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Résumé

La fouille de données, aussi connue sous le nom de la découverte de connaissance dans la

base de données (DDBC), consiste à découvrir des informations cachées et utiles dans des

grandes bases de données. La découverte des règles d’association est une branché importante

de la fouille de données. Elle est utilisée pour identifier des dépendances entre articles dans

une base de données. L’extraction des règles d’association a été prouvée pour être très utile

dans le commerce et les champs d’activité qui lui sont proche.

La plupart des algorithmes d’extraction des règles d’association appliquent à des bases de

données statiques seulement. Si la base de données se développe (nouvelles transactions sont

ajoutées), nous devrions re-exécuter ces algorithmes du début pour toutes les transactions

afin de produire le nouvel ensemble des règles d’association parce que l’ajout de nouvelles

transactions peut rendre des itemsets fréquents (itemsets fréquents fermés) invalide ou

générer de nouveaux itemsets fréquents (itemsets fréquents fermés), ce qui influence les

règles d’association. Ces algorithmes n’essayant pas d’exploiter les résultats obtenus de

l’ensemble des transactions. À ce jour, plusieurs algorithmes incrémentaux de mise à jour

progressive ont été développés pour la maintenance des règles d’association.

Dans cette thèse, nous traitons les aspects algorithmiques de l’extraction des règles
d’association. Particulièrement, nous nous concentrons sur l’analyse de quelques algorithmes

incrémentaux basés sur les connexions de Galois, comme GALIC’IA et GALI(’IA-T. Nous

avons aussi étudié certains algorithmes de calcul d’iternsets fréquents, comme Apriori

algorithm. En se basant sur ces algorithmes, nous proposons un nouvel algorithme, appelé

l’algorithme de treillis d’iceberg (ILA), qui utilise peu d’opérations pour maintenir à jour la

structure de l’iceberg lors de l’insertion d’une nouvelle transaction dans l’ensemble des

transactions. Ceci devrait être utile pour l’amélioration de la performance des algorithmes

existants basés sur le treillis de Galois (le treillis de concept).

Mots clés: treillis de Galois (concept), treillis iceberg, algorithme de construction de treillis,

méthodes incrémentales.
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Abstract

Data Mining, also known as Knowledge Discovery in Databases (KDD), is the discovery of
hidden and meaningftil information in a ‘arge database. Association rule mining is an
important branch of data mining. It is used to identify relationships within a set of items in a
database (or transaction set). Association mie mining has been proven to be very useful in
the retail communities, marketing and other more diverse fields.

Most association rule mining algorithms apply to static transaction sets only. If the
transaction set evolves (i.e. new transactions are added), one needs to execute these
algorithms from the beginning to generate the new set of association rules, since aciding new
transactions may invalidate existing frequent itemsets (or frequent closed itemsets) or
generate new ftequent itemsets (or frequent closed itemsets), which wiIl influence the
association rules. These algorithms do not attempt to exploit the resuits obtained from the
original transaction sets. To date, many incrementai updating proposais have been developed

to maintain the association rules.

In this thesis, we deal with the algorithmic aspects of association rLlIe mining. Specifically,

we focus on analyzing some incremental algorithms based on Galois connection, such as

GALIcL4, and GALICJA-T. We also study some plain frequent itemsets mining algorithms,

sctch as Apriori algorithm. Based on these, we propose a new algorithm, called Iceberg
Lattice Algorithm (ILA), which uses oniy a few operations to maintain the iceberg structure
when a new transaction is added to transaction set. It should be helpful in improving the
performance of existing algorithms that are based on Gaiois lattices (concept lattices).

Key words: Galois (concept) iattices, iceberg lattices, lattice constructing algorithms,

incremental methods.
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Chapter I Introduction

1.1 What is data mining?

Data mining [PS 1991] is the process of discovering hidden and usefiul information in a large
database. It is a decision-making tool based on Artificial Intelligence and statistical
techniques that consists ofanalyzing the automatically acquired data, making inferences and
abstracting a potential mode! for demonstrating the correlations among the elements in
databases. One of the important operations behind data mining is finding trends and
regularities, commonly called patterns, in large databases.

Current technology makes it is easy to collect data, but it tends to be slow and expensive to
carry out the data analysis with traditional database systems since these systems offer littie
functiona!ity to support analysis. Before the data mining era, massive amounts of data were
left unexplored or on the verge of being thrown away. However, there may 5e valuable and
useful information hiding in the huge amount ofunanalyzed data and therefore new methods
for digging interesting information out of the data are necessary.

There are many kinds of basic pattems that can be mined, such as associations, cattsatities,
cÏassfications, chtsterings, sequences and so on. Association rule mining finds pattems
where one data item is connected to another one. Causality mining discovers the relationship
between causes and effects. Given a set of cases with class labels, classification builds an
acdurate and efficient mode! (called ctassfler) to predict future data item for which the class
label is unknown. Clustering is the discoveiy of fact groups (called clusters) that are not
previously known. Sequence mining discovers frequent sequences of items in large
databases. Sequences are similar to associations, but they focus on an analysis of order
between two data items. In this thesis, we focus on associations. Indeed, discovery of
interesting associations among items is useful to decision making, as it allows us to make
predictions based on the recorded previous observations.

Many data mining approaches apply to static datasets only. If the set ïs frequently updated (as
with dynamic datasets), a new problem arises since adding new data may invalidate existing

frequent pattems or generate new ones. A simple solution to the update problem is to re-mine



Mining Dynamic Databases for frequent Closed Itemsets 2

the whole updated datasets. Ibis is clearly inefficient because ail frequent pattems mined

from the old datasets are wasted. A more suitabie approach consists in incremental data

mining [HSH 1998]. It attempts to exploit the resuits obtained from the original datasets

whiie analyzing only with srnall additional effort on the original set.

1.2 Association rule mining

Association mies were introduced in 1993 by Rakesh Agrawal, Tomasz Imielinski, and Arun

Swami [AIS 1993]. There are two steps on the process: finding ail frequent itemsets and

generating association mies from them. Frequent pattem mining is the core in mining

associations. Many methods have been proposed for this problem. These methods can be

classified into two categories: frequent plain pattem mining [AS1994, HF1995, PCY1995,

BA1999] and frequent ciosed pattem mining [PBTL1999-2, PHM2000J. The main challenge

here is that the mining step often generates a large number of frequent itemsets and hence

association mies. The frequent closed pattem mining is a promising solution to the probiem

of reducing the number of the generated mies.

Closed pattems or itemsets mining are rooted in the Formai Concept Analysis (FCA)

[GW1999]. FCA provides the theoretical framework for association mie mining. It focuses

on the partiaily ordered structure, known as Gaiois lattice [BM1970] or concept lattice

[W1982], which is induced by a binary relation R over a pair of sets T (transactions) and I

(items). In 1982, Wiiie proposed to regard each eiement in a lattice as a concept and the

corresponding grapli (Hasse diagram) as the reiationship between concepts [W1982].

Association mining approaches based on the Galois (concept) lattice construction have been

proposed. [GMA1995, CHNW1996, VMG2002].

GALICIA is an incrementai frequent ciosed itemsets mining aigorithm based on Galois

lattices. It exploits the resuits obtained from the original datasets when new data are added,

But it is inefficient since it explores the entire set of closed pattems, i.e. the frequent and

infrequent. Actuaily one needs to limit the set of generated closed pattems to the frequent

ones.
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1.3 Our contrïbution

In this thesis, in order to attack the problem of mining frequent closed itemsets incrementally,

we introduce and implement a new aigorithm, ILA (Iceberg Lattice Algorithm). ILA

algorithm is an incremental method based on iceberg lattice construction. Unlike GALICIA,

ILA maintains oniy the upper most part of a concept lattice. Therefore, it improves the

efficiency of the mining task by reusing the previous resuits, thus avoiding unnecessary

computation.

1.4 Thesis organization

The organization of the rest of the thesis is organized as foliows. Chapter II introduces the

basic concepts of association mie mining and Galois (concept) lattice, describes current state

of research on association mining algorithms and reviews two typical algorithrns. Since

Iceberg Lattice Aigorithm is an enhanced GALICIA approach, Chapter III revicws the

GALICIA approach. Chapter IV presents the motivation and theoretical foundation of

Iceberg Lattice Aigorithm. Chapter V presents Iceberg Lattice Algorithm step by step and
accompanied by a detailed exampie. We also discuss compiexity issues. Chapter VI

implements our algorithm and studies its performance. Chapter VII summarizes the thesis

and discusses possible directions for future work. Appendix presents the proofs of properties

used in this thesis, and the validation of the Iceberg Lattice AÏgorithm.
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Chapter II Data Minîng

2.1 Association rules minïng

2.1.1 Basic concepts of association rues

Let I = {i1, j,,..., i,1} be a set of distinct items. A transaction set T is a multi-set of subsets of I

that are identified.

Definition 2-1: We suppose a fiinction TID: T— N, where Tis a transaction set and Nis a set

of natural numbers.

Definition 2-2: A subset Xc I with IX k is called a k-itenzset. The fraction oftransactions

that contain Xis called the support (orfrequency) ofX denoted bysztpp EX):

I{t T I X tj
sicpp(X)=

T

Definition 2-3: A set ofTID is called titi-set.

Example

Assume 1 = {a, b, e, d e, f g, h}

A transaction set is as follows:

is a set of distinct items.

TTD Itemsets

1 {a, b, c, d, e,f g, h}

2 {a,b,c,e,f}

3 {c,d,fg,h}

4 {e,fg,h}

5 {g}

6 {e,fÏz}

7 {a,b,c,d}

8 {b,e,d}

9 {d}

Table 2-1: An example ofa transaction set
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(1, {a, b, e, d, e, f g, h}) and (8, {b, e, d}) are transactions, 1 and 8 are the TID of these
transactions. The size of {a, b, c, d, e,f g, h} is 8, so {a, b, e, d, e,f g, h} is an 8-itemset. The

size of {b, c, d} is 3, so {b, c, d} is a 3-itemset. Since three transactions (#l, #7 and # 8)

contain itemset {b, e, d} and the total number of transactions is 9, so szipp ({b, c, d})

Definition 2-4: If the support of an itemset X is above a user-defined minimal threshold

(nzinsttpp), then X is frequent (or large) and X is called afrequent itemset

(FI).

for example: given minsupp 0.3

supp ({b, e, d}) = 0.3, so {b, e, d} is frequent (large), we calÏ {b, e, d}a

frequent itemset

sttpp ({a, b, e, e,) = 1 <0.3, so {a, b, e, e, is non-frequent (non-large).

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami proposed Property 2-1 and Property
2-2 in [Ais 1993].

Property 2-1: Ail subsets ofa frequent itemset are frequent.

Property 2-2: Ail supersets of an infrequent itemset are infrequent.

Definition 2-5: An association nue is an expression X=Y, where Xand Yare subsets of I,

andXn Y= 0.

The stupport of a rule Xi>Y is Uefined as supp (X=>Y) sztpp (XuY). The coifidence ofthis

rule is defined as co,f(X=>Y) sttpp (XY) /supp (X).

For example: {b, c} {d} is an association nue, sïtpp({b, c} {d}) =supp{b, e, d}

co,f({b, c} {d})supp({b, e, d})/sttpp({b, c})= = =0.75.
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Mining association mies in a given transaction set T means generating ail assciation mies

that reach a user-defined minimal support (minsupp) and minimal coifldence (minconj. This

probiem can be divided into two steps.

• Finding ail frequent itemsets.

• Generating association mies from frequent itemsets.

The generation of association ruies from frequent itemsets is reiativeiy straightforward

tAS1994], since one divides a FI into two compiementary parts to make a mie between

premise and conclusion. Therefore the research in the domain lias focused on determining

frequent iternsets and their support.

2.1.2 Basics of concept lattices

Concept lattices are used to represent conceptuai hierarchies that are inherent in sorne data.

They form the core ofthe mathematicat tlieory of Formai Concept Analysis (FCA) [W1982J.

lnitialiy FCA was introduced as formaiization ofthe notion of concept, now it is a powerful

theory for data analysis, information retrieval and knowiedge discovery [GW1999]. In

Artificiai Intelligence, FCA is used as a knowiedge representation mechanism. In database

theory, it has been used for cïass hierarchy design and management [SS1998, WTL1997]. In

the Knowiedge Discovery in Databases (KDD), FCA has been used as a formai framework

for discovering association mies [STBPL2000]; furthemrnre, it has been successful in

improving the performance of aigorithms that mine association mies [PBTL1999-1].

The basics of ordered structures

Definition 2-6: Consider a set G and a, b, c G. A partial order on G is a reflexive (ae G I
a a), anti-symmetric (a, be G a b & b a = a = b) and transitive (a, b,

cE G a b & b e = a c) relation.

Definition 2-7: The set G in conjunction with an associated partiai ordering relation Gis

caiied apartially ordered set orposet or partial order and is denoted by

(G, G).
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Definition 2-8: Let P = (G, G) be a partial order. for a pair of elements, s, pe G, ifp G ,

we shah say that s succeeds (is greater than)p andp precedes s. Ail common

successors of s andp are called upper bounds of s andp. Ail common

predecessors of s andp are called lower bounds of s andp.

Definition 2-9: Let P = (G, G) be a partial order and A be a subset of G, if there is an element

se G such that s is the minimal of ail upper bounds ofA, then s is called the

least zipper botind of A (LUB); if there is an elernent pe G which is the

maximal of ail lower bounds ofA, thenp is called the greatest lower bound

of A (GLB).

Definition 2-1O:The precedence relation <G in P is the transitive reduction of G, i.e. s <Gp if

s Gp and ail t such that s G t Gp satisfy t = s or t =p. Ifs <G?, s will be

referred to as an immediate predecessor of p and p as an im,nediate

sztccessor of s.

Usually, P is represented by its covering graph Cov (F) = (G, <G), also called the Hasse
diagram. In this graph, each elernent s in G is connected to both the set of its immediate
predecessors and of its immediate successors, further referred to as Ïower covers (Cov’) and
zipper covers (cov”) respectively.

Definition 2-11: If a subsetA of G satisfies V s,p eA, s Gp vp Gs, then the setA is called

a chain and the elements are said to be pair wise comparable.

Definition 2-12: If a subset A of G satisfies V se G, V peA, s Gp = seA, then the set A is

called an order icleat.

Definition 2-13: 1f a subset A of G satisfies V se G, VpeA, p Gs = seA, then the set A is

cahled an orderfitter.
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Definition 2-14: A lattice L= (G, L) is a partial order in which every pair of elements s,p has

an unique greatest lower boztnd (GLB) and an unique least upper bound

(LUB). LUB and GLB define binary operators on G cailed, respectively,

join (s VLp) and meet (s AL P)•

Definition 2-15: Given a lattice L= (G, L), ail the subsets A ofthe G have a GLB and a LUB,

we cal! this lattice a complete lattice.

Definition 2-16: A structure with only one ofthejoin and meet operations is calÏed a

sein i—lattice.

The existence of a unique GLB for every pair of elements implies a meet semi-lattice

structure and the existence of a unique LUB for every pair of elernents impiies a join

serni-!attice structure.

Definition 2-17: A forma! context is a triplet K (T, I, R) where T, I are sets and R T x 1 is

a binary relation. The elements of T are called transactions (or objects) and

the e!ements of I items (or attribittes). Each pair (t, i)e R indicates that i is

an item of transaction t.

Definition 2-1$: T, lare sets, the (f g) is a GaÏois connection between 2’ and 2’, f 2’— 2’,

g: 2’—> 2’ iff, for alI XE 2T and YE2’,f(X) Yg(Y) c X.

Definition 2-19:Let K = (T, I, R) be a formal context, the function f maps a set of

transactions onto a set of items that are common, whereas g is the dual

function for the set of items.fand g are defined by’.

J(X)=X’= {ie IIVtetRi}

g(Y)=Y’={tE TIVieY,tRi}

Forexample: f({Ï,6})= {1,6}’= {e,f h} andg({e,f h})= {e,f h}’= {l,4,6}.
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R.WiHe proposed Property 2-3 and Property 2-4 in [W 1982].

Property 2-3: (f g) is a Galois connection ofthe formai context.

Property 2-4: Compound operatorsf°g (Y) and goJ(X) are Galois clositre operators over 2’

and 2” respectively. Hereafter, bothf0g (Y) and g°f(X) are expressed by “.

f0gl)=f(g(Y))= r’
gof(X) zzzg(f(X))=X’

Forexample: {e,fh}”=f(g({e,fh}))=f({1,4,6})= {e,fh},

{1, 4, 6}”=g(f({l, 4, 6})) =g({e,f Ïi}) = {1, 4, 6}.

X’ is the closure of X, which is the srnallest closed itemsct containing X.

For example: X= {a, b},

X’= {a, b}”= {a, b, c}.

Definition 2-20: An itemset Xis closed if X = X’.

If an iternset Xis closed, adding an arbitrary item i from I-Xto Xresulting a new itemset X

which is less frequent [PHM2000].

Property 2-5: Suppose Xis closed, then V j I-X sttpp (Xu{i}) <supp (X).

For exampie: X= {a, b, e, e,J}, 1-X {d, g, h},

2Xis a closed itemset and supp ({a, b, c, e,J}) —.

supp({a, b, e, d, e,J})=supp({a, b, e, e,fg})

= supp ({a, b, e, e, f h}) = 1< .

Every itemset lias the same support as its closure. This property lias been proven by

[PBTL 1999-Ï]

Property 2-6: supp(X) = supp (X”).

Definition 2-21: If a closed iternset Xis frequent, then we cali it afrequent cÏosediternset
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(fCI). Namely: fCI ={X Xe CIs A supp (X) minsupp}.

for example: given rninsupp = 0.3,

{a, b, c} is a closed itemsct and sitpp ({a, b, c}) = > 0.3, so {a, b, c} is a

frequent closed iternset.

Definition 2-22: A concept c is a pair of sets (X Y) where Xe 2T, Ye 2’,

X= Y’ and YX’. Xis called the extentofconcept e and denoted byext(c),

Yis called the intent ofthe concept c and denoted by int(c).

For example: in Table 2-1, {1,2,7}’={a, b, c} and {a, b, c}’={l,2,7}, so ({1,2,7}, {a, b, c})

is a concept. {1, 2, 7} is its extent and {a, b, c} is its intent.

for a concept c (X Y), since X = Y ‘= {X ‘} ‘= X’, so the intent of a concept is a closed
itemset.

Definition 2-23: The support ofa concept equals to that of its extent, it is defined as follows.

XIFor a concept c = (X Y), supp (c) =

For example: in Table 2-1, ({1,2,7}, {a, b, c}) isa concept, sïtpp (({l,2,7}, {a, b, c})) =

Definition 2-24: If the support of a concept e is above a user-defined minimal threshold

(minsupp), then e is frequent (or large) and e is called afrequent concept.

Definition 2-25: Let C be the set of concepts derived from a context. The partial order

L = (C, t) is a complete lattice called a concept lattice. The partial order is

defined as folÏows.

V (X1, Y1), (X2, Y2) e C, (X1, Y1) (X2, Y2) iffX1 c X2 A Y2 i Y1.
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A concept lattice L= (C, L) is a partial order in which every pair of concepts, cj, c2, has a

unique greatest lower bound and a unique least upper bound. The binary operators on C

denoted, respectively,join (CIVL C2) and meet (ci AL c7)[W 1982]:

tXi, Y1) VL X2, Y2) ({X1UX}”, {Y1 n Y2}),

(X1, Y1) AL X2, Y2)= ({X1flX2}, {Y1 U Y2}”).

The Hasse diagram oftbe concept latticeL from Table 2-1 is shown in figure 2-1. Intents and

extents are indicated in rectangles below the nodes. For example, the join and meet of c#5

({l,2,3}, {c,J}) and c4= ({l,3,7,$,9}, {d) are c#o ({1,2,3,4,5,6,7,8,9}, Ø and cl2

({1,3}, {c, d,f g, h}) respectively.

Two functions, p andv, are defined on the concept lattice.

Definition 2-26: The functionp: T — L is defined as follows:

t(t) - A{Cj t ext(c)} = ({t}”, {t}’).

Given a transaction t, this function is used to find a minimal concept e (according to the size

of extent) in L and ext(c) includes the transaction t.

for example, within the concept lattice in f igure 2-l, p(2) = C#1I and p(6) c#13.

Definition 2-27: The functionv I— L is defined as follows:

v(i) = v{cI jE int (c)} = ({i}’, {i}’’).

Given an item i, this function is used to find a maximal concept e (according to the size of

extent) in L and int (e) includes the item j.

For example, within the concept lattice in Figure 2-1, v(d) = c#4 and v(J) = c#i.

Hereafter, tc denotes the set of ail successors of concept e (the order filter generated by e)

and Lc denotes the set of all predecessors of concept e (the order ideal generated by c).

The notion and properties of iceberg were introduced in [STBPL2000].

Definition 2-2$: Given minsupp ae [0, 1], Cais the set of ail a-frequent concepts and the
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partial order (Ca, p) is called the iceberg concept lattice.

Property 2-7: Lais an upper-semi-lattice (orjoin-semi-lattice) of L.

The set of ail a-infrequent concepts in L forms a sub-semi-iattice (join-semi-lattice) of L.

for example, given a minsupp a= 0.3, the iceberg lattice from Table 2-1 is shown in figure
2-2. The support of every concept in Figure 2-2 is greater than 0.3.

Figure 2-1: The concept lattice from Table 2-l
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figure 2-2: The iceberg lattice L°3 from Table 2-l (a=O.3)

2.2 Current state of researcli on association mining algorïthms

Many algorithms for association mie mining have been designed, we can classify them into
several categories.

2.2.1 Plain frequent itemsets mining algorithms

In 1993, Rakesh Agrawal, Tomasz Imielinski, and Arun Swami proposed the notion of an
association mie and a corresponding aigorithm, caÏÏed Apriori, to discover ail significant
association mies between itemsets in a large transaction set [AIS 1993]. Apriori is a famous
atgorithm and enumerates every single frequent iternset. It uses the downward ciosure
property of itcmsets support to prune the search space - ail subsets of a frequent itemset must
be frequent. Only the frequent k- itemsets are used to construct candidate (k+Ï)-itemsets. A
pass is executed over the transaction set to find the (k+])-frequent itemsets from the
(k+ 1)-candidates.

Many variants of Apriori achieve improved performance by reducing the number of
candidates. Some algorithms reduce the number of transactions to be scanned [AS 1994,

13

_,_z- / l—ti.z 3. 4.5. e, 7,8. oH
—z- /

-

RI={d}
*E{1. 3.7.8. 8}
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HF1995, PCYÏ 995] and sorne reduce the number of transaction set scans [BMUT1997,
S0N1995, T1996].

FP-growth is anther well-known algorithm which finds complete frequent itemsets

[HPY2000]. It first constructs a compressed data structure, frequent-pattern tree (fF-tree),

to hoid the entire transaction set in memory and then recursively builds conditional FP-trees

to mine frequent pattems. FP-tree is an extended prefix-tree structure and ail transactions

with the sarne prefix share the portion of a path from the root. FP-growth algorithm avoids

the problem inherent to candidate generate-and-test approach, thus its performance is

reported to be better than that of Apriori. However, the number ofconditional FP-trees is in
the same order of magnitude as number of frequent itemsets. The aigorithm is not scalable to

sparse and very large transaction sets.

2.2.2 frequent cfosed itemsets mining algorithms

frequent itemsets mining oficn generates a large number of frequent itemsets and mies. This
process reduces the efficiency ofmining since one has to filter a large number of mined mies

to get useful ones. A-close aigorithm is an important alternative that was proposed by
N.Pasquier, Y.Bastide, R.Taouil, and L.Lakhai [PBTLÏ999-2]. It uses ciosure operators to
caiculate the frequent ciosed itemsets and their corresponding mies.

As a continued study on FP-growth, [PHM2000] proposed CLOSET. It is another efficient
aigorithm for mining frequent closed itemsets based on fP-tree. The special features of this
particular aigorithm are the three techniques deveioped for the purpose of complexity

reduction. first, CLOSET appiies an extended frequent-pattem tree to mine ciosed itemsets
without candidate generation. Secondly, to quickly identify frequent closed itemsets, it

develops a single prefix path compression technique. Finally, this scheme explores a
partition-based projection mechanism for pattems on subsets of items.

CHARM [ZH2002j is another efficient algorithm for mining ail frequent closed itemsets.

This algorithm implernents a hybrid search technique, called dual itemset-tidset search tree

(IT-tree) which enables it to skips many leveis of the IT-tree to locate the frequent closed
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itemsets quickiy. A fast hashtabte-based approach is also used in order to remove non-closed
sets found during computation.

In a sparse transaction set, the rnajority of frequent itemsets are ciosed iternsets. The
performance ofA-Close is therefore close to that ofApriori. The advantage of CLOSET over
A-Close is essentially the same as that of FP-Growth over Apriori [PHM2000]. In this kind
of transaction set, CHARM also outperforms Apriori due to the fast hash-table and the dual
iternset-tidset search tree. If the minsupp is srnail and the TID sets for frequent iternsets are
smail, CHARM wiÏl be efficient. However, its performance is inferior than that of CLOSET
since CLOSET employs the closure mechanism on a more elaborate scale. The benefit of
CLOSETbecomes even more significant on dense transaction sets, since CLOSETonYy scans
the transaction sets twice and the mining process is confined to the frequent pattem tree after
that. Also, regardÏess ofhow many times the transaction sets are being iterated, the frequent
pattem tree maintains the same shape with respect to the constant rninsttpp. Hence, the
runtime of CLOSET over real transaction sets increases at a much siower rate than that ofthe
sizes of transaction sets [PHM2000].

A recent algorithm TITANIC [STBPL2000] is another algorithm based on Galois
connections for mining frequent cÏosed itemsets. It is inspired by the Apriori algorithm, as
well as adopts a more powerfiil pruning strategy. This strategy determines the support of ail
k-itemsets that remain at the kth? iteration, and computes the closure of ail (k-1) -itemsets afier
the (k_1)th iteration.

2.2.3 incremental FI or FCI mîning algorithms

The most important problem with association mining is the huge number of frequent itemsets
and association rules that can be generated from a iarge transaction set. The methods based
on the frequent closed itemsets are a promising solution to the problem of reducing the
number of association ruies. However, confronting a dynamic transaction set, another
problem arises since the transaction set is frequently updated. Adding new transactions may
invalidate existing frequent pattems or generate new ones, thus one needs to re-execute the
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algorithms from the beginning. So far, a few incremental aÏgorithrns for association mining

have been proposed [GMAY 995, CHNW 1996, STBPL2000, VMG2002].

[VMG2002] proposed an incremental algorithm for mining frequent closed itemsets based

on lattice construction (GALICIA). The difference between it and other FCI-based techniques

is: it avoids reconstructing the frequent closed itemsets completely when transactions are

added to the transaction set and / or the ni insupp is changed. However, as mentioned earlier,
it is inefficient since one needs filter frequent closed itemsets from closed iternsets.

2.3 Review of two typical algorithms

In this section, we review two best-known association ruÏe algorithms: Apriori, a plain
frequent itemsets mining algorithrn, and A-Close, a frequent closed itemsets mining
a}gorithm.

2.3.1 Apriori algorithm

Apriori algorithm uses Property 2-1 and Property 2-2. It performs a number ofiterations. In
each iteration (i), it first constructs a set of candidate itemsets based on frequent itemsets
obtained from the preceding iteration (i-J); then scans the transaction set to filter the frequent
i-itemsets.

The procedures used in the Apriori algorithm are shown in Figure 2-3 and Figure 2- 4 (Ck

represents the set of candidate k-itemsets, fIk represents the set of frequent k-itemsets).

Aprior_Gen() is a sub-function of the algorithm. It generates the candidate itemsets by
joining the frequent itemsets ofthe previous pass that have the same items except for the last
one, and then generated candidates that contain an infrequent subset are dropped.

Apriori () is the main procedure of the Apriori algorithm. It has three main steps. First, it
considers the itemsets with only one item (unes 2-3) and calculates frequent ]-itemsets.

Secondly, it executes an iterative process, calling Aprior GenQ, to get the frequent itemsets
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(unes 4-9). This iterative process terminates when no new frequent itemsets can be found.
Finally, ail frequent itemsets are accumulated (une 10).

1: procedure: Aprior Gen (input: a set of ail frequent (k-1)- itemsets F1k1;

2: output: the set of ail k-itemsets candidate Ck)

3: I= item i II beginning ofjoin step

4: Insert (Ck, I) II insert L into Ck

5: for each p and qe f1k/ do

6: if p.I=q.I and ... andp1k2 q.ik-2 andp.1k]<q.Ik1

7: then insert (Ck(pJI,p.I2, .. q.I))

8: for ce Ck do II beginning ofpntning step

9: for ail (k-1)-subsets s ofc do

10: if(sEflkJ)

11: thendelete cfromCk

Figure 2-3: The procedure ofApriori-Gen O

1: procedure Apriori (input: I, T a output: FIs)

2: Jorail je I do

3: fI, —{1arge i-itemsets} // generate FI, bytraversing transaction set and counting the

II support for elements in I

4: for (k=2; F1k1 0; k++) do

5: begin

6: Ck= Apriori-Gen(FIkJ);

7: cozmtsupp (T Ck,) II calculate the support of Ck in T

8: FIk={ceCk( supp(c) a}

9: end

10: FIs = u1 to kf’k

Figure 2-4: The algorithm ofApriori ()
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for example, according to the transaction set in Table2-1, FI2 ={{a, b}, {a, c}, {b, c}, {b, d},

{c, d}, {c,J}, {e,J}, {e, h}, {fg}, 1f h}, {g, h}}, afterthejoiningstep inApriori-Gen
, C3

wiIl be {{a, b, c}, {b, c, d}, {c, d,J}, {e,f h}, {f g, h}}. The prune step will delete {c, d,J}

because itemset {d,J} is not in FI7, so C3 is left with { {a, b, c}, {b, c, d}, {e,f h}, 1f g, h} }.
After calculating their supports by traversing the transaction set, we get FI3 = { {a, b, c}, {b, c,

d}, {e,f h}, {fg,h}}.

According to the experimental resuits, Apriori outperforrns other plain frequent itemset

mining algorithms [AIS 1993]. Since its introduction, two enhanced versions of Apriori

algorithms were developed: Apriori-TID [A1S1994] and Apriori-Hybrid [A1S1994]. The

main difference between Apriori and Apriori-TID is that Apriori scans the entire transaction

set in each pass to count the support in order to discover frequent itemsets. Apriori-TID does
flot use the transaction set for counting support after the flrst pass. It employs an encoding of
the candidate itemsets used in the previous pass. Apriori-Hvbrid algorithm is a combination
of Apriori and Apriori-TID. As mentioned in [AIS 1994], Apriori has better performance in
earlier passes; Apriori-TID has better performance in later passes. Apriori-Hybrid technique
uses Apriori in the initial passes, and switches to Apriori-TID for the later passes if necessary.
Apriori-Hybrid technique improves the performance greatly.

2.3.2 A-Close algoritlim

A-Close is a non-incremental algorithm for mining frequent cÏosed iternsets which is inspired
by Apriori algorithm.

The A-Close algorithm contains several main procedures. The first is the AC-Generator

function, which is based on the properties ofclosed itemsets. It determines a set ofgenerators.

Here the generator is defined as folïows: an iternsetp is a generator ofa closed itemset e if it

is the smallest itemset that will determine e using the Galois closure operator: p” = c.

[W19$2]. In this procedure, it applies Apriori-Gen Q to the i-generator set to obtain the
(i+])-generator candidate set. It joins two i-generators with the same first i-1 items to
produce a new potential (i+])-generator, afler getting (i+1)-generator candidates, their
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supports are calculated, then the infrequent (i+1)-generators and (i+])-generators that have

the same closure as one oftheir i-subsets are discarded.

The second is the A C-Ctosure function. Once ail frequent generators are found, they will help

us to get ail frequent cÏosed itemsets by using Galois closure operators “. In order to reduce

the cost ofthe closure computation, A-Close aigorithm adopts an optirnized pruning strategy

by locating a (i+1)-generator that was pruned because it had the same ciosure as one of its

i-subsets to start the first iteration. Ail iterations before i11, the generators are closed, SO it is

unnecessary to carry out the closure computation for them, and then we just perform the
closure computation for generators of size greater or equal to i. For this purpose, the
algorithm uses the level variable to indicate the first iteration for which a generator was
pruned by this pmning strategy [PBTLY999-2].

A-Close algorithm finds the candidate generators during iterations. It is necessary to traverse
the transaction set to calculate the support for the candidate generators. 1f a generator is flot
cÏosed, it will require one more pass to determine its closure; if ail generators are cioscd, this
pass is flot needed.

for example, from transaction set in Table 2-1, A-Close algorithm discovers the FCIs as
follows with minsupp = 0.3. First, the aigorithm discovers the set of 1-generators, G1 and the
support for each elernent, no generator is deleted, because ail are frequent. Then 2-genetators

in G2 are detenuined by applying the AC-Generators function to G1, ail infrequent
2-generators are pmned (ail infrequent 2-generators are flot shown due to the limitation ofthe
space), meanwhile, {a, b}, {a, c}, {e,J} and {f h} are pruned since supp({a, b})=supp({a}),
supp({a, c})= supp({a}) , supp({e,J}) = supp({e}) and sïtpp({f Ïz}) = supp({h}). The level
variable is set to 2. Calling AC-Generators function with G2 to produce G3, we get {b, c, d}
and {c, d, J}, but {b, c, d} is pruned since supp({b, c, d }) = supp({b, d}) and {c, d, J} is

pruned since {c, J} G2. At last, since the levet variable is 2, so the candidate generators G’
inciudes the generators from G1 and G2, the closure function AC-Ctosure is appiied to G’ to
discover the ciosures of ail generators in G’ and duplicate closures are removed from G’, vie

get ail frequent closed itemsets. Figure 2-5 illustrates the whoie process.
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G1 G1
Support_count Generator Support Pruning Generator Support

{a} 3 infrequent
{a} 3

{b} 4 generators
{b} 4

{c} 5 {c} 5
{d} 5 {d} 5
le} 4 {e} 4
{!} 5 {R 5
{g} 4 {g} 4
{h} 4 {h} 4

G2 (ail frequent 2-generators) G2
AC-Gencrator (a,b} 3 Pnining {b,c} 4

(a,c} 3 {b,d 3
{b,c} 4 {c,d 4
{b,cl} 3 {c,J} 3
{c,d} 4 {e,h} 3
{c,f} 3 {fg} 3
{e,/} 4 {g,Ïz 3
{e,h} 3
{fg} 3
{fh} 4
{g,h} 3

G3 G3
AC-Generator {b,c,d} 3 Pruning

{c,d,J} 2
G’ FCIs

Generator closure support Pnrning Closure support

AC-Closure {a} {a,b,c} 3 {a,b,c} 3
{b} {a,b,c} 3 {c} 5
{c} {c} 5 {d} 5
{d} {d} 5 {e,f} 4
{e} {e,f} 4 {/} 5
{J} {/} 5 {g} 4
{g} {g} 4 {fh) 4
{h} {/h} 4 {b,c} 4

{b,c} {b,c} 4 {b,c,d} 3
{b,d} {b,c,d} 3 {c,d} 4
{c,d} {c,d} 4 {c,J) 3
{c,f) {cJ} 3 {e,fÏi1ç 3
{e,h} {e,fh} 3 {fg,h} 3
{fg} {fg,h} 3
{g,Ïî} {fg,h} 3

Figure 2-5: A-Close frequent closed itemsets discovery for minstlpp 0.3



Mining Dynamic Databases for Frequent Closed ltemsets 21

After studying above algorithms, in this thesis, we explore the problems of mining frequent
cÏosed itemsets. We attack these problems by implementing our proposed algorithm — ILA

(Iceberg Lattice Algorithrn). ILA algorithrn takes advantage of incrernental methods and
maintains only the upper most part of a concept lattice. As a critical feature, ILA algorithm
improves the efficiency of frequent closed itemsets mining by avoiding useless computation
and taking advantage ofthe previous iceberg structure. NameÏy, we improve ILA by (1) only
scaiming the transaction sets once and (2) only storing current frequent closed itemsets when
a new transaction is added.
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Chapter III Review of the GALICIA approach

GALICIA is a farnily of algorithms that generate frequent closed itemsets incrementally. Its

aim is to construct new closed itemsets based on current family ofclosed itemsets by looking

on the new transaction t+j. The incremental construction of the concept Ïattice may help

design the effective methods for frequent closed itemsets mining.

3.1 Lattice updates

Incrernental rnethods construct the concept tattice L starting from the initial lattice L0= ({Ø

I}, 0). When adding a new transaction t1+1, we incorporate it into the concept lattice L. Each

incorporation causes a series of structural updates. The basic approach was defined for

concept lattices [GMA1995] and was improved upon latcr [VM200Y]. It is based on the

fundamental property ofthe Galois connection established byfand g on (T, 1): both families

ofclosed subsets are themselves closed under set intersection [BMÏ 970]. So when inserting a

new transaction t+j, we shouid insert into L ail new concepts wliose intent is the intersection

of {t1+1}’ and the intent of an existing concept where the intersection is not an already

existing intent.

We now define a mapping y that Ïinks the concept lattices L and L1+1. The mapping y sends

every e from L1+1 to the concept from L1 whose extents correspond to the extent of e modulo

tï+1.

Definition 3-1: The mappings y: C ÷j—> C are established as follow.

y(X Y)=(Xi,Xi’),whereXi=X- {t+1}.

Ail concepts in L can be ciassified into three categories (hereafier C and C+1 denote the sets

of concepts in L1 and L1+1 respectively).

Genitor concepts (G (t1+1)) -- generate new concepts by intersecting with new transaction t1+j

and help calculate the respective new intents and extents.

Definition 3-2: The sets ofgenitor concepts in L1+1 and in L1 are

G( t1+j) = {c = ( I t÷i X; (Xu{ t1+1})”=Xu{ t1+1}},
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G(t+1)= {cr=(X Y’) I Y { t1+i}’; Y=(Yn { t1+j}’)”} respectively.

Modified concepts (M (t1÷ j)) -- their intents are included in the new transaction’s itemsets, so

their intents will remain stab’e, only the lTD ofnew

transaction t+1 is integrated into their extents.

Definitïon 3-3: The sets ofmodified concepts in L1+1 and in L are

W(t1+1) = {c = ( Y) J ce «; t1÷j e (X- {t1+1}’) — Y},

{c (X Y) j ce C, e e M( t1+ï), c y (e)} respectiveÏy.

Old concepts (O (t1+1)) -- remain completely unchanged when adding a new transaction t1+j.

Definition 3-4: The set of new concepts in L1+1 is

AQ1+1)= {{c( Y) ce C1±1; t1+j e X; (X- {t1±1})” =X- {t1+1}}.

The incremental algorithms focus on a substructure ofL1+1 that contains ail concepts with t+’

in their respective extents, i.e. both new concepts, PJ( t+) and M( t+1). We regard this
structure as an order filter, which is generated by the transaction-concept of t1+j in L1÷1,

denoted by p (t1+1). The order filter tp (t1÷1) induces a complete sub-lattice of L1+1. The

choice of a pivotai structure is determined by the isornorphic structure in L1, which is
cornposed of G (t1+1) and MQ1÷1). Thus when A’( t1+1) is integrated into L, the desired links

can be inferred from the structure isornorphic to t1tt (t1+1) within L.

In order to generalize the intersections ofthe description oft1÷j and the entire set C, we define
a mapping that links L to the lattice of the power-set of ail attributes, 2’.

Definitïon 3-5: The function Q: C— 2’ computes: Q(c) = Yn {t1+1}’.

The function Q induces an equivalence relation on the set C, and the class of a concept c is
denoted by [clQ. The set ofequivalence classes C/Q is considered together with the following
order relation

[cl]Q/Q[c2]QQ(c2)cQ(cl),
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Since the intents of concepts in tct (t1+1) are ail subsets of {t1+1}’ which are closed in K, the

resulting partially ordered structure, L/Q, is isomorphic to tp (t+1) and is a complete lattice.

The following algorithm (see figure 3-1) is a generic scheme for the incremental task. It

detects the three categories of concepts with the creation of the new concepts and their

subsequent integration into the existing lattice structure [VM2001].

This algorithm takes a lattice and a new transaction as arguments and outputs the updated

lattice using the same data structure. It includes three main computation steps. The first step

is a traversai of the set L with a simultaneous catculation of the intersections between the

respective concepts and the itemset ofthe new transaction t1+1 (i.e. {t1+j }‘), the partitioning of

L into classes with respect to Q (une 3-4), and the detection of class maximal concept for

every class []Qwith the subsequent identification ofthe status ofthe maximal element (unes

5-6). Secondly, it deals with modified concepts (unes 7-8). It updates their extents and

increases the corresponding supports. Finally, it deais with the genitors (unes 10-14). It

includes the creation ofa new concept and the order update in the lattice [VHM2003].

1: procedure add-traizsaction (In / Out: L a lattice, t1+j a new transaction)

2:

3: forallcinLdo

4: put c in its class in L/Q w.r.t. Q(c)
5: for ail [] in L/Q do

6: find e max ([])
7: if int (e) C { t1+1}’ then

8: add (ext (e), t1+1) {e is modified concept}

9: else

10: int — int (e) n { t1+1}’ {e is old or potential genitor}

11: if(not (int’, int) e L) then

12: { e —New-Concept (ext (e) ut+i, int) {e is genitor}

13: Update -Order (e, e)

14: add(L, e)}

figure 3-1: The algorithm of an incremental approach
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for example: we take the third transaction out from Table 2-l, we get Table 3-1:

TID Itemsets

1 {a, b, e, d, e, f g, h }
2 {a,b,c,e,J}

4 {e,fg,h}

5 {g}

6 {e,fh}

7 {a,b,c,d}

8 {b,e,d}

9 {d}

Table 3-1: An example of transaction set with $ transactions

Following the above algorithm, we get concept lattice L8 as figure 3-2.

—

_—-- //

f) *l— * —{b. y) *
E-1.2.4.8J / -{t 2O -{l.7. 0. 9)

- \_____ /
—-- /

i•
—

E—1 4 \ — Lç_. l.2.7):
.-. —

—- \

*I.Y g.r} t. cd)
E—t1, 2 *E-{I. 4) E-f1, 7)

-j_—--

17 - -

*1a, b, C. d, e,1, gb)

Figure 3-2: The concept lattice from Table 3-l
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When adding a new transaction 3 = {c, d,f g, h} to Table 3-1, transaction set T is the same

as Table 2-1. When inserting the transaction 3 to L8, three categories of concepts are:

1. 0M concepts = {C#14, c918}

2. Modified concepts = {c#o, c, c#3}

3. Genitor concepts = {c98, C#6, c15, c3, c1 , C#16, C#17}

The new concepts {c#i, c2, cfl5, c7, c9, C#io, c#12}

Integrating new concepts into L8, we can get new concept lattice L9 as Figure 3-3.

* I={g} // *1{c} * h{d}
*{1.234.6} *E{1.3,4. *Ec{1.2378} *E{1.3,7,8.Q}
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7/j ‘..

--I—-—-- 7/
/ N

J / N
8 0:

*I=1h} ,Z *Ie.f} *Nc.f} /• *Itbc} 7 *Ic.d}
*E’{l 3 4 6} *E={1 2 4 6} / *{1 2 3) / *{I 2 7 8) / *E={1 3 7 8)

- —

/1 // /\ Z / J
/ \ r- ,// ,

J /
w / -z *1{a b. o) I ,/‘

*te, th) \._ *1{f,g,h) /ç IfiLUU / *I={b.o.d}
*E={I,4.61 *{1.3.4) _7 *Ec{I7.8}

/

//

*1{ef.g,h) *1{a,b.o.e.t) ,‘ *Io.d.t.g.h)
-

- *E412} --

- /7 *E=f1.3) *E={1,7) Z// ____-

*Iqa,b.o.d.e,f,g,h)
*E{1)

Figure 3-3: The concept lattice from Table 2-1
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3.2 GALICIA family

3.2.1 GALICIA scheme

There are several differences between lattice update and closed iternsets update. Here, ciosed
itemsets is a set of intents of concepts, and there is no order between the elements. When one
updates closed iternsets, only the intents and supports are used. Lattice update should
consider the ordered link among the concepts. The algorithm in Figure 3-4 can help us
understand the characteristic of this approach {VM200 1].

1 :Procedure Update-CÏosed (In: t+j a new transaction, fanziÏy-C1 a set of closed iternsets)
2:Local: New-CIa set ofcÏosed iternsets

3:New-CI—Ø;I<— { t+1}’

4: for ail e in Farnily-CI do

5: if e. itemset c I

6: then e. supp++; lie is modified

7: else

8: Y<— e. itemset n I;

9: e<—Lookttp(Famity-CI, Y) lie is old or potential genitor

10: if e=rNULL

il: then e1—Ïookup(New-C1, Y) // e is a potential genitor

12: if e=NULL

13: then {node — new-node(Y, e.supp++);

14: New-CI<--New-CI u{node}}

15: else

16: e. supp <—rnax(e.supp++, e. supp)

17: Family-CI’—Family- CI uNew- Cl

Figure 3-4: Update ofthe closed itemsets family upon a new transaction arrivai in

GALICJA aigorithm

Every closed itemset is examined in order to establish its specific category (modifled, oid or
genitor). Modified ciosed itemsets simply get their support increased (une 6). Oid ones
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remain unchanged (une 8-9). Actuaily, every new closcd itemset is stored together with the

maximal support already reached for it, i.e. since multiple cÏosed itemsets can generate the

same cÏosed itemset with different support, the current support is the maximal support ofthe

new closed itemset, but flot yet confirmed that it is the maximum support for this closed
itemset, thus each time the closed itemset is generated (une 11- 16), the support is tentatively

updated. Furtherniore, the storage ofnew closed itemsets is organized separately (New-Cf),

so that unnecessary tests can be avoided. This computation yieids the correct support at the
end of closed itemsets traversai. Genitors are closed iternsets with maximum support of ail

closed itemsets that generated new closed itemsets. This fact is strongly remforced by an
implernentation that utilizes trie structures to reduce redundancy in both the storage and the
update ofthe closed itemsets.

3.2.2 GAL1CIA-T

GALICIA-T is a version of GALICIA based on tries [K1998]. In generai, the trie data
structure is used to store sets of words over a finite alphabet. It is a tree structure in which
letters can be assigned to edges. Each word corresponds to a unique path in the tree. Ail
nodes can be ciassified into two categories. One category compiles the terminal nodes that

correspond to the end ofwords. The other category compiles inner nodes that correspond to
prefixes. Trie offers high efficiency storage. Ail prefixes common to two or more words are
represented only once in the trie. As a consequence, a trie reduces the storage space and
manipulation cost. We can regard an item as a letter and an itemset as a word.

In GALICIA-T, one can implement two tries to represent the closed itemsets where one trie
for the current closed itemsets family(Family-Ci), and the other for the new closed itemsets
(New-CI). A node denotes a record with item, terminal, successors, support and depth fields.
item provides the item in noUe and represents transactions and individuaÏ closed itemset.

Successors is a sorted, indexed and extendable collection for lookup, order-sensitive
traversai and insertion ofa new member. Terminal indicates whether the node is terminal, Le.
whether Ycu,r, the current intersection between a closed itemset and I,, represents a closed

itemset. Support records current node support. Depth is the length ofthe path from the root

to node. The new transaction with its itemsets 1,1 is denoted by t1+;.



Mining Dynamic Databases for Frequent Closed Itemsets 29

The algorithm in figure 3-5 describes die main steps of an update with a single new
transaction t1+1. first, it creates a new trie to store the new closed itemsets, secondiy, it sorts
the {t1+j}’, thirdly, it traverses the trie and generates new closed itemscts, finally it merges
both tries.

1: procedure Update-CÏosed-Trie (In: t1+j a new transaction)

2: Global: Farnily-CI a trie ofitemsets;

3: Local: New-C’I a trie ofitemsets

4:

5: New-C1’1—- new-trie Q; Ifl—sort ({t1+1}’)

6: Traversal-Iiitersect (I,,, NULL, root (Fainity-Cf))

7: Merge (Family-CI, New-CJ)

Figure 3-5: Trie-based update ofthe closed itemsets upon a new transaction arrivai

The algorithm in Figure 3-6 is a recursive procedure that describes the simuitaneous traversai

(with detection of common elements) of two sequences of items. Each trie traversai starts
from the root and goes to a terminal nodc. If the cunently generated intersection (Y,,,.,.) is a
new closed iternset, then we insert it into the New-CI trie; if it is aiready in the basic

farniÏy-C1 trie, then we update the current node support. If the Iength of the current
intersection, IYc,,,.rI, equals the depth ofthe current node, the second case occurs. It means that

the current closed itemset ofthe trie is a modified element of L. An intersection is finished
whenever a terminal noUe is reached. The resulting intersection is tested for being new (une

7), if it is the case, it is added to the New-CI trie (line 9), else it is an existing itemset, so it
corresponds to a modified. b know whether the itemset that is cunently examined is the
modified or it is just an old from the same equivaient class, one tests the equality of the size

ofthe intersection to the size ofthe current itemset, i.e. the depth ofthe node in the graph of

the trie. If the node has successors, the intersection goes on.

Figure 3-7 depicts the resuit of the entire trie traversai. On the lefi, the state of FarniÏy-CI

before the insertion of transaction 3 is shown. On the middle, the New-CJ is shown, and on
the right, the situation of Family-CI afier insertion of transaction 3 is shown [VMGM2002].
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Figure 3-6: Trie-based update ofthe closed iternsets: single noUe processing
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figure 3-7: Left: The trie Family-CI ofthe closed itemsets generated from T.

Middle: The trie NewCI ofthe new closed itemsets related to transaction #3.

Right: The trie Family-CI after the intersection of transaction #3.

1: procedure Traversal-Intersect (In: I,, item-lists, node a trie node)

2: Global: farnily-CL New-CJ tries ofitern-lists

3:

4: if (J,NULL) and (J,1.item = ,tode.itern)

5: then add I.item)

6: if node.terminal

7: then n <— Ïookttp(fanzily-Ci, Y11,.,-)

8: if n=NULL

9: then update-insert(New-C’I, Y,,,.,., node.supp++)

10: else

11: if node.depth=iY11.,.I

12: then n.supp++

13: if (not node.terminal) or (I,,NULL)

14: thcn

15: for all n in node.successors do

16 while (I,,NULL) and (I,1.item <n.item) do

17: I,1—I,,.next

18: TraversaÏ-Intersect (I,, Y,11.,., n)
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The following table illustrates the advancement of this algorithm on one branch of the trie,

{a, b, c, d, e,f g, h}, upon the insertion ofthe item list {c, d,f g, h}.

node.item terminal support

a {c, d, f g, h } NULL N -

b {c, d, f g, h} NULL N -

c {c, d,f g, h} {c} Y 4

d {d,fg,h} {c,d} Y 3

h {h} {c,d,fg,h} Y 2

The first column is the items in a node, the second one is the value of I, (available part of

{ t+j}’), the third coÏumn represents the current result of the intersection, and the fourth one

indicates whether a node is terminal, i.e. whether the value of Y,,.r represents a ciosed itemset,

the fifth column records, whenever reaching a terminal node, the value of the support.

Incrementality is a major breakthrough in data mining methods and GALIC’IA is one of the

flrst algorithms to adopt this method. The experimental resuits indicated its advantages for

small rninsupp cases. However, the efficiency of the algorithm is hindered by the

requirement to preserve ail closed itemsets. One solution of solving the dilemma is by
maintaining only crucial parts of the closed itemsets (e.g. the frequent closed itemsets) and

work on each particular set separately. So in our algorithm (ILA), we store only the part

above the threshold in closed itemsets, which improves the performance.
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Chapter IV Maintain iceberg latfice only with FCIs

4.1 Incremental iceberg lattice update

The algorithms mentioned in section 3.2 can be used to compute frequent closed itemsets.

There are two steps in the process: the first step finds closed itemsets from transaction sets;

the second step filter the frequent ones with a defined rninsupp û’. The concept lattice L

contains ail closed itemsets. In previously mentioned algorithms, during the process of

updating concept lattice L, we ignored the value of lninsupp û’. Once given a minsupp, we can

divide L into two parts. An upper part, denoted as La= K), where all concepts have

supports greater than or equal to minsupp û’. We cal! it an iceberg lattice. For example, f igure

-i is an iceberg lattice L°3 from the complete concept lattice with a= 0.3; similarly, a lower

part, denoted as La= (C K). In this way, we shouÏd be able to maintain (store and update)

ail closed itemsets, even if some closed itemsets are infrequent.

However, there are two disadvantages in these algorithms. One is that we must travel through

ail closed itemsets when adding a new transaction t+i. Atso we must calculate the support for

every closed itemset to find frequent one. These two procedures increase the computational

cost. Now, we will propose a nove! algorithm that only executes a few operations to maintain

an existing iceberg lattice without excessive computations. These operations are based on the

current iceberg lattice structure.

Given a context K, iceberg lattice Lais the part above the threshold aofthe complete concept

lattice L of K. After adding a ncw transaction t1+j to K, an incremental algorithm executes the

same operations as with a complete lattice (add-transaction o, see section 3.1) to maintain

the structural integrity of an iceberg Ïattice L° [VMG2002]. However, there are some

additional tasks, such as eliminating ail concepts which become infrequent in L (L is

constructed with the transaction set in K+ t1+j) and adding some concepts which are flot

frequent in L, but when adding a new transaction t1+j to their extents (e. g., modified

concepts), they become frequent in L, or new frequent concepts in L which are produced by

non-frequent genitors in L. So the maintenance of an iceberg lattice includes flot only

creating new frequent concepts, but also deleting some old ones.
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I{a.bc}

IE{1. 2, 7}

figure 4-l: The iceberg lattice L°3 with T= {1,2,4,5,6,7,$,9} & a 0.3

For example, Figure 4-lis the iceberg lattice L°3, after adding the new transaction 3, the new

iceberg lattice L°3 is as Figure 4-2 and the respective concept categories are as follows.

Old concepts = {c#31 }
Modified concepts = {c#22, C#23}

Genitor concepts = {c#25, C#27, C#30, c#32}

The new concepts inL°3= {c#20, c21, C#26, C#28}
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Figure 4-2: The iceberg lattice L°3 with T= {1,2,3,4,5,6,7,8,9} and a=0.3
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4.2 Theoretical development

Our objective is to produce and maintain an iceberg lattice that only includes frequent closed

itemsets. When adding a new transaction t+1, we should consider every element in iceberg

lattice L°. In this section, we present a new incrernental method to maintain the integrity of

the iceberg lattice.

Variable Stands for

c A concept in La

T A transaction set

77 The number of transactions in T

TJ The number of transactions in T+ t+1

a Minsupp

L Complete concept lattice constructed with transaction set T
La Iceberg lattice constructed with transaction set T and threshold

support a

La The “lower” part ofthe lattice with transaction set Tand threshold

support a

t1+j New transaction or the TID ofnew transaction

{t1±1}’ The itemsets ofnew transaction t+j

L Complete concept lattice constructed with transaction set T+ t1+1

La+ Iceberg lattice constructed with transaction set T+ t1+j and

threshold support a

La The “lower” part ofthe lattice with transaction set T+ t+j and

threshoÏd support a

Table 4-l: The meaning of variables in ILA

According to the category of a concept, we must consider the outcome of each case and
subsequently prove the resuit.
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Let c be a concept in iceberg lattice (La) and t+j is a new transaction. If e is a modified

concept, then e (ext(c)u t+j, int (e)) is stiil a frequent closed itemset, it wiÏl be in the new

iceberg lattice (L).

Property 4-1: Vc L° if int(c) c {t+1}’ then e (ext(c) u t1+1, int (c))e La’+

for example, in Figure 4-1, when add the new transaction 3 = {c, d, f g, h}, e22 and c#23 are

rnodified concepts, i.e. int(c#72) c {c, d,f g, h} and int(c#23) ci {c, cl,f g, h}, so c#22 and cp3

are in Figure 4-2.

Let e be a concept in iceberg lattice (La) and t1+j is a new transaction. If c is a genitor, then

new generated concept e = (ext(e) u t+1, int (e) n {t1+j}’) will be a new ftequent closed

itemset, it will be in Lat but c may no longer be a frequent cÏosed iternset.

Property 4-2: Vce L if c is genitor, then e = (ext(e) u t1+j, int(c) n{t±1}’)e La+

For example, in Figure 4-1, when add the new transaction 3 = {c, d,f g, h}, C25, e27, c30 and

c32 are genitors, the new concepts they generate, c20, C#21, C#26 and e28, are in Figure 4-2.

After checking the genitors themselves, they ah keep frequent and go into figure 4-2.

If c is an old concept, we should check if c is still a frequent closed itemset.

In the general GALICIA algorithm, when adding a new transaction t1+1, one should update the

complete concept lattice L. Although some modified concepts are not frequent in L, they may

become frequent in L. furthermore, some genitors that are non-frequent in L may generate

new frequent closed itemsets in L. According to Property 4-1 and 4-2, it is reÏatively

obvious to find concepts in L’4 that has a counterpart in L Therefore, the main challenge in

ILA would 5e to discover the concepts that are in L without having a counterpart in L’

(such as new frequent concepts in L that are produced by the modified concepts in L or

the new generated concepts whose genitors are in La). These concepts are caÏled hidden

concepts and denoted by W( t÷1).

Definition 4-1: H( t1+j) ={(X Y) etp(t1+j) 11X1 a T, X- { t1±i}I < a I Tj }.
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From the definition 4-1, we observe that ali hidden concepts (X Y) are frequent within

transaction set T, they are inL, but the concepts (X- { t1+j}, (X- { t+1})”) are flot frequent

within transaction set T, they are in La.

For example, in Figure 4-2, the hidden concepts discovered after adding the new transaction

3 {c, cl,f g, h} to Figure 4-l are H(3) = {c#24, c#29}, since C#24 and c#29 are generated by

c#iiand C#I6 in Figure 3-2 those are not in figure 4-1.

From the definition 4-1, the property hereafter follows trivially.

Property4-3: (X Y)E H(t1+j)iffa* I T+ a XI< a* TI+Ï

Before we apply Property 4-3, we need to introduce another trivial property. We aÏready

know that it is obvious that within the range [a* I T + a, a T + 1], there can be at most

one integer, thus we can formulate following property.

Property 4-4: ‘v’n e N, V ae [O..l], (a* n +a, a* n+l] n N

From the property 4-4, we can observe that the cardinalities of ail hidden concepts are equal

and there is no order arnong the elements of H(t1+1) in L°. Suppose there is an order

between e1 & C2 e H( t1+1), then ext (Ci) ç ext (c2). Since Iext (ci)I = ext (c2)I, then ext (ci)

ext (C2), it indicates that c1 and e2 are not closed itemsets, which is a contradiction. Moreover,

the successors of a hidden concept are frequent concepts which the extents contain t +i. As

such, the main objective ofILA is equivalent to computing H( t+1) and linking its elements

to their respective successors. These successors, called visible concepts and denoted by

V( t1+j), are in an upper-set which consists of frequent concepts containing t+j.

Definition 4-2: V( t+1)= {( X, Y) e tp (t1+1) I I X a * I T +1 }
For example, in Figure 4-1, the visible concepts {c#20, c#21 C#19, c26, C#28, c#23}.

For each visible concept (X Y), its counterpart in L, (X- {t+j}, (X- {t1+j})”) must be frequent,

i.e. (X- {t1+1}, (X- {t1+j})”) must be in La For example, the counterparts of C#20 and c22 in
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Figure 4-2 are C#25 and c22 in Figure 4-l respectively. Property 4-5 shows us that ail
immediate successors of a hidden concept are visible concepts.

Property 4-5: Vc e H( t1+1), Vc eL, if c e then y( t+j)

For example, in figure 4-2, C#24 and c29 are hidden concepts, the immediate successors of
c24 are C#20 and C#21, the immediate successors of c29 are c#22 and C#26, and ail of these 4

concepts, c#20, C#,1, c22 and c26, are visible concepts.

Thus, in order to discover hidden concepts, we may examine visible concepts in V( t1+j) and

generate their immediate predecessors in H( t1+,).

We can prove that for each comparable pair of concepts Ci, c2 in t1t (t1+1) (i.e., ci C2), there

is an attribute (item) j in {t1±1}’ (even in iizt(ci) -int(c)), such that c1 is the meet ofc2 and the

attribute-concept ofi, v(i).

Property 4-6: Vc1, e2 e tp (t1+1), if c c3, then i e int(cj) - int ( e2) Ci = y ( i) A C2.

For example, in figure 4-2, int(e#29) - int ( C#26) = { g }, c29 = v( g) A C#26 = c22 A c26

In order to find the lower covers cov” (e) ofa concept e in V(t1+1), one should examine the set

of its meets with appropriate attribute-concepts. The primitive operator of such an attribute i

is denoted by A: A c = v( i) A C. We shouïd now be able to calculate the extent and intent of

Ac.Theformerisext(Ac) = ext(c)r’ext(v(i)),whichequaistoext(e)n {i}’; andthe

latter, the intent of A e, is more expensive to obtain in the general. In order to avoid this

costly calculation, we derive the foilowing property.

Property4-7: Vcj, c7e V(t1+1), s. tcj <C2, iflt(Cj)- int(c2) { ie {t+J}’IA C2C1 }
for example, in Figure 4-2, e23, c#28 are visible concepts and C#28 is a predecessor ofc#23, the

intent difference between c#28 and C#23 is e which belongs to {t1+1} ‘,and c#28 is the meet ofc#23
and the attribute-concept of e, c#21.

Property 4- 7 indicates that if e1 precedes C2, then the attributes in the difference of their

intents are exactly those ofthat ci = v( j) A C2•
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We can obtain the intent ofthe concept Aic2 by adding ail the attributes j to int (C2), such that

ext (c2) n{i}’ = ext (C2) n {i}’. Given a concept, since this procedure fils ail ofits immediate

predecessors, we can find several subsets of attributes that lead to generate valid intents. On
the other hand, the attributes that are flot in those subsets wiIl generate oniy partial intents

since the corresponding concept A C2 is not an immediate predecessor. Furthermore, the set

ofattributes that generate hidden lower covers fora given concept c is denoted by gen;1(c). So
the main problem in ILA is to determine the attributes in genj,(c).

So far we do not have a direct way to determine this attribute set. However, what we can do is

to conduct some tests using a set of candidate attributes. In each test, we compare the size of

intersection ext (c2) n {i}’ to a constant value that is calculated based on the rninsupp a and

T (see Property 4-3). Because the computation of acquiring the intersection of extent is an

expensive task, we should reduce the number of candidates, primarily by eliminating those

attributes for which A C.? is certainly not a hidden concept.

When we are calculating the iower covers AC for a given concept e in V(t1+1) with an

attribute i in {t1÷1} ‘- int(c), the resulting concepts, which is a predecessor of e, will fall into

one and only one ofthese three cases (i.e., orthogonal): (ï) AceV( t1+1) (a visible concept),

(ii) A ceH( t1+j) (a hidden concept) and (iii) A C ELa (non frequent concept). In order to

avoid generating non immediate predecessors in W( t+1), we should find the hidden

concepts using the visible concepts that are their actual upper covers. For cases (ii) and (iii),

it is difficuit to avoid those without intersection computation, thus we only consider the case

(t).

We now design a method to prevent the concepts in V(t1+1) from producing their known

predecessors in the same set V( t÷1). A mechanism of intent propagation from concepts in

LcnV( t1+1) to e is adopted, namely, with a bottom-up and breadth-first traversal ofV( t+j).

This traversai helps to proliferate the cumuÏated intents of ah predecessors using a simple

lookup of the known lower covers. It also requires us to add an additional field to the data

structure representing a concept to record the set T (c).
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Definition 4-3: T (c)= u E v( ti+]) int(c)

Given a visible concept e, from definition 4-3, we know that T (e) is the union of intents that
corne frorn ail predecessors of e and these predecessors beiong to V(t1+1). The T(c) prevents
c from generating its predecessors that are already in V( t1+i) because the generated concepts

have support greater than 11* û’, therefore it is impossible for them to be in H( t1+,). For

example, in Figure 4-2, T(c#20) = {f h}. T(c#20) prevents c2o from generating c#26, because
c26 is a predecessor of C#20 and in V(3).

In fact, we can obtain the T (e) for any visible concept before computing a hidden candidate,
but we prefer to compute it during the traversai of V( t1+1) for the sake of efficiency. If a
hidden concept which is a non-immediate predecessor of c lias been found by a visible
predecessor of e, the attributes of this hidden concept can be used to extend the T (e). for
example, in figure 4-2, before calculating T (c#20), the visible predecessor of c#20 has
generated a hidden concept, c#29, so the attributes of c29 can be combined to T (c#20), now T

(c#20) = {f g, h}.

Given a concept e, we define an additional set, denoted by 1h, as follows.

Definition 4-4: 111: V( t+1)— 2’,

7’(c) = {i I i int (e), e n V( t1+1) + cov1 (e) n W( t+1)- cov1 (e) n H( t1+j)}

Definition 4-4 teiis us that the set I”(c) keeps track of ail the attributes of visible predecessors
of e and attributes of hidden concepts generated by visible predecessors of e except those
attributes that generate immediate hidden concepts of c. for example, in figure 4-2, the
visible predecessors of C#20 S e#26, and e#26 generated a hidden concept C#29, in fact,

cov’(c#20)nH(3) = 0, so T’(c#2o) is {f g, h} which is the union ofint(c#76) and int(c#29).

For a given visible concept e, T’(c) represents the maximal set of attributes that can be
reduced from {t1+i}’. We can compute 13’(e) from the values of I on immediate visible
predecessors ofc and the sets ofhidden concept generating attributes for the same concepts.
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Property 4-8: 7”(c) = u e cov”(c) n V( ti+J) (T”(e) uh(e))

Here, lite) represents the hidden concepts that are immediate predecessors of e. for example,

in Figure 4-2, C#26 does not have any visible predecessor, so I”(c#26) = 0, however, c#20 has a

visible predecessor c#26 which generated the hidden concept c29, so 1h (c#20) T ‘ (c#26) u

Ïl(c#26)= {f g, h}.

for each visible concept e, we defined a set of attributes, calÏed the domain of c and denoted

by dornain(c), is {t1+1} ‘- I”’(c), which shouid be examined for generating the hidden concepts.
+ ,Detïnition 4—4: Vc E V (t+j), domatn(c) = {t1+j} - i (e).

for example, in figure 4-2, add transaction 3 {c, d,f g, h}, domain(c#20) = {c, d,f g, h}

74’(c#20) = {c, af g, Ïi}— {f g, h}={c, d}.

In this chapter, we proposed a new method to implement incremental iceberg update and
described related theories whule deduced the proofs for these theories. In this method, the

rnost difficult and expensive step is discovering the hidden concepts for visible concepts. In
order to improve the efficiency, we applied some mechanisrns, such as a bottom-up and
breadth-first traversai ofV( t1+1), to minimize the candidate attributes. In the next chapter,

we will apply these theories to our incrernental update atgorithrn.
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Chapter V The incremental method

When a new transaction is being inserted into the context, the new method described in
Chapter IV can be transformed into an algoritlimic procedure, named Iceberg Lattice
Algorithm (ILA), which incrementaily updates an iceberg lattice.

5.1 The descriptïon of Iceberg Lattice Algorithm

Iceberg Lattice AÏgorithm (see f igure 5-1) maintains the structure of an iceberg lattice. It lias
two main parts. In the first part, ILA calis the procedure Add_Transaction_IceBg t )(Ïine 3)
to insert a new transaction t1+j to an iceberg lattice L’where the iceberg lattice is regarded as
an compiete lattice. This procedure, showed in Figure 5-2, is a modification of aigorithm 1
(AddObject ( ) in [VRM2003]) which updates the lattice incrementally. In this part, ail
concepts in LawiIi be checked, every modified concept wiii be updated (adds t1+j to its extent

and intent keeps unchanged); every genitor wili generate a new concept (its extent is the
combination of genitor’s extent with t1+j and its intent is the intersection between genitor’s
intelit and {t1+1}’) and the oid concepts wiIl be unaffected. The second part (une 4-10) is
more important, compiicated and expensive one in ILA. It accomplishes the core task ofILA.

1: procedure Update Iceberg Lattice (In: L’ an iceberg lattice, T an indexed set of
2: transactions, t1+j a new transaction)

3: Add_Transaction_IceBg (L’, t+1)

4: for aile in Lado

5: if s(c)< a then

6: Drop(L’, c)

7: Sort (V( t1+j)) 11m descending order ofthe Intent size

8: H( t1+j) — Find Lower Covers (V( t+j), T, t±1)

9: L<—add(L°, 111(t1+1))

10: retum La+

Figure 5-1: The aigorithm of Iceberg Lattice Aigorithm

At the beginning, it fiÏters ont and drops ail infrequent oid concepts and genitors in La (unes

4-6), then it sorts concepts in V( t1+j) according to the descending order of intent size (une 7)
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and calis Find_Lower_Covers () to compute immediate predecessors of visible concepts, i.e.
discover hidden concepts in W( t+1) (une 8). The purpose of sorting the concepts in V( t+j)

is to ensure the application of the bottom-up and breadth-first traversai rnechanisms in

finding hidden concepts. finalÏy, the new discovered hidden concepts are integrated into La

to formL (unes 9-10).

1: procedure A dd Transaction IceBg (ml Out: L a an iceberg lattice, t+i a new

transaction)

2:

3: for aile inLado

4: put e in its class in L w.r.t. Q(c) Il create index according to int(c) n {t1+j}’

5: for ail [] in L a do

6: find e = max ([])
7: if int (e) c{t1+1}’ then {
8: Add (ext (c), t) // e is modified concept

9: Add (V( t1+1), c)}

10: else

11: int f— int (e) n {t1+i}’ II e is old or potential genitor

12: if(not (int’, int) L (») then {
13: e —New_Concept (ext (c) ut, int) II e is genitor

14: Update_Order (c, e)

15: Add(La, e)

16: Add (V( t1+1), e)}
Figure 5-2: The algorithm of inserting a new transaction to an iceberg lattice

The procedure, Add_Transaction_IceBg o, takes an iceberg lattice La and a new transaction

t+j as arguments and outputs an updated iceberg lattice L°”Which is between L’ and L (La’

contains ail concepts in L” except ail hidden concepts, Figure 5-3 is an example’). Here, we
use the same data structure to represent both the initial and the resuÏting lattices. There are

three main computation steps within this procedure. The first one is a traversai of the set La
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with a simultaneous caïculation of the intersection between the intent of the respective
concept and the itemset of the new transaction t1+j, i.e. {t+1}’. It then partitions L° into
classes with respect to Q (unes 3-4) and finally detects the class maximal concept for every
class [] with the subsequent identification ofthe status ofthe maximal elements (unes 5-6).
The second step deaÏs with modified concepts (unes 7-9). It updates their extent (adds t1+j to
the extent), increases the corresponding supports and adds the rnodified concepts to visible
concept set (i.e., V( t1÷j)) for computing their lower covers. The final step deals with the
genitors (unes il-16). It includes the creation of a new concept, where its extent is the
combination of genitor’s extent with t1÷i and its intent is the intersection between genitor’s
bitent and {t+j}’, the insertion of generated concept to iceberg lattice, the order update in
iceberg lattice and the insertion of generated concept to visible concept set.

for exampte, given nzinsupp o’ =0.3, when we have finished dealing with transactions in

Table 3-1, we have obtained iceberg lattice Lashowed in figure 4-1, it includes 8 concepts,

C#30= ({1,4,6}, {e,f h}), c#31 ({l,2,7}, {a, b, c}), C#25 = ({l,2,4,6}, {e,J}), c22 = ({l,4,5},
{g}),c#27({1,2,7,$}, {b,c}),c#32({1,7,8}, {b,c,d}),c#23=({1,7,8,9}, {d})andc#19=({1,

2,4,5,6,7,8,9}, 0).

Consider now the insertion of the transaction 3 = {c, d, f g, h} into La with the procedure

Add Transaction IceBg Q. The content of L2/Q after performing the first step (line 3-4) is

shown in the following list, together with the indication of class maximum and its respective
status (rnod for modified and gen for genitor) using the format (Q(c), [Jo, Max([]g), Status):

({g}, c#22, C#22, rnod), ({d}, C#23, C#23, mod), ({f h }, C#30, C#30, gen), ({c}, {c#31, C#27 }, C#27, gen),

(U} C#25, C#25, gen), ({c, d}, C#32, C#32, gen). For modified concepts, add t1÷i to their respective

extent,wegetc#22({l,3,4,5}, {g}),c#23=({1,3,7,8,9}, {d})andc#i9=({l,2,3,4,5,6,7,8,9},

0). Consequently, the new concepts created at the end of the traversai of Qciasses are c26 =

({1,3,4,6}, {f Ïz}),c#21=({1,2,3,7,8}, {c}),c#20=({1,2,3,4,6}, {j})andc#28=({1,3,7,$}, {c,

d}). After finishing this step, we get the Figure 5-3. Now, the visible concept set is V(3) =

{ C22, C#19, C#26, C#21, Cr20, c#25}.
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5.2 Discovery of lower covers

In Figure 5-1, we caïl the procedure Find Lower Covers () (Figure 5-4). The purpose ofthis
procedure is to generate the lower covers of visible concepts (V( t1+j)) using the respective

dornain. This algorithm deploys a bottom-up, width-first traversaI mechanism ofthe iceberg
La.

—

—- /
/

/
N

2O COfltt 22 xaod;fied new concept todified

/ * 1{t} E * I=} * Ic} I I=d)
IE{1.2.3.4.} *={1,3.4.} 1E{1,2.2,7.8} IE={I,3.7.8.O}

/

//

—,

.
\ genitor

Ifr{ef} / IIf.h} *I{b.c} *I{cd}
IE{1, 2,4, 6} / *E{1,3.46} / *=i,aj IE={1.3,7.8}

Q gcnitor 31 old 32 geflitor
*I{.f,h} — — *1{a,b,c} t 11{b,o,d} .

*E{1.27} IE1,7.8}

Figure 5-3: The iceberg lattice L°3 from Table 2-Ï (a=O.3)

before finding hidden concepts

The first step sorts the concepts in V( t+1) according to the descending order of intent size

(une 9) and it ensures that the concepts are tested in an order that represents a linear extension

of the lattice order. Secondly, in the main process, each concept c in V( t±1) is checked to

generate its hidden concepts. Ibis process includes the computation of the frequent extent

intersections Extent that are stored together with the generating-attributes Candidates in the

hidden concept candidate set. Finally, at the end ofthe processing ofc, (Extent, Candidates)

in candidate set are used to generate the effective hidden concepts that wiIl be added to the

global hidden concept set H( t+j).
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1: Procedure Find_Lower Covers (InIOut: V( t+j), T an indexed set of

transactions, tj the new transaction)
2:

3: local: Hidden: set of concepts

4: local:
1q,

Dornain, h: set ofattributes

5: local: Extent: set of transactions

6: local: C’andidate: set of pair X Y)
7:

8: Hidden — 0

9: Sort (V( t+1)) {in descending order ofthe Intent size}
10: for ail c in V( t1±1) do

il: Candidate Ø7<—Int(c);h<—Ø

12: for ail e e Cov’(c) do

13: u 7’ (e) u h (e)

14: Dornain — {t+j}’- I’

15: while flot Dornain 0 do

16: i — extractjlrst (Dornain); Extent — Ext (e) r {i}’
17: ifa*I TI+ajExtentj<a*j T+l then

18: k’— Look_Up (Extent, Hidden)

19: ifkNULLthen

20: Cov’( c) — Cov(c) u { k }; h — h u Int( k); Domain — Domain —Int (k)
21: else

22: can <— LooIçUp (Extent, Candidate)

23: if can NULL then

24: can.Y—can.Yu { j }
25: else

26: can — tExtent, (hit (c) u { j } )); Candidate — Candidate u { can }
27: h—hu{i}

2$: for ail can e Candidate do

29: e — New Concept (canY can.Y); Cov’(c) — Cov’(c) u { e }
30: Hiddens — Hiddens u { e }
31: T”(c) 4z; geiz,1(c) —h

Figure 5-4: The algorithm for generating lower covers
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for a visible concept c in V( t1+1), 110W we explain the process of discovering its hidden
concepts in detail. The initialization step (une 11) sets the initial value of I’ as int (c), then
the set 1h is found by applying the propagation mechanisrn of intents. It makes good use of
the ] values of the predecessors of e (unes 12-Ï 3), this step adds ail attributes of visible
predecessors ofc and theirhidden concepts to ]. So far, the J” represents the maximal set of
attributes that can be removed from {t1÷j}’ and the domain (e) (potential generating attributes)
is determined (une 14). The next step is to discover the hidden concepts ofc one by one with
every attribute ï extracted from dornain (e) if dornain (c) is flot empty (unes 15-27). Once the

extent of Ac is computed (une 16) and it is proven to be frequent (une 17), the algorithm wilÏ

check whether the extent of AC existed in hidden set (une 1$), if it is found in hidden set (fine
19), it means that this extent has already been generated by another concept, then the
corresponding concept e is simply added to the hidden predecessors set of c (une 20).
furthennore, the intent of e is used to update both the set of generating-attributes gen,1(c) and

the doinain(c) (une 20). When the extent of AC is not generated by another concept (i.e., the

extent of AC is flot in hidden set), the algorithm wilI check whether this extent existed in the

candidate set discovered by c (une 22). 1f it existed, it means c has generated a candidate
hidden concept which has the same extent, we will update the intent ofthe candidate found

by adding j to its intent (une 24), if not, we create a new candidate with the pair of (ext (Âc),

int (c)u{i}) and add it to candidate set of e (une 26). On the next step, new hidden concepts

are created based on the elements in candidate set (une 29). These new hidden concepts are
then linked to their upper cover (une 29) and added to the hidden concept set (une 30). At the
end of the algorithm, ail attributes of the hidden predecessors of e are used to update T(c)
and gen;,(c) (une 30), these two attribute sets Will be used to discover hidden concepts for the
successors of e.

In order to illustrate the hidden concept computation, let us observe C#26 and e#22 When insert
the transaction 3 = {c, af g, h}. According to unes 10-14 in Figure 5-3, domain (e#26) = {e, a

f g, h}-{f h}={c, d, g}. The intersection between ext (c#26) and {e}’ is {1,3}, it leads to an
infrequent extent (l{1,3}I<3). It is the same situation between ext (c#26) and {d}’. The
intersection between ext (C#26) and {g}’ is {1,3,4} and it is frequent (j{1,3,4}I 3). However,



Mining Dvnamic Databases for Frequent Closed Itemsets 47

before dealing with c#26, both the W(3) and candidate set are ernpty, the intersection {1,3,4}
is neither in W(3) nor in candidate (une 25), ({1,3,4}, Ç g, h) is then added to candidate

set (une 26). Now, the dornain (C#26) is empty, a new hidden concept c#29 is created from the
candidate element ({ 1 ,3,4}, If g, h}) (une 29) and add it to H(3) (une 30). Now 7 (C#26) = {f
h}, genl,(c#26)={g}. For c#22, dornain (C#22) {c, d,f g, h}- {g}= {c, d,f h}. The intersection

between ext (c#22) and {c}’ is {1,3} and it leads to an infrequent extent ({1,3}I<3). It is the

same situation between ext (C#22) and {d}’. The intersection between ext (c#22) and Ij}’ is
{1,3,4}, it is frequent {l,3,4}I =3). However, C#29 (generated by c#26) in H(3) has the
resulting extent. So c#29 is added to the hidden predecessors set of c#22 and h(c#22) = int(c#29) =

If g, h}(Ïine 20). Now, update domain (c#22), since h is in both int (c#29) and domain (c#22), it
is eÏiminated from domain (c#22), so the domain (C#22) is empty, we have finished the process

of C#72.

5.3 Detailed example

In order to demonstrate the iceberg lattice algorithm, let us take a detail example of context

given in section 2.2.

The first part of the algorithrn in Figure 5-1 is perforrned (insertion ofthe transaction #3, see

section 5.1). The resuit showed in Figure 5-3. The second part starts by dropping out

infrequent concepts that could be old concepts or genitors, In this example, ail old concepts

and genitors are stili frequent. In the next step, we deal onÏy with the visible concepts in

V(3)= {c#22, c#23, c#26, c#21, c#20, c#19}. They are first sorted according to their intent size

and then their frequent immediate predecessors are calculated. Sorting V(3) in descending

order of the intent size, we get the following concept order {c#26, C#28, c#21, C#22, c#23, c20,

C#19 }.
Table 5-1 displays the execution ofthe algorithm in Figure 5-3 on ail visible concepts with

their corresponding domain. For each row, the table should be read as follows: the first

column displays each dornain attribute i, the second colurnn provides the value of the extent

of AC, the third one is the status of the intersection resuit (fie for frequent, it,fre for

infrequent), the fourth column presents the set genï,(c), the fifih one indicates the evolution of



Mining Dynamic Databases for Frequent Closed Itemsets 4$

Attribute Extent Status gen,,(c) Domain(c) Candidates Hidden

(item) concepts

(H”(3))

Process of concept C#26

{c} {1,3} ttifre 0 {d,g} 0 Ø

{d} {1,3} ztnfre 0 {g} 0 0

{g} {1,3,4} ,fre {g} g’ ({1,3,4}, {f g, h}) c#29

Process of concept c#28

U} { 1 ,3} ;tnfie 0 {g, h} 0’ c29

{g} {1,3} ztifre 0 {h} .0’ c29

{h} {l,3} unjre 0 0 0 c29

Process of concept c#21

{J} {1,2,3} Jre {f} {g, h} ({1,2,3}, {c,J}) c29

{g} { 1,3 } ttnfie 0 {h} ({ 1,2,3 }, {c, J}) c9

{h} {1,3} iti/re .0’ 0’ ({1,2,3}, {c,J}) c#29, C#24

Process of concept C#22

{c} {l,3} ttnfre 0 {d,f h} 0 C#29, c#24

{d} { 1,3 } tmfie O fjÇ h } O c#29, c#24

fJ} {1,3,4} fre {f h} 0 0 c#29, C#24

{h } Cancelled by une 20 of algorithm 5-3 (Domain — Domain —Int (e))

Process of concept c23

{J} {1,3} f unfre O {g, It} 0 C#29, C#24

{g} {1,3} unfre 0 {h} O c29, c24

{h} {1,3} unfre 0 0 0 cr29, C#24

Process of concept c2o

{c} {1,2,3} fre {f} {d} O J c#24

{d} {1,3}__r_w!fre
L29

c#24

Since the Domain ofc#19 is empty, SO it does not generate any hidden concept.

Table 5-1: The trace ofAlgorithm 5-4 when a new transaction is added
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the domain variable, the sixth column records and updates the candidate set, the last column

shows the content ofthe hidden concepts set (W(3)). In section 5.2, we have described how

to deal with c26 and c22 in detail.

figure 5-5 illustrates the main process ofthe Table 5-Ï.

visible concept 2vIsible COflCCPt visible concept j3 visible concept
* ={f} j j I{c) * I’{d}

I *E{12,3,4.6} jE={1.34,5) *E={1.2.2.78} *{I3,78,9}
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/
I j
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/ *E1 278)] j0 1 3 7 b)

/ I /
\ .,/

hidden concept/ /23 1 N’ a=03313 31 32.
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figure 5-5: Illustration ofthe discovery ofhidden concepts

During the process of concept C#26, we found the hidden concept c#29 ({l, 3, 4}, {f g, h}).

While dealing with the concept C#22, we found that c29 was a hidden predecessor of c#22. We

found the hidden concept c424 = ({1, 2, 3}, {c, J}) during the process of concept c#21.
Similarly, we found that c#24 was a hidden predecessor ofc#20. There was no hidden concept

to be found during the process of concepts c#23 and c#23. c2g only generated a infrequent

concept (c33 in figure 5-5). The domain ofc#19 is empty, so it is impossible to generate any

hidden concept. Finally, the hidden concepts discovered at the end of the algorithm 5-l are

H(3) = {c#29, C#24}.

visible concept
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The new iceberg lattice L obtained from Laand the transaction #3 is showed as in figure

4—2, aIl concepts are: c30= ({l,4,6}, {e,f h}), c#3i ({1,2,7}, {a, b, c}), C#25 = ({1,2,4,6}, {e,

J}), ({l,3,4,5}, {g}), C#27 = ({1,2,7,8}, {b, c}), c#32 = ({l,7,8}, {b, e, d}), C#23

({1,3,7,8,9}, {d}),c#26=({Ï,3,4,6}, {fh}),c#21=([l,2,3,7,$}, {c}),c#20=({l,2,3,4,6}, {J}),
c2s ({l,3,7,8}, {c, d}), C#29 ({1,3,4}, {f g, h}), C#24 ({l,2,3}, {c, J}), Cj9 =

({1,2,3,4,5,6,7,8,9}, Ø)}.

5.4 Complexity issues

There are a lot of factors that influence the global cornplexity of Iceberg Lattice Algorithm.
In this section, we will make some explanation.

(1) The number of transactions in a transaction set I T I
The number of transactions in a transaction set represents the size of DB. This is trivial.

(2) minsupp

Given a transaction set, as the minsupp value decreases, more cÏosed itemsets become

frequent, hence more concepts are in iceberg lattice, obviously, it witl increases the

global complexity ofthe algorithm.

(3) The total number of items which represent J

It is trivial that more items will increase the complexity in computation of dornain and

candidate hidden concepts.

(4) Maximal number of lower covers of a concept in L”

This represents the complexity of discovering the hidden concepts.

The basic notations are summarized in table 5-2.We can assess the complexity ofAlgorithm

5-4 as follows. First, with respect to the concept intent sizes, we sort the set V( t1+1) in
descending order (une 9), in this step, we just need to compare the intents size, so it can be
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accomplished in a linear time, i.e. 0 (1). Now we consider the cost of traversai of the set

V( t+j) (unes 10). We know that the worst case is when ail concepts in L” are also in

V( t1+1), so it takes 0 (1) concept examinations to discover hidden concepts.

Variable Stands for

ni The number of attributes J

t The number of concepts in L

k The number of transactions, ITI
zi(1) The different number ofL and L’

LtLaI
Maximal number of lower covers of a

d(L) concept in L, max (ICov’(c)I)j cEL

Table 5-2: The meaning of variables in complexity issues

The cost for discovering hidden concepts can 5e further divided into three additional parts:

domain computation (une 11-14), candidates-related computation (une 15-27) and finding

the new hidden concepts (une 28-30).

Maximal number of lower covers of a concept in L° is d(La+), the aÏgorithm wilÏ perform

O(d(La+)) concept examinations (une 12) to compute the domain for the concept (une il-14)

and cadi examination computes the union of attribute sets (une 13) which can 5e donc in

0(m). In the worst case, every attribute in I will form a lower cover of a concept and we
conclude that 0(d(Lj lias the upper bound 0(m), hence the computation of tic domain

costs 0(m2).

The candidates-related computation (une 15-27) has four additional components. lie first
one is the traversai of domain (une 15). In the worst case, we know that ail attributes in lare
in domain, so this step costs 0(m). Second, the computation of extent intersection (une 16)
will costs 0(k), since tic maximum values ofboth extent of concept and {t+j}’ are k. Third,

when ail new concepts (i.e., the difference between L and La) are hidden concepts and the

TID of every transaction lias been the extent of a hidden concept, then tic discovery of
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hidden concept set (H( t+j)) (une 18) can be executed in 0(A(l)k). Finally, the discovery of

hidden concept candidates (une 22) wilÏ also costs 0(rnk) since in the worst case, the TTD of

every transaction has been the extent of a candidate hidden concept and every attribute in I

will generate a candidate hidden concept. However, we can apply trie-based structure to the

sets of extents (hidden concepts and candidate), regardless of the scale of the trie, this

structure provides us a very efficient discoveiy which costs linear in the number of

transactions. Thus the cost of the lookup operations go back to 0(k) and the

candidates-related cost will be 0(mk).

Given a concept e, we know that the number of new hidden concepts generated by e is

limited by attribute number, so the creation of the hidden concepts (une 29) can be executed

in constant tirne and dealing with new hidden concepts (une 30) costs 0(m). In accordance

with the analysis above, the total complexity of the Algorithm 5-4 is bounded by

0(m(nz+k)T).

In order to update the iceberg lattice, the Algorithm 5-1 (sec Figure 5-1) performs two

traversais. for the first traversai, the algorithm AddTransactionlceBg() is called, its

complexity is 0(A(l)k2+l(k+m)) (see [VRM2003]). During the second traversai, to guarantee

the integrity of the iceberg tattice, i.e. eliminating infrequent concepts and discovering the

hidden concepts, the aÏgorithm performs additional steps. Line 4-6 is the first step that

eliminates the infrequent concepts. It can be donc in 0(tm) since the algorithm checks the

support of each concept (maximum number of concepts is 1 when ail concepts in L are

checked). If needed, infrequent concepts are rernoved. In the second step, the Algorithm5-4

is used to find the potential hidden concepts in H(t1+i). As described earlier, its complexity is

0(m(m + k)l). Consequently, the global complexity ofreconstructing an iceberg for a single

insertion is 0(A(1)k2+m(k+m)Ï). The time complexity ofILA is the same as that of GALICIA.
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Chapter VI Implementation ami experiments

In this chapter, we will describe some issues about implementations and experiments of

Iceberg Lattice Algorithm.

61 Experimental resuits

We conducted a set of tests to compare the miming performance between ILA and GALICIA

series algorithms. The reasons that we chose GALICIA algoritlims to compare with ILA are:

(1) both algorithrns are based on concept lattice theoiy, (2) both algorithms compute frequent

closed itemsets, and (3) ILA is an enhanced version of the basic GALICIA algorithm. The

experiments were performed on a 1.3 GHz AMD TB processor with 1.2 GB main mernory,

running Windows 2000. Both algorithms were tested in JBuilder 5 environment, and a Java

implementation is used.

Two synthetic transaction sets, namely Mushroom and T25110D10 [UCI] were used in the

experiments. Mushroom is a strongly conelated transaction set and had 8,124 transactions

over 119 items. This transaction set generated 227,699 closed iternsets, 3630 of them had

support larger than 0.1. The second transaction set, T25110D10K, is relatively sparse. It

includes 10,000 transactions over 1,000 items where each transaction bas 25 items on

average, and the average size of maximal potentially frequent iternsets is 10. This transaction

set generated 3,530,786 closed itemsets, 23,852 ofthem were of support larger than 0.005.

Table 6-1 and Table 6-2 display the detailed resuits when increasing subsets of the entire

transaction sets respectively. Ilie fourth column of these two tables illustrates approximate

multiple between the number of closed itemsets (CIs) and the number of frequent closed

itemsets (fCIs).

6.2 CPU time

In these experiments, we carried out two types of tests to evaluate the performance of

GALICIA-M and ILA. In the first type, we regarded two algorithms as being procedures of a

batch process and focused on the CPU time for processing the whole transaction set. In the

second type, we focused on the CPU time for processing transactions incrementally. In order



Mining Dynamic Databases for Frequent Closed Itemsets 54

to provide a better view about the trends that lay behind each algorithm, we recorded the

resuits for transaction sets of variable size. Thus, both transaction sets have been divided into

incrernents of fixed size, 2,000 transactions for both of T25I1OD1OK and Mushroom. for

each incrernent, the tests have been carried out with a fixed absolute support threshold for

ILA (50 for T25110D10K and Mushroom).

Size of Number of Cis Number offCIs NttmberofCls

Transaction Set (rninsupp =‘o. 1) NïtnzberoJFCls

2,000 57,586 1,519 40

4,000 101,772 2,021 50

6,000 150,137 2,935 -50

8,124 227,699 3,630 60

Table 6-1: Mushroom, total CIs and fCIs with a=0.1

Size of Transaction Number of CIs Number of FCIs NtimberoJCls

Set ( minsupp = 0.005) NUmberoJFCIs

2,000 281,209 544 550

4,000 626,1 14 2,275 —300

6,000 1,562,211 6,977 250

8,000 2,479,770 14,701 200

10,000 3,530,786 23,852 150

Table 6-2: T25IYOD1OK, total Cis and FCJs with a=0.005

Two types of comparisons have been carried out. The first type (see figure 6-1 and Figure

6-3) focused on comparing the performance of both algorithms as batch procedures.

Referring to Table 6-1 and Table 6-2, we know that the number of closed itensets is greater

than that of frequent cÏosed itemsets when the minsupp is flot 0, the results ofthe tests clearly

showed the advantage of ILA over GALICIA-M, especially when the transaction set is

growing large.
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GALICIA-M vs ILA (T25I1OD1OK)
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Figure 6-3: CPU tirne for GALICIA-M and ILA

(First type of tests - Mushroom and rninsïtpp=50)
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figure 6-2 and Figure 6-4 showed the response time of the GALICIA-M and ILA for the

second type of tests. In these tests, we took into account the average CPU time for integrating

a ncw transaction cadi time. Thcse diagrams show that the average CPU tirne ofILA is lower

than that of GALICIA-li. As we have mentioned, the number of closed itemsets is always

greater than that of frequent closed itemsets when the minsïtpp is flot 0. When adding a new

transaction, the execution time spent to traverse the complete lattice (includind ail closed

itemsets) is longer than the time to traverse an iceberg lattice. Especially on T25IYODÏOK

due to the fact that it is a sparse dataset, the same number of transactions and the same

minsttpp wiil produce [ess frequent cÏosed itemsets. Taken as a whole, these experimental

resuits indicate that the benefits of techniques in ILA are more obvious with sparse

transaction sets tian with dense ones.

However, the improvement ofthe CPU time showed from Figure 6-l to Figure 6-4 is flot as

dramatic as the proportion between the number of closed iternsets and frequent closed

iternsets. The key reason is that we must find the lower covers for visible concepts. Tus is an

expensive task. For example, in T25IYOD1OK, when the transaction number is increased

from 6000 to 8000, the number of frequent ctosed itemsets increases from 6,977 to 14,701,

i.e. 7,724 new frequent closed itemsets must be found. Assume that 90% of them are

generated by genitors, so 10% ofthem (about 700) are hidden concepts; furthermore, in order

to get these hidden concepts, we estimate that we need to traverse 500 visible concepts for

inserting one transaction and 1,000,000 for 2000 transactions. In T25IÏOD1OK, each

transaction has on average 25 items, assume 15 items can be removed from the dornain of

each visible concept, hence at least 10,000,000 intersection calculations are required to find

these hidden concepts.

In Table 6-2, afier processing 10,000 transactions, the total number of frequent closed

itemsets is 23,852. Suppose we add a new transaction (y0001st transaction), according to our

estimation, it will generate six new frequent closed itemsets, genitors generate four of them

and two of them are hidden concepts. In order to get these two hidden concepts, we should

check ah visible concepts. In this case, we estimate that 10% of frequent closed itemsets are
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visible concepts, namely, about 2400 concepts must 5e traversed to discover these two

hidden concepts.

The efficiency of the GALICIA series approach is clearly obstructed by the necessity of

maintaing the whole set of frequent closed itemsets [VMGM2002]. In ILA, although

traversing iceberg can help save execution time and improve the perfonriance, it does not

make our algorithm more efficient and scalable since the total execution time stili remains

high. When mining dynamic transaction sets with ILA, the execution time is taken in

different mining steps, such as: (i) adding a new transaction to the iceberg, (ii) removing

infrequent closed itemsets from the iceberg and (iii) finding frequent lower covers for visible

concepts, i.e. discovering the hidden concepts.

Maintaining iceberg lattice indicates that it obviously improves the performance of step (j)

which add a new transaction to the iceberg. In this step, we update modified concepts and

generate new concepts. Unfortunately, step (ii) - removing infrequent closed iternsets, and

especially step (iii) — discovering hidden concepts, are still very expensive. The main issue

now is to establish a proper trade-off ofthe cost between the different steps.
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Chapter VII Conclusions and future work

Jn this chapter, we summarize our thesis and introduce trends for future work on incremental

algorithrns.

7.1 Conclusions

The objective ofthis thesis is to propose an efficient, incremental method for mining frequent

closed itemsets in dynamic transaction sets. ILA (Iceberg Lattice Algorithrn) is an enhanced

application ofthe GALICIA approach. When given a minsupp, it only needs to maintain the

upper most part ofthe closed iternsets, i.e. frequent closed itemsets. furthermore, it traverses

only iceberg when a new transaction is added.

We observed that it is easy to obtain new concepts in a new iceberg lattice that have a

counterpart in a previous iceberg. Therefore, the main problem with maintaining an iceberg

in lattice-based incremental algorithms is that we shouÏd discover the new concepts without

having a counterpart in previous iceberg that we called hidden concepts. The main challenge

then becomcs the question of computing hidden concepts efficiently. After studying the

features of hidden concepts, we found that every hidden concept must be covered by one or

more concepts (we called them visible concepts) from above, i.e. every hidden concept must

be an immediate successor ofa visible concept. Furthermore, we presented and proved useful

properties for both visible concepts and hidden concepts. Based on these characteristics, we

proposed a new method to maintain an iceberg lattice. Namely, by generating alt lower

covers of visible concepts. In order to improve the efficiency of discovering lower covers, we

applied the mechanism ofbottom-up and breadth-first traversai of visible concepts. b take

advantage of this new approach, we transforrned it into an algorithmic procedure, Iceberg

Lattice Algorithm (ILA). Furthermore, we implemented the aÏgorithm and conducted a set of

tests to compare its performance with GALICIA aÏgorithm.

ILA is an effective and useflil tool intended for mining transaction sets. It overcomes the

weaknesses that existed in non-incremental algorithms, such as level-wise algorithms and

those that are based on concept connection. These algorithms either traverse the transaction

set repeatedly in order to obtain the frequent closed itemsets, or find closed itemsets from
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transaction sets first, then calculate the frequent closed itemsets based on a defined minsupp.

The major drawback in these algorithms is that whenever a new transaction is added, they

cannot use the previous resuit and must completely re-estabiish the resuit for the new

transaction set. Also, in the GALICIA approach, since the complete concept lattice contains

ail closed itemsets, we have to maintain (store and update) ail closed itemsets, even if some

are flot frequent. ILA is an incremental algorithrn that constructs an iceberg lattice that only

includes the frequent closed itemsets, and finds new set of frequent closed itemsets based on

the previous frequent closed itemsets, thus successfully avoiding any excessive computation.

7.2 Future work

Our experirnents show that some concepts oscillate between the iceberg and the infrequent

part ofthe lattice, because when adding successive transactions, these concepts may become

repeatedly frequent then infrequent, then again frequent and so on.

An interesting extension of our work could be the definition of a lattice zone beÏow the

iceberg lattice where those concepts lay. The optionat size ofthe zone (in depth ofthe graph

ofthe corresponding partially ordered set) and the way it will be maintained are two concrete

questions to be answered. The first one witÏ be answered by experimental studies and the

second one by some theoretical investigation.

Beside further research in the theoretical aspect, we discuss some practical applications. A

variation of iceberg lattice is the most lower part of complete lattice (i.e. sub-semi-lattice).

This can be a further topic for data mining. This type of lattice can be used in information

retrieval in library browsing.

In the application of information retrieval in library browsing, we regard the ID of a book or

document as a TIIJ, and the titie, author, subject, index term, etc as items. We can establish a

binary relationship between TID collection and items. Then we can construct a

sub-semi-lattice to retrieve a list of document according to the quarry terms. If more query
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terms are selected (the intent of concept is greater), Le. the request is more precise, fewer

documents are retrieved (the extent ofthe concept is lesser).
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Appendix

1 Proof of the properties

Property 4-1: \Jce La, if int(c) cz {t1+j}’ then e = (ext(c) u t+j, int (c))e L

Proof: ce La= Iexttc)I 1ninsïtpp*IT=,Jext(c)I+1 rninsupp*pI+1,

int(c) ç {t1+1}’ ‘ e (ext(c)u t1+j, int (e))

=‘ Iext(e)I = Iext(c)+1

=ext(e)I ,ninsztpp*I11+1,

minsupp 1= Iext(e)I ,ninsttpp*IT1+ lninsttpp

Iext(e)I
=, nhlnsupp

(jT+1)

z ee L

Property 4-2: Vce La, if e is genitor, then e = (ext(c)u t1+j, int(c) r{t1+1} ‘)e La+

Proof is the same as property 4-l.

Property4-3: (X Y) e H(t1±1) jff* I T + a XI a* I T +1

Proofis trivial.

Property 4-5: ‘tJc e W(t+1), Vc eL, if e c then ce V(t1+1)

Proof: e e H(t1+1)
= I ext(c) a* (111+1),

I ext(c) Iexttc)I+Ïa* (I]1+1)+1>a* I}
ce H(t1+1) & e <c= t+j e ext(c)=c etpQ+1)

according to the definition 0f V’Q1+ j), we get the property 4-5.

Property 4-6: Vcj, C2 e tp (t+i), if c c2, then \‘ ï e int(cj) - int ( c2) I c1 v( 1) A C2.

Proof: e1, e, e t1tt (t1+i) & j e int(ci) - int ( e,) :‘ j e {t1+j}’ & v( j ) e tp (t1+1)

Assume e1 is flot the smallest intent that includes both int ( c2) and j,

i.e. int(cj) t int t e2) u { j })“, then ej is flot closed concept, which is a

contradiction.
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Property 4-7: Vcj, c,e V(t1±1), s. t cj <c2, tint Ci) - int ( c2) = { a e {t+j}’ A C2 Cj }
from Property4-6, we know int(cj) - int(c,) c { iC {t1+1} ‘lA C2 = C1. flOW, wejustneed

toproveAc7=cJ’ie int(cj)-int(c,).

Proof: CI <c2 = ext(ci) c ext (C7)

If A C2 ej .= int (ci) = int (c) u int (y (i)) & ext (c1) = ext (C2) n ext (y (i)),

Assume i int t cj ) — int t c?) = a e int ( c1 ) & j e int ( C7)

zz’ ext tv( j) D ext (C?)

=‘ ext (c]) ext tc2), a contradiction.
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2 System architecture

The system consists ofthree main parts. The first is a connector that connects the transaction

set to the corresponding processor according to the transaction set formation (i.e., the suffix

narne of the data file). The second part is the core ofthe processor. It reads and processes the

transaction one by one, according to the parameter minsupp to incrementally maintain the

iceberg lattice. The third part is a display tool, which shows the resuit on the screen.

Figure A-1: System architecture
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3 Class diagram

We define the following classes. They are Concept, Transaction, VectorQttickSort, Common

and MainFrame. Figure A-2 is the Class Diagram.

Class:mainFrame

Attribute

T—

Service

f igure A-2: Class diagram

Class Concept has two private data members: Extent and Intent. They belong to basic data

type String. This class is used to implernent check status of concepts when a new transaction

is being inserted; it wilÏ also find geni,(c), ](c) and dornain(c) as well as finding the lower

cover of chosen concept in V( t+1).

I J

Class:VectorQ uickSort

Attribute

Service



Mining Dynamic Databases for frequent Closed Itemsets 66

Class Transaction operates on the transaction set. We have two file types, .txt and .dat.

Meanwhile we also use it to establish and maintain ITT (Item Transaction Table) and TIT

(Transaction Item Table).

Class VectorQuickSort processes the vector, prirnarily for sorting the elements in vector

according a certain field.

Class Conimon updates iceberg lattice with new generated frequent closed itemsets.

furthermore, it will perform vector operations, i.e. combine two vectors or judge if two

vectors are the same and so on.

Class Mainframe sorts concepts in iceberg lattice. It also extracts transaction one by one

from the transaction set.
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4 Class definitions

Class Concept

javalang

Object [c

prjlcelierglauic

concept

4, Seterit. String

_____________________________________________________________

4. Intent: String

_________________________________________________________________

4 check_historyo voici
4 checkbeforeCombinationo voici
4 combinePartotSxtentorlntento String

Concepto voici
Concepto : voici

4 ContainRelationshipO boolean
4 createConcepto Concept
4 FindDCofChosenConcepto String
4 ttnciLowerNeighborsØ voici
4 FinciTCCofChnsenConcepto : String
4 FindTCofChosenConceplo String
4 gelConcepi_Statuso voici
4 getConceptExtentO String
4 getConceptlntento : String
4 getSupporlNumo: ni
4 isSameStringo boolean
4 setConceptExtentlt voici
4 setConceptlntento : voici
4 upciateConcepto Concept

jfb equalsO boolean
jfb retechAllTransactionltemso : String
4 ttnciDifferenceOfStrings: String
jb getPublicsetStringo String

getSizeOfSlementO String

.j

getTransaction_Seto String
a isSameLengihO

Figure A-3: Class diagram for class Concept

Attributes: Extent: String Intent: String

Methods Description

public Concept(String Extent, String Intent) Constmctor

public String Combine str1 to str2, no repeat

combinePartOffixtentorlntent(String Str1,

String Str2)

public boolean ContainRelationship(String Judge if contain ail elements in str

str)

jvaïanq1 priiceberqiattic

= = 1
Common Transaction VedorQuicksod matnFramej

n

• javalang

:zL1
Integer ringSer

javautil

-

-T -l
-

.fr y
HashMap Stringlokenizer Vector j
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public prjiceberglattic.Concept Create a new concept with TID_Set and

createConcept(String TID_Set,String Item Set as concept’s Extent and Intent

Item Set)

private boolean equals(Concept Judge if two concepts are the same, if they

CornpareObj) have the same Extent and Intent, they are

equal

private String Calculate the difference between str1 and str2

findDifferenceOfStrings(String Str1 ,String

Str2)

public void findLowerCovers(Concept Find the lower covers of a concept

tmpConceptOfNewTransaction,

Vector Vplus, Transaction TransObj,

Vector Hplus, double mini Support)

public void getConcept_Status(Concept Judge the status of a concept when add a new

ConObj, Concept newConcept, Vector transaction and execute different operations

iceBergLatticObj,Vector according to their different status

NewFCIObj ,Transaction TransObj, double

mini_Support,HashMap

newlransaction,Vector Vplus)

public String getConceptExtent(Concept Get the Extent of a concept

ConObj)

public String getConceptlntent(Concept Get the Intent of a concept

ConObj)

private String getPublicSetString(String Calculate the intersection of Str1 and Str2

Strl,String Str2)

private String Get a collection of TID from

getlransactionSet(Transaction Item Transaction Table those transaction

TransObj,String ItemID) include this item

public Concept updateConcept(Concept Combine NewExtent to a concept’s Extent, no

Obj,String NewExtent) repeat.
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public int getSupportNum(Concept conObj) Calculate the length of extent of a concept

public void setConceptExtent(String Update the Extent of concept with newExtent

newExtent)

public void setConceptlntent(String Update the Intent of concept with newlntent

newlntent)

private boolean isSameLength(String Judge if the length oftwo strings are the same

Strl,String Str2)

public boolean isSameString(String Judge if two strings are the same

Stri,String Str2)

public void If the intent or extent of insertConcept is flot

checkbeforeCombination(Vector exist in tartgetVector, then add insertConcept

tartgetVector, Concept insertConcept) to insertConcept, otherwise combine their

intent or extent

public String Find T’ (c) for concept c

FindTHCofChosenConcept(Concept

elementOWplus, Vector Hplus)

public String Find domain(c) for concept c

FindDCofChosenConcept(Concept

masterConcept, Concept c,Vector

Vplus,Vector Hplus)

private String getSizeOfElement(String Calculate the length of a string

Element)

Table A-l: Methods description for class Concept
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4 etLLReIativedTransactionItemWithChosenExtListO : Vector

4 ProcessetTransactionNumbero tint

Transactiono t void

I’ Transactiono void

4 updateTransaction(t t voit

.7 Item_Transaction_Table Vector

., Transaction_Item_Table Vector

Concept mainFrame

EEZE

javaiang

j Integer String j

Attributes: Transaction Item Table: Vector Item Transaction Table: Vector
Methods Description

public TransactionQ; Constructor

public Transaction(java.lang.String Constructor

Transaction Line);

public java.util.Vector getltem_Transaction_TableQ; Retum current item transaction table

public java.utiLVector getTransaction_TtemTableQ; Return current transaction item table

public int ProcessedTransactionNumberQ; Record the number of transaction

which have been processed

public Vector find the intersection of intent for

getALLRelativedTransactionltemWithChosenExtList several transactions

(String ExtList);

public void updateTransaction(String Update Transaction_Item_Table and

Transaction Line) Item Transaction Table

java.Iang

Object

prjcebergIattic

Transaction

java.LU

______________________________________________________

HashMap Stringlokenhzer

Figure A-4 Class diagram for class Transaction

Table A-2: Methods description for class Transaction
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Class Common
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prjiceberjIattic

figure A- 6: Class diagram for class Common

Attributes:

Methods Description

java.Ianq I

Object-

Common prjïceberqlaftic

Concept minfrarneCommonO void
4 ec4ualsofrwoconceptso boolean ———-

4 updateIce9erLafficeO void
Combinei vofd jaia.Iang

java.utiI

_________________

————d_vectorIl

public CornmonQ; Constructor

public static void updatelceBergLattice(Vector Update Iceberg Lattice with new

iceBergLatticObj ,Vector NewFCIObj); Frequent Closed Itemsets

private static void Combine(Vector vObj 1, Combine two vectors, no repeat

Vector vObj2);

public static boolean Judge if two concepts are the same

equalsOffwoConcepts(Concept a, Concept b);

Table A-4: Methods description for class Common
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Attributes:

Methods Description

void jBStart_actionPerformed(ActionEvent e) Action Event

public Vector getDatafromlestFile(String get transaction one by one from data set (.
filePath) Txt file)

public Vector get transaction one by one from IBM data

getDataFromTestFilelBM(String filePath) set (.dat file)

public Vector sortlcebergLattic(Vector sort Iceberg Lattice

iceBergLattic)

Table A-5: Methods description for class Mainframe
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5 Validation

Afier implementing the Iceberg Lattice Algorithm, we validated it by comparing the resuit

with other validated algorithm. During this process, we adopt the CHARM algorithm —

another algorithm for calculating the frequent closed itemsets from a transaction set.

Validation was conducted on one transaction set (T25110D10K-300) using a different

rninsupp. T25110D10K-300 bas 300 transactions. It was extracted from data set

T25110D10K [UCI]. The formation of transaction is as following:

for example, following is a transaction:

7 267 348 389 456 523

7 means that there are 7 items in this transaction,

267, 348, 389, 456, 523, 624 and 657 are 7 items in this transaction.

Table A-6 shows the comparing result:

Algorithm Transaction set Minsupp Number of fCJs note

0.01 3781

ILA 0.03 454

T25IYOD1OK-300 0.05 122

0.07 20

0.10 0

Support Number offCIs In CHARM:

3 3781 Support

CHARM T25110D 10K-300 9 454 = minsupp

15 122 *transaction number

21 20

30 0

the number of items in item1 item2 ... item
this transaction (n)

624 657

Table A-6: The resuits of comparison with CHARM algorithm
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In addition to comparing the number of frequent closed itemsets in the resuits, we also

compared the extent and intent for every concept.

In order to explain the validation resuit visually, we give the resuits obtained from two

algorithms under the same minsttpp (in ILA minsupp = 0.07, in CHARA/I algorithm,

Support=2 1).

Result from ILA (Minsupp =0.07, the total number of frequent closed itemsets is 20)

No. Extent Intent Support

1 0427395 106113 119128130133104536 172 28

76269 55 1221 148 163 182 228 255 265 270

292 296

2 11 274271 7795 110 129 131 136142517 549 25

141 151 156 172 179 216 229 237 261 281 286

294

3 53646959710412112913515315692623 751 23

60 28 169 189 196 210 227 233 285

4 54271 151 142533619593 15615011099 60 23

88 60 163 180 197 224 229 264 290

5 9416580120138148180190192202210 322 27

220 228 235 238 262 265 277 287 297 127 102

95674931

6 723144861758283889798145155157 233 25

166 173 183 185 205 238 239 243 257 260 299

7 626244976899396121123131135142 799 21

145 146 170 171 186 244 245 274

8 64573787998 101 106 153 155 165 167 168 432 24

172 177 197 204 221 240 250 263 274 282 288

9 44566065727887105 123156157165 170 152 24
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190 194 198 200 231 255 256 267 275 277 285

10 0427395 125 138144159182199201207 578 25

212 222 224 228 242 252 101 28 38 60 25$ 274

296

11 142060 101 105 110 117 130 131 142 151 152 852 25

167 194 206 20$ 227 233 247 249 251 256 272

273 279

12 121420466781 86106112117132135 147 500 22

173 191 222 228 234 252 257 285 290

13 11517082868992 110 116 139 153 157 163 27 22

180 187 205 230 235 244 250 270 286

14 354854555660105117127137156171 192 785 24

19621121622524826027127928328729$

15 182145697881 8591 109 132 142 153 177 113 23

226 235 243 252 259 263 269 280 285 295

16 3363 767799 140 151 157 159 161 167 185 866 23

197 198 203 218 241 244 249 273 282 292 293

17 8 23 25 87 88 97 124 136 143 165 167 174 178 293 21

199 210 217 231 246 267 275 285

18 1120275989 9096 103 141 149 175 183 213 745 22

219 238 240 243 246 261 282 284 286

19 81728505772749194115145161 163181 974 22

217 236 247 249 259 263 288 292

20 41332607894102112317133 134139152 80 22

162 179 187 223 235 282 289 297

Table A-7: Resuit from ILA (minsupp=0.07)



Mining Dynamic Databases for Frequent Closed Itemsets 78

Resuit from CHARM algorithrn

(support=21, the total number of frequent cÏosed itemsets is 2 0)
- <listeFCls>

- <fci>

<intent>799</intent

<extent>7 25 27 5077909497 122 124 132 136 143 146 147 171 172 187 245 246 275</extent>

<support>2 1 </support>

</fci>

- <fci>

<intent>60</intent>

<exent>6 15263443616272899496100111 15! 152 157 164 181 198225230265291</extent>

<support>23</support>

</fci>

- <fci>

<intent>75 1 <Iintcnt>

<extent>4 629374761 63939698 105 122 130 136 154 157 170 190 197211 228 234 286</extent>

<support>23</support>

</fci>

- <fci>

<intent>80</intent>

<extent>4 5 14 1833 61 7995 103 113 134 135 140 153 163 180 188 224 236 283 290 298<Iextent>

<support>22</support>

<!fci>

- <fci>

<intent>500</intent>

<extent>13 1521 4768 8287 107 113 118 133 136 148 174 192 223 229 235 253 258 286 291</extent>

<support>22</support>

</fci>

- <fci>

<intent>974</intent>

<extent>9 1829515873759295116146162164182 218237 248 250 260 264 289 293</extent>

<support>22</support>

</fci>

- <fci>

<intent>293</intent>

<extent>9 242688 8998 125 137 144 166 168 175 179200211 218 232 247 268 276 286</extent>

<support>2 1 </support>

</fci>

- <fci>

<intent>27</intent>
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<extent125271 83879093111117140154158164 181 188206231236245251 271 287</extent>

<support>22</support>

<Ifci>

- <fci>

<intent> 1 72</intent>

<extent>1 36 132237435670747796 105 107 114 120 129 131 134 149 164 183 229 256 266 271 293 297<Iextent>

<support>28</support>

<Ifci>

- <fci>

<intent>549</intent>

<extent>12 1518262843727896111130132137142152157173 18021723023$2622$2287295</extent>

<support>25</support>

<Ifci>

- <fci>

<intent>233</intent>

<extent>$ 15 244962 76 83 84 $9 9899 146 156 158 167 174 184 186 206 239 240 244 258 261 300</extent>

<support>25</support>

</fci>

- <fci>

<intent>745</intent>

<extent>12 21 2$ 609091 97 104 142 150 176 184 214 220 239 241 244 247 262 283 285 287</cxtent>

<support>22</support>

</fci>

- <fei>

<intent>1 13</intent>

<extent>19 2246 7079 82 $692 110 133 143 154 178 227 236 244 253 260 264 270 281 286 296</extent>

<support>23</support>

</fci>

- <fci>

<intent>432</intent>

<extent>7 4674798099 102 107 154 156 166 168 169 173 178 198 205 222 241 251 264 275 283 289</extent>

<support>24</support>

<Ifci>

- <fci>

<intent>1 52</intent>

<extent>45 5761 6673 7988 106 124 157 158 166 171 191 195 199 201 232 256 257 268 276 27$ 286</extent>

<support>24</support>

</fci>

-<fci>

<ïntent>57$</intent>

<extent>1 29 3943 61 7496 102 126 139 145 160 183 200 202 208 213 223 225 229 243 253 259 275 297</extent>
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<support>25</support>

</fci>

- <fci>

<intent>785</intent>

<extent>36 4955 565761106 118 128 138 157 172 193 197 212 217 226 249 261 272 280 284 288 299</extcnt>

<support>24</support>

</fci>

- <fci>

<intent>866</intent>

<extent>34 647778 100 141 152 158 160 162 168 186 198 199 204 219 242 245 250 274 283 293 294</extent>

<support>23<!support>

</fci>

- <fci>

<intent>852</intent>

<extent>1521 61102106111118131132143152153168 195207209228234248250252257273274280</extent>

<support>25<!support>

</fci>

- <fci>

<intent>322</intent>

<extent1032425066688l 96103121128139149181191193203211221229236239263266278288

298</extent>

<support>27<Jsupport>

</fci>

<nombreFCls>20</nombrefCls>

</listeFCls>
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