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RÉSUMÉ

Le traitement de l’information quantique est au confluent des sciences physique,

mathématiques et informatique; il vise à déterminier ce qu’on peut et e peut pas

faire avec l’information quantique. Le sujet de ce mémoire est la complexité de la

communication, qui est un domaine de l’informatique qui vise la quantification de

la communication nécessaire à la résolution de problèmes distribués.

La pseudo-télépathie est une application surprenante du traitement de l’infor

mation quantique à la complexité de la communication. Grâce à une ressource

quantique appelée « intrication », deux joueurs ou plus peuvent accomplir une

tâche sans comrnnnïqner, tandis que ceci serait impossible pour des joueurs clas

siques (qui n’ont pas accès à l’intrication). Un jeu de pseudo-télépathie à n joueurs

se présente comme suit: chaque joueur reçoit en entrée une question. Sans com

muniquer, chacun émet en sortie une réponse. Le jeu est gagné si les réponses

conjointes satisfont une certaine condition. Il s’agit d’un jeu de pseudo-télépathie

si les joueurs quantiques peuvent gagner de façon systématiqile, tandis que ceci est

impossible pour les joueurs classiques.

Dans ce mémoire, nous décrivons sept jeux de pseudo-télépathie, tirés de la

littérature de la physique et de l’informatique quantique. Nous incluons aussi des

résultats originaux de l’auteur. Les jeux sont présentés du point de vue informa

tique, et de façon uniforme, ce qui facilite leur comparaison. Certains points de

comparaison sont: le nombre de joueurs, la taille de l’entrée, la taille de la sortie, la

condition gagnante, l’état intriqué partagé et la probabilité maximale de réussite

pour les joueurs classiques.

Mots clés: informatique quantique, complexité de la communication

quantique, non-localité, intrication, théorème de Beil, échappatoire de

la détection.



ABSTRACT

Quantum information processing is at the crossroads of physics, mathematics and

computer science; it is concerned with what we can and cannot do with quantum

information. This thesis deals with communication cornplexfty, which is an area of

computer science that aims at quantifying the amount of communication necessary

to solve distributed problems.

Pseudo-telepathy is a surprising application of quantum information processing

to communication complexity. Thanks to a quantum resource called “entangle

ment”, two or more quantum players can accomplish a task with no communica

tion. whereas this would be impossible for classical players (who do not have access

to entanglement). A pseudo-telepathy game with n players is the following: each

player receives as input a question. Without communicating, each player outputs

an answer. The players win if their joint answers satisfy a certain condition. \‘Ve

say that the game exhibits pseudo-telepat.hy if quantum players can svstematically

succeed at this game, whereas this woiild be impossible for classical players.

In this thesis, we describe seven pseudo-telepathy games which appear in the

physics and quantum information processing literature. We have also included

original resuits of the author. The games are presented frohi a computer scientist’s

perspective, and in a uniform way, in order to facilitate comparison. Some points

of comparison are: number of players, size of the inputs, size of outputs, winning

condition, shared entangled state and maximum success probability for classical

players.

Keywords: quantum information processing, quantum communica

tion complexity, nonlocality, entanglement, Beil’ s theorem, detection

loophole.
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NOTATION

R real numbers

C complex numbers

z imaginary number, r =

c complex norm of c

7d d-dimensional complex inner product space

b) quantum state

b) normofb)

Ax) Hamming weight of a binary string x

bitwise complement of x

modular equivalence, (mod 2) if not specifled

lg(x) base-two logarithm, log2(x)

(G) maximum success proportion, over ail possible deterministic strate

gies for classical players that play the game G

w(G) maximum success probability, oyez ail possible strategies for classi

cal players that play the game G

w(G) maximum success probability, oyez ail possible strategies for quan

tum players that play the game G

p probability that a player’s answer corresponds to the predictions of

quantum mechanics in a game with errors

p (G) maximum value of p for which a classical strategy can succeed as

well as a quantllm strategy

rj probability that a player outputs something other than I in an

error-free game

r](G) maximum value of 1] for which a classical strategy can succeed as

well as a quantum strategy
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P REFACE

This research project was motivated by the need for a comprehensive survey of

work that lias been clone in the multi-disciplinary area of pseudo-telepathy.

This need became apparent to me when, after Gilles Brassard, Alain Tapp and I

published a pseudo-telepathy game that we thoughwas new [BBTO3], Serge Massar

kindly pointed out to us that similar work [Mer9Ob] had appeared more than ten

years ago in the physics literature.

Since writing this Master’s thesis, I have prepared, along with my co-authors,

two manuscripts that originate from tRis work. Quantum Pseudo- Telepathy [BBTO4a]

is a survey of pseudo-telepathy games, and Recasting Mermin’s muÏti-pÏayer game

into the framework of pseudo-telepathy [BBTO4b] presents the novel resuits from

section 5.2 of the present document, some of which have been greatly simplffied.



CHAPTER 1

INTRODUCTION

Niels Bohr, one of the fathers of quantum physics, said that if studying quantum

mechanics doesn’t make yôu dizzy, you haven’t understood it properly.

The present thesis, which deals with quantum information processing (QIP), is

meant to he a remedy to the sometimes profound dizziness we feel when studying

such strange concepts. With the use of pseudo-telepathy games, it objectively

shows the power of the quantum world and unveils some of its mysteries.

QIP is concerned with what we can and cannot do with quantum information;

its fundamentals lie in the area of quantum mechanics which is the study of matter

at the atomic level. Quantum mechanics is the best tested theory that describes

our world. To better understand the wonders of quantum mechanics and thus of

QIP, it is good to see how our predecessors saw and thought about these ideas.

1.1 Measurements and Spooky Action at a Distance

According to the predictions of quantum mechanics, when performing measure

ments related to the position and momentum of an electron, the precise knowledge

of one quantity prevents such a knowledge of the other.

This prompts the following question: If it is impossible to measure both the po

sition and momentum of an electron with arbitrary precision, then can an electron

have both a position and momentum?

for many physicists. including Bohr, the answer to this question is that the two

quantities cannot simultaneously exist. As Jordan asserts:

observations not only disturb what has to be measured, they produce

it! ... We compel it [the electron] to assume a definite position . .. we

ourselves produce the results of measurement. [JamT4]
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For Einstein, however, the answer was different. He did not reject the predic

tions of quantum mechanics, but was bothered by its consequences. for him, if the

quantum theory cannot describe both the position and momentum of an electron,

then the quantum theory does not provide a complete description of the electron.

Thus, he concluded that quantum mechanics must 5e incomp1ete”.

In support of this conviction, Einstein published in 1935 an article with Podol

sky and Rosen [EPR35], in which they present a gedanken experiment. A gedanken

(“thought”) experiment is “a hypothetical sequence of events about which the quan

tum theory makes quite definite predictions” [Mer9Oa]. The purpose of the scenario

is to challenge the quantum theory on the basis of its predictions, and so to make

the point, it is not necessary to actually carry out the experiment. This particular

gedanken experiment is meant to provide evidence of the existence of elements of

reaiity, also called hidden variables, deflned as in [EPR35]:

If, without in any way disturbing a system, we can predict with certainty

(i.e., with probability equal to ullity) the value of a physical quantity,

then there exists an element of physical reality corresponding to this

physical quantity.

In the gedanken experiment, Einstell, Podolsky and Rosen (EPR) consider two

particles that may originally interact. They are then separated into two distinct

regions, A and B. EPR then daim that by choosing to measure either the position

or the momentum of a particle in region A, one could learn either the position or

the momentum of a second particle in region B. Since the measurements in A can

not disturb the particle in region B, they conclude that the particle in region B

must have had both its position and momentum all along, i.e. there are elements

of reality that correspond to the position and momentum.

Because the quantum theory cannot assign values to both quantities at once, it

must provide an incomplete description of phvsical reality. But there is an alterna

tive explanation: the position or momentum iiieasurement at A could influence the

the particle at B, setting its position or momentum: “Spukhafte Fernwirkung” or
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“spooky action at a distance”. This phenomenon, which is predicted by quantum

mechanics, was also rejected by Einstein. Fie did not doubt the predictive power of

quantum mechanics, but insisted that it was incomplete. According to him, (and

supported by his gedanken experiment), there had to be some underlying informa

tion (elements of reality or hidden variables) which determines the outcome of the

measurements. The elements of reality are not directly observable, yet we witness

their effect each time that we perform a measurement in region A or B.

The reaction of other physicists to the EPR paper was that this was an area of

meta-physics; the question was unanswerable to scientific observation, and unwor

thy of argumentation. As Pauli wrote,

As O. Stem said recently, one should no more rack one’s brain about the

problem of whether something one cannot know anything about exïsts

all the same, than about the ancient questions of how many angels are

able to sit on the point of a needle. But it seems to me that Einstein’s

questions are ultimately always of this kind. [EBBZ1]

1.2 Bell’s Response

In 1964, Bell gave a shocking reply to EPR by publishing a paper [Be164] in

which lie proposes a gedanken experiment that mules out any possibility of hidden

variables in the quantum theory.

Having put the EPR thesis in perspective in the previous section, one should

be surprised that Bell was able to irrefutably show lis resuit. EPR’s argument was

not a question of meta-physics, after ail! The physicist Henry Stapp called BelÏ’s

discovery “the most profound discovery of science” [$taZ5]. Tri order to be able to

state Bell’s theorem, we first give some definitions:

Definition 1.2.1. A local theory is one in which no action performed at location

A can have an instantaneous (faster than light) observable effect at location B.

Definition 1.2.2. A reatistic theory in one in which ail measurement outcomes

pre-exist before the measurement.
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With this formalism, we note that EPR argued in 1935 that any complete

theory must be local and realistic, Bell’s answer is to show the following theorem:

Theorem 1.2.1 (Bell’s Theorem). No tocat. reatistic theory cari explain the

predictions of quantum mechanics.

Beil proved his theorem by exhibiting a quantum system involving two parti

des. He showed that if we assume the presence of hidden variables, as well as the

locality condition, then the outcomes of the experiment are in contradiction with

the outcomes predicted by quantum mechanics. Thus quantum mechanics is not a

local, realistic theory.

We won’t give the details of Bell’s argument here, because in the next one

hundred pages or so of the present document, we will effectively prove over and

over again Bell’s theorem. Exactly how this is done is explained in the following

section.

1.3 Pseudo-Telepathy

The previous section presented a part of the history of physics, which motivates

our research. We wish to adopt for the rest of this thesis the QIP paradigm; for

that, we must note an important correspondence: a classicat theory denotes a tocaÏ

and realistic theory. Thus, if something or someone is constrained to act in a

classical fashion, they do not have access to any quantum mechanical resource.

To which quantum mechanical resource are we referring? The answer is entan

gtement, the “iron to the classical world’s bronze age” [NCOO]. The properties of

this resource are stili not well understood, but we can say for sure that it is thanks

to entanglement that we get resuits sucli as Bell’s theorem. Entanglement causes

the “spooky action at a distance” (also referred to as nonlocaÏity) that Einstein

rejected. It is also thanks to entanglement that we can devise amazing games such

as pseudo-telepathy games: pseudo-tetepathy is defined inforrnally as the charac

teristic of a game in which no communication is allowed, and in which quantum
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players (sharing entanglernent) aiways succeed, but for which the classical players

have an unavoidable, non-zero probability of failure.

1.3.1 Telepathy and Pseudo-Telepathy

Telepathy is “communication from one minci to another without using sensory

perceptions”. With this definition in minci, what do we mean by psendo-telepathy?

Suppose that we have a pseudo-telepathy game that involves two players, Alice and

Bob. They are flot allowed to communicate with each other. If they were classical,

we know that they would sometimes fail. However, if they share entanglement,

they aiways succeed at the given game. So, if we introduce a witness, who looks

at the results of the game, but who does not believe in the quantum theory (or

anything beyond the classical theory), then the only possible explanation, given

that Alice and Bob consistently win, is that they must have a way to signal to each

other—they must be telepathic!

We know, however, that this is flot the case. We know that Alice and Bob share

entanglement and that it is thanks to this that they appear to be telepathic. Hence,

pseudo-telepathy. There are limits to what Alice and Bob, who share entanglement,

can do. Specifically, “entanglement alone cannot be used to signal information—

otherwise faster-than-light communication would be possible and causality would

be violated” [BraO3].

1.3.2 Pseudo-Telepathy arid Bell’s Theorem

We’ve alreadv stated that this document is dedicated to proving Bell’s theorem.

Indeed, pseudo-telepathy proves Bell’s theorem in the following way: in pseudo

telepathy, the quantum players have a clear advantage over the classical players.

Recail that classical players are restricted to a local, realistic theory. Since the

quantum players aiways win and the classical players do not, we conclude that no

local, realistic theory can reproduce the predictions of quantum mechanics—which

is precisely the essence of Bell’s theorem.
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1.4 Related Work

Research in the area of pseudo-telepathy originally appeared in the physics

lit.erature. as these games provide a proof of Bell’s theorem. This area of research

is stili active. 0f course, the terrninology, notation and even the context differ

widely from the usual paradigrn adopted in QIP, which is part of the challenge in

writing the present dodilment. Pseudo-telepathy games sometimes appear under

the following names:

• Bell’s theorem without inequalities [GHSZ9O]

• Bell’s theorem without inequalities and without probabilities [CabOlb]

• GHZ-type game

• always-vs-never refutation of Einstein, Podolsky and Rosen [IVIer9Oe]

• BeR inequality [BM93]

• ali-versus-nothing violation of local realism [CPZO3].

• “ail versus nothing” inseparability [CabOlb]

• inequality-free proof of Bell’s nonlocality theorem [Ara99]

Other works on pselldo-telepathy appear in the QIP literature, more precisely

in a communication comptexity context. Here, we find pseudo-telepathy under such

headings as “nonlocality games”, “cooperative games”, “interactive proof systems”

and of course, “pseudo-telepathy”. We also find related work in the philosophy

literature.

1.5 Contributions

The present thesis is a collection of pseudo-telepathy games. far from being a

simple literatiire review, this document presents many original contributions:



z

1. The fact that the games appear in a variety of contexts (theoretical physics,

experimental physics and QIP—see section 1.4) means that a considerable

amount of work has been done to make a uniform presentation of the games

and reiated resuits.

2. In section 3.2.1 (“The Promise”), we give a formai definition of a promise

game.

3. In section 4.5 (“The Magic Square and Cabello’s Game Are Equivalent”), we

provide a definition of equivatent two-player games, and show that the two

games are equivalent.

4. In section 5.2 (“Parity Game”), theorems 5.2.2 and 5.2.6, concerning the cias

sical success proportion and classicai success probability of the parity game

are proven. This is original work of the author.

5. Also in section 5.2, theorem 5.2.16, concerning error-free strategies for the

parity game is proven. This is also original work of the author.

1.6 Structure of the Thesis

The remainder of the present document is divided into four chapters. Chapter 2

gives the basic notation and priilciples of QIP. Chapter 3 is concerned with pseudo

telepathy in general: we give a formal defiuition of pseudo-telepathy and present

general notation and concepts that are useful in presenting pseudo-telepathy games.

Finally, chapters 4 and 5 are dedicated to the presentation of a total of seven

pseudo-telepathy games (eight if we distinguish the two equivalent games). They

are divided into chapter 4, which presents two-party games and chapter 5, which

presents muÏti-party games, which are games with three or more players.



CHAPTER 2

QUANTUM INFORMATION PROCESSING

In this chapter, we give definitions and theorems that relate to quantum information

processing, which we will need in the rest of the document. This is not meant to be a

comprehensive introduction to the area, but oniy to specific tools that are required

in the context of pseudo-telepathy. A good reference for quantum information

processing is [NCOO].

2.1 The Qubit

The bit is the fundamental unit of classical computation and classical informa

tion. Quantum computation and quantum information are built upon an analogous

concept, the quantum bit or qubit. Qubits, like bits, are realized on actual physical

systems. Here, we treat them as abstract mathematical objects. A qubit can be in

the state O) or 1). It can also be in a superposition of states O) and 1): an arbi

trary qubit can be written as = e O)+/3i), where c8 C and 2+32 = 1.

We also write ) as a coÏumn vector using the convention that {O), l)} form the

standard basis:

[;Ï
The nature of quantum information implies that we cannot extract the ampli

tudes o and from b); we are only able to make statistical inferences about these

values (more about this in section 2.3). It is also impossible to clone quantum

information. That is, it is not possible to start from one qubit in an unknown state

and make two identical copies of it.
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2.2 Complex Inner Product Space

Let 7t denote a a d-dimensional complex iniler product space (a complex vector

space equipped with a complex iniler product) over C. The notation 7 rerninds

115 0f a HiÏbert space; this is because the finite dimensional complex inner product

spaces that corne up in quantum computation and quantum iuforrnation are Hilbert

spaces. Qubits are column-vectors in K2. We define ( (“bra”) to be the row

vector that is the conjugate transpose of b) (“ket”). Then (i), usually written

as (‘çb), denotes the muer product of ç) with b). The norm of ‘), denoted

H)H is defined as = Thus qubits have norm 1.

2.3 Basic Operations

We introduce three basic operatiolls on qubits: initialization, unitary transfor

mation and measurement. In what follows, we take for granted that these opera

tions eau be performed perfectly.

1. Initialization. It is possible to initialize a qubit to the state O) or 1).

2. Unitary Transformation. We can perforrn any unitary transformation, given by

U=
1101

1111

where u C. U is unitary if and only if UU = I, where U is the conjugate

transpose of U and I is the identity rnatrix. We also denote the above U as:

U
O) i,’ uooO) +n1)

U1) I,’ uO) +
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A very useful unitary transformation is the Hadamard transform, given by

1 1 1

1—1•

In other words,

0) 0)+1))

3. Measurement. So far, we’ve seen that we can initialize a qubit and perform

unitary transformation. We also need to have a way to measure a. qubit. As we

have already stated, a measurernent will flot yield the complete description of

the qubit; measurement in the standard basis of an arbitrary qubit o0) +j31)

resuits in the following:

O with probability 2

0)+1) ‘S

11 with probability 2

Furthermore, measurement alters the qubit. After the measurement, the state

cottapses to 0) if O was measured and 1) if 1 was measured.

It is also possible to measure an arbitrary qubit b) with respect to any

orthonormal basis B of 72, say B = {b1), b2)}. Then the probability of

getting resuit b when measuring ) is given by

p(b =

Given that resuit b was rneasured, the state of the quantum system immedi

ately after the measurement collapses to b).

Wliat if we want to start a protocol in a state other than O) or 1), for example,

—— (O) + 1))? The solution is to start in the state 0) and apply a unitary trans
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formation (for the specific example, we would apply the Hadamard transform).

Hereafter, if we start a protocol in a state ) other than O) or 1), it is because,

implicitly, we have applied a unitary transformation to one of the basis states to

obtain ).

2.4 n-Qubit Systems

We have seen how we can work with a single qubit. Now, we would like to be

able to work with a system of n qubits. It turns out that we can easily extend the

basic operations on a single qubit to operations on any number of qubits.

An n-dimensional qubit system is a 2-dimensiona1 norm 1 vector in for

example, for n = 3, an arbitrary 3-qubit quantum register can 5e written as:

cr000

c010

O11
ax)

0ioi

where = 1

Formally, we combine systems with the Kronecker product (also erroneously

calÏed the tensor product) ofvectors; if b) = O) +1) and ) = ‘O) +ff1),

then b) ® ) e 72 ® 2 = 722, and

o? cç

if 73cV

3if
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In this representation, t.erms like a denote the 2 x 1 submatrix whose entries are

proportional to ), with overail proportionalitv constant c. When using the ket

notation, we often drop the symbol. Thus, 0) ® 0) = 0)0) = 00).

The same three basic operations of section 2.3 hold for an n-qubit system: we

may initialize to any basis state x) where x e {0, l}n. We can perform any unitary

operation given by a 2 x 2’ unitary matrix U. We can perform a measurement

of a state ?/) in any orthonormal basis B of ?-t2, say B = {b1),..., b2n)}. The

probability of getting resuit b when measuring b) is given by:

p(b) =

Given that resuit b was measured, the state of the quantum system immediately

after the measurement collapses to b).

When referring an n-qubit system, we use denote ‘ ® U ® 0 U by U®hl. We

also wnte On) to represent 00. . . 0). Also, as in the one qubit case, if we start a

protocol in a state ‘) other than a basis state, it is because, implicitly. we have

applied a unitary transformation to one of the basis states to obtain b).

2.5 Operations on Parts of a System

$o far, we’ve considered operations on a system as a whole. It is also possible

to act on part of a system.

for example, Alice and Bob can share a two-qubit system: Alice takes the

first qubit and Bob the second. Once this is done, they may become physically

separated. $ay Bob applies a unitary transformation U. Then the effect on the

system is to apply the transformation I O U, given by the matrix:
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‘u00 UO1 O O

‘u10 Uii O O
I®U=

O O tc00 U01

o o ‘u10 Ui;

This can be generalized to an operation on any partial system of any dimen

sion. Ivleasurements may also 5e performed on part of a system: for any state

b) E ?1ABC, we can measure the subspace 3. A partidillar state of interest is:

=

By measuring the subspace B, we obtain the resut i with probability 2 and the

resulting state is a)i)c).

It is useful to note that we get the same effect if we perform two measure

ments on different subsystems, or if we perform the measurements together. Also,

the same effect is obtained if two parties are to perform some unitary transforma

tion and then measure—regardless of the order in which the parties perform their

actions.

2.6 Entanglement

Given an m ± n qubit state ‘) E 7m 0 we say that J) iS a pTOdUCt state

if b) = ‘y)6) for y) E 712m and i) E 2u. If b) is not a product state, then h is

an entangled state.

Examples of entangled states are the BeÏt states:

(OO) + 11))

= — 11))

= (IO1) + 10))

1 01 10
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The state Irj is also known as an Einstein-Podolsky-Rosen (EPR) pair. We

will use it to demonstrate one of the “mysteries” of entanglement: If Alice and

Bob share an EPR pair. and Alice measures her qubit in the standard basis the

outcome will be O with probability and 1 with probability . Likewise. Bob’s

measurement in the standard basis will yield O with probability and 1 with

probability . However, we know for sure that AÏice and Bob’s outcomes will 5e

opposites. Hence, by knowing one of the outcomes, we can predict with certainty

the other; this “spooky action at a distance” is a surprising feature of entanglement.

Furthermore, if Alice and Bob perform measurements of ‘I’j, in any basis, we can

be sure that the outcomes will be opposites.

We will make use of the state ) in the following context: Suppose Alice and

Bob share two I) states:

= (OO) + 11)) ® (OO) + 11)),

where Alice lias the flrst and third qubits. and Bob the second and fourth ories.

‘Ne cari re-write this as:

= (OOOO) + 0101) + lolo) + 1111))

where, this time, Alice lias the first two qubits and Bob the second two. Gener

alizing this, we see that if Alice and Bob share n cIj states, then they share the

entangled state )®n

= ( (OO) + 11)))®’ = ii).



CHAPTER 3

PSEUDO-TELEPATHY

The goal of this chapter is to facilitate discussion by presenting notation and resuits

that relate to pseudo-telepathy games in general. At the end of the chapter, we give

details on the presentation of the garnes. The general framework of this chapter is

useful in chapters 4 and 5, where several games are presented.

3.1 Playing the Games

Definition 3.1.1. An n-player garne G = (X, Y, P, W) consists of:

• X = X1 x X2 x ... x X,2, where X1, X2,. . . X are sets of possible inputs

• Y = Y1 x Y2 x ... X Y, where Y1, Y2,. . Y are sets of possible outputs

• a predicate P on X called the ponise

• a relation 117 on X x Y, called the winning condition

An instance (figure 3.1) of the game proceeds in the following way:

1. A question x = X1, x2,. . . , x E X is chosen from the set P. (We use a slight

abuse of notation, using P as a predicate and as the set of elements in X that

satisfy the predicate)

2. Each player i receives his input x E X.

3. Each player i responds with an output yj e
Let ,‘ = Y1,Y2,• .. ,y be the answer.

4. The players win if (x, y) W, and they lose otherwise.

The following rule governs the way the game is played:
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step 1:

step 2:

x is chosen from the set P
1etx=x1,x2,...x

player i produces output y.
1ety=y1,y2,...y

P

xi

player i receives input x.X2

X??,

< Yi

< Y2

y??

1

2

n

1

2

n

step 3:

step 4:

yes no

Figure 3.1: A Pseudo-Telepathy Game
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No communication between the players is allowed during the game.

Before the start of the game, the players may agree on a strategy. They

may share random bits, and, if they are quantum players, they may

share entanglement.

Suppose that we have a game G = (X, Y P, W) such that there exists an

Xo e X such that P(0) = true and x0 Ø domain(W). Then there is no way of

winning if the players are given question XO. This Ïeads to a game that is not inter

esting in the context that we wish to study. Hence, ail games G = (X, Y P, W)

that we consider have the property that:

Vx e X,P(x) = truc e domain(W). (3.1)

3.2 Strategies

Players, whether classical or quantum, will always use a strategy to determine

what their answer y will 5e. given a particular question x. According to game

theory, a player’s strategy is “a plan which specifies what choices he will make in

every possible situation, for every possible actual information which he may possess

at that moment . . .“ [NM44].

In the games that we study, as either ail players win or they ail lose, their best

strategy is to collaborate to maximize their probability of winning. Such games are

in the class of cooperative games. We specify if the players are ctassical or quantum.

Classical players may have a deterministic strategy. They may also have access to

shared randomness, which allows them to use a pro babitistic strategy, which is a

probability distribution over a finite set of deterministic strategies. Quantum play

ers have access to entanglement, which they may exploit in their quantum strategy.

In pseudo-telepathy, quantum players have a winning strategy and classical players

do not. For the classical players, we want to know just how well they can succeed.

We say that a strategy is a winning strategy if it succeeds on ail instances of

the game. We also classify the success of strategies according to the following:
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Definition 3.2.1. A deterministic strategy is successful in pToportzon p if the

ratio of the number of instances for which the players win and the total number of

instances is p.

Definition 3.2.2. A strategy is successful with pTobabitity q if it wins any instance

with probability at least q.

$ome strategies are better than others; those that are optimat reach the follow

ing optimal bounds:

Definition 3.2.3. Let G be a game. We define:

1. (G) to be the maximum success proportion, over ah possible deterministic

strategies, for classical players that play the game G

2. w(G) to be the maximum success probabihity, over all possible strategies,

for classical players that play the game G

3. Wq(Gn) to be the maximum success probabihity, over all possible strategies,

for quantum players that play the game G

In pseudo-telepathy, the quantum players have a winning strategy, and the

classical players do not. This amounts to saying that wq(Gn) = 1 and (G) < 1.

Definition 3.2.4. An n-player pseudo-telepathy game is

a game G for which wq(Gn) 1 and (G) < 1

Suppose that a deterministic strategy is successful in proportion p < 1. Then

there is at least one instance of the game where the players systematically fail,

hence the strategy’s success probability is q = 0, so we must consider probabihistic

strategies in order to obtain a meaningfuÏ bound on w(G). However, the next

two theorems state that if we know that the maximum success proportion of a

deterministic strategy is p, then we have that w(G) p.
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Proposition 3.2.1. Let G be a game. Then (G) is the maximum pro babitity

that the ptayers win if the questions are asked uniformty at random among questions

that satisfy the promise.

Proof. We consider a general probabilistic strategy s which is a probability distri

bution over a fuite set of deterministic strategies. say {Si, 8m} Let Pr(s)

be the probability that strategy s is chosen, and let p be the success proportion

of strategy s. The probability that the players win the game is:

m m

Pr(s)p < ZPr(sj)lc(Gn)

=

furthermore, by defluition, there exists a strategy that succeeds with probabihty

E

Theorem 3.2.2. For any game O, w(G) <(G).

Proof. Consider any strategy s that is successful with probability By

definition, for every question x satisfying the promise P, the probability of winnillg

on question x is Pr(win x) > w(G). If the question is chosen uniformly at

random, the probability q of winning the game using the same strategy s is

— Pr(win x)
q

xEP

-

xP

= w(G)

By proposition 3.2.1, (G) q, and since q > w(G), then (G) w(G7). E

The next lemma is useful when determining values of
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Lemma 3.2.3. Let G = (X, Y P, W) be a game with (G) < 1. Then

w(G)
<

Proof. Since L(G) is the maximum success proportion, over ail possible deter

ministic strategies, for classical players that play the game G, it is the ratio of

the maximum number of questions that satisfy the promise and on which classical

players can win, and the total number of questions that satisfy the promise.

$ince (G) < 1, the next best alternative is that (G) = 171. So we
PH1conclude that w(G71) < ——. LI

3.2.1 The Promise

In step 1 of an instance of the game G (X, Y, P, W), a question is chosen

among ail questions satisfying the promise P. In other words, it is possible that

a certain x Œ1,X2,... x E X, yet x is not a valid question (P(x) = fatse).

Although they make the game more artificial, we often (but not always—see sec

tions 4.3, 4.4 and 4.6) rely on sucli promises in order to ensure an advantage for

the quantum players.

The concept of a promise game lias appeared in QIP literature before, for

example, in the context of the Deutsch-Jozsa problem [DJ92]. In the case of

pseudo-telepathy, we give our interpretation for defining a game with and with

out a promise:

Definition 3.2.5. Let G = (X, Y, P, W) be a game. We say that G is promise

free if ail of the following liold:

1. VxEX,P(x)=true

2. VxEX,yEYsuchthat(x,y)ØW

(x,y) E W
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Otherwise, we say that G is a promise game.

A game is promise-free if ail three conditions of definition 3.2.5 are met. The

motivation for the first and second conditions is obvious. The third condition is

there to ensure that each element in Y = Y1 x Y2 x ... x Y,-, is useful. In other

words, one cannot introduce a bogus element in one of the player’s answers, and

then conclude that the game is error-free according to condition 2.

0f course, given a game G = (X, Y, P, W) where P(xo) is false for a given

Xo é X, it is possible to convertit to a game G = (X, Y P’, W’) where P’(zo) = true

(and P’(x) = P(x) otherwise), by simply specifying in the winning condition

W’ that Vg E Y, (x y) E W’ (and W’ is otherwise unchanged from W). By

repeatedly applying this technique to ail such x0, we convert G,., into a game

G = (X, Y, P”, W”) where P” is the constant true predicate, and so we have

eliminated the need for the promise P. Note, however, that according to definition

3.2.5, G is stili a promise game (since, for example, (xo, y) e W Vy e Y).

We may also proceed in the opposite direction. Given a game G,.,, suppose

that x0 E X such that Vy e Y, (tx0, y) E W. We can then derive a new game

G, = (X, Y, P’, W’) where P’(xo) = faise (and P’(x) = P(x) otherwise) and

where x0 is removed from domain(W), which yields W’1. Continuing in this way,

we arrive at a game G = (X, Y P”, W”) such that Vx E X, either P”(x) is false

or ê Y such that (x, y) W”. We cali such a game a min-promise game (since

{x E X P”(x) = true} is smallest possible). In the present document, we will

consider games G,., in their min-promise form only, since by the following lemma,

(G) is smallest for these games.

Lemma 3.2.4. Let G be a min-promise game, obtained from game G as above.

Then L(G) <(G).

Proof. If G,7, is aÏready in its min-promise form, then (G) = Otherwise,

we daim that for each iteration i of the above process, assuming we start from game

1Strictly speaking, it is not necessary ta clean up W in this way.
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G = (X, Y, P, Wz) and that the resuÏt is the game G’ = (X, }‘
i+l, T/V’), we

have (G’) <(G). To show this, suppose that (G) = . Then,

=

___

<*
=

Siice each iteration yields a game with smaller success proportion, we conclude

that (G) <(G). E

We have given a definition for a promise-free game, yet there are other restric

tions on W and P that may be interesting to study. Let G = (X, Y, P, W) be a

game. We consider two restrictions on W and on P:

1. W is a function (i.e. (x, y) e W A (x, Y2) e W yi = Y2)

2. W is a function and Vr e X, P(x) true

A game G with X > 1 that satisfies (2) is a promise-free game according to

definition 3.2.5, but this is not necessarily the case for (1).

We will see in chapter 4 that two-player promise-free pseudo-telepathy games

exist. However, it is not known if there are pselldo-telepathy games satisfying (1)

or (2). This would be an interesting question to ponder, and even more interesting

to solve!

3.3 Physical Realizations and Loopholes

Suppose we want to execute a physical experiment to show that there is no

local realistic (classical) model of reality, using a pseudo-telepathy game. We cali

this an erperimentat demonstration of Bett’s Theorem.



23

The ideat experiment would be to set up a quantum system and run many

instances of the game until either:

1. the players lose, in which case we conclude that the predictions of quantum

mechanics are wrong, and it’s back to the drawing board, or

2. the players win consistently for a sufficiently large number of instances to rule

out (with high probability) any classical strategy (based on a local, realistic

model)

This experiment contrasts with many experimental demonstrations of Bell’s

theorem in that we are not interested in verifying a statisticat difference between

the quantum and classical players, such as in the Beil [Be164], CHSH [CHSH69], or

Mermin [Mer8la, Mer8lb] proofs of Bell’s theorem. Instead, the ideal experiment

above telis us that as soon case 1 happens, we reach a definite conclusion. This

principle is referred to as an “ail-or-nothing” experiment, since it involves either

complete success or failure (as long as we ru enough instances of the game). It

is surprising that we can devise such an experiment. After Beli stated lis famous

theorem in 1964, and for about 20 years, the only experimental demonstrations of

Bell’s theorem were statistical, which is what lead Mermin [Mer9Oe] to write:

I was surprised to learn of this always-vs-never refutation of Einstein,

Podolsky and Rosen I recently declared in writing that no set

of experiments, real or gedanken, was known that could produce sud

an ail-or-nothing demolition of the elements of reality. With a bow of

admiration to Greenberger, Home alld Zeilinger, I hereby recant.2

The lahoratory setting offers conditions that are far from the ideal world. There

fore, we must now incorporate imperfections into the analysis of experimental data

drawn from an “ail-or-nothing” experiment. In this non-ideal situation, a single

occurrence of case 1 does not allow us to readh a definite conclusion; instead, we

2Mermin was probably unaware of the earlier pseudo-telepathy game, described in section 4.1.
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must account for errors. This is not an easy task; it seems that for each real-world

experiment that is reported, there is consistently an argument that cornes up which

invalidates the experiment and allows for a classical theory to explain the resuits.

These counter-arguments exploit what are called toopholes, Le. ambiguities that

make it possible to evade a difficulty.

For example, one of the first experimental demonstrations of Bell’s theorem

[AGR$2, ADR$2] suffered from the locality loophole, [Fra85, GZ99], which ex

ploits a timing fiaw in the experiment setup. Other counter-arguments include

the rnemory loophole [BCHO2], which exploits the assumption that the nth mea

surement is independent from the first n — 1 measurements, and the detection

loophole [PeaZO, MasO2], which is based on the fact that in real experiments, only

a fraction of the instances yield a correct answer.

Here, we will address only one such loophole argument, namely the detector

efficiency problem: real-world detectors are noisy and inefficient, thus, in the real

life laboratory, we cannot expect to aiways witness the results predicted by quantum

mechanics.

We want to know how we can work with the noise and inefficiencies to devise an

experimental demonstration of Bell’s theorem that does not exploit the detection

loophole. 0f course, the more tolerant to detector noise and inefficiencies our game

is, the more convincing it might be.

Taking into account these errors, the experiment must change. It is possible

for the quantum players to lose (in the case of an error due to noise), or for the

answer to be lost (in the case of an error due to an inefflciency). So, we will

run many instances of the game and colÏect the results (win/lose/draw), until we

are satisfied that the classical players would not be able to win as often as the

quantum players. This experiment will only be convincing if the detector noise and

inefficiency rates are small enough. It is not an easy task to devise experiments

that are statistically convincing; we only mention here that work on this subject

lias been done in [PerOO, DGGO3].

It is important to mention a common mistake in reasoning about experimental
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realizations of pseudo-telepathy games. Too often, we read that the ali-or-nothing

effect is to rule out local hidden variables in a single run: ccThe quantum non

locality can thus in principle, be manifest in a single run of a certain measure

ment.” [CPZO3] The falÏacy here is that if the players (classical or quantum) win

for a single run, we cannot conclude anything, except that they have guessed cor

rectly. It is only by running many instances that we conclilde that case 2 of the

ideal experiment has been realized. There are many more examples of this mistake

in the literature. As Peres wrote, about those who made this mistake: “The list of

allthors is too long to give explicitly, and it would be llnfair to give only a partial

list.” [PerOO].

3.3.1 Noisy Detectors

We consider this error model for binary outpllts only. If there is noise, the

output bit will be flipped. More formally, each individual player’s answer y cor

responds to the predictions of quantum mechanics (if the apparatus were perfect)

with probahility p. With complementary probability 1
—

p, the player outputs ,

the complement of yj. We say that this is a game with errors; 1
—

p is the noise

rate.

For each game, there is a threshold on p, above which no classical strategy can

succeed as well as a quantum strategy. This threshold is deflned as p(G):

Definition 3.3.1. p(G) is the maximum value of p for which a classical strategy

can succeed as well as a quantum strategy, in the game G with errors.

In general, we want to upper-bound p(G.).

3.3.2 Inefficient Detectors

Assume that the apparatus gives the correct answer most of the time, but

sometimes it fails to give an answer at all. In this model, we enlarge each player’s

set of outputs } to include the special symbol I which means that the player’s

apparatus fails to give an answer. Formally, we redefine player i’s possible olltputs
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in game G = (X, }Ç P, W) by ‘ = Y U {I}. If, in the answer y = yi, Y2,. . , y,

we have y = I for any i, then we say the players neither win nor lose, but that the

outcome is a draw. If the outcome is not a draw. then we require that it be correct

(i.e. it must satisfy the winning condition). We cali such a game an error-free game.

For each player, we wiil assume that the measurement has probability î of

giving a resuit and 1
—

of not giving a resuit. So y = I with probability 1
—

77.

As in the case of noisy detectors, we are interested in the threshold of the

efficiency rate ij, above which no classical strategy can succeed as well as a quantum

strategy. This threshold is defined as

Definition 3.3.2. 77(G) is the maximum value of 17 for which a classical strategy

can succeed as well as a quantum strategy. in the error-free game G.

If i,v assume that each apparatus’s efficiencv ‘17 S independent of the others,

then 7f’ is the probability that ail piayers give an answer. We usually calculate this

probability, and from there, deduce 7].

In general, we want to upper-bound 7](G). Some work lias been done on this

in [MPO3]. The error-free model is usually easier to analyze than the model with

errors, but it is obviously less realistic. In practice, noise could corne from many

sources, which means that the model with errors is the more realistic of the two.

3.4 Presentation of the Games

The present document is a collection of pseudo-teiepathy games, in which we

present many original contributions (see section 1.5). The games are presented in

two separate chapters (chapter 4 for games with n = 2, called two-party games

and chapter 5 for games with n 3, called mutti-party games). Each game G is

presented according to the following format:

1. Background information on the garne, as well as historical notes.

2. A table with summary information (table 3.1); some fields may be omitted if

no information is known. The promise P and the winning condition I1 are
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given as equations. These should be interpreted as: P(x) = true if and only

if z satisfies the given equation, and (x, g) E W if and only if (z, y) satisfies

the given equation.

Name of the game

n number of players

X set of questions

Y set of answers

P promise

W winning condition

maximum classical success proportion

wc maximum classical success probability

maximum value of p for which a classical strategy eau
p succeed as well as a quantum strategy

maximum value of 77 for which a classical strategy eau
succeed as well as a quantum strategy

) quantum state used in the winning strategy

Table 3.1: Presentation of the games

3. Justification of each row of the table by theorems and proofs; we always

give the quantum winning strategy, and then justify why w(G) < 1. For

example, we will usually find a value or an upper bound for Then,

by theorem 3.2.2, tins value gives us an upper bound on w(G).



CHAPTER 4

TWO-PARTY GAMES

In this chapter, we present five two-party pseudo-telepathy games. Among these

games, there are three that are scalabte (we can increase the length of each player’s

question). We also show that the remaining two games are equivalent. Since we

consider games with only two players, we will eau player 1 Alice and player 2 Bob.

We denote a two-party game by G (instead of G, n = 2), or by Gk where k is a

parameter that determines the length of the player’s input and output for a scalable

game G.

4.1 The Impossible Colouring Game

In response to Einstein, Podolsky and Rosen’s argument for hidden variables

(section 1.1), Kochen and Specker [KS67] presented an argument against hidden

variables. They showed that under non-contextuality, hidden variables cannot exist.

Briefly stated, non-contextuality is the principle according to which the probability

of a given outeome in a measurement does not depend on the choice of the other

orthogonal outcomes used to define that measurement. Bell’s theorem and the

Kochen-Specker theorem differ by their assumptions: Bell’s theorem assumes local

ity, while Kochen-Specker’s theorem assumes non-contextuality. Non-contextuality

may not be experimentally verified:

This doctrine, being ‘counterfactual’, is incapable of empirical verifica

tion and hence Beil regarded it, and the BKS’ theorem to which it lead,

as unsatisfactory; he prefered the Beli theorem instead with its reliance

upon the much less problematic assumption of locality. [Ara99J

1The Kochen-Specker theorem is also known as the Beli-Kochen-Specker (BKS) theorem, due
ta [Be166]. Ta be even more historically accurate, we should note that similar resuits appeared
earlier in [G1e57], and in fSpe6O].
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In this section, we show how to convert the problematic assumption of non

contextuality from the Kochen-Specker theorem into the assumption of locality,

effectively creating a pseudo-telepathy game. Kochen and Specker proved the fol

lowing theorem:

Theorem 4.1.1 (Kochen-Specker Theorem). There exists an expticit, finite

set of vectors {vo, y1,... , v,_;} e R3 that cannot be {O, 1}- cotoured 50 that both of

the fottowing conditions hoÏd:

1. For every orthogonat pair of vectors v and v, they are not both cotoured 1.

2. For every mutuatÏy orthogonal triple of vectors v, v and vk, at teast one of

them is coto’ared 1.

Theorem 4.1.1 was originally proven using 117 vectors [K567], and this has been

reduced to 31 (with 17 orthogonal triples) by Conway and Kochen [Per93]. from

theorem 4.1.1, it is possible to give an argument against hidden variables by using

the non-contextuality assumption. We will not give the details here, since we are

interested in showing how theorem 4.1.1 can be turned in to a pseudo-telepathy

game, as flrst shown by [HR83] and then by [Sta83]2. Here, we use a presentation

inspired by [CHTWO4]. This is no doubt the earliest example of pseudo-telepathy,

which was overlooked by many, since Greenberger, Home and Zeilinger (section 5.1)

got most of the credit for inventing the first pseudo-telepathy game. There is actu

alÏy an infinite family of pseudo-telepathy games that arises from Kochen-Specker

constructions. A Kochen-Specker construction, simiÏar from that of theorem 4.1.1,

can be constructed in any dimension d > 3, either by geometric argument, or by

extending a construction in dimension d to dimension cl + 1 [Per93]. Geometric

arguments can yield sets with smaller cardinality; for example, the smallest known

set in four dimensions lias 18 vectors [CEGA96J.

2Stairs notes that Kochen offered a version of the argument, presumably before Heywood and
Redhead, but neyer published it. He also notes that his own 1978 dissertation presents a similar
argument.
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A game G, for any Kochen-Specker construction of dimension in 3 is given

in table 4.1, where the following definition is used:

Definition 4.1.1. An augmented Kochen-Specker construction of dimension in is

a normalized set of vectors {v0,... , v_i} C R that cannot be {0, l}- coloured so

that ail of the following conditions hold:

1. For every orthogonal pair of vectors v, and v, they are not both coloured 1.

2. For every mutually orthogonal m-tuple of vectors vj0, v1,... Ui,_1 at least

one of them is coloured 1.

3. Every orthogonal pair of vectors is part of an orthogonal m-tuple.

Starting from the Kochen-$pecker theorem, it is straightforward to find an

augmented Kochen-Specker construction of any dimension in. The challenge that

Alice and Bob face in the impossible colouring pseudo-telepathy game is given in

table 4.1: Alice receives an orthonormal in-tuple of vectors V1, V2,... , V. Bob

receives a single vector v E {v1, V2,.. . , Vm}. Alice outputs Yi E {1, 2,. .. ,

indicating which of the in vectors of lier input is assigned colour 1. Bob outputs a

bit assigning a colour to his vector. The winlling condition is that Alice and Bob

assign the same colour to the vector that they receive in common. It is necessary

to use an augmented Kochen-Specker construction of definition 4.1.1 in order to

ensure that every vector appears in at Ïeast one instance of the game (although

a modification of the game, where we can ask Alice to colour an n-tuplet, where

n < in, does not require the use of the augmented Kochen-$pecker construction).

Unlike other pseudo-telepathy games, it is not straightforward to find X1 and

X2, because it depends on the augmented Kochen-Specker construction that is

used. It would be interesting to calculate these values.

As mentioned earlier, the pseudo-telepathy game based on the Kochen-Specker

theorem appeared as early as 1983. Since then, other authors have explored the

topic: [Ara99], [MA99] and [RWO4].
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Impossible colouring garne

n 2

Let Km be an augmented Kochen-Specker construction of
dimension in> 3.

X X1 = {(vi,.. . , Vm) (y1, . . . , U) are orthonormal m-tuples in
Km}

X2 = {v ve E K}

Y Y1 {1, 2,... , m}, Y2 = {O, 1}

P

W Yi=Y2=’

:; <1

wc <1

1 m—ib) 31)

Table 4.1: Impossible colouring game

4.1.1 A Quantum Winning Strategy

Theorem 4.1.2. Let Gtm be the impossible cotouring game. Then wq(Gm) = 1.

; m—i..Proof. The player s strategy is to share the state b) =
—

jj). After

receiving their input, Alice and Bob do the following:

1. Alice performs a measurement in the basis Ba = {vi),.. . , Vm)}. $he outputs

the index i corresponding to the measured vector.

2. Bob augments the set {v)} to a basis 3b = {ve), wi),.. ., w_’)} of Rtm,

and measures in the basis given by Bb. If the outcome is v, he outputs 1,

and outputs O otherwise.

To show that this quantum strategy works, we first remark that since the bases

3a and 3b have real coefficients, for any Va) = a,O, Va,1, . , Va,,yi_i) E Ba and
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Wb) = Wb,O, Wb,1,... j Wb,m_1) E Bb,

m-1 m-1

Z(jVa)(j)Wb) = Va.jWb, (4.1)
j=o i=o

m-1

= Z37Wb.j (4.2)
i=o

= (YaWb). (4.3)

The probability that Alice measures v and Bob measures v is given by:

m—1 2 m—1 2

= (jVj)(jV (4.4)

(4.5)

fi i=t
=

d’
(4.6)

10, i#?

We see that the winning condition y; = £ Y2 = 1 is aiways met. This

completes the proof that wq(Gm) = 1.

D

4.1.2 Classical Success Proportion

Theorem 4.1.3. Let Gtm be the impossibte cotonring gaine. Then (Gm) < 1.

Proof. Any classical deterministic strategy is a colouring with the properties of

definition 4.1.1. Yet the set of vectors used, those of an augmented Kochen-Specker

construction of dimension m, may not be coloured in this way; 50 Alice and Bob

cannot have a cassicaÏ winning strategy. D

It follows by theorem 3.2.2 that w(Gm) < 1.
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4.1.3 Special Case of the Impossible Colouring Game

We have presented a infinite family of pseudo-telepathy games based on the

Kochen-$pecker theorem. It is interesting to mention the particular case where

m = 3 (table 4.2). For the quantum strategy, Alice and Bob share an entangled

qutrit pair I) = (OO) + 11) + 22)). This is interesting as this entangled state

of dimension 9 is the srnallest known state used for a two-party pseudo-telepathy

game. In fact, we know for sure that this is the smallest possible state for a two

party pseudo-telepathy game [BIVITO4].

Impossible colouring game (m = 3)

n 2

Let K3 he an augmented Kochen-$pecker construction of
dimension 3.

X1 = {(v, v, vk) (vi, v, vk) are orthonormal triples in K3}
X2 = {v v E K3}

Y Y={1,2,3},Y={O,1}

P Vt E {u,v,vk}

W

c <1

:
Table 4.2: Impossible colouring game (m = 3)

4.2 The Distributed Deutsch-Jozsa Game

This pseudo-teÏepathy game, based on the Deutsch-Jozsa problem [DJ92], was

first presented in [BCT99]. The game uses a parameter k, which determines the

size of the game. The task that Alice and Bob face is the following (see table 4.3,
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which makes use of definition 4.2.1): they each receive an input bit string of length
2k, with the promise that either their inputs are identical, or they differ in exactly

haif of the positions. They must each output a hit string of length k, such that

their outputs are identical if and onÏy if their inputs are identical. Originally, there

was only an asymptotic bound known on the amount of communication required for

classical players to have a winning strategy; thus we could not say for sure which

values of k give rise to a pseudo-telepathy game. A few years later, an analysis

showed that for k = 4, this game is a pseudo-telepathy game (see section 4.2.2).

Definition 4.2.1. The Hamming Weight of a binary strillg X = x1x2. . . {O, 1}

is denoted A(x) and deflned as:

=

As a consequence, we have that O < (x) <n.

4.2.1 A Quantum Winning Strategy

Theorem 4.2.1. Let Gk be the distribnted Dentsch-Jozsa game. Then wq(Gk) 1.

Proof. The player’s strategy is to share the state /‘) = ii). After

receiving his input x = . . . each player j does the following:

1. apply the unitary transformation S given by

S(j)) = (-1)j)

2. apply H to each qubit

3. measure the quhits to obtain yj = yy . . . y’

4. output yj

To show that this quantum strategy works, we first state and prove a lemma.
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Distributed Deutsch-Jozsa game

n 2

Ï Xi=X2={O1}2k

Y Y1=Y2={O,1}k

P x1 x2 or L(x1,r2) = 21e_1

W Y1 = Y2 Xi =

= 1 (k = 1, 2, 3), < 1 (k = 4 and for ail sufflciently
C large m)

= 1 (k = 1, 2, 3), w, < 1 (k = 4 and for ail siifficiently
C large m)

Table 4.3: Distributed Deutsch-Jozsa garne

Lemma 4.2.2. Let x) be a basis state oJn qubits. Then

= (-1)z)
(47)

where x• z is the bitwise inner product ofx and z, modulo 2, and the sum is over

alt z {O, 1}.

Proof. For a single qubit, we have HO) = I0ii) and H1) IO)—)i) and so for x)

a single qubit,

H
-

_______

x)

By hnearity, for x) = Xi . . . x) a basis state,

V’ (1\Z1Z1±...XnZn z
)

= ,..,Zp J
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which can be summarized by

H®x)
= _1)z)

D

Now, consider the resulting state afrer step 1 of the quantum strategy:

—1

=

In step 2, both players apply H. By lemma 4.2.2, if j) is a basis state of k qubits:

2k

H®j)
=

(4.8)

where L. j is the bitwise inner product of L and j, modulo 2. So,

H®2k) =
1()x3+x3 (1

Z(_1)3u)) ( (_1)3v))

2k_1 2k1 t2k_1

=
((_1)+x+iu+iv) nv)

2 u=O v=O \j=O J

The amplitude c of u) y) in H®2k b) determines the probability that y = u and

Y2 u. From here, we have two cases:

= x2. Suppose that u u. The amplitude c of u)v) in H02) is:

= 1

2k 1

= L

=0
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Where the last une follows by the following argument: we know that j u +

j.u j u e j•v (mod2)andthatj.uej.v=j.(uev). Sinceuu,

we have that u u 0. Therefore, j. (u e u) 0 (mod 2) for exactly haif

the values of j and j (u C e) 1 (mod 2) for the other haif of the values

of j.

• Hence the winning condition is always satisfled if

• A(xi,x2) = : Suppose that u = u. The amplitude c of u)u) in H®2b) is:

c
= 1

22
.

2k_1

= — Z(1)+
2

=0

Since (x1, x2) = 2k1 implies that x + O (mod 2) for haif valiles of j
and x + x 1 (mod 2) for the other half ôf the values of j.

Hence the winning condition is always satisfied if A(x1, x2) 2k—1

L

4.2.2 Classical Success Proportion

The following theorem states that if the parameter k is chosen large enough, this

game cannot be won with certainty by classical players. It appeared in a slightly

different context in [BCW98].

Theorem 4.2.3. Let Gk be the distributed Deutsch-Jozsa game. Then the amount

of commumcation required for ctassical players to win the game is in 2(2’).

But this theorem doesn’t help if we want to know which values of k yield a

pseudo-telepathy game. Originally, the authors of [BCT991 knew that the game

had a classical winning strategy for k = 1, 2. They conjectured that this was not
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the case for k = 3. However, in [GWO2], the authors prove that there is a cÏassical

winning strategy for k = 3, hence the following theorem:

Theorem 4.2.4. Let Gk be the distTibuted Deutsch-Jozsa game. Then (Gc) = 1

if k E {1,2,3}.

Then, the idea was to show that for k = 4, there was no possibility of a clas

sical winning strategy. By using a.n argument based on graph theory, as well as a

computer-assisted case analysis, it was finally shown in [GWTO3] that for k = 4,

there is no classical winning strategy:

Theorem 4.2.5. Let Gk be the distributed Deutsch-Jozsa game. Then (Gk) < 1

if k = 4.

So we know that for k = 4, the distributed Deutsch-Jozsa game is a pseudo

telepathy game. By theorem 4.2.3, we also know that if we choose k larger than

a certain threshold k0, then we have a pseudo-telepathy game. However, it is an

open question to determine the value of k0. In particular, we don’t even know if

k = 5 yields a pseudo-telepathy game!

4.3 The Magic Square Game

The magic square game was presented by Aravind [AraO2, AraO3], who built

on work by Mermin [Mer9Od]. The game is also presented in [CHTWO4j.

A magie square is a 3 x 3 binary array that has the property that the sum of

each row is even and the sum of each column is odd. Such a square is magic since

it cannot exist: suppose we calculate the parity of the nine entries. According to

the rows, the parity is even, yet according to the columns, the parity is odd, which

is a contradiction.

The task that the players face while playing the garne is the following: Alice is

asked to give the entries of a row and Bob is asked to give the entries of a column.

The winning condition is that the parity of the row must be even, the parity of

the column must be odd, and the intersection of the given row and column must
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agree. Because a classical strategy would have to assign fine entries to a magie

square, which is impossible, we know right away that there is no classical winning

strategy. The game is described in table 4.4, where y = r1r2r3 (r is used for rows)

and Y2 = c1c2c3 (e is llSed for columns). It is interesting to note that this game is

promise-free according to definition 3.2.5.

Magie square game

n 2

X X1={1,2,3},X2r{1,2,3}

Y Y1=Y2={0,1}3

P none

v3
w i-1 r 0 (mod 2), c 1 (mod 2)

r2 = c1

8:;

8wc

‘) (0011) — 0110) — 1001) + 1100))

Table 4.4: Magie square game

4.3.1 A Quantum Winning Strategy

Theorem 4.3.1. Let G be the magie square game. Then wq(G) = 1.

Proof The players share the state b) = (0011)
— 0110) — 1001) + 1100)).

After receiving their inputs (x1 for Alice, x2 for Bob, the players do the following:

1. Alice perforrns the unitary transformation given by the matrix A1 (where ‘i

denotes \/Eï):

7 iOOl 1 2 iii 1_1_1_1
A 0—z 10 A — — i—ii A — 11—11i7 0210’ -2 2 i—i—i’ 1—111v2 i c 0 z —i 1 1 —i 1 —1 —1 —1
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2. Bob performs the unitary transformation given by the matrix B,:

in—z 11 1—12127 1001
D — I — — 1—1 u — 1 z 1—21 — —1 0 0 1
-‘--1—I 1 , 1—il z’ 3_7Z 0110

L—z z 1 1 —1—z 1—z] VZ 0 1—1 0

3. Alice and Bob measure their system. The resuit of the measurement gives the

first two bits of the output, r1r2 for Alice and c1c2 for Bob. The third output

bit is caÏculated 50 that the sum of each row is even and the sum of each

column is odd. Hence r3 = r1 + r2 (mod 2) and e3 = e1 + c2 + 1 (mod 2).

To show that this strategy works, we consider fine cases that correspond to

the possible questions x = x1, x2. In each case, we show that the piayer’s final

answer satisfies the winning condition. Because of step 3, we know that the row

a.nd column parity conditions are satisfied. After some tedious calculations that we

omit here, ve are able to show that indeed r12 = c in ail nine cases. D

The reader might wonder where the unitary transformations A1, A2, A3, B1, 32

and 33 corne from. The answer is that they corne from a 3 x 3 array of observables

(table 4.5), each observable defining a measurernent.

Ux®Uy Jy®Gx Uz®Jz

Gy ® Oz Oz ® O•y J1 0 J1

o_z O u1 O u O u2

Table 4.5: A 3 x 3 array of observables

Here, u1, u, u denote the PauL matrices:

01 0—z 1 0
u1 = , o_y , o_z =

10 z 0 0—1

The measurement outcome for each observable is O or 1. The operators in each

row and in each column commute pairwise, which means that they can be rneasured

simultaneously, the resuit being a three-bit string. Since the product along a.ny row

is I O I, the outcome for any row is even, and since the product along any column

is —I O I, the outcome for any column is odd.
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In order to show that the intersection of Alice’s and Bob’s answers agree, we first

note that the shared entangled state can be re-written as ) = (0l) — 10)) ®

- (01) — 10)), where Alice has the Hrst and third bit, and Bob the second and

fourth bit. It is easy to check that the state iIrj = (01) — 10)) has the

propertythat (o-®u)’I’j —L’I’j, for anyi e {x,y,z}. Thus, usingsuperscripts

to identify the player’s operator,

(u ® a) ® (u ® )[) ® ) = W) Ø ). (4.9)

$0, if Alice and Bob perform an identical measurement corresponding to an entry

in table 4.5 on the state b) = 1j ® ‘I’j, their outcomes will agree.

Therefore, the quantum strategy is that Alice and Bob share the state le’). Alice

perforrns three measurements on her part of the system, corresponding to row 1

in table 4.5, and Bob performs three measurements, corresponding to column 12.

The matrices A1, A2. A3, B, 32 and 33, given in the previous quantum strategy

corne from table 4.5. We obtained them by simultaneous diagonalization of the rows

(A1, A2, A3) and columns (Bi, 32, 33) of the table.

4.3.2 Classical Success Proportion

Theorem 4.3.2. Let G be the magic square game. Then (G) < 1.

Proof. A deterministic strategy assigns values {0, 1} to entries of a 3 x 3 array.

Alice answers according to the required row and Bob answers according to the

required coÏumn. Because of the winning conditions (the sum of the row is even,

the sum of the column is even and the intersection of both answers agree), such a

strategy would have to correspond to a magic square. No such magic square exists,

so (G) <1. D

Theorem 4.3.3. Let G be the magie square game. Then J(G) =

Proof By theorem 4.3.2, there is no classical winning strategy. Combining this

with lemma 3.2.3, we get that (G) . We give a strategy that succeeds on ah
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but one question, say X1 = 3, x2 = 3: Alice answers according to table 4.6, and

Bob answers according to table 4.7.

o o o
o o o
1 1 ]O

Table 4.6: Alice’s strategy

o o o
o o o
1 1 1

Table 4.7: Bob’s strategy

Then the players win on ail but one question (x1 = 3, x2 = 3), so = . E

Theorem 4.3.4. Let G be the magic square game. Then w(G) =

Proof We know from the previous theorem and by theorem 3.2.2 that w(G) <

Consider a set of fine deterministic strategies (i = 1, 2, 3 j = 1, 2. 3) that

succeed on ail but one question, x1 = i, x2 = j. These strategies can be constructed

as in the proof of the previous theorem.

Suppose Alice and Bob use the probabilistic strategy which consists of selecting

uniformly at random a strategy Then for each question, the probability of

winning is , and so w(G) = . E

4.4 Cabello’s Game

Cabello’s game (table 4.8) is presented in [CabOla] and [CabOlb]. Here, we

have substantially changed the original ilotation so as to simplify the presentation.

We suppose that, on input x1 E {1, 2, 3}, Alice outputs two bits, yi = a1a2, and

that on input x2 E {1, 2, 3}, Bob outputs two bits, Y2 =

Cabello’s garne resembles the magic square game (section 4.3) in many ways:

both are promise-free, both have the same input size, the same output size. and even



43

the same entangled state used for the quantum winning strategy. This suspicious

resemblance is not a coincidence, since it turns out that the games are equivalent,

which is the topic of section 4.5.

Cabello’s game

n 2

X X1 {1,2,3}, X2 = {1,2,3}

Y Y1=Y2={0.1}2

P ilone

W given in table 4.9

--

) (0011) — 0110) — 1001) + 1100))

Table 4.8: Cabello’s game

X1 2 winning condition
1 1 ar+b11
1 2 a2+b11
1 3 a1+a2+b10
2 1 a1+b21
2 2 a2+b21
2 3 a1+a2±b20
3 1
3 2 a2+b1+b20
3 3 a1+a2+b1+b21

Table 4.9: Winning conditions for Cabello’s game

4.4.1 A Quantum Winning Strategy

Theorem 4.4.1. Let G be Gabetto’s game. Then wq(G) = 1.
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PToof. Let G’ 5e the magie square game. In theorem 4.5.6, we will show that G is

equivalent to G’. By theorem 4.3.1, wq(G’) = 1. By lemma 4.5.5, this implies that

wq(G)1. LI

4.4.2 Classical Success Proportion

Theorem 4.4.2. Let G be CabeÏÏo’s game. Then (G) < 1.

PToof To prove this resuit, we use the fact that by theorem 4.5.6, this game is

equivalent to the magie square game, G’. By theorem 4.3.2, (G’) < 1, hence, by

lemma 4.5.3, L(G) < 1. LI

Theorem 4.4.3. Let G be CabeÏlo’s game. Then (G) =

Proof. Let G’ 5e the magie square game. By theorem 4.3.3, 6(G’) = and since

G and G’ are equivalent (theorem 4.5.6), lemma 4.5.3 gives us that (G) = . LI

Theorem 4.4.4. Let G be Cabello’s game. Then w(G) =

Proof. Let G’ 5e the magie square game. By theorem 4.3.4, w(G’) = and since

G and G’ are equivalent (theorem 4.5.6), lemma 4.5.4 gives us that w(G) = . LI

4.5 The Magic Square and Cabello’s Games Are EquivaLent

As mentioned in section 4.4, the magie square and Cabello’s game are suspi

ciously similar. In faet, they are equivalent. This fact is known by Cabello [CabO4];

but it doesn’t seem to have appeared in print. In this section, we forrnally show

that the games are equivalent.

First, we must define what we mean when we say that two games are equivalent.

for our purposes, the following definition is sufficient:

Definition 4.5.1. Let G = (X,P,W) and G’ = (X’,Y’,P’,W’), 5e two player

games with X = X1 x X2, Y = Y1 x Y2, X’ Xj’ x X, and Y’ = Y’ x Y’.

We say that G and G’ are equivatent if there exist bijections A : X1 —* X and
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J5 : X2 —* X, as well as bijections 6A : Y1 — Y’ a.nd Ô5 : Y2 — Y’ such that for ail

XjX2 X and Yi,Y2 , x1,x2 E P (JA(X1),JB(X2)) e P’ and

(xi,x2,yi,y2) E W (uA(x1),u3(x2),ÔA(yi),5B(y2)) e W’.

The following five lemmas justify the above definition by showing that the

properties that we would expect to hold for two equivalent games are indeed true.

Lemma 4.5.1. Let G and G’ be equivatent two-ptayer games. Then foT each de

terministic strategy s foT G there exists a deterministic strategy s’ for G’ snch that

s’ lias the the same success proportion as s.

Proof. Let A, u3, ÔA and 453 be as in definition 4.5.1. Let s 5e a strategy for G

and suppose that s succeeds in proportion p. Let s’ be the following strategy for

G’: On i;iput x e X, Alice finds x1 = u;’(xj. Let Yi 5e Alice’s output on input

xi according to strategy s. Then in strategy s’. Alice outputs Ô4(y1). Bob uses a

similar strategy for s’. Since

(x1, x2) e P (GA(X1), u3(x2)) e P’,

we know that P = P’. Furthermore, since

(x1,x2,y1,y2) e W (uA(x1),uB(x2),SA(y1),S3(y2)) e W’,

we conclude that. strategies s and s’ have the sarne success proportion. LI

Given an arbitrary strategy s and a question x, let Pr8(win x) denote the

probability that strategy $ provides a willnillg answer on question x.

Lemma 4.5.2. Let G (X, Y, P, 117) and G’ = (X’, Y’, P’, W’) be equivatent two

player games. Let s be a pro babitistic strategy for G. Then there exists a bijection

T : X —+ X’ and s’ a probabilistic strategy for G’ such that for att x e X,

Pr5(win x) = Pr8i(win T(X)).
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Proof. Let u, u, 6A and à3 5e as in definition 4.5.1.

Since s is a probabilistic strategy for G, it is a probability distribution over a

finite set of deterministic strategies for G, say {Si, . Sm}. Let Pr(s) be the

probability that strategy s is chosen.

We can convert each deterministic strategy s for G, to a deterministic strat

egy s for G’, as in the proof of lemma 4.5.1. Using this, let s’ be the strategy

for G’ which is a probahility distribution over the set of deterministic strategies

{s s, . . . s} such that strategy s is chosen with probability Pr(s).

Let p (z) be 1 if strategy s yields a winning answer on question x and O

otherwise.

We define the bijection r on x = x, z2 E X1 X X2, by T(x) = JA(zl), u3(z2).

Since

(xi,z2,yi,y2) E W (JA(zl),uB(z2),&4(yl),SB(y2)) E W’,

the deterministic strategy s wins on question z e X if and only if the determin

istic strategy s wins on question r(x) E X’. In other words, p,(z) =

Therefore,

Pr5(win x) = Pr(sj)p5,(z)

= Z Pr(s)p8 (r(z))

= Pr3(win I r(z)).

D

Lemma 4.5.3. Let G and G’ be equivatent two-pïayer games. Then (G) =

PToof By lemma 4.5.1, (G) < (G’). By symmetry, (G) (G’), hence

Lemma 4.5.4. Let G and G’ be equivatent two-ptayer games. Then w(G) = w(G’).
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Proof. By lemma 4.5.2, w(G) <w(G’). By symmetry, w(G) w(G’), hence

w(G) = w(G’).

n

Lemma4.5.5. LetG andG’ be equivatenttwo-ptayergames. Thenwq(G) = wq(G’).

Proof. By lemma 4.5.1, w(G) wq(G’). By symmetry, wq(G) wq(G’), hence

wq(G)wq(G’). D

We now state and prove the main resuit:

Theorem 4.5.6. Tire magic sqnares game and Cabelto’s game are eqniuaÏent.

Proof. Let G be the magic square game and G’ be Cabello’s game. Consider the

following bijections: crA : X1 —* X is the identity map and u3 : X2 —* X is also

the identity map. The maps A : Y1 —* Y’ and S3 : Y2 — are given by the

following:

SA(TYT2T3)

63(cic2c3) = c1c2.

Obviously, o-À and u3 are bijections. Also, 5A and 55 are bijections with inverse

maps: 5’(aya2) = r1r2r3 where

r1 =

r2 =

T3 7+T (mod 2)

and 5’(bb) c1c2c3 where

c1 = b1

C2 = b2

C3 b1 + b2 + 1 (mod 2).
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Ail the questions satisfy the promise, so what remains to be shown is t.hat for

ail (xi,x2) EX and (yl,y2) e Y,

(Xi, Z2 Yi, Y2) E W (JA(X1), u3(x2), A(yi), B(y2)) e W’.

Since JA(Xi) and JB(X2) are the identity maps, ail we need to show is that for

any flxed question, g;, Y2 is a winning answer for G if and only if &(g), B(y2) is

a winning answer for G’. There are fine cases to check, corresponding to the nine

possible questions that Alice and Bob receive. Note that for each question, there is

exactly one condition in table 4.9 that must be satisfled. We can aiso transform the

winning condition of the magic square game into equations. for example, if x1 = 1

and x2 = 1, the winning condition is that r1 = c1 and r1 + r2 + r3 O (mod 2)

and C1 + C2 + c3 1 (mod 2). A less obvious case is when x1 = 3 and z2 = 3. The

parity condition states that:

T + T2 + r3 O (mod 2) (4.10)

e1 + c2 + c3 1 (mod 2). (4.11)

Since we must have c3 = r3, substituting equations 4.10 and 4.11, we gef that

c1+c2r1+r2+1 (mod2).

We summarize the possible questions as well as the winning conditions for both

games in table 4.10, where the parity condition for the magic square game is implicit

by the fact that r3 and c3 are replaced by r1 + r2 (mod 2) and c1 + c2 + 1 (mod 2),

respectively.

Since &4(rir2r3) = jT and 5B(clc2c3) = c1c2, it is easy to see that for a fixed

question x1,x2,

(xi,x2,yi,y2) E W (x;,x2,A(y;),B(y2)) E W’.

This completes the proof. D
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question winning condition
X1 X2 magie square game Cabello’s game
1 1 a1+b11
1 2 a2+b11
1 3 a1+a2+b10
2 1 a1+b21
2 2 a2+b21
2 3 ry+r2c2 a1+a9+b20
3 1 r1c1±c2+l a1+b1+b20
3 2 r2c1+c2+1 a2+b1+b20
3 3 ri+r2ci+c2+1 a1+a2+b1+b21

Table 4.10: Winning conditions for the magie square and CabelÏo’s game

4.6 The Matching Game

This game is the newest to 5e added to the family of pseudo-telepathy games.

In faet, this is probably the first time that it appears in print. It is based on a talk

given by Kerenidis at the Quantum Information Processing 2004 conference {BK04],

and on [BYJKO4].

Definition 4.6.1. A perfect matching M on {0, 1,. .. , m—1} (m even) is a partition

of {0, 1,. . m
—

1} into sets, each of size 2. We define Mm as the set of ail perfeet

matehings on {0, 1,... , m — 1}.

The matching game is presented in table 4.11. Aliee receives as input

X = X1X2. . . x,, e {0, 1}m and Bob receives a perfect matching M E Mm.

The task that the players face is for Alice to output a string yi é {0, l}[1m1 (lg is

the base-two logarithm), and Bob to output a pair {a, b} e M as well as a string

Y2 E {0, 1}tlm1 that:

XaXb(ab)(yly2),

where tyi Y2) is the bit by bit exclusive or of y and Y2, and x a is the bitwise

muer produet, modulo 2. This game is promise-free aceording to definition 3.2.5.

The game scales with parameter ru. For now, we are only able to say that
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there is no classical winning strategy if m is chosen large enough; we are currently

investigating in order to find exactly which values of m yieÏd a pseudo-telepathy

game, more details are given in section 4.6.3.

Matching game

n 2

X
Xi = {0, i} (m even)

X2 = {M M e Mm}

Y1 = {0, l}t1m1

Y2 = {{a, b} {a, b} E M} x {0, l}Flm1

P none

W x = (a e b) tYi e Y2)

l < 1 for ail sufficiently large in

w < 1 for ail sufficiently large m

E
Table 4.11: Matchïng game

4.6.1 A Quantum Winning Strategy

Theorem 4.6.1. Let G be the matching game. Then wq(Gm) = 1.

1 m—1..Proof. The player s strategy is to share the state b) =
—

gj). After Alice

receives her input Z = Z1Z2 . . . Z and Bob his input M e Mm, the players do the

following:

1. Alice applies to lier quantum register the unitary transformation that maps

j) I: (1)Tij)

for all j between O and m — 1.
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2. Bob performs a projective partial measurement onto subspaces of dimen

sion 2. Each subspace of the measurement is spanned by vectors k) and ),
where {k, £} M. Bob outputs the classical outcome of this measurement,

which is a pair {a, b} E M.

3. Both Alice and Bob perform the Hadamard transforrn ®tlgm1

4. Alice measures in the computational basis and outputs a, the resuit of lier

measurement

5. Bob measures in the computational basis and outputs b, the resuit of lis

measurement

We now show that this quantum strategy aiways succeeds. After step 1, the

state is:
1m_1

= —

Suppose that in step 2, Bob measures and outputs {a, b} E M. The measurement

causes the quantum state shared with AÏïce to collapse to -(—1)aa) + (—1)bb).

In step 3, both players apply ®tlgm1• Let the resuit be ). By lemma 4.2.2:

3) =(_1) ((_1)x) (_1)Yy)) +

(-1) (Z_1bx (_1)Y))

—‘ + Z(l)Xbê(Z$Y)by)

= ((_1)ae(XYa + (—i)xb)
x)y).

Alice and Bob tIen measure (steps 4 and 5), and output their resuit, yi and Y2.

We know that the winning condition is satisfled, since

Za+Xb ().()
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implies that xa(xy)•a xb(xy)•b, 50 the outcome y = X, Y2 = y lias zero

probability of being observed, hence the outcomes will aiways satisfy the winning

condition. E

4.6.2 The Hidden Matching Problem

The above game is inspired by a one-way communication probtem called the

hidden matching probtem [BYJKO4] defined as the following:

1. Alice receives as input a string x e {o, 1}’.

2. Bob receives a perfect matching M E Mm.

3. Alice sends a message to Bob.

4. Bob’s goal is to output a tuple (a, b, c) sucli that {a, b} e M and C = Xa Xb.

In the hidden matching problem, if Alice is allowed to send quantum information

(but not to share elltanglement with , then the quantum one-way communica

tion complexity is in O(log m), yet any randomized one-way protocol with bounded

error must use 1(1/) bits of communication. This last resuit is useful in the next

section.

4.6.3 Classical Success Proportion

Theorem 4.6.2. Let Gtm be the matching game. Then (Gm) < 1 provided m is

chosen large enongh.

Proof. Suppose that Alice and Bob have a winning classical strategy for the match

ing game. So Alice is able to find a Yi and Bob is able to find {a, b} E M and Y2

such that:

xaXb=(ab).(yly2)
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If vie allow one-wa communication (Le. we allow Alice to send a message to Bob).

then if Alice sends Yi (a tlg ml bit message) to Bob, he can calculate

(a e b) (y; C Y2) = C

This teils him which value of c = Xa C Xb to output in his tuple (a, b, c). Hence,

Alice and Bob always succeed at the hidden matching problem with tlg ml bits of

communication. However, we know from [BYJKO4], that any randomized protocol

with bounded error for the hidden matching problem must use Q(/) bits of

communication; hence if m is chosen large enough, it is impossible for Alice and Bob

to always succeed at the hidden matching problem with 1g m bits of communication,

and (Gm) < 1 for large enough values of rn.

0f course, the above theorem does not tell us exactly which values of n-i yield a.

pseudo-telepathy game G. If m = 2, there is an obvions classical winning strategy.

We conjecture that for any other even n-i, there is no winning strategy:

Conjecture 4.6.3. Let Gtm be the matching game. Then for ail even in > 4,

(Gm) < L

The apparent difficulty for classical players in the matching game leads us to

believe that (Gtm) goes quickly towards as in increases. It is therefore possible

that this game satisfies the following open problem:

it would be nice to find a two-party pseudo-telepathy problem that

admits a perfect quantum solution, yet any classical protocol would

have a small probability of success even for inputs of small or moderate

size. [BBTO3I

in this context, “small probability of success” means a small advantage compared to random
outputs -



CHAPTER 5

MULTI-PARTY GAMES

In this chapter, we present three pseudo-telepathy games with three or more players.

It so happens that the first game is a special case of the second game, which, in turn.

is a special case of the third ga.me. Historically, however, these games appeared

separately; it is probably more instructive to present them as we do here, as separate

games.

5.1 The Mermin-GHZ Three-Party Game

This pseudo-telepathy game is probably the most famous as its discovery sur

prised many researchers as it did Mermin (section 3.3). Contrary to conventional

wisdom. it is not the flrst pseudo-telepathy game, since Heywood and Redhead had

suggested using the Kochen-Specker theorem to create a pseudo-telepathy game

(section 4.1) more than 5 years before.

The original version was given in [GHZ8$], and presented as a four-player game

(although it was noted that a three player game would be possible). Later, the game

was presented as a three-player version in [GHSZ9O}. Non-trivial decoding of the

two previous references allowed Mermin to popularize the game [Mer9Oc, Mer9Oe].

From Mermin’s work, it is relatively straightforward to deduce a pseudo-telepathy

game.

The game (table 5.1) is very simple. Each player receives as input a single bit

x (j = 1, 2, 3). The promise guarantees that x1 + x + z3 is even. Each plaver

outputs a single bit y, and the winning condition is that the parity of y’ + Y2 + y3

must equal the parity of x-l-2+x3
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Mermin-GHZ game

n n=3

X = {O.1} (irr 1,2,3)

Y = {o,l} (i = 1,2,3)

P (mod2)

-.- 3
Wf 4

3

; (JOOO)+ 111))

Table 5.1: Mermin-GHZ game

5.1.1 A Quantum Winning Strategy

Before presenting the quantum willning strategy, we present a lemma that is

useful for demonstrating the validity of the strategy. The lemma is more general

than necessary here, this is because we will use the resuit in sections 5.2 and 5.3.

We denote $ to be the unitary transformation given by:

Sjo)=jO)

S1) = z1).

Lemma 5.1.1. Let ) =
(O) + P’)) and ) =

(O’) — P’)). Let 3m

represent the unitary transformation obtained by apptying $ to any m qubits and

teaving the rest nndistnrbed. Then

f ,mO (mod4)
= (.1)

I HI—) ,m2 (mod4),
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and

(H®j x) (5.2)

(mod 2)

(H®)) = x). (5.3)

(mod2)

Proof. It is easy to see that eqilation 5.1 holds. To show equation 5.2, we apply

lemma 4.2.2 to get the foïlowing:

(H) (O) + 1)) = ((H®O) + (H1))

1 ((-1)°”°’ix) (_1)11x)

- ( +

= L(1± (_1)) x)

=
x).

(mod 2)

A similar reasoning is used to show equation 5.3. D

Theorem 5.1.2. Let G be the Mermin-GHZ game. Then wq(Gn) 1.

Proof. The player’s strategy is to share the state ) OOO) + 111)). After

receiving his input x, each player i does the following:

1. if x 1, apply the unitary transformation $

2. apply H

3. measure the qubit to obtain yj

4. output y
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The resulting state after step 1 is:

= (ooo +zZ=1lll))

J(000)±I111)) ,1x=0

t000) -111)) = 2

By lemma 5.L1, the resulting state after step 2 is:

(000) + 011) + 101) + 110)), = O

(001) + 010) + 100) ± 111)),x = 2

And so after the measurement at step 3, the output of step 4 will satisfy:

y (mod 2)

so the players aiways win. D

5.1.2 Classical Success Proportion

Theorem 5.1.3. Let G be the Mermin-GHZ game. Then (G) < 1.

To prove this theorem, we coud try ail deterministic ciassicai strategies, as

there are oniy 43 such strategies, but here we give a more elegant proof.

Proof. We represent the set P of questions satisfying the promise in the following

way:

xi = xL x, x = 0, 1, 1

= x. x, x = 1, 0. 1
(5.4)

x3 = x, x, x = 1, 1, 0

X4 = X, 24, 24 = 0, 0, 0
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Suppose that the players’ answers for questions x1 x2, x3, x4 are y’, y2, y3, y4 re

spectiveiy. Represent player i’s output on input O by y and lis output on input 1

by y’.

Consider i;ow the players wiil answer for ail four possible questions:

1_ 0 1 1Y — Y; Y2, Y3

y, y, y
(5.5)

y — y1, Y2’ Y3
4 0 0 0Y — Yi, Y, Y3

The winning condition T’V states that, in order for the players to win, we must

have:

1 (mod 2) (5.6)

and

O (mod 2). (5.7)

Suppose that the classical players have a winning strategy. If we add (modulo 2)

the 12 bits of the right-hand side of equation 5.5, we must get 1 since equations

5.6 and5.Zstatethat (y’)+A(y2)+(y3)+(y4) 1 (rnod 2). But ifwetake

the column-wise sum of the same elements, we get O since each element appears

exactiy twice. This is a contradiction, so (G) < 1. D

Theorem 5.1.4. Let G be the MeTmin-GHZ game. Then (G) =

Proof. Thanks to theorem 5.1.3, we know that there is no classical winning strategy.

By lemma 3.2.3, (G) . The following strategy succeeds in proportion : the

players aiways give an odd answer, say yi
= 0, 0, 1 (i = 1, 2,3, 4). Then they win

for questions x1 = 0, 1, 1, x 1, 0, 1, x3 = 1, 1, 0 and lose on question x4 = 0,0,0.

The success proportion is therefore (G) = . D

Theorem 5.1.5. Let G be the Mermin-GHZ game. Then w(G) =

PToof. We know by theorems 5.1.4 and 3.2.2 that w(G) . In the next section,
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we will consider a generalization of the Mermin-GHZ game to an n-player version.

By considering the case n = 3 of theorem 5.2.6, we get that w(G) = . D

5.2 The Parity Game

This game was presented for the flrst time in {Mer9Ob] and in [PRC91]. As

these physics references were unkuown to the authors, the same game was presented

in [BBTO3], but this time from a QIP point of view. As in the case of the Mermin

GHZ game, a certain amount of decoding is necessary to extract a pseudo-telepathy

game from [Mer9Obj or {PRC91].

The game is a generalization of the Mermin-GHZ game (section 5.1), as it

extends the 3-player version to an n-player game. III this game (table 5.2), we have

n 3 players. Each player receives as input a single bit x. The promise guarantees

that z is even. Each player outputs a single bit y, and the winuing condition

is that the parity of y must equal the parity of

5.2.1 A Quantum Winning Strategy

Theorem 5.2.1. Let G be the parity game. Then wq(Gn) = 1.

Proof. The player’s strategy is to share the state
= (O) + 1)). After

receiving his input x, each player i does the following:

1. if x = 1, apply the unitary transformation $ from section 5.1.1

2. apply H

3. measure the qubit to obtain yj

4. output y
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Parity Game

n n>3

X X={0,1}(i=1...n)

Y

P ij0 (mod2)

W y (mod 2)

w + 21

c + 2t’11

p ± 2 (n even) + 2 (n odd)

r
) 0)+1))

Table 5.2: Parity game

The resulting state after step 1 is:

b) = (o) +zihiin))

{ 1 (‘0+P)) (mod4)=

1 “0—P1)) >1x2 (mod4)I /

By proposition 5.1.1, the resulting state after step 2 is:
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y),xO (mod4)
L(y)EO i1
(moU 2)

y) 2 (mod 4)

(moU 2)

After the measurement of step 4 the output of step 5 will satisfy:

2
(d 2)

so the players aiways win.

E

5.2.2 Classical Success Proportion

It is easy to see that (G) < 1 for the parity game, since a classical deter

ministic winning strategy for the parity gaine would entail a classical deterministic

winning strategy for the Mermin-GHZ game by the foïlowing argument: if there is

a classical deterministic winning strategy for the parity game, then in particular,

there is a determillistic winning strategy if x1, X2, x3 E {O, 1} and x4, z5,... , z = O.

This strategy, restricted to players 1, 2 and 3 (with player 3 possibly responding

with instead of y3, to take into account the parity of 4, y5,... , y) is a winning

strategy for the Mermin-GHZ game.

The following theorem gives an exact value for and the proof also yields

a set of strategies that succeed with this optimal proportion. In {Mer9Ob], an upper

bound for (G) is given. Here, we prove that the upper bound is tight.

Theorem 5.2.2. Let G be the parity gaine. Then

= +
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To prove the resuit, we will show that for any deterministic strategy, the suc

cess proportion is + 2tn/21, and that we cari reach this proportion. Hence

= + 2t/1 The rest of section 5.2.2 (including 5.2.2.1, 5.2.2.2 and

5.2.2.3) is dedicated to proving theorem 5.2.2.

Let 3d be the set of deterministic strategies. Since no information may be

communicated during the game, tire best tire players can do is agree on a strategy

before the game starts. Any such strategy will be such that player i’s answer

depends only on lis input, x. Each player may have one of the following four

strategies:

Jo: yj = O

f1 : yj 1

V0 : y =

u1 yj =

Here, f = {fo, f1} is tire set of fixed strategies (the outpllt is independent of xi).

and V = {vo, u1} is tire set of variable strategies (tire output depends on xi).

This gives a way to represent a strategy as an ordered list s = s, s2,... , si-,

where s VU F, (1 < i < n), is player i’s strategy.

Without loss of generality, we may assume that tire L, (O <L < n) first players

choose a strategy in F (this amounts to saying that order doesn’t matter, winch

is indeed true if ail we want to know is tire winning proportion). So in fact we cari

write any strategy s e S as

EF EV

S = 81, 2,• . .
, 5,8i, 5t±2,••

What’s more, without loss of generality, we may suppose that the first L —

(O < ci < L) players have tire strategy fo, it follows tirat tire following o players

have the strategy fi, and we suppose that tire next n — L — (O n — L)
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players have the strategy vo, so the next /3 players have the strategy u1:

La

_____

16

s=o,fo,.•• ,f f1,J1,. ,ovo u?.

Since the winning proportion depends only on the parameters , a and /3 of

the given strategy (again, because order doesn’t matter), we may represent each

strategy s as s = (, c, /3). We 110W examine the winning proportion, given such a

strategy s.

Lemma 5.2.3. Let x = , x2,.. . , e {O, 1}’. Then

f ..
.
,x,) (mod 2) ,n O (mod 2)

,x) + 1 (mod 2) ,n 1 (mod 2)

Froof The proof follows directly from the fact that

As defined in chapter 3, let P 5e the set of questions that satisfy the promise.

For the parity game,

P = {x e {O, lin (x) O (mod 2)}. (5.8)

The winning proportion p5, for a given strategy s = (, o, /3), depends only on

the number of questions x = x1, x2,. . . , x that yield a correct answer:

— {x P st.rategy s applied to x yields a winning answer}
P8 —

We note that P = 2n1 (since there are the same amount of even and odd

binary strings of length n), and we ask: how many x e P will yield a winning

answr?
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Consider a partition of P:

= {x E P (x) O (rnod 4)} {x e p o (mod 2)}

3={xP(x)2 (mod4)}={P (mod2)}

The participants answer y = Yi, Y2, .. . , y is a winning answer if and only if:

(x e A A (y) O (mod 2)) V (x e B A A(y) 1 (mod 2)). (5.9)

We introduce more notation:

{x e A (XC±i, +2 x) O (mod 2)}

A°={xeAn(xe+i,x÷2,...,xn)1 (mod2)}

= {x e B L\(x+i, xe+, .. .
, x) O (mod 2)}

= {x e B A(x+i, Xt+2,. . . ,
1 (mod 2)}

Here, E stands for even and O stands for odd. Note that A A U A° and

that B = B U B’°. And of course, P = A U B.

This notation is useful because, given a strategy s E 8d, and supposing that we

know in which set, A, A°, B or B° the question x e P belongs, then we

have sufficient information to determine whether or not the game is won. The next

section explains how this is done.

5.2.2.1 Counting Winning Questions

Suppose s = (, o, /3) $d. Let x P be the given question, and suppose y is

the answer.



65

Working mod 2, and ilsing lemma 5.2.3, we find that

(Y1,Y2,...,YL-G) +(YL_G+1,Ye_1,... ,yL) +(yL+1,yL±2,.. .,y)
L—G G

= f(yLyt±i,...yn) (mod2)

,a1 (mod2)

O (mod 2)

1 + tYL+1, YL+2 y) ± (Yn—±i, Yn—±2 y) , 1 (mod 2)

= (xL1, XL+2 Xn_) + (xfl_3+1, Xn_3+2,... , , O (mod 2)

— 1 + A(xL1,xL+2,.. . , Xn) + tXn_+1,Xn_+2,. . ,) , 1 (moU 2)

txt+i, Xt+2,... , x_) + A(x+1, Xfl_+2,. . .
, x) , + O (mod 2)

1 + (xL+1, XL+2,. . .
, x_) + (x+i, Xn_+2,... , , + 1 (moU 2)

= J(xL+1,t±2...,xn) ±O (moU 2)

— 1±(xL±1,xt±2,...,) (mod2)

In order for the game to 5e won, equation 5.9 must 5e satisfied. We must have

either:

x e A and (y) O (moU 2)

f x e A and (XL+1,Xt+2, .. . ,x) O (moU 2) ,a+ O (moU 2)

Ix e A and (XL+1,XL2,.. . ,x) 1 (mod 2) 1 (moU 2)

xeA (mod2)

x4° ,Œ+/1 (moU 2)
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or

x B and (y) 1 (mod 2)

x é B and /(X1, Xt+2,.. . , 1 (mod 2) , û + 8 O (mod 2)

x E Bn and (x+i,x+2,. . .,x,) O (mod 2) ,û+,8 E 1 (mod 2)

E , û + E O (mod 2)

xEB ,û+/3E1 (mod2)

We conclude that there are exactly A2’ + B’° or A° + B’ questions

that will yield a winning answer, depending on û + (mod 2). The resuits are

summarized in table 5.3.

û + (mod 2)
Number of questions that

yield a winning answer

O A’ + B’°n

1 A’° + B”n

Table 5.3: Number of questions that yield a winning answer

5.2.2.2 Combinatorial Lemmas

Hefore going any further, we must state and prove some lemmas.

Lemma 5.2.4 ([GouT2], [GJ83]). Let n, a, i be integers, with n O. Then:

2n_2+21 ,n—2a E O (mod 8)

22_2F1 ,n—2aE4 (mod 8)

ta ) = 2n_2 , n — 2a E 2,6 (mod 8)
iEO (mod 4)

2n_2±2 ,n—2aE 1,7 (mod8)

2n_2
— 2 , n — 2a E 3, 5 (mod 8)
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Lemma 5.2.5.

Let n 1 (mod 2). Then

A +
+ 2 , (n — 1)/2 + 3C 0,3 (mod 4)

2 — 2 ,(n — 1)/2 + 3C 1,2 (mod 4)

Let n O (mod 2). Then

2n_2 , n/2 + 3 1,3 (mod 4)

± = 2n_2 + 2’ , n/2 +3e 0 (mod 4)

2n_2
— 2’ ,n/2+3e 2 (mod 4)

Proof. Recali that

A={zePz(x)0 (mod4)}

= {x e P (x) 2 (mod 4)}

= {x A (x±1,
...

, x) O (rnod 2)}

B’° = {x E B . ,x) 1 (rnod 2)}

If £ = O or £ = n,

=
(n)

(mod 4)

and

=0.



6$

Otherwise, if O < L < n,

_7’\ ttL\

2 )((42)($2)••)= ( 0 ) + 4) +•••) + -

/_7\ /7 L ‘\ t L
+ 4

= (n L) Z () + (n; L) ( £

jO jO
j_2)+

(mod 4) (mod 4)

=

(n-L) (4
(mod 2) (mod 4)

So

(L (n_L\ ( L ‘\
—

(n L)
1 +n I —

i) iO
i+2)

(5.10)
+2)

jOiO jO
(mod 4) (mod 4) (mod 4) (mod 4)

and similarly,

n—C’ t L ‘\

(+ i+3) Z ( L
(5.11)

jEO
j+3)

(md 4) (mod 4) (mod 4) (moU 4)

Hence we have the equation:

E’3•O’_{

(n) £=OorL=n
(moU 4) (5.12)n

(5.10) + (5.11) otherwise

We will now use equation 5.12 to conclude that lemma 5.2.5 is true.

Suppose L O and L n. The simplification of equation 5.12 using lemma 5.2.4

depends on the values of n and L (mod 8). Hence, we have 8 cases to check for n

and 8 cases for L, for a total of 64 cases. Here, we check one case:

Suppose n 1 (mod 8) and L O (mod 8). Using lemma 5.2.4, equation 5.12
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becomes:

+ =(2 +2)(2_2 + 2’)+

(2n__2 —
2ni_3)(2_2

— 2’)+

n—t—3

(2 +2 2 )(2)+
n—t—3

(2 -2 2 )(2)

=22 + 2.

for this case, the lemma is verifled, since (n — i)/2 + 3 O (mod 4). The other

cases can be checked in a similar way. In fact, a Mathematica worksheet was used

to complete the proof (see appendix I).

We must verify the case t’ = O aiid t’ = n of equatioll (5.12) separatelv. Using

lemma 5.2.4:

If £= 0,

— 1
0,3 (rnod 4) n 1,7 (rnod 8)

= + = + 2

ni
i,2 (mod4) n3,5 (mod8)

= A + = 2’ — 2

(mod4) n2,6 (mod8)

A + = 2”

(mod 4) n O (rnod 8)

= + = 2n_2 + 2’

2 (mod 4) = n 4 (mod 8)

± = 2’ — 2f_1
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If=n,

1
+ 0,3 (mod 4) n 1, 7 (mod 8)

= + + 2

nl+312(mod4)n35(mod8)

= ± = 2n_2
—

1,3 (mod 4) n 2,6 (mod 8)

= jA + =

+ 3 O (mod 4) n O (mod 8)

= A + = + 2’

+ 3 2 (mod 4) n 4 (mod 8)

jAj + = 22
— 2’

Together with appendix I, this completes tue proof of lemma 5.2.5. D

5.2.2.3 Proof of theorem 5.2.2

We are now ready to give the proof of the main theorem for the success pro

portion.

Proof of theorem 52.2. Recail that the success proportion p3 of a deterministic

strategy s E $d is:

— {x e P strategy s applied to x yields a winning answer}
P8 —

By section 5.2.2.1, if s = (, c, /3) e Sd and c + /3 0 (mod 2),

— A + B’°
Ps
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and if c+/3 1 (mod 2),
4O + 3,Ei

- In
Ps

Note that A + B’ = — (A + 3°).

We will treat the case of even and odd n separately.

• Case 1: n odd

If a + ,6 0 (mod 2), then

IA,EI + B’°ml
Ps

2n_2+2
(n — 1)/2 + 3 0,3 (mod 4)

__________

mml_n —

— { 22
3 (by lemma 5.2.5)

(n — 1)/2 + 3 1, 2 (mod 4){ 22+2
(n — 1)/2 + 3 0,3 (moU 4)

— 2n_1

— n—3
2n_2 —2 T ,(n—1)/2+3 1,2 (moU 4)

_

f + 2tfl11 (n — 1)/2 + 0,3 (moU 4)

l_2_t21,(n_1)/2+31,2 (mod4)



72

If a±/5 1 (mod 2), then

- + B’
Ps

1P1 - (AE + 3°D

—1—
AE+BOI

f 2t’/1, (n — 1)/2 + 3 0,3 (mod 4)
= ‘ (by above)

+2t21,(n_ 1)/2+3 1,2 (mod 4)

Since — 2Fn/21 < + 2—t21, we conclude that for odd n,

max{ps} < + 2
SESd 2

To show equality, we must show that every odd n 3 admits a strategy that

succeeds with probability + 2— tn/21

This is indeed the case. If n 1 (mod 4), we can choose L = n and ci = 0,

and if n 3 (mod 4), we cari choose £ = n and ci = n. These strategies are

surprisingly simple. They amount to choosing a strategy that doesn’t depend

on the question (since £ = n). In tire first case, ail players aswer 0, and in

tire second, ail players answer 1 (see table 5.5).

Hence, for the case when n is odd,

max{p5} =
— + 2
2

• Case 2: n even

If ci + O (mod 2), then

+ B’°
Ps

jp
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‘A’ + B’°j =ni

2_2
2’

— 2n_2+2
2’ 1

n
2_2_2

2—

1
2

= + 2’

— 2l’1

,n/2+3 1,3 (mod 4)

,n/2+3O (mod4)

,n/2+3e2 (mod4)

,n/2+3 1,3 (mod 4)

,n/2+3eO (mod4)

,n/2-b32 (mod4)

,n/2+3 1,3 (rnod 4)

,n/2+3?O (mod4)

,n/2+32 (mod4)

(by lemma 5.25)

If a + 1 (mod 2), then

,n/2+3 1,3 (mod 4)

n/2 + 3f O (mod 4) (by above)

,n/2+3f2 (mod4)

22

‘PI

n1
2_2_22

‘PI

iAr°I +n
Ps =

‘PI
IPj — (A + IB)

n

- IPI
A’ + B’°n=1-

‘PI
(1

1
— 2/2i

I 221
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Since — 2—tn/21 < + 2_/21, we conclude thaf for even n,

max{p3} + 2-tn/21
SESd 2

To show equality, we must show that every even n 4 admits a strategy

that succeeds with probability + 2_/1. This is indeed the case. Consider

table 5.4:

n (mod 8) n/2 + 3n (mod 4)
o o
2 3
4 2
6 1

Table 5.4: Values of n/2 + 3n (mod 4) for even n

IfnO (mod8),wecanchooseL=nandŒ=/3=O. Ifn4 (mod8),we

can choose L = n , c — 1 and /3 = O. These two cases amount to choosing a

strategy that doesn’t depend on the question (since L = n). In the first case,

ail players answer O, and in the second, ail players answer O, except for one

player that answers 1.

However, if n 2 (mod 4), and if we choose again a strategy where n = L,

then the game is won with probability 1/2. This shows that it is necessary

for at least one player to look at his input. To succeed with probability

+ 2t/1 use the following strategy: If n 2 (mod 8), choose £ = n — 1

and c=B= O. Ifn 6 (mod 8), chooseL=n—1 andci=O,Ø= 1. These

two cases amount to choosing a strategy in which ail players but one answer

O. There is a single player i who looks at his input xj, and answers yj = x

(flrst case) or y = (second case). $ee table 5.5.

Hence, for the case when n is even,

max{p5} =
— + 2_2

sesd 2



n (rnod 8) flrst n — 1 players’ strategy last player’s strategy
o f0 b
1 fo fo
2 f0
3 fi f’
4 fo fi
5 fo fo
6 j0
7 fi fi

75

D

Table 5.5: Optimal strategies

It foliows that

= + 2-tn/21

for ail even and odd n.

5.2.3 Classical $uccess Probability

In this section, we find a value for w(G). from theorems 3.2.2 and 5.2.2, we

know that w(G) < + 2_t/2l. The following theorem states that we can reach

this bound, and specifles what type of strategy is used to do so.

We cail a deterministic strategy optimal for the gaine G if it succeeds in pro

portion Let So be the set of optimal strategies.

Theorem 5.2.6. Let G be the parity game. Suppose that the n players use the

strategy s that consists of choosing an optimal strategy in at random according

to the uniform distribution. Then for alt x E P,

Pr(win strategy s is used and question x is asked) = +

The proof of the theorem follows directly from the next seven lemmas.

Lemma 5.2.7. Let n 1 (mod 2). The number of optimal strategies is 2272_1
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To prove this lemma and the next one, we could use a counting method, but

instead we present more succinct proofs based on mappings.

PToof. There are 22n deterministic strategies. To show that exactly half are optimal,

we define a map M from the set of optimal strategies to the set of non-optimal

strategies. Let s = (, o, ,8) be an optimal strategy. Let M be defined as the

following: change the first player’s strategy, according to:

fo I” fi

fi « fo

V0 F4 V1

Vi F4 V0

Suppose that M(s) = s”, where s’ = (. a’, i3’): Using results of section 5.2.2.3, a

strategy s = (, c, ,8) is optimal if and only if one of the two following conditions

hold:

O (mod 2) and
n—1

+3 0,3 (mod 4) (5.13)

1 (mod 2) and
n 1

+3 1,2 (mod 4) (5.14)

We see that s’ is not optimal since under M, n and £ are unchanged and

a’ + if c ± + 1 (mod 2). M is its own inverse, hence a bijection between

the set of optimal strategies and the set of non-optimal strategies exists, these sets

are finite, so their cardinality is the same, and the ilumber of optimal strategies is
22_i. LI

Lemma 5.2.8. Let n O (mod 2). The number of optimal strategies is

Proof. There are 22n deterministic strategies. To show that exactly one quarter are

optimal, we define a map M from the set of non-optimal strategies to the set of

optimal strategies. Let s = (, cii, ) be a non-optimal strategy. Let M be defined
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by the following: change the flrst player’s strategy to one of b, f1, u0, u1, such that

the resuit is an optimal strategy.

Using resuits of section 5.2.2.3, a strategy s = (C, û, ) is optimal if and onÏy if

one of the two following conditions hold:

û + O (rnod 2) and + 3C O (mod 4) (5.15)

û+1 (mod2) and +3C2 (mod4) (5.16)

For a given s, there are three candidates for its image under M. But only one

choice will yield a optimal strategy, since it is aiways the case that changing the

first player’s strategy to one of fo, f1, u0, u1 gives a strategy s’ = (e”, û’, if) with one

of:

1.û’+ifû++1(mod2)

2. C’ =C+ 1 or C’ =C— 1

3. both 1 and 2

Given a non-optimal strategy, there is only one of the above three choices that is

optimal. further, M is onto. M is a three-to-one onto map on two finite sets, so

of the strategies are optimal. Hence, the number of optimal strategies is 22n—2• j

Lemma 5.2.9.

Proof. By the binomial theorem,

(x+1)- (n)k

$ubstituting x = 1, we get

2
=

which is what we wanted to prove. E
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PToof. Using lemma 5.2J0,

c+3EO (z)c) (z)(;)
(mod 2) (mod 2) (mod 2) (mod 2) (mod 2)

= 2 12r—1 + 2121

=

And similarly,

(z) t;) = (z) (;) + (z) (;)
(mod 2) (mod 2) (rid 2) (mod 2) (moU 2)

212r—1 +

D

Lemma 5.2.12. Let n 1 (mod 2). Given any question x that satisfies the

promise P in the parity game, the number of optimal strategies that win on x is
22_2 +

PToof. Suppose that the question contains r is (by the promise, we have that

r O (mod 2)). We can assume without loss of generality that the input is ordered,

so that
r n—T

Consider the following strategy s:

• Within ail the n players:

— L have strategy f0 or f

— c have strategy fi

— have strategy y1
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In partidular, within the first r players:

— L’ have strategy fo or f1

— c’ have strategy f1
— if have strategy y1

If r O (mod 4), then the game is won if and only if the answer is even,

otherwise, if r 2 (mod 4), then the game is won if and only if the answer is odd.

By knowing the number of even answers, and the total number of questions, we

can deduce the number of odd answers, hence we will count the number of even

answers. The number we are looking for is the number of players with strategy f’
(ce) plus the number of players with strategy y0 that receive 1 as input (r

— /‘ — L’)

plus the number of players strategy u1 that receive O as input ( — if).
Hence, the players’ answer will be even if and only if

a + (r — [3’ — L’) + ([3— [3’) 0 (mod 2) (5.17)

We aÏready have that

r O (mod 2)

so equation 5.17 becomes:

L’ c + [3 (mod 2) (5.18)

Suppose we are given a strategy s and we want to determine if it is optimal.

To do this, we use the results of section 5.2.2.3. If o + [3 0 (mod 2), s is

optimal if and only if (n — 1)/2 + 3L 0, 3 (mod 4). Solving this equation, we get

two solutions for L (mod 4), say Ly, L2, depending on the value of n (mod 8). If

1 (mod 2), s is optimal if and only if (n— 1)/2+3L 1, 2 (mod 4). Again,

depending on n (mod 8), we get two solutions for L (mod 4), say L3, L4, depending

on the value of n (rnod 8). Table 5.6 gives the values of L1, L2, L3, and L4.

We want to count the number of optimal strategies that yield an even answer.
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n (rnod 8) £ £2 £3 £4

1 0123
3 1230
5 2301
7 3012

Table 5.6: Values of t? (mod 4) for odd n

This is the number of ordered strategies that satisfy equation 5.1$ and table 5.6,

i.e. one of the following holds:

1. L’ O (mod 2) A + O (mod 2) A L (mod 4) E {L1, £2}

2. L’ 1 (mod 2) A + 1 (mod 2) A £ (mod 4) E {L1, £21

So, as long as 1 or 2 is satisfled, we know that we are dealing with an opti

mal strategy that yields an even answer. We want to count the number of such

strategies. 011e way to do this is to count the number of ways of choosing:

• L’ among r

• Q among L’

• j3’ among r — t?’

• £ — t?’ among n — r

• c — c’ among £ — L’

• 13—t3’ amongn—r—(t?—t?’)

If r = 0, then L’ = o if = 0, and the sum we are looking for is:

(n) (L) (n - L)
= 2’ () (by lemma 5.2.11)

L (mod 4) a+/3O £ (mod 4)
e{L1,L2} (mod 2) e{L1,e2}

= 2 (2’ + 2) (by table 5.7 and lemma 5.2.4)

3n—3

= + 2
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n (mod 8) n
— n

— 22
1 1 7
3 1 7
5 1 7

[ 7 1 7]

Table 5.7: Values of n — 2? (mod 8) for odd n

The case where n = r is impossible, since n is odd and r is even.

Otherwise, as long as r O and r n, the sum that we are looking for is:

tr t’\ tr—’ 7n—r t—t /n—r—(—’)NZ Z Z Z Z )) ) - - ift’O t (rnod 4) p’ 3’ c+3O
(mod 2) {t1,t2} (mod 2)

+ Z Z ZZ Z
t7N 7\ tr—’ tn_r’\ t_I’\ /n—r—(—e’)N

£‘1 t (mod 4) Œ’ if Q+1 if ) — — — if )
(moU 2) E{t3,t4} (mod 2)

Using lemma 5.2.11,

7r — ‘\ t
— r\

2T1 Z Z Z Z () (j ) -t’O t (moU 4) a’ 3’
(moU 2) E{t1 ,t2}

+ 2n_T_1 Z Z Z Z
“r f’r — £‘\ tn —

t’1 L (mod 4) ,) ‘ ) — L’)
(5.20)

(moU 2) E{t3,t4}

Using lemma 5.2.9,

“r” /L’ 1n—r’= 2n12Tt’ Z Z Z ) t ) (
—t’O t (moU 4) a’

(moU 2) {t1,t2}

+ 2r12t’ Z Z Z
L”‘ n

— r”

L’1 t (moU 4) ‘ ‘) — L’)
(5.21)

(mod 2) L3,t4

(5.19)
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Again, by lemma 5.2.9,

2’ () () + 2’ Z () () (5.22)
‘O £ (moU 4) £‘1 L (mod 4)

(mod 2) {t1,2} (mod 2) {L,L}

Which is equal to:

2’ () ( y + 2
(mod 4) (moU 4) (moU 4)

+2’ t I 2
(mod 4) (moU 4) (moU 4)

+2’ () t ()+
(moU 4) (moU 4) (moU 4)

+21 () t z (%z)
+

(5.23)

(moU 4) (moU 4) (moU 4)

We can simplify equatioll 5.23 by repeatedly applying lemma 5.2.4. We have 4

cases for n (mod 8) (which yield £, £2, £, £4) and 4 cases for r (mod 8), hence 16

cases. We have used a Mathematica worksheet (appendix II) to do these simplifi

cations, the resuit is:

2

— ) 2 ‘ + 2 ,r O (mod 4)

2 2 “-

—2 2 ,r2 (mod4)

$0 if r O (mod 4), the number of wim;ing optimal strategies is the number of

optimal strategies that yield an even answer, hence 22n2 + winning answers,

and otherwise if r 2 (mod 4), there are 221 — (22n_2 — 2i) = 22_2 +
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optimal strategies that yield an odd, hence wlnuing, answer (ilsing lemma 5.2.7).

E

Lemma 5.2.13. Let n O (mod 2). Given any question x that satisfies the

promise P in the parity game, the number of optimal strategies that win on x is
2_2 + 22n_3

Proof. We use the same argument as in the proof of lemma 5.2.13, except that

there are oniy two vailles of L, L, £3, that yield an optimal strategy (table 5.8).

n (mod 8) L; £3

0 02
2 13
4 20
6 31

Table 5.8: Values of £ (mod 4) for even n

1fr = 0, then L” = c’ = /3’ = 0, and the sum we are looking for is:

(n) (L) (n L)
= 21

() (by lemma 5.2.11)

(mcd 4) (mcd 2) (mod 4)

2n_1 (2_2 + 2F’) (by table 5.9 and lemma 5.2.4)
3,—3

=2 +2

n (mod8) 7 n—2L1
O O O
2
4 2 0
6

Table 5.9: Values of n — 2L1 (mod 8) for even n

If n = r, then L’ L, a’ = p, /3’ = /3 and we consider the cases n O (mod 4)

and n 2 (mod 4) separateiy.
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If n 0 (mod 4), the number we are looking for is:

3n —3

(n

— L’)
= 22n_3 2_2 (by above).

£y +o L) Ç) /

(moU 4) (moU 2)

If n 2 (mod 4), the number we are looking for is:

tL’\ 7n—L’\Z Z () U Ç ) = 2’ Z (%) (b lemma 5.2.11)
£E3 +Um1

(mod 4) (mod 2) (mod 4)

= 2’ (2n_2
— 2v’) (by table 5.10 and lemma 5.2.4)

= 22—3 —

n (mod8) £3 n—2L3
2 3 4
6 1 4

Table 5.10: Values of n — 2L3 (mod 8) for even n

Otherwise, as long as r O and r n, the sum that we are looking for is:

(r) (t) (r -Li) (n-r) ( -

e) (n
-

r-(- L!))

(moU 2)(mod 4) (moU 2)

+
1 &t3

Z(r)
(t) (r t) (nr) ( - t) (n - r-(- LI))

(moU 2)(mod 4) (mod 2)

Using lemma 5.2.11,

= 2T1

t1
(;) (Z1) (r -L!) (ç:;)

(mai 2) (moU 4)

+ 2T1
(r) (fl (r t) (nr)

(mod 2) (mod 4)



86

Using lemma 5.2.9,

= 2T—12T Z >D
£?‘sO ti &

(mod 2) (mod 4)

+ 2_T12T_’ Z Z
t’i £e3

(mod 2) (mod 4)

; () (/) (p:;)

Again, by lemma 5.2.9,

= 2’ Z
É0 &ti

(mod 2) (mod 4)

rr /fl—T

-

+ 2 Z
£‘sl £3

(moU 2) (moU 4)

(r(n-r
— L’

‘‘Vhich is equal to:

We eau simplify 5.24 by repeatedly applying lemma 5.2.4. We have 4 cases for

n (mod 8) (which yield L and £3) and 4 cases for r (mod 8), hence 16 cases. We

have used a Mathematica worksheet (appendix II) to do these simplifications, the

resuit is:

J ± 2_2, r O (mod 4)

— 2_2, r 2 (mod 4).

So if r O (mod 4), the number of winning optimal strategies is the nllmber of

optimal strategies that yield an even answer, hence 2e_2 + 227_3 winning answers,

and otherwise if r O (mod 4), there are 2272—2 — (2272_3 — 2_2) = 2_2 2n—3

= 2’’ (
+2’ (

(r

(r

e 50
(mod 4)

Z
(moU 4)

t1 ())+ 2
(moU 4) (moU 4)

t3 (;))+
3

(moU 4) (moU 4)

Z
(mod 4) )

(5.24)

Z
(mod 4)
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strategies that yield an odd, hence winning, answer (using lemma 5.2.8). E

We are now ready to give the main proof for this section.

Proof of theorem 5.2.6. If n is odd, by lemma 5.2.7, there are 22n_1 optimal strate

gies. By lemma 5.2.12, given any question x that satisfies the promise P in the
3,i—3parity game, the number of optma1 strategies that wm on x is 2 + 2—T—.

Therefore, the probability is

22n_2 + 2f 1 i±i) 1 F /21
221

=+2 2 =r.+2

If n is even, by lemma 5.2.8, there are 2272 optimal strategies. By lemma 5.2.13,

given any question x that satisftes the promise P in the parity game, the number

of optimal strategies that win on x is 22n_3 + 2_2. Therefore, the probability is

22n_3 + 2_2 1 1 —F /2
22n_2

=+2 2=_+2

E

5.2.4 Towards Closing the Detection Loophole

In this section, we analyze the tolerance to detector errors and inefficiencies.

5.2.4.1 Noisy Detectors

In section 3.3.1, we defined p as the probability that a player’s answer corre

sponds to the predictions of quantum mechanics in a game with errors. We wish

to find the value of p, (G), that is, the maximum value of p for which a classical

strategy can succeed as well as a quantum strategy. The following lemma is useful

for the proof of theorem 5.2.15.
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Lemma 5.2.14. Consider the parity game with errors. The probability of having

an even number of errors is given by:

1 (2p—l)
Pn+

2

Proof. The proof is by induction on n. The base case is n = 1. The probabiiity

of having an even number of errors is p, hence Pi = p, which is what we needed

to show.

For the induction hypothesis, suppose that

1 (2p_i)k

Pk=+
2

Consider Pk+1:

Pk+1 =p(p) + (1 Pk)(1 —p)

=1 —PPk +2PPk

1 (2p—1)’ /1 (2p_1)k

2
+2PÇ9+

2

1
—

(2p —

+ 2
(2p —

2 P 2
1 (2p — 1)k+1

2

Hence, pn = + for ail n.

The foilowing theorem and proof are from [BBTO3] a similar resuit with a very

different proof appears in [BM93].

Theorem 5.2.15. Let G be the parity game. Then

1 1—3n

I+2 ,n1 (mod2)
p(G) =

I 2—3n

,nO (mod2)
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Proof. Let p be the probability that a player’s answer corresponds to the predic

tions of quantum mechanics in a game with errors. The probahility p7 that the

game is won is given by the probability of having an even number of errors. By

lemma 5.2.14.
1 (2p—l)

9

By theorem 5.2.2 w(G) = + 2_/21. For any fixed odd n, define

1
e = + 2E

Suppose that p> e. Then

1 (2p_l)fl

9

1 (2e7, —

2

1

__________

2
()fl

=+2

= +
2

And so if p > e, no classical strategy exists. Hence for odd n, p(G) = e.

For any flxed even n, define

1
=

— + 2 2n
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Suppose that p> e. Then

1 (2p—l)’7’
9

1 (2e —

2

_1 (2(+2)_1)

2m 2

i

()fl

= +

And so if p> e, no classical strategy exists. Hence for even n, p*(Gn) = e. E

As a consequence of theorem 5.2.15, and siuce for both odd and even n,

11m

we conclude that if p> + and as long as n is sufficiently large, classical players

cannot succeed as weÏl as quantum players in the game G.

5.2.4.2 Inefficient Detectors

Let G = (X, Y, P, W) be the parity game. We define G = (X, P’, W’) to

be a game similar to G, but with a slight variation on the promise and on the

winning condition:

P’:x1 (mod2)

W’:
+

(mod 2)

Bv applying an argument similar to theorem 5.1.3, it is easy to see that (G) < 1.
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Using the same reasoning as in beginning of section 5.2.2, it folÏows that (G) < 1

for ail n > 3. We will not study G for its own sake, but it is useful to have such

a definition for the proof of theorem 5.2.16. Recail that in the error-free model,

defined in section 3.3.2, we enlarge each player’s set of outputs to include the

special symbol I which means that the player’s apparatus fails to give an answer.

The outcome is a draw if yj = I for any player i. If the outcome is not a draw, we

require that it be correct.

Theorem 5.2.16. For the parity gaine, and in the error-free modeÏ, the best the

ptayers can do using u deterministic strategy is answer correctty for 2 questions.

Proof. Let G be the parity game and G as defined above. We wili prove by

induction on n, the number of players, that they cannot answer correctly (in the

error-free model) for more than 2 questions for the game G as weii as for G.

Then, we give a simple strategy for G that succeeds for 2 questions.

The base case is n 3. In the game G, the valid questions are:

X1 = 0,0,0

= 0,1,1

= 1,0,1

z4 = 1,1,0.

Recail from section 3.1 that x represents player i’s input and y his output. In the

game G, and in the error-free model, at least one player i must answer y = I

for an input x = O or x = 1, since, otherwise, ail players would aiways answer

correctly and so w(G) = 1, which contradicts theorem 5.2.2. Each player j lias

input x = O and x = 1 exactly twice, hence there are at least two questions that

yieid a draw and at most two questions are correctly answered.
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For the game G, the valid questions are:

q’ = 1,1,1

q2 1,0,0

q3 = 0,1,0

q4 = 0,0,1.

If we complement each bit of ‘ x4 in G. we get q’ q4, and an answer is

correct for x if and oi;ly if it is correct for q ( = 1 4). Suppose that there

exists an error-free strategy s that answers correctly for m (ru = 0,... , 4) questions

in the game G. Then we have an error-free strategy that answers correctly for ru

questions in the game G, since the players can 115e the following strategy: each

player complements his input bit, and then applies his individual strategy that is

part of s. Since at most two questions are correctly answered for the game G.

then the same holds for the game G. This completes the base case.

The inductive hypothesis is the following: suppose that for any k > 3, in the

game G and G the players can aswer correctly for at rnost 2 questions.

For the inductive step, consider the game (j e {0, 1}). We will prove by

contradiction that at most two questions may be correctly answered. Suppose that

at least 3 questions may be correctly answered, let $ = {x’, x2, x3} be a set of

questions that are correctly answered, where x = x, x,.. . , x ( e {1, 2, 3}). As

in the base case, at least one player, i, must answer y = I for an input x = O

or xj = 1 since otherwise, the game would always be won. Suppose, witl,out loss

of generality, that i 1, so the first player answers I on input xj e {0, 1}. and

answers y e {0, 1} otherwise. We have 4 cases to consider, depending ou x and y.

1. Xj = 1, y = 0: We have x = O (x e S). since otl,erwise the answer to

one or more of the questions in S would be a draw. If we remove the first

player from the game, keeping players’ 2,.. . , k + 1 questions and strategies

intact, we have the game G with a strategy that answers correctly on 3 or

more questions.
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2. x1 = 1, y = 1: We have x = O (x E S) since otherwise the answer to

one or more of the questions in S wouÏd be a draw. Remove the first player

from the game keeping players’ 3,... ,k + 1 questions and strategies intact.

Keep player 2’s questions, but change his strategy so that lie outputs the

compiement of the bit lie was to output. Then we have the game G with a

strategy that answers correctly for 3 or more questions.

3. xj O, y = O: We have x = 1 (x e S) since otherwise the answer to one

or more of the questions in S would be a draw. If we remove the first player

from the game, keeping players’ 2,... , k + 1 questions and strategies intact,

we have the game G’ with a strategy that answers correctly for 3 or more

questions.

4. xi = O, y 1: We have x = 1 (xe e S) since otherwise the answer to

one or more of the questions in S would be a draw. Remove the first player

from the game, keeping players’ 3,. .. , k + 1 questions and strategies intact.

Keep player 2’s questions, but change lis strategy so that lie outputs the

complement of the bit lie was to output. Then we have the game G’ with

a strategy that answers correctÏy for 3 or more questions.

In ail cases, we contradict the inductive hypothesis that for the garne G and

G, the players can answer correctly for at rnost 2 questions. So, by the principle

of mathematicai induction we know that for aH n> 3, and for the games G and

G, the best the players can do is answer correctiy for at most 2 questions.

‘Ve give a simple strategy that succeeds for 2 questions for the game G: ail

players answer O on input O and I otherwise, except for the first two players. Player

1 aiways outputs O, and player 2 outputs O on input O and 1 on input 1. Then

ail questions that satisfy the promise lead to a draw, except questions O, O, O,... ,O

and 1, 1, 0,. .. , O, which are correctly answered. Hence, the best the players can do

is answer correctly for exactly two questions. LI

The foilowing improves on the resuits of [BBTO3] and [BM93].
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Corollary 5.2.17. Let G be the parity game. Then 7)(G,.) =

Proof. By theorem 5.2.16. the best the classica.l players can do in the error-free

model (using a deterministic strategy) is to answer correctly for 2 questions. Using

reasouing similar to theorems 3.2.1 and 3.2.2, we conclude that no probabilis

tic strategy can succeed iII the error-free model with probability strictly greater

than

Since we assume that the detector efficiencies are independent,

2
7

— 2’

and so

?7*

=ç

E

As a consequence of corollary 5.2.17, and since

lim
n—oo2 2

we conclude that if ij 50% and as long as n is sufficiently large, ciassical players

cannot succeed as well as quantum players in the game G7.

5.3 The Extended Parity Game

The following game, proposed by Buhrman. Høyer, Massar and Rhrig [BHMRO3],

is a generalization of the parity game presented in section 5.2, in the sense that

each player’s input is a string of bits (of length approximately 1g n), instead of a

single bit as in the parity game. In the extended parity garne (table 5.11), each

player i receives as input a bit-string of iength fig2 nJ — 1; we also interpret xj as an
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integer in base 2. The promise is that x is divisible by 2. Each player then

outputs a single bit yj. The players win if and only y (mod 2).

The advantage of this game over the parity game is that it is “harder” to wiri

classically. We will expla.in what we mean by this shortly.

Extended parity game

n n>3

X X = {O,1} (i = 1...n), = f lnJ —1

Y ={O,1}(i=1...n)

P O (mod 2t)

T17 —
xi

2= = 2L (mod 2)

wc <1

wc

7]*

[j O)+1))

Table 5.11: Extended parity game

5.3.1 A Quantum Winning Strategy

Theorem 5.3.1. Let G be the extended parity game. Then wq(Gn) = 1.

Proof. The player’s strategy is to share a state ) = — (O) + 1TI)). After

receiving his input x, each player i does the following:

1. if x O, apply the unitary transformation $ given by

txi

1) ‘ e 2 1),
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2. apply H

3. measure the qubit to obtain yj

4. output y

Then the resulting state after step 1 is:

(On)+e1n))

(O) + 1)) , O (rnod 2)

(O) — 1)) , 1 (rnod 2)

We know by the promise P that is ail mteger, so by proposition 5.1.1, the

resulting state after step 2 is:

y) , O (mod 2)
A(y)O
(mod 2)

y) , 1 (mod 2).

(mod 2)

And so after the measurement of step 3, the output of step 4 will satisfy:

(mod 2)

so the players aiways win.

5.3.2 Classical Success Proportion

The following theorem shows that the extended parity game is a pseudo-telepathy

game. Its proof shows that the parity garne is a subset of the extended parity game.

Theorem 5.3.2. Let G be the extended parity game. Then (G) < 1.
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Proof. Suppose for a contradiction that (G) = 1 for any n. This means that

classical piayers aiways have a deterministic winning strategy. In particular. the

players have a winning strategy on ail questions of the form x = bOO.. . O, where

{O, 1}. But this subset of questions constitutes the parity game, since the

promise becomes:

x o (mou 2) b2’ O (mod 2)

O (mod 2)

And for the same reason, the winning condition becomes

2
(mod 2)

Since the piayers have a winning strategy on ail questions of the form x = bOO.. . O,

then they have a winning strategy for the parity game, which contradicts theo

rem 5.2.2.

Using theorem 3.2.2, we get the foliowing coroliary:

Corollary 5.3.3. Let G be the extended parity game. Then w(G) < 1.

5.3.3 Towards Closing the Detection Loophole

5.3.3.1 Error-Free Model

We have just seen that the parity game is a subset of the extended parity game.

This gives us the intuition that ciassicaily, the extended parity game shouid not be

any easier to win than the parity game. The following theorem confirms this in the

error-free modei.

Theorem 5.3.4. Let G be the extended parity garne. Then i(G) <
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The proof of this theorem, which appears in [BHMRO3], is too involved to

reproduce here. It is based on previous resuits from [BCT99J.

Although this bound is interesting, we would like to know an exact value for

î(G). $0 far we have only been able to corne up with an educated guess:

Conjecture 5.3.5. Let G be the extended parity game. Then

1 221

= V 2t@1ï
(5.25)

The idea behind conjecture 5.3.5 is that there exists a strategy that can a.nswer

correctly at rnost out of a total of questions. We conjecture that this

is the best classical players can do.

To support the hypothesis, we give an error-free strategy that succeeds on 221

questions:

• Players 1,2,.. .2 —1 answer O on input 00.. .0 and 00.. .01, and I other

wise.

• Player 2 answers O on input 00.. . O and 1 otherwise.

• The remaining n — 2 players answer O on 00. . . O and I otherwise.

Suppose that the players produce an answer other than I. We show here that

the answer satisfies the willning condition T4:

Since the n — 2 last players must have input 00.. . 0,

2 —1

Xi ± X2t O (mod 2e).

And since

2 —1

2 — 1,
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we must have that

2 —1

= 2
—

x.

In particular, if

2e—1

xi = O,

then X2e = O and the output is y = 0, 0,.. . 0, which satisfies the winning condi

tion W. If

2 —1

xi >0,

then

2 —1

= 2
—

x 0,

and the output is y = 0, 0,.. 0, 1,0,0,.. . 0, which satisfies the winning condi

tion W, since

:Yi = 1

and

x — x + 2t —

2 — 2
2

=1.

So the winning condition is satisfied.

Then the players answer correctly on 221 questions (since players 1, 2, .. . , 2 — 1
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answer on two questions, and the 2tth players’ input is flxed, once the questions to

players 1,2,.. .

,
— 1 have been fixed), and otherwise the outcome is a draw.

5.3.3.2 Model With Errors

No resiilts for the extended parity game are known in the model with errors,

although the authors of [BHMRO3] give a hint as to an upcoming paper with resuits

in this model. Here, we give a conjecture that is mostÏy a shot in the dark, but is

based on rudimentary numerical simulations and on extrapolations from the parity

game analysis.

Conjecture 5.3.6. Let G be the extended parity garne, with (G) = p. Then

there exists a deterministic strategy that sllcceeds in proportion p and in which a

single player gives an answer that may depelld on his input (so ail but oiie player

aiways output 0)!



CHAPTER 6

CONCLUSION

In this thesis, we presented a total of seven pseudo-telepathy games (eight if we

distinguish the two equivalent games of sections 4.3 and 4.4). •These games ap

pear in the physics and quantum information processing literature; their unified

presentation is the author’s work.

In chapter 3, we gave formai definitions that describe the characteristics of the

games, including a definition for a pTomise-free game, which is new. The two-party

games of chapter 4 are: the impossible colouring game, the distributed Deutsch

Jozsa game, the magic square game, Cabello’s game, and the matching game.

It is shown that the magic square game and Cabello’s game are equivalent; this is

original work of the author.

The multi-party garnes of chapter ô are: the Mermin-GHZ game, the parity

game and the extended parity game. For the parity game, we have given exact

values for the maximum success proportion and probability for classical players.

These two resuits are original contributions. Also for the parity game, we have

improved previous results by giving the exact detector efficiency rate required in

the error-free model in order to close the detection loophole.

It is interesting to compare the various characteristics of the pseudo-telepathy

games. Tables 6.1 and 6.2 compare the two-party pseudo-telepathy games and

table 6.3 compares the multi-party pseudo-telepathy games.

With the help of pseudo-telepathy, we have confirmed the power of the quantum

theory over its classical counterpart. The key to the success of the quantum pla

ers is one of the most mysterious and powerful resources of the quantum theory:

entanglement.
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6.1 Future Work

As research often goes, we have encountered more open questions along the way

than we have been able to solve. Here is a partial list of tasks that are of interest:

• Where it lias not aiready been clone, find exact values of or good approxima

tions for (G), w(G), p(G) and ij(G), whereG isa pseudo-telepathy game.

• Find new pseudo-teiepathy games.

• Implement games experimentally.

• Prove conjectures 5.3.5 and 5.3.6 that concern the extended parity game.

• Prove that for the distributed Deutsch-Jozsa game (section 4.2), there is no

classical winning strategy for ail k > 4.

• Find a pseudo-teiepathy game that satisfies any of the restrictions on W and

P from section 3.2.1. Otherwise. show that none exists.

• Show that some games are equivaient, perhaps in a similar or a different way

than section 4.5 (“The Magic Square ami Cabeiio’s Game Are Equivalent”).

• Find minimum vaiues of X1 and X2 for the impossibie colouring game, in

ay dimension (section 4.1).

• The matching game of section 4.6 comes from a one-way communication com

piexity probiem. Show how it is possibie to transform other one-way commu

nication compiexity problems into pseudo-teiepathy games. fmd other hnks

between one-way communication problems and pseudo-teÏepathy.

• Prove conjecture 4.6.3, i.e. that the matching game Gtm is a pseudo-telepathy

game for ail even m > 4. Show that (Gm) is ciose to
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Appendix I

Proof of lemma 5.2.5

Mathematica Worksheet

The following function retums the binomial sum:

, ,n
L_j a+îicO (mcd 2)

Iflh1) Closed[n_, a, M] := (
(*M should be M=Mod[n-2*a,8]*)

Suit cli [M,

O, m = 2n-2
÷ 2+_1,

1, m = 24 (-3+n)

2, m=2’2,

3, m = —2 (-3.n)

4, m=222,

5, m = _2+ (-3*n)
+

6, m = 2_2,

7, m = 2 (-3cc) ÷ 22*l]; Returfl[m])

The following function returns the value of the binomial sum gïven by

I I + I I
nS should be n (mod 8) and 18 should bel (mod 8).

Tn(2) F2 [n_, 1_, nB_, 18_] =

Return[Simplify[
Closed[1, O, Mod[18, 8]]*Closed[n-1, O, Mod[n8-18, 8]] +
Ciosed[1, 2, Mod[18-2*2, 8]] *Closed[n-1, 2,

Nod[n8—18—2*2, 8]] ÷Closed[1, 1, Mod[18-2, 8]]*
Closed[n-1, 1, Mod[n8-18-2*1, 8]] ÷Closed[1, 3,
Mod[18-2*3,8]]*Closed[n-1,3,Mod[n8-18-2*3,8]]
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Case Ï: nodd
Success = True;
For[p=1, p<8 (* p is the value 0f n (mod 8) *),

For[q=O, q<8 (*q is the value cf 1 (mod 8)*),
Val=F2[n, 1, p, q]
(*Val is tlie calculated binomial sum*);
(*opt and copt are the two possible

values for the sum*)
opt=2(n-2)+2((n_3)/2);
copt=2’fn-2) —2f(n—3) /2);
(*the Switch determines which case we should be in,
according to hypothesis we want to test*)

Switch[Mod[(p-l)/2+3*q, 4],
O, Current= Simplify[opt-Val],
1, Current= Simplify[copt-Val),
2, Current= Simplify[coptValJ,
3, Current= Simplify[opt-Val]];

If[Current O, Success=False,J;
q++]

p = p + 2];
Print[’Success = “, Success];

Success = True

Since we exit with the correct Success value, we conclude that each case is verified, and so the
hypothesis that we tested is truc.
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Case 2: n even
Tn(9)= Success = True;

For[p=O, p<8, f* P 15 the value of n f mod 8) *)
For[q=O, q<8, f* q is the value 0f 1 (mod 8) *)
Val=F2[n, 1, P, q];
f *Val is the calculated binomial sum*)

f *opt and copt are tlie two possible
values for the sum*)

opt = 2” (n — 2) + 2” (n / 2 — 1)
copt = 2” (n-2) —2” (n / 2 —1);
other = 2” (n-2);
(*the Switch determines which case we should 5e in,
according to hypothesis we want to test*)

Switch[Mod[p/2+3*q, 4],
O, Current = Simplify[opt - Val],
1, Current = Simplify[otlier - Val],
2, Current = Simplify[copt -Val],
3, Current = Simplify[other - Val]];

If[Current O, Success=False,];
q++]

p = p + 2];
Print[”Success = “, Success];

Success = True

Since we exit with the correct Success value, we conclude that each case is verified, and so the
hypothesis that we tested is true.



Appendix II

Proof of lemmas 5.2.12 and 5.2.13

Mathematica Worksheet

The following function retums the binomial sum:

f n

iO (nod2)
a + I

;ui Closed[n_, a_, M_J := (
(*M sliould be M=Mod[n-2*a,8]*)

Switch [M,

O, m=2’2 +2+-’,

1, m = —2+ (-5,n) (—2 — 2)

2, m=22,

3, m=2+ (_2+2),

4, in = 2’ - 2+1,

5, m=2+ (_2+2i’),

6, m=2’,

7,m=_2+5*(_2+_2i!)];Return[mJ);



xxi

The following function retums the simplification of the binomial sum that we require, in the
case where n is odd.

int2j ConjectureOdd[n8_, r8_, 1l_, 12_, 13_, 14_]
(*Thjs returns the simplification 0f the binomial sum
(*assumes that n is odd *)
(* na is n mod8, rB is r mod 8, r should be even *)
(*11, 12, 13,
14 should be as given in the appropriate table*)

(Return [Simplify
2(n_l)*

Closed[r, 1’, Modtrs—2*O, 8]]
(Closed[n—r,ll-l’,Mod[n8—r8-2*(11-O),8]] +

Closed[n-r,12-l’,Modtn8-r8-2*(12-O),8]])+
Closed[r, l’,Nod[r8-2*2, 8J]

fClosedtn—r,l1-l’,Mod[n8—r8-2*(ll-2),8]]+
Closed[n - r, 12-l’, Mod[n8 - r8 -2 * (12-2), 8]]) +

Closed[r, 1’, Mod[r8-2*1, 8]]
(Closed[n—r, 13-l’, Mod[n8—r8-2*(13-l), 8]]+

Closed[n - r, 14 — 1’, Mod[n8 — r8 - 2 * (14 — 1), 8]]) ÷
Closed[r, 1’, Mod[r8-2*3, 8]]

(Closed[n—r, 13-l’,Mod[n8—r8-2*(13-3), 8]J+
Closed[n-r, 14-l’, Mod[n8—r8—2* (14-3), 8]])

)]])
We must check the conjecture for a number of values of n,r,l 1,2,13,14,
we will loop through ail values and check against the conjectured value.

va1l=2 +22fl2; val2=—2î1 22fl2;

11 = 0; 12 = 1; 13 = 2; 14 = 3;
Correct = True;
For [p = 1, p < 8, (*p is n mod 8*)

For[q= 0, q< 8, (*q is r mod 8*)
Val=ConjectureOdd[p, q, 11, 12, 13, 14];
If[Mod[q, 4] ==0, Conj=vall, Conj=val2];
Test = Simplify[Val - Con];
If[Test ===0, , Correct=False];
q = q + 2];

11=Nod[l1÷l,4];12=Mod[l2÷1,4];
13 = Modtl3 + 1, 4]; 14 = Mod[14 + 1, 4];
p = p + 2];

If [Correct = True, Print[Conjecture is verified”],
Print[”Conjecture is FalseJ];

Ccn3ecturessveritied

We have succeeded in the case where n is odd!
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The following function retums the simplification of the binomial sum that we require, in the
case where n is even.

inhii):= ConjectureEven[nB_, r8_, l1_, 13_J
(*This returns the simplification cf the binomial sum*)
(*assumes that n is even*)
(*nB is n mod8,r8 is r mcd 8,r should be even*) (*11,
13 should be as given in the appropriate table*) (Return[
Simplify[2A(n_1)*(Closed[r, 1’, Mod[r8—2*O, 8]] *

(Closed[n-r,l1-1’,Mod[n8-r8-2*(l1-O),8]])+
Closed[r, 1’, Mod[r8—2*2, 8]]

(Closed[n—r,11—l’,Mod[n8-r8-2*(11-2),8]J)+
Closed[r, l’,Mod[r8—2*1, 8]]
(Closed[n-r,13-1’,Mod[n8-r8-2*(13-1),8]])÷

Closed[r, 1’, Mod[r8-2*3, 8]]
(Closed[n — r, 13 - 1’, Mod[n8 - r8 - 2 * (13 - 3) , 8]]))]]

We must check the conjecture for a number of values of n,r,l 1,13,
we will loop through ah values and check against the conjectured value.

In(14]: vall = 22t# + 22 n-3; val2 = _2_2+ + 2 2 n-3

11 = 0; 13 = 2;
Correct = True;
For [p = 0, p < 8, (*p is n mcd 8*)

For[q=O, q<8, (*q is r mcd 8*)
Val=ConjectureEven[p, q, 11, 13];
If[Mod[q, 4] ==0, Conj=vall, Conj=val2];
Test = Simplify[Val - Conj];
(*Print[”test”];*)
If[Test===0, ,Correct =False];
q = q + 2];

11=Mod[11+1, 4];
13=Mod[13+1, 4];
p = p + 2];

If [Correct == True, Print [“Conjecture is verified”],
Print[”Conjecture is False”]];

Conjecture je v,njfued

We have succeeded in the case where n is even!
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