to understand the role of NO in the nervous, cardiovascular and

immune systems expanded to numerous cellular events and pathologies

including apoptosis, inflammation, kidney ffinction, diabetes, oxidative stress

and aging (131,132).

1.14.1 Formation of nitric oxide

NO is formed from the aminoacid, L-arginine, in an oxidative reaction that

consumes molecular oxygen and reducing equivalents in the form of NADPH

+(lil,132,133) (Fig. 1.7). Reaction products are NO, NADP and citruilme.

Since NO is a signaling hydrophobie molecule small enough to pass across the

target-ceil plasma membrane, NO cannot be stored and released as needed

(130,134). NO is produced by the enzyme nitric oxide synthase (NOS), by the

deamination of L-arginine. NOS is an enzyme requfring FAD, FMN, heme, Ca2,

calmodulin and 6(R)-tetra-hydro-L-biopterin (BI-I4) as cofactors (133) (Fig. 1.7).

NO acts locally because it has a short half-life (5-10 seconds) in the extracellular

space before it is converted to nitrates and nitrites by oxygen and water

(130,131,134).



Figure 1.7 : The nitric oxide synthase (NOS) reaction. CaM = catmoduhn;
Zn = Zinc. (Based on ref 135)

1.14.2 NOS isoforms

Three distinct NOS enzymes, each a product of a unique gene, have been

identffied and characterized (130,131,135,136). The neuronal form (nNOS or

NOS-1) is a Ca2-dependent enzyme found in neuronal tissue and skeletal

muscle. Four splice variants of full lengh nNOS (nNOSŒ) have been identffied

recently (nNOSf3, nNOSy, nNOSi and nNOS-2). The second isoform of NOS

(iNOS or NOS-2) is inducible in a variety of ceils and tissues in response to

cytokine or endotoxin activation. The third form, first found in vascular
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2+endothehal celis (eNOS or NOS-3), 15 also Ca -dependent, but differs from the

neuronal form by its smailer size. eNOS is rnyristoylated and palmitoylated at

the N-terminus. Those modifications are required to localize to the

plasmalemmal caveolae of endothelial ceils. Human enzymes exhibit

approximately 51-57 % homology at the aminoacid level (130,135).

Structuraily, ail NOS isozymes consist of a carboxy-terminal reductase dornain

winch binds the flavin cofactors. A Ca27ca1modu1in binding domain lies in the

center foilowed by an oxygenase domain where binding of heme, 02, BR1 and

arginine substrate take place (135).

1.14.3 Nitric oxide function

NO ceilular signaling involves the regulated synthesis of NO by eNOS in

the vascular endothelium, diffusion of NO into adjacent smooth muscle ceil and

activation of the soluble isoforrn of guanylate cyclase (sGC) (137). When NO

binds to the pentacoordinate ferrous heme of the sGC that appears to be

uniquely tuned to interact with NO, conformational changes occur in the

enzyme, stimulating the reaction (138). NO causes relaxation of the smooth

muscle by mediating the formation of cGMP that acts as a second messenger

and activates the cGMP-dependent protein kinases (protein kinase G) (137,139),

which in tum, facilitates the phosphorylation of various proteins as weil as the

reduction of intraceilular calcium concentrations by different mechanisms (140).

Moreover, NO also targets many proteins either by nitrosylation of thiol
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residues, nitration of tyrosine or oxidizing DNA and protehis (140). Increasing

evidence indicates also that NO may inactivate NADPH oxidase by inhibiting its

assembling process, thus reducing the ROS levels (141). In higher

concentrations, NO can react rapidly with superoxide (O2) to form peroxynitrite

(0N00), a potent oxidant with the potential to disrupt protein structures by

nitrating the protein tyrosine residues (142). Although NO signaling is complex

as a resuit of its interactions with ROS, heme groups on proteins, sullhydryl

groups, and other cellular targets, the activation of guanylate cyclase remains the

most important pathway in mediating NO function (137).

1.14.4 Guanylate cyclase

Guanylate cyclase is an enzyme that catalyses the conversion of the

guanosine triphosphate (GTP) to 3’-5’-guanosine monophosphate (cGMP). The

guanylate cyclase is found in many cellular compartments (140). Two major

forms of guanylate cyclase are known, the particular guanylate cyclase and the

soluble guanylate cyclase. It is generally conceded that activation of soluble

guanylate cyclase (sGC) is the principal intraceflular event that hiitiates

relaxation (143,144). The activity of the sGC is regulated by nitrovasodilators,

oxidation products of fatty acid and free radicals (134,145). sGC is a

heterodimer of two subunits a and 13. Each subunit is divided in three different

domains: the heme-binding domain, the catalytic domain and the dimerization

domain (145).
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N-terminal of each subunit contains heme as a prosthetic group winch

serves as a site for NO binding (145). sGC lacking the heme moiety, is flot able

to be activated by NO (145). Heme is attached to the protein portion of the

enzyme by an imidazole axial ligand and binding of the heme is specific to the [3

subunit ofthe N-terminal region (146,147). C-terminal ofeach subunit possesses

a catalytic domain with a high homology sequence between the monomers

(146,147). Coexpression of the catalytic domain of both subunits is necessary

for GC activity. There is the dimerization domain between both domains

described above that mediates the association of the heterodimer winch is

essential for the catalytic subunit (146,147). NO binding to the berne oftlie sGC

resuits in the formation of a complex penta-coordinate heme-nitrosyl that breaks

the axial histidine Iink (147). Tins conformational change exposes the catalytic

site to GTP, leading to the activation of the enzyme and conversion of GTP to

cGMP by sGC in the presence ofMg2 or Ï4n2 ions (137) (Fig. 1.8).
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1.14.5 Reulation ofcGMP production

In most tissues, the intracellular concentration of cGMP is

determined by the rate of formation which is regulated by agonist-induced

stimulation of a cyclase and hydrolysis of cGMP by a related group of

phosphodiesterase E (PDE) (14$) (Fig. 1.9). There are at least seven known

distinct mammalian PDE families. Each one differs from each other in

HOOC

Figure 1.8 : Schematic representation of a soluble guanylate cyclase &
heterodimer.
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biochemical and physical properties, responses to specific effectors, inhibitors

and regulatory control mechanisms (14$). Type V PDE has been isolated from a

number of tissues including human platelets (149), trachea (150) and VSMC

(151) and is commonly referred to as cGMP-specffic PDE. PDE V is

characterized by selectively hydrolyzing only cGMP, independently of

Ca2/ca1modulln. Inhibitors of PDE V such as A02 131-1 have vasodilating and

anti-aggregating properties, which may protect the vascular wail against

arteriosclerotic changes (149).
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1.14.6 NO in si2nal transduction

The endotheium serves as the principal physiological source of NO in

blood vessels (152). As evidenced, NO contributes to the regulation of several

hormone-mediated responses (153,154,155). In addition to its vasodilating

effect, NO can also inhibit atherogenesis (130), thrombocyte aggregation (156)

and VSMC proliferation (148,152) and migration (157). There is also increasing

body of evidence suggesting that NO is opposed to the physiological and

pathophysiological effects (14,137) of growth factors and vasoactive peptides

such as EGF (14$), PDGF (15$) and bFGF (157). Tins is probably achieved by

inhibiting one or several of the signaling events induced by these factors

(130,152,157,159,160). According to several studies, mitogens such as ET-1

stimulate the synthesis of DNA and ceil proliferation by activating the

phosphorylation cascade of MAPK (28,161,162,163). The potential mechanism

that could modulate VSMC proliferation is the release of NO by the

endothelium either via a cGMP-dependent (137,14$) or a cGMP-independent

mechanisms (164,165,166,169). In cardiomyocytes, ET-1 -induced protein

synthesis (170,171) has also been shown to be inhibited by NO (167).

Furthermore, NO was recently found to suppress the AII-induced activation of

three major MAPKs, ERK1/2, p38mapk and JNK (16$) as weil as Pyk2 (155) in

cardiac fibroblasts. However, it is flot known whether NO similar to ils effect on

growth factor and MI-induced responses can also modulate signaling events

triggered by ET-1 receptor activation in VSMC. In smooth muscle-derived A7r5



j

ceils, NO has been shown to regulate PDGF-induced activation of PKB (154).

These data implicate the PKB signaling cascade as an important mitogenic

pathway that is subjected to modulation by NO in VSMC (154). However, the

role of NO/cGMP in modulating PKB signaling pathway in response to ET-1

has not yet been investigated in any ceil type.

1.15 Obiectives ofthe present study

As described above, ROS play an essential role in propagating the signais

ofseveral growth factors such as EGF, PDGF and Ail. The contribution ofROS

in ET-1-induced MAPK activation remain controversial and there are no reports

documenting the activation of PKB as well as Pyk2 by ET-1 in VSMC.

Therefore, we have undertaken tins study to elucidate a role of ROS on key

components of ET-1 signaiing system as well as protein synthesis in V$MC, and

have examined whether ROS generation contributes towards thefr response.

Furthermore, since NO is an important modulator of intracellular signaling

system by many growth factors such as PDGF and EGF in VSMC as well as MI

in cardiac fibroblasts. We have also investigated a possible role of NO on ET-1-

sensitive signaling systems in VSMC. We first elucidated the role of NO on key

components of ET-1 signaling systems ERK1/2, PKB and Pyk-2 as well as

protein synthesis in VSMC. We then used 8-Bromo-cGMP, a cycic GMP

analogue and ODQ, an inhibitor of sGC, to examine whether NO is acting
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through a cGMP-dependent mechanism. These studies have utilized standard

protocols of ceil biology such as ceil culture, SDS-PAGE, western bloting as

wefl as radioisotopes.
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Abstract

Reactive oxygen species (ROS) have been shown to mediate the effect of

several growth factors such as angiotensin II (MI), epidermal growth factor

(EGf) and platelet-derived growth factor (PDGf). Endothefin-1 (ET-1) is an

important growth factor for vascular smooth muscle ceils (VSMC) which is

beieved to contribute to the pathogenesis of vascular abnormalities such as

atherosclerosis, hypertension and cardiac hypertrophy. However, a possible roTe

of ROS generation in mediating the ET-1 response on ERK1/2 and PKB, key

components of growth promoting and proliferative signaling pathways, has flot

been examined in detail. Therefore, the aim of the present study was to

investigate the involvement of ROS in ET-1-mediated activation of ERKÎ/2 and

PKB as well as Pyk2 in A-10 VSMCs. Pyk2 is a non-receptor protein tyrosine

kinase and an upstream regulator of MAPK signaling. ET-1 stimulated the

phosphorylation of ERK1/2, PKB and Pyk2 in a dose and time-dependent

fashion with maximum response being eicited at 10 nM winch peaked at 5 min.

Treatment ofV$MC with ET-1 resulted in an increase in the generation ofROS

that could be btocked by diphenyleneiodonium (DPI), an inhibitor of NADPH

oxidase. furthermore, DPI pretreatment of ceils prior to stimulation with ET-1,

attenuated ET-1 enhanced phosphorylation of ERK1/2, PKB and Pyk2. N

acetylcysteine (NAC), another ROS scavenger, also exhibited a similar

response. Moreover, DPI also caused a decrease in the protein synthesis

stimulated by ET-1. These resuits demonstrate that ROS is a critical mediator of
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ET-1-induced signahng events linked to hypertrophic and growth promoting

pathways in VSMC.

Key words: ROS, ET-1, MAPK, ERK1/2, PKB, Pyk2, A-10 ceils.
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Introduction

Endothelin-1 (ET-1), a 21-amino acid peptide hormone, exhibits

vasoconstrictor (1) and mitogenic (2) properties. These effects of ET-1 are

elicited through the activation of 2 receptor subtypes, ETA and ETB, which

belong to a family of heptahelicai G-protein-coupled receptors (GPCRs) (3-5).

ET-1 receptor activation is coupled to multiple signaling pathways, such as

phospholipases C and D (6), Ca2 (7), mitogen-activated protein kinases

(MAPKs), including extracellular signal-reguiated kinases 1 and 2 (ERK1/2),

c-Jun-NH2-terminal kinase (JNK), and p3SMAPK (8-11) as well as

phosphatidylinositol 3-kinase (12). Extensive studies, carried out predominantiy

in cardiomyocytes (6, 8, 2$) and glomerular mesangial ceils (11, 12), have

implicated both receptor and non-receptor protein tyrosine kinases (PTKs) in

transducing ET-1 -evoked signaling responses (11, 15-18). Various PTKs

activated by ET-1 include c-Src (13-15), epidermal growth factor (EGF) (17)

and a Ca2tdependent PTK, Pyk2 (11, 17).

Recent experiments have indicated that reactive oxygen species (ROS)

play an essential role in propagating the signais of several growth factors,

peptide hormones and cytoldnes, such as piatelet-derived growth factor (19),

EGf (20), angiotensin II (AIl) (21), insulin (22), interleuldn-1 (23) and tumor

necrosis factor-Œ (24). Increased ROS generation has been linked to the

pathogenesis of several cardiovascular diseases, such as hypertension,

atherosclerosis, restenosis and congestive heart failure (29-31). ET-l lias also
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been shown to augment ROS production in various ceil types (25-27), and a role

of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in

the ET-1 -induced elevation of vascular ROS production has been suggested

recently (32).

Although it has been reported that ROS mediate ET-1 -stimtttated

activation of ERK1/2 and JNK (27), to the best of our knowledge, a detailed

investigation into the contribution of ROS in other ET-1 -evoked growth

promoting signaling pathways has not been carried out. Moreover, despite the

fact that ET-1-induced vascular smooth muscle celi (VSMC) proliferation (26,

33) and fibrogenesis (15) may contribute to vasculature remodeling leading to

vascular disease, flot much information is available on ET-1 -evoked signaling in

these ceils. Therefore, in the present studies, we have investigated the effect of

ET-1 on ERKÎ/2, protein kinase B (PKB) and Pyk2, key regulators of the

proliferative signaling pathway in A-10 VSMCs, and examined whether ROS

generation contributes to their activation.
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Materials and Methods

Materials

ET-1 was purchased from Peninsula Laboratories (Belmont, CA, USA),

and N-acetyl-L-cysteine (NAC), diphenyleneiodonium (DPI) and bis-N

methylacridinium nitrate (lucigenin), from Sigma (St. Louis, MO, USA).

Monoclonal phospho-specffic-Tyr204-ERKY/2 antibody, polyclonal ERK1/2

antibody and horseradish peroxidase-conjugated goat anti-mouse

immunoglobulin were from Santa Cruz Biotecbnology Inc. (Santa Cruz, CA,

USA). Polyclonal phospho-specffic-Ser473-PKB and total PKB as well as

phospho-specfflc-Tyr402-Pyk2 and total Pyk2 antibodies were procured from

New England Biolabs (Beverly, MA, USA). The enhanced chemiluminescence

(ECL) detection system kit and L-(4,5-3H) leucine were from Amersham

Pharmacia Biotech (Baie d’Urfé, QC, Canada).

Methods

Cet! culture

VSMC derived from embryonic rat thoracic aorta A-10 ceils were

maintained in culture with DMEM containing 10% fetal bovine serum at 37°C in

a hurnidffled atmosphere of 5% C02, as described earlier (34). The ceils were

grown to $0-90% confluence in 60-mm plates and incubated in serum-free

DMEM 20 h prior to the treatments.
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Cet! tysis and Western btotting

Cefis incubated in the absence or presence of various agents were washed

twice with ice-cold PBS and lysed in 200 t1 of buffer (25 mlvi Tris-HC1, pH 7.5,

25 mM NaC1, 1 mM Na orthovanadate, 10 mM Na fluoride, 10 mM Na

pyrophosphate, 2 mM benzamidine, 2 mM ethylenebis(oxyethylenenitrolo)

tetraacetic acid, 2 mM ethylenediamine tetraacetic acid, I mM

phenyhnethylsulfonyl fluoride, 10 pg/ml aprotinin, 1% Triton X-100, 0.1%

sodium dodecyl sulfate (SDS) and 0.5 lg/ml leupeptin) on ice. The ceil lysates

were centrifuged at 12,000g for 10 min at 4°C. Protein concentrations were

measured by Bradford assay. Equal amounts of prote in were subjected to 10%

SDS-polyacrylamide gel (SDS-PAGE), transfened to PVDF membranes

(Mifiipore, MA, USA) and incubated with respective primary antibodies

(monoclonal phospho-specffic-Tyr204-ERK1 /2 antibody (1:2,000), polyclonal

phospho-speciflc-Ser473-PKB antibody (1:4,000), phospho-specffic-1yr402-Pyk2

antibody (1:1,000)). The antigen-antibody complex was detected by a

horseradish peroxidase-conjugated second antibody (1:4,000), and protein bands

were visualized by ECL. The intensity of specific bands was quantffied by NIH

Image software as described previously (35).

Measurement afROS generalion

ROS production was measured by the lucigenin method (21) with minor

modifications (36). Briefly, the ceils were preincubated in the absence or
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presence of 10 !IM DPI in DMEM for 30 mm, then treated with ET-1 (10 nM

for 5 mm). They were trypshuized, collected by centrifugation, and the peflet

was washed in modffied Krebs buffer containing NaC1 (130 mM), KCT (5 mM),

MgC12 (1 mM), CaC12 (1.5 mM), K2HPO4 (1 mM), and HEPES (20 mM), pH

7.4. Aller washing, the cefis were resuspended in Krebs buffer, and the ceil

concentration was adjusted to 1 x 1 in 900 d buffer. To measure ROS

production, the ceil suspension was transferred to plastic tubes and assessed in a

luminometer (LB 9507, Berthold, Wildbad, Germany). Measurernent was started

by an injection of 100 il lucigenin (linal concentration 5 x 10 M) at time zero.

Photon emission was counted every 5 min for up to 20 min. The emission in

relative light units was corrected for nonspecific luminescence in the absence of

ceils. Modified Krebs buffer was used as a control (blank). Solutions containing

DPI in the absence of ceils did flot display any significant interference in the

lucigenin assay.

Measurement of[3HJteucine incorporation

A-10 ceils were treated for 20 h with endothelin- 1 (10 nM; Belmont, CA,

USA). Protein synthesis was assessed by the addition of 2 .iCi!mL of

[3Hjleucine (ICN Biomedicals, Inc., Costa Mesa, CA, USA) for a period of 20 h.

To assess the role ofreactive oxygen species (ROS), ceils were pretreated for 30

min with DPI (5 .tM; Sigma, St-Louis, MO, USA), a specific inhibitor of

flavoprotein, NADH!NAD(P)H oxidase (32,37). Following the completion of
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the experimental protocol, A-10 ceils were washed twice with cold PBS, and 1

ml of cold 5% trichioroacetic acid was added for 30 min to precipitate protein.

The precipitates were subsequently washed twice with cold water and

resuspended in 500 d of 0.4 M NaOH. Aliquots were counted in a scintillation

counter.

$tatistics

$tatistical analysis was performed by one-way, repeated-measures analysis

of variance (ANOVA) followed by a Fisher post hoc test. AU data are reported

as means ± SE. The differences between means were considered significant at

P< 0.05.
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Resuits

Efftct ofET-1 on ERK1/2, PKB and Pyk2 phosphorytation in A-10 V$MCs

Our hiltial experiments were aimed at analyzing the effect of ET-1 on the

phosphorylation of 3 key elements of the signaling pathway, namely, ERK1/2,

PKB and Pyk2. Their activation was assessed by using phospho-specific

antibodies against each of these kinases. As shown in Figure 1, ET-1

concentration-dependently enhanced the phosphorylation of ERK1/2 (Fig. lA),

PKB (Fig. lB) and Pyk2 (Fig. 1C). In each case, maximum phosphorylation

occurred at ET-1 concentrations of 1-10 nM. Next, we analyzed the time

dependence ofthe ET-1 response at 10 nM. As seen in Figure 2, ET-1 treatment

of A-10 ceils rapidly increased the phosphorylation of ERK1/2 (Fig. 2A), PKB

(fig. 2B) and Pyk2 (Fig. 2C). A significant increment was detected within 1 min

of treatment and peaked at about 5 mm, then gradually declined to submaximal

levels at 30 to 60 min. No alteration in the total amount of ERK1/2, PKB or

Pyk2 was observed under these experimental conditions.

Effect ofDPI on ET-1-induced phosphorytation ofERK1/2, PKB and Pyk2 in

A-10 VSMCs

To investigate whether ROS generation was involved in ET-1-induced

activation of ERK1/2, PKB and Pyk2, we utffized DPI, a frequently-employed

hihibitor of the flavoprotein NADHINAD(P)H oxidase (32,37). As depicted in

Figure 3, DPI pretreatment concentration-dependently inhibited ET-1-induced

phosphorylation of ERK1/2 (fig. 3A), PKB (Fig. 3B) and Pyk2 (Fig. 3C).



49

However, among the 3 kinases, Pyk2 appeared to be most sensitive to inhibition

by DPI, winch elicited a signilicant reduction in phosphorylation at 1 1iM (Fig.

3C). At tins DPI concentration, ERK1/2 phosphoiylation was flot signfficantly

affected (Fig. 3A), and PKB phosphorylation was suppressed only slightly (Fig.

3B), whereas 10 jiM DPI pretreatment was found to block ET-1-induced

phosphorylation of ail the kinases by about $0 % (Fig. 3).

Effecis ofET-1 and DPI on ROS generation in A-10 VSMCs

The resuits described above suggested that ROS generation by a DPI

inhibitable NADPH oxidase might contribute to ET-1-induced ERKÏ/2, PKB

and Pyk2 phosphorylation. Therefore, we evaluated the effect of ET-1 on ROS

generation in A-10 ceils by the lucigenin chemiluminescence method. As

fflustrated in Figure 4, stimulation with 10 nM ET-1 for 5 min evoked a

signi±icant increase of ROS production in A-10 ceils. However, their treatment

whh DPI prior to stimulation with ET-l almost completely blocked ET-1-

evoked ROS production. These resuits revealed that in A-10 ceils, ET-1 caused

an increase in ROS production winch was suppressed by DPI. DPI alone had no

significant effect on the basal production ofROS (data flot shown).

Effeci ofNAC on ET-1-induced ERK1/2, PKB and Pyk2 phosphorytation in

A-10 VSMCs

To further conllrm a role ofROS in ET-1-induced responses, we tested the

effect of NAC, a thiol-containing agent, on ERK1I2, PKB and Pyk2



50

phosphorylation by ET-l. VSMCs were preincubated with NAC for 6 h and then

stimulated with ET-1 for 5 min. As shown in Figure 5, NAC treatment

decreased ERK1/2, PKB and Pyk2 phosphorylation induced by ET-1. As with

DPI (Fig. 3), attenuation of Pyk2 phosphorylation by NAC was more potent

compared to ERK1/2 and PKB phosphorylation by ET-1.

Effect ofDPI on protein synthesis induced by ET-1 in A-10 VSMCs

Since increased protein synthesis is one of the physiological consequences

of ET-1 receptor activation, we evaluated whether ET-1-induced protein

synthesis in A- 10 VSMCs is also regulated by ROS generation. As presented in

Figure 6, treatment of A-10 ceils with ET-1 heightened [3Hlleucine

incorporation into protein. ET-1 caused more than a 3-fold increment ofprotein

synthesis, winch was almost completely attenuated in ceils pretreated with DPI.

However, DPI did flot significantly affect basal [3Hjleucine incorporation.
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Discussion

In the present studies, we have demonstrated that ET-1 stimulated

ERK1/2, PKB and Pyk2 phosphorylation in A-10 V$MCs. Mthough earlier

investigations in cardiomyocytes (6,8,28) and glomerular mesangial ceils

(11,12) have reported ET-1 -induced activation of ERK1 /2 (8-10) and Pyk2

(11,17), similar work in VSMC has not been conducted. Moreover, an effect of

ET-1 on PKB phosphorylation has not been examined previously. Thus, our data

represent a first demonstration of ET-1-induced ERKY/2, PKB and Pyk2

activation in VSMCs. These signaling components are believed to be arnong the

key players mediating the growth, proliferation, hypertrophy, migration and

survival responses of the ceils (38). Activation of ERK1/2 signaling pathways

has been suggested to be important for ET-1 -induced proliferation of VSMCs

(39) and myometrial ceils (14) as well as ceil cycle progression ofNIH 3T3 ceils

(40).

Pyk2 has been shown to serve as an upstream regulator of ERK1/2 and

PKB activation by Ail in VSMCs (41), but ET-1-induced ERKY/2

phosphorylation in kidney mesangial ceils (12) and neonatal cardiomyocytes

(17) appears to be Pyk2-independent. Thus, it is possible that Pyk2 regulates

ERK1/2 phosphorylation in a ligand-specific manner. The time-course of Pyk2

and ERK1/2 phosphorylation in A-10 V$MCs (Fig. 2) showed almost an

identical pattem, and did flot provide any evidence for a potential temporal

relationship between the 2 kinases. Thus, more detalled kinetic analysis wfth
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pharmacological and genetic tools wffl be required to test the role of Pyk2 in

mediating ET-1 -induced responses in V$MCs. ET-1 was recently demontrated

to exert an anti-apoptotic effect in cardiomyocytes (42), but its influence on

PKB activation was not investigated in these studies. Since PKB is believed to

exert an anti-apoptotic action through the phosphorylation of BAD and caspases

(38), it may be postulated that ET-I-induced activation of PKB contributes to

tins response.

Another important finding of the present work is that DPI, an inhibitor of

NADPH oxidase, blocked ET-1-evoked enhancement of ERK1/2, PKB and

Pyk2 phosphorylation. We further demonstrated that ET-1 caused an increase in

ROS generation, winch was bÏocked in ceils pretreated with DPI. These

observations are consistent with a role of ROS as a mediator of the ET-1

response in A-10 V$MCs. However, in some earlier studies, DPI pretreatment

was shown to speciflcally inhibit ET-1-induced JNK and p3$MAPK

phosphorylation without affecting ERK1/2 phosphorylation in VSMCs isolated

from the aduit rat aorta (27,39). These data argue against a role for ROS

generation in ET-1 -induced ERKI /2 phosphorylation in aduit rat VSMCs.

In contrast to studies in VSMCs, ROS involvement in ET-1-stimulated

ERK1/2 phosphorylation in cardiac fibroblasts has been suggested (43). In

addition, divergent effects of DPI on MI-induced ERK1/2 phosphorylation in

VSMCs have also been noted. For example, an inhibitory action of DPI on Ail-
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stimulated ERK1/2 phosphorylation was demonstrated by frank et al. (37),

whereas Viedt et al. (44) and Touyz et al. (45) failed to detect any influence of

DPI on ERK1/2 phosphorylation. The reasons for these conflicting data remain

unclear, but differences in the DPI dose used or the time of DPI pretreatment as

well as the cefi types or culture conditions might have contributed to these

varied responses. Our data on NAC, a free radical scavenger, winch almost

completely attenuated the effect of ET-1 on ERKÎ/2, PKB and Pyk2

phosphorylation provided additional support for the involvement of ROS

generation in mediating the action of ET-1 in A-10 V$MCs.

We have also demonstrated that ET-1 treatment stimulated the rate of

protein synthesis in VSMCs. Although ET-1 has been shown to enhance protein

synthesis (46) via the ERK1/2 signaling pathway (2$), no substantial work into

its effect on protein synthesis in V$MCs has been conducted. Moreover, a clear

role of ERK1/2 in the process in VSMCs has flot been established. However,

since DPI pretreatment blocks both ERK1/2 phosphorylation and protein

synthesis in A-10 VSMCs, an involvement of tins pathway in mediating tins

response may be hypothesized.

In conc1usion we have demonstrated that ET-1 -induced activation of DPI

sensitive NADPH oxidase contributed to ROS generation in A-10 V$MCs. RO$

generation was also involved in the enhanced phosphorylation and activation of

ERK1/2, PKB and Pyk2 as well as protein synthesis in A-10 VSMCs. From
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these data, we conclude that ROS plays a critical role in triggering ET-1 -induced

signaling pathways linked to growth-promoting responses.
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Figure ]egends

Figure 1. ET-1-induced dose-responses of ERK1/2, PKB and Pyk2

phosphorylation in A-10 VSMCs. Serum-starved quiescent A-10 ceils were

treated without or with the indicated ET-1 concentrations for 5 min. Ceil lysates

were immunoblotted by phospho-specffic-Tyr204-ERK1/2 antibodies (A),

phospho-specffic-Ser473-PKB antibodies (B) and phospho-specffic-Tyr402-Pyk2

antibodies (C), as shown in the middle panels of each section. Blots were also

analyzed for total ERK1/2, PKB and Pyk2 (bottom panels ofeach section). Top

panels represent average data quantffied by densitometric scanning of

immunoblots. Values are the means ± SE of at least 3 independent experiments

and are expressed as fold increase over basal phosphorylation. (A) *,D< 0.002 vs

control. (B) *< 0.02 vs control. (C) *< 0.006 vs control.

Figure 2. lime-course of ET-1-induced ERK1/2, PKB and Pyk2

phosphotylation in A-10 VSMCs. Serum-starved quiescent A-10 ceils were

treated without or with ET-l (10 nM) for the indicated time periods. Ceil

lysates were immunoblotted by phospho-specffic-Tyr204-ERK1/2 antibodies (A),

phospho-specffic-Ser473-PKB antibodies (B) and phospho-specffic-Tyr402-Pyk2

antibodies (C), as shown in the middle panels of each section. Blots were also

analyzed for total ERK1/2, PKB and Pyk2 (bottom panels ofeach section). Top

panels represent average data quantffied by densitometric scanning of

immunoblots. Values are the means ± SE of at least 3 independent experiments
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and are expressed as fold increase over basal phosphorylation. (A) *.,D< 0.007 vs

control. (B) *P< 0.03 vs control. (C) *< 0.02 vs control.

Figure 3. Dose-dependent effect of the NADPH oxidase inhibitor DPI on

ET-1-induced ERK1I2, PKB and Pyk2 phosphorylation in A-10 VSMCs.

Serum-starved quiescent A-10 ceils were pretreated without or with the

indicated DPI concentrations for 30 mm, followed by 10 nM of ET-1 for 5 min.

Ceil lysates were immunoblotted by phospho-specffic-Tyr204-ERKY /2 antibodies

(A), phospho-specffic-Ser473-PKB antibodies (B) and phospho-specffic-Tyr402-

Pyk2 antibodies (C), as shown in the middle panels of each section. Blots were

also analyzed for total ERK1/2, PKB and Pyk2 (bottom panels of each section).

Top panels represent average data quantffied by densitornetric scanning of

immunoblots. Values are the means ± SE of at least 3 independent experiments

and are expressed as percentage phosphrnylation where phosphorylation

observed with ET-1 aTone is defined as 100%. (A) *P< 0.0001 vs control, tP<

0.0001 vs ET-1. (B) *P< 0.0001 vs control, fP< 0.02 vs ET-1. (C) *P< 0.02 vs

control, fP< 0.04 vs ET-1.

Figure 4. Effect of DPI on EI-1-induced ROS generation in A-10 VSMCs.

Serum-starved quiescent A-10 celis were pretreated without or with DPI (10

iM) for 30 min before the addition of ET-1 (10 nM) for 5 min. The ceils were

then trypsinized and collected by centrifugation for the assessment of ROS

generation as described in Materials and Methods. Relative light unit
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measurements were compared 5 min afler the addition of lucigenin. Non-treated

ceils were considered as controls. Values are the means ± SE of 3 independent

experiments; *< 0.02 vs control, tP< 0.02 vs ET-1

Figure 5: Effect of the superoxide scavenger NAC on ET-1-induced

ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs. Serum-starved

quiescent A-10 ceils were pretreated without or with NAC (20 mM) for 6 h,

followed by 10 nM of ET-1 for 5 min. Ceil lysates were imrnunoblotted by

phospho-specffic-Tyr204-ERK1 /2 antibodies (A), phospho-specffic-5er473-PKB

antibodies (B) and phospho-specific-Tyr402-Pyk2 antibodies (C), as shown in the

middle panels of each section. Blots were also analyzed for total ERK1/2, PKB

and Pyk2 (bottom panels of each section). Top panels represent average data

quantffied by densitometric scanning of immunoblots. Values are the means ±

SE of at least 3 independent experiments and are expressed as percentage

phosphorylation where phosphorylation observed with ET-1 alone is deflned as

100%. (A) *P< 0.0001 vs control, tP< 0.005 vs ET-1. (B) *P< 0.0001 vs

control, tP< 0.009 vs ET-l. (C) *< 0.000$ vs control, tP< 0.04 vs ET-1.

Figure 6: Effect of DPI on ET-1-induced [3lllJeucine incorporation into

proteins. Serum-starved quiescent A-10 ceils were pretreated with DPI (5 1iM)

for 30 min in the absence (control) or presence of ET-l (10 nM); then, the ceils

were labeled to equffibrium with [3H]leucine for 20 h as described in Materials

and Methods. Values are the means ± SE of 3 independent experiments and are
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expressed as a percentage of change in [3H]leucine incorporation over basal

values. *P< 0.0002 vs control, tP< 0.0002 vs ET-1.



D

ç)

P
-P

yk
2

(F
oI

d
in

cr
ea

se
)

O
I’3

t t I I I I n

I I I I I I n

‘s

w

P-
PK

B

(F
oI

d
in

cr
ea

se
)

I I n

P-
E

R
K

11
2

(F
oI

d
in

cr
ea

se
)

jJ n

Ii It H I s L
.è

—

(M



60

9
oC%1

e..

Q
UJ

I 3

FIGURE 2

B 4
ou)
(‘3mc, *i:_jjIlïj

t) 1 2 5 15 30 6t)ET-1 (mm)

e_.. — — ea a

I ————

I p-PKB

= PKB

t) 1 2 5 15 30 60

I p-Pyk2

1* Pyk2

A

ÏÏÏiI.
ET-1 (miii) t) 1 2 5 15 3t) 6t)

I______________________ p-ERK1/2

I =

C

ET-1 (mm)



125

100
C4
‘— 75

50
w
o

o

ET-1 - +
DPI - -

I——

61

FIGURE 3

t

- + + +

+ t). 1 1 10 (iM)

= p-ERK1/2

— — — — I ERK1/2

A

B

C

120

ET-1 - + - + + +

DPI - - + 0.1 1 It) (pM)

I I p-PKB

I — — — I

DPI - - + t).1 I It) (iM)

I I p-Pyk2

IøaPab..Ic= Pyk2



62

FIGURE 4

20000
*

15000

10000

5000
w
4- o
w

I
Basal ET-1 DPI +ET-1



120

C4
80

w
o

80

o
40

1 20

c.i 80
.

>‘

40o-

FIGURE 5

r,.,
03

40

o
ET-l
N-AC

X—
———— I

— I

A

B

C

120

2f) (mM)

1
c’ ERK1/2

(mM)

o
ET-1
N-AC

- + +
-

- 20

I-m-- —I
= p-PKB

ci PJ

—o
ET-1
N-AC

t

+ +

- 20 (mM)

I I
z Pk2



64

FIGURE 6

480

360

240

120

CfL

. m (5 iiM
C
o

o
L
o
Q
C

w
C
Q
z
w
-J

I
c) Basal ET-1



65

References

1. Yanagisawa M, Kurihara H, Kimura S et al. A nove! potent vasoconstrictor

peptide produced by vascular endothelial celis. Nature 332: 411-415, 199$.

2. Battistini B, Chaffler P, D’Orleans-Juste P, Briere N and Sirois P. Growth

regulatory properties ofendothelins. Peptides 14: 3 85-399, 1993.

3. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K and

Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective stibtype

ofthe endothelin receptor. Nature 34$: 732-735, 1990.

4. Arai H, Hori S, Aramon I, Okhubo H and Nakanishi S. Cloning and

expression ofa cDNA encoding an endothelin receptor. Nature 348: 730-32,

1990.

5. Kedzierski RM and Yanagisawa M. Endothelin system: the double-edged

sword in health and disease. Annu Rev Pharmacol Toxicol 41: $51-76, 2001.

6. Clerk A and Sugden P. Regulation of phospholipase C and D in rat

ventricular myocytes: stimulation by endothelin- 1, bradykinin and

phenylephrine. JMol Ceil CardioÏ 29: 1593-1604, 1997.



66

7. Pollock DM, Keith TL and Highsrnith RF. Endothelin receptors and calcium

signaling. fASEB J 9: 1196-1204, 1995.

8. Bogoyevitch MA, Glennon PE, Andersson MB, Clerk A, Lazou A, Marshall

CJ, Parker PJ and Sugden PH. Endothelin-1 and fibroblasts growth factors

stimulate the mitogen-activated protein kinase signaling cascade in cardiac

myocytes. The potential role of the cascade in the integration of two

signaling pathways leading to myocyte hypertrophy. J Biol Chem 269: 1110-

1119, 1994.

9. Yamboliev TA, Hruby A and Gerthoffer WT. Endothelin-1 activates MAP

kinases and c-Jun in pulmonary artery smooth muscle. Puim Pharmacol

Ther 11:205-20$, 199$.

10. Yoshizumi M, Kim S, Kagami S, Hamaguchi A, Tsuchiya K, Houchi H,

Iwao H, Kido H and Tamaki T. Effect of endothelin- 1 (1-31) on extracellular

signal-regulated kinase and proliferation of human coronary artery smooth

muscle ceils. BrJPharrnacol 125: 1019-1027, 199$.

11. Sorokin A, Kozlowsld P, Graves L and Philip A. Protein tyro sine kinase

Pyk2 mediates endothelin-induced p3$MAPK activation in glomerular

mesangial ceils. JBiol Chem 276: 21521-21528, 2001.



67

12. Foschi M, Chari S, Dunn MJ and Sorokin A. Biphasic activation of p2 iras

by endothelin-1 sequentially activates the ERK cascade and

phosphatidylinositol 3-kinase. EMBOJ 16: 6439-645 1, 1997.

13. Bisotto S and Fixman ED. Src-family tyrosine kinases, phosphoinositide 3-

kinase and Gab 1 regulate extracellular signal-regulated kinase 1 activation

induced by the type A endothelin-1 G-protein-coupled receptor. Biochem J

360: 77-85, 2001.

14. Robin P, Boulven I, Desmyter C, Harbon S, Leiber D. ET-i stimulates ERK

signalirig pathway through sequential activation of PKC and Src in rat

myometrial ceils. Am JPhysiot CelÏ Physiol 283: C251-60, 2002.

15. Flamant M, Tharaux PL, Placier S, Henrion D, Coffman T, Chatziantoniou

C and Dussaule JC. Epidermal growth factor trans-activation mediates the

tonic and fibrogenic effects of endothehn in the aortic wall of transgenic

mice. FASEB J 17: 327-329, 2003.

16. Yamauchi J, Miyamoto Y, Kokubu H, Nishui H, Okarnoto M, Sugawara Y,

Hirasawa A, Tsujimoto G and Itoh H. Endothelin suppresses ceil migration

via the JNK signaling pathway in a manner dependent upon Src kinase, Rad

and Cdc42. FEBSLett 527: 284-28$, 2002.



62

17. Kodama H, fukuda K, Takahashi T and Sano M. Role of EGF receptor and

Pyk2 in endothelin-1-induced ERK activation in rat cardiomyocytes. J Mol

CeÏÏ Cardiol 34: 139-150, 2002.

1$. Kodama H, Fukuda K, Takahashi E, Tahara S et al. Selective involvement of

pi 3OCas/CrkIPyk2/c-$rc in ET-1 -induced JNK activation. Hypertension 41:

1372-9, 2003.

19. Sundaresan M, Yu ZX, Ferrans VJ, Irani K and Finkel T. Requirement for

generation of F1202 for platelet-derived growth factor signal transduction.

Science 270: 296-299, 1995.

20. Bae YS, Kang 5W, Seo MS, Baines IC, Tekie E, Chock PB and Rhee 5G.

Epidermal growth factor (EGF)-induced generation of hydrogen peroxide.

Role in EGF receptor-mediated tyrosine phosphorylation. J BioÏ Chem 272:

217-221, 1997.

21. Griendling KK, Minieri CA, Ollerenshaw ID and Alexander RW.

Angiotensin II stimulates NADH and NADPH oxidase activity in cultured

vascular smooth muscle ceils. Cire Res 74: 1141-1 148, 1994.

22. Mahadev K, Wu X, Zilbering A, Zhu L, Lawrence JT and Goldstein BJ.

Hydrogen peroxide generated during ceilular insulin stimulation is integral



69

to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J

Bio! Chem 276: 48662-48669, 2001.

23. Lo YY, and Cruz 1F. lnvolvement of reactive oxygen species in cytokine

and growth factor induction of c-fos expression in chondrocytes. J Biol

Chem 270: 11727-11730, 1995.

24. Lo YY, Wong JM and Cruz TF. Reactive oxygen species mediate cytokine

activation of c-Jun NH2-terminal kinases. J Bio! Chem 271: 15703-15707,

1996.

25. Cheng 1H, Shih NL, Chen SY, Wang DL and Chen JJ. Reactive oxygen

species modulate endothelin-I-induced c-fos gene expression in

cardiomyocytes. Cardiovasc Res 41: 654-662, 1999.

26. Wedgwood S, Dettman RW and Black SM. ET-1 stimulates pulmonary

arterial smooth muscle ceil proliferation via induction of reactive oxygen

species. Am JPhysio! Lung Ceil Mol Physiol 281: L1058-L1067, 2001.

27. Fei J, Viedt C, Soto U, Elsing C, Jahn L and Kreuzer J. Endothelin-1 and

smooth muscle ceils: induction of jun amino-terminal kinase through an

oxygen radical-sensitive mechanism. Arterioscler Thromb Vase Biol 20:

1244-1249, 2000.



70

2$. Sugden PH. An oveiwiew of endothelin signaling in the cardiac myocyte. J

Mol Celi Cardiol 35: 871-$86, 2003.

29. Singal PK, Khaper N, farahmand F and Bello-Klein A. Oxidative stress in

congestive heart failure. Curr CardioÏ Rep 2: 206-211, 2000.

30. Griendling KK, Sorescu D and Ushio-Fukai M. NAD(P)H oxidase: role in

cardiovascular biology and disease. Circ Res $6: 494-50 1, 2000.

31. Dhalla NS, Temsah RW and Netticaden T. Role of oxidative stress in

cardiovascular disease. JHypertens 18: 655-673, 2000.

32. Li L, Fink GD, Watts SW, Northcott CA, Gaffigan JJ, Pagano PJ and Chen

AF. Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH

oxidase pathway in Iow-renin hypertension. Circulation 107: 1053-1058,

2003.

33. Yang Z, Krasnici N and Luscher IF. Endothelin-1 potentiates human

smooth muscle ceil growth to PDGf: effects of ETA and ETB receptor

blockade. Circulation 100: 5-8, 1999.



71

34. Srivastava AK and Pandey SK. Stimulation of mitogen-activated protein

kinases ERK-1 and ERK-2 by H202 in vascular smooth muscle ceils. In:

Takeda N, Nagano M and Dhalla NS, eds. The hypertrophied heart. 197-206,

2000. Boston, Kluwer Academic Publishers.

35. Pandey SK, Theberge Jf, Bernier M and Srivastava AK.

Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf

1/MEK!ERK and p70(s6k) signaling cascade by the insulinomimetic agent

vanadyl sulfate. Biochernistîy 3$: 14667-14675, 1999.

36. Hsieh TJ, Zhang $L, Filep JG, Tang SS, IngeWmger JR and Chan JS. High

glucose stimulates angiotensinogen gene expression via reactive oxygen

species generation in rat kidney proximal tubular ceils. Endocrinology 143:

2975-2985, 2002.

37. frank GD, Eguchi S, Yamakawa T, Tanaka S, Inagami T and Motley ED.

Involvement of reactive oxygen species in the activation of tyrosine kinase

and extracellular signal-regulated kinase by angiotensin II. Endocrinology

141: 3120-3126, 2000.

3$. Blanc A, Pandey NR and Srivastava AK. Synchronous activation of ERK

1/2, p3$mapk and PKB/Akt signaling by H202 in vascular smooth muscle



72

ceÏls: potentiaÏ involvement in vascular disease. Int J Mol lied 11: 229-234,

2003.

39. Kyaw M, Yoshizumi M, Tsuchiya K, Kirima K, Suzaki Y, Abe S, Hasegawa

T and Tamaki T. Antioxidants inhibit endothelin-1 (1-31)-induced

proliferation of vascular smooth muscle ceils via the inhibition of mitogen

activated protein (MAP) kinase and activator protein-1 (AP-1). Biochem

PharmctcoÏ 64: 1521-1531, 2002.

40. Suzuki E, Nagata D, Kakoki M, Hayakawa H, Goto A, Omata M and Hfrata

Y. Molecular mechanisms of endothelin-1-induced ceil-cycle progression:

involvement of extracellular signal-regulated kinase, protein kinase C, and

phosphatidylinositol 3-kinase at distinct points. Circ Res 84: 61 1-619, 1999.

41. Rocic P, Govindarajan G, Sabri A and Lucchesi PA. A role for PYK2 in

regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular

smooth muscle. Am JPhysiol Celi Physiol 280: C90-C99, 2001.

42. Ogata Y, Takahashi M, Ueno S, Takeuchi K, Okada T, Mano H et al.

Antiapoptotic effect of endothelin-1 in rat cardiomyocytes in vitro.

Hypertension 41: 1156-1 163, 2003.



73

43. Cheng CM, Hong HJ, Liu JC, Shih NL et al. Crucial role of extracellular

signal-regulated kinase pathway in reactive oxygen species-mediated

endothelin- 1 gene expression induced by endothelin- 1 in rat cardiac

fibroblasts. Mol Pharmacol 63: 1002-1011, 2003.

44. Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C et al. Differential

activation of mitogen-activated protein kinases in smooth muscle ceils by

angiotensin II: involvement of p22phox and reactive oxygen species.

Arterioscler Thromb Vasc Biol 20: 940-948, 2000.

45. Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S and Schiffiin EL.

Redox-dependent MAP kinase signaling by Mg II in vascular smooth

muscle ceils: role of receptor tyrosine kinase transactivation. Can J PhysioÏ

Pharmacol 8]: 159-167, 2003.

46. Sugden PH, Fufler SJ, Mynett JR, Hatchett RJ, Bogoyevitch MA and

Sugden MC. Stimulation of adult rat ventricular myocyte protein synthesis

and phosphoinositide hydrolysis by the endothelins. Biochim Biophys Acta

1175: 327-32, 1993.



CHAPTER 3

ARTICLE 2

Nitric oxide attenuates EndotheÏin-1-induced

activation ofERKÏ/2, PKB and Pyk2 in

vascular smooth muscle cells by a cGMP

dependent pathway



75

Nitric oxide attenuates Endotlielin-1-induced activation

of ERK1/2, PKB and Pyk2 in vascular smooth muscle

ceils by a cGMP-dependent pathway

Grace Bou Daou and Ashok K. $rivastava

Centre de recherche, Centre hospitalier de l’Université de Montréal - Hôtel

Dieu, Department of Physiology, Université of Montréal, Montreal, Quebec,

Canada

Running titie: Role of NO in ET-1 -induced activation of ERK 4, PKB, Pyk2

and protein synthesis

Address for correspondence:

Ashok K. Srivastava, Ph.D
Centre de recherche
CHUM, Hôtel-Dieu
3840, rue St. Urbain
Montréal (Québec) H2W 1T7
Tel: 514-$90-8000 ext.12917
Fax: 514-412-7152



76

Abstract

Nitric oxide (NO) is an important free radical that has been shown to

contribute to the regulation of several hormone-mediated responses including

EGF, PDGF as well as endothelin-1 (ET-1) and exerts an anti-mitogenic and

anti-proliferative effect in vitro. ET-1 is a vasoactive peptide implicated in the

pathogenesis of vascular abnormalities such as hypertension and atherosclerosis.

However, the mechanism by winch NO antagonizes ET-1 effect remains

unknown. Therefore, the aim of tins study was to determine if NO generation

would modify ET-1 -induced signaling pathways involved in cellular growth and

proliferation in A-10 VSMC. NO effect has been evaluated by measuring

phosphorylation levels of ERK1I2, PKB and Pyk2 by immunoblot. Treatrnent of

A-10 celis with S-nitroso-N-acetylpenicfflamine (SNAP), a NO donor,

attenuated the ET-1-enhanced phosphoiylation of ERK1/2, PKB and Pyk2.

Since, NO mediates principally its effect through a cyclic GMP/soluble

guanylate cyclase pathway, we investigated the role of $-Br-cGMP, a non

metabolizable and ceil permeable analogue of cGMP, which exhibited a similar

effect as SNAP on ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation.

Furthermore, ODQ, an inhibitor of guanylate cyclase activity, reversed the

inbibitory effect of NO on ET-1-induced responses. SNAP also appeared to

decrease the protein synthesis induced by ET-1. Taken together, these data

demonstrate that NO attenuated ET-1-induced phosphorylation ofERKY/2, PKB

and Pyk2 and also antagonized the growth-promoting, proliferative as well as

hypertrophic effects of ET-1.
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introduction

The endothelium is the major source of endothelin-1 (ET-1) production

(1,2). ET-1 is a 21-aminoacid peptide and is considered as a potent

vasoconstrictor (3). It also exhibits mitogenic activity in vascular smooth muscle

celis (VSMC) (4,5,6), suggesting a possible role for ET-1 in the pathogenesis of

many diseases, such as atherosclerosis (7), hypertension (2) and restenosis afier

angioplasty (9).

ET-1 exerts its effects through heteromeric G-protein-coupled receptor

(GPCR) that is liriked to multiple signaling pathways winch include

phospholipases C and D (10), Ca2 (11), mitogen-activated protein kinases

(MAPKs) including extraceflular signal-regulated kinases 1/2 (ERK1/2), c-Jun

NH2-terminal kinase (JNK) and p38mapk (12,13,14,15) and

phosphatidylinositol 3-kinase (PI-3K) (16). Most of the studies related to ET-1

signaling have been conducted in cardiomyocytes (10,12,17) and in glomerular

mesangial ceils (15,16). Activation of receptor and non-receptor protein tyrosine

kinases (PTKs) in transducing ET-1-induced signaling responses have been

demonstrated (15,18,19,20,21). PTKs activated by ET-1 include epidermal

growth factor (EGf) (21), c-Src (18,20,22) and a Ca2-dependent PTK, Pyk2

(15,20). 0f particular interest, ET-1 mediates Pyk2 activation winch contributes

to ERKY/2 (20) and JNK (21) signaling in cardiomyocytes and p38mapk (15) in

mesangial ceils.
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Nitric oxide (NO) is an important free radical that has been suggested to

contribute to the regulation of several hormone-mediated responses (22). NO

mediates relaxation principally through the stimulation of soluble guanylyl

cyclase, leading to enhanced production of intracellular cGMP, which in tum,

activates cGMP-dependent protein kinases (23). NO can also influence ceflular

events by a cGMP-independent mechanism (24,25) and is also able to react with

superoxide anion to form the reactive peroxynitrite radical (26), a potent oxidant

with the potential to disrupt protein structures by nitrating the protein tyrosine

residues (27). In addition to its vasodilating effect, NO has been suggested to

antagonize the physiological and pathophysiological effects of several growth

factors such as EGF (2$), angiotensin II (AIl) (29) as well as ET-1 (30). Tins is

probably achieved by inhibiting one or several of the tyrosine kinases implicated

in the signaling events induced by these factors. Extensive studies using Ail,

have shown that NO suppressed the activation of ERK1/2, p3$mapk and JNK

(31) as well as Pyk2 (29) in cardiac fibroblasts.

However, to our knowledge, a possible contribution of NO on ET-1-

induced intracellular transduction events has flot been investigated in V$MC.

Therefore, in the present studies, we have examined the effect of NO on ET-1-

stimulated phosphorylation of ERK1/2, PKB and Pyk2 winch are key mediators

of growth promoting, proliferative, migratory, survival and death responses. In

addition, we have examined whether NO is acting via a cGMP-dependent

mechanism in the A-10 VSMCs. Our study demonstrated that NO donor, S-
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nitroso-N-acetylpenidilamine (SNAP), attenuated ET-1-induced ERK1/2, PKB

and Pyk2 phosphorylation via cGMP dependent pathway. These resuits

demonstrate that NO may contribute to the anti-mitogenic and anti-proliferative

effects by antagonizing growth promoting and proliferative signaling events in

VSMC.
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Materials and Methods

Materials

ET-1 was purchased from Peninsula Laboratories (Belmont, CA, USA),

and S-nitroso-N-acetylpenicfflamine (SNAP), 8-Bromo-guanosine 3’, 5’ -cydic

monophosphate ($-Br-cGMP) and 1H- [1 ,2,4JOxadiazolo [4,3 -a]quinoxalin- 1 -one

(ODQ), from Calbiochem (San Diego, CA, USA). Monoclonal phospho

specffic-Tyr204-ERK1/2 antibody, polyclonal ERK1/2 antibody and horseradish

peroxidase-conjugated goat anti-mouse immunoglobulin were from Santa Cruz

Biotechnology Inc. (Santa Cruz, CA, USA). The phospho-specffic-Ser473-PKB

and total PKB as well as phospho-specffic-Tyr402-Pyk2 and total Pyk2

antibodies were procured from New England Biolabs (Beverly, MA, USA). The

enhanced chemiluminescence (ECL) detection system kit and L-(4,5-3H) leucine

were from Amersham Pharmacia Biotech (Baie d’Urfé, QC, Canada).

Methods

CeIt culture

VSMC derived from embryonic rat thoracic aorta A-10 ceils were

maintained in culture with DMEM containing 10% fetal bovine serum at 37°C in

a humidifled atmosphere of 5% C02 as described earlier (32). The ceils were

grown to $0-90% confluence in 60-mm plates and incubated in serum-free

DMEM 20 h prior to the treatments.
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Ce!! lysis and Western blotting

Ceils incubated in the absence or presence of various agents were washed

twice with ice-cold PBS and lysed in 200 r1 of buffer (25 mlvi Tris-HCI, pH 7.5,

25 mlvi NaCI, 1 mM Na orthovanadate, 10 mM Na fluoride, 10 mM Na

pyrophosphate, 2 mM benzamidine, 2 mM ethylenebis(oxyethylenenitrolo)

tetraacetic acid, 2 mM ethylenediamine tetraacetic acid, 1 mM

phenylmethylsuffonyl fluoride, 10 j.ig/ml aprotinin, 1% Triton x-100, o. 1%

sodium dodecyl sulfate (SDS), and 0.5 p.glml leupeptin) on ice. The cd lysates

were centrifuged at 12,000g for 10 min at 4°C. Protein concentrations were

measured by Bradford assay. Equal amounts of protein were subjected to 10%

SDS-polyacrylamide gel (SDS-PAGE), transferred to PVDf membranes

(Miffipore, MA, USA) and incubated with respective primary antibodies

(monoclonal phospho-spedilic-Tyr204-ERK1/2 antibody (1:2,000), polyclonal

phospho-specffic-Ser473-PKB antibody (1:4,000), phospho-specffic-Tyr402-Pyk2

antibody (1:1,000)). The antigen-antibody complex was detected by a

horseradish peroxidase-conjugated second antibody (1:4000), and protein bands

were visuallzed by ECL. The intensity of specific bands was quantffied by NIH

Image software as described previously (33).

Measurement of[3HJteucine Incorporation

A-10 ceils were treated for 20 h with endothelin-1 (10 nM; Belmont, CA,

USA). Protein synthesis was assessed by the addition of 2 jiCilmL of
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[3Hjleucine (ICN Biomedicals, Inc., Costa Mesa, CA, USA) for a period of 20 h.

To assess the role of nitric oxide (NO), ceils were pretreated for 30 min with S

nitroso-N-acetylpenicfflamine (SNAP) (300 jiM; Calbiochem, San Diego, CA,

USA) winch spontaneously generates NO. Following the completion of the

experimental protocol, A-10 ceils were washed twice with cold PBS, and 1 ml

of cold 5% trichioroacetic acid was added for 30 min to precipitate protein. The

precipitates were subsequently washed twice with cold water and resuspended in

500 d of 0.4 M NaOH. Aliquots were counted in a scintillation counter.

Statistics

Statistical analysis was performed by one-way, repeated-measures analysis

of variance (ANOVA) followed by a fisher post hoc test. AU data are reported

as means ± SE. The differences between means were considered significant at

P< 0.05.
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Resuits

SNAP inhibited ET-1-induced phosphorytation of ERK1/2, PKB and Pyk2 in

A-10 VSMCs

In order to determine if the anti-mitogenic and anti-proliferative effects of

NO are mediated by its abffity to attenuate growth-promoting signaling pathway

in V$MC, we examined the effect of $-nitroso-N-acetylpenicfflamine ($NAP),

winch spontaneously generates NO, on ET-1-induced phosphorylation of

ERK1/2, PKB and Pyk2. As shown in Figure 1, pretreatment of A-10 VSMC

with SNAP for 15 min dose-dependently attenuated ET-1-induced

phosphorylation of ail the 3 protein kinases. Among the 3 kinases, PKB

appeared to be most sensitive to the inbibitory effect of SNAP and exbibited

almost complete attenuation in ET-1-stimulated phosphorylation at 10 iM (fig.

lB). In contrast, ET-1-enhanced phosphorylation of ERK1/2 and Pyk2 was

inhibited significantly only by 300 jiM SNAP.

8-Br-cGMP tu!? ibited ET-1-induced phosphorytation ofERK1/2, PKB in A-10

VSMCs

Since SNAP-induced production of NO would cause the elevation of

cGMP, we evaluated the possibffity that the effect of SNAP on ET-1-induced

responses was mediated by a mechanism involving cGMP. We tested tins

possibility by pretreating the ceils with $-Br-cGMP, a non-metabolizable and

ceil permeable analogue of cGMP. As shown in Figure 2, ERKY/2 and PKB
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phosphorylation induced by ET-1 was decreased in a dose-dependent manner

with a significant reduction observed at 10 j.iM.

ODQ reversed lite inhibitory effect of SNAP on ET-1-induced ERK1/2, PKB

and Pyk2 in A-10 VSMCs

Since NO stimulates cGMP production by activating a soluble form of

guanylate cyclase, we wished to determine the contribution of tins enzyme in

SNAP-induced attenuation of ET-1 response. To validate tins possibffity, we

used ODQ, a selective inhibitor of the soluble guanylate cyclase, winch prevents

the generation of cGMP from GTP. Ceils for these experiments, were

preincubated with ODQ for 15 mm, then with 300 jiM SNAP for 15 min and

finally stimulated with 10 nM ET-1 for 5 min. As shown in Figure 3,

pretreatment with 1 iM ODQ had no significant effect but 10 pM ODQ

completely reversed the inhibition induced by SNAP on ET-1 -stimulated

ERK1/2, PKB and Pyk2 phosphorylation (fig. 3).

SNAP inhibited ET-1-stimutated [3HJleucine incorporation mb proteins

Activation of ERK1/2, PKB and Pyk2 signaling has been implicated in

mediating the hypertrophic response of ET-1 (17), therefore, we next examined

whether there was correlation between the response of $NAP and ET-1 -induced

protein synthesis. As shown in Figure 4, ET-1 increased [3H]leucine

incorporation by about 150% as compared to control. However, pretreatment

with SNAP caused a significant decrease of ET-1 induced [3HJleucine
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incorporation. SNAP alone did flot signfficantly affect the basal [3H]leucine

uptake.
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Discussion

Nitric oxide (NO), a gaseous biological molecule and a major vasodilator

released from the endothelial ceils, has been identilied to regulate cellular

functions. In addition to the relaxation of smooth muscle ceils, NO can also

inhibit atherogenesis, thrombocyte aggregation as well as ceil proliferation and

migration. NO donors have been found to attenuate EGf (2$), PDGF (34) and

angiotensin II (AIl) (35) stimulated proliferation of V$MC and cardiac

fibroblasts. It has been suggested that NO might exert these effects by

modifying the growth-promoting signaling events. The support for this notion is

provided from studies in which NO was shown to attenuate Ras/ERKI/2

signaling in response to EGF(2$) and Ail (31) as well as PKB in response to

PDGF (34). NO was also shown to attenuate MI-stimulated Pyk2

phosphorylation in cardiac fibroblasts (29). Despite the fact that a potential

cross-ta& between ET-1 and NO exists, and that NO is believed to counteract

the effects of ET-1, not much information on the abffity of NO to modify’ ET-1-

induced signaling in VSMC is avallable. Therefore, in the present studies, we

have investigated if NO generation would modiI’ ET-1 -induced signaling

pathways involved in cd growth and proilferation.

Ffrst, a time and dose-dependent phosphorylation of ERK1/2, PKB and

Pyk2 by ET-1 were established (data flot shown). Our data indicated that

addition of the NO donor, $NAP decreased the phosphorylation level of

ERK1/2, PKB and Pyk2 involved in ET-1 signaling pathway (fig. 1). These
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resuÏts are similar to previous studies in which ATI-induced phosphorylation of

ERK1 /2 and Pyk2 was biocked by SNAP (29,31). However, otir work represents

the flrst study demonstrating a role that NO antagonizes ET-1 -induced signaling

in VSMC. Pyk2 has also been implicated in MI and ET-l-induced MAPK

activation in cardiac fibroblasts and V$MC. Thus, it is possible that Pyk2 serves

as an upstream mediator ofET-1-signaling in A-10 VSMC.

We have aiso demonstrated a role of cGMP in mediating the attenuating

effect of NO on ET-1 signaling pathway by using $-Br-cGMP. The resuits

showed that $-Br-cGMP decreased ERK1/2 and PKB phosphorylation induced

by ET-1 (Fig. 2) and it thus mirnicked the inhibitory effect of SNAP. We ffirther

evaluated an involvement of soluble guanylate cyclase by using a specific

inhibitor, ODQ, and demonstrated that it couid reverse the inhibitory effect of

$NAP on ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation (Fig. 3). It has

been previously shown that ODQ can block SNAP-induced elevations in cGMP

levels in rat aortic VSMC (36), endothelial ceils (37) and cardiomyocytes (3$).

finally, we also provide evidence showing that ET-1-stimulated protein

synthesis, a haDrnark of hypertrophic response is also attenuated by NO donor,

SNAP (Fig. 4).

Taken together, we demonstrate that NO inhibits the ET-1 -stimuiated

increase of ERK1/2, PKB and Pyk2 activation in A-10 VSMC. Since ERK1/2,

PKB and Pyk2 plays a crucial foie by mediating VSMC growth and
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hypertrophy, it may be suggested that the abffity of NO to attenuate these

pathways may serve as a potential mechanism by which NO counteracts the

biological responses of ET-1.
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Figure Iegends

Figure 1. Dose-dependent effect of the NO donor, SNAP on ET-1-induced

ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs. Serurn-starved

quiescent A-10 ceils were pretreated without or with the indicated SNAP

concentrations for 15 min followed by 10 nM of ET-1 for 5 min. Ceil lysates

were immunoblofted by phospho-specffic-Tyr204-ERK1/2 antibodies (A),

phospho-speci±ic-Ser473-PKB antibodies (B) and phospho-specific-Tyr402-Pyk2

antibodies (C), as shown in the middle panels of each section. Blots were also

analyzed for total ERK1/2, PKB and Pyk2 (bottom panels of each section). Top

panels represent average data quantified by densitometric scaiming of

immunoblots. Values are the means ± SE of at least 3 independent experiments

and are expressed as percentage phosphorylation where phosphorylation

observed with ET-1 alone is defined as 100%. (A) *P< 0.0001 vs control, P<

0.0001 vs ET-1. (B) *P< 0.0001 vs control, tP< 0.0001 vs ET-1. (C) *F< 0.002

vs control, tF< 0.0003 vs ET-l.

Figure 2. Effect of a stable analogue of cGMP, $-Br-cGMP on ET-1-

induced ERK1/2 and PKB phosphorylation in A-10 VSMCs. Serum-starved

quiescent A-10 ceils were pretreated without or with the indicated 8-Br-cGMP

concentrations for 15 min followed by 10 nM of ET-1 for 5 min. Cd lysates

were immunoblotted by phospho-specffic-Tyr204-ERKY/2 antibodies (A) and

phospho-specffic-Ser473-PKB antibodies (B), as shown in the middle panels of

each section. Blots were also analyzed for total ERK1/2 and PKB (bottom
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panels of each section). Top panels represent average data quantffied by

densitometric scarming of inimunoblots. Values are the means ± SE of at least 3

independent experiments and are expressed as percentage phosphorylation

where phosphorylation observed with ET-1 alone is defined as 100%. (A)

*< 0.003 vs control, tP< 0.005 vs ET-1. (B) *F< 0.0001 vs control, tP<

0.0003 vs ET-1.

Figure 3. Effect of the inhibitor of the soluble guanylate cyclase, ODQ on

ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs.

$erum-starved quiescent A-10 ceils were pretreated without or with the

indicated ODQ concentrations for 15 min before addition of 300 iM SNAP for

15 min followed by 10 nM of ET-1 for 5 min. Ceil lysates were immunoblotted

by phospho-specfflc-Tyr204-ERK1/2 antibodies (A), phospho-specffic-$er473-

PKB antibodies (B) and phospho-specffic-Tyr402-Pyk2 antibodies (C), as shown

in the middle panels of each section. Blots were also analyzed for total ERK1/2,

PKB and Pyk2 (bottom panels of each section). Top panels represent average

data quantffied by densitometric scanning of immunoblots. Values are the means

± SE of at least 3 independent experiments and are expressed as percentage

phosphorylation where phosphorylation observed with ET-1 alone is defined as

100%. (A) *< 0.0002 vs control, tP< 0.007 vs ET-1, P< 0.002 vs SNAP +

ET-1. (B) *P< 0.0002 vs control, tP< 0.0006 vs ET-1, 1 P< 0.003 vs $NAP +

ET-1. (C) *P< 0.0005 vs control, tP< 0.002 vs ET-1, P< 0.02 vs SNAP +

ET-1.
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Figure 4. Effect of SNAP on ET-1-induced (3HJ]eucine incorporation into

proteins. Serum-starved quiescent A-10 ceils were pretreated with SNAP (300

iM) for 30 min in absence (control) or in presence of ET-1 (10 nM), then the

ceils were labeled to equilibrium with [3HJleucine for 20 h as described in

Materials and Methods. Values are the means ± SE of 3 independent

experiments and are expressed as percentage of change in [3HJleucine

incorporated over the basal values. 0< 0.04 vs control, tP< 0.02 vs SNAP and

SNAP+ET-1.
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Endothelin-1 (ET-1) is the predominant isoform of the endothelin peptide

family and is synthetized mainly in the vascular endotheium and smooth muscle

ceils. Binding of ET-1 to ET-A receptors on vascular smooth muscle ceils

(VSMC) causes vasoconstriction and stimulates ceil growth and proliferation.

ET-l has been implicated in the pathogenesis of arterial hypertension, renal

disorders and cardiovascular diseases. Based on recent experimental data.,

treatment with newly available ET-1 antagonists is likely to inhibit ET-l -

induced funtional and structural alterations in the vasculature. However, a better

knowledge of ET-1 signaling transduction pathways would be important for

devising specific therapeutic agents directed against critical components of

signaling systems implicated in vascular remodeling.

ET-1 elicits its effects tbrough the stimulation of G-protein-coupled

receptors (GPCR) which Ïead to the recruitment of two distinct signaling

pathways: protein kinases of the Raf family and lipid kinases of the

phosphatidylinositol 3-kinase (PI-3K) family. Both pathways are shown to be

recruited by Ras, a smail G-protein, which is activated by ET-l (7,41,59). Rafis

the first member of the mitogen-activated protein kinase cascades (MAPK).

Several reports have demonstrated that ET-l activates MÀPK including

extracellular signal-regulated kinases 1/2 (ERK1 /2), c-Jun-NH2-terminal kinase

(JNK) and p3$mapk (56,163,172,173) as well as PI-3K (59) in many ceil types.

Several targets of PI-3K have been identffied, however, most widely studied

target is protein kinase B (PKB). Recently, ET-l lias been shown to slightly
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increase PKB phosphorylation in cardiomyocytes ($0). Moreover, various

receptor and non-receptor protein tyrosine kinases (PTKs) have been implicated

in transducing ET-1 -evoked signaling responses including c-Src, epidermal

growth factor (EGf) receptor and a Ca2-dependent PTK, Pyk2. Extensive

studies have been carried out predominantly in cardiomyocytes (7,172,174) and

gÏomerular mesarigial ceils (56,59) and have suggested a role for Pyk2 in ET-1-

induced activation of JNK (47) and p3 $mapk (56) signaling pathways. However,

the involvement of Pyk2 in ERKI/2 signaling pathway appeared to be less

predominant than for EGf receptor transactivation (60). We therefore

investigated the effect of ET-1 on ERKI/2, PKB and Pyk2 signaling winch are

believed to be key players in mediating growth-promoting, proliferative,

migratory, survival and death responses in the celi. In the present study, ET-1

showed an increase in ERK1/2 phosphorylation in A-10 VSMCs winch is

consistent with other studies done in VSMC (46,4$). However, these studies are

the first to report an activation ofPKB and Pyk2 by ET-1 in VSMCs.

A-10 VSMCs were grown uiti1 they become confluent, then were starved

in a medium without serum prior to the treatments. $erum-deprivation makes the

ceil quiescent and brings them to the stationary phase. Tins serum-deprivation

doesn’t change A-10 VSMCs morphology and they remain healthy without any

sign of apoptosis. Moreover, the quantification of proteins following each

experiment indicated the survival of the ceils. Serum contains many growth
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factors which activates several signaling moiecules, its presence would have

distorted the resuits by raising the basal phosphorylation levels ofproteins.

Several studies have indicated that reactive oxygen species (RO$) play an

essential role in propagating the signais of many growth factors, peptide

hormones and cytokines such as EGF (175), angiotensin II (MI) (176) and

tumor necrosis factor-Œ (TNF-Œ) (177). Increased ROS generation have been

associated with a variety of cardiovascular pathologies including hypertension

and atherosclerosis. ET-1 has been shown to increase ROS production in various

ccli types (30,125,128). Mso, NADPH oxidase lias been suggested to play a role

in the increase of vascular ROS production by ET-1 in endotheial ceils (118), in

pulmonary smooth muscle ceils (119) and in DOCA-sait rats (120). In VSMC

and endotheial cells, NADHINADPH oxidases represent the most important

source of superoxide anions (112). ROS also function as intracellular

messengers to modulate the signaling pathway and thus, regulate the

transcriptional activity in the ceil (125).

Conflicting resuits have been obtained on the role of ROS in mediating

ET-1-induced signaling. Fei et al. (12$) demonstrated that JNK activation but

flot ERK1/2 activation by ET-l was signfficantly inhibited by antioxidants in rat

smootli muscle ceils. Similarly, Kyaw et al. (30) showed that ET-1 induces JNK

and p3$mapk activation but flot ERKI/2 through ROS generation in VSMC. In

contrast, a recent study demonstrated that ROS plays a role in ET-1 -induced
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activation of ERK1/2 pathway as well as JNK and p38mapk in cardiac

fibroblasts (127). Thus, the contribution of ROS in ET-1-induced ERK1/2

activation is controversial and rernahis to be clarffled in VSMC. In addition, a

role ofROS to regulate PKB and Pyk2 signaling by ET-1 in VSMC has flot been

investigated.

Our resuits provided the flrst evidence that ROS mediates ERK1/2, PKB

and Pyk2 signaling induced by ET-1 via NADPH oxidase activation. In tins first

part of the study, we examined the effect of DPI, a potent inhibitor of flavonoid

contaiiiing enzymes, such as NADPH oxidase. Experiments with the

chemiluminescence reagent, lucigenin showed that stimulation with ET-1

induced generation of RO$ in A-10 VSMC, while treatment with DPI caused a

decrease of ROS generation in these ceils (Fig. 4, article 1). Furthermore, DPI

also inhibited ET-1 stimulation of ERKI/2, PKB and Pyk2 in A-10 VSMC,

which suggests the involvement of NADPH oxidase for ROS formation (Fig. 3,

article 1). To further confirm the role ofROS in A-10 VSMCs, N-acetylcysteine

(NAC), a superoxide scavenger, was also used in these experiments and showed

a decrease in ERK1/2, PKB and Pyk2 phosphorylation induced by ET-1 (Fig. 5,

article 1). In the present study, we found that NAC and DPI inhibited the

activation ofERK1/2 induced by ET-1 which is consisting with previous data on

cardiac fibrobÏasts (127). furthermore, we also showed that DPI could inhibit

ET-1 -induced protein synthesis of VSMCs. Increased protein synthesis and

accumulation of proteins are the essential component of the hypertrophie
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response observed with ET-1. Overali, our data reveal that ROS generation via

ftavonoid oxidases mediates ET-1 -induced key components of the signaling

pathway and it suggests that antioxidants can serve as attenuator of ET-1 action.

Nitric oxide (NO) is another important free radical that has been shown

to contribute to the regulation of several horrnone-mediated responses. NO has

been found to attenuate EGf (14$), PDGF (154) and angiotensin II (MI) (17$)

stimulated proliferation of VSMC and cardiac fibroblasts. It has been suggested

that NO might exert these effects by modifying the growth-promoting signaling

events. The support for this notion is provided from studies in winch NO was

shown to attenuate ras/ERK1/2 signaling in response to EGF(14$) and MI (16$)

as wefl as PKB in response to PDGf (154). NO was also shown to attenuate

MI-stimulated Pyk2 phosphorylation in cardiac fibroblasts (155). Despite the

fact that a potential cross-talk between ET-1 and NO exists, and NO is beheved

to counteract the effects of ET-1, flot much information on the abffity of NO to

modiÏy ET-1-induced signaling in V$MC is available. Therefore, in the present

studies, we have investigated if NO generation would modify ET-1 -induced

signaling pathways involved in cefi growth and proliferation.

Our data indicated that addition of the NO donor, SNAP decreased the

phosphorylation level of ERK1/2, PKB and Pyk2 invoÏved in ET-1 signaling

pathway. These resuits are similar to previous studies in winch AII-induced

phosphoiylation of ERK1/2 and Pyk2 was blocked by SNAP. However, our
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work represents the first study demonstrating that NO antagonizes ET-1 -induced

signaling in VSMC. Pyk2 has also been implicated in MI and ET-1-induced

MAPK activation in cardiac fibroblasts and VSMC. Thus, it is possible that

Pyk2 serves as an upstream mediator of MAPK cascade induced by ET-1 in A-

10 VSMC.

We have also demonstrated a role of cGMP in mediating the attenuating

effect of NO on ET-1 signaling pathway by using 8-Br-cGMP. The resuits

showed that $-Br-cGMP decreased ERK1/2 and PKB phosphorylation induced

by ET-1 (Fig. 2, article 2) and it thus mimicked the inhibitory effect of SNAP.

We further evaluated an involvement of soluble guanylate cyclase by using a

speci±ic inhibitor, ODQ, and demonstrated that it could reverse the inhibitory

effect of SNAP on ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation. It

has been previously shown that ODQ can block SNAP-induced elevation in

cGMP levels in rat aortic VSMC (166), endothelial ceils (179) and

cardiomyocytes (180). Finally, we also provide evidence showing that ET-1-

stimulated protein synthesis, a hallmark of hypertrophie response, is also

attenuated by NO donor, SNAP.

Taken together, we demonstrate that NO inhibits the ET-1 -stimulated

increase in the phosphorylation state ofERK1/2, PKB and Pyk2 in A-10 VSMC.

Since ERKI/2, PKB and Pyk2 plays a crucial role by mediating VSMC growth

and hypertrophy, it may be suggested that the ability of NO to attenuate these
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pathways may serve as a potential mechanism by which NO counteracts the

biological responses of ET-1.



CHAPTER 5

CONCLUSION
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The resuits presented here demonstrate for the first time the involvement

of ROS in mediating ET-1 signaling components: ERKÏ /2, PKB and Pyk2 in

VSMC, winch were inhibited by antioxidants such as NAC and DPI. A role for

NADPH oxidase has been suggested in ET-1-enhanced ROS production.

Furthermore, ROS also contribute to increase protein synthesis induced by ET-1

in these ceils. Given the fact that NO has opposite effects to ET-1, studies were

expanded and demontrated a novel role for NO in regulating ERK1/2, PKB and

Pyk2 activation induced by ET-1 in a cGMP-dependent mechanism. We

reported that NO can also decrease ET-1-induced responses at the level of

protein synthesis.

Thus, the findings of the present study may augment the significant role of

antioxidants in ROS-mediated ET-1-induced signal transduction pathway and

suggest a clinical application of antioxidants in the pathogenesis of vascular

diseases. Moreover, the inhibitory effect of NO on the specific protein kinases as

weli as protein synthesis may offer a partial explanation for the antagonistic

effects of NO on ET-1 action in VSMC, winch contribute to the anti-mitogenic

and anti-proliferative effects (Fig. 5.10). NO could be of benefit in regulating

vascular remodeling of varïous diseases. However, NO is able to interfere with

diverse signaling pathways in various ceil types and it is suggested that a single

site of action probably is not enough to explain ail of the effects of tins

substance.
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