
l/3o7

Université de Montréal

A Domain-specific search engine for the construction sector

par
Qi Zhang

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la faculté des études supérieures
en vue de l’obtention du grade de Maîtise ès sciences (M.Sc.)

en Informatique

Avril, 2003

©Qi Zhang, 2003
Gtt

2003 OCT. 02

\‘L.

QA n
rf

uSLf
2203

n

Université
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé:

A Domain-specific search engine for the construction sector

présenté par:

Qi Zhang

a été évalué par un jury composé des personnes suivantes:

El Mostapha Aboulhamid (président-rapporteur)

Jian-Yun Nie (directeur de recherche)

François Major (membre du jury)

Mémoire accepté le 17 juillet 2003

Résumé

Les engins de recherche présentement disponibles sur le Web offrent des

outils de recherche d’information (RI) dans des domaines génériques.

Aucun effort particulier a été mis sur la RI spécialisée. Des

professionnels cherchant des informations spécialisées ne peuvent pas trouver ces

informations de façon précise.

Le projet de recherche dans lequel s’inscrit notre étude vise à

construire un système de question-réponse dans un domaine spécialisé qu’est la

construction - le système ERIC (pour Engin de Recherche d’Information spécialisé en

Construction). Différent de la RI traditionnelle, le but ultime de ce système est de

fournir une réponse précise à une question de L’utilisateur. Le travail décrit dans ce

mémoire constitue la première étape de ce système - la recherche de passages, ou

l’identification des portions de document pertinentes pouvant contenir une réponse.

Dans notre travail, nous avons adopté un système de RI générique OKAPI

comme notre outil de base d’indexation et de recherche. De plus, nous avons tenté

d’améliorer la performance de recherche en:

1. reconnaissant des termes composés spécialisés comme terme

d’indexation additionnels,

2. exploitant un thésaurus spécialisé pour identifier des termes reliés

afin d’étendre la requête de l’utilisateur de façon à augmenter le rappel.

Nous avons testé notre approche sur aune petite collection de test

spécialisée en construction. La performance globale s’avère bonne. En particulier,

nous avons obtenu une amélioration d’environ 5% en intégrant des termes composés et

l’expansion de requête en comparaison avec la méthode de base fournie par OKAPI.

Ce résultat montre des bénéfices possibles de notre approche pour la RI spécialisée.

Le système que nous avons construit s’avère un cadre flexible pour

l’intégration des outils additionnels pour l’analyse de la tangue naturelle, une

analyse nécessaire pour la question réponse.

Mots-clés RI, Engin de recherche, ERIC, OKAPI, recherche de passage, terme

composé, expansion de requête.

11

Abstract

The current search engines available on the Web perform general-purpose

information retrieval (IR). No particular efforts have been put on domain—specific IR.

Professionals looking for specialized information may flot find the required

information accurately. The research project described in this thesis aims to constntct

a domain-specific question answering system - ERIC (for Engin de Recherche

d’Information specialisé en Construction). Different from traditional IR, the ultimate

goal of this system is to provide a direct answer to a user’s question. The work

described in this thesis concerns the first step of this system, namely passage retrieval,

or the identification of relevant portions of document that may contain an answer.

in our study, we adapted a general purpose IR system-OKAPI as the basic

indexing and retrieval tool. In addition, we try to improve the retrieval effectiveness

by

1. Recognizing specialized compound terms as additional indexes;

2. Exploiting a specialized thesaurus to identify related term in order to

expand the user’s query so as to increase recail.

We have tested our approach on a srnall test collection in the construction area.

The global performance is quite good. In particular, when both compound term and

query expansion are used, we obtain an improvement of about 5% in the retrieval

performance, in comparison with the basic search method provided by OKAPI. This

result shows the possible benefice ofthese approaches for domain-specific IR.

111

The system we constructed provided a reasonable framework to integrate

additional tools for refined naturat language analysis for question answering.

Keywords: IR, search engine, ERIC, OKAPI, passage retrieval, compound term, query

expansion.

iv

Table of Contents

C HPPTER J. II’JTRODL.JCTIOI’i 1

1.1 Problems with the current IR systems for domain-specifïc search.3
1.2 Context and goal of the project 4
1 .3 Organization of this thesis 5

CfIAPTER 2. RELÀÔLTED VVORI(I1’J IR 6

2.1 Document Indexing 6
2.2 Retrieval models 9

2.2.1 Vector space mode! 10
2.2.2 Boolean mode! 11
2.2.3 Probabilistic model 12
2.2.4 Discussion 16

2.3 Other search methods 17
2.3.1 Passage retrieval 17
2.3.2 Using compound terni 19
2.3.3 Query expansion 21

2.4WebIR 22
2.5 Question Answering System 24

CHAPTER 3. THE OKAPI SYsTEM 28

3.1 The Architecture of the OKAPI system 28
3.2 Probabilistic models used by OKAPI 30

3.2.1 Basic Robertson-Sparck Jones model 30
3.2.2 2-Poisson model 31
3.2.3.Docurnent length 33
3.2.4 Document !ength and number of query ternis 34
3.2.5 Weighting query terms 35

3.3 The modules of the OKAPI system 36
3.6 Conclusion 40

CHAPTER 4. ERIC — A SYSTEM FOR IR IN CONSTRUCTION
S ECTOR 42

4.1 The requirement of the ERIC system 42
4.2 The ERIC system architecture 44
4.3 Approaches used in ERIC 46

4.3.1 Introduction 46
4.3.2 Passage retrievat 48
4.3.3 11e thesaurus 49
4.3.4 Compound terms 52
4.3.5 Query expansion 54

V

4.3.6 Web site crawler.55
4.4 lntegrated system architecture 57
4.5 Related OKAPI APIs 62

4.5.1 OKAPI indexing APIs 63
4.5.1.1 Set up the database parameter files 63
4.5.1.2 Defining OKAPI exchange format 66
4.5.1.3 Converting into OKAPI database 66
4.5.1.4 OKAPI Indexing 67
4.5.1.5 Using stemming API for query processing 67

4.5.2 BSS API commands 68
4.6Workflows 69
4.7 The system interface 72
4.8 Summary 75

C l—LôPTER 5. EXPERIFVIENTS 77

5.1 Constructing document collection 77
5.1.1 Canadian building digest — first document collection 77
5.1.2 Crawling and collection 79

5.2 Test queries 79
5.3 Metrics 81
5.4 Using basic OKAPI system 83
5.5 Integrating compound terms 85
5.7 Using synonyms for query expansion 87
5.8 Conclusion 90

CHAPTER 6. CoNcLusioNs AND FUTURE WORK 92

R EFERENCES 95

APPENDIx: TEST QUESTIONS loi

vi

Lïst of Figures
Figure 1. Document and query represented in vector space 10
Figure 2. The Question Answering System Architecture 25
Figure 3. The OKAPI project architecture 28
Figure 4. The module structure of the OKAPI system 37
Figure 5. Core component cf the ERIC system 44
Figure 6. The system architecture 46
Figure 7. Index preprocessing in passage segmentation 48
Figure 8. Hierarchical class structures in thesaurus 49
Figure 9. The compound term processes 53
Figure 10. The system query expansion module diagram 54
Figure 11. ERIC crawler module design 56
Figure 12. The ERIC system application level architecture 58
Figure 13. The integration OKAPI modules in ERIC system 59
Figure 14. The system design modules 60
Figure 15. The workflow cf the document collection and indexing process 70
Figure 16. The workflow search process 71
Figure 17. The system query acceptance interface 72
Figure 18. The search result interface 73
Figure 19. The system database management-processing interface 74
Figure 20. The crawled web page displaying 75

List of Tables
Table 1. Example of the thesaurus 50
Table 2. Thesaurus terms relationship table 51
Table 3. Some parameters to be specified in “bd_name” file 64
Table 4. Some parameters in <db_name>..field_type file 65
Table 5. Some parameters in <db_name>.search_group file 65
Table 6. Example of related answer 83
Table 7. Basic OKAPI system test data 84
Table 8. Compound term utility test data 86
Table 9. Query expansion integration test data 89

vii

Acknowledgments

First and foremost, it is my great pleasure to acknowledge the kind support of

my supervisor, Dr. Nie who provided important attention and time with his friendly

and valuable assistance throughout the period of my master degree study in University

de Montreal. Moreover, I wish to thank the Dr. Colin Davidson and Gonzalo

Lizarralde of the Faculté de l’aménagement. This thesis would not have been possible

without their professional support. I have to thank my team members, Li-Fang Liu and

Zhuo Zhang, with whom I spent a considerable amount of time finding solutions to the

problems, which arose whiïe pursuing this project. Finally, I wouÏd also like to thank

BELL-LUB for supporting this project. The completion of this research was made

possible thanks to Beli Canadas support through its Beil University Laboratories R &

D program.

viii

Chapter 1. Introduction

Due to the expansion of the Web, more and more pages become available on

the Web. People often use the Web as a source of information when they have an

information need. However, the huge size of the Web also makes it more and more

difficuit to distinguish relevant documents from irrelevant ones.

Search engines have been developed precisely to answer this requirement.

Search engines are information retrieval (IR) system on the Web. They deal with the

problems of information representation, storage and retrieval. They help users quickly

identify a subset of documents that may contain relevant information. A number of

search engines sucli as Google and Yahoo are currently available to public. However,

those search engines can only perform general retrieval tasks. They do not take into

account particuÏarities of specialized areas. As a consequence, a user looking for

domain-specific information will likely obtain a set of documents that contain the

words in the general dornain. b illustrate this, let us consider a specialist in

construction who wants to find information about “highway shoulder” — a special

concept in construction. For the existing search engines, the query “highway shoulder”

is separated into two words: “highway” and “shouÏder”. With the word “shoulder”, it

is likely that the systems xviÏl retain a set of documents about human and animal

shoulders instead of “highway shoulders”. This example illustrates a typical problem

of general search engines: the Iow precision rate in search for specialized information,

and the search engine’s inability to distinguish specialized documents from general

domain documents. This is one of the reasons why experts in construction do not often

use the Web to find professional information.

To solve this problem, one means is to build specialized search engines or IR

systems. Theses systems only index the documents in the required area, and they are

able to recognize specia{ized terms in the given area. The construction of sucli a

system is the goal ofthe present study.

This research project aims to provide the experts in construction with an

efficient search tool. The ultimate goal is to provide a short yet precise answer to

questions of the specialists in the construction sector. b achieve this goal, the first

step is the identification of the documents or portions of documents that may contain

an answer to the questions. Then in-depth linguistic analysis is carried out on these

documents to further confirm if they contain an answer. Out study described in this

thesis concems the first step. As the questions are domain-specific, they cannot be

deait with in the sane way as general domain questions. In particular, the use of

domain-specific knowledge will be important for at least two reasons: we need to

recognize specialized terms, and we need to recognize the relationships (e.g.

synonymy) between these terms. The use ofdomain-specific knowledge is the focus of

this project.

In order to better understand the problems of general search engines for

domain-specific questions, we will describe them in more detail in the next section.

2

1 .1 Problems with the current IR systems for domain-specific search

For domain-specific IR, current search engines have several problems. The

first probiem is reiated to the use if single words as indexes. Currently, most IR

systems use keywords to determine if a document shouid be retrieved: a document is

retrieved if it contains the same keywords as the query. Keywords that are recognized

automatically during the indexing process are in fact single words contained in a

document. As we showed in an example earlier, a specialized compound term such as

“highway shouider” will be separated into several keywords, leading to less precise

representation of the contents of the document. As a consequence, the documents

retrieved may match the single words of a compound term without be related to the

given compound term. Ibis will introduce noise (i.e. non-relevant documents being

retrieved) in the retrieval resuits.

For domain-specific IR, specialized terms and compound terms represent very

important concepts that should be recognized accurateiy. Therefore, the recognition of

specialized compound terms is an important problem in domain-specific IR.

The second problem is the domain-specific document problem. As more

information becomes available on the Web, it is more difficuit to distinguish

speciaiized documents from generai domain documents. The search engines just

coliect ail information without distinguishing their domains. As a consequence, many

retrieved documents are not related to the given specialization domain. In order to

solve this problem, one has to consider constructing speciaÏized document collection.

This is one way to reduce retrieval noise and to provide IR in a specialized area.

3

The third problem concerns the use of dornain in IR. Current search engines do

flot use any knowÏedge (e.g. Relationships between terms) during retrieval. However,

in a speciaÏized area, there is usually a domain knowledge base available. The simplest

form of this knowtedge base may be a thesaurus, which stores a set of specialized

terms and the relationships between them. The use of such a knowledge base is

important in specialized IR. For example, when a user inputs a query on “construction

material”, lie would also like to find documents on “wood”, “brick”, “stone”,

“cernent”, and so on. Without using domain-specific imowiedge, it is difficuit to know

that these latter concepts are strongly related to the one in the user’s query. The related

concepts, once identified, can be added into the query in a query expansion process.

1.2 Context and goal of the project

Our researcli project aims to implement a system for domain-specific

information retrieval in the construction sector. It is also part of a research project at

the Centre International Du Bâtiment (CIBÂT) and IF Research Group at University

of Montreal, which is supported by an NSERC-CRD grant with BELL-LUB. This

research group provides us with a thesaurus specialized in construction as weÏl as their

expertise. In particular, the test data we will use in our experirnents are also prepared

by them.

The final goal of the whole project is to constnict a system capable of

gathering information related to the construction sector, and answering user’s question

in this area. In order to answer user’s question with a sentence of several sentences

from a document, one first bas to identify the relevant documents or portion of the

4

document that may contain an answer. Then a more refined analysis is canied out on

these documents to extract and confirm the answer. Our work described in this thesis

concems the first part: identifying relevant portions of constructing the backbone IR

system and document.

The system we constructed is called ERIC (Engin de Recherche d’Information

specialisé en Construction). Our contributions in this study are as foflows:

1. We adapted a general IR system — OKAPI — for ERIC.

2. By exploiting a specialized thesaurus, we recognize compound terms, and

use them as additional indexes to single words.

3. We implemented a mechanism which uses the thesaurus to identify the

rclated terms.

4. We implemented a simple semi-automatic downÏoading system tool to

assist the web master collecting specialized documents on the web. The

whole system is operational. This system is the basic search system that

makes it possible to continue the research project on the aspects that are

more related to question answering.

1.3 Organization of this thesis

The rest of the thesis is organized as follows. The second chapter reviews the

IR concepts, algorithms, and main models. The third chapter presents the OKAPI

system that we will use as a basic IR system. The fourth chapter describes our

implementation of the ERIC system. The fifth chapter presents the experiments with

ERIC. The sixth chapter presents some conclusions and future work in this project.

5

Chapter 2. Related work ïn IR

Domain-specific IR is a further improvement on classical IR. Ail the aspects in

classicaÏ IR are thus related to our project. In order to give a complete review of the

related work, we will start with the classical technique developed in IR, namely the

indexing process and the retrievat models. Thus, we will describe some of the

improvements that are closely related to our project:

— passage retrieval;

— the utilization ofcompound terms;

— question expansion;

—Web IR;

— question answering.

2.1 Document Indexing

The goal of indexing is two fold. 1) It identifies the most important concepts

described in the document; and 2) it measures the importance of each concept in the

document [NieOl]. Document indexing also creates a representation of document

contents that is manipulable, and useflil for the retrieval of document according to

their contents. Since the original documents are usually unstmctured texts, their

contents cannot be manipulated directly. The classical indexing process then tries to

determine simpler elements to represent them. Traditionally, keywords are used as the

representation elements. They are usuatly single words. Keywords are often weighted

in such a way that the weight of a keyword denotes importance of the keyword in the

6

document. There are three main steps in document indexing process: stop-words

elimination, word stemming, and terni weighting.

1. Stop-words Elimination

Not ail words in a nature language are meaningfui entities for representing the

document contents. In each nature ianguage there are words that only play a linguistic

role without bearing a particular semantic meaning. For example, the preposition such

as “in” or “of’ has no meaning in document. It is useless and even harmfui to keep

these words as indexes because these words would introduce noise in the retrieval

resuit. Therefore, when a word is encountered in a document, we first deterrnine if the

word is meaningfui, and shouid be kept as an index. Usually a list of non-meaningful

words is determined and used at this step. Such a list is called a stop-list. The words in

the stop-list are calied stop-words. Normally, the stop-list contains meaningless words

such as prepositions, adverbs, adjectives, and some verbs. For example, the words

“the”, “with”, “very” are usualiy in English. On the other hand, sometimes, a noun

with a very high occurrence frequency is also included in the stop-list. In fact, a word,

which occurs in 20% of the documents in the collection, is useless for purposes of

retrieval [Satton83].

2. Word stemming

Not ail the morphologicai differences between words are significant from a

semantic point of view. Different word forms may denote the same meaning. This is

the case for conjugated verbs, singuiar and plural forms, and so on. In order to remove

such non-meaningful morphological differences, stemming is usually appiied. Word

7

stemming removes word suffixes so that only word stems are kept. For example, ail of

following words are stemmed into the same form “connect” as follows.

connection

connections Stemming

connective connect

connected

connecting —

To do stemming, a set of stemming rules is usually used. For exampic, one

may remove ail the —ive suffix as in the case of “connective”. Some more

sophisticated process may also be used. For exampie, Porter proposes a stemming

process consisting of several successive steps, each step dealing with one type of

suffix.

Stemming can improve the performance of IR system in several ways. First, it

can reduce the size of the indexing structure. For the above example, five keywords

are transformed to the same “connect” word. This may increase the search speed.

Second, it also increases the recail, which is the capabiiity to find ail the relevant

documents. For exampte, if a user query is “connection”, after a query stemming, the

document retrievai wiil cover the documents that contain terms “connecting”,

“connected” and so on. In this case, the retrievai coverage is extended, and the recail

can be improved.

Instead of stemming, one can also use a more iinguistically motivated

approach such as lemmatization, which determines the standard form of a word (e.g.

singuiar form ofnouns). We wiii not give details about it.

$

3. Term weighting

The weights of index term indicate the importance of terms in a document.

They can be calcuiated in many different ways. The if * idfweighting scheme a widely

used weighting method. In this weighting scheme, the if denotes term frequency and

idf denotes inverted document frequency. The weight wt of a term t is based on its

local frequency in the document (t!) and its distribution in the entire document

collection (ici]). One ofthe f* icif formulas is as bclow:

wt [log(J(t, d)) + 1] X log (N/n)

where: J(t, cl) is the frequency ofthe term t in the document cl,

N is the total number of documents in the collection,

n is the number of documents inciuding t.

In this formula, [log(J(t, d)) + 1] is dcrived from the term frequencyJ(t, ci), and

log (N/n,) is what we cati icif

The basic idea of if * kif is that — the more frequency a word appears in a

document, the more the word is important (/), the less a word appears in different

documents, the more specific the word is to the document (ici]). Therefore, it shouid be

weighted higher for this word. There are several other weighting methods used in IR

systems, for example, probabilistic weighting, which we will describe in a later

subsection.

2.2 Retrieval models

Information retrieval aims to find out the relevant information for a user need.

It matches the query terms and index term from document, and ranks the retrievat

9

resuits to display for the user. The ranking of search resuits usually, follows a retrieval

model. This section will give more detail about the most commonly used retrieval

models, nameÏy vector space model, Boolean mode! and probabi!istic mode!.

2.2.1 Vector space model

In vector space modeÏ, a document, as well as a query, is represented as a

vector ofweights [NieOl]. A graphica! il!ustration is shown in figure 1, in which t], t2

and t3 are terms that correspond to dimensions of the vector space.

t

Locument

Query

t2

... t 1

Figure 1. Document and query represented in vector space

The vector space is defined by a!! the index terms, which are usua!!y selected

words in the document during indexing, as we described in Section 2.1.

Suppose that there are terms tj, t2 t,, then the vector space is defined as

fo!!ows:

Vector space: <t1, t2, ..., t!?>

A document d and a query q are represented as the following vectors of

weights:

d _> <Wd, Wd, ..., Wd,1>

10

q —> <Wq1 Wq2 ... Wq,1>

where: w and Wq1 are the weights ofterm t1 in document d and query q. These

weights can be determined by the f*idfweighting scheme.

Query matching involves measuring the degree of similarity sim(d, q) between

the query vector q and each document vector d. The following calculation of similarity

is among the ones ofien used in IR:

(w1 * Wq.)

sirn(q) =

[(w 2) * (wqj2)]”2

Another common formula is the inner product:

sim(cL q)
=

(w * Wq1)

The documents are then ranked in the reverse order of their similarities to the

query.

2.2.2 Boolean model

in Boolean IR mode!, documents are represented by sets of terms that are

considered to 5e index tenus, and queries are represented by Boolean expressions on

terms that are connected by Boo!ean operator AND, OR, and NOT. For example, “(A

AND B) OR C”. In practice, the user just enters a natura! language query, which the

system converts into Boolean expressions. Boo!ean retrieval considers Boolean

operators as fo!lows:

11

“A OR B” retrieves those items that contain the term A or the term B or both;

“A AND B” retrieves those items that contain both terms A and B;

“A NOT B” retrieves those items that contain term A and do not contain term

B.

In the above expression, no term weighting is used. This raises the problem for

ranking documents in the resuit Iist, i.e., there is no means allowing us to order the

documents in that Iist. To solve this problem, term weighting should be incorporated

in a Boolean mode!. In this way, query eva!uation can take into account the weight of

the terms, and resuit in a non-binary value. For examp!e, one ofthe extended Boolean

models uses the fol!owing eva!uation. In this case, assume that wt is the weight ofterm

t in a document, and the correspondence R(d, q) between a document d and a query q

is as fo!!ows:

R(d, t) = wt

R(d, qi AND q) = min(R(d, qi), R(d, q))

R(d, qi OR q) = max(R(d, qi), R(d, q.’))

R(d, NOT qi) 1 - R(d, qj)

Here, the operator “mm” and “max” are used for “AND” and “OR”.

The documents that have the highest values of R with the query are presented

to the user first in the retrieva! resuit.

2.2.3 Probabilistic model

A probabilistic approach was first proposed in IR in the 1960s. It has been

further deve!oped and applied in many IR systems such as OKAPI system, which is

12

developed at City University in London. The probabilistic model aims to capture the

IR problem within a probabilistic framework [Salton83].

The earliest probabilistic mode! is called independent probabilistic mode!

[NieOl]. Its goal is to calculate the probability that a document entails the satisfaction

of a query, formulated as the foïlowing conditional probability: F (R q I d). This

probability is further developed using Bayes Law as beÏow:

P (d I Rq) * p (R)
P(Rqd)= (1)

P(d)

Where:

P(d) - the probability that a document d is selected. It is assumed to be a

constant that is only dependent on the document collection.

F(Rq) - the probability that a query q may be satisfied by a relevant document.

It is another constant that is only dependent on the query.

F(dIRq) - the probability that a document d is part ofthe relevant documents for

the query. This is the key element to be estimated.

P(R1Id) — the probability that a query q is satisfied by a relevant document if

the document d is presented.

If we consider ail the dependencies of the elements (words) appearing in a

document d, it is difficuit to estimate P(dRq). To simplify it, the following

independence assumption is made: The terms in d are stochastically independent. This

makes it possible to decompose d into all terms that occur in it. Let us denote the

13

presence and absence of a term t by x1 =1 and x = 0 respectively. Then a document d

can be representcd as a set ofx as below:

d= { XI, X7 x}

Using the independence assumption, P(dlRq) becomes the following one as 5e:

P(dRq) HP(xi I Rq) = flP(xj=1l Rq)Xl F(X101 Rq)X

F(dIRq)
= [J F(X1 l Rq) P(Xi0 Rq) (2)

In order to estimate P(x=1 Rq) and P(x101 Rq) i.e., the probabilistic of the

presence or absence of a tenu among the relevant documents, one can use a set of

samples of documents whose relevance is judgcd manually. In an IR system, it is not

important to obtain a precise value for P(Rqlcl) because one is only interested in

ordering documents according to their relevance estimation. for this purpose, one

often uses the comparison of F(dIRq) and F(dlNRq), where NRq represents the set of

non-relevant documents, to estimate if a document should 5e retrieved, and how it

should be ranked in the resuit [NieO Ï]. Therefore, one ofien uses the Odd expressed as

the following formula:

P(dR)
flF(x1 =1IRq)F(Xi =0IRq)(lti)

Odd(d)
=

= 1=! (3)
P(dNRq)

ÛPx1 = li NR)’ P(x = 01 NRq)

14

Or its logarithm form:

F(d I R)
log Odd(d) log (4)

P(d I NR9)

In 1976, Sparck Jones and Robertson derived a formula from the above Odd

that gives a better numeric weight to a term t from a query q. The formula is as

follows:

W(t) = Ïog
p(1—q)

(5)
(1— p)q

where:

p is the probability that term appears in a relevant document as, i.e. P(x1=1I Rq).

q is the probability that terni appears in a non-relevant document i.e. F(xjz=1I

NRq).

1 —? is the probability that terni does not appear in a relevant document i.e.

P(x1=OI Ri,).

— q is the probability that term does flot appear in a non-relevant document

i.e. F(x101 NRq).

If we N is the number of indexed documents, n the number of documents

containing the term, R the number of known relevant documents among the samples,

and the r is the number of relevant documents containing the term, these probabilities

are estimated as follows:

O P(xilIRq)

q = F(x11 NRq)
r

15

R-r
Ï —? = Ptx1=O Rq)

R

1 — q P(x1=O NRq)
= N —n — R + r

Therefore,

p(l—q) r/(R—r)
W(t) = Ïog Ïog (6)

(l—p)q (n—r)/(N—n—R+r)

The problem with this formula is that for terms that do flot appear in the

sample documents, its probability is undetermined. Therefore, a srnoothing factor of

0.5 is add into the above formula, which is also used in the OKAPI system reading to

the following formula:

(r + 0.5)/(R—r+ 0.5)
W = log (7)

(n—r + 0.5)/(N— n —R + r + 0.5)

This formula is called Robertson-Sparck Jones formula.

2.2.4 Discussion

Boolean model allows for complete query expression with logical operators

“and”, “flot” and “or”. However in the unweighted Boolean model, the IR system may

retrieve too few or too many documents. In general, as the original user query is

usually flot in Boolean form, it is difficuit to transfer the query into a Boolean

expression.

16

Vector space model allows partial matching. Its similarity calculation allows us

to rank the documents according to their degree of similarity to the query. However,

the assumption that index terms are orthogonal is flot aiways reasonable.

An IR system can use a probabilistic model. In recent experiments, it has been

shown that some modified probabilistic models are effective for retrieval on large

collections. This is the case for OKAPI, which we wiÏl describe in the next chapter in

more detail. However, the problcm ofusing probabilistic model is that it needs a set of

relevant and non-relevant documents to estirnate the probabilities of index terms.

In our work, we choose to use a probabilistic model, in particular the OKAPI

system, because it has shown consistently good results in IR experiments in Text

Retrieval Conference (TREC). We wilI give a more detailed description of OKAPI in

chapter 3.

2.3 Other search methods

Beside the basic indexing and retrieval methods we just described, there are a

number of techniques developed in IR in order to improve the quality of retrieval. A

few ofthem are described in this section that are related to our project.

2.3.1 Passage retrieval

Traditional IR retrieves complete documents for a query. A problem with

document retrieval is that a long document is treated in the same way as a short

document. A long document could include several different topics, whiÏe some

particular topics are probably not developed in depth. Thus, it is difficult to find

‘7

proper information from such a document even if a topic is mentioned in it. Since

different topics exist in different portion of a document, a complete document can be

cut into several passages so that IR systems are able to identify relevant passages

instead of full documents. Passage retrieval aims to retrieval fragments information

from texts instead of complete documents.

There are different ways of defining passages. In general, we can identify three

types of passage: discourse passage, semantic passage, and window passage. A

discourse passage is a unit of document that corresponds to a unit of discourse sucli as

a paragraph or a sentence. A semantic passage is a logical unit of a text that presents a

logical concept. It may be a group of several sentences. A window passage is defined

as a sequence of words of fixed length. The length of the sequence is called window

size. Usually, the selection of a particular passage type is influenced by the suitable

passage size. The passage size can affect retrieval performance. If the passages are too

small, the IR system performance may suffer because there is a high probability that

relevant concepts are separated by passage boundaries. On the other hand, if we use

passages that are too large, there may be increasing noise in the retrieve because

irrelevant passages may contain sufficient query terms to match the query.

Passage retrieval lias proven to be an efficient way of identifying instances and

minimising user effort for extracting relevant information [SaltonS3]. This is

especially the case when the length of documents varies a lot. Passage retrieval can

also be used as the first selection means for a more complex task such as question

answering.

18

For passage retrieval, indexes are created for each passage. To do this, a

document is first broken down into more or less equally sized passages before

indexing. Those document passages are then matched against the query. Passages can

be provided to the user as the retrieval result. It is also possible to retum complete

documents based on passage-level evidence, or a combination of passage-level and

document-level evidence [SaIton83]. For example, the similarity of a document to a

query may be the sum ofthe similarities ofits passages to that query.

In a domain-specific area or in the case where an IR system is used to locate

precise infonnation, passage retrieval is better than document retrieval becausc the

precise answer usually is located in a small portion of the text, It is better to provide

the related passages as answer rather than asking a searcher to browse a long

document in order to find a specific passage. In our case, we want to constmct a

question answering system for the construction sector. The first selection of potential

texts should be done with passage retrieval instead of document retrieval.

2.3.2 Using compound term

Usually, keywords used in IR are single words. However, in nature language,

sometimes, the compound terms have more precise meaning in the document that

cannot be presented by any single word. Thus, developing IR system with compound

term can increase retrieval precision logically.

Without a specific way of dealing with compound ternis, these latter will be

separated into single words. For example, the term “computer hardware” wiIl be

replaced by “computer” and “hardware”. In keyword-based IR systems, such a

19

transformed query documents containing both “computer” and “hardware” but flot

necessarily “computer hardware”. In order to solve this problem to increase retrieval

precision, we aim to use compound terms such as “computer hardware” as additional

index terms.

To achieve this goal, we first have to recognize compound ternis. The

recognition of compound term will consider syntactic analysis and!or the use of an

available thesaurus.

Syntactic analysis aims to identify the syntactic structure of sentences. From

the resuit of this resuit, it is possible to identify noun phrases as document descriptors

in order to provide more accurate reprcsentation of the documenCs contents. hi fact, a

set of syntactic patterns such “NOIJN NOUN” or “NOUN PREP NOUN” is used for

the identification. However, the problem with syntactic analysis is that along with the

correct ternis identified, wrong groups of words also come out. For example, from

“question answering system”, flot only the correct term “question answering” is

identified, but also “question system” and “answering system” are generated. These

noisy terms wiII increase the noise in retrieve.

Thesaurus is another resource for the identification of compound term one

tries to identify the terms that are stored in the thesaurus. 0f course the phases in

thesaurus are correct terms to be identified. It would be more precise to use those

tenus as indexes of document contents.

In a specialized area such as construction, specïalized tenus are ofien

compound tenus. Therefore, it is particularly important to identify them. In the

construction sector, a specialized thesaurus lias been made avaitable to us. Therefore,

20

we use the thesaurus of construction sector to identify compound tenus in documents

and queries. The identified compound terms wilÏ be used as additional indexes.

2.3.3 Query expansion

Traditional IR requires that retrieved documents contain the sarne

keywords!terms as the query. However, if a relevant document does not contain the

same terms as those of the query, then that document will flot be retrieved. However,

the terms in the document may 5e strongly related to the ternis in the query, thus the

document is still relevant. In this case, query expansion is a way to reduce such a

mismatching problem. The aim of query expansion is to reduce query and document

mismatch by expanding the query using words or phrases with a similar meaning, or

with a strong relationship.

Query expansion consists of expanding an initial query of the user by adding

some related words in it. Ibis will resuit in a new query. The addition of the new

words extends the original query so that it lias a wider coverage than the original query

[NieOl]. in this case, even if a set of document representatives — index terms do not

match the same words as the original query, it can stiil 5e judged to be relevant if it

contains the keywords that are added in through query expansion. As a consequence,

more relevant documents may 5e retrieved, and the recali ratio may 5e increased

[NieO2].

Query expansion has long been suggested as an effective way to resolve the

short query and word mismatching problems. A number of query expansion methods

21

have been proposed in traditional information retrievai. Some IR systems use an

approach based on the similarity thesaurus to execute query expansion by adding

similar terms into the queries. The similarity thesaurus is based on term-to-terrn

relationships derived from a matrix of co-occurrence of terms. Another way is to use

synonym words, which are stored in thesaurus, to perform query expansion by adding

synonym words into the query. For example, if we know that “construction” is a

synonym of “building”, then a query on “construction” will be extended to

“construction” and “building”.

In our project, we also choose to use query expansion in our system because

we want to find ail of the potential answer of user’s query, even if the user users a

differcnt tcrm. To perform query expansion, we will make use of a domain-specific

thesaurus, which contains synonyms ofterms.

2.4 Web IR

The Web is creating new challenges for IR systems. Every year, the amount of

information available on the Web grows exponentially and has reached over one

billion pages by the year 2002. The Web lias become a common place for people to

search for information, do their shopping, etc. Web IR performs IR on the Web to help

people finding their needed information. However, there are a few important

differences with the traditional IR.

• Dynamic data collection

Traditional data collection is static, however, the Web is dynamic. Therefore,

we need to collect documents dynamicaliy with a crawler.

22

• Link analysis

Link analysis tries to exploit the links between documents in order to provide

additional criteria for document retrieval. PageRank algorithm [Page98] uses the

connections between documents to weigh the importance of pages. The HITS

algorithm [Kleinberg98] further refines the connection and derives two important

types of page: hub and authority. A higher degrec of hub or authority of a page would

increase the weight of that page.

• New ways for term weighting

In general, the Web IR system gives preference to the words found in the titie

or leading paragraph or in the metadata of a document so that the terms occurring in

the titie of a document or page that match a query term are weighted more heavily

than terms occurring in the body of the document. Similarly, the query ternis

appearing in section headings or the first paragraph of a document may be more likely

to be relevant.

• Popularity

Popularity is a measure of the frequency that a page is used. If many users

choose a page, it is a sign that many users prefer that page, so its weight should be

increased.

• Date of publication

It is usually assumed that the more recent the information is, the more likely

that it will be useful or relevant to the user. Therefore, most Web IR system present

search results beginning with the most recent to the less recent.

23

In our project, although the final system will work in the Web environment as

a search engine, this aspect is flot yet the central concem at the current stage. We are

more concemed with the way that Web pages are crawled so that indexing may be

performed on it. In our project, we wiII implernent a simple crawiing mechanism, in

collaboration with Web master assistance, in order to gather new Web pages related to

the construction area.

2.5 Question Answering System

Question answering (QA) is different from IR in that it lias to find the answer

to a question by returning a small fragment of a text, where the answer actually lies. In

contrast, IR systems allow us to locate full documents that might contain the pertinent

information, leaving it to the user to extract the answer from a ranked list oftexts.

As there is more and more information on the Web, QA is more and more

required in order to identify precise answers to a question. There are several portals on

the Web providing QA services, for example, the START system (http:!! www.

ai .mit. edu!proj ects/infolab/start.html) and AskJeeves (http :1/ www. askj eeves. com).

The START Natural Language System is a system designed to answer

questions that are posed to it in natural language START parses incoming questions,

matches the queries created from the parse trees against its knowledge base and

presents the appropriate information segments to the user. START provides untrained

users with speedy access to lmowledge that in many cases would take an expert some

time to find [Salton83j.

24

AskJeeves is equipped with a fairly sophisticated natural language question

parser. If it finds an answer in its factoid database, an answer is generated. Otherwise,

it performs IR as a traditional search engine does [Robertson92].

Usualty, QA systems use architecture as the one shown in figure 2 below.

• The question processing module parses the user question. The role of this

module is to:

1. Determine the type of the question, for example, when, where, who,

and how far etc..

2. Deterrnine the type of the answer expected, for example, time and date

(when), place and position (where), person (who), and length (how far)

etc..

Figure 2. The Question Answering System Architecture

25

3. Transform the question into queries for the search engine, for example,

elimination stop words, query keyword extraction, and!or query

expansion.

• The information extraction module identifies special type of information from

the texts such as dates, addresses, person names, company or institute name,

and so on.

• The answer processing tries to identify and extract the answer from the

paragraphs that correspond to the question type and extracted keywords. k

usually contains two parts: one for passage retrieval in order to identify

segments of text which may contain an answer; and the other for answer

verification / generation (passage analysis) in order to confirm if it contains the

required answer.

In our project, as our final goal is also to create a QA system for construction

sector, ail the aspects just mentioned above are concerned. However, the further

analysis of questions and answers are developed by two other master degree students

in our research group. The present study is only concemed with the construction of a

basic IR system which provides a passage retrieval mechanism and integrate some

domain-specific knowledge, in order to provide the further analysis with a set of

candidate passages. So in the following chapters, they will only talk about the specific

work in this study, namely the following aspects:

• Passage retrieval by adapting an existing IR system — the OKAPI system.

• Compound terni extraction with the help of a domain-specific thesaurus.

• Query expansion with the domain-specific thesaurus.

26

• A simple user interface with CGI application.

As the backbone IR system, we will use in this project is OKAPI. We will

describe this system in more detail in the next chapter before presenting our work.

27

Chapter 3. The OKAPI System

OKAPI is an experimental text retrieval system, designed to use simple, robust

techniques internally. It is developed in City University at London. It can be used for

searching files of records whose fields contain textual data of variable length. It

implements a variety of searcli techniques based on probabilistic retrieval model, with

easy-to-use interfaces, for databases of operational size and under operational

conditions [Robertson92].

OKAPi has been used in several TREC experirnents. It has consistently

produced one of the best performances among ail the participants. It is available to

researchers for research proposes. Due to these reasons, we chose OKAPI as our basic

IR system. This chapter will give a brief description of the OKAPI system.

3.1 The Architecture 0f the OKAPI system

OKAPI uses a standard three-tiers architecture as figure 3 indicates.

The user interface Basic search system OKAPI runtime database

User queries

Search resuits

EEED

Figure 3. The OKAPI project architecture

28

1. The OKAPI interactive interface

The first tier is user interface. It is an interactive interface for user to use this

system. A user can submit a query in the query box. The retrieved resuits wiÏl be

displayed in the resuit window. If the user wants to further read a document, he only

lias to click on that document.

2. The OKAPI search system

The second tier, the Basic Search System (BSS), is the core module in the

OKAPI system. The BSS provides retrieval functionalities to produce ranked output. It

is designed primarily for probabilistic retrieval of textual materials using inverted

indexing files together with built-in weighting functions. It is a low level platform

offering APIs to perform the searching process. The BSS was implemented in the

language C. Developers who want to develop a complex retrieval system using the

OKAPI system can cait the BSS APIs. When BSS receives the queries, it wilÏ look

into the indexed OKAPI runtime databases and the invert files to find out the correct

documents by keywords. We will go into more details about BBS in the next section.

3. The OKAPI runtime database

The third tier, OKAPI runtime database, is a library of the OKAPI system,

which allows accessing the index files and the documents. This is a set of basic data

access tools. Notice that OKAPI also have a set of indexing tools allowing

29

constructing the runtime database. These tools are used offline (i.e. before any user

query is submitted).

In order to construct an IR system using OKAPI, we usually use the APIs

provided by OKAPI.

3.2 ProbabNistic models used by OKAPI

OKAPI implements a series of probabilistic models. We give a brief

description of them in this section.

3.2.1 Basic Robertson-Sparck Jones model

As we described in chapter 2, the basic probabilistic mode! uses the following

weighting formu!a for a terrn t in a document D, which is called Robertson-Sparck

Joncs formula:

W1(t,D) = tog
pq)

= log
(r+0.5)/(R—r+0.5)

(1)
(1

— p)q (n — r + 0.5)/(N — n — R + r + 0.5)

where:

N is the number of indexed documents;

n is the number of documents containing the term;

R is the number of known re!evant documents; and

r is the number of relevant documents containing the term.

This weighting formu!a lias been imp!emented in OKAPI as one of the

weighting schemas, called the BMJ weighting schema. In OKAPI, the search terms or

30

index terms are keywords or phrases, or any other record components. They are

extracted automatically from a query or a document.

In practice, no relevance feedback is available. This means that we do flot

know R and r for each term. Therefore, search terms are assigned weights, based on

inverse document frequency (idj) without relevance information, i.e. we assume R = r

= O in the above formula, leading to

(N—n+O.5)
Wi(t,D) = log

n +0.5

which is similar to the classical idflog

Several other weighting schemes are also irnplemented in OKAPI. They are

based on a different probabilistic model — 2-Poisson model.

3.2.2 2-Poisson model

In fonnula BM 1, the calculation does not consider the term frequency Qf) in a

document. It is clear that this factor should be taken into account for better retrieval

performance. The 2-Poisson model tries to consider this factor. This moUd postulates

that the distribution of within-document frequencies of a content-bearing terni is a

mixture of 2-Poisson distributions: one set of documents — the “elite” set for the

particular term (which may be interpreted to mean those documents which can be

“about” the concept represented by the terni) will exhibit a Poisson distribution of a

certain mean, while the remainder may also contain the term but much less frequently

[Robertson93]. The following formula considers the within-document term frequency

Q/) for a term t which occurs ftimes in a document D {Robertson93].

31

(p’te+ (1
—

p’) te’)(q’e + (1
— q’) e)

w2(t,D) = 10g (2)
(q’te+ (1—q’) te)(p’e+ (l—p’) e)

where:

À is the Poisson mean for tf in the elite set for t;

ji is the Poisson mean for tf in the non-elite set;

p ‘is the probability of a document being elite for t given that it is relevant;

q ‘is the probability of a document being elite given that it is non-relevant; and

f is term frequency ofthe document.

It is clear that the formula (2) for w7(t,D) is difficult to calculate; but from this

formula we can see how f behaves. There is an approach that suggests a simpler

function of / which behaves in a similar way. If fis zero, the t,D) is zero too. If tf

gets large, the weight will be close to an asymptotic maximum, which is tf/(zj’ +

constant). As shown in [Salton83], the maximum is approximately the binary

independence weight that wouÏd be assigned to an infallible indicator of elite. from

this observation, a simplified formula is proposed, which multiplies the asymptotic

maximum with the appropriate binary independence weight, i.e. the formula (1) BMÏ.

This results in the following new weighting formula:

if
w3(t,D) = w1(t,D) (3)

(k1 + if)

where k1 is a constant that depends on the weight wi (tD) and if

The constant k1 in the formula is not in any way determined by the argument.

The effect of this constant is to determine the strength of the relationship between the

32

weight and tf This lias an asymptotic limit of unity, so it must be multiplied by an

appropriate OKAPI basic weight w1(t,D). In practice, k1 is set at around 1.

3.2.3.Document Iength

For document indexing, the above 2-Poisson model assumes that documents

are ail of equal length. But the difference in document length could have a great

impact on the resuits of retrieval. Usually, a longer document will have a higher f for

a term than a shorter document. As a consequence, longer documents are favoured by

tlie formula (3). However, longer documents are not necessarily preferred to shorter

ones. In many cases, users prefer shorter, but more specific documents to longer but

lcss specific documents. In order to correct the bias created by the length factor, the

following weighting formulas integrates an average document length as follows:

w4 (t,D) = w1 (t,D) (4)k1xdl
(+tf)

avdt

where:

avdl is the average document length;

dl is the length ofthe document D.

So the weight of each term depends on both fand dl. The higher the dl of a

document, the lower the w4 (t,D) in that document.

33

3.2.4 Document Iength and number of query terms

Another correction factor (cJ) tries to make the weight dependent on the

document length and the number of terms in the query (nq) when terms match. for

appropriate matching value in document sirnilarity, two components have to be

considered:

1. One component is the sum of term weights, and the weight of cadi term

depending on both fand dl as above presented; and

2. The other component is the correction factor that depends on dl and nq. This

component is only added for document match not for terms match.

The correction factor (cJ) behaves as follows:

1. when dl tends to zero, cf tends to the maximal value, i.e. dl —> O,

cf—> max.

2. when dl equals to avdl, cf tends to zero, i.e. dl ai’dÏ, cf—> O.

3. when dl tends to the maximal value, cf tends to minimum value, i.e.

dl—>oo, cf—>min.

The new weighting formula with the correction factor is as follows:

(avdl—dl)
cf=k2xnq (5)

(avdl + dl)

where:

k2 is another constant;

nq is the number of terms in the query.

34

3.2.5 Weighting query terms

On the query side, one may also take into account the term frequency. The

more frequent a term is, the more important it is. In considering this factor, the

weighting formu’a could be as follows for a terrns t occurring in the query Q:

w6(t,Q) = w1 (t,D) (6)
(k3 +q’f)

where:

qtfis the query terni frequency.

k3 is a constant playing the same role as k1 in formula (3).

Several combinations of the weighting formulas and functions discussed above

have been implemented at one time or another during the development course of

OKAPi. Most of the functions are refened to as Best Match (BMxx) functions in

OKAPI as follows.

(r + 0.5) /(R — r + 0.5)BMÏ:w=log =w1 (7)
(n—r+0.5)/(N—n—R+r+0.5)

BM11:w= s1s3x XW(1) k,xnqt_6 (8)
(klXdl+tf) k3+qf (avdl+dl)

avdl
where:

SJ S3 are scaling constants related to k,, k3;

indicates the following component is added onÏy once per matched

documents. It is second component for matching value.

BM15:w=sis3x x xw ek,xnqVll_ (9)
k1+f k3+qf - (avdl+dÏ)

35

In order to combine BM1 Ï and BM15 in a unified formula, the term frequency

component in formula BMÏY (8) (i.e.), and BMY5 (9) (i.e
(k! xcii +zf)

avdl
f/(ki+ 9) is replaced by: f/ (k + f). This resuit is the following BM25 formula:

BM25: w=s1 531 X xw k7 xnq’ (10)
k((l—b)+b(—1--))+tf k3 +qf °

- (avdi+dl)
avdl

where k = k1 (U - b) +
avdi

We notice that ifb = 1 it is BMÏ 1; ifb = 0 it becomes BMY5.

3.3 The modules 0f the OKAPI system

OKAPI contains eight modules: user interface module, stemming module,

basic search system module, browser module, indexing module, stop words module,

OKAPI exchange DB module, and OKAPI runtirne DB module. Figure 4 illustrates

how these modules work together for a typical IR task.

36

Input Resuit

OKAPI Action Module. Data ftow

OKAPI Database.

Figure 4. The module structure ofthe OKAPI system

1. OKAPI Exchange DB

The OKAPI exchange DB holds the data in OKAPI exchange format. This

format is used for OKAPI indexing. The OKAPI exchange format is as follows:

• Every record in the database must have the same number of fields with an

“end of record” character;

• Each field in an exchange format record is terminated by an “end of field”

character.

37

A record is a complete unit in the converted DB. A filed is a unit for OKAPI

indexing. One record can contain several at most 31 fields. Although any fields should

exist in a record, the fieid could be empty.

Once a set of documents is transformed into this format, the OKAPI indexing

can take place.

2. Stopwords

OKAPI can incorporate any stoplist that the system administrator provides. Ail

the words in this iist wilI flot be taken as indexes (see Chapter 2).

3. The stemming Module

This model aims to remove suffixes from words appearing in a document or

query. We have described this function in Chapter 2.

4. The indexing Module

Before documents can be indexed, they first have to be converted into a

suitable internai form. Then a large index file is constructed, which indicates for each

index term, what documents contain the terni, and how important it is. The importance

is caiculated according to one of the weighting formulas we described in the previous

section.

When new documents must be added, OKAPI has to re-index the whole

collection. So OKAPI does not support incremented indexing. This is due to the

weighting formulas used.

5. OKAPI Runtime Library

The OKAPI library holds an inverted file. In IR, the inverted file is used to

store a record for each index terni, which lists each collected documents, which

38

contain the term. The inverted file allows for a quick identification of ail the

documents that contain a term.

6. Basic Search System

The basic search system (BSS) is the OKAPI’s core search tool. It provides a

set of APIs offering text retrieval functionalities. Ihe BSS consists of a set of low

levet API cornmands, implemented as a C library, which enables users to build their

own interface based on it. In our project, we will build our own IR system upon

OKAP1’s BBS.

7. OKAPI user interface

OKAPI user interface is an interactive interface. It accepts user’s query and

then displays the retrieval resuits. However this interface does flot satisfy alt our

needs. For example, it does not support multiple users, and cannot be directly

connected to the Web. Therefore, we will not use the OKAPI interface and will

constmct our own user interface in our project.

8. Browser Module

The browser module handles the retrieval resuits. It shows a list of the retrieval

resuits in decreasing order of their correspondence. The user can also provide

relevance feedback on some of the resuits, and the system can incorporate this

information and perform a second round retrieval. We wili not use this module in our

work.

39

3.6 ConcIuson

We chose to use OKAPI system because it bas proven its effectiveness in

previous IR experiments. In addition, OKAPI also allows for passage retrieval, which

fits the need of our project. We wilI use the OKAPI basic search system (BSS) for

basic retrieval and the index module for document indexing.

We do not use OKAPI user interface. Rather we will construct our own

because it does flot support the online, multi-user, and cross-platform retrieval.

To summarize, here is the list of the main OKAPI BSS functions that we use:

For indexing:

1. int convert_db (structure db_param_info *db info)

This fttnction converts OKAPI exchange file to the OKAPI reaÏized converted

format for indexing preparation. The “structure cÏbparanieter iifo” holds ail the pre

setting database parameters as the path ofthe exchange file etc..

2. int make index (struct db_param_info *db info)

b mn this function, it will start to make document indexing. Ibis flinction bas

to be mn after previous convert dbQ flrnction.

for search:

1. int open_database (char *databasename)

This function opens the database whose name is passed to the program, then

search can be performed in this database.

2. void initialize_bss

This function initializes the BSS. Every time, we want to use the BSS, we have

to initialize it first.

40

3. int do_search (char *term file, int *docset,

int *npostings)

This is a BSS search function, allowing the system searching information from

runtime database. The parameters “ternijile” — the file that contains query terms,

“docset” — the BSS document set number (retum value), and “npostings” — number of

posting resuit from BM25 search.

4. void do_show (int set, int no_docs)

This function displays the retrieval resuits for user.

41

Chapter 4. ERIC — A system for IR in construction
sector

ERIC (Engin de Recherche d’Information Spécialisé en Construction), is an

information retrieval system in a specialized domain — the construction area. This is a

framework in which a component of Question Answer (QA) wifl be added ater. The

current ERIC framework tries to identify potential passages that may contain answers

for a question or query. Those answers will be further anayzed by other components

to confirm if they really provide an answer to the question.

ER1C is developed on top of OKAPI, which we described in the last chapter. It

uses the basic indexing and search modules of OKAPI for indexing documents and

retrieving a set of candidate passages. In addition, we also integrated in ERIC a Web

crawler to download Web pages from a Web site selected manually. A simple user

interface is also constructed, allowing the user to interact with the system through the

Internet.

4.1 The requirement ofthe ERIC system

As ERIC aims to provide refined search capabiÏity for speciaÏists in the

construction area on the Web, it bas the following requirements:

Operability on the Web (online search)

We want to provide online search through the Internet. Because HTML is the

most popular data format used on the Web, the system should have the ability

42

to handie data in this format. In addition, a simple interface should be provided

for interactions between search system and online users.

• Semi-Automatic document crawiing and downloading from the Web

As we described in Chapter 2, one has to construct a document collection

dynamically for Web IR. In our case, we only want to include domain-specific

documents in the collection. We do not integrate an automatic resource

discovery tool in our system, because automatic discovery of specialized

resources we will ask the Webmaster to select a set of Web sites related to

construction, and the task of our crawler is to explore the selected Web sites

and download the documents. The reason that motivated the manual selection

is the requirernent of including only high quality domain-specific documents.

b achieve this, a manual selection is the most secure means. However, we do

flot require the Webmaster to indicate every Web page, but only the interesting

Web site. Our crawler will explore the Web sites and download the Web pages

stored on them into the local document collection.

• Content search

The target users of ERIC are professionals in the construction sector who looks

for precise information. The system should be precision-oriented. In our

approach, we will make use of a domain-specific thesaurus to enhance the

classical keyword-based retrieval. In addition, workers in the construction

sector are ofien frustrated by irrelevant information retrieved by the search

engines on the Web. As a resuit, they do flot ofien use search engines in their

43

professional activities. So another goal of ERIC is to attract professional users

by providing a few but relevant answers.

Passage retrieval

ERIC search engine will use passage retrieval instead of document retrieval

because our final goal is to find short answers to query questions. The answers

are usually contained in relatively short passages. Therefore, passage retrieval

is more appropriate. For passage retrieval, ERIC has to delimit the boundaries

of passages before OKAPI can index them.

4.2 The ERIC system architecture

ERIC aims to incorporate domain knowledge in IR operations. In our case,

dornain knowledge means a set of specialized tenus and relations between them. The

specialized tenus will be used as more precise indexes, and the relations between them

will be used for query expansion. The basic modules of the ERIC operations can be

illustrated in figure 5. On the indexing side, the knowledge base provides specialized

tenus. On the retrieval side, it provides related tenus for query expansion.

Figure 5. Core component ofthe ERIC system

44

Different functionalities are presented in some more detail below:

• The knowledge base is a resource, which is a dornain-specific thesaurus. As

the figure 6 indicates, the query analyser and document pre-processing will use

this resource to identify domain-specific compound terms for indexing and to

generate the relevant words for query expansion.

The following figure illustrates the system architecture in more detail.

• The Indexing module includes:

1. Document crawler, which constitutes an information collection from the

Web:

2. Document pre-processing, which prepares the documents for indexing sucli

as segment document passages;

3. Indexing, which cails the OKAPi indexing functions to generate the index

file (runtime database).

• The retrieval module contains

1. System interface, which accepts user’s query and outputs the search results;

2. User query analyser, which handies query analysis for generating an internai

representation of the query after eliminating stop words, stemming words,

and possibly performing query expansion; and

3. Search, which cails the OKAPI basic search system (OKAPI BSS) to

perform probabilistic search.

45

User

4.3 Approaches used in FRIC

4.3.1 Introduction

As we mentioned in chapter 2, a classical keyword-based retrieval is flot

precise enough. One of the means to increase precision is to use compound terms,

which provide a more precise representation of the contents. As we indicated in

chapter 2, one can use a dictionary of compound terms or a thesaurus to recognize the

compound terms from texts. In comparison with a recognition based on a syntactic

statistical analysis, this approach only recognize the terms that have been manually

confirmed to have a term status. It may be more precise. In our case, we have a

Figure 6. The system architecture

46

domain-specific thesaurus that contains a set of compound terms in construction.

Therefore, we will use it in our system.

Another problem we raised in chapter 2 is that a concept can be expressed in

several ways (synonyms). This also happen in specialized area such as construction.

For example, “corrosion” and “erosion” are synonyms that can be used

interchangeable in some cases. In order to aÏlow a query matching a document

containing a synonym, we will perform a query expansion. Again, synonyms have

been stored in the thesaurus, so our query expansion process will exploit the thesaurus

to find synonyms for query expansion.

There are many Web sites, but only a small number of them concems the

construction sector, and contains high-quality documents useful for construction

professionals (architects, contractors, etc). A blind automatic Web crawiing would flot

be able to crawl only documents in construction. Therefore, we ask the Webmaster to

examine if a Web site is useful. A Web site judged to be useful is then crawled by our

system. Currently, the IF research group has identified about 200 high quality Web

sites related to the construction sector. The documents on these sites are deemed

useful for construction professionals. Finally, as we have mentioned, for our purpose,

a passage retrieval is more appropriate than document retrieval.

In following sections, we will describe in more detail how the above

approaches are implemented.

47

4.3.2 Passage retrieval

Passage retrieval aims at retrieving the rnost relevant passages or document

segments. OKAPI can be used for passage retrieval through the use of “fields”.

However, OKAPI does flot determine the passages itself. We have to segment each

document into passages before indexing. The segmentation of a document into

passages is the first pre-processing that we perfonri, as shown in figure 7.

As described in Chapter 2, there are different ways to cut a document into

passages. In our case, we use a paragraph as a passage. Ibis choice is motivated by the

fact that a paragraph in technical documents usually describes a topic, and it is the

most likely container of an answer to a question (however, this is not the oniy possible

choice). As the documents we deal with are Web pages in HTML, it is easy to

implement our segmentation process. We delimit the passages by <P> tags in

documents. Normally, <P> tag introduces a new paragraph in HTML. So ah the <p>

tags are considered as a separator of passages.

Figure 7. Index preprocessing in passage segmentation

4$

Once ail the paragraphs are marked as passages, OKAPI wiii follow the

marked passages to index them. The retrieval resuits wilÏ be the passages instead of

whoie documents.

4.3.3 The thesaurus

Normally a thesaurus contains a set ofhierarchicai classes forming a tree

structure as shown in figure 8 below:

Levei I

Subsubclass 1 .

/N
Level 2

Level 3

Figure 8. Hierarchical class structures in thesaurus

Each term in a class in the thesaurus represents a concept. A terni may consist

of one or more words. A thesaurus serves as an authority list of the terms used for

indexing and retrievai. The thesaurus we use in our study has been developed by

professor Colin H Davidson of the Faculty de l’aménagement. It is specific to the

construction sector. It is provided as two large files: one contains ail the terms, and

the other contains ail the relations. There are 15354 terms in this Thesaurus.

49

Through those two available thesaurus files, we can find out the query terms

and their related terms. There are several types of relationships in the thesaurus to

make up its own hierarchical classes, for example, BT relationship (Broader term

relationship), NT relationship (narrower term relationship), WT relationship (Whole

term reÏationship) etc. Those relationships can make the different data tree structures.

However, we will only use PT and RT relation in this study for query expansion.

The table 1 below shows some examples.

Identification Frencli term English terrn Level number
number

8756 Revenu national National income 6

8760 Produit national National product 6

13555 Revenu fiscal Tax revenues 7

Table 1. Example of the thesaurus

In table 1, the identification number is a unique number assigned to a term. A

concept is expressed in both French and English. The level number indicates the level

in the class hierarchy where the term is.

The following Table 2 illustrates the relationships between terms (concepts) in

the thesaurus.

50

Term ïdentify number Term identify number Terni relationship

8756 8760 RT

$756 13555 PT

Table 2. Thesaurus terms relationship table

In this table, the concept $756 (“National income”) has an RT relationship of

$760 (“National product”), and a PT relationship of 13555 (“Tax revenues”). The

“RI” is related term relationship. The “FI” is part term relationship. The RT

relationship usually indicates the terms without equivalent or hierarchical, but they are

semantically associated in thesaurus, as for the above examples of “national income”

and “ tax revenue”. The FT retationship is kind of hierarchical relationships with the

WT, but PT indicates the terms separated from their parents in thesaurus. For example,

the above terms “national incorne” and “national product” all are in level 6 and have

FT relationship. It indicated those two nodes are in same level, and associated to

different parent nodes.

To process query expansion in ERIC, the Mysql database is used to process

those two thesaurus files. The two files are converted into Mysql database, and the

SQL language is used to find out expansion query ternis through the relationships FT

and RT

• Creating Mysqi databases

1. create two database names to store two thesaurus files. One name “Thesaurus”

contains all ofterms. The other “Lien” contains those term relationships;

51

2. create database tables and then to load the available thesaurus files into

database tables.

Using Mysqi databases

1. choose the correct database, for example, command “use Thesaurus” to choose

named “Thesaurus” database to use; and

2. retrieval information from database tables by using the “select” command. For

example:

seÏect id (ter,?? identification nttmber,) from Thesaïtrits;

in Thesaurus where e_terni (‘English terni) = “construction ‘‘;

The identification number of the terni “construction” will retrieve immediately

if this tenn is in database.

4.3.4 Compound terms

The thesaurus offers a means to identify compound terms. The identification of

compound terms is done before the system performs documents indexing, and query

searching. Compound terms are identified in both documents and queries. The

following figure 9 shows how compound terms are added into a document and a query

through a preprocessing:

52

figure 9. The compound terrn processes

The preprocessing gocs through the text (a document passage or a query), and

once a compound term is encountered, it is added into the text in a new field. For

example, suppose we have the following passage:

“<p> Although there is no standard test available for assessing the capacity of mortar to

contribute to efflorescence, cementing materials for mortar are available which are Iow in content of

saits producing efflorescence, of which sodium and potassium compounds appear to be important. The

use of lime, and of low-alkali portiand cernent and low-alkali rnasonry cernent wiII greatly reduce the

capacity of mortar to contribute to efflorescence. Careful storage of the masonry materials on the job

site is also necessary to avoid contamination from salt-caffying ground water.”

In the above passage, four compound terms appeared: “standard test”,

“Portiand cernent”, “rnasonly cernent”, and “ground water”. In ERIC system, once the

term “standard test” is identified as a term in the thesaurus, the space in it is replaced

OKAPI
convert
database

53

by underscore””. The terrn “standard_test” is then added into the new field <ADD

TERMS>. So for the above example, the following field is added:

“<ADD TERMS> standard_test, Portiand_cement, masonry_cement,

ground_water”

The reason to replace space by ““ underscore in compound terms is that we

want the indexer of OKAPI consider the term as a unit, and ““ underscore is not

considered as a word separator by OKAPI (an option offered in OKAPI).

4.3.5 Query expansion

In ERIC system, query expansion aims to expand the query terms by their

synonym or related terms. It is a way to find the potential passages that do not contain

the original query kcywords, but their synonym or related terms. Query expansion is a

way to soïve this problem. Query expansion adds synonyms into the query so that the

document that contains synonyms can also be identified.

The thesaurus is used again to help query expansion in ERIC system. As we

can see in the following figure, query expansion takes place before the query is

submitted to the OKAPI search tool.

Figure 10. The system query expansion module diagram

54

When a query is submitted, the query analyzer module starts queiying

processing by filtering the stopwords from the query, and then the following steps are

performed:

• Detect the occurrence ofterms ofthe thesaurus in the query;

• Find synonyms ofquery terms in thesaurus;

• Add synonyms into the original query to generate a new query;

• Stem the words in the new query.

11e expended new query is then submitted the OKAPI basic search system

(BSS) through a eau of BSS APIs. The retrieval resuits will be displayed on the user

interface.

To find synonyms of a term, we first identify its ID in the thesaurus; then we

retrieve ail the terms (Ids) having “RT’ or “PI” relationship with the original term.

4.3.6 Web site crawler

Ibis section presents our implementation of the crawler in the ERIC system.

The crawler aims to collect document semi-automatically from Web.

The ERIC crawler starts with an URL address provided by the Webmaster, and

tries to discover WebPages from the site, and to download them into the local

database. The exploration is based on the Ïinks contained in the “known” pages — by

known pages, we refer to the pages given by the Webmaster (the home page of a site)

or those pages obtained in a previous cycle of exploration. When we encounter an

URL in a known page, we compare it with a local URL database that contains the

URLs the collected documents in order to avoid repeated information collection.

55

When an URL is new, it is explored onÏy if it is stored on the same Web site as the

URL originally submitted by the Webmaster. This restriction is made in order to flot

expand the exploration to a different site which may contain irrelevant documents for

construction.

When a new URL is discovered, the referenced page is downloaded. The

whole crawler is designed as an independent system with a user interface provided to

the Webmaster. The crawler’s architecture is illustrated in the following figure 11.

f igure 11. ERIC crawler module design

The details ofthe each module are presented below:

• User Interface

It provides interface between the crawler and the Webmaster. The Webmaster

can submit the URL to start the crawiing then monitor the downloaded results. The

Webmaster can specify the depth of the exploration. When a depth (e.g. 2) is

56

specified, the crawler will stop following the links afier the depth is reached. This

depth limit is set to download only high level Web pages from marginally interesting

sites. The Webmaster has the control on the depth. The interface also offers the

options of “automatic crawling” and “monitored crawiing”. The automatic crawiing

wilf directly download documents automaticaÏly when the crawler discovers new Web

pages. The monitored crawiing is monitored by the Webmaster. It means the

Webmaster has to approve the downloading of Web pages.

• New URL detector

This is a module which analyses the submitted URL to see if it bas been

downloaded. If the submitted URL is not in the local URL database, the crawler will

start crawiing its web pages according to this URL then add this URL into the local

URL database.

• Web pages collector

It downloads the web pages corresponding to the URL provided.

Once the system downloaded documents from the Web, the next step is their

indexing.

4.4 Integrated system architecture

As presented above, the ERIC system provides the following four main

elements: indexing, retrieval, knowledge base, and crawler. The system is divided into

two main parts: one performs retrieval; another performs data collection and indexing.

Because both parts use the OKAPI for document indexing and retrieval, the following

paragraphs will describe the integration of OKAPI in our system.

57

In ERIC system, the OKAPI system is a low level pÏatform that supports

ERIC. Each of the application levels of ERIC system ïs built upon the OKAPI

platform, as illustrated in figure 12.

On indexing side, the collected documents go through its preprocessing and the

extraction of compound terms. Then the OKAPI indexing function is used to construct

the runtime database.

On the retrieval side, any query wiÏl pass user level (first tevel) and query

processing application level (second level) to reach the OKAPI BSS level (third level).

At the query processing level, the thesaurus is applied for extracting compound terms,

and expanding the query by synonym ternis. After the second level, the OKAPI BSS

Figure 12. The ERIC system application leveÏ architecttire

58

will perform the retrieval operation with the new query. The retrieval resuits will be

directly sent to the user interface.

The foïlowing figure 13 describes in more detail how OKAPI is integrated in

ERIC system. It also presents how those OKAPI modules work within ERIC system.

To integrate each OKAPI modules in ERIC system, we use OKAPI’s APIs.

The whole architecture ofthe ERIC is shown in the following figure 14.

Figure 13. The integration OKAPI modules in ERIC system

59

Figure 14. The system design modules

60

The components illustrated in figure 14 are briefty explained below:

1. In the data index part:

• Database index interface — it is an interface to accept the user commands and

monitor data downloading from the Internet.

• Indexing — to index the passages and make the inverted file by calling the

OKAPI index APIs.

• Indexing pre-processing — it is a processing of raw documents in order to

recognize compound term, cut passages in each documents of collection, and

set path between the cut passages and original documents.

• Convert DB — it is a function to convert raw data into OKAPI’s format reading.

• Document approval— to display the downloaded raw documents for database

administrator to check up.

• Web document DB — it holds the download web pages.

• URL acceptor — to check the connection and the existence of the submitted

URL.

• URL analyzer — to analyzer and collect each URL link from the downloaded

web pages, and then compare those collection with URL DB to detect new

pages to crawl.

• URL DB — it holds all the downloaded web page’s URLs.

• Web downloading — it downloads the web pages based on the URL provided.

2. In the data retrieval part:

• User interface — it is the interface between the user and the system which

accepts requests from the user and retums the answer.

61

• Query analyzer — to analyze the submitted query and extract keyword from the

query.

• Queiy expansion — to add the related terms ofthe original query.

• Stemming — removing suffixes from words.

• OKAPI GSL DB — it is the OKAPI system “stop words” database.

• OKAPI runtime DB — OKAPI inverted file handier (OKAPI runtime library).

• OKAPI BSS — OKAPI basic search system.

• Retrieval resuit DB — it is ternporary file to hold the system’s original retrieval

resuits.

• Local HTML DB — it is a local resource to respond to the user. When user

selects the passage of the retrieval Iist, the system has to display the document

and point to the passage.

• Search post — to browse the user search resuits.

4.5 Related OKAPI APIs

Three parts of OKAPI are integrated in the ERIC system. They are stemming

module, OKAPI indexing module, and OKAPI Basic Search System (BSS). The use

of OKAPI in our system is made through calls to OKAPI’s APIs. So let us describe

the reÏated APIs. Then we will descnbe how they are used in our system.

62

4.5.1 OKAPI indexing APIs

In order to index a set of documents for OKAPI to search and retrieve, the

following steps have to be followed:

• Set up the database parameter files;

• Set up OKAPI exchange format file;

• Convert documents into OKAPI’s database;

• OKAPI indexing.

We give some details on these steps in the following subsections.

4.5.1.1 Set up the database parameter files

Before performing indexing, we have to prepare a set ofrelated parameters.

These parameters are contained in following three files:

1. “dbname” file;

2. “db name.field types” file;

3. “db name.search groups” file.

The “db name” file contains the name ofthe database that wilt be recognized

by OKAPI system together with a set ofparameters related to the database. The main

parameters in “db name” file are shown in the following table:

63

Entry in “db name” file Comment

name=<dbname> database name

Bibsize=’<in kilobytes> An overestimate ofthe available space for
the corresponding database.

real_bibsize=<size of corresponding This value is fihled in by convertruntime
volume> program.

Displaynarne=<info_display_name> The field to be displayed by the BSS “info I
databases” command.

nr=<number of records> The number of records in the database.

nf=<number offields per record> The number offields in the database.

db type=<database type> Type of the data which may be text or
others

ix_stem=<pathname of index files + This parameter specifies the path to find
prefix> the documents to be indexed

ixvolsize=<size in MB> Space available (MB) for index file.

ix type=<index type> 8 for <db_type>=text; 9 for others.

Table 3. Some parameters to be specified in “bd_name” file

When OKAPI indexer starts to index the documents in the local database, this

“dbnarne” file will be first read. When OKAPI BSS starts to search and retrieve

documents, this file will also be called first so that the APIs can select the

corresponding database to search.

The second file “db_namefield_types” contains parameters to set up the field

types in each document. In FRIC search database, we will also use it for the passage

type. The OKAPI indexer will read this file before indexing to recognize different

fields. Below is some ofthe parameter of field types:

64

Field Type [ornment field Type Comment

NAMES Presents a person or TITLE Indicate a titte in this
company mane etc. in field
this field

MAIN TIlLE Indicate a main titie in SUBTITLE Indicate a subtitie in
this field this field

TEXT Indicate if this field 5H Indicate a subject
contains text document. heading in this filed

LITERALNC It is lowercase in this NUMBERS Indicate some numbers
field in this field

Table 4. Some parameters in <dbname>.field_type file

In the ERIC system, the document passage field types are specified as

LITERALNC and TEXT i.e. the raw documents are lowercase texts.

The third file “db naine.search_groups” contains one entry per index. Each

entry consists of several fields. Some ofthem are shown in the following table.

Field Comment

<index name> The name ofthe index file.
[I<index_name>]

<stem function name> There are three options in OKAPI: wstem (weak
stemming), sstem (strength stemming), and nostem (no
stemming)

<GSL filename> stoplist filename and path. “GSL” means General Stop
List.

Table 5. Some parameters in <db name>.search group file

65

This file indicates the stopword file name (GSL) and the word stemmer to be

used. When the name of stopword file is indicated, OKAPI indexer xviii fiÏter those

stopwords before indexing. When a term stemmer is selected, OKAPI indexer will

stem each term before indexing. hi ERIC system, we use “sstem” provided by OKAPI.

It is a stemmer in OKAPI.

4.5.1 .2 Defining OKAPI exchange format

Documents have to be formatted into OKAPI exchange format in which

records and fields in records are clearly separated. Passage segmentation is actually

performed during the transformation of documents into this format. In FRIC system,

this is done by inserting a special character “OxiE” to mark the beginning of each

passage (record). In each passage, each field is also separated by a special character

“OxlD”. Once these markers are inserted, OKAPI can index each passage and each

fieÏd according those speciai character marks. In FRIC system, we use one text field in

each record (passage).

4.5.1.3 Converting into OKAPI database

Once the data collection has been processed into exchange format, it has been

converted into OKAPI mntime format which is usable by OKAPI. This is the indexing

process because making couvert database is a condition to use the OKAPI indexing

APIs and the convert commands are in the OKAPI APIs. An example ofusing OKAPI

APIs for converting is as follows:

convert_runtime —c <BSS_PARMPATH> <db_name> <exchange format file>

66

the “convert runtime” is one command in OKAPI indexing APIs. This cail

means to start the process for converting the original database <db-,zame> into the

exchange format in <exchange format file>. The <BSS-PARMPATH> indicates the

path of the BSS parameter files.

4.5.1.4 OKAPI Indexing

OKAPI provides two API commands to perform the final indexing — ix] and

ixf. The ix] is for each index specified in “db name.searchgroïp” file. It reads each

fieÏd specified by the appropriate indexing parameter, spiits it into “indexing units”

deterrnined by the field type, and extracts or generates keys from it in accordance with

the specified indexing method, stemming function and stopword file. When term

extraction has finished, those extracted index terms will be input to the indexing

program ixf for final index process. The ixfis final index production program. Below

is the way ofusing the ix] and LfAPIs:

ixi —c <BSS_PARMPATH> <db_name> <index_no> ixf —c

<BSS_PARMPATH> <db_name> <index_no>

where: index no is the rang in the database parameter.

Once OKAPI runtime library is ready, the OKAPI BSS can perform document

retrieval.

4.5.1.5 Using stemming API for query processing

The OKAPI stemming API command is included in the BSS APIs. However, it

is an independent fttnction that the user can use in a separate task. In ERIC system, the

67

indexing stemming will be automatically called in indexing with “ix 1” program. In

addition, in query processing, the OKAPI stemming API is also used to stem user

query and expanded new query. The cal! to this firnction is as follows:

stem t= <terni>

The resuit ofthis cali is the sternmed term.

4.5.2 BSS API commands

The BSS APIs are used to access the OKAPI basic search system. A search

process goes through the following stcps:

1. it first chooses OKAPI runtime local search database which it will use to

search document;

2. it parses the query into a suitable list oftenris;

3. it matches each query terni with search database index.

4. it weights the retrieval resuits; and

5. flnally, it retums the ranked searcli resuits to the user.

To run OKAPI BSS, five BSS APIs are used to perform these five steps.

• choose

It chooses a local database that the system follows to retrieve information from

this search database. If there are several independent databases in the system,

OKAPI has to use this API command to decide which database to use.

• parse

It parses the query into individual terms in a form suitable for looking up in the

database.

68

• f md

This API aims to find the records containing one particular terms. It is a lookup

into the inverted file. for example the argument ‘f t=construct” would match

the records that contain “construct” term.

• weight

This API determines a weight for each of the query term, according to the

number of documents the “find” command retums for it. In ERIC, the

calculation of this weight is made according to BM25 formula, which is

described in chapter 3, to rank the retrieval resuits for the user.

• show

It displays discovered documents to the user.

4.6 Workflows

In this section, we will show the workflow of the indexing and the retrieval

process. Figure 15 below is flowchart of ERIC system database index processing. It

displays the involved actions in building the local OKAPI runtirne library to search

and retrieval. It starts from data crawiing with a submitted URL and ends with the

generation of the OKAPI runtime library. Figure 16 shows the workflow of the ERIC

search process. It presents the involved processes and resources in query search and

retrieval.

69

Process data & resources

Figure 15. The workflow of the document collection and indexing process

70

process data & resource

Figure 16. The workflow search process

71

4.7 The system ntertace

We wilI show some snapshots of the ERIC interfaces to illustrate the

functionalities implemented. The first user interface is shown in figure 17 below.

tt View Favo,e To4 Hip
-

48k”’ Jj SchJfvortes --JjJ..)
AdeS

.

Erie Seareh Engine

rnO.Umonlreal - RaliLab AboutUs FeedBack

Lessons are flot given, they are taken.
Quality means doing t right flue first time
People dont plan to fail, ttiey justfail to
plan. l you can dream t, you can do t.

Setup Your Queiy

StotEncSesrch

The Conta*utwn
By .e

Figure 17. The system query acceptance interface

This user interface allows the user to input a query. It is a simple online Web

interface programmed in java script. When the user submits a query in the query

submitting box, the system starts to retrieve passages for it.

72

This interface is implemented by using Peri, C and HTML languages. A Web

server — Apache Web server is also integrated in ERIC for handiing multi-processing

on Internet. Whcn a query is input by the user, it is transmitted to ERIC through Web

server, and Peri program.

When search rcsults are produced, the system interface will show the resuits in

the display window (figure 18). For each retrieved passage, the matched terms are

highlighted. The user can choose to read the compicte document (view document), or

read the Web page at its original site (e.g. http://www.arc.ca/irc/cbd!cbdauth-e.html).

Fie Et 5mo Fasmtes Tanin He Q
-.taek -e JJ OmohJFavmtm 3MndaJ J J)

ud&es tjhtpflhydou errons I 8555(grbinfbdpl zl ?n

j&kseaida-Miueueftintanetbqsbre
- :r’ht i.

Ene Search Enine

Vont oeareh Temperature gradient) building envelope Try à newnnarcb ITempe alu g ode If E rcSearch

test :trd ViTsvdz asile t

eevs ducuvrsnl
IMssus;ihriVvh%IdtvhWJ
Garden G K 05G-36 Temperature Gradients Thrusgh Building Envelupen 05G-40 Pain Penetration and ils Onnliol 050-54 Gefeelieen of Heriusetal Stiectural
Members 050-55 Glazing Design 050-6G Oharactenslicn efWindow Glass OSD-67 Fundamentals et Pssf Design 050-70 Thermal Cansiderairons in Paof Design
060-72,Oontrot et Ail Leakage s Impudunt 06G-74 Propedien et Bituminons Membranes 05G-76 Pont Terracen 0BD-53Indnnr Swrmmrng Punis 05G-96 Use ut
Seatants 05G-97 Leok al Jemnl Pedsimsncn OED-120Gesign and Semice Lite

2. vw jOr srs;nl
hilv.IA-s.--s nie ca5irT.hrtJr.tt1Thp hrn;t
05G-36.Temperalure GradieoieThinsgh Bnilding ErwelnpesJ K Latla and G K Gaiden

3 assw slvciinsrrnr
brie L’vssvv nmc cavrclcbdlc(daisrh-n hinil
Lalla J K 0BG-3G.Water and Building Malenats OBG-6G.Temperatore Gradients Thresgh Building Envelnpen 05G-67 Vapeur Giffosmo and Condensation
05G-93 Precant Ooncmte Wslln: Prshlems Wtth Oooeentionol Design OBG-94Precast Ooncmle Watts: A Nnw Oasis Fur Design 05D-171lnoccsrocies in
Ososiroction 08G-175 Vaposr Baineis: Whal Are They? Are They Effective2

4 -n. dçcninur)
htrv.A-:-v-; sircs!ir—Jcbdfchrj32v hrsi
The calcstation oftemperalnre and heat fow lhisugh the watts, wrodown and ouf et a building in the frst ntep in pieeentiog piublems ansing (rom thermal
stresses and condensation. Digests un specitc problems nech as cendennalmen on w;nd-swa (05G 4 and 06G 6) and the nifecl et lemperature gradients thiosgh
building eneelnpes (060) have, ut oncessily, used seme simple haol traenfer concepts w,lhssl emphasmzing the oncsmptions and l:mitalioon Ihat are mnastee&
Thms Gigesl s intended la nopplement the othero hy disconning the cannes mndes ni heal traesfei thal van nccer al the sartaces si huildingn, peinting sut Iha
csmplicalions bat must he cnnsmdemd in some cases.

5 einw dncsmvnt
brIc Germes sic cahicfcbd/c5d067n html
The present iniormaties, howener, dues proede a basin ter the design ut building envelnpen thol eliminate msoy etthe prsblems associaled with moisture
migration. The tatlowiog enampte illnstrates Ihe prucens 0f calcelaling Ihe vapeur pressure gradient and the maoner in mhich il may be nsnd In aasmd cendensstmon
pieblemn

Dmre
. Silterriet

Figure 18. The search result interface

73

Figure 19 below shows the interface for managing document database

(downloading and indexing). This interface inciudes the following main functions as:

• search fiinction to discover documents with a user query,

• local URL database display function to display the collected URLs, as welÏ as

the corresponding document,

• index function to perform OKAPI indexing of all the passages.

• Local disk clear up function to intermpt ail of the crawiing process and clear

up the downloaded files from local machine disk.

• Crawler to submit URL in the URL submitted box to start system crawling.

=JJ2j
Fi, E e,. Fvtes Tx,ls

—-

8k+J) aSE-)
LFi ‘.f? Myyahoo! p Yoo M yp Yahoo! News Yohoo .Custooaa Lrka FrooHotm4 ØRoo!aya .jWhoooo •FAO h1fr%,* Iriooah jdoooMo1o

] c°

Database Management

Weleome to use the Erie Database Manaeinent.

Please Submit the IP address at the lefi window.

Figure 19. The system database management-processing interface

&h-FcrasoftIntanetEarer

Esubnnt Yoaw Query

Eric Serch j

ListlPdatabaae

LstPos!orcdlP

Submît7PAddrs

IPSubmit_f _f]

Index databases

Budd dahobes

Ioaded filec

Del Loded files j

Dons

74

figure 20 below shows an example of the crawiing process. The system

administrator or Webmaster can monitor the crawiing processing by check up the

loaded data through this interface. The interface includes four buttons on the bottom of

this page allowing downloading the document, ignoring the document, crawiing the

Web site, and starting to index the local database irnmediateÏy.

F,o Search - Idicrosofi InterneS Explorer p,ovided by Sympatico

fie fciS rw Fvceler lests Hes
Léés“

j
9xe --- 5vp R&,erb Hver Searsts Favn5es Hstory Msd Fiel

As» J Hp Hop 1 O krb unoed I eu OO) j p d p r ed T uu
—

— j G
s es j[’JFseujuMyvnhou FosySports 1H’shoo4 sttnnnee - NeW, - oppe

-UOflUT bUS ‘.Uel3’

I-’W:Hs!t et Eottio
Feug Senedi •

Listll’database
r j

ListRestored IR
.

—

• ltloueo F[-OQ2SubxmtlpAddresn

iroumontreal C6 Po commeelaes ou mfpa5onp -
PSubesit_j]

O!7(f)fîlfl WIndex databases
Université de iViontréal

Build dntahnses
Adminstrator Operating Buttons

YesDownland NoGrueup Cea1 Web Builddjtabases
Delete loaded files

Dol Londed files View oriaRveb-pg taboveNe:httpi/orwr.iwiro.urnontreal cal

AjDorn
-

Figure 20. The crawled web page displaying

4.8 Summary

In this chapter, we described the implementation of ERIC system. It went

through the system requirement, system architecture and design, and system

75

implementation of the ERIC system what we have implemented is the first step for a

new domain-specific search engine in the construction sector.

Our system is based on the OKAPI platform by calling its APIs. Through

adding some new functions (i.e. compound tcrm and query expansion), the ERIC

system performs domain-specific search upon OKAPI functionalities. In this chapter,

we also described how ERIC integrated the OKAPI’s functionalities in its own system

and how ERIC cails the OKAPI’s APIs.

In addition, a simple crawler is implcmented and presented in this chapter. It is

a simple Web crawling tool which provides a way to create and extend the local search

database by adding new documents.

Because ERIC is an online search engine on Internet, the Web interfaces for

ERIC have been created for user to use the ERIC through the Internet. These

interfaces support multi-users.

However, OKAPI is not an open source software. We cannot change any

source code ofit. This imposed some limitations on our implementation. For example,

we have to recognize compound ternis through a separate pre-processing and cannot

modify OKAPI’s source code to add this function in the OKAPI. In addition, OKAPI

only operates under Linux/Unix. Therefore. ERIC cannot mn in the windows

environment.

76

Chapter 5. Experïments

In this chapter, we will present our evaluation of the ERIC system for IR in the

construction sector. The whole system is functional. We have been able to construct a

small collection of documents on which user can search. The system is ready to extend

the document collection to a much large one. In this chapter, we will examine three

main aspects:

1. The construction of a test collection;

2. The impact of compound terms on the retrieval performance;

3. The impact of query expansion on the retrieval performance.

5.1 Constructing document collection

There is no existing test collection avaiÏable in the construction sector.

Therefore, we have to construct our test collection. This includes: a set of documents

(document collection), a set of queries, and the relevance judgments for each of there

queries (i.e. we know all the desired relevant documents for each query). In the

following sections, we will describe how these are constructed.

5.1.1 Canadian building digest — first document collection

Canadian building digest (CBD) is the main document resource for our tests.

This collection contains high quality documents describing problems in construction.

77

It is also one of the most consulted document collection in Canada. We use this

collection as our primary test collection.

The Canada building digest is published online. The web site URL is

http://www.nrc.ca/irc/cbdl in the Canadian National Research Centre (NRC). It is an

authority resource for knowledge and information in the building industry. The Web

site contains around 250 documents. The characteristics of those building digest

documents are described below:

First, the published CBD is in HTML format. There are some links in the

documents. A CBD document generally has between 5 and 15 hyperlinks (more than

eight links on average) and most ofthem are local (that is, they point to pages on their

own web site). There also is a document index web page, whose URL address is

http://www.nrc.ca/irc/cbd/cbd-e.html, It displays the sorted titles of the whole CBD

documents, and some links to some additional document.

Second, the documents do not only contain text on the document pages but

also images. Sometimes, the image is more important in building industry professional

document because it can present more clearly in intuition. Typically, those image links

are also local links.

finally, the CBD documents have a reasonable Ïength. On average, each

document contains 2900 words. The paragraphs are around 250 words long. So it is

reasonable to use paragraphs as passages in ERIC. There are in total 9786 paragraphs

in the CBD collection.

78

5.1.2 Crawling and collection

The documents of CBD have been downloaded using our crawling and

downloading tool. The procedure of coïlecting document by the crawler follows the

following steps:

1. Submit URL

The index page of the Canada building digest (i.e. www.nrc.ca/irc/cbd-e.html)

is submitted as the entrance point.

2. Crawiing

The crawler follows the links to explore the linked documents (the 250

documents). To avoid the crawler exploring too deeply in a Web site, we can set a

depth limit. for the CBD, we set it at 1, i.e. we only explore the directly hnked

documents from the subrnitted home page.

During the crawïing process of CBD, we monitor the downloading of

documents so that the test collection only contains high-level domain-specific

documents. The downloaded 250 documents are stored in 250 files in their original

HTML format. They constitute our document collection.

5.2 Test queries

To be significant, the test queries should be at Ïeast 25 or 50. In TREC, 50

queries are used each year. For our experiments we also use 50 queries. We asked an

experts in construction - a PHD student in architecture to determine 50 questions that

79

people in construction can Iikely ask to the CBD collection. Below are some of the

questions, as welÏ as their correct answer.

1. According to the National Building Code, what is the snow load that lias to

be considered for roofs in Canada?

“Answer: Since for many roofs in Canada the snow load is the greatest load that bas to be

sustained, its design value takes on great importance with regard to the safety and economy of

these structures. Climatic variations across Canada are reflected by the corresponding

variations in design snow loads, such as those used in the National Building Code of Canada

which vary from 30 to 60 psf in the more populated areas. Even greater loads are required in

other areas. The snow toads for parts ofNorthern Quebec for example reach 90 psf, and loads

ofup to 100 and 200 psf are found in some ofthe mountain areas ofBritish Columbia.”

2. Temperature gradient I building envelope

“Answer: Determination of the thermal gradient throughout a building element that separates

two environments that have different properties is the first step toward designing problem free

walls. Information pertaining to thermal bridges, psychrometry, moisture migration, ram

penetration and differential air pressures is also necessary for optimum design. Perfection in

buildings is not readily achieved and the quest for it is often hampered, for financial reasons.”

3. What is corrosion?

“Answer: Corrosion of metals is an electrochemical process in which the deteriorating area of

the metal is the anode, the positively charged electrode of the galvanic celi. Positive potential

of the metal indicates corrosion activity, i.e., the metal in this region is converting ftom the

metatlic to the ionic state. The value of the potential depends on the tendency of the metal to

go into solution and, based on the concentration of ions around the electrode, is a good

measure ofthe corrosion that has taken place.”

The complete iist ofthe queries is given in an appendix.

For ail the queries, oniy one correct answer is identified for each.

$0

5.3 Metrics

The performance of R systems is usually measured by recali and precision.

Recali measures the ability of the system to retrieve ail useful documents, while

precision measures the ability to retrieve only the useful documents. The recail and

precision are defined as follows:

Number of relevant items retrieved
Recail = (1)

Total number of relevant items in the collection

Number of relevant items retrieved
Precision = (2)

Total number of relevant items retrieved

The measures of precision and recail vary according to the length of the resuit

list considered. The longer the list, the lower the precision, and the higher the recali.

For our experiments, the purpose is not so much to know the absolute values of

precision and recali. Rather, we want to compare the performance of different

methods. Therefore, we can fix a length of the resuit list and compare the methods on

the same basis.

In our testing, we consider the top 50 retrieved documents. It is shown in

[Buckleyoo] that using the top n (n 50, 100) retrieved documents are a valid

evaluation method in IR.

As the number of relevant answers is very limited, which is only one, it is not

reasonable to use the traditional precision-recali curve to measure the retrieval

81

performance. The precision-recali curve would be very ftat. This situation is similar to

that in the Question Answering (QA) track of TREC, for which only a few relevant

answers exist. hi the QA track, a score is defined as follows:

1 1
Score1= (3)

n Rank

1
and Average-Score = Score1 (4)

N

where:

Score1 is the score for a query (i-th query);

n is the number of relevant answers found in the top retrieved resuits

for query I;

Rank is the rank of a relevant answer for query i in the retrieved

results;

Nis the number of test queries.

for example, given the following retrieved results (limited to the top 5), in

which the elements marked with * are relevant:

82

answer 1

answer 2 *

answer 3

answer 4 *

answer 5

Table 6. Example ofrelated answer

The score for this query is:

11 1 3
Score=—(—-+—)=—=O.375

224 8

The average score used for QA is more appropriate for us. We will use this

measure in our experirnents.

5.4 Using basic OKAPI system

The OKAPI system is used as a reference system. Its performance is used to

compare with the other enhanced methods. By OKAPI system, we mean to use

OKAPI’s indexing and retrieval process without any modification. These methods use

single words as indexes. A standard stop-list is provided with the OKAPI package.

The stemming process is also a standard one which cuts suffix of the words. The

weighting is BM25 — described in chapter 2. OKAPI is set in such a way that it can

perform passage retrieval (here, passage is paragraph). The top 50 retrieved resuits

83

(paragraphs) are compared with the standard answers. The following table shows the

resuits obtained with OKAPI.

Rank Number queries Score

1 14 1

2 6 1/2(0.5)

3 4 1/3 (0.333)

4 3 1/4 (0.25)

5 1 1/5 (0.2)

7 2 1/7(0.143)

8 1 1/8(0.125)

13 2 1/13 (0.077)

14 1 1/14(0.071)

15 1 1/15 (0.067)

16 1 1/16(0.063)

22 1 1/22 (0.045)

24 1 1/24 (0.042)

47 1 1/47(0.021)

0 11 0

Average Score 40.3%

Table 7. Basic OKAN system test data

Table 7 shows the ranks ofthe correct answers in the Iist, for different numbers

of questions, as well as the scores for these questions. From table 7, we see that 14

84

questions have their correct answers at the first place in the retrieval list and 11 queries

do not have their correct answers among the top 50 answers. 25 other questions have

the resuits in the top of 50 answers but not at the first place. Finally, the average score

for ail the 50 queries is 40.3%. This is flot a bad result in comparison with what we

obtain in general in IR which is usually around 30% in average precision. However,

this performance measure should flot be considered in absolute because it is strongly

influenced by the test collection. In our case, an important factor is that our documents

are domain-specific, contributing in increasing the retrieval effectiveness.

Nevertheless, the above measure can serve as a reference to compare with the other

rnethods we developed, which we will evaluate in the following sections.

5.5 Integrating compound terms

One specific processing in our project is the utilization of the compound terms

in indexing and searching. b identify compound terms, a thesaurus on construction is

used. For a query or document passage, the system scans it for compound ternis. If a

compound tenu in the thesaurus is found, the system wilÏ add this compound term into

the passage or the query. The retrieval result using compound terms is shown in table

8 below:

85

Rank Number queries Score

1 14 I

2 6 1/2(0.5)

3 6 1/3 (0.333)

4 3 1/4 (0.25)

7 2 1/7(0.143)

13 3 1/13 (0.077)

14 2 1/14(0.071)

15 2 1/15 (0.067)

22 1 1/22 (0.045)

24 1 1/24 (0.042)

26 1 1/26 (0.038)

36 1 1/36 (0.027)

0 8 0

Average Score 4 1.3%

Table 8. Compound terni utility test data

In table $ above, we see that the same 4 queries have retrieval resuits at the

first place with precision 100%, as in the OKAPI test resuit. The number of the queries

for which no relevant passage appears in the top 50 resuits is reduced to 8, compared

to 11 in our reference test with OKAPI. The global average score using compound

terms is 41.3%. This is slightly higher than OKAPI average precision rate (40.3%).

From the result above, it is clearly indicated that there is an improvernent by

adding the compound tenn in indexing and searching. However, this is not an

important improvement. The main reason is that the test queries contain compound

86

terms. We can only identify compound ternis in 25 of the 50 queries. For these

queries, we observed an increase of average score from 40.3% to 41.3%.

Compound tenus have to be used together with single words. When we use

compound terms together with single words, it is important to assign reasonable

weights to compound terms V.S. single keywords. If compound terms are assigned a

too high weight, the top ranked search results usually are dominated by compound

tenus. This may over stress the importance of compound tenus and neglect single

words. As a result, the recail may be decreased. In order to solve this problem, we

have to reduce the weights ofthe compound tenus at a comparable level to the average

weight single tenus. Through several tests, we found that cutting the original weights

of compound tenus to half will be a good solution. The resuit shown in Table $

corresponds to the setting.

5.7 Using synonyms for query expansion

Query expansion aims to add synonym words to original query. The synonyms

are determined with the thesaurus. When a synonym tenu is found, it is appended to

the query. Below is an example ofthe expanded query.

Query: According to the National Building Code, what is the snow load

that has to be considered for roofs in Canada?

Single tenus afier stemming are:

t=according, tnational, tbuilding, tcode, tsnow, t=load,

t=consider, troof, trrcanada

Expended tenus are:

87

build expended civilengineering_work, construction, facility,

landscape_teature, land_development, construction.

code expended labour_law, lighting_technology, leisure_economics,

electricity.

snow ‘expended snowstorm, snowstorm, attic.

load ‘expended load_bearing_element

roof ‘expended roof_framing, roofing_product, structural_member,

waterproofing_work, wood.

The new query with expanded terms is:

<expanded terms> civil_engineering_work, construction, facility,

landscape_feature, land_development, construction, labour_law,

lighting_technology, leisure_economics, electricity, snowstorm,

snowstorm, attic, load_bearing_element, roof_framing,

roofing_product, structural_member, waterproofing_work, wood.

The test resuit with query expansion is shown in Table 9 below.

$8

Rank Number queries Score

1 14 1

2 6 1/2 (0.5)

3 6 1/3 (0.333)

4 2 1/4 (0.25)

5 2 1/5 (0.2)

6 1 1/6(0.167)

7 2 1/7(0.143)

10 1 1/10 (0.1)

12 1 1/12 (0.083)

13 3 1/13 (0.076)

14 2 1/14(0.071)

20 1 1/20 (0.05)

24 Ï 1/24 (0.042)

26 1 1/26 (0.038)

36 1 1/36 (0.028)

0 6 0

Average Score = 42.1 %

Table 9. Query expansion integration test data

In table 9, we see that the number of queries whose relevant answer is out of

the top 50 results is reduced to 6. The global average score with query expansion and

compound term performance is 42.1%. It is about 4.49% ((new_average_score —

old_average_score) I old_average_score) better than the original OKAPI resuit, and

89

2% better than the mn with compound terms only. It shows that compound terms and

query expansion are suitable techniques for our application area.

However, as for compound terms, we also have to assign reasonable weights to

the expansion terms. As we can see from the example, many of the expansion terms

are flot strongly related to the query. So assigning a too strong weight to them would

reduce the retrieval effectiveness because more irrelevant resuits would 5e retrieved.

On the other hand, the expansion terms can also help enhance the original query.

Therefore. An appropriate weight lias to be assigned to an expansion term. In the

above table, the results arc obtained with an 80% reduction of the original weights of

the expanded terms.

5.8 Conclusion

In this chapter, we tested and compared several indexing and retrieval methods

with a test colLection. The methods compared are the basic OKAPI method, OKAPI

with compound terms, and OKAPI with query expansion and compound terms. We

obtained an average score of 40.3% for the basic OKAPI, 41.3% for OKAPI with

compound terms, and 42.1% for OKAPI with compound terms and query expansion.

The resuits indicate that adding compound terms and doing query expansion is

beneficial for our application.

However, there are some problems with compound terms and query expansion.

• Compound terms:

1. Many queries do flot contain compound terms;

90

2. The thesaurus does flot contain ail the compound terms. For example, the

terni “Canada Building Digest” would be a compound term, but in our

thesaurus, this compound term is flot included. A possible solution is to use

an automatic analysis to extract new compound term.

Query expansion:

The thesaurus does not always suggest strongly related expansion terms. As we

can sec in example we showed earlier for query expansion. A possible solution

is to find automaticalÏy reiated terms. This approach lias been tested in and

interesting results have been obtained.

91

Chapter 6 Conclusions and Future work

To solve the problems for professional users who look for precise information

in the construction sector, we started our project on domain-specific information

retrieval. Our project aims to build a new domain-specific search engine — ERIC

system for the construction sector. The final goal of our project is to perform question

answering (QA). Our study described in this thesis is the first step of it, i.e. passage

retrieval.

To constnict this new domain-specific search engine, we chose OKAPI to be

basic search tool in our system. However, OKAPI does flot perform a domain-specific

search. b solve this problem, we focused on three aspects in our study: Web

document collection, indexing and retrieval with OKAPI (passage retrieval), and

enhancement with a thesaurus for compound terrn and query expansion.

• Web document collection

In our project, a simple crawler is used to download Web documents. It starts

from manually select related Web sites, and automatic downloading documents ftom

these sites. The reason of manual selection is that we only want high quality domain

specific documents to be downloaded and stored in our local searcli database.

• Indexing and passage retrieval with OKAPI

OKAPI is a classical IR system with probabilistic model. The reason to choose

OKAPI is its high effectiveness, which has proven in previous IR experiments.

However, it is not an open source system. We use OKAPI by calling its APIs. In

92

FRIC, we use OKAPI BSS for basic retrieval and OKAPI index module for document

indexing.

In order to enhance document indexing with our approaches, we have to carry

out a document preprocessing to segment passages of the documents, and to add

compound terms in the passages.

Enhancement with a thesaurus for compound terms and query expansion

In order to enhance OKAPI basic retrievai, we created a query preprocessing

for identifying compound terms in the query as weii as detennine the reiated terms to

add in the query expansion. The generated new query wili contain compound ternis if

it lias, and some synonym words of the original query through the query expansion.

Because more words have been added in the new query, the OKAPI could exploit

more candidates rather than lirnited candidates with original query retrieval.

The above three aspects have been integrated into the ERIC system. To test

effectiveness of FRIC with our approaches, Chapter 5 presented our experiences with

FRIC and comparison between FRIC and the original OKAPI system. We obtained an

improvement of 2% by integrating compound ternis over the basic OKAPI method,

and an improvement of 4.9% by integrating both compound ternis and query

expansion in FRIC. It shows that compound ternis and query expansion are useful

techniques for our application area. In addition, the thesaurus is aiso a necessary tooi

for us to identify compound terms and synonym words for query expansion.

However, there are stiil some problems remaining in the system. For example,

the thesaurus presents a source of problem. To be a knowledge base, we want the

thesaurus to cover ail the specialized terms, which are related to the construction

93

sector. However, the thesaurus we used is far from complete: many important terms

(either single words or compound terms are missing from the thesaurus. As a

consequence, the effect of compound term detection and query expansion is limited.

b solve this problem, it is possible to use statistical methods to find compound terms

and expansion tenns. Statistical methods can be used as complementary tool to the

thesaurus. It is a future work on the ERIC system.

In addition, the OKAPI is flot open source software. We do not have the

possibility to change the codes of OKAPI for our need. For example, we would like to

integrate compound term detection as pat of the OKAPI ftinctions, but it is flot

possible. On the other hand, we would also like to change OKAPI common search tool

to be more domain-specific search by incorporating specialized terms in the retrieval

process. For example, we may want to change the weighting scheme for specialized

terms. A possible way to do it wouÏd to change the OKAPI BMxx (best match) such

as BM25 to the one below:

BM25: w W(b11175) + W(jf/iesaiirjts)

However, this has not been possible. We had to artificially decrease by halfthe

weights assigned by OKAPI to compound terms. This is flot the most reasonable

weighting method. So the modification of OKAPI’s weighting is another interesting

future work.

Despite ail these limitations, we have been able to construct a basic passage

retrievai system which integrates some domain knowledge. This system is used as the

basic retrieval system for further developments on question answering.

94

References

[Agichteinol] Agichtein, Eugene, Lawrence, Steve, Gravano, Luis, Leaming Search

Engine Specific Query Transformations For Question Answering, Tenth

International World Wide Web Conference, 2001, pp: 169 — 178, http:!/

citeseer.nj .nec.com/agichteino 1 leaming.html

[BuckleyOOj Bucktey, Clins, Voorhees, Ellen M., Evaluating Evaluation Measure

Stability, proceedings of the 23rd Annttal International ACM SIGIR

Conference on Research aitd Development in InJàrmation Retrievat, 2000,

pp: 33 — 40, http://citeseer.nj.ncc.com/buckleyO0evaluating.html

[Ballerini96] Ballerini, J.P., Buche, M., Domenig, 1, R., Knaus, D., Mateev, B.,

Mittendorf, E., Schauble, P., Sheridan, P., Wechsler, M., SPIDER Retrieval

System at TREC-5, proceedings of TREC — 5, 1996, National Institute of

Standards and Tcchnology (NIST) special publication pp: 271 — 229,

http ://trec.nist. gov/pubs/trec5/t5jroceedings.htm1

[Cormack97] Cormack, G.V., Palmer C.R., Passage-based refinement (multi-text

experiments for TREC-6), proceedings of TREC — 6, 1997, National Institute

of Standards and Technology (NIST) special publication pp: 303 — 321,

http ://trec.nist.gov/pubs/trec6/t6_proceedings.html

[Callan94] Callan, James P., Passage-Level Evidence in Document Retrieval,

Proceedings of the Seventeenth Annital International ACM SIGIR Conference

on Research and Development in liformation Retrieval, 1994, pp: 302 — 309,

http ://www.ai . mit. edulpeople/j immylinlpapers/Callan94.pdf

95

[DeLoupy98] De Loupy, C., Bellot, P., El-Beze, M., Marteau, P.-F., Query Expansion

and Classification of Retrieved Documents, proceedings of TREC — 7, 1998,

National Institute of Standards and Technology (NIST) special publication

pp: 443 — 451, http:!!trec .nist. gov/pubs/trec7/t7proceedings.html

[Fuhr92] Fuhr, Norbert, Probabilistic MoUds in Information Retrieval, Tue Computer

Journal (volume 35), 1992, pp: 243 — 255, http://citeseer.nj.nec.comlfuhr92

probabilistic.html

[Girill96] Girili, T. R., Luk, Clement H., Fuzzy Matching as a Retrieval-Enabling

Technique for Digital Libraries, 1996 ASIS Mid-Year meeting, 1996, hffp:/!

www.asisorg/midyear-96/girilIpaper.htrnl

[Ghani00] Ghani, Rayid, Jones, Rosie, Miadenic, Dunja, Nigam, Kamal, Slattery,

Sean, Data Mining on Symbolic Knowledge Extracted from the WEB,

Proceedings of the Sixth International Coiference on KnowÏedge Discoveiy

and Data Mining (KDD-2000,,) Workshop on Text Mining, 2000, pp: 29 — 36

http://citeseer.nj.nec.com/ghani00data.html

[Hammer94] Hammer, Sebastian, Favaro, John, Sistemi, Intecs, Z39.50 and the World

Wide Web, the magazine of the digital libramy research, march 1994, ISSN

1082 — 9873, http://www.d1ib.org/d1ib/march96/03contents.html

[Holmes98] Holmes, D., McCabe, C., Grossman, D., Chowdhury, A., Frieder, O., Use

of Query Concepts and Information Extraction to Improve Information

Retrieval Effectiveness, proceedings of TREC — 7, 1998, National Institute of

Standards and Technology (NIST), special publication pp: 399 — 409,

http ://trec.nist.gov/pubs/trec7/t7jroceedings.html

96

[IttycheriahOl] Ittycheriah, A., Franz, M., Roukos, S., IBM’s Statistical Question

Answering System — TREC- 10, proceedings of the TREC — 10, 2001, National

Institutc of Standards and Technology (NIST), special publication pp: 258 —

265, http ://trec.nist.gov/pubs/trec 1 O/t Ï Qproceedings .html

[Ishikawa97] Ishikawa, K., Satoh, K., Okumura, A., Query Terrn Expansion based on

Paragraphs of the Relevant Documents, proceedings of TREC 6, 1997,

National Institute of Standards and Technology (NIST), special publication pp:

577 — 585, http: //trec.nist.gov/pubs/trec6/t6]Droceedings.html

[Katz97] Katz, Bons, From Sentence Processing to Information Access on the World

Wide Web, Proceedings of the AAAI Spring Symposium on Natural Language

Frocessing for the World Wide Web, 1997, http://www.ai.mit.edu/peopIe/boris

/webaccess/

[Kleinberg9s] Kleinberg, Jon, Authoritative Sources in a Hyperlinked Environment,

proceedings of the 9th AC’M-SIAM Symposium on Discrete AÏgoritÏnns, 1998,

http://www.cs.comell.edu/home/kleinber/auth.pdf

[LiopisOl] Llopis, ferando, y, Vicedo, Jose, Luis, IR-n a passage retrievat system

from University of Alicante, CLEF 2001 Cross-Language Svstem Evatuation

Campaign, 2001, http ://www.ercim.org/publicationlws-proceedings/CLEF2/

llopis.pdf

[McDonald97] McDonald, J., Ogden, W., Foltz, P., interactive information retrieval

using term relationship networks, proceedings of TREC 6, 1997, National

Institute of Standards and Technology (NIST), special publication pp: 379 —

385, http ://trec .nist.gov/pubs/trec6/papers/index.alpha.html

97

[Mitra98] Mitra, Mandar, Singhal, Amit, Buckley, Chris, Improving Automatic Query

Expansion, Research and DeveÏopinent in Information Retrieval, 1998, pp: 206

— 214, http://citeseer.nj.nec.com! 121 460.html

[NieOl] Nie, J.Y., A general Logical approach to inferential Information retrieval,

Encyclopedia of Computer Science and Technology, eds. Kent E. A. and

WiÏliams 1G., Vol. 44, 2001, pp: 203 — 226, http://www.iro.umontreal.ca/

‘-nie/pubïication.html

[NieO2] Nie, J.Y., un, Fuman, Integrating Logical Operators in Query Expansion in

VSM, Workshop on Mathematical/forinal Methods in InJrmation Retrievat,

25th A CM-SIGIR, 2002, http ://www. iro.umontrea1.ca/nïe/pub1ication.htm1

{NieO2] Nie, Jian-Yun, Dufort, Jean-François, Combining Words and Compound

Terrns for Monolingual and Cross-Language Information Retrieval,

Information 2002, 2002, http ://www. iro.umontreal .caknie/publication.html

[Nie99] Nie, J.Y., Simard, M., Isabelle, P., Durand, R., Cross-Language Information

Retrieval based on Parallel Texts and Autornatic Mining of Parallel Texts in

the Web, 22”ACM-SIGIR, Berkeley, 1999, pp. 74-81, http://www.iro.umontr

eal.ca/—nie/publication.html

[Nie98] Nie, J. Y., TREC-7 CLIR using a Probabilistic Translation Model,

proceedings oJTREC 7, 1998, National Institute of Standards and Technology

(NIST), special publication page: pp: 547 — 555, http://trec.nist.gov/pubs/

trec7/t7proceedings .html

98

[Nie96] Nie, J.Y., Brisebois, M., An inferential approach to information retrieval and

its implementation using a manual thesaurus, Artficial Intelligence Review, 10:

409-439, 1996, http ://www.iro.umontreal.ca/—nie/publication.htmÏ

[Newby9$] Newby, Gregory B., An Information Access Model with a Unified

Approach to Data Type, Retrieval Mechanism and Information Need, ASIS 98,

199$, http ://www. ils .unc . edu/gbnewby/papers/asis9$-theory-final.html

[Page98] Page, Lawrence, Brin, Sergey, Motwani, Rajeev, Winograd, Terry, The

PageRank Citation Ranking: Bringing Order to the Web, Stanford Digital

Libraiy Technologies Project, 1998, http://citeseer.nj.nec.com/page98pager

ank.html

[Piwowarskiooj Piwowarski Benjamin, Learning in Infromation Retrieval: a

Probabilistic Differential Approach, proceedings of the BCS-IRSG, 22nd

A nnual Colloqttittm on Information Retrievat Research, 2000, http ://citeseer.

nj .nec. com/piwowarski0olearning.html

[Ricardo99] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Modem Information

Retrieval, Addison Wesley Longman Publishing Co. Inc., 1999

[Robertson92] Robertson Stephen E., Walker Stephen, Micheline Hancock-Beaulieu,

Gui! Aarron, Lau Marianna, OKAPI at TREC, proceedings of TREC — 1, 1992,

National Institute of Standards and Technology (NIST), special publication pp:

21-31, http ://trec.nist. gov/pubs/trec l/t 1 proceedings .html

[Robertson93] Robertson, S E, Jones, S Walker, S, Hancock-beaulieu, M M, Gatford,

M, OKAPI at TREC-2, proceedings of TREC — 2, National Institute of

99

Standards and Technology (NIST), special publication pp: 21-35, http:/Itrec.

nist.gov/pubs/trec2/t2_proceedings.htrnl

[Robertson94] Robertson, S E, Walker, S, Joncs, S, Hancock-beaulicu, M M, Gatford,

M, OKAPI at TREC-3, proceedings of TREC — 4, 1994, National Institute of

Standards and Technology (NIST), special publication pp: 1 09-127, http://trec.

nist. gov/pubs!trcc3/t3_proccedings .html

[Robertson95] Robertson S E, Walker S, Beaulieu M M, Gatford M, Payne A, OKAPI

at TREC-4, proceedings of TREC — 4, 1995, National Institute of Standards

and Technoïogy (NIST), special publication pp: 73 — 108, http://trec.nist.gov/

ptibs!trec4/t4_proceedings.html

Srihari99J Srihari, Rohini, Li, Wei, Information Extraction Supported Question

Answering, proceedings of TREC — 8, 1999, National Institute of Standards

and Technology (NIST), special publication pp: 185 — 197, http://trec.nist.gov/

pubs/trec$/t$_proceedings .html

[Salton83] Salton Gerard, Michael J. McGilI, Introduction to modem hforrnation

Retrieval, McGraw-Hill Book Company, New York, 1983

[Savoy99] Savoy J., Picard J., Report on the TREC-8 Experiment: Searching on the

Web and in Distributed Collections, proceedings of TREC — 8, 1999, National

Institute of Standards and Technology (NIST), special publication pp: 229 —

241, http://citeseer.nj.nec.com/364516.html

100

Appendix: Test Questïons

1. According to the National Building Code, what is the snow load that has to

be considered for roofs in Canada?

2. What is corrosion?

3. Where can I find the thermal resistance of building materials?

4. Design of exit signs

5. Temperature gradient I building envelope

6. Soil I permeability

7. Issues about the location of drains

8. Aspects related with the chemical resistance of pipes.

9. Is it possible to use glass-fibre reinforced cernent in structural elernents?

10. Which norms of the building code have to be considered in the renovation

of an existing building?

101

11. Where can I tind information about the influence of radon in human

health?

12. I am looking for information regarding the use of computers in the industry

13. How to prevent wood f rom decaying under the influence of water?

14. Drainage! erosion / filters

15 Design considerations for roofs in cold regions

16. Reseatch about shadow angles and solar shading in façades

17. Doors insulation

18. Which trees should I use to reduce water demand in the sou?

19. Reducing ram penetration in pretabricated walls

20. In sou testing, what does swelling mean?

21. Glazing design! ram penetration / construction details

102

22. What are the siits?

23. Considering sound transmission, what are the specifications

recommended for a party walI in between two apariments?

24. The selection of the type of foundation

25. What is the stack effect in buildings?

26. How to establish the air supply rate in buildings?

27. Established dimensions for the access of wheelchairs

28. Comment construire un abri d’hiver au Canada?

28b. How to build a winter shelter for construction sites in Canada?

29. What is polymer concrete?

30. Does the National Building Code accept the construction 0f wood frame

fou ndations?

31. How to reduce the corrosion of the reinforcing steel in garages?

103

32. Where can I find a map of Canada with the seismic risk regions?

33. The address of the Standards Cou ncil cf Canada

34. The Building Research Library

35. What causes air pressure differences in windows?

36. Waterproofing the Basement

37. How to find information about solar radiation on walls for the particular

case of Canada?

38. What is the loss cf noise transmission recommended for adjacent rooms in

apartments?

39. What is efflorescence?

40. The effect cf color in the temperature cf roofs

41. What is the recommended temperature for the water cf an indoor pool?

42. Volume changes in concrete structures due to moisture changes

104

43. The Canadian Building Digests

44. Do the clear urethanes perform weII to the influence of UV radiation?

45. What is the recommended mortar for laying reclaimed bricks?

46. Rock formations and pyrite

47. Central control and monitoring systems

48. Does it exist a relation between condensation and roof forms?

49. What is the maximum tolerable noise level accepted in apartments?

50. Degree of comfort of ground-level winds

105

