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RESUME

Le traitement de l'information quantique est au confluent des sciences physique,
mathématiques et informatique; il vise & déterminier ce qu’on peut et ne peut pas
faire avec 'information quantique. Le sujet de ce mémoire est la complexité de la
communication, qui est un domaine de 'informatique qui vise la quantification de
la communication nécessaire a la résolution de problémes distribués.

La pseudo-télépathie est une application surprenante du traitement de 1’infor-
mation quantique & la complexité de la communication. Grace & une ressource
quantique appelée « intrication », deux joueurs ou plus peuvent accomplir une
tache sans communiquer, tandis que ceci serait impossible pour des joueurs clas-
siques (qui n’ont pas acces a l'intrication). Un jeu de pseudo-télépathie & n joueurs
se présente comme suit: chaque joueur regoit en entrée une question. Sans com-
muniquer, chacun émet en sortie une réponse. Le jeu est gagné si les réponses
conjointes satisfont une certaine condition. Il s’agit d'un jeu de pseudo-télépathie
si les joueurs quantiques peuvent gagner de fagon systématique, tandis que ceci est
impossible pour les joueurs classiques.

Dans ce mémoire, nous décrivons sept jeux de pseudo-télépathie, tirés de la
littérature de la physique et de I'informatique quantique. Nous incluons aussi des
résultats originaux de l'auteur. Les jeux sont présentés du point de vue informa-
tique, et de fagon uniforme, ce qui facilite leur comparaison. Certains points de
comparaison sont: le nombre de joueurs, la taille de I’entrée, la taille de la sortie, la
condition gagnante, 1’état intriqué partagé et la probabilité maximale de réussite
pour les joueurs classiques.

Mots clés: informatique quantique, complexité de la communication
quantique, non-localité, intrication, théoréme de Bell, échappatoire de

la détection.



ABSTRACT

Quantum information processing is at the crossroads of physics, mathematics and
computer science; it is concerned with what we can and cannot do with quantum
information. This thesis deals with communication complexity, which is an area of
computer science that aims at quantifying the amount of communication necessary
to solve distributed problems.

Pseudo-telepathy is a surprising application of quantum information processing
to communication complexity. Thanks to a quantum resource called “entangle-
ment”, two or more quantum players can accomplish a task with mo communica-
tion, whereas this would be impossible for classical players (who do not have access
to entanglement). A pseudo-telepathy game with n players is the following: each
player receives as input a question. Without communicating, each player outputs
an answer. The players win if their joint answers satisfy a certain condition. We
say that the game exhibits pseudo-telepathy if quantum players can systematically
succeed at this game, whereas this would be impossible for classical players.

In this thesis, we describe seven pseudo-telepathy games which appear in the
physics and quantum information processing literature. We have also included
original results of the author. The games are presented from a computer scientist’s
perspective, and in a uniform way, in order to facilitate comparison. Some points
of comparison are: number of players, size of the inputs, size of outputs, winning
condition, shared entangled state and maximum success probability for classical
players.

Keywords: quantum information processing, quantum communica-
tion complexity, nonlocality, entanglement, Bell’s theorem, detection

loophole.
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NOTATION

real numbers

complex numbers

imaginary number, 1 = /=1

complex norm of

d-dimensional complex inner product space

quantum state

norm of [))

Hamming weight of a binary string z

bitwise complement of z

modular equivalence, (mod 2) if not specified

base-two logarithm, log,(z)

maximum success proportion, over all possible deterministic strate-
gies for classical players that play the game G,

maximum success probability, over all possible strategies for classi-
cal players that play the game G,

maximum success probability, over all possible strategies for quan-
tum players that play the game G,

probability that a player’s answer corresponds to the predictions of
quantum mechanics in a game with errors

maximum value of p for which a classical strategy can succeed as
well as a quantum strategy

probability that a player outputs something other than L in an
error-free game

maximum value of n for which a classical strategy can succeed as

well as a quantum strategy



To my teachers, past and present.



ACKNOWLEDGEMENTS

I would like to thank my supervisors, Dr. Gilles Brassard and Dr. Alain Tapp for
their help, encouragement and support. Thank-you also to my friends and family,
in particular, my mother, father, sister, and Didier. Thanks to you, I found the
motivation to bring this project to term. I also thank my grad school friends here
at the Université de Montréal.

Many thanks to the Natural Sciences and Engineering Research Council of
Canada, the Université de Montréal and the National Bank of Canada, for having
funded this work.



PREFACE

This research project was motivated by the need for a comprehensive survey of
work that has been done in the multi-disciplinary area of pseudo-telepathy.

This need became apparent to me when, after Gilles Brassard, Alain Tapp and I
published a pseudo-telepathy game that we though was new [BBT03], Serge Massar
kindly pointed out to us that similar work [Mer90b] had appeared more than ten
years ago in the physics literature.

Since writing this Master’s thesis, I have prepared, along with my co-authors,
two manuscripts that originate from this work. Quantum Pseudo- Telepathy [BBT04a)
is a survey of pseudo-telepathy games, and Recasting Mermin’s multi-player game
into the framework of pseudo-telepathy [BBT04Db] presents the novel results from

section 5.2 of the present document, some of which have been greatly simplified.



CHAPTER 1

INTRODUCTION

Niels Bohr, one of the fathers of quantum physics, said that if studying quantum
mechanics doesn’t make you dizzy, you haven’t understood it properly.

The present thesis, which deals with quantum information processing (QIP), is
meant to be a remedy to the sometimes profound dizziness we feel when studying
such strange concepts. With the use of pseudo-telepathy games, it objectively
shows the power of the quantum world and unveils some of its mysteries.

QIP is concerned with what we can and cannot do with quantum information;
its fundamentals lie in the area of quantum mechanics, which is the study of matter
at the atomic level. Quantum mechanics is the best tested theory that describes
our world. To better understand the wonders of quantum mechanics and thus of

QIP, it is good to see how our predecessors saw and thought about these ideas.

1.1 Measurements and Spooky Action at a Distance

According to the predictions of quantum mechanics, when performing measure-
ments related to the position and momentum of an electron, the precise knowledge
of one quantity prevents such a knowledge of the other.

This prompts the following question: If it is impossible to measure both the po-
sition and momentum of an electron with arbitrary precision, then can an electron
have both a position and momentum?

For many physicists, including Bohr, the answer to this question is that the two

quantities cannot simultaneously exist. As Jordan asserts:

observations not only disturb what has to be measured, they produce
it! ... We compel it [the electron| to assume a definite position ... we

ourselves produce the results of measurement. [Jam74]



For Einstein, however, the answer was different. He did not reject the predic-
tions of quantum mechanics, but was bothered by its consequences. For him, if the
quantum theory cannot describe both the position and momentum of an electron,
then the quantum theory does not provide a complete description of the electron.
Thus, he concluded that quantum mechanics must be “incomplete”.

In support of this conviction, Einstein published in 1935 an article with Podol-
sky and Rosen [EPR35], in which they present a gedanken experiment. A gedanken
(“thought”) experiment is “a hypothetical sequence of events about which the quan-
tum theory makes quite definite predictions” [Mer90a]. The purpose of the scenario
is to challenge the quantum theory on the basis of its predictions, and so to make
the point, it is not necessary to actually carry out the experiment. This particular
gedanken experiment is meant to provide evidence of the existence of elements of

reality, also called hidden variables, defined as in [EPR35]:

If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this

physical quantity.

In the gedanken experiment, Einsten, Podolsky and Rosen (EPR) consider two
particles that may originally interact. They are then separated into two distinct
regions, A and B. EPR then claim that by choosing to measure either the position
or the momentum of a particle in region A, one could learn either the position or
the momentum of a second particle in region B. Since the measurements in A can
not disturb the particle in region B, they conclude that the particle in region B
must have had both its position and momentum all along, i.e. there are elements
of reality that correspond to the position and momentum.

Because the quantum theory cannot assign values to both quantities at once, it
must provide an incomplete description of physical reality. But there is an alterna-
tive explanation: the position or momentum measurement at A could influence the

the particle at B, setting its position or momentum: “Spukhafte Fernwirkung” or



“spooky action at a distance”. This phenomenon, which is predicted by quantum
mechanics, was also rejected by Einstein. He did not doubt the predictive power of
quantum mechanics, but insisted that it was incomplete. According to him, (and
supported by his gedanken experiment), there had to be some underlying informa-
tion (elements of reality or hidden variables) which determines the outcome of the
measurements. The elements of reality are not directly observable, yet we witness
their effect each time that we perform a measurement in region A or B.

The reaction of other physicists to the EPR paper was that this was an area of
meta-physics; the question was unanswerable to scientific observation, and unwor-

thy of argumentation. As Pauli wrote,

As O. Stern said recently, one should no more rack one’s brain about the
problem of whether something one cannot know anything about exists
all the same, than about the ancient questions of how many angels are
able to sit on the point of a needle. But it seems to me that Einstein’s

questions are ultimately always of this kind. [EBB71]

1.2 Bell’s Response

In 1964, Bell gave a shocking reply to EPR by publishing a paper [Bel64] in
which he proposes a gedanken experiment that rules out any possibility of hidden
variables in the quantum theory.

Having put the EPR thesis in perspective in the previous section, one should
be surprised that Bell was able to irrefutably show his result. EPR’s argument was
not a question of meta-physics, after alll The physicist Henry Stapp called Bell’s
discovery “the most profound discovery of science” [Sta75]. In order to be able to

state Bell’s theorem, we first give some definitions:

Definition 1.2.1. A local theory is one in which no action performed at location

A can have an instantaneous (faster than light) observable effect at location B.

Definition 1.2.2. A realistic theory in one in which all measurement outcomes

pre-exist before the measurement.



With this formalism, we note that EPR argued in 1935 that any complete

theory must be local and realistic, Bell’s answer is to show the following theorem:

Theorem 1.2.1 (Bell’s Theorem). No local, realistic theory can ezplain the

predictions of quantum mechanics.

Bell proved his theorem by exhibiting a quantum system involving two parti-
cles. He showed that if we assume the presence of hidden variables, as well as the
locality condition, then the outcomes of the experiment are in contradiction with
the outcomes predicted by quantum mechanics. Thus quantum mechanics is not a
local, realistic theory.

We won'’t give the details of Bell’s argument here, because in the next one
hundred pages or so of the present document, we will effectively prove over and
over again Bell’s theorem. Exactly how this is done is explained in the following

section.

1.3 Pseudo-Telepathy

The previous section presented a part of the history of physics, which motivates
our research. We wish to adopt for the rest of this thesis the QIP paradigm; for
that, we must note an important correspondence: a classical theory denotes a local
and realistic theory. Thus, if something or someone is constrained to act in a
classical fashion, they do not have access to any quantum mechanical resource.

To which quantum mechanical resource are we referring? The answer is entan-
glement, the “iron to the classical world’s bronze age” [NC00]. The properties of
this resource are still not well understood, but we can say for sure that it is thanks
to entanglement that we get results such as Bell’s theorem. Entanglement causes
the “spooky action at a distance” (also referred to as nonlocality) that Einstein
rejected. It is also thanks to entanglement that we can devise amazing games such
as pseudo-telepathy games: pseudo-telepathy is defined informally as the charac-

teristic of a game in which no communication is allowed, and in which quantum



players (sharing entanglement) always succeed, but for which the classical players

have an unavoidable, non-zero probability of failure.

1.3.1 Telepathy and Pseudo-Telepathy

Telepathy is “communication from one mind to another without using sensory
perceptions”. With this definition in mind, what do we mean by pseudo-telepathy?
Suppose that we have a pseudo-telepathy game that involves two players, Alice and
Bob. They are not allowed to communicate with each other. If they were classical,
we know that they would sometimes fail. However, if they share entanglement,
they always succeed at the given game. So, if we introduce a witness, who looks
at the results of the game, but who does not believe in the quantum theory (or
anything beyond the classical theory), then the only possible explanation, given
that Alice and Bob consistently win, is that they must have a way to signal to each
other—they must be telepathic!

We know, however, that this is not the case. We know that Alice and Bob share
entanglement and that it is thanks to this that they appear to be telepathic. Hence,
pseudo-telepathy. There are limits to what Alice and Bob, who share entanglement,
can do. Specifically, “entanglement alone cannot be used to signal information—
otherwise faster-than-light communication would be possible and causality would

be violated” [Bra03].

1.3.2 Pseudo-Telepathy and Bell’s Theorem

We've already stated that this document is dedicated to proving Bell’s theorem.
Indeed, pseudo-telepathy proves Bell’s theorem in the following way: in pseudo-
telepathy, the quantum players have a clear advantage over the classical players.
Recall that classical players are restricted to a local, realistic theory. Since the
quantum players always win and the classical players do not, we conclude that no
local, realistic theory can reproduce the predictions of quantum mechanics—which

is precisely the essence of Bell’s theorem.



1.4 Related Work

Research in the area of pseudo-telepathy originally appeared in the physics
literature, as these games provide a proof of Bell’s theorem. This area of research
is still active. Of course, the terminology, notation and even the context differ
widely from the usual paradigm adopted in QIP, which is part of the challenge in
writing the present document. Pseudo-telepathy games sometimes appear under

the following names:
e Bell’s theorem without inequalities [GHSZ90]
o Bell’s theorem without inequalities and without probabilities [Cab01Db]
o GHZ-type game
e always-vs-never refutation of Einstein, Podolsky and Rosen [Mer90e]
e Bell inequality [BM93]
e all-versus-nothing violation of local realism [CPZ*03].
e “all versus nothing” inseparability [Cab01b]

inequality-free proof of Bell’s nonlocality theorem [Ara99)

Other works on pseudo-telepathy appear in the QIP literature, more precisely
in a communication complezity context. Here, we find pseudo-telepathy under such
headings as “nonlocality games”, “cooperative games”, “interactive proof systems”
and of course, “pseudo-telepathy”. We also find related work in the philosophy

literature.

1.5 Contributions

The present thesis is a collection of pseudo-telepathy games. Far from being a

simple literature review, this document presents many original contributions:



1.6

The fact that the games appear in a variety of contexts (theoretical physics,
experimental physics and QIP—see section 1.4) means that a considerable
amount of work has been done to make a uniform presentation of the games

and related results.

In section 3.2.1 (“The Promise”), we give a formal definition of a promise

game.

In section 4.5 (“The Magic Square and Cabello’s Game Are Equivalent”), we
provide a definition of equivalent two-player games, and show that the two

games are equivalent.

In section 5.2 (“Parity Game”), theorems 5.2.2 and 5.2.6, concerning the clas-
sical success proportion and classical success probability of the parity game

are proven. This is original work of the author.

. Also in section 5.2, theorem 5.2.16, concerning error-free strategies for the

parity game is proven. This is also original work of the author.

Structure of the Thesis

The remainder of the present document is divided into four chapters. Chapter 2

gives the basic notation and principles of QIP. Chapter 3 is concerned with pseudo-

telepathy in general: we give a formal definition of pseudo-telepathy and present

general notation and concepts that are useful in presenting pseudo-telepathy games.

Finally, chapters 4 and 5 are dedicated to the presentation of a total of seven

pseudo-telepathy games (eight if we distinguish the two equivalent games). They

are divided into chapter 4, which presents two-party games and chapter 5, which

presents multi-party games, which are games with three or more players.



CHAPTER 2

QUANTUM INFORMATION PROCESSING

In this chapter, we give definitions and theorems that relate to quantum information
processing, which we will need in the rest of the document. This is not meant to be a
comprehensive introduction to the area, but only to specific tools that are required
in the context of pseudo-telepathy. A good reference for quantum information

processing is [NC00].

2.1 The Qubit

The bit is the fundamental unit of classical computation and classical informa-
tion. Quantum computation and quantum information are built upon an analogous
concept, the quantum bit or qubit. Qubits, like bits, are realized on actual physical
systems. Here, we treat them as abstract mathematical objects. A qubit can be in
the state |0) or |1). It can also be in a superposition of states |0) and |1): an arbi-
trary qubit can be written as |¢)) = a|0) + 8|1), where o, 8 € C and |a*+|8]2 = 1.
We also write |1) as a column vector using the convention that {|0), |1)} form the

standard basis:

The nature of quantum information implies that we cannot extract the ampli-
tudes o and [ from |¢); we are only able to make statistical inferences about these
values (more about this in section 2.3). It is also impossible to clone quantum
information. That is, it is not possible to start from one qubit in an unknown state

and make two identical copies of it.



2.2 Complex Inner Product Space

Let H4 denote a a d-dimensional complex inner product space (a complex vector
space equipped with a complex inner product) over C. The notation H, reminds
us of a Hilbert space; this is because the finite dimensional complex inner product
spaces that come up in quantum computation and quantum information are Hilbert
spaces. Qubits are column-vectors in Hy. We define (¢| (“bra”) to be the row
vector that is the conjugate transpose of |¢) (“ket”). Then (¢||v), usually written
as (¢|vY), denotes the inner product of |¢) with |¢). The norm of i), denoted

1¥)|] is defined as |||9)|| = v/(¥|¥). Thus qubits have norm 1.

2.3 Basic Operations

We introduce three basic operations on qubits: initialization, unitary transfor-
mation and measurement. In what follows, we take for granted that these opera-

tions can be performed perfectly.

1. Initialization. It is possible to initialize a qubit to the state |0) or |1).

2. Unitary Transformation. We can perform any unitary transformation, given by

Ugp Up1
U=

Uip U

where u; € C. U is unitary if and only if UUt = I, where U is the conjugate

transpose of U and I is the identity matrix. We also denote the above U as:

10) —L o|0) + usol1)
|1) FL UO1|0> + ’U11|1>.
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A very useful unitary transformation is the Hadamard transform, given by

In other words,

3. Measurement. So far, we’ve seen that we can initialize a qubit and perform a
unitary transformation. We also need to have a way to measure a qubit. As we
have already stated, a measurement will not yield the complete description of
the qubit; measurement in the standard basis of an arbitrary qubit «|0)+3[1)

results in the following;:

0 with probability |a|?
a|0) + B|1) —
1 with probability |82
Furthermore, measurement alters the qubit. After the measurement, the state

collapses to |0) if 0 was measured and |1) if 1 was measured.

It is also possible to measure an arbitrary qubit [¢) with respect to any
orthonormal basis B of Hy, say B = {|b1),|b2)}. Then the probability of

getting result b; when measuring |¢) is given by

p(b:) = |(]bi)

Given that result b; was measured, the state of the quantum system immedi-

ately after the measurement collapses to |b;).

What if we want to start a protocol in a state other than |0) or |1), for example,

% (]0) +|1))?7 The solution is to start in the state |0) and apply a unitary trans-
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formation (for the specific example, we would apply the Hadamard transform).
Hereafter, if we start a protocol in a state |¢) other than |0) or |1), it is because,
implicitly, we have applied a unitary transformation to one of the basis states to

obtain |1).

2.4 n-Qubit Systems

We have seen how we can work with a single qubit. Now, we would like to be
able to work with a system of n qubits. It turns out that we can easily extend the
basic operations on a single qubit to operations on any number of qubits.

An n-dimensional qubit system is a 2"-dimensional norm 1 vector in Ha-. For

example, for n = 3, an arbitrary 3-qubit quantum register can be written as:

Qoo
Qoo1
Go10
O] = a00l000) + e 001) + ..+ 111 = Y o)
Q100 z€{0,1}3

Q101

Q110

Q111 |

where Y _|a,|? = 1.

Formally, we combine systems with the Kronecker product (also erroneously
called the tensor product) of vectors; if |¢) = «|0) + 3|1) and |¢) = ’|0) + F'|1),
then [)) @ |¢) € Hp ® Hy = Hyz, and

[ oo’

Q a (e 70) af
Y) ®|¢) = ® = =
Vel B B pe B!

| 86
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In this representation, terms like c:¢p denote the 2 x 1 submatrix whose entries are
proportional to |¢), with overall proportionality constant o. When using the ket
notation, we often drop the ® symbol. Thus, [0) ® |0) = |0}|0) = |00).

The same three basic operations of section 2.3 hold for an n-qubit system: we
may initialize to any basis state |z) where z € {0, 1}". We can perform any unitary
operation given by a 2" x 2" unitary matrix U. We can perform a measurement
of a state |1) in any orthonormal basis B of Ha», say B = {|b1),...,|ban)}. The
probability of getting result b; when measuring |¢) is given by:

p(b:) = [(lb:) .

Given that result b; was measured, the state of the quantum system immediately

after the measurement collapses to |b;).
n

When referring an n-qubit system, we use denote U @ U ® --- ® U by U®". We

——
also write |0™) to represent |00...0). Also, as in the one qubit case, if we start a
protocol in a state |¢) other than a basis state, it is because, implicitly, we have

applied a unitary transformation to one of the basis states to obtain |)).

2.5 Operations on Parts of a System

So far, we’ve considered operations on a system as a whole. It is also possible
to act on part of a system.

For example, Alice and Bob can share a two-qubit system: Alice takes the
first qubit and Bob the second. Once this is done, they may become physically
separated. Say Bob applies a unitary transformation U. Then the effect on the
system is to apply the transformation I ® U, given by the matrix:
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2
=
(=)

g
o
o

o

o

I®U =

0 0 wugp um

0 0 wup qu

This can be generalized to an operation on any partial system of any dimen-
sion. Measurements may also be performed on part of a system; for any state

|¥) € Hapc, we can measure the subspace B. A particular state of interest is:
d-1
¥) = oslas)li)les).
=0

By measuring the subspace B, we obtain the result 7 with probability |a;|? and the
resulting state is |a;)|3)|c;).

It is useful to note that we get the same effect if we perform two measure-
ments on different subsystems, or if we perform the measurements together. Also,
the same effect is obtained if two parties are to perform some unitary transforma-
tion and then measure—regardless of the order in which the parties perform their

actions.

2.6 Entanglement

Given an m + n qubit state 1)) € Hom ® Han, we say that [¥) is a product state
if |9) = |7)|d) for |7) € Hom and |6) € Hon. If |1) is not a product state, then it is
an entangled state.

Examples of entangled states are the Bell states:

[8+) = 2:(00) + 1))
|®7) = 25(100) — [11))
T+ = (j01) + [10))
77) = 25 (o1) — 10))
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The state |U~) is also known as an Einstein-Podolsky-Rosen (EPR) pair. We
will use it to demonstrate one of the “mysteries” of entanglement: If Alice and
Bob share an EPR pair, and Alice measures her qubit in the standard basis, the
outcome will be 0 with probability  and 1 with probability ;. Likewise, Bob’s
measurement in the standard basis will yield 0 with probability % and 1 with
probability % However, we know for sure that Alice and Bob’s outcomes will be
opposites. Hence, by knowing one of the outcomes, we can predict with certainty
the other; this “spooky action at a distance” is a surprising feature of entanglement.
Furthermore, if Alice and Bob perform measurements of |¥~), in any basis, we can
be sure that the outcomes will be opposites.

We will make use of the state |®*) in the following context: Suppose Alice and
Bob share two |®*) states:

1 1

%) NG 7

where Alice has the first and third qubits, and Bob the second and fourth ones.

(100) +[11)) ® —= (|00) + [11)),

We can re-write this as:
1
) = > (|0000) + |0101) + |1010) + |1111))

where, this time, Alice has the first two qubits and Bob the second two. Gener-

alizing this, we see that if Alice and Bob share n |®*) states, then they share the

entangled state |®+)®" = (ﬁ (|00) + lll))) = Z Xj—0 1JJ)-



CHAPTER 3

PSEUDO-TELEPATHY

The goal of this chapter is to facilitate discussion by presenting notation and results
that relate to pseudo-telepathy games in general. At the end of the chapter, we give
details on the presentation of the games. The general framework of this chapter is

useful in chapters 4 and 5, where several games are presented.

3.1 Playing the Games
Definition 3.1.1. An n-player game G, = (X,Y, P, W) consists of:
o X =X; x Xy x...xX,, where X7, Xs,... X, are sets of possible inputs
o V=Y, xYs x...xY,, where Y1,Y5,... Y, are sets of possible outputs
e a predicate P on X called the promise
e arelation W on X x Y, called the winning condition
An instance (figure 3.1) of the game proceeds in the following way:

1. A question T = 21,Z9,...,2Z, € X is chosen from the set P. (We use a slight
abuse of notation, using P as a predicate and as the set of elements in X that

satisfy the predicate)
2. Each player ¢ receives his input z; € X;.

3. Each player i responds with an output y; € Y;.
Let y = y1,v2, - - ., Yn be the answer.

4. The players win if (z,y) € W, and they lose otherwise.

The following rule governs the way the game is played:
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step 1:
z is chosen from the set P
let x = x1,29,...2,
P
step 2:
z
: 1
T2 9 player i receives input z;.
Tn
n
step 3:
Y1 1
Y2 9 player i produces output ¥;.
let y =v1,v2,-..Yn
Yn
n
step 4:
yes no
win lose

Figure 3.1: A Pseudo-Telepathy Game
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No communication between the players is allowed during the game.
Before the start of the game, the players may agree on a strategy. They
may share random bits, and, if they are quantum players, they may

share entanglement.

Suppose that we have a game G, = (X,Y, P,W) such that there exists an
To € X such that P(zo) = true and zo ¢ domain(W). Then there is no way of
winning if the players are given question zo. This leads to a game that is not inter-
esting in the context that we wish to study. Hence, all games G, = (X,Y, P, W)
that we consider have the property that:

Vr € X, P(z) = true = z € domain(W). (3.1)

3.2 Strategies

Players, whether classical or quantum, will always use a strategy to determine
what their answer y will be, given a particular question z. According to game
theory, a player’s strategy is “a plan which specifies what choices he will make in
every possible situation, for every possible actual information which he may possess
at that moment ...” [NM44].

In the games that we study, as either all players win or they all lose, their best
strategy is to collaborate to maximize their probability of winning. Such games are
in the class of cooperative games. We specify if the players are classical or quantum.
Classical players may have a deterministic strategy. They may also have access to
shared randomness, which allows them to use a probabilistic strategy, which is a
probability distribution over a finite set of deterministic strategies. Quantum play-
ers have access to entanglement, which they may exploit in their quantum strategy.
In pseudo-telepathy, quantum players have a winning strategy and classical players
do not. For the classical players, we want to know just how well they can succeed.

We say that a strategy is a winning strategy if it succeeds on all instances of

the game. We also classify the success of strategies according to the following:
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Definition 3.2.1. A deterministic strategy is successful in proportion p if the
ratio of the number of instances for which the players win and the total number of

instances is p.

Definition 3.2.2. A strategy is successful with probability ¢ if it wins any instance

with probability at least gq.

Some strategies are better than others; those that are optimal reach the follow-

ing optimal bounds:
Definition 3.2.3. Let G,, be a game. We define:

1. w.(Gr) to be the maximum success proportion, over all possible deterministic

strategies, for classical players that play the game G,

2. w.(Gr) to be the maximum success probability, over all possible strategies,

for classical players that play the game G,

3. wy(Gr) to be the maximum success probability, over all possible strategies,

for quantum players that play the game G,

In pseudo-telepathy, the quantum players have a winning strategy, and the

classical players do not. This amounts to saying that w,(G,) = 1 and w.(G,) < 1.

Definition 3.2.4. An n-player pseudo-telepathy game is
a game G, for which wy(G,) =1 and @,(G,) < 1

Suppose that a deterministic strategy is successful in proportion p < 1. Then
there is at least one instance of the game where the players systematically fail,
hence the strategy’s success probability is ¢ = 0, so we must consider probabilistic
strategies in order to obtain a meaningful bound on w.(G,). However, the next
two theorems state that if we know that the maximum success proportion of a

deterministic strategy is p, then we have that w.(G,) < p.
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Proposition 3.2.1. Let G, be a game. Then &.(G,) is the mazimum probability
that the players win if the questions are asked uniformly at random among questions

that satisfy the promise.

Proof. We consider a general probabilistic strategy s which is a probability distri-
bution over a finite set of deterministic strategies, say {si, s2,...8m}. Let Pr(s;)
be the probability that strategy s; is chosen, and let p; be the success proportion
of strategy s;. The probability that the players win the game is:

Z Pr(s;)p; < Z Pr(s;)w.(Gr)

= W.(Gr)

Furthermore, by definition, there exists a strategy that succeeds with probability
e(Gh). O

Theorem 3.2.2. For any game Gp, we(Gp) < @0c(Gr).

Proof. Consider any strategy s that is successful with probability w.(G,). By
definition, for every question z satisfying the promise P, the probability of winning
on question z is Pr(win | z) > w.(G,). If the question is chosen uniformly at

random, the probability ¢ of winning the game using the same strategy s is

_ ~— Pr(win | z)
=2

zeP

we(Gr)
>
22, | P|
zeP

= w.(Gy)

By proposition 3.2.1, @,(G,) > g, and since ¢ > wc(Gy), then @.(Gy) > w(Gr). O

The next lemma is useful when determining values of w.(G,).
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Lemma 3.2.3. Let G, = (X,Y,P,W) be a game with W,(G,) < 1. Then

~ |P|—1
we(Gp) <

T
Proof. Since w.(G,) is the maximum success proportion, over all possible deter-
ministic strategies, for classical players that play the game G,, it is the ratio of
the maximum number of questions that satisfy the promise and on which classical
players can win, and the total number of questions that satisfy the promise.

— |Pl—1

Since w.(Gr) < 1, the next best alternative is that @.(G,) = BT So we

conclude that &(Gn) < FE2. 0

3.2.1 The Promise

In step 1 of an instance of the game G, = (X,Y, P,W), a question is chosen
among all questions satisfying the promise P. In other words, it is possible that
a certain £ = 1,Zs,...,7, € X, yet z is not a valid question (P(z) = false).
Although they make the game more artificial, we often (but not always—see sec-
tions 4.3, 4.4 and 4.6) rely on such promises in order to ensure an advantage for
the quantum players.

The concept of a promise game has appeared in QIP literature before, for
example, in the context of the Deutsch-Jozsa problem [DJ92]. In the case of
pseudo-telepathy, we give our interpretation for defining a game with and with-

out a promise:

Definition 3.2.5. Let G,, = (X,Y, P, W) be a game. We say that G,, is promise-
free if all of the following hold:

1. Vz € X, P(z) = true
2. Vz € X,3Jy € Y such that (z,y) ¢ W

3. Vie{l,2,...,n},Vy; €Y;,3z € X, Iy =v1,Y2,---,Yi,--.,Yn € Y such that
(z,y) e W
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Otherwise, we say that G, is a promise game.

A game is promise-free if all three conditions of definition 3.2.5 are met. The
motivation for the first and second conditions is obvious. The third condition is
there to ensure that each element in Y = Y] x Yy x ... x Y, is useful. In other
words, one cannot introduce a bogus element in one of the player’s answers, and
then conclude that the game is error-free according to condition 2.

Of course, given a game G, = (X,Y, P,W) where P(x,) is false for a given
To € X, it is possible to convert it to a game G|, = (X, Y, P/, W’) where P'(zy) = true
(and P'(z) = P(z) otherwise), by simply specifying in the winning condition
W' that Vy € Y, (zo,y) € W' (and W’ is otherwise unchanged from W). By
repeatedly applying this technique to all such zy, we convert G, into a game
GI = (X,Y,P"/W") where P" is the constant true predicate, and so we have
eliminated the need for the promise P. Note, however, that according to definition
3.2.5, G is still a promise game (since, for example, (zg,y) € W,Vy € Y).

We may also proceed in the opposite direction. Given a game G,, suppose
that Jz¢ € X such that Vy € Y, (zo,y) € W. We can then derive a new game
G, = (X,Y,P',W') where P'(zy) = false (and P'(z) = P(z) otherwise) and
where 1 is removed from domain(W), which yields W’l. Continuing in this way,
we arrive at a game G, = (X,Y, P",W") such that Vz € X, either P"(z) is false
or 3y € Y such that (z,y) ¢ W”. We call such a game a min-promise game (since
{z € X | P"(z) = true} is smallest possible). In the present document, we will
consider games G, in their min-promise form only, since by the following lemma,

wWe(Gr) is smallest for these games.

Lemma 3.2.4. Let G, be a min-promise game, obtained from game G, as above.

Then w(GY) < We(Ghr).

Proof. If G, is already in its min-promise form, then &.(G}) = &.(G,). Otherwise,

we claim that for each iteration 7 of the above process, assuming we start from game

1Strictly speaking, it is not necessary to clean up W in this way.
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GL = (X,Y, P',W*) and that the result is the game G:! = (XY, P W), we
have &,(G5!) < &.(G?). To show this, suppose that &,(G%) = B Then,

~ i z-—1
@(Gi) = P

_ r—1

P -1

< T
|PY|

= &,(GL).

Since each iteration yields a game with smaller success proportion, we conclude

that Te(G") < e(Gr). O

We have given a definition for a promise-free game, yet there are other restric-
tions on W and P that may be interesting to study. Let G, = (X,Y,P,W) be a

game. We consider two restrictions on W and on P:
1. W is a function (i.e. (z,51) E WA (z,92) E W = y1 = v3)
2. W is a function and Vz € X, P(z) = true

A game G, with |{X| > 1 that satisfies (2) is a promise-free game according to
definition 3.2.5, but this is not necessarily the case for (1).

We will see in chapter 4 that two-player promise-free pseudo-telepathy games
exist. However, it is not known if there are pseudo-telepathy games satisfying (1)
or (2). This would be an interesting question to ponder, and even more interesting

to solve!

3.3 Physical Realizations and Loopholes

Suppose we want to execute a physical experiment to show that there is no
local realistic (classical) model of reality, using a pseudo-telepathy game. We call

this an experimental demonstration of Bell’s Theorem.
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The ideal experiment would be to set up a quantum system and run many

instances of the game until either:

1. the players lose, in which case we conclude that the predictions of quantum

mechanics are wrong, and it’s back to the drawing board, or

2. the players win consistently for a sufficiently large number of instances to rule
out (with high probability) any classical strategy (based on a local, realistic
model)

This experiment contrasts with many experimental demonstrations of Bell’s
theorem in that we are not interested in verifying a statistical difference between
the quantum and classical players, such as in the Bell [Bel64], CHSH [CHSH69], or
Mermin [Mer81la, Mer81b] proofs of Bell’s theorem. Instead, the ideal experiment
above tells us that as soon case 1 happens, we reach a definite conclusion. This
principle is referred to as an “all-or-nothing” experiment, since it involves either
complete success or failure (as long as we run enough instances of the game). It
is surprising that we can devise such an experiment. After Bell stated his famous
theorem in 1964, and for about 20 years, the only experimental demonstrations of

Bell’s theorem were statistical, which is what lead Mermin [Mer90e] to write:

I was surprised to learn of this always-vs-never refutation of Einstein,
Podolsky and Rosen. ... I recently declared in writing that no set
of experiments, real or gedanken, was known that could produce such
an all-or-nothing demolition of the elements of reality. With a bow of

admiration to Greenberger, Horne and Zeilinger, I hereby recant.?

The laboratory setting offers conditions that are far from the ideal world. There-
fore, we must now incorporate imperfections into the analysis of experimental data
drawn from an “all-or-nothing” experiment. In this non-ideal situation, a single

occurrence of case 1 does not allow us to reach a definite conclusion; instead, we

ZMermin was probably unaware of the earlier pseudo-telepathy game, described in section 4.1.
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must account for errors. This is not an easy task; it seems that for each real-world
experiment that is reported, there is consistently an argument that comes up which
invalidates the experiment and allows for a classical theory to explain the results.
These counter-arguments exploit what are called loopholes, i.e. ambiguities that
make it possible to evade a difficulty.

For example, one of the first experimental demonstrations of Bell’s theorem
[AGR82, ADRB82] suffered from the locality loophole, [Fra85, GZ99], which ex-
ploits a timing flaw in the experiment setup. Other counter-arguments include
the memory loophole [BCH*02], which exploits the assumption that the nth mea-
surement is independent from the first n — 1 measurements, and the detection
loophole [Pea70, Mas02], which is based on the fact that in real experiments, only
a fraction of the instances yield a correct answer.

Here, we will address only one such loophole argument, namely the detector
efficiency problem: real-world detectors are noisy and inefficient, thus, in the real-
life laboratory, we cannot expect to always witness the results predicted by quantum
mechanics.

We want to know how we can work with the noise and inefficiencies to devise an
experimental demonstration of Bell’s theorem that does not exploit the detection
loophole. Of course, the more tolerant to detector noise and inefliciencies our game
is, the more convincing it might be.

Taking into account these errors, the experiment must change. It is possible
for the quantum players to lose (in the case of an error due to noise), or for the
answer to be lost (in the case of an error due to an inefficiency). So, we will
run many instances of the game and collect the results (win/lose/draw), until we
are satisfied that the classical players would not be able to win as often as the
quantum players. This experiment will only be convincing if the detector noise and
inefficiency rates are small enough. It is not an easy task to devise experiments
that are statistically convincing; we only mention here that work on this subject
has been done in [Per00, DGGO03].

It is important to mention a common mistake in reasoning about experimental
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realizations of pseudo-telepathy games. Too often, we read that the all-or-nothing
effect is to rule out local hidden variables in a single run: “The quantum non-
locality can thus, in principle, be manifest in a single run of a certain measure-
ment.” [CPZ*03] The fallacy here is that if the players (classical or quantum) win
for a single run, we cannot conclude anything, except that they have guessed cor-
rectly. It is only by running many instances that we conclude that case 2 of the
ideal experiment has been realized. There are many more examples of this mistake
in the literature. As Peres wrote, about those who made this mistake: “The list of
authors is too long to give explicitly, and it would be unfair to give only a partial

list.” [Per00].

3.3.1 Noisy Detectors

We consider this error model for binary outputs only. If there is noise, the
output bit will be flipped. More formally, each individual player’s answer y; cor-
responds to the predictions of quantum mechanics (if the apparatus were perfect)
with probability p. With complementary probability 1 — p, the player outputs 7;,
the complement of y;. We say that this is a game with errors; 1 — p is the noise
rate.

For each game, there is a threshold on p, above which no classical strategy can

succeed as well as a quantum strategy. This threshold is defined as p,(G.,):

Definition 3.3.1. p,(G,) is the maximum value of p for which a classical strategy

can succeed as well as a quantum strategy, in the game G,, with errors.

In general, we want to upper-bound p.(Gy).

3.3.2 Inefficient Detectors

Assume that the apparatus gives the correct answer most of the time, but
sometimes it fails to give an answer at all. In this model, we enlarge each player’s
set of outputs Y; to include the special symbol 1 which means that the player’s

apparatus fails to give an answer. Formally, we redefine player i’s possible outputs
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in game G, = (X,Y,P,W) by Y; = Y; U{L}. If, in the answer y = y1,vs,...,Yn,
we have y; = L for any ¢, then we say the players neither win nor lose, but that the
outcome is a draw. If the outcome is not a draw, then we require that it be correct
(i-e. it must satisfy the winning condition). We call such a game an error-free game.
For each player, we will assume that the measurement has probability 7 of
giving a result and 1 — 77 of not giving a result. So y; = L with probability 1 — 7.
As in the case of noisy detectors, we are interested in the threshold of the
efficiency rate 7, above which no classical strategy can succeed as well as a quantum

strategy. This threshold is defined as 7.(Gy):

Definition 3.3.2. 7,(G,) is the maximum value of 7 for which a classical strategy

can succeed as well as a quantum strategy, in the error-free game G,,.

If we assume that each apparatus’s efficiency 7 is independent of the others,
then 7™ is the probability that all players give an answer. We usually calculate this
probability, and from there, deduce 7.

In general, we want to upper-bound 7,(G,). Some work has been done on this
in [MP03]. The error-free model is usually easier to analyze than the model with
errors, but it is obviously less realistic. In practice, noise could come from many

sources, which means that the model with errors is the more realistic of the two.

3.4 Presentation of the Games

The present document is a collection of pseudo-telepathy games, in which we
present many original contributions (see section 1.5). The games are presented in
two separate chapters (chapter 4 for games with n = 2, called two-party games
and chapter 5 for games with n > 3, called multi-party games). Each game G, is

presented according to the following format:
1. Background information on the game, as well as historical notes.

2. A table with summary information (table 3.1); some fields may be omitted if

no information is known. The promise P and the winning condition W are
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given as equations. These should be interpreted as: P(z) = true if and only
if = satisfies the given equation, and (z,y) € W if and only if (z,y) satisfies

the given equation.

Name of the game

n number of players

X set of questions

Y set of answers

P promise

|24 winning condition

We maximum classical success proportion
We maximum classical success probability

maximum value of p for which a classical strategy can

p succeed as well as a quantum strategy

. | maximum value of n for which a classical strategy can
n succeed as well as a quantum strategy
[1) quantum state used in the winning strategy

Table 3.1: Presentation of the games

3. Justification of each row of the table by theorems and proofs; we always
give the quantum winning strategy, and then justify why w.(G,) < 1. For
example, we will usually find a value or an upper bound for &.(G,). Then,

by theorem 3.2.2, this value gives us an upper bound on w.(G,).



CHAPTER 4

TWO-PARTY GAMES

In this chapter, we present five two-party pseudo-telepathy games. Among these
games, there are three that are scalable (we can increase the length of each player’s
question). We also show that the remaining two games are equivalent. Since we
consider games with only two players, we will call player 1 Alice and player 2 Bob.
We denote a two-party game by G (instead of G, n = 2), or by G* where £ is a
parameter that determines the length of the player’s input and output for a scalable

game G.

4.1 The Impossible Colouring Game

In response to Einstein, Podolsky and Rosen’s argument for hidden variables
(section 1.1), Kochen and Specker [KS67] presented an argument against hidden
variables. They showed that under non-contertuality, hidden variables cannot exist.
Briefly stated, non-contextuality is the principle according to which the probability
of a given outcome in a measurement does not depend on the choice of the other
orthogonal outcomes used to define that measurement. Bell’s theorem and the
Kochen-Specker theorem differ by their assumptions: Bell’s theorem assumes local-
ity, while Kochen-Specker’s theorem assumes non-contextuality. Non-contextuality

may not be experimentally verified:

This doctrine, being ‘counterfactual’, is incapable of empirical verifica-
tion and hence Bell regarded it, and the BKS' theorem to which it lead,
as unsatisfactory; he prefered the Bell theorem instead with its reliance

upon the much less problematic assumption of locality. [Ara99]

1The Kochen-Specker theorem is also known as the Bell-Kochen-Specker (BKS) theorem, due
to [Bel66]. To be even more historically accurate, we should note that similar results appeared
earlier in [Gle57], and in [Spe60].
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In this section, we show how to convert the problematic assumption of non-
contextuality from the Kochen-Specker theorem into the assumption of locality,
effectively creating a pseudo-telepathy game. Kochen and Specker proved the fol-

lowing theorem:

Theorem 4.1.1 (Kochen-Specker Theorem). There ezists an ezxplicit, finite
set of vectors {vo,v1,-..,Un_1} € R3 that cannot be {0, 1} coloured so that both of
the following conditions hold:

1. For every orthogonal pair of vectors v; and vj;, they are not both coloured 1.

2. For every mutually orthogonal triple of vectors v;, v; and v, at least one of

them s coloured 1.

Theorem 4.1.1 was originally proven using 117 vectors [KS67], and this has been
reduced to 31 (with 17 orthogonal triples) by Conway and Kochen [Per93]. From
theorem 4.1.1, it is possible to give an argument against hidden variables by using
the non-contextuality assumption. We will not give the details here, since we are
interested in showing how theorem 4.1.1 can be turned in to a pseudo-telepathy
game, as first shown by [HR83] and then by [Sta83]%. Here, we use a presentation
inspired by [CHTWO04]. This is no doubt the earliest example of pseudo-telepathy,
which was overlooked by many, since Greenberger, Horne and Zeilinger (section 5.1)
got most of the credit for inventing the first pseudo-telepathy game. There is actu-
ally an infinite family of pseudo-telepathy games that arises from Kochen-Specker
constructions. A Kochen-Specker construction, similar from that of theorem 4.1.1,
can be constructed in any dimension d > 3, either by geometric argument, or by
extending a construction in dimension d to dimension d 4+ 1 [Per93]. Geometric
arguments can yield sets with smaller cardinality; for example, the smallest known

set in four dimensions has 18 vectors [CEGA96].

2Stairs notes that Kochen offered a version of the argument, presumably before Heywood and
Redhead, but never published it. He also notes that his own 1978 dissertation presents a similar
argument.
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A game G™, for any Kochen-Specker construction of dimension m > 3 is given

in table 4.1, where the following definition is used:

Definition 4.1.1. An augmented Kochen-Specker construction of dimension m is
a normalized set of vectors {vp,...,vn—1} € R™ that cannot be {0, 1} coloured so

that all of the following conditions hold:
1. For every orthogonal paif of vectors v; and v;, they are not both coloured 1.

2. For every mutually orthogonal m-tuple of vectors v;,,v;,,...,%i,_,, at least

one of them is coloured 1.
3. Every orthogonal pair of vectors is part of an orthogonal m-tuple.

Starting from the Kochen-Specker theorem, it is straightforward to find an
augmented Kochen-Specker construction of any dimension m. The challenge that
Alice and Bob face in the impossible colouring pseudo-telepathy game is given in
table 4.1: Alice receives an orthonormal m-tuple of vectors vy, vs,...,v,. Bob
receives a single vector v, € {v1,v2,...,vn}. Alice outputs y; € {1,2,...,m},
indicating which of the m vectors of her input is assigned colour 1. Bob outputs a
bit assigning a colour to his vector. The winning condition is that Alice and Bob
assign the same colour to the vector that they receive in common. It is necessary
to use an augmented Kochen-Specker construction of definition 4.1.1 in order to
ensure that every vector appears in at least one instance of the game (although
a modification of the game, where we can ask Alice to colour an n-tuplet, where
n < m, does not require the use of the augmented Kochen-Specker construction).
Unlike other pseudo-telepathy games, it is not straightforward to find |X;| and
|X5|, because it depends on the augmented Kochen-Specker construction that is
used. It would be interesting to calculate these values.

As mentioned earlier, the pseudo-telepathy game based on the Kochen-Specker
theorem appeared as early as 1983. Since then, other authors have explored the

topic: [Ara99], [MA99] and [RW04].
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Impossible colouring game

n 2

Let K,, be an augmented Kochen-Specker construction of
dimension m > 3.
X | Xi={(v1,---,m) | (v1,-...,Vn) are orthonormal m-tuples in
K}
Xo = {vg | ve € K}

Y Yi={1,2,...,m}, Y ={0,1}
P ve € {v1,...,Um}

w p=~Leyp=1

We <1

We <1

) £ i)

Table 4.1: Impossible colouring game

4.1.1 A Quantum Winning Strategy

Theorem 4.1.2. Let G™ be the impossible colouring game. Then w,(G™) = 1.

Proof. The player’s strategy is to share the state |¢) = \/1_77;27:01 |77).  After

receiving their input, Alice and Bob do the following:

1. Alice performs a measurement in the basis B, = {|v1), ..., |vm)}. She outputs

the index i corresponding to the measured vector.

2. Bob augments the set {|v,)} to a basis By = {|ve), |w1),-. ., |[Wm-1)} of R™,
and measures in the basis given by B,. If the outcome is v, he outputs 1,

and outputs 0 otherwise.

To show that this quantum strategy works, we first remark that since the bases

B, and By have real coefficients, for any |vs) = |vap,Ya1,---,Vam-1) € B, and
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|'U.)b> = Iwb,O) wb,la v )wb,m—1> € Bb)
m—1 m—1
Z(ﬂ%)(ﬂ’wb) = Z Va,jWe,j (4.1)
j=0 j=
m—1
= Wy, (42)
=0
= (vg|ws)- (4.3)

2

1 m—1 1 m— 1
(Flodve)l =|—= > (Glvi){G|ve) (4.4)
vm ; vm =
1 2
= ﬁ(vdw) (45)
1 i=¢
={" (4.6)
0, 1#/¢

We see that the winning condition y; = £ < y, = 1 is always met. This

completes the proof that w,(G™) = 1.
O

4.1.2 Classical Success Proportion

Theorem 4.1.3. Let G™ be the impossible colouring game. Then W,(G™) < 1

Proof. Any classical deterministic strategy is a colouring with the properties of
definition 4.1.1. Yet the set of vectors used, those of an augmented Kochen-Specker
construction of dimension m, may not be coloured in this way; so Alice and Bob

cannot have a classical winning strategy. O

It follows by theorem 3.2.2 that w.(G™) < 1
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4.1.3 Special Case of the Impossible Colouring Game

We have presented a infinite family of pseudo-telepathy games based on the
Kochen-Specker theorem. It is interesting to mention the particular case where
m = 3 (table 4.2). For the quantum strategy, Alice and Bob share an entangled
qutrit pair |¢) = % (|00) + |11) + |22)). This is interesting as this entangled state
of dimension 9 is the smallest known state used for a two-party pseudo-telepathy
game. In fact, we know for sure that this is the smallest possible state for a two-

party pseudo-telepathy game [BMTO04].

Impossible colouring game (m = 3)
n 2
Let K3 be an augmented Kochen-Specker construction of

X dimension 3.

X1 = {(vi,vj,vk) | (vi,vj,v) are orthonormal triples in K3}

X2 = {'Ug | Vp € Kg}

Y Y; ={1,2,3}, ¥, = {0,1}
P ve € {vs, v, Uk}
W n=~L0ey=1
We <1
We <1
) 75 (100) + 1) +]22))

Table 4.2: Impossible colouring game (m = 3)

4.2 The Distributed Deutsch-Jozsa Game

This pseudo-telepathy game, based on the Deutsch-Jozsa problem [DJ92], was
first presented in [BCT99]. The game uses a parameter k, which determines the
size of the game. The task that Alice and Bob face is the following (see table 4.3,
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which makes use of definition 4.2.1): they each receive an input bit string of length
2k, with the promise that either their inputs are identical, or they differ in exactly
half of the positions. They must each output a bit string of length %, such that
their outputs are identical if and only if their inputs are identical. Originally, there
was only an asymptotic bound known on the amount of communication required for
classical players to have a winning strategy; thus we could not say for sure which
values of k give rise to a pseudo-telepathy game. A few years later, an analysis

showed that for k = 4, this game is a pseudo-telepathy game (see section 4.2.2).

Definition 4.2.1. The Hamming Weight of a binary string z = 2,2, ...z, € {0,1}"
is denoted A(z) and defined as:

As a consequence, we have that 0 < A(z) < n.

4.2.1 A Quantum Winning Strategy

Theorem 4.2.1. Let G* be the distributed Deutsch-Jozsa game. Then wy(G¥) = 1.

Proof. The player’s strategy is to share the state |[¢) = #212:1 |77). After

0,1 ok

receiving his input z; = 2%z} ... 2% ~!, each player i does the following:

1. apply the unitary transformation S; given by
: 2.
Sil7)) = (=1)%17)

2. apply H to each qubit
3. measure the qubits to obtain y; = y%y} ... y*?

4. output y;

To show that this quantum strategy works, we first state and prove a lemma.
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Distributed Deutsch-Jozsa game

n 2

X X, = X, ={0,1}%

Y Y1=Y,={0,1}*

P T, = T3 or A(zy,x0) = 2571
w Y1 =Y2 < T1 = T2

we=1(k=1,2,3), & <1 (k=4 and for all sufficiently
large m)

£

we=1(k=1,2,3), w. <1 (k=4 and for all sufficiently

We large m)
k— ..
) 7 Loimp 199

Table 4.3: Distributed Deutsch-Jozsa game

Lemma 4.2.2. Let |z) be a basis state of n qubits. Then

———EZ(T/]L—;:ZM, (4.7)

where x - 2 is the bitwise inner product of T and z, modulo 2, and the sum is over

all z € {0,1}".

H®"|z) =

Proof. For a single qubit, we have H|0) = '—0)—}—"'511 and H|l) = JQ%H and so for |z)

a single qubit,

2..(=1)"*2)
V2

By linearity, for |z) = |z;...z,) a basis state,

Hlz) =

I P

vor ’

H®n|$1 .. .In) =




36

which can be summarized by

e = B

Now, consider the resulting state after step 1 of the quantum strategy:
2k—1
Z 1)7+2 jj)
In step 2, both players apply H. By lemma 4.2.2, if |;) is a basis state of k qubits:

2k_1

HOHj) = \/_Z 1) (48)

where £ - j is the bitwise inner product of £ and 7, modulo 2. So,

k_ _ k__
H®*|¢)) = 2 1i(—1)“°’+”‘7 221 1Y *|u) 221 1))
= V2 V2F & VoF &
1 2k—12k—1 fok_) o
9 4ol 4 joutge
= Z PN DG ik s achucil NNTIH

u=0 v=0 \ j=0

The amplitude a of |u)|v) in H®2*|4h) determines the probability that y; = u and

y2 = v. From here, we have two cases:

e ; = z,. Suppose that u # v. The amplitude & of |u)|v) in H®|¢)) is

2k_1

_ Z 2] +a)4jutju
a=— (_1) 11T
2

J=0
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Where the last line follows by the following argument: we know that j - u -+
Jov=3 - u ® j-v (mod2)andthat j-u®j-v=7-(udv). Since u # v,
we have that u @ v # 0. Therefore, j - (u ® v) = 0 (mod 2) for exactly half
the values of j and j - (u®v) = 1 (mod 2) for the other half of the values
of j.

Hence the winning condition is always satisfied if z; = z,.

o A(z1,z2) = %: Suppose that u = v. The amplitude o of |u)|v) in H®?"|¢)) is:

2k -1
_ L (—1)Fitedtiutiv
o= 22&
2 =0

1 2k-1 . .
_ IJ+IJ
= F (_]_) 1+

2 =0

=0

Since A(z1,z2) = 2! implies that 2 + 3 = 0 (mod 2) for half values of j
and 7] + 2 = 1 (mod 2) for the other half of the values of j.

Hence the winning condition is always satisfied if A(z;,z;) = 251

4.2.2 Classical Success Proportion

The following theorem states that if the parameter k is chosen large enough, this
game cannot be won with certainty by classical players. It appeared in a slightly
different context in [BCW98].

Theorem 4.2.3. Let G* be the distributed Deutsch-Jozsa game. Then the amount

of communication required for classical players to win the game is in Q(2%).

But this theorem doesn’t help if we want to know which values of k yield a
pseudo-telepathy game. Originally, the authors of [BCT99] knew that the game

had a classical winning strategy for £ = 1,2. They conjectured that this was not
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the case for k = 3. However, in [GW02], the authors prove that there is a classical

winning strategy for k = 3, hence the following theorem:

Theorem 4.2.4. Let G* be the distributed Deutsch-Jozsa game. Then &,(GF) =1
ifke{1,2,3}.

Then, the idea was to show that for k£ = 4, there was no possibility of a clas-
sical winning strategy. By using an argument based on graph theory, as well as a
computer-assisted case analysis, it was finally shown in [GWT03] that for k& = 4,

there is no classical winning strategy:

Theorem 4.2.5. Let G* be the distributed Deutsch-Jozsa game. Then T,(G*) < 1
ifk=4.

So we know that for £ = 4, the distributed Deutsch-Jozsa game is a pseudo-
telepathy game. By theorem 4.2.3, we also know that if we choose k larger than
a certain threshold kg, then we have a pseudo-telepathy game. However, it is an
open question to determine the value of k. In particular, we don’t even know if

k =5 yields a pseudo-telepathy game!

4.3 The Magic Square Game

The magic square game was presented by Aravind [Ara02, Ara03], who built
on work by Mermin [Mer90d]. The game is also presented in [CHTWO04].

A magic square is a 3 X 3 binary array that has the property that the sum of
each row is even and the sum of each column is odd. Such a square is magic since
it cannot exist: suppose we calculate the parity of the nine entries. According to
the rows, the parity is even, yet according to the columns, the parity is odd, which
is a contradiction.

The task that the players face while playing the game is the following: Alice is
asked to give the entries of a row and Bob is asked to give the entries of a column.
The winning condition is that the parity of the row must be even, the parity of

the column must be odd, and the intersection of the given row and column must
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agree. Because a classical strategy would have to assign nine entries to a magic
square, which is impossible, we know right away that there is no classical winning
strategy. The game is described in table 4.4, where y; = 17973 (7 is used for rows)
and yp = cicac3 (c is used for columns). It is interesting to note that this game is

promise-free according to definition 3.2.5.

Magic square game
n 2
X X1 =1{1,2,3}, X, ={1,2,3}
Y Y1 =Y.={0,1}3
P none
W S22 ri=0 (mod 2), 2 6 =1 (mod 2)
Ty = Cqy
e g
e 5
) 2(]0011) —]0110) — |1001) + |1100))

Table 4.4: Magic square game

4.3.1 A Quantum Winning Strategy
Theorem 4.3.1. Let G be the magic square game. Then wy(G) = 1.

Proof. The players share the state |1) = £ (|0011) — |0110) — |1001) + |1100)).
After receiving their inputs (z; for Alice, z; for Bob, the players do the following:

1. Alice performs the unitary transformation given by the matrix A;, (where 2

denotes v/—1):

A1=

HOOe
O 0O
OO
OO
_
NN
(]
!
N =
—
E‘llﬂh‘
et
[
bk
F"E‘S
——
I
w
Il
N

7l



40

2. Bob performs the unitary transformation given by the matrix B,,:

1 1 — 1 1 1 -1 2 1 1 1 1 0 0
B,==|"— 1 -1 B, == 1 21— B. = -1 0 0
1_2 1 1 -2 2> 2_2 1=1 1 2 3_\/— 0 1 1

-1 1 1 1 1= 1 21l 0 1-1

OO~
—

3. Alice and Bob measure their system. The result of the measurement gives the
first two bits of the output, ;75 for Alice and ¢;c; for Bob. The third output
bit is calculated so that the sum of each row is even and the sum of each

column is odd. Hence 73 =71 + 3 (mod 2) and ¢3 = ¢; + ¢2 + 1 (mod 2).

To show that this strategy works, we consider nine cases that correspond to
the possible questions = z;,z3. In each case, we show that the player’s final
answer satisfies the winning condition. Because of step 3, we know that the row
and column parity conditions are satisfied. After some tedious calculations that we

omit here, we are able to show that indeed r;, = ¢;, in all nine cases. O

The reader might wonder where the unitary transformations A;, As, As, By, By
and Bz come from. The answer is that they come from a 3 x 3 array of observables

(table 4.5), each observable defining a measurement.

0:®0y |0, Q0; | 0,80,
0y ®0, | 0,Q0y | 0; 04
0,80, | 0:Q0,| 0y ® 0y

Table 4.5: A 3 x 3 array of observables

Here, 0;, 0y, 0, denote the Pauli matrices:

The measurement outcome for each observable is 0 or 1. The operators in each
row and in each column commute pairwise, which means that they can be measured
simultaneously, the result being a three-bit string. Since the product along any row
is I ® I, the outcome for any row is even, and since the product along any column

is —I ® I, the outcome for any column is odd.
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In order to show that the intersection of Alice’s and Bob’s answers agree, we first
note that the shared entangled state can be re-written as |¢) = % (l01) —|10)) ®
\/Li (|01) — |10)), where Alice has the first and third bit, and Bob the second and
fourth bit. It is easy to check that the state |¥~) = % (|01) — |10)) has the
property that (o;®0;)| V™) = —|¥~), for any i € {z,y, 2}. Thus, using superscripts
to identify the player’s operator,

(0f ®cf)® (0} @P)TT) & |T7) = [T7) @ |T7). (4.9)

So, if Alice and Bob perform an identical measurement corresponding to an entry
in table 4.5 on the state |¢) = |¥~) ® |U~), their outcomes will agree.

Therefore, the quantum strategy is that Alice and Bob share the state |1). Alice
performs three measurements on her part of the system, corresponding to row z;
in table 4.5, and Bob performs three measurements, corresponding to column z.

The matrices Ay, Az, Az, B1, By and Bs, given in the previous quantum strategy
come from table 4.5. We obtained them by simultaneous diagonalization of the rows

(A1, Ag, A3) and columns (B, By, B3) of the table.

4.3.2 Classical Success Proportion

Theorem 4.3.2. Let G be the magic square game. Then W.(G) < 1.

Proof. A deterministic strategy assigns values {0,1} to entries of a 3 x 3 array.
Alice answers according to the required row and Bob answers according to the
required column. Because of the winning conditions (the sum of the row is even,
the sum of the column is even and the intersection of both answers agree), such a
strategy would have to correspond to a magic square. No such magic square exists,
s0 W.(G) < 1. a

©lco

Theorem 4.3.3. Let G be the magic square game. Then W.(G) =

Proof. By theorem 4.3.2, there is no classical winning strategy. Combining this

with lemma 3.2.3, we get that &.(G) < . We give a strategy that succeeds on all
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but one question, say z; = 3, zo = 3: Alice answers according to table 4.6, and

Bob answers according to table 4.7.

0 0 0
0 0 0
1 1 0

Table 4.6: Alice’s strategy

0 0 0
0 0 0
1 1 1

Table 4.7: Bob’s strategy

Then the players win on all but one question (z; = 3, zo = 3), so &.(G) = O

©|0o

Theorem 4.3.4. Let G be the magic square game. Then w.(G) =

©lco

Proof. We know from the previous theorem and by theorem 3.2.2 that w (G) < &.
Consider a set of nine deterministic strategies s;; (i = 1,2,3 5 = 1,2,3) that
succeed on all but one question, z; = 4, x5 = j. These strategies can be constructed
as in the proof of the previous theorem.

Suppose Alice and Bob use the probabilistic strategy which consists of selecting
uniformly at random a strategy s;;. Then for each question, the probability of

winning is £, and so w,(G) = §. |

4.4 Cabello’s Game

Cabello’s game (table 4.8) is presented in [Cab0la] and [Cab0lb]. Here, we
have substantially changed the original notation so as to simplify the presentation.
We suppose that, on input z; € {1,2,3}, Alice outputs two bits, y; = aia, and
that on input z, € {1,2,3}, Bob outputs two bits, y5 = b;bs.

Cabello’s game resembles the magic square game (section 4.3) in many ways:

both are promise-free, both have the same input size, the same output size, and even
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the same entangled state used for the quantum winning strategy. This suspicious
resemblance is not a coincidence, since it turns out that the games are equivalent,

which is the topic of section 4.5.

Cabello’s game

n 2

X X1={1,2,3}, X2={1,2,3}

Y Yi=Y,= {01 1}2

P none

174 given in table 4.9

e 5

we 5

) % (J0011) —|0110) — |1001) + |1100))

Table 4.8: Cabello’s game

winning condition
a1+b1§1
a+b =1
a1+a2+b150
a1 +b,=1
as+by=1
a1+a2+b250
a1+b1+b250
0,2+b1+b250
a1+a2+b1+b251

8
R

W WL NN N
WKW w8

Table 4.9: Winning conditions for Cabello’s game

4.4.1 A Quantum Winning Strategy

Theorem 4.4.1. Let G be Cabello’s game. Then w,(G) = 1.
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Proof. Let G’ be the magic square game. In theorem 4.5.6, we will show that G is
equivalent to G'. By theorem 4.3.1, w,(G’) = 1. By lemma 4.5.5, this implies that
we(G) = 1. a
4.4.2 Classical Success Proportion

Theorem 4.4.2. Let G be Cabello’s game. Then .(G) < 1.

Proof. To prove this result, we use the fact that by theorem 4.5.6, this game is
equivalent to the magic square game, G’. By theorem 4.3.2, @.(G’') < 1, hence, by
lemma 4.5.3, &.(G) < 1. O

Theorem 4.4.3. Let G be Cabello’s game. Then W (G) =

©w|co

Proof. Let G’ be the magic square game. By theorem 4.3.3, @.(G') = £ and since
[

©joo

G and G’ are equivalent (theorem 4.5.6), lemma 4.5.3 gives us that &.(G) =

Theorem 4.4.4. Let G be Cabello’s game. Then w.(G) =

©lco

Proof. Let G’ be the magic square game. By theorem 4.3.4, w.(G') = g and since
G and G’ are equivalent (theorem 4.5.6), lemma 4.5.4 gives us that w.(G) =$§. O

4.5 The Magic Square and Cabello’s Games Are Equivalent

As mentioned in section 4.4, the magic square and Cabello’s game are suspi-
ciously similar. In fact, they are equivalent. This fact is known by Cabello [Cab04];
but it doesn’t seem to have appeared in print. In this section, we formally show
that the games are equivalent.

First, we must define what we mean when we say that two games are equivalent.

For our purposes, the following definition is sufficient:

Definition 4.5.1. Let G = (X,Y, P,W) and G' = (X', Y’, P',W’), be two player
games with X = X; x X5, YV = Y; x Yy, X' = X{ x X}, and V' = Y/ x V}.

We say that G and G’ are equivalent if there exist bijections 04 : X3 — X} and
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op: Xy — X, as well as bijections d4 : Y7 — Y{ and ép5 : Y2 — Y such that for all

71,72 € X and 41,42 €Y, 71,20 € P & (04(z1),08(22)) € P’ and

(%1, 2,11, Y2) € W & (04(21), 08(22),64(v1),08(y2)) € W'

The following five lemmas justify the above definition by showing that the

properties that we would expect to hold for two equivalent games are indeed true.

Lemma 4.5.1. Let G and G’ be equivalent two-player games. Then for each de-
terministic strategy s for G, there exists a deterministic strategy s’ for G' such that

s’ has the the same success proportion as s.

Proof. Let 04,08,04 and dp be as in definition 4.5.1. Let s be a strategy for G
and suppose that s succeeds in proportion p. Let s’ be the following strategy for
G". On input z} € Xj, Alice finds z; = o' (z}). Let y; be Alice’s output on input
T; according to strategy s. Then in strategy s’, Alice outputs §4(y;). Bob uses a

similar strategy for s’. Since
(.’L‘l,.'L'z) € P& (UA(CL‘l),O'B(iL’z)) € PI,
we know that |P| = |P’|. Furthermore, since

(Z1,$2, yl:y?) € W< (UA(ml)a UB(xZ)a 6A(y1))53(y2)) € W,a

we conclude that strategies s and s’ have the same success proportion. O

Given an arbitrary strategy s and a question z, let Pry(win | z) denote the
probability that strategy s provides a winning answer on question z.
Lemma 4.5.2. Let G = (X,Y,P,W) and G' = (X', Y', P',W’) be equivalent two-
player games. Let s be a probabilistic strategy for G. Then there ezists a bijection

7: X — X' and s’ a probabilistic strategy for G' such that for all z € X,

Pry(win | ) = Pry(win | 7(z)).
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Proof. Let 04,08,04 and dp be as in definition 4.5.1.

Since s is a probabilistic strategy for G, it is a probability distribution over a
finite set of deterministic strategies for G, say {s1,52,...5m}. Let Pr(s;) be the
probability that strategy s; is chosen.

We can convert each deterministic strategy s; for G, to a deterministic strat-
egy s; for G', as in the proof of lemma 4.5.1. Using this, let s’ be the strategy
for G' which is a probability distribution over the set of deterministic strategies
{81, 8%, --. s, } such that strategy s} is chosen with probability Pr(s;).

Let ps,(z) be 1 if strategy s; yields a winning answer on question z and 0
otherwise.

We define the bijection 7 on z = 1,25 € X; X X3, by 7(z) = 04(z1), 05(x2).
Since

($1,$2,y1,y2) eEW e (UA(wl), 03($2),5A(y1),53(y2)) €W,

the deterministic strategy s; wins on question z € X if and only if the determin-
istic strategy s; wins on question 7(z) € X'. In other words, ps,(z) = py (7(z)).
Therefore,

Pry(win | z) = ZPI 8i)Ps, (T

= Z Pr(s:)ps (7(x))

= Pry(win | 7(z)).
O

Lemma 4.5.3. Let G and G’ be equivalent two-player games. Then @.(G) = ©,(G").

Proof. By lemma 4.5.1, @.(G) < W.(G'). By symmetry, @.(G) > @.(G'), hence
(@) = @ (G"). O

Lemma 4.5.4. Let G and G’ be equivalent two-player games. Then w.(G) = w,(G").
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Proof. By lemma 4.5.2, w.(G) < w.(G'). By symmetry, w.(G) > w.(G"), hence
we(G) = we(G).
O

Lemma 4.5.5. Let G and G’ be equivalent two-player games. Then we(G) = w,(G').

Proof. By lemma 4.5.1, wy(G) < wy(G'). By symmetry, w,(G) > wy(G’), hence
n(G) = (@), 0

We now state and prove the main result:
Theorem 4.5.6. The magic squares game and Cabello’s game are equivalent.

Proof. Let G be the magic square game and G’ be Cabello’s game. Consider the
following bijections: o4 : X; — X is the identity map and op : Xy — X} is also
the identity map. The maps 64 : Y1 — Y] and dg : Y5 — Y] are given by the

following:

5A(Tl7”27‘3) =TT

5B(C1CQC3) = C1C3.

Obviously, o4 and op are bijections. Also, §4 and d5 are bijections with inverse

maps: 03 (aiaz) = ri7Tor3 Where

Ty =01
To = Qg

r3 = a1 + a3 (mod 2)
and 65" (b1bg) = cicocs where

Cl=b1
62=b2

c3=b;+by+1 (mod 2).
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All the questions satisfy the promise, so what remains to be shown is that for

all (z1,27) € X and (y1,42) €Y,

(T1,Z2,Y1,92) €E W & (0a(z1),08(22),04(11),08(y2)) € W'.

Since o4(z1) and op(zs) are the identity maps, all we need to show is that for
any fixed question, y1,%; is a winning answer for G if and only if 64(y1), 05 (y2) is
a winning answer for G’. There are nine cases to check, corresponding to the nine
possible questions that Alice and Bob receive. Note that for each question, there is
exactly one condition in table 4.9 that must be satisfied. We can also transform the
winning condition of the magic square game into equations. For example, if z; = 1
and zz = 1, the winning condition is that 1 = ¢; and 71 + ro +73 = 0 (mod 2)
and ¢; + ¢ +c3 =1 (mod 2). A less obvious case is when z; = 3 and 2 = 3. The

parity condition states that:

1+ 72+ 73 =0 (mod 2) (4.10)

¢1+c2+cz3 =1 (mod 2). (4.11)

Since we must have ¢z = r3, substituting equations 4.10 and 4.11, we get that
ci+ca=r+7re+1 (mod 2).

We summarize the possible questions as well as the winning conditions for both
games in table 4.10, where the parity condition for the magic square game is implicit
by the fact that r3 and c3 are replaced by r; + 72 (mod 2) and ¢; +c2+1 (mod 2),
respectively.

Since §4(r17mors) = 7173 and dp(cicacs) = cicp, it is easy to see that for a fixed

question z,, Ts,
(371,1'27?!1,‘%) eW e ($11$2)6A(y1)$63(y2)) € WI'

This completes the proof. O
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question winning condition

T | To | magic square game Cabello’s game
1 1 T = a1+b =1

1 2 Tg = C1 ag + bl =1

1 3 T 4Ty =0 a1+ay+b;=0
2 1 TG = C2 ai + bg =1

2 2 Tg = Cy a2+b251

2 3 T+ Ty =cp a1+ay+b;=0
3 1 mn=c+c+l a1 +b;+b,=0
3 2 T2501+C2+1 a2+b1+b250
3 3 |mt+rm=a+e+l|ata+b+b=1

Table 4.10: Winning conditions for the magic square and Cabello’s game

4.6 The Matching Game

This game is the newest to be added to the family of pseudo-telepathy games.
In fact, this is probably the first time that it appears in print. It is based on a talk
given by Kerenidis at the Quantum Information Processing 2004 conference [BK04],

and on [BYJK04].

Definition 4.6.1. A perfect matching M on {0,1,...,m—1} (m even) is a partition
of {0,1,...m—1} into Z sets, each of size 2. We define M,, as the set of all perfect
matchings on {0,1,...,m — 1}.

The matching game is presented in table 4.11. Alice receives as input
T = I1T3...Tm € {0,1}™, and Bob receives a perfect matching M € M,,.
The task that the players face is for Alice to output a string y; € {0, 1}"%™! (Ig is
the base-two logarithm), and Bob to output a pair {a,b} € M as well as a string
yz € {0,1}8™! such that:

T DT =(a®b) (11 Dya),

where (y; @ y2) is the bit by bit exclusive or of y; and y,, and z - a is the bitwise
inner product, modulo 2. This game is promise-free according to definition 3.2.5.

The game scales with parameter m. For now, we are only able to say that
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there is no classical winning strategy if m is chosen large enough; we are currently
investigating in order to find exactly which values of m yield a pseudo-telepathy

game, more details are given in section 4.6.3.

Matching game

n 2
X X; ={0,1}™ (m even )
Xo={M|Me M,}
v Y; = {0,1}Ms™
Yz = {{a,b} | {a,b} € M} x {0,1}'e™I
P none
w o ®zo = (a®b) - (y1 1)
We < 1 for all sufficiently large m
We < 1 for all sufficiently large m
) = 1)

Table 4.11: Matching game

4.6.1 A Quantum Winning Strategy

Theorem 4.6.1. Let G™ be the matching game. Then wy,(G™) = 1.

Proof. The player’s strategy is to share the state [¢) = # Z;";Ol |77). After Alice
receives her input £ = z,z, ...z, and Bob his input M € M,,, the players do the

following:

1. Alice applies to her quantum register the unitary transformation that maps
|7) = (=1)%17)

for all j between 0 and m — 1.
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2. Bob performs a projective partial measurement onto subspaces of dimen-
sion 2. Each subspace of the measurement is spanned by vectors |k) and |£),
where {k,£} € M. Bob outputs the classical outcome of this measurement,

which is a pair {a,b} € M.
3. Both Alice and Bob perform the Hadamard transform H®M&ml]

4. Alice measures in the computational basis and outputs a, the result of her

measurement

5. Bob measures in the computational basis and outputs b, the result of his

measurement

We now show that this quantum strategy always succeeds. After step 1, the

state is: .
1 =

- —1)%|44).

|1)1) = ]_Ezo( ¥ 135)

Suppose that in step 2, Bob measures and outputs {a,b} € M. The measurement
causes the quantum state shared with Alice to collapse to Z5(—1)|aa) + 75(=1)7[bb).

In step 3, both players apply H®/™!. Let the result be |13). By lemma 4.2.2:

) =(=1)% (Z(—l)”m Z<—1>y'“|y>) +

(-1 (Z(—l)“m Z(—ny-ﬂw)

_1 aD(zDy)-a 1 zpD(zDy)-b
=3 %:(—1)’” v lm)ly)+§§:(—1) POE ) |y)

Ty

____:é Z ((_l)ma@(zaay)-a + (_1):cb®(z$y)-b) Ix)ly)
Ty

Alice and Bob then measure (steps 4 and 5), and output their result, y; and ys,.

We know that the winning condition is satisfied, since

T, Bz # (aDb) - (DY)
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implies that 2, ® (z®y)-a # z,® (zBy) - b, so the outcome y; = z, y, = y has zero
probability of being observed, hence the outcomes will always satisfy the winning

condition. O

4.6.2 The Hidden Matching Problem

The above game is inspired by a one-way communication problem called the

hidden matching problem [BYJKO04] defined as the following:
1. Alice receives as input a string z € {0, 1}™.
2. Bob receives a perfect matching M € M,,.
3. Alice sends a message to Bob.
4. Bob’s goal is to output a tuple (a, b, c) such that {a,b} € M and ¢ = z, @ z,.

In the hidden matching problem, if Alice is allowed to send quantum information
(but not to share entanglement with Bob), then the quantum one-way communica-
tion complexity is in O(log m), yet any randomized one-way protocol with bounded
error must use 2(1/m) bits of communication. This last result is useful in the next

section.

4.6.3 Classical Success Proportion

Theorem 4.6.2. Let G™ be the matching game. Then w.(G™) < 1 provided m is

chosen large enough.

Proof. Suppose that Alice and Bob have a winning classical strategy for the match-
ing game. So Alice is able to find a y; and Bob is able to find {a,b} € M and y,
such that:

To®zp=(a®b) (11 D 1)
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If we allow one-way communication (i.e. we allow Alice to send a message to Bob),

then if Alice sends y; (a [lgm] bit message) to Bob, he can calculate
(@®b) (11 ©y2) =2, ® T

This tells him which value of ¢ = z, ® z; to output in his tuple (a,b,c). Hence,
Alice and Bob always succeed at the hidden matching problem with [lgm] bits of
communication. However, we know from [BYJKO04], that any randomized protocol
with bounded error for the hidden matching problem must use Q(y/m) bits of
communication; hence if m is chosen large enough, it is impossible for Alice and Bob
to always succeed at the hidden matching problem with lg m bits of communication,

and so w.(G™) < 1 for large enough values of m. O

Of course, the above theorem does not tell us exactly which values of m yield a
pseudo-telepathy game G™. If m = 2, there is an obvious classical winning strategy.

We conjecture that for any other even m, there is no winning strategy:

Conjecture 4.6.3. Let G™ be the matching game. Then for all even m > 4,
we(G™) < 1.

The apparent difficulty for classical players in the matching game leads us to
believe that w.(G™) goes quickly towards % as m increases. It is therefore possible

that this game satisfies the following open problem:

it would be nice to find a two-party pseudo-telepathy problem that
admits a perfect quantum solution, yet any classical protocol would
have a small probability of success 3 even for inputs of small or moderate

size. [BBT03]

3In this context, “small probability of success” means a small advantage compared to random
outputs.



CHAPTER 5

MULTI-PARTY GAMES

In this chapter, we present three pseudo-telepathy games with three or more players.
It so happens that the first game is a special case of the second game, which, in turn,
is a special case of the third game. Historically, however, these games appeared
separately; it is probably more instructive to present them as we do here, as separate

games.

5.1 The Mermin-GHZ Three-Party Game

This pseudo-telepathy game is probably the most famous as its discovery sur-
prised many researchers as it did Mermin (section 3.3). Contrary to conventional
wisdom, it is not the first pseudo-telepathy game, since Heywood and Redhead had
suggested using the Kochen-Specker theorem to create a pseudo-telepathy game
(section 4.1) more than 5 years before.

The original version was given in [GHZ88], and presented as a four-player game
(although it was noted that a three player game would be possible). Later, the game
was presented as a three-player version in [GHSZ90]. Non-trivial decoding of the
two previous references allowed Mermin to popularize the game [Mer90c, Mer90e].
From Mermin’s work, it is relatively straightforward to deduce a pseudo-telepathy
game.

The game (table 5.1) is very simple. Each player receives as input a single bit
z; (1 = 1,2,3). The promise guarantees that z; + zo + 73 is even. Each player
outputs a single bit y;, and the winning condition is that the parity of y; + 2 + 3

must equal the parity of 182+
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Mermin-GHZ game
n n=3
X X, ={0,1} (i =1,2,3)
Y Y;={0,1} (: =1,2,3)
P S22z, =0 (mod 2)
w Sy = ;Z'ﬁ (mod 2)
5, 3
o 3
%) 75(1000) +[111))

Table 5.1: Mermin-GHZ game

5.1.1 A Quantum Winning Strategy

Before presenting the quantum winning strategy, we present a lemma that is
useful for demonstrating the validity of the strategy. The lemma is more general
than necessary here, this is because we will use the result in sections 5.2 and 5.3.

We denote S to be the unitary transformation given by:

510} = |0)
S|1) = o|1).

Lemma 5.1.1. Let |®t) = % (0™ +|1™)) and |®~) = %(lO”) —[1™). Let S,
represent the unitary transformation obtained by applying S to any m qubits and

leaving the rest undisturbed. Then

|®*) ,m =0 (mod 4)
Sm|®T) = (5.1)
[®7) ,m =2 (mod 4),
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and

HoH) = — 3 |a) (5.2)

2nt A(z)=0
(mod 2)

-

(H))27) = = 3 o) (5.3
5

i

Proof. 1t is easy to see that equation 5.1 holds. To show equation 5.2, we apply
lemma 4.2.2 to get the following:

(H®) 75 (10%) + 1)) = Z5 (H®")[0") + (H®™)|17))

v
- L (Tt i)( S
- (Sl Tl

- = (Zl ¥ <—1)A<m>) 2

Az)=0
(mod 2)

A similar reasoning is used to show equation 5.3. O
Theorem 5.1.2. Let G, be the Mermin-GHZ game. Then w,(G,) = 1.

Proof. The player’s strategy is to share the state |®*) = %(lOOO) + |111)). After

receiving his input z;, each player 7 does the following:
1. if z; = 1, apply the unitary transformation S
2. apply H
3. measure the qubit to obtain y;

4. output y;



o7

The resulting state after step 1 is:

%) = 35 (1000) +oZhe=J111) )

25(1000) +]111)) , 37 2 =0
2=(1000) — |111)) , 375z =2

By lemma 5.1.1, the resulting state after step 2 is:

3
1
- 1 P =
5 (1000} +|011) +[101) + [110)), Zl:x 0
1 3
3 (1001) + [010) +[100) + [111)), Y " z; = 2

i=1

And so after the measurement at step 3, the output of step 4 will satisfy:
3 3
>y = 228 (moa 2)
i=1

so the players always win. O

5.1.2 Classical Success Proportion

Theorem 5.1.3. Let G, be the Mermin-GHZ game. Then W.(G,) < 1.

To prove this theorem, we could try all deterministic classical strategies, as

there are only 43 such strategies, but here we give a more elegant proof.

Proof. We represent the set P of questions satisfying the promise in the following

way:

b = g}, i,z =0, 1, 1

2 = 1} 22 22 =1, 0, 1 (5.4)
= 23, 23, 3 =1, 1, 0 .
8 = zf, 7y, 3 =0, 0, 0
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Suppose that the players’ answers for questions z!,z?, 23, z* are y!, 42 43, y* re-
spectively. Represent player i’s output on input 0 by y? and his output on input 1

by ;.
Consider how the players will answer for all four possible questions:

y' o=yl ¥ U
2 1 0 1
y3 Z/i; yia y::) (5'5)
Yy = Y, Yz, Y3
yvto= y), vl )

The winning condition W states that, in order for the players to win, we must
have:

Aly') = A@Y) = A@WY®Y) =1 (mod 2) (5.6)

and
A(y*) =0 (mod 2). (5.7)

Suppose that the classical players have a winning strategy. If we add (modulo 2)
the 12 bits of the right-hand side of equation 5.5, we must get 1 since equations
5.6 and 5.7 state that A(y') + A(y?) + A(¥®) + A(y*) =1 (mod 2). But if we take
the column-wise sum of the same elements, we get 0 since each element appears

exactly twice. This is a contradiction, so &.(G,) < 1. O
Theorem 5.1.4. Let Gy, be the Mermin-GHZ game. Then G(G,) = 3.

Proof. Thanks to theorem 5.1.3, we know that there is no classical winning strategy.
By lemma 3.2.3, &,(Gr) < 3. The following strategy succeeds in proportion 3: the
players always give an odd answer, say y* = 0,0,1 (i = 1,2,3,4). Then they win
for questions z; = 0,1,1, 2z, = 1,0,1, z3 = 1,1, 0 and lose on question z, = 0,0, 0.

The success proportion is therefore &.(G,,) = %. O
Theorem 5.1.5. Let G, be the Mermin-GHZ game. Then we(G,) = 3.

Proof. We know by theorems 5.1.4 and 3.2.2 that w.(G,) < %. In the next section,
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we will consider a generalization of the Mermin-GHZ game to an n-player version.

By considering the case n = 3 of theorem 5.2.6, we get that w.(G,) = 3. O

5.2 The Parity Game

This game was presented for the first time in [Mer90b] and in [PRC91]. As
these physics references were unknown to the authors, the same game was presented
in [BBTO03], but this time from a QIP point of view. As in the case of the Mermin-
GHZ game, a certain amount of decoding is necessary to extract a pseudo-telepathy
game from [Mer90b] or [PRC91].

The game is a generalization of the Mermin-GHZ game (section 5.1), as it
extends the 3-player version to an n-player game. In this game (table 5.2), we have
n > 3 players. Each player receives as input a single bit z;. The promise guarantees
that > x; is even. Each player outputs a single bit y;, and the winning condition

is that the parity of > y; must equal the parity of 22’”—‘

5.2.1 A Quantum Winning Strategy

Theorem 5.2.1. Let Gy, be the parity game. Then wy(G,) = 1.

Proof. The player’s strategy is to share the state |®) = % (0™ + |1™)). After

receiving his input z;, each player 7 does the following:
1. if z; = 1, apply the unitary transformation S from section 5.1.1
2. apply H
3. measure the qubit to obtain y;

4. output y;



Parity Game
n n>3
X Xi={0,1} i=1...n)
' Y;={0,1} i=1...n)
P Yoz =0 (mod 2)
W St L= Z—%ﬁ (mod 2)
" 14 g2
. 32
p* 14 2%%" (n even) ; s+ 2% (n odd)
n* 3 V4
9 35 (0%) + 17)

Table 5.2: Parity game

The resulting state after step 1 is:

[9) = 25 (107) + S (17)
(0% +1%) T, 2 =0 (mod 4)

3 (0% - 1) Xk, =2 (mod 4)

By proposition 5.1.1, the resulting state after step 2 is:

60
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2{1_1 Z |ly) ai:l'i =0 (mod 4)

A(y)=0 i=1
(mod 2)
1 n
Z ly) ,in =2 (mod 4)
V2 Nt i=1
(mod 2)

After the measurement of step 4, the output of step 5 will satisfy:
n n
> w= 2215 (mod 2)

so the players always win.

5.2.2 Classical Success Proportion

It is easy to see that &.(G,) < 1 for the parity game, since a classical deter-
ministic winning strategy for the parity game would entail a classical deterministic
winning strategy for the Mermin-GHZ game by the following argument: if there is
a classical deterministic winning strategy for the parity game, then in particular,
there is a deterministic winning strategy if z, zo, z3 € {0,1} and z4, z5, ..., 2, = 0.
This strategy, restricted to players 1, 2 and 3 (with player 3 possibly responding
with 73 instead of y3, to take into account the parity of ys,¥s,...,ys) is a winning
strategy for the Mermin-GHZ game.

The following theorem gives an exact value for @.(G,), and the proof also yields
a set of strategies that succeed with this optimal proportion. In [Mer90b], an upper

bound for &.(Gy) is given. Here, we prove that the upper bound is tight.

Theorem 5.2.2. Let G, be the parity game. Then

- 1
B(Gn) = 5 + 2.
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To prove the result, we will show that for any deterministic strategy, the suc-
cess proportion is < % + 2721 and that we can reach this proportion. Hence
@e(Gn) =% + 272 The rest of section 5.2.2 (including 5.2.2.1, 5.2.2.2 and
5.2.2.3) is dedicated to proving theorem 5.2.2.

Let S; be the set of deterministic strategies. Since no information may be
communicated during the game, the best the players can do is agree on a strategy
before the game starts. Any such strategy will be such that player i’s answer
depends only on his input, z;. Each player may have one of the following four

strategies:

Jo:ryi=0
fiiyi=1
Uo :Yi = i
VY =T

Here, F' = { fo, f1} is the set of fized strategies (the output is independent of z;),
and V = {vp, v1} is the set of variable strategies (the output depends on z;).

This gives a way to represent a strategy as an ordered list s = s1,59,..., 5,
where s; € VU F, (1 <14 < n), is player i’s strategy.

Without loss of generality, we may assume that the £, (0 < £ < n) first players
choose a strategy in F' (this amounts to saying that order doesn’t matter, which
is indeed true if all we want to know is the winning proportion). So in fact we can

write any strategy s € Sy as

EF ev

> o

S =3‘1,32,---,32,§e+1a3£+2,-~-,32-

What’s more, without loss of generality, we may suppose that the first £ — a
(0 £ o < £) players have the strategy fo, it follows that the following o players
have the strategy f1, and we suppose that the next n — ¢ — 3 (0 < 8 < n — ¢)
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players have the strategy vp, so the next 3 players have the strategy v;:

l—a o n—E—ﬁ ﬁ

N

s=fO)fO)"')fO,flafl)'"af1:®0a’U0a"-)F07®11017"-1UT-

Since the winning proportion depends only on the parameters ¢,a and 3 of
the given strategy (again, because order doesn’t matter), we may represent each
strategy s as s = (¢, , 3). We now examine the winning proportion, given such a

strategy s.

Lemma 5.2.3. Let z = 1, 23,...,2, € {0,1}". Then

A(z1,zg,...,Z,) (mod 2) ,n=0 (mod 2)
A(T1, %3, ., Tn) =
A(z1,Z2,...,2Zp) +1 (mod 2) ,n=1 (mod 2)

Proof. The proof follows directly from the fact that
A(Z1,Z2, ..., Tn) + A(z1, 29, . - ., Tp) = N

O

As defined in chapter 3, let P be the set of questions that satisfy the promise.
For the parity game,

P={z€{0,1}" | A(z) =0 (mod 2)}. (5.8)

The winning proportion ps, for a given strategy s = (¢, , ), depends only on

the number of questions z = z1, s, ..., z, that yield a correct answer:

_ |{z € P | strategy s applied to z yields a winning answer}|
.=
|P|

We note that |P| = 2"~! (since there are the same amount of even and odd
binary strings of length n), and we ask: how many z € P will yield a winning

answer?
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Consider a partition of P:

A
An={z€P|A(z)=0 (mod 4)} ={z € P| ;ﬂ’) =0 (mod 2)}
A(z)
B,={z€eP|A(z)=2 (mod 4)} ={z € P| 5 =1 (mod 2)}
The participant’s answer y = y1,¥s, - - ., ¥» iS & winning answer if and only if:

(r € AnANA(y) =0 (mod 2)) V (z € B, AA(y) =1 (mod 2)). (5.9)
We introduce more notation:

ALE = {z € A, | A(mes1, Tesn, - - -, T) = 0 (mod 2)}

ALC = {z € Ay | A(Tes1, Te2, -, 30) = 1 (mod 2)}

ByF = {z € By | A(Te41,Te42, - - - Tn) ( )
)=1( )

B%9 = {z € B, | A(Ze41,Tog2, ..., Tn) =1 (mod 2 }

Here, E stands for even and O stands for odd. Note that A, = A%F U 440 and
that B, = B5F U B%C. And of course, P = A, U B,.

This notation is useful because, given a strategy s € Sy, and supposing that we
know in which set, A% A%0 B4 or B4C the question z € P belongs, then we
have sufficient information to determine whether or not the game is won. The next

section explains how this is done.

5.2.2.1 Counting Winning Questions

Suppose s = ({,a, ) € Sq. Let z € P be the given question, and suppose y is

the answer.
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Working mod 2, and using lemma 5.2.3, we find that

A(y) = A(yl, Y2, ... ,ye—a) + A(ye—a+1, Yo—at+1y- - ,ye) + A(ye+1, Yo42,- - ,yn)

—a o
e N o N——
AG,0,.,0) + AL 1) + Alyes, Yerar - - Un)
(

) A(yf)yl+1a s ;yn) , O = 0 (mod 2)
\1+A(yg,ye+1,...,yn) ,a=1 (mod 2)

A(yl-{-la Yero, - - 1yn—ﬁ) + A(yn—ﬁ+17 Yn—pB42y - - - iyn) y = 0 (mOd 2)

if
N——

L 1+ A(ye-i-l’ Yet2y .- :yn—ﬁ) + A(yn—5+1) Yn—p+2; - - - ’y'fl) ya=1 (mOd 2)

IA(a:gl, Te42, -+ Tnp) + ATnpi1,Zn-pi2,-- -+ In) ya =0 (mod 2)

\1 + A(Tey, Teya, - -, Zn-g) + A(Tn_p1, Tnpizr- - -1 Zn) ,a =1 (mod 2)
.

A(Tes1,Tes2,- -, Tn-pg) + ATn_pi1, Tnpi2,- - Tn) ,a+ B =0 (mod 2)

\ 1+ A(zes1, Tegas - o - Tng) + A(Tn_pt1, Tnopi2, - -1 Tn) ,a+ L =1 (mod 2)

(

A(Zps1,Tesny- -y Tn) ya+ =0 (mod 2)

N

14+ A(Ze41, Teg2y - -y Zn) ,a+ B =1 (mod 2)
\

In order for the game to be won, equation 5.9 must be satisfied. We must have

either:
z € A, and A(y) =0 (mod 2)
(
T € Ap and A(Tey1, Teg2,.--,20) =0 (mod 2) ,a+ B =0 (mod 2)
< <
T € An and A(Teq1,Tet2,...,2n) =1 (mod 2) ,a+ B =1 (mod 2)
\
r€AL® o+ B =0 (mod 2)
> 4
€ AP a+B=1 (mod2)
\
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or
z € B, and A(y) =1 (mod 2)
4
<m€Bn and A(Zer1, Ty, .-, %n) =1 (mod 2) ,a+ =0 (mod 2)
==
T € By, and A(zg41,Te42,...,2,) =0 (mod 2) ,a+ =1 (mod 2)
)
€ B o+ =0 (mod 2)
= <
z€ B a+ =1 (mod 2)

We conclude that there are exactly |A5Z| + |B59| or |A%©| + | B questions
that will yield a winning answer, depending on a + 8 (mod 2). The results are

summarized in table 5.3.

i t
o+ f (mod 2) Nl_lmber of questions tha
yield a winning answer
EAE
1 AL°| + | B

Table 5.3: Number of questions that yield a winning answer

5.2.2.2 Combinatorial Lemmas

Before going any further, we must state and prove some lemmas.

Lemma 5.2.4 ([Gou72], [GJ83]). Let n,a,i be integers, with n # 0. Then:

]
27242371 n—2a=0 (mod 8)
272 -2%"1 n—2a=4 (mod 8)

n
Z ( .>=<2"‘2 ,n—2a = 2,6 (mod 8)
, a-+1
i=0 (mod 4) s
22425 n—2a=1,7 (mod 8)
272 _ 2" n—2a=3,5 (mod 8)



Lemma 5.2.5.
Letn =1 (mod 2). Then

271—2 + 2"7_3

271.—2 _ 2"7_3

|A5P| +|BO| =

Letn =0 (mod 2). Then

67

,(n—=1)/2+3¢=0,3 (mod 4)
,(n—=1)/2+3¢0=1,2 (mod 4)

on~2 ,n/2+3¢=1,3 (mod 4)
AR+ B0l = { 22 42871 |n/2+30=0 (mod 4)
22571 n/2430=2 (mod 4)

Proof. Recall that

A,={zeP|Az)=0
2

Bo={zeP|Alz)=

(mod 4)}
(mod 4)}

AP =z e A, | A(Zey1, Teg2,- .., 2,) =0 (mod 2)}
B4 = {z € By | A(Zeg1, Tesa,-- -, Tn) =1 (mod 2)}

If {=0o0r {=n, then

n
| AL | = | An| = -
i=o \'

and

(mod 4)

1B9| = 0.
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(0 )+ (39260 )
g
g 600 5 (49

7=0 j=0
(mod 4) (mod 4)
n—2/ 14
- X ( i ) 2 (j—z‘)
1=0 7=0
(mod 2) (mod 4)

So
-/ { n—~ 14
ALP| = K .
- £ () 2 0 g (5) I (L) oo
(mod 4) (mmod 4) (mod 4) (mod 4)
and similarly,

2= % () 2 (i) () 3 (4 e

=0 7=0 = =
(mod 4) (mod 4) {mod 4) (mod 4)

Hence we have the equation:

2

1=0
[ AL+ |BROl = { T (medd)
(6.10) + (5.11) otherwise

(':) £=0orl=n

(5.12)

We will now use equation 5.12 to conclude that lemma 5.2.5 is true.

Suppose £ # 0 and ¢ # n. The simplification of equation 5.12 using lemma 5.2.4
depends on the values of n and £ (mod 8). Hence, we have 8 cases to check for n
and 8 cases for £, for a total of 64 cases. Here, we check one case:

Suppose n =1 (mod 8) and £ =0 (mod 8). Using lemma 5.2.4, equation 5.12
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becomes:

For this case, the lemma is verified, since (n — 1)/2+ 3¢ = 0 (mod 4). The other
cases can be checked in a similar way. In fact, a Mathematica worksheet was used
to complete the proof (see appendix I).

We must verify the case £ = 0 and ¢ = n of equation (5.12) separately. Using

lemma 5.2.4:

If £ =0,
n—1
5 =0,3 (mod4)= n=1,7 (mod 8)
= |AYF| 4+ |BYO| =272 4 2T
n—2—1£1’2 (mod 4) = mn=3,5 (mod 8)

n—=3

= |4+ |BYO| = 2 - 2
-721 =1,3 (mod4)= n=2,6 (mod 8)

= AL+ |BLO| = 2
gzo (mod4)= n=0 (mod 8)

= |ALP|+|BLO| =22 2572
gzz (mod 4) = n=4 (mod 8)

= JALP|+|BLO| = 272 — oi
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Ifé=n,
n—1
+3(=0,3 (mod 4) =n=1,7 (mod 8)
= |4+ B0 = 277 + 2%
-1
n2 +3/=1,2 (mod 4) = n=3,5 (mod 8)
= 477+ B0 = 27 - 278
5+30=1,3 (mod 4) = n=2,6 (mod 8)
= | 44|+ |BYO| = 2
—g+3€EO (mod 4) = n =0 (mod 8)
= |45+ |BYO) = 2% 4 28
g+3652 (mod 4) = n =4 (mod 8)
= A5+ |BY| = 22— 91
Together with appendix I, this completes the proof of lemma 5.2.5. O

5.2.2.3 Proof of theorem 5.2.2

We are now ready to give the proof of the main theorem for the success pro-

portion.

Proof of theorem 5.2.2. Recall that the success proportion p, of a deterministic

strategy s € 5y is:

_ |{z € P| strategy s applied to z yields a winning answer}|
.=
|P|

By section 5.2.2.1, if s = ({,a,0) € S; and ¢+ f =0 (mod 2),

p, = A1+ 1B
.=
1P|
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and if o+ =1 (mod 2),
_ |4%°1 +|BRF|

Ds
|P|
Note that |A°] + [B4®| = |P| - (|A47| +|BLO)).
We will treat the case of even and odd n separately.
e Case 1: n odd

Ifa+ =0 (mod 2), then

Py = |ASE| + | BE©|
=
|P|

(

n=3
|ALE| 4 |BEO| T‘—_zl;ij—T,(n—l)/2+3€EO,3 (mod 4)

7] ——2"’2—2%3( 1)/2+30=1.2 (mod 4
| (n—1)/2+30=1,2 (mod 4)

(by lemma 5.2.5)

( 2 n—3
A2 E (n—-1)/2+30=0,3 (mod 4)

on—1

n--3
%, (n—1)/2+3(=1,2 (mod 4)
\

4

14272 (n—1)/2+3¢=0,3 (mod 4)

L_9-Mm/2 (n—1)/24 3¢ =1,2 (mod 4)

\
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Ifa+pA=1 (mod 2), then

_|A%°] + |BLE|
P =P
_ P - (1447 +|B&O))
1P|
45| + | B
|P|

=1

1_o-Mn/2 (n—1)/2430=0,3 (mod 4
=2 ( )/ ( ) (by above)

14272 (n-1)/2+3¢0=1,2 (mod 4)

Since § — 272 < 1 4 2-1"/21 we conclude that for odd 7,

1
< Z 4 9-[n/2]
max{ps} < 5+
To show equality, we must show that every odd n > 3 admits a strategy that
succeeds with probability 1 4 27//21,

This is indeed the case. If n = 1 (mod 4), we can choose £ = n and o = 0,
and if n = 3 (mod 4), we can choose £ = n and o = n. These strategies are
surprisingly simple. They amount to choosing a strategy that doesn’t depend
on the question (since £ = n). In the first case, all players answer 0, and in

the second, all players answer 1 (see table 5.5).

Hence, for the case when n is odd,

1
— 4 o-n/2]
Is%%f{p o} p t2

Case 2: n even

Ifa+ =0 (mod 2), then

p, = 14571+ 182
.=
|P|
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.
on—2 —
T ,n/2+30=1,3 (mod 4)
1457 + | B :

n n_ | __ ) gn—249%-1 =
= ,n/2+3¢=0 (mod 4) (by lemma 5.2.5)

P g
\% ,n/2+3¢=2 (mod 4)
( n—2
‘gm ,n/2+30=1,3 (mod 4)
= 2"_2?# ,n/2+30=0 (mod 4)

\E%l ,n/2+ 3¢ =2 (mod 4)

¢
,n/2+30=1,3 (mod 4)

N|=

:{ __|_2—rn/21 ,n/2+3EEO (mod 4)

[ 1

12721 'n/2+3¢=2 (mod 4)

fa+B=1 (mod 2), then

» _ AR+ |BE®
’ | P|
_ 1Pl = (42" + |BR°)
|P|
L 1488+ [B0)
| P|
: ,n/2+3¢0=1,3 (mod 4)
=122 1n/2430=0 (mod 4) (by above)
1

+2-M21 'n/24 3¢ =2 (mod 4)

2
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Since 3 — 27M/21 < 1 4 2-M/21 ' we conclude that for even n,

1
< Z —[n/2}
max{p,} < 5 +2
To show equality, we must show that every even n > 4 admits a strategy
that succeeds with probability % + 272} This is indeed the case. Consider
table 5.4:

n (mod 8) | n/2 + 3n (mod 4)
0 0
2 3
4 2
6 1

Table 5.4: Values of n/2 + 3n (mod 4) for even n

If n =0 (mod 8), we can choose { =nand a =3 =0. If n =4 (mod 8), we
can choose £ =n , a =1 and § = 0. These two cases amount to choosing a
strategy that doesn’t depend on the question (since £ = n). In the first case,
all players answer 0, and in the second, all players answer 0, except for one

player that answers 1.

However, if n = 2 (mod 4), and if we choose again a strategy where n = ¢,
then the game is won with probability 1/2. This shows that it is necessary
for at least one player to look at his input. To succeed with probability
% + 27[/21 use the following strategy: If n = 2 (mod 8), choose £ =n — 1
anda=F=0. Ifn=6 (mod 8), choose {=n—1and a=0,8=1. These
two cases amount to choosing a strategy in which all players but one answer
0. There is a single player ¢ who looks at his input z;, and answers y; = z;

(first case) or y; = T; (second case). See table 5.5.

Hence, for the case when n is even,

1
_ 1 o
gg@d 5+ 2
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n (mod 8) | first n — 1 players’ strategy | last player’s strategy
0 fo fo
1 fo fo
2 Jo Vo
3 f fi
4 fo fi
) Jo fo
6 fo (1
7 f1 f1

Table 5.5: Optimal strategies

It follows that

g1

C(Gn) =5+ 2—|'n/2]

for all even and odd n.

5.2.3 Classical Success Probability

In this section, we find a value for w.(G,). From theorems 3.2.2 and 5.2.2, we
know that we(Gr) < 1 + 2717/2] The following theorem states that we can reach
this bound, and specifies what type of strategy is used to do so.

We call a deterministic strategy optimal for the game G, if it succeeds in pro-

portion w.(Gr). Let S, be the set of optimal strategies.

Theorem 5.2.6. Let G, be the parity game. Suppose that the n players use the
strategy s that consists of choosing an optimal strategy in S, at random according

to the uniform distribution. Then for all z € P,
. . . . 1 —[n/2]
Pr(win | strategy s is used and question z is asked) = 3 +2 .

The proof of the theorem follows directly from the next seven lemmas.

Lemma 5.2.7. Letn =1 (mod 2). The number of optimal strategies is 221,
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To prove this lemma and the next one, we could use a counting method, but

instead we present more succinct proofs based on mappings.

Proof. There are 2" deterministic strategies. To show that exactly half are optimal,
we define a map M from the set of optimal strategies to the set of non-optimal
strategies. Let s = (¢,a, ) be an optimal strategy. Let M be defined as the

following: change the first player’s strategy, according to:

for fi
fir fo
Vo — U1

U1 — Yo

Suppose that M(s) = s, where s’ = (¢,a/,'): Using results of section 5.2.2.3, a
strategy s = (£,, () is optimal if and only if one of the two following conditions

hold:

n-—1

a+ =0 (mod 2) and

+3¢=10,3 (mod 4) (5.13)

n—1

a+ =1 (mod 2) and +30=1,2 (mod 4) (5.14)

We see that s’ is not optimal since under M, n and ¢ are unchanged and
o+ f =a+F+1 (mod2). M is its own inverse, hence a bijection between
the set of optimal strategies and the set of non-optimal strategies exists, these sets

are finite, so their cardinality is the same, and the number of optimal strategies is
22n—1. O

Lemma 5.2.8. Let n =0 (mod 2). The number of optimal strategies is 2272,

Proof. There are 22" deterministic strategies. To show that exactly one quarter are
optimal, we define a map M from the set of non-optimal strategies to the set of

optimal strategies. Let s = (¢, a, f) be a non-optimal strategy. Let M be defined
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by the following: change the first player’s strategy to one of fy, f1, vo, v1, such that
the result is an optimal strategy.
Using results of section 5.2.2.3, a strategy s = (¢, o, 3) is optimal if and only if

one of the two following conditions hold:

a+f=0 (mod 2) and g +30=0 (mod 4) (5.15)

a+ =1 (mod 2) and g + 3¢ =2 (mod 4) (5.16)

For a given s, there are three candidates for its image under M. But only one
choice will yield a optimal strategy, since it is always the case that changing the
first player’s strategy to one of fo, f1, v, v1 gives a strategy s’ = (¢, o/, 8') with one
of:

Lo+ =a+F+1 (mod 2)
2.0 =f0+4+1orl =¢-1
3. both 1 and 2

Given a non-optimal strategy, there is only one of the above three choices that is
optimal. Further, M is onto. M is a three-to-one onto map on two finite sets, so i

of the strategies are optimal. Hence, the number of optimal strategies is 22"—2. [J

Lemma 5.2.9. .
> (i) =7
k=1

Proof. By the binomial theorem,

(z+1)" = i (Z)"k

k=0

Substituting z = 1, we get
" /n
2" =
> (5):
k=0

which is what we wanted to prove. O
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Lemma 5.2.10.
> 0=z ()=
k=0 <k k=1 k
(mod 2) (mod 2)

Proof. By the binomial theorem,

Substituting z = —1, we get

k=0 k=1
(mod 2) (mod 2)
And so
> (i)= 2
> ()= ()
(mod 2) (mod 2)
Since ; (Z) + ; (Z) = 2" (by lemma 5.2.9), we conclude that
(mod 2) (mod 2)
> (- (7)-2
k=0 k=1
(mod 2) (mod 2)
O
Lemma 5.2.11.

= @062

(mod 2)
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Proof. Using lemma 5.2.10,

> WE-2 2 06z £ 00

?;fdz g) (mod 2) (mod 2) (mod 2) (mod 2)
— 271.—121‘—1 + 2'n.-12’r—1
— 2n+r—1

And similarly,

> @WE-2 Z Q6= £ 06

((x;de ;) (mod 2) (mod 2) (mod 2) (mod 2)
— 211—127‘-—1 + 2n—12r-1
— 2n+7‘—1

O

Lemma 5.2.12. Let n = 1 (mod 2). Given any question x that satisfies the
promise P in the parity game, the number of optimal strategies that win on x is
22n—2 +23"2—_3 .

Proof. Suppose that the question contains r 1s (by the promise, we have that

7 =0 (mod 2)). We can assume without loss of generality that the input is ordered,

so that

Consider the following strategy s:
e Within all the n players:

— ¢ have strategy fo or fi
— « have strategy f;

— (3 have strategy v
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e In particular, within the first r players:

— ¢ have strategy fo or fi
— o have strategy fi

— [’ have strategy v;

If r = 0 (mod 4), then the game is won if and only if the answer is even,
otherwise, if = 2 (mod 4), then the game is won if and only if the answer is odd.
By knowing the number of even answers, and the total number of questions, we
can deduce the number of odd answers, hence we will count the number of even
answers. The number we are looking for is the number of players with strategy fi
() plus the number of players with strategy vy that receive 1 as input (r — 5/ — /)
plus the number of players strategy v; that receive 0 as input (8 — &).

Hence, the players’ answer will be even if and only if
a+(r=0F—-£0)+(B-0)=0 (mod 2) (5.17)

We already have that
r =0 (mod 2)

so equation 5.17 becomes:
'=a+pf (mod 2) (5.18)

Suppose we are given a strategy s and we want to determine if it is optimal.
To do this, we use the results of section 5.2.2.3. If a+ 3 = 0 (mod 2), s is
optimal if and only if (n —1)/2+ 3¢ = 0,3 (mod 4). Solving this equation, we get
two solutions for £ (mod 4), say £;, £, depending on the value of n (mod 8). If
a+B =1 (mod 2), s is optimal if and only if (n—1)/2+3¢ = 1,2 (mod 4). Again,
depending on n (mod 8), we get two solutions for £ (mod 4), say 3, {4, depending
on the value of n (mod 8). Table 5.6 gives the values of £y, £5, {3, and ¢,.

We want to count the number of optimal strategies that yield an even answer.
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n (mod 8) | & | &y | &3 | 44
1 011213
3 112(3]0
5 213|011
7 310|112

Table 5.6: Values of £ (mod 4) for odd n

This is the number of ordered strategies that satisfy equation 5.18 and table 5.6,

i.e. one of the following holds:
L. /=0 (mod 2) Ao+ B =0 (mod 2) A ¢ (mod 4) € {1, £5}
2. 0'=1 (mod 2) Ao+ =1 (mod 2) A€ (mod 4) € {£1, 45}

So, as long as 1 or 2 is satisfied, we know that we are dealing with an opti-
mal strategy that yields an even answer. We want to count the number of such

strategies. One way to do this is to count the number of ways of choosing:
e / among r
e o among ¢
o (' among r — ¢
e /—{ amongn—r
e ¢ — ¢ among £ — ¢
o f—( amongn—r— ({—1)

If r =0, then /' =o' = ' =0, and the sum we are looking for is:

> 2 0650 2

(Z) (by lemma 5.2.11)
)

¢ (mod 4) a+B=0 ¢ (mod 4
€{61,62} (mod 2) €{t1,02}
=2" (2”_1 + 2"7_3) (by table 5.7 and lemma 5.2.4)
3n-3

— 22n—2 + 273
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n (mod 8) | n—24; | n— 24,
1 1 7
3 1 7
) 1 7
7 1 7

Table 5.7: Values of n — 2¢ (mod 8) for odd n

The case where n = 7 is impossible, since n is odd and r is even.

Otherwise, as long as r # 0 and r # n, the sum that we are looking for is:

SED I 5 3 o (41 (AT (R Tma Ta Tt )

=0 € (modd4) p» B a+p=0

(mod 2) e{g;,60} (mod 2)
r—=U\(n—-r\[(L—-0\(n—r—({-1)
2 228 ()6 T 0)
(mod 2) e{es &) (mod 2)

(5.19)

Using lemma 5.2.11,

-2 2 2 SR ()56

=0 ¢ (mod4) o /
{mod 2) e{e1 22}

s = ()G e

=1 ¢ (mod4) o’ /
(mod 2) €{l3,84}

Using lemma 5.2.9,

e g 2 S0

=0 ¢ (mod4) o
{(mod 2) e{e,,65}

4 gnr=lgr=t Z Y Z()( )(Z 2) (5.21)

=1 ¢ (mod4) o
(mOd 2) etaly
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Again, by lemma 5.2.9,

RPINpY <)(€ f’) DYDY <>(£ Z) (5.22)

£=0 £ (mod 4) =1 ¢ (mod 4)
(mOd 2) E{ehfz} (mOd 2) 6{23,&;}

Which is equal to:

=1 =3 =ty
(mod 4) (mod 4) (mod 4)
T n—r n—r
VA 5.23
MDD (v) 2 (e2a)+ 2 (e2e)| 629
(mod 4) (mod 4) (mod 4)

We can simplify equation 5.23 by repeatedly applying lemma 5.2.4. We have 4
cases for n (mod 8) (which yield 41,45, £3,44) and 4 cases for r (mod 8), hence 16
cases. We have used a Mathematica worksheet (appendix II) to do these simplifi-

cations, the result is:

22”—2 + 3n—-3

,7 =0 (mod 4)

3n—-3

2272 _ 2% r=2 (mod 4)

So if 7 = 0 (mod 4), the number of winning optimal strategies is the number of

. . . _ n=-3 ., .
optimal strategies that yield an even answer, hence 22"~2 + 277" winning answers,
3n—-3

and otherwise if r = 2 (mod 4), there are 22*~1 — (22“ 227 ) =224 975

3n3
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optimal strategies that yield an odd, hence winning, answer (using lemma 5.2.7).

O

Lemma 5.2.13. Let n = 0 (mod 2). Given any question z that satisfies the
promise P in the parity game, the number of optimal strategies that win on x is
237"—2 + 22n—3

Proof. We use the same argument as in the proof of lemma 5.2.13, except that

there are only two values of £, {1, 43, that yield an optimal strategy (table 5.8).

n (mod 8) 61 €3
0 012
2 113
4 210
6 3|1

Table 5.8: Values of £ (mod 4) for even n

If =0, then / =o' = f/ =0, and the sum we are looking for is:

> X (Z) (2) (n;e> =o»1 } (’Z) (by lemma 5.2.11)

=l at+B=0 =4
(mod 4) (mod 2) (mod 4)

=271 (2"% + 2271) (by table 5.9 and lemma 5.2.4)

3n—-3

=22n-—3+2 5 —2

n (mod 8)
0

)
—

TL—2€1
0

Wl =o

2 0
4 0
6 0

Table 5.9: Values of n — 2¢; (mod 8) for even n

If n=r, then {' = {,0' = p,f/ = § and we consider the cases n = 0 (mod 4)

and n = 2 (mod 4) separately.
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If n =0 (mod 4), the number we are looking for is:

> > < >< )(”f) = 923 1 ™72 (b above).

=L oa+p=0
(mod 4) (mod 2)

If n =2 (mod 4), the number we are looking for is:

> 2 ( )( )(";e) =21 3 (Z) (by lemma 5.2.11)

=03 a+0=1 =0

(mod 4) (mod 2) (mod 4)
=2""1 (272 — 257!) (by table 5.10 and lemma 5.2.4)
— 92n~3 _ 23"2—3 -2

n (mod 8) E3 n — 2@3
2 3 4
6 1 4

Table 5.10: Values of n — 2¢3 (mod 8) for even n

Otherwise, as long as r # 0 and r # n, the sum that we are looking for is:

X 22y S () ()00 5

(mod 2)(mod 4) (mod 2)
r=0\(n—-r\(L-0\(n—r—-(-10)
2P 3 311691 ([ e Qs )
=1 (=f3 o [ otp=1
(mod 2)(mod 4) (mod 2)

Using lemma 5.2.11,

- B EPRONED

a/
(mod 2) (mod 4)

w2 2 2 (5000

=1 f=l3 o
(mod 2) (mod 4)
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Using lemma 5.2.9,

et £ 2 20

= Z_Zl o
(mod 2) (mod 4)

el Z Z( )( )(Z_D

(ﬁl;d 2) (mod 4)

Again, by lemma 5.2.9,

- > (0 s T T ()6

£=0 (=l e=1 = t=l3
(mod 2) (mod 4) (mod 2) (mod 4)

Which is equal to:

= (O 2 (D] 2 O 5 @)

We can simplify 5.24 by repeatedly applying lemma 5.2.4. We have 4 cases for
n (mod 8) (which yield ¢, and f3) and 4 cases for r (mod 8), hence 16 cases. We
have used a Mathematica worksheet (appendix II) to do these simplifications, the
result is:

927=3 4 992 1 =0 (mod 4)
9273 _ 9%~2 1 =2 (mod 4).

So if r =0 (mod 4), the number of winning optimal strategies is the number of

optimal strategies that yield an even answer, hence 2% -2 4 92n-3 winning answers,
3

and otherwise if r = 0 (mod 4), there are 2?72 — (22" 3 2% - ) = 2% -2 gn-3



87

strategies that yield an odd, hence winning, answer (using lemma 5.2.8). O
We are now ready to give the main proof for this section.

Proof of theorem 5.2.6. If n is odd, by lemma 5.2.7, there are 2°*~1 optimal strate-

gies. By lemma 5.2.12, given any question x that satisfies the promise P in the
3n—3

2,

parity game, the number of optimal strategies that win on z is 2272 + 2

Therefore, the probability is

3n-3
2

n—2
22427 l+2-("—'2‘”—’) _ %+2—|'n/2'|.

22n—1 2
If n is even, by lemma 5.2.8, there are 22"~2 optimal strategies. By lemma 5.2.13,
given any question z that satisfies the promise P in the parity game, the number

of optimal strategies that win on z is 22*=3 4 2% =2, Therefore, the probability is

on—3 3n_o
A2 1 sl o

1
22n—2 9 2

5.2.4 Towards Closing the Detection Loophole

In this section, we analyze the tolerance to detector errors and inefficiencies.

5.2.4.1 Noisy Detectors

In section 3.3.1, we defined p as the probability that a player’s answer corre-
sponds to the predictions of quantum mechanics in a game with errors. We wish
to find the value of p,(G,), that is, the maximum value of p for which a classical
strategy can succeed as well as a quantum strategy. The following lemma is useful

for the proof of theorem 5.2.15.
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Lemma 5.2.14. Consider the parity game with errors. The probability of having
an even number of errors is given by:
1 (2p—1)"

Pn = 5 + —2—
Proof. The proof is by induction on n. The base case is n = 1. The probability
of having an even number of errors is p, hence p; = p, which is what we needed
to show.

For the induction hypothesis, suppose that

1 (2p—1)F

Pe=gt

Consider pgy1:

Pr+1 =pi(p) + (1 — px)(1 — p)

=1 D — Pk 2ppk
1 2p -1 k 1 2p — 1)k

=] —p— = — -
P=3 2 +

2 2
2p_1k 2p—1k

2 2
(2]) _ 1)k+1
5 .

1
2
1
_2+

Hence, p, = % + (2”%)'1 for all n. O

The following theorem and proof are from [BBT03]; a similar result with a very

different proof appears in [BM93].

Theorem 5.2.15. Let G, be the parity game. Then

%-i—Z% ,n=1 (mod 2)
p*(Gn) - 2—3n

$+2%° ,n=0 (mod 2)
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Proof. Let p be the probability that a player’s answer corresponds to the predic-
tions of quantum mechanics in a game with errors. The probability p, that the
game is won is given by the probability of having an even number of errors. By
lemma 5.2.14,

I (2p—-1)"
Pon=g+—73

By theorem 5.2.2 we(Gy) = 5 + 2-1"/21 For any fixed odd n, define

1 1-3n
n= - 27
e 5 +

Suppose that p > e,,. Then

[N
<
I
—

)n

3

3
vV |
N = N =

+

N =N =N N~
+

+
[\

+ 2—["/2]

And so if p > e,, no classical strategy exists. Hence for odd n, p.(G,) = e,.

For any fixed even n, define

en::——f-ZT
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Suppose that p > e,. Then

1 (1)

Pn=3t 73

1 (e— 1"

5 2

2(1+2%) 1)

2

N —

+

/\/\
m|'|"
33
N’
3

+

NN =N =
Do

+
~
w3

+ 2‘[”/2]

And so if p > e,, no classical strategy exists. Hence for even n, p.(G,) =e,. 0O

As a consequence of theorem 5.2.15, and since for both odd and even n,

2
lim p.(G,) = = + \/T— ~ 85%),

n—oo

(SN e

we conclude that if p > %—%— ‘/75 and as long as n is sufficiently large, classical players

cannot succeed as well as quantum players in the game G,,.

5.2.4.2 Inefficient Detectors

Let G2 = (X,Y, P,W) be the parity game. We define G, = (X,Y, P',W') to
be a game similar to G2, but with a slight variation on the promise and on the
winning condition:

P': in =1 (mod 2)

W’:Zyizw (mod 2)

By applying an argument similar to theorem 5.1.3, it is easy to see that @.(G3) < 1.
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Using the same reasoning as in beginning of section 5.2.2, it follows that &.(G%) < 1
for all n > 3. We will not study G}, for its own sake, but it is useful to have such
a definition for the proof of theorem 5.2.16. Recall that in the error-free model,
defined in section 3.3.2, we enlarge each player’s set of outputs Y; to include the
special symbol L which means that the player’s apparatus fails to give an answer.
The outcome is a draw if y; = L for any player . If the outcome is not a draw, we

require that it be correct.

Theorem 5.2.16. For the parity game, and in the error-free model, the best the

players can do using a deterministic strategy is answer correctly for 2 questions.

Proof. Let G% be the parity game and G as defined above. We will prove by
induction on n, the number of players, that they cannot answer correctly (in the
error-free model) for more than 2 questions for the game GY as well as for G1.
Then, we give a simple strategy for G that succeeds for 2 questions.

The base case is n = 3. In the game GY, the valid questions are:

z! = 0,0,0
2 = 0,1,1
2 = 1,0,1
z* = 1,1,0.

Recall from section 3.1 that z; represents player 4’s input and y; his output. In the
game G3, and in the error-free model, at least one player 7 must answer ¥ = L
for an input z; = 0 or z; = 1, since, otherwise, all players would always answer
correctly and so w.(G%) = 1, which contradicts theorem 5.2.2. Each player j has
input z; = 0 and z; = 1 exactly twice, hence there are at least two questions that

yield a draw and at most two questions are correctly answered.
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For the game G3, the valid questions are:

¢ = 1,1,1

¢ = 1,0,0

¢ = 01,0

¢t = 0,0,1.
If we complement each bit of z?,...,z* in GY, we get ¢',...,¢% and an answer is
correct for z* if and only if it is correct for ¢° (£ = 1,...,4). Suppose that there
exists an error-free strategy s that answers correctly for m (m =0, ..., 4) questions

in the game G3. Then we have an error-free strategy that answers correctly for m
questions in the game G3, since the players can use the following strategy: each
player complements his input bit, and then applies his individual strategy that is
part of s. Since at most two questions are correctly answered for the game G,
then the same holds for the game G}. This completes the base case.

The inductive hypothesis is the following: suppose that for any k& > 3, in the
game GY and G}, the players can answer correctly for at most 2 questions.

For the inductive step, consider the game G, (j € {0,1}). We will prove by
contradiction that at most two questions may be correctly answered. Suppose that
at least 3 questions may be correctly answered, let S = {z?,z% 2%} be a set of
questions that are correctly answered, where 2t = z¢,z%,... 2 (¢ € {1,2,3}). As
in the base case, at least one player, i, must answer y; = L for an input z; = 0
or z; = 1 since otherwise, the game would always be won. Suppose, without loss
of generality, that ¢ = 1, so the first player answers L on input z, € {0,1}, and

answers y € {0, 1} otherwise. We have 4 cases to consider, depending on z, and .

1.z, =1,y =0: We have z¢ = 0 (2 € S), since otherwise the answer to
one or more of the questions in S would be a draw. If we remove the first
player from the game, keeping players’ 2,...,k + 1 questions and strategies
intact, we have the game Gi with a strategy that answers correctly on 3 or

more questions.
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2.z, =1,y =1 We have zf = 0 (2° € S) since otherwise the answer to
one or more of the questions in S would be a draw. Remove the first player
from the game, keeping players’ 3,...,k + 1 questions and strategies intact.
Keep player 2’s questions, but change his strategy so that he outputs the
complement of the bit he was to output. Then we have the game G’f; with a

strategy that answers correctly for 3 or more questions.

3. 21 =0,y =0: We have z{ = 1 (2¢ € S) since otherwise the answer to one
or more of the questions in S would be a draw. If we remove the first player
from the game, keeping players’ 2,...,k + 1 questions and strategies intact,
we have the game G’fm with a strategy that answers correctly for 3 or more

questions.

4.z, =0,y =1: We have zf = 1 (¢ € S) since otherwise the answer to
one or more of the questions in S would be a draw. Remove the first player
from the game, keeping players’ 3,...,k + 1 questions and strategies intact.
Keep player 2’s questions, but change his strategy so that he outputs the
complement of the bit he was to output. Then we have the game G’iel with

a strategy that answers correctly for 3 or more questions.

In all cases, we contradict the inductive hypothesis that for the game GY and
G}, the players can answer correctly for at most 2 questions. So, by the principle
of mathematical induction we know that for all n > 3, and for the games G? and
GL, the best the players can do is answer correctly for at most 2 questions.

We give a simple strategy that succeeds for 2 questions for the game G9: all
players answer 0 on input 0 and L otherwise, except for the first two players. Player

1 always outputs 0, and player 2 outputs 0 on input 0 and 1 on input 1. Then

all questions that satisfy the promise lead to a draw, except questions 0,0,0,...,0
and 1,1,0,...,0, which are correctly answered. Hence, the best the players can do
is answer correctly for exactly two questions. O

The following improves on the results of [BBT03] and [BM93].
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Corollary 5.2.17. Let G,, be the parity game. Then n.(G,) = 1 /4.

Proof. By theorem 5.2.16, the best the classical players can do in the error-free
model (using a deterministic strategy) is to answer correctly for 2 questions. Using
reasoning similar to theorems 3.2.1 and 3.2.2, we conclude that no probabilis-
tic strategy can succeed in the error-free model with probability strictly greater
than 5,,2?1

Since we assume that the detector efficiencies are independent,

and so

| =

As a consequence of corollary 5.2.17, and since

1 1
lim =¥/4 =z,
n—oo 2

we conclude that if 7 > 50% and as long as n is sufficiently large, classical players

cannot succeed as well as quantum players in the game G,.

5.3 The Extended Parity Game

The following game, proposed by Buhrman, Hgyer, Massar and Réhrig [BHMRO3],
is a generalization of the parity game presented in section 5.2, in the sense that
each player’s input is a string of bits (of length approximately lgn), instead of a
single bit as in the parity game. In the extended parity game (table 5.11), each

player ¢ receives as input a bit-string of length [lg, n] —1; we also interpret z; as an
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integer in base 2. The promise is that ) .-, z; is divisible by 2¢. Each player then
outputs a single bit y;. The players win if and only if > y; = Z—;;E}ﬁ (mod 2).
The advantage of this game over the parity game is that it is “harder” to win

classically. We will explain what we mean by this shortly.

Extended parity game

n n>3

X X;={0,1}¥ (i=1...n), = [lg,n] -1
Y Y;={0,1} (i=1...n)

P S z; =0 (mod 2¢)

W Sy = =% (mod 2)

We <1

We <1

" <z

%) 20 +117)

Table 5.11: Extended parity game

5.3.1 A Quantum Winning Strategy

Theorem 5.3.1. Let G, be the extended parity game. Then wy(G,) = 1.

Proof. The player’s strategy is to share a state |®%) = % (|0™) + |1™)). After

receiving his input z;, each player ¢ does the following;:

1. if z; # 0, apply the unitary transformation S given by

0) — 10)

1) — e# |1),



9%
2. apply H
3. measure the qubit to obtain y;
4. output y;

Then the resulting state after step 1 is:
1 l=;
=—[|0") +e™ T |1 )
) =5 (107 )
5 (107 + 1), 25 =0 (mod )

2€

2 (0% = 1), Z% =1 (mod 2)

2t

We know by the promise P that %:i is an integer, so by proposition 5.1.1, the

resulting state after step 2 is:

n— 4

an=t A(y)=0 2
(mod 2)

1 ZSE{
ly) , =1 (mod 2).

. /2n—1 Z 2!
A(y)=1
)

And so after the measurement of step 3, the output of step 4 will satisfy:

n 'n, $i
Zyi = Zéﬂ (mOd 2)

so the players always win. O

5.3.2 Classical Success Proportion

The following theorem shows that the extended parity game is a pseudo-telepathy

game. Its proof shows that the parity game is a subset of the extended parity game.

Theorem 5.3.2. Let G, be the extended parity game. Then @ (G,) < 1.
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Proof. Suppose for a contradiction that w.(G,) = 1 for any n. This means that
classical players always have a deterministic winning strategy. In particular, the
players have a winning strategy on all questions of the form z; = b;,00...0, where
b; € {0,1}. But this subset of questions constitutes the parity game, since the

promise becomes:
Zzi =0 (mod 2% & Zbﬂe_l =0 (mod 2°)
i=1 i=1

@Zbizo (mod 2)

i=1

And for the same reason, the winning condition becomes
n n
b
Zyi = ——Zzzl > (mod 2)
i=1

Since the players have a winning strategy on all questions of the form z; = b;00.. .0,
then they have a winning strategy for the parity game, which contradicts theo-
rem 5.2.2. O

Using theorem 3.2.2, we get the following corollary:

Corollary 5.3.3. Let G, be the eztended parity game. Then w.(Gr) < 1.

5.3.3 Towards Closing the Detection Loophole
5.3.3.1 Error-Free Model

We have just seen that the parity game is a subset of the extended parity game.
This gives us the intuition that classically, the extended parity game should not be
any easier to win than the parity game. The following theorem confirms this in the

error-free model.

Theorem 5.3.4. Let G, be the extended parity game. Then 1.(Gr) <

3 oo
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The proof of this theorem, which appears in [BHMRO3], is too involved to
reproduce here. It is based on previous results from [BCT99].
Although this bound is interesting, we would like to know an exact value for

7+(Gr). So far, we have only been able to come up with an educated guess:

Conjecture 5.3.5. Let G,, be the extended parity game. Then

" 92¢-1

The idea behind conjecture 5.3.5 is that there exists a strategy that can answer
correctly at most 221 out of a total of 24"~V questions. We conjecture that this
is the best classical players can do.

To support the hypothesis, we give an error-free strategy that succeeds on 221

questions:

e Players 1,2,...2¢ — 1 answer 0 on input 00...0 and 00...01, and 1 other-

wise.
e Player 2¢ answers 0 on input 00...0 and 1 otherwise.

e The remaining n — 2¢ players answer 0 on 00...0 and L otherwise.

Suppose that the players produce an answer other than 1. We show here that
the answer satisfies the winning condition W:
Since the n — 2¢ last players must have input 00.. .0,
2t-1

Z T; + T = 0 (mod 2%).

i=1
And since

261

inng—l,
i=1
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we must have that

2¢-1
In particular, if

=1

then z, = 0 and the output is y = 0,0,...0, which satisfies the winning condi-

tion W. If

21

Z x; > 0,
i=1

then

2t_1

Tpe=20—) "z #0,
i=1

and the output is y = 0,0,...0,1,0,0,...0, which satisfies the winning condi-

tion W, since
n
>u-1
i=1

and

_ £
22;1 Z; 21111 z; +2¢ — Z?=11
2t 20 o
22
o

= 1.

So the winning condition is satisfied.

Then the players answer correctly on 22°~! questions (since players 1,2, ...,2¢ — 1
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answer on two questions, and the 2%h players’ input is fixed, once the questions to

players 1,2,...,2% — 1 have been fixed), and otherwise the outcome is a draw.

5.3.3.2 Model With Errors

No results for the extended parity game are known in the model with errors,
although the authors of [BHMRO3] give a hint as to an upcoming paper with results
in this model. Here, we give a conjecture that is mostly a shot in the dark, but is
based on rudimentary numerical simulations and on extrapolations from the parity

game analysis.

Conjecture 5.3.6. Let G, be the extended parity game, with @,(G,) = p. Then
there exists a deterministic strategy that succeeds in proportion p and in which a
single player gives an answer that may depend on his input (so all but one player

always output 0)!



CHAPTER 6

CONCLUSION

In this thesis, we presented a total of seven pseudo-telepathy games (eight if we
distinguish the two equivalent games of sections 4.3 and 4.4). These games ap-
pear in the physics and quantum information processing literature; their unified
presentation is the author’s work.

In chapter 3, we gave formal definitions that describe the characteristics of the
games, including a definition for a promise-free game, which is new. The two-party
games of chapter 4 are: the impossible colouring game, the distributed Deutsch-
Jozsa game, the magic square game, Cabello’s game, and the matching game.
It is shown that the magic square game and Cabello’s game are equivalent; this is
original work of the author.

The multi-party games of chapter 5 are: the Mermin-GHZ game, the parity
game and the extended parity game. For the parity game, we have given exact
values for the maximum success proportion and probability for classical players.
These two results are original contributions. Also for the parity game, we have
improved previous results by giving the exact detector efficiency rate required in
the error-free model in order to close the detection loophole.

It is interesting to compare the various characteristics of the pseudo-telepathy
games. Tables 6.1 and 6.2 compare the two-party pseudo-telepathy games and
table 6.3 compares the multi-party pseudo-telepathy games.

With the help of pseudo-telepathy, we have confirmed the power of the quantum
theory over its classical counterpart. The key to the success of the quantum play-
ers is one of the most mysterious and powerful resources of the quantum theory:

entanglement.
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6.1 Future Work

As research often goes, we have encountered more open questions along the way

than we have been able to solve. Here is a partial list of tasks that are of interest:

e Where it has not already been done, find exact values of or good approxima-

tions for We(G), we(G), ps(G) and n.(G), where G is a pseudo-telepathy game.
e Find new pseudo-telepathy games.
e Implement games experimentally.
e Prove conjectures 5.3.5 and 5.3.6 that concern the extended parity game.

e Prove that for the distributed Deutsch-Jozsa game (section 4.2), there is no

classical winning strategy for all & > 4.

¢ Find a pseudo-telepathy game that satisfies any of the restrictions on W and

P from section 3.2.1. Otherwise, show that none exists.

e Show that some games are equivalent, perhaps in a similar or a different way

than section 4.5 (“The Magic Square and Cabello’s Game Are Equivalent”).

¢ Find minimum values of |X;| and |X3| for the impossible colouring game, in

any dimensjon (section 4.1).

e The matching game of section 4.6 comes from a one-way communication com-
plexity problem. Show how it is possible to transform other one-way commu-
nication complexity problems into pseudo-telepathy games. Find other links

between one-way communication problems and pseudo-telepathy.

e Prove conjecture 4.6.3, i.e. that the matching game G™ is a pseudo-telepathy

game for all even m > 4. Show that &W.(G™) is close to 3.
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Appendix I

Proof of lemma 5.2.5

Mathematica Worksheet

The following function returns the binomial sum:

(a2s)

iz0 (mod 2)
mny:- Closed[n_, a_, M ] := (
(*M should be M=Mod[n-2xa, 8] *)
Switch|[M,
0, m=2"2,2%1,
1' m= 2-;— (-3+n) + 2-2¢n'
= 2n—2,
- _2% (-34n) 2-2+n,

’

I
= n-2 _ 2-;—-1’

_2% (~3+n) + 2—2+n,

= 2n—2,

=27 (-3m) 2'2‘“]; Return[m] );

’

’

14

I S R )
8 88 8383 8

’

The following function returns the value of the binomial sum given by :

FALYE |+ | A0
n8 should be n (mod 8) and 18 should be 1 (mod 8).

miz):» F2[n_, 1_, n8_, 18_] :=
Return[Simplify|[
Closed[1l, 0, Mod[18, 8]] *Closed[n-1, 0, Mod[n8 - 18, 8]] +
Closed[l, 2, Mod[18-2%2, 8]] *Closed[n-1, 2,
Mod[n8 -18-2%2, 8]] +Closed[1, 1, Mod[18-2, 8]] *
Closed[n-1, 1, Mod[n8-18-2x%1, 8]] +Closed[1, 3,
Mod[18 -2+3, 8]] *Closed[n-1, 3, Mod[n8 -18-2x3, 8]]




Case 1: n odd

mi6):= Success = True;
For[p=1, p<8 (* p is the value of n (mod 8) «),
For[g=0, q< 8 (*q is the value of 1 (mod 8)«),
Val =F2[n, 1, p, q}
(*Val is the calculated binomial sums);
(*opt and copt are the two possible
values for the sumx)
opt =22 (n-2) +2*((n-3) /2);
copt =24 (n-2) -24((n-3)/2);
(*the Switch determines which case we should be in,
according to hypothesis we want to testus)
Switch[Mod[(p-1) /2+3*q, 4],
0, Current = Simplify[opt -Val],
1, Current = Simplify[copt -Val],
2, Current = Simplify[copt - Val}],
3, Current = Simplifyfopt -Val]];
If[Current # 0, Success = False,];
q++];
p=p+2];
Print["Success = ", Success];
Success = True

Since we exit with the correct Success value, we conclude that each case is verified, and so the
hypothesis that we tested is true.
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Case 2: n even

my9):= Success = True;
For[p=0, p<8, (+ p is the value of n (mod 8) «)

For[g=0, g<8, (*+ g is the value of 1 (mod 8) =)
Val =F2[n, 1, p, ql;
(*Val is the calculated binomial sumx)
(*opt and copt are the two possible
values for the sumx)
opt=24(n-2)+24(n/2-1);
copt =2%(n-2) -24(n/2-1);
other=2%(n-2);
(*the Switch determines which case we should be in,
according to hypothesis we want to testx)
Switch[Mod[p/2 +3xq, 4],
0, Current = Simplify[opt - Val],
1, Current = Simplify[other -Val],
2, Current = Simplify([copt -Val],
3, Current = Simplify[other -Val]];
If[Current # 0, Success =False,];
q++];
pP=p+2];
Print["Success = ", Success];

Success = True
Since we exit with the correct Success value, we conclude that each case is verified, and so the
hypothesis that we tested is true.
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Appendix II

Proof of lemmas 5.2.12 and 5.2.13

Mathematica Worksheet

The following function returns the binomial sum:

(avs)

120 (mod 2)
mp1:= Clogsed[n_, a_, M_] := (
(*M should be M=Mod[n-2#a,8] %)
Switch[M,
m=2"2,2%1,
m=-27 (3 (Lg_ 2%,
m= 2n-2,
m=27 5 (L2, 2%,
m= 272 _ 2%-1,
m=27 50 (L2 2%),
m= 2n—2,

= -2 (-5+n) (-—2 +- Zth)]; Return[m] );

-~ -
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The following function returns the simplification of the binomial sum that we require, in the
case where n is odd.

my2;:= ConjectureOdd{n8_, r8_, 11_, 12_, 13_, 14_] :=
(*This returns the simplification of the binomial sum )
(x*assumes that n is odd )
(* n8 is n mod8, r8 is r mod 8, r should be even %)
(%11,12,13,
14 should be as given in the appropriate tablex)
(Return[Simplify[

22 (n-1) »

(
Closed[r, 1', Mod[rB-2x0, 8]]
(Closed[n-r, 11-1', Mod[n8 -r8-~-2% (11-0), 8]] +
Closed[n-r, 12-1’, Mod[n8 -x8 -2+ (12-0), 8]]) +
Closed[r, 1’, Mod[r8-2x2, 8]]
(Closed[n-r, 11-1', Mod[n8-r8 -2+ (11-2), 8]] +
Closed[n-r, 12-1', Mod[n8-r8 -2* (12-2), 8]]) +
Closed[r, 1’, Mod[rB-2x1, 8]]
(Closed[n-r, 13-1', Mod[n8-r8 -2+ (13-1), 8]] +
Closed[n-r, 14-1', Mod[n8-r8 -2+ (14-1), 8]]) +
Closed[r, 1', Mod[r8-2%3, 8]]
(Closed[n-xr, 13-1', Mod[n8 -r8 -2+ (13-3), 8]] +
Closed[n-r, 14-1’, Mod[n8-r8-2% (14 -3), 8]])
)11

We must check the conjecture for a number of values of n,r,11,2,13,14,
we will loop through all values and check against the conjectured value.

vall = 2°F . 22n-2; val2 = -2 . 2202,

11=0;12=1; 13=2; 14 =3;
Correct = True;
For[p=1l, p<8, (+p is n mod 8x%)
For[g=0, g<8, (*xq is r mod 8%)
Val = ConjectureOdd[p, q, 11, 12, 13, 14)};
If[Mod[q, 4] == 0, Conj = vall, Conj = val2];
Test = Simplify[Val - Con3j];
If[Test === 0, , Correct = False];
a=q+2];
11 =Mod[11+1, 4]; 12=Mod[12+1, 4];
13 =Mod[13+1, 4]; 14 =Mod[14 +1, 4];
P=P+2];
If[Correct = True, Print["Conjecture is verified"],
Print["Conjecture is False"]];

Conjecture is verified

We have succeeded in the case where n is odd!
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The following function returns the simplification of the binomial sum that we require, in the
case where n is even.

mt13):= ConjectureEven[n8_, r8_, 11_, 13_] :=
(*This returns the simplification of the binomial sum#)
(*assumes that n is evenx)
(*n8 is n mod8,r8 is r mod 8,r should be evenx) (%11,
13 should be as given in the appropriate tablesx) (Return|
Simplify[2”~ (n-1) « (Closed[r, 1’, Mod[r8-2%0, 8]] *
(Closed[n-r, 11-1', Mod[n8-r8-2+ (11-0), B]]) +
- Closed[r, 1’, Mod[r8-2%2, 8]}
(Closed[(n-r, 11-1', Mod[n8 -r8 -2+ (11-2), 8]]) +
Closed[r, 1’, Mod[r8-2%1, 8]]
(Closed[n-r, 13-1', Mod[nB-r8-2% (13-1), 8]]) +
Closed[r, 1’, Mod[r8 ~2%3, 8]]
(Closed[n~-r, 13-1', Mod[n8-r8-2% (13-3), 8]]))1]

‘We must check the conjecture for a number of values of n,r,11,13,
we will loop through all values and check against the conjectured value.

An
m1a1:= vall = 27T 4 22n-3; val2 = -272+7 42203,
11 =0; 13=2;
Correct = True;
For [p=0, p<8, (*p is n mod B=%)
For[gq=0, g<8, (*q is r mod 8«)
Val = ConjectureEven[p, q, 11, 13];
If[Mod[q, 4] == 0, Conj =vall, Conj = val2];
Test = Simplify[Val - Conj];
(*Print ["test"]; )
If[Test === 0, , Correct = False];
a=q+2];
11 =Mod[11+1, 4];
13 =Mod[13+1, 4];
P=p+2];
If [Correct == True, Print["Conjecture is verified"],
Print["Conjecture is False"]];

Conjecture is verified

‘We have succeeded in the case where n is even!
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