
4/f. 3ôï. 3

Université de Montréal

Software Stability Assessment Using Multiple

Prediction Models

Par

Hong Zhang

Le Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémorire présenté à la Faculté des études supérieures

En vue de l’obtention du grade de

Maîtrise ès sciences (M.Sc.)

En informatique

Jtiin, 2003

©HONG ZHANG, 2003

f)’

Université (1111

de Montréal
Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

Ihe author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Faculté des études supérieures

Ce mémoire de maîtrise intitulé

Software Stability Assessment Using Multiple

Prediction Models

Présenté par

Hong Zhang

A été évalué par un jury composé des personnes suivantes

Présidente rapporteur: EL MABROUK, Nadia

Directeur de recherche : SAHRAOUI, Houari

Membre du jury: ABOULHAMID, El Mostapha

Mémoire accepté le : 31 juillet 2003

Résumé

La qualité de logiciel est actuellement de plus en plus un souci des organizations. La

manière la plus populaire d’assurer la qualité de logiciel est d’appliquer des modèles de

prévision de qualité de logiciel. Les modèles de prévision peuvent aider dans

l’évaluation de beaucoup d’aspects de qualité de logiciel pendant l’étape de

développement de logiciel; par exemple, entretien, réutilisabilité, fiabilité et stabilité.

En effet, les modèles de prévision deviennent une méthode efficace pour contrôler la

qualité de logiciel avant que l’ensemble des progiciels soit déployé, ou pour prévoir la

qualité du logiciel avant qu’il soit utilisé. Pendant les dix dernières années, beaucoup

d’études liées à ce sujet ont été publiées et un grand nombre de modèles de prévision de

qualité ont été proposés dans la littérature. Cependant, établir les modèles de prévision

de qualité de logiciel est une tâche complexe et à ressources consumantes.

En général, il y a deux approches de base pour construire les modèles de prévision de

qualité de logiciel. La première établit automatiquement le modèle avec des données

historiques. La seconde fait participer des experts établissant le modèle manuellement.

La première approche se fonde sur des données de mesure historiques pour accomplir

son but. La qualité de ces modèles dépend fortement de la qualité des échantillons

utilisés. Malheureusement, la qualité des échantillons disponibles est habituellement

pauvre en programmation. La quantité limitée de données disponibles pour ces modèles

le rend difficile à généraliser, valider, et de réutiliser les modèles existants. En effet,

contrairement à d’autres domaines, les petites tailles et l’hétérogénéité des échantillons

de rendent très difficile de dériver des modèles largement applicables.

La connaissance extraite de l’heuristique domaine-spécifique est employée par la

deuxième approche pour établir les modèles de prévision de qualité de logiciel. Les

modèles obtenus emploient des jugements des experts, et vise à établir un rapport

RÉSUMÉ iii

intuitivement acceptable entre les attributs internes de logiciel et une caractéristique de

qualité. Bien que ces modèles soient adaptés au processus décisionnaire, il est difficile

de les généraliser faute de connaissance conrnrnne et largement admise dans le domaine

de qualité de logiciel.

A cause du manque de données historiques ou de connaissance experte dans un

domaine spécifique, il est difficile d’établir systématiquement les modèles de prévision

spécifiques. Une alternative est de choisir un modèle de prévision existant. Mais les

modèles spécifiques obtenus à partir d’une situation particulière ne sont pas assez

généraux pour être efficacement applicables. Par conséquent, le choix d’un modèle

approprié est une décision difficile et non triviale pour une compagnie.

Dans notre thèse, nous proposons une approche de combinaison pour résoudre ce

problème. L’idée principale est de combiner et adapter les modèles existants de telle

manière que le modèle combiné fonctionne bien sur un système particulier ou dans un

type d’organisation particulier. En outre, nous visons également à améliorer les

capacités de prévision des modèles existants.

L’approche de combinaison est recommandée comme une manière efficace pour

améliorer les modèles de simple-issue utilisés actuellement. Nous employons un

algorithme génétique pour mettre en application notre approche de combinaison. Dans

notre solution proposée, nous supposons que les modèles de prévision existants sont

l’arbre de décision ou les classificateurs basés sur les règles. Les résultats d’essai

indiquent que l’approche de combinaison proposée avec un algorithme génétique peut

améliorer les capacités de prévision des modèles existants de manière significative dans

un contexte de systèmes multiple.

Mote clés Modèle de Prévision de Qualité de Logiciel, Métrique Logiciel, Algorithme
Génétique

RÉSUMÉ 1V

Abstract

Software quality is a concem of more ami more organizations now. The most popular

way to assure software quality at present is to appty software quality prediction models.

Prediction models can help in the evaluation of many aspects of software quality during

the software development stage; such as, maintainability, reusability, reliability and

stability. In fact, prediction models are becoming an efficient way to control software

quality before software packages are deployed, or to predict the quality of the software

before they are used. During the past tel years, a lot of studies related to this subject

have been published and a large number of quality prediction models have been

proposed in the literature. However, building software quality prediction models is a

complex and resource-consurning task.

In general, there are two basic approaches to building software quahty prediction

models. The first one uses historical data to build the model autornatically. The second

one involves experts building the model manually.

The first approach relies on historical measurement data to accomplish its goal. The

quality of these models depends heavily on the quality of the samples used.

Unfortunately, the quality of samples available is usually poor in software engineering.

The lirnited amount of data available for these models makes it difficuit to generalize,

to cross-validate, and to reuse existing models. lndeed, contrary to other domains, the

small sizes and the heterogeneity ofthe samples makes it very difficuit to derive widely

applicable models.

Knowledge extracted from domain-specific heuristics is used by the second approach

to build software quality prediction models. The obtained prediction models use

judgments from experts, and aim to establish an intuitively acceptable causal

relationship between internaI software attributes and a quality characteristic. Although

ABSTRACT

these models are adapted to the thought decision-making process, they are also hard to

generalize because of a lack of widely accepted common knowledge in the ficld of

software quality.

Due to the Ïack of historical data or the lack of expert lmowledge in a specific domain, it

is hard to build organizationally specific prediction models. An alternative can be to

choose an existing prediction mode!. But the specific models obtained from a

particular situation are flot general enough to be efficicntly applicable. As a

consequence, selecting an appropriate quality mode! is a difficuit and non-trivial

decision for a company.

In our thesis, we propose a combination approach to solve this problem. The main idea

is to combine and adapt existing models in such a way that the combined model works

well on a particular system or in a particular type of organization. In addition we also

aim at improving the prediction ability of existing models.

The combination approach is recommended as an efficient way to improve on the

single-issue models used at present. We use a genetic algorithm to implement our

combination approach. For our proposed solution, we assume that the existing

prediction models are the decision tree or rnle-based classifiers. The test results

indicate that the proposed combination approach with a genetic algorithm can

significantly improve the prediction ability of existing models within a multiple

systems context.

Key words: Software Quality Prediction Model, Software Metric, Genetic Algorithm,

ABSTRACT

CONTENTS

Abstract I

Résumé III

Contents V

List of Figures VIII

List of Tables X

Acknowledgements XI

Chapter 1 Introduction

1.1 Motivation 1

1.2Goals 2

1 .3.Contnbution 4

1 .4.Outline 5

Chapter 2 Software Quality Prediction Models

2.1 Terminology of Software Quality 7

2.2 Software Quality Assurance 9

2.3 Software Measurement and Metrics 11

2.4 Software Quality Prediction Models and Building Approach 1$

2.5 Existing Software Quality Prediction Models 20

2.5.1 Statistical/Regrcssion Modes 21

2.5.2 BBN Models 23

2.5.3 Neural Network Models 26

2.5.4 Decision Tree Models 28

2.6 Summary ofthis Chapter 32

Chapter 3 Genetic Algorithm Principles

3.1 Introduction ofGenetic Algorithm Principles 33

3.2 Terms of Genetic Algorithm 35

3.2.1 Chromosome, Gene and Genome 35

V

3.2.2 Genotype and Phenotype .37

3.2.3 Generation and Population 3$

3.2.4 Fitness 3$

3.2.5 Search Space 39

3.3 The Genetic Algonthm Operators 39

3.3.1 Selection 39

3.3.2 Crossover 42

3.3.3 Mutate 44

3.3.4 Elitism 45

3.4 Parameters 45

3.4.1 Population Size 45

3.4.2 Crossover Probability 45

3.4.3 Mutation Probability 46

3.5 Three Stages ofa Genetic Algonthm Application 46

3.6 Summary ofthis Chapter 47

Chapter 4 Combination Algorithm

4.1 Research Methodology 4$

4.2 Data Environment 49

4.3 Model Coding 53

4.3.1 Representation ofModels 53

4.3.2 Representation of Basic Rule and Default Rule 54

4.4 Initial Generation 56

4.5 Combination Algorithm Operators 57

4.5.1 Selection 57

4.5.2 Crossover 59

4.5.3 Mutation 65

4.6 Fitness Function 69

4.7 Elitism 72

4.8 Control of Population Size 72

4.9 Ending Condition 73

4.10 The Main Generational Loop in Our Algorithm 74

4.11 Summary of this Chapter 75

VI

Chapter 5 Implementation amI Experimentation

5.1 Experimental bol: GA-CAMP 77

5.2 Stability 82

5.3 Source Data Sets and Models Extract 84

5.4 Experiment Settings 89

5.5 Case Study 91

5.5.1 Case Study 1 92

5.5.2 Case Study 2 93

5.5.3 Case Study Summary 94

5.6 Resuits 94

5.7 Sumrnary ofthis Chapter 98

Chapter 6 Conclusion

6.1 Sumrnary 99

6.2 Future work 101

Bibliography 102

Appcndix A Classic Rule-based Prediction Models for Stability 109

Appcndix B Experiment Resuits 137

VII

LIST 0F FIGURES

Figure 1.1 The Approach and Concept of Our Research 4

figure 2.1 The V Model for Quality 10

figure 2.2 Predictor and Control Metrics 12

Figure 2.3 Relationships Between Internai and External Software Attributes 16

figure 2.4 “Reliability Prediction” BNN Example 25

Figure 2.5 A Neural Network Estimation Model 2$

figure 2.6 A Decision Tree Diagram 29

Figure 2.7 A Decision Tree for Stability Prediction 31

Figure 2.8 A Rule Set Translated from Figure 2.7 32

Figure 3.1 Chromosome Pair Nature Shape and Representation in Our Study 36

Figure 3.2 The Binary Representation ofa Chromosome 37

Figure 3.3 Genotype and Phenotype in Nature 38

Figure 3.4 Roulette Wheel 40

Figure 3.5 Rank Selection 41

Figure 3.6 Crossover (cutting point 5, fixed length) 43

figure 3.7 Mutation 44

figure 4.1 A Classic Rule-Based Prediction Model for Stability 50

Figure 4.2 The Example ofa Basic Rule (Gene) in Model 1 51

Figure 4.3 The Rule-Based Prediction Model Structure 52

figure 4.4 A Chromosome Internai Structure in Biology 53

figure 4.5 The Representation ofModel 1 as a Chromosome 54

figure 4.6 Representations of a Chromosome and its Genes by a Model 54

figure 4.7 Exampie ofthe Internai Structure ofa Gene (for Basic Rule) 55

figure 4.8 A Basic Rule Structure 55

f igure 4.9 Structure ofa Condition 55

figure 4.10 Roulette Wheel for Selection 5$

Figure 4.11 Crossover of Model 4 and Model 13 with One Cutting Point 61

figure 4.12 Two Original Models (Model 4 and Model 13) 62

Figure 4.13 Two New Models afier Crossover 63

figure 4.14 Two Cutting Points Crossover 64

figure 4.15 Crossover Probability Checking Procedtire 65

VIII

Figure 4.16 An Example of Rule with Structure Illustrated .67

Figure 4.17 A Condition Mutated in Figure 4.16 67

Figure 5.1 The Combination Algorithm Interface of GA-CAMP 78

Figure 5.2 An Example of Decision Tree Classifier File Produced by C4.5 79

Figure 5.3 A Rule Set ofa Decision Tree Crcated by C4.5 88

Figure 5.4 The Original and Combination Models’ fitness on Training Data 96

Figure 5.5 The Original and Combination Models’ Fitness on Testing Data 96

Ix

LIST 0F TABLES

Table 2.1 Software Characteristics from ISO/IEC 9216 11

Table 2.2 Function-Onented Software Product Metrics 14

Table 2.3 Object-oriented Metries 15

Table 2.4 The 22 Software Metrics Used as Attributes in Our Expenments 18

Table 4.1 The Metrics Database and Values 68

Table 4.2 The Confusion Matrix of a Decision function 69

Table 4.3 Confusion Matrix and Fitness Function for this Study 70

Table 4.4 Data Environment 71

Table 5.1 The Software Systems Used to Train and to Combine the Models 84

Table 5.2 The 22 Software Metrics Used as Attributes in Our Experiment 85

Table 5.3 The 10 Repetitions 0f Experiment Data Environments 90

Table 5.4 GA-CAMP Parameters 91

Table 5.5 The Results ofthe first Experiment 92

Table 5.6 The Resuits ofthe Second Experiment 93

Table 5.7 Fitness Values from Training and Testing Data 94

Table 5.8 Experiment Results 97

X

Acknowledgements

I would like to express my sincere appreciation to my director, Dr. Houari Sahraoui for

his invaluable guidance, his encouragement, his care and support throughout the course

of this thesis work. I really appreciate the opportunity to work on such an interesting

project with his guidance and advice. He has constantly supported me in a very kind and

encouraging way by pointing out relevant research and generating interesting ideas.

I also would like to make a special acknowledgernent to Mr. Salah Bouktif for his

collaboration in the development and implementation of the Algorithms. I benefited

greatly from fonnal and informai discussions with him. I am also thankful to Mr.

Moharnmed Rouatbi, who offered me his efficient fitness function used by the genetic

algorithm.

I also truly thank my brother Zhang Yi Wei. This thesis has benefited from his careful

reading and constructive criticisrn.

I also express my thanks to my friends Chen Ji Ling, Qin Li Sheng, Shen Shi Qiang, Mai

Gang, Zheng Suo Shi and Wu Lei for their help, friendship and encouragement.

Finally, I wish to express a speciai acknowledgement to my wife Jia Dong Mei, my

daughter Yue Ran Zhang and my son Gary Zhang for their support, understanding, and

for making alt of this possible.

ACKNOWLEDGEMENT XI

Chapter 1 Introduction

1.1 Motivation

Comptiter use is now prevalent in almost ail aspects of our everyday life; consequently,

software has become criticai to the deveiopment and maintenance of consumer

products. Now, more than ever, software developers are concemed with software

quality when developing new products. The reason for this stems from the immense

demands on peopie, money and time when developing software products because

software is becoming iarger and more complex [35]. The question of how to develop

high-quaiity software is critical. One of the best ways to assure software quality is to

address this issue and make accurate predictions before the software is developed.

Predicting software quality is a compiex and resource-consuming task. The process of

predicting defects in the eariy stage of the software iifecycle has become a major

undertaldng for software engineers. Over the iast 30 years a great deal ofresearch has

been undertaken in an attempt to predict software quality [24]. There are many papers

advocating statistical models and metrics which purport to answer the quaiity question.

Many of the studies related to this issue have added to our knowiedge base. For

example, numerous software metrics have been developed and some of the prediction

modeis buiit from these metrics have been found to be effective toois in controiling the

software quaiity. In fact, prediction modeis are becoming an efficient way to controi

software quaiity both before and during software deveiopment.

Introduction 1

Chapter 1 2

Recently, many prediction models have been proposed to predict certain aspects of

software quaiity: such as, maintainability, reusability, reliability, and stability to name a

few [24]. Most of these prediction models have been buiit using statistical methods,

which require historical data. Unfortunateiy, many software developers lack historical

data. Therefore, it is hard to build organizationally specific prediction models because

of this lack of information. Consequently, the alternative has been to choose existing

prediction models. However existing models are specific to a particular situation and

consequentiy are flot general enough to be efficiently applied to other contexts. More

significantly, many prediction modeis tend to model only part of the underlying

problem within a context: therefore, they are not universai. Intuitivety, a way to solve

this problem might be by coliecting data from different kinds of application contexts to

build universal software quality prediction moUds. Unfortunateiy, this wouid be too

complex and too time consuming to achieve. furthermore, in practice, it’s aimost

impossible to obtain ail the data necessary for prediction models to be built. Therefore,

in our research, we hope to address these problems by proposing a combination

algorithm to obtain a cross-valid software quaiity prediction model.

1.2 Goals

In generai, software quaiity prediction models are obtained from historical

measurement data or the domain specific heuristics of experts. The main purpose ofthis

research is to find another approach to establishing quality prediction models through

the combination of existing models in order to obtain new modes. This new prediction

model is neither from the historical measurement data nor from experts’ knowledge.

The combined models obtained from existing prediction models can be an alternative

for software organizations that lack historical data. This approach is achievable

because many prediction modeis, which can oniy satisfactorily work for the specific

circumstances from which they were built, have been proposed in the last few decades.

Introduction

Chaptet 1 3

We propose an approach that combines these existing prediction models from various

contexts, using a genetic algorithm, with the goal being to produce a more universally

applicable “combining model” for software stability prediction. The results obtained

from this study show that this approach is more efficient and the prediction accuracy is

higher in the testing data sets.

Therefore, flot only has it become effective and efficient to produce a predictive model

from the existing predictive models of these organizations. Their results can lead to

higher prediction accuracy rate that requires less effort during the implementation

phase and makes the design phase more efficient.

The “combining model” approach is illustrated in figure 1.1. Each cylinder indicates

the source data set from which the prediction models are built. Each rectangle indicates

the approach to building the prediction models. Each ellipse indicates the prediction

model. In the literature, only the prediction models and some of the approaches are

presented. That is, the sotirce data sets are unknown. This research focuses on the

stability rnle-based prediction models. Our aim is to find an approach to build a new

model from the posted models using a genetic algorithm. It is hoped that both this

approach and this new model can be applied widely. Using this new approach, it is not

necessary to have the original source data sets because our input data actually is a set of

existing prediction models. Our outputs arc some ncw prediction models that are more

general and more accurate in estimating software quality. Moreover, this study is also

an exploratory phase that offers proofto the concept of combining existing models with

the genetic algorithm. Somc techniques and results of this study have been improvcd

by the students that continue the research [55].

Therefore, the goal ofthis study is to propose and verify the ‘combining’ approach, by

using a genetic algorithm, as an efficient method to develop cross-valid software

quality prediction models.

Introduction

Chapter 1 4

unknown

known

Combination

Algorithrn

New Prediction Model

Figure 1.1 The Approach and Concept of Our Research

1.3 Contributions

Our combination algorithm was validated in a “semi-reaF’ environment. In this

evaluation environment, ail data collected was from some reai software systems and the

models were extracted from part of this data set through the C4.5 aigorithm [51]. We

trained the original models and tested the combination models with alO-fold cross

validation technique in this real data environment also. The resuits coming from our

experiment are: that a certain ldnd of local search method, such as a genetic algorithm,

can be used as an evolutionaiy approach for combining and improving software quaiity

prediction models in a particular context.

Our researcli contribution focuses on the foliowing two aspects:

first, we propose an approach to using a genetic algorithm for the improvement of

prediction models through their combination.

Introduction

Chapter 1

Second, we show that this approach can work well for the classes interface stability

prediction in real software systems.

1.4 Outline

In this study, we apply a genetic algorithm (GA) as a combination approach to build

more satisfactory software quality prediction models and optimize the prediction

accuracy ofthe new models.

In Chapter 2, we present a review of the concepts of software quality and its prediction

models, as well as a description of some software quality prediction models that have

been posted in the literature in order to provide an example of other prediction models.

In Chapter 3, we describe the GA principles in general, such as GA operators and

parameters. The research methodology of our combination algorithm is presented in

Chapter 4, while Chapter 5, describes the implementation of our experiment using the

algorithm on the stability prediction models.

finally, in Chapter 6, conclusions are made and a brief summary is presented.

Furthermore, problems conceming optimizing quality estimation models with this

specific technique and future work are presented.

Introduction

Chapter 2 Software Quality Prediction
Models

With the expanding application of computers in many aspects of our lives, the use of

computer software has also become a necessary part of our everyday life. Like

computer hardware, computer software is a consumer product as welI. With increasing

competition in the software market, software quality is a key concem for the software

vender/producer because the market witt only accept the best quality products.

Similarly, software quality is now of greater concem to computer users, because to

most users, the investment in software is a long terrn one and it usually directly affects

the efficiency oftheir computer operations. Therefore, developers have had to address

this issue in order to maintain consumer satisfaction.

Aside from consumer demand, the concem for software quality is a central and critical

issue for software companies because the development of software requires immense

amounts of time, money and human resources to produce. Therefore, it is necessary for

companies to eliminate or reduce software defects in order for their product and their

company to survive.

In this chapter we give a brief overview of the concepts related to software quality and

its prediction models.

Software Quality Prediction Models 6

Chapter 2 7

2.1 Terminology of Software Quality

Before discussing software quality, it is necessary to consider the definition of a

software product. A widely accepted definition is that: a software workproduct is any

artifitct created as part of the software pmcess incÏuding computer programs, plans

procedttres, and associated documentation and data [50].

From this definition, the term “software quality” can be applied to both the product

being produced and the process used by software engineers to produce it. Therefore,

there are two types of quality, product quality and process quality. Although they are

dependent on each other, they involve different techniques and measures, and have

different implications. Product quality is easy to understand, but the tenn process

quality is flot that intuitively simple. Therefore, we need to clarify what is a software

process. A software process is a set of activities, methods, practices, and

transformations that people use to develop and maintain software work products [50].

Now we can look at the contents of the two types of software quality.

• Product quality

Broadly speaking, prodttct quality is related to how well the product satisfies its

cttstomers ‘requirements. Related to this are the usabiÏity, pe,jbrmance, reliabiÏity,

and the maintainability ofthe software [30j.

• Process quality

This is concerned with 120w welÏ the process ttsed to develop the prodttct worked.

UsïtalÏy researchers are concerned with elements sttch as cost estimation and

schedule accztracy, productivity, and the effèctiveness of various qitatity contml

techniques [30].

from the above descriptions, we can see that the definition of software quality in

literature contains many aspects. In our study, we do flot want to take up too much space

on the various detailed aspects. Instead, we adopt a simple but clear definition:

• Software quality

Software quaÏity can be thottght of as the number andjrequency ojprobÏems and

Software Quality Prediction Models

Chapter 2 $

defects discovered [50].

The most important terms associated with this definition of software quality are

software defects and software problems. The foilowing definitions wiii ciarify these

two terms.

• Software Defects

A software defrct is anyjlaw or impeijction in ci softivare workproduct or software

pmcess [50].

It is any unintended characteristic that impairs the utiiity or worth of an item, or any

kind of shortcoming, imperfection, or deficiency. A software defect is a manifestation

of a hurnan (software producer) mistake. However, flot ail human mistakes are defects,

nor are ail defects the result of human mistakes. When found in executabie code, a

defect is frequently referred to as a fault or a bug. A fault is an incorrect program step,

process, or data definition in a computer program. Faults are defects that have persisted

in software until the software is executable.

Software defects include ail defects that have been encountered or discovered by

exarnination or operation ofthe software product. Possible values in this subtype are as

follows:

- Requirement defect

- Design defect

- Code defect

- Document defect

- Test case defect

- Other work product defect

• Software Problems

Software problems are another quality concern retated to software products. A

sojbvvare problem is ci hurnan encoicn ter with software that causes dtfficuÏty, doubt,

Software Quality Prediction Models

Chapter 2 9

or uncertainty in the ttse or exarnination ofthe software [30].

A software problem has typically been associated with that ofa customer identifying, in

some way, a malfunction in the program. The notion of a software problem is beyond

that of an unhappy customer. There are many terms uscd for problem reports

throughout the software community; for exampie, incident reports, customer service

requests, trouble reports, inspection reports, enor reports, defect reports, failure reports

and test incidents. In a generic sense, they ail stem from a person’s unsatisfactory

encounter with the software. Software problems are human events. The encounter may

be with an opcrational system (dynamic), or it may be an encounter with a program

listing ta static encounter.)

In a dynamic (operational) environment, some problems may be causcd by failures.

According to Musa in “Software ReÏiabiÏity Measurernent, Prediction, Application”, a

failure is the departure of software operations from requirements. A software failure

must occur during the execution of a program. Software failures are caused by faults,

that is, defects found in cxectitable code [47].

In a static (non-operational) environment, such as a code inspection, some probiems

may be caused by defects. In both dynamic and static environments, problems also may

be caused by misunderstandings, misuse, or a number of other factors that are not

related to the software product being used or examined.

2.2 Software Quality Assurance

Software Quality Assurance (SQA) is the main approach used to provide good quality

software. There has been remarkable progress made in SQA since the early days of

computing. At the beginning, the process of developing software products was simply

about writing procedures to perform given tasks. The most common and popular way of

assuring the quality of software was through program testing. This means that software

Software Quality Prediction Models

Chapter 2 10

quality was treated as an afterthought or as a postscript in software development.

Hilbum and Towhidnejad argued that software quality should be addressed in the

front-end of the lifecycle and should not be ignored until after the development of the

product [35]. They suggested that quality should be focused on dunng the whole

software development process. figure 2.1 developed by Hilbum and Towhidnejad,

shows a V Quality mode! that provides a conceptual framework for such a focus.

Figure 2.1 The V Model for Quality

During the test phase, only the functional requirement can be determined. Aside from

the functional requirement, there are other requirements; such as, maintainability,

reusability, reliability, and stability that need to be determined. Unfortunately, these

cannot be determined through testing. As a consequence of this problem, software

quality has been treated as an afterthought in the software development process. This

solution does flot appear to adequately address the quality issue; therefore, a better

possible solution may be to apply software prediction models to assure software

quality during the development lifecycle [53].

Software prediction models address the evaluation of software quality during the

software development life cycle. The prediction model, specified fora specific project,

consists of a set of important quality characteristics. In general there are six

Software Quality Prediction Models

Chapter 2 11

characteristics of software that can be used as criteria for quality as defrned in ISO/IEC

9126 (Sec Table 2.1).

Table 2.1 Software Characteristics from ISO/IEC 9216

Characteristic Explanation

Functionality Attributes that bear on the existence of a set of functions
and their specified properties. The functions are those that
satisfy a stated of irnplied need.

Reliability Attributes, that bear on the capability of software to
maintain its level of performance under stated conditions
for a stated period oftime.

Usability Attributes that bear on the effort needed for use, and on the
individual evaluation of such use, by a stated or implied set of
users.

Efficiency Affributes that bear on the relationship between the level
of the performance of the software and the arnount of
resources used, under stated conditions.

Maintainability Attributes that bear on the effort needed to make specified
modifications.

Portability Attributes that bear on the ability of software to be
transfonned from one environment to another.

2.3 Software Measurement and Metrics

Software measurement is another important concept that is concemed with deriving

numeric values for some attributes of a software product or a software process. These

values enable people to intuitively evaluate and draw conclusions about the quality of

the software or the software process. Some large companies have introduced program

metncs for measurement purposes and are using collected metrics in their quality

management processes [56]. Most of the focus lias been on collecting metrics on the

program and the processes of verification and validation. During the past decades, a lot

of people (such as Offen, Jeffrey, Hall, and Fenton) have contributed for the

introduction of software metncs as a way to improve software quality.

Software Quality Prediction Models

Chapter 2 12

A software metric is any type ofmeasurement that relates to a software system, process

or related documentation [56]. For exampic, lines of code are the measurement of the

size of a software product. The fog index (Gunning, 1962) is a measure of the

readability of a passage of written text. The number of reported faults in a delivered

software product or the number of person-days required to develop a system

component are also example of software metrics.

• Control Metrics and Predictor Metrics

There are two types of software metrics to consider: control metrics and predictor

metrics. Control metrics are usually associated with software processes (therefore they

are also called process metrics by some researchers) whule predictor metrics are

associated with software products. Examples of control (or process) mefrics are the

average effort and time required to repair reported defects. Examples of prcdictor

metrics include the cyclomatic complexity of a module, the average length of an

identifier in a program, or the number of attributes and operations associated with

objects in a design. Both control and predictor metrics may influence management

decision making as shown in figure 2.2.

Figure 2.2 Predictor and Control Metrics

Software Quality Prediction Models

Chapter 2 13

• Dynamic Metrics and Static Metrics

Predictor metrics are concemed with characteristic ofthe software itself. Unfortunately,

software characteristics, such as size and cyclomatic complexity that can be easily

measured, do not have a clear and universal relationship with quality attributes such as

understandability and maintainability. The relationships vary depending on the

development process, technology and the type of system being developed.

Organizations that are interested in software measurements have to construct a

historical database, which can be used to discover how the software product attributes

are related to the qualities of interest in the organization.

Product metrics fa!! into two classes:

1. Dynamic metrics, which are the co!!ected measurements made of a program in

execution.

2. Static metrics, which are the co!lected measurements made of the system

representations such as the design, program or documentation.

The two different types of metrics are re!ated to different qua!ity attributes. Dynamic

metrics are to eva!uate the efficiency and the reliability of a program whereas static

metrics are to evaluate the comp!exity, understandability and maintainabi!ity of a

software system.

Dynamic metrics are usua!!y directly related to software qua!ity attributes. They are

re!atively easy to measure. for examp!e, the execution time required for particu!ar

functions and the time required to startup a system are dynamic metrics. These re!ate

metrics directly to the system’s efficiency.

Static metrics, on the other hand, have an indirect re!ationship to quality attnbutes.

There are a !arge number of these metrics proposed and experiments conducted to

derive and validate the relationships between these metrics and system complexity,

understandabi!ity and maintainabi!ity. Table 2.2 !ists several static metrics used for

assessing qua!ity attributes. Among these, programlcomponent !ength and contro!

Software Quality Prediction Models

Chapter 2 14

complexity seem to be the most reliable predictors of system understandability,

complexity and maintainability [56].

Ail of the metrics in Table 2.2 are for function-oriented designs. Their usefulness as

predictor metrics is stiil being established despite the increasing popularity of

object-oriented software systems.

Table 2.2 Function-Oriented Software Product Metrics

Sofiware Description
Mefric

Fan-infFan- Fan-in is a measure of the number of functions that cali some
out other function (say X). fan-out is the number of the functions

which are called by function X. A high value for fan-in means
that X is tightly coupled to the rest ofthe design and the changes
to X wiII have extensive knock-on effects. A high value for
fan-out suggests that overali complexity of X may be high
because of the complexity of the control logic needed to
coordinate the called components.

Length of This isa measure ofthe size ofa program. Generally, the larger
code the size ofthe code ofa program component, the more complex

and etior-prone that compondnt is likely to be.
Cyclornatic This is a measure of the control cornplexity of a program. This
complexity control complexity may be related to program

undcrstandability.
Length of This is a measure ofthc average length of distinct identifiers in a
identiflers program. The longer the idcntiflers, the more likely they are to

be meaningfiil and hence the more understandable the program.
Depth of This is a measure of the depth of nesting of if-statements in a
Conditional program. Deeply nested if-statements arc hard to understand
nesting and are potentially error-prone.

Fog index This is a measure ofthe average length ofwords and sentences
in documents. The higher the value for the fog index, the more
difficult the document may be to understand.

• Object-orïented Metrics

Since the early 1990s, there have been a number of studies conceming object-oriented

metrics. Some of these were derived from the previously existing metrics shown in

Table 2.2, but others are unique to object-onented systems. Table 2.3 explains some of

the object-oriented metrics.

These specific metrics are dcpending on the project itseif, the goals of the quality

management team and the type of software developed. In some situations, ail the

Software Quality Prediction Models

Chapter 2 15

metrics in Table 2.2.and Table 2.3 may be useful. However, there are situations where

some metrics are inappropnate. Organizations should choose the most appropnate

metrics for their needs.

Table 2.3 Object-oriented Metrics

Object-oriented Description
Metric

Depth of This represents the number of discrete levels in the inheritance
inheritance tree tree where subclasses inherit attributes and operations (methods)

from superclasses. The deeper the inheritance tree, the more
complex the design as, potentially, many different object classes
have to be understood to understand the object classes at the
leaves ofthe tree.

Method This is directly related to fan-in and fan-out as described in
fan-inlfan-out Table2.2 and means essentially the same thing. However, it may

be appropriate to make a distinction between calis from other
methods within the object and cails from external method.

Weighted This is the number ofmethods included in a class weighted by the

rnethods cornplexity of each method. Therefore, a simple method may

per class have a cornplexity of 1 and a large and complex method a mucb
higher value. The larger the value for this metric, the more
complex the object class. Complex objects are more likely to be
more difficuit to understand. They may not be logically cohesive
so cannot be reused effectively as superclasses in and inheritance
tree.

Number of These are the number of operations in a superclass which are

overriding ovenidden in a subclass. A high value for this metric indicates

operations that the superclass used may not be an appropriate parent for
subclass

• Relations between Internai and External Attributes

Software quality characteristics are also categorized as internai or external by some

researchers. The size, inheritance, and coupling are internaI attributes and can be

directly measured. While the external characteristics ofmaintainability, reusability, and

reliability can only be measured after a certain time of use. In order to predict software

quality characteristics, software attributes (or metrics) were introduced because their

properties are directly measurable. Roughly speaking, building a software quality

prediction model is akin to building a relationship between the measurable internai

attributes and the external characteristics. Therefore, before talking about software

quality prediction models, we also need to consider the measurable attributes of

software and the software measurements which are introduced in the following.

Software Quality Prediction Models

Chapter 2 16

Some software quaiity attributes (mostly the external attributes) are impossible to

measure directiy. Attributes such as maintainability, complexity and understandability

are affected by many different factors. There are no straightforward metrics for them.

Therefore we have to measure some internai attribute of the software (such as its size)

with the assumption that there is a reiationship bctween what we can measure and what

we want to know. ldeaily, there should be a validated and clear relationship between the

software extemal and internai attributes.

Figure 2.3 shows some external quality attributes that might be of interest [56]. On the

diagram’s left side are some externai attributes and on the right side are some internai

ones. This diagram shows that the measurable internai attributes might be reiated to the

externai attributes. It suggests that there may be a reiationship between externai and

internai attribtites but does not say what the relations are.

Figure 2.3 Relationships between Internai and Externai Software Attributes

Software Quality Prediction Models

Chapter 2 17

If a measurement of an internai software attribute is to be a useftil predictor of an

external one, three conditions must hold (Kithchenham, 99O):

1. The internai attribute must be measured accurately.

2. A reiationship must exist between the measurabie internai attnbute and the

external behaviorai attribute.

3. This relationship is validated and can be expressed in terms of an understandable

formula or mode!.

The mode! formulation invoives identifying the functionai form of the model (i.e.

linear, exponential) by analyzing collected data and identifying the parameters which

are to be included in the mode!. Such model development usually requires significant

experience in statistical techniques if it is to be trnsted. A professional statistician

should usually be involved in the process.

The software quality prediction models used in our study are based on the basic

elernents ofa software measurement environment and the metrics described above. We

choose 22 structural software metrics to predict its stability. The metrics (see Table 2.4)

are grouped in four categories by coupling, cohesion, inheritance, and complexity.

They constitute a union ofmetrics used in different theoretical models [17, 7, 59, 12].

After the software metrics are defined and collected, they can be used to buiid the

relationship between the immeasurable software quaiities and the measurable software

metrics. The assumed relations are called software quality prediction models.

Software Quality Prediction Models

Chapter 2 18

Table 2.4 The 22 Software Metncs Used as Attributes in Our Experiments

Metncs Description
Cohesion metrics

1 LCOM lack of cohesion methods
2 COH cohcsion
3 COM cohesion metric
4 COMI cohesion metric inverse

Coupling metrics
5 OCMAIC other class method attribute import coupling
6 OCMAEC other class method attribute export coupling
7 CUB number of classes used by a class
8 CUBF number of classes used by a memb. funct.

Inheritance metrics
9 NOC number of chiidren

10 NOP number of parents
11 NON number of nested classes
12 NOCONT number of containing classes
13 DIT depth of inheritance
14 MDS message domain size
15 CHM class hierarchy metric

Size complexity metrics
16 NOM number of methods
17 WMC weighted methods per class
18 WMCLOC LOC weighted methods per class
19 MCC McCabe’s complexity weighted meth. per cl.
20 DEPCC operation access metric
21 NPPM number of public and protected meth. in a cl.
22 NPA number of public attributes

2.4 Software Quality Prediction Models and Building Approach

As mentioned before, software quality is evaluated in terms of maintainability,

reusability, reliability, stability, etc. The majority ofthese quality characteristics are not

directly measurable. But we can use software metric values to help us estimate the

software quality. b do this, we have to assume a relationship between them. Ibis is the

software quality prediction (estimation) model.

Software Quality Prediction Models

Chapter 2 19

Software prediction models address the evaluation of software quality during the

software development life cycle. The prediction model, specified for a specific project,

consists of a set of important quality characteristics. These attributes (or metrics) are

directly measurable software properties that qualify quality characteristics.

Software quality prediction models offer an interesting solution to assure software

quality because they can be used to incorporate a wide variety of quality assurance

techniques [53]. Most importantly, software quality prediction models can be used to

predict the number of the defects (faults) in software systems before they are deployed

[24].

The approach to building software qtiality prediction models is very complex and

source costing. Roughly speaking, building a quality prediction model consists of

building a relationship between the intemal and extemal quality characteristics. There

are a lot oftypical approaches to prediction models; such as, statistic, machine leaming,

neural networking and BBN.

The work donc so far to build efficient and usable software quality prediction models

falls into two families. The first one relies on historical measurement data to achieve its

goal (sec for example [3], [14] and [43]). The quality of these models depends heavily

on the quality of the samples used, which is usually poor in software engineering.

lndeed, contrary to other domains, the small sizes and the heterogeneity ofthe samples

makes it difficuit to derive widely applicable models. As a result, the models may

capture trends, but do so by using sample-dependent threshold values [54]. Also, as

stated by fenton & Neil [26], the majority of the produced models are naïve; they

cannot serve as decision support during the software development process. This is

because often the predictive variables and the quality characteristics used for prediction

show no obvious causal link that could explain their derived relationship. The models

Software Quality Prediction Models

Chapter 2 20

behave as simple black boxes that take the predictive variables as input and the

predicted variables as output [53].

The second way of building software quality estimation models uses knowledge

extracted from domain-specific heuristics. The obtained predictive models use

judgments from experts to establish an intuitively acceptable causal relationship

between internai software attributes and a quality characteristic. Although they are

adapted to the thought decision-maldng process, these models are hard to generalize

because of a lack of widely accepted common kriowledge in the field of software

quality.

Consequently, there exists a need for an approach that combines the advantages of

using both historical measurement data and domain 1uowledge.

2.5 Existing Software Quality Prediction Models

In fact, prediction models are becoming an efficient way to predict the quahty of the

software at early stages of development. During the past decades, there have been a lot

of studies and papers generated on this topic. Consequently, a large number ofproposed

quality models have been proposed in the literature. There are many kinds of software

quality prediction models. In this section we give an overview of four kinds of

prediction models, which fit in one ofthe following categones:

• Static Regression Models

• Bayesian Belief Networks Models

• Neural Network Models

• Decision Tree Models

Software Quality Prediction Models

Chapter 2 21

2.5.1 Static Regression Software Defect Prediction Models

Most prediction models are based on size and complexity metrics. The earliest such

models are typical of many regression based “data fitting” models which became

common place in the literature. The resuits from regression rnethods showed that linear

models of certain simple metrics provide reasonable estimates for the total number of

defects D (the dependent variable is actually defined as the sum of the defects found

during testing and the defects found dunng the two months after release). The

following represcnts some regression equations posted in the literature:

D =4.$6+0.018L (1)

D=
V

(2)
3,000

D
—=A0+A1lnL+A-,lnL (3)

D=4.2+0.0015(L)3”3 (4)

The first Equation (1) computed by Akiyarna [2], which was based on a system

developed at fujitsti in Japan, predicted defects from lines of code (LOC). from (1) it

can be calculated that a 1,000L (it is 1000 LOC) module is expected to have

approximately 23 defects.

The second Equation (2) provided by Halstead [34] is a notable equation. This

regression model predicts D, the number of defects, depends on a program F In this

equation, V is the (language dependent) volume metric (which like aIl the Halstead

metrics is defined in terms ofthe number of unique operators and unique operands in P;

for details see [23]). The divisor 3,000 represents the mean number of mental

discriminations between decisions made by the programmer.

Equation (3) was created by Lipow [41]. in this equation, He got around the problem of

Software Quatity Prediction Models

Chapter 2 22

computing V directly by using unes of executable code L instead. Specifically, he used

the Halstead theory to compute a series ofequations. In equation (3), each ofthe Ai is

dependent on the average number of usages of operators and operands per LOC for a

particular language. For example, for Fortran A0 0.0047; A 0.0023; A, =0.000043.

For an assembly language n A0 =0.0012; i ‘O.0OO]; 112 =0.000002.

Gaffney [31], argued that the relationship between D and L was flot language dependent.

In Equation (4), he used Lipow’s own data to deduce this prediction model. An

interesting ramification of this was that there was an optimal size for individual

modules with respect to defect density. For (4) this optimum module size is $77 LOC.

Numerous other researchers have since reported on optimal module sizes. For example,

Compton and Withrow of UNISYS derived the following polynomial equation, [19]:

D = 0.069 + 0.00156L + 0.00000047(L)2 (5)

Based on (5) and further analysis Compton and Withrow concluded that the optimum

size for an Ada module, with respect to minimizing error density, is $3 source

statements.

The realization that size-based metrics alone are poor general predictors of defect

density spuned on much research into more discriminating complexity metrics.

McCabe’s cyclomatic complexity, [45], has been used in many studies, but it too is

essentially a size measure (being equal to the number of decisions plus one in most

programs). Kitchenham et al. [40], examined the relationship between the changes

experienced by two subsystems and a number ofmetrics, including McCabe’s metnc.

Two different regression equations resulted in (6) and (7):

C = 0.042MC1 — 0.075N + 0.00001HE (6)

C — 0.25MC1 — 0.53D1 + 0.O9VG (7)

For the first subsystem changes, C, was found to be reasonably dependent on machine

code instructions, MCI, operator and operand totals, N, and Halstead’s effort metric,

Software Quality Prediction Models

Chaptei 2 23

HE. For the other subsystem McCabe’s complexity metric, VG was found to partially

explain C along with machine code instructions, MCI and data items, Dl.

Ail of the metrics discussed so far are defined in terms of code. There are now a large

number of metrics available earlier in the lifecycle of software, most of which have

been claimcd by their proponents to have some predictive power with respect to

residual defect density. for example, there have been numerous attempts to define

metrics which can be extracted from design documents using counts of “between

module complexity” sucli as cali statements and data flows; the most well known are

the metrics in [49]. Ohisson and Alberg, [4], reported on a study at Ericsson where

metrics derived autornatically from design documents were used to predict, in

particular, fault-prone modules prior to testing. Recently, there have been several

attempts, such as [17] and [19], to define metrics on object-oriented designs.

For the regression software defect prediction models, the essential problem is the

oversimplification. Typically, the method is for a simple relationship between some

predictor and the number of defects delivered. Size or complexity measures are often

used as such predictors as mentioned above. The resuit is a naïve model.

Indeed, such models fail to include all the causal or explanatory variables needed to

make the models generalizable. And they can only be used to explain a data set

obtained in a specific context. In order to establish a causal relationship between two

variables, Bayesian Belief Networks (BBN) was developed to improve the explanatory

power.

2.5.2 Bayesian Belief Networks Models

The relationships between product, process attributes and numbers of defects may be

too complex to apply straightforward curve fitting modeis. In predicting defects

discovered in a particular project, additional variables can be added to the model, for

Software Quality Prediction Models

Chapter 2 24

example, the number of defects discovered may depend on the effectiveness of the

method with which the software is tested. it may also be dependent on the level of

detail of the specifications from which the test cases are derived, the care with which

requircments have been managed during product development, and 50 on. The BBN

models are the better candidates for situations with such a rich causal structure.

A Bayesian Belief Network (BBN) is a special type of diagram (called a graph) together

with an associated set of probability tables. The graph is made up of nodes and arcs

where the nodes represent uncertain variables and the arcs the causal/relevance

relationships between the variables.

BBN model (also known as graphical probability models) use the subjective judgmcnts

of experienced project managers to build the probability model. it can be used to

produce forecasts about the software quality throughout the development life cycle.

Moreover, the causal or influence structure ofthe model more naturally mirrors the real

world sequence ofevents and relations that can be achieved with other formalisms.

The relationship between the attributes and the number of defects are too complex that

additional variables, such as probability, have to be added to the model. Probability is a

dynamic theory. It provides a mechanism for coherently revising the probabilities of

events as evidence becomes available [28].

Fenton proposed a BBN mode! (see Figure 2.4) for an example “reliability prediction”

problem in 1999[24]. We take his model and explanation to show the general

information of the BBN model.

In figure 2.4, the nodes represent discrete or continuous variables, for example, the

node “use of IEC 1508” (the standard) is discrete having two values “yes” and “no,”

whereas the node “reliability” might be continuous (such as the probability offailure).

The arcs represent causal/influential relationships between variables. For example,

Software Quality Prediction Models

Chapter 2 25

software reliability is defined by the number of (latent) fauits and the operational usage

(frequency with which faults may be triggered). Hence, this relationship was modeled

by drawing arcs from the noUes “number of latent faults” and “operational usage” to

“reiiability.”

NODE PROBABILITY TABLE (NPT) FOR THE NODE “RELIABILITY”

operational usage low med high
faults Iow rned high low rned high Iow rned high

low 0.10 0.20 0.33 0.20 0.33 0.50 0.20 0.33 0.70
reliability med 0.20 0.30 0.33 0.30 0.33 0.30 0.30 0.33 0.20

high 0.70 0.50 0.33 0.50 0.33 0.20 0.50 0.33 0.10

Figure 2.4 “Reliabiiity Prediction” BNN Example

for the node “reiiabiiity” the node probabiiity table (NPT) might, therefore, look like

that shown in the Figure 2.4 (for ultra-simplicity we have made ail nodes discrete so that

Software Quality Prediction Modeis

Chapter 2 26

here reliability takes on just three discrete values low, medium, and high). The NPTs

capture the conditional probabilities of a node given the state of its parent nodes. For

nodes without parents (such as “use ofIEC 1508” in Figure 3.4) the NPTs are simply the

marginal probabilities.

There may be several ways of determining the probabilities for the NPTs. One of the

benefits of BBNs stems from the fact that we are able to accommodate both subjective

probabilities (elicited from domain experts) and probabilities based on objective data.

Recent tool developments mean that it is now possible to build very large BBNs with

very large probability tables (including continuous node variables).

The most important advantages of using BBNs is the ability to represent and

manipulate complex models that might neyer be implemented using conventional

methods. Another advantage is that the model can predict events based on partial or

uncertain data. Because BBNs have a rigorous, mathematical meaning there are

software tools that can interpret them and perform the complex calculations needed in

their use.

2.5.3 Neural Network Models

In the last decade, significant effort has been put into the research of developing

prediction models using neural networks. Many researchers [Khoshgoftaar, 1995]

realized the deficiencies of regression methods (see section 2.5.1) and explored neural

networks as an alternative. Neural networks are based on the principle of learning from

example and no pnor information is specified (unlike the Bayesian approach discussed

in previous section). Neural networks are characterized in terms of three entities: the

neurons, the interconnection structure and the leaming algorithm [Kamnanithi, 1992].

Neural networks are leaming-oriented techniques, which use prior and current

knowledge to develop a software prediction model [39]. The multi-layer perception is

Software Quality Prediction Models

Chapter 2 27

the most widely applied neural network architecture today. Neurai Network Theory

shows that only three layers of neurons are sufficient for leaming any (non) linear

function combining input data to output data. The input layer consists ofone neuron for

each complexity metric, while the output layer has one neuron for each quality metric to

be predicted.

Because neural network based approaches are predominantly resuit-driven, flot dealing

with design intuition or heuristic mies for modeling the development process and its

products, and because their trained information is a black-box (that is to say, not

accessible from outside). They are not suitable for providing the reasons for a particular

resuit. Therefore, neural networks can be applied when only input vectors (software

metric data) and results (quality or productivity data) are of concem, while no intuitive

connections are needed between the two sets (e.g. pattem recognition approaches in

complicated decision situations).

Most of the prediction models developed using neural networks use back-propagation

feed-forward training networks (see Figure 2.5). The network is trained with a series of

input and correct output from the training data so as to minimize the prediction error.

Once the training is complete, and the appropriate weights for the network arcs have

been determined, new input can be presented to the network to predict the

corresponding estimate ofthe response variable.

Most of the models which developed using neural networks operate as “black boxes”

and do not provide any information or reasoning about how the outputs are derived.

It is hard to know whether the models satisfactorily predict software quality in different

contexts or not.

Therefore we can see that neural networks cannot cunently provide any insight into

why they arrived at a certain decision rather they only provide the resuit-driven

Software Quality Prediction Models

Chapter 2 28

connection weights. It is interesting to note that feedforward fleurai nets can be

approximated to any degree of accuracy by fuzzy expert systems [3$], hence offering a

ncw approach for ciassification based on neurai ftizzy hybrids that can be trained and

pre-popuiated with expert mies.

2.5.4 Decision Trec Models

Another kind of prediction modei is the decision trce model, aiso cailed a mie-based

model. A decision tree modei is a kind of inductive modei that expiains the relationship

betwcen predictive and predicted variabies [57].

A decision tree aigonthm is attractive because of its expiicit representation of

Data Inputs

Estimation A1%orithms

Proj ect

Mode! Output

Languages

Skiil Levels

Effort

Estirnate

K,
Actua!s

Figure 2.5 A Neurai Network Estimation Modei

Software Quality Prediction Models

Chapter 2 29

classification as a series of binary spiits (sec Figure 2.6). A decision tree algonthm

constmcts a tree, and the tree can also be translated into an equivaient set ofruies. Ibis

makes the induced knowledge structure easy to understand and validate.

An empiricai decision tree represents a segmentation of the data that is created by

appiying a series of simple mies. Each mie assigns an observation to a segment based

on the value of one input. One mie is appiied afler another, resulting in a hierarchy of

segments within segments. The hierarchy is caiied a tree, and each segment is called a

node. The original segment contains the entire data set and is called the root node ofthe

tree. A node with ail its successors forms a branch of the node that created it; the final

nodes are called leaves. for each leaf, a decision is made and app]ied to ail observations

in the leaf. The type of decision depends on the context. In predictive modeling, the

decision is simply the predicted value.

Figure 2.6 A Decision Tree Diagram

In the decision tree:

• Each nonleaf node is connected to a test that spiits its set of possible answers

into subsets con-esponding to different test results.

• Each branch carnes a particular test result’s subset to another node.

• Each node is coiruected to a set of possible answers.

Root Node

BrancheN

Set of possible answers Set of possible answets

Software Quality Prediction Models

Chapter2 30

A decision tree is a complete binary tree where each inner node represents a yes-or-no

question, each edge is labeled by one ofthe answers, and terminal nodes contain one of

the classification labels. The decision making process starts at the root of the tree.

Given an input vector x, the questions in the internai nodes are answered, and the

corresponding edges are followed. The label of x is detennined when a leaf is reached.

More specifically, decision trees classify instances by sorting them down the tree from

the root node to some leaf nodes, which provides the classification of the instance.

Each node in the tree specifies a test of some attribute of the instance, and each

branch descending from that node corresponds to one of the possible values for this

attribute.

An instance is classified by starting at the foot node of the decision tree, testing the

attribute specified by this node, then moving down the tree branch corresponding to the

value ofthe artribute. This process is then repeated at the node on this branch and so on

until leafnode is reached.

A decision tree is induced from a table of individual cases, each of which describes

identified attributes. At each node, the algorithm builds the tree by assessing the

conditional probabilities linking attributes and outcomes, and divides the subset of

cases under consideration into two further subsets so as to minimize entropy according

to the cnterion it chooses. The cnterion for evaluating a splitting mie may be based on

either a statistical significance test or on the reduction in variance or entropy. Ail

criteria allow the creation ofa sequence ofsub-trees.

Normally, the decision tree is constructed by Quinlans 1D3 algonthm. C4.5 is a

software extension of the basic 1D3 algorithm designed by Quinlan. This algonthm

belongs to the ‘divide and conquer’ family of algorithms where a decision tree

generally represents the induced knowledge. C4.5 works with a set ofexamples that has

the same structure and consists of a number of attribute/vaiue pairs. One of these

Software Quality Prediction Models

Chapter 2 31

attributes represents the ciass of the example. Most of the time the ciass attributes are

binary and take oniy the value {tme, faise}, or {success, failure}. The key step ofthe

algorithm is selecting the “best” attnbute so as to obtain compact trees with high

predictive accuracy.

An advantage of decision trec models over other modeis is that this ldnd ofmodei may

represent interpretable English mies or logic statements. For example, ‘1f inonthty

inortgage-to-income ratio is less than 25% and months posted Ïate is tess than J and

salaiy is greater than $35, 000, then issue a siÏver card.”

In generai, decision trees represent a disjunction of conjunctions of constraints on the

attribute-values of instances. Each path from the tree root to a leaf corresponds to a

conjunction of attribute tests, and the tree itself to a disjunction of these conjunctions.

Our aigorithm is designed specificaliy to combine the classic-mie based prediction

modeis for stabiiity into one final classifier. A ciassic-nile based prediction modeis is a

set ofdecision tree ciassifiers (Figure 2.7).

/ N

>16
<=16

/
stable/0

>10
<= 10

r

_

unstabie/0 stable/1

figure 2.7 A Decision Tree for Stabiiity Prediction

Software Quality Prediction Models

Chapter 2 32

The following example provides a sample rule that is derived from the above decision

tree.

LCOMB> 16
NFFM<= 10
— class 0 [63.0%]

Figure 2.8 A Rule Set Translated from figure 2.7

2.6 Summary of this Chapter

in this chapter we described the basic concepts of software quality. We also introduced

the main approaches of building software quality prediction models and some of the

existing models. in our research, we will propose a new method —a combination

algorithm by using a genetic algorithm — to build new models. We use existing decision

tree models (mie based models) as our input and we believe the obtained new models

have better prediction ability. in the next chapter we will describe the genetic aigorithm

in more detail.

Software Quality Prediction Models

Cliapter 3 Genetic Algorithm Principles

A genetic algorithm (GA) is an optimization tecimique that was introduced in the late

60’s by John Holland [36J. GAs were inspired by Darwin’s theory of evolution. They

can be used for applications such as training neural networks, setecting optimal

regression models and discriminant (pattern recognition) optimization [22].

A GA imitates the process ofcreating a new population ofindividuals. The components

ofa GA are chromosomes each of which display a certain fitness. The fitness is used to

measure how wetl the individual perforrns in its environment. The key idea of the

Darwinian theoiy of evolution is that new chromosomes are created and the fittest

remain until the end and propagate their genetic material during evolution. The new

chromosomes are created through three major operators: selection,

crossover/recombination and mutation [22].

In this chapter, we first give a brief introduction to the GA. Then we describe GA

concepts: operators and parameters. finatty we present the GA application.

3.1 Introduction of Genetic Algorithm Principles

The scope ofGAs is very broad. GAs are a part ofevolutionary computing, which is a

rapidly growing technique ofartificial intelligence [51]. Generally, the process ofa GA

can be described as follows:

Genetic Algorithrn Principles 33

Chapter 3 34

A GA starts with a set of solutions (represented by chromosomes) called the original

population. Solutions from the original population are taken and used to form a new

population. lt is hoped that the new population will be better than the old one. Solutions

selected to forrn new solutions (offspring) are chosen according to their fltness. The

more suitable they are the more chances they have to reproduce. This process of

reproduction is repeated until certain conditions, for example, the number of

generations or the best solution, are satisfied.

The following represents the outline process of a typical GA.

L IStarti Generate a random population of n chromosomes (suitable solutions for
the problem).

2. tfitnessl Evaluate the fitnessf(r) ofeach chromosome x in the population.

3. tNew populationJ Create a new population by repeating the following steps
until the new population is complete.

1. tSelectionl Select two parent chromosomes from a population
according to their fitness (the better the fitness, the better the chance of
being selected).

2. ICrossoveri Using crossover probability, cross over the parents to forni
new offspring (chiidren). 1f no crossover is performed, offspring is an
exact copy of the parents.

3. tMutationl Using mutation probability, mutate new offspring at each
locus (position in the chromosome).

4. tAcceptingi Place new offspring in a new population.

4. tReplacel Use newly generated population for a further run of the algorithm.

5. tTestl If the end condition is satisfied, stop, and retum the best solution in the
current population.

6. tLoopl Go to step 2.

This outiine of the GA process is only a general one. There are many things that can be

implemented in different ways and in various domains. In order to better understand a

GA, the following sections provide a more detail description ofthe GAprocedure.

Genetic Algorithrn Principles

Chapter 3 35

3.2 Terms of Genetic Algorïthm

Before going into the details of a GA, some terms associated with it nced to be defined

to help understand how it works.

3.2.1 Chromosome, Gene and Genome

From the view of biology, ail living organisms consist of ceils. Each ccli contains the

same set of chromosomes. Chromosomes are strings ofDNAand serve as amodel for

the whole organism. A chromosome consists of genes that are blocks of DNA. Each

gene encodes a particular protein and a trait such as the color ofeyes. Possible settings

for a trait (e.g. blue, brown) are called alleles. Each gene has its own position in the

chromosome. The position ofa gene is called its locus. The genome is the completc set

of genetic material (ail chromosomes).

GA borrowed several terms from biology. For example, the term chromosome refers

to one individual element in the search space. A chromosome is formed from genes.

Simply speaking, genes are the individual instructions that teli the organism how to

develop and keep the body healthy, while chromosomes are the structures that hold the

genes. In every ccli of an organism there are thousands of genes that are located on each

chromosome. Chromosomes occur as pairs. f igure 3.1 shows a pair of chromosomes

and a chromosome structure.

Genetic Algorithrn Principies

Chapter 3 36

cliiziii

__

1

_

«-- ZiW’MW

gene gene2 gelle3 gene4 gene5 gene
J.

figure 3.1 Chromosome Pair Nature Shape and Representation in
Our Study

In biology, each gene is responsible for a certain trait in an individual. The locus of the

gene determines what trait the gene will influence, while the allele of the gene

determines how the trait will be influenced. for example, a biological gene occupies the

locus “hair color” and the allele “rcd” then the resuit will be red hair. In nature this

phenomenon is very complex; therefore, thc focus will be on how this concept is used

in our work and will not be gone into in detail. More information can be found in

Wolfgang and Banzhaf’s book about Genetic Programming [58].

When they were first introduced, Gas deait with binary representation and

chromosomes with fixed-lengths. figure 3.2 shows that a chromosome was a binary

string.

Genetic Algorithrn Principles

Chapter 3 37

1 0111 0 001 10

Figure 3.2 The Binary Representation ofa Chromosome

Later on, variations were brought in and chromosomes took different forms such as

multiple figures instead of only the binary values [28]. Although a substantial amount

of GA research has been done with variable length chromosomes, the majority of GA

work is focused on fixed-length chromosomes [28].

3.2.2 Genotype and Phenotype

The genotype and the phenotype are terms also borrowed from biology. A particular

set of genes in a genome is called a genotype. The genotype is the basis for the

organism’s phenotype, which is their physical and mental characteristic, such as eye

color and intelligence.

The concept of a genotype and a phenotype are essential to the understanding of a

genetic algorithm. The genotype is the encoding ofthe information in genetic code, and

it is decoded (or interpreted) by several enzymes to construct an individual organism.

This individual is the phenotype; that is, it is the actual manifestation of the information

contained in the DNA in the genes. Figure 3.3 shows the Genotype and Phenotype.

Genetic Algorithrn Principles

Chapter 3 38

JØ
Genotype (code) Phenotype (individual organisrn)

Figure 3.3 Genotype and Phenotype in Nature

In this study, the GA only works on the genotype — thc encoding of the genetic code.

The algorithm itselfhas no notion of the phenotype. Later on, to test for how well they

perform in their environment, the “fitness” of each individual is measured on the

phenotype as the individual.

3.2.3 Generation and Population

The idea of generation is similar to that found in nature. The population is a set of

individuais (chromosomes). The terms chromosome and individual are

interchangeable in referring to one individual element in the GA. Ail individuais in the

original population make up the first generation. GA operations like selection,

crossover and mutation (see Section 3.3) are performed on this generation. Pairs of

chromosomes are selected to propagate new individuals. Ail the newly created

individuals together make up the second generation. Then through the next operation,

cornes the third generation, the fourth one and so on, and the population can grow in to

a new generation. Therefore, a generation can be thought of as the whole set of

individuals whose parents are from the same generation level above thern, while the

population of a certain generation refers to the total of individuals in that generation.

3.2.4 Fitness

fitness is a value we assign to a chromosome to measure how well it performs in an

environment. The fitness score is a possibility-transformed rating used by the GA to

determine the fitness of individuals for mating. The GA uses the fitness scores to

Genetic Algorithrn Principles

Chapter 3 39

determine selcction. The value of fitness usuaily is between O to 1 with 1 being

strongest and O being weakest. Therefore, better chromosomes have a stronger fitness

value. In most of the GA studies, the chance of a chromosome being selected is

proportional to its fitness value.

3.2.5 Search Space

When people are solving a probiem, they are usuaily looking for solutions that are the

best among ail the possibilities. The realm of all feasible solutions is caiied the searcli

space or also known as the state space by some researchers. Each point in the search

space represents one feasible solution. Each feasible solution can be evaluated by its

fitness value for the problem. Therefore, fmding a solution is concemed with locating

the extreme fitncss (maximum or minimum) points in the search space. However, when

soiving a problem, people are usualiy only aware of a few of the points from the whole

search space, which means there are many unknown points while other points are

generated as the process of finding a solution evolves.

The problem is that the search for a solution can be very complicated. One does not

know where to look for the solution or even where to start. There are many methods on

how to find suitable solutions, which may not necessarily be the best solutions.

3.3 The Genetic Algorithm Operators

There are three major genetic operators in a GA. By applying these operators to the

current generation, a new generation can be created. By running a GA a sequence of

evolutions from one population of chromosomes to another is generated. The three

major genetic operators, which will be explained in the following sections, are seiection,

crossover, and mutation.

3.3.1 Selection

Selection is the operator used to select the mating partners. As we have aiready seen

from the concept of a GA, chromosomes are sclected from the population to be parents

Genetic Algorithm Principles

Chapter 3 40

to create new chromosomes. How to select these chromosomes can be a problcm.

According to Darwin’s theory of evolution, the best chromosomes should survive and

create new offspring. This can be done in many ways, but the main idea is aiways to

select the better parents in hope that the better parents will produce better offspring.

Many methods have been generated to select the best chromosomes, such as roulette

wheel selection, Boitzman selection, toumament selection, rank selection, and steady

state selection [17].

• Roulette Wheel Selection

In this selection process, parents are selected according to their fitness. The better the

chromosomes are, the more chances they have to be selected. Imagine a roulette wheel

where ail chromosomes in the population are placed. The size of the space for each

chromosome is proportional to its fltness values (Sec figure 3.4)

I

fl Chromorne

Chton7nw 31
hromme1

Figure 3.4 Roulette Wheel

Then a marble is thrown on the wheel and whichever chromosome’s position it stops

on, the chromosome will be selected. Obviously the chromosomes with stronger fitness

values are more likely to be selected.

This can be simulated by thc following algorithm.

1. [SumI C’alculate the sum ofail chromosomefitness values in a population -

sitm S.

2. jSelectJ Generate a random numberfrom interi’at (‘0,5,) - r.

3. jLoopJ Go tÏtroitgÏi the population ancï sttmfitness values front O — sum S.

When the sttin s is greater tÏien r, stop and return the chromosome front

Genetic Algorithrn Principles

Chapter 3 4’

where yott are.

0f course, step 1 is performed only once for each population.

Rank Selection

The roulette wheel selection process wiII have problems when the fitness values differ a

lot. for example, if a chromosome with the best fitness value occupies 90% of the

whole roulette wheel then the other chromosomes will have very few chances to be

selected. Therefore, rank selection addresses this problem by first ranking the

population with a sequence of increasing fitness values. Then every chromosome has a

rank number from this ranking. The one with the worst fitness value will have rank

number 1; second worst rank number 2 etc. The best one will have a rank number N

(number of chromosomes in the population). Then these chromosomes go on the wheel

according to their rank numbers.

The following diagrams (figure 3.4) demonstrate how the situation changes between

fitness proportion and rank number.

Chrorr:oome

Chromsrre :
j Chron orne

Chromsorne

Situation before ranking (graph of Roulette Wheel)

DChromcsorne 1

sÇhronsorrio 2

QChromoorne

uChromome4

Situation after ranking (graph of order numbers)

Figure 3.5 Rank Selection

Genetic Algorithrn Principles

Chapter 3 42

After this change the chromosomes with lower fltness values have a greater chance

ofbeing selected. But this method can lead to siower convergence, because the best

chromosomes are not as distinguishable from the others.

Steady-State Selection

This rnethod is not specific to parent selection. The main idea ofthis selection process

is that the best part of the chromosomes should aiways survive to the next generation.

The GA then works in the following way. In every generation a few chromosomes with

strong fitness values are always selected to create new offspring. Then some of the

chromosomes with the lowest fitness values are removed and the new offspring takes

their place. The rest of the population survives to the new generation.

3.3.2 Crossover

Crossover, or in some cases it is know as recombination, is the most important genetic

operator. Analogous to the biological process, this operator captures the process when

two chromosomes bump into each other, exchange some of their genes, give birth to

two new offspring and then drift apart. Each of the new offspring inherits traits (pieces

of information) from both its parents. In nature, we can see this in a human baby when it

takes the skin color of the father and the eye color of the mother. Fitter individuals in a

particular generation have a higher probability ofundergoing crossover and producing

progeny. h is this operator that causes evolution since the idea behind it is to combine

in one individual ail of the “good” traits, in order for these traits to disperse in the whole

population, hence create “better” individuals. In a GA, the same process is simulated;

however, the exchange of genes can happen in many different ways. The method used

for this study will be described in Chapter 5. Like in nature, crossover does flot aiways

occur for ail selected couples. The probability for crossover to occur within a selected

couple is usually between 80% and 90%. In many cases, a probability between 50% and

60% is found to be the best [22]. 1f crossover does not occur GA for a couple, the

offspring are exact copies oftheir parents.

Genetic Algorithm Principles

Chapter 3 43

Afier deciding which encoding to use, the operation of crossover can be canied out. In

classical GAs, the representation of a chromosome is a bit-string. The cutting point,

which decides which genes are to be exchanged, is randomly chosen and the

chromosome length is fixed. The simplest method of doing this is to copy everything

before this point from one parent and everything after this point from the other parent.

For example: In the foilowing figure, we consider two chromosomes that have a iength

of 15 each. The first chromosome has genes with values of ail 1 ‘s and the second one

lias genes with valties of ail O’s. Crossover is done after the fourth gene in each

chromosome.

Figure 3.6 shows how this method works. (The crossover cutting point is marked with
more space):

figure 3.6 Crossover (cutting point 5, fixed length)

This is the simplest way to perform crossover. However, crossover can be done on more

than one cutting point and the length of the chromosome can vary. Crossover can be

complicated and very dependent on the encoding of the chromosome.

Chromosome I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o o o o o o o Chromosome2

Otnpring I
o o o o o 1 1 1 1 1 1 I 1 1 1

t. Offring2
1 I 1 1 1 0 0 0 0 0 0 0 0 0 0

Genetic Algorithm Principles

Chapter 3 44

3.3.3 Mutation

Mutation is another major genetic operator. For this operator, a randomly chosen gene

within a chromosome, for certain reasons may be changed to a random value from the

domain of values for the genes. For example, in the bit-string representation, only two

values (0,1) are possible. 1f the value ofa gene is changed during the crossover, we say

mutation occurs. In nature, duplicating DNA can sometimes resuit in errors while the

genetic infonnation is copied from the parents to the ncxt generation. DNA is also

prone to damage in day-to-day existence [27]. In GA, the idea behind simulating

mutation is to stop the algorithm from being stuck at local optima.

A proper probability for mutation in GA needs to be carefully set. If the probabiiity of

mutation is very high, the algonthm will tum into a random search, which is inefficient

to find good chromosomes. Typically, the probability for a gene to be mutated ranges

between 0.1% and 10% [22].

Mutation might take place after crossover is performed. This is to prevent ail solutions

in the population from falling into a local optimum of solved problems by bringing in

some new genes. Mutation randomly changes the new offspring. The following (Figure

3.6) shows an example of mutation on a chromosome. For binaiy encoding a few

randomly chosen bits can be switched from 1 to O or from O to 1. Mutation can occur as

follows (mutation occurs in the fourth and the last gene):

Onginal

1 1 1 I 1 1 1 1 1 1 t t 1 I chromosome

Mutated

1 1 1 0 1 1 1 1 I 1 I 1 1 I 0 chromosome

Figure 3.7 Mutation

Mutation depends on the encoding as well as the crossover. For example, when we are

encoding permutations, mutation can be exchanging two genes.

Genetic Algorithrn Principles

Chapter 3 45

3.3.4 flitism

Creating a new population only through crossover and mutation can resuit in the loss of

the best chromosomes from the present population. Therefore, a method called Elitism

is often used. This means, that at least one of the bcst solutions is always copied,

without changes, to the new population, in order to ensure that the best solution

survives to end of the mn. This is donc by copying the best chromosome (or a few of

the best chromosomes) to the new population. The rest undergoes to the normal

crossover and mutation operations. Elitism can very rapidly increase the performance

of the GA, because it prevents the loss of the best-found solution.

3.4 Parameters

There are several important parameters in GAs. The three basic parameters ofa GA are

population size, crossover probability and mutation probability. The following

provides a brief introduction to them.

3.4.1 Population Size

Population size is an important parameter in GA. We especially care about the

population number of one generation. It determines the maximum number of

chromosomes in a generation uscd to create new offspring. If there are too few

chromosomes, GA has few possibilities to perform crossover and only a small part of

the search space is explored. On the other hand, if there are too many chromosomes, the

GA process is slowed down. Research shows that after a certain limit (which depends

mainly on encoding and the problem) it is not useful to increase the population size,

because it does not make solving the problem more efficient [221.

3.4.2 Crossover Probability

This parameter decides how often crossover will be performed. If there is no crossover,

the offspring will be an exact copy of the parents. If there is crossover, the offspring is

recornbined from parts of each ofthe parents’ chromosomes. That is to say, if crossover

Genetic Algorithrn Principles

Chapter 3 46

probability is 100%, then ail offspring is made by crossover. If it is 0%, the whole new

generation is made from exact copjes ofthe chromosomes from the old population (but

this does flot mean that the new generation is the same). Crossover is performed in the

hope that the new chromosomes will carry the beneficiai parts ofthe old chromosomes

and perhaps even the new chromosomes will be better. However it is a good idea to

maintain some part ofthe old population in the next generation as proposed by Eiitism.

3.4.3 Mutation Probability

Mutation probability refers to how often the parts of a chromosome will be mutated. If

there is no mutation, the offspring is determined after crossover without any change. If

mutation is perfonned, parts ofthe chromosome are changed in the next generation. If

the mutation probability is 100%, the whole chromosome could be changed; if it is 0%,

nothing is changed. Mutation is peiformed in order to prevent the GA from falting into

a local extreme, but it should not occur very often, because then the GA will in fact tum

in to a random recombination.

3.5 Three Stages of a Genetic Algorithm Application

When the GA is apptied to solve a problem, nornally, there are three distinct stages

[421:

1) Problem Representation.

This deals with how the potential individual solutions of the problem domain can be

encoded into a representation that supports the necessary variation and GA operations.

These representations are often as simple as bit strings (figure 3.2). A good

representation can make the problem easy to understand and deal with.

2) Genetic Algorithm Operation.

In the second stage, analogous to the sexual activity of biological life forms, a GA

applies mating and mutation algorithms so as to produce a new generation of

Genetic Algorithrn Principles

Chapter 3 47

individuals. The new generation recombines features of their parents. Three GA

operators, selection, crossover and mutation, are uscd to produce the new generations.

3) Fitness function.

A fitness function judges which individuals are the “best” life forms, that is, most

appropriate for the eventual solution of the problem. These individuals have more

chances of survivai (reproduction) and shaping the next generation of potential

solutions. In our algorithm, we purposely aiways copy the individual with the highest

fitness in this generation to the next generation; therefore the best individual will flot be

lost. Eventualiy, ail individuals of a generation wiii be referred back to the original

proNem domain as a solution for the problem, and the fitness value is assigned to each

of them.

3.6 Summary ofthis Chapter

A GA was inspired by Darwin’s theory of evolution. The process of evolution starts

with a set of chromosomes. There are three major genetic operators: selection,

crossover and mutation. The fitness function evaluates the suitability of each

chromosome. The more suitable a chromosome is the more chance it has to survive and

reproduce. Elitism can be used to avoid losing the best suitable chromosome during

evolution. Three parameters of a GA, which are population size, crossover probabitity

and mutation probability, affect the efficiency ofthe evolution.

Genetic Algorithm Principles

Chapter 4 Combination Algorithm

In general, the software quality prediction models are obtained from historical

measurement data or domain specific heuristics of experts. Unfortunately, not ail the

software organizations keep their historical data, which makes it difficuit to build

efficient prediction models.

As mentioned before, many prediction models have been proposed in the last few

decades. These models can only accurately predict some aspects of software quality, or

they can only satisfactoriiy work for the specific circumstances from which they were

built. Meanwhile, the development of GAs offers a new approach to build prediction

models. In this chapter, we propose to build software stability prediction models by

combining existing prediction models from various contexts using a GA. Our goal is to

vcrify if this approach can produce a generaiiy applicable model for software quality

prediction.

first, we will describe our research methodology. Then we will introduce the data

environment and the model encoding of our algonthm. Afler that we will present and

illustrate how the GA works in our domain.

4.1 Researcli Methodology

This research, generally speaking, uses existing mle-based prediction models (refer to

Section 2.6.4 in Chapter 2) as input for recombination by applying a GA. The basic

Combination Algorithrn 48

Chapter 4 49

idea of our research is to start from a set of initial solutions (set of models) to denve

new and possibly better solutions.

The following represents a brief introduction to our research:

The derivation starts with an initial solution set F (called the initial population). Then

a sequence of populations J ... P is generated. Each generation is obtained by

“recombining and mutating” the previous one whule keeping its elitism. Each model of

the solution sets is caiied a chromosome. The fitness of each chromosome is measured

by an objective fitness function. Each chromosome (prediction model) consists ofa set

of genes (prediction mies). At each generation, the algorithm selects certain pairs of

chromosomes using a selection method that gives priority to the fittest chromosomes.

To each selected pair, the algorithm applies two operators, crossover and mutation, with

probability p, and p,,, respectively. Here means the crossover probability and p,,,

the mutation probability. Both of them are input parameters of the algorithm. The

crossover operator mixes the genes of the selected chromosome pair, while the

mutation operator randomly changes certain genes. Each selected pair of chromosomes

produces a new pair of chromosomes that constitute the next generation. The fittest

chromosomes of each generation arc automatically added to the next generation to keep

the elitism. The algonthm is completed whcn a convergence criterion is satisfied or

when a fixed number of generations are reached. At the end, we analyze the best mode!

generated from the evolution and compare it with the initial ones. 1f it is better, then we

can conclude this approach is applicable.

4.2 Data E nvironment

In this study, the classic mle-based prediction models are presented as the

chromosomes. The mies in each mode! are the genes. We use a metrics database file as

the training and testing environment in which the metrics value and the reai classifier

value are given.

Combination Algorithm

Chapter 4 50

The term “mode!”, “prediction model” or “chromosome” mentioned below indicate the

classic nile-based prediction mode! only. An example ofthe prediction mode! structure

is shown be!ow (figure 4.1). Class 1 indicates the software is stab!e whilc c!ass O

indicates instability.

Mode! Model 1:
RuIe3:

coh < 0.033735
COM <= 0.15789
OCMAIC >2
OCMAIC <=4
CUBf>4
CUBF <=7
—4 class 0 [73.3%]

Rule 1:
OCMAIC <=2
— class 1 [97.1%]

Rule 6:
coli> 0.033735
OCMAIC <= 10
—3 class 1 [93.5%]

Rule 13:
coh> 0.033735
COMI <= 0.16667
— class 1 [93.0%]

Default class: 1

figure 4.1 A C!assic Rule-based Prediction Mode! for Stability

This model contains five rules. In the first !ine, “Model Mode! 1” indicates the

beginning ofa mode!, and the mode!’s name is “Mode! 1”.

The five mies of this model contain four basic mies and one defauit mie. Each basic

m!e bas a m!e name, a set of conditions, a conclusion and a possibility. The last one is

the defau!t m!e. figure 4.2 gives an example of”Rule 13” of”Model 1”.

Combination Algorithrn

Chapter 4 51

Rule 13:
coh <= 0.03373 5
COMI<= 0.16667
—* class 1 [93.0%]

figure 4.2 An Example of a Basic Rule (Gene) in Model 1

The first une ofthe mie is the ID ofthe mie, or the mie namc. Figure 4.2’s mie name is

“Rule 13”. Foliowing the name are the two condition sets:

coh <= 0.033735 and

COMI<= 0.16667

1f the two conditions are satisfied then the conclusion is reaiized. The conclusion is

followed by the arrow sign (—*). For this example it is “class 1” which indicates

stability. The 93.0% indicate the tmth value. That is, if the condition is tme there is a

93.0% probability that the conclusion is tme. Therefore, “Rule 13” of the modei

“Modei 1” can be expiained as:

Ifthe value ofcoh is greater than 0.033735 and the value ofCOMI is less or eqitat to

0.16667, then this software lias ci 93%probability ofbeing stable (class])

The other three basic mies in model “Modei 1” are “Ruie 3”, “Ruie 1” and “Ruie 6” and

can be understood simiiar to “Rule 13.”

In a model, each basic mie makes a prediction according to the threshoid value of some

specific metric. If none of the basic mies is applicable, then the default mie is appiied.

The defauit mie is the iast one in a model. It simpiy assigns a value to the predicted

variable. For example in “Model 1” in Figure 4.1, the iast une is “Default class: 1”,

which is the default mie. It can be explained as:

Ifnone ofritie], ritie 3, rttle 6 or ride 7 is satisfied, then itpredicts the software to be

stable (ctass 1).

Combination Algorithrn

Chapter 4 52

The default mie is a special one. It only contains a conclusion and its condition is that

no other mies in this model are applicable. It has no possibility value or mie name.

Our study focuses on the classic nile-based prediction models. In general, the classic

mie based prediction modei’s stmcture is as follows.

<Rule Set> ::= Rule Set <RuleSetNarne><RuleList>$

<RuleSetName> : := RS<GenerationNumber><SeriesNumber>

<GenerationNumber> ::= [00 to 99]

<SeriesNumber> [00 to 99]

<RuleList>::= <Ru1e><RuleList>;<Rule>

<Rule> ::= <RuleName><CondistionList> -> <Conclusion>

<Rule> <Default Rule>

<ConditionList> : := <Condition> <Condition><ConditionList>

<Condition> : <MetricsNarne><CornparationOpcrator><Value>

<MetricsNarnc>::=[coh LCOMB COM I COMI OCMAIC I CUBF CUB I OMAEC I NOC

J NOP NON I NOCONTI DIT MDS CHM NOM I WMC MCC DEPCC]

<CornparationOpersator>::= [=1 <I <=1 > >=]

<Value>::= [intfloat]

<Conclusion> class <ClassificationNumber>

<ClassificationNumber> [011]

<Default Rule> ::=[Default class: llDefault class 0]

Figure 4.3 The Rule Based Prediction Model Stmcture

After understanding the chromosome stmcture and the data environment in our

research, the next step is how to encode the modeis, which wiil be introduced in the

foliowing section.

Combination Algorithrn

Chapter 4 53

4.3 Model Encoding

Our encoding is to define a representation of the classic rule-based models as the

chromosome that cari be used by a GA. This process includes defining the

representation of the model for crossover operation and the representation ofa rule fora

mutation operation.

4.3.1 Representation of Models

There are different kinds of encoding techniques that have already been used with sorne

success. such as binary encoding, permutation encoding, value encoding and tree

encoding. The choice of an encoding technique depends heavily on the problem.

Our problem can’t be easily encoded as bit level representations, since the mie set

representation in a model is flot binary. As mentioned before, in our GA, a

chromosome is a model, which consists of a set of mies. Each mie represents a gene. So

we use a value encoding method to represent the model. That means each mie was

thought of as a value. What follows is a detailed process of shifting from a mle-based

prediction model to a chromosome.

First let’s review a chromosome’s structural representation. In general, a chromosome

structure is as follows:

Genel Gene2 Gene3 GeneN

Figure 4.4 A Chromosome Internai Structure in Biology

It cari be seen that in the chromosome the genes are arranged in a une with a sequence.

The model’s representation simulates the chromosome’s structure in biology.

According to the above chromosome structure, the example mode! “Model 1” in figure

4.1 can be represented as follows:

Combination Aigorithrn

Chapter 4 54

Ruie3 Rulel Rule6 Ruiel3 Defauh [1]

Figure 4.5 The Representation of “Model 1” as a Chromosome

In this chromosome (model), there are five genes (mies). The first four genes (mies) are

basic mies with the same structure. The iast gene, in the darker color, is the speciai gene

(default mie) with a different structure from the basic mies. Please notice that the

sequence of the mies in chromosome is based on their appearance in the modeis created

by C4.5 aigorithm. Therefore they may not be sequentiai.

As previousiy stated, in this GA a chromosome is a model. Each model is a mie set.

Each mie is a gene as iiiustrated in Figure 4.6.

Model

Chromosome

Rule Gene

Rulel Rule2 Rule3 RuleN DEFAULT

Figure 4.6 Representations ofa Chromosome and its Genes by a Model

Now we have the chromosome representation of the modeis. We can appiy the

crossover operator to it, but cannot appiy the mutation operator because this

representation is missing some details of the mie set. To do this, we need to represent

the mie set in the chromosome. Because there are two different type ofniles in a modei,

the representation of them wiii be different too.

4.3.2 Representation of Basic Rule and Default Rule

As iiiustrated in figure 4.6, genes (mie) named “Ruie 1”, “Ruie 2”, “Rule 3”,... and

“Ruie N” etc, which are in the iighter coior, are basic mies with a basic mie structure

(see Figure 4.7).

Combination Algorithm

Chapter 4 55

Rule 13

coh <= 0.033735

COMI < 0.16667

—> class 1 [93.0%J

Figure 4.7 Example of the Internai Structure of a Gene (for basic rule)

In general, a basic mie consists of one or more conditions and a conclusion. It can be

represented as follows (Figure 4.8)

4
Condition Set (Coicliisioiusion

figure 4.8 A Basic Rule Stnicture

furthermore, a condition typically compares the numerical value of the structural

rnetrics to a threshold value. So the condition can be represented as following Figure

4.9. Therefore the mutation operation can be performed by changing the threshold

value (add/minus a reasonable value which can be called as step value).

<

Metric — Value

>=

figure 4.9 Structure of a Condition

Within a gene, if ail conditions are tnie, a value is assigned to the quality characteristic.

In our context, the conclusion is either one of the following:

Class 1: indicate software is stable.

Ctass O: indicate software is unstable.

Combination Algorithm

Chapter 4 56

The last gene in figure 4.6, in the darker color, is the special one, named DEFAULT,

which we cal! the “default mie “. In our algorithm, the default rn!e only takes the

following two values.

DEFAULJ represents the default mie. “Default class: 1”.

DEFA ULI represents the default rule “Default class: O”.

Meanwhile DEFAULTI/O) indicates DEFAULT or DEFAUL1.

The defauit mie has only one of the following conclusion values but without
conditions:

Default class: O or Defatttt ctass: I

The representation of the chromosome is very important for the definition of the GA

operators. The mutation operation wil! depend on the range of the threshold value and

conclusion value of each gene. The cutting point which selects for crossover will

depend on the length of ail the chromosomes. Because ofthe various numbers ofrules

in each model, the chromosomes in our aigorithm wili have different lengths, which

affect the crossover operator.

4.4 Initia! Generation

In order to apply the GA, the initial generation should be obtained first. The initial

generation of our algonthm consisted of a set of classic rule-based models. Such

models cari be collected from the published paper or created by some other algorithms

such as C4.5. In Appendix Awe give out ail the models ofthe initia! generation used in

our experiment.

Our algorithm starts with the initial generation applying GA operators to obtain the new

generation. Then we treat the new generation as the current generation to create the next

generation and then the Ïatest generation is the cunent one. This process is looped in

Combination Algorithrn

Chapter 4 57

that it keeps creating new generations until the terminal condition is matched.

4.5 Combination Algorithm Operators

As introduced in chapter 3, the GA runs by performing selection, crossover and

mutation to produce offspring. Crossover and mutation are primarily the most

important parts of the GA. These two operators have the main influence on the

performance. In the following section we introduce how the GA opcrators are defined

in our study.

4.5.1 Selection

Although there are several selection methods (see Chapter 3, Section 3.3.1) available,

for this domain, we choose the roulette wheel method. We use an array

RouletteWheel[0:9999] to simulate the roulette wheel depending on each model’s

fitness (sec section 4.6 for the definition of fitness). A percentage value is assigned to

each model according to its fitness based on the following formula:

= fitness

fitness1

Where fitness1 indicates Modelé ‘s fitness value and F indicates the Mode1 ‘s

percentage. Figure 4.10 illustrates the roulette wheel used in our algorithm. Each model

occupies a certain room in the whcel according to its fitness value.

Combination Algorithrn

Chapter 4 58

The percentage value of each model determines the portion of the wheei it covers. for

example, if ModeÏ1 ‘s percentage is 2.3%, we will assign 2.3%X]0000 230 to be the

name Model1. Then RouietteWheel[lJ to RouletteWheel[230J = “Model1 “. Then we

take the second ModeI2, assuming its percentage is 3%. Since 3%X1000 =300, then the

array elements from 23] to 230+300=530 are assigned to it and given the value

“Model2”. This process goes on until ail models are assigned. Obviously the higher

fitness values of a model has the higher percentages, and the iarger portion it occupies

on the Roulette Wheel. Therefore when seiection is performcd, these models have a

greater opportunity to be chosen.

After the assignment ofpercentages, ail modeis’ names are spread over the 10000 array

elements. we use a random function to get a value betwecn O to 9999 to simulate a

roulette wheel. The selected number will indicate which model is selected. For example,

if the random function selects number 345, we take out the anay value

RouletteWheei[345]. It is “Modei2”, then we take Model2.

G Modeil

ModeI2

E ModeI3

E ModeI4

•ModeI5

EModeI6

ModeI7

QModeI8

•ModeI9

figure 4.10 Roulette Wheel for Seiection

Combination Algorithrn

Chapter 4 59

For each selection process, we ran the random function twice in order to get a pair of

chromosomes from the current generation. One of the selected chromosomes is called

the father and the other one the mother as the following function shows. The input

parameter is the cunent generation and the outputs are a pair of chromosomes selected

to crossover.

Selection t eneration ,) = (Clzromosome/(,t,jer , Chromosorne,,otjer)

The number of selected pairs is haif of the generation population size. For example, if

the population of this generation size is 50, then we select 25 pairs; if the population

size is M, we select 26 since 25.5 is rounded up to 26. Because each selected parent pair

creates two chiidren, then the next generation size will gradually increase.

4.5.2 Crossover

Before crossover can be conducted, its starting position -- the cutting point - must be

decided first. During our study, the cutting point is an input parameter. The cutting point

can be one or two. The cutting point will be applied to one entire generational loop

without changing its value. The input cutting point parameter is set by the following

classes:

• The class sets one cutting point: SetCutFoint(n).

• The class sets two cutting points: SetCutFoint(rn, n).

The cutting point needs to be set for each GA application. However if a chromosome

has few genes, we should ensure the cutting point is not over the length of the

chromosome. In this case, the algorithm will change the cutting point to the possible

value.

Combination Algorithrn

Chapter4 60

After the cutting point is set, crossover is very simple: each pair of chromosomes

switches genes before the cutting point, and keeps the same genes after the cutting point.

Then two new chromosomes are created and they are the recombination of their parents.

The following describes in detail these two crossover methods.

• One Cutting Point Crossover

Using one cutting point to perform the crossover of two chromosomes is the simplest

way to produce offspring. Although any position can be the cutting point, it’s better to

select a cutting point that is within ail the chromosomes. Some of our input models have

three genes only, that is to say they have the iength of three. Therefore we should flot

take the cutting point greater than three.

Another special issue that should be considered is the last gene. The Iast gene is the

defauit mie. This kind of gene should not appear twice in one chromosome but each

chromosome must have oniy one default mie. To avoid missing or having multiple

default mies during the crossover, the cutting point must be put before the last gene (the

default mle). The technique we used to soive this probiem is to calculate the length ofa

modei by calculating the number of basic mies. Then we make sure the cutting point is

not afier the default mle.

Combination Algorithrn

Chapter 4 61

Figure 4.10 illustrates the one cutting point crossover process. Suppose we select

“Model 4” and “Model 13” as the parents and the cutting point is set as two. First, two

genes from Mode! 4 are copied, then the three genes afler the cutting point of Mode! 13

are added to make a new model, named Model 41. The same process is applied to get

anothernew model “Mode! 13_1”.

Model 4
Rule 04 12 RuleO4 23 Rule 04 19 Rule 0422 Rule04_13 Default[11

4

MoUd 13
RuIc_13_02 Rob_I 3_01 Robe_13_04 RuIel 303 Defaubl[1]

4

Robe_0412 Rube 04 23 Robe_I 3_04 Robe_13_03 DelbiuiI[1] MoUd 4

MoUd 13 I
Rule_l3_02 Role_l3_01 RuIe_04_19 Rob_04_22 Robe_04_13 Defauh[I1

Figure 4.11 Crossover of Model 4 and Model 13 with One Cutting Point

The two rea! mode!s before doing crossover and after doing crossover are shown in

Figure 4.12 and Figure 4.13 on the next two pages.

Combination Algorithrn

Chapter 4 62

Mode 1 II

Rule 2:

NPPM < 17

—> class 1 [99.6%]

e
Rule 1:

NPA <= 8

—> class 1 [99.6%]

Rule 4:

DIT > 1

—> class 1 [99.3%]

Rule 3:

NON <= O

DIT <= 1

NPA > 8

NPPM > 17

—> class 0 [50.0%]

Default class: I

Figure 4.12 Two Original Models (“Model 4” and “Mode! 13”)

In the black box is the modcl’s name (Chromosome name). in the shaded box is the

rule’s name (gene name) and each box indicates a gene ta rule).

Model II

Rul e 12:

CON < O

NOM > 5

NOM < 6

NpPM > 4

DEPCC > O

-> class 0 [82.0%]

Rule 23:

NPPM > 16

DEPCC > 2

-> clasa O [79. 6%]

Rul e 19:

WMC <= 22

MCC > 17

DEPCC >

class O->

2

[63.3%]

Rule 22:

DEPCC < 2

—> class 1 [86.9%]

Rule 13:

MCC < 17

—> class 1 [86.3%]

1
—

Dcfault class:

Combination Algorithrn

Chapter 4 63

Rule 2:

NPPM <= 17

—> class 1 [99.6%]

Rule 1:

NPA <r 8

—> class 1 [99.6%]

Rule 19:

WMC <= 22

MCC > 17

DEPCC > 2

—> class 0 [63.3%]

Rule 22:

DEPCC <= 2

—> class 1 [86.9%]

Figure 4.13 Two New Models after Crossover (“Model 4new”, “Model 13_new”)

Model IModel 13_new Model IModel 4_newl

Rule 12:

COM <r O

NOM > 5

NOM <r 6

NPPM > 4

DEPCC > O

—> class 0 [82.0%]

Rule 23:

NPPM > 16

DEPCC > 2

—> claos 0 [79.6%]

Rule 4:

DIT > 1

—> class 1 (99.3%]

Rule 13:

MCC <= 17

—> class 1 [86.3%]

Default ctass: 1

Rule 3:

NON < O

DIT <r 1

NPA > 8

NPPM > 17

—> class 0 [50.0%]

Default cïass: 1

Combination Algorithrn

Chapter 4 64

Two Cutting Point Crossover

There can be more than one cutting point for the crossover process. By having more

than one cutting point a highiy efficient mixing process is created. In our

impiementation, the GA can perform crossover at two cutting points.

The process of two cutting point crossover is similar to the one cutting point process.

Suppose the first cutting point is], and the second cutting point is f , the process will

switch the genes located in between the two cutting points (the middle part) and keep

the head and tau parts. That is to say, ail the genes before 1 or after P in one parent

are copied to the new chromosome, and the middie ofthe new chromosome copies the

genes between P and P., from the other parent. Figure 4.14 illustrates this process.

Figure 4.14 Two Cuttings Point Crossover

• Crossover possibility

We set the crossover possibility (Ratecro.,.,o,,er) as another input parameter of operator

crossover. Before running the GA, this possibiiity should also be set. Simulating nature,

the possibility for crossover to occur within a seiected couple is usuaiiy between 20%

Parent!

ttInbPoint_

000 000 0000 0

44

Parcnt2

J Cutting Point

I t O O 0 1 1 1 1 1 1 t t Cht!d!

000 11! 00000 ICht!d2

Combination Algorithrn

Chapter 4 65

and 90%. Afler the couple of chromosomes are selected, our aigonthm will decide

whether to perform the crossover or not. The implementation of this Crossover

Probability Checking Procedure is in Figure 4.15. This checking procedure

guarantees that the higher the crossover possibility the higher the chance to perform

crossover. IfRate0501,, 1, then ail the selected couples will perform crossover; if

Ratecrussover O, crossover wili neyer happen.

1. Produce a random value (Rr,.usçtner) by random function. This value shouid b

between O and 1.

2. Make a comparison between Rcrosyuer and the Crossover possibilit

3. If Ratecrosço,er then {perform crossover operation}.

4. 1f Rcrossorer > Ratecrosçui.er then {no crossover happens, the offspring are exac

copies of their parents. }

Figure 4.15 Crossover Probability Checking Procedure

4.5.3 Mutation

Mutation is another important operator in a GA. After the crossover operation, a

mutation can occur to the genes depending on the Mutation Frobability. As we have

introduced in Chapter 3, this operator randomly chooses genes from a chromosome and

gets its value perturbed to a random one from the domain of possible values. The idea

of mutation in this GAis to stop the algorithm from getting stuck at a local optima. The

Mutation Probability should flot be set very high otherwise the algorithm will become a

random search. Typically, the Mutation FrobabiÏity is set between the range of 0.1%

and 10%.

Combination Algorithin

Chaptcr 4 66

The Mittation FrobabiÏity in our implementation will be treated as another input

parameter. In our GAwe set the Mutation FmbabiÏity as 5% or 10%. That is to say, after

crossover is performed, for every five (or 10) ont of 100 pairs of chromosomes

mutation is possible.

After a crossover is done, the algorithm needs to decide whether the mutation should

occur or not to the two newbom chromosomes according to the Mutation Frobability.

The checking procedure is very similar to the crossover probability checking procedure

in Figure 4.15 in that the Ratecrosso.er is simply replaced by the Mutation Frobability.

1f mutation is decided upon, first, our algorithm needs to randomly choose one mie

from the newbom chromosome, then randomly choose one condition from this mie.

The mutation applies only to this condition. Becausc mutation will change the gene to a

random value from the value domain of the genes, we have to define the domain to

implement this. Due the fact that our algorithm focus on the classic mle based

prediction models only, the mutated genes should be reasonabie in such a model after

the mutation.

From Section 4.3, we have seen that in our domain there are two kinds ofgenes. One is

a basic mie gene, and the other is a default mie gene. Therefore, there are different

operations according to the different mie types or genes. The following is a detailcd

description for the mutation operator implementation:

• Mutation on Basic Rule Gene

This kind of gene consists of conditions and conclusions as showing in Figure 4.9. The

mutation operation only performs on a condition set in our algonthm to simplify the

implementation. Suppose wc mutate the following mie as an example.

Combination Algorithrn

Chaptet 4 67

Rule 19 t Gene Naine

WMC < 22 Condition set
MCC > 17
DEPCC > 2

—> class 0 [63.3%] Conclusion

Figure 4.16 An Example ofRule with Structure Iliustrated

For this kind of gene, the mutation is perfonned on the condition set. furthermore, the

change on the condition is only to increase or decrease the metric threshold value. The

reason we choose this kind of mutation is because previous study show that in general

the trends of this type of prediction modeis are usuaily good, but the threshold values

can poses some problems [54J. Therefore only modifying the threshoid values during

mutation can preserve the validity of a mie (keeping the form of the condition). For

example, when mutation is done on the above mie -“Rule 19”, and suppose the first

condition (WMC <= 22) is chosen, then mutation can be doue to change the value 22 to

another value, such as 21 (22 decreased by 1). After this mutation, the gene “Rule 19”

will become the following (Figure 4.17). The changed condition is shaded:

Rule 19 t Gene Naine

WNC <= 21 first C’ondition
MCC > 17 Mutated
DEPCC > 2

—> class 0 [63 .3%] Conclusion

Figure 4.17 A Condition Mutated in Figure 4.16

In our algorithm, a database is needed to define the given domain of the metrics. It can

be a table as well. Table 4.1 is an example of this kind of database, which is constmcted

from the domain of stability prediction rnetrics values. This table contains the Name,

Value Type, Value Range, average value, and Mutation Steps of the metrics. When

mutation is performed, it takes out a condition according to the Mutation Probability,

checks the metnc name in this condition, thcn randomly takes a step value

corresponding to the metric name. The new threshold value is obtained by using this

step value added to (or subtracted from) its original threshold value. finally it uses the

Combination Algorithrn

Chapter 4 68

new value, substituting the original value, to get a mutated condition. After putting this

rnutated condition back to the rule, the mutated gene (a new mie) is produced. This

table can be modified to satisfy different domain applications accordingly.

Table 4.1 The Metrics Database and Values

NAME TYPE RANGE AVERAGE STEP
1 CHM 3—400 180 1,5,10
2 coh R 0—l 0.5 0.05,0.05,0.1
3COM R 0—20 6 1,1,1
4 COMI R 0—2(20 1,1,2
5 CUB 0—100 41 1,2,3
6 CUBF J 1—100 60 1,2,3
7 DEPCC R 0—490 280 1,5,10
8 DIT 1—2(5 1,1,1
9 LCOMB P 0—3000 130(1,10,20
10 MCC R 0—49t 280 1,5,10
11MDS I 0—400 170 1,5,10
12 NJPA I 0—100 40 1,2,3
13 1OC 1—50 18 1,2,4
14 N.TOCONT 1 1—3 1 1,1,1
15 \IOM 1 1—lOOt 17f 1,5,10
16 NON 1—2t 5 1,1,1
17 NOP 1 1—50 17 1,1,2
18 \TPPM 0—100 40 1,2,3
19 OCMAIC 0—40 40 1,2,3
20 OMAEC J l—150 6f 1,2,3
21 WMC R 0—1 745 $5f 1,10,20
22 WMCLOC R 0—5675 260(1,10,20

• Mutation on Default Rules

If the selected mie (gene) for mutation is a defrittit ride, the mutation operator just

changes the ciass value to the opposite value (1 to O or O to 1). For example, to mutate

gene “Dcfault class: 0”, the mutated gene wiii be “Default class: 1”.

In general the process of mutation happens as in the foilowing:

1. Obtain two new chromosomes by crossover.

2. Use the Mutation Checking Procedure to decide if mutation will occur.

3. 1f mutation is decided on, first randornly choosc one model (chromosome) from

the two.

4. Then randomly choose a mie (gene) from the selected model.

5. Check the mie type.

Combination Algorithrn

Chapter 4 69

6. If it is a defauit mie, change it’s ciass value to the opposite (1 to O or O to 1) and

then finish.

7. If it is a basic mie, first decide either to increase or decrease metric threshoid

value by random

8. Then randomly choose a Step Vaitte from the metrics domain database

according to the metrics type, add (or subtract) this figure to (from) the

threshold value in the condition, then finish.

4.6 Fitness Funetion

for each chromosome, it is necessary to measure how well it is suited to its

environment. This measurement is its fitness value. We use the fitness function to

obtain each chromosome’s fitness value, which is also dependent on the environment

(training data).

In our algorithm, the correctness ftmction is used as the fitness decision function. The

generai formula of the correctness function is as follows:

C(f)

,=1 =1 11i1

Here f represents a chromosome and C(f) is its correctness value (the fitness value).

The “k” represents the total number of possible predicted values. The “ii1,” is the

number of training vectors with real class e. and the predicted class as e (Table 4.2).

Table 4.2 The Confusion Matrix of a Decision Function

Predicteil Class

C1 C, Ck

C1 n11 n12 11k

C7 fl7 ‘17v

Real - - -- ... -

Class •..

Ck LI ‘7k2 t2kk

Combination Algorithrn

Chapter 4 70

In the domain of our study, the range of output class is O and 1. The above table and the

fitness function are specified as follows (Table 4.3):

Table 4.3 Confusion Matnx and Fitness Function for this Study

Predicted Classifier

o I
Real O n n1,

Classifier H -

1121 22

C(f) = 1111 1722

+ -f fl12 + 1722

In the Table 4.3:

n1 I indicates the number of classes where the real classifier is O and the predicted

classifier is O.

22 indicates the number of classes where the real classifier is 1 and the predicted

classifier is 1.

iii, indicates the number of classes where the real classifier is O and the predicted

classifieris 1.

1121 indicates the number of classes where the real classifier is 1 and the predicted

classifier is O.

n11 + 17,2 refers to the total number of correct predictions.

I2
+ n,1 refers to the total number of incorrect predictions.

In general, the fitness value is obtained by the total number of correct predictions

divided by the total number of predictions. The highest value is 1 (meaning ail

predictions are correct) and the iowest is O (meaning no predictions are correct).

In our implementation, a group of source data was chosen as the environment to test the

fitness of the created generation. The data set lias the structure like the following

example (Table 4.4)

Combination Algorithrn

Chapter4 71

Table 4.4 Data Enviroment

Class
Metrica C70 C71 C72 C73

1 coli 0.4 0 0.6 0
2 LCOMB O O O O
3 COM O O . 66667 0.4 0
4 COMI 1 0.2 0

5 OCMAIC 4 2 5 1

6 CUBF 22 2 14 0
7 CUB 22 2 14 1

8 OMAEC 1 3 1 0
9 NOC O O O O
10 NOP 1 1 1 2

11 NON 4 0 00
12 NOCONT 0 1 1 0
13 DIT 2 4 3 1

14 MDS 7 55 14 0
15 CHM 10 60 18 3

16 NOM 4 6 5 0

17 NPA 0 0 2 0
18NPPM 3 6 5 0

19WNC 9 8 18 0
20 MCC 9 6 16 0
21 DEPCC 2 0 7 0
22 WNC_LOC 135 29 124 0

Real Classifier 1 1 0 1

Predict Classifier

In this table, the colunms C70, C7], C72... etc. are the names of the source data sets

chosen for fitness testing in order to help the evolution. The rows named as coh,

LCOMB, COM, etc. are the metrics chosen for measurement. This database is related

to Table 4. 1 (Section 4.4.3). Each of the metrics in this database has a description in

Table 4.1 about its value range and mutation steps.

In Table 4.4, The “Real Classifier” value obtained by simply comparing the evolution

of a class interface among the major version of the software. If they are the same, the

“Real Classifier” value is assigned to 1, which means stable. Otherwise O is assigned

which means unstable.

The “Predict Classifier” values arc generated by the prediction model. Then the fitness

flmction takes all the “Predict Classifier” values and the “Real Classifier” values to

Combination Algorithm

Chapter 4 72

calculate the fitness value (ofthis data environment) as described in Table 4.3.

4.7 Elitism

Elitism is used in our algonthm to ensure the best model’s (chromosome) survival.

After producing ah the chromosomes in the new generation, then our ahgonthm copies

the chromosome(s) with the best fitness value from their parent generation, as the

elitism theory requires.

Elitism passes the best chromosome(s) to the next generation. This will avoid the loss

of the best chromosomes from the present generation. Before the elitism is

implemented, the chromosomes of the generation are sorted according to their fitness

values. So the fittest chromosome will be in the first position of the generation.

The number of elite chromosomes that pass to the new generation is set as an input

parameter in our algorithm. There are two ways to determine this ehitism parameter.

The first way is by making it an integer, such as 1, 2, .. .etc. which indicates the exact

number of chromosomes to be directly copied to the next generation. Another way is to

set it as a percentage, such as 3%, 5%.. .etc. This indicates that the top 3% or 5%

percent of the whole chromosome will be copied to the new generation.

4.8 Control of Population Size

After the new offspring are produced, our GA ranks all of them according to their

fitness value. Therefore, the best ones are at the front and the worst at the end. Because

the elite chromosomes are continuahly copied from generation to generation, the

population of the new generation is graduahly increasing. Therefore, we set another

input parameter called “population size”, which controls the maximum population size

of a generation. In our algorithm, after the maximum population size allowable for a

generation is set (suppose to be n), all numbers ranked after n will be abandoned from

the new generation. This is done to reduce the processing time as well GA theory

Combination Algorithrn

Chapter 4 73

suggests that the bad chromosomes should flot survive.

4.9 Ending Condition

Our combination algorithm determines which individuals should reproduce, which

should mutate, and which should survive or die. It also decides how long the evolution

should continue. Typicaliy a genetic algorithm does not have an obvious stopping

criterion. Therefore, we must teil our algorithm when to stop. There are several criteria

that can be used to stop the evolution, such as the number-of-generations,

goodness-of-best-solution, convergence-of-population, or a problem-specific criterion

as the algonthm ending condition.

in our study, most of the time the number-of-generations is used as a stopping measure

(ending condition). After the new generation is created and tested, the survivors will

become another parent generation. The process of selection, crossover, mutation,

fitness test, sort, elitism and population control from step Section 4.4 to Section 4.8 are

repeated and repeated until the generation number reaches the pre-set maximum

ntimber in a GA application process. Then the genetic algorithm stops and the best

chromosome can be obtained from this evolution process. This is the best combination

prediction model.

Another ending condition we use is the fitness improvement test. Our algorithm

monitors the best fitness value as well as other fitness values. If the best fitness does not

improve for certain generations (in our algorithm it is set to be 20 generations), or ail

the chromosomes’ fitness in the current generation are the same value, the algorithm

will stop.

Combination Algorithrn

Chapter 4 74

4.10 The Main Generational Loop in Combination Algorithm

Now we have the models encoding and ail the GA operations for the models. lt’s time

to make them work in sequence to produce new generations, which can be called as

generational loop.

A run of the main generational ioop in our algonthm consists of the fitness evaluation,

sort, eiitism, population control, roulette wheei selection, crossover and mutation. Each

chromosome in the current generation is evaiuated to determine how fit it is at solving

the problem (such as if a model has a higher prediction rate). Our algorithm then

probabiiistically selects from the current generation based on their fitness to participate

in the various genetic operations. The more fit a chromosome is, the better chance it has

to be selected. After the evolution of many generations, a chromosome (combined

model) that is the best in the given data environment can be generated.

The summary of our genetic algorithm procedure is presented below:

PSEUDO CODE

// initialize the population of the first generation ofthe chromosome

:= getlnitialPopulation (Frediction Model files);

Il evaluate fitness of ail initial chromosomes of current generation

evaluate (f);

II start with an initial time

t =0;

II test for tenination criterion (time and fitness)

while not donc do

II move the best chromosome to the next generation directly depending on the elitism

setting

elitisin(f)

II repeat [generation size/2] times

repeat

II select a pair of chromosomes from the current generation for offspring production

Combination Algorithrn

Chapter 4 75

Parents := selectparents (f);

II Crossover the “genes” ofselected parents depending on the Probability ofCrossover

Chiidren: = crossover (Parents);

II Mutate the “genes” ofchildren depending on the Probability of Mutation

Chiidren = mutation (Chiidren);

II evaluate offspring’s new fitness

evaluate (Chiidren);

II add the chiidren to the new generation

Ï := addToNewGeneration(Children)

end fepeat

II select the survivors from the new generation depending on the generation size control

survive (f);

II increase the time counter

t t + 1;

od

//return the best fitness chromosome ofthe final generation

return(f)

end GA.

4.11 Summary of this Chapter

The main purpose of our research is to find a new approach to obtain new models

through the combination of existing models. We adopt the genetic algonthm (GA) as

our algorithm in this approach. Our algorithm is designed specifically to recombine the

rule-based prediction models.

In this chapter we introduced how the GA works for our purpose. The models encoding

is the most important step in our algorithm. The rule-based prediction models are

chromosomes of our algorithm. Each model consists of a set of mies and a classifier

Combination Algorithrn

Chapter 4 76

value. The encoding will affect the evolution efficiency. After that we defined our

genetic operators to produce combination models. Crossover and mutation operators

are dependent on the encoding method. 11e fitness function produces the measurement

ofhow well each model is in a certain data environment. Elitism will let our algonthm

avoid losing the best resuit. In the next chapter we will validate our agorithrn through

implementation and experimentation.

Combination Algorithrn

Chapter 5

Implementation ami Experimentation

In this chapter we will demonstrate how our combination algorithm is applied to classic

mle-based prediction models. Our experiment was performed on a “semi-real”

environment. We used a 10-fold cross validation technique to estimate the combination

models’ accuracy. In this technique, the whole data set is spiit into 10 subsets ofequal

size. A combination model is trained on the union of 9 subsets (called a training data set)

and tested on the remaining subset (called a testing data set).

5.1 Experimental Tool: GA-CAMP

To validate our combination algorithm we implemented an experimental tool called

GA-CAMP (Genetic Algorithm used as a Combination Algorithm for the Models for

Prediction) using Java language. Java has many features that make it an effective

platform for our study. It is an object-oriented development tool and this adds an

element of convenience for future studies in this area because many classes can be

reused and the algorithm modification is very flexible. The platform is independent

from Java and this allows our experimental tool to be run from anywhere. Figure 5.1

shows the GA-CAMP interface:

Implernentation and Experirnentation 77

78

160 hiputlslodels 1nputF3e toi DataSat Trosng_3 Gni,oate

GenerationAaia .:

Initial Generatirn, List

UodelS toi Frtness s 042025995007246375

Usd415 M FOsaOS S 06655565656665956

M3d617 M F064535 05505536010053462

44o8e16 M Filness s 85521739130434793

Uodel5.M Filnss$ s O 4719195357326092

Usd404 M FllneSs s 04473429951590821

ModeI3 M Filness b 06511594202398551

Usd412 M 69565$ s 05505530070313462

Usd411 M F0ness s 06553545249597424

GeneoatlonName GeneraOonl

PspulaHosOlze 23

Uodel Name U0de123

Final Genaratrnn List

(5eneralionName Genera5on99

PopUIa50nSlza 150

Usd41 Nana M04e13

RabS 10321

QCMPJC 105

CUBE 6 3

CHU 24 0

- 01435

RuI9O 10325

CUBE 2I O

CHU 24 O

figure 5.1 The Combination Algorithm Interface ofGA-CAMP

GA-CAMP parses the decision-tree classifier files to obtain the classic rule-based

prediction models. The decision-tree classifier file was produced by C4.5 algorithm

(Quinlan, 1993) [51]. C4.5 is one of the empirical leaming systems that constructs

decision-tree classifiers. Figure 5.2 provides an example of this kind of file.

GA-CAMP only takes out (exports) the model from this file and abandons other

information. In Figure 5.2, the model is between the grey shadowed text, it starts from

the string “Model Model 2” and ends at letter “$“.

Chapter 5

.. IL
Gn# 100 Elitiit 1 M_Rate OIS: C_Rate 095 Sise

LogfFik

GeneraSon ‘340erabsnl F06853 06811594252098551

MMeI3

OeneraSon 0,neratbtn2 F40655 56611594252899551

Usd813

Generasan Ganer3tbon3 ESses, 56890033914251

UodeI3

OenGrason OaroeralIon4 FOneso. 06858803381542913

Usd013

Generalon OeneraUonS ESneSl 55892109500805152

Usd613

Genera5on Generalbon8 Fdness 56924305609957794

ModeI3

Oebiarason 86561511067 700635 06924315619967794

Modal)

Oesera5on Oeneralbon0 Foinnos O 6940410579546114

MødaI3

Generalon Oeneratbon9 Fitness 06940415679549114

Modal)

Generabon Genera6onl0 Edness 06940405579549114

Modal)

Oeneralion Oeneralloni 1 F10005 05940410579549114

Ua3e13

GanolaOon GoneralIOfll 2 F10455. 06940418619549114

Us del3

Genera9on OaneralsnI3 Fma$S 5554040 9079549114

Usd603

GenSraSon Esnnrallonld F10903 08340410579549114

Usd603

GSflnrSOOfl GRn6raIIn15 FInoss 069404185795491 Id

Usd913

Generason i3eneialionl5 F10055 0.6940419575549114

ii.i’ * Ii’•

implernentation and Experirnentation

Chapter 5 79

ModeI2.txt
C4.5 [release 8] rule generatorMon Jul 30 13:24:02 2001

Options:
File stem <beanl92_her_comp_hid>

Read 390 cases (12 attributes) f rom bean]92_her_compjiid

Processing tree O

Final rules from tree 0:

Model Model 2

Rule 6:
NON <= O
DIT <= 1
MDS > 31

—> class 0 [45.3%]

Rule 4:
NPPM <= 17

—> class 1 [95.6%]

Default class: 1

$

Evaluation on training data (390 items)

Rule Size Error Used Wrong Advantage

6 3 54.7% 4 1 (25.0%) 2 (311) 0
4 1 4.4% 347 12 (3.5%) 0 (010)

Tested 390, errors 18 (4.6%)

ta) (b) <—classified as

369 1 ta) : class 1
17 3 (b) : class O

Figure 5.2 An Example ofDecision-Tree Classifier File Produced by C4.5

Implernentation and Experirnentation

Chapter 5 80

GA-CAMP has an input parameter named “InputModels”, which is a file name we

assign to let GA-CAMP know from where to get the initial models. This file contains a

name list of all the decision-tree classifier files that are needed to do the combination.

After the combination, GA-CAMP provides the results in the “Final Generation List”

area. It includes all the combination models in the final generation. The models are

sorted according to their fitness values with the first one having the best fitness. The

final results are saved in a file named “Results.txt”.

Besides the “InputModels” parameter, GA-CAMP lias another 5 important input

parameters, which can be found in the GA-CAMP interface. These values may

influence the final process efficiency as introduced in Chapter 4. They are:

1. Gn# (Number of generations): this is the maximum number of generations

that will be created. This is one of the combination algorithm stop conditions.

2. Sïze (Population size): this is the maximum number of chromosomes in the

current generation. A larger population size increases the amount of variation

presented in the population at the expense of requiring more fitness function

evaluations.

3. Elitist: this controls whether elitism is done or not, and how many of the best

chromosomes will be transfened to the next generation directly.

4. M Rate (Mutation rate): this is the probability ofthe occurrence of mutation,

the higher the mutation probability is, the more mutations will be done on the

newborn chromosomes.

5. C_Rate (Crossover Rate): this is similar to “MRate”, it is the probability of

the occurrence of crossover.

In the GA-CAMP interface parameter input area, there are three places showing the

initial generation, final generation and general intermediate generation information;

such as, the fitness values or the mle set names among other information. In the “Log

implernentation and Experirnentation

Chapter 5 81

File” area (the box at the left), ail of the messages produced during the running of the

genetic algorithm will be displayed; such as, the generation number, the best fitness

value and the best mode! name of each generation. The “Initial Generation List” area

(the box at the upper right) displays the entire initial generation message in detail; such

as, each mode! name and its fitness value. The “fma! Generation List” area (the box at

the bottom right) contains the resuit, the final generation of this running; such as, the

best mode! name, the rule set and its fitness value.

GA-CAMP is the experimenta! tool used to eva!uate our combination a!gorithm. After

GA-CAMP is deve!oped, we can conduct the experiment using this too! for the

software prediction models. However, to do this we need an evaluation environment.

This environment includes a set ofpredictioii in odets and the training data sets from

which the prediction models were built and the testing data sets used to do the

eva!uation for the resu!ting mode!s.

Normally, the software prediction mode!s are bui!t from some kind of source data sets.

However the source data sets from which the prediction models were bui!t are rare!y

posted in the !iterature. Our a!gorithm is designed to be used with any kind of

rule-based prediction mode! that can be collected from the posted literature. In order to

verify the validity of our algorithm, not only shou!d we obtain a set of combined

prediction mode!s through our a!gorithm, but a!so we should use the same testing data

sets to evaluate the new models and the old ones. By using the same data to evaluate

the o!d and new mode!s, we can make a valid companson and correct judgment of the

resuits. Therefore, ail the source data and input mle-based models make up our

experiment environment.

Our experiment environment is a “semi-rea!” environment [55J. This is because the

prediction modeis are simu!ated although the source data set is from rea! software

systems: they are decision tree classifiers trained on independent software system data.

Implernentation and Experirnentation

Chapter 5 82

b imitate the heterogeneity of real-life prediction models, each mode! was trained on a

different subset of metncs and on a different software system.

Although our a!gonthm can be app!ied to any kind ofrule-based prediction mode!, the

models uscd in our experiment are applied to predict the stability of the class interface

between versions of software packages. This is to make the evaluation of software

qua!ity simple and accurate. Therefore, the princip!es and metncs of the software

qua!ity prediction mode! app!ied in our experiment are focused on stabi!ity. In order to

understand the models in our experiment, a brief overview of the software stability

concept and its measurement are provided in the next section.

5.2 Stability

The classic definition of the term stability is: “Not easi!y moved or changed.” This

definition can also be used in the software context. When we say a certain aspect of a

class or a package (a group of classes) is stable, we mean that such an aspect is firm or

hard to change. This characteristic can also be ca!led “independence”. An independent

c!ass is a class that does not depend upon anything else. The more stability a c!ass has

the more independent it is, and it is more reliable for reuse.

At present stability is the top consideration for a!l software design. When we design

software, we strive to make it stable and aim at accomplishing system reusability.

Indeed, this is the goal of modem software design. In the structure of an application,

the stability impacts the re!ationships between packages because the packages are

interrelated [44]. In fact, the way a stable model is built shou!d guarantee its

reusabi!ity.

• Stability Measurement

There are several methods used to measure the stability ofa c!ass. The measurement of

stability depends on the application as we!l as the aspect of the class we need to

Implernentation and Experirnentation

Chapter 5 83

measure. For example, to measure the positional stability of a package, one way is to

count the number of dependencies that enter and leavc that package [44]. Thcsc

measurements include the following metrics:

• Ca (Afferent Couplings): The number of classes outside this package that depend

upon the classes within this package.

• Ce (Efferent Couplings): The number of classes insidc this package that depend

upon the classes outside this package.

• I (lnstability): (Ce ÷(Ca+Ce)) This metnc has the range [0,1]. 1=0 indicates a

maximally stable package. 1=1 indicates a maximally unstable package.

The Ca and Ce are the metrics used to calculate the positional stability of a package.

These measurements are appropriate only for certain applications. For other

applications (such as interface stability), there are different metrics that can be used to

measure the stability ofa class.

In our experiments we chose the models that predict the inteifiice stability of Java

classes. This is because that attribute is easy to measure and we can ensure the accuracy

of the prediction model. The experiment looked at consecutive major versions of the

same software to measure the stability. The definition is:

o If a class x, public inteiface of the th version is incÏuded in the public

interface ofthe (J +
flh version, this cÏass is stable (cÏass 1).

o othervvise, it is unstable (‘ctass Q).

The characteristic of stability is relatively less difficuit to collect than others; such as,

defect data or maintenance effort. It can be obtained by simply comparing the evolution

of a class interface among the major version of the software and the result is easy and

accurate to validate.

Our experiment started from the source data sets collected. Then a set of interface

stability prediction models was extracted from the source date sets. After that we

Implernentation and Experirnentation

Chapter 5 84

applied our algorithm to combine the original models to get combination models.

Finally we evaluated our resuits. In the following section we describe the experimental

process and the results in detail.

5.3 Source Data Sets ami Models Extract

In our experiment, we selected 11 Java systems that have at least two major versions.

The size of the initial versions of the 11 systems, in the number of classes, is given in

Table5. 1. The metrics used as attributes in our experiment are extracted from these 1 1

systems. Nine systems, except for Jedit and Jetty, were used to “create” our prediction

model (the original model) for our experiment. The remaining 2 systems, the Jedit

(system #6) and Jetty (system #7), were selected for training the combination models

and testing the combination restiits.

Table 5.1: The Software Systems Used to Train and to Combine the Models.

System Number of (major) versions Number of classes

1 Bean browser 6(4) 388—392

2 Ejbvoyager 8(3) 71—78

3 Free 9(6) 46—93

4 Javamapper 2(2) 18—19

5 Jchempaint 2(2) 84

6 Jedit 2(2,) 464—468

7 Jetty 6(3) 229—285

8 Jigsaw 4(3) 846—958

9 Jiex 4(2) 20—23

10 Lmjs 2(2) 106

11 Voji 4(4) 16—39

Implernentation and Experirnentation

Chapter 5 85

Twenty-two structural software metncs were extracted from these 11 software systems

using the ACCESS tool of the Discover© environment. Discover© provides a powerful

tool for the source code analysis, as welI as navigation and query capabilities ofexisting

software source code structure. It aiiows software developers to quickly find their way

through code and to quickly understand a target software system. It supports many

programming languages on various operating systems. Discover© is a parsing-based

system that collects information about the relationships between language structures.

More information about Discover© can be found at the web site:

http ://www.mks. comlproducts/discover/deveioper. shtmi.

Table 5.2 provides the definitions of ail 22 metrics extracted from the above 11

software systems. This table was also introduced in Chapter 2. We are presenting it

again because our experiment models are constmcted with these metrics. The 22

structural software metrics belong to one of the four categories of coupling, cohesion,

inheritance, or complexity, and constitute a union of metrics used in different

theoretical models [17, 7, 58, 12].

Ail these metrics were considered as independent parameters that have impact on the

software stability.

Table 5.2 The 22 Software Metrics Used as Attributes in Our Experiments

Metrics Description
Cohesion metrics

1 LCOM lack of cohesion Methods
2 COH cohesion
3 COM cohesion metric
4 COMI cohesion metric inverse

Coupling metrics
5 OCMAIC other class method attribute import coupling
6 OCMAEC other class method attribute export coupling
7 CU3 number of classes used by a class
8 CUBF number of classes used by a memb. firnct.

Implernentation and Experirnentation

Chapter 5 86

Inheritance metrics
9 NOC number of chiidren

10 NOP number of parents
11 NON number of nested classes
12 NOCONT number of containing classes
13 DIT depth ofinheritance
14 MDS message domain size
15 CHM class hierarchy metric

Size complexity metrics
16 NOM number of rnethods
17 WMC weighted methods per class
18 WMCLOC LOC weighted methods per class
19 MCC McCabe’s complexity weighted meth. per cl.
20 DEPCC operation access metric
21 NPPM number of public and protected meth. in a cl.
22 NPA number of public attributes

After the 22 metrics for stability were extracted, the next step in our experiment was to

build the prediction models from the 9 systems. The prediction models that are used in

our experiment are generated by C4.5 [51] - a representative machine leaming

algorithm.

First, we started with enumerating the requirements for a classification task to be

performable by C4.5. In our case, one classification task might be: “classify this class as

interface stable or instable”.

In order for C4.5 to work well, the following requirements should be applied [52]:

1. Attribttte-vattte description: Ail information about one class should be

expressible in terms of a fixed collection of attnbutes. In our experiment, ail of

them are given in Table 4.1.

2. Fredefined classes: The categories to which classes will be assigned should be

defined beforehand. When we are predicting the interface stability of a class in

our expenment, we defined ours as being “1” for “stable” and “O” for

“unstable”.

Implernentation and Experirnentation

Chapter 5 87

3. Discrete classes: Classes should be sharply delineated. A case cither belongs or

does not belong to a certain class and there should be far more cases than

classes.

4. Sufficient data: Sufficient cases should be available, as we don’t want to leavc

mucli room for mere coincidences.

5. Logical classification models: The predictive models provided by C4.5 take the

form of decision trees or production nues only.

Second, we should have a training set - a Iist of all the metric values assigned and their

classification to evcry class (see Table 4.4). Then we provide C4.5 with the training set.

C4.5 generates a classifier in the form ofa decision tree where a leaf is a category and

each no-leafnode is a test on one attribute value. The tree is used to classify a class by

carrying out the test as indicated by the branches of the tree and moving through the tree

from the root until a leafis encountered. The trec is created as follows:

IF ail cases are o/the saine categorv THEN

1. create a leafand label it with tue naine of this categoiy

ELSE

2. Select an attribitte

3. Select a test based on this attribute

4. Divide the training set into sttbsets, each associated with one

possible value ofthe tested attribute.

5. Apply the sanie pmcedure (Staring at tue IF-staternent) uvitÏz each

subset.

END

After the decision tree is created, it is simplified by C4.5 with the aim ofmaking it more

comprehensible without compromising its accuracy. This step is referred to as pmning.

Implernentation and Experirnentation

Chapter 5 $8

More details on how pruning is performed can be found in J. Quinlan’s “C4.5:

Programs for Machine Leaming” [51]. Finally C4.5 converts the decision tree into a set

of production mies or nile sets (see Figure 5.3).

The 23 initial models in our experiment were created from the 9 systems (see Table5. 1

except Jedit and Jetty) in the following way:

• First we formed 15 subsets of the 22 software metncs by combing two, three, or

four of the metrics categories in ail the possible ways, and created 15X9=]35 data

sets.

• Then we trained a decision tree classifier on each data set using the C4.5 aigorithm.

We retained 23 decision trees by eliminating constant classifiers and classifiers

with training errors of more than 10%.

Figure 5.2 is one of the 23 prediction modeis. Ail ofthe 23 prediction models used in

our experiment are listed in Appendix A. In our experiment, the 23 classic nile-based

models are the interface stabiiity prediction models.

Model ModellO:

Rule 1:
OMAEC <=0
-> ciass 1 [75.8%]

Rule 3:
DIT> I
-> ciass 1 [50.0%]

Rule 2:
OMAEC> O
DIT <= 1
-> classO [87.1%]

Default ciass: O

Figure 5.3 A Rule Set of a Decision Tree Created by C4.5

Implernentation and Experirnentation

Chapter 5 89

5.4 Experiment Settings

After we obtained the original models — 23 classic rule-based interface stability

prediction models, we conducted our experiment in the two remaining systems in Table

5.1 - the Jedit and Jetty systems. We created a data set D,, that contains 690 data vectors

(see Table 4.4 for the details of D,,) using the classes in these two systems as our data

environment. The data environment was a database with 690 classes; each was named

in sequence as “Cl”, “C2”, “C3” ... “C690”. Each record has 22 metric values and a

real classifier value.

To accurately estimate the correctness of the trained classifiers, we used a 10-fold

cross-validation technique to evaluate our algorithm. Through this technique, the data

set D,, (690 data vectors) is randomly split into 10 groups (subsets) of equal size (69

points each). The union of 9 subsets of source data (69X9=‘62] points) is chosen as the

training environment and is called the training data. Therefore, we have 10 different

training datasets. During the evolution process, the training data was used to obtain the

fitness values for each generation.

When the training data was selected, the remaining subset (69 data records) was used as

the testing environment, also called the testing data. Therefore, we also have 10

different testing environments. Each training data set was paired with one testing data

set accordingly, and both of them together made up an expenment environment.

Therefore, we had 10 different experiment environments. Since both the training and

testing data are a mixture of data from multiple systems, the cross-validity of obtained

results is increased. In order to ensure reliability, our algorithm was applied to cach

environment. That is to say, we had to do 10 repetitions of our algorithm application.

The 10 subsets used for training were saved in 10 database files. The same procedure

Implernentation anti Experimentation

Chapter 5 90

occurred for the testing data sets. Table 5.3 shows the names of the training datasets and

the testing datasets for each ofthe 10 repetitions.

Figure 5.3 The 10 Repetitions of Experiment Data Environments

Repetitions Training Dataset Testing Dataset
1st experiment Training_1 Testing_1

2nd experiment Training_2 Testing2
3rd experiment Training 3 Testing_3
4th experiment Training_4 Testing_4
5th experiment Training_5 Testing_5
6lh experiment Training_6 Testing_6
7th experiment Training_7 Testing_7
8th experiment Training_8 Testing8
9th experiment Training_9 Testing_9

10th experiment Training_10 Testing_lO

Because there is some random performance during the running of our algorithm, the

same training data might lead to different results. In order to obtain a reliable result, we

performed 6 iterations in each training experiment dataset. That is to say, for each

algorithm application on the same training data environment, we ran it 6 times with

different parameters, such as different mutation probabilities. The model with the best

fitness value from the 6 was taken as the final one from this training environment. For

the 10 training data sets, we were able to get 10 combination models, and each ofthem

had the best fitness value in its training data.

Our genetic algorithm parameters (See section 5.1) needed to be set before the

implementation of the algorithm. The elitism strategy was applied in the expenment as

welI: in cadi new generation, the majority of the population from the previous one was

replaced, except fora small number N ofthe fittest chromosomes. In order to have a

reasonable execution time, the number of total gencrations T was set to 100 and the

maximum number of chromosomes (S) in a generation was set to 160. The values of

Implernentation and Experirnentation

Chapter 5 91

(crossover probability), p,,, (mutation probability) varied with the number of

iteration (j). Table 5.4 indicates the actual parameter values used in the experiments.

Table 5.4 GA-CAMP Parameters

Iteration Nutnber fi) 1 St 2nd 3rd 4th 5ch

Number ofGenerations (7) 100 100 100 100 100 100

E1itist(N.)* 1 1 0.1 1 1 0.1

Maximum Population Size(S) 160 160 160 160 160 160

Mutation Rate (p,,) 0.05 0.05 0.05 0.10 0.10 0.10

Crossover Rate(p) 0.80 0.80 0.80 0.80 0.80 0.80

* For Elitist. 1 means taking I chiomosonie; while 0.1 nieans 10% ofthe gelieration.

5.5 Case Studies

In this section we describe how the resuits were obtained from our experiment. In order

to have better resuits, the application process described in the previous section was

repeated 6 times for each different training environment by setting different parameters.

The model with the best fitness value was selected to be the final combination from this

expenment.

In the following two sub-sections two of our experiments are demonstrated. Ail of the

10 expenment results can be found in Appendix B. The following presents the

parameters set constant in ah of the GA-CAMP experirnents:

• Number of Generations: 100

• Maximum population size in a generation: 160.

• Crossover Probability: 0.8

Input Models: 23 interface stability prediction models in classic rule-bascd models.

Implernentation and Experirnentation

Chapter 5 92

5.5.1 Case Study 1

Our first experiment is performed on the data set. Training] and Testing 1. The resuits

of ail 6 iterations with the different values for the “Mtttation Probability” and “EÏitist”

are shown below.

Table 5.5 The Results ofthe First Expenment

Iteration Mutation Probability Elitist Best Fitness Value

i.t 5% 1 70.69%
2’ 5% 1 71.17%
3rd 5% 10% 70.37%
4Lh 10% 1 70.69%
5th 10% 1 73.10%
6th 10% 10% 70.69%

fitness value of cornbmation model in training dataset: 73.10%
Fitness value of combination mode! in testing dataset: 72.10%
Best fitness value of original models in training: 69.08%
Best fitness value of original models in testing: 68.23%

in Table 5.5 the best fitness value of the original mode! and combination model from

this experiment environment are listed. The combination mode] we obtained is:

Rule 011114:
coh > 0.083735
COMI > 0.16667
COMI <= 2.875
OCMAIC > 12.0

—> class 1 [75.8%]

Rule 010422:
DEPCC <= 18.0

—> clasa 1 [86.9%]

Rule 010308
OMAEC > 6.0
DIT > 1.0

—> class 1 [71.8%]

Rule 011106
coh > 0.083735
OCMAIC < 13.0

—> class 0 [93.5%]

Rule 011113
coli > 0.133735
COMI < 0.16667

—> class 1 [93.0%]

Default class:0
Fitness Value:0.7310789049919485

Implernentation and Experirnentation

Chapter 5 93

5.5.2 Case Study 2

Our second expenment is similar to the first one. It was performed on the data set:

Training 2 and Testting2. The resuits of ail 6 iterations with the different values for

the “Mutation ProbabiÏitv” and “Elitist” are shown below.

Table 5.6 The Results ofthe Second Experiment

Itetation Mutation Probability Elitist best Fitness Value

lst 5%] 70.37%

2 5% 1 68.92%
3rd 5% 10% 7037%
4th 10% 1 72.30%
5111 10% 1 70.69%

6tt 10% 10% 70.37%
Fitness value of combination mode! in training dataset: 72.30%
fitness value of combination mode! in testing dataset: 70.30%
Best flffiess value of original models in training: 69.08%
Best firness value of original models in testing: 66.23%

In Table 5.6 the best fitness value of the original model and combination model from

this experiment environment are listed. The combination model we obtained is:

Rule Naine: Ru1e011114
coh > 0.033735
COMI > 0.16667
COMI < 0.875
OCMAIC > 10.0

—> class 0 [75.8%]

Rule Naine: Ru1e010325
CUBF > 21.0
CHN > 37.0

—> class 0 [91.7%]

Rule Naine: Ru1e010317
NOP > 11.0

—> class 1 [83.3%]

Rule Naine: RuleOlllO6
coh > 0.083735
OCMAIC < 13.0

—> class 1 [93.5%]

Rule Name: RuleOllll3
coli > 0.033735
COMI <= 0.16667

—> class 1 [93.0%]

Default class:1
Fitness Value:0.7230273752012882

Implementation and Experimentation

Chapter 5 94

5.5.3 Case Study Summary

Our experiment was conducted on a data set of 690 Java classes and 23 interface

stability prediction models using the 10-fold cross-validation technique. The 23

prediction models were trained on fine of the ten subsets and a combination model with

the best fitness value in this environment was obtained. Then we tested this model on

the remaining one subset (called the test data set) to verify the result. This experimental

procedure vas repeated on ail ofthe 10 training environments. For the 23 input models,

we also tested their fitness values for each training environment and testing data. We

took the best fitness value from the input models, and cornpared them with the best ones

from the obtained models. Since we had 10 experiment environments, we had 10 pairs

offitness values. Table 5.7 summarizes ail of our 10 experiment results.

Table 5.7 Fitness Values from Training and Testing Data

Training Data Testing Data

(%) (%) (%) (%)

1 69.08 73.10 68.23 72.10

2 69.08 72.30 66.23 70.30

3 68.11 71.65 69.10 71.65
4 70.37 71.81 70.22 73.25

5 68.59 70.85 65.43 70.20

6 68.76 72.62 64.51 70.11

7 68.27 70.85 66.54 69.31

8 68.72 70.04 67.12 68.12

9 70.04 72.30 69.12 72.30

10 68.43 71.33 68.23 70.37

* J rejèrs to thefitness values ofcombination models; J, rejèrs to bestfitness valtoes oJ the input

,nodels.

5.6. Resuits

Through the application of this algonthm we finally obtained 10 combination models

with the best fitness values from the 10 repetitions of our experiments. The next step

required us to find out if the new models had better fitness values than those ofthe input

models.

Implementation and Experirnentation

Chapter 5 95

For each combination model, there is two fitness values: one from its training data and

another from the test data. In order to get reliable resuits, we used the same training and

testing data to get the fitness values ofthe input models. Since we had 23 original input

models, we got 23 pairs of fitness values from each training and testing data set. We

only selected the original model with the best training fitness value to compare with the

final combination models.

Table 5.7 lists the fitness values we got from the training datasets and testing datasets.

We decided to use statistical tests to compare their means. Obviously, this comparison

is significant only if the data are from same environrnent. Therefore, the fitness values

from the training data can only be compared with those from the training data, and the

values from the testing data can only be compared with those from the testing data.

What we wanted to find out was whether the mean of the combination models’ fitness

value is significantly higher than the original model. If it is, then we can conclude that

the GA method can really help in obtaining better models from existing models.

furthermore, because we used the fitness values from multiple systems’ data , the

model was cross-valid. That is to say, our combination algorithm can be used as an

evolutionary approach to build a prediction model and the new model is more generally

applicable.

We present the fitness values in a graphic form (Figure 5.4 and 5.5), where the

combination models’ fitness values are clearly seen to be higher in both the training and

testing data sets. Therefore, the test results prove that our approach of combining

exiting models cari yield significantly better results than using individual models.

Implernentation and Experimentation

Chapter 5 96

Figure 5.4 The Original and Combination Models’ fitness Values on the Training Data

Figure 5.5 The Original and Combination Models’ Fitness Values on the Testing Data

74

73

72

71

70

69

68

67

66

65

Fitness of Best Original
Model

Fitness of Combination

LMoce1

1 2 3 4 5 6 7 8 9 10

74

72

70

68

66

64

62

60

f Fitness cf Best
Model

Fitness ot Combination

LM0de1

1 2 3 4 5 6 7 8 9 10

Implernentation and Experirnentation

Chapter 5 97

The statistical resuits in the training data and testing data are shown in Table 5.8.

Table 5.8 Expenmental Resuits

fitness fQ)*

f 68.95 (0.54)
. . besi

Training

J;efl
71.69 (0.89)

1 67.47 (3.28)
Testing

1. 70.77 (2.3 7)
geti

* Tue inean (‘standard deviation) percentage values ofthe

correctness.

From Table 5.8, we can see the fitness rates are relativeiy low, which indicates that the

chosen problem of predicting software quality is a difficult problem. The resuits from

the training data are strongly in favor of otir proposai because the combination models’

fitness values are significantly higher than the best fitness values of the original input

models. However, the results from the testing data are sornewhat unclear. The large

standard deviations decreased our confidence level. However, we believe the large

variation was caused by the outliers (extreme values), whose effects were enlarged in a

small data set (the test data had only 69 data vectors).

In general, although we are aware ofthe limitations ofthis experiment, we found that it

simulated reasonably well a realistic situation and yielded some interesting results. We

strongly believe that if we use more numerous and real models on cleaner, iess

ambiguous data, the improvement will be even more significant. In particular, the

resuits show that genetic algorithms can be used to improve the prediction ability of

existing classic rule-based models.

Implernentation and Experirnentation

Chapter 5 98

5.7 Summary of this Chapter

In this chapter, we explained the implementation (GA-CAMP) of our combination

algorithrn for classic rule-based prediction models, and how wc applied GA-CAMP in a

“semi-real” environment to evaluate our combination algorithm with the 1 O-fold cross

validation technique. This “semi-real” environment consists of a real software system

data set and a set of “simulated” prediction models built from it. finally, we presented

our expenment resuits and proposed our conclusion: a genetic algorithm can be used as

an evolutionary approach for combining and improving software quality prediction

models in a particular context.

Implernentation and Experirnentation

Chapter 6

Conclusion and Future Work

In this chapter we will summarize the work done in this thesis and propose directions

for ftirther research that seem to 5e worthy to be explored in this area.

6.1 Summary

Predicting software quality in the early stage of the software lifecycle has been an area

of interest for a long time. Software prediction models offer an interesting solution to

this problem. Normally, the approach of building prediction models is either from

historical data or from experts with specific heunstic knowledge which can only be

applied to the specffic context from which they were built. Unfortunately, we cannot

build software quality prediction models for software organizations if they lack

historical data. Meanwhile a lot of software quality prediction models have been

proposed in the literature.

Our research has proposed an evolutionary approach by using a genetic algorithm for

combining and adapting existing software quality predictive models from a particular

context. It was also taken as an exploratory phase that offered proof to the concept of

Conclusion and future Work 99

Chapter 6 100

combining existing models using genetic algorithm. The resulting mode! can be

interpreted as a “meta-model” that selects the best model for each given task. This

notion corresponds well to the “real world” in which individual predictive models,

coming from heterogeneous sources, are flot universal, and depend largely on the

underlying data. Our resuits show that the combination of models can perforrn better

than individual models, even within a multiple systems context. On the basis of this

study, some techniques (such as the method ofmodel coding and the crossover operator)

were irnproved by the students who continued this research. The resuils from this study

were also confirrned by the continued study [55J.

In our research, our contribution is:

• first, we proposed a new approach to develop cross-valid software quality

prediction models. This method is especially beneficia! for companies lacking

in historical data.

• Second, our proposed approach can also be used to improve the efficiency and

prediction ability ofexisting ntle-based software prediction models.

• Third, it is be!ieved, though more research is needed, that using genetic

algorithms as a combination technique for improving the efficiency of

rule-based models of multiple contexts is viable.

• Fourth, it is shown that this approach works well for interface stability

prediction in real software systems.

• Last but not least, we developed a platform-independent tool GA-CAMP,

which is completely object-onented and self-contained. This will greatly

benefit future researchers in this area by reusing classes and modules.

From our research, we argue that local search methods like genetic algorithms can be

appropriate for hard problem solutions.

Conclusion and Future Work

Chapter6 101

6.2 future Work

future work could focus on the following aspects. b show the universality of our

technique, we also intend to evaluate our method on the data corning from other

domains where representative benchmarks exist. To repeat this experiment with more

accurate and a larger data size could be beneficial. In this kind of experiment a better

definition of stability or another quality factor needs to be made. This experiment could

be done on more systems and the fitness function could be improved also.

The techniques, such as the models encoding, can also be improved for further work. in

this thesis we implemented the genetic algorithm for the classic rule-based prediction

models--a decision tree classifier in the linear representation. for example, the model

encoding could be represented as a set of isothetic boxes, which is two-dirnensional,

coming from the decision tree output regions directly. in such encoding, the genetic

algorithrn operators will need to be modified to fit this kind of encoding in order to

preserve consistency and completeness. Some students have been working on this

direction [55].

Issues for future research include the evaluation of this approach on real models

proposed in the literature and the comparison of our approach to other white-box

techniques. We also suggest testing other local search algorithms (Tabu Search or

Aimuloted anneohng) in this domain.

Conclusion and Fitture Work

102

Bibliography

[1] Mauricio A. de Almeida, Hakim Lounis, Walcélio L. Melo, “An Investigation

on the Use of Machine Leamed Models for Estimating Correction Costs”, IEEE

Computer Society Washington, DC, USA, 473 — 476,1998

[2] F. Akiyama, “An Example of Software System Debugging,” Information

Processing, vol. 71, pp. 353-379, 1971.

[3] V. R. Bassili, L. Brain & W. Melo, “How Reuse Influences Productivity in

Object-Oriented Systems”. Communications of the ACM, Vol. 30, N. 10,

pplO4-1l4, 1996.

[4] V. R. Basili, L. Briand, and W.L. Meto, “A Validation of Object Oriented

Design Metrics as Quality Indicators,” IEEE Trans. Software Eng., 1996.

[5] L. Briand, W. Thomas, C. Hetmanski. “Modeling and Managing Risk Early in

Software Development”, IEEE International Conference on Software

Engineering (ICSE), 1993, Baltimore, Maryland, USA

[6] L. Briand, W. Melo, C. Seaman, and V. Basili, ‘Characterizing and Assessing a

Large-Scale Software Maintenance Organization,” in Proceedings of the l7th

International Conference on Software Engineering, pp. 133-143, 1995.

[7] L. Briand, P. Devanbu, and W. Melo, “An investigation into coupling measures

for C++,” in Proceedings of the 1 9th International Conference on Software

Engineering, 1997.

Bibliography

103

[8] L. Briand, Raif Kempkens, Kerstin Liinenbtirger, Michael Ochs, Martin

Verlage, “Modelling the Factors Driving the Quality of Meetings in the

Software Development Process”, European Software Cost Estimation and

Measurement (ESCOM’99), England, 1999

[9] L. Briand, J. Wuest, S. Ikonomovski, and H. Lounis: “Jnvestigating Quality

Factors in ObjectOriented Designs: An Industrial Case Study”. In Proceedings

ofthe International Conference on Software Engineering, 1999.

[10] L. Briand, K. El Emam, B. Freimut, O. Laitenberger, “A Comprehensive

Evaluation of Capture-Recapture Models for Estimating Software Defect

Content “, IEEE Transactions on Software Engineering, Volume 26, No 6, June

2000.

[11] L. Briand, T. Langley, I. Wieczorek, “A replicated Assessment and Comparison

of Common Software Cost Modeling Techniques”, IEEE International

Conference on Software Engineering (ICSE), 2000, Limerick, freland

[12] L. Briand, J. W”ust, John W. Daly, and V. Porter, “Exploring the relationships

between design measures and software quality in object-oriented systems,”

Journal of Systems and Software, vol. 51, pp. 245—273, 2000.

[13] L. Briand, Jflrgen Wilst, “Modeling Development Effort in Object-Oriented

Systems Using Design Properties”, IEEE Software Engineering, pp. 963-986,

November 2001 (Vol. 27, No. 11)

[14] L. Briand, J. Wuest, H. Lounis, “Replicated Case Studies for Investigating

Quality Factors in Object-Oriented Designs”, Empirical Software Engineering:

An International Journal, Vol. 6. No 1, 11-58,2001.

Bibliography

104

[15] L. Briand, J. Wuest, “Empirical Studies of Quality Models in Object-Oriented

Systems”, Advances in Computers, 2002, Academic Press, updated Feb. 18,

2002

[16] L. Briand, W. Melo, J. Wuest; “Assessing the Applicability ofFault-Proneness

Models Across Object-Oriented Software Projects”; International Software

Engineering Research Network (ISERN), 2000; ISERN-00-06 Version 2. IEEE

Transactions on Software Engineering, 2002

[17] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions of Software Engineering, vol. 20, no. 6, pp. 476—

493, 1994.

[18] S. Chulani, B. Boehm, and B. Steece. “Bayesian Analysis of Empirical

Software Engineering Cost Models”. IEEE Transaction on Software

Engineerining, 25(4), July/August 1999.

[19] T. Compton, and C. Withrow, “Prediction and Control of Ada Software

Defects,” J. Systems and Software, vol. 12, pp. 199-207, 1990.

[20] Ebert, C. “Metrics for Identifying Critical Components in Software Projects,?

Handbook of Software Engineering and Knowledge Engineering. 2001.

[21] K. El-Emam and W. Melo, “The Prediction of Faulty Classes Using Object

Oriented Design Metrics,” Technical Report, National Research Council of

Canada, NRC/ERB 1064 1999.

[22] Falkenauer, E.”Genetic Algorithms and Grouping Problems”, John Wiley and

Sons Ltd. England, 1998.

Bibliography

105

[23] N. Fenton and B.A. Kitchenham, “Validating Software Measures,” J. Software

Testing, Verification & Reliability, vol. 1, no. 2, pp. 27-42, 1991.

[24] N. Fenton and M. Neil: “A Critique of Software Defect Prediction Models”. In

IEEE Transactions on Software Engineering, 25(5):676-689, 1999.

[25] N. Fenton and Neil M, “Software Metrics and Risk”, Proc 2nd European

Software Measurement Conference (FESMA’99), TI-KVIV, Amsterdam, ISBN

90-76019-07-X, pp 39-55, 1999.

[26] N. Fenton and M. Neil. “Software Metrics: A Roadmap”. In A. Finkelstein,

editor, The Future of Software Engineering. ACM Press, New York, 2000.

[27] N. Fenton and Ohisson N, “Quantitative Analysis of Faults and Failures in a

Complex Software System”, IEEE Transactions on Software Engineering,

26(8), 797-8 14, 2000.

[28] N. Fenton, Krause P, Neil M, “A Probabilistic Model for Software Defect

Prediction”, IEEE Transactions in Software Engineering, Sept 2001

[29] N. Fenton, Krause P, Neil M, “Software Measurement: Uncertainty and Causal

Modelling”, IEEE Software 10(4), 116-122, 2002

[30] Florac, William A. et al. “Software Quality Measurement: A Framework for

Counting Problems and Defects”. (CMU/SEI-92-TR22) . Pittsburgh, Pa:

Software Engineering Institute, Camegie Mellon Universïty, September 1992.

[31] J.R. Gafffiey, “Estimating the Number of faults in Code,” JEEE Trans.

Software Eng., vol. 10, no. 4, 1984.

[32] Gibbs, W.W. “Software’s Chronic Crisis”. Scientific American (September

1994), 86-95.

Bibliography

106

[33] Gray, A.R. and MacDonell, S.G. (1997) “A Comparison of Techniques for

Developing Predictive Models of Software Metrics.” Information and Software

Technology 39(6), pp425-437, 1997.

[34] M.H. Halstead, “Elernents of Software Science.” Elsevier, North-Holland,

1975.

[35] Hilbum, T. B. and Towhidnejad, M., “Software Quality: A Curriculum

Postscript?”, SIGCSE Bulletin March 2000.

[36] Holland, J., “Adaptation in Natural and Artificial Systems An Introductoty

Analysis with Applications to Biology, Control, and Artificial intelligence”.

MIT Press, 1992.

[37] Jones, Capers, !Software Metrics,” IEEE Computer, pp. 98--100, September,

1994.

[3$] Khaled El-Emam, “A Methodology for Validating Software Product Metrics”,

Technical Report, NRC/ERB-1076, June 2000. 39 pages. NRC 44142.

[39] Khoshgoftaar, T. and D.L. Lanning: A Neural Network Approach for Early

Detection of Program Modules Having High Risk in the Maintenance Phase. J.

Systems and Software, Vol. 29, pp. $5-91, 1995.

t40] B.A. Kitchenham, L.M. Pickard, and S.J. Linkman, “An Evaluation of Some

Design Metrics,” Software Eng J., vol. 5, no. 1, pp. 50-58, 1990.

[41] M. Lipow, “Number of Faults per Line of Code,” IEEE Trans. Software Eng.,

vol. 8, no. 4, pp. 437-439, 1982.

Bibliography

107

[42] Luger, G.F. and Stubblefield, W.A. “Artificial inteffigence.’ In MacMillan

Encyclopedia of Computer Science. New York, NY: MacMillan (1991).

[43] Y. Mao, H. A. Sahraoui and H. Lounis, “Reusability Hypothesis Verification

Using Machine Leaming Techniques: A Case Study”, Proc. of IEEE

Automated Software Engineering Conference, 1998.

[44] R.C. Martin, “Stability”, C++ Report, Feb. 1997.

t45] T.J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng., vol. 2,

no. 4, pp. 30$ - 320, 1976.

[46] T. Mitchel!, “Decision Tree Leaming”, in T. Mitchell, Machine Learning, The

McGraw-Hill Companies, fric, pp. 52-78, 1997.

[47] Musa, John D.; lannino, Anthony; & Okumuto, Kazihra. “Software Reliability

Measurement, Prediction, Application”. New York, N.Y.:McGraw-Hill, 1987.

[48] Neil M, fenton NE, Nielsen L, “Building large-scale Bayesian Networks”, The

Knowledge Engineering Review, 15(3), 257-284, 2000.

[49] N. Ohisson and H. Alberg “Predicting Error-Prone Software Modules in

Telephone Switches, IEEE Trans. Software Eng., vol. 22, no. 12, pp. 886-$94,

1996.

[50] Paulk, Mark C.; Curtis, Bill; & Chrissis, Maiy Beth; “Capability Maturity

Mode! for Software” (CMU/SEI-91-TR-24, ADA 240603). Pittsburgh, Pa.:

Software Engineering Institute, Camegie Mellon University, 1991.

[51] J. Quinlan, “C4.5: Programs for Machine Leaming” Morgan Kaufmann, 1993.

Bibliography

10$

[52] Houari A. Sahraoui, Danielle Azar “Quality Estimation Models Optimization

Using Genetic Algorithms: Case of Maintainability”. In proc. of the European

Software Measurement Conference (FESMA), 1999.

[53] Houari A. Sahraoui, Mounir Boukadoum, Hassan M. Chawiche, Gang Mail,

Mohamed Serhani, “A fuzzy logic framework to improve the performance and

interpretation of rule-based quality prediction models for object-oriented

software”. in proceedings of the 26th Computer Software and Applications

Conference (COMPSAC), 2002

[54] H. A. Sahraoui, M. Boukadoum, H. Lounis, F. Ethève, “Predicting Class

Libraries Interface Evolution: an investigation into machine learning

approaches”, In Proc. of 7th Asia-Pacific Software Engineering Conference,

2000.

[55] Salah Bouktif, Balàzs Kègi, Houari Sahraoui, “Combining Software Quality

Predictive Models: An Evolutionaiy Approach”. In proc. of IEEE International

Conference on Software Maintenance (ICSM), 2002.

[56] lan Sommerville, “Software Engineering”, Addison Wesley.6th Edition, 2001.

[57] P. Winston, “Learning by Building Identification Trees”, in P. Winston,

Artificial Intelligence, Addison-Wesley Publishing Company, pp. 423-442,

1992.

[58] Wolfgang and Banzhaf Genetic Programming, “An Introduction: On the

Automatic Evolution of Computer Programs and Its Applications”. Book,

Morgan Kaufluan Publisher, ISBN 1-55860-510-X, First Edition, 1997.

[59] H. Zuse, “A Frarnework of Software Measurement”, Walter de Gruyter, 1998.

Bibi iography

Appendix A 109

Appendix A Classic Rule-based Prediction Models for Stability

The lst Model: Modeli

C4.5 [release 8] rule generator Mon Jul 30 13:13:44 2001

Options:
File stem <beanb92_cohcomp>

Read 390 cases (11 attributes) from beanb92_coh_comp

Processing tree O

Final rules from tree 0:

Model Modeli

Rule 7:
LCOMB > 16
NPPM <= 10
—> class 0 [50.0%]

Rule 2:
LCOM3 < 16
—> class 1 [95.7%]

Default class: 1

$

Evaluation on training data (390 items)

Rule Size Error Used Wrong Advantage

7 2 50.0% 2 0 (0.0%) 2 (210) 0
2 1 4.3% 351 12 (3.4%) 0 (010)

Tested 390, errors 18 (4.6%) «

ta) (b) <-classified as

370 ta) : class 1
18 2 (b) : class O

Classic Rule-based Prediction Models for Stability

Appendix A 110

The 2’ Model: Model2

C4.5 [release 8] rifle generator

NON < O
DIT < 1
MDS > 31
—> class 0 [45.3%]

Mon Jul 30 13:24:02 2001

$

Evaluation

Rule Size

6 3
4 1

Tested 390,

fa)

369
17

on training data f390 items)

Error Used Wrong

54.7% 4 1 (25.0%)
4.4% 347 12 (3.5%)

errors 18 (4.6%) «

Advantage

2 (311)
0 fOO)

O
1

Options:
File stem <beanb92_her_comp_hid>

Read 390 cases (12 attributes) f rom beanb92_her_comp_hid

Processing tree O

Final rules from tree 0:

Model Model2

Rule 6:

Rifle 4:
NPPM < 17
-> class 1

Default class: 1

[95.6%]

(b)

1
3

<—classified as

fa) : class 1
(b) : class O

Classic Rule-based Prediction Models for Stability

Appendix A 111

The 3rd Mode!: Model3

C4.5 [release 81 rule generator Fri Jul 27 03:11:58 2001

Options:
File stem <beanb94_her_coup>

Read 387 cases (11 attributes) from beanb94_lier_coup

Processing tree O

Final rules from tree 0:

Model Nodel3

Rule 21:
OCMAIC < 7
CUBF > 6
CHM > 24
-> class 0 [94.4%]

Rule 25:
CUBF > 21
CHM > 24
—> class 0 [91.7%]

Rule 17:
NOP > 4
—> class 0 [83.3%]

Rule 13:
CUBF > 8
NOC > 2
—> class O [79.4%J

Rule 16:
OMAEC > 1
NOP > 2
—> class 0 [76.1%]

Rule 8:
OMAEC > 6
DIT > 1
—> class 0 [71.8%]

Rule 18:
CUBF < 6
OMAEC <= 7
NO? <= 1
—> class 1 [91.8%]

Continue in next page

Classic Rule-based Prediction Models for Stability

Appendix A 112

Continued from last page
Rule 15:

OMAEC < 1
NOP < 4
CHN < 24
—> class 1 [88.9%]

Rule 14:
NOP <= 2
CHM < 24
—> class 1 [88.4%]

Default class: 1

$

Evaluation on training data (387 items)

Elle Size Error Used Wrong Advantage

21 3 5.6% 24 0 (0.0%) 11 (1110) O
25 2 8.3% 14 0 (0.0%) 6 (6 0) 0
17 1 16.7% 6 1 (16.7%) 5 (5 0) 0
13 2 20.6% 3 0 (0.0%) 3 (3 0) 0
16 2 23.9% 10 3 (30.0%) 4 (6 2) 0

8 2 28.2% 9 3 (33.3%) 3 (6 3) 0
18 3 8.2% 130 8 (6.2%) 0 (0 0) 1
15 3 11.1% 137 14 (10.2%) 0 (0 0) 1
14 2 11.6% 47 6 (12.8%) 0 (0 0) 1

Tested 387, errors 36 (9.3%)

fa) (b) <-classified as

292 7 fa) : class 1
29 59 (b) : class O

Classic Rule-based Prediction Models for Stability

AppendixA 113

The 4th Model: Model4

C4.5 trelease 81 rule generator Fri Jul 27 03:12:38 2001

Options:
File stem <beanb94_coh_comp_hid>

Read 387 cases (11 attributes) f rom beanb94_coh_comp_hid

Processing tree O

Final rules from tree 0:

Model Model4

Rule 12:
COM <= O
NOM > 5
NOM <= 6
NPPM > 4
DEPCC > O
—> class 0 [82.0%]

Rule 23:
NPPN > 16
DEPCC > 2
—> class 0 [79.6%]

Rule 19:
WMC <= 22
MCC > 17
DEPCC > 2
—> class 0 [63.3%]

Rule 22:
DEPCC <= 2
—> class 1 [86.9%]

Rule 13:
MCC < 17
—> class 1 [86.3%]

Default class: 1

$

Continue in next page

Classic Rule-based Prediction Models for Stability

Appendix A 114

Continued from last page

Evaluation on training data (387 items)
Rule Size Error Used Wrong

12 5
23 2
19 3

7 0 (0.0%)
35 5 (14.3%)
21 6 (28.6%)

26 (10.7%)
5 (10.6%)

Advantage

7 (710)
24 (2915)

9 (156)
O (01O)
0 (010)

O
O
o
1
1

Tested 387, errors 47 (12.1%)

(a) (b) <-classified as

(a) class 1
(b) class O

18.0%
20.4%
36.7%

22 1 13.1% 244
13 1 13.7% 47

288 11
36 52

Classic Rule-based Prediction Models for Stability

AppendixA 115

The 5th Model: Model5

C4.5 [release 81 rule generator Fri Jul 27 03:14:01 2001

Options:
File stem <freel00_coli_coup>

Read 49 cases (10 attributes) f rom freelo0_coh_coup

Processing tree O

Final rules from tree 0:

Model Model5

Rule 5:
CUBF > 7

3 class 1 [95.2%]

Rule 4:
NOP > 2
3 class 1 [89.1%]

Rifle 1:
CUB <= 2
NOP <= 2
3 class 0 [45.3%]

Default class: 1

$

Evaluation on training data (49 items):

Rule Size Error Used Wrong Advantage

5 1 4.8% 28 0 (0.0%) 0 (010)
4 1 10.9% 10 0 (0.0%) 0 (00)
1 2 54.7% 4 1 (25.0%) 2 (3j1) O

Tested 49, errors 4 (8.2%) «

ta) (b) <-classified as

42 1 ta) : class 1
3 3 (b): class O

Classic Rule-based Prediction Models for Stability

Appendix A 116

The 6th Model: Model6

C4.5 [release 8] rule generator Fri Jul 27 03:16:55 2001

Options:
File stem <freel00_her_comp>

Read 49 cases (12 attributes) f rom freel0û_her_comp

Processing tree O

Final rules from tree 0:

Model Model6

Rule 3:
WMCLOC > 42

class 1 [91.7%]

Rule 1:
NOCONT <= O

class 1 [87.1%]

Rule 2:
NOCONT > O
WMCLOC < 42

class 0 [44.1%]

Default class: 1

$

Evaluation on training data (49 items):

Rule Size Error Used Wrong Advantage

3 1 8.3% 31 1 (3.2%) 0 (00)
1 1 12.9% 10 0 (0.0%) 0 f00)
2 2 55.9% 8 3 (37.5%) 2 (513) 0

Tested 49, errors 4 (8.2%)

(a) (b) <-classified as

40 3 fa) : class 1
1 5 (b): class O

Classic Rule-based Prediction Models for Stability

AppendixA 117

The 7th Model: Model7

C4.5 [release 81 rule generator Fri Jul 27 03:18:16 2001

Options:
File stem <treel4_coh_comp>

Read 69 cases (11 attributes) from freel4_coh_comp

Processing tree O

Final rules from tree 0:

Model Model7

Rule 5:
NOM < 9
NPA > 1
DEPCC < 7

class 0 [93.0%]

Rule 4:
NPA < 1

class 1 [83.3%]

Default class: 1

$

Evaluation on training data (69 items)

Rule Size Error Used Wrong Advantage

5 3 7.0% 19 0 (0.0%) 19 (1910) O
4 1 16.7% 43 5 (11.6%) 0 (010)

Tested 69, errors 7 (10.1%) «

fa) (b) <—classified as

fa) : class 1
7 19 (b) : class O

Classic RuIe-based Prediction Models for Stability

Appendix A 118

The 8th Mode!: Model8

CUBF > 12
3 class 0

OCMAIC > 1
NOP > 1
3 class 1

$

Evaluation

Rule Size

4 1
3 2
2 1

Tested 69,

on training data (69 items)

Error Used Wrong

11.5% 22 1 (4.5%)
6.7% 19 0 (0.0%)

15.3% 28 5 (17.9%)

errors 6 (8.7%) «

fa) (b)

42 1
5 21

<-classified as

f a) : class 1
(b) : class O

C4.5 [release 81 rule generator Fr1 Jul 27 03:19:02 2001

Options:
File stem <freel4_coup_her>

Read 69 cases (11 attributes) from freel4_coup_her

Processing tree O

Final rules from tree 0:

Model Model8

Rule 4:

Rule 3:

[88.5%]

[93 .3%]

[84.7%]

Rule 2:
CUBF <= 12
3 class 1

Default class: 1

Advantage

20 (21J1)
0 (010)
O (00)

o
1
1

Classic Rule-based Prediction Models for Stability

Appendix A 119

The 9th Model: MoUel9

C4.5 [release 81 rule generator Fri Jul 27 03:19:56 2001

Options:
File stem <j avamapper_coh_hercomp>

Read 17 cases (18 attributes) from javamapper_coh_her_comp

Processing tree O

Final rules from tree 0:

Model Model9

Rule 1:

Rule 3:

Rule 2:

coh < 0.11448
NOCONT < O

class 1 [79.4%]

NOCONT > O
class 0 [75.8%]

coh > 0.11448

class 0 [70.0%]

refault class: O

$

Evaluation on training data (17 items):

Tested 17, errors 1 (5.9%)

ta) (b) <-classified as

6 1 ta): class 1

(b) : class O

Rule Size Error Used Wrong Advantage

1 2 20.6% 6 0 (0.0%) 6 (610)
3 1 24.2% 5 0 (0.0%) 0 (010)
2 1 30.0% 6 1 (16.7%) 0 (010)

1
O
o

Classic Rule-based Prediction Models for Stability

Appcndix A 120

The 10th Model: ModellO

C4.5 [release 81 rule generator Fri Jul 27 03:20:38 2001

Options:
File stem <j avamapper_coup_her_comp>

Read 17 cases (18 attributes) f rom javamapper_coup_her_comp

Processing tree O

Final rules from tree 0:

Model ModellO

Rule 1:

Rule 3:

Rule 2:

OMAEC < O
) class 1

DIT > 1
• class 1

[75.8%]

[50.0%]

OMAEC > O
DIT < 1

class

Default class: O

$

0 [87.1%]

Advantage

5 (510)
2 (210)
0 (010)

fa) (b)

.,

.,

<-classified as

fa) : class 1

(b) : class O

Evaluation

Rule Size

1 1
3 1
2 2

Tested 17,

on training data (17 items)

Error Used Wrong

24.2% 5 0 (0.0%)
50.0% 2 0 (0.0%)
12.9% 10 0 (0.0%)

errors 0 (0.0%) «

1
1
O

Classic Rule-based Prediction Models for Stability

AppendixA 121

The 11th Model: Modelli

C4.5 [release 8] rule generator Tue Jul 31 01:28:34 2001

Options:
File stem <jigsaw2o5_coh_coup>

Read 868 cases (10 attributes) from jigsaw2o5_coh_coup

Processing tree O

Final rules from tree 0:

Model Modelil

Rule 14:

coh > 0.033735
COMI > 0.16667
COMI < 0.875
OCMAIC > 10

class 0 [75.8%]

Rule 3:
ccli < 0.033735
COM < 0.15789
OCMAIC > 2
OCMAIC <= 4

CUBF > 4
CUBF < 7

class 0 [73.3%]

Rule 1:
OCMAIC <= 2

) class 1 [97.1%]

Rule 6:
ccli > 0.033735
OCMAIC < 10

class 1 [93.5%]

Rule 13:
coh > 0.033735
COMI <= 0.16667

class 1 [93.0%]

Default class: 1

$

Continue in next page

Classic Rule-based Prediction Models for Stability

Appendix A 122

Evaluation on training data (868 items)

(b) <-classified as

3 fa) : class 1
20 (b) class O

Continued Erom last page

Rule Size Error Used Wrong Advantage

14 4 24.2% 5 0 (0.0%) 5 (50) o
3 6 26.7% 18 3 (16.7%) 12 (1513) O
1 1 2.9% 375 8 (2.1%) 0 (010) 1
6 2 6.5% 408 29 (7.1%) 0 (010) 1

13 2 7.0% 26 2 (7.7%) 0 (010) 1

Tested 868, errors 47 (5.4%) «

fa)

801
44

Classic Rule-based Prediction Models for Stability

AppendixA 123

The 12th Model: Modell2

C4.5 [release 81 rule generator Fri Jul 27 03:22:35 2001

Options:
File stem <jigsawl0_her_comp>

Read 744 cases (12 attributes) from jigsawlo_her_comp

Processing tree O

Final rules from tree 0:

Model Modell2

Rule 3:
NON > O
MOS > 27
DEPCC <= 9
—> class 0 [50.0%]

Rule 5:
NON > O
WMC < 107
WNCLOC > 434
—> class 0 [50.0%]

Rule 1:
MOS < 27
—> class 1 [99.3%]

Rule 2:
NON <= O
—> class 1 [98.2%]

Default class: 1

$

Evaluation on training data (744 items)

Rule Size Error Used Wrong Advantage

3 3 50.0% 2 0 (0.0%) 2 (20) O
5 3 50.0% 2 0 (0.0%) 2 (2O) O
1 1 0.7% 568 2 (0.4%) 0 tOO)
2 1 1.8% 159 7 (4.4%) 0 tOlO)

Tested 744, errors 9 (1.2%) «

ta) (b) <—classified as

731 ta) : class 1
9 4 (b): class O

Classic Rule-based Prediction Models for Stability

Appendix A

The 13th Model: Mode 13

124

C4.5 [release 8] rule generator

Options

Fri Jul 27 03:23:54 2001

NPPM <= 17
—> class 1 [99.6%]

Rule 1:
NPA < 8
—> class 1 [99.6%]

Balle 4:
DIT > 1
—> class 1 [99.3%]

Rule 3:
NON <= O
DIT < 1
NPA > 8
NPPM > 17
-> class O

Default class: 1

$

Evaluation on training data (371 items):

Rule Size Error Used Wrong Advantage

2 1 0.4% 331 0 (0.0%) 0 (010) 1
1 1 0.4% 22 0 (0.0%) 0 (010) 1
4 1 0.7% 14 0 (0.0%) 0 (010) 1
3 4 50.0% 2 0 (0.0%) 2 (210) 0

File stem <jigsaw2l2_her_comp>

Read 371 cases (14 attributes) trom jigsaw2l2_her_comp

Processing tree O

Final rules from tree 0:

Model Modell3

Rule 2:

[50.0%]

Tested 371, errors 0 (0.0%) «

)a) (b) <-classified as

369)a) t class 1
2 (b) t class O

Classic Rule-based Prediction Models for Stability

Appendix A

The 14th Model: Modell4

125

C4.5 [release 8] rule generator Sat Jul 28 20:47:49 2001

Options:
File stem <jigsaw2l2_coh_coup>

Read 947 cases (10 attributes) from jigsaw2l2_coh_coup

Processing tree O

Final rules from tree 0:

Model Modell4

Rule 4:

Rule 2:

Rule 1:

Rule 3:

coh > 0.13095
OCMAIC > 6
NOC > 1
-> class O

OCHAIC < 6
—> class 1

NOC < 1
-> class 1

[50.0%]

[99.5%]

[99.3%]

coh <= 0.13095
—> class 1 [99.3%]

Default class: 1

$

Evaluation on training data (947 items)

Tested 947, errors 4 (0.4%) «

ta) (b) <-classified as

941
4

ta) : class 1
2 (b) : class O

Rule Size Error Used Wrong Advantage

4 3 50.0% 2 0 (0.0%) 2 (210)
2 1 0.5% 776 2 (0.3%) 0 (010)
1 1 0.7% 157 2 (1.3%) 0 (010)
3 1 0.7% 12 0 (0.0%) 0 (010)

O
1
1
1

Classic Rule-based Prediction Models for Stability

Appendix A 126

The 15th Model: Modeli 5

C4.5 [release 8] rule generator

Options:
File stem <voji06_coh_coup>

Fri Jul 27 03:29:38 2001

Read 31 cases (10 attributes) from voji06_coh_coup

Processing tree O

Final rules from tree 0:

Model Model5

Rule 1:

Rule 3:

Rule 2:

COM <r Q
—> class 1

OCMAIC > 1
-> class 1

COM > O
OCMAIC < 1
-> class O

Default class: 1

$

[94.4%]

[92.2%]

[31.4%]

Evaluation on training data (31 items)

Rule Size Error

1 1 5.6%
3 1 7.8%
2 2 68.6%

Used Wrong

24 0
4 0
3 1

Advantage

0 (010) 1
0 (010) 1
1 (21) O

Tested 31, errors 1 (3.2%)

ta) (b) <-classified as

28 1 ta) : class 1
2 (b) : class O

(0.0%)
(0.0%)

(33.3%)

Classic Rule-based Prediction Models for Stability

Appendix A 127

The 16th Model: Modell6

C4.5 [release 8] rule generator

Options:
File stem <vojio6_her_comp>

Fri lui 27 03:30:25 2001

Read 31 cases (14 attributes) from vojio6_her_comp

Processing tree O

Final rules from tree 0:

Model Modell6

Rule 1:

Rule 3:

NOM < 7
-> class 1 [94.8%]

MDS > 8
—> class 1 [91.2%]

MDS < 8
NOM > 7
-> class O

Default class: 1

$

Rule Size Error

1 1 5.2%
3 1 8.8%
2 2 50.0%

(0.0%)
(0.0%)

2 0 (0.0%)

Advantage

o (010)
O (OO)
2 (210)

Tested 31, errors 0 (0.0%)

fa) (b) <-classified as

29 (a) : class 1
2 (b) : class O

Rule 2:

[50.0%]

Evaluation on training data (31 items)

Used

26
3

Wrong

O
O

1
1
O

Classic Rule-based Prediction Models for Stability

Appendix A 12$

The 17th Model: Modell7

C4.5 [release 8] rule generator Fri Jul 27 03:30:25 2001

Options:
File stem <voji06_her_comp>

Read 31 cases (14 attributes) f rom vojiO6_her_comp

Processing tree O

Final rules from tree 0:

C4.5 [release 81 rule generator Fri Jul 27 03:31:05 2001

Options:
File stem <vojio6_coup_her>

Read 31 cases (11 attributes) f rom vojio6_coup_her

Processing tree O

Final rules from tree 0:

Model Modell7

Rule 2:
DIT > 1
—> class 1 [92.2%]

Rule 1:
OCMAIC <= 2
DIT < 1
MDS > 6
—> class 0 [50.0%]

Default class: 1

$

Evaluation on training data t31 items):

Rule Size Error Used Wrong Advantage

2 1 7.8% 17 0 (0.0%) 0 (010)
1 3 50.0% 2 0 (0.0%) 2 (210) 0

Tested 31, errors O t0.0%) «

ta) (b) <-classified as

29 ta) : class 1
2 (b) : class O

Classic Rule-based Prediction Models for Stability

Appendix A 129

The 18th Model: Modell8

C4.5 [release 8] rule generator Fri Jul 27 03:32:10 2001

Options:
File stem <voji06_coh_comp>

Read 31 cases (il attributes) from voji06_coh_comp

Processing tree O

Final rules from tree 0:

Model Modell8

Rule 1:

Rule 2:

NOM < 7
—> class 1 [94.8%]

NOM > 7
NOM < 8
—> class 0 [50.0%]

Default class: 1

$

Evaluation

Rule Size

1 1
2 2

Tested 31,

on training data (31 items)

Error Used Wrong

5.2% 26 0 (0.0%)
50.0% 2 0 (0.0%)

errors 0 (0.0%) «

(a) (b)

29
2

<-classified as

(a) : class 1

(b) : class O

Advantage

o (00)
2 (20)

1
O

Classic Rule-based Prediction Models for Stability

Appendix A 130

The 19th Model: Modell9

C4.5 [release 8] rule generator Sat Jul 28 20:48:31 2001

Options:
File stem <jigsaw2l2_coh_coup_her>

Read 947 cases (15 attributes) from jigsaw2l2_coh_coup_her

Processing tree O

Final rules from tree 0:

Model Modell9

Rule 2:
LCOM3 > 84
DIT <= 1
—> class 0 [31.4%]

2 ta) : class 1
4 (b) : class O

Rule 5:
coh < 0.20789
NOC > 1
DIT > 6
—> class 0 [31.4%]

Rule 1:
LCOMB < 84
DIT <= 6
—> class 1 [99.7%]

Rule 4:
NOC <= 1
—> class 1 [99.3%]

Default class: 1

$

Evaluation on training data (947 items)

Rul e

2
5
1
4

Si ze

2
3
2
1

Error

68.6%
68.6%

0.3%
0.7%

Used

3
3

867
65

Wrong

1 (33.3%)
1 (33.3%)
1 (0.1%)
1 (1.5%)

Advantage

1 (211)
1 (211)
o (OjO)
0 (010)

Tested 947, errors 4 (0.4%)

(b) <-classified as

0
o
1
1

ta)

939
2

Classic Rule-based Prediction Models for Stability

Appendix A 131

The 20th Model: Model2O

C4.5 [release 8] rule generator

Options:
File stem <jigsaw2l2_coh_her>

LCOM3 > 84
DIT < 1
—> class 0 [31.4%]

[31.4%]

LCOMB <= 84
DIT <= 6
—> class 1 [99.7%]

NOC < 1
—> class 1 [99.3%]

68 . 6%
68.6%

0.3%
0.7%

3 1 (33.3%)
3 1 (33.3%)

867 1 (0.1%)
65 1 (1.5%)

Sat Jul 28 20:49:09 2001

Advantage

1 (211)
1 (2j1)
o (010)
0 (010)

o
o
1
1

Tested 947, errors 4 (0.4%)

(a) (b) <-classified as

939 2 (a) : class 1
2 4 (b) : classO

Read 947 cases (11 attributes) from jigsaw2l2_coh_her

Processing tree O

Final rules from tree 0:

Model Model2O

Rule 2:

Rule 5:
coh
NOC
DIT
->

Rule 1:

< 0.20789
>1
>6
class O

Rule 4:

Default class: 1

$

Evaluation on training data (947 items)

Rule Size Error Used Wrong

2
5
1
4

2
3
2
1

Classic Rule-based Prediction Models for StabiÏity

Appendix A 132

The 21st Model: Model2l

C4.5 [release 8] rule generator

Options:
File stem <jigsaw2l2_her_comp>

NPPM <= 17
—> class 1 [99.6%]

Rule 1:
NPA < 8
—> class 1 [99.6%]

Rule 4:
DIT > 1
—> class 1 [99.3%]

Rule 3:
NON < 0
DIT < 1
NPA > B
NPPM > 17
-> class 0

Default class: 1

$

Sat Jul 28 20:51:01 2001

Evaluation on training data (371 items)

Tested 371, errors 0 (0.0%) «

fa) (b) <-classified as

369 ta) : class 1
2 (b) : class O

1
1
1
o

Read 371 cases (14 attributes) from jigsaw2l2_her_comp

Processing tree O

Final rules from tree 0:

Model Model2l

Rule 2:

[50.0%]

Rule Size Error Used Wrong Advantage

2 1 0.4% 331 0 (0.0%) 0 tOlO)
1 1 0.4% 22 0 (0.0%) 0 (010)
4 1 0.7% 14 0 (0.0%) 0 f010)
3 4 50.0% 2 0 (0.0%) 2 f210)

Classic Rule-based Prediction Models for Stability

AppendixA 133

The 22rn’ Model: ModeI22

C4.5 [release 8] rule generator Tue Jul 31 01:29:40 2001

Options:
File stem <jigsaw2os_her_comp>

Read 868 cases (14 attributes) from jigsaw205_her_comp

Processing tree O

Final rules from tree 0:

Model Model22

Rule 3:
DIT < 2
MDS > 14
MDS < 17
NPA <= O
DEPCC <= 20
—> class 0 [92.6%]

Rule 20:
NON < O
CI-1M <= 37
NPA > 2
DEPCC > 20
—> class 0 [75.8%]

Rule 16:
NOM > 5
NPA > O
NPPM < 4
—> class 0 [63.0%]

Rule 23:

NON < O
DIT < 4
DEPCC > 36
DEPCC < 44
—> class 0 [63.0%]

Rule 8:

NOC > 5
DIT < 1
—> class 0 [50.0%]

Rule 15:
DIT > 2
NOM <= 5
—> class 1 [97.5%]

Continue in next paqe

Classic Rule-based Prediction Models for Stability

Appendix A 134

Con tinued from last page
Rifle 2:

MDS <= 14
NPA < O
—> class 1 [96.5%]

Rule 24:
NON < O
DIT > 4
—> class 1 [96.0%]

Rule 25:
NON > O
—> class 1 [95.3%]

Rule 11:
DIT > 1
NPA > O
DEPCC < 20
—> class 1 [94.9%]

Rule 7:
NOC <= 5
DIT < 1
DEPCC <= 20
—> class 1 [94.6%]

Default class: 1

$

Evaluation on training data (868 items)

Rule Size Error Used Wrong Advantage

3 5 7.4% 18 0 (0.0%) 18 (1810) 0
20 4 24.2% 5 0 (0.0%) 5 (5 0) 0
16 3 37.0% 3 0 (0.0%) 3 (3 0) 0
23 4 37.0% 3 0 (0.0%) 3 (3 0) 0

8 2 50.0% 2 0 (0.0%) 2 (2 0) 0
15 2 2.5% 105 1 (1.0%) 0 (0 0) 1

2 2 3.5% 200 5 (2.5%) 0 (0 0) 1
24 2 4.0% 51 0 (0.0%) 0 (0 0) 1
25 1 4.7% 73 1 (1.4%) 0 (0 0) 1
11 3 5.1% 158 8 (5.1%) 0 (0 0) 1

7 3 5.4% 225 14 (6.2%) 0 (0 0) 1

Tested 868, errors 33 (3.8%)

(a) (b) <-classified as

804 (a) : class 1
33 31 (b) : class O

Classic Rule-based Prediction Models for Stability

AppendixA 135

The 23td Model: Model23

C4.5 [release 8] rule generator Tue Jul 31 01:28:34 2001

Options:
File stem <jigsaw2o5_coh_coup>

Read 868 cases (10 attributes) from jigsaw205_coh_coup

Processing tree O

Final rules from tree 0:

Model Model23

Rule 14:
ccli > 0.033735
COMI > 0.16667
COMI <= 0.875
OCMAIC > 10
—> class 0 [75.8%]

Rule 3:
coli < 0.033735
COM < 0.15789
OCMAIC > 2
OCMAIC <= 4
CUBF > 4
CUBF <= 7
—> class 0 [73.3%]

Rule 1:
OCMAIC < 2
—> class 1 [97.1%]

Rule 6:
ccli > 0.033735
OCMAIC <= 10
—> class 1 [93.5%]

Rule 13:
coli > 0.033735
COMI < 0.16667
—> class 1 [93.0%]

Default class: 1

$

Continue in next page

Classic Rule-based Prediction Models for Stability

Appendix A 136

Evaluation on training data (868 items):

Tested 868, errors 47 (5.4%)

ta) (b) <-classified as

801 3 ta) : class 1
44 20 (b) : class O

Continued from last page

Rule Size Error Used Wrong Advantage

14 4 24.2% 5 0 (0.0%) 5 (510) 0
3 6 26.7% 18 3 (16.7%) 12 (1513) 0
1 1 2.9% 375 8 (2.1%) 0 (01O) 1
6 2 6.5% 408 29 (7.1%) 0 (OjO) 1

13 2 7.0% 26 2 (7.7%) 0 (010) 1

Classic Rule-based Prediction Models for Stability

Appendix B 137

Appendix B

No.1 Experiment

Experiment Resuits and Combination Models:

• Data environrnent: Traing_1 & Testing_1.

• Number of generation: 100
• Maximum population size in a generation: 160.
• Crossover probability: 0.8

Iteration Mutation Probability Elitist Best Fitness Value

lst 5% 1 70.69%
2’ 5% J 7j]7%
3rd 5% 10% 70.37%
4th 10% 1 70.69%
5th 10% 1 73.10%
6th 10% 10% 70.69%

Fitness value of combïnation model in training dataset: 73.10%
Fitness value ofcombination model in testing dataset: 72.10%
Best fitness value of original models in training: 69.08%
Best fitness value of original models in testing: 68.23%

The best combination model with the
fitness value: 73.10%

Rule 011114:
coh > 0.083735
COMI > 0.16667
COMI < 2.875
OCMAIC > 12.0

—> class 1 [75.8%]

Rule 010422:
DEPCC < 18.0

—> class 1 [86.9%]

Rule 010308
OMAEC > 6.0
DIT > 1.0

—> class 1 [71.8%]

Rule 011106
coli > 0.083735
OCMAIC < 13.0

—> class 0 [93.5%)

Rule 011113
coh > 0.133735
COMI <= 0.16667

—> class 1 [93.0%]

Default class:0
Fitness Value:0.7310789049919485

Experiment Results

Appendix B 13$

No.2 Experiment:

• Data environment: Traing_2 & Testing_2.
• Number ofgeneration: 100
• Maximum population size in a generation: 160.
• Crossover probabïlity: 0.8

Iteration Mutation Probability Elitist Best Fitness Value

yst 5% 1 70.37%
5% 1 68.92%

3rd 5% 10% 70.37%
4th 10¾ 1 72.30%
5th 10% 1 70.69%
6th 10% 10% 70.37%

Fitness value ofeombination model in training dataset: 72.30%
Fitness value ofcombination model in testing dataset: 70.30%
Best fitness value of original models in training: 69.08%
Best fitness value ofongrnal models in testrng 66 23%

The best combination model with the fitness value:
72.30%

Rifle Naine: Ru1e011114
coh > 0.033735
COMI > 0.16667
COMI < 0.875
OCMAIC > 10.0

—> class 0 [75.8%]

Rule Naine: Ru1e010325
CUBF > 21.0
CHM > 37.0

—> class 0 [91.7%]

Rule Naine: Ru1e010317
NOP > 11.0

—> class 1 [83.3%]

Rule Name: RuleOlllO6
coh > 0.083735
OCMAIC <= 13.0

—> class 1 [93.5%]

Rule Naine: RuleOllll3
coh > 0.033735
COMI < 0.16667

—> class 1 [93.0%]

Default class:1
Fitness Value:0.7230273752012882

Experiment Resuits

Appendix B 139

No.3 Experiment:

• Data environrnent: Traing_3 & Testing3.
• Number of generation: 100
• Maximum population size in a generation: /60.
• Crossover probability: 0.8

Iteration Mutation Probability Elitist Best Fitness Value

lst 5% J 70.04%
2’ 5% 1 71.49%
3rd 5% 10% 70.37%
4th

J 71.65%
5th 10% 1 70.69%
6th 10% 10% 70.69%

Fitness value ofcombination model in training dataset: 71.65%
Fitness value ofcornbination model in testing dataset: 71.65%
Best fitness value otoriginal models in training 68.11%
Best fitness value of original models in testing: 69.10%

The best comiDination model with the
fitness value: 70.65%

Rule 012314:
coh > 0.033735
COMI > 0.16667
COMI <= 0.875
OCMAIC > 10.0

—> class 0 [75.8%]

Rule 010325:
CUBF > 21.0
CHM > 24.0

—> class 0 [91.7%]

Rule 010317:
NOP > 4.0

—> class 1 [83.3%]

Rule 012306:
coh > 0.083735
OCMAIC <= 10.0

—> class 0 [93.5%]

Rule 012313:
coh > 0.033735
COMI <= 0.16667

—> class 1 [93.0%]

Default class: 1
Fitness Value:0.71658615136876

Experiment Resuits

Appendix B 140

No.4 Experiment:

• Data environment: Traing_4 & Testing_4.
• Number of generation: 100
• Maximum population size in a generation: 160.
• Crossover probability: 0.8

Iteration Mutation Probability Elitist Best Fitness Value

ySt 5% J 7149%
2’’ 5% J 7133%
3rd 5% 10% 71.65%
4th 10% 1 71.81%
5th] 7133%
6th 10% 10% 71.65%

Fitness value of combïnation modei in training dataset: 71.81%
Fitness value cf combination model in testing dataset: 73.25%
Best fitness value oforiginal models in training: 70.37%
Best fitness value ofonginal models in testrng 7022%

Experiment Resuits

Appendix B 141

No.4 Experiment: (Continzedfrorn last page)

The best co;nbination rnodelwith the fitness value: 71.81%
Rule Name: Ru1e010321

OCMAIC < 10.0
CUBF > 6.0
CHM > 24.0

—> class 0 [94.4%]

Rule Name: Ru1e010423
NPPM > 16.0
DEPCC > 2.0

—> class 0 [79.6%]

Rule Name: Ru1e010419
WMC <= 22.0
MCC > 17.0
DEPCC > 2.0

—> class 1 [63.3%]

Rule Name: Ru1e010313
CUBF > 9.0
NOC > 2.0

—> class 1 [79.4%]

Rule Name: Ru1e010316
OMAEC > 1.0
NO? > 2.0

—> class 1 [76.1%]

Rule Name: Ru1e010308
OMAEC > 6.0
DIT > 3.0

—> class 1 [71.8%]

Rule Name: Ru1e010318
CUBF < 6.0
OMAEC < 7.0
NO? < 1.0

—> class 0 [91.8%]

Rule Name: Ru1e010315
OMAEC <= 1.0
NO? < 4.0
CHN <= 26.0

—> class 1 [88.9%]

Rule Name: Ru1e010314
NO? < 2.0
CHM <= 24.0

—> class 1 [88.4%]

Default class:1
Fitness Value:0.7181964573268921

Experiment Resuits

Appendix B 142

Data environment: Traing5 & Testing_5.
Number of generation: 100
l’Iaxirnum population size in a genetation: 160.
Crossover probability: 0.8

Iteration Mutation Probability Elitist Best Fitness Value

lst 5% 1 69.88%
21K1 5% 1 70.04%
3rU 5% 10% 70.20%
4th 10% 1 69.88%
5th 10% 1 70.85%
6th 10% 10% 70.20%

Fîtness value ofcombination model in training dataset: 70.85%
Fitness value of combination model in testing dataset: 70.20%
Best fltness value of original models in training: 68.59%
Best fitness value of original models in testing: 68.43%

No.5 Experiment:

.

.

Experiment Resuits

Appendix B 143

No.5 Experiment: (ContinuedJrom last page)

The hest combrnation model with the tïtness value 70 8i¾
Rule 010321:

OCMAIC <= 7.0
CU3F > 6.0
CHM > 24.0

—> class 0 [94.4%]

Rule 010325:
CUBF > 21.0
CHM > 24.0

—> class 0 [91.7%]

Rule 010317:
NOP > 4.0

—> class 1 [83.3%]

Rule 010313:
CUBF > 8.0
NOC > 2.0

—> class 0 [79.4%]

Rule 010316:
OMAEC > 1.0
NOP > 2.0

—> class 0 [76.1%]

Rule 010308:
OMAEC > 6.0
DIT > 1.0

—> class 0 [71.8%]

Rule 010318:
CUBF < 6.0
OMAEC <= 7.0
NOP < 1.0

—> class 1 [91.8%]

Rule 010315:
OMAEC < 1.0
NOP < 4.0
CHM < 24.0

—> class 1 [88.9%]

Rule 010314:
NOP < 3.0
CHM < 24.0

—> class 1 [88.4%]

Default class: 1
Fitness Value:0.7085346215780999

Experiment Resuits

Appendix B 144

Data environment: Traing_6 & Testing_6.
Number of generation: 100
Maximum population size in a generation: 160.
Crossover probability: 0.8

Iteration Mutation Probability Elitist Best Fitness Value

lst 5% J 7037%
2’’ 5% 1 68.92%
3rd 5% 10% 70.37%
4th 10% J 72.62%
5th 10% 1 70.69%
6th 10% 10% 70.37%

Fitness value ofcombination model in training dataset: 72.62%
Fitness value of combination model in testing dataset: 70.11%
Best fitness value ofonginal models in training 68 76%
Best fitness value of original models in testing: 64.51%

No.6 Experiment:

.

.

.

.

The bcst combrnation model with thc fitncss value 72 65%
Rule 012314:

coli > 0.033735
COMI > 0.16667
COMI <= 0.875
OCMAIC > 10.0

—> class 0 [75.8%]

Rule 010325:
CUBF > 21.0
CHM > 37.0

—> class 0 [91.7%]

Rule 010317:
NOP > 4.0

—> class 1 [83.3%]

Rule 012306:
coli > 0.083735
OCMAIC <= 13.0

—> class 0 [93.5%]

Rule 012313:
coh > 0.033735
COMI <= 0.16667

—> class 1 [93.0%]

Default class: 1
Fitness Value:0.7262479871175523

Experiment Resuits

Appendix B 145

No.7 Experiment:

• Data cnvironment: Traing_7 & Testing_7.
• Number of generation: 100
• Maximum population sïze in a generation: 160.
• Crossover probability: 0.8

Iteration Mutation Probability Elitist Best fitness Value

1 5% 1 70.85%
2’’ 5% 1 69.883%
3td 5% 10% 69.88%
4th 10% J 69.88%
5th 10% 1 69.88%
6t 10% 10% 69.88%

Fitness value ofcombination model in training dataset: 70.85%
Fitness value of combination model in testing dataset: 69.31%
Best fitness value of original models in training: 68.27%
Best fitness value of original models in testing: 66.54%

Experiment Resuits

Appendix B 146

No.7 Experiment: (Continuedftom last page)

The best combination model with the fitness value: 70.85%

Rule 010321:
OCMAIC < 7.0
CUBF > 6.0
CHM > 24.0

—> class 0 [94.4%]

Rule 010325:
CUBF > 21.0
CHM > 24.0

—> class 0 [91.7%]

Rule 010317:
NOP > 4.0

—> class 1 [83.3%]

Rule 010313:
CUBF > 8.0
NOC > 3.0

—> class 1 [79.4%]

Rule 010316:
OMAEC > 1.0
NOP > 2.0

—> class 1 [76.1%]

Rule 010308:
OMAEC > 6.0
DIT > 3.0

—> class 1 [71.8%]

Rule 010318:
CUBF < 6.0
OMAEC < 7.0
NOP < 2.0

—> class 1 [91.8%]

Rule 010315:
OMAEC < 1.0
NOP <= 4.0
CHM < 24.0

—> class 1 [88.9%]

Rule 010314:
NOP <= 2.0
CHM <= 24.0

—> class 1 [88.4%]

Default class: O
Fitness Value:0.7085346215780999

Experiment Resuits

AppendixB 147

No.$ Experïment:

• Data environment: Traing_8 & Testing_8.
• Number ofgeneration: 100
• Maximum population size in a generation: 160.
• Crossover probability: 0.8

Iteration Mutation Probability Elitist Best fitness Value

lst 5% 1 69.88%
2’ 5% 1 69.88%
3rd 5% 10% 70.04%
4th 10% 1 69.88%
5th 10% 1 70.04%
6th 10% 10% 69.88%

Fitness value of combmation model in trainmg dataset 70 04%
fitness value of combination mode! in testîng dataset: 68.12%
Best fitness value of ongrnal models in training 68 72%
Best fitness value of original models in testing: 67.12%

Experiment Resuits

Appendix B 14$

No.8 Experiment: (Continuedfi-om last page)

The combination mode! with the best fitness value: 70.04%
Rule 010321:

OCMAIC < 10.0
CUBF > 6.0
CHM > 24.0

—> class 0 [94.4%]

Rule 010325:
CUBF > 21.0
CR11 > 24.0

—> class 0 [91.7%]

Rule 010317:
NO? > 4.0

—> class 1 [83.3%]

Rule 010308:
OMAEC > 6.0
DIT > 3.0

—> class 1 [71.8%]

Rule 010318:
CUBF < 6.0
OMAEC < 7.0
NO? < 1.0

—> class 1 [91.8%]

Rule 010315:
OMAEC < 1.0
NO? < 4.0
CR11 < 24.0

—> class 1 [88.9%]

Rule 010314:
NO? < 3.0
CR11 < 24.0

—> class 1 [88.4%]

Default class: 1
Fitness Value:0.7004830917874396

Experiment Resuits

Appendix B 149

Data environment: Traing9 & Testing_9.
Number of generation: 100
Maximum population size in a generation: 160.
Crossover probabïlity: 0.8

iteration Mutation Probability Elitist Best Fitness Value

lst 5% 1 71.65%
2’ 5% 1 72.14%
3rd 5% 10% 72.30%
41h 10% 1 71.65%
5th 10% 1 71.65%
6th 10% 10% 72.14%

Fitness value ofcombination mode in training dataset: 72.30%
Fitness value ofcombination model in testing dataset: 72.30%
Best fitness value of original models in training: 70.04%
Best fitness value of original models in testing: 69.12%

No.9 Experïment:

.

.

Experiment Resuits

Appendix B 150

No.9 Experiment: (Continuedfrom last page)

The best combination mode! with the fitness value: 72.30%

Rifle 010321:
OCMAIC < 7.0
CUBF > 6.0
CHM > 24.0

—> class 0 [94.4%]

Rule 010325:
CUBF > 21.0
CHM > 24.0

—> class 0 [91.7%]

Rule 010317:
NO? > 4.0

—> class 1 [83.3%]

Rule 010313:
CUBF > 8.0
NOC > 2.0

—> class 1 [79.4%]

Rule 010316:
OMAEC > 1.0
NOP > 2.0

-> class 1 [76.1%]

Rule 010308:
OMAEC > 6.0
DIT > 2.0

—> class 0 [71.8%]

Rule 010318:
CU3F < 6.0
OMAEC < 7.0
NO? <= 3.0

—> class 1 [91.8%]

Rule 010315:
OMAEC < 1.0
NO? < 4.0
CHM < 24.0

—> class 1 [88.9%]

Rule 010314:
NO? <= 4.0
CHM <= 24.0

—> class 1 [88.4%]

Default class: O
Fitness Value:0.7230273752012882

Experiment Resuits

Appendix B 151

No.1O Experiment:

• Data environment: Traing_lO & Testing_lO.
• Number of generation: 100
• Maximum population size in a generation: 160.
• Crossover probability: 0.8

Iteration Mutation Probability Elitist Best Fitness Value

lst 5%] 7133%
21kd 5% 1 70.04%
3rd 5% 10% 70.04%
4th 10% 1 70.37%
5th 10% J 70.04%
6th 10% 10% 70.04%

fitness value of combination model in training dataset: 71.33%
Fitness value ofcombination model in testing dataset: 70.37%
Best fitness value of original models in training: 68.43%
Best fitness value of original models in testing: 70.37%

Experiment Resuits

AppendixB 152

No.1 O Experiment: (continuedfrom Ïast page)

The best combination model with the fitness value: 71.33%
Rule 010321:

OCMAIC < 7.0
CUBF > 6.0
CHM > 24.0

—> class 0 [94.4%]

Rule 010325:
CUBF > 21.0
CHM > 24.0

—> class 0 [91.7%]

Rule 010317:
NO? > 4.0

—> class 1 [83.3%]

Rule 010318:
CUBF < 6.0
OMAEC < 7.0
NO? < 1.0

—> class 1 [91.8%]

Rule 010315:
OMAEC <= 1.0
NO? < 4.0
CHN <= 24.0

—> class 1 [88.9%]

Rule 010314:
NO? < 2.0
CHM < 24.0

—> class 1 [88.4%]

Default class: 1
Fitness Value:0.7133655394524959

Experiment Resuits

