
Université de Montréal

ESys.Net
A New .Net Based System-Level Design Environment

par

ç

james Lapalme

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Maîtrise présentée à la Faculté des études supérieures
en vue de l’obtention du grade de

Maître ès sciences (M.Sc)
en Informatique

Décembre, 2003
©James Lapalme, 2003

L5LI

NJfrCY

o

Université rlb
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author cf this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé:

ESys.Net
A New .Net based System-Level Design Environment

présenté par:

James Lapalme

a été évalué par un jury composé des personnes suivantes:

Dr. Houari Sahraoui
préstdent-rapporteur

Dr. Jean-Pierre David
directeur de recherche

Dr. El Mostapha Aboulhamid
codirecteur

Dr. Gabriela Nicolescu
membre du jury

Mémoire accepté le 23 mars 2004

Sommaïre

Avec l’arrivée des systèmes embarqués qui incorporent un nombre croissant de

composantes logicielles, il devient plus critique que jamais de rétrécir l’écart qui

existe entre la modélisation de niveau système et l’implantation.

Dans ce travail nous illustrons, par le développement d’un nouvel environnement de

modélisation et simulation basé sur le langage de programmation C#, le potentiel

insoupçonné de modélisation matérielle/logicielle du .Net framework, potentiel qui a

permis de pousser SystemC au-delà de ses limites.

Notre environnement, appelé ESys.Net, utilise les concepts de programmation

avancés de .Net et C# tels que la réflectivité, la programmation par attribut et la

création dynamique de délégués, afin de créer un environnement plus polyvalent que

SystemC.

ESys.Net a pu bénéficier de plusieurs constructions puissantes du génie logiciel en

raison de l’utilisation de .Net comme base. Les résultats expérimentaux que nous

avons recueillis démontrent que ces constructions n’entraînent pas de pénalités

d’exécution significatives.

Mots clés : modélisation, .Net, C#, simulation, système-sur-puce, langages de

description, SystemC

II

Abstract

The need to bridge the gap between system level and implemenfation level modeling

is becoming critical as embedded systems incorporate more software components.

Through this work we illustrate, by developing a new modeling and simulation

environment, how we can use the .Net Framework through the use of the C#

programming language to model hardware/software systems and alleviate the

different shortcomings of C++ that are hindering the evolution of SystemC.

Our environment, called ESys.Net, uses the advance programming features of .Net

and C# such as reflection, affribute programming and dynamic delegate creation to

produce a flexible solution that is meant to be an evolution of SystemC.

By using .Net as a basis for ESys.Net, we have inherited rnany powerful software

engineering constmcts. The experimental results that we have gathered demonstrate

that these constructs do flot ïncur a significant performance penalty.

Keywords: modelling, simulation. .Net, C#, description languages, system-on-chip,

SystemC

(Z

111

Table of Contents

Sommaire j

Abstract ii

Table of Contents iii

Figure List vii

Table List viii

Code Exam pie List ix

Abbreviation List xi

Acknowledgements xiii

Preface xiv

Introduction 1

1.] HDLsandSDLs I

1.2 Specfic Goals 4

1.3 OutÏine ofthis Document 5

Chapter2 StateoftheArt 6

2.] Standalone Languages 6

2.1.1 VHDL[31J 7

2.1.2 Verilog 8

iv

2.1.3 $ystemVerilog[54].$

2.2 Programming Languuge-hased HDLs 9

2.2.1 Handel-C and OCAPI [7] 9

2.2.2 JNDL[5J[28J 9

2.2.3 SpecC [59J 10

2.2.4 $ystemC [65] 10

2.3 New Challenges in Modeling and Design 11

2.4 Recent Software Frameworks 12

Chapter 3 Advanced Programming features with C# and the .Net

Framework 15

3.1 The .NETFramework 15

3.1.1 General Presentation of .NET framework [49] 16

3.2 The Cft Language 17

3.3 Advancedfrogramming Features 18

3.3.1 Introspection and Reflectivity[22J [41] 1$

3.3.2 Affribute Programming[50J [41] 21

3.3.3 Delegates 23

3.3.4 Delegates and Reflectivity 25

Chapter 4 ESys.Net 27

4.1 A Simple Example 27

4.2 Modules and Module Hierarchies 32

4.2.1 Module Declaration 33

4.2.2 Module histancing 34

4.2.3 Module Hierarchies 34

4.2.4 Module Interfaces 35

4.2.5 Modules Inner-Workings 36

4.3 Processes 38

L

V

4.3.1 Process Declaration and Registration .38

4.12 Static and Dynamic Process-Event Association 39

4.3.3 Process Static Sensitivity 40

4.3.4 Parallel Method Process 41

4.3.5 Process Method 42

4.4 Signais 45

4.4.1 SignaIs and Simulation 46

4.4.2 Instancing 46

4.4.3 limer and Outer Signais 47

4.4.4 A Signal’s Logical Scope 47

4.4.5 SpeciaJ Binding Cases 49

4.5 Forts and Interfaces 51

4.5.1 The Elimination ofPorts 52

4.5.2 Predefined Interfaces 53

4.6 Events 55

4.6.1 Event Occurrence 55

4.6.2 Event Notification [63] 56

4.6.3 Multiple Simultaneous Event Notifications [63] [24] 57

4.6.4 Cancelling Event Notifications 58

4.6.5 Events, Signais and Clocks 58

1.7 (‘hannels 58

4.7.1 Channel Declaration and Instancing 59

4.7.2 Channels and Software Interfaces 60

4.7.3 Sensitivity 61

4.7.4 Channel hierarchies and inner-workings 61

4.7.5 Ihe IDeltaUpdatable Interface 61

4.7.6 Unification ofthe Channel Concept [63] [24] 62

4.7.7 Example [65] [24] 62

Chapter 5 Simulation Kernel 64

t

vi

5.1 ModelingDirectives. 65

5.2 Simulation Sernantics .66

5.2.1 SystemC [64] [63J 66

5.2.2 ESys.Net 68

Chapter 6 Comparison and Experimental Resuits 77

6.] Advantages ofthe Environment 77

6.1.1 Semantic Simplification 77

6.1.2 Programming Simplification 79

6.1.3 A Simpler Better Framework $0

6.2 Disadvantages ofthe Environment 85

6.3 Experimentat Resuits 85

6.4 Summaiy 89

Chapter 7 Summary and Future Work 92

7.1 Summaiy 93

7.2 W7iere Do You Go From Here? 94

References 95

Annex A Fifo Channel Exampie

Annex B Simple Bus Exam pie ii

Annex C My First System Exam pie iii

vii

Figure List

C

Figure 1:

Figure 2.

Figure 3.•

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 1]:

Figure 12:

Figure 13:

Simple circuit 3

MyFirstSystem 28

Full Adder Module Interface Exampte 36

One Bit Adder Example 37

Process Sub- Types 39

Inner/Outr Signais 48

ANbitAdder 54

Event Occurrence 56

SystemC scheduter structure 68

ESys.Net Scheduler Steps 75

Leveruging ofexistingfeatures 81

General view ojihe application 87

ESys. Net versus SysiemC performance 88

viii

Table Lïst

Table I: Metadata Classes__ 19

Table II: Interfaces

____________ _____-_____________________________

54

Table III: Event non-determinisrn

57

Table IV: Attributes and their role in ESys.Net

65

Table V: Summaîy ofihe Advantages and Disadvantages over $ystemC

89

ix

Code Example Lïst

Code example]:

Code example 2:

Code example 3:

Code exampte 4:

Code example 5:

Code exampte 6:

Code example 7.

Code example 8:

Code example 9:

Code example 10:

Code example 11:

Code example 12:

Code exanple 13:

Code example 14:

(‘ode example 15:

Code exainpÏe 16:

Code example 17:

Code example 18:

Code example 19:

Code example 20:

Code exumple 21:

Code example 22:

Code exampïe 23:

Code exwnpÏe 24:

Type Introspection 20

Value Modfication with reflection 21

Attributeprogramming exampte 22

Simple delegate exampie 24

Delegate example 24

Event keyword exampte 25

Delegates and reflection 26

ModuÏeA blueprint 29

Module3 blueprint 29

MvModule blueprint 30

MyfirstSvstem 31

MyApp 32

General module declaration 34

Module instantialion 34

Module hierarchy 35

FIFO declaration 36

Adder implementation 37

Frocess method and Paraïlet methoU dectarat ion 39

Static Sensitivity 40

$tatic Sensittvity wilh multiple events naines 41

PMerhodDynamic Sensitivity 42

Process Method dynamic sensitivity 43

Triggering on a single event 44

Triggering ajier u specfic umount oJ(ime 44

L

X

L

Code exampÏe 25:

Code exampïe 26:

Code example 27:

Code exanpte 28:

Code exampie 29:

Code exampte 30:

Code example 31:

Code example 32:

Code example 33:

Code exampte 34.

Code exampie 35:

Code example 36:

Code example 37:

Code exampte 38:

Code example 39:

Code example 40:

Code exampte 41:

Code exampie 42:

Code exampie 43:

Code example 44:

Code example 45:

Code example 46:

Code example 47:

Code example 48:

Code exampÏe 49:

Code exampte 50:

Triggering with zero lime 44

Triggering on one event in u Ïist ofevents 44

Triggering on ail events in a list ofevems 45

Triggering on an event in u list ofevents with timeout 45

Triggering on ail Events in u list ofevents with timeout 45

Signal Instancing 47

Inner/Outer signais 49

Speciat signal binding cases 51

Boolean software interfaces 53

Event instantiation 55

Event notfications 57

ChanneÏ declaration 59

ChanneÏ instantiation 60

IDettaUpdatabte interface 6]

RequestUpdate method 62

Modet Discoveiy and Registration 70

Process dicoveiy and verification 70

Aigorithm partfor process methods 7]

Algorïthm partJrparaïlel methods 72

A lgorithm partfor cailback hooking 73

TooÏ hooking 76

Metadata (priority) 79

Signal Discoveiy method 83

Prinling metÏ;od 84

Tool hooking 84

Context switch verfication 87

u

xi

Abbreviatïon Lïst

CAD Computer Assisted Design
CIL Common Intermediate Language
CLI Common Language Infrastructure
CLS Common Language Specification
CTS Common Type System
ECMA European Computer Manufacturers Association
EDA Electronic Design Automation
EDIF Electronic Design Interchange format
FIFO First In, First Out
FPGA Field-Programmable Gate Arrays
HDL Hardware Description Language
IC Integrated Circuit
IEEE Institute ofElectrical and Electronics Engineers
W Intellectual Property
ISO International Organization for Standardization
JVM Java Virtual Machine
NOC Network On Chip
OOP Object-Oriented Programming
OSCI Open SystemC Initiative
PCB Printed Circuit Board
RTL Register Transfer Level
SCV SystemC Verification Library
SDL System Description Language
STOC SpecC Technology Open Consortium
UCI University ofCalifornia Irvin
VES Virtual Execution system
VHDL Very Hïgh Speed Integration circuit Hardware Description Language
XML Extensible Markup Language

xii

I would like to dedicate this to my mother and father
who have aiways pushed me to befter myseIl

and to Zachary and Marie-Josée, the two loves of my life,
without whom this would have no meaning

XIII

Acknowledgements

Above ail, I would like to thank El Mostapha Aboulhamid, the imtiator of the

ESys.Net project, without whom there would be no ESys.Net. Thank you for

believing in me and being very patient, your wisdom was invaluable.

I would like to thank Jean-Pierre David for lis help aid support.

I wish to express my gratitude to Luc for helping me with the design and for purting

up with my endless babbling.

Also, I would like to thank my Mom, Bmce, Irene, Dan, Marie-Josée, Steven and

Gabnela for their important contributions.

I especially would like to thank Marie-Josée, my soul mate, for lier constant support

aiid patience. I would not have made it without you.

lames Lapalme

xiv

Preface

The need to bridge the gap between system level modeling and implementation

modeling is becoming pressing as embedded systems incorporate more software

components. Maybe a change of paradigm is needed for hardware and system

modeling?

Most cunent hardware description languages have two significant advantages over

generic programming language: syntactic brevity for hardware semantics and beffer

constmcts for model verification. However even these advantages are melting away

with the emergence of languages like Asmi. Even SystemC, a C++ based solution,

has been able to incorporate fairiy simple syntactic constructs -through the use of

macro- to provide hardware semantics. Assertion based venfication capabilities have

usually only been supported by hardware description languages and specialized

venfication languages but generic programming languages are beginning to

incorporate those capabilities such as Eiffei and Asmi.

The major limiting factor of using generic programming languages for hardware

modeling is that hardware semantics are flot directly present. But what if we could

add the missing metadata? What couÏd we do if we had the power of certain high

level programming languages: the reflective capabilities of Java, the polymorphism of

Ruby, the elegance of ML, or the simple power ofPerl? Would ail ofthis change the

way we think of system modeling and hardware modeling? The .Net framework

currently makes interoperability between languages almost seamiess. It a]so permits

the integration of custom metadata.

This thesis presents a new environment ca]ied Esys.Net that we have created for

system-ievel modeling and simulation. We deveioped this solution in response to our

t

xv

frustrations with SystemC, frustrations caused by (i) the complexities of SystemC’s

underlying implementation language (C++) (ii) its overly complex Iibraiy (iii) its

complex design that makes custom modifications venfy difficuit (iv) and especially

its lake of third-party tool integration capabilities. When we first started developing

E$ys.Net, our main objective was simply to port SystemC to the .Net Framework in

order to eliminate certaïn of SystemC’s downfalls. However, as the project advanced,

we rapïdly discovered the full potential of the .Net framework and the C#

programming and decided to re-engineer SystemC in order to take full advantage of

the underlying technologies. We added many new features to the overali design of the

new environment in order to create a solution meant to be an evolution of SystemC.

Introduction

for many years now, the ever growing gap between the available computing power

offered by hardware platforms and that used by the software applications running on

these platforms has been tolerated because of the need for platform independent

software, independence required because of the difference in life expectancy between

hardware and software products. Today, with the emergence of embedded systems, it

is imperative that these new systems take full advantage of the computing power

available on the underlying hardware platform and that a perfect balance may be

reached between software and hardware.

A major hurdie lirniting the production of better systems, especially ernbedded ones,

is the existence of an annual 30% gap between the growth of chip complexity and

human design productivity [27] . b overcorne this design crisis, it is clear that

sophisticated CAD tools and new design methodologies are necessary to help

designers model, simulate, partition and verify complex hardware/software systems.

Over the past several years, many researchers have looked towards the creation of

better design environments integrating powerful tools for system modeling,

simulation, partitioning and verification [44J.

1.1 HDLs and SDLs

Before Moore’s law [481 pushed the elaboration of hardware systems by a single

individual out of the reaim of reality, systems were developed in an almost artistic

way by electronic engineers. When systems became overly complex, tools were

created to help teams communicate vanous aspects of a hardware design [47] . The

first tools available were caÏled Hardware Description Languages (HDLs) and were a

spin-offofprogramming languages. A good overview of an HDL is [67]:

2

“In electronics, a hardware description language or HDL is
a standard text-based format for describing either the
behaviour or the structure, or both, of an electronic circuit.
Most HDLs are restricted to describing digital circuits, but
there are exceptions. HDLs have two purposes. first, they are
used to write a model for the expected behaviour of a circuit
before that circuit is designed and bwlt. The model is fed into
a computer program, calied a simulator, that ailows the
designer to verify that his solution behaves correctly. Second,
they are used to write a detailed description of a circuit that is
fed into another computer program called a logic compiler.
The output of the compiler is used to configure a
programmable logic device that bas the desired function.
Often, the HDL code that bas been simulated in the first step
is re-used and compiled in the second step.”

The basic difference between an NDL and a traditional imperative programming

language is the presence ofa certain number ofmodeiing semantics:

• Parallel processing elements (e.g. process)

• Timing constraint elements (e.g. dock, time)

• Structural decomposition elements (e.g. modules)

• Interconnection elements (e.g. signais)

• Ports

There exists no formai document that describes the modeling semantics of an HDL

but cunent examples support the above modeling elements even though there syntax

or name may differ. Figure I iliustrates some of the above concepts on a circuit

schematic.

3

Module -—

Ptocess

Signai

Because of the advances in electromc component intercoimections, the concept of

HDLs lias been extended in recent years with the sernantics of communication

channels that permit the modeling and abstraction of complex communication

mediums. These new tools are called System-Level Description Languages (SDLs)

[591.

The industry and academics have for several years tned to create beffer HDLs and

SDLs to aid with the neyer ending design crisis. One method that lias been expiored

for the creation of these tools (FDLs and SDLs) is a library-based approach which

consists of taking an existing programming language and adding to it the missing

constructs and semantics for hardware and system design [7] . A second approacli is a

standalone one consisting ofthe simple creation ofa new language.

Despite ail these efforts, system designers stiii need new modeiing and simulation

solutions. This is mainly due to a mandatory set of requirements for an efficient

modeling and simuiation framework whïch are stili flot provided by a single existing

environment:

Easier software components specification and their integration into an overalt

Hardware/software system specification [66];

Clean programming features to enable iess enor-prone modeis, easier

specïfication for complex systems and reuse of such specification for further

designs [62];

Port

Figure 1: Simple circuit

C

4

• Introspection features for easier debugging and analysis of complex systems

[361 [221.

• Possibility of annotating models for different purposes, e.g. directing synthesis

or hooking to verification tools, creating user friendly HDL syntax [50]

• Translation to a standard intermediate format to enable the design of CAD

tools independently ofthe used description languages [401;

• Integration to distributed web-based design environment and easy system

documentation to facilitate cooperation between different design groups and

to allow remote processing [14];

• Multi-platform and multi-language features for describing and designing the

overail embedded systems composed ofheterogeneous components [34];

• Easier memory management to accelerate the specification process and to

eliminate an important source oferrors [54].

1.2 Specific Goals

The SystemC [65] modeling environment has been gaining momentum for the past

several years and has become a de facto standard for systems-level modeling.

However, because its underlying implementation is based on C++, ils evolution is

rapidiy slowing down. We believe that SystemC will have grave difficulties in

keeping tip with new environments, which wifl incorporate many advance system

level modeling features for operating system and hardware/sofiware system modeling

[44] [4] [3] . The existence of an environrnent such as SystemC is very important

because it is one ofthe few good modeling and simulation environments that is “free”

and “open source”. Most current environments are products developed and sold by

big corporation that are demanding high licensing fees.

The objective of this thesis is to propose an environment for system-level design that

(1) provides most of the concepts present in high-level modeling and simulation

solutions, (2) respects ail the requirements enumerated above and (3) preserves

comparative performances with existing environments, by using C# and the Net

Framework.

(

5

The mission of our environment is to use the proven environment of SystemC as a

basis for a new solution that wiJl a]so be “free” and “open source”. Our enviromiient

brings to the hardware/software modeling community a new solution that has ail the

benefits of SystemC without having most of its drawbacks. We hope that our solution

will offer designers a good alternative to expensive proprietary solutions.

1.3 Outlïne ofthis Document

Chapter 2 gives an overview of the different environments available for the modeling

and simulation of hardware/software systems. It presents a brief introduction of the

new challenges facing system designers today and in the future. It also presents

current software ftameworks that might help in solving these new problems.

Chapter 3 presents the .Net Framework and the C# programming languages. It then

goes on to expiain the advanced programming features that these two technologies

support which have permitted us to create a new system-level design environment

called ESys.Net.

Chapter 4 highlights the various elements that make up the ESys.Net ftarnework.

They are presented individually, their semantics explained and their uses illustrated.

Many code examples are given to help the reader understand the subtieties of the

environment.

Chapter 5 is entirely dedicated to our simulation kemel, since the major design

differences between SystemC and ESys.Net are in the simulation kernel. This chapter

gives descriptions and compares the design ofboth environments.

Chapter 6 discusses the advantages and disadvantages of the ESys.Net environment;

some experimental resuits are presented also.

Finally, chapter 7 summarizes the project and suggests directions for further research.

Chapter 2 State of the Art

The complexity of reality surpasses greatly our capability of synthesis and analysis.

To cope with this inadequacy, we simplify things in order to create models that we

can mampulate and understand. Hardware system design and the new area of

hardware/software system codesign are domains that we definitely caimot cope with

without simplification and abstraction. These domains are plagued by an ever

growing complexity feU by technological advancements and new consumer needs.

To simplify and model these complex systems, hardware description languages have

been used for about 40 years now [12] [6] . They became widely used with the

adoption of VHDL as an IEEE standard in 1987. There are two classes of HDLs.

Standalone HDLs have their own syntax, compilers and analyzers, whereas HDLs

that are in fact libraries are based on existing programming languages such as C++, C

or Java. Each approach has pros and cons as we wiII illustrate in the following

sections. We wilI show how recent developments in the software domain, by the

introduction of new frameworks, can help in the domain of hardware/software co

design. These languages permit the description of systems in a clear and standard

way, permitting the easy exchange of information between people.

2.1 Standalone Languages

This first class of HDLs is composed of languages that were developed from scratch

for the sole purpose of hardware and hardware/software systems modeling. The vast

majority ofthese were developed by the industry for the industry.

7

2.1.1 VHDL[31]

The development of VHDL was initiated in 1981 by the United States Department of

Defence to address the hardware life cycle crïsis [1 6j VFJDL was meant (j) to

provide a unified notation for describing electronic systems at various levels of

abstraction, (ii) to be both machine and human readable, (iii) to support the

communication of design data, (iv) to aid the maintenance, modification and

procurement of hardware, and finally (y) to support the development, venfication,

synthesis and testing of hardware designs through a tool agnostic description. VHDL

was a purely hardware description language. Early on designers noticed the absence

of software and system primitives such as fIFOs, and system synchronization

mechamsms such as semaphores, locks and shared variables, as well as object

oriented paradigms which would help with design reuse. Also, VHDL was verbose

and flot well adapted to describe components whÏch are lower than the gate level.

Gate libranes were generally descnbed using in-house scripts. Test benches were also

generated using special scripts even though VHDL had many useful constmcts to

describe test benches. In fact, in some aspects, it is much richer than Verilog or more

recent languages such as SystemC in developing gate level and register transfer level

(RTL) test benches. Except for basic assertion based verification, VHDL did flot

provide any other venfication capabilities. Some features were very specific to

VHDL, sucli as the possibility of having metadata-like artributes. Metadata is very

useful for tools that interpret a mode! either for simulation, verification, test coverage,

test generation, or synthesis. It also bas the notion of the separation between the

interface of a component (described by an entity) and its functionality which is

described by one or more architectures. This separation is unique to VHDL; the

community had to wait for recent object-oriented hardware description languages to

find similar capabilities. This separation between the interface and the behaviour tvas

very useful in design space exploration and to some extent in design reuse. Another

unique feature of VHDL is the concept ofresolution functions which allow very weII

defined protocols to modify a signal by concurrent processes; this allowed the

description of very high level modeling of interaction between subsystems. In total,

8

flfteen different 1EEE standards around VHDL have been adopted such as VHDL

AIvIS [30] for analog design.

2.1.2 Verilog

Verilog was the main competitor of VHDL until the announcement of SystemC in

1999. Even though it appeared in 1985 it became an IEEE standard oniy in 1995[32J.

It is a less verbose language than VHDL but cornes with sorne limitations such as a

narrow data type set, a resolution function restricted to “wired or” and “wired and”

and no separation between interfaces and behaviour. However, it has better

performances and a well defined foreign interface to hook to other languages.

Currently, VHDL and Verilog are converging more and more in capability [4].

2.1.3 SystemVerilog [54J

SystemVerilog, which was adopted as a standard by Accellera in June 2002, is an

extension of Verilog. It can be seen as a stack of components airned at venfication,

design and system modeling. for venfication, it provides facilities both for test bench

generation as well as assertions. For the design aspect, it provides many

enhancements to Verilog, such as provision for communication interfaces and an

enriched data type set similar to the C programming language. Since SystemVerilog

is a new product and very few case studies have been published, simulation

performance remains to be seen. Many companies donated different technologies to

this environment. The white paper by S. Bailey [3] provides an excellent comparison

between VHDL, Venlog and SysternVerilog. In that report we note that features

available in VHDL but not in Verilog or vice-versa have been added to

SystemVerilog, such as named events, partially strong typing, records and structures,

hierarchy, reactive processes, interface abstraction, assertions and foreïgn interfaces,

and system level primitives and mechanisms such as mailboxes, semaphores.

dynamic process creation, etc. Some capabilities of VHDL have been omitted or

only partially implemented such as operator overloading, general resolution

functions, full-fledged attributes, configurations and binding.

9

2.2 Programming Language-based HDLs

The second class of HDLs is based on an existïng language such as C++, C or Java.

Existing programming languages are usually missing basic hardware description

semantics such as concurrent behaviour, timing elements, communications elements

etc.; so this second class of BDLs is usually implemented by either providing a

framework which adds the necessary missing hardware semantïcs to the base

programmÏng languages or extends the languages with additional syntactic and

semantic constructs — a superset approach. These are, with some exceptions, open

source environments and commercial tools that are either less evolved or targeted to a

specific niche; however, they are very useful in an academic environment. In the

following sections we will descnbe the characteristics of some illustrative examples.

2.2.1 Hand&-C and OCAPI [Z]

Some articles have illustrated the advantages of using HDLs based on existing

programming languages [$J. OCAPI is based on C++ and is very efficient at system

level exploration whule Handel-C is C-based and can generate efficient designs

transiating them to EDIF or VHDL for implementation on FPGAs. The strength of

both environments and their seamless integrations can provide a very strong design

flow ftom system level to fPGA implementation.

2.2.2 JHDL [5] [28]

JI-IUL is an object-onented environment; it uses exclusively object-oriented

constructs of Java for RTL hardware modeling, simulation and efficient

implementation on FPGAs. The environment permits the description of synchronous

digital logic circuit components and connections such as: static ce]ls, Boolean gates,

registers. “parameterizable” modules etc. JHDL was developed as an exploratory

attempt to identify the key features and functionalities that a good FPGA tool needs.

It has been also recently used for Intellectual Property blocks (IP) delivery through

the internet.

10

22.3 SpecC [59]

SpecC was developed by the University of Califomia, Irvine (UCI), and first

appeared in 1997. In 1999, the SpecC Technology Open Consortium (STOC) was

founded. As a resuit, the SpecC language was refined and extended, leading to its

second generatÏon, SpecC 2.0 which was approved by the STOC in December 2002.

The SpecC language is a superset of the ANSI-C programming language. It is a

formai notation intended for the specification and design of digital embedded

systems. SpecC extends C with concepts essential for embedded systems design such

as: behavioural and structural hierarchy, concurrency, communication,

synchronization, state transitions, exception handiing and timing. SpecC is one of the

few existing environments that supporting explicit behavioural hierarchies. It focuses

on an W co-design methodology for modeling and design at the system Ievel.

SystemC channel and communication abstractions were inspired from the pioneer

work done in SpecC.

2.2.4 SystemC [65J

SystemC, announced in September 1999 by OSCI (The Open SystemC Initiative),

was met with much enthusiasm by both industry and academia. It was the first open

source library approach environment based on C++. It is currently very popular for

hardware-software system-level design. It provides ail the basic concepts used by

NDLs (e.g. modules, ports, signais, timing, etc.) and more abstract concepts

(interfaces, communication channels, events, etc.). However, most ofthe features for

software modeling are stili missing in SystemC: dynamic process creation, process

control (suspend, resume, kili, etc.), pre-emption, software specific communication

primitives (monitors, semaphore, etc.). Many companies used SystemC to model in a

very efficient way the system aspects of their design. As illustrated in a survey done

by Doulos [17] the use of SystemC is rnainly performance modeling, architecture

exploration, and transaction levei modeling and hardware-software co-simulation.

The survey also shows that (i) standard HDLs continue to be used for hardware

modeling and synthesis, (ii) a minonty of users use SystemC for RTL synthesis and

((iii) many companies are interested in operating systems and software scheduling

11

which are flot currently available in SystemC 2.0. Given that $ystemC 2.0 is in fact a

C++ Iibrary it Iends itself to the development of very sophisticated test benches and

as shown in [13], SystemC surpasses largely specialized languages such as the E

language or Vera which are meant for verification and test bench development.

SystemC was a good catalyst for new contributions, i.e. transaction level modeling to

deal with the increased complexity of models, software engineering methodologies

for interoperability design reuse [101 , simulation of network topologies [43] , and

functional verification [23] . f inally, it is the first open source HDL for which a

language reference manual has been completed in order to submit it for an IEEE

standard approval. In 2003 the OSCI announced the SystemC Verification Library

(SCV) which added some verification and introspection capabilities to the existing

environment [1$].

2.3 New Challenges in Modeling and Design

Needs have evolved from simply describing hardware at the RTL level to including

communicating subsystems, abstracting communication and buses, and dealing with

low power and interconnects.

Hardware/software systems are becoming a reality and complexitv is increasing at an

exponential rate. This rapid growth has pushed many to use third-party IP. Using high

quality third-party ÏPs permits the reduction of design time whule improving overali

quality and facilitating the design of heterogeneous systems. However, 1P reuse also

brings different challenges such as:

• finding effective ways ofdelivering IPs to customers

• Insuring a sufficient visibility of the W so that customers may validate custom

models and simulate the complete system contaimng in-bouse and W

components

• Providing the above features while protecting the intellectual property of the

vendor.

Another important revolution in the domain of integrated circuits is the integration of

non-microelectronic elernents on a chip such as micro-optical and micro-mechamcal

12

components. These complex and heterogeneous systems also produce different

problems to solve at the modeling and simulation level. We should be able to model

and simulate systems expressed using different languages, paradigms, and concems

as well as components described at different levels of abstraction and protection. If

we examine the recent modeling and design environments illustrated by SystemC and

SystemVerilog, we notice that the concems are: performance of simulation, ease of

programming and debugging. There are also software issues such as operating

systems primitives, multithreading, provision for foreign interfaces and increased

levels of abstraction, as well as verification needs for the integration of components

and the interaction between them. Other concems which are increasing in importance

are power dissipation and the problems related to the shrinking technology going into

the nanoteclmology.

Through the long history of NDLs we notice the influence of parallel and simulation

languages developed in the software domain on the development of HDLs. Verilog

was a sirnile combination of an earlier HDL and Occam parallel-processing language.

VHDL was also largely influenced by ADA and Venlog by C syntax. We think we

should go a step further to where the hardware modeling will become only one aspect

within a general software ftamework enviromnent. The large success of existing

HDLs was the possibility to go ftom an RTL description to a gate level

implementation in a very efficient way. Up until now there have been no convincing

success stories accomplished at higher levels of abstraction. Behavioural synthesis is

stiil flot adopted by the industry, and commercial tools at that level of abstraction

have flot been very successful. One success story may be the current transaction level

modehng enabled by the introduction of SystemC. The focus seems to be on the

combination of modeling and verification on one hand, and development reuse,

delivery and integrations ofthird party fPs.

2.4 Recent Software Frameworks

Even the most recent modeling and design environments such as SystemC and

SystemVerilog have many shortcomings. These are monolingual environments with

limited capabilities of accessing mode]s written in other languages. The error prone

13

programming and the Jack of type-safe features in C++ hamper the development of

SystemC. $ystemVerilog vi11 flot be an open source environment which will be a

hurdie to i.miversities in developing and experimenting with CADEDA frameworks.

The .NET framework was announced in 2000, one year afier the introduction of

SystemC. In our opinion, it contains features that would have greatly influenced the

language choice for implementing SystemC. Java was flot chosen due to its lack of

performance compared to C++, the absence of operator overloading and genenc

classes, etc. If we look at the C# programming language [19J introduced with .NET,

we note that ail these shortcomings have been removed. M excellent comparison of

C#, C++ and Java is given in [2J . It shows how C# takes advantage of the strengths

of Java and C++ and blends them in a very powerful and elegant language. The

performance of C# is aiso conflrmed by different publications [42J . Many features

planned for implementation in SystemC or SystemVerilog are already implemented in

an efficient way in C#, such as automatic garbage collection, safe pointers, software

multithreading, mailboxes, semaphores, monitors, etc.

In contrast to the JAVA environment and its virtual machine aimed only at JAVA,

.NET is a multilingual environment [39J [261 , a necessity in the domain of

hardware/software modeling and design. It could be very beneficial to explore the

capabilities of recent frameworks such as .NET ïn modeling, verifying and designing

hardware/software systems. These frameworks bring many features to be adapted for

hardware/software modeling and design such as: safe simulation of models, including

models created by an unknown or semi-trusted third party, a consistent object

onented programming envïronment whether the model is local or remote [391 [56]

increased reuse and multilingual support, and the existence of a published

intermediate format that renders lower level tools independent of higher level

modeling languages. As we can see, ail these features can be applied to development

and delivery of lPs, the modeiing and simulation of heterogeneous systems as well as

the development or ïntegration of modeling, synthesis and verification tools.

We should aiso benefit from the characteristics of recent software frameworks that

are nonexistent in SystemC or SystemVerilog, such as the abihty to document a

L

14

model using metadata [501 , which can be accessed by reflection either to specify the

simulation verification or synthesis semantics, the use ofreflection to explore a model

for verification, test coverage or refinement, and self-contained documentation using

standards such as XML.

Chapter 3 Advanced Programming

Features wïth C# and the .Net Framework

With time HDLs are beginuing to integrate many features that we have corne to

expect of high level programming languages making them much more similar to

software programming languages than hardware modeling languages. By using new

software development tools and leveraging advanced programming features,

improved libraiy-approach FDLs and SDLs can be developed. This section presents

two new software development tools, the .Net Framework and the C# programming

language. The advanced programming features, supported by these two technologies,

which have had the greatest impact on the development of ESys.Net, are also

presented.

3.1 The .NET Framework

Virtual machines, intermediate languages and language independent execution

platforms are flot new. They were present with UNCOL in the 1950’s to the JVM in

the I 990’s. Researchers have been fascinated with these concepts because they permit

an alternative path to native cornpilers that have several benefits [45]

• Portability: To implement n languages on m pÏatforms, only n -I- m transiators

are needed instead of n * m transiators.

• Compactness: Source code is usually much more compact when translated to

an intermediate format.

• Efficiency: By delaying the commitment to a specific native platform as much

as possible, we can make optimal use of the knowledge of the underlying

machine, or even adapt to the dynamic behaviour ofthe program.

16

• Security: High-level intermediate code is more amenabie to deployment and

runtime enforcement of security and typing constraints than low level binaries

• Interoperability By shanng a common type system and high-level execution

environment, interoperability between different languages becomes easier

than binary interoperability. Easy interoperability is a prerequisite for multi

language library design and software component reuse.

• Flexibility: Combining high-level ïntermediate code with metadata enables the

construction of (type safe) meta-programming concepts such as reflection,

dynamic code generation etc.

The .NET core represented by the CLI (Common Language Infrastructure) is a new

virtual machine execution platform which was standardized in December 2001 by

ECMA and in Apnl 2003 by ISO [201.

3.1.1 General Presentatïon of .NET Framework [49]

The .NET framework is a new platform that simplifies component-based application

development for the highly dïstributed Internet environment. What sets the .NET

framework apart from its rivais (such as the Java platform) is that its coTe, the CLI,

was designed ftom the ground up to be a multi-language environment [26J [45] . At

the center of the Common Language Infrastructure (CLI) is a unified type system, the

Common Type System (CTS), and a Common Intermediate Language (CiL), which

supports high-level notions (e.g. classes) and which is platform and prograrnming

language independent. The CTS establishes a framework enabling cross-Ianguage

integration, type safety, and high performance code execution.

The CLI bas four main components:

The Com mon Type System. The Common Type System (CTS) provides a rich type

system that supports the types and operations found in many programming language

farnilies. It is intended to support the complete implementation of a wide range of

programming languages

Metadata. The CLI uses metadata to describe and reference the types defined by the

Common Type System. Metadata is stored (“persisted”) in a way that is independent

17

of any particular programming language. Thus, metadata provides a common

interchange mechanism for use between tools that manipulate programs (compilers,

debuggers, etc.). Metadata is also used to augment the CIL representation of a source

code.

The Common Language Specitïcation. The Common Language Specification

(CLS) is an agreement between language designers and framework (class libraiy)

designers. It specifies a subset of the CTS Type System and a set of usage

conventions. Languages provide their users the greatest ability to access ftameworks

by implementing at least those parts of the CTS that are part of the CLS. Similarly,

frameworks will be most widely used if their publicly exposed aspects (classes,

interfaces, methods, fields, etc.) use only types that are part ofthe CLS and adhere to

the CLS conventions.

The Virtua] ExecutioH System. The Virtual Execution System (VES) implements

and enforces the CTS model. The VES is responsible for loading and nmning

programs written in CIL. It provides the services needed to execute managed code

and data, i.e. automatic memory management (Garbage Collection), thread

management, metadata management etc. The VES also manages the connection at

runtime of separately generated code modules through the use of metadata (late

binding).

The CLI also gives the specification number of class libraries providing important

functionalities such as thread interaction and reflection. It also provides XML [21]

data manipulation, text management, collection functionality, web connectivity, etc.

Alongside the CLI core, .NET Framework presents a set of classes that add

supplementaiy features sucli as web services, native and web forms, transaction,

scalability and remote services, etc.

3.2 TheC#Language

The C# language is a simple, modem, general-purpose object-oriented programming

language that lias becorne an ECMÀ and ISO standard [19] . It was intended for

1$

developing software components suitable for deployment in distributed environments.

Although most C# implementation (Microsoft , Xixiam , DotGNU [46] [15J [551)
used the CLI standard for its library and nmtime support, other implementations of

C# need not, provided they support an alternate way of geuing at the minimum CLI

features required by this C# standard.

In order to give the optimum blend of simplicity, expressiveness, and performance,

C# supports many software engineering principles such as strong type checking, array

bounds checking, detection of aftempts to use uninitialized variables, and automatic

garbage collection [2].

C# ïs intended for writing applications for both hosted and embedded systems ranging

from the very large that use sophisticated operating systems, down to the very small

having dedicated functions. Although C# applications are intended to be economical

with regards to memoiy and processing power requirements, the language vas flot

mtended to compete directly on performance and size with C or assembly language.

3.3 Advanced Programmïng Features

Since the C# language relies on a runtime with the CLI’s features; it inherits

interesting characteristics such as a unified type system, thread and synchronization

support, and automatic memory management just to name a few. It is sometimes hard

to separate the C# language and the CLI because they are quite symbiotic so .Net/C#

or CLI/C# will sometimes be used throughout this document.

There are three advanced programming features that .Net/C# support that have

considerable impact on software design: reflectivity, attribute programming and

events/delegates.

3.3.1 Introspection and Reflectivïty[22] [41]

A program that can explicitly see, understand and modify its own structure is said to

have introspective capabilities. Reflectivit is a property that a program may possess

that permits its structure to be accessible to itself The information that is accessible

through introspection is called meta-information or meta-data. Meta-data permits the

19

creation of simple but powerful tools that help the design and development of

software such as debuggers, class browsers, object inspectors and interpreters. There

exist many languages such as Java and C# that are said to be reflective because they

provide meta-information to programs written with them. Most reflective languages

implement the reflection property by the means of a supporting run-time like the Java

JVM or the .Net CLR, in this way separating the meta-information from the base

program.

These concepts are illustrated in the reflection capabilities of the C# programming

Janguage where it is possible to query the CLI to know the structure of an object. To

such a queiy, the CLI retums an object that is an instance of a metaclass named Type

that fully describes the type. Table I gives a list of the basic classes that make

metadata accessible to a program.

Table I: Metadata Classes

Ctass Description
Type Represents type declarations: class types, interface types, array

types, value types, and enumeration types.
Assembly Defines an Assembly, which is a reusable, versionable, and self

describing building block ofa CLR application.
Methodlnfo Discovers the attnbutes of a rnethod and provides access to

method metadata.
Parameterinfo Discovers the attributes of a parameter and provides access to

parameter metadata.
fieldinfo Discovers the attributes of a field and provides access to field

metadata.
Propertylnfo Discovers the attributes of a property and provides access to

property metadata.
Eventlnfo Discovers the attnbutes of an event and provides access to event

metadata.
Constructorinfo Discovers the attributes of a ciass constructor and provides

access_to_constructor_metadata.
Memberlnfo Discovers the attnbutes ofa member and provides access to

member metadata.

Code example I exemplifies the use of some basic introspection classes to query a

class about its members (fields, properties, constructors, methods, etc.)

20

1. public class Typelntrospection{

2. public static void Maint)

3. Type theType = Type.GetType(”Assembly”);

4. Memberlnfo[1 mbrlnfoArray = theType.GetMernbers();

5. foreacli tMernberlnfo member in mbrlnfoArry)

6. Console.WriteLinef”{O} is a {1}”, member,

7. brlnfo.MemberType) ;)

Code example 1: Type Introspection

Excerpt ofthe ouput:

SysiemString s localFitePrefix is a fieÏd
BooÏean IsDefined(Systern. Type) is a Method
Void .ctorO 15 a Constructor
System.String CodeBase is a Property

In une 3 we get a reference to the “Assembly” type. Line 4 retrieves ail the members

that are declared in the type. The rest of the code iterates through the members and

prints them to the standard output.

Here is a code example that shows the true power of introspection and reflectivity.

first, we dynamically discover and change the value of a private field, and then we

dynamically discover and invoke an object’s method.

1. public class MyClass{

2. private string myString=”Old value”;

3. public int MyStringLength (String inputString)

4. return inputString.Length ;}}

5.

6. public class FieldlnfoSetValue{

7. public static void Maint)

8. MyClass myObject new MyClassU;

9. Type myType = Type.GetType(”MyClass”);

10. fieldlnfo myfieldlnfo = myType.Getfield(”myString”,

11. Bindingflaqs.NonPublic I Bindingflags.Instance);

12. Console.WriteLine(”\nfield value of ‘myString’: {O)”,

13. myFieldlnfo.GetValue(myObject H;
14. myfieldlnfo.SetValue(myObject, “New value”,

15. Bindingflags.Default, nuli , null);

16. Console.WriteLine(“field value cf ‘inystring’ : {O}”,

17. myfieldlnfo.GetValue(myûhject));

18. Object theObj = Activator.Createlnstance(myType);

19. Type[] paramTypes = new Type[i];

20. paramTypes[O1 = Type.GetTypef”System.String”);

21

21. Methodlnfo myMethod = myType.GetNethod

22. (“MyStringLength”,paramTypes);

23. Parameterlnfo[] pi = myMethod.GetParametersO;

24. Type returnType = myMethod.ReturnType;

25. Console.WriteLinef”The parameter type: {O}”,

26. pi[OJ .ParameterType)

27. Object[j parameters = new Object[l];

28. parameters[OJ = “Hello”;

29. Object returnVal = myMethod.Invoke(theObj,parameters);

30. int val = (int)returnVal;

31. Console.WriteLine(val);}}

Code example 2: Value Modification with reflection

Excerpt ofthe ouput:

The pararneter type: System.Sliing
The return type: System.1nt32
Fietd value of ‘rny$tring’: Old value
field value of ‘myString t New value

Lines 10-11 show how to get a reference to the declaration ofa private field by using

the field’s name. At une 13, we retrieve the value ofthe field for a particular object.

Lines 14-15 demonstrate how to modify the value ofthe field for a particular object.

Line 1$ uses a static method of the Acth.’ator class to create an instance of a type.

Lines 23-25 demonstrate how to discover the various aspects of a dynamically

discovered class method. Lines 27-28 prepare the necessary parameters to make the

dynamic cail to the method and une 29 makes the cali. This code fragment

demonstrates the raw reflective powers that are missing in C++.

3.3.2 Aftribute Programming[50J [41]

Both the C# and the CLI standards defined a method for adding declarative

information (metadata) to runtime entities. Since the .Net framework bas at its core

the CLI, it also bas metadata support. The mechamsm through which metadata may

be added to a program is called attribute programming. Attnbutes can be added to ail

the elernents of a program except the body of properties and methods. It is even

possible to add declarative information to the assembly, which is a unit of deployment

that is similar to an .exe or .dll file on the Windows platform.

22

As mentioned before, attributes in .Net may be used to add extra information about

elements in a program but they also provide an elegant, consistent approach to adding

declarative information to runtime entities that permit a new way of designing

software. The mechanism to retrieve these attributes (metadata) at runtime has also

been standardized, pennïtting software components developed by different teams or

even companies to interact and discover each other through metadata. Metadata may

even be used to control how the program interacts with different runtime entities. It is

this capability that we exploit later in this thesis.

The following is an example of a possible aftnbute that could be used to tag a ciass

with hardware type infonnation. We give an example of a class tagged with some

metadata and we recover the metadata using introspection.

1. [HardwareType(”CPU”) I
2. public class MyProcessor{

3. public string technology= “FPGA”;}

4.

5. public class Metadatalnspecter{

6. public static void Maint)

7. MyProcessor obj = new MyProcessor ;

8. Type hardwaretype = typeof(HardwareTypeAttribute)

9. Type type = obj.GetType;

10. Object[J attributes =

11. type.GetCustomAttributes (hardwaretype, false)

12. foreachfObject attribute in attributes){

13. HardwareTypeAttribute ht = attribute

14. as HardwareTypeAttribute;

15. Console.WriteLine(”Hardware Type:{O}”, lit.type);}})

Code exampIe 3: Attribute programming exam pie

Excerpt ofthe ouput:

Hardware Type: C’PU

The important unes are 10 and Il which show how to retrieve custom metadata from

a type object.

23

3.3.3 Delegates

Cailbacks are an important concept in the impiementation of event handiing. Here is a

good informai defïnition for the concept of a callback:

A scheme used in event-driven programs where the program
registers a subroutine (a “callback handier”) to handie a
certain event. The program does flot cali the handier directly
but when the event occurs, the run-time system calis the
handier, usualiy passing it arguments to describe the event.
[29]

Most modem programming languages have constructs that permit the implementation

of callbacks such as function pointers in C++ and interfaces in Java [2] . The .Net

framework and C# use delegates to address event handiing. The concept of delegates

improves upon function pointers by being object-oriented and type-safe and improves

upon interfaces by allowing the invocation of a method without the need for inner

class adapters. Also, delegates are inherently multicasting — a delegate contains a list

of bounded methods that are invoked in sequence when the delegate is invoked.

Ariother interesting difference between a delegate and a function pointer is that the

delegate may contain an instance method in its invocation list, not only a static

method as with function pointers, because the delegate keeps the information of the

object that the method should be cailed on.

There are three steps in defining and using delegates: declaration, instantiation, and

invocation.

Deiegates are deciared using deiegate deciaration syntax.

1. delegate void MyDelegatef);

The example declares a delegate named MyDel egate that takes no arguments and

returns no resuit.

Deiegates are instantiated like ail other object-oriented constructs.

1. class Test{

2. static void f()

3. System.Console.WriteLine(”Test.F”);)

4.

24

5. static void Maint)

6. MyDelegate d = new MyDelegatefF);

7. dO;]] 1/ delegate invocation

Code example 4: Simple delegate example

The example declares a variable of type MyDelegate and then instantiates it. The

delegate is then invoked.

1. class Test{

2. static void F()

3. System.Console.WriteLinefl’Test.F”);}

4.

5. static void Go

6. System.Console.WriteLine f”Test.G”);

7.

8. static void Main()

9. MyDelegate d = new MyDelegate(F); //static binding of F

10. U += New MyDelegate(G) //dynamic binding of G

11. df);}}// delegate invocation

Code example 5: Delegate examp]e

In the above example, when the delegate is invoked, both the f and G methods are

called in the sequence in which they were bound to the delegate.

C# has added a key to add event handiing semantics to a class field that is a delegate

type: event. A delegate qualified with the event keyword bas no effect on the field

from inside the class or class instance’s scope. from outside the scope, however, the

field may flot be invoked, the field can only be used on the lefi-hand side of the +=

and —= operators. The += operator adds a handier for the event, and the -= operator

rernoves a handier for the event.

1. public delegate void DataNotifyHandler(object sender,

2. System.EventArgs e);

3.

4. public class DataProducer{

5. public event DataNotifyHandier notify;}

6.

7. public class DataConsumert

8.

9. void DataReady(object sender, EventArgs e)

10. Console.WriteLine(”Data is ready!”);}]

11.

25

12. public class App{

13.

14. static public void Main()

15. DataProducer prod = new DataProducerU;

16. DataConsumer com = new DataComsumerU;

17. prod.notify+= new DataNofityHandler(com.DataReady);

18.

Code example 6: Event keyword exampte

The above example shows a DataConsumet class that adds DataReady as an event

handler for the notify event of a DataProducer class which is declared with the

event keyword. This example shows how a simple and naive way of synchronizing a

producer and consumer.

3.3.4 Delegates and Reflectivity

A powerfuli combination is the use of reflection in collaboration with delegates.

Compared to most language .NetJC# permits methods to be bound to a delegate at

runtime. For example, in C++, the name of the method that is bound to a function

pointer must be known at compile time, but in .Net/C# it is possible to create a

delegate type object with a static method of the Delegate class. The method takes as

parameters an object and the name of the method which should be bound to the

created delegate.

With reflectivity, it is possible at runtime to discover the names of the various

methods that an object supports, so it is possible to dynamically discover an object’s

method and bind it to a delegate.

The example below illustrates this flexibilïty:

1. public delegate void myMethodDelegateO;

2. public class MyCiass{

3. static public void Hello{

4. Console.WriteLine(”Hello”) ;}

5. public void GoodNorningf)

6. Console.WriteLine f”Good Morning”);

7. public void ByeC){

8. Console.WriteLine (“Bye”);))

iO.public class Maipp{

C

26

11. static event myMethodDelegate myDelegate;

12. static public void Maint)

13. MyClass obj = new MyClass();

14. Type obj Type = obj . GetType O;
15. Type myMethodDelegateType = typeof(myMethodDelegate);

16. foreaclifMetliodlnfo method in

17. objType.GetMethods (Bindingflags.DeclaredOnly

18. BindingFlags.Static

19. BindingFlags.Instance I
20. BindingFlags.Public))

21. if(metliod.GetParameters() .Length == O &

22. method.ReturnType == typeoffvoid))

23. if(method.Isstatic)

24. myDelegate+= (myMethodDelegate) Delegate.CreateDelegate

25. (myMethodDelegateType,method);

26. else

27. myDelegate+= (myMethodDelegate) Delegate.CreateDelegate

28. (myMethodDelegateType,obj,method.Name);

29.

30. if (myDelegate f null)

31. myDelegateO;}}

Code example 7: Delegates and rellection

Ibis example iterates through ail the static and instance methods that are declared

public of an object (obj) of type MyCtass. Each method is verified for two conditions:

no formai arguments and a void retum type. If the method fulfits the two conditions it

is then bound to a delegate object (myDelegate). Static and instance methods of an

object are bound dynamically to a delegate in different ways. Line 23-25 show how to

bind a static metliod. Lines 26-28 show how to bïnd an instance method. Line 30-31

test the delegates in order to discover if it has been initialized. If it bas a value other

than nuiT it is invoked.

The core of our environment makes use of an algorithm similar to code example 7,

however, we incorporate the use of attributes to selectively filter the methods.

Dynamic method discovery ami delegate creation are useful because they enable a

simp]e and elegant solution for implementing entry points in a simulation kemel for

third-party tools. We also use them to dynamically create the processes of our

simulation model (see Chap 5).

Chapter4 ESys.Net

After struggiing with the downfalls of SystemC, we looked for another alternative

that would enable us to model systems in a simple effective manner ami that would

allow us to explore different types of CAD and EDA tools for partition, venfication

and synthesis. Afier looking at many environments and languages we stumbled cross

the C# language and the .Net Framework. We immediately noticed that C# and .Net

brought together several important features from vanous existing solutions i.e. Java,

C++, ML, etc. and brought several new features that would probably enable the

developrnent of a new environment for system-level design based on the previous

work of SystemC.

This section describes the fruit of our labor: Embedded Systems with .NET, a new

system-level design environment based on SystemC. E$ys.Net is meant to be an

evolution of SystemC by offering the same modeling capabilities but in a more

elegant package. ESys.Net also imiovates on SystemC by using a better underlying

programming language which permits it to inherit operating system primitives, a rich

sofiware component libraiy for rapid tool development and powerful runtirne.

The next section wiIl present briefly with the aid of an example the core elernents of

E$ys.Net. These elements will then be explained in depth in subsequent sections.

4.1 A Simple Example

The best way to present a new tool is with an example, here is a simple example

called “MyFirstSystem” that we will use to present our environment.

Here is a pictorial representation of MyfirstSystem.

28

MyMo.ftite ModuleS

ModuleA

geni

— — , — sigi
z

—

— sig3
testbench

ModuleA

genetator

Figure 2: My First System

“MyfirstSystem” is a model for a simple synchronous hardware component that is

being tested with a testbench. The hardware component, named “generator”,

generates an integer on its output port on each positive edge ofthe main system dock.

When a new value is generated by the hardware component, the testbench is notified

of the new value by the “generator”. The testbench then reads the new value from its

input port and then prints it out.

Like most real hardware components, the “generator” is composed of sub

components. These sub-components are responsible for generating an integer value

on each positive edge of the main system dock which is then added together by a

computation process in the encapsulating component.

The following code represents the bluepnnt for the two sub-components (geni and

gen2):

1. public class ModuleA BaseModule{

2. public dock clk;

3. public outlnt porta;

4.

5. public ModuleAO: baseO{}

6.

7. [Process]

8. [EventList (“posedge”, “clk”) I
9. public void Gen()

10. while(true)

29

11. for(int i=O;O<100;i++) {
12. porta.Value=i;

13. Waitf);}}}}

Code example 8: ModuleA blueprint

Code example 8 declares the specification for a component that has one input port,

cik and one output port, porta. The input is used to drive the component with a dock

signal. The output is used to transmit an integer value that is generated by the Gen

method. Hardware elements are concurrent by nature, they ail compute in parallel. To

indicate that the Gen method represents a computation that is concurrent, which we

cali a process, we tagged the method with a Process aftribute. Ail methods tagged

with the Process aftnbute execute concurrently. The EventList attribute indicates that

the Gen method is sensitive to the positive edge (posedge) ofthe clk input

The role of the EventList tag is to indicate an association between a process and a

triggering object which is implemented with the Event class that is defined in our

environment. As its name implies, the Event class represents an event that may occur

during the simulation ofthe model. When an event is triggered, the processes that are

associated to an event are executed. In the above example, the clk field owns an event

called posedge — that represents the event of a positive edge-, when the dock

represented by clk field generates a positive edge, it triggers it posedge event.

The Wait method eau in the Geit method indicates that the execution should stop at

that point and then resume when an event on its triggers list occurs.

1. public class NoduleB BaseModule

2.

3. public inlnt porta;

4. public Event synevent;

5.

6. public MoUulBC) basef) {}
7.

8. [Process]

9. public void Runf)

10. while(true){

11. Wait (syn event)

12. Console.WriteLine (porta.Value);] I

Code example 9: ModuleR blueprint

30

This code fragment represents the bluepnnt of the testbench module. It only has an

input port porta. its Run method lias been tagged with a Process attribute so it will

run concurrently with the Gen methods of tlie geni and gen2 sub-components. What

is distinct about this module is that the method indicated to become a process does

flot have an EventList attribute. This is not a problem, before the simulation starts, ail

methods that are processes that do flot have an event list are executed once. The Wait

method cail with an event as an argument within the Run method indicates that the

method wili stop at this point and wait until the event is triggered.

1. public class MyModule BaseNodule

2. public outlnt porta;

3. public dock clk;

4. public Event syn event = new EventO;

5.

6. ModuleA genl = new ModuleAO;

7. ModuleA gen2 = new ModuleAU;

8. IntSignal sigl = new IntSignalf);

9. IntSignal sig2 = new IntSignalO;

10.

11. public MyModule() baseO{}

12.

13. [PMethod]

14. [EventList(”sensitive”,’sigl”,”sig2”)J

15. public void Addf)

16. porta.Value = sigl.Value + sig2.Value;

17. syn event.Notify(O);}

18.

19. public override void BindingPhaseO{

20. genl.clk = clk;

21. gen2.clk = clk;}}

22.

Code example 10: MyModule b]ueprint

This code fragment is the bluepnnt for the main module called “generator”. It lias an

input for a dock signal and an output for an integer value. It atso contains two sub

components of type ModuleA — the blueprint presented ear]ier-, two signais used to

connect tlie sub-components together and an event instance that will be used to notify

the testbench when the “generator” generates a new value. The component lias a

method that is tagged with the Pliethod attribute. This indicates that the method

(

31

should be considered as a concurrent process like a method that is tagged with

Process. The difference between a method tagged with PMethod and Process is in

their simulation implementation. A method tagged with a Process attribute keeps its

state between Wait method cails. A method tagged with a PMetltod tagged cannot

eau the Wait method, it is executed like a normal method cali so the state of variables

declared in the body ofthe method are flot kept between execution.

The EventList of the Add method indicates that the method is sensitive to the two

internai signais (sigi and sig2) that are used to communicate with the sub

components. Each signai owns an event cailed sensitive. A signal triggers its

sensitive event when a new value that is different from its former value is written to

the signai. The Notify method cal! in the Add method on the syn_event event causes

the event to be triggered which causes the testbench module’s Run method to be

awaken and executed.

The last method in the “generator” component is called BindingPhase. It is invoked

before the simulation starts and is used to propagate signais throughout a module

hierarchy for binding purposes. Binding is necessary to connect a signal to a port such

as the clk signal being bound to the cik ports ofthe two sub-components.

1. public sealed class MyFirstSystem:Systeinl’4odel{

2.

3. TopModule top new TopModuleO;

4. Modulefi testbench = new ModuleBf);

5. Clock clk new Clockf”clockl”,4);

6. IntSignal sig3 = new IntSignalU;

7.

8. public Myfirstsystem tlsysteiïïManager manager) base(manager) t
9. top.clk = clk;

10. top.porta = sig3;

11. testbencli.porta = sig3;

12. testbencli.synevent = top.synevent;}}

Code example 11: MyFirstSystem

The overali “MyFirstSystem” system is defined by creating a ciass that inherits from

8yternModet. This class is used to encapsulate a system and is the entry point for the

simulator to extract the model to be simulated. In this ciass we instantiate the main

32

module, the system dock, a signal and the testbench. The elements are then

connected together, sig3 is conriected to the main module and the testbench, and the

main module’s syn_event event is connected to the testbench.

To execute the simulation, we need to create an instance of our model and an instance

of a simulator; then we must bind the two together and start the simulator. Here is the

code:

1. public class MyApp{

2.

3. public static void Maint)

4. Simulator sim = new Simulator;

5. MyfirstSystem sysModel = new MyFirstSystem (sim);

6. sim.sysm = sysModel;

7. sim.Run(50);

8.

9.

Code example 12: MyApp

Like Java, the execution entry point for a C# application is a public static method

called Main. The 50 passed in the Run method of the sim instance is the number of

time units that must be simulated before stopping. The other sections of this chapter

will explain in more details each of the modeling concepts that were briefly presented

in this exampie.

4.2 Modules and Module Hierarchïes

As time passes, design problems are flot becorning simplet, they are becoming larger

and ever more complex. Luckily, one of the oldest approaches to complex probiem

soiving is still alive and weil: divide and conquer. The basic concept of subdivision in

ESys.Net is a user defined module. Modules are like black boxes, we use them by

connecting them together without knowing how they work. So a simple and informai

definition of a module could be: an entity that encapsulates a service or a

functionality that an end user may access through its user interface. The word

interface, as used here, simply means the outer wrapper of the module that is

available to the end user, for example the touch pad of a microwave is part of a user

interface. By breaking down a complex problem into simplet ones, implementing

33

those simpler problems into modules and them encapsulating connected modules into

higher level modules, we can create a hierarchy of modules that is simple to manage,

to understand and more importantly solves a complex problem.

The power of abstraction that modules permit is very important. Since an end-user

only relies on the interface of a module and not the internai workings of it, a systems

designer may interchange, in a plug-and-play fashion, modules with the same

interface to quickly modify his design. from the perspective of a module designer,

the abstraction of implementation permits the designer to constantly upgrade the

internal workings of his design without affecting the rest of the system that his

module may be part of

Complex systems are veiy difficult to model directly, so we usually partition them

into simpler sub-systems that we can easily model and then recombine to form

complete system. ESys.Net, like most existing HDLs, proposes the partitioning of

complex systems into logical blocks possessing inputs, outputs and processing

capacities.

There are two parts involved in the use of a user defined module:

1. The declaration ofthe module;

2. The instantiation ofthe module in the context ofa system.

4.2.1 Module Declaration

Declaring a module is like creating a blueprint of a chip. A module declaration

contains the bluepnnt of its interface (e.g. ports) and its muer workings (sub

components and processes).

1. public class MyModule: BaseModule{

2. \\ Declared interface and inner components shouldd go here

3. \\ but this is a simple portess ? component

4.

5. \\ A simple constructor for anonymous components

6. public MyNoduleU{}

7. \\ Another simple construtor

8. public MyI’4oduletstring name): base(name){}

9. \\ Declared inter workings should comme here

34

10. \\ but this component does not do anything.}

Code example 13: General module declaration

Since ESys.Net relies on an object-onented ftamework, ah user defined modules

must inherit from the Baseliodule class and implement the necessary constructors. If

the constructor on une 3 is used when instantiating the user defined module, a default

identification name will be generated for the module instance. If the constructor on

une 4 is used, the programmer must supply the module identification name when

instantiating the module. All module instance identification names in the context of a

module hierarchy level must be unique, meaning that modules that are siblings of the

same parent in the module hierarchy tree must have unique identification names.

4.2.2 Module Instancing

As a chip blueprint is only a design on paper, a user module declaration, which is a

user defined class declaration, is the same. As with ail statically type object-oriented

programming languages, we must declare a variable of the same type as the need

user-defined module and initialize the declared variable by calling a constructor.

1. MyModule module a = new MyModule(”modulea”);

2. MyModule module b = new MyModulet);

Code example 14: Module instantiation

The code on line 1 initializes a reference variable called module_a by instantiating an

object of type Myliodule and assigns the instance identification name “modulea” to

modulea. The code on une 2 initializes a reference variable called module_b by

instantiating an object of type MyModule and assigns a generated instance

identification name to module b.

4.2.3 Module Hierarchïes

As an IC may itself contain other sub-IC components, modules may themselves

contain instances of other modules. Also, as a sub-IC component is not visible from

outside of its containing IC inner modules are usually flot accessible from outside

their container module either. We can see that by recursively creating modules by

35

composition, we obtain a hierarchy or tree of modules. Module hierarchies are

obtained by instancing modules within module declarations.

1. public class ModuleA: BaseModule{

2. \\ Declared interface and inner components shouldd go here

3. \\ but this is simple portess component

4.

5. \\ A simple construtor for anonymous components

6. public MyModulef){}

7. \\ Another simple constructor

8. public MyModule(string name): base(name){}

9. \\ Declared inter workings should comme here

10. \\ but this component does flot do anything.)

11.

12.public class I4odule3: BaseModule{

13. \\ These are sub—components instantiation

14. ModuleA modi = new ModuleAf”modl”)

15. ModuleA mod2 = new ModuleAf”mod2”)

16. \\ A simple constructor for anonymous components

17. public ModuleB() : base f) f}

18. \\ Another simple constructor

19. public Module3(string name) : base{}

20. \\ declared inter workings should comme here

21. \\But this component does not do anything.}

Code example 15: Module hierarchy

Sub-modules should be declared pnvate because they should be semantically hidden

within the scope oftheir parent module — not accessible from outside their contaimng

module. The keyword private was omitted in the above code because by default, C#’s

variables are pnvate and flot public like Java.

4.2.4 Module Interfaces

A module’s interface is the only thing exposed to the outside world; the basic element

used to make a module’s interface is a port. A port represents an entry or exit point

for data moving in or out ofthe module.

36

A

Sum

B
Full Adder

Carry outCarry in

Figure 3: Full Adder Module Interface Example

figure 3 shows a fullAdder module with a number of ports. The ports on the left are

input ports or in/out ports while the ports on the nght are output ports. Each port bas

an identification name.

The above module and its interface could be deciared as follows:

1. public class Fifo: BaseModule{

2. public inBool A;

3. public in3ool B;

4. public inBool Carryln;

5.

6. public outBool Sum;

7. public outBool CarryOut;

8.

9. public FullAdUer t): base t) t)
10. public FullAdder (string name) : basefname) {}
11. }

Code example 16: FIfO declaration

4.2.5 Modules lnner-Workings

The semantics of modules and interfaces as mentioned above permits the partitioning

of a system into logicai biocks but what is important above ail is the processing

capabilities ofthe block.

The logical unit of processing in ESys.Net is a process. Since hardware by nature is

inherently very parallel and that one of our main objectives is to sirnulate hardware

components, a process is simulated in parailel with ail the other processes that

makeup the simulated model. A basic process is simply declared by creating a

standard private class rnethod that takes no parameters, retums nothing and is tagged

37

with a Process and EventList attnbute. Since a process is basically a class method, it

bas access to class variables, instance variables and other class methods. Also, since

the ports of a module are instance variables, processes have access to them and it is

by this mechamsm that a module can read from the input ports of a module and write

on the output ofthe module.

Here is an example of a simple one bit adder:

figure 4: One Bit Adder Example

1. public

2. public

3. public

4. public

5. public

6. public

7. public

8. public

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

class FuilAdder: BaseModule{

inBool a;

in3ool b;

inBool carryln;

outBool sum;

outBool carryOut;

FuilAdder t): baseU{}

FullAdder (string naine): base{}

A

B

Carry in

Full Adder

Sum

Carry out

[Processj

[EventList(”sensitive”, “s”, “b”, “carryln”)]

private void AUd()

bool tmp = (a.value ‘ b.value);

sum = tmp carryln.value;

carryout = (a.value & b.value) I (tmp & carryln.value);

Code example 17: Adder implementation

Lines 2 to 6 declare the Adder’s interfaces. Line 12 to 16 declares the Adder’s add

process. The tag on une 10 is associated with the method that follows and indicates

that it is a process of type process method (Section 4.2). The tag on une Il indicates

3$

the process is sensitive to ports a, b, and carryln — meaning that the process should

be calied when there is a value wriffen on ports a, b, c. Since ESys.Net is based on an

event-driven simulation, it is necessary to indicate when a process should be called; if

the inputs of a process don’t change, the outputs should flot change either so there is

no use in executing the process for nothing.

4.3 Processes

Systems are ail about processing data. Even with elegant solutions for system

decomposition or abstracting, system modeling solutions are useless without solid

data processing constructs. The logical unit of data processing in ESys.Net is a

process. From a semantics point of view, processes are non hierarchical entities that

transform data in parallel. Since a system in ESys.Net is partitioned into black box

components that take data as inputs and produce data as outputs, a process is aiways

contained within a module.

A process is created by tagging a module’s private method with a custom attribute

predefined in our environment. When a model is discovered and analyzed before

simulation, the ESys.Net kemel detects via reflexivity ail pnvate methods that are

tagged with the necessary attnbutes and registers those methods to be managed by the

kernel.

As previously explained, since ESys.Net is based on an event-driven simulation

kemel, ail the actions to be performed are linked to an event. When the event is

triggered the associated actions are pertbrmed in paraliel. Since processes represent

the actions in our environment, they are ail associated to events in a one-to-many

fashion. We wili see that there are two kinds of process-event associations: static and

dynamic.

4.3.1 Process Declaration and Registration

In order to be eligible to become a process, a class method must have a pnvate scope,

have no formai arguments and retum nothing. There are two kinds of processes in

ESys.Net, which will be explained later, process methods and parallel methods

39

(

—

(Parallel Method) (Process Method)

figure 5: Process Sub-Types

In order to indicate that a declared method should be considered by the kemel to be a

process method or parallel method, the method is tagged with the Process or the

Pliethod affribute respectively.

1. public class ModuleA BaseModule

2.

3. public ModuleAO: baset){}

4. public ModuleA($tring name): base(name){}

5.

6. [Process]

7. private void aFrocessMethod() {]
8.

9. [PMetliod]

10. private void aParallelMethod() {}
11.

Code example 1$: Process method and Parallel method declaration

4.3.2 Static and Dynamîc Process-Event Association

A process can be bound to an event in one of two ways: statically and dynamically.

Semantically, a static link between a process and an event means that the process

event association holds globally for the entire simulation; whereas a dynamic

association holds only for a certain penod of time. Also, a process’ static association

list is declared with the process’ declaration, whereas a process’ dynamic association

list changes throughout the execution of the simulation. In ESys.Net a process’

dynamic association list has precedence over its static association list - if a process

has at a certain point in time a non empty dynamic association list, the process will

40

flot be triggered by events in its static association list until the process’ dynamic list ïs

empty.

43.3 Process Static Sensitivity

A process’ static event association Iist is created using the EventList tag on a method

already tagged with a Process or PMetltod tag. The EventList tag takes as its first

argument the name of an event that we want to associate with the process, and bas as

remaimng arguments an unlimïted number of entities (signais, chaimels, etc...) which

are owners of an event that lias the specified name in the first argument.

1. public class ModuleA : BaseModule

2. public IntSignal sigl = new IntSignalU;

3. public IntSignal sig2 = new IntSignal;

4.

5. public ModuleAf): baset){}

6. public ModuleAfString name): basefname){]

7.

8.

9. [Process]

10. [EventList(”sensitive”,”sigl”,”sig2”)J

11. private void aProcessf)

12.

13.

Code example 19: Static Sensitiviiy

The above example states that the module bas a process method that must be

statically associated with two events which have the name “sensitive”, one owned by

sigi and the other owned by sig2.

1f the process method must be associated with events of different names, multiple

EventList tags must be used for each event name.

1. public class ModuleA : BaseModule

2. public Intsignal sigl = new IntSignal(”sigl”)

3. private Event myEvent = new EventO;

4. public ModuleA() : base t) {}
5. public ModuleA(String name): base(nameN}

6.

7. [Process]

8. [EventList(”sensitive”,”sigl”)]

41

9. [EventListf”myEvent”,”this”)]

10. private void aProcessf)

11.

12.

Code examp]e 20: Static Sensitivity witb multiple events names

The above example states that the module lias a process method that must be

statically associated with two events, one owned by sigi with the name “sensitive”

and the other named “myEvent” owned by the current module (the owner name this is

a keyword meaning the current module).

4.3.4 ParaIlel Method Process

A parallel method (pmethod) process is executed by the ESys.Net kemel as a

synchronous method invocation, so upon completion it reftrns control to the

ESys.Net kemel. Because of its implementation, a pmethod does flot maintain the

state of its local variables and it is impossible to explicitly suspend the pmethod’ s

execution — it may flot have calis to the Wait method or have an infinite loop. 1f the

state of the local variables must be kept between pmethod invocations, the user must

explicitly manage them using class variables.

A pmethod’s dynamic sensitivity list is created using the NextTrigger method with

one or more event objects as arguments. The NextTrigger method may be called in

the body of the pmethod process code, or it may be called in a rnethod called by the

pmethod that is either owned by the current module or communication channel.

Parallel Metbod Dynamic Sensitivity

When triggered, the entire body of the pmethod is executed. Execution of a

NextTrigger statement sets the sensitivity for the next tnggering event of pmethod.

The execution of NextTrigger does nos’ cause the pmethod to end prematurely. The

NexiTrigger method specifies the event, event list or time delay that is ihe next

triggering condition for the pmethod. 1f multiple NextTrigger statements are executed,

the last one executed before the pmethod completes determines the nexi tngger

condition (i.e. last one wins).

42

1. public class ModuleA BaseModule

2. public IntSignal sigi = new IntSignalf”sigl”)

3. private Event myEvent = new Eventf);

4.

5. public ModuleAU: baset){}

6. public ModuleAfString name): base(name){}

7.

8.

9. [PMethod]

10. [EventListt”sensitive”,”sigl”)]

11. private void aProcessf)

12. NextTriggerfmyEvent);

13.

Code example 21: PMethod Dynamic Sensitivity

4.3.5 Process Method

A process method is implemented with a .Net Framework thread. The process method

nms until a Wait method eau is executed whereupon the process ïs suspended. Upon

suspension the state ofthe process is implicitly saved. The process method is resumed

based upon its sensitivity list. Its state is then restored and execution of the process

method resumes from the point of suspension (statement following Wait).

1f the body or parts of the body of the process method are required to be executed

more than once then it must be implemented with a loop, typically an infinite loop.

Ibis ensures that the process can be repeatedly reactivated.

If a process method does not have an infinite loop and does not cali Wait in any way

then the process will execute entirely and exit within the sarne delta-cycle. The Wait

method can be called in the body of the process method code, or can be called in a

method called by the process method that is either of a member function of the

module or a method ofa channel.

If a process method does have an infinite ioop but does not cali Wait in any way then

the process will continuously execute during the same delta-cycle. No other process

will execute (ESys.Net currently executes one process at a time to mimic SystemC;

the next version tvill execute multiple processes).

43

Process Method Dynamic Sensitivity

Execution of the Wait method with arguments specifies the condition or conditions

for resuming the process method. This list of arguments is considered the process

method’s dynamic sensitivity list.

1. public class ModuleA : BaseModule

2. public IntSignal sigi new IntSignalf’sigl”)

3. private Event myEvent = new Eventf);

4.

5. public ModuleAO: basef){}

6. public ModuleAfString naine): base(name){}

7.

8.

9. [ProcessJ

10. [EventList(”sensitive”,”sigl”) I
11. private void aProcessf)

12. whuleftrue){

13. Wait (myEvent);

14.

15.

Code example 22: Process Method dynamic sensitivity

Empty Static Sensitivity List

If a pmethod or process method has no static sensitivity list specifled then it wiIl be

automatically executed once before the simulation starts.

Triggering on a single event

1f the NexiTrigger or Waii method is called with a single event argument then the

pmethod tvill be tnggered when that event is triggered. Syntax for triggering on a

single event:

1. private Event myEvent new Eventf);

2.

3. NextTrigger (myEvent);

44

4. WaittmyEvent);

Code exampie 23: Triggering on a single event

Triggering after a specific amount oftime

If the NextTrigger or Wait method is called witli a time value argument then the

process will be triggered afier a delay ofthe specified time. Syntax for mggenng afler

a specific amount oftime:

1. NextTrigger(200);

2. Waitf200);

Code example 24: Triggenng after a specific amount of time

If the lime value argument is zero then the process will be triggered after one delta

cycle. Syntax for triggering afier one delta-cycle delay:

1. NextTrigger(O);

2. Wait(O);

Code example 25: Triggering with zero time

Triggenng on mie event in a hst of events

1f the NextTrigger or 117a1t method is called with an OR-list of events then the process

wilI be trïggered when one event in the Iist of events lias been triggered. Syntax for

triggering on one event in a Iist ofevents:

1. NextTrigger(el e2 I e3);
2. Wait(el I e2 I e3);

Code example 26: Triggering on one event in a]ist ofevents

Triggering on ail events in a Jist of events

If the NextTrigger or Wait method is called with an AND-list of events, then the

process wilI be triggered when ail events in the iist of events have been triggered. The

events do not have to be triggered in the same delta-cycle or at the sanie time. Syntax

for triggering on ail events in a Iist ofevents:

1. NextTrigger(el & e2 & e3);

45

2. Waitfel & e2 & e3);

Code examp]e 27: Triggering on ai] events in a iist ofevents

Triggering on an event in a Jist of events with timeout

If the NextTrÉgger or Wait method is called with a combination of a specific amount

oftime and an OR-list ofevents, then the process wilI be triggered when one event in

the hst of events has been triggered or aller the specifled amount of time whichever

occurs first. Syntax for triggering on one event in a list of events with timeout:

1. NextTrigger(200, el & e2 & e3);

2. Waitf200, el & e2 & e3);

Code example 28: Triggering on an event in a Iist of events with timeout

Triggering on ail Events in a Iist of events with timeout

If the NextTrigger or Wait method is cailed with a combination of a specific amount

of time and an AND-list of events then the process will be triggered either when ail

events in the iist of events have been triggered or aller the specified amount of time

which ever occurs first. Syntax for triggering on ail events in a list of events with

timeout:

1. NextTrigger(200, el e2 e3);

2. Waitf200, el e2 I e3);

Code exampie 29: Triggering on ail Events in a Iist of events with timeout

4.4 SignaIs

With the concepts of modules and processes, it is possible to break up a complex

problem into iogical sub-tmits of functionality and describe the parallel processing

entities that they contain. We are, however, flot able to descnbe the interconnections

that must exist to assemble the numerous modules together. Signais are the basic

entities that permit intercoimections between modules. They play the same role as

wires and PCB traces, but they also play a more complex and deeper role in our

simulation.

46

4.4.1 Signais and Simulation

In order to create a usable simulation model of a system, there are two missing

concepts required to glue everything together. Firstly, we need a way to transport

information between modules and secondly, ail data moving from one module to

another must happen or seem to happen in parallel. To fulfihi the first requirement, we

need a container that stores information moving to and from module ports. The

second requirement is a liftle more complex to satisfy because the amount of

parallelism available on a typical computer is much lower than needed to simulate

hundreds of data items moving in parallel. As a resuit, we must use a software

management system to simulate the parallel movement of data. In order to achieve

our second requirement, we use a concept called the delta cycle. Ah information

moving out ofa module at a current delta cycle will only be available at the next delta

cycle.

Signais fuifihi our two missing requirements. They are containers for information

travelling between modules and they are the buffers that help implement the delta

cycle concept. When a module writes a value to a signal, the signal stores the value

but does not make it accessible until the next delta cycle. This implies that even if a

module writes to a signal before another module can read the current value - this

situation occurs because we cannot effectively execute the read and write in parailel

so they are seria]ized in a delta cycle-, the value read by the module is the one that

was current at the begiiming of the cunent delta cycle.

4.4.2 Instancing

In ESys.Net, there is a class that represents a signal for every basic type supported by

the CTS. To transport other types of data, there is a signal that manipulates objects

and since the CTS is based on a unified type system, we can use it to transport any

data of a user defined type (when reading the value, however, we must cast). Like ail

the elements in ESys.Net. signais have two constructors: one that lets the user specify

the instances identification name and another that generates the names automatically.

1. IntSignal sigi = new Intsignal(”sigl”);

47

2. IntSignal sig2 = new IntSignalf);

Code example 30: Signal Instancing

The code on une 1 declares and initializes a reference variable called sigi by

instantiating an object of type Int8ignat -which is a signal that transports an Integer

datum- and assigns the instance identification name “sigi” to sigi. The code on une 2

declares and initializes a reference variable called sig2 by instantiating an object of

type JntSignat and then assigns a generated instance identification name to sig2.

4.4.3 Inner and Outer Signais

A signal can either be visible on both sides ofa module’s boimdary -the signal is used

from within the module and is used by the module’s outer environment- or it may

only be visible from within the boundanes of its owning module. It is important to

note that a signal may be an “inner” signal in one reference but an “outer” signal in a

lower hierarchal reference (e.g. a signal that is only used from within a module is

considered as “iimer” for the reference of that module but if it is used by one of the

module’s sub-modules then in the reference of a sub-module the same signal is

considered to be “outer”) and also that a signal will only be considered “inner” in one

reference. In Figure 6 we can see that the InnerA signai is considered inner in the

presented reference of the ModuleA but would be considered “outer” if we took the

reference of the SMI sub-modu1e.

We can further illustrate the concept of an outer and imier signal with the example of

an IC. A wire that is visible only from within an IC is considered “inner” but if a

signal is also connected to the outer pin ofthe IC, it is visible from the outside also so

it is considered “outer”.

4.4.4 A Sïgnal’s Logical Scope

Like a variable, a signal bas a Jogical scope. The scope detennines how it is declared

and instantiated. However, unlike a variable, a signal has many scopes because it has

a scope for every module that uses it. Using the concepts of “innerlouter” signais as

references, we can altematively say that a signal bas a scope for every reference in

which it exists and that scope can be ccinner or “outer”. The concept of scope is very

4$

important because we must determine in which modules a signal is used, for a

variable that represents the signal must be deciared in ail modules that use it. What is

truly important is that we can only instantiate one signal that we assigned to the

declared variables representing it.

In order to iliustrate the concept ofa signai’s scope we shah use an example. figure 6

illustrates a simple module — ModuleA- composed of 2 sub-modules — SM1 and

SM2 - and a process — Pi. The top module has 3 input signais — mA, mB and InC —

3 outputs signais — OutA, OutB and OutC- and 3 inner sïgnals — muerA, InnerB

and InnerC. The mA signal feeds the SM1 sub-module to produce the InnerA signal

which feeds the SM2 sub-module to produces the OutA signal. The $M2 sub-module

is also fed by the lnnerB signal produced by the Pi process with the mB signal. The

Pi process also produces the OutA signal. The InC signal also feeds the InnerC that

then feeds the OutC. If we take signal muerA for our study of scope, we can see that

it is used by modules ModuleA (which encapsulates it), SM1 (which uses it) and

SM2 (which uses it). muerA has a scope in ail three modules, so each module has a

local variable deciared as the same type as muerA

Module

Process

Innet signal

Outer signal

With the concepts of a signal’s scope and “inner/outer” signais, we can state that a

signal must be declared private and instantiated in its scope where it is considered

“inner”. It must be deciared public in ail scopes where it is considered coutef and

Figure 6: Inner/Outer Signais

49

initialized (bound) with the instance created in the “inner” scope. Another reason an

“outer” signal must be declared public (besides the fact that we must have access to it

to initialize it) is that the signal is a gateway between a module’s “inner” and its

“outer” world, thus it must be visible on both sides to fulfiul this role.

Here is one possible code for the illustrated example.

1. public class ModuleA : BaseModule

2.

3. SM1 sml = new SM1f);

4. SM2 sm2 = new SM2 ;

5. IntSignal InnerA = new InnerAf);

6.

7. sml.InnerA = InnerA; //binding

8. sm2.InnerA = InnerA; //binding

9.

10.

11.

12. public class SM1 BaseModule

13.

14. public lntSignal InnerA;

15.

16.

17. public class 5M2 BaseModule

18.

19. public IntSignal InnerA;

20.

21.

Code examp]e 31: lnner/Outer signais

4.4.5 Specïal Bindîng Cases

There exist two special binding cases which need particular attention: binding an

“outer” signal to an “inner” signal and binding an “outer” signal to a sub-module’s

“outer” signal.

The first case presents the foilowing problem: when we bind an “inner” signal to an

“outer” we are basicaily extending the “inner” signai with the “outer” signal (or vice

versa). W we follow the mies mentioned above we shouid deciare a variable for the

“outer” signal, then we should declare and instantiate a variable for the “inner” signal.

The problem is that we cannot glue the two signais together in order to propagate the

50

value from one to the other. Also, when the constructor of the module containing the

“outer” signal and the “inner” sigial is called, the “outer” signal is flot initialized at

that moment (it is only bound later); hence we don’t even have two signais to glue

together and we cannot bind the “inner” signal to the “outer” because an “outer”

signal should aiways receive its value from the “outer” environment.

The second case is almost the same as the first; it occurs when we want to bind an

“outer” signal to the “outer” signal of a sub-module. The problem is that when the

constructor of the parent is called the sub-module is created but the parent’s “outer”

signal does flot have a value at that current moment, so it can not be propagated to the

sub-module.

In order to solve the two state problems, there is a virtual method that ail user

modules inhent which is cailed afier ail the module hierarchy is created, the

Binding?hase method. If a user module does not have any of these special cases,

overriding the method is flot necessary and ail the instancing of the signais (and sub

modules) and binding to the sub-modules may be done in the module’s constructor. 1f

the special cases are present, the user must override the method and put the signal

binding code there. for the first case, no signal is instantiated for the “inner” signal

and it receives its value from the “outer’ signal. It is, however, impossible to glue the

“outer” signal belonging to the same module with an “inner” signai; as a resuit, in

figure 6, the route from InC to InnerC to OutC is impossible to create without a

process separating the inner signal from one ofthe outer signais.

In the second case, the sub-module’s “outer” signal is bound with the value of the

module’s “outer” signal. This solution is possible because at the top most level, there

should only be “inner” signais and they shouid have been bound to the modules at

that level; so if we cail the binding method afier the creation of the module hierarchy

it is possible to propagate the signal from the top to boffom.

Here is an example ofthe mA signal and the InnerC (with the prernise of an added

process between the InnerC signal and the OntC signal) signais from figure 6.

1. public class ModuleA : BaseModule

51

2. public IntSignal mA;

3. public IntSignal mB;

4. public IntSignal mc;

5. public Intsignal OutA;

6. public IntSignal OutB;

7. public Intsignal OutC;

8. Intsignal InnerA;

9. Intsignal Inner3;

10. IntSignal InnerC;

11. SM1 sml;

12. SM2 sm2;

13.

14. public ModuleA(): baset){}

15. public ModuleA(string name) : base{

16. sml = new SMl;

17. sm2 = new 5M2();

18. InnerA = new IntSignal();

19. InnerB = new IntSignalf);

20. sml.aoutouter signal = InnerA;

21. sm2.ainouter signal = InnerA;

22.

23.

24. //tlie binding method

25. public overrides void bindingPhasef){

26. sml.ainouter signal = mA;

27. sm2.aoutouter signal = OutA;

28. InnerC = InC;

29.

30.

Code example 32: Special signal binding cases

We must point out that it is impossible to connect two outer signais belonging to the

same module without using at least an intermediate process to copy the value of one

signal to the other.

4.5 Ports and Interfaces

In most NDLs, ports are entities that makeup the interface ofa module. Ports are like

the pins of an IC, permitting the flow of”information” in and out ofthe module. It is

through the concept of ports that modules can interact with their environment. In

ESys.Net, the concept of ports does not explicitly exist. Ports are replaced by another

concept of higher abstraction, a software interface. In this context, the word interface

52

has the same meaning as the concept of interfaces in object-oriented programming

languages such as Java and C#. A software interface is composed of a set of method

declarations but provides no implementation for those methods. Unhke Java, C#

permits the declaration of properties (fields) to be part of an interface [2] Software

interfaces are then implemented by user deflned types (classes), forcing the user

defined type to implement a body for each method declaration in each software

interface it uses [21.

Software interfaces permit contractual programming and information hiding. In this

way, a consumer of a reference variable declared as being of a certain interface type

is guaranteed that the reference legally supports the set of methods dectared in the

interface definition and that no other methods are available.

4.5.1 The Elîmînation of Ports

We have eliminated the expiicit concept of ports because in most HDLs a port is just

an entity that adds an abstraction layer to a communication entity (like a signal), and

offers a simple “read/write” API to access it. The proofofthis is that in most HDLs,

it is necessaiy to bind a signal to a port and a “readlwrite” to the port causes the

“readlwrite” from the signal. The port is just delegating the work to the signai. Note

that the funcbonality provided by a port is the same as a software interface it is for

this reason that we have eliminated ports.

In ESys.Net ports are used to control the way we access “outer” signais. Retuming to

the concepts of “inner/outer signais” we can say that a signal which is “inner” in a

certain scope can be logically accessed for reading und for tvriting. However a signal

which is “outer” in a certain scope does flot have both ofits ends in the same scope so

it can logically only be accessed for reading or for writing. The problem here is that

signais implement both reading and writing functionalities, so it is very difficuit to

enforce which can be done and when. Since software interfaces permit contractual

programming and information hiding, we can bide an “outer” signai declaration

behind an interface that only supports the communication direction which is logicai

for that signal’s current declaration scope. In addition, like the signai that the

53

software interface is hiding, it must be declared visible (public in C#) to the exterior

world because it becomes the gateway to the outside world.

4.5.2 Predefined Interfaces

The ESys.Net ftamework provides a collection of predefined software interfaces. For

each primitive value type supported by the CTS, there is an in, out and mont

interface. The replication of the basic directional interfaces for every type is

necessary because Net and C# do not support templates or generics in their present

state. The next version of .Net should have generics [37] so the interface libraiy will

be reduced to a collection of three generic interfaces: in, ont and mont. Here is the

model for the three basic directional interfaces but typed for a Boolean value.

1. public interface inBool

2. bool Value{get;}bool IsChanged{get;}}

3. public interface outBool{

4. bool Value{set;}bool NextValue{get;}1

5. public interface inoutBool inBool, outBooll}

Code example 33: Boolean software interfaces

Line 1 declares an interface called inBoot that has two properties that are Booleans:

one called “Value” that is read-only and one called “IsChanged” that is also read

only. Line 2 declares an interface called outBool that has two properties that are

Booleans: one called “Value” that is set-only and one called “NextValue” that is read

only. Line 3 declares an interface called inoutBoo/ that is the union of the inBool and

out3ooÏ interfaces.

Ail the predefined software interfaces for ports in E$ys.Net are based of the presented

three interfaces. We have added the “IsChanged” and “NextValue” properties for

verification and transactional support reasons. The “isChanged” property permits

querying a signal hiding behind an interface in order to discover if it was modified

during the preceding delta cycle, the “NextValue” property enables accessing the

value that will be available on the signal during the next delta cycle.

54

albi anbn

Figure 7: A N bit Adder

Table II below shows two partial implementations of the n bit adder presented in the

Figure 7 above. One implementation uses public signais for its interface; the other

uses software interfaces to hide the signais in order to control how they are accessed.

Table II: Interfaces

Carry mi Carry outn

sumi sumn

With the use of interfaces

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.

Without the use of interfaces

public class NBitAdder: BaseModule(
//interface declaration
public BoolSignai)] a;
public BoolSignal[] b;
public BoolSignal[] sum;
public BoolSignal carryln;
public BoolSignal carryOut;

//sub-modules deci. and int.
FullAdder [1 adder;

//inner signais decl.and int.
BoolSignal [J innerCarry;
int sise;

public NBitAdder tint size) : base))
a = new BoolSignal[size];
b new BoolSignal[size];
suai = new BoolSignal[size];
innerCarry = new BoolSignal[size-l];
adder = new Fuli.Adder[sizeJ;
for(int j = Oi<size;i++)

adder[i] new FullAdder();
thïs.size = size;)

public NBitAdder(int size, string na):
base)name)tthis(size);]

public override void BindingPhase()
for ti=O;i<size—l;i++)
adder[i].a = a]iJ;

1. public class NBitAdder: BaseModule{
2. //interface declaration
3. public inBool[] a;
4. public inBool[] b;
5. public outBool[] suai;
6. public inBool carryln;
7. public outBool carryOut;
8.
9. //sub-modules decl. and int.
10. FullAdder[] adder;
11.
12. //inner signais decl.and int.
13. BoolSignal[] innerCarry;
14. int size;
15.
16. public NBitAdder tint sise): base O)
17. s = new BoolSignal[size];
18. b = new BoolSignal[size];
19. sum new BoolSignal[sizeJ;
20. innerCarry = new BoolSignal[size-l];
21. adder new FullAdder[size);
22. for(int j = O;i<size;i++)
23. adder[i] new FullPdderO;
24. this.size = size;)

25. public NBitAdder)int size, string na):
26. base)name)tthistsize);t
27.
28. public override void BindingPhaset) t
29. for)i=O;i<size—1;i++)
30. adder[i].a = a[i];

55

Without the use of interfaces With the use of interfaces

31. adder[i].b = b[iJ; 31. adder[ij.b =

32. adder[jJ.surn = sulu[i]; 32. adder[i].suni = sum[iJ;
33. adder[iJ.carryln = innerCarry[il; 33. adder[iJ.carryln = innerCarrytij;
34. adder[i+1] .carryout= innerCarry[i]; 34. adder(i+1J .crryOut= innerCarry[i];
35.) 35. 1
36. adder{il.carryln = carryln; 36. adder[i].carryln carryln;
37. adder[size—1].carryout = carryOut;)) 37. adder[size—1).carryOut carryOut;J}

4.6 Events

Events play a crucial role in the ESys.Net enviromnent because it is based, like

SystemC, on an event-driven simulator. Events encapsulate the concept of an instance

of time, the instance dwelling ïn the fimeline of a simulation, and a group of actions

(processes) to be performed at that time instance. Events also have a triggering cause

that associates them to a specific instance of time. The tnggering causes can be just

about anything: the occurrence of a specific time in the simulation, the changing of a

signal’s value, the occurrence of another event etc.

A more practical view of an event in E$ys.Net would be: events detennine when a

process execution should be triggered or resumed. An event is an object used to

represent a condition that may occur during the course of simulation and to control

the triggering of processes. When an event is notified (triggered), it causes the

simulation kemel to execute the processes that are bound to the triggered event.

AIl events are instances ofthe Event class which is part ofthe ESys.Net framework.

1. Event myEvent new EventU; /7 event declaration and

2. instantiation

Code example 34: Event instantiation

4.6.1 Event Occurrence

It is important to distinguish an event from the actual occurrence of that event. An

event may have multiple occurrences, each occurrence being unique though reported

through the same event. We can say that an event is like a conceptual relation

between a point in time and a group of actions, and that an instance (or occurrence) of

that relation Iinks a specit5c moment oftime to a specific group of actions.

56

An event is aiways owned. It may be owned by a module, channel or signal; it can

also be global to a model, maldng it owned by ail modules and channeis in the model.

The owner of an event is responsible for creating an occurrence of the event (by

notification) when the triggering cause of the event occurs (change of state of a

chaimel, occurrence of a specific time in the simulation etc.). The event object, in

tum, is responsible for keeping a list of processes that are linked to it. Thus, when

notified, the event object will inform the simulation kemel of which processes to

trigger.

(ventowner_

Notification

Event Triggering

7\ ,.,- /

(Process I) (Proœss 2) (Proœss3)

Figure 8: Event Occurrence

4.6.2 Event Notification C63]

Events can be notified in three ways using its Notify method— immediate, delta-cycle

delayed and timed:

• Immediate notification means that the event is triggered in the current

evaluation phase of the current delta-cycle. The notify method with no

arguments (NotifyQ) indicates immediate notification.

• Delta-cycle delayed notification means that the event wiIl be triggered during

the evaluatïon phase of the next delta-cycle. The notify method with an

argument of zero indicates a delta-cycle delayed notification - the event is

scheduled for the next delta-cycle.

• Timed notification means that the event will be tnggered at the specified time

in the future. The notify method with a non-zero argument (Notif’(x))

57

indicates a timed notification of x simulation time units. The time of

notification is relative to the execution time of the notify rnethod as opposed

to an absolute time.

1. 1. Event myEvent = new Event(); 1/ event declaration and

2. instantiation

3. 2. myEvent.NotifyO; /1 immediate notification

4. 3. myEvent.Notify(0); II delta—delay notification

5. 4. myEvent.Notify(10); 1/ declaration of a 10 time unit

6. notification

Code example 35: Event notifications

Lines 2 to 4 are occurrences or instances ofthe myEvent event.

4.6.3 Multiple Simultaneous Event Notifications [63] [24]

Events can have only one pending notification, and retain no “rnemory” of past

notifications. Multiple notifications to the same event, without an intermediate trigger

are resolved according to the following mie:

• An earlier notification will always override one scheduled to occur later

• An immediate notification is always earlier than any delta-cycle delayed or

tirned notification.

Note that according to these rules, a potential non-determinism exists. Assume that

processes A and B are ready to run in the same delta-cycle. Process A issues an

immediate notification on an event, and process B issues a delta-cycle delayed

notification on the sarne event. Process C is also sensitive to the event. According to

the scheduler sernantics, processes A and B execute in an unspecified order.

Table fil: Event non-determinism

Process A { Process B { Process C {

myevent.NotifyQ; myevent.Notify(O); Wait(myevent)

}

58

1f process A executes first then the event is triggered immediately, causing process C

to be executed in the same delta-cycle. Then process B is executed and since the

event was triggered immediately, there is no conflict and the second notification is

accepted causing process C to be executed again in the next delta-cycle.

If, however, process B executes first, then the delta-cycle delayed notification is

scheduled first. Then, process A executes and the immediate notification overrides

the delta-cycle delayed notification, causing process C to be executed only once, in

the current delta-cycle.

4.6.4 CancelIing Event Notifications

A pending delayed event notification may be cancelled using the Cancel method

Immediate event notifications cannot be cancelled since their effect occurs

immediately.

4.6.5 Events, Signais and Ciocks

In E$ys.Net, ail predefined signais are owners of two events: sensitive and

transaction.

The sensitive event is tnggered when the value of the signal changes from it

precedent value and transaction is triggered when a value is written to the signal.

CÏock objects are owners of three events: posedge, negedge and sensitive. (Note

docks are channels even if they appear to be signais)

The posedge event is triggered on the positive edge transition of the dock, negedge

is triggered on the negative edge transition of the dock and sensitive is triggered on

both of the fomiers.

4.7 Channels

With the model elements that we have seen so far - modules, signais, events... etc- it

is possible to create fairly complex systems. However,]ike most modem system

description languages, we have added the semantics of channe]s to the environment

59

[59] . Channels are the basic modeling elements for complex inter-module

communication. Through interfaces that channels implernent, modules may

communicate with each other. A channel may abstract a simple point-to-point

communication but can also model very complex Network On Chip (NOC).

Channels may be seen as modeling elements that are a cross between modules and

signais.

Channels differ from signais in that they may contain structure such as sub-modules,

sub-channels, and processes. They differ ftom modules because they implement, like

signais, the IDettaUpdatabte interface (this concept will be explained later) that

permits them to be synchronized with the simulation delta cycles. In this way, we

have simplified SystemC’s channel semantics by unifying the concept of primitive

channels and hierarchical channels [631.

Another important aspect of channels is that, since they abstract communication

between modules, they permit the refinement of a model’s communication elements

without the modification ofthe communicating elements.

4.7.1 Channel Declaratïon and Instancîng

There are two parts involved in the usage ofa user deflned channei:

1. The declaration ofthe channel

2. The instantiation ofthe chaimel in the context ofa system.

Like user defined modules, ail user defined channels inherit from an abstract based

class called BaseChannel Since the BaseChanneÏ class inherits from the BaseModule

class, channels may be constructed in the same way as modules by using sub

components, processes and interfaces.

1.. public class MyChannel: BaseChannel, Mylnterface{

2. \\ declared interface and inner components

3. public MyChannelt){}

4. public MyChannel(string naine): basefname){}

5. \\ declared inter workings}

Code example 36: Channel declaration

C

60

If the constructor on une 3 is used when instantiating the user defined module, a

default identification name will be generated for the module instance. 1f the

constructor on une 4 is used, the programmer must supply the channel identification

name when instantiating the channel. Ail channel instances identification names in

the context of a module hierarchy level must be unique with ail other modules and

channels names.

On une 1 we have declared that the channel implements a user defined interface

called Mylnterface.

Channels are instantiated in the same way as modules.

1. MyChannel cliannel a = new MyChannelt”cliannela”);

2. MyChannel channelb = new MyChannelO;

Code example 37: Channel instantiation

The code on une I initializes a reference variable called channel_a by instantiating

an object of type MyChannet and assigns the instance identification name “channela”

to chnneI_a. The code on une 2 initializes a reference variable called channel_b by

instantiating an object of type MyChannet and assigns a generated instance

identification name to channe]b.

43.2 Channels and Software Interfaces

Since channels are specialized forms of user defined modules, they also have an

interface that is constituted of ports. However, channels usually implement software

interfaces, enabling modules to commumcate with the channels through well defined

method cails that are declared in the implemented interfaces. Modules are also able to

declare ports with theses software interfaces.

The abstraction brought by interfaces is not really necessary, but it permits a clean

separation between the communication elernents of a model and the processing

elements, because the implementing element hiding behind an interface may be

triviaUy changed without changing the elements using the interfaces. Also, since we

use the predefined concept of software interface’s in .Net/C#, channels may

61

implement multiple interfaces and an interface may be implemented in different ways

by different channels.

4.7.3 Sensitivity

Channeis like modules may contain events, but these events may be declared with a

public accessibility and used in the EventList of a process. This enabies channels to

be regarded as signais but with much more compiicated inner-workings.

4.7.4 Channel hierarchïes and inner-workïngs

As with module hierarchies, channels hierarchies are ofien useful to manage the

complexity of modem communication channel modeling, since the concept of a

chaimel is a sub-concept of a module. The inner structure and workings of a channel

are designed in the same way as a module. Therefore a channel may contain sub

channels, sub-modules, event, signaIs, ports, processes etc.

4.7.5 The IDeftaUpdatable Interface

The IDetraUpdatabte interface is a custom interface that is defined in the ESys.Net

framework. It is through this interface that elements such as signais are synchronized

with the delta cycles of a simulation. The interface definition is as fol]ows:

1. public interface IDeltaUpdatable

2. void UpdateU;

3. void RequestUpdateO{}}

Code example 38: IDeltaUpdatable interface

The RequestUpdate method must implement the request of a delta-cycle

synchronization for the element that is making the cail. The BaseChannel ciass has a

default implementation for this rnethod that cails the simulation kemel and puts the

requesting element in the simulation kemel’s list ofelements to be updated before the

next delta-cycle. The Updaie method is the rnethod that is cailed to perfonn the delta-

cycle synchronisation. It is with this method that the signais of the environrnent

change their current value with lhe value that bas been written 10 the signal during the

previous delta-cycle. The BaseChannel class implements this method with an ernpty

virtual rnethod which can be overridden by subclasses.

62

In order to use a channel in a simple way, one can put aside the delta-cycle

synchronization elements of a channel. If the delta-cycle behaviour is important,

however, one must oniy redefine the Update method to implement the correct

synchronization behaviour and eau the predefined RequestUpdate method

appropriately.

We should point out at this point that any user defined model element may implement

this interface and use the simulation kernel’s delta element handiing method to

synchronize with delta-cycles:

1. public void RequestUpdateflDeltaUpdatable up

Code example 39: RequestUpdate method

4.7.6 Unification of the Channel Concept [63] [24]

$ystemC lias two kinds of channels: primitive channels and hierarchical channels.

Primitive channels are flat elements; they do flot have any hierarchical structure and

do flot contain processes. They support, however, the synchronization of their state

with the simulation kemel’s delta-cycle. Hierarchical chamiels are modules hiding

behind a “typedef’, so they can have structure and processes but they are flot

inherently capable of being synchronized with the delta-cycles like primitive

channels.

ESys.Net lias unified these two entities within the concept of the BaseChannel. A

primitive channel is just a specific case of a user defined channel that is flot

hierarchal, does flot contain any processes and which bas a custom defined UpdateØ

method. Also, our BaseChannel is truly a specialization of a module and flot just a

hiding alias which permits a better analysis of a model because the concepts are well

defined.

4.7.7 Example [65] [24]

In Annex A we present an example that illustrates a communication channel that is

designed like a SystemC primitive channel; the channel is a FIFO. This FIFO channel

cornes with a number ofmethods. Basically, we find both blocking and non-blocking

110 as welI as some functions to query the state of the FIFO. In its implementation,

63

we use the “Request/Update” scheme. We also find a good example of dynamic

sensitivity in order to implement the blocking I/O. The fIfO’s read and write

interfaces are given first, then the FIFO ,and then a simple example with a producer

and consumer using the channel. This example is an ESys.Net partial implementation

of an example in the SystemC 2.0 functional specification that is explained in depth.

(

Chapter 5 Simulatïon Kernel

The ESys.Net modeling constructs that we have seen so far are almost identical to the

ones found in SystemC. This is no coincidence because, as mentioned earlier,

ESys.Net is meant to be an evolution of $ystemC. The true difference between the

two environments lies within the implementation of their respective simulation

kemels. ESys.Net innovates on SystemC by leveraging the advance software

capabilities of the .Net framework, through the use of C#, in order to create a simpler

and more flexible simulation kemel. The programmÏng features that are the

foundation ofthe kemel are:

• attribute programming

reflectivity

• native Net threads

• native .Net synclironization primitives

• delegates and events

The simulation kemel is a very important aspect of our environment because it is at

its heart. The kemel bas rnany important functions such as:

• Simulation model elaboration

• Process scheduling

• Delta-cycle synchronisation

• Model conectness venfication

• Mediator for third-party tools

65

5J Modeling Directives

One of the important charactenstics of ESys.Net is that it offers the system designer

the possibility to easily specify execution directives by tagging the different concepts

in the specification. These directives concem (i) the association of a process or

parallel method semantic to a class method, (ii) the addition of a sensitivity list, (iii)

the calling of methods before or after the execution of a certain process and (iv) the

execution of a class method at a specific moment during the execution. This was

implemented by exploiting the attribute programming paradigm provided by .NET

and the C# language. Table IV summarizes the available attributes, their semantics

and the concepts to which they are applied.

Table W: Attributes and their role in ESys.Net

Attribute Description Applied to concept
Process Associate a thread to a class Class Method

method
PMethod Associate a method process to a Class Method

class_method
EventList (list ofevents) Add sensitive list for a process Process

ManuaiRegistration Manual registration ofthe element Field

PreCail (Name ofMethod) Method to be called Process
v - before the process-e(

PostCall (Name ofMethod) o Method to be called Process
afier the process

Siminit (Name ofMethod) Simulation mit Class Method
SimEnd (Name ofMethod) . Simulation end Class Method

Cycleinit (Name ofMethod) . Cycle initialization Class Method
CycleEnd (Name ofMethod) .S Cycle end Class Method

Deltainit Delta cycle Class Method
O initialization

DeltaEnd . Delta end Class Method
finalDelta Last delta Class Method

Reset Simulator reset Class Method

The utilisation of attribute programming offered us a very powerful tool, one that

enabled us to create a transparent means to permit the addition of hardware semantics

to behavioural code in a simple and elegant way.

66

in order to offer a declarative mechanism to add hardware semantics to a mode!,

SystemC uses macro. We believe that the use of attributes is much more elegant than

macro, because they do flot hide code that must be debugged when working on a

model [50].

5.2 Simulation Semantïcs

Most of the differences between SystemC and ESys.Net are within the simulation

kemel so both will be described and compared.

5.2.1 SystemC [647 [63J

SystemC has at its core an event based simulation kemel like most current simulation

environments i.e. Verilog, VHDL. A SystemC simulation execution may be broken

up in a number of consecutive phases: elaboration, initialization and process

scheduling.

Elaboration phase

It is during this phase that the simulation model is created from the model description.

Structural elements ofthe systems i.e. modules, channels, signais etc. are created and

connected throughout the system hierarchy. Hierarchical structures are elaborated

through recursive construction using object construction behaviour. During the

elaboration phase, the simulation kemel must create a process object for each

threaded and method based process.

SysternC’s elaboration phase can be further broken up into two sub-phases that occur

at different instances. The flrst sub-phase occurs at compilation time. During this sub

phase, macros are expanded revealing the code that creates the necessary process

objects and retneve pointers to the methods that are declared to become either

threaded or method based processes. The second sub-phase is donc dunng execution

time. It is during this sub-phase that the structural elements are created and

connected. Certain aspects ofthe simulation may be configured at this point.

67

Initialization

Initia]ization is the first step in the SystemC scheduler. Bach method process is

executed once during initialization and each threaded process is executed until a wait

statement is encountered.

Process Scheduling

The SystemC scheduler controls the timing and order of process execution, handies

event notifications and manages updates to channels. It supports the notion of delta-

cycles. A delta-cycle consists of the execution of an evaluation and update phase.

There may be a variable number of delta-cycles for every simulation time.

SystemC’s processes are non-preemptÏve. This means that for thread processes, code

delimited by two wait statements will execute without any other process interruption

and a method process completes its execution without interruption by another

process.

The semantics of the SystemC simulation scheduler is defined by the following eight

steps. A delta-cycle consists ofsteps 2 through 4.

1) Initialization Phase.

2) Evaluation Phase. from the set of processes that are ready to run, select a
process and resume its execution. The order in which processes are
selected for execution from the set of processes that are ready to mn is
unspecified. The execution of a process may cause immediate event
notifications to occur, possibly resulting in additional processes becoming
ready to mn during the same evaluation phase. The execution ofa process
may include calls to the request_update() function which schedules
pending cails to update() function in the update phase. The
request_update() function may only be called within member functions of
a primitive channel.

3) Repeat Step 2 for any other processes that are ready to run.

4) Update Phase. Execute any pending calls to update() from calis to the
requestupdate() function executed in the evaluate phase.

5) If there are pending delta-delay notifications, determine which processes
are ready to run and go to step 2.

6$

6) If there are no more timed event notifications, the simulation is fimshed.

7) Else, advance the current simulation time to the time of the earliest (next)
pending timed event notification.

figure 9 is an overview of the simulation semantics of SystemC. Note that it is very

closed, there are no entry points for third-party tools Erreur! Source du renvoi

introuva Ne..

5.2.2 ESys.Net

This section describes elaboration, initialization and the simulation semantics.

ESys.Net is an event based simulator. ESysNet’s simulation execution may be

broken up into the same steps as SystemC.

8) Determine which processes become ready to mn due to the events that have
pending notifications at the current time. Go to step 2.

Figure 9: SystemC’s scheduler structure

69

Elaboration

As ïs the case in SystemC and most environments, it is dunng this phase that

ESys.Net model element instances are created and connected together such as

module, channels, signais etc. However, unlike must environments our elaboration

phase is done dynamically at run-time; there is no code added at compile time as in

SystemC. ESys.Net modeis do flot take for granted a specific simulator. At runtime a

model is bound to a simulator, that in tum through .Net’s introspections capabilities,

analyses the model (structure and directives) and creates a simulation representation

of the model. This permits our models to be compiled separately from a specific

simulator and to bind the models at a later time to a specific simulator. This also

allows us to have many simulator works on different models or parts of models in a

unique binaiy execution. Venlog, VHDL and $ystemVeriiog take for granted that

there is only one simuiator so it is impiicit and it is dunng compilation that a model is

bound to it (there can only be one model per simulation).

The first part of the elaboration phase is to discover and register the vanous elements

ofthe model; code example 40 presents an incomplete pseudo-code ofthe algonthm

we use to do these tasks.

1. SuliModelElementRegistration (ModelObject element)

2. type := GetType(eleinent)

3. fields:= GetAllFields(type)

4. foreach field in fields

5. if Not(ManualRegisteredTagged(field)

6. fieid instance:= GetFieldlnstance (field, element)

7. select(field instance)

8. case dock:

9. RegisterClock(field instance)

10. case Channel:

11. RegisterChannel f field instance)

12. SubModelslementRegistration f field instance)

13. case Module:

14. RegisterModule (field instance)

15. SubModelElementRegistration(field instance)

16. case Signal:

17. RegisterSignal (field instance)

18. case Event:

70

19. RegisterEventffield instance)

Code exam pie 40: Model Discovery and Registration

Each object in the model is passed through this algorithm. Each fielU in the currently

treated object (element) is extracted and registered in accordance to its base type i.e.

module, channel, dock, event or signal. If a field is module or channel, it is

recursively passed through the sanie algorithm. However, if a field is tagged with the

ManuatRegistered attribute it is not processed.

The second part of the elaboration phase is the heart of the kemel. The algorithm that

we use creates the simulation model. The algorithm ïs responsible for the creation of

the processes and for the binding of these processes to their triggering static events.

The algorithm also binds class methods to hooking points within the kemel.

The simulation mode! construction algorithm can be broken up into four parts:

• Process discovery and verification

• Process method creation

• Paralle! Method creation

• Callback hooking

Each part wiJI be presented wfth an incomplete pseudo-code.

1. SimulationNodelCreation()

2. for each element in RegisteredClianneis and RegisteredModules

3. type:=GetType telement)

4. if type is an Interface

5. type:= GetDeclaringType(type)

6. metliods:=GetAllPrivateMetliods (type)

7. foreacli method in methoda

8. parameters:= GetParameters tmetliod)

9. if Size(parameters)=O

10. metliod instance:= GetMethodlnstance(method,element)

11. seiect (method)

12. case ProcessTagged:

13.

14. case PMethodTagged:

15.

16. case Default:

17.

C Code example 41: Process dicovery and veritication

C,

71

Code example 41 gives the pseudo-code that goes through ail the registered channeis

and modules, and retrieves their method declarations that have a pnvate scope. for

each method declaration foimd, the algorithm verifies if the method is eligible to be a

process (e.g. verifies if the method takes no arguments and retums void). The code

then gets the method instance for the currently processed object and then verifies if

the method declaration has either a Process tag, a Prnethod tag or callbacks tags.

1. thread:= CreateThread(method instance)

2. process:= CreateProcess (thread)

3. RegisterProcess (process)

4. if HasEventList(method)

5. event list: = GetEventList(method)

6. owners:= GetOwners(event list)

7. event name:= GetEventName(event list)

8. field instances:= GetOwnersFromElementfelement)

9. for each field instance in field instances

10. event:= GetEventfevent naine, field instance)

11. Bindfevent, process)

12. if Not(HasEventList(method)) or SimlnitTagged(metliod)

13. ExecuteAtSimulationlnitialisation(process)

14. if PreCallTagged(method)

15. premetliods:= GetPreCaliMethods (method)

16. foreacli premethod in premethods

17. premethod instance:= GetMethodlnstance(premetliod, element)

18. PreCallHook(process, premethod instance)

19. if PostCallTagged(method)

20. postmethods:= GetPostCallMethods (method)

21. foreach postmethod in postmethods

22. postmethod instance:= GetMethodlnstance(premethod, element)

23. PostCallHook(process, postmetliod instance)

Code example 42: Algorithm part for process methods

The block of pseudo-code in example 42 is responsible for the creation and

management of process methods. It creates a thread for the method instance and then

creates a process method object for the thread. The process method object is then

registered in the kemel. Processing of the static event list is donc next. If no static

event Iist is declared, the process method is registered to be executed before the

simulation starts. Lines 5 to 11 process the process method’s event list and binds il to

the correct event objects. The rest ofthe code deals with methods that must be called

72

before or afier the execution of the process method; these methods are good for pre

and post condition venfication.

1. pmethod 2= CreateProcess(metliod instance)

2. RegisterProcess (pmetliod)

3. if HasEventList(metliod)

4. event list: = GetEventList(method)

5. owners:= GetOwnersfevent list)

6. event name:= GetEventName(event list)

7. field instances:= GetOwnersFromEiement(element)
8. for each field instance in field instances

9. event:= GetEvent(event name, field instance)

10. Bindfevent, pmethod)

11. if Not(HasEventList(method)) or SimlnitTagqed(method)

12. ExecuteAtSimulationlnitialisation (pmethod)

13. if PreCaiiTaggedfmethod)

14. premethods : = GetPreCallMethods (method)

15. foreacli premethod in premethods

16. premetliod instance:= GetMetliodlnstance(premethod, element)

17. PreCaliHook(pmethod, premethod instance)

18. if PostCallTagged(method)

19. postmethods:= GetPostCailMethods (metliod)

20. foreacli postmetliod in postmethods

21. postmethod instance:= GetNethodlnstance(premethod, element)
22. PostCallHook(pmetliod, postmethod instance)

Code example 43: Algorithm part for parallel methods

The pseudo-code in example 43 does almost the same thing as the previous example

but no thread is created for the parallel method.

1. if SimlnitTagged(metliod)

2. SimlnitHook(method instance)

3. if SimEndTagged(method)

4. SimEndHook(method instance)

5. if CycielnitTagged(method)

6. CycielnitHook(method instance)

7. if CycleEndTagged(method)

8. CycieEndHook(method instance)

9. if DeltalnitTagged(rnetliod)

10. DeltalnitHook (method instance)

11. if DeltaEndTagged(rnetliod)

12. DeltaEndHook(method instance)

13. if LastDeltaTaggedfmethod)

14. LastDeltaHook (method instance)

73

15. if PreDeltaUpdateTagged fmethod)

16. PreDeltaupdateHook (metliod instance)

17. if PreDeltalncTagged(method)

18. PreDeitalncHook(method instance)

Code example 44: Algorithm part for callback hooking

The code block in example 44 manages the binding of methods to the various

callback points in the simulation kemel.

Initialization

Initialization is the first step in the ESys.Net scheduler. Processes are flot executed by

default, only processes that have been tagged with a Sirninit directive or processes

that don’t have a sensitivity list (transaction level processes) are executed dunng this

phase.

Process scheduling

The ESys.Net scheduler controls the timing and order of process execution, handies

event notifications and manages updates to channels and signais. It supports the

notion of delta-cycles. ESys.Net processes are pre-emptive. The semantics of the

ESys.Net simulation scheduler are defined by the following eight steps. A delta-cycle

consists of steps 3 through 11. As illustrated by the steps of a simulator scheduler, we

have added many hooking points (steps in bold) within our simulation kemel.

1) muaIization Phase.

2) Execute cycle initialization callbacks

3) Execute delta initialization callbacks

4) Evaluation Phase. from the set of processes that are ready to run,
select a process. The order in which processes are selected for
execution from the set ofprocesses that are ready to mn is unspecified.

5) Execute pre-method callbacks for the current process

6) Resume current process’s execution

7) Execute post-method calibacks for the current process

8) Process execution (The execution ofa process may cause immediate
event notifications to occur, possibly resulting in additional processes
becoming ready to fun in the same evaluation phase)

74

9) Repeat Step 4 for any other processes that are ready to run.

10) Execute pre-update callbacks

11) Update Phase. Update delta-cycle dependent elements that requested
updates (signais and primitive channels)

12)If there are pending delta-delay notifications, determine which
processes are ready to mn and go to step 3.

13)Execute last delta ca]lbacks

14) 1f there are no more timed event notifications, go to step 18.

15) Else, execute cycle cml callbacks

16) Advance the current simulation time to the time of the earliest (next)
pending timed event notification.

17) Determine which processes become ready to mn due to the events that
have pending notifications at the current lime. Go to step 2.

1$) Execute simulation end callbacks

19) The simulation ends here.

61m lnft

Cycle mit
Delta mit

Ele ment discovery/
registration and elaboration

phase

lnftialization phase

75

Choose ready process

Choose ready process and
resume its execution

If no more ready—
processes

Y-
Update Delta

Pre Execution -.

Post Execution-*

H Execute Pre]
Execute

H Execute

Delta End

<ïfpending Delta

Last Delta

Ff pending timed even —f Advance simulation time

Cycle End

61m End

J__SirnubonEnd Z

Figure 10: ESys.Net Scheduler Steps

Figure 10 gives a good view of the simulation kemel. Compared to SystemC, our

simulation kemel bas many callbacks points for third-party tool binding.

Since our hooking points are implemented with delegates and events, it is possible to

hook many callbacks to a same entry point and callbacks may be class instance

methods or static class methods. Also, since we are using delegates, it is possible to

bind a method to a hook point at mntime because it is flot necessary to know at

compile lime the names ofthe methods we want to bind to a delegate.

76

The following is a simple code example that illustrates the instantiation of a model, a

simulator, and a venfication tool, and the binding of the elements. Notice that with a

simple une of code we can bind a method to the Cyctelnit event of a simulator. The

Cyctelnit event is triggered at the beginning of every simulation cycle.

1. public class SimpleBusApp{

2. static public void Main()

3. My VeriTool tool = new VeriToolO;

4. MyModel model = new MyModel(sim);

5. Simulator sim = new Simulator(sbt);

6. sim.cyclelnit += new HookingPoint(tool.verifie);

7. sim.Run(l00000);}}

Code example 45: bol hooking

Chapter 6 Comparîson and Experimental

Resuits

ESys.Net is flot meant to be a new solution but rather an evolution of an existing

solution: SystemC. for this reason we will flot discuss the pros and COflS of pure

modeling semantics and library based approach because SystemC bas already

addressed theses points. Rather, we wilI discuss here the pros and cons of our design

compared to those of ‘SystemC’. Also since ESys.Net is intended to be an evolution

to SystemC, we shah flot compare it to other environments because many articles

already exist that compare SystemC to other alternatives [68] [8] [9].

We tvill present some expenmental resuits collected on performance issues and an

example that illustrates the ease of comiection of a third-party tools to the simulation

kernel.

6.1 Advantages of the Envi ronment

E$ys.Net design bas rnany advantages over those of SysternC. The advantages can be

categorized into three aspects: the simplification of semantics and programming, and

a more open integration.

6.1.1 Semantic Simplification

ESys.Net bas simphified SystemC’s more advanced modeling concepts such as ports

and channels.

78

Unification of ports and interfaces

As mentioned in a previous section, we have unified the concept of ports and

interfaces. This unification has been done for several reasons. Firstly, in SystemC,

ports are intermediate objects that have a predefined interface on which processes

make cails. On a method cail, a port delegates the eau to another interface, which

hides a channel that is contained within it. The predefined interfaces that ports

support in SystemC are very basic — simple read and write calis, for this reason, a

user must use indirection on a port to get a pointer on the contained interface and then

make an indirect cail to that interface. Since SystemC’s main objective is system level

modeling, veiy few designs will be able to use simple read!write cails that do not take

any arguments to mode] complex buses like the ones used in NoC. SystemC has even

questioned the usefulness of ports, but decided to keep them for static binding

verification purposes.

“The question arises whether port objects are needed at ail —

one could argue that it would be sufficient to only have the
notion of interfaces being implemented by channels.
Basically, port objects serve a dual purpose. Firstly, they
allow for the implementation and enforcement of (static)
design rule checks. Secondly, they provide objects that can be
aftached attributes such as names or priorities.”[24]

The first argument based on design ruie verification is flot so justified with .NetJC#.

$ystemC provides a mechanism that allows channels to verify static design rules

when ports are bounded to the channel. The mechanism is provided by a virtual

method called register_port() that channels may ovemde. The method is catled when

a port is bound to the channei. Because SystemC is based on C++, this mechanism

would be very hard to implement without ports. ESys.Net does flot currently have

anything equivalent to this verification mechanism, but an equivalent mechamsm

couid be fairly easily created. Since ESys.Net is based on .Net/C#, reflective

capabilities could be used to analyze a model after the elaboration phase and tu a

data structure in the individual channels with information such as: what modules have

a reference to the channel, which interface is used in the module to abstract the

channel etc.

79

The second argument supporting the usefulness of ports for attaching extra

information such as priorities and naine is flot valid with the help of attribute

programming. Metadata may be attached directly to the interface variable declaration:

1. public class FullAdder: BaseModule{

2. [Priority(1)Jpublic inBool a;

3. public in3ool b;

4.

Code example 46: Metadata (priority)

By unifying the concept of a port and an interface, we have simplified our design

library. Moreover, our models take less memoiy because there is no memory

allocated for an interface.

Unification of primitive and hierarcbical channels [24]

$ystemC lias divided the semantics of high level communication into two orthogonal

entities: primitive channels and hierarchical chaimels. The concept of hierarchical

channels is flot truly defined because they are just modules hiding behind a “typedef’.

We find that this separation is quite arbitrary and that hierarchical channeis should be

better defined.

ESys.Net unifies the two entities making the concept of primitive channels a specific

case of the general concepts of hierarchical channels. This simplification makes for a

simpler environment. Moreover, the concept of a channel in ESys.Net is clearly

separate from the concepts of modules. This separation wiÏl permit tools to easiiy

distinguisli channels from modules in the same way our discovery algorithm does.

61.2 Programming Simplification

The main purpose of system design languages is to model and simulate complex

systems at high and low levels of abstraction. At high levels of abstraction, systems

should be easily modelled and quickly debugged. Since SystemC is based on C++, it

is plagued with ail the complexities of the languages such as pointers, manual

memory management and macros just to name a few. Because of these programming

C complexities, even simple systems become overly complex to model Oust dealing

$0

with header files can be a headache). System designers shouÏd be good at designing

systems flot necessary programming with C++ [17].

The C# programming language offers a simple and elegant basis for the ESys.Net

environment. With C#, designers can focus on the modeling of systems instead of the

ins and outs of the supporting language. Moreover, the dynamic verification that the

.Net runtime does on executing code permits the creation of less error prone systems.

6.1.3 A Simpler Better Framework

Taken as is and for what it is, SystemC is a veiy effective environment. However,

because SystemC is based on a fairly low level language like C++, its evolution and

customization is greatly hindered by its underlining design. for performance reasons

and because C++ does flot support reflective capabilities. SystemC makes excessive

use of macros and obscure design techniques. To stay cross platform, SystemC makes

use of a user side thread library. This is not a problem as such, but when debugging

custom modifications to the simulation kernel, the debugger must go through this

complex code which is a problem. Moreover, custom modifications to the kemel are

often necessary because SystemC’s design vas flot intended for hooking third-party

tools to the simulation kernel [53] [11] . ESys.Net alleviates all these problems by

leveraging the many features of .Net/C#.

Sïmpler design

By leveraging the already rich runtime and class framework provided by .Net/C#,

ESys.Net has a much smaller and simpler design that SystemC. By using the

threading capabilities provided with the runtime, ESys.Net offers cross-platform

threads whose implementation is hidden from the user. This simplifies the debugging

of the simulation kemel. It also shortened the time necessary to develop the kemel

because the thread library is almost trivial compared to QuickThreads (the library

used by SystemC).

By using attribute programming reflectivity and delegates, the use ofpointers, macros

and “typedef s” were completely eliminated, offering a simple design that is easy to

$1

debug. ESysNet is simpler to understand and debug because there are no macro

expansions at compile time, so what is debugged is what is written and flot what has

been expanded. Pointers are also a problem to debug, especially when they are

function pointers.

Modules
Cômmunication channels

Signais
Events

j

Attn bute programming Tagging
Interfaces

Thread management

figure 11 shows how ESys.Net was designed with a layered approach by using

already existing features found in .Net and C#. The further box represents the scope

of .Net, the middle box represents the scope of C# and the top box represents the

scope ofESys.Net.

When features are found in overlappïng boxes, it means that the features are deflned

in the lower box but are leveraged by the higher ones. We can see by the diagram that

ESys.Net only needed to implement the missing hardware semantfcs sucli as modules

signais, etc.; ail the rest cornes from .Net and C#.

As an example of how much code was saved by using .Net and C# to implement

ESysNet, here is a comparison of the scheduling kernels: SystemC’s kernel is very

large, just the scheduling kernei is weli over 1500 unes of code (this is not counting

Figure 11: Leveraging of existing features

$2

the unes of code used by the user side thread libraiy which is about the same size and

the code that is hidden by macro expansions), ESys.Net is only about 500 unes of

code. Because we leverage the use of an advanced programming environment, the

ESys.Net kemel is very simple and can almost be read like pseudo-code which is flot

the case with SystemC.

Open design

The business and academic worlds believe we are going through a design crisis

because the computation power of hardware technologies is growing exponentially

but our ability to produce effective design for these technologies is flot [27)

Environments such as SystemC help designers buïld and test complete systems

rapidly, but design exploration and venficatïon through simulation has its limits. In

order to get past the current design crisis, new sophisticated CAD and EDA tools are

required to perform advanced design analysis and venfication. CAD and EDA tools

could also automate certain aspects of design space exploration with the use of

constraints.

Some environments such as Venlog and SystemVerilog have welI defined APIs that

permit the hooking of third-party tools to the simulation kernel [32] [54] [4] . These

APIs usually permit the registration of callback functions or the ability to introspect

the current model being simulated. However, most of the APIs are overly complex

limiting the rapid design of custom tools. SystemC, because of its design, does not

easily support the hooking of third-party tools. Many have had to modify the

kemel[ll] [53] . Also, since C++ offers no standard reflective capabilities, model

introspection is very Iimited even with the new SystemC Verification Library.

ESys.Net makes third par(y tool hooking simple by providing numerous callback

points in the simulation kemel, making kemel modification almost avoidable in most

cases. Through the use of .Net!C# reflective capabilities, it is feasible for small

development teams to design sophisticated analysis tools rapidly.

The following code examples are excerpts ofa complete programme in Annex C. The

program demonstrates the powerful reflective capabilities of .NetIC# and the simple

83

elegance of third-party tool hooking with ESys.Net. The program 15 a complete

implementation of the simple “MyFirstSystem” example that we presented in section

4.1. The program aiso contains the code for a venfication tool that we will be

presented briefly below. The verification tool, once bound to a system mode!, can

discover ail the signais and ports contained within the mode!. It then keeps a iist of

the elements it finds. The verification tool is then capable of printing out the current

value and name of each signal and port. In the code excerpts that follow, we will

rapidly present the algorithms used for the discovery and pnnting as well as the code

that binds the tool to the simulator.

1. private void DiscoverSignals f ImodelElementContainer

2. element,string parentname)

3. Type type = element.GetTypeU;

4. ArrayList hierarchialElements = new ArrayListO;

5. Object[j couple;

6. foreach(Fieldlnfo fi in type.Getfields(BindingFlags.Instance(

7. BindinqFlags.Public I

8. BindingFlags.NonPublic))

9. Object obi = fi.GetValue(element);

10. if(obj is BaseModule){

11. couple = new Object[2J;

12. couple[O] = parentname + “.“ + fi.Name;

13. couple[l] = obj;

14. hierarchialElements.Add(couple)

15. }else if (obi is BaseSignal)

16. couple = new Object[21;

17. couple[O] = parentname + “.“ + fi.Name;

18. couple[lj = obj;

19. signals.Add(couple);

20.

21.

22. foreachfObject[] pair in hierarchialElements)

23. DiscoverSignals((IModelElementContainer)pair[l],

24. (string) pair[O])

25.

Code example 47: Signal Discovery method

Code example 47 is the code fragment we use to discover the signais and ports ofthe

system model. It is based on the same pseudo-code explained in Chapt5 that the

simulation kemel uses to discovers the various elements ofa model.

$4

1. public void PrintSignalsO{

2. foreach(Object[] pair in signals){

3. Object currentValue = pair[lJ.GetTypeO.

4. GetPropertyf”Value”) .GetValuefpair[l1,null);

5. Console.WriteLine(”

6. Console.WriteLine(”Signal/Port name: {O};”,pair[O]);

7. Console.WriteLine(”Current value: {O};”,currentValue)

8. Console.WriteLine(” f’);

9.

10.

Code exampie 4$: Printing method

Code example 4$ gives the algorithm used to pnnt the current value ofthe signais and

ports fotmd by the tool, as well as their hierarchïcal names.

1. static void Main(string[J args)

2. Simulator sim = new Simulator();

3. MyFirstSystem sys = new MyfirstSystem(sim);

4. SignaiPrinter sp = new SignalPrinter(sys,”MyfirstSystem”);

5. sim.simlnit+= new RunnableMethod(sp.Initialize);

6. sim.cyclelnit+= new RunnableMethod(sp.PrintSignals);

7. sim.Run(20);

8.

Code example 49: Toot hooking

Code example 49 is responsible for hooking the tool’s initialization method to the

Simlnit event of the simulator as well as the tool’s pnnting method to the Cyclelnit

event. When the simulator starts its initialization phase, it will cause the tool to

initialize itself At the beginning of each simulation cycle, the tools wiIl print the

value and names of the signais and ports. The following is part of the simulation

output (the complete output is in Annex B)

Excerpt ofthe ouput:

Signal’Fort name: MyfirsiSystem. sig3;
Current value: O;

SignaliPort naine: MyFirsiSystem. rop.porta;
Current value: O;

$5

With SystemC, a simple but effective tool like the one presented in the previous

pages, is unreasonably complex to create. The simple elegance of third party tools

hooking that ESys.Net supports, we belïeve, is in itself a major contribution to the

comrnunity.

6.2 Disadvantages of the Environment

One advantage of SystemC is that peopie can model software parts of the overail

system and then simulate them. Once those parts are verified, they can be compiled

with already existing tools for a vast number of processors because C/C++ are stiil

the major languages used for software development (especiaÏiy embedded systems).

C# currently lacks this capability because it relies on a runtime.

The generic programming features of C++ don’t have any equivalent in C#. It is

possible to simulate generic programming by writing algorithm with only variables of

type Object. This does not permit the compiler to do static type check and it also

forces the user to use a lot of type casting (slowing down simulation). Generic

programming would simplify the creation of custom user signais that are type safe

and faster to execute. It would also simplify the ESys.Net library because we had to

create a signal for each basic value type supported by the CTS. Ibis said, genenc

programming features have been announced for the next version of .Net\C#; there is

already an experimentai version that is avaïlable caiied Gyro [37].

Another advantage of SysternC is that its simulation library is more complete. It

contains elements for the modeling of fixed point floating types, sorne predefined

channels and the simulator supports many time units just to name a few. Ail of these

features may 5e modeled in ESys.Net. We did not implement them because they did

not add any value to our proof of concept.

6.3 Experimental Resuits

To prove the efficiency of ESys.Net we performed several experiments. The main

critena that we used for the evaluation were the performance and the applicability for

concrete systems modeiing and simulation.

$6

Firstly, we compared the performance ofthe C# language to the C++ language using

a concrete application, the simulation model of a DLX processor. We measured the

simulation time ofthis application for the C# specification execution on .NET and the

C++ description executing natively. The resuits obtained were that the two languages

present comparable capabilities in terms of simulation speed — the C# execution time

penalty was below 10%. These resuits are in concordance with reported numbers

conceming the use ofC# versus C for real-time applications. We consider this penalty

acceptable given the advantages ofthe .NET framework.

In addition, we modeled and simulated a second concrete application. In order to

compare with a well known simulator, we used an application provided by SystemC.

The overview of this application is illustrated in figure 12. The application consists

of 7 main components (Annex A):

a communication channel that ensures the communication between the other

components of the system. These components may be masters or slaves of the

channel. A master module requires communication primitives from the

channel and the slave module offers services to the communication channel;

two memories (the fast memory and the slow memory) that differ by the

number of dock cycles necessaiy to read or write data; the memories are slave

modules ofthe commtmication channel;

• three master modules that readlwrïte date to/from the memories through the

communication channel;

an arbiter that provides a priority based management for the concurrent

requests from the masters.

87

We obtained the correct simulation of the system (verified by comparing the resuits in

our environment with those given by SystemC).

The CLI specification does not mention if threads should be pre-emptive or

collaborative. Microsoft thread implementation is pre-emptive. Pre-emptive threads

permit the modeling of concurrent software components in a precise way, enabling

the verification of race conditions and dead lock. SystemC lacks the capability

because its threads are collaborative. To evaluate the performance penalties of context

switches due to pre-emptive threads, we conducted a simple simulation that modeled

the worse case scenario of a single variable affectation dunng a time suce. We then

added progressively more computation during a time slice to see how the cost would

evolve. Here is a snippet of the code:

1. [Processj

2. [Event List(”sensitive”,”InA”)

3. private void Run()

4. int j;

5. while(true)f

6. for(i=O;i<LINIT;i++){}

7. InA.Value = j;

8. Waït();

9.

‘o.

Code example 50: Context switch verifïcation

We modeled this process in ESys.Net and SysternC with threaded processes and

methods based processes. figure 13 compares the execution time of ESys.Net and

SysternC when the LIMIT parameter ofthe “for” staternent is increased.

Figure 12: General view of the application

88

30.00

1

0 50000 100000 150000
Instructions between context switch

Figure 13: ESys.Net versus SystemC performance

The experiment shows that ouï environment may present a performance penalty.

Even if the computation in .NET threads is executed efficiently, the context switch

and the thread instantiation in the current implementation of .NET are relatively

costly compared to QuickThreads used by SystemC. Consequently, the penalty is

reduced proportionally with the growing complexity of the computation performed in

the threads. The overail performance of .NET threads compared to SystemC threads

may vary ftom 30 times for light threads to Iess than 75% penalty for computation

intensive .NET threads. Using method based processes resuits in a penalty lower that

10% [42].

It is important to emphasize that this performance cost is compensated by two

advantages that are presently missing in SystemC: the possibility of modeling real

multi-threading and the possibility of modeling software components at different

abstraction levels. These advantages are foreseen in the future version of SystemC

and the cost to pay for introducing them have not yet been evaluated. Consequently,

the comparison between ESys.Net and SystemC thread performances is quite unfair

because they are conceptually different. Our expenments only quantify the penalty of

having a real multi-thread based environment.

C

$9

6.4 Summary

Here is a table that summarize the advantages and disadvantages of ESys.Net

compared to SystemC.

Table V: Summary of the Advantages and Disadvantages over SystemC

Advantages

Simpler programming basis The C# programming language is a simpler language

than C++ that offers many high level programming

constructs, hence programmer are more productive

because they can code faster and the code is less error

prone. Using C# also perniits designers to concentrate

more on modeling tasks then on eclectic language

specificities.

Semantic unification The ESys.Net framework has unified some ofthe

modeling concepts found in SystemC : ports and

interfaces, chaimels and primitives channels, which

simplifies the modeling framework and makes it

smaller.

Open design Third party tool integration and CAD tool creating is

made simple by the use ofreflection.

Simpler design The ESys.Net kernel is many times simpler then the

SystemC kemel because it is based on the high level

programming constructs ofC# and the .Net

Framework. Our simpler design permit the ease

debugging of custom modifications.

90

Disadvantages

Incomplete Iibrary The ESys.Net Framework is flot as complete as

SystemC ‘s - we did flot create a complete library

because it dïd flot add to our proof of concept. A

complete library can easily be created.

Code speed The Common Intermediate language execution is

about 10% slower then compiled C++ code. However

we find this cost insignificant compared to the

productivity gains and runtime support offered by

.Net.

Thread speed The modeling processes that are implemented with

.Net threads have a high performance penalty

compared to SystemC’s processes that are modeled

with QuickThreads. However, by using threads that

are pre-emptive and scheduled by the OS, ESys.Net

permits the modeling of concurrent software tasks and

may utilize the parallelisms offered by a

multiprocessor system to gain simulation speedups. 1f

the ability to use libers to implement threads in .Net

became available, the performance cost would

probably be completely eliminated [57].

We believe that the advantages ofESys.Net gain though using the .Net Framework

greatly outweigh the performance penalties that are incurred. Also, we believe that it

is important for the next generation of modeling and simulation tools to put aside

issues of performance penalties that have a constant cost because the growth of

system models is exponential — even a large constant gain in performance will rapidly

become insignificant with the rapid size growth ofsystem models. We believe that

the next generation of solution should put the emphasis on higher modeling

abstractions and higher design productivity.

91

Chapter 7 Summary and Future Work

Nowadays, in order to respect the time to market and strict cost constraints, system

designers need new modeling and simulation solutions. These solutions must enable

easier memoiy management and software component complex specifications, multi

language features and mitigated connection with other existing or new CAD tools.

In this thesis a new solution for modeling and simulating called ESys.Net was

presented. ESys.Net brings to the hardware/software modeling community a new

solution that bas ail the benefits of SystemC without having most of its drawbacks

such as: the complexity ofthe C++ language, the complexity ofthe modeling libraiy,

the lack of introspection, etc. Our solution also fulfihis ah the requirements that we

enumerated in the introduction and with no significant performance cost. The solution

that we propose in this research project is based on the advanced programming

capabilities of the C# programming languages and of the Net Framework runtime.

By leveraging these capabilities, we have developed an environment called ESys.Net

which is meant to be an evolution to SystemC.

Before SystemC become available, designers had to purchase very expensive

proprietary environments for hardware and system modeling. SystemC is distributed

free of ticensing fees which permits small and medium size companies to do design

work without a big investment up front. SystemC is also “open source”, so companies

can modify the environment to incorporate their own custom tools. Nowever, custom

tool integration with SystemC is very difficult and time consuming because of C++

and because of SystemC’s design, sO difficult that major proprietaiy modification to

the kemel usually have to be made. This bas pushed the development of custom tools

out of the realm of reality of many companies, leaving them with the on]y option of

93

purchasing expensive “off the sheif tools” that do flot aiways fulfihÏ ail requirements

the compames would lïke.

Today, even though designers can use SystemC at no cost, if they want to do any

complex modeling, they are almost obliged to go back to buying software with six

digit price tags. By using ESys.Net, designer can avoid being slaves to expensive “off

the sheif’ “one size fits ail solution” (most of us know that one size fits ail does not

exist!). ESys.Net is meant to be a “free” and “open source” solution that wili aiiow

designer to model systems quickly and effectively, and will also allow them to create

sophisticated custom CAD tools cheaply.

7.1 Summary

ESys.Net offers many advantages over its predecessor. Among these are (j) a reduced

set ofmodeling semantics due to concept unification, (ii) a simple programming basis

exempt of eclectic syntactic elements, (iii) a simulation kernel that supports third

party tools integration, (iv) an overali environment that is better suited to less prone

models, (y) a rich software library that permits the modeling of complex software

components (especially operating system elements).In this thesis many concepts were

examined and reviewed. We gave an overview ofthe different environments availaNe

for the modeling and simulation of hardware/software systems. These environrnents

where described only briefly because it was not our intention to justify our solution in

regards to these alternatives. We also presented a brief introduction to the new

challenges facing system designers today and in the future and new software

technologies that might help to solve these problems. We presented the .Net

Framework and the C# programming language in order to expose their advance

features which make up the backbone ofESys.Net. A large part of this thesis explains

the various aspects of our environment. We also compared the simulation kernels of

SystemC and ESys.Net because that is tvhere their most significant differences lay. In

the last pages, we objectively presented the pros and cons of ESys.Net vs SystemC.

We gave some experimental resuits tojustili our solution and we gave an inefutable

example to demonstrate the shear power of our environment.

C

94

7.2 Where Do You Go From Here?

The following are some of the many areas that should be investigated in order to

expand on the work that was done to develop ESys.Net further:

• Beliavioural synthesis

• System partitioning exploration

• Integration of linear temporal logic and assertion verification

• Heterogeneous system modeling

• Cosimulation with SystemC

• Visualisation and model analysis tools

The next important steps should be, however, the optimisation of the simulation

kemel. Even though good performance resuits were collected, many implementation

improvements could and should be done.

In conclusion we would like to point out that this research also confirms that software

expertise might bnng about substantial contribution to the hardware and system

modeling domain.

References

[1J ASML Home Page, www.research.microsoft.comlfoundations/AsmL/, 2003.

[2] Albahari, B., “A Comparative Overview ofC#”,

genamics. comldeveloper/csharp_comparative.htm, 2003.

[3] Bailey, S., “Comparison ofVFIDL, Verilog and SystemVerilog”, Mode!

Technology, Wilsonville, OR, Digital Simulation White Paper, July 2003.

[4] Bailey, S., “VFIDL-200X improves design and verification”, EEDesign,

November 7 2003.

[5] Bellows, P. and Hutchings, B., “JNDL-an HDL for reconfigurable systems”,

IEEE Symposium on FPGAs for Custom Computing Machines, Napa, CA, pp.

175-184, April 1998.

[6] Borrione, D., Piloty, R., Hill, D., Lieberherr, K.J. and Moorby, P., “Three

decades ofNDLs. II. Conlan through Verilog”, IEEE Design & Test of

Computers, vol. 9, issue 2, pp. 54-63, June 1992.

[7] Buchenneder, K., Pyttel, A. and Sedlrneier, A., “A powerful system design

methodology combining OCAPI and Handel-C for concept engineering”,

Design, A ulomat ion and ist in Europe, Paris, France, pp. 870-$74, March

2002.

[8] Cai, L., Verma, S. and Gajski, D., “Companson of SpecC and SystemC

Languages for System Design”, University ofCalifomia, Irvin, Technical

Report CECS-03-1 1, May 2003.

[9] Charest, L. and Aboulhamid, E.M., “A VHDL/SystemC Companson in

Handiing Design Reuse”, International Workshop on System-on-Chïpfor Real

Time Applications, Banff, Canada, pp. 79-85, JuJy 2002.

96

[101 Charest, L., Aboulhamid, E.-M. and Bois, G., “Applying pattems and multi

paradigrn approaches to hardware/soflware design and reuse”, in Fatterns And

$kcletons for Paraliet And Distributed Computing, F. Rabhi and S. Gorlatch,

Eds. London: Springer-Verlag, pp. 297-325, 2002.

[11] Charest, L, Reid, M., Aboulhamid, E. M. and Bois, G., “A Methodology for

Interfacing Open Source SystemC with a Thrid Party Software”, Design,

Automation and Test in Europe, Munich, Germany, pp. 16-20, March 2001.

[12] Chu, Y., Dietmeyer, D.L., Duley, J.R., Hill, F.J., Barbacci, M.R., Rose, C.W.,

Ordy, G., Johnson, B. and Roberts, M., “Three decades ofHDLs. I. CDL

through TI-HDL”, IEEE Design & Test ofComputers, vol. 9, issue 3, pp. 69-

$1, September 1992.

[13J Companson of VHDL, Venlog and System Verilog, www.bitpipe.com!, 2003.

[14] Delpasso, M., Bogliolo, A. and Benini, L., “Virtual Simulation ofDisffibuted

IP-Based Designs”, Design Automation Conference, New Orleans, LA, pp. 50-

55, June 1999.

[15] DotGNU Home Page www.gnu.org/projects/dotgnuJ, 2003.

[16] Doulos “A BriefHistory ofVFLDL”

www.doulos.com/knowhow/vhd] desi gners guide/abriefhistory of_vhdl/,

2003.

[17] Doulos, “SystemC In Europe: (‘urrent Usage and future Requirements”,

www.dou1os.com/, 2003.

[18] Drucker, L, “SystemC Verification Libraiy speeds transaction-based

verification”, EEDesign, February 24 2003.

[19J ECMA-334:Decemher 2002, C# Language Specification.

[20] ECMA-335:December 2002, Common Language Infrastructure (CLI)

[21] Extensible Markup Language (XML), v.w3c.org/XML, 2003.

[221 F. Doucet, S. Shukia, and R. Gupta, “Introspection in system-Ïevel language

frarneworks: meta-level vs. integrated”, De.s ign, Auto,naiion and 7st in

Europe, Munich, Gerniany, pp 382-387, March 2003.

97

[23] Ferrandi, f., Rendine, M. and Sciuto, D., “Functional verification for SystemC

descriptions using constraint solving”, Design, Automation and Test in Europe,

Paris, France, pp. 744-751, Mardi 2002.

[24] functional Specification For SystemC 2 .0, www.systemc.org, 2003.

[25J Goering, R., “Accellera outiines major SystemVenlog enhancements”,

EfDesign, December 4 2003.

[261 Gough, K.J., “Stacking them up: a comparison ofvirtual machines”,

AusfraÏisian Computer Systems Architecture Conference, Queensland,

Australia, pp. 55-61, January 2001.

[27] Hara, Y., “Researchers describe embedded processor design tool”, EEDesign,

May 9 2002.

[281 Hutchings, B. and Nelson, B., “Developing and debugging FPGA applications

in hardware with J}IDL”, TÏiirty-ThirdAsiiomar Co,!ftrence on Signais,

Systems, and Computers, Pacific Grove, CA, pp. 554-55 8, vol. 1, October 1999.

[29] Hyperdictionaiy, “Callback Definition”,

www.hyperdictionary.com/computinWca11back, 2003.

[30] IEEE Std 1076.1-1999:1999, IEEE standard VHDL analog and mixed-signal

extensions.

[31] 1EEE Std 1076-1987:1988, IEEE standard VHDL language reference manual.

[32] TEEE Std 1364-1995:1996, IEEE standard hardware description language based

on the Venlog(R) hardware description language.

[331 ITRS, “International Techno/ogy 1?oudmapfor Semiconductors, 1)esign “, 2001.

[34] Jerraya, A. and Ernst, R., “Multi-language system design”, Design, Automation

and Ist ïn Europe. Munich, Germany, pp. 696-699, March 1999.

[35] Jia, H. and Liu, J., “Developing remote virtual instrument Iaboratory (RVIL)

based on browser/server pattern”, International Conjèrences on 1i/o-tech &

Info-net, Beijing, China, pp. 267-272, vol.4, October-November 2001.

[36] Keating, M. and Bricaud, P., Reztse Methodotogy Manualfor S’stem-on-a-Chip

Designs, 2 Edition, Boston, Kiuwer Academic Publisher, 1999.

98

[37] Kennedy, A. and Syne, D., “Design and Implementation pfGenerics for the

.Net Common Language Runtime”, Programming Language Design and

Implernentation, Snowbird, Utah, pp. 1-12, June 2001.

[381 Khusid, M. and McElrath, L., “StateMate vs. SystemC”, 18-849B Project 1,

March 26 2001.

[39] Kilgore, R.A., “Multi-language, open-source modeling using the Microsoft

.NET architecture”, Winter Simulation Conference, San Diego, CA, pp. 629-

633, December 2002.

[40] Lee, E.A. and Neuendorffer, S., “MoML - A Modeling Markup Language in

)U”vIL, Version 0.4”, Technical Memorandum UCB/ERL M00/12, University of

California, Berkeley, 2000.

[41] Liberty J. “Programming C#: Attributes andRefiection” ,Oreilley,

www. oreillynet. comJpub/a/dotnetJexcerpt/progcsharp ch 1 8/index.html, 2003.

[42] Lutz, M.H and Laplante, P.A., “C# and the .NET framework: ready for real

time?”, IEEE Software, vol. 20, pp. 74-$0, January-february 2003.

[43] Martignano, M, Drago, N., Fummi, F. and Martini, S., “A combined approach

to validate the design of embedded network devices”, IEEE International

Symposium on Circuits and Systems (ISC’AS,), Scottsdal, AR, pp. 169-172 vol .3,

May 2002.

[44] Martin, G., “SystemC and the future of Design Languages: Opportunities for

Users and Research”, Symposiun on Integrated Circuits and System Design,

Sao Paulo, Brazil, pp. 6 1-62, September 2003.

[45] Meijer E., Miller J. Technical “Overview ofthe Common Language 1?untime”

research.microsoft. com/emeij er/Papers/CLR. pdf, 2003.

[46] Mono Home Page, www.o-mono.comI, 2003.

[47] Moorby, P., “A Look Back At Verilog”, Electronic Design, June 10 2002.

[4$] Moores Law, www.webopedia. comJTERM/M/Moores_Law.html, 2003.

[49] .NET frarnework Home Page, www.microsofi.com/net, 2003.

99

[50] Newkirk, J. and Vorontsov A.A., “How .NET’s custom affributes affect design”,

IEEE Software, vol. 19, pp. 1$-20, September-October 2002.

[51J Nicolescu, G. and al., “Validation in a Component-Based Design Flow for

Multicore SoCs”, International Symposium on Systems Synthesis, Kyoto, Japan,

pp 162-167, October 2002.

[52] Overview: Hardware Compilation and the Handel-C language

web. comlab. ox.ac.uk!oucl/work/chnstian.peter/overview handelc.html, 2003.

[53] Paulin, P.G., Pilkington, C. and Bensoudane, E., “StepNP: A System-Level

Exploration Platform for Network Processors”, IEEE Design & Test of

Computers, vol. 19, issue 6, pp. 17-26, November-December 2002.

[54] Rich, D.I., “The evolution of SystemVerilog”, IEEE Design & Test of

Computers, vol. 20, issue 4, pp. 82-$2 July-August 2003.

[55] Rotor Home Page

research.microsofi.comlCollaboration/University/Europe/RFP/Rotorl, 2003.

[56] Sarmenta, L.f.G., Chua, S.J.V., Echevarria, P., Mendoza, J.M.; Santos, R.-R.;

Tan, S. and Lozada, R.P., “Bayanihan Computing .NET: grid computing with

)UvIL web services”, Cluster Computing and the Grid 2nd 1EEEACM

International Symposium, Berlin, Germany, pp. 404-405, May 2002.

[57J Shankar, A. “Implementing Coroutines for .NET by Wrapping the Unmanaged

fiber API”, msdn.microsoft. comJmsdnmag!issues/03/09/CoroutinesinNET/

default.aspx, 2003

[5$] Singer, J., “JVM versus CLR: A Comparative Study”, International Coi’ference

on Principles und Practice ofFrogramming in ,Juva, Kilkenny City, Ireland, pp.

167-169, June 2003.

[59] SpecC Home Page, www.ics.uci.edukspecc/index.html, 2003.

[601 Synopsys, CoCentric® System Studio, 2001.

[61] SystemC Home Page, www.systemc.org/, 2003.

[62] SysternC in Europe - cunent usage and future requirements,

www.doulos.cornlsystemc reportl, 2003.

(

100

[631 SystemC Version 2 LRM, www.systemc.org, 2003.

[641 SystemC Version 2 User’s Guide, www.systernc.org, 2003.

[65] SystemC, Version 2.0, www.systemc.org/, 2003.

[661 T. Grotker, “Modeling software with SystemC 3.0”, www-ti.informatik.i.mi

tuebingen.de/systemc/ Documents/Presentation-6-OSCI5 groetker.pdf, 2003.

[67] Wikipedia, “Hardware Description Language Definition”,

en2.wikipedia.org/wiki/Hardware_description_language, 2003.

[681 Yoo, S. and al., “Building fast and Accurate SW Simulation Models Based on

Hardware Abstraction Layer and Simulation Envïronment Abstraction Layer”,

Design, Automation and Test in Europe, Munich, Germany, pp. 150-155,

March 2003.

Annex A Fifo Channel Example

n

E
:
\R

e
s
e
a
rc

h
\E

S
y

s
D

e
v

\F
if

o
\F

if
o

.
c
s

1
u
s
in

g
S

y
st

e
m

;
2 3

1
/

p
se

u
d
o

c
o
d
e
;

so
m

e
p
a
r
ts

a
re

n
o
t

sh
o

w
n

4
//

5
7
/

IN
T

E
R

F
A

C
E

:
f
i
f
o
r
e
a
d
i
f

6
//

7
p
u
b
li

c
in

te
r
f
a
c
e

f
i
f
o
r
e
a
d
i
f
{

8
v
o
id

re
a
d
(

re
f

in
t

d
a
ta

);
//

b
lo

c
k
in

g
re

a
d

9
b

o
o
l

n
b
r
e
a
d
f

re
f

in
t

d
a
ta

);
//

n
o

n
—

b
lo

c
k

in
g

re
sU

10
u
in

t
n
u
m

a
v
a
il

a
b
le

O
;/

/
re

q
u
e
s
t

#
sa

m
p
le

s
a
v
a
il

a
b
le

11 12 13
/7

14
7
/

IN
T

E
R

F
A

C
E

:
f
i
f
o
w

r
i
t
e
i
f

15
/7

16
p
u
b
li

c
in

te
r
f
a
c
e

f
i
f
o

w
r
i
t
e
i
f
{

17
v
o
id

w
ri

te
(

re
f

in
t

d
a
ta

);
/7

b
lo

c
k

in
g

w
ri

te
18

b
o
o
l

n
b

w
r
it

e
(

re
f

in
t

d
a
ta

);
7

/
n
o
n
—

b
lo

c
k
in

g
w

ri
te

13
u
in

t
n

u
r
n

f
r
e
e
t)

;/
/

re
q
u
e
s
t

#
s
p

a
c
e
s

fr
e
e

2
0 21 22

/7
23

7
/

P
R

IM
IT

IV
E

C
H

A
N

N
E

L
:

f
if

o
24

/7
25

p
u

b
li

c
c
la

s
s

f
if

o
:

B
a
se

C
h

a
n

n
e
l,

f
i
f
o
r
e
a
d
i
f
,

f
if

o
w

r
it

e
±

f
{

2
6

in
t[

]
m

em
;

/7
th

e
f
if

o
m

em
o

ry
27

u
in

t
fr

o
n

t;
/7

s
iz

e
o
f

th
e

f
if

o
29

u
in

t
s
iz

e
;

//
s
iz

e
o
f

th
e

f
if

o
2
9

u
in

t
n
u
m

re
a
d
a
b
le

;
//

#
sa

m
p
le

s
re

a
d
a
b
le

3
0

u
in

t
n

u
m

re
a
d

;
/7

#
sa

m
p
le

s
re

a
d

d
u
ri

n
g

th
is

d
e
lt

a
c
y

c
le

31
u
in

t
n

u
m

w
ri

tt
e
n

;
7

/
#

sa
m

p
le

s
w

ri
tt

e
n

d
u
ri

n
g

th
is

d
e
lt

a
c
y
c
le

32
E

v
e
n
t

d
a
ta

re
sU

=
n
ew

E
v
e
n
t(

);
33

E
v

e
n

t
d

a
ta

w
ri

tt
e
n

=
n

ew
E

v
e
n

t;
34 35

/7
c
o
n
s
tr

u
c
to

r
w

it
h

s
iz

e
3
6

p
u
b
li

c
f
if

o
(

u
in

t
s
iz

e
)

37
V

e
r
if

ic
a
ti

o
n
.A

s
s
e
r
t(

s
iz

e
>

0
,

S
iz

e
m

u
st

b
e

b
ig

g
e
r

th
e
n

0
”

);
38

m
em

=
n

ew
in

t[
s
iz

e
)
;

3
9

th
is

.s
iz

e
=

s
iz

e
;

n
n

n

E
;
\R

e
s
e
a
rc

h
\E

S
y

s
D

e
v

\F
if

o
\F

if
o

.
c
s

2

40 41
//

b
lo

c
k

in
g

re
a
d

an
d

w
ri

te
a
c
c
e
s
s

42
p
u
b
li

c
v
o
id

re
a
d
(

re
f

in
t

d
a
ta

43
if

(
n
u
m

a
v
a
il

a
b
le

()
=

O
44

W
a
it

(
d

a
ta

w
ri

tt
e
n

);
45

n
b

re
a
d
(

re
f

d
a
ta

);
46 47

p
u

b
li

c
v
o
id

w
ri

te
f

re
f

in
t

d
a
ta

)
f

48
if

(
n

u
m

fr
e
e
()

=
=

O
49

W
a
it

(
d

a
ta

re
a
d

);
50

n
b
w

ri
te

f
re

f
d

a
ta

);
51 52

//
n
o
n
-b

lo
c
k
in

g
re

a
d

an
d

w
ri

te
a
c
c
e
sa

53
//

re
tu

rn
‘t

ru
e
’

o
n

su
c
c
e
ss

54
p
u
b
li

c
b
o
o
l

n
b
re

a
d
(

re
f

in
t

d
a
ta

)
55

if
(

n
u
m

a
v
a
il

a
b
le

()
=

=
O

56
re

tu
rn

fa
ls

e
;

57
n
u
m

re
a
d

+
+

;

58
R

e
q

u
e
st

U
p

d
a
te
;

59
d
a
ta

=
m

e
m

[f
ro

n
t—

l]
;

60
fr

o
n
t—

—
;

61
re

tu
rn

tr
u

e
;

62 63
p
u

b
li

c
b
o
o
l

n
b

w
ri

te
t

re
f

in
t

d
a
ta

64
1
ff

n
u

m
fr

e
e
()

O
65

re
tu

rn
fa

ls
e
;

66
n

u
m

w
ri

tt
e
n

+
+

;

67
R

e
q

u
e
st

U
p

d
a
te

f)
;

68
m

e
m

[f
ro

n
t)

=
d
a
ta

;
69

fr
o
n
t+

+
;

70
re

tu
rn

tr
u

e
;

71 72
//

re
q
u
e
s
t

#
sa

m
p
le

s
a
v

a
il

a
b
le

an
d

#
sp

a
c
e
s

fr
e
e

73
p

u
b

li
c

u
in

t
n

u
m

a
v

a
il

a
b

le
()

t
re

tu
rn

fn
u
m

re
a
d
a
b
le

—
n

u
m

re
a
d

);
74

p
u

b
li

c
u
in

t
n

u
m

fr
e
e
()

f
re

tu
rn

(s
iz

e
—

n
u

m
re

a
d

a
b

le
—

n
u
m

w
ri

tt
e
n
);

}
75 7
6

p
u

b
li

c
o

v
e
rr

id
e

v
o
id

U
p

d
a
te

()
77

if
f

n
u

m
w

ri
tt

e
n

>
O

78
d
a
ta

w
ri

tt
e
n
.N

o
ti

fy
(0

);

n
tf

l

E
:
\R

e
s
e
a
rc

h
\E

$
y
s
D

e
v
\F

if
o
\F

if
o
.

c
s

3

7
9

if
)

n
u
m

re
a
d

>
O

80
d
a
ta

re
a
d
.N

o
ti

fy
(0

)
81

n
u

m
re

a
d

a
b

le
=

tu
in

t)
m

e
m

.L
e
n
g
tl

i;
82

nu
m

re
a
d

=
n

u
m

w
ri

tt
e
n

=
0

;
83

}
—

84 85 86
//

87
//

E
X

A
M

PL
E

88
//

89
p
u
b
li

c
c
la

s
s

w
ri

te
r

:
B

a
se

M
o

d
u

le
{

90
p

u
b

li
c

f
i
f
o
w

r
i
t
e
i
f

o
u
tp

u
t;

91 92
[P

ro
c
e
s
s
]

93
v
o
id

m
a
in

a
c
ti

o
n
()

94
in

t
v

a
l

=
0

;
95

w
h
il

e
(

tr
u
e

9
6

W
a
it

(
1
0
);

//
w

a
it

fo
r

10
n
s

97
fo

rf
in

t
i

=
0

;
i

<
2
0
;

i
+

+
){

98
o
u
tp

u
t.

w
r
it

e
(
r
e
f

v
a
l)

;
/1

b
lo

c
k
in

g
w

ri
te

99
v

a
l+

+
;

1
0

0
1

0
1

1
0
2

1
0

3
1
0
4

1
0

5
p

u
b

li
c

c
la

s
a

re
a
d
e
r

:
B

a
se

M
o

d
u

le
{

1
0
6

p
u

b
li

c
f
i
f
o
r
e
a
d
i
f

in
p
u
t;

1
0

7
1

0
8

[P
ro

c
e
s
a
]

1
0

9
v
o
id

m
a
in

a
c
ti

o
n
()

{
1

1
0

in
t

v
a
l=

0
;

1
1

1
w

h
il

e
(

tr
u
e

)
1

1
2

W
a
it

(1
0
);

//
w

a
it

fo
r

10
n

a
1

1
3

fo
r)

in
t

i
=

0
;

i
<

1
5
;

i
+

+
)

1
1

4
in

p
u

t.
re

a
d

(
re

f
v
a
l)

;
//

b
lo

c
k
in

g
re

ad
1

1
5

C
o
n
s
o
le

.W
ri

te
L

in
e

(v
a
l)

;
1
1
6

1
1

7
}

n
n

in

E
:
\R

e
s
e
a
rc

h
\E

S
y
s
D

e
v
\f

if
o
\F

if
o
.

c
s

4

1
1
8

1
1
9

1
2

0
1

2
1

p
u
b
li

c
c
la

s
s

m
o

d
e
l:

S
y

st
e
m

M
o

d
e
l{

1
2

2
//

d
e
c
la

re
c
h

a
n

n
e
l(

s
)

1
2

3
f
if

o
f

=
n
ew

f
if

o
(

10
);

1
2
4

//
in

s
ta

n
ti

a
te

b
lo

c
k
(s

)
a
n
d

c
o
n
n
e
c
t

to
c
h
a
n
n
e
l(

s
)

1
2

5
w

ri
te

r
w

=
n
ew

w
r
it

e
r
(
)
;

1
2

6
re

a
d
e
r

r
n
ew

re
a
d

e
rO

;
1

2
7

1
2

8
p
u

b
li

c
m

o
d

e
l(

IS
y

st
e
m

N
a
n

a
g

e
r

m
a
n

a
g

e
r,

S
tr

in
g

n
am

e)
:b

a
s
e
(m

a
n

a
g

e
r,

n
am

e)
1
2
9

w
.o

u
tp

u
t

=
f;

1
3

0
r
.i

n
p

u
t

f;
1

3
1

1
3

2
1

3
3

1
3
4

1
3

5
p

u
b

li
c

c
la

s
s

A
p

p
{

1
3
6

1
3

7
p
u

b
li

c
s
ta

ti
c

v
o
id

M
a
in

))
1
3
8

S
im

u
la

to
r

si
m

=
ne

w
S

im
u

la
to

r
;

1
3

9
m

o
d
e
l

m
=

n
ew

m
o
d
e
l(

s
im

,
“
E

x
e
m

p
le

”
);

1
4
0

s
im

.R
u
n
(1

0
0
0
);

1
4

1
C

o
n

s
o

le
.R

e
a
d

L
in

e
()

1
4

2
1

4
3

II

Annex B Simple Bus Example

E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u
s
\E

n
u
m

s
.c

s

1
p

u
b

li
c

en
u
m

s
im

p
le

b
u

s
lo

c
k

s
ta

tu
s

2
{

3
S

IM
P

L
E

B
U

S
L

O
C

K
N

O
=

O
,

4
S

IM
P

L
E

B
U

S
L

O
C

K
S

E
T

,
5

S
IM

P
L

E
B

U
S

L
O

C
K

G
R

A
N

T
E

D
6
}

7 8
p

u
b

li
c

en
u

m
s
im

p
le

b
u

s
s
ta

tu
s

1
0

S
IM

P
L

E
B

U
S

O
K

=
O

,
1

1
S

IM
P

L
E

B
U

S
R

E
Q

U
E

S
T

,
1

2
S

IM
P

L
E

B
U

S
M

A
lT

,
1

3
S

IM
P

L
E

B
U

S
E

R
R

O
R

14

n
n

n E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u

s
\S

im
p

le
B

u
s
\I

n
te

rf
a
c
e
s
.c

s

1
u
s
in

g
S

y
s
te

m
.C

o
ll

e
c
ti

o
n
s

3
p

u
b

li
c

in
te

r
f
a
c
e

s
im

p
le

b
u

s
a
r
b
it

e
r

if
4 5

s
im

p
le

b
u

s
re

q
u
e
s
t

a
r
b
it

r
a
te

f
A

r
r
a
y

L
is

t
re

q
u

e
s
ts

)
6
}

7 8
p

u
b

li
c

in
te

r
f
a
c
e

s
im

p
le

b
u

s
b

lo
c
k
in

g
if

9
{

10
s
im

p
le

b
u

s
s
ta

tu
s

b
u
rs

t
re

a
d

(u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

11
s
im

p
le

b
u

s
s
ta

tu
s

b
u
rs

t_
w

ri
te

(u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

12
s
im

p
le

b
u

s
s
ta

tu
s

b
u
rs

t
re

a
d

(u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

13
s
im

p
le

b
u

s
s
ta

tu
s

b
u
rs

t
w

ri
te

(u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

14 15 16 17
p

u
b

li
c

in
te

r
f
a
c
e

s
im

p
le

_
b

u
s
_

d
ir

e
c
t_

if

b
o
o
l

d
ir

e
c
t

r
e
a
d
(
r
e
f

in
t

d
a
ta

,
u

in
t

a
d

d
re

s
s
);

b
o
o
l

d
ir

e
c
t

w
r
it

e
(
r
e
f

in
t

d
a
ta

,
u

in
t

a
d
d
re

s
s
);

23 24
p

u
b

li
c

in
te

r
f
a
c
e

s
im

p
le

b
u

s
n

o
n

b
lo

c
k
in

g
if

v
o
id

re
a
d
(u

in
t

u
n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d
a
ta

,
u
in

t
a
d
d
re

s
s
,

b
o
o
l

u
lo

c
k
);

v
o
id

w
r
it

e
(
u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

in
t[

J
d

a
ta

,
u
in

t
a
d
d
re

s
s
,

b
o
o
l

u
lo

c
k

);
v
o
id

re
a
d
(u

in
t

u
n

iq
u

e
p

r
io

r
it

y
,

in
t[

J
d

a
ta

,
u
in

t
a
d
d
r
e
s
s
)
;/

/f
a
ls

e
v
o
id

w
r
it

e
(
u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d

a
ta

,
u

in
t

a
d
d
r
e
s
s
)
;/

/f
a
ls

e
s
im

p
le

b
u

s
s
ta

tu
s

g
e
t_

s
ta

tu
s

(u
in

t
u

n
iq

u
e

p
r
io

r
it

y
)
;

3
3

34
p

u
b

li
c

in
te

r
f
a
c
e

s
im

p
le

b
u

s
s
la

v
e

if
:

s
im

p
le

b
u
s

d
ir

e
c
t

if
35

t
3

6
s
im

p
le

b
u

s
s
ta

tu
s

r
e
a
d
(
r
e
f

in
t

d
a
ta

,
u
in

t
a
d

d
re

s
s
);

37
s
im

p
le

b
u

s
s
ta

tu
s

w
r
it

e
(
r
e
f

in
t

d
a
ta

,
u

in
t

a
d
d
re

s
s
);

38
u

in
t

s
ta

r
ta

d
d
r
e
s
s
{
g
e
t;

}
3
9

u
in

t
e
n
d
a
d
d
re

s
s
{
g
e
t;

}

18 1
9

2
0

2
1

22

in
t[

]
d

a
ta

,
u

in
t

s
ta

r
ta

d
d
r
e
s
s

,
b
o
o
l

u
lo

c
k

);
in

t[
]

d
a
ta

,
u

in
t

s
ta

r
ta

d
d
r
e
s
s
,

b
o
o
l

u
lo

c
k

);
in

t[
)

d
a
ta

,
u

in
t

s
ta

r
ta

d
d
r
e
s
s
)
;/

/f
a
ls

e
in

t[
]

d
a
ta

,
u

in
t

s
ta

r
ta

d
d
r
e
s
s
)
;/

/f
a
ls

e

2
5

2
6

27 28 2
9

3
0

31 32

(n
u
(n
G)
u
(n

w
-(J

H

(n

G)
H
Q

-H
U)

(n

-Q

G)
H
Q

-H
(n

-Q
u
u
G)
(n
w

O H U) O Lf)
O O O O O O

E
:
\R

e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u

s
\S

im
p

le
B

u
s

c
s

1

1
u
s
in

g
S

y
st

e
m

;
2

u
s
in

g
S

y
s
te

m
.C

o
ll

e
c
ti

o
n
s
;

3 4
p

u
b

li
c

c
la

s
s

s
im

p
le

b
u

s
:

B
a
se

C
li

a
n
n
e
l,

s
im

p
le

b
u
s

d
ir

e
c
t

if
,

s
im

p
le

b
u
s

n
o

n
b
lo

c
k
in

g
if

,
s
im

p
le

b
u
s

b
lo

c
k
in

g
if

5
p

u
b

li
c

d
o

c
k

d
o

c
k

;
6

p
u
b
li

c
s
im

p
le

b
u

s
a
r
b
it

e
r

if
a
r
b
it

e
r

p
o

rt
;

7
p
u
b
li

c
A

rr
a
y

L
is

t
s
la

v
e

p
o
rt

=
n

ew
A

r
r
a
y
L

is
t;

8
p
ri

v
a
te

b
o
o
l

m
v
e
rb

o
s
e
;

9
p

r
iv

a
te

A
rr

a
y

L
is

t
m

re
q

u
e
s
ts

=
n

ew
A

r
r
a
y
L

is
t;

10
p
ri

v
a
te

s
im

p
le

b
u

s
re

q
u
e
s
t

m
c
u

r
r
e
n

tr
e
q

u
e
s
t=

n
u

ll
;

11 12
p

u
b

li
c

s
im

p
le

b
u

s
(s

tr
in

g
n
a
m

e
,

b
o
o
l

v
e
rb

o
s
e
)

:b
a
s
e

(n
a
m

e
)

{m
v
e
rb

o
s
e
=

v
e
rb

o
s
e
;

13
p

u
b

li
c

s
im

p
le

b
u

s
(s

tr
in

g
n
a
m

e
)

:b
a
se

fn
a
m

e
)
{
m

v
e
rb

o
s
e
=

fa
ls

e
;}

14 15
[S

im
ln

it
]

1
6

p
u

b
li

c
v
o
id

e
n

d
o

f
e
la

b
o

r
a
ti

o
n

t)
17

/1
p
e
rf

o
rm

a
s
ta

ti
c

c
h
e
c
k

fo
r

o
v
e
rl

a
p
p
in

g
m

em
o
ry

a
re

a
s

o
f

th
e

s
la

v
e
s

18
b
o
o
l

n
o
o
v
e
r
la

p
;

1
9

fo
r

ti
n

t
i

=
;

i
<

s
la

v
e

p
o

rt
.C

o
u

n
t;

+
+

i)
f

20
s
im

p
le

b
u

s
s
la

v
e

if
s
la

v
e
l

=
s
la

v
e
p
o
r
t[

i]
a
s

s
im

p
le

b
u
s

s
la

v
e

if
;

21
fo

r
ti

n
t

j
=

0
;

j
<

j;
++

j)
22

s
im

p
le

b
u

s
s
la

v
e

if
s
la

v
e
2

=
s
la

v
e

p
o
r
t[

j]
a
s

s
im

p
le

b
u
s

s
la

v
e

if
;

23
n

o
o

v
e
rl

a
p

=
(
s
la

v
e
l.

e
n

d
a
d

d
r
e
s
s

<
s
la

v
e
2
.s

ta
r
ta

d
d
r
e
s
s
)

I
(
s
la

v
e
l.

s
ta

r
ta

d
d

r
e
s
s

>
s
la

v
e
2

.
e
n

d
a
d
d
r
e
s
s
)
;

24
if

t!
n

o
o

v
e
rl

a
p
)

2
5

C
o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

E
rr

o
r:

o
v
e
rl

a
p
p
in

g
a
d
d
re

s
s

s
p
a
c
e
s

o
f

2
s
la

v
e
s

:
2
6

C
o

n
s
o

le
.O

u
t.

W
ri

te
L

in
e
(”

s
la

v
e

{0
}

:
{
l}

X
..
{
2
}
X

”
,i

,s
la

v
e
l.

s
ta

r
ta

d
d
r
e
s
s
,s

la
v
e
l.

e
n
d
a
d
d
r
e
s
s
)
;

27
C

o
n

s
o

le
.O

u
t.

W
ri

te
L

in
e
(”

s
la

v
e

{0
}

:
{
1

}
X

..
{
2

}
X

t’
,j

,s
la

v
e
2
.s

ta
r
ta

d
d

r
e
s
s
,s

la
v

e
2

.e
n

d
a
d

d
r
e
s
s
)
;

28
S

y
s
te

m
.E

n
v

ir
o
n
m

e
n
t.

E
x
it

(1
);

2
9

30 31 32 33 34
//

3
5

//—
—

p
ro

c
e
s
s

3
6

//
37

[P
M

e
th

o
d
]

38
{
E

v
e
n

tL
is

t(
”
n

e
g

e
d

g
e
”
,”

c
lo

c
k
”
)]

U)
o

U)

G)
H

-H
U)

U)
:3

G)
H

U)

U)
:3
0

G)
H

-H
U)

-:3
o
44
G)
G)
U)
G),

U)

4-)
-:3

-H G)
3]

-H
4)-Q
:34-4
0G)
0

G)
U)-:3

-H 4]

G)G)
>44
G) -H
—4:3

G)

4]
3]U) U)

4] G)
4-4G) :3
4)4)
1-):3 G)

44
G)G)

44 3]
0
4)4] -G)
44G)
G)44 •H
G) :3 :3:31]
H -H :3 G)
O G) Q)

Q) II
— G) 44 G) II II

-H 44
4-43.44]4]

4] U) U) G) G)
:3U):3G)G)G)

-H 44 0’ 0’ 0’
3] Q’3] G) G) G)
0G) 4-44-444
G)44G)

4] G)4]3]
:33] G).0

-H D 1] G) G)
G)G) 4444
Q 4.44)4] 4444

4-1H 0 0 :3
- :3 Q)G) o o
-H O —l
o -HG)QQG)’-..-H
>QG)G)- U)

H
G)

H
.0
:3

H
H —

O H
r H

O

1].-.1]
G)—. G)
G)_ G)
04] 0
0’ ci’—
W 4) G)
4-401-4 G)

0’
4] 4)4] 0

G) 04H
444)1-4 I
O H 4-4 44

0G)
OOG)

1G) H
Q o

4-4 14-4

-— -H -H

U)
U)
G)
44
0

-ci
G)

I G)
I :3
I Q)
I -H
I I H
I I H

G)

I I -
I 44
I I O

I I 3]
I 0

:3

I I X
U),

I ci

I I OU)
I—G)G)

I 0W
I I—.c3)O
I I G)-H0
I G)H0

I G)HG)
I 44G)
I I0 A
I I3I
I I
I I O
I I3]O
I lO O
I I-H4]
I I

OU)

I I (GU)U)
I I4U)Q)
I I
I 1044
I I
I I
I I
I I-H G)
I I
I I
I I
I G)I 4-I G)
I O I
I G)10 -H

4-4 I G)Q 44
44I G) .-

t G) O U W
13.41 :--33U)
1013-) 0H
I-H Oi’O G)

I 0-4e .4-4
U) I 4-4 G) G)

I O I -H G) H O
OG)0O

I 44U)O
4] H -cl o 3]
O I 0)3 0W

I U) I O G)U O
O I

-H
04-4

I I-H-H
H

I .0
— — — :3
- — — Q

U)
G)
W
44

U)
U) G)
G)
44 3]

O
-H

G) O

3] 4]
G) G)

t)

4-1 4]
W :3

-H

t) 4-4
G) G)
G) 4-4
4-I

G)
4] 3]
O -H
G) 4-4
44

HG) -H
HH O 4]
0G) O
:34.4 4) 0
II > 44
110 G) -H
0344 H t)
>0 G)
G)1] H
HO :3 0
U)44 44 0

— :3
3]

4-1 0 0
-H 44 -H

H
.0
O

U)
U)
G)
44

-G)
t)
G)

p
G)
W
:3
0’
W
44

-4]
O
G)
O
44
:3
o

Q’
Q

C
H

G)
Q

-H
H
3]
:3
O
44
44
O
u

t)

H

Q)

Q
U) —

W
4.3
(G G)
3] :3
U) -H

1] 0
-H 4]
G) -H

44

W
U’ 3]
(G— O
H G)O
U)U)

0G)
O.QH
000
4]G)G)
-H U’ 0
0 ‘0
o Qu
Q—

U)
U)
G)
44
t)
t)
G)

G)
U’
G)
H
G)

G)
Q)

G)
U’
G)
H
U)

4-1
-H
4)1

U’
G)
H
U)-

U)
:3

O
H

Q
-H

G)

0) Q H c-3 c-) U)’ in 4-D r— 40 0) Q H r-I e) U)’ 3D -D r— Q 0) ci H c-3 e) U)’ ifl 4-D r- W 0) ci H C-3 e) U)’ 10 4-0 r—
c-) U)’ U)’ U)’ U)’ e e U)’ ‘ ‘ in in in in in in in in D 10 4-D 4-D 4-D 4-D 4-04-D 4-D 4-D 4-D 4-D r- r— r- i-. r- t-. t-. r-

E
:
\R

e
s
e
a
rc

h
\s

im
p
le

b
u

s
\S

im
p

le
B

u
s
\S

im
p

le
3

u
s
.

c
s

3

78
if

(a
d

d
re

ss
%

4
!=

O
)

(1
/

a
d
d
re

s
s

fl
o
t

w
o

rd
a
ll

ig
n
e
d

7
9

C
o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

B
U

S
E

R
R

O
R

—
—

>
a
d
d
re

s
s

(0
}
4
X

fl
o

t
w

o
rd

a
ll

ig
n

e
d

”
,a

d
d

r
e
s
s
)
;

80
re

tu
rn

f
a
ls

e
;

81 82 83
s
im

p
le

b
u

s
s
la

v
e

if
s
la

v
e

=
g
e
ts

la
v
e
ta

d
d
r
e
s
s
)
;

84 85
if

(s
la

v
e
=

=
n
u
ll

)
8
6

re
tu

rn
f
a
ls

e
;

87 88
re

tu
rn

s
la

v
e
.d

ir
e
c
tw

r
it

e
f
r
e
f

d
a
ta

,
a
d

d
re

s
s
);

8
9 90 91

//
92

/1
—

—
n
o
n
—

b
lo

c
k
in

g
B

U
S

in
te

r
f
a
c
e

93
/1

94
p

u
b

li
c

v
o

id
re

a
d
(u

in
t

u
n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d

a
ta

,
u
in

t
a
d

d
re

s
s
)

95
r
e
a
d
(
u
n
iq

u
e
p
r
io

r
it

y
,d

a
ta

,a
d
d
r
e
s
s
,f

a
ls

e
)
;

96 97 98
p

u
b

li
c

v
o
id

re
a
d
(u

in
t

u
n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d

a
ta

,
u

in
t

a
d
d
re

a
s
,

b
o
o
l

u
lo

c
k

)
99

if
(m

v
e
rb

o
s
e
)

1
0
0

C
o

n
s
o

le
.O

u
t.

W
ri

te
L

in
e
f”

{
O

:g
}

{
l:

s
}

:
re

a
d
({

2
:d

}
)

Ø
{
3
:x

}
”
,

C
u

rr
e
n

tT
im

e
/1

0
.0

,
N

am
e,

u
n

iq
u

e
p
r
io

r
it

y
,

a
d
d
re

s
s
)

1
0

1
1

0
2

s
im

p
le

b
u

s
re

q
u
e
s
t

re
q
u
e
s
t

=
g

e
t

re
q

u
e
s
t

(u
n
iq

u
e

p
r
io

r
it

y
)
;

1
0

3
//

a
b

o
rt

w
h
en

th
e

re
q

u
e
s
t

is
s
t
i
i
l

n
o
t

fi
n
is

h
e
d

1
0

4
V

e
r
if

ic
a
ti

o
n
.A

s
s
e
r
t(

tr
e
q
u
e
s
t.

s
ta

tu
s

=
=

s
im

p
le

b
u
s

st
a
tu

s.
S

IM
P

L
E

B
U

S
O

K
)

II
(
r
e
q
u
e
s
t.

s
ta

tu
s

=
=

s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
E

R
R

O
R

)
,
“
E

rr
o
rl

in
B

u
s”

);
1
0

5
1
0
6

r
e
q

u
e
s
t.

d
o

w
r
it

e
=

f
a
ls

e
;

1
0

7
re

q
u
e
s
t.

a
d
d
re

s
s

=
a
d
d
re

s
s
;

1
0

8
r
e
q
u
e
s
t.

e
n
d
a
d
d
r
e
s
s

=
a
d
d
re

s
s
;

1
0
9

re
q

u
e
s
t.

d
a
ta

=
d
a
ta

;
1
1
0

l
i
i

if
(u

lo
c
k

)
1

1
2

re
q
u
e
s
t.

u
lo

c
k

=
(r

e
q

u
e
s
t.

u
lo

c
k

=
=

s
im

p
le

b
u
s

lo
c
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
L

O
O

K
S

E
T

)
?

1
1

3
s
im

p
le

b
u

s
lo

c
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
L

O
O

K
G

R
A

N
T

E
D

:
s
im

p
le

b
u
s

lo
c
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
L

O
C

K
S

E
T

;
1
1

4

E
:
\R

e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u
s
\S

im
p
le

B
u
s
.

c
s

4

1
1

5
r
e
q
u
e
s
t.

s
ta

tu
s

=
s
im

p
le

b
u
s

s
ta

tu
s

S
IM

P
L

E
B

U
S

R
E

Q
U

E
S

T
;

1
1
6

1
1

7
1
1

8
p

u
b

li
c

v
o
id

w
r
it

e
(
u
in

t
u
n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d

a
ta

,
u

in
t

a
d
d
re

s
s
){

1
1

9
w

r
it

e
(
u
n
iq

u
e
p
r
io

r
it

y
,

d
a
ta

,a
d
d
r
e
s
s
,f

a
ls

e
)

1
2

0
1

2
1

1
2

2
p

u
b

li
c

v
o
id

w
r
it

e
tu

in
t

u
n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d

a
ta

,
u

in
t

a
d
d
re

s
s
,

b
o
o
l

u
lo

c
k

)
1

2
3

if
(m

v
e
rb

o
s
e
)

1
2

4
C

o
n

s
o

le
.O

u
t.

W
ri

te
li

n
e
f”

{
O

:g
}

(1
:s

}
:

w
ri

te
({

2
:d

}
)

8
3
:x

}
v
,

C
u

rr
e
n

tT
im

e
/1

0
.0

,
N

am
e,

u
n

iq
u

e
p
r
io

r
it

y
,

V
a
d
d
re

s
s
)

1
2

5
1
2
6

s
im

p
le

b
u

s
re

q
u
e
s
t

re
q
u
e
s
t

=
g
e
tr

e
q
u
e
s
t(

u
n
iq

u
e
p
r
io

r
it

y
)
;

1
2

7
/7

a
b
o
rt

w
h
e
n

th
e

re
q

u
e
s
t

is
s
t
i
i
l

fl
o
t

f
in

is
h
e
d

1
2

8
V

e
r
if

ic
a
ti

o
n
.A

s
s
e
r
t(

(
r
e
q
u
e
s
t.

s
ta

tu
s

=
=

s
im

p
le

b
u

s
s
ta

tu
s
.S

IM
P

L
E

B
U

S
O

K
)

I
f
r
e
q
u
e
s
t.

s
ta

tu
s

=
=

V
s
im

p
le

b
u

s
s
ta

tu
s
.S

IM
P

L
E

B
U

S
E

R
R

O
R

)
,
“
E

rr
o
r2

in
B

u
s
”
);

1
2
9

1
3

0
r
e
q

u
e
s
t.

d
o

w
r
it

e
=

tr
u
e
;

1
3

1
r
e
q
u
e
s
t.

a
d
d
r
e
s
s

=
a
d
d
re

s
s
;

1
3

2
r
e
q
u
e
s
t.

e
n
d
a
d
d
r
e
s
s

=
a
d
d
re

s
s
;

1
3
3

r
e
q

u
e
s
t.

d
a
ta

d
a
ta

;
1

3
4

1
3

5
if

(u
lo

c
k

)
1
3
6

r
e
q
u
e
s
t.

u
lo

c
k

=
(r

e
q

u
e
s
t.

u
lo

c
k

=
=

s
im

p
le

b
u
s

lo
c
k

s
ta

tu
s
.S

IM
P

L
E

B
U

S
L

O
C

K
S

E
T

)
?

1
3

7
s
im

p
le

b
u

s
lo

c
k

s
ta

tu
s
.S

IM
P

L
E

B
U

S
L

O
C

K
G

R
A

N
T

E
D

:
s
im

p
le

b
u
s

lo
c
k

s
ta

tu
s
.S

IM
P

L
E

B
U

S
L

O
C

K
S

E
T

;
1

3
8

1
3
9

r
e
q
u
e
s
t.

s
ta

tu
s

s
im

p
le

b
u
s

s
ta

tu
s

S
IM

P
L

E
B

U
S

R
E

Q
U

E
S

T
;

1
4

0
1

4
1

1
4

2
p
u
b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

g
e
t

s
ta

tu
s
(
u
in

t
u
n
iq

u
e

p
r
io

r
it

y
)

1
4

3
r
e
tu

r
n

g
e
t

re
q
u
e
s
t

(u
n

iq
u
e

p
r
io

r
it

y
)

.s
ta

tu
s
;

1
4

4
1

4
5

1
4
6

/7
1

4
7

//
-—

b
lo

c
k
in

g
B

U
S

in
te

r
f
a
c
e

1
4

8
//

1
4
9

p
u
b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

b
u

r
s
t

r
e
a
d
(
u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d

a
ta

,
u

in
t

s
ta

r
ta

d
d

r
e
s
s
)

1
5

0
r
e
tu

r
n

b
u
r
s
tr

e
a
d
(
u
n
iq

u
e
p
r
io

r
it

y
,

d
a
ta

,
s
ta

r
ta

d
d
r
e
s
s
,

f
a
ls

e
)

1
5

1

n
n

E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u

s
\S

im
p

le
B

u
s
\S

im
p
le

s
u
s
.c

s
5

1
5

2
1
5
3

p
u

b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

b
u
rs

t
re

a
d
(u

in
t

u
n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d
a
ta

,
u

in
t

s
ta

r
ta

d
d
r
e
s
s
,

b
o
o
l

u
lo

c
k

)
1

5
4

if
(m

v
e
rb

o
s
e
)

1
5

5
C

o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

(O
:g

}
(l

:s
}

b
u
rs

t—
re

a
d
({

2
:d

}
)

6
{
3
:x

}
”
,

C
u

rr
e
n

tT
im

e
/l

O
.0

,
N

am
e,

u
n

iq
u

e
p
r
io

r
it

y
,1

s
ta

r
ta

d
d
r
e
s
s
)

1
5

6
1

5
7

s
im

p
le

b
u

s
re

q
u
e
s
t

re
q

u
e
s
t

=
g
e
t

re
q
u
e
s
t

(u
n
iq

u
e

p
r
io

r
it

y
)
;

1
5

6
1
5

9
r
e
q

u
e
s
t.

d
o

w
r
it

e
f
a
ls

e
;

1
6
0

re
q
u
e
s
t.

a
d
d
re

s
s

=
s
ta

r
ta

d
d
r
e
s
s

1
6

1
r
e
q
u
e
s
t.

e
n
d
a
d
d
r
e
s
s

=
s
ta

r
t

a
d
d
re

s
s

+
tu

in
t)

(d
a
ta

.G
e
tL

e
n

g
th

(0
)1

)*
4

;
1

6
2

re
q

u
e
s
t.

d
a
ta

=
d
a
ta

;
1

6
3

1
6

4
if

(u
lo

c
k

)
1

6
5

re
q
u
e
s
t.

u
lo

c
k

=
(r

e
q

u
e
s
t.

u
lo

c
k

=
=

s
im

p
le

b
u
s

lo
o
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
L

O
C

K
S

E
T

)
?

1
6
6

s
im

p
le

b
u

s
lo

c
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
L

O
C

K
G

R
A

N
T

E
D

s
im

p
le

b
u
s

lo
c
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
L

O
C

K
S

E
T

;
1

6
7

1
6

6
re

q
u
e
s
t.

s
ta

tu
s

=
s
im

p
le

b
u

s
s
ta

tu
s

S
IM

P
L

E
B

U
S

R
E

Q
U

E
S

T
;

1
6
9

1
7

0
W

a
it

(
r
e
q
u
e
s
t.

tr
a
n
s
f
e
r
d
o
n
e
)
;

1
7

1
W

a
it

(c
lo

c
k
.p

o
s
e
d
g
e
);

1
7

2
re

tu
rn

r
e
q

u
e
s
t.

s
ta

tu
s
;

1
7

3
1

7
4

1
7
5

p
u

b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

b
u
r
s
tw

r
it

e
(
u

in
t

u
n
iq

u
e

p
r
io

r
it

y
,

in
t[

]
d
a
ta

,
u

in
t

s
ta

r
ta

d
d

r
e
s
s
)

1
7
6

re
tu

rn
b
u
rs

t
w

ri
te

(u
n

iq
u
e

p
r
io

r
it

y
,

d
a
ta

,
s
ta

r
ta

d
d
r
e
s
s
,

f
a
ls

e
)
;

1
7

7
}

—
—

1
7

6
1
7
9

p
u
b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

b
u

r
s
tw

r
it

e
(
u

in
t

u
n

iq
u

e
p
r
io

r
it

y
,

in
t[

]
d

a
ta

,
u

in
t

s
ta

r
ta

d
d
r
e
s
s
,

b
o
o
l

u
lo

c
k

)
1

8
0

if
(m

v
e
rb

o
s
e
)

1
8

1
C

o
n

s
o

le
O

u
t.

W
ri

te
L

in
e
(”

{
0

:g
}

{
l:

s
}

b
u
rs

t—
w

ri
te

({
2
:d

}
)

6
{
3
:x

}
”
,

C
u

rr
e
n

tT
im

e
/l

O
.0

,
N

am
e,

u
n
iq

u
e

p
r
io

r
it

y
v

s
ta

rt
_
a
d
d
re

s
s
)

1
8

2
1
8

3
s
im

p
le

b
u

s
re

q
u
e
s
t

re
q
u

e
s
t

=
g
e
tr

e
q
u
e
s
t(

u
n
iq

u
e
p
r
io

r
it

y
)
;

1
8

4
1
8

5
r
e
q

u
e
s
t.

d
o

w
r
it

e
=

tr
u
e
;

1
8
6

re
q
u
e
s
t.

a
d
d
re

s
s

=
s
ta

r
ta

d
d
r
e
s
s
;

1
8

7
r
e
q
u
e
s
t.

e
n
d
a
d
d
r
e
s
s

=
s
ta

r
t

a
d
d
re

s
s

+
(u

in
t)

(d
a
ta

.G
e
tL

e
n
g
th

(0
)_

l)
*
4
;

1
8

8
re

q
u

e
s
t.

d
a
ta

=
d
a
ta

;

-I] U)
O U)

H G) G)
W Z U
U) D’

G) t5
X U (G
u
0 4] 3]

D U)
G) G)

U) U Z
O U D’
U) Z G)

U U
W I I

E
G-. D

- G)
H G) U

—U) E U
(G Z

WU) Z U

- E
U) -

U4]
00 I U)

I I e—1 G)
I-)-) I I — D

U)U I I 9) CD
00 I G) I E -H
U)H I D U I -H H

I I G) D H H
CDU) I I> Q 3] (G

I -H (4.4 D
D’ O U) I G) ...

I I 3] U — UO
h-1G) I (4-4 3] U) I U U) O
U)H I O U) G) I Z O

H Z U -G) W
U)E I 3-E H D’ HU 3]
D-H 01-1 G) t 1—ITJ OU)
3]U) I G)O Q) U — rtI DO
(G I D4-4 .0 I -- (G U)

I D’ 3] G) I D I. X
O 9)43 - U)3] ‘iW

O I U U) 4-4 3] I U) O O —

9W E- I G) O I — U)G) 0G-.
OH U) I G)D 9-4 I Z —

DZ W I >D’ 3] 0 I G) WD h-l
Ho: O I 49G) Z L> o-)(1) U)U)

L O I -lU O U) (G G-.U U).
0W W I U) Z H Z I
D I G-L I G) 4] 3] 1 U) l-44] UZ
.0W I I 0.0 0 (G U)D 03]

LU U) I 3.33] Q) 3] 9) ‘G) -DO
9)0 0 I Z DOl H OU 03
H-1 U) I 00 D’ DI 0 DU 0
Q-. I I Z3] G) -S)Q4 D -PZ —A
EU) W I 0G) U UDI O (GO I O
-HO .-) I D) 00 I X 4] —I Z
OU) G-. I U D3]HU)I 0E .0

I Z I -H’. -HU) -HI —— —

U) lIN h-l I EG) HOG) I U) 0G) 0G)
U lI4]4 U) I OU ODDUI •. Z> IIC1H

• U) . I 3.3(9 >D’3]G)I H 00
O O I 09-1 G) 4-II — l.—i NE
D OH Z I U (GUOOI G)U) 0’ -H

U) OU) 3] I 09)>, DDI H o>U)0
G) H O I E3]3]000I D’ Q3]] —O
H DU) 3] I UD-HDDUUI •. Ew 0U)II

•Z U) I O-HUU-HD’4]I U) -HO U)
E 3.33] •- I 4-l I O ZD D — U) G) OH

-H O O U) — I UU)-H3] D> G) I t II 4-4t ZH
U) G)4] D G) I G)OUG)G)O.Dl— — II

DU) .0 D I D)U)O.UOD4]I G) G) DG)OD
O D’ I O I I— D 0> 0D3
Z G)S.) W D I I— -H DO •-HO9

U) UO H I I 44] b) 3]H 3]b)
W -0 0 U U) I - 10 W GO U)W4]3]
H H E G)•-Z I — 4W 3] 3] G)4]U)O
Q-. N -H 44-3] I — 3] 4 D -H 04-l Z-H 09)
E O U) 000 I - U) D’ U ‘-H D’UZZ

-H .SGD DD)1] I 3] 9) G) Z 4]
U) 0.0 II ODO I U)- Z —— U 0G) U •G)W

D I UG) 1 G)- D’ -
3] G)>]3]UU H

O HO O 3.304] I Z1] G) O G)—D ZO 3]Z II H
Z ZH D ‘OU) I •• D’o U .4-) I H G)O D’H D03]-)J Q
.0 0. 4] 4]QQ) 10 0W L U I0U)• G)U) G) •DD D

1-’E O O ‘Z I0 UD 3] D I DOW U UWQJO’-
W —O-H 4] G).) D’ I O CD H I 00H O UH U U D
H .‘400 U) DUO .0 0G) G) L l.DUO -1-3D DOUUU G)
0 UD • D’OU 43] HU D U OU) DO UU)DZZ L>
E 00’ -4] OH 4G) D I L O 10>D G) I IDUU4-) (G

-H HO O UUD I E D3] -P G) I-H O.- UG) EO 11W H
U) DU W —---U I 0G) O H IOEU— UH —UEEU U)

D 3]3]Z lU) .00) 0) U I>— >, D0
.0 D’ -H-H4] 40 I 3] 0E
U 4-l Q) O O G) I U) I U 4-4 -H l-H 4-l
U -H U ZZU I I-H-H U Eo -H
O II 4H O
O II 10 -H
O — — — —. —. —. —. — —. —. Z U
W — — — — — —— —. — — — — —. Q. D-.

U) O H U) U) o’ O U) r- U) U) U) H U) U) 0’ 0 U) r- U) U) O H U) U) 0’ 0 U) r- U) U) U) H U) U) 0’ 0 U)
U)U)U)U)U)U)U)U)U)U)U)0000000000HHHHH HHHHHC-JU)U)
H H H H —l H ,— H H H H C’) C’) U) U) U) U) U) U) C’) C-) U) U) U) C] U) U) U) U) U) U) U) U) U) U) G-l U) U)

n
o

E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u

s
\S

im
p

le
B

u
s
\S

im
p

le
B

u
s
.c

s
7

2
2

7
C

o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

B
U

S
E

R
R

O
R

—
—

>
n
o

s
la

v
e

fo
r

a
d
d
re

s
s

{
0
}
4
X

v
,m

c
u
rr

e
n
tr

e
q
u
e
s
t.

a
d
d
re

s
s
);

2
2

8
m

c
u

r
r
e
n

tr
e
q

u
e
s
t.

s
ta

tu
a

=
s
im

p
le

b
u
s

s
ta

tu
s
.

S
IM

P
L

E
B

U
S

E
R

R
O

R
;

2
2

9
m

c
u
r
r
e
n
tr

e
q
u
e
s
t

=
n
u
li

;
2
3
0

re
tu

rn
;

2
3
1

2
3

2
2

3
3

s
im

p
le

b
u

s
s
ta

tu
a

s
la

v
e

s
ta

tu
s

=
s
im

p
le

b
u
s

st
a
tu

s.
S

IM
P

L
E

B
U

S
O

K
;

2
3

4
2

3
5

if
(
m

c
u
r
r
e
n
tr

e
q
u
e
s
t.

d
o
w

r
it

e
)

2
3

6
s
la

v
e
_
s
ta

tu
s

=
s
la

v
e
.w

r
it

e
(
r
e
f

m
c
u

rr
e
n

t
r
e
q

u
e
s
t.

d
a
ta

[
m

c
u

r
r
e
n

t
re

q
u
e
s
t.

in
d
e
x
]

,m
c
u
rr

e
n
t

re
q

u
e
s
t.

a
d

d
re

s
s
)

?

2
3

7
e
ls

e
2
3

8
s
la

v
e

s
ta

tu
s

=
s
la

v
e
.r

e
a
d
(
r
e
f

m
c
u
rr

e
n
t

r
e
q

u
e
s
t.

d
a
ta

[
m

c
u

r
r
e
n

t
re

q
u
e
s
t.

in
d
e
x
]

,m
c
u

r
r
e
n

tr
e
q

u
e
s
t.

a
d

d
r
e
s
s
)
;

2
3

9
2

4
0

if
(m

v
e
rb

o
s
e
)

2
4
1

C
o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

—
—

>
s
ta

tu
s
=

({
0
}
)”

,
s
la

v
e

s
ta

tu
a
)
;

2
4

2
2

4
3

s
w

it
c
h
(
s
la

v
e
s
ta

tu
s
)

2
4

4
c
a
s
e

s
im

p
le

b
u

s
s
ta

tu
s
.

S
IM

P
L

E
B

U
S

E
R

R
O

R
:

2
4
5

m
c
u

r
r
e
n

tr
e
q

u
e
s
t.

s
ta

tu
s

=
s
im

p
le

b
u
s

s
ta

tu
s

.S
IM

P
L

E
B

U
S

E
R

R
O

R
;

2
4
6

m
c
u

r
r
e
n

tr
e
q

u
e
s
t.

tr
a
n
s
f
e
r
d
o
n
e
.N

o
ti

f
y
(
)
;

2
4

7
m

c
u

r
r
e
n

tr
e
q

u
e
s
t

=
n
u
li

;
2

4
8

b
re

a
k
;

2
4

9
c
a
s
e

s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
O

K
:

2
5
0

m
c
u
r
r
e
n
tr

e
q
u
e
s
t.

a
d
d
r
e
s
s
+

=
4
;

//
n

e
x

t
w

o
rd

(b
y
te

a
d
d
re

s
s
in

g
)

2
5
1

m
c
u
r
r
e
n
tr

e
q
u
e
s
t.

in
d
e
x
+

+
;

2
5

2
if

(
m

c
u

r
r
e
n

tr
e
q
u
e
s
t.

a
d
d
r
e
s
s

>
m

c
u

r
r
e
n

tr
e
q

u
e
s
t.

e
n

d
a
d

d
r
e
s
s
)

2
5

3
1

/
b
u
rs

t—
tr

a
n
s
fe

r
(o

r
s
in

g
le

tr
a
n

s
f
e
r
)

c
o
m

p
le

te
d

2
5

4
m

c
u

r
r
e
n

tr
e
q
u
e
s
t.

s
ta

tu
s

=
s
im

p
le

b
u
s

s
ta

tu
a
.

S
IM

P
L

E
B

U
S

O
K

;
2
5
5

m
c
u
r
r
e
n
tr

e
q
u
e
s
t.

tr
a
n
s
f
e
r
d
o
n
e
.N

o
ti

f
y
(
0
)
;

2
5
6

m
c
u
r
r
e
n
tr

e
q
u
e
s
t

n
u
il

;
2

5
7

2
5

8
e
ls

e
2
5

9
//

m
o
re

d
a
ta

to
tr

a
n
s
f
e
r
,

b
u

t
th

e
(a

to
m

ic
)

s
la

v
e

tr
a
n
s
f
e
r

is
d
o
n
e

2
6
0

m
c
u
r
r
e
n
tr

e
q
u
e
s
t

=
n
u
li

;
2

6
1

2
6

2
b
re

a
k
;

2
6

3
c
a
s
e

s
im

p
le

b
u

s
s
ta

tu
s

.
S

IM
P

L
E

B
U

S
M

A
lT

:
2

6
4

1
/

th
e

s
la

v
e

is
s
t
i
l
i

p
ro

c
e
s
s
in

g
:

n
o

c
le

a
ra

n
c
e

o
f

th
e

c
u

rr
e
n

t
re

q
u
e
s
t

n
n

o

E
:
\R

e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u

s
\S

im
p

le
B

u
s

c
s

8

2
6
5

b
re

a
k
;

2
6

6
d
e
f
a
u
lt

:
2
6

7
b
re

a
k
;

2
6

8
2
6

9
2

7
0

2
7
1

p
u
b
li

c
s
im

p
le

b
u

s
s
la

v
e

if
g
e
t

s
la

v
e

fu
in

t
a
d
d
re

s
s
)

2
7

2
fo

re
a
c
h
(s

im
p
le

b
u

s
s
la

v
e

if
s
la

v
e

in
s
la

v
e

p
o

rt
)

2
7
3

if
(
(
s
la

v
e
.s

ta
r
ta

d
d

r
e
s
s

<
=

a
d
d
re

s
s
)

&
&

fa
d
d
re

ss
<

=
s
la

v
e
.e

n
d

a
d

d
r
e
s
s
)
)

2
7

4
re

tu
rn

s
la

v
e
;

2
7
5

2
7

6
re

tu
rn

n
u

li
;

2
7

7
2
7

8
2
7

9
p

u
b

li
c

s
im

p
le

b
u

s
re

q
u
e
s
t

g
e
t

re
q

u
e
s
t(

u
in

t
p

r
io

r
it

y
)

2
8
0

fo
re

a
c
li

(s
im

p
le

b
u

s
re

q
u
e
s
t

re
g

in
m

re
q

u
e
s
ts

)
2

8
1

if
(
r
e
q
.p

r
io

r
it

y
=

=
p

r
io

r
it

y
)

2
8

2
re

q
.i

n
d

e
x

=
0

;
2
8
3

re
tu

rn
re

g
;

2
8

4
2
8

5
s
im

p
le

b
u

s
re

q
u
e
s
t

re
q
u

e
s
t

=
n

ew
s
im

p
le

b
u
s

re
g
u
e
s
t(

(I
S

y
st

e
m

l’
4
a
n
a
g
e
r)

m
a
n
a
g
e
r)

;
2

8
6

r
e
g
u
e
s
t.

p
r
io

r
it

y
=

p
r
io

r
it

y
;

2
8

7
m

re
q

u
e
s
ts

.A
d
d

(r
e
q
u
e
s
t)

;
2

8
8

re
tu

rn
re

q
u

e
s
t;

2
8
9

2
9
0

2
9
1

p
u

b
li

c
s
im

p
le

b
u

s
re

q
u
e
s
t

g
e
tn

e
x
tr

e
q
u
e
s
tf

)
f

2
9

2
//

th
e

s
la

v
e

is
cl

o
n

e
w

it
h

it
s

a
c
ti

o
n

,
m

c
u
r
r
e
n
tr

e
q
u
e
s
t

is
2

9
3

//
e
m

p
ty

,
so

g
o

o
v
e
r

th
e

b
a
g

o
f

re
q

u
e
st

—
fo

rm
s

a
n
d

c
o
m

p
o
se

2
9

4
//

a
s
e
t

o
f

li
k

e
ly

re
q
u

e
s
ts

.
P

a
ss

i
t

to
th

e
a
r
b

it
e
r

fo
r

th
e

2
9

5
//

f
in

a
l

s
e
le

c
ti

o
n

2
9

6
A

rr
a
y

L
ia

t
Q

=
n
ew

A
rr

a
y
L

is
tO

;
2
9

7
fo

re
a
c
h
(s

im
p
le

b
u

s
re

q
u

e
s
t

re
g

in
m

re
q

u
e
s
ts

)
2
9

8
if

f
(
r
e
g

.s
ta

tu
s

=
=

s
im

p
le

b
u
s

st
a
tu

s.
S

IM
P

L
E

B
U

S
R

E
Q

U
E

S
T

)
f
r
e
q
.s

ta
tu

s
=

=
s
im

p
le

b
u
s

s
ta

tu
s
.

V
S

IM
P

L
E

B
U

S
W

A
IT

))
2

9
9

if
(m

v
e
rb

o
s
e
)

3
0

0
C

o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

fO
:g

}
{
l}

:
re

g
u
e
s
t

({
2
:d

}
)

[{
3

}
]”

,C
u

rr
e
n

tT
im

e
/l

0
.0

,
N

am
e,

r
e
q
.p

r
io

r
it

y
,

V
r
e
q
.s

ta
tu

s
)

3
0

1
Q

.A
d
d
(r

e
q
);

E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u

s
\S

im
p
le

B
u
s
.c

s
9

3
0

2
3

0
3

3
0

4
if

(Q
.C

o
u
n
t

>
0
)

3
0
5

r
e
tu

r
n

a
r
b
it

e
r

p
o

r
t.

a
r
b

it
r
a
te

(Q
);

3
0
6

r
e
tu

r
n

n
u
li

;
3
0
7

3
0

8
3

0
9

p
u

b
li

c
v

o
id

c
le

a
r
lo

c
k

s
(
)

3
1
0

fo
re

a
c
h
(s

im
p
le

b
u

s
re

q
u
e
s
t

re
q

in
m

r
e
q

u
e
s
ts

)
3

1
1

if
(r

e
q
.u

lo
c
k

=
=

s
im

p
le

b
u

s
lo

c
k

s
ta

tu
s

.
S

IM
P

L
E

B
U

S
L

O
C

K
G

R
A

N
T

E
D

)
3
1

2
re

q
.u

lo
c
k

=
s
im

p
le

b
u
s

lo
c
k

s
ta

tu
s

.S
IM

P
L

E
B

U
S

L
O

C
K

S
E

T
;

3
1

3
e
ls

e
3
1
4

re
q

.u
lo

c
k

=
s
im

p
le

b
u
s

lo
c
k

s
ta

tu
s
.S

IM
P

L
E

B
U

S
L

O
C

K
N

O
;

3
1

5
3

1
6

3
1

7
3
1

8
3

1
9

3
2

0

n E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u
s
\S

im
p
le

B
u
s
A

rb
it

e
r.

c
s

1
u

s
in

g
S

y
st

e
m

;
2

u
s
in

g
S

y
s
te

m
.C

o
ll

e
c
ti

o
n
s
;

3 4
p
u
b
li

c
c
la

s
s

s
im

p
le

b
u

s
a
r
b
it

e
r
:

B
a
se

M
o
d
u
le

,
s
im

p
le

b
u
s

a
r
b
it

e
r

if
5
{

6
p

r
iv

a
te

b
o
o
l

m
v
e
rb

o
s
e
;

7 8
p

u
b

li
c

s
im

p
le

b
u

s
a
r
b
it

e
r
(
s
tr

in
g

n
a
m

e
)

:
b
a
se

(n
a
m

e
)
{
m

v
e
rb

o
s
e

=
f
a
ls

e
;}

9
p

u
b

li
c

s
im

p
le

b
u

s
a
r
b
it

e
r

(s
tr

in
g

n
a
m

e
,

b
o

o
l

v
e
rb

o
s
e
)

:
b
a
s
e

(n
a
m

e
)

{
m

v
e
rb

o
s
e

=
v

e
rb

o
s
e
;

10 11 12
p

u
b

li
c

s
im

p
le

b
u

s
re

q
u
e
s
t

a
r
b

it
r
a
te

(
A

r
r
a
y

L
is

t
re

q
u

e
s
ts

)
13 14

if
(m

v
e
rb

o
s
e
)

15 16
//

sh
o
w

s
th

e
l
i
s
t

o
f

p
e
n

d
in

g
re

q
u

e
s
ta

17
C

o
n
s
o
le

.O
u
tW

ri
te

(”
(0

:g
}

{
l}

z
”
,

C
u

rr
e
n

tT
im

e
/l

0
.0

,
N

am
e)

;
18

c
h

a
r[

]
lo

c
k

c
h
a
rs

=
{

‘
—

‘
,

‘
=

‘
,

‘
+

‘
};

19
fo

re
a
c
h
(s

im
p
le

b
u

s
re

q
u
e
s
t

re
q
u
e
s
t

in
re

q
u

e
s
ts

)
2
0

21
C

o
n
s
o
le

.O
u
t.

W
ri

te
(”

\n
R

[
{
0
:d

}
]
(
{
l}

{
2
}
@

{
3
:x

}
)
”
,r

e
q
u
e
s
t.

p
r
io

r
it

y
,l

o
c
k

c
h

a
r
s
[
(
in

t)
r
e
q

u
e
s
t.

u
lo

c
k

J
,

r
e
q
u
e
s
t.

s
ta

tu
s
,r

e
q

u
e
s
t.

a
d

d
r
e
s
s
)
;

22 23 24
s
im

p
le

b
u

s
re

q
u
e
s
t

b
e
s
t

re
q

u
e
s
t

=
re

q
u
e
s
ts

[0
]

a
s

s
im

p
le

b
u

s
re

q
u
e
s
t;

25 2
6

fo
re

a
c
h
(s

im
p
le

b
u
s

re
q
u
e
s
t

re
q
u
e
s
t

in
re

q
u

e
s
ts

)
27

if
(
(
r
e
q

u
e
s
t.

s
ta

tu
s

=
=

s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
W

A
IT

)&
&

(r
e
q
u
e
st

.u
lo

c
k

=
=

s
im

p
le

b
u
s

lo
c
k

s
ta

tu
a
.

S
IM

P
L

E
B

U
S

L
O

C
K

S
E

T
))

28 2
9

if
(m

v
e
rb

o
s
e
)

3
0

C
o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

-
>

R
[(

0
:d

}
]

tr
u
ie

1
)T

!,
r
e
q
u
e
s
t.

p
r
io

r
it

y
)
;

31
re

tu
rn

re
q

u
e
s
t;

32 33
fo

re
a
c
h

(s
im

p
le

b
u

s
re

q
u
e
s
t

re
q

u
e
s
t

in
re

q
u

e
s
ts

)
34

if
(r

e
q

u
e
s
t.

u
lo

c
k

=
=

s
im

p
le

b
u
s

lo
c
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
L

O
C

K
G

R
A

N
T

E
D

)
3

5
3
6

if
(m

v
e
rb

o
s
e
)

37
C

o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

—
>

R
[{

0
:d

}
j

(r
u
le

2
)”

,
r
e
q
u
e
s
t.

p
r
io

r
it

y
)
;

E
:
\R

e
s
e
a
rc

h
\s

im
p

le
b

u
s
\S

im
p

le
B

u
s
\S

im
p
le

3
u
s
A

rb
it

e
r.

c
s

2

38
re

tu
rn

re
q

u
e
s
t;

3
9 40

fo
re

a
c
h

(s
im

p
le

b
u

s
re

q
u
e
s
t

re
q
u
e
s
t

in
re

q
u

e
s
ts

)
4

’
42

//
s
c
a
s
s
e
r
t(

r
e
q
u
e
s
ts

[
i]

—
>

p
r
io

r
it

y
b
e
s
tr

e
q
u
e
s
t—

>
p
ri

o
ri

ty
);

43
if

(
r
e
q
u
e
s
t.

p
r
io

r
it

y
<

b
e
s
tr

e
q

u
e
s
t.

p
r
io

r
it

y
)

44
b

e
s
tr

e
q

u
e
s
t

=
re

q
u
e
s
t;

45 4
6

47
if

(
b

e
s
tr

e
q

u
e
s
t.

u
lo

c
k

1=
s
im

p
le

b
u

s
lo

c
k

s
ta

tu
s
.S

IM
P

IE
B

U
S

L
O

C
K

N
O

)
48

b
e
s
t

re
q
u
e
s
t.

u
lo

c
k

=
s
im

p
le

b
u
s

lo
c
k

st
a
tu

s.
S

IM
P

L
E

B
U

S
IO

C
K

G
R

A
N

T
E

D
;

4
9

5
0

if
(m

v
e
rb

o
s
e
)

5
1

C
o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

—
>

R
((

0
:d

}
]

(r
u
le

3
)”

,
b
e
s
tr

e
q
u
e
s
t.

p
r
io

r
it

y
)
;

52 53
re

tu
rn

b
e
s
tr

e
q

u
e
s
t;

54 55 5
6

57 58 5
9

n
n

E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u
s
\S

im
p

le
3

u
s
F

a
s
tM

e
m

.c
s

1
u

s
in

g
S

y
st

e
m

;

3
p

u
b

li
c

c
la

s
s

s
im

p
le

b
u

s
fa

s
tm

e
m

:
B

a
se

M
o
d
u
le

,
s
im

p
le

b
u
s

s
la

v
e

if
4
{

5
p
u
b
li

c
d

o
c
k

d
o

c
k

;
6

p
ri

v
a
te

in
t[

)
M

E
M

;
7

p
r
iv

a
te

u
in

t
m

s
ta

r
ta

d
d

r
e
s
s
;

8
p

r
iv

a
te

u
in

t
m

e
n
d

a
d
d
re

s
s
;

9
10

p
u

b
li

c
s
im

p
le

b
u

s
fa

s
tm

e
m

(s
tr

in
g

n
a
m

e
_

,
u

in
t

s
ta

r
ta

d
d
r
e
s
s
,

u
in

t
e
n

d
a
d

d
re

s
s
)

:
b
a
se

(n
a
m

e
11

m
s
ta

r
ta

d
d

r
e
s
s

=
s
ta

r
ta

d
d
r
e
s
s
;

12
m

e
n

d
a
d

d
re

s
s

=
e
n
d

a
d
d
re

s
s
;

13 14
V

e
r
if

ic
a
ti

o
n
.A

s
s
e
r
t(

m
s
ta

r
ta

d
d
r
e
s
s

<
=

m
e
n
d

a
d
d
re

s
s
,

“F
as

tM
em

e
r
r
o
r
l”

)
;

15
V

e
ri

fi
c
a
ti

o
n
.A

s
s
e
rt

f(
m

e
n

d
a
d
d
re

s
s
—

m
s
ta

rt
a
d
d
re

s
s
+

1
)%

4
=

=
0

,
“F

as
tM

em
e
rr

o
r2

”
);

1
6

17
u

in
t

s
iz

e
=

(
m

e
n
d
a
d
d
r
e
s
s
—

m
s
ta

r
ta

d
d
r
e
s
s
+

l)
/4

;
18

M
EM

=
n
ew

in
t

[
s
iz

e
]
;

19
fo

r
fu

in
t

i
0

;
i

<
s
iz

e
;

+
+

i)
2
0

M
E

M
[i

]
=

0
;

21 22 23
p
u
b
li

c
u
in

t
s
ta

r
ta

d
d
r
e
s
s

24
g

e
t(

r
e
tu

r
n

m
s
ta

r
ta

d
d
r
e
s
s
;}

2
5

2
6

27
p

u
b

li
c

u
in

t
e
n

d
a
d

d
re

s
s
{

28
g

e
t{

re
tu

rn
m

e
n

U
a
d

d
re

s
s
;}

2
9

3
0

3
1

32
/7

[P
M

e
th

o
d
]

33
//

[E
v
e
n
tL

is
t

(t
’p

o
se

d
g
&

’,
“
d
o
c
k
”
)

34
//

p
u

b
li

c
v
o
id

w
a
it

lo
o

p
(
)

f
3
5

//
f
o

r
(
in

t
i=

0
;i

<
3
2
;i

+
+

){
3

6
/!

C
o
n
s
o
le

.W
ri

te
L

in
e
(”

fO
:x

}
”
,M

E
M

[i
])

;
37

7
!

38
//

3
9

7
/

n E
:\

R
e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u
s
\S

im
p
le

B
u
s
F

a
s
tM

e
m

.c
s

2

40 41
p

u
b

li
c

b
o
o
l

d
ir

e
c
t

r
e
a
d
(
r
e
f

in
t

d
a
ta

,
u

in
t

a
d

d
re

s
s
)

42 43
re

tu
rn

fr
e
a
d

(r
e
f

d
a
ta

,
a
d

d
re

s
s
)

=
=

s
im

p
le

b
u

s
s
ta

tu
s
.S

IM
?
L

E
B

U
S

O
K

);
44 45 4
6

p
u
b
li

c
b
o
o
l

d
ir

e
c
t

w
r
it

e
(
r
e
f

in
t

d
a
ta

,
u
in

t
a
d

d
re

s
s
)

47
t

48
re

tu
rn

(
w

r
it

e
(
r
e
f

d
a
ta

,
a
d

d
re

s
s
)

=
=

s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
O

K
);

49 50 51
p

u
b

li
c

s
im

p
le

b
u

s
s
ta

tu
s

r
e
a
d
(
r
e
f

in
t

d
a
ta

,
u

in
t

a
d
d
re

s
s
)

52 5
3

d
a
ta

=
M

E
M

[(
a
d
d
re

ss
—

m
s
ta

r
ta

d
d

r
e
s
s
)
/4

]
;

54
re

tu
rn

s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
O

K
;

5
5

}
5

6
57

p
u

b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

w
r
it

e
(
r
e
f

in
t

d
a
ta

,
u

in
t

a
d

d
re

s
s
)

58
t

5
9

M
E

M
[(

a
d
d
re

ss
—

m
s
ta

r
ta

d
d
r
e
s
s
)
/4

)
=

d
a
ta

;
60

re
tu

rn
s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
O

K
;

61 62
}

63 64 65 66 67

cl)
E
cli
O

U)
(li
(li

-Q

U)
U)
4]
(li
4]
U)

4]
-H
U)

l-4
O

4]
O

-H
Z (N

l-4
S 0

U)
ci) 1-4
G) •-U)
l-c

U) 1-4X

-Q 1-40
O l-1H
U) U)n

-I] E-— o 00
H Z
Z

-H 0H
- H

U) U) (fl’
U) cA°

U) W
H O 0H
U) Q 0+

I Q 00
U) U) OU) —
Z I 0U)

3] -QO ‘

O U)0 —. U)
U) U) i-Q U)

U) H 3] 0U) H U)
Q Q)‘) + 1.4...

• E G)4] U)
E -H 4] 14 U)
G) U) O EU) U) Os—.
Z -H 44 O

- Z Ici) Q •S 3U)o li) V 0 I OU)
H H - E (li I -dU)
(J) Z 01 I 1-) Zl4
U) Q W OC!) -4] 0 Q
Z O E GlU) 14 Z

Z U)”- OU)”- ci 0 (ici
U) W Oc!) QOU) 4] — Q 4]
H U) t!) 00G) U) -H 04]

ci 0)0 ci-Q-4] I + 4] Q14
E o 01-1- Icici E + — -H U)

-H -HQU) 4] Ii] I U) 4]4
Q) “ l-4OU) 140U) O - U) — — OU)

U) 3]ciU) (iO U) U) U) •- -H
U) E U) li) U) O 4]G)4] G) (4 U) U) E EZ U) U) 4] — 3] Q U) -d 14 H O U)
O E G)U)ci EOQ EU) 0 O Q G) Q — 01U) I OU)”- Wcim E—l) o•- o-o o o—c l-4
H l) QU)01-3 03] I ci.—vV OU) — H —t!)
0- O QO 10 IU) 4]4]O G) U) cOQ O—Il QU)
E H ciQ3-3Z l) O 14140 ON-H 144] U)(i -A 0G)

•H U) Q-HO 011 U) U)U)Il 0H 01-i G) -Q. 014
(t) 4]000 H U)cOU)•.U)0.- OU) l-1-O 0-4] 1-

Il) oU)II U)U)U)v—t .—o... 03] 000 IQ
U) Z.c.-U)O Ii] U) vl.i)1]I E O U) 0U) 0HZ 4)U)
Q QQZ4]Ol-)H 000 •U)11—i-JII 4] I U) 0 0 0-
Q I0WU)G)0U) Z1-4c!) 004-34-) 0 II 14E lE U)4]Q W—•

U)HZ Il) 00U) 000011-H-H U) Q O-H !-4ZG)
G) HO EEE I -Do -H-H Z -00 00 003] -H(OZ
H Q — E U)ciQ 4]4]4]00l)4]-H 00 OU-l Q.l)-H OZO
Q. E-—i-J1-i- H Q U)U)-HONU)0-- Z Z U) 4]
E -H03]0004] Q4]U) 000 -HO-HZ 4)4] 3])] -‘Dl) Hil

-H 000-H-H-HO Eo I -H-Hl)4]U) Z1 OU) 0G) 4-J-H I O O
U) H-HZZZ-H -HU)0 44t4.4 -H II’-Z -HO -HO —00E 0 14

OU U)3] O -H-H O ri)] Z— Z— -Q-H l)— Q U) Z
O U) U)U)U)U)U) 0G) 0140l)OZI-! 3] 4] 0f-3
O U)Q4J4]4]4]4] o r I-Hb]0 0W OU) 04]OtH 000
4-l H-dtirli000 -HEE >>EEZZc- -HO -HO 4]O-H-H -HQO
U) QH>’l>l>l> H H H 00H H
U) -Q-H-H-H-H-H .0 .0 .0 Z >0 .0
U) 0ZU4014U0 Z Z Z øQ)Z Z
U) -HO Q.Q.Q. Q. Q. Q. .. Q. Q.

H
— -Q

t Z

H (N (N 0’ L)) CD r— o O) O H (N t)) 0’ L)) CD C’- O) O) o H (N C’) ‘O’ f) CD r— o o) O H C’) rn o’ L)) ‘G) r— CD 0)
H H H H H H H H H H (N (N (N (N (N (N C-J (N (N (N (N (N (N (N (N (N (N Ç’) C’) (N

n
o

O

E
:
\R

e
s
e
a
rc

h
\s

im
p

le
b
u
s\

S
im

p
le

B
u
s\

S
im

p
le

B
u
sS

lo
w

M
e
m

.
c
s

2

4
0

4
1

42
p

u
b

li
c

b
o
o
l

d
ir

e
c
t

w
ri

te
(r

e
f

in
t

d
a
ta

,
u

in
t

a
d

d
re

s
s
)

4
3

M
E

M
[(

a
d
d
re

ss
—

m
s
ta

r
t

a
d

d
re

s
s
)/

4
]=

d
a
ta

;
44

r
e
tu

r
n

tr
u
e
;

4
5

4
6

4
7

p
u

b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

r
e
a
d
(
r
e
f

in
t

d
a
ta

,
u
in

t
a
d

d
re

s
s
)

4
8

if
(
m

w
a
it

c
o

u
n

t
<

0
)

4
9

m
w

a
it

c
o
u
n
t

=
(
in

t)
m

n
r
w

a
it

s
ta

te
s
;

5
0

r
e
tu

r
n

s
im

p
le

b
u

s
s
ta

tu
s

S
IM

P
L

E
B

U
S

W
A

IT
;

5
1

5
2

if
(
m

w
a
it

c
o

u
n

t
=

=
0
)

5
3

d
a
ta

=
M

E
M

[(
a
d
d
re

ss
—

m
s
ta

r
ta

d
d

r
e
s
s
)
/4

]
;

5
4

r
e
tu

r
n

s
im

p
le

b
u

s
s
ta

tu
s
.S

IM
P

L
E

B
U

S
O

K
;

5
5

5
6

r
e
tu

r
n

s
im

p
le

b
u

s
s
ta

tu
s

S
IM

P
L

E
B

U
S

W
A

IT
;

5
7

5
8

5
9

p
u

b
li

c
s
im

p
le

b
u

s
s
ta

tu
s

w
r
it

e
(
r
e
f

in
t

d
a
ta

,
u

in
t

a
d

d
re

s
s
)

6
0

if
(
m

w
a
it

c
o

u
n

t
<

0)
61

m
w

a
it

c
o

u
n

t
=

(
in

t)
m

n
r
w

a
it

s
ta

te
s
;

62
r
e
tu

r
n

s
im

p
le

b
u

s
s
ta

tu
s
.S

IM
P

L
E

B
U

S
W

A
IT

;
6
3 64

if
(
m

w
a
it

c
o

u
n

t
=

=
0
)

6
5

M
E

M
[(

a
d
d
re

ss
—

m
s
ta

r
ta

d
d
r
e
s
s
)
/4

)
=

d
a
ta

;
6

6
r
e
tu

r
n

s
im

p
le

_
b
u
s

s
ta

tu
s
.S

IM
P

L
E

B
U

S
O

K
;

67
}

68
r
e
tu

r
n

s
im

p
le

b
u

s
s
ta

tu
s

S
IM

P
L

E
B

U
S

W
A

IT
;

6
9

}
7
0

}
7
1

7
2

n
n

O

E
:
\R

e
s
e
a
rc

h
\s

im
p

le
b
u
s
\S

im
p
le

s
u
s
\S

im
p
le

B
u
s
M

a
s
te

rB
lo

c
k
in

g
.

o
s

1
u
s
in

g
S

y
st

e
m

;
2 3

p
u

b
li

c
c
la

s
s

s
im

p
le

b
u

s
m

a
s
te

r
b

lo
c
k

in
g

:
B

a
se

M
o
d
u
le

4
(

5 6
p

u
b

li
c

C
lo

c
k

d
o
c
k
;

7
p
u
b
li

c
s
im

p
le

b
u

s
b
lo

c
k
in

g
if

b
u

s
p
o
rt

;
8

p
r
iv

a
te

u
in

t
m

u
n

iq
u

e
p

r
io

r
it

y
;

9
p

r
iv

a
te

u
in

t
m

a
d
d
re

s
s
;

10
p
r
iv

a
te

b
o
o
l

m
lo

c
k
;

11
p
ri

v
a
te

in
t

m
ti

m
e
o
u
t;

12
p
ri

v
a
te

c
o
n
s
t

u
in

t
m

y
le

n
g

th
=

0
x
1
0
;

13 14
p

u
b

li
c

s
im

p
le

b
u

s
m

a
s
te

r
b

lo
c
k
in

g
(s

tr
in

g
n

a
m

e
,

u
in

t
u

n
iq

u
e

p
r
io

r
it

y
,

u
in

t
a
d

d
re

s
s
,

b
o
o
l

u
lo

c
k
,

in
t

ti
m

e
o
u
t)

:b
a
s
e

1
(n

a
m

e
)

15 1
6

m
u
n
iq

u
e
p
r
io

r
it

y
=

u
n
iq

u
e
p

r
io

r
it

y
;

17
m

a
d
d
re

s
s
=

a
d
d
re

s
s
;

18
m

lo
c
k

=
u

lo
c
k

;
1
9

m
ti

m
e
o
u
t=

ti
m

e
o
u
t;

2
0

}
—

21 22
[P

ro
c
e
s
s
]

23
[E

v
e
n
tL

is
t

(“
p
o
s
e
d
g
e
”
,

“
d
o
c
k
”
)

24
p
u
b
li

c
v
o
id

m
a
in

a
c
ti

o
n
()

2
5

2
6

in
t[

J
m

y
d
a
ta

=
n
ew

in
t[

m
y
le

n
g
th

];
27

in
t

i;
28

s
im

p
le

b
u

s
s
ta

tu
s

s
ta

tu
s
;

2
9

w
h
il

e
(t

ru
e
)

30
//

W
a
it

()
;

31
s
ta

tu
s

=
b

u
s

p
o

r
t.

b
u

r
s
t

re
a
d
(m

u
n
iq

u
e

p
r
io

r
it

y
,

m
y

d
a
ta

,
m

a
d
d
re

s
s
,

m
_
lo

o
k
);

32
if

(s
ta

tu
s

=
=

s
im

p
le

b
u
s

st
a
tu

s.
S

IM
P

L
E

B
U

S
E

R
R

O
R

)
33

C
o

n
s
o

le
.O

u
t.

W
ri

te
L

in
e
(”

{
O

:g
}

{
1
:s

}
:

b
lo

c
k
in

g
—

re
a
d

f
a
il

e
d

a
t

a
d
d
re

s
s

{
2

:x
}
”
,C

u
rr

e
n

tT
im

e
/l

O
.O

,
M

ar
ne

,
m

a
d
d

re
s
s
);

34 3
5

fo
r

(i
=

0
;

i
<

m
y
le

n
g
th

;
+

+
i)

{
3

6
m

y
d

a
ta

[i
]

+
=

i;
37

W
a
i
t
;

E
:\

R
e
s
e
a
rc

h
\s

±
m

p
le

b
u

s
\S

im
p

le
3

u
s
\S

im
p
le

B
u
s
M

a
s
te

rB
lo

c
k
±

n
g
.c

s
2

38 3
9 40

s
ta

tu
s

=
b

u
s

p
o
r
t.

b
u
r
s
t

w
ri

te
(m

u
n

iq
u

e
p
r
io

r
it

y
,

m
y

d
a
ta

,
m

a
d
d
re

s
s
,

m
lo

c
k
);

41
if

(s
ta

tu
s

=
=

s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
E

R
R

O
R

)
42

C
o

n
s
o

le
.O

u
t.

W
ri

te
L

in
e
(”

{
O

:g
}

{
1
:s

}
:

b
lo

c
k
in

g
—

w
r±

te
f
a
il

e
d

e
t

a
d
d
re

s
s

{
2
:x

}
”
,C

u
rr

e
n
tT

im
e
/1

0
.0

,
N

ai
n

e,
V

m
a
d
d

re
s
s
)

43 44
W

a
it

(m
ti

m
e
o
u
t)

;
45

//
W

a
it

()
;

46 47 48 49 5
0

5
1 52 53

n
n

E
:
\R

e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u
s
\S

im
p
le

B
u
s
M

a
s
te

rN
o
n
3
lo

c
k
in

g
.
c
s

1
u

s
in

g
S

y
st

e
m

;
2 3

p
u

b
li

c
c
la

s
s

s
im

p
le

b
u

s
m

a
s
te

r
n

o
n

b
lo

c
k
in

g
:

B
a
se

M
o
d
u
le

4
{

5
p

u
b

li
c

d
o

c
k

d
o

c
k

;
6

p
u

b
li

c
s
im

p
le

b
u

s
n

o
n

b
lo

c
k
in

g
if

b
u

s
_

p
o

rt
;

7
p
ri

v
a
te

u
in

t
m

u
n

iq
u

e
p

r
io

r
it

y
;

8
p
ri

v
a
te

u
in

t
m

s
ta

r
ta

d
d

r
e
s
s
;

9
p
ri

v
a
te

b
o
o
l

m
lo

c
k
;

10
p

r
iv

a
te

in
t

m
ti

m
e
o

u
t;

11 12
p

u
b

li
c

s
im

p
le

b
u

s
m

a
s
te

r
n

o
n

b
lo

c
k
in

g
(s

tr
in

g
n
am

e,
u

in
t

u
n
iq

u
e

p
r
io

r
it

y
,

u
in

t
s
ta

r
ta

d
d
r
e
s
s
,

b
o
o
l

u
lo

c
k

,
in

t
é

ti
m

e
o
u

t)
:

b
a
s
e
(n

a
m

e
)

13 14
m

u
n
iq

u
e
p
r
io

r
it

y
=

u
n
iq

u
e
p

r
io

r
it

y
;

15
m

s
ta

r
ta

d
d
r
e
s
s
=

s
ta

r
ta

d
d
r
e
s
s
;

16
m

lo
c
k

=
u

lo
c
k

;
17

m
ti

m
e
o
u
t=

ti
m

e
o
u
t;

18
}

—

19 20
[P

ro
c
e
s
s
]

21
[E

v
e
n
tL

is
t

(“
p
o
s
e
d
g
e
”
,

“
d
o
c
k
”
)

J
22

p
u

b
li

c
v
o
id

m
a
in

a
c
ti

o
n
()

2
3

24
in

tE
l

m
y
d
a
ta

=
{
0
}
;

2
5

in
t

c
n
t

=
0
;

2
6

u
in

t
a
d
d
r

=
m

s
ta

r
ta

d
d

r
e
s
s
;

27
//

W
a
it

Q
;

//
fo

r
th

e
n
e
x
t

r
is

in
g

d
o

c
k

e
d

g
e

28
w

h
il

e
(t

ru
e
)

2
9

b
u

s
p

o
rt

.r
e
a
d

(m
u

n
iq

u
e

p
r
io

r
it

y
,

m
y

d
a
ta

,
a
d

d
r,

m
lo

c
k
)
;

3
0

w
h

il
e

((
b

u
s

p
o

r
t.

g
e
t

s
ta

tu
s
(m

u
n
iq

u
e

p
r
io

r
it

y
)

s
im

p
le

b
u

s
st

a
tu

s.
S

IM
P

L
E

B
U

S
O

K
)

&
&

(b
u
s

p
o

r
t.

g
e
t

s
ta

tu
a

é
(
m

u
n

iq
u

e
p

r
io

r
it

y
)

!=
s
im

p
le

b
u
s

st
a
tu

s.
S

IM
P

L
E

B
U

S
E

R
R

O
R

))
31

W
a
i
t
;

32 3
3

if
(b

u
s

p
o

r
t.

g
e
t

s
ta

tu
s

tm
u

n
iq

u
e
p

r
io

r
it

y
)

=
=

s
im

p
le

b
u
s

st
a
tu

s.
S

IM
P

L
E

B
U

S
E

R
R

O
R

)
34

C
o

n
s
o

le
.O

u
t.

W
ri

te
L

in
e
(”

{
O

:g
}

{
1

:s
}

:
E

R
R

O
R

c
a
n
n
o
t

re
a
d

fr
o
m

{
2

:x
}
”
,C

u
rr

e
n

tT
im

e
/l

O
.O

,
N

am
e,

a
d

d
r)

;
3
5

3
6

m
y

d
a
ta

[0
]

+
=

c
n
t;

37
c
n
t+

+
;

E
:
\R

e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

B
u
s
\S

im
p
le

B
u
s
M

a
s
te

rN
o
n
B

lo
c
k
in

g
.c

s
2

3
8

3
9

b
u

s
p
o
r
t.

w
r
it

e
(
m

u
n

iq
u

e
p
r
io

r
it

y
,

m
y

d
a
ta

,
a
d

d
r,

m
lo

c
k
)
;

4
0

w
h

il
e

((
b
u
s

p
o

r
t.

g
e
t

s
ta

tu
s
(m

u
n
iq

u
e

p
r
io

r
it

y
)

!=
s
im

p
le

b
u

s
s
ta

tu
s
.S

IM
P

L
E

B
U

S
O

K
)

&
&

(b
u

s
p
o
r
t.

g
e
t

s
ta

tu
s

V
(
m

u
n
iq

u
e
p

r
io

r
it

y
)

s
im

p
le

b
u
s

s
ta

tu
s
.S

IM
P

L
E

B
U

S
E

R
R

O
R

))

4
1

W
a
it

O
;

42 4
3

if
(b

u
s

p
o

r
t.

g
e
t

s
ta

tu
s

(
m

u
n
iq

u
e
p
r
io

r
it

y
)

=
=

s
im

p
le

b
u

s
s
ta

tu
s
.S

IM
P

L
E

B
U

S
E

R
R

O
R

)
44

C
o
n
s
o
le

.O
u
t.

W
ri

te
L

in
e
(”

{
0

:g
}

{
1

:s
}

:
E

R
R

O
R

c
a
n

n
o

t
w

ri
te

ta
{
2

:x
}
’T

,C
u
rr

e
n
tT

im
e
/l

O
.O

,
N

am
e,

a
d
U

r)
;

45 4
6

W
a
it

(m
ti

m
e
o

u
t)

47
//

W
a
it

(
)
;

/1
fo

r
th

e
n
e
x
t

r
is

in
g

d
o
c
k

e
d
g
e

48
a
d
d
r+

=
4
;

//
n
e
x
t

w
o
rd

(b
y
te

a
d
d
re

s
s
in

g
)

4
9

if
(a

d
d

r
>

(
m

s
ta

r
ta

d
d
r
e
s
s
+

0
x
8
0
)
)

5
0

a
d
d
r

=
m

s
ta

r
t

a
d
d
re

s
s
;

o
n
t

=
0

;
5
1

}
—

5
2 5
3

5
4

5
5

5
6

57 5
8

5
9

6
0

n
o

o

E
:
\R

e
s
e
a
rc

h
\s

im
p
le

b
u
s
\S

im
p
le

3
u
s
\S

im
p

le
B

u
s
M

a
s
te

rD
ir

e
c
t.

o
s

1
u

s
in

g
S

y
st

e
m

;
2 3

p
u

b
li

c
c
la

s
s

s
im

p
le

b
u

s
m

a
s
te

r
d
ir

e
c
t

:
B

a
se

M
o

d
u

le
4
{

5
p

u
b

li
c

C
lo

c
k

d
o

c
k

;
6

p
u
b
li

c
s
im

p
le

b
u

s
d

ir
e
c
t

if
b

u
s

p
o
rt

;
7

p
r
iv

a
te

u
in

t
m

a
d
d
re

s
s
;

8
p

r
iv

a
te

in
t

m
ti

m
e
o
u
t;

9
p

r
iv

a
te

b
o
o
l

m
v
e
rb

o
s
e
;

10 11
p

u
b

li
c

s
im

p
le

b
u

s
m

a
s
te

r
d

ir
e
c
t

(s
tr

in
g

n
a
m

e
,

u
in

t
a
d
d
re

s
s
,

in
t

ti
m

e
o
u
t,

b
o
o
l

v
e
rb

o
s
e
)

:
b
a
s
e

(n
a
m

e
)

12 13
m

a
d
d
re

s
s
=

a
d
d
re

s
s
;

14
m

ti
m

e
o
u
t=

ti
m

e
o
u
t;

15
m

v
e
rb

o
s
e
=

v
e
rb

o
s
e
;

16
}

17 18
p

u
b

li
c

s
im

p
le

b
u

s
m

a
s
te

r
d

ir
e
c
t(

s
tr

in
g

n
a
m

e
,

u
in

t
a
d
d
re

s
s
,

in
t

ti
m

e
o

u
t)

:
b

a
s
e
(n

a
m

e
)

19 20
m

a
d
d
re

s
s
=

a
d
d
re

s
s
;

21
m

ti
m

e
o
u
t=

ti
m

e
o
u
t;

22
m

v
e
rb

o
s
e
=

fa
ls

e
;

2
3

}
—

24 2
5

[P
ro

c
e
s
s
j

2
6

[E
v
e
n
tL

is
t

(“
p
o
s
e
d
g
e
”
,

“
d
o
c
k
”
))

27
p

u
b

li
c

v
o
id

m
a
in

a
c
ti

o
n
()

28 2
9

in
t[

]
m

y
d

a
ta

=
n
ew

in
t[

4
]
;

30
w

h
il

e
(t

ru
e
)

31 32
b

u
s

p
o

r
t.

d
ir

e
c
t

r
e
a
d
(
r
e
f

m
y
d
a
ta

[0
),

m
a
d
d
re

s
s
);

3
3

b
u

s
p

o
r
t.

d
ir

e
c
t

r
e
a
d
(
r
e
f

m
y
d
a
ta

[1
],

m
a
d

d
re

s
s
+

4
);

34
b

u
s

p
o

r
t.

d
ir

e
c
t

re
a
d
(r

e
f

m
y
d
a
ta

[2
],

m
a
d

d
re

s
s
+

8
);

35
b

u
s

p
o

r
t.

d
ir

e
c
t

r
e
a
d
(
r
e
f

m
y

d
a
ta

[3
],

m
a
d
d
re

s
s
+

l2
)

3
6

37
if

(m
v
e
rb

o
s
e
)

38
C

o
n

s
o

le
.W

ri
te

L
in

e
(”

{
O

:g
}

{
1
:s

}
:

m
e
m

[{
2

:x
}
:{

3
:x

}
]

=
({

4
:x

}
,

(5
:x

}
,

{
6

:x
}
,

{
7

:x
}
)”

,C
u

rr
e
n

tT
im

e
/l

O
.O

,
N

am
e,

m
a
d
d
re

s
s
,

m
a
d

d
re

s
s
+

l5
,

m
y
d
a
ta

[0
J
,

m
y

d
a
ta

[1
],

m
y

d
a
ta

[2
],

m
y
d
a
ta

[3
])

;

U)
u

u
w

-H
n
G)
3)
U)
U)
z
U)
Z
n
U)
H

E
-H
U)

U)
Z
n
U)
H

-

E -J
-H Z
U) o
— w

U) E
Z -H

_o
G) E
H
Q 4J
E -H

-H U)
U) w

u
U)
w
tÉ)
G)

E —

Q H eJ U) U) ÉD r—
U) Q Q Q Q Q Q Q Q

in

Annex C My First System Example

n 1
//

T
h

ir
d

P
a
rt

y
T

o
o
lE

x
a
m

p
le

c
s

2
//

B
y

3
//

J
a
m

e
s

L
a
p
a
lm

e
2

0
0

3
4 5

u
s
in

g
S

y
st

e
m

;
6

u
s
in

g
S

y
s
te

m
.C

o
ll

e
c
ti

o
n
s
;

7
u
s
in

g
S

y
s
te

m
.R

e
fl

e
c
ti

o
n
;

8 9
/

/
/<

su
m

m
a
ry

>
S

y
n

c
h

ro
n

o
u

s
In

te
rg

e
r

G
e
n

e
ra

to
r<

/s
u

rn
m

a
ry

>
10

//
/<

re
m

a
rk

s
>

11
//

/I
n

s
ta

n
c
e
s

c
f

th
is

c
o

m
p

o
n

e
n

t,
w

h
en

d
ri

v
in

g
b
y

a
d
o
c
k
,

12
//

/g
e
n
e
r
a
te

an
in

te
g

e
r

v
a
lu

e
o
n

e
a
c
h

p
o

s
it

iv
e

13
//

/e
d
g
e

o
f

th
e

d
o
c
k
.

14
//

/
15

//
/T

h
e

v
a
lu

e
is

ln
c
re

m
e
n

te
d

b
y

1
a
f
te

r
e
a
c
h

1
6

//
/p

o
s
it

iv
e

e
d

g
e

17
//

/<
/r

e
m

a
rk

s
’

18 1
9

p
u

b
li

c
c
la

s
s

M
o

d
u

le
A

:
B

a
se

M
o

d
u
le

t
2
0

2
1

//
/

<
su

m
m

a
ry

>
C

lo
c
k

in
p

u
t

p
o
rt

<
/s

u
m

m
a
ry

>
22

p
u
b
li

c
d

o
c
k

c
lk

;
23

//
/

<
su

m
rn

a
ry

>
In

te
g
e
r

o
u

p
u

t
p

o
rt

<
/s

u
rn

m
a
ry

>
24

p
u

b
li

c
o
u
tl

n
t

p
o
rt

a
;

25 2
6

//
/

<
su

m
m

a
ry

>
C

o
m

p
o
n
e
n
t

c
o
n
s
tr

u
c
to

r
<

/s
u
m

m
a
ry

>
27

//
/

<
p

a
ra

m
n
am

e=
”n

ar
n
e”

>
N

am
e

g
iv

e
n

to
th

e
c
o
n
s
tr

u
c
te

d
in

s
ta

n
c
e
<

/p
a
ra

rn
>

28
p
u
b
li

c
M

o
d

u
le

A
(s

tr
in

g
n
am

e)
b
a
se

(n
a
m

e
)

U
2
9

3
0

,‘
//

<
su

rn
rr

ia
ry

>
In

te
g

e
r

g
e
n
e
ra

ti
n
g

p
ro

c
e
s
s

m
e
th

o
d
<

/s
u
rc

tm
a
ry

>
3
1

//
/<

re
rn

a
rk

s
>

T
h
is

p
ro

c
e
s
s

m
e
th

o
d

is
s
e
n

s
it

iv
e

to
th

e
p

o
se

d
g

e
e
v

e
n

t
c
f

th
e

c
lk

p
o
rt

<
/r

e
m

a
rk

s
>

32
[P

ro
c
e
s
s
]

3
3

[E
v
e
n
tL

is
t

t”
p
o
s
e
d
g
e
”
,

“
c
lk

”
)

J
34

p
u
b
li

c
v
o
id

G
e
n
t)

3
5

w
h

il
e
(t

ru
e
){

3
6

fo
r

ti
n

t
i=

0
;0

<
lO

O
;i

+
+

)
37

p
o

rt
a
.V

a
lu

e
=

i;
38

W
a
it

t)
;

3
9 40 41

42 43 44
//

/<
s
u
m

rn
a
rv

>
T

ra
n
s
a
c
ti

o
n
a
l

L
e
v

e
l

T
e
st

b
e
n

c
h

<
/s

n
m

m
a
rv

>
45

//
/.

te
m

a
rk

s
>

4
6

//
/I

n
s
ta

n
c
e
s

o
f

th
is

c
o
m

p
o
n
e
n
t

a
re

s
y
n
c
h
o
n
iz

e
d

47
//

/b
y

th
e

m
e
a
n
s

o
f

tr
a
n
s
a
c
ti

o
n
a
l

le
v
e
l

e
v

e
n

t
n
o
ti

f
ic

a
ti

o
n

48
//

/
49

//
/W

h
e
n

n
o
ti

f
ie

d
o
f

a
n
ew

v
a
lu

e
o
n

it
s

in
p

u
t

p
o
rt

,
50

//
/t

h
e

c
o
m

p
o
n
e
n
t

re
a
d
s

th
e

v
a
lu

e
a
n
d

o
u

tp
u

ts
i
t

to
th

e
s
c
re

e
n

51
//

/<
/r

e
m

a
rk

s
>

52
p
u
b
li

c
c
la

s
s

M
o

d
u

le
B

B
a
se

M
o
d
u
le

t
5
3

54
//

/
<

su
m

rn
a
ry

>
In

te
g
e
r

in
p

u
t

p
o

rt
<

/s
u

rn
m

a
ry

>
55

p
u

b
li

c
in

ln
t

p
o
rt

a
;

5
6

57
//

/
<

su
rn

rn
a
rv

>
S

y
n

c
h

ro
n

iz
a
ti

o
n

e
v

e
n

t<
/s

u
rn

rn
a
rv

>
58

p
u

b
li

c
E

v
e
n
t

sy
n

a
v

e
n

t;
5
9 60

//
/

<
su

m
rn

ar
y

:>
C

o
m

p
o

n
en

t
c
o
n

s
tr

u
c
to

r
<

/s
u
m

m
a
ry

>
61

//
/

<
p
a
ra

m
n

a
m

e
=

n
a
rn

e
”
>

N
a
m

e
g
iv

e
n

to
th

e
c
o
n
s
tr

u
c
te

d
in

s
ta

n
c
e
<

/p
a
ra

m
>

62
p

u
b

li
c

M
o

d
u

le
B

(s
tr

in
g

n
am

e)
b
a
se

(n
a
m

e
)

f}
63 64

/
/
/<

su
rn

rn
a
rv

>
o
u
tp

u
ti

n
g

p
ro

c
e
s
s

m
e
th

o
d

<
/s

u
rn

rn
a

ry
>

65
[P

ro
c
e
s
s
]

66
p

u
b

li
c

v
o
id

R
u
n
()

67
w

h
il

e
(t

ru
e
)

68
W

a
it

(
s
y
n
e
v
e
n
t)

;
69

C
o
n
s
o
le

.W
ri

te
L

in
e

(p
o
rt

a
.V

a
lu

e
);

7
0

}
71

}
72

}
7
3

74 7
5

//
/<

su
m

m
a
ry

>
C

o
m

p
o

n
e
n

t
U

n
d

e
r

T
e
st

<
/s

u
rn

rn
a
ry

>
7

6
//

/<
re

m
a
rk

s
>

77
//

/I
n
s
ta

n
c
e
s

o
f

th
is

c
o

m
p

o
n

e
n

t,
w

h
en

d
ri

v
in

g
b
y

a
d
o
c
k
,

78
,‘

//
g
e
n
e
ra

te
a

e
v

e
n

in
te

g
e
r

v
a
lu

e
o
n

e
a
c
h

p
o
s
it

iv
e

7
9

//
/e

d
g
e

o
f

th
e

d
o
c
k
.

80
//

/
81

//
//

//
T

h
e

v
a
lu

e
is

in
c
re

m
e
n

te
d

b
y

2
a
f
te

r
e
a
c
h

82
//

/p
o
s
it

iv
e

e
d

g
e

n
o

83
//

/<
/r

e
rn

a
rk

s
>

84
p

u
b

li
c

c
la

s
s

M
y
M

o
d
u
le

:
B

a
se

M
o
d
u
le

85
/
/
/

<
su

m
m

a
ry

>
C

lo
c
k

in
p

u
t

p
o

rt
<

/s
u
m

m
a
ry

>
8
6

p
u

b
li

c
C

lo
c
k

c
lk

;
87

/
/
/

<
su

m
m

a
ry

>
In

te
g
e
r

o
u

tp
u

t
p
o
rt

<
/s

u
m

m
a
rv

>
88

p
u

b
li

c
o
u
tl

n
t

p
o
rt

a
;

8
9

//
/

<
su

rn
rn

a
ry

>
S

y
n

c
h

ro
n

iz
a
ti

o
n

e
v
e
n
t<

/s
u
m

m
a
ry

>
90

p
u

b
li

c
E

v
e
n
t

s
y

n
e
v

e
n

t
n
ew

E
v
e
n
tf

);
91

/
/
/

<
su

rr
u
T

la
ry

>
S

u
b
—

co
m

p
o
n
en

t
in

s
ta

n
c
e
<

/
su

m
rn

ar
y

>
92

M
o

d
u

le
A

g
e
n
l

=
n
ew

M
o

d
u

le
A

(’
g

e
n

l’
);

93
//

/
<

su
m

m
ar

y
:’

S
u

b
—

co
m

p
o

n
en

t
in

s
ta

n
c
e
<

/s
u
m

m
a
ry

’
94

M
o
d
u
le

A
g

e
n

2
=

n
ew

M
o

d
u

le
A

(’
g
e
n
2
”
);

95
,‘

//
<

su
m

in
a
ry

>
In

n
e
r

s
ig

n
a
l

in
st

a
n

c
e
<

,’
su

in
m

a
ry

>
96

In
tS

ig
n

a
l

s
ig

l
=

n
ew

I
n

ts
ig

n
a
lt

)
;

97
//

/
<

su
m

n
a
ry

>
In

n
e
r

s
ig

n
a
l

in
st

a
n

c
e
<

/s
ii

m
m

a
ry

>
98

In
t$

ig
n
a
l

s
ig

2
=

n
ew

I
n

ts
ig

n
a
lt

)
;

99
1

0
0

/
/
/

<
su

m
m

a
ry

>
C

o
m

p
o
n
e
n
t

c
o
n

s
tr

u
c
to

r
<

/s
u
rn

m
a
ry

>
1

0
1

/
/
/

<
p

a
ra

;n
n
am

e=
”n

ar
n
e”

>
N

am
e

g
iv

e
n

to
th

e
c
o
n
s
tr

u
c
te

d
in

s
ta

n
c
e
<

/p
a
ra

m
>

1
0

2
p
u
b
li

c
M

y
M

o
d
u
le

(s
tr

in
g

n
a
in

e
):

b
a
se

(n
a
m

e
)

1
0
3

g
e
n
l.

p
o
rt

a
=

s
ig

i;
1

0
4

g
e
n
2
.p

o
rt

a
=

s
ig

2
;

1
0

5
}

1
0
6

1
0

7
//

/<
s
u

rn
rn

a
ry

>
In

te
g

e
r

g
e
n
e
ra

ti
n
g

p
ro

c
e
s
s

m
e
tl

io
d

<
/s

u
rr

n
n

a
ry

>
1

0
8

//
/<

re
m

a
rk

s
>

T
h

is
p

ro
c
e
s
s

m
e
th

o
d

is
s
e
n

s
it

iv
e

to
th

e
1
0
9

//
/s

e
n

s
it

iv
e

e
v

e
n

t
o
f

th
e

tw
o

in
n
e

s
ig

n
a
l

s
ig

l
a
n
d

s
ig

2
<

/r
e
m

a
rk

s
>

1
1

0
[P

M
e
th

o
d

j
1

1
1

[E
v
e
n
tL

is
t(

”
s
e
n
s
it

iv
e
T

’,
“
s
ig

l”
,

“
s
ig

2
”
)]

1
1

2
p
u
b
li

c
v

o
id

A
d

d
()

1
1
3

p
o
rt

a
.V

a
lu

e
=

s
ig

l.
V

a
lu

e
+

s
ig

2
.V

a
lu

e
;

1
1

4
s
y
n
e
v
e
n
t.

N
o
ti

fy
(0

)
1

1
5

}
1
1
6

1
1

7
//

/<
s
u
m

rn
a
ry

>
B

in
d
in

g
P

h
a
s
e

m
e
th

o
d

<
/s

u
m

m
a
ry

>
1

1
8

//
/<

re
rn

a
rk

s
>

B
in

d
in

g
o

f
th

e
d

o
c
k

s
ig

n
a
l

to
th

e
su

b
—

c
o
m

p
o
n
e
n
ts

is
d

o
n

e
h

e
re

<
/r

e
m

a
rk

s
>

1
1
9

p
u
b
li

c
o

v
e
rr

id
e

v
o
id

B
in

d
in

g
P

li
a
s
e
{

1
2

0
g

e
n

l.
c
lk

=
c
lk

;
1

2
1

g
e
n

2
.c

lk
=

c
lk

;
1

2
2

}
1

2
3

1
2

4
1
2
5

//
/<

su
m

m
a
ry

>
S

y
n

c
h

ro
n

o
u

s
In

te
rg

e
r

G
e
n
e
ra

to
r<

/s
u
m

m
a
ry

>
1
2
6

//
/<

re
m

a
rk

s
>

1
2

7
//

/I
n

s
ta

n
c
e
s

o
f

th
is

c
o

m
p

o
n

e
n

t,
w

h
en

d
ri

v
in

g
b
y

a
d

o
c
k

,
1

2
8

//
/g

e
n

e
r
a
te

a
n

in
te

g
e
r

v
a
lu

e
o
n

e
a
c
h

p
o
s
it

iv
e

1
2
9

//
/e

d
g
e

o
f

th
e

d
o
c
k
.

1
3

0
//

/
1

3
1

//
/T

h
e

v
a
lu

e
is

in
c
re

m
e
n

te
d

b
y

1
a
tt

e
r

e
a
c
h

1
3

2
//

/p
o
s
it

iv
e

e
d

g
e

1
3
3

//
/<

/r
e
m

a
rk

s
>

1
3
4

p
u

b
li

c
c
la

s
s

M
y

F
ir

st
S

y
st

e
m

:S
y

st
e
m

M
o
d
e
l{

1
3
5

//
/

<
ts

c
u

n
rn

ry
>

G
e
n

e
ra

to
r

c
o
m

p
o
n
e
n
t<

/s
u
m

m
a
ry

>
1
3
6

M
y
M

o
d

u
le

to
p

=
n
ew

M
y
M

o
d
u
le

(”
g

e
n

e
ra

to
rT

’)
;

1
3

7
//

/
<

su
m

m
a
ry

>
T

e
st

b
e
n

c
h

c
o

m
p
o

n
e
n

t<
:/

su
m

m
a
ry

>
1

3
8

M
o
d
u
le

3
te

s
tb

e
n
c
h

=
n
ew

M
o
d
u
le

B
(”

te
s
tb

e
n
c
h
”
);

1
3
9

//
/

<
su

m
rn

a
ry

>
S

M
a
in

s
y

s
te

m
c
lo

c
k
<

/s
u
m

m
a
rv

>
1

4
0

C
lo

c
k

c
lk

=
n
ew

C
lo

c
k

(”
c
lo

c
k

l”
,4

);
1

4
1

/
/
/

<
su

m
in

a
ry

>
In

n
e
r

s
ig

n
a
l<

/s
u
n
u
n
a
ry

>
1

4
2

In
tS

ig
n

a
l

s
ig

3
=

n
ew

I
n
tS

ig
n
a
lO

;
1

4
3

1
4

4
//

/
<

su
m

m
a
ry

S
y
st

e
m

m
o
d
e
l

c
o
n
s
tr

u
c
to

r<
/s

u
rm

n
a
ry

>
1

4
5

p
u

b
li

c
M

y
F

ir
s
ts

y
s
te

m
(I

S
y
st

e
m

M
a
n
a
g
e
r

m
a
n

a
g

e
r)

:
b
a
s
e
(m

a
n
a
g
e
r)

1
4
6

to
p
.c

lk
=

c
lk

;
1

4
7

to
p

.p
o

rt
a

=
s
ig

3
;

1
4

8
te

s
tb

e
n

c
h

.p
o

rt
a

=
s
ig

3
;

1
4
9

te
s
tb

e
n
c
h
.s

y
n
e
v
e
n
t

=
to

p
.s

y
n
e
v
e
n
t;

1
5
0

1
5

1
1

5
2

1
5

3
1

5
4

//
/<

s
u
rn

m
a
ry

’V
e
ri

fi
c
a
ti

o
n

T
o
o
i<

/s
u
rn

m
a
ry

>
<

/s
u
rn

rn
a
ry

>
1

5
5

//
/<

re
m

a
rk

s
>

1
5

6
//

/I
n

s
ta

n
c
e
s

o
f

th
is

c
o
m

p
o
n
e
n
t

d
is

c
o
v
e
r

d
y
n
a
m

ic
a
ll

y
1

5
7

//
/t

h
e

s
ig

n
a
l

a
n
d

p
o
rt

s
o
f

a
s
y

s
te

m
m

o
d

e
l.

1
5

8
//

/<
/r

e
m

a
rk

s
>

1
5
9

p
u
b
li

c
c
la

s
s

S
ig

n
a
lp

ri
n
te

r{
1
6
0

A
rr

a
y

L
is

t
s
ig

n
a
is

=
n
ew

A
r
r
a
y
li

s
tO

;
1

6
1

S
y

st
e
m

M
o
d
e
i

sy
st

e
m

M
o
d
e
l;

1
6

2
s
tr

in
g

sy
st

e
m

N
a
m

e
;

1
6
3

1
6

4
/
//

<
s
u
m

m
a
rf

’V
e
ri

fi
c
a
ti

o
n

T
o

o
i<

/s
u
m

m
a
ry

>

n
.

1
6

5
//

/<
p

a
ra

rn
n
a
m

e
=

”
m

o
c
1
e
1
”
T

h
is

is
th

e
b
o
u
n
d

sy
st

e
m

m
o
d
e
l

in
s
ta

n
c
e
<

/p
a
ra

rn
>

1
6
6

//
/<

p
a
ra

m
n

a
m

e
=

”
n

a
rn

e
”
>

T
h

is
±

s
th

e
n

am
e

o
f

th
e

sy
st

e
m

m
o
d
e
l

in
s
ta

n
c
e
<

/p
a
ra

rn
>

1
6

7
p

u
b

li
c

S
ig

n
a
lP

ri
n
te

r
(S

y
st

e
m

M
o
d
e
l

m
o
d
e
l,

s
tr

in
g

n
am

e)
1

6
8

sy
st

e
m

M
o

d
e
l

=
m

o
d

a
l;

1
6
9

sy
st

e
m

N
a
m

e
=

n
a
m

e
;

1
7

0
1

7
1

1
7

2
/
1
1
/

<
s
u

ra
ry

>
C

la
s
s

m
e
th

o
d

u
se

d
h

a
s

a
c
a
ll

b
a
c
k

to
in

it
ia

li
z
e

th
e

to
o
l<

/s
u
m

m
a
ry

>
1

7
3

/
/
/

<
re

rn
a
r]

:s
>

In
it

ia
li

z
a
ti

o
n

c
f

th
e

to
o
ls

c
a
u

s
e

th
e

d
is

c
o

v
e
ry

c
f

th
e

s
y
s
te

m
m

o
d
e
l<

/r
e
m

a
rk

s>
1
7
4

p
u

b
li

c
v
o
id

I
n
it

ia
li

z
e
(
)

1
7
5

D
is

c
o
v
e
rS

ig
n
a
ls

(s
y
st

e
m

M
o
d
e
l,

sy
st

e
m

N
a
m

e
);

1
7
6

1
7

7
/,

‘
/

<
su

m
m

a
ry

>
C

la
ss

m
e
th

o
d

u
se

d
fo

r
s
ig

n
a
l

a
n
d

p
o
rt

d
is

c
o

v
e
ry

<
/s

u
rr

u
a
ry

>
1

7
8

p
ri

v
a
te

v
o
id

D
is

c
o
v
e
rS

ig
n
a
ls

(I
M

o
d

e
lE

le
m

e
n

tC
o

n
ta

in
e
r

e
le

m
e
n
t,

s
tr

in
g

p
a
re

n
tn

a
m

e
)

1
7
9

T
y
p
e

ty
p

e
=

e
le

m
e
n
t.

G
e
tT

y
p
e
()

;
1

8
0

A
rr

a
y

L
is

t
h

ie
ra

rc
h

ia
lE

le
m

e
n
ts

=
n

ew
A

r
r
a
y
L

is
t;

1
8

1
O

b
je

c
t[

)
c
o
u
p
le

;
1

6
2

fo
re

a
c
h
(F

ie
ld

ln
fo

f
i

in
ty

p
e
.G

e
tF

ie
ld

s
(B

in
d
in

g
F

la
g
s
.I

n
s
ta

n
c
e

1
8

3
B

in
d
in

g
F

la
g
s
.P

u
b
li

c
I

1
8
4

B
in

d
in

g
fl

a
g
s
.N

o
n
?
u
b
li

c
))

1
8
5

O
b

je
c
t

o
b
j

=
fi

.G
e
tV

a
lu

e
(e

le
m

e
n
t)

;
1

8
6

if
(
o

b
j

is
B

a
se

M
o

d
u

le
){

1
8

7
c
o
u
p
le

=
n
ew

O
b
je

c
t[

2
1
;

1
8

8
c
o
u
p
le

lO
]

=
p
a
re

n
tn

a
m

e
+

“
.
“

+
fi

.N
a
m

e
;

1
8

9
c
o

u
p

le
[l

]
=

o
b
j;

1
9

0
h
ie

ra
rc

h
ia

lE
le

m
e
n
ts

.A
d
d

(c
o
u
p
le

);
1
9

1
}
e
ls

e
if

(
o

b
j

is
B

a
s
e
S

ig
n
a
l)

1
9

2
c
o
u
p
le

=
n
ew

O
b

je
c
t[

2
];

1
9
3

c
o
u
p
le

{
0
]

p
a
re

n
tn

a
m

e
+

“
.
‘

+
fi

.N
a
m

e
;

1
9

4
c
o

u
p

le
[l

]
=

o
b
j;

1
9
5

s
ig

n
a
ls

.A
d

d
(c

o
u

p
le

);
1
9
6

1
9

7
1

9
8

fo
re

a
c
h
(O

b
je

c
t[

]
p
a
ir

in
h
ie

ra
rc

h
ia

lE
le

m
e
n
ts

)
1
9
9

D
is

c
o
v
e
rS

ig
n
a
ls

((
IM

o
d

e
lE

le
m

e
n

tC
o

n
ta

in
e
r)

p
a
ir

[l
],

(
s
tr

in
g

)
p

a
ir

[
0

J
)
;

2
0
0

2
0
1

//
/

K
su

rn
rn

a
ry

>
C

la
ss

m
e
th

o
d

u
se

d
a
s

a
c
a
ll

b
a
c
k

to
p
r
in

t
th

e
c
u

rr
e
n

t
2
0

2
/
/
/

v
a
lu

e
s

c
f

th
e

d
is

c
o

v
e
re

d
sy

st
e
m

m
o

d
e
l

s
ig

n
a
ls

a
n
d

p
o
rt

s<
/s

u
m

m
a
ry

>
2

0
3

p
u

b
li

c
v
o
id

P
ri

n
tS

ig
n

a
ls

t)
f

2
0

4
fo

re
a
c
h
(O

b
je

c
t[

]
p

a
ir

in
s
ig

n
a
ls

){
2
0

5
O

b
je

c
t

c
u

rr
e
n

tV
a
lu

e
=

p
a
ir

[
l]

.G
e
tT

y
p
e
()

.G
e
tP

ro
p

e
rt

y
(”

V
a
lu

e
”
)

.G
e
tV

a
lu

e
(
p
a
ir

[
l]

,n
u
ll

)
;

n

2
0

6
O

b
je

c
t

n
e
x
tV

a
lu

e
p
a
ir

[1
]

.G
e
tT

y
p
e
()

.G
e
tP

ro
p
e
rt

y
(”

N
e
x
tV

a
lu

e
”
)

.G
e
tV

a
lu

e
(p

a
ir

[1
J
,n

u
ll

);
2
0
7

C
o

n
so

le
.W

ri
te

L
in

e
(‘

V
I
)
;

2
0

8
C

o
n
s
o
le

.W
ri

te
L

in
e
(”

S
ig

n
a
l/

P
o

rt
n
ai

n
e:

{
0
}
;”

,p
a
ir

[O
))

;
2

0
9

C
o

n
s
o

le
.W

ri
te

L
in

e
f”

C
u
rr

e
n
t

v
a
lu

e
:

{
0
];

“
,c

u
rr

e
n

tV
a
lu

e
);

2
1
0

C
o
n
so

le
.W

ri
te

L
±

n
e

t”
I
’
)
;

2
1

1
2

1
2

2
1

3
2

1
4

//
/<

su
rn

rn
a
ry

>
M

a
in

e
n

tr
y

p
o

in
t

a
p
p

li
c
a
ti

o
n

<
/s

u
m

m
a
ry

>
2
1
5

//
/<

re
m

a
rk

s
>

2
1
6

//
,‘

T
h

e
sy

st
e
m

m
o

U
d

,
v
e
r
if

ic
a
ti

o
n

to
o
l

a
n
d

s
im

u
la

to
r

a
re

in
s
ta

n
ti

a
te

d
a
n
d

b
o
u

n
d

to
g

li
e
te

r.
2

1
7

//
/T

h
e

s
im

u
la

to
r

is
th

e
n

s
ta

r
te

d
fo

r
2

0
u
n
it

s
o
f

tu
rn

e
.

2
1

8
//

/<
/r

e
r
n
r
k
s
>

2
1
9

p
u

b
li

c
c
la

s
s

A
p

p
2
2
0

//
/

<
su

n
u

n
ar

y
>

2
2
1

//
/

A
p
p
li

c
a
ti

o
n

e
n

tr
y

p
o

in
t

2
2

2
//

/
<

/s
u
m

rn
a
ry

>
2
2
3

s
ta

ti
c

v
o
id

M
a
in

(s
tr

in
g

[]
a
rg

s
)

2
2

4
S

im
u
la

to
r

si
m

=
n
ew

S
ir

n
u
la

to
r
;

2
2
5

M
y
F

ir
s
tS

y
s
te

m
sy

s
=

n
ew

M
y
F

ir
s
tS

y
s
te

m
(s

ir
n
);

2
2

6
S

ig
n
a
lP

ri
n
te

r
sp

=
n
ew

S
ig

n
a
l?

ri
n

te
r(

s
y

s
,”

M
y

F
ir

s
tS

y
s
te

m
”
);

2
2

7
s
im

.s
ir

n
ln

it
+

=
n
ew

R
u

n
n

a
b
le

M
e
tl

io
d
fs

p
.I

n
it

ia
li

z
e
);

2
2

8
s
im

.c
y

c
le

ln
it

+
=

n
ew

R
u
n

n
a
b

le
M

e
th

o
d

(s
p

.P
ri

n
tS

ig
n

a
ls

);
2

2
9

s
im

.R
u

n
(2

0
);

2
3
0

2
3
1

2
3

2

n
C

