
Université de Montréal

41tt 32lS.3

Understanding Retargeting Compilation Techniques

for Network Processors

par

Jun Li

Département d’Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Mémoire présenté à la Faculté des Études Supérieures

en vue de l’obtention du grade de

Maître ès Sciences (M.Sc.)

en Informatique

Octobre, 2003

© Jun Li, 2003

n

Université
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé

Understanding Retargeting Compilation Techniques

For Network Processors

présenté par:

Jun Li

a été évalué par un jury composé des personnes suivantes:

Michel Boyer
Président rapporteur

El Mostapha Aboulhamid
Directeur de recherche

Francois-Rayrnond Boyer
Codirecteur de recherche

Marc Feeley
Membre du jury

Mémoire accepté le: D 0 ‘

II

Résumé

La croissance rapide du marché des télécommunications entraîne une

augmentation de la demande concernant des équipements à bande passante plus

large.

Les ASIPs (Application Specific Instruction-Set Processors — Processeurs à

Ensemble d’Instructions Spécifiques à une Application) présentent des

caractéristiques spécifiques qui mettent spécialement l’emphase sur une haute

efficacité avec un coût de développement relativement bas. Ceux-ci deviennent,

par conséquent, une solution parmi les plus préférées pour le traitement en réseau.

Après avoir étudié un grand nombre de NPs (Network Processors - Processeurs

Réseau), nous avons remarqué que ceux-ci possèdent des fonctions spéciales

(telles que PDU à passage rapide, classification, modification, file d’attente,

etc.). Ceci résulte en des fonctionnalités d’architectures particulières différentes

des autres processeurs embarqués tel que les PE (Processing Element - Element

de Traitement) multiples. Ceci est particulièrement vrai en ce qui concerne le

parallélisme ou le pipelinage, et certaines instructions spécialisées.

Pour les raisons ci-dessus, nous faisons face à tous les défis des systèmes

embarqués ASWs et des architectures parallèles lorsque nous explorons la

technologie de compilation pour NPs. Le compilateur idéal pour NPs doit avoir

une excellente capacité de reciblage, une haute performance de parallélisme, et

une haute qualité dans la sélection des instructions spéciales, etc. C’est la raison

pour laquelle beaucoup de NPs n’ont pas de compilateurs appropriés.

Afin d’explorer la technologie de compilation pour NPs, nous avons travaillé sur

une plate-forme de SoC (System on Chip - Système sur Puce) qui comprend des

processeurs multiples DLX et un dispositif simple d’interconnexion. Pour notre

étude, nous avons utilisé le processeur DLX comme noeud dans le NP. Nous

avons réalisé un compilateur C-DLX qui est une extension du compilateur

III

reciblable 1cc. Nous avons ajouté un nouveau dorsal afin de générer du code

spécifique au DLX. Ce compilateur fonctionne aussi bien sur un processeur

simple que sur des processeurs multiples, et certaines parallélisations manuelles

simples pour la plate-forme de SoC ont été examinées avec succès. Mais, la

qualité du code produit par le compilateur n’est pas aussi bonne que celle du code

assembleur DLX écrit manuellement, et la parallélisation automatique n’a pas été

implémentée. Beaucoup d’autres tâches ont été effectuées comprenant

l’implémentation d’opérations relatives aux octets, la modification du modèle de

transfert de données en anneau à jetons pour convenir au transport de données ou

le traitement de paquet de bits.

Dans un proche avenir, nous ajouterons des instructions orientées paquet-de-bits

au DLX, afin d’accélérer les applications du processeur réseau, qui impliquent

beaucoup d’extraction et de manipulation de bits. Cependant, nous rencontrerons

une difficulté dans le développement de compilateur pour produire des

instructions orientées paquet-de-bits à partir d’un langage de haut niveau.

Plusieurs approches ont été explorées, par exemple les CKFs (Compiler-Known

Functions - Fonctions de Compilateur Connues). Nous projetons également

d’explorer d’autres compilateurs tels que CoSy, SUIF et autres en vue de résoudre

le problème des processus multiples dans les processeurs réseau. Ceci est dans le

but de réaliser une méthodologie générale de développement de compilateurs

parallèles reciblables pour des NPs.

Mots-clés : processeur réseau, compilateurs parallèles, ASIP, génération de code,

compilateurs reciblables, paquet-de-bits.

IV

Abstract

The rapid growth of the telecommunications market increases the demand for

wider bandwidth equipment. As a resuit, high performance NPs (Network

Processors), which can meet the demanded requirements are needed.

ASWs (Application Specific Instruction-set Processors) have special

characteristics which emphasize high efficiency with a relatively low

development cost. Consequently, ASIPs are becoming one of the most preferred

solutions for network processing.

After studying a large number of NPs, we noticed that certain special functions

(e.g. fast passing PDU, classification, modification, and queuing, etc.) resulted in

particular architectural features different ftom other embedded processors such as

multiple PEs (Processing Elements). This is particularly true of parallelization or

pipeline, distributed memories, and certain specialized instructions.

Due to these reasons, we experienced challenges in regards to ASIPs embedded

systems and to parallel architectures when we explored NP compilation

technology. The ideal compiler for NPs must have excellent retargetability, high

performance in parallelization and high quality in special instruction mapping,

etc., which explain why many NPs do not have suitable compilers.

To explore NP compilation technology, we worked on a SoC (System on Chip)

platform which includes multiple processors and simple interconnected devices.

We implemented a C-DLX compiler based on the 1cc retargetable compiler, and

added a new back-end to 1cc. This compiler worked well when tested using our

platform on a single processor and multiple processors, and simple manual

parallelization for the SoC platform was successfully tested. However, the quality

of the compiler-generated code is not as optimized as the hand-written DLX

assembly code; automatic paraflelization lias flot been implemented. Many other

tasks were accomplished including the implementation of byte related operations

V

as well as modification of the data transfer model as a token-ring to suit data

transportation or bit packet processing. An output device was also added in order

to print information to the screen.

Bit-packet-oriented instructions will be added to DLX, in order to accelerate

network processor applications, which perform much of the bit extraction and

manipulation. However, difficulties in the network compiler development to

generate bit-packet-oriented instructions from a high-level language will be

encountered. Several approaches have already been explored, such as CKFs

(Compiler-Known Functions). We also plan to investigate other compilers such as

CoSy, SUIF, etc. with the purpose of exploring the multi-thread approach in

network processors. Eventually, a general methodology for developing NP

parallel retargetable compilers will be planned out and achieved.

Keywords: network processor, parallel compiler, ASW, code generation,

retargetable compiler, bit-packet.

VI

Understanding Retargeting Compilation Techniques for

Network Processors

Table of Contents

Abstract V

Acknowledgements XIV

Chapter 1 Intruduction 1

1.1 Motivations 1

1.2 Achievements 4

1.3 Thesis Outiine 5

Chapter 2 Introduction to Network Processors 6

2.2 Network Applications Profile 8

2.3 Network Processor Basic Architectural Features 14

Chapter 3 Compilation Technology 30

3.1 Fundamental Conceptions of Compilation Teclmology 30

3.2 Basic Components ofa Compiler 32

3.3 Parallel Architectures and Compilation Teclmology 37

3.4 Lcc Retargetable Compiler Basic Components Introduction 41

Chapter 4 Main Challenges in NPs Compilation and Related Work 444

4.1 Network Processors Essential Functions 455

4.2 NPs’ Working Mechanism and Challenges for Compilation Technology 466

VII

Chapter 5 Implementation.555

5.1 DLX Instruction Set Architecture 555

5.2 SoC Multiple Processors Working Platform 59

5.3 Add DLX as New Target to 1cc 64

5.4 Test and Resuit 69

Chapter 6 Conclusion and Future Work 755

References 800

Appendîx A: DLX instructions $55

Appendix B: IBM PowerNP Instructions 888

VIII

Table of Figures

Figure 1 OSI 7 layer reference model 10

Figure 2 Alchemy architecture [12] 16

Figure 3 Broadcom architecture [141 17

Figure 4 MSP5000 architecture [20] 20

Figure 5 MXT4400 architecture [22] 22

Figure 6 NetVortex architecture [23] 23

Figure 7 IBM network processor [25] 24

Figure $ Intel IXP1200 architecture [26] 25

Figure 9 Motorola C-5 DCP [27] 26

Figure 10 Compiler components 33

Figure 11 Lcc C compilation flow [38] 42

Figure 12 R-instruction format [48] 58

Figure 13 I-instruction format [4$] 58

Figure 14 J-instruction format [48] 58

Figure 15 The architecture of DLX nodes [52] 61

Figure 16 Overview of entire platform 69

Ix

Acronyms

AH: Authentication Header

ALU: Arithmetic Logical Unit

ARP: Address Resolution Protocol

ASICs: Application Specific Integrated Circuits

ASIPs: Application Specific Instruction-Set Processors

ATM: Asynchronous Transfer Mode

CAM: Content-Addressable Memory

CPI: Communications Programming Interfaces

CRC: Cyclic Redundant Check

DAG: Direct Acyclic Graphs

DMA: Direct Memory Access

DRAM: Dynamic Random Access Memory

DSPs: Digital Signal Processors

EPC: Embedded Processor Complex

ESP: Encapsulated Security Payload

ESR: Edge Service Router

FIFO: First In First Out

FPGAs: Field Programmable Gate Arrays

FPSR: Floating-Point Status Register

GPPs: General Purpose Processors

HPF: High Performance Fortran

X

IAR: Interrupt Address Register

IDE: Integrated Development Environment

ILP: Instruction Level Parallelism

IP: Internet Protocol

IPSec: IP Security

IPv4: Internet Protocol Version 4

IPv6: Internet Protocol Version 6

IR: Intermediate Representation

LAN: Local Area Network

LER: Label Edge Router

LEs: Lookup Engines

LSR: Label Switch Router

MAC: Media Access Control

MAC: Multiply-Accumulate

MIIvID: Multiple instructions, multiple data

MISD: Multiple instructions, single data

MPI: Message Passing Interface

MPL: Message Passing Library

MPLS: Multi-Protocol Label Switching

MTAPs: Multi-Tlweaded Array Processors

NPs: Network Processors

NPUs: Network Processor Units

OS: Operating System

XI

OSCI: Open SystemC Initiative

P2P: Peer-to-Peer

P05: Packet over SONET

PVM: Parallel Virtual Machine

RISC: Reduced Instruction Set Computers

RTL: Register Transfer Level

SDPs: Serial Data Processors

SEVTD: Single instruction, multiple data

SISD: Single instruction, single data

SLAs: Service-Level Agreements

SoC: System on Chip

TCP: Transport Control Protocol

TLE: Table Lookup Engine

TOPs: Task Optimized Processors

TSP: Traffic Stream Processor

UDP: User Datagram Protocol

USB: Universal Serial Bus

VC: Virtual Circuit

VCI: Virtual Circuit Identifier

VLAN: Virtual Local Area Network

VLIW: Very Large Instruction Word

VoIP: Voice over IP

VPI: Virtual Path Identifier

XII

VPNs: Virtual Private Networks

VPs: Virtual Paths

XIII

Acknow]edgements

I wouid like to express my utmost gratitude to my director, Professor El Mostapha

Aboulhamid, for ail his support since I began my research in the LASSO Lab. I

greatly appreciate the opportunity to work on such an interesting project under lis

vaiuable guidance. I would further iike to thank him for his efforts in directing me

in the way of relevant research, generating interesting ideas as weil as for his kind

encouragements. It would not have been possible to finish this project without his

directions or reviews.

I would like to extend my thanks to my co-director, Professor Francois-Raymond

Boyer of Écoie Polytechnique de Montréal. He aiso provided me with significant

research direction and reviewed ail topics in this thesis. Without his keen

guidance, this thesis wouid also be impossible to finish.

Speciai thanks go to Professor Michel Boyer and Professor Marc Feeley for their

time, patience and evaiuation.

Finaily, I wouid like to thank my colleagues Luc Charest and Alena Tsikhanovich

as they have built the SoC platform which is my work environment. Michel Reid

and Bruno Girodias maintained ah computers in working condition as weli as

soived ail techmicai probiems promptiy. Quan Xin and Hongmei Sun, for all their

fascinating discussions on the topics of this research and heiping me broaden my

horizons.

XIV

1

Cliapter 1
Introduction

1.1 Motivations

In recent years, the telecommunications industry has rapidly expanded.

Bandwidth needs are increasingly expanding because new media such as high

quality radios, TVs, etc. over IP (Internet Protocol) are required. As a resuit, the

market will flot only require wider bandwidth links but also faster and higher level

analyses of packets in routers and front-ends of server arrays. Therefore, high

performance network processors may fil these needs.

2

An ASIP (Application Specific Instruction-Set Processor), a processor with a

specific instruction set for a particular application domain is becoming the most

popular solution for network processing because of its special characteristics.

ASIPs lie between ASICs (Application Specific lntegrated Circuits) which have

the highest efficiency and GPPs (General Purpose Processors) which have the

lowest development cost. As a result, ASTPs provide good balance of hardware

and software to meet ail requirements such as performance, flexibiiity, fast time

response to market, power consumption, etc. Consequently, a networking

application may be specified as a software programmable device with

architectural features and/or special circuitry for packet prncessing. A network

processor can be regarded as an ASIP for networking application domain [1].

As a network traffic manager, NPs (Network Processors) usually engage several

processors working together. Most of NPs own the special instruction set that is

designed for data forwarding and other packet oriented operations, in order to

complete many diverse functions such as QoS (Quality of Service), compression,

security-authentication, encryptionldecryption, etc. It should be noted that NPs

only mn on partially protocol stacks but not aIl 7 layers, Since NPs are designed

to handle PDU (Protocol Data Units) processing by access data stream.

Varieties of special functions of network processors are catalogued as follows and

will generate different challenges which will be encountered during the

development ofNP compilers.

• PDUs passing swiftly: The network processor should be able to deliver the

arriving data packets on time. As a PDU is coming and being sent out, the time

gap is extremely short, therefore leaving the network processor little time to

3

accomplish the necessary tasks to be applied to an incoming PDU before re

sending it.

• PDUs classifications: When a PDU arrives, its contents should first be

examined to determine the required processing followed by its retransmission.

This process is used in firewalling, routing, policy enforcement, and QoS (quality

of service) implementation.

• PDUs modification: A PDU may be modified by the network processor. For

example, the time-to-live counter of an W packet will be reduced, or an outgoing

label will replace an incoming label in label-switched traffic. Modification is

ofien necessary to recalculate a CRC (Cyclic Redundant Check) or checksum and

headers may be removed or added.

• To queue: When the processing speed of the network processor is siower than

the data arriving speed, it is then necessary to queue the PDUs. The order of

retransmission may flot be the same as the order of transmission. For instance,

some PDUs will be dropped, and some PDUs may be prioritized over other

PDUs. [2]

A network processor has to classify, modify, and queue the PDUs in order to

ensure efficiency of the network. Other functions include: compression, policing,

traffic metrics, security-authentication, encryption and decryption. Network

processors are different from the majority of other embedded processors due to

special features, namely the presence of multiple processor elements (PEs),

running parallel or organized in a pipeline, distributed memories and bit packet

passing. Some of the NPs, such as Agere Routing Switch Processor and Cisco’s

PXF, use VLIW (Very Large Instruction Word) architectures; VLIW lets these

NPs taking benefit from intra-thread ILP (instruction-level parallelism) at

compiling time. It may increase utilization of a hardware unit by sharing most of

them but also creates more difficulties for compiler developers [1]. On the other

4

hand, NPs have multiple processors, particularly different kinds of processors

working in a SoC (system on chip) that require compilers to have good

retargetability.

The market requires a fast response time to create desired and high reliability

network equipments. In order to meet this need, embedded software require

appropriate compilers to stay away from slow and error prone assembly language

development. However, classical compilation technology is insufficient for a

particular architecture of network processors and consequently compilation

technology for network processors is extremely important and in high demand.

Because network processors have special features, we are faced with challenges

related to ASIPs embedded systems and those related to parallel architectures

when we explore compilation technology. In chapter 4, we wilI give an overview

ofrelated work in this area.

1.2 Achievements

We worked with a cycle-accurate SoC platform, created by our colleagues Luc

Charest and Alena Tsikhanovich, which included multiple processors. Tt was

developed using SystemC on Linux PCs. The modeled processors are DLX or

ARM architectures (stili in development), and both of them can work together.

Each processor is an addressable device with a local memory, and processors are

coimected via a device called ring_device, where every pair of adjacent nodes can

send and receive messages concurrently. We will provide a detailed description of

the platform in chapter 4. Our colleagues worked on the platform using hand

written assembler codes but this became time-consuming when writing and

debugging assembler codes.

5

A C-DLX compiler was implemented based upon the 1cc retargetable compiler. In

fact, we added a new back-end that is a DLX code generator. The compiler

derived from 1cc with its fast, small and convenient features will significantly

improve the development and debugging time. This compiler worked well when

we tested it using our platform on single processor or multiple processors and

successfully tested simple parallel applications on the SoC platform with manual

parallelization. We implemented byte related operations, such as LB, LBU, SB,

SBU, etc., as well as modified the data transfer model to suit parallel processing.

An output device was also added in order to print needed screen information.

These modules and functions enable us to simplify and decrease time spent testing

and debugging. However, the quality of the compiler-generated code is flot as

good as the hand-written DLX assembly code.

1.3 Thesis Outiine

The remainder of this thesis is organized as follows: Chapter 2 briefly describes

network processors (NPs) and its basic features. Chapter 3 presents an overview

of compilation technology and discusses typical compiler components. Parallel

compilation is then explored and the 1cc retargetable compiler is introduced.

Chapter 4 presents the main challenges of compilation technology in the domain

ofNPs and studies related works. We will explain how the DLX back-end can be

implernented on 1cc, and what kinds of changes have been made on our SoC

platform. We also describe the benefits/weaknesses of our compiler and platform

in chapter 5. Chapter 6 concludes this thesis; outlines future works as well as

reviews and identifies challenges relating to NPs’ compilers.

6

Cliapter 2
Introduction to Network Processors

The speed of telecommunications is being changed rapidly. Changes on society

and work habits impose on more and more people the requirement to be

practically an “infinite” bandwidth. For examples, they consist of Voice over JP,

Streaming audio, interactive video, Peer-to-Peer (P2P) applications, Virtual

Private Networks (VPNs). New technologies offer more capacity and flexibility

for faster and cheaper implernentation of new features. Ail these factors support a

booming IT industry, which is growing at a rate of exponential scale. These

changes also have a profound effect on the way network processors are

developed. A need has arisen for a new generation of network processor

architecture that makes use of the technological advances, at the same time

7

allowing for flexibility of implementation. As for the future network architecture,

both revolutionary and evolutionary development has been foreseen. The new

network processor architecture must be an evolution of today’s network

processor. Networks are required to support new protocols, and include diverse

services, security, and various network management functions, which effectively

handie new applications. The increasing power of processors and continuous

development of software teclmology creates the possibility to develop more

powerful and productive applications. The new network should have the capacity,

common interfaces, and protocols to support the mutual interaction in a seamless

manner.

2.1 A Brief Introduction to Network Processors

“A network processor is a software programmable device with architectural

features and/or special circuitry for packet processing; it is an ASJP for the

networking application domain” [1J. However, network processors do not provide

all solutions to network applications and this definition is reflecting the wide

range of programmable architectures proposed for network processing. Therefore,

network processors have similar characteristics with many different

implementation choices such as network co-processors, communication

processors used for networking applications, programmable devices for routing,

reconfigurable fabrics and general-purpose processors for routing. Form tasks

point of view, network processing responsibilities could be divided into several

planes which include forwarding plane to control data packet flow, protocol

conversion and a control plane to perform flow management, stacks management,

routing protocols, etc.

$

2.2 Network Applications Profile

By decompounding network applications, we are able to study and to analyze the

general network applications in detail. In is section, we are going to discus

network applications performed particular operations and network processors’

special architectural characteristic.

2.2.1 Network Applications

In order to study network application, the protocol standards must be fully

understood. For a clear description of the NPs working mechanism, OSI stack

model becomes fundamental knowledge that can be used to map NP’s operation

into OSI stack layers; the following is a brief description related to the 7 layers in

the OSI stack mode! [3].

Layer 1: The physical layer is responsible for moving bits across a shared media,

which is defined by the layer, over which point-to-point links are established.

Layer 2: The data !ink layer provides a link between two points and can create

reliability on top of an unreliable physical link. The data !ink layer operations

have been performed historica!ly in hardware, the network processors are

attacking this task. The data link layer provides error detection and correction in

low levels. If a packet is corrupted, the data link layer is responsib!e for re

transmitting this packet.

Layer 3: The network layer is using the point-to-point communication facility,

provided by the data link layer, which enables communication between any two

computers. This layer is the most complex one among a!l the layers, because it

must address the data packets. It is responsible for the routing of data to a remote

9

location across the network, and each packet is addressed and delivered in this

layer.

Examples of layer 3 processing: IP filtering, Local Network Emulation (LANE),

IP fragment re-assembly, multi-protocol over ATM, multicast forwarding and

Virtual Private Networks.

Layer 4: The transport layer determines a point of access for higher applications

to communicate with the other end-station. The port number and the J? address

define a point of access, i.e. a socket. Both UDP and TCP provide a port number

to higher layers in order to identify an individual socket. We describe parts of the

protocol, which are relevant to network processors only, because much of the

transport layer functionality is only executed on an end-station.

Examples of layer 4 processing: TCP stream following, Proxying, stream re

assembly, Rate Shaping, content-based routing, Port Mapping (NAT), Load

balancing (LB) and QoS/CoS.

Layer 5-7: session, presentation, and application layers. The application layer may

include file transfers and display formatting. An example of application layer

protocol is HTTP. Protocols, which are commonly known and considered to be

part of the 7 layer, actually may occupy the 5-7 layers. Most of the Session,

Presentation, and Application layers tasks are executed on an end-station while

network equipment in the fabric may access those layers.

Examples of layer 5 to layer 7 processing: virus detection, traffic engineering,

accounting and interruption detection.

figure 1 shows the data path to describe how network process data over OSI 7

layer model. The gray path represents a physical wire or media connecting

devices, and paths in white demonstrate the virtual paths for peer level.

10

Here a request is made by a user who wants to go out of the network. The request

cornes in the Application Layer from the upward position of the Application

Layer. The Application Layer encodes the request in the form, which might 5e

understood by its peer layer protocol on the right stack. Then it is passed down by

the Application Layer to the Presentation Layer, which suits with the data handed

from the above layer. Next it packages it in a form, which can be understood by

the peer layer protocol on the right stack and which also knows what to do with it.

The higher level data’s re-encapsulation process goes on in Figure 1 down the lefi

stack until it reaches the physical layer, which layer the data is passed by a wire,

or by a wireless medium to another device, like a router. It accepts the data, brings

it up to the Data Link Layer, verifying the bits being received are the transmitted

bits from the lefi by examining the checksum. The payload is passed up by the

Data Link Layer to the Network Layer, which examines the header information of

the packet and decides what to do with the destination address and other header

information. Then it passes to another router to its right. The packet now must

travel back down this router’s stack to the physical layer so that the next router

may take the same process. The packet goes down and across the physical layer

wire to the other router, up its layers, and back down again to the nght stack. The

destination host is ready to process it, taking the coming bits, and packeting them

Figure I OSI 7 layer reference model

11

into a frame, a ce!!, or a packet. If it is fine, then it is passed up to the Network

Layer, which examines the header, added by the original left stack, and the header

decides if the packet is good to be passed up. This process repeats with each layer.

The header information is examined and is known by the respective layer in terms

of how to deal with its pay!oad. The user’s original request above the Application

Layer of the left stack goes the way to the top Application Layer of the remote

machine finally. Either a remote user or a remote program acts on the incoming

data and responds. If a response is delivered, the procedure happens again. The

response goes from the right side to the Application Layer of the left stack and its

user, in the end [4].

2.2.2 Protocol Standards

The following protocol descriptions highlight applications related to protocol

standards across different layers but flot the detail of each protocol.

• IP Security

IP Security (IPSec) includes two protocols: Authentication Header (AH) and

Encapsulated Security Pay!oad (ESP) [5]. IPSec currently supports IP version 4

packets. IPv6 and multicast support is coming later. iPSec is a layer 3 protocol

that offers a platform for higher layer protocols. Higher layer protocols can define

their own specific security measures. AH or ESP can be implemented in a

transport mode that only protects higher layer protocols or it can be implemented

in tunnel mode which protects the W layer and higher layer protocols by

summarizing the original W packet into another packet [1].

12

• Asynclironous Transfer Mode

Asynchronous Transfer Mode (ATM) is a dedicated connection switching

protocol. It is a hybrid form using fixed-size blocks over virtual circuit is chosen

as a compromise that gives reasonably good performance for bandwidth traffic.

The end stations determine a virtual circuit (VC) or throughout ATM network. As

a matter of fact, it is a connection-oriented standard. There are different virtual

paths (VPs) or paths between switches in the virtual circuit. To set up a virtual

circuit by the control-plane functions, an ATM switch just switches ATM ceils

from input ports to output ports. The switching is based on referencing a table

which is indexed by two fields in the ATM ceils: The Virtual circuit identifier

(VCI) is an 8-bit VC identifier and the Virtual path identifier (VPI) is a 16-bit VP

identifier. Subsequently, a switch may update the new link and then, by changing

the VPI and VCI fields, the celi can continue to travel [6].

• Virtual Local Area Network

Virtual Local Area Network (VLAN) is a group of workstations which may be

distributed in several physical LAN segments. However, they can communicate

with each other like they work within a LAN. Another feature to define VLAN is

to check the MAC address of each frame. The switch or router will require the

MAC address and verify it, this processing is called MAC layer grouping.

Network layers can also be grouped by examining the network layer address SO

that the VLAN membership can be determined. VLAN can also be defined as an

IP multicast group and in this case the router will be a key device to support P

broadcast. In another way, for a VLAN group to be determined for a frame, a

unique identifier is needed in the header in order to distinguish the VLAN

membership. This identifier is added by the switch [7]. User can get several

benefits by using VLAN architecture, such as increasing network performance,

13

increasing security options, etc. VLAN also present an easy and flexible way to

modify logical groups separated in deferent physical LAN segments.

JPv4 and lPv6

Internet Protocol’s (P) main function is to move packet of data from node to

node. Internet Protocol Version 4 (Wv4) is the most broadly used protocol for

layer 3 communication. Routing, fragmentation and reassembly, and address

resolution protocol (ARP) are the typical working sequential of IPv4.

Fragmentationlre-assembly will be applied if an P packet is bigger than the

Maximum Transmission Unit (MTU) of the data link layer. ARP map P address

to physical network address [9].

“Internet Protocol Version 6 (IPv6) is the next generation of protocols designed

by the IETF” [10] (The Internet Engineering Task force) to replace the current

Internet Protocol version, fPv4. fPv6 can be seen an increase in the address space

from IPv4’s 32-bit to 128-bits [11]. As a result, Pv6 has nearly unlimited

numbers of available addresses compared to IPv4’s. Routing and network auto

configuration are two other improvements emphasized by IPv6.

• Transport Control Protocol

Because an unreliable medium such as P may drop packets, a simple protocol

could flot solve this problem. Transport Control Protocol (TCP) provides layer 4

communications for higher layer applications over those undependable mediums

such as IP. TCP’s main function is to verify the correct delivery of data from

client to server. TCP can detect errors or lost data and issue retransmission request

to ensure that data is correctly and completely received.

14

A TCP header have information such as the Destination port number, the Header

Length, the Source Port number, the Sequence Number and Acknowledgement

Number. TCP also contains flags that serve essential functions. For example, the

ACK acts as an acknowledgement validation flag, the SYN ftag establishes

connection, the PSH flag can ensure the receiver passes data to application

without delay, the RST flag resets the connection, and the FiN flag indicates that

the sender has finished sending data. Aside from this information, TCP also

contains valuable information such as window size and acceptable data and

information of TCP Checksum [9].

2.3 Network Processor Basic Architectural Features

There are many network processors available on the market and this section

includes some of them. From usage point of view, network processors can be

separated into three equipment areas that are called as core equipments, edge

equipments and access equipments. These areas work for different applications

and performance requirements.

Core devices are located at the center of the network. Gigabit and terabit routers

are typical core devices. Core devices take important tasks in network traffic

management. As a resuit, the performance will be a critical measurement for the

core devices. Core devices have less flexibility compared to others.

Access equipments support different kinds of devices connecting the network.

The majority usage of access devices is to combine big amount of traffic streams

and to forward them throughout network. Modem, network card as well as

computer wireless connector are examples of access devices.

Edge device is flot responsible for collecting network routing information, just

simply uses the routing information that comes from the up level routers. The

15

performance and flexibility requirement for edge devices sit between the core

device and access devices. Load balancers, edge routers and firewails are topical

edge devices.

from a functionality point of view, network processors can be divided into two

categories which are data plane and control plane. Data-plane network processor

main task is to forward packets from the source end to the destination end. Data

plane algorithms are usually implemented by parallel processors, which need to

be performance optimized as they need to decode and move around large amounts

of data to satisfy QoS requirements. That is why network processors optimization

is focused on data-plane. Control plane network processor has lower performance

requirements; they are used to control packet traffic flow. [2]

We studied different network processors’ architectures and summarized them in

following sections.

2.3.1 Alchemy (Aul000)

The Aul 000 is a SoC design for the Internet edge device market. It is a complete

SOC based on the MIPS32 instruction set. The Aul000 runs up to 500 MHz. an d

its’ power consumption is less than 0.5 watt for the 400 MHz version. “MIPS

compatible core provides lower system cost, smaller form factor, lower system

power requirement, simpler designs at multiple performance points and shorter

design cycles” [12]. In addition, there are special instructions for conditional

moves, counting leading and memory prefetch. The Alchemy Aul000 can be

programmed in C and support for MS Windows CE, Embedded Linux, and

VxWorks operating systems. Development tools include complete MIPS32-

compatible toolkit and some third party compilers, assemblers and debuggers

16

[12]. Manufacturer highlights the Aul000 performance in the spec sheet [12] as

follow:

“HighÏy-integrated system peripherals include two 10/100 Ethernet controllers,

USB device and host, four UARTs, AC’97 controller, two SPJISSI interface.

High-bandwidth memory buses offer 100/125 MHz SDRAM Controller and

SRAIvI/Flash EPROM controller.” [12]

_

NA

Fast IrDA

EJTAG

16 K
Instruction

Cache

Enhanced
MIPS32

CPU Core Bus Unit

16K
Data Cache

32*16 MAC

SDRAM Conttaller KZZE

tu DMA Controlter

4I)
Ethernet MAC

Ethernet MAC

ttrttmt

[tnternjpt Controt

Per Mgmt j ys f________________________

AC97 Controller f

USB Host

USB Device

RTC(2)

SSt (2)

GPIO (32)

IS Controlter

UART (4)

Figure 2 Alchemy architecture [12]

17

2.3.2 Broadcom 3CM-1250

BCM-1250 is the first network processor ofBroadcom. 3CM-1250 is focused on

layers 3-7 processing [1]. The $3-1 can execute two instructions for load or store

and two instructions for ALU operations at each dock cycle. Each processor has a

32kb Li cache and the two cores share a 4-way associative 512kb L-2 cache. Two

64-bit MIP$ CPUs ($3-i) of SB-1250 can run at up to 1 GHz and do not use any

special instructions for packet processing [13]. The SB-1250 also includes three

on-chip Ethernet MACs and two packet FIFOs. A 256-bit bus that runs at haif of

the processor speed called ZBbus connects the major components of the chip. The

Broadcom SB-1250 support operating system for NetBSD, Linux, and VxWorks

[14].

PCI/LDT biidge

JTAG

Serial interface

Senal interface

Dual SM bus

GPIO/
interrupi)
PCMCtA

ZB Bus 266 bits 128 Gbits/s

SB1 512k
cote L2 Cache

Data mover

DDRmemo
conttoller

Debug/ SB-1
bus trace core

DMA

DMA

I/O biidge DMA DMA DMA

Boot flash
antI genenc

I/O

FIFO FIFO

Figure 3 Broadcom architecture [14]

1$

2.3.3 Cisco PXf

Parallel eXpress Forwarding (PXF) use a pair of ICs which are build by Cisco

parallel processing technology, The Cisco PXF is an inner product for Cisco edge

routers and only be used calculate layer3 data path [15]. The pair of ICs has 32

processors; each processor is a 2-issue VLIW instruction set and brings its own

local memory. Particular instructions are used for packet processing. There are 8

stages in the pipeline.

The PXF is benefited from certain features of distributed architectures such as

parallel processors. A processor using a parallel array could accelerate a switching

path. Another architectural feature, which has been used to improve performance,

is distributed memory access and assigns memory to each column ofprocessors as

well as allocates independent memory to each processor. Distributed memory

access also uses multiple memory banks within a per-column array to optimize

the memory access. Modularization of functionality was also used to improve

performance. PXf distributes data structures across multiprocessor arrays and by

doing so, the distributed task-oriented memory resources have been used to allow

parallel processing to fulfihi complex tasks [15]. It should be noticed that VPN

Acceleration Module (VAM) is flot compatible with the PXf processor. The PXF

supports Cisco’s internai operating system, IOS.

2.3.4 EZchip NP-1

The NP-1 is a single-chip solution developed by Ezchip Technologies Inc., it

based platforms can be developed to implement switching, routing, and QoS

functions as well as ftow based traffic policing, URL switching, and security

application. NP-1 is a 10-Gigabit 7-Layer Network Processors.

19

The NP-1 use EZchip own Task Optimized Processors (TOPcore), TOPcore using

customized instruction set and data path for each packet-processing task in order

to achieve best performance. TOPs are arranged in a pipelined way and are

composed ofTOPparse, TOPsearch, TOPresolve, and TOPmodify.

Ezchip has their own development toolkit-Ezdesign, which allows NP-1

application developer to write, test and debug programs when implementing

customized applications. EZdesign includes Assembler/Compiler, Cycle accurate

Simulator, Traffic and Structure Generators, Applications Library and a Debugger

t’ 7].

2.3.5 Xelerated Packet Devices X40 and T40

Xelerated’s network processor is based on a fully programmable pipeline. The

core block is the PISC (Packet Instruction Set Computing). By using PISC

technology, Xelerated provides two network processor chips. The first one is

Packet Processor that is called X40, and the second one is Traffic Manager that is

called T40.

“The X40 Packet Processor includes 10 pipeline stages and also includes 384k

counters and 128k meters for traffic metering and conditioning decisions making.

The Xelerator 140 enables advanced traffic management at 40 Gbps wire speed.

The forwarding plane of the T40 includes Rx ports, a programmable input

pipeline, a queue Engine, a programmable output pipeline, and Tx ports. PISCs

can also take tasks such as protocol encapsulation, statistics counting and

classification” [19].

20

Xelerated full production une includes X40 packet processor, T40 traffic

manager, Xelerator control plane software, Xelerator forwarding plane

applications and development tools. A user needs to program X40 and T40

separately since each pipeline stage executes a different program.

2.3.6 BRECI$ MSP 5000

BRECIS provides a network processor that is called MSP5 000, which includes a

MIPS CPU, two 10/100 Ethernet MACs, a Security Engine, a Voice Engine, and

a Packet Engine [20].

MSP5 000 offers voice and packet processing software that is supported by multi

service platform applications. BRECIS’ development toolkit is called fastStart,

which includes a development board and support for Linux, and VxWorks

operating systems.

Figure 4 MSP5000 architecture [20]

21

2.3.7 Mindspeed MXT4400

The MXT4400 Traffic Stream Processor (TSP) platform is offered by Mindspeed

Technologies. It can serve wide applications rang from OC-3 to OC-48. To save

system developing time, Mindspeed Technologies provides PortMaker software

for the MXT4400. PortMaker is an application collection for AAL5 SARing

(PortMaker-SAR) and ATM traffic shaping, policing and OAM cell processing

(PortMaker Cell Traffic Manager). The source code is opened to customers who

want to do further development.

“TSP Board Development Kit provides a chip model, test bench and diagnostic

code for hardware design verifications. The T$P Design Toolkit is a powerful

development environment for customers modifying PortMaker source code or

developing custom applications.” [22].

22

MemoyContro(Iot

Figure 5 MXT4400 architecture [22]

2.3.8 Lexra NetVortex PowerPiant

II

Lexra’s NetVortex PowerPiant [23] processor integrates sixteen LX$380 32-bit

RISC processors on a chip that speed up to 420-MHz dock frequency. Each

processor runs a modified instruction set that is based on the MIPS-I instruction

set. The instruction set has been extended by Lexra to provide specific support for

many functions required from routers. “The new instructions have been added to

the MIPS-I instruction set in the LV8380 are optimized for operations such as bit

field manipulation, packet checksum, and support for multithreading.”[24].

Traffic SchuIingOctaveCore
System

UTOPIA Rx

PCI Slave

Channel Description
Look-up

PacketfCommand
Engine

Cet and Cordent
RAM

SDRAM Controller
Butter Management

Engine
SRAM Controtter

23

2.3.9 IBM PowerNP

U3M PowerNP provides a multiprocessor solution including an Embedded

Processor Complex (EPC) which has a PowerPC core, 7 dedicated co-processors

and up to 16 protocol processors. PowerNP supports Packet over SONET (POS)

and gigabit Ethernet at 2.5 Gbps. [25]. The 7 co-processors have special functions

such as data store, Checksum, Enqueue, Interface, String Copy, Counter and

Policy. The IBM Code Development Suite includes an assembler, a debugger and

a system simulator.

PowerNP’s Functional blocks includes Physical MAC multiplexer that is

responsible for moves data between physical layer devices and the PowerNP, and

Switch interface which “supports two high-speed data-aligned synchronous link

Figure 6 NetVortex architecture [23]

24

(DASL) interfaces, standalone operation (wrap), dual-mode operation (two

PowerNPs interconnected), or connection to an extemal switch fabric.” [25].

2.3.10 Intel IXP1200

The Intel IXP 1200 can support packet rate up to 2.5 Mpackets/s. The IXP

includes a StrongARM controller and 6 micro-engines. Each micro-engine has up

to 4 threads hardware support; therefore, there are total 24 threads running on the

chip to perform packet processing. IXP 1200 uses IX 64-bit bus that provides high

bandwidth connection in the middle of StrongARM controller, memory, micro

engines and other devices.

Figure 7 IBM network processor [25]

25

The development tool is calÏed IXDPI200 Advanced Development Platform,

which includes available evaluation software, example designs, utilities and

libraries, ATM/OC-3 to fast Ethernet W router example design, WAN/LAN

access switch example design, and Windows NT integrated development

environment for embedded Linux. Unfortunately, before releasing the C compiler,

ail programming must be completed by macro-assembly, which is a very difficuit

task since there are 6 micro-engines working in parallel. However, Intel offers the

Integrated Development Environment (DE) which can provide an assistant to

program the device making debugging easier because of “its configurable

simulation environment and its visualization” [26].

_____ _____

64 bit

&4biI SDRAM

‘T’
K 32 bit

nbdface (

Insbuci Cadi.

SUong
ÂRM
c.

Oaa Cache

Mut
Da Cache

IX Bus
Interface

SRAM

Figure 8 Intel IXP 1200 architecture [26]

26

2.3.11 Motorola C-5 DCP

“The Motorola C-5 DCP is a SoC NP including multiprocessor, it is designed for

layers 2-7 processing speed rate up to 2.5 Gbps. 16 channel processors and 5 co

processors for system management. Five co-processors are executive processor,

table lookup unit, fabric processor, queue management processor and buffer

management processor.

Each channel processor includes a RISC core and two parallel serial data

processors which perform communication function. The RISC cores are

responsible for classification, policy enforcement, and traffic scheduling” [27].

The C-5 DCP development tools include a C/C++ compiler and users’ C-Ware

Communications Programming Interfaces (CPI) which abstracts common network

task building blocks. [28].

Figure 9 Motorola C-5 DCP [27]

27

Through the previous NP overview, we can conclude that the network processors

are multiple parallel ASIPs which work as an embedded system. The network

processors have special features such as multiple processing elements (PEs)

which work in parallel by using distributed/shared memory and special

instructions.

Most network processors use parallel processing through multiple Processing

Engines (PEs) and their architecture can be divided into two types: one is parallel

architecture, and the other one is pipeline stage architecture. Parallel NP

architecture usually contains bit manipulation circuits to increase packet

processing ability; many of these PEs are put into one SoC chip to increase

physical space efficiency. In parallel mode, the task scheduler is responsible for

transferring packets to different PEs. It keeps track of which PE is available and

then sends it a task. Parallel NPs can produce higher bandwidth networking

appliances because oftheir architecture features.

In pipelined architecture, each processor is responsible for a specific packet

processing assignment; communication between processors utilizes pipelined way

and is very similar to data flow processing: a PE sends a packet to the next PE as

soon as a PE finishes the packet processing. Motorola’s C-5 DCP is an example

of this kind of architecture.

Although NPs have basic features such as special function units, on-chip

interconnect methods and the variation in memory architectures. NPs also have

other features, One of these common features is a number of distributed

processing elements which process packets in a parallel fashion in order to exploit

2$

the parallel nature networking applications. Most companies provide their own

programming model which exposes various elements ofthe hardware. This allows

users to be able to map a domain specific language and then automatically map

down to machine codes to be implemented in the hardware.

Special instruction is the interface to operate specialized hardware. IBM PowerPC

is an example; it defines special instructions such as cache block touch

instructions for loading data before the data is needed. This special instruction

reduces the memory latency.

In most network-transfer formats, bit-fields are packed together to save

bandwidth, however, normal GPP instructions cannot handie these fields

efficiently. As a result, Bit-packet-oriented instructions [29] are needed to

accelerate network packets processing. Unfortunately, after using this kind of

instructions, a big challenge to compilation technology will appear since it is very

hard to find which sequence of instructions can map to a bit-packet instruction.

Table 1 is a summary of the basic features of NPs. We can summarize them as

follows: NPs are multiple processors working in parallel or in pipeline. Normally

they have special instructions and shared (or distributed) memory. These features

bring more challenges to compilation technology that will be discussed in chapter

4.

29

Table 1. Typical NPs comparison

Intel Lexra Ezchïp IBM Motorola C-5
NPs IXP 1200 NetVortex NP-l PowerNP DCP

Compilers C compiler C C/assembl Assembler C/C++
Assembler er only

Capacity 2.6 Gbps >10 Gbps l0Gbps $Gbps 5 Gbps
OSI layers 2-7 * 2-7 2-5 *

Multi-PE 6 RISC with special 64 task 16 16 channel
programmable instructions oriented processors processors

processors processor
s

PE F31 Fast Bus 64 bit * * 60
Interconnect Interface Vortex bus Gbps

427 MHz bus
No. ofPEs 6 2 64 16 16
Threads/PE 4 2 64 16 16

Memory Shared4 kb 1-8 * 2 4
SRAM_FIFOs

* Means no specification

30

Chapter 3
Compilation Technology

3.1 Fundamental Conceptions of Compilation Technology

In the early stages of the computer age, many software systems were developed

by using assembly language to achieve efficient execution. However, it brought

much more workload in coding, debugging and maintenance stages. Presently,

most modem computer systems (both of OS and application) are developed by

using high-level languages in order to obtain better coding efficiency, higher

algorithms abstraction and easier maintenance.

High-level language programs are more human friendly, but they cannot mn

directly on hardware processors and must therefore be translated into a

31

corresponding machine code before it is executed. As a resuit, transiators are

required in this situation. Here we provide an overview of the internai structure of

transiators and ciassify them into several categories.

The development of a transiator involves at ieast three languages, which are

source language, target language and host languages. The host language is used to

impiement the transiator, the source language is the resource code to be transiated,

and the target or object language is the one to be generated. The host and object

languages remain hidden usuaiiy from a user of the source language. A transiator

may be defined as a formai function. Tts domain is a source language and its range

is contained in an object or target language. [30]

One well-established class of transiators is the assembler, which maps low-level

language instructions into machine language code that can later be executed on a

specific processor. The machine-level instructions are mapped ‘one-for-one’ by

individual source ianguage statements. Another is the macro-assembler, which is

a variation of the assembler as it also maps iow-ievel language instructions into

machine code. Some macro statements may map into a sequence of machine-level

instructions effectively providing a text replacement facility to suit the users.

The compiler is another well-established class of translators which maps high

ievel language instructions into machine code and subsequentiy machine code can

be executed. An individual source language statement usuatly maps into many

machine-level instructions.

The pre-processor maps a superset of a high-level language into the original high

ievel language or performs simple text substitutions. The high-level transiators are

useful as components of a two-stage compiiing system. Those translators map one

high-ievel language into another high-level ianguage.

The decompiler is a translator which takes a low ievei language as the object code

and then regenerates the source code at a high-level language, but it is difficult to

32

recreate the original written source code although this can be done successfully

for the production of assembler level code.

Microcomputers and embedded systems often use cross-compilers, which

generate code for computers and systems other than the host machine since they

are too small to allow the transiators to generate code on themselves. Self-resident

translators are those translators that generate a code for their host machines. The

cross-translators may bring additional problems during the transfer of the object

code from the donor machine to the object machine that is set to execute the

translated program.

The machine code, which is the output of some translators, is loaded in a machine

at fixed locations for execution. The other load-and-go transiators initiate

execution of this machine code but many translators do not produce the fixed

address machine code and produce a semi-compiled, binary symbolic or re

locatable form which are closely related to it. Starting from a mixture of source

languages it is possible to develop a composite library of special purpose routines

as a frequent use for this. The linkers are designed to link together the routines

compiled code in this way. It could be regarded as the final stage for a multi-stage

translator [31].

3.2 Basic Components ofa Compiler

A typical compiler can be divided into two parts that are front-end and back-end.

As shown in figure 10, the front-end is an analyzer that generates an intemal

representation, which gives correct meanings of the source code. The back-end

continually transforms intemal representation to the target code. The most

important requirement to a compiler is to work correctly which means generated

codes must expressing the same effects as specified by the source code.

33

internairepresentation

semanlic intermediate code
processing generation

syntactic analysis
rnexhineifldepefldeni

It

__

lexical ana lys s code soiocxon/registerj

source handling code selection

t

source nuehinedependeni

(enerated code)

Figure 10 Compiler components

Before it begins analyzing, the front-end normally tokenizes the source codes

program and also identifies program constructs. Moreover, the front-end will

verify the input code related semantics to ensure they are correct.

The back-end will generate target instructions. In order to perform this activity,

the synthesizer component needs to choose a wide range of available instructions

and data addressing formats. One way to optimize execution on the target

machine is to perform register allocation. By using this method, variables may

frequently be accessed from registers rather than accessed from the siower

memory to accelerate program-running time. In order to improve the performance

of generated code many other optimization techniques may be used to complete

this task. These techniques include constant folding, strength reduction, algebraic

simplification, tail recursion elimination, copy/constant propagation, common sub

expression elimination, dead code elimination; loop unrolling, leaf procedure

optimization, invariant code motion, hardware ioop optimization, register

coloring, resource-based scheduling and peephole optimizations [30].

34

3.2.1 Source Handiing

One of the most important issues for a compiler is to detect as many program

errors as possible in running. Thus, source handling becomes very important and

its function is to process source code and to supply the lexical analyzer with an

input stream of characters from the source code. As a very important feature, a

source handier normally includes a suitable interface to report syntax errors. Since

the incorrect program fragments have been reported on a regular basis, the source

handiing would ensure that a diagnostic message reporting correctly. As a matter

offact, most ofthe errors could be detected in a single compiler mn [32].

3.2.2 Lexical Analysis

The lexical scanner plays a very important role in lexical analysis. In order to

identify the words, the lexical scanner takes the sequence of characters and it must

obey the common rule that a user is flot allowed to use system-reserved words as

user defined identifiers. For example, a C lexical scanner will identify the string

void which is a reserved word as a keyword, as a resuit, we cannot use void as a

user identifier. However, the string Number of CPU is not a Ianguage-reserved

word 50 it would be identified as a user declared identifier such as variable,

constant, type name, etc.

Tokens may finally be represented by an integer sub-range. Lexical scanners

usually attempt to determine the longest symbol to match a token. For instance,

string “= =“ could have been interpreted as two “=“. However, because the lexical

scanner will use it’s mIe to determine the longest string, it is matched as “=

Therefore, the string “int_number” will be interpreted as a user declared identifier

but not be interpreted as two identifiers. One of the identifier is the reserved word

int, and the other identifier is a user declared identifier number.

From a language design point of view, certain scanners are not only performing

above-mentioned functions but also requiring to providing context sensitive

35

information. As in C or C++, the scanner must verify the symbol table in order to

distinguish user defined type names with variable names. However, this function

cannot be fulfihled correctly by checking the spelling or consequences. More

importantly, the symbol table constructed has to be accessed during the semantic

analysis stage [32].

3.2.3 Parsing

The parser’s functions include recognizing a token or word sequence as a valid

sentence in the language. In the mean time, these words are organized in a tree to

perform representation of the phrase. There may be two ways for the parser to

interface with semantic analysis and code generation routines. As a resuit of a

parser, an explicit parser-tree records the structure of the recognized program.

Consequently, semantic analysis and code generation will proceed through this

tree.

Another situation is that the parser may at appropriate intervals cail semantic

analysis and code generation routines directly. In this case, a simple one-pass

analysis is sufficient and therefore, an explicit parse tree representation is

unnecessary. Calling semantic analysis and code generation routines have the

overail effect of traversing a virtual tree from time to time but without the

overheads ofconstructing one [32].

3.2.4 Semantic Processing

Semantic analysis verifies the language components recognized during parsing. It

should be emphasized that the language components must have well-defined

meanings and do flot break any language restrictions. As a matter of fact, most

languages impose a declaration before the use ofa rule [32].

36

Many languages also include the ideas of scope rule and declaration blocks. In

such block-structured languages, the scope of a symbol is limited to the block

within which it is declared. The attributes for an identifier declaration are

recorded and each event is subsequently examined. The name analysis via an

appropriate symbol table organization to reflect program structure and scope rule

as adopted in the language. Type compatibility checks may then be performed.

When completing the analysis of a scope, the associated identifier entries may be

deleted if they are no longer accessible. For each identifier occurrence, semantic

processing would determine if an identifier was declared. If so, locating its

declaration will disclose its class, type, and the validity of the current usage. At

the end of the semantic analysis phase, the meanings of the program have been

detennined and code generation may thus proceed.

3.2.5 Code Generation

Code generation is the process of implementing an evaluation procedure for the

original source program; for example, a particular target computer or

environment. The difficulty of the code generation is relative to the difference

between the mechanisrn and structures in the source language and corresponding

availability in the target machine. The first important aspect of code generation is

the design of a suitable run-time environment. As a resuit, the source language

features and mechanisms are easily supported and eventually implemented in the

target environment. These target environments ail have their own special machine

architectures, register organizations or addressing formats [33]. Execution of the

resultant code must produce the same effects as that specified in the original

program. This task engages three steps which are memory mapping, register

allocation and instruction selection.

37

3.3 Parallel Architectures and Compilation Teclmology

A computational problem may be solved by a set of co-operating processors,

workstation networks and other embedded systems. The computational resources,

processors, memory, input and output bandwidth are collected together. The

parallel approach spiits the task into smaller subtasks and works simultaneously

by coordinated and efficient workers. The granularity of subtasks should be

optimized to find a balance between the number of subtasks and the

communication frequency.

The computer architectures can be classified as serial and parallel architectures

according to the Flyim’s taxonomy [34], [35]. The concepts, instruction stream

and data stream are the basis of this classification. A computer is operated by a

series of instruction sequence and date stream. A data stream is a sequence of data

which is manipulated by the instruction stream. There are four categories of

combination of instruction stream and data stream but there are no practical

examples ofthe MISD (Multiple histruction and Single Data) case. SISD (Single

Instruction, Single Data): Most of the serial computers belong to this class.

Computers ofthis class can decode only a single instruction in unit time although

instructions can be pipelined. Under the direction of a single control unit, a SISD

computer may have multiple functional units. SIMD (Single Instruction, Multiple

Data): Vector processors and processor arrays belong to this class. A processor

array contains many arithmetic-processing units and each one is able to fetch and

manipulate its own data as well as execute a single stream of instructions.

Multiple processing units manipulate different data and a single operation is in the

same state of execution in any time unit. MIMD (Multiple Instruction, Multiple

Data): Most multi-computers belong to this group. Every processor executes its

own instruction stream with its data stream.

Memory architectures determine the way of processors’ communication, so that

they can affect writing parallel programs. There are three primary memory

38

architectures that are shared memory, distributed memory and hierarchy of

memory. Shared memory is shared between multiple processors although they

work independently, but only one processor at a time accesses the shared memory

which is synchronized. The bandwidth of memory is limited by the access speed;

if the number of processors is small, it wilÏ be fast. The increasing number of

processors is dependent on the increasing of bandwidth. Distributed memory:

Each of the multiprocessors operates with its own mernory independently and

data is shared through a communication network and synchronized through

message passing. Hierarchy of memory is a combination of shared and distributed

memory architecture that contains several shared nodes interconnected by a

network. The inter-processor communication is required to transmit data and

information between processors and synchronizes node activities.

To program parallel computers, the common approaches are message passing and

data passing. Message passing means that each processor bas its private local

memory, and cooperation is obtained by exchanging messages. A ‘receive’

operation matches a ‘sent’ operation. The message passing programming is

conducted by linking and making cails to libraries which manage data exchange

between processors. The three message passing parallel libraries will be discussed

later, they are message passing interface, parallel virtual machine, and message

passing library. Data parallel means that data is distributed across processors.

Each processor works on a different part of the same data structure. Ail passing

messages are generated by a compiler and they are invisible to the programmer;

they are commonly on the top of the message passing libraries. A program is

written by using data parallel constructions and compiied by a data parailei

compiler, the program is compiled into a standard code with a message passing

library caIl. The High Performance Fortran (HPF) and Connection Machine

Fortran (CMF) are two examples of data parallel languages and will later be

discussed.

39

The Parallel programming necessitates a different approach for solving problems;

this approach is distinguished ftom sequential algoritbms. There are four distinct

stages: Partitioning, Communication, Agglomeration and Mapping (PCAM) in the

process of designing a parallel application. I. Foster described them in [34] as

follows:

• Partitioning: It decomposes the computation and the data operation into small

tasks. We can use domain or functional decomposition in the partition step.

The number of processors in the target computer is ignored. Attention is

focused on recognizing potentials for parallel execution.

• Communication: This determines the communication, which is required to

coordinate the task execution. It chooses the algorithm and the appropnate

communication structure.

• Aggiomeration: These are the structures of communication and task,

determined in the first and second design stages. They are estimated and

evaluated according to the performance requirements and implementation

costs to decide whether the tasks must be necessary combined.

• Mapping: The full processor utilization and less communication costs are the

goals to be obtained for each task design.

Message Passing Programming

The parallel programming model generously used today perhaps is message

passing. It creates multiple tasks; a unique name and local data encapsulated

identify every task. Send to and receive the messages from the named tasks make

the tasks interacting. The programs in the message passing mode! are written in

common high-!evel languages like C or Fortran.

Several message-passing libraries are widely used today. Programs cali library

routines to send and receive messages.

40

Parallel Virtual Machine (PVM)

The feature of PVM is that this library can be used in a heterogeneous hardware

environment but communication is siower than the other two following libraries.

Some modem features such as dynamic task creation and groups have been

implemented. Today, there is a public domain message passing library and nearly

all hardware platforms are implemented. Originally, it was developed at the Oak

Ridge National Laboratory for clusters ofworkstations [35].

Message Passing Interface (MPI)

This is a standardized library and is widely used. MPI is available for many

hardware platforms and is promising since the number of tasks is fixed while a

program is executing unlike PVM.

Message Passing Library (MPL)

Message Passing Library was developed by IBM for the SP-2 supercomputer as a

native library and is highly optimized for it. MPL lias a similar function to the

MPI. In the new version of its operating system and parallel environment of SP-2

it resembles the MPI. It seems as though the IBM supporting MPI and the MPL

wifl be replaced by it [35].

Data Parallel Programming

Data parallelization is another commonly used parallel programming model. It is

derived from the application to multiple elements of a data structure. An example

is to add the same number to all elements of an array. A sequence of such

operations is contained in a data parallel program. Each operation of the data

element is an independent task. The natural units of a data parallel program are

small. Tlie programmer should provide explanation for how tasks are partitioned,

and how data are distributed over processors. Then a normal programming

language C or Fortran are translated from the data paraïlel program with calis to a

message passing library or communication through shared memory.

41

The following two data-parallel languages, based on Fortran, are widely used:

High Performance Fortran (HPF)

HPF is a well-standardized language [36]. Many commercial High Performance

Fortran compilers are available. A public one is called Adaptor. The Fortran 90

syntax plus High Performance Fortran data distributing directives and some new

language constructs are included.

Connection Machine (CM) Fortran

Connection Machine Fortran was developed for the Connection Machine

originally and now spread away and its architecture is independent [37].

3.4 Lcc Retargetable Compiler Basic Components Introduction

Lcc is an open-source ANSI-C compiler developed by C.W. Fraser and D.R.

Hanson [38]. Lcc has been ported to several machine platforms such as

AlphaJOSF, x86/Win32, x86/Linux, Sparc/Solaris, and MIPS/WIX. In this

project, we use 1cc as the base for our DLX compiler since 1cc has been widely

used and it is simple.

The compilation flow of 1cc can be summarized in Figure 11.

42

Figure 11 Lcc C compilation flow [38]

Lcc is developed under traditional compiler techniques. The front-end is

responsible for lexical, syntactic, and semantic analysis as well as performs some

machine independent optimizations. As a matter of fact, both the lexical analyzer

and the recursive-descent parser are hand-written programs [38].

The front-end is target-independent but the back-end is target-dependent. An

efficient interface packages the front-end and the back-end to be a single program.

This interface includes several shared data structures, functions and a DAG

language. Examples of interface functions are: emit function prologue, define

global, emit data, etc. The DAG language encodes the executable code from a

source program by using a smaller language than typical intermediate language

which is similar to what is used in other compilers. The authors wrote the lexical

scanner and parser programs by hand. These programs are smaller and more

efficient than a lex and yacc based on implementation which are tools used to

generate lexical analyzers and parsers [30]. First, a C program is translated into

syntax trees by the scanner and the parser. Second, from DAG, the syntax trees

will be translated into lcc’s intermediate representation (IR). In order to simplify

43

the code generation, the DAGs will be decomposed into trees. Finally, code

generation and register allocation will be performed on the trees.

Lcc’s code-generator generator is called lburg and is based on a dynamic

programming algorithm. With the fragment patterns of individual instructions,

lburg maps the program’s W trees and chooses the most suitable matches

consistent with the overali tiling cost of the tree. furthermore, the algorithm can

generate an optimal matching for the IR trees in linear time. One of the features

worth mentioning is that the lcc’s register allocator uses a simple labeling method

that does flot utilize graph coloring.

Lcc’s back-end is its most interesting part since it shows the results of the design

choices that were made to enhance retargetability. Lcc is smaller than the other

open source compilers such as gcc [39], and is quicker than gcc. However, the

quality of lcc’s generated code is lower since 1cc does flot make extensive back

end code optimization. The code size and execution speed of the lcc-generated

code is lower than gcc generated code by an average of 10% [40].

In this project, we selected porting 1cc to DLX generally because it’s small and

easy to implement. It would be much more difficult to port other compilers such

as gcc. Our research group needed the C-DLX compiler to test our multi

processor SoC platform when we began this project. In other words, we are not

compilation technology specialists; porting 1cc is a first start before we explore

more compilers.

44

Chapter 4
Main Challenges in NPs
Compilation ami Related Work

The most popular usage of network processors is employed as a traffic manager in

switches, routers and other network equipments to manage the data packet stream.

The traffic manager checks, adds and modifies header of PDUs and puts PDUs in

a queue according to PDUs priority weight if necessary. The routing and time

schedule are also made by the traffic manager [2].

Network processors own special functional features different from other

processors. These features bring different challenges to network processor

compiler design. We will discuss these challenges and related work in the rest of

this chapter.

45

4.1 Network Processors Essential functions

Network processor architecture is different from the general-purpose processors

(GPP), since NPs play special role in network traffic management. Like we

mentioned before, it works as traffic manager to handie PDUs with the aim of

finishing variety functions like quality of service (QoS), encryption, decryption,

security-authentication, etc. The NPs implement partially protocol stacks, only

those parts of a protocol that require direct access to the data stream are to be

implemented by NPs [2].

Let us assume a traffic manager uses 90% of time to mn 10% of a network

protocol. The workload is partitioned with that a network processor mn 10% of

the protocol by using 90% of time, GPP mn the 90% of workload by using 10%

of time. According to Amdahl’s law [41], the overali acceleration is 1 I ((1 —

f) +fI s), where fis the fraction of the program enhanced by a speedup of s. In

this example, sincefis equal to 0.90, the overail speedup is 5.3 if NPs mn 10

times faster. As a result, NPs performance is a significant factor in overall

network performance since making a GPP five times faster could be much more

expensive.

A variety of special functions of network processors are implemented by the

development of compilation technologies. They are listed as follows:

The network processor should be able to process and deliver out the incoming

PDUs in a very short time gap. The contents ofa PDU should first be examined to

determine which processing must be done when a PDU arrives. This process is

used in firewalling, routing, policy enforcement, and QoS implementation. A

PDU should be modified by the network processor. These modifications include

tirne-to-live counter reducing, an outgoing label replacing an incoming label in

the label-switched traffic, adding or removing a header. When the processing

speed of network processor is siower than the data arriving speed, queuing the

46

PDUs is thus necessary. The order of retransmission may flot be the same with the

order of transmission. Some PDUs will be dropped, and some PDUs may be

prioritized over other PDUs [2].

4.2 NPs’ Working Mechanism and Challenges for Compilation

Technology

Some modem GPP, just like 1ntel’s Pentium or AMD’s Opteron, are flot only

devoted to the increase of manipulating speed but also to maintain the ease of

programming. A GPP operates by a sequence of instructions which give the

impression that the instructions are executed one by one without discontinuity.

Actually, the GGP takes a sequence of instructions, analyses them, cuts them into

parts, handies multiple registers’ copies, caches memory and then executes the

multiple instructions in parallel.

NPs have special features different from other embedded processors such as bit

packet passing, distributed memories, multiple PEs (processor elements) working

in parallel or pipeline. Some of NPs, such as Agere Routing Switch Processor,

Brecis’ MSP5000, and Cisco’s PXF, use VLIW architectures.

Because of these special features, we are faced with challenges to the ASWs

embedded systems and challenges to parallel architectures when we explore

compilation technology. In this chapter, we examine related works about how to

resolve the above challenges.

4.2.1 Multiprocessor Architecture with Distributed Memory

There are some common themes shared by a wide variety of network processor

architectures, specifically multiprocessing. Many individual processors are

embedded in a network processor and cover a wide range in complexity up to

47

C++ programmable RISC processors. Tliey divide up processing using different

techniques and have different internai data flows. Here we cali the individual

processing units the RISC processing elements (PEs) although there are a variety

ofnarnes used, from pico-processors to RISC cores, by the provider.

A multiprocessor is made up ofmany PEs which are flot very powerful. However,

it has more processing power than a single processor is constructed by the same

resources. The design of multiprocessors makes the muitiprocessor architecture

have the potential to multiply the amount ofprocessing time that a NP can devote

to a protocol data unit by the numbers of processing elements. The speed of an

individual general-purpose processor is the most important specification and the

network processor designers optimize the number of PEs with their size and

power.

The PEs’ programming differs from one kind of device to another and its

sophistication also varies. For example, the Motorola C5 network processor

possesses 16 RISC cores, supported by a C++ compiler and IBM’s PowerNP

device has 8 protocols PEs and 2 pico-code engines. It can mn two threads with

context switch time. However, an assembly language shouid be used to program

the engine with sound architecture knowledge of the processor.

Raja Das developed methods which deal with parallel loops [42]. Only in the

presence of regular array reference pattems within the Ïoops, the communication

optimizations could be performed by the existing systems, such as Fortran D, etc.

Irregular array references, often contained in the parallel loop nests cannot be

analyzed at compile time. Parallel loops and loops that contain reduction type

output dependencies are deait with this method. Loops not containing cross

processor, loop-carried dependencies or cross-processor loop-independent

dependencies could be performed by this method. Cross-processor dependence

means its end points cross processors. Loop-carried dependence lias a write to a

location in an iteration and is at the same location followed by a read in a later

4$

iteration. Loop-independent dependence bas a write to a location in an iteration

and followed by a read to the same location and iteration. Across the nodes to be

partitioned the array, performed computations on a part of it by each processor,

data parallelism is established, and cross processor loop independent dependences

will flot occur.

For irregular references to reduce communication costs, runtime optimization

tecimiques have been developed. They are reasonable partitioning of data and

computational work, combining element messages into a large message to reduce

the number of messages transmitted and eliminating redundant communication of

elements.

A prototype compiler, Arguably Fortran (ARF), was developed to automatically

perform these optimizations. A simplified Fortran 77 program, enhanced with

specifications for distributed data, is accepted by ARF and outputs a program to

execute on the nodes of a distributed memory directly. The ARF classifies the

array references as regular or inegular by partitioning computations and analyzing

them. The runtime optimizations are performed for the irregular references to

reduce communication costs.

At the NASA Langley Research Center Hampton (ICASE), a Parallel Automated

Runtime Toolkit (PARTI) is used to implement the runtime optimizations. The

runtime pre-processing procedures are performed by the compiler. These

procedures include supporting a shared name space, providing the infrastructure

needed to implement non-uniform data mappings efficiently, coordinating inter

processor data movement, managing the storage, accessing to and coping of off

processor data.

There are two distinct layers in the compiler. A compiler carnes out program

transformations to the PARTI primitives by embedding cails in the original

program, and it is located in the top layer. The Iibrary of PARTI runtime

49

procedures is at the bottom layer. It is designed to support irregular pattems of

distnbuted array accesses efficiently. Each distributed array element is assigned to

an arbitrary processor and the whole distributed arrays can be partitioned in a

non-uniform mariner. The operations of these procedures are off-processor data

fetching, storing and accumulating off-processor memory locations. Using

embedded procedures, ail distributed memory accesses are carried out by

generating a multi-computer program [42].

Significant advantages are offered by the distributed memory message passing

multi-computers over shared-memory multiprocessors. However, much more

work must be done in order to compose programs that release ail computational

power from them. The lack of a single global shared address space is a main

reason. The PARAllelizing compiler for Distributed memory General-purpose

Muki-computers (PARADIGM) [43] addresses a need for efficient parailel

programming to replace the manual distribution of codes and data on processors

and management of communication among tasks. The sequential programs are

converted by an automatic means, paralleied by compiler dependence anaiysis

and compiled for execution on distributed memory multi-computers.

Both structured and unstructured parallel numerical applications are the target of

the PARADIGM compiler written for Fortran 77 and high performance

Fortran[43]. Using a paraliel compiler, the sequential Fortran for regular

application is paralieled automatically. On the program, several compiler

transformations are performed by the PARADIGM compiler and the efficient

message is generated.

Many compiler optimizations are performed automatically by the PARADIGM

compiler, for example, message vectorization, chaining and aggregation. In

addition to performing traditional compiler optimizations, the PARADIGM is

unique since it is able to perform automatic data distribution for regular

50

computation, to exploit simultaneously functional and data parallelism, and in

iterative application to exploit regularity in irregularity.

PARADIGM is a multifunctional parallel compiler for distributed-memory multi

computers. For regular computations, it can distribute program data and perform a

variety of communication optimizations automatically for regular computations

and use compiler and run-time techniques to provide support for irregular

computations. It has a wide range of applications as a compiler in the field of

distributed-memory multi-computers [431.

4.2.2 Bit Packet Processing

J. Wagner and R. Leupers introduced the design of a C compiler using an

application specific instruction set processors (ASTPs) for telecom applications

[44]. The use of ASWs in embedded system design is quite common but the

compiler supporting them is extremely desirable since the compilers are required

to avoid time-consuming and error-prone assembly programming. The traditional

compiler techniques could not fully develop the functions of ASIPs. The more

dedicated code generation and optimization techniques are demanded. To meet

high code quality for embedded systems, a variety of highly machine-specific

techniques is developed and promises to generate high-quality machine codes

similar to the hand-written assembly code. However, the increased compilation

time seems inevitable; the efficient bit-level processing is a selection for some

ASIC designing. Unfortunately, the highly application specific hardware has low

flexibility. The network processors (NPs), as a specialized class of ASIPs,

represent a promising solution because NPs instruction sets could be tailored

towards efficient communication protocol processing. NPs may be designed to

have the ability to process bit packets with variable length. The memories of the

standard processors as a transmitter or a receiver have a fixed word length. The

packets meant to be transmitted at the beginning of a transmission are aligned at

the word boundaries of the transmitter. These words to be sent into the send

51

buffer should be packed in to the bit stream format required by the network

protocol. On the receiver side, the bit stream format packets have to be extracted

reverse after the transmission over the communication channel and be aligned at

the receiver memories, the word length of which may even be different from the

memories of transmitter. A fixed word length of memory of transmitters and

receivers show that a relatively expensive processing may be required on both

sides whule the standard processors are being used.

Developing an efficient C compiler for an advanced NP architecture is a design

challenge since the dedicated bit-packet oriented instructions are not easily

generated from a high-level C language. The classical techniques are not good

solutions to this problem. The required machine-specific code generation

techniques are implemented and the bit packet processing is made available to the

programmer at the C level. The register allocator is designed to handie the

variable-length bit packets in registers.

The target machine is Infineon NP [44] which possesses 12 general-purpose

registers with special extensions for bit-level data access and its core shows a 16-

bit RISC-like basic architecture. The ALU computations can be performed by the

NP instruction set on bit packets. Any bit index sub-range of a register may store

a packet which may cover two different registers. Therefore, instead of the fixed

machine word length, the variable packet lengths can be adapted within registers.

The bit streams in memory should be the first to be loaded into registers. for each

specific application the size and position of the different bit field are statically

known from the C source code.

The NP instruction set permits the specification of offsets and operand lengths

within registers to enable packet-level addressing of unaligned data. If CMD

represents the assembly command, reg].off and reg2.off are the argument

52

registers with offset and operand lengths within registers. Then the general

instruction format is as such:

CMD reg].off reg2.off width

Where the width denotes the bit width of the operation to be performed, the

register number, offset, and the packet bit width addresses a corresponding bit

packet. If the register word length is flot enough to span the packet, two registers

should be spanned over without increasing the access latency so that two offsets

and one width parameter for instructions are enough [44].

In C language, the bit packet-level addressing can be expressed by a complex shifi

and masking scheme only. Therefore, it is inconvenient and lacks readability and

maintainability. The code may be machine-dependent or depend on the word

length of the processor. By means of special instructions for packet-level

addressing, the shift and mask operations are avoided by the NP instruction set

due to their high cost. The compiler-known functions (CKFs) [44] were

introduced in the C compiler to make the bit manipulation visible to the

programmer. The compiler maps calis to CKFs into fixed instructions or

instruction sequences and may be considered as C-level macros whit no any

calling overhead. If a suitable set of simulation functions is provided for the

CKFs, there is no any machine-dependent for the NP for C code written, as well

as compiled to other machines. The packet-level addressing can be implemented

within a single instruction by NP. A packet access (PA) CKF was introduced:

FA (int op, int van, hit offi, int var2, int ofJ2, int width,)

Where “op” represents the operator, “van” and “var2” are the operands, “offi”

and “off2” are the operand packet offsets and “width” is the packet bit width.

53

Use of CKF significantly benefits the programmer as it permits him to use high

level language constructs for control code and loops as well as performs address

generation and registers allocation; keeping the code reusable and saves

development time [44].

4.2.3 Specialized Processors

The network processor compiler, like most other compilers, consists of a front

end and a back-end. The front-end takes an input high-level language source code

and generates an intermediate representation (IR) which is independent of the

target machine. The back-end takes the machine-independent IR and translates it

into a machine-specific optimized assembly code. The retargetability is an easy

transiating source code to the specialized assembly. If one compiler possesses this

feature, we cail it retargetable compiler.

LANCE [45] is a retargetable platform used by J. Wagner and his colleagues for

implementing a C NP compiler. The company web site introduces it as follow: As

a front-end, it compiles ANSI C code into a machine-independent IR. R can be

read, written and manipulated tlwough a C++ API. LANCE includes a back-end

interface. The main features of the LANCE system are ANSI C front-end and R

optimizations, executable R in low-level C syntax, C++ API library for R access

and manipulation, generation and visualization of control/data flow, and interface

functions for retargetable assembly code generation, compatible with popular

code generators like OLIVE or JBURG. The OLIVE tool is an extension of

IBURG contained in the SPAM compiler which is a retargetable optimizing

compiler for embedded fixed-point processors. The back-end of the SPAM [46]

compiler consists of two components; the first one is a set of data structures that

store the various representations of the source program and the second is a suite of

retargetable algorithms which perform code generation and machine-dependent

code optimization. The code selection and register allocation modules are two

parts of the C compiler back-end. The code selector maps the Data Flow Trees

54

(DFTs) into assembly code by using the technique of tree pattem matching with

dynamic programming. Hence, an optimal code selection is obtained.

We have described a number of related works about retargetability, multiple

processors with distributed memories and special instructions mapping

technology separately such as CKF methods to process bit packet [44]. The usage

of these special features is explicitly stated in the source C code. This allows ease

of expression for bit-packet operations. We might use these technologies to solve

NPs compiler problems.

We have general ideas about how compilers solve the above mentioned problems

in diverse ways. For the reason of better understanding how a retargetable

compiler can be used to target a NP with ASIP architecture, we added DLX as a

new back-end in 1cc since DLX has been used for our multi-processor platform.

We built a C compiler that might save our colleagues a significant amount oftime

in hand-writing DLX assemble code, with the purpose of improving the

development and debugging time. We could easily add other network processors

such as targets since the DLX instruction set came from many real world RISC

processors. The compiler is based on 1cc because it has fast, small and convenient

features. On the other hand, it also has obvious weaknesses, such as the quality of

compiler-generated code which is not well optimized. We will explain in detail

how DLX back-end may be implemented on 1cc and what kind of changes will be

made on our SoC platform in the following chapter.

55

Chapter 5
Implementation

We have introduced a fundamental understanding about network processors and

compilation technology. This chapter will further discuss how we implemented a

C/DLX compiler based on 1cc retargetable compiler and how we made

modification to our SoC platforrn.

5.1 DLX Instruction Set Architecture

The DLX processor cornes from a combination of ideas from other loadlstore

RISC architecture. The DLX architecture was selected based on observations

about most commonly used in programs. DLX offers a good studying

56

architectural model since DLX cornes ftorn real popular machine architectures

and because it is easy to understand [47].

We used DLX to construct a SoC platform since it is a clear and simple RISC

architecture. Moreover, it is easy to add new instructions because it has common

features that corne frorn rnany real RISC architectures. DLX is a simple loadlstore

instruction set; it is designed in pipelining approach. DLX includes several simple

forrnatted instruction sets which are very easy to follow and has good

organization as a compiler target.

The DLX Instruction Set Architecture (ISA) contains 32 (RO-R3 1) 32-bit general

purpose registers. Registers R1-R30 are real general-purpose registers. Register

RO aiways contains zero. Register R3 1 is used for saving the retum address for

the Jurnp And Link (JAL) instructions [48].

The DLX ISA also has 32 single-precision floating-point (32-bit) registers (F0-

F31). These registers can also be addressed as pairs (two consecutive registers, the

first one being even-numbered) to forrn 16 double-precision floating-point (64-

bit) registers. DLX ISA bas three specific registers: Program Counter (PC),

Interrupt Address Register (IAR) and floating-Point Status Register (FPSR). In

DLX ISA, a word is defined as 32 bits and a byte is 8 bits. Mernory is byte

addressable and word storage adheres to the big end in byte ordering [49].

The DLX instruction set architecture includes five pipeline stages. These stages

include Instruction Fetch (IF), Instruction Decode (ID), Execution (EX), Mernory

(MEM), and Write Back (WB). As in the first stage, IF is in charge of obtaining

instructions from memory. Then ID is responsible for choosing the operand

registers, decoding the instruction and examining branch conditions. After

Instruction Decode, it cornes to arithrnetic and logical operations. Moreover,

memory address calculation will be processed at this stage. The fourth stage will

be MEM stage and it will access data mernory; either reading or writing the data

57

into its memory. The final stage is to write the resuits calculated by EX or read by

MEM. OccasionalÏy, it can also write to the destination register when necessary

[49].

There are four classes of instructions: Load/Store instruction, ALU Operations

instruction, Branches/jumps instruction and Floating-point operations instruction.

Load/Store instructions set for any ofthe GPRs or fPRs may be Ïoaded and stored

except that loading RO has no effect.

Ail ALU instructions are register-register instructions. Register-register

instructions include ADD, SUE, AND, OR, XOR, etc. These instructions use to

two registers as input operators. If the condition is true in the compare-instruction,

these instructions place a “1” in the destination register; otherwise they place a

“O” in the destination register.

Branches/Jumps instruction may test the register source for zero or nonzero while

the branch condition is specified by the instruction. Floating-point instructions

include ADDF, ADDD, MULTF, MULTD, DIVF, DIVD.

To know the detaiied instructions, see appendix A: DLX Instructions Set. Ail

DLX instructions are located in one ofthree types: R type, I-type, or J-type.

Figure 12, figure 13, and Figure 14 show these three type instructions and give

related examples [48].

. P-ripe (register)
rd — roi funct rs2

31 26 25 21 25 16 55 11 10 0

Op000s roi rs2 ra iunct

.egADDP8.P17,P18 #P8=R17+P18

31 26 25 21 26 16 15 11 10 0

i7I18I5I

Figure 12 R-instruction format [48]

• l-type (immediate)

31 26 25 21 20 16 16

I Opcode roi rs2

eg ADDI P8P17,-44
[W P8, -44(Pi7)
BEQZ R4, label

31 26 25 21 25 16 16

17 J 1

Figure 13 I-instruction format [48]

J-type (jump)

58

[pppooe targot SI

e g jump label

2620

Figure 14 J-instruction format [48]

calI labe[
P31 = PC + 8

01

__________________I

#P8 = Pi7-44
#P8 = M[R17-44]

it(R4 = O) go to label:

44

59

5.2 SoC Multiple Processors Working Platform

Our cycle-accurate SoC platform is based on SystemC which is an open source

class library in C++. In this project, we modified several parts of the platform

which allowed us to explore object oriented design methodology used in system

design field. Before we describe our work in detail, we will glance at SystemC

and object oriented design.

5.2.1 fundamental Object Oriented Design Characteristics

Object-Oriented Design is a design method in which a system is modeled as a

collection of co-operating objects and individual objects are treated as instances

of a class within a class hierarchy [50]. Object-Oriented Design methodology

requires user spending more time during the system design stage in front of

implementation. However, it benefits us a lot by its fundamental characteristics

such as encapsulation, abstraction and reusability.

Encapsulation (or information hiding) could keep a system design away from too

interdependent and too intermingle. Encapsulation allows user to modify a single

part of the system to realize bug fixing, performance improving or system

changing rather than change many place. Encapsulating functions could reduce

compile time, support testing and allow subsystems taking advantage of

independently and asynchronously. Object-oriented design strongly supports code

reusability. It allows a particular object model to be written once and reused in

numerous places. Object-oriented design also supports localization change, which

is possible to take full advantage of code reusability, significant reducing code

size [50].

60

5.2.2 Brief Introduction to SystemC

SystemC is an open source class library in C++ which is a good tool to develop

cycle-accurate or more abstract models of software algorithms, hardware

architectures and system level designs. SystemC is supported by the Open

SystemC Initiative (OSCI). More details about SystemC can be found in [51], the

following is a brief introduction from [51]. One characteristic of SystemC is that

it is an interoperable modeling platform which ailows seamless tool integration

(51]. SystemC supports Register Transfer Level (RTL), behavioral level and

system levels design abstraction; sometimes the SystemC is used as

standardization of a C/C++ hardware design methodology while a class iibrary

and a simulation kernel are employed. OSCI is an independent none-profit

organization composed of a broad range of semiconductor companies, university

embedded software developers, design automation tool vendors and individual. In

conclusion, $ystemC has ail the C++ advantages such as data abstraction,

modularity and object orientation. Furthermore, SystemC creates a general design

environment consisting of C++ libraries models and tools. This feature lets

SystemC is becoming a very popular language in hardware/software co-design

field.

We, the users of SystemC, could write the SystemC models at the system level,

behavioral level or RTL level by using an open source SystemC class library

which provides two important advantages. One is that SystemC provides the

implementation of many types of objects that are hardware-specific modules,

ports and docks. Other one is it contains a small kemel for process scheduling.

SystemC code could be compiled and linked together with the class library with

any standard C++ compiler [51].

61

5.2.3 Multiple Processors Platform

Our colleagues have modeled a system on chip (SoC) platform, including multiple

processors. It was developed using SystemC on Linux PCs. The modeled

processors are DLX or ARM architectures (still in development) and both ofthem

can work together. Each processor is an addressable device and processors are

connected via a device called ring_device [52]. Figure 15 shows the architecture

of a DLX processor and its adjacent noUes. We made some changes due to the

testing for our compiler.

The memory modules are located next to the processors, but we plan to have both

distributed and shared memory mechanisms in the future version of the network

platform.

Our platform consists of a number of DLX processors which are connected

through a ring. Every pair of neiglibor nodes is able to receive and send messages

at the same time. In a platform which contains n processors, a message sent from

node j to nodej run through the path (i, i+1 mod n, i+2 mod n... j-1 mod n,j)

[52].

Figure 15 The architecture of DLX noUes [52]

62

As we previously mentioned, the DLX model was developed consisting of five

pipeline stages. Each stage was modeled using an SC_METHOD construct:

• IF (Instruction Fetch): The IF stage is responsible for getting the instructions

out of the ROM (program memory).

• ID (Instruction Decode): The ID stage is responsible for selecting the operand

registers, decoding the instructions, and evaluating the branching condition.

• EX (Execution): The EX stage is responsible for arithmetic and logical

computations as well as memory address calculation.

• MEM (Memory): The RAM (data memory) access is performed at the MEM

stage.

• WB (Write Back): When it is necessary, resuits will be written back to the

destination register.

In this platform, each processor processes both the RAM and ROM memories; we

define the size as 1024 (4096 bytes). Memory size is not important in this project

because they are big enough to test our compiler. Both Mcm RAM and

Mcm ROM memories are modeled using a common memory abstracted class.

This design respects the communality and variation principle described in [53].

We have modified memory from word align to byte align; this makes the model

doser to the DLX architecture description. Furthermore, we added byte

operations and haïf word operations such as load byte (LB), load byte unsigned

(LBU), load half word (LH), load half word unsigned (LHU), store byte (SB) and

store halfword (SH).

The ring device of processor exchanges data packets with two neighbors through

the AddressableDevice interface, the exchange operation on the ring is

63

unidirectional and cannot be blocked. This operation performs at each dock

cycle. An example is given undemeath.

When DLX node number ‘i’ wants to send a message to a DLX node number ‘j’,
the first step is taking the ring_device status register (at address 0x3000) and wait

until the transmit register available. If so (transmit register is true), the next step

for the DLX number ‘i’, is to write the message and the address of destination (in

this case is ‘j’) in the appropriate registers. As mentioned, the messages already

looping on the ring have the right of way on the new incoming messages from a

DLX processor. Since no more than ‘n’ (total nodes number in the ring) messages

can be located on the ring at the same time, definitely, each message can be

delivered to the target processor after most ‘n’ steps. These two conditions make

sure that there is no deadlock except invalid destination addresses. When a free

siot is available on the ring, the new message is transferred from the RingDevice

registers to the next RingDevice in the loop. When a message reaches the

appropriate RingDevice it is sent to the RingDevice receive registers so the

polling DLX j processor can read the incoming data. Finally, a new space on the

ring is made “available” allowing the ring interconnect to accept a new message.

Each processor accesses a bridge; the bridge controls the memory access

commands from the DLX and either sends them as messages over the ring or as

an access to the local RAM memory. Processors can also access other addressable

devices via the bridge. The multiple DLX processors exchange messages on the

ring using a memory-mapped mechanism:

• Ox0000-0x2Fff: RAM

• 0x3000: Transport status

• 0x3004: Receive address

• 0x3008: Receive data

• Ox300C: Transmit data

• 0x4001: Port to output device (new added).

64

• 0x5001: Data exchange interface to other device (new added)

For testing purposes, we added two addressable devices to the platform. One is an

output device (address 0x4001) for outputting characters to the screen and other

one is a data interface (address 0x5001).

The output device is directly a character to the screen because that SystemC does

flot have output interface. We can easily print necessary information to screen by

using this device. For the data interface we used two First In First Out (FIFO) data

buffers to exchange data with other devices.

As previously mentioned, SystemC is an object-oriented modelling language

based on C++ [51]. It was easy to implement these two modules with the methods

inherited from class Addressable Device that is derived from SC METHOD of

SystemC.

5.3 Add DLX as New Target to 1cc

Our colleagues worked on the platform using a hand-written assembly code but

this time consuming in regards to writing and debugging assembly code. For this

reason, a suitable compiler was necessary.

As we already mentioned, 1cc is a retargetable compiler for ANSI C. It has been

ported to the VAX, SPARC, MIPS, X86, and other target processors. LCC is a

small, fast C compiler now available on most popular operating systems [54]. The

compiler is based on 1cc, because 1cc has fast, small and convenient features, but

1cc has obvious weaknesses such as the quality of the compiler-generated code

which is flot well optimized, and Yacks of parallel work. Similar to most other

compilers, the 1cc compiler is subdivided into two parts: a front-end and a back

end. The front-end is responsible for source code analysis, generation of an

65

Intermediate Representation (R), and machine-independent optimizations. The

back-end maps the machine-independent R into machine-dependent assembly

code. It is labeled as retargetable since we can easily add one or more different

target code generators to the back-end.

The 1cc compiler back-end can be divided into two parts: code selection and

register allocation. The code selector maps the intermediate representation (trees

or directed acyclic graphs), generated by the front-end, using the back-end

interface into DLX instructions. The register allocator maps all the virtual

registers to physical registers. We used the MIPS [55] code generator as a model

and made some changes to suit the DLX instruction set. Perhaps this work is not

much from a compilation teclmology’ s point of view but it is especially important

to us since we need a correct compiler to test and modify our SoC platform to

save time and avoid mistakes from hand-written codes. It also helps us to explore

compilation technology step by step.

Instructions Selection

The instruction selectors in 1cc are automatically generated from compact

specifications by the program lburg. That is, one gives grammar to lburg to

partition the R tree and it generates the C code for the back-end. A tree parser

accepts a subject tree of intermediate code and partitions it into chunks that

correspond to DLX assembly instructions.

The interface between lcc’s target-independent front-end and its target-dependent

back-ends consists of a few shared data structures, 1$ functions, and a 36-operator

DAG language, which encodes the executable code from a source program. Most

of the functions (15) are simple, e.g., they ernit function prologues, define global,

lay out data, etc.

66

A symbol’s name, class, and type fields give its name, its storage class, and its

type respectiveiy. Fields and types irrelevant to register allocation have been

omitted.

In a DAG node, the kids point to the operand nodes, and the syrns point to symbol

table entries for those operators that take symbols as operands. Count holds the

number of references to this node from kids in other nodes. The x fieid is the

back-end’s ‘extension’ to nodes and it hoids the per-node which is target

dependent data that the back-end needs to generate code.

reg holds the number of the registers allocated to this node. rmask is 1 if the node

needs an ordinary register, and 3 if it needs a register pair, next points to the next

node in the linearized forest.

The op field holds an operator. The last character of each is a type suffix, such as:

C means character, S means short, I(int), U(unsigned), P(pointer), f(float),

D(double) and V(void) [56].

Tree grammar is the core of lburg which is the back-end generator in 1cc. Tree

grammar is a list of rules which contains four parts. First is a non-terminal that

replaces the part of the tree if the rule is applied. Then, a tree-matching expression

(non-terminais and IR nodes) specifies where the rule can be applied finaliy, it

specifies what assembler instructions must be added to make the transformation

and their cost (what the compiler tries to minimize; size or number of cycles).

DLX non-terminal iist as below:

acon: address constants

addr: address caiculations from registers

addrr: address calculations from immediate values

con: constants

reg: computations that resuit to a register

67

stmt: computations done for side effects

The above non-terminais give a high level overview of the tree grammar used for

mapping to DLX assembler instructions. Here are some actual rules:

reg: BCOMI4(reg) xori r%c,-1\n” 1

reg: BCOMU4(reg) xori r%c,-1\n” 1

reg: NEGI4 (reg) sub r%c,rO,r%O\n” 1

stmt: EQI4 (reg, reg) seq r3,r%O,r%1\n bnez r3, %a\n” 2

stmt: GEI4(reg, reg) sge r3,r%O,r%1\n bnez r3, %a\n” 2

stmt: GTI4(reg, reg) sgt r3,r%O,r%1\n bnez r3, %a\n” 2

xor: XORI(reg, reg) “ r%O,r%1 “ O

reg: ADDI(xor, reg) xadd r%c ,%O, r%1\n” 1

The elements in the first column, iike reg and, stmt, are non-terminais. The

second coiumn has tree nodes that written in uppercase and operands types in

parentheses (here, operands are non-terminal reg). In the third coiumn, inside

double quotation marks are the assembler code templates. The final coiumn’s

numbers are the optional cost.

Register Allocation

The register aiiocator is a small part written in C, using predefined 1cc register

management functions. The front-end passes a forest of dags to the back-end. The

68

production back ends traverse each dag to select suitable instructions, but the

sample back-end emits a naive code so it does liffle during this first pass.

After code selection, ail back ends linearize the forest and make two passes over

the resulting list, which is linked through the x.next fields in each node. The first

pass allocates registers and the second emits the final code.

Lcc’s register allocation strategy is simple: it traverses the linearized forest and

allocates registers to each node. The count field telis when ail of the references to

a node have been processed. for each node, the registers used by its children are

released by putreg, which decrements count and frees the register only when the

last reference is removed by clearing the appropnate bits in the global variable

rrnask, where rrnask&(i«r) is 1 if register r is busy. SubsequentÏy a register or

register pair is allocated to a node by getreg. A register is spilled even if its value

is already available elsewhere in memory and even if it would be cheaper to re

compute than to spiil and re-load.

The register allocator frees registers as soon as possible. If the available registers

are exhausted, it is ofien because there are multiple references to the nodes

holding the registers which arise from common sub expressions and from multiple

assignment, augmented assignment, and the operators ++ and

The DLX instruction set gives a few constraints: RO is always O and R3 1 only

contains jurnp and link instructions’ retum address. The assembler reserves Ri for

pseudo-instructions. R2 and R3 are reserved by convention for retum values. R26

and R27 are reserved for Operating System (OS). R4-R7 are for procedure

arguments. R$-R15, R24, and R25 are scratch registers. R16-R23 are for register

variables. R28 is used as a global pointer. R29 is the stack pointer, and R30 is for

compiler temporary values.

69

5.4 Test and Resuit

With a new added output device and data interface, especially they work with our

compiler and assembler, the entire idealized platform structure is shown in Figure

16.

The entire design flow is described as follows: write applications using C code as

a replacement for assembly code, in order to avoid hand writing deficiencies such

as long developing time, difficulty with debugging, etc. Then it compiles C code

to assembly code. It translates assembly code to binary code by using EBEL DLX

assembler which was developed by Etienne Bergeron and Eric Lesage [57]. It

loads the binary code to ROM (program memory) which can be mn on our

multiple processors platform. It is very easy to print information to screen through

the output device and it might successfully exchange data flow with other devices

by using data interface.

Figure 16 Overview cf entire platform

We also used some special pure C functions to implement basic 110 functions,

mathematical functions, and conversion functions without C libraries. These

functions include getaddress, getdata, gputadress, putdata, getchar,

Inteace

70

string_to_integer, printString, sqrt, etc. Ail of these functions are small and easy

ported.

By using these functions and modules we can conveniently impiement some

library functions such as prin but we often do flot need a printing function that

is as compiex and big as prinf

The following exampie shows how the above-mentioned functions and modules

work: Suppose we need to print “Heiio” to the screen; using the printString

function, we couid write the C code as follows:

voidprint$tring(char *p)

{
while(*p) *((unsigned int*) 0x4001) = (*(unsigned char*)p++),.

J
void ,nainO
{
printstring(”HelÏo ‘9,.

J

Compiling the above code we got the corresponding DLX assembler code:

addi r29, rO, 1000 we define stack here

jat main

trap O

flop

flop

printString:

j L3

L2: addi r24, r4, O

addi r4, r24,]

addi r15, rO, 0x4001

tbu r24, (r24)

sw (r15), r24 access to a addressabte device using

memory mapped inechan ism

L.3: lb r24, (r4)

71

sne r3, r24, rO

bnez r3, L.2 need optimisation

addi r24, rO, 0x4001

sw (r24), rO

L.1:jr r31

main:

addi r29, r29, -24

sw 16(r29), r31

addi r24, rO, L. 6

sw -4+24(r29), r24

1w r4, -4+24(r29,)

jal printString

L.5: 1w r31, 16(r29)

addi r29, r29, 24

jr r31

L. 6:

byte 72, 101, 108, 108, 111, 0

We ran the above assembler code on the network platform mode! using a single

DLX processor and got the expected results but the code is not optimal. The “sne”

inprintString cou!d be removed by changing the condition on the next line [58].

We have performed simple tests for a multiprocessor with manual parallelization.

Restricted by the testing platform memory mode! we loaded the same code to a!!

RAM and ROM but each processor can only run the indicated program fragment

that is distinguished by identifying the node number. See the following examp!e:

/* this isfor test simple paraÏÏeÏ on DLXptazforin
0X3 000 is base ring device address
0X1 0(16) is data outjort offset
OXOC(12) is address outport offset
0X08(8) is data getjort offset
*/

void trans(’ addr) /* transfer X to number “add” izode */

72

t
*((int *)0x30] O) =X
*(‘(i,tt *)Ox300C) addr;

}

int get_dataØ
t
return (*(int*)0x3008),.

}

int get_addr_s4f()
t
return *(int*)0x3004,.

}
void maittO
tint al 2, nodeNo, tranNo;
node_No get_addr_seifO;
al +nodeNo;
f(nodeNo=O)
trans(al, 2);
f(nodeNo2)
al +getdata;

}

In the above simple C program, we can easily identify the current DLX node

number by calling function get_addr_selfQ. We got the equivalent DLX assembly code

as follow by compiling this C code.

73

addi r29,r0, 1000 sw -4+32(’r29), r24

fa! main jal get_addr_s4f

trap O addi r30,r3,O

nop 1w r24,-4+32(r29)

nop addu r24,r24,r30

traits: sw -4+32(r29), r24

addir2 sner3,r30,rO

biiez r3, L5

1w r4,-4+32(r29)

4, rO, 0x3010 addi r5, rO, 2

sw (r24), r4 fa! trans

addi r24, rO, Ox300c L.5:

sw (r24), r5 L. 4:

L.]: 1w r30,]6(r29)

jr r31 1w r3 1 ,20(r29)

get data: addi r29, r29, 32

addir24, rO, 0x3008 jrr3l

1w r3, (r24)

L.2:

jrr3l

getaddrsefi

addi r24, rO, 0x3004

1w r3, (r24)

L.3:

jrr3l

main:

addi r29, r29, -32

sw 16(r29), r30

sw 20(r29), r31

addi r24, rO, 2

74

We ran the above assembler code on the network platform model using DLX

processors and got the expected resuits but the generated code is flot optimal. For

instance, the “sne” in print$tring could be removed by changing the condition on

the next une. We have also tested certain programs using the mentioned method

and we found they worked well on our platform even though we made several

changes for this multiple DLX processors platform. This means the compiler

works as a debugging tool to refine our simulation environment.

Indeed, the 1cc compiler for the DLX target is fully functional. The performance

of the generated code successfully passed testing on a single processor and

multiple processors by manual parallelism giving the expected results. Thus, our

colleagues can write applications by using C instead of DLX assembly. Although

the generated code is not as good as a hand writing code and it lacks of

parallelism, it could allow faster developing time and also avoid hand written

mistakes which would eventually save the developing period in the whole SOC

platform project.

75

Chapter 6
Conclusion and Future Work

With fast development in the telecommunication industry, bandwidth becomes a

key elernent of the rnarket. The market requires wider bandwidth switches,

routers, Ioad balancers and other high speed network equipments. In order to

satisfy this demand, high performance network processors are studied and

developed to meet the requirernents ofthe market.

76

One of the most popular solutions for network processing is ASLP. ASIP is an

instruction set processor typical for a particular application domain and has

become a widely accepted solution because of its special characteristics. By

overcoming the weaknesses of other solutions such as ASICs’ higher

development cost and GPPs’ lower efficiency, ASIPs get the balance with many

aspects. For instance, ASIPs could provide good balance both in hardware and

software to meet ail requirements in terms of performance, flexibility, and fast

time to market. Therefore, a network processor can be defined as the ASfP for the

networking application domain.

NP works as a network traffic manager in charge of PDUs processing at high

speed with the purpose of complete many different functions such as QoS,

compression, security-authentication, encryptionldecryption, etc. we have

discussed protocol stacks and showed the data path “ftom end to end” In chapter

2, It shows clearly that network processors do not run ail of protocol stacks since

the NP’s main function is data forwarding.

Special functions of network processors are enumerated in chapter 2. A network

processor may perform some prompt operations such as classification,

modification, queuing, and buffer management. Other operations include security

with the content of encryption, decryption, and authentication; and operations like

policing, compression, and traffic metrics, etc.

Detailed explanation of fast passing PDU, classification, modification, and

queuing also has been described in chapter 2. We know that the network

processor has very littie time to operate on a PDU because data arrives at a high

speed rate and it needs to be quickly dispatched. Examinations have to be done to

determine what type of processing should be performed on a PDU. Modification

77

explains how a PDU may be modified. for instance, an incoming label will be

changed to an outgoing label in label switching traffic. Moreover, PDU’s header

may be added or removed. Frequently, CRC recalculation or checksum replacing

may be involved in the modification step. Queuing is needed when the data’s

arriving speed is faster than the processing speed. Transmission or retransmission

of a PDU is flot directly forward, as a resuit, some PDUs may be prioritized over

others, On the other hand, certain PDUs may be dropped.

Special functional features ofNPs were also discussed. Those features cause NPs

to have particular architecture characteristics different from other embedded

processors such as multiple processor elements working on a parallel or pipeline,

special instructions, distributed or shared memories.

Furthermore, the market requires fast reaction time with good reliability in

network equipment field. In network processing systems, embedded software

requires compilers to avoid slow and error-prone development in assembÏy

language in order to meet market needs. As a result, classical compiler technology

camiot provide sufficient solutions for the particular architecture of network

processors. Thus a very special code generation technology must be used to fully

develop the network processor’s performance. Moreover, muitiprocessor and

other kinds of processors may be used in one system. As a resuit, particular

compilers for NPs are needed.

A good NPs’ compiler must have excellent retargetability, high performance in

parallelization, high quality in special instruction mapping, etc. We face ail

challenges to ASIPs embedded systems and to parallel architectures when we

explore compilation technology for NP. We analyzed NPs basic attribute,

reviewed related work about parallel compilation, retargetable compiler, compiler

7$

technology for distributed or shared memory architecture and special instruction

mapping particularly in bit packet processing. We obtained a lot good ideas

related to NPs compilation technology afier discovering a number of related

works.

Our colleagues, Luc Charest and Alena Tsikhanovich, have modeled a system on

chip platform, which includes multiple DLX processors and simple interconnect

devices. The platform was developed using SystemC on Linux PCs. Other

students of our lab are still working on the ARM processors modeling and AIVIBA

bus modeling. A detailed description of the platform was presented in chapter 5.

We implemented a C-DLX compiler based on 1cc retargetable compiler. In

addition, a new back-end that is a DLX code generator we made worked well

when tested using our platform on a single processor or multiple processors.

Furthermore, we tested simple parallel work in the SoC platform with successful

resuit. We implemented many other functional models such as the byte related

operations and modified data transfer model as a token ring to suit data

transportation. We also put an output device that can print needed information to

screen without using stand C libraries.

We achieved a fundamental understanding of how a retargetable C compiler like

1cc can be used to target an ASIP like DLX architecture through this project. We

could easily add other network processors as targets since the DLX instruction set

came from many real world RISC processors. The compiler based on 1cc with its

fast, small, and convenient characteristics significantly improved the development

and debugging time. We also presented our tested compiler on our network

platform with expected resuits. Examples are illustrated to show how the specific

functions and modules are written to act as some of the standard C libraries.

79

These functions and modules will play an important role in testing and code

wnting in terms of time saving and simplified work. The quality of the compiler

generated code is not as good as the hand-written DLX assembly code.

In the future, we plan to explore CoSy DSP compiler development system [59],

and use SUIF parallel mechanisms to try to solve the multiple-thread problem in

network processors. We also plan to add special instructions such as bit-packet

oriented instructions to DLX in order to speedup network processor applications

which perfomis bit extraction and manipulation. However, we will encounter

difficulty in the network compiler development to generate bit-packet-oriented

instructions from a high-level language. There are several approaches that have

already been explored such as Compiler-Known Functions (CKFs) [44].

Eventually, we plan on achieving a general methodology of NPs parallel

compilation developing.

$0

References

[1] N. Shah, “Understanding Network Processor” Dept. EECS, UC, Berkeley.

September 2001.

[2] D. Herity, “Network Processor Programming”, Silicon & Software Systems,

Dublin, freland Jul 31, 2001.

http://www.embedded.com/story/OEG20010730S0053

[3] M. Rose, The Open Book: A Practical Perspective on 051 Prentice-Hall,

1990.

[4] M. Egan, “Networking Models”

http://mike.passwall.com/networking/netmodels

[5] N. Doraswamy and D. Harkins, IPSec: the new security standard for the

Internet, intranets, and virtualprivate networks. Prentice Hall. 1999.

[6] P. Loshin, Essential ATM Standards: RfCs and protocoïs made practical.

John Wiley & Sons. 2000.

[7] VLAN Information http ://net2 1 .ucdavis.edu/newvlan.htm

[8] E. Rosen, A. Viswanathan, R. Callon. Multtprotocol Label Switching

Architecture Internet Request for Comments. January 2001.

[9] D. Corner, D. Stevens, Internetworking with TCP/IP Volume II. ANSI C

Version: Design, Implementation, and Internals Prentice Hall. 1994.

[10] http://www.ipv6.org!

[11] B. Cole, “Accelerated Intros 12$ bit IPv6 Protocol Stack”

http://www.iapplianceweb.com!

[12] Alchemy Semiconductor, Inc. “The Alchemy Aul000 Internet Edge

Processor.” Product brief. 2000.

81

[13] SiByte. “SB-1250 Data Sheet” http:// www.sibyte.com

[14] SiByte, Inc. “SB-1 CPU fact sheet” http:// www.sibyte.com

[15] Cisco Systems. “Parallel eXpress forwarding in the Cisco 10000 Edge

Service Router” White Paper. October 2000.

[16] EZchip Technologies. “Network Processor Designs for Next-Generation

Networking Equipment” White paper. December 1999.

[17] EZchip Technologies. “EZchip Technologies Software Development Suite

Now Available For Its 10-Gigabit 7-Layer Network Processor.” Press Release.

January 17, 2001.

[18] T. Eklund, “The World’s First 4OGbps (OC-768) Network Processor.”

Presentation. Network Processor Forum. June 14, 2001.

[19] Xelerated Packet Devices. “XeleratorTM X40 Packet Processor.” Preliminary

Product Brief. June 2001.

[20] M. Ngo, “Introducing the BRECIS Multi-Service ProcessorTM.” Presentation.

Network Processor Forum. lune 14, 2001.

[21] Quantum EffectDevices. “QED RISCMark.” Product Sheet.

[22] Maker. “MXT4400: Traffic Stream Processor.” Product Brief. 1999.

[23] http://www.lexra.com

[24] B. Gelinas, P. Alexander, C. Cheng, W. Patrick Hays, K. Virgile, W.J. Dally,

“NVP: A Programmable OC-192c Powerplant.” Presentation. Network Processor

Forum. lune 14, 2001.

[25] IBM Corp. “PowerPC Microprocessor Family: The Programming

Environments for 32-Bit Microprocessors” 2000.

[26] B. Cole, “Intel net processor boosts dock, adds C compiler.” EE Times.

February, 20, 2001.

http ://www.eetimes.comlstory/OEG200 10220S0029.

82

[27] Motorola Corp. “C-5 Digital Communications Processor.” Product Brief.

May 4, 2000.

[28] D. Husak & R. Gohn, “Network Processor Programming Models: The Key to

Achieving faster Time-to-Market and Extending Product Life.” White Paper.

Motorola Corp. May 4, 2000.

[29] J. Wagner and R. Leupers, “C Compiler Design for a Network Processor.”

IEEE transaction on computer-aided design of integrated circuits and systems

VOL.20, NO. 11, November 2001.

[30] A. V. Aho, R. Sethi, J. D. Ullman, Compilers —principles techniques, and

toots Addison-Wesley Publishing Company, 1986.

[31] P.D. Terry, Compilers and Compiler Generators - an introduction with C++,

2000.

[32] J.K. Gough, “Syntax Analysis and software tools” Addison-Wesley

Publishing Company, 1988.

t33] R. Gregerich, S.L. Graham, “Code Generation: concepts, tools, Techniques”

Springer-Verlag 1991.

[34] I. Foster, Designing and Building ofParallel Programs. 1995.

[35] M. Quinu, Parallel Computing: Theory and Practice. McGraw-Hill, 1994.

[36] “High performance fortran - language specification. Technical report”, Rice

University, Houston Texas, 1993.

[37] 0. Plachy, “Parallelization of Sequential Code - MPL, HPF and Automatic

Parallelization” 1997.

[38] C.W. Fraser and D.R. Hanson, A retargetable C compiler : design and

impleinentation, Redwood City, CA: BenjaminlCummings Pub. Co., 1995.

[39] R. Stailman, ‘Using and Porting the GNU Compiler Collection(GCC), Calif.:

Morgan Kaufhiann Publishers, 1997.

$3

[40] http ://www.q-software-solutions.comllccwin32/

[41] G. Amdahl, “Validity ofthe Single-Processor Approach to Achieving Large

Scale Computing Capabilities,”

[42] R. Das, J. Wu, J. Saltz, H. Berryman, S. Hiranandani, Distributed Memory

Compiler Design For Sparse Problems.

[43] P. Banerjee, J. Chandy, M. Gupta, E. Hodge, J. Hoïm, A. Lain, D. Palermo,

S. Ramaswamy, and E. Su. The Paradigm Compiler for Distributed-Memory

Multicomputers. IEEE Computer, 2$(lO):pp37--47, 1995.

[44] J. Wagner and R. Leupers, “C Compiler Design for a Network Processor.”

IEEE transaction on computer-aided design of integrated circuits and systems

VOL2O, NO. 11, November 2001.

[45] LANCE - Retargetable C compiler, http://www.icd.de/es/lance/lance.html

[46] SPAM, http://www.princeton.edukmescal/spam/

[47] J.L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, Seconded, Morgan Kaufinann Publishers, 1995.

[48] http ://www.cs.iastate.edukprabhu/Tutorial/PIPELII’.JE/DLX.html

[49] P.M. Sailer and D. R. Kaeli, The DLX Instruction Set Architecture

Handbook, Morgan Kaufmann Publishers, Inc. 1996.

[50] G. Booch, Object-oriented analysis and design with applications, 2nd ed.,

Redwood CA: BenjaminlCummings, 1994.

[51] Open SystemC Initiative (OSCI), Functional Specification for SystemC 2.0,

http://www.systemc.org, 2001.

[52] L. Charest, E.M. Aboulhamid, C. Pilkington, and P. Paulin, “SystemC

Performance Evaluation Using A Pipelined DLX Multiprocessor,” Proceedings of

Design and Test in Europe Designers’ Forum, Paris, pp. 8-12, 2002.

[53] J. Coplien, Mutti-Paradigm Design for C++

84

[54] C. W. Fraser, D. Hanson, A Retargetabte C Compiler: Design and

Implementation, The BenjaminlCummings Publishing Company, Inc. 1994.

[55] G. Kane, MIPS RISC Architecture, Englewood Cliffs, NJ: Prentice Hall,

1989.

[56] C. W. Fraser and D. R. Hanson, “A code generation interface for ANSI C”,

Software—Practice& Experience, 1991.

[57] E. Bergeron and E. Lesage, EBEL-DLX

http ://www.iro .umontreal.cakbergeret/EBEL-DLX!, 2001.

[58] J. Li, F.R. Boyer, and E.M. Aboulhamid, “Retargetable C Compiler for

Network Processors,” Proceedings of 6th World Multiconference on Systemics,

Cybemetics and Informatics (SCI 2002), Orlando, fi. pp. 435, 2002.

[59] CoSy compiler development system, http://www.ace.nl

85

Appendix A: DLX instructions

Description Mnemonic Operands

load
byte LB rd, offset(rsl)
byte unsigned LBU
halfword LH
halfword unsigned LHU
word LW
SP floating-point LF
DP floating-point LD

store
byte SB offset(rsl), rd
halfword SH
word 5W
SP floating-point SF
DP floating-point SD

move
GPR to special register MOVI2S rd, rs 1
special register to GPR MOVS2I
single fPR to single FPR MOVf
double FPR to double FPR MOVD
single fPR to GPR MOVfP2I
GPR to single fPR MOVI2fP

integer arithmetic
add (signed) ADD rd, rsl, rs2
add unsigned ADDU
subtract (signed) SUB
subtract unsigned SUBU
rnultiply (signed) MULT
multiply unsigned MULTU
divide (signed) DIV
divide unsigned DIVU
add imrnediate (signed) ADDI rd, rsl, immediate
add unsigned immediate ADDUI
subtract immediate (signed) SUBI
subtract uns igned immediate SUBUI

logical
and AND rd, rsl, rs2
or OR
xor XOR
and immediate ANDI rd, rsl, immediate
or inmiediate ORI
xor imrnediate XORI

Ioad high immedïate LHI rd, immediate
shift

left togical SLL rd, rsl, rs2
right logical SRL
right arithmetic SRA
left logical immediate SLLI rU, rsl, immediate

86

right logical immediate SRLI
right arithmetic immediate SRAI

set-on-comparison
less than SLT
greater than SGT
less than or equal to SLE
greater than or equal to SGE
equal to SEQ
flot equal to SNE
less than immediate SLTI
greater than immediate SGTI
less than or equal to imm. SLEI
greater than or equal to imm. SGEI
equal to immediate SEQI
flot equal to immediate SNEI

rd, rsl, rs2

rd, rsl, immediate

floating-point arithmetic
add SP floating-point ADDF rd, rs 1, rs2
add DP floating-point ADDD
subtract SP floating-point SUBF
subtract DP floating-point SUBD
multiply SP floating-point MULTF
multiply DP floating-point MULTD
divide SP floating-point DIVF
divide DP floating-point DIVD

convert
SP to DP floating-point CVTF2D rd, rs2
SP floating-point to integer CVTf21
DP to SP floating-point CVTD2F
DP floating-point to integer CVTD2 1
integer to SP floating-point CVT 12F
integer to D? floating-point CVTI2D

set-on-comparison
less than SP floating-point LTF rsl rs2
less than DP floating-point LTD
greater than SPFP GTF
greater than DPFP GTD
less than or equal to SPFP LEF
less than or equal to DPfP LED
greater than or equal to SPFP GEF
greater than or equal DPFP GED
equal to SP floating-point EQF
equal to DP floating-point EQD
flot equal to FP NEF
flot equal to DPFP NED

87

Description Mnemonic Operands

j ump
jump J name
jump and link JAL
jump register JR rsl
jump and link register JALR

branch
on CPR equal to zero BEQZ rsl, name
on CPR flot equal to zero 3NEZ
on fP status register tTue BFPT name
on FP status register false BFPF

special
trap TRAP name
retum from exception RFE
no operation NOP

88

Appendix B: IBM PowerNP Instructions
(Grey part is reserved bits)

Integer Arithmetic Instructions

Integer Compare Instructions

Name 0-5 6-8 9 10 11-15 16-20 21-30 31
cmp 31 crlD O L A B 0000000000 0
cmpi 11 crfD O L A SIMM
cmpl 31 crfD O L A B 32 I O
cmplï 10 crfD O L A UIMM

Name 0-5 6-10 11-15 16-20 21 22-30 31
addx 31 D A B 0E 266 Rc
addcx 31 D A B 0E 10 Rc
addex 31 D A B 0E 138 Rc
Addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM

addmex 31 D A 00000 0E 234 Rc
addzex 31 D A 00000 0E 202 Rc
divwx 31 D A B 0E 491 Rc

divwux 31 D A B 0E 459 Rc
muthwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc
muIli 07 D A SIMM

mullwx 31 D A B 0E 235 Rc
negx 31 D A 00000 0E 104 Rc
subfx 31 D A B 0E 40 Rc
subfcx 31 D A B 0E 8 Rc
subficx 0$ D A SIMM
subfex 31 D A B 0E 136 Rc

subfmex 31 D A 00000 0E 232 Rc
subfzex 31 D A 00000 0E 200 Rc

89

Integer Logical Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
andx 31 S A B 2$ Rc
andcx 31 S A B 60 Rc
andi. 2$ S A UIMM
andis. 29 5 A UIMM

cntlzwx 31 5 A 00000 26 Rc
egvx 31 S A B 2$4 Rc

extsbx 31 S A 00000 954 Rc
extshx 31 S A 00000 922 Rc
nandx 31 S A B 476 Rc
norx 31 S A B 124 Rc
orx 31 5 A B 444 Rc
orcx 31 S A B 412 Rc
on 24 S A UIMM
oris 25 S A UIMM
xorx 31 S A B 316 Rc
xoni 26 S A UIMM
xoris 27 5 A UIMM

Integer Rotate Instructions

Name 0-5 6-10 11-15 16-20 21-25 26-30 31
riwimix 22 S A SH MB ME Rc
riwinmx 20 S A SH MB ME Rc
niwnmx 21 5 A 5H MB ME Rc

Integer Shift Instructions
Name 0-5 6-10 11-15 16-20 21-30 31
slwx 31 5 A B 24 Rc

srawx 31 S A B 792 Rc
srawix 31 5 A 5H 824 Rc
srwx 31 S A B 536 Rc

90

Floating-Poïnt Arithmetic Instructions

Name 0-5 6-10 11-15 16-20 21-25 26-30 31
fadd x 63 D A B 00000 21 Rc
faddsx 59 D A B 00000 21 Rc
fdiv x 63 D A B 00000 18 Rc
fdivs x 59 D A B 00000 1$ Rc
fmulx 63 D A 00000 C 25 Rc
fmuls x 59 D A 00000 C 25 Rc
fres x 1 59 D 00000 B 00000 24 Rc

frsgrtexl 63 D 00000 B 00000 26 Rc
fsub x 63 D A B 00000 20 Rc
fsubsx 59 D A B 00000 20 Rc
fsel x 1 63 D A B C 23 Rc
fsgrtxl 63 D 00000 B 00000 22 Rc
fsgrts x 1 59 D 00000 B 00000 22 Rc

Floating-Point Multiply-Add Instructions

Name 0-5 6-10 11-15 16-20 21-25 26-30 31
fmaddx 63 D A B C 29 Rc
fmaddsx 59 D A B C 29 Rc
fmsubx 63 D A B C 28 Rc
fmsubs x 59 D A B C 2$ Rc
fnmadd x 63 D A B C 31 Rc
fnmaddsx 59 D A B C 31 Rc
fnmsubx 63 D A B C 30 Rc
fnmsubsx 59 D A B C 30 Rc

Floating-Point Rounding and Conversion Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
fctiwx 63 D 00000 B 14 Rc

• fctiwz x 63 D 00000 B 15 Rc
frspx 63 D 00000 B 12 Rc

91

Floating-Point Compare Instructions

Name 0-5 6-8 9-10 11-15 16-20 21-30 31
fcmpo 63 crtD 00 A B 32 0
fcmpu 63 crtD 00 A B O O

Floating-Point Status and Control Register Instructions

Name 0-5 678 910 11-13 1415 16-20 21-30 31
mcrfs 63 crfD criS 0 0 00000 64 0
mffs x 63 D 00000 00000 583 Rc

mtfsbO x 63 crbD 00000 00000 70 Rc
mtfsbl x 63 crbfl 00000 00000 3$ Rc
mtfsfx 31 0 I FM O B 711 Rc
mtfsfi x 63 crfD O O I 00000 IMM 0 134 Rc

Integer Load Instructions
Name 0-5 6-10 11-15 16-20 21-30 31

lbz 34 D A d
lbzu 35 D A d

lbzux 31 D A B 119 0
lbzx 31 D A B 87 0
iha 42 D A d

lhau 43 D A d —

ihaux 31 D A B 375 0
ihax 31 D A B 343 0
1hz 40 D A d

lhzu 41 D A d —

lhzux 31 D A B 311
lhzx 31 D A B 279
lwz 32 D A d

lwzu 33 D A d
lwzux 31 D A B 55 0
lwzx 31 D A 8 23

92

Integer Store Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
stb 38 5 A d

stbu 39 S A d
stbux 31 S A B 247 0
stbx 31 S A B 215 0
sth 44 5 A d

sthu 45 S A d
sthux 31 S A B 439 0
sthx 31 5 A B 407 0
stw 36 5 A d

stwu 37 S A d
stwux 31 5 A B 183 0
stwx 31 S A B 151 0

Integer Load and Store with Byte Reverse Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
lhbrx 31 D A B 790 0
lwbrx 31 D A B 534 0
sthbrx 31 5 A B 918 0
stwbrx 31 5 A B 662 0

Integer Load and Store Multiple Instructions

Name 0-5 6-10 11-15 16-31
lmwl 46 D A d
stmwl 47 S A d

Integer Load and Store Strïng Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
lswil 31 D A NB 597 0
tswxl 31 D A B 533 0
stswi 1 31 5 A NB 725 0
stswxl 31 S A B 661 0

Memory Synchronization Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
eieio 31 00000 00000 00000 854 0
isync 19 00000 00000 00000 150

93

Iwarx 31 D A B 20 0
stwcx. 31 D A B 150 1
sync 31 00000 00000 00000 598 0

94

Floating-Point Load Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
lfd 50 D A d

lfdu 51 D A d
lfdux 31 D A B 631 [11
lfdx 31 D A B 599 [iE
Ifs 48 D A d =

lfsu 49 D A d
lfsux 31 D A B 567 0
lfsx 31 D A B 535 0

Floating-Point Store Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
stfd 54 S A d

stfdu 55 5 A d —

stfdux 31 S A B 759 0
stfdx 31 S A B 727 O

stfiwxl 31 S A B 983
stfs 52 5 A d

stfsu 53 5 A d —

stfsux 31 S A B 695
stfsx 31 S A B 663 0

Floating-Point Move Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
fabs x 63 D 00000 B 264 Rc
fmrx 63 D 00000 B 72 Rc

fnabsx 63 D 00000 B 136 Rc
fnegx 63 D 00000 B 40 Rc

Branch Instructions

Name 0-5 6-10 11-15 16-20 21-29 30 31
bx 1$ LI AALK
bcx 16 BO BI BD AALK

bcctr x 19 BO BI 00000 528 LK
bclrx 19 BO BI 00000 16 LK

95

Condition Register Logical Instructions

Name 0-5 6-8 910 11-13 1415 16-20 21-30 31
crand 19 crbD crbA crbB 257 0
crandc 19 crbD crbA crbB 129 0
cregv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0
crnor 19 crbfl crbA crbB 33 0
cror 19 crbfl crbA crbB 449 0
crorc 19 crbfl crbA crbB 417 0
crxor 19 crbfl crbA crbB 193 0
mcrf 19 crfD O O criS I 0 0 00000 0000000000 0

System Linkage Instructions

Name 0-5 6-10 11-15 16-20 21-29 30 31
rlï 1 19 00000 00000 00000 50

sc 17 00000 00000 000000000000000 I 1 0

Trap Instructions

Name 0-5 6-10 11-15 16-20 21-30]31
tw 31 TO A B 4
twi 03 TO A SIMM

Processor Control Instructions

Name 0-5 6-8 9 10 11 12-15 16-19 20 21-30 31
mcrxr 31 criS 100 00000 00000 512 0
mfcr 31 D 00000 00000 19

mfmsr 1 31 D 00000 00000 83 0
mfspr2 31 D spr 339 0

mftb 31 D tpr 371 0
mtcrf 31 S O I CRM I 0 144

mtmsr 1 31 S 00000 I 00000 146
mtspr 2 31 D spr 467

96

Cache Management Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
dcba 1 31 00000 A B 758 0
dcbf 31 00000 A B 86 0

dcbi2 31 00000 A B 470 0
dcbst 31 00000 A B 54 0
dcbt 31 00000 A B 278 ‘0

dcbtst 31 00000 A B 246 0
dcbz 31 00000 A B 1014 0
icbi 31 00000 A B 982 0

Segment Register Manipulation Instructions.

Name 0-5 6-10 11 12-15 16-20 21-30 31
mfsrl 31 D O I SR 00000 595 0

mfsrin 1 31 D 00000 B 659 0
mtsr 1 31 s o I SR 00000 210 0

mtsrinl 31 S 00000 B 242

Lookaside Buffer Management Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
tibia 1,2 31 00000 00000 00000 370 0
tlbiel,2 31 00000 00000 B 306 0

tlbsync 1,2 31 00000 00000 00000 566

Externat Control Instructions

Name 0-5 6-10 11-15 16-20 21-30 31
eciwx 31 D A B 310
ecowx 31 S A B 438

