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C RESUME

Le propos principal de cette thèse est d’étudier les propriétés magnétiques des espèces

paramagnétiques possédant des électrons non appariés. Cette étude a été réalisée à l’aide

de la théorie de la fonctionnelle de la densité (DFT).

Afin de simuler correctement les paramètres de résonance magnétique, nous proposons

une approche combinée mécanique quantique/mécanique moléculaire (QM/MM). La

région quantique est tronquée par des potentiels capuchons à un électron quantique

(QCP) qui sont paramétrés de façon à reproduire les structures moléculaires comportant

tous les électrons ainsi que les distributions de charge. Les effets de l’environnement sont

modélisés en incluant le champ électrique, causé par le domaine MM, dans l’Hamiltonien

DfT. Cette approche montre que les effets électrostatiques dus à la partie MM transfèrent

principalement à la partie QM à travers les orbitales Kohn-Sham non soumises au champ

et donc implicitement aux énergies correspondantes. Nous examinons plusieurs systèmes

modèles partant de petites molécules organiques et allant jusqu’à des modèles

biologiques. Grâce à la simplicité de l’implémentation, l’approche présentée ici nous

permet d’étudier les paramètres magnétiques de modèles réalistes notamment des sites

actifs biologiques.

Nous présentons une expression générale pour les déplacements RMN paramagnétiques

qui est indépendante des paramètres empiriques et permet des applications de calculs.

Pour un cas particulier (doublet Kramers spatialement non dégénéré) dans lequel il

n’existe pas d’états excités accessibles thermiquement, l’équation exécutable pour les

déplacements paramagnétiques est dérivée en utilisant un Harniltonien effectif de spin et

la statistique de Boltzmann. Les déplacements chimiques RMN paramagnétiques sont

décomposés en trois contributions dans notre équation: une contribution orbitalaire, une

contribution de contact de fermi et enfin une contribution de pseudo-contact. Les

contributions individuelles sont déterminées par les calculs ab initio des paramètres de

résonance magnétique. Afin de valider ce travail, des calculs DFT ont été réalisés pour

(J les déplacements chimiques RMN de certains complexes d’oxydes d’azote, de
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protéine/cuivre bleu et d’irnidazole cyanidrique ferrique. Les études théoriques,

comparées avec les travaux expérimentaux, fournissent trois indications principales : (1)

l’approche présentée ici dans le cadre de la DFT donne des simulations fiables et

prometteuses. (2) les déplacements orbitalaires sont facilement approxirnés par les

déplacements chimiques RMN dans des environnements à couche fermée similaires. (3)

les déplacements de contact de Fermi dominent le déplacement chimique total et sont très

sensibles aux changements structurels.

Mots-clés: théorie de la fonctionnelle de la densité, QM/MM, QCP, Hamiltonien effectif

de spin, déplacement orbitalaire, déplacement de contact de Fernii, déplacement de

pseudo-contact, paramètres de résonance magnétique.
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ABSTRACT

Ihe main concem ofthis thesis is to investigate the magnetic properties ofparamagnetic

species which have unpaired electrons. The present study is based on density fttnctional

theory (DFT).

In order to simulate magnetic resonance parameters efficiently, we propose a combined

quantum mechanics/moÎecular mechanics (QM/MM) approach. The quantum region is

truncated by one-electron quantum capping potentiais (QCPs) which are parameterized to

duplicate ail-electron motecular structures and charge distributions. The effects from the

surroundings are modeled by including the electric field, due to the MM domain, in the

DFT Hamiitonian. This approach shows that the electrostatic effects from the MM part

mainly transfer to the QM part irnplicitÏy through the fieid-free Kohn-Sham orbitais and

through the corresponding energies. We examine severai mode! systems ranging from

small organic moiecutes to bioiogical models. Because of the simplicity of the

impiementation, the present approacli enables us to investigate the magnetic parameters

of large, realistic modeis ofbioiogicai active sites.

For paramagnetic NMR shifis, we provide a general expression which is independent of

empiricai parameters and give the recipe for practical calculations. For a special case

(spatially non-degenerate Kramers doublet) with no thermaily accessible excited states,

the working equation for the paramagnetic shifts is derived by using an effective spin

Hamiltonian and Boltzmann statistics. The paramagnetic NMR shifts are decornposed

into the three contributions within the equation: the orbital, Fermi contact, and

pseudocontact contributions. The individuai contributions are determined by the first

principles caiculations of the magnetic resonance parameters. For validation, the DFT

calculations are carried out for the NMR chemical shifis of some nitroxides, blue copper

proteins, and ferric cyanide-imidazoie complexes. The theoretical studies, compared with

the experimentai works, indicate mainiy three things: (1) the present approach within the

DFT framework provides reiiabie and promising simulations; (2) the orbitai shifts are

readily approximated by the NMR chemical shifis in simitar, closed-sheli environments;
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(3) the Fermi contact shifis dominate the total shifis and they are very sensitive to

structural changes.

Key words: Density functional theory, QM/MM, QCP, effective spin Hamiltonian, orbital

shifi, Fermi contact shift, pseudocontact shift, magnetic resonance parameters.
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INTRODUCTION

Most fields of magnetic resonance parameters (e.g. NMR chemical shifts, nuclear spin-

spin coupling constants, ESR A-tensors and g-tensors) have already been conquered by

flrst-princip les electronic structure methods [l-5]. Therefore, the thesis focuses on two

major, retated subjects which are beyond the limit of the present methods. One is a

combined quantum mechanics/molecular mechanics (QM/MM) approach which enables

us to simulate the magnetic resonances ofmacromolecuÏes including proteins and nucleic

acids. The other is NMR chemical shifts of paramagnetic species (open-sheli systems)

which have flot been exp Ïored properly yet by flrst-princip les methods.

Despite remarkable progress in computational chemistry in recent years, first-principles

calculations for the magnetic resonance parameters of large biological and chemical

systems are stiil far from routine. However, since most magnetic properties are local, we

can divide the large system into the small reactive parts which are treated by high level

quantum mechanics (QM) and the bulk which is treated by molecular mechanics (MM).

This hybrid method bas two intrinsic problems: (1) how to partition the system into the

QM and MM regions; (2) how to treat interactions between two regions. Here, we

propose a QM/MM method to overcome the problems and to keep the balance between

accuracy and expediency for evaluation of the magnetic resonance parameters of large

systems such as proteins and nucleic acids. In the present approach, the frontier bonds

between QM and MM regions are capped by one-electron quantum capping potentials

(QCPs) which are parameterized to mimic the electronic character of a methyt group at

the QM/MM boundary [6]. The advantages of this approach is that QCPs can be

incorporated in most DfT programs with minimal code modification since they follow

the format and concept of conventionat effective core potentials (ECP) [7]. Furthermore,

some artificial effects of the link atom methods [8] and the special basis set

manipulations ofthe localized self-consistent field (LSCF) [9] and the generalized hybrid

orbital (GHO) [10] methods can be avoided and the number of electrons in the QM

boundary can be reduced greatly compared to with the pseudobond approach [11]. In this

approach, the QM parts are influenced by the the electrostatic effect of the environment
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represented by MM partial atomic charges. This description appears to be adequate in

calculation of magnetic resonance parameters, as long as the MM part is not directly

connected to the magnetic nuclei, and polarization effects of the QM part by MM partial

charges dorninate interactions between the QM and MM subsystems.

The importance of nuclear magnetic resonance (NMR) spectroscopy for studies of

paramagnetic species (open-sheli system), particularly in biomolecules, cannot be

overestimated [12-14]. Paramagnetic NMR spectra serve as the source of tong-range

structural data [15-17] and provide a sensitive probe of the magnitudes and signs of the

spin density distributions [18,19]. Unique features of paramagnetic spectra are

represented by spectral line broadening and a huge expansion of the chemical shifi scale.

These resuit from the fact that the magnetic nuclei of paramagnetic species are strongly

influenced by local magnetic fields arising from unpaired electrons. For the proper

interpretation of the spectra, theoretical studies, which can give the direct relationship

between the spectra and molecular and electronic structures, should be accompanied by

experiments. So far, many theoretical approaches have been carried out to investigate the

spectra [19-23]. However, frankly speaking, they are not pure theoretical approaches

because they strongly depend on empirical parameters. Recent dramatic progress in the

first-principles calculation ofmagnetic resonance parameters finally gives us a possibility

to predict the spectra without any help of empirical factors. Hence, in the thesis, in order

to achieve the goal, first, we derive a complete, general expression for the paramagnetic

NMR shielding and give the recipe for practical calculations and, second, for a special

case (spatially non-degenerate Kramers doublet) with no thenrialty poputated excited

states, the working formalisms for the paramagnetic shift are derived by using an

effective spin Hamiltonian and Boltzmann statistics.

The rest of thesis is organized as follows: In Chapter 1, we provide a short review of the

unit systems and general theories for electrornagnetism. The general features of DFT are

also explained, especially for exchange-correÏation functionals, since this work is based

on the DfT method. fina)ly, the theories and equations of various magnetic resonance

C parameters (such as NMR chemical shielding tensors, nuclear spin-spin coupling tensors,
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electron-nuclear hyperfine tensors, and EPR g-tensors) are reviewed. We focus on the

non-relativistic, one-component case, where magnetic parameters are treated as second

order properties, for practical reasons. In Chapter 2, we provide basic theories about

QCPs and demonstrate how QCPs and MM charges can be handled in Kohn-Sham (KS)

equations and how magnetic parameters are affected by them and this approach is appÏied

to the magnetic pararneter calculation for several mode! systems. In Chapter 3, we

provide a complete, general expression for the paramagnetic chemical shifts using the

Boltzrnann statistics and derive working equations, which purely depend on the first

principles calculations, for an isolated Kramers doublet state. This approach is applied to

the chemical shifi caïculations of several organic radicaïs and metafloprotein models.

FinaÏly in last chapter, some global conclusions are presented and possible future works

are discussed.

o
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Chapter 1. Theoretical Background

1.1. Electromagnetism

1.1.1. Units in Electromagnetism

Prior to exploring magnetic properties in quantum rnechanics, the system ofunits should

be mentioned. In spite of the attempted standardization to the MKS-SI system of units,

the cgs-Gaussian system of units is often used in electromagnetism [1]. Conversions

between the two systems may not be achieved easily because of the different definition

for the electric charge q. Electromagnetic units are based on two relationships;

Coulornb’s law for the electric charge and the law of Biot and Savart for the electric

current.

Coulomb’s law (electrostatic system)

MKS cgs Gaussian-cgs

f
I f-JiJL f_9JL

4r) f t

where q is electric charge and r is the distance between charges. The constant Lo is the

permittivity ofthe vacuum and has the value of 107”47cc2 C2/Nm2.

The Iaw ofBiot and Savart (electromagnetic system)

MKS cgs Gaussian-cgs

f P1
f =2L f =2--L

2r r r c2r
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which relates the force F per length L between long, parallel conductors to the currents

i, and /, at the distance r. The constant p0 is the perrneability of the vacuurn and has

the value of4t X iO N/A2.

In the MKS system the unit of electric charge is the Coulomb (C) which is defined from

Ampere’s law (IC lAls) not from Coulomb’s law. Since the unit ofelectric charge is

decided, the constants é0 and p() are fixed by the related laws.

In the cgs system there is no fundarnental unit of electric charge q. By Coulomb’s law

the unit ofelectric charge q may be measured in dyne’ 2cm. The unit ofthe electric field

E is given in dyne’ 2/cm by the relationship F qE, and the electric potential V is

dyne’ 2 by the relationship E = V V. However, the square of the potential V2 is clearly

not force (dyne). This means that the units can flot show how rnany factors of the charge

occur in a given equation. This defect can be rernoved by the consistent use of the unit

‘esu’ although it is not fundamental like the unit ‘Coulomb’ in the MKS system. Once the

unit ‘esu’ is introduced, the unit of electric fleld E is dyne/esu and that of electric

potential V is esulcm (‘ erg/esu statvolt). The magnetic field B has its own unit

‘Gauss’ rather than dyne’ 2Icrn. This serves the same purpose as the introduction of the

unit ‘esu’ on the electric side. In the cgs system the unit of electric current is abampere

and this is not equal to statampere ( esulsec). Therefore the relationship between the two

units must be determined. By experiment or by theory relating it to other fundarnental

constants ‘abampere’ is equal to ‘statampc’ (where c is the velocity of light). The

Gaussian-CGS system uses statampere and hence the constant c is included explicitly.

The ftrndamental equations are readily reduced to dimensionless form.

In quantum mechanics, the Gaussian units are ofien combined with the atomic units

where h (Planck’s constant divided by 2it), m (electronic mass) and e (electronic charge)

are ail numerically unity. By the definition, the units of energy and length are redeflned

as “Kartre&’ (E0 4.359$ x 1J’ erg) and “Bohr” (ao 5.291$ X 1O cm), repectively.

Since in the Gaussian system electromagnetic units depend on mechanical units, they are
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also redefined as: (1) electronic charge (e force1 2/distance (Eo/ao)1 4.80325 X

10’° esu) (2) electric field (e/a02 1.715272 x i07 esu/cm2) (3) magnetic field (e/ao2c =

2.350540 x i09 G).

Table 1 .1 Conversions of some units and expressions between MKS-SI and

Guassian-cgs Systems.

Quantity MKS-SI Gaussian-cgs

Distance Meter 102 cm

force Newton I « dyne

Energy Joule i07 erg

Charge Coulomb 2.998x109 esu

Current Ampere 2.998x1 statarnpere(esu/sec)

Electric Potential Volt 11299.8 statvolt

Electric field Volt/meter 1/29980 statvoltlcm

Magnetïc field Tesla I gauss

4t/c2

47tEo 1

B B/c

1.1.2. Charged Particles in a Magnetic Field ; Minimal Coupling [2]

The electric field f and the magnetic field B are governed by Maxwell’s equations. The

explicit forms ofthe equations are given by:

(in the MKS-SI system)

VB=0 VxB=p0E0+p0j (I.la)

VxE=——— (l.lb)
E()
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(In the Gaussian-cgs system)

VB=O VxB=.+i (l.2a)
ct e

VE=4irp VxE=L (l.2b)
e 3t

where p0 is the permeability of free space, E is the permittivity of free space, p is the

charge density and j is the current density. The first terms ofEqs. (l.la, L2a) show that

ail magnetic field unes which enter a particular closed surface must eventually leave the

surface; thus there are no magnetic monopoles or sources of ‘magnetic charge’. The

second terms of Eqs. (L la, 1.2a) show that a time-varying electric field and a current

density generate a magnetic field. The first terms of Eqs. (1 . lb and 1 .2b) indicate that the

amount of total electric flux through a given closed surface is proportional to the arnount

of electric charge in the volume contained by that surface. The second terms of Eqs.

(1.lb, 1.2b) indicate that a magnetic field changing in time acts as a source for a eÏectric

field.

A scalar potnetial Ø and a vector potential A can be introduced in terrns of the fields E

and B (in the Gaussian system):

B=VxA (1.3)
e

An electron (negatively charged particle) at a position r in the fields E and B will

experience a force (the Lorentz force)

F
= _e[E(r)+xB(r)1 =_e[_ _VØ(r)+!b<(VxA(r))1 = -VU (1.4)

o
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O The generalized potential U in the fields E and B can be obtained from the eq (1.4):

U=(é•A)+eç (1.5)

The Lagrangian is

L=T_U=±mé2_é .A—eØ (1.6)
2 c

and the momentum becomes

3L e
p=—=mr——A (1.7)

e

Finally, the Hamiltonian is given by:

H ZE .p—L =± mé2+eØ=_J_(p+A)2 +eØ (1.8a)
2 2m e

If atomic units are introduced, the Hamiltonian can be expressed as:

H=!(p+aA)2+Ø (1.$b)

where a(= 1 / e) is the fine structure constant.

from now on, the atomic units based on the Gaussian system are employed in ail

equations. Ail systems concemed here are time-independent.

o
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• 1.2. Density Functional Theory

In quantum mechanics, the conventional wave function based methods are very

complicated to be used because the wave function cannot be probed experimentally and

depends on 4N variables, three spatial and one spin variables for each of the N electrons.

In fact, they cannot handle the interesting systems in biology and material science, which

contain many atoms and electrons. The complexity can be diminished by repiacing the

wave function and its associated Schrôdinger equation with the electron density and its

associated calculational scheme since the electron density depends only on the three

spatial variables (x, y, z) and that can be measured by X-ray diffraction.

The density functional theory (DFT) [31 uses the electron density as the main variable.

The electron density is defined as

(1.9)

This function determines the probability of finding any of the N electrons within the

volume element dr1 while the other N-1 electrons have arbitrary positions and spins in

the state represented by ‘V. Electrons are indistinguishable and the probability of finding

any electron at this position is, therefore, just N times the probability for one particular

electron. The electron density is a positive function and goes to zero at infinity (r —> oo)

and gives the total number of electrons when integrated over ail space,

p(r1)dr N (1.10)

In 1964, Hohenberg and Kohn justified theoretically the electron density as frmndamental

quantity within quantum mechanics [41. In their paper, they showed that a unique

mapping between the ground state electron density and the external potential Vext exists

based on the variational principle. This is the first Hohenberg-Kohn (HK) theorem. It

implies that given a density, only one potential and wave function correspond to that
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density, so ail properties are functionals of the ground state density. This is indeed the

case since any property may be determined as the expectation value of the corresponding

operator and the wave function is determined by the density.

From now on, we will be concemed with systems of electrons moving in the field of

fixed nuclei, so the external potential Vext is just the nuclear field. In this case, the

HarniÎtonian is

= P + + fr,f. (1.11)

—ZA

1=1 i=I A=1 I rA 11 I

where A rnns over the M nuclei while j and j denote the N electrons in the system. The

operator P describes the kinetic energy ofthe electrons and the remaining two operators

VNe and j2, represent the attractive electrostatic interaction between the nuclei and the

electrons and the repulsive potential due to the electron-electron interaction, respectively.

If the external potential VNe is taken for each density p(r) according to the first HK

theorem, a functional E[pl yields the ground state energy of the system having this p as

its ground state density. On the other hand, if a flxed extemal potential VNe is chosen, for

which is the ground state and E0 the corresponding ground state energy, and we

evaluate for each p(r) the expectation value of the Hamiltonian with the fixed VNe for

a functional E[p] will have Eo as Iower bound according to the variational

principte

EJpJ=<PjpJ P+Ç +Ç IIp]> =Ttpj+VJpJ+SV\..p(r)drE) (1.12)

This is usually refered to as the second HK theorem. It is cleary shown by the HK

theorems that the electron density can replace the complicated wave function if one seeks

O to catcutate the ground state energy. However, it shouÏd be noted that the 11K threoms are
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(D only of importance from a theoretical point of view since the theorems are based on the

exact functionals. In reaiity, we do flot know the exact functionals and the theorems do

flot give any information about the unknown functionals. In 1965, Kohn and Sham

provided a creative and practicai way to soive many intrinsic probiems ofthe DFT [5].

1.2.1. Kohn-Sham Approach

In fact, so far, many pragmatic DfT models have been developed such as Thomas-fermi

[61 and reiated models [3] that are based on the ideai uniform electron gas system and in

which ail parts are expressed as pure functionais of the electron density. Unfortunateiy, it

turns out that ail methods based on the Thornas-Fermi scheme are flot successfui in

chemicai applications because it is hard to obtain the relationship between the spatial

distribution ofthe eiectrons and their velocities which are needed for the kinetic energy.

In order to overcome the kinetic energy functional problem, Kohn and Sham introduced

the orbital concept of a corresponding non-interacting system into DFT. In the

Schrôdinger equation (fJP = F9’ : time-independent, non-reiativistic case) [7], the

Hamiitonian is fixed and the wave function is the oniy variable. Hence, in the full

interacting system, ail information on the interactions is in the wave function. The wave

functions can be described by a linear combination of Siater determinants ‘-V.

‘=C19 (1.12)

In this system, the electron density and the kinetic energy can be represented using the

naturai spin orbitais Ø1 which are the elements of the orthonormal set in which one

electron density matrix (vide infra) is diagonal and their occupation numbers n1. The

explicit forms are given by
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O p(r)=»1 IØj(r,s)12 (1.13)

and

T=n <ØI_ V2 Ø,> (1.14)

On the other hand, in a non-interacting system, the Kamiltonian J-1 does flot have the

electron-electron interaction terms and therefore the wave funtion P5 can be described

by a single Slater determinant.

J=_iV+Zfr (1.15)

and

= I øi 2 ...ø I (1.16)

In the Schrôdinger equation of the non-interacting system = EP), the external

potential V (‘ E/,) can be adjusted in order to have the same ground state properties

(energy, density,...) as those of the full interacting system. In this system, the electron

density and the kinetic energy can be represented by

p(r)=I(r)l2 (1.17)

and
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T=<Ø1I_V2IØ> (1.18)

The N iowest eigenstates ç are determined by the self-consistent solution of the one

electron Kohn-Sham equation which is derived by the variationai search for the minimum

of the energy functional EtpI in the space of orbitais with the constraint of

orthonomial orbitais. The Kohn-Sharn (KS) orbital equation can be obtained,

= =»Ø (1.19)

and after the diagonalization of the Hermitian matrix
,, by a unitary transformation of

the orbitals the cannonical form of KS equation is

=[_v +,}. =. (1.20)

To get the explicit form of the energy functional Ejpj can be rewritten as

Ejpj =< I fis I 1>

= T5[pJ + JtpI + EjpJ + Ejpj (1.21)

= I _! ,

>
4ptn1)p()dr1d

+ Ejp1 + f V1(r )p(r1 )dr1
Ir1—r2I

The KS effective potential is defined by

V,1(ri)
= + + V,(r1)

.5p(r1) Yp(r1)
(1.22)

=‘I
P(r2) di + V(r1)+ fr,(r1)
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In KS theory, the kinetic energy T tpl is flot the true kinetic energy TjpJ and there are

non-classical electron-electron repuision terms. The kinetic energy correction and the

non-classical contributions are treated in the exchange-correlation functional.

ftpI = T I1 + Jjpj + E€. [p] (1.23)

and

E[p] = T[pJ—Ttp1+ J/,[pj_Jjpj (1.24)

1f we know the exact form of jpJ, the KS equation is exact. In principie, the exact

ground state properties can be obtained from the solution of the equation. Unfortunately,

it is impossible to know the exact form of the E. tpl. However, so far, many accurate

functionals have been deveioped and now the DfT methods are comparable to post

Hartree-Fock methods.

1.2.2. Approxï mate Exchange-Correlation Functïonals

from the KS formalism, it is shown that most of contributions to the energy can be

treated exactly, including the major fraction of the kinetic energy. Ail remaining

unknown parts are collected into E. [p]. To make the KS equation feasibie, the oniy

thing to be done is to build the approximate functionals as accurate as possible.

1.2.2.1. Density Matrices and Pair Correlation Functions

In the Schr&Iinger equation, the Hamiitonian operator contains only one- and two

electron operators so that the total energy can be expressed in terms of the probabilty of

finding one electron and pairs of electrons in space. Here, we introduce the concepts of
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density matrices including the concepts offirst and second order spinless density matrices

[8]. The density matrix

(1.26)

represents the probabilty distribution associated with a solution of the Schr5dinger

equation with the Hamiltonian operator ft. lii the above equation, x1 denotes the spatial,

r,, and the spin, o, coordinates of electron I. The first order spinless reduced density

matrix is obtained by integrating the product YP* over ail variables, except the spatial

coordinates ofone electron, and summing over spin,

(1.26)

The electron density (1.9) is the diagonal element ofthis matrix,

p(rl)=pl(i,i)=Nf...SIP(rIalxx3...xN)I2 dJfdx2dx3...dxN (1.27)

The second order spinless density matrix can be deflned as:

p7(rr7,r)
= 2 î• .f(1 1r2a2x3...x)’(ra1r7a2x3 •••XÀ[ )da1du,dx3 ...dxA,

(1.28)

The pair density is

p2(r1,r2) = p,(r1r2,r1r2)

N(N—1) (1.29)

= 2
SSIhJ(xIx2x3xÀ,)I2djldj2dxidxA,
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the diagonal element of the second order density matrix and corresponds to the

probability of finding a pair of electrons simultaneously within two volume element dr

and dr2, while the remaining N-2 electrons have arbitrary positions and spins. This

probability distribution contains ail information about electron corretation and gives the

total number of distinct pairs of electrons when integrated over the whole space with

respect to i and r2. From the antisyrnmetry of the wave function, it is found that the

probabiÏty of finding two electrons with the same spin at the same point in space is zero,

which is a statement ofthe Pauli principle. This property gives an effect on the movement

of electrons and it is known as exchange or Fermi correlation. The electrons of

antiparallel spins also move in a correlated fashion, which prevent the electrons from

coming too close to each other and this effect is known as Coulomb correlation. The

influence of the Femii and Coulomb correlation can be expressed on the pair density by

separating the pair density into two parts:

p2ft1,r2) = p(r1)p(r2)j+f(r1;r2)j (1.30)

where f(ri;r2) is often called the correlation factor. The hole function is defined as the

difference between the conditional probability Q(r1;r) and the uncorrelated probability

of finding an electron at r2, where Q(r1;r2) is the probability of finding any electron at

r2 if one electron exists already at r. The hole function takes the form:

= Q(r1;r2)— p(r2)

p(r r) (1.31)
= 2 1’ 2

— p(r,) = p(r2)J(r1;r2)
p(r1)

The name ‘hole’ originates from the fact that correlation leads to a depletion of the

electron density for r2 doser to r1 compared to the uncorrelated case. From (L31) we

can see the important result that the integration of the hole function at r2 gives rise to the

charge ofone electron:



Chaptet 1. Theretiea/ Background 1 4

j’ Ïi(r;r)cÏr2 =—1 (1.32)

1.2.2.2. Permi and Coulomb ilotes

The electrons in an external field move in a correlated way which means that they aiways

keep a certain distance to each other. This can be pictorialÏy described by the introduction

of the idea of the exchange-correÏation hole. With the concept of the hole function the

electron-electron repulsion potential energy can 5e defined as:

i<j ‘U

_ij’p2(rI;r2)UrUr (1.33)
2 r1, -

p(r )p(r)
Ut Ur,

+ j p(r )h (r1 ; r,
Ur1 Ur,

2 12 — 2 ‘12 —

in the above equation, the first term represents the classical Coulomb interaction. Here it

should be noted that this term bas the unphysical self-interaction which has to be

removed. (For example, this Coulomb term still exists in a one-electron system but it wiIl

be canceÏled by the Fermi hole.) The second term denotes the interaction between the

charge density and the charge distribution of the hole. The hole function contains the

correction for the self-interaction as well as the non-classical corretation effects [9]. The

hole function can be expressed as a sum ofthe Fermi hole and the Coulomb hole:

k (r1; r2) = h (r1; r2) + h (r1; r,) (1 .34)

The frmnction hJr1;r,) represents the hole in the probability density of electrons with

same spin due to the Pauh principle and the function h(r1;r,) denotes the hole resulting

from the electrostatic interaction which has contributions for electrons ofeither spin.
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First, let us focus on the Fermi hole. 1f the total hole is just governed by the Fermi hole,

the pair density can be expressed as:

p7(r1,r,) = p(r )jp(r7) + (1.35)

The fermi hole has an important property:

fhx(ri;r7)dr7=—1 (1.36)

1f there is one etectron of spin is already known to be at ri, the conditional probability

of electrons of the same spin at r7 integrates to N-l. Hence, the reference electron is

removed from the distribution. The Fermi hole function has for 2 — I (implying same

spins) a depth equal ro the density of electrons with the same spin as the reference

electron

h(r7—÷r1;r1)=—p(r1) (1.37)

and zero depth for opposite spin electrons

h(r, —r1,u, a1;r1)=O (1.38)

As a result, the Fermi hole removes the unphysical self-interaction of the Coulomb

repulsion and confirms the Pauli principle that two electrons of the same spin cannot be

at the same position in space. In addition, this leads to a considerable advantage when we

define the Coulomb hole.

The Coulomb hole is defined as the difference between total exchange-correlation hole

and the Fermi hole
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(1.39)

From equations (1.32) and (1.36), the definition is obvious that the Coulomb hole

integrates to zero over ail space:

hJr;r2)dr2 =0 (1.40)

Electrons with opposite spins are correlated to each other by the Coulomb hole. The

Coulomb hole is negative at the postion r1 of the reference electron since it originates

from the electrostatic repulsion which keeps electrons apart. On the other hand, the

Coulomb hole is positive and largest at the position r7 of the probe electron, which is

confirmed by the condition (1.40).

1.2.2.3. The Adiabatic Con nection

In the KS theory, the kinetic energy is derived from the non-interacting system and thus

the kinetic energy difference between the real and the reference systems should be

included in the exchange-correlation functional [pi. This can be achieved by the

adiabatic connection process [10]. Two extreme systems (the non-interacting reference

system and the fully interacting real system) are connected smoothly by the coupling

strength parameter À which ranges from O to 1. In this case, the Ram iltonian takes the

form:

(1.41)
i<i lu



C
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The electron density is not changed by À since the external potential is adjusted for

each value of À. For the case of À O, the system is non-interacting tî2° = while

À ‘1 denotes that the system is fully interacting (12e = In terms of the adiabatic

connection the energy of the fully interacting system can be expressed as:

E21 = E0 +f dE2 (1.42)

Here, the infinitesimal energy change dE is the expectation value of the corresponding

Hamiltonian:

dff2 = + dÀ1 (1.43)

and, using the hole forrnalism, takes the forrn:

dE2 f p(r)ddr + dÂf
p(r)p(r’)

drdr’ + ç p(r)h(r; r’)
drdr’ (1.44)

2 r—rI 2 Ir—rI

From the equations (1.42 and 1.44), the explicit energy expression ofthe fuÏly interacting

system can be taken as:

E1 =
+ f p(r)d9,,dr

+ I p(r)p(r’)
drdr’

+ ç p(r) (r; r’) drdr’ (1.45)
2 r—rI 2 Ir—rI

where is the coupling-strength integrated exchange-correlation hole and can be

defined as:

(r; r’) f Ï, (r; r’)d% (1.46)
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Ç In consequence, from eq (1.45), it is shown that the energy ofthe fully interacting system

can be obtained based on the kinetic energy of the non-interacting system if the explicit

form of h. is defined.

1.2.2.4. Local Spin Density Approximation (LSDA)

It is impossible to find an exact exchange-correlation functional forrn ofthe truc electron

density. Hence, the pragmatic goal of DFT is to find a good approximate functional. Ail

approximations start from the ideal model system, the homogeneous electron gas system,

where electrons move on a uniformly distributed positive charge background. In this

model, the electron density is a constant everywhere, which means that any local density

can represent the electron density of the whole system. in the local density approximation

(LDA), the exchange-correlation energy can be obtained from the electron density at a

point in space. In the local spin density approximation (LSDA), the electron density is

simply replaced by the spin density (pa(r) and p(r)), which gives additionat

flexibility to the functional.

from the homogenous electron gas model, the exchange functional bas a simple, explicit

form:

/ 1/3

E’ =—
Ç(pa(r)4/3 +p(r)413)dr (1.47)

2 42r)

which was derived by Dirac ifl. On the other hand, there is no expiicit form of the

correlation functionat derived by mathematics. The most popular functional was made by

Vosko, Wilk and Nusair (VWN) [12] who used a Padé approximation to interpolate the

results from a Monte-Carlo simulations carried out by Ceperly and Aider [13]. The VWN

correlation functionai takes the form:
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Ejpa,pj = p(r)E(pa,p)dr (1.48)

and

jG_xo)fl+

2b ( Q bx L X(x) J
I I— (1.49)

Q 2x + b) X(x0) 2(b + 2x0)
tan’(’

Q 2x+b

Kere, X(x) = x2 + bi + e, Q = (4e — b2 )112 x0, b and e are constants. The Wigner

Seitz radius r is related to the density:

1/3

r =t’—-—’ (1.50)

In spite of the drastic approximation (the use of the uniform electron gas model), LSDA

gives fairly good resuits for equilibrium structures and vibrational frequencies for

covalently coordinated molecules, which are comparable to or even better than the

Hartree-fock approximation. Part of the success of LSDA seems to be that the exchange

correlation hole of the uniform electron gas satisfies most of the important properties (in

eqs 1.36 and 1.37) established for the exact exchange-correlation bote [10(b)] and the

spherically averaged LSDA hole is a good approximation to the exact one in the bonding

region where the exact hole becomes more symmetric with respect to the reference

electron than in the separated atoms [14]. tn an atom, the exact hole is displaced toward

the nucleus, while the LSDA hole stiil remains in the bond since it is aiways aftached to

the reference electron. This causes significant deviation from the exact differential

exchange energy upon bond formation. The LSDA hole wilÏ have a good accuracy for

smalÏ distance between the reference and the probe electrons because in the local density

approximation the exchange-correlation hole is around the reference electron as if the

neighborhood were part of a uniform electron gas of constant density. However, in realG
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system with considerabÏy varying charge density, the LSDA resuits will get worse the

larger the distance between two electrons. From the reasons, LSDA resuits show a

overbinding tendency which makes the molecules overstabilized compared to the

separated atoms [15] and can not treat long-range interaction such as hydrogen bonding

[16] and van der Waals interaction.

1.2.2.5. Generalized Gradient Approximation (GGA)

Inhomogeneities of the electron density can be taken into account by including the higher

derivatives of the density into the ftmnctional. The GGA functional can be generally

written as:

E1[PaPfl1 =Çf(p,pfi,Vp,Vpfl)dr
(1.51)

— +

The GGA exchange energy takes the form:

= — (1.52)
—a,fl

where s is the reduced density gradient for spin :

s(r) = I Vp(r) I (1.53)
p0.(r)

s0. is to be understood as a local inhornogeneity pararneter.

For the function F, there are two main classes. The first one is based on the GGA

exchange energy ftinctional devised by Becke (B$8) [17].
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F
= fiç;

(1 54)
1+6flsinh’(s)

Becke imposed the correct —1/r asymptotic behavior for the exchange energy density and

used one parameter fi fitted on the exact atomic HF exchange energy of noble gas

atoms. The Perdew-Wang9l (PW91) functional is also related to this approach.

The second class of GGA exchange ftmctionals uses a rational fttnction of the reduced

density gradient for F. Perdew used the second-order expansion with a cut-off radius to

impose conditions (1.36) and (1.37) to the exchange hole function [18]. With this

procedure, he was able to compute atornic exchange energies within I % of the exact 1-IF

exchange energy. further simplification of the mode! Ted to the well-known Perdew

Wang86 (PW86) exchange functional [19]:

1/15

fPIUSS

=11•296ç/
+14 +0.2 (1.55)

t (24r2)”3J (242r2)3) (243r)”3j]

which is parameter frce. The B$6 functional and the PBE functional are also in this class.

The corresponding GGA correlation functionats have more complicated mathematical

forms and no physical significance [201. Becke showed that the inclusion of GGA

exchange and correlation functionals using the combination of B88 for exchange and

PW9I [21] for correlation reduced the absolute error and the overbinding tendency of

LSDA [22]. The GGA functionals give better resuits for hydrogen bonded systems and

for thermochemistry than the LSDA.

However, stilÏ there are obstacles that the GGA can not overcome. Since the LDA

exchange-correlation potentiaÏ dose flot have the right asymptotic behavior at long

distance, adding the gradient correction does not lead to significant improvement. The

bad asymptotic behavior of LDA is not greatly corrected by the addition of gradient

corrections [23].
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1.2.2.6. meta-Generalized Gradient Approximation (meta-GGA)

To improve the GGA approximation, more factors can be included into the functional. in

the meta-GGA functionals, the Laplacian of the density V2p(r) and the kinetic energy

density r(r) are added to the GGA [24]. By the definition of Becke [25], the kinetic

energy density takes the form:

(r) = I VØ(r) 2 (1.56)

The meta-GGA functional can be generally expressed as:

E!c1G tp(r)1
=

f(p(r), Vp(r), V 2p(r), r(r))dr (1.57)

These types of functionals give better resuits than the pure GGA functionaïs for many

chemical systems. Part of the success cornes from the orbital-dependent exchange

correlation energy. However, to add the kinetic energy density into the exchange

correlation energy, extra computational work is needed since r(r) is an implicit

functional of the density.

1.2.2.7. Hybrid Functionals

Generally, the exchange contributions are rnuch larger than the corresponding correlation

effects. If the exchange energy of a Siater determinant is used in DfT which can be

computed exactly, the enor due to the LSDA or GGA exchange approximation can be

reduced. The direct sum of the exact KS exchange energy and the LSDA or GGA

correlation energy are unphysical by definition. Becke proposed an idea where the exact

G
KS exchange energy is mixed with a traditional exchange-correlation fiinctional using

some pararneters [26]. He introduced the adiabatic connection concept into this problem.
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At , = O, the non-interacting limit, the exchange-correlation energy is the exact KS

exchange energy without correlation. Hence, the exact KS exchange energy is used at

= O and LSDA or GGA is used at ) = 1. With this idea, Becke introduced hybrid

functionals:

E’9’ =E +a(E’° ES)+btXEB%% +cAE’9’ (1.58)

where a0.20, b0.72 and c’0.81. The three paremeters were deterrnined by a linear

least-squares fit on an experimental reference data set [27]. The first parameter a

represents the correction for the LSDA or GGA exchange energy near À = O lirnit. A

fraction of about 20-25 % exact exchange is reasonable for ail hybrid schernes on purely

theoretical grounds [28]. The rnost popular hybrid functional, B3LYP [29], can be

obtained by the replacement ofthe PW91 correlation functional by the LYP correlation

functional in (1.58). B3LYP gives better resuits than B3PW9I and other pure GGA

functionaïs for organic molecules. In particular, hybrid rnethods represent a significant

improvement over GGA and LSDA functionals for transition metal cornpounds and

systems including hydrogen bonds since they provide better asymptotic behavior of

exchange ftinctionais.

1.2.2.8. Optimized Effective Potential (0EP) method

1f the exact KS exchange energy form is incorporated into the KS energy formula, the

oniy approximation ofthis case cornes frorn the conelation energy functional:

E?fI{øia,ø!fl}1 =TsI{øia,øifl}]+J[{øja,ø!fl}l+Sv(,v(p(r)dr
(1.59)

+ E’° j{çb , Ø }] + E j{çl5 , ç/ }J

where the exact KS exchange energy takes the forrn:



G
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—

j Ø (r)Ø (r ‘)Ø (r)Ø (r’)
drt/r’ (1 .60)

r—r

The spin orbitais of (1.59) are obtained by the self-consistent solution ofthe KS equation:

= [_v2
+ VÏØi = (1.61)

Here, the optimized effective potential V4’ is obtained by the requirement [30]:

5OEP,ç Al
KS ‘‘ —0 (1 62)

3frSOEP() —

The physical idea of the OEP method is simple, while equation (1 .62) leads to an integral

equation that is computationally impractical to solve. Recently, Krieger, Li and lafrate

(KLI) have developled an approximate but fairly accurate procedure to overcome this

problem, reducing the determination of V” to the solution of simple linear equations

[31]. However, this method stili needs much more computational efforts cornpared to

GGA and meta-GGA functionals and bas the problems related to finding a suitable

correlation functional in which there is no cancellatiori of errors between exchange and

correlation contributions which makes the success of LDA. Kowever, ail properties that

depends on the KS orbitaIs can be obtained with higher accuracy than other type of

functional.
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C 1.3. Magnetic Resonance Parameters

In the presence of a homogeneous magnetic field, the mechanical and spin motions of

electrons related to magnetic interactions can be described by the relativistic four

component Dirac equation [32]. In many cases, however, it is almost impossible to deal

with a fulÏy relativistic theory. Most relativistic effects are quite smatl compared in

magnitude to the total quantities involved for light elements. Hence, it is feasible to use

perturbation theory based on the Breit-Pauli (BP) Hamiltonian which is composed of the

spin-free, non-relativistic Hamiltonian and the spin-dependent and spin-free perturbation

terms arising from the relativistic treatment. The exp licit forms of the BP perturbation

terrns can be derived from a careful reduction of a relativistic theory to a nonrelativistic

form. For magnetic property catculations, the terms related to the external magnetic field

should be considered in this perturbation treatment and this can be achieved by the

minimal coupting principte in Eq. (1 .8b).

In this study, electron spin-spin interactions (zero-field splittings) and relativistic

corrections (the mass-veÎocity and the Darwin operators) to the nonrelativistic kinetic and

potential operators wilÏ not be covered since we focus on the paramagnetic systems

which have one unpaired electron and relatively light atoms. We just focus on spatially

non-degenerate Kramers doublet states. As vector potential, the Coulomb gauge [33,

32(c)] is chosen which is divergence free:

VA=O (1.63)

and

ALBx(r_R0) (1.64)

where R0 represents a gauge origin.

C
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In the presence ofthe external magnetic field B, the nuclear magnetic moment M and the

electronic magnetic moment m, the full quantum mechanical Hamiltonian of the system

can be expanded in powers ofthe parameters as small perturbations [34]:

H(B,M,m) = H° + B H°°° + BTll2oo)B

+MN .llb0) +BTHY)MN (1.63)

+Zm1 +ZBT(_1+Ht))mj

j j j N

with

M,=gfiI (1.64)

m =>m =—gefi»j (1.65)

where g., and g are the nuclear and the free-electron g-values, ,8 (‘a/2M, M1,

proton mass) and fi (=u/2) are the nuclear and the Bohr magnetons, y and S are the

nuclear and the electron spin angular momenta. Ihe is an operator representing

interactions n-linear in B, l-linear in M and m-linear in m. The subscript J denotes

electron j and the subscript N represents nucleus N. The one-electron perturbation

operators ofthe Hamiltonian are as follows:

1100) Ij() (1.66)

H(20o) a1
r10 12 1 —rfl)r/O (1.67)

H’°
rJ]xpJ

=
I

(1.6$)
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Hmo) = 1
J13rf0rJ

(1.69)

H20) I rMN 12 1— 3rAJrN
+ a2

(rJf lIAI)1
— lIMIN (1.70)

I I I r, I I

H01)
=—

‘ + 11k +
(1.71)

—
r, k ] I

11(100
= ZN

(rJOrJN)l —rIOrJA

4 N IrJNI
(1.72)

a2(”(r)rk/)J —rJOrkJ (rh)rIk)1—rkOr

4 kj I r/k I I rJ i

Ir.. 1 1—3r..rT
U =

— 6(r/\.) + j\
j.\ (1 .73)

3 I

where r,0 = r1 — R0 and l = r0 X p, and 6(rJN) represents the Dirac delta fiinction. In

this Hamiltonian (1.66) represents the orbital Zeeman interaction, (1.67) the diarnagnetic

response of the electrons to the magnetic field, (1 .68) the orbital hyperfine interaction,

(1.69) the nuclear Zeeman and the electronic nuclear Zeeman corrections, (1.70) the

electron coupled nuctear spin-spin interaction, (1.71) the electron spin-orbit interaction

and the electron-electron spin-orbit interaction and the electron spin-other-orbit

interaction, (1.72) the electron spin-orbit Zeeman gauge correction and the electron

electron spin-orbit gauge correction and the electron spin-other-orbit Zeernan gauge

correction. Finally, (1 .73) corresponds to the fermi contact interaction and the dipolar

hyperfine interaction.

Since the magnetic spectral transitions are just due to the spin states, the magnetic

Q resonance can be investigated in terms of the spin Harniltonian. The spin Hamiltonian is



CÏiapter Ï. Theoretka/ Background 28

Q derived by replacing the full Hamiltonian by an effective operator acting on only spin

space:

= —Zgx 1, (I — , )B + gf gfi\,I (D lIA’ + K ÀtX )I N
— M A (1.74)

+ 1 + Ag)B
—

1 + A (IIPiV )

where aN is the shielding tensor of the nucleus N, D11IN is the nuclear dipole-dipole

coupling tensor for nuclei M and N, KlfN is the electron coupted (or reduced) nuclear

spin-spin coupling tensor for nuclei M and N, zg is the change from the ftee electron g

tensor, A/,A,. is the isotropic hyperfine constant andA(,qN is the anisotropic hyperfine

tensor. In (1.74) the zero-field splifting can be neglected (in the high-fieÏd limit) and for a

rapidly tumbling molecule, the direct spin-spin coupling constants D11 vanish due to a

rotational averaging of the spin Harniltonian. The analysis of magnetic resonance spectra

can be performed by the calculation of the magnetic resonance pararneters in terms of the

molecular electronic structure ofthe system.

The magnetic parameters can be derived in terms of the second derivatives of the total

molecular energy E with respect to perturbation parameters, a and b:

(1.75)ab
ab

Ja,h()

In quantum mechanics, the magnetic resonance parameters may be determined by the

second derivatives of the energy expectation value of the complete Hamiltonian with

respect to perturbation parameters:

fl <P(a,b)IH(a,b)IP(a,b)> (1.76)
ab

a’h’t)o
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where the Hamiltonian H(a,b) contains the perturbation terrns depending on a and b,

and W(a,b) is the ground state waveftmction of this Hamiltonian. Using the Hellmann

Feynman theorem, we can transform Eq. (1.75) to the form:

= ‘P(a)
H(a,b)

aO (1.77)

=< (b)
(H(ab)

I >

Jho

In the above equation, the parameters a and b can exchange freely and hence it is often

referred to as the exchange theorem of double perturbation theory [35, 33]. Here, it

should be noted that the wavefunction in Eq. (1.77) depends on only one parameter up to

first order. This approach enab les us to treat the magnetic parameters within a single

framework and to make the mathematical processes simple since many terms that are

independent ofthe parameters under consideration can be removed.

1.3.1. Perturbation Theory

Among the second-order magnetic properties, the diamagnetic part depends oniy on the

ground state wave function and the calculation is straightforward:

E(il)d/ < p(O) 11(11) I ‘+‘t° > (1 .78)

But, the paramagnetic part depends on the first-order perturbed wave function and there

are a number ofmethods to caïculate this term efficiently:

1(il),pura
_._<

k1J(I0) I iiU I ‘i’° > + < (1.79)
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Here, we wiii focus on the two methods: the uncoupled DFT (UDFT) [34,37] and the

finite perturbation theory (FTP) [36].

In the KS-DFT scheme where current density is flot invoÏved and only one electron

operators ofmagnetic fields are considered, a magnetic property can be defined as:

t< økT(a)
fl(Ol) + aTH°1 I a)>) (1.80)

k a

where Økj refers to KS molecular orbitais with spin (hereafter, the label KS wiiÏ be

dropped to simplify the notation). Since the first order operator H’° is pureiy imaginary

(see, Eqs. (1.66, 68, 71)), the KS orbitais can be expanded in a power series for the

imaginary perturbation pararneter ia to make the second-order properties observable:

økU(a) = + (fa)ç + (ia)2Ø + (1.81)

The first-order perturbed moiecular orbitals Ø can be obtained from the KS orbitai

equation for a system in the presence of a perturbation parameter a:

F (a)ØkJ(a)

=j_-!-V2 +v.(a)+aH°JØkJ(a) (1.82)

= Ek(a)kUta)

In the finite perturbation theory (FPT) [36], Eq. (1.82) is soived self-consistentiy with a

finite value (a«l) of the perturbation parameter a. The additional matrix elements

corresponding to aH1 are added to the Fock matrix. The implementation of this method

is simple and the Fermi contact contribution of the nuclear spin-spin coupiing is usuaily

soived by this method. However, the finite value should be reasonabiy chosen to avoid

the quadratic effect (if it is too large) and to separate it from the numericai noise (if it is
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too small). Furthermore, if the perturbation is purely imaginary or complex, the FPT will

be much more time-cornsuming.

In the uncoupled DFI (UDFT) [34,37], Eq (1.82) is expanded in ternis of the

perturbation parameter a up to first-order and coflecting terms of the first-order (in this

case, the equation sets free from the perturbation parameters and there are no imaginary

terms):

[_V2 +v0)1 Ø +ti’ +vJ Ø2 (1.83)

To obtain Ø, the unperturbed KS equation bas to be solved, first. In this case, the first

order corrections to the orbitais are pureiy imaginary and the first-order change in the

etectron density vanishes:

ptm =

___

= -ia < > +ia < Ø Ø >) = 0 (1.84)
a kg

This is an important point in UDFT-NMR calculations because the first order change in

the exchange-correlation (XC) potentiai v in Eq (1.83) can be removed under the

approximation that the XC functional oniy depends on the eÏectron density. In fact, the

exact XC functional depends on the paramagnetic current density as welÏ as the electron

density in the extemal magnetic field. However, its contribution to magnetic properties

would be rather smaÏl and can be negiected (this was proved for chemical shielding [38]).

In UDFT, the KS orbitais in a perturbation can be expanded in terms of the linear

combination of field free atomic orbitais (for simpiicity, a common origin or a

naturai origin is oniy considered here):
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I3U (,

økcta) = ZC(Ik(a)%,° (1.84)

and the atomic density matrix element P, is defined as:

P11, ta) = CkJ(a)CIJ(a) (1.85)

Here, a set of C,Ika(a) denotes field-dependent molecular orbital coefficients. The first

order corrections of the atomic density matrix elements are obtained by the fieid

dependent Roothaan equation (in a matrix form) [39]:

F(a)C(a) S(a)C(a)E(a) (1 .86)

where ail terms have conventional meanings. The field-dependent molecular coefficient

matrix C(a) is redefined with the field-dependent expansion coefficient matrix U(a) and

the field-free molecular coefficient matrix C(O) in the first order perturbation

approximation [40]:

C(a)C(O)d(a) (1.87)

The Roothaan equation in ternis of d(a) is:

F’(a)U(a)zS’(a)d(a)E(a) (1 .88)

with

F’(a) = C(O)F(a)C(O) (1.89)

and
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Q
S’(a) = C(O)S(a)C(O) (1.90)

The orthonormat condition gives the diagonal elements of the first order expansion

coefficient matrix element d and for the common gauge origin (center of charge) or

natural origin (position of a nucleus of interest), this term goes to zero since the atomic

basis functions are field free:

=
—-- S =0 (1 .91)

2

where k refers to the occupied orbitais. If the field dependent Roothaan equation is solved

to first order in the field, the off-diagonal elements ofthe first-order expansion coefficient

can be derived as:

— —
—

___________

— øH1I øk > (1 92ak — (C)) o))
—

o)) (o) — (O) (t))
Ek u 8k a Ek Ea

where E°° and sf0) represent the occupied and the virtual orbital KS orbital energies in

the absence of fields, respectively. In UDFT (v)]. 0), the perturbed Roothaan equation is

not coupled and thus the first-order perturbed KS orbitais can be obtained by a single

calculation after the self-consistent calculation ofthe unperturbed KS equations.

1.3.2. NMR Chemical Shielding Tensors

The NMR shielding tensors can be defined as the second-order response ofthe electronic

energy to the externaÏ magnetic moment B and the nuclear magnetic moment MN:



o
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a “

L BM
‘ B=NI =0 (1.93)

= <ç5(B) H10 + BTH.10 I Ø(B)
B=t)

Here, it is shown that the KS orbitais Ø are perturbed only by B and it is sufficient to

determine them up to first order with respect to B for the shielding calculation. The

explicit forrns of the one-electron operators H’° and H10 are given in Eqs (1.68, 69).

Physicai observables such as the energy and the current density shouid be gauge

independent. In fact, the calcuiated NMR shielding tensor with the finite basis sets

depends on the choice of the gauge origin. For the vector potential A, relating to the

magnetic moment ofthe nucieus N, R, is an obvious naturai gauge origin because the

position ofthe nucieus N is the origin ofthe magnetic moment. On the other hand, for the

vector potential A0 relating to the homogeneous external magnetic moment, R0 is an

arbitrary gauge origin because we don’t know the explicit origin of the homogeneous

external magnetic field. So far, many ways to soive the gauge problem have been

developed [41]. In this study, we focus on two methods: the “gauge including atomic

orbitais” (GIAO) [41(a)] and the “individual gauge for localized orbitais (IGLO) [41(b)].

In the GIAO ansatz, the atomic basis fttnctions are taken to be field dependent:

%11(B)=expj—iB.A,,1.%
1 94

=

(

where

A,1 =-(R11 —R0)xr (1.95)
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Flere, represents standard (field free) Gaussian atornic orbitais and R, is the

position vector of the atom where the orbital is centered. In Eq (1.94) the field

dependent phase factor gauarantees that the expectation values are gauge invariant. In

this case, in Eqs. (1.91 and 1.92), the first order corrections ofthe overiap integrals S

and S do not disappear. The GIAO shielding tensors have a more complex form due

to the field-dependent basis functions. The shielding tensors cari be separated into

diamagnetic and paramagnetic contributions (u u
+ u”) where both are gauge

invariant and are expectation values of Hermitian operators [42].

In the UDfT-GIAO scheme, the diamagnetic term can be described as:

jUlO) + ‘2 I ø >

(1.96)
0CC ha,is

= < I (I) + jj I

ho- fiL’

where

fi(II) = aH (r1r,,, )1 — r1,r
(1.97)

2 IrNI

and

= --i(R1, xrkL.)(ll10)T (1.9$)

The operator jb0) is gauge-transforrned from the arbitrary origin R0 to the GIAO

origin R. The last term in Eq (1 .96) depends on the gauge factors and makes a(,

Hermitian.
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O The paramagnetic terms aÇ. can be decomposed to the three individual contributions and

described as:

a, =a°+a +a’2 (1.99a)

=
fl(OIU) j(t))

>

ku
(1.99b)

I,asts 0cc

—

coo) Ct0 <
,(tt) jj(t)I0) x°1 >

— uku ‘ku u N,p
/ii’ ku

“cc

T (t))(010) (0)
G—<kgIHN IøjJ ><ø5I(A,1) Iku >

tu
(1 .99c)

0CC

—
(0)

<
(0) i 11(010) (0) ><

;)) (A)T %.(0)
>

— pku *u ku I N ju
pv kju

< ø I (jj (100) )T

Ø >
au= —2< H°’1 b° >1N I’ciu I

tu u au j)

(1 .99d)
acc

—2Ct <ø I I
>[<

(o )t) >

tIku’ uku
ie ku E —E J

where the operator (OI))) is shown in Eq (1.68) and the operators A,11, and areN

given by:

A,11, = i(A11 —A,) (1.100)

and

i::i (010)

N,p x R1,)(H°)T (1.101)
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and, at last, the operator takes the form:

jj(IOO)
= H°°° +

—
(1 .102)

where the operator (100) is described in Eq. (1.66), f5 and s denote the unperturbed

KS operator and orbital energies of spin , respectively.

In the IGLO ansatz, the field dependent phase factor which gauarantees the gauge

invariance of physical observables is inciuded into the localized KS molecular orbitals

(LMO) Ø [43]:

= expt—iB AJ (B) (1.103)

where

Ak =-(Rk —R0)xr (1.104)

where Rk is the centroid of the charge (dipole moment) of the LMO Ø. The LMOs can

obtained by the unitary transformation ofthe canonical KS orbitais (COs) Ø:

(1.105)

For a single determinant wave function, any expectation value is invariant under a unitary

transformation. Since the spin orbitais that make the electronic energy stationary are flot

unique, no particular physical significance can be giveri to a particular set of spin orbitais.

G Hence, the COs Øk of Eq. (1.82) can be replaced with the LMOs ‘ without any change
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ofthe shielding but since the LMOs are flot the eigenfunction ofthe KS operator they can

be mixed among themseÏves without changing the expectation value.

=Z_(<(B)IHb0) +BTH’ I(B)><(B)I(B)>)B) (1.106)
k/u

In the UDFT scheme with the orbital energy correction term in the paramagnetic

shielding, the expiicit form of shielding tensor using the IGLO method can be derived

,which is often calied the sum-over-state density functional perturbation theory (SOS

DFTP) [34].

The diamagnetic term a which just depends on the unperturbed KS orbitais is defined

as:

=< 1O) i> (1.107)

where

a2 (r[rA, )1
— rkrv (1.108)À

2 IrÀ,13

where the operator îï,’° is gauge-transformed from the arbitrary origin R0 to the IGLO

origin Rk.

The paramagnetic terms a, are usuaiiy decomposed to the two contributions and

expressed by:

=+a (1.109a)
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where

a0 =< IH1t I>< IA, i> (1.109b)
hjcï

and

0CC Cit

= 2< I H° I >ï (1 .109c)
u

where the operator H10 can be seen in Eq. (1.6$) and the operator A.k is deflned as:

AJk=i(AJ—Ak) (1.110)

and the off-diagonal elements ofthe first-order expansion coefficient is given by:

0CC

0CC øa I (H0t T I j) > u,0,,
=

—

— z\E
Uk,fl

Inc 1110 1,0 llI—)U

(1.111)
0CC

I )T >< I I > u,,,,,
+ ‘y

(O) — (O) — XC km
,,, E,,,0. E,, ,,,,,,

where index “m” refers to the COs and indices “n”, ‘j” and “k” correspond to the LMOs.

The explicit forms of the orbital energy correction can be seen in ref [34] and by

this correction the current density dependence of the XC functionals can be taken into

account indirectly.

o
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1.3.3. NMR Nuclear Spin-Spin Coupling Tensors

The reduced nuclear spin-spin coupling tensors K4 is defined as the second derivative

ofthe total energy ofthe system to the magnetic moments ofthe nuclei M and N:

K
H2E(MMJ

MN

— L MA,MN
]MN1l=0

(1112)

=
<økotM) I u° + — I øku(M) >

ko M,=t)

The reduced coupling tensors are related to the experimentally detectable coupling

tensors by the formula [44]:

MN (1.113)

The reduced coupling tensors KlfN are independent of the nuclear g-values and the

nuclear magneton and just depends on the electronic structure of the system. From Eq

(1.112), it is shown that there are four contributions to the coupling.

The first operator fl’°) of the Hamiltonian in Eq (1.112) represents the paramagnetic

spin-orbit (PSO) contribution. In the UDFT scheme with the additional orbital energy

correction, this P50 contribution takes the form:

oce ir ,(0) (010) ,A(tt) ,()t) (-Li ((110) ‘\T ,,(0)
PSO _,)VV<Ykcy “M Yao ><0g VL1N J Ykj >

fi 114
MN — (t)) (0) A L’C

ko u —
— k-4u

where the factor of two arises because of the presence of two equivaÏent energy terms

which differ in that the two nuclei M and N are permuted [44].
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The second operator H in Eq. (1.112) represents the diarnagnetic spin-orbit (DSO)

contribution. The DSO term lias a bilinear dependence on and MN, and this

contribution oniy depends on the unperturbed ground state wave function:

K = 2Z
< ø III I ç> (1 .115)

where the factor oftwo has the same meaning as in the case ofthe PSO term.

The Fermi contact (fC) arises from the first term of the operator H1 in Eq. (1.73).

This is the most important of ail the contributions and the most sensitive to geometry

changes [45]. The FC term takes the form:

Iøk(Ml)> (1.116)
ku MAJ=t)

This term can be soived seÏf-consistently using the finite perturbation theory (fPT) [36].

The fPT method is equivaient to a compiete solution of the infinitesimai perturbation in

the limit of smali perturbations. In this theory, the matrix element ofthe Kamiitonian is:

H11,(O)+% <))
5(rAf)

0) > (1.117)

for spin a and

H,(M1)=H(O)—%<x I(r1)Ix° > (1.11$)

for spin 13, where ). denotes the perturbation parameter. Tlie final expression of the

reduced FC coupling constant is:
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C K
2

g2
(2)-’ P,(%) <)) I (r )1 (1.119)

where

cc(a) occ( fi)

F’(2) = C” (%)C? (2) — C” (%)C (2) (1.120)

The second term of Hj11 in Eq (1.73) Ïeads the spin-dipolar (SD) contribution. The

calculation of the SD contribution is the most time-consuming of the second-order terms

due to the electron spin and position vector coupling term (sk
. ‘kN) but its contribution to

the total spin coupling is relatively small (the details of this term are in ref [44]). Hence,

this term is normalÏy not taken into account. In addition to the four contributions, the FC

SD (fermi contact-spin-dipolar) cross term should be considered because the anisotropy

of the nucÎear spin coupling tensor is dorninated by this cross term. The terrn can be

caÏculated by the FPT as in the case ofthe Fermi contact coupling [34].

1.3.4. Hyperfïne Coupling Tensors

The reduced hyperfine (hO coupling tensors TN, which are independent of can

be explained as the second order derivatives of the electronic energy to the nuclear

magnetic momentum and the electronic magnetic momentum:

i
f1E(Mv,m)

N
M dmN

=(s7)<ø sH” (1.121)

+ (S7)’ <(M,) sH201 + BTlltmS I Ø(M) >

kr M,
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(3 In the above equation, the integrals with the operators H°’ and H°1 represent the

spin-orbit interactions and the spin-orbit gauge corrections, respectively. The

contributions of these terms to the total hf coupling is, however, relatively small and we

just focused on the Fermi contact (isotropic) and the spin dipolar (anisotropic)

interactions which arise from the operator H ‘. The Fermi contact interaction is purely

quantum mechanical and arises when there is a non-zero probability of finding the

electron at a magnetic nucleus. This is the case when the singly occupied molecular

orbital has s-character on the target nucleus. The fermi contact term,

A’ = takes the form:

4 /)(1SIS

A =3gCNN(SZ)
<))

(rkV)1 ix> (1.122)
/1V

The second term of the operator H’° in Eq (1.73) represents the spin dipolar

interactions, = gflg,fiThI), between the nuclear and the electron spins:

1 bust 2 T

A = gV/3g N fiN (s ) Zi; <x1
rkN rkN rkN

(1.123)
L 11V I rkN I

In general, the experimental values of A11 and A1 components of the hyperfine coupling

can be obtained. In the case of axially symmetric systems, Ai (A’ + A°) and A1

[II + A,,) + Ag°].

1.3.5. EPR g-tensors

Here, we lirnit the g-tensor theories on one-component case to treat them in the frame of

the perturbation theory. In this case, we assume the spin-orbit coupling may be weak. In a
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view of non-relativistic DFT, the two-electron spin-orbit coupling operator might be

reÏated to the exchange-correlation functionals which include the current dependent terni.

Since the exact form of the functionals have been flot found, we focus only on UDFT

rnethod.

The electronic g-tensors are defined as:

g=g1+tg (1.124)

and the g-shift tensors z\g which are the deviations from the free-electron value g.. The

g-tensors can be defined as the second order response of the electronic energy of the

system to the external magnetic field B and the effective electron spin S:

A.
if2E(B,S)

S=B=t) (1.125)
0cc t

= g0(S’— < Ø(B) I sHt’ + B’H°’sk I øk()>
kcr 8=))

The paramagnetic contributions corne from the first terrn of Eq (1.125) related to the

spin-orbit operator H°1. In this case, the ground state wave function is perturbed by the

extemal magentic field up to first order and the final expression of the pararnagnetic

second-order spin-orbit/orbital Zeernan cross terrn in the common origin approach is:

— occ(a) vfr(a) (0)
><

(0) (11(001)
)T

(0)

gso,oz — g0 Z Z (t)) (t))
k O

(1.126)
— ofl) 4) < I H 00)

>< ø° I (H
)T

g0 (0) (t))

k u Ek O

Here, it should be noted that the above equation is onÏy valid for the one-electron

Ç operator of H00 and its two electron operators should be rnodified as the effective one
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electron operators to be included in this approach. In general, this paramagnetic term

dominates the whole g-tensors and the one-electron spin-orbit term in the

operator have the iargest contribution to the tensors.

The diamagnetic spin-Zeeman gauge correction term is represented by the second

operator H’ of Eq (1.125). The diarnagnetic term just depends on the unperturbed

ground state wave function:

r\g =g,<Ø iH’°° iø> (1.127)

The operator Huoi in Eq (1 .72) includes the one- and two-electron terms but generally

the two-electron contributions are neglected or consider approximately due to the small

effect and the computational complexity.

At the Breit-Pauli level of relativistic treatments up to second order ta2), the relativistic

mass correction to the electron spin Zeernan interaction arises from the magnetic

field dependence of the spin-orbit 1-lamihonian:

RMc
=_ia2g p <(O)

p21I%°> (1.128)
PI’

This term makes a smaii, isotropic contribution to the g-tensors and can be caicuiated

straightforwardly since it is the expectation value of the unperturbed KS orbitais. [t notes

that the g-tensors are much Iess dependent on the gauge origin than chernical shifts [46]

and thus only the common gauge origin approach is used here.
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c Chapter 2. QMIMM Approach for Magnetïc Properties

The aim of this chapter is to provide theoretical grounds and applications of a QM/MM

approach, in which the QM subspace is embedded in the MM partial charges and the

dangling bond is capped by simple one-electron quantum capping potentials (QCPs) [1],

for various magnetic properties such as NMR chernical shielding tensors, NMR spin-spin

coupling constants, and hyperfine structures [2-4].

21. Introduction

Most detectable paramagnetic compounds for high resolution NMR experiments are

metalloproteins. Accurate theoretical approaches using DfT methods are indispensible to

investigate the electronic structure and magnetic properties of the active site of

metalloproteins. (In this thesis, we focus on DfT methods because they include electron

correlation effects and have comparable computational cost to Kf methods.) Despite

tremendous advances in computer technology and computational techniques, DFT

catculations on transition metal compound models containing around 100 atoms using

basis sets of moderate quality stiil represent substantial undertakings. For example, the

calculation of the model of the active site including additional backbone residues and

environrnent effects would be computationally expensive at the ab initio or DfT level.

However, since the magnetic properties are rather local, it is feasible to use a hybrid

method in which quantum mechanical (QM) techniques apply to the small regions of

interest but molecular mechanics (MM) to the bulk [5].

In the present QM/MM partition approach, two issues are critical for the success of the

simulations: separation ofthe model into the QM and MM parts (boundary problem), and

handling of the long-range interactions between the subsystems. Up to now, several

methods to treat the broken covalent bond in a QM/MM partition have been issued. The

rnost common method is the link atom (LA) method [6] where the valency is saturated by

C any univalent atom (H or halogen) or a methyl group. This rnethod is very simple to use

50
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but the resuits are sensitive to the placement of the link atom and it introduces some

double counting of the interactions and aiso introduces distortion of the electron density

of the QM part [7,8]. An advanced method for this problem is the ÏocaÏized self-

consistent fieid (LSCF) method [9] where frozen locaiized orbitais are used to truncate

the QM treatment at the frontier bond. The frozen iocalized orbitals are flot inciuded in

the QM SCf procedure and their electron density are determined from model studies for

the system. Although the assumption about transferability of the frozen bond orbitais for

use in proteins seems vaiid, for each new system the frozen orbitais have to be

determined anew. This approach lias been refined by the generalized hybrid orbitai

(GHO) method [10] in which the bonds of boundary MM atoms are described by

iocaiized orbitais. In this approach, the iocalized orbitais (one active and three auxiiiary

orbitals) are inciuded in the QM SCf procedure but oniy the active orbital between the

QM and MM regions is optimized during SCF. Since the auxiiiary orbitais are treated as

the effective core potentiais, the atornic parameters are generai and transferabie.

However, both methods, LSCF and GHO, require substantial prograrnming for

implementation and iead to large errors in energy if large MM charges exist near the

frontier orbitais [11]. Furthermore, GHO is only impiemented at the semiempiricai level.

The other method for handiing the QM/MM boundary is the pseudobond approach of

Yang [12] where the effective potentiais form a pseudobond with an adjacent carbon in

the QM subsystem. In this approach, seven vaience eiectrons are inciuded in the QM SCf

procedure and the effects of core electrons and die sp1 u carbon-carbon bond are

included in the effective core potentiais. Since it uses a conventional effective potential

formulation, minimal programming is required for implementation. Here, we adopt the

one-electron quantum capping potentiai (QCP) approach of DiLabio et al. [1], which is

similar to the pseudobond method. In this technique, the QCPs are designed to model the

eiectronic character of a methyl group at the QM/MM boundary. This approach is

implemented using conventional effective core potential (ECP) [13] expansions and can

be incorporated in most DFT programs with minimal code modification. By this

approach, some artificiai effects ofthe LA rnethod and the speciai basis set manipulations

of the LSCf and GHO rnethods can be avoided and the number of electrons in the QM

boundary can be reduced greatly compared to with the pseudobond approach of Yang.
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In general, the interactions (electrostatic, polarization, and exchange repulsion/charge

transfer) between the subsystems can be described by introducing additional one-electron

terrns in the Hamiltonian ofthe QM region [14]. Recently, Cui et al. have shown that the

electrostatic effect of the environment can be represented by MM partial charges [15].

This description appears to be adequate in NMR chernical shieldïng calculations, as long

as the MM part is not directly connected to the NMR nucleus, and polarization effects of

the QM part by MM partial charges dorninate interactions between the QM and MM

subsystems. In this chapter, this idea will be adopted and validated beyond NMR

chernical shielding calculations to ail other magnetic properties.

2.2. Theory

2.2.1. Quantum Capping Potentials (QCPs)

The QCPs that are used in this thesis are designed based on Stuttgart sernilocal

pseudopotentials. (The QCPs were provided by Gino A. DiLabio). Ihe atornic valence

Hamiltonian for the pseudopotentials is given by:

(2.1)
i</’y i

where the indices f and j refer to valence electrons. The fr)J) represents a sernilocal

pseudopotential ofthe form:

V/)(f) = — + Ak/ exp(—ak/J;.) (2.2)
/t) k

Here, Q denotes the core charge (effective nuclear charge) of the atom and P1 is the

projection operator onto the Hibert subspace with angular symmetry Ï.

o
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Q

= i ><‘m I (2.3)

The A/k and ak/ in Eq. (2.2) are the adjustable parameters to reproduce the electronic

energy ofthe ail electron system.

Since molecular bond orbitais are different from atornic orbitais, the QCPs include

additional spherical shielding (one Gaussian 4 exp(—akll;2)) and optional Pauli terms

(three Gaussians) to reproduce model molecular properties. The pararneters Alk and ûkI of

the additional Gaussians are adjusted by fitting the Mulliken charge of CQCP for CE-13

group charge [1].

Figure 2.1. Schematic description of the partition into QM and MM regions using one

electron quantum capping potentials

‘—J
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2.2.2. Kohn-Sham (KS) Electronic Energy in Quantum Capping Potentials

(QCPs) and MM Electrostatic Fields

In the simple electronic ernbedding model of the QM region, using QCPs, the KS

electronic energy of the QM region is given by:

E’’ = + E11AlA1 (2.4)

where

< Okg
Iv— + VT(i.) 10kg>

kg c€ocp — (2.5)

+ Jv(r)(p + pfl)dr + JIp + pflj + EtC[PaPflJ

and

EMlt =<g > (2.6)
kg ‘W1

Here, 0. ( a or (3 spin) denotes the KS molecular orbitais (MO) under the influence

of QCPs, Vc1, and MM charges, qj, the operator 13k refers to the momentum of the kth

electron, v(r) represents the nuclear potentiai, J and are the Coulomb and exchange

correlation energies, pg and are the spin-up and spin-down electron densities.

The KS moiecular orbitais Ø are chosen to minirnize the energy E’”’. Consequently, the

orbitais are determined as solution ofthe following KS equations:

FgØg
=

+ + V(i.) —

CQCP Jei! (2.7)

o
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G where

v. =v(r)+S ‘?dr’+ (2.8)
r—ri bp

In Eq. (2.8) the first term represents the nuclear potential, the second terni the Coulomb

potentiai, and the last term the exchange-correlation potential. From Eq. (2.7), it is shown

that the effects from MM partial charges and QCPs are involved in the QM subsystem

through the KS moiecular orbitais Økj’ corresponding energies Ek. .and electron density

p.

2.2.3. Electrostatic Contrïbutîon to Magnetic Resonance Paramters

The present QM/MM approach is designed for the tirne-independent, non-relativistic case

and the uncoupled DfT (UDFT) scheme with the standard exchange-correÏation

functionals (current density independent) [16,19]. It should be noted that the fomulas of

magnetic parameters are already derived and expiained in Chapter J and the terms reÏated

to QM/MM are only discussed in this section.

The magnetic resonance parameters can be expressed by the second-order response of the

total KS electronic energy E, which includes the QCPs of boundary carbons and the

electrostatic interactions with MM charges, with respect to two perturbation parameteres

a and b:

E(QM / MM)
=

_______

a=ht) (2.9)
CC

> + økt) I Ø(a)>)
kcr a a=()

G
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from Eq. (2.9), we can see that the two ternis related to the QCPs and MM charges are

independent of magnetic fields in this uncoupied DfT (UDFT) procedure and they wiil

vanish upon differentiation of the total KS energy with respect to magnetic fields. As a

resuit, the QCPs and MM charges affect the magnetic resonance parameters only through

changes to the field-free KS orbitais and the first-order perturbed KS orbitais of the QM

subsystem.

NMR chemical shielding tensors and electronic g-tensors depend on the extemai

magnetic fields explicitly and therefore, by the choice of gauge origin [16,17], MM atoms

and QCPs wili contribute to the magnetic parameters in a different way. However, since

the g-tensors are not sensitive to gauge origin (in this case, the common origin approach

is comparable with other sophiscated methods) [18], the gauge-origin dependence of the

QM/MM method wiÏl be only focused on chernical shielding tensors. On the other hand,

nuclear spin-spin coupling tensors and hyperfine tensors are independent of a magnetic

field and the nucleus of interest is a natural gacige origin. Hence, the QM/MM approach

for nuclear spin-spin coupiing constants, hyperfine tensors and g-tensors wiil be

explained at the sanie time.

2.2.3.1 NMR Chemical Shieiding Tensors

NMR shielding tensors GN in the influence of MM charges and QCPs can be defined in

terms ofthe second derivatives ofthe total moiecular energy E(B,MN) with respect to

the external rnagnetic field B and nuclear magnetic moment M:

flJ2E(BM)
N

N (2.10)
0CC 0CC

= I H’° I >
+

lO)

ka kr Bt)

o
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where the operators H0) (1.68) and H1o) (1.69) and other notations are already

defined in Chpater 1.

in order to investigate the effects on the chemical shielding of the QM subsystem from

QCPs and MM charges, it is indispensibie to know the detail solution of Eq. (2. 10) which

depends on the choice of the gauge origin. Here, we focus on the two methods: the

“gauge inciuding atom orbital” (GIAOs) [201 and the “individuai gauge for iocalized

orbitaI” [21] rnethods.

In the GIAO approach

In the UDFT scheme with GIAOs [16], the diamagnetic contribution a to the shielding

in MM charges and QCPs is given by (refer to Eqs. (1.96-1.98)):

hasis

= ZP < x1 I
j(flO) +

> (2.11)
/1V

Here, l’ represents orbitai basis functions in the absence of magnetic fields. The

magnetic field-free atomic density matrix elernent Pj in the QCPs and MM electric

fields is defined as:

P =CC (2.12)

The paramagnetic shieldinga can be decomposed into the three individual contributions

(see, Eqs (1.99-1.102)). The first contribution ° is defined as:

l)USiS

=
< ,%O) I > (2.13)

III,
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The second contribution a) is given by:

cc basis

= <Øç,g I” I /g >< I (A.) >

(2.14)
l)USLV

=
>< %(0) (A))T I >

,1v,i.tiJ

The Iast contribution aÇ2 is expressed as:

0CC :fr bujs (t)) (1 (itt) )T (t))

=—2Zcc <
<X2 >

kg I ,11t7 1.17 JU

= —2 III0) (0)

>[
< )) 1(’1 + —E?A»)T )) >

kg II
E1.17 — é.’017

(2.15)

where X° = C2CC5C and fj denotes the magnetic fieÏd-free KS operator

including MM charges and QCPs, while E and E represent corresponding KS

energies of occupied and virtual orbitais, respectiveÏy.

From Eqs. (2.11, 2.13, and 2.14), it is shown that the cote integraïs, with field-ftee orbital

basis functions (0), of , a.° and are not rnodified in the present QM/MM

approach and ail influences from MM charges and QCPs are rnerged into the shieidings

through the field-free atomic density elements I. In Eq. (2.15), MM charges and QCPs

give an effect on a in two ways: through Xtt, E, and E indirectly and through an

expansion of the core integrai I (AF) I directly. It is shown cleariy by

decomposition of the integral,
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(2.16)

Due to the Ïast term of Eq. (2.16), the NMR codes with GIAO should be modified. This

might be trivial if a DfT-NMR program cari handie effective core potentials and point

charges. However, since most MM (and QCPs) effects are transferred to the chemical

shieldings of the QM subsystem through the atomic densities and orbital energies, the last

integral, which denotes the coupling of gauge factors with MM charges (and QCPs), cari

5e neglected in an approximation. Hence, if the MM effects are involved in the

prelimirtary calculation of KS equations, the chemical shieldings of the QM region wilÏ

be influenced by them impÏicitly in the UDFT-GIAO rnethod.

in the ICLO approach

In the UDFT-IGLO scheme [19] cornbined with the present QM/MM approach, the

diamagnetic shielding a, is defined as (sec, Eqs. (1.107 and 1.10$)):

hasi.

<x
10) Ix° > (2.17)

/IV

where

0CC (ICt 4 0CC

= = ZUPkcCIUPk (2.1$)
kcT\p )

The paramagnetic contribution is decomposed into the two terms (refer to Eqs. (1.109-

1.110)). The first contribution a° is given by:
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The second contribution a takes the form:
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From Eqs. (2.17, 2.19-2.21), we can see that the shieldings (c’,, a,°, and GPI) of the

QM part is influenced by MM charges and QCPs just through Bt0, D», and

KS orbital energies 0) and E0) which are ail magnetic field-free terms and are decided

from the self-consistent solution of Eq. (2.7). Unlike the UDFT-GIAO rnethod, the KS

operator F,1 is flot coupled with the gauge factor A11, directly in the integral and we do
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flot need to rnodify the NMR codes in the present QM/MM approach. The MM effects

can be delivered to the chemical shieldings of the QM regiori only irnplicitly. This

QM/MM approach can be app lied to the sum-over-state density functinal theory (SOS

DfPT) method [22] in the same way as the UDfT-IGLO treatment, since the SOS-DfPT

method is basicalÏy equivalent to the UDFT-IGLO approach but has an additional orbital

energy correction term in Eq. (2.2 1).

2.2.3.2 Other Magnetic Resonance Parameters

Under the influence of QCPs and MM charges, the reduced nuclear spin-spin coupling

tensors (KM.?v = + + K) can be defined as (refer to Eqs. (lA 12-1.120)):

—

ace Or
<

(iO) >< I (H?1
)T

>
MN — (t)) (t)) A ‘XC

kg u 8ku Euu ‘k—a «) 2
ace Or husis (0) fl(Oi))) (t)) t t)) (II (Oit)) (O) —

—

—2 Z 7()t) (t)) (O) (t)) At N J
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— tu,

The hyperfine coupling tensors (A\ =A’” +A’) are given by (see, Eqs. (1.121-

1.123)):

4 hasts

Q A’
= _fgJgfl(S5) <% I 5(r,)1 f)> (2.25)

t’y
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finally, the electronic g-tensors (g = g,,1+Ag, where Ag = Ag +Ag +Ag1),

where we consider only one-electron operators, have the fomis (sec, Eqs. (1.125-1.128)):
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From the final QM/MM formulas of magnetic resonance parameters based on uncoupled

DfT method (current density is flot considered), we can sec that the MM partial charges

and QCPs just polarize the magnetic field-free wave ftinction of the QM region (KS

molecular orbital coefficients and energies are changed) and ah core integrals, with field

free basis frmnctions ,(tt), of magnetic parameters are intact in this QM!MM procedure. In

consequence, the MM (and QCPs) effects are only involved in the calculation of the

magnetic fieÏd-free KS equatiofis and they are transfered to the magnetic parameters

through KS orbitais and corresponding orbital energies indirectly.
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C 2.3. Implemenatïon and Computational Details

The cunent QM/MM approach applies to the calculations of chemical shielding tensors,

nuclear spin-spin coupling constants, and hyperfine structures. This approach can be

extended to g-tensor calculations but here we will not consider them since they are not a

local property.

2.3.1 NMR Chemical Shielding Tensors and Spin-Spin Coupling Constants

In order to test the capping potential approach [1] and the present QM/MM method for

NMR chemical shielding tensor calculations, several organic moiecules including neutral

histidine and cytosine monophosphate (CMP) were chosen. Ail molecules were fully

optimized with B3LYP[23]/6-311G(d,p)[24] except histidine and CMP which are

optirnized with B3LYP/6-31G(d) using the GAUSSIAN 98 program [25]. The NMR

shieiding tensors and spin-spin coupling constants were calcutated using the optrnized

structures in the deMon program [26]. tn this case, the Perdew/Wang 91 (PW91) [27] and

Perdew-$6 (P86) [2$] exchange-correlation functionais were used for chemical shifi and

spin-spin coupling constant calculations, respectively. The specific functionais were

chosen based on the previous works, which give the best for some organic molecules

[26(b)]. The IGLO-tit basis sets [21] are used for orbital basis sets and the auxiliary basis

sets (5,1;5,1) for H and (5,2;5,2) for the other atoms which fit charge density and

exchange correlation potentials. In the deMon calculations, a random numerical

integration grid with FINE angutar quadrature and 64 radial points per atom was chosen.

For the chemical shielding tensor calculations, the [GLO method was used and the

localization of the occuppied MO’s was done by the method of Boys [29]. For the NMR

spin-spin coupiing calculations using the finite perturbation theory (FPT) [30], the value

of 0.001 was used as the perturbation pararneter. For the QM/MM calculations, the MM

subspace were described by either Mulliken or RESP (restrained electrostatic potential)

charges [31] and the boundary carbons were replaced with quantum capping potentials
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(QCPs). Ail QM/MM calculations were carried out with the deMon program. Both point

charges and QCPs were read from the input stream. For this work, QCPs were added to

the basis set iibrary of the deMon program.

2.3.2. Hyperfine Coupling Tensors

in this work, hyperfine tensors were calculated in the QM/MM framework. The QM part

was treated by DFT, using the deMon program. The MM part was treated with an

empirical AMBER 1994 force field [32]. The capping carbon approach [1] was adopted

for the boundary atoms. Spin-unresticted Kohn-Sham calculations were performed, with

Becke exchange [33] and Perdew correlation functionals [2$]. A double zeta plus

polarization (DZVP2) basis set [34a1, augmented by the most diffuse functions (a lslp

set) from ECP valence basis of Dolg et al. [34b], (l6slOp5d)/[9s6p4d] was used for

copper. The IGLO-lIl basis set was used for the main group atoms. Molecular structures

of azurin and stellacyanin were taken from X-ray diffraction results (4AZU and I JER

files from the Protein Data Bank). The remaining hydrogen atoms were generated using

the AMBER Xleap program [35], without reoptirnizing the geometry. For azurin, four

aminoacids (His46, Hisll7, Cysll2, and Metl2J) were included in the QM calculation.

The weakly bound G1y45 was not considered in the QM calculation, but was treated as

part of the MM subsystem. For stellacyanin, four aminoacids (His46, His94, Cys$9, and

G1n99) were involved in the QM calculation. In both cases, the aminoacids of the QM

region were truncated at the Œ-carbon. The only sidechains were treated at the QM level

(see Figures 2.5 and 2.6). Two approaches were used for terminating the polypeptide

chain. In the hydrogen link atom approach, hydrogen atoms were added to the MM side

of the broken C-C covalent bond of the chain to satisfy the valency of the QM region

(here, the C-H bond Iength is set to 1 .09 À). In the capping carbon approach, broken

bonds were terminated by one-electron “carbon” atoms, carrying parameterized effective

core potentials. Ail the remaining atoms of both proteins were treated as electronicaily
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innocent bystanders, using MM partial charges. Solvent effects were treated by including

the crystallographic water molecules in the MM subsystem.

2.4. Results and Discussion

2.4.1. NMR Chemical Shielding Tensors

Since quantum capping potentials (QCPs) were designed using the ethane molecule, they

must be vaiidated for their effects on chemical shielding in different chernicai

environments. Computed NMR chemical shielding constants of several organic

molecules using QCPs are collected and compared with the full QM resuits in Table 2.1.

The shielding constants of the carbon nucleus directly bound to the capping carbon at the

boundary are very sensitive to the types of hybrid orbitais. The isotropic shielding

constants of the sp3 carbon (absolute deviation error, At 4.5 ppm) and the sp2 carbon

(A 5.8 ppm) are close to the full QM result but those ofthe sp carbon (N 38.3 ppm)

are deviated greatly. For anisotropic shielding, the resuit of the sp3 carbon (A = 3.6 ppm)

with QCPs is in good agreement with the full QM resuit whiie the others (sp2: 41.7

ppm; sp3: I 38.2 ppm) show large deviations, which is not unexpected because the

explicit anisotropies from the hydrogen bond orbitais are removed by using spherical

capping potentials. Overali the error of shielding constants with QCPs increases as

hybridization decreases. This is due to the fact that the QCPs are produced based on the

sp3 modet system.

Table 2.1 also shows that the anisotropic shieldings of the nitrogen and oxygen atoms

directiy attached to the capping carbon are less sensitive to QCPs. Their anisotropic

values (N: 3.6 ppm; O: 2.3 ppm) are as good as that ofcarbon ( 3.6 ppm)

in the same case, compared to the full QM resuits and the isotropic value of nitrogen

shows (A 1.2 ppm) shows even better than that of carbon ([A 4.5 ppm). However,
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the isotropic value ( = 39.5 ppm) ofthe oxygen is stili sensitive to QCPs. The shielding

error of nearest neighbours with QCPs bas the order: O > N C. In consequence, QCPs

can be used for NMR chemical shielding calculation even for carbon in heterogenous

bonds such as C-N and C-O.

Finally, from Table 2. 1, it is shown that the isotropic shielding constants with QCPs are

in good agreement with the full QM resuits within the absolute deviation of 6.8 ppm

ii-respective of the number of covalent bonds between the magnetic nucleus and the

capping carbon. On the other hand, anisotropic shieldings with capping potentials are

sensitive to the number of covalent bonds. However, even for anisotropic sbieldings, the

values of third neighbor nuclei (tAi 2.9 ppm) are already reasonable and, from the

fourth neighbor, the values (fr 0.4 ppm) are almost the same as the full QM results. In

the QM/MM appoach, the artificial effect of the capping potentials on the chernical

shielding of the QM part disappears quickly as the number of bonds ftom the capping

carbon increases. This is graphically seen in Fig 2.2.

In Table 2.2, we can sec the effects of capping potentials on the chemical shieldings of

propanoic acid and alanine. The two systems have relatively sirnitar structures but the

effect of capping potentials on the chemical shielding are much different. for alanine

(arnino acid), overali shielding values with QCPs are improved. Speciflcally, the

anisotropic results ofoxygen and carbon nuclei in alanine ([Aiav 6.5 ppm) is much better

than that of propanoic acid (Aa = 21.2 ppm), compared to the full QM result. This

encourages us to use the capping potentials for the calculations of chemical shieldings in

proteins. In addition, DiLabio et al. showed that there are no breakdowns or pathological

defects associate with QCPs when used with point charges [1].
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o Table 2.1. Calculated NMR chemical shielding constants (in ppm) using quantum capping

pontetials (QCPs) for small organic molecules in coniparison with full QM results.U

Cap QM Full QM JAJ”

aniso

20.1

119.0

277.5

rnolecule nucleus iso iso aniso iso aniso

H3C-C3H3 C’3 1 8OE2 I 75J 165 4.5 3.6

H3C’-C2HO C2 -7.6 -13.4 160.7 5.8 41.7

H3C-C’N C 92.4 71 .6 324.6 38.3 38.2

H3C-NH N 237.6 42.3 238.9 38.8 1.2 3.6

H3CcpOH 0 277.4 90.5 316.8 92.8 39.5 2.3

H3C-CH2NH7 N 228.2 36.1 218.6 42.0 9.6 5.9

H3C-CH2CH2NH7 N 214.8 45.8 221.0 38.6 6.2 7.2

H3C- CH2CH,CH2NH7 N 221.2 38.0 221 .4 38.8 0.2 0.8

H3C-CH20H 0 287.2 64.5 271.9 39.8 15.3 24.7

H3C-CHCH,0H 0 280.2 112.4 288.9 104.3 8.7 8.1

H3C-CKCKCH70H 0 289.2 104.8 290.3 103.8 1.1 1.0

H3CcpCH7C2H,O3H2C1H3 Ct1 150.0 38.6 154.1 23.2 4.1 15.4

Ct 149.4 28.8 142.6 40.7 6.8 11.9

C3’ 152.1 26.1 154.1 23.2 2.0 2.9

C1 167.8 28.4 167.7 28.8 0.1 0.4

H’ 29.5 7.4 30.0 7.0 0.5 0.4

H2 29.7 6.9 30.1 5.0 0.4 1.9

H3 29.9 7.2 30.0 7.0 0.1 0.2

30.3 9.6 30.4 9.4 0.1 0.2

Calculations were perforrned at the PW9I/IGLO-III leve]. “ Absolute deviation enors of the shielding

constants with capping potentials from ihe full QM results.
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Figure 2.2. The % errors of shielding constants with capping potentials vs. the number of

bonds from the capping carbon.
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Q Table 2.2. Calculated NMR chernical shielding constants (in ppm) using QCPs fr propanoic acid

and alanine in comparison with full QM results.

Cap QM Full QM

molecule nucleus iso aniso iso aniso iso aniso

CŒ 150.6 53.4 155.2 35.2 4.6 18.2
o
II HŒ 28.5 5.7 28.8 7.3 0.3 1.6

H3C.— CaR2— c—O H
C 11.9 86.3 8.1 $6.3 3.8 0.0

(CO) 0 -90.3 452.6 -73.0 517.5 17.3 58.9

(O-H) 0 119.0 199.6 117.0 207.2 2.1 7.6

K 25.1 12.3 25.2 12.1 0.2 0.2

Ïav(C,O) 7.0 21.2

COE 1 19.0 48.2 127.5 39.0 8.5 9.2

H3C—COEH——OH HŒ 26.9 5.6 27.7 6.3 0.8 0.7

NH C 4.9 86.7 1.8 93.4 3.1 6.7

(CO) 0 -66.7 523.8 -60.7 519.1 6.0 4.7

(O-H) 0 126.5 191.0 123.0 185.6 3.5 5.4

(0-H) H 24.9 12.8 25.2 12.5 0.3 0.3

N 220.0 29.2 214.0 39.4 6.0 10.2

(N-H) H 30.1 13.1 30.2 13.5 0.1 0.4

Aav(C,O) 5.3 6.5

aCalculations were performed at the PW9I/IGLO-IJI level.

h Absolute deviation errors ofthe shielding constants vith capping potentials ftorn the fui QM resuits.

Average absolute deviation of the shielding constants of oxygen and nitrogen nuciei with capping

potentiais.

Q
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G In Table 2.3, calcuiated shieidings of some organic molecules are listed. Here, the resutts

were obtained from the QM subsystem with capping potentials at the boundary (Cap

QM), the QM/MM system which includes QCPs at the boundary and Mulliken charges in

the MM subsystem, and the full QM system. In these calculations, the QM subsystems

inciuding the capping carbon are ail same (H3C-C) and therefore it enables us to make

a systematic investigation for the effects of the point charges of the MM subdomain on

the chemicai shielding tensors of the QM region. This QM/MM approach includes only

electrostatic interactions and if the polarization of the QM part by the point charges of the

MM subdomain is not too great, the QM/MM approach can flot improve the shielding

resuits over the pure QM results using only QCPs. For propane, ethyl amine, and

propanoic acid, the QM/MM results are slightly worse rather than the pure QM resutts

with QCPs. However, we can see the best improvement from the results of the amino

acid (alanine) whose electric fields are relatively stronger than those ofthe other systems.

Table 2.3. Calculated NMR chernical shielding constants (in ppm) for some organic rnoleculesf’

Cap QM QM/MM Full QM

QM
molecule nticleus iso aniso iso aniso iso aniso Cap

/MM

H3C(QM)- C 179.8 20.2 182.2 16.0 166.3 30.3 13.5/10.1 15.9/14.3

CH2CH3 l-1 30.3 10.2 30.6 10.2 30.4 9.1 0.1/1.1 0.2/1.1

H3C(QM)- C 180.6 18.5 180.8 17.1 165.2 30.8 15.4/12.3 15.6/13.7

CH2NH H 30.3 10.2 30.5 10.0 30.3 9.0 0.0/1.2 0.2/1.0

1-13C(QM)- C 180.7 18.4 179.8 19.9 162.4 33.6 18.3/15.2 17.4/13.7

CH2OH 1-1 30.3 10.2 30.3 10.1 30.3 8.3 0.0/1.9 0.0/1.8

H3C(QM)- C 180.9 18.6 167.8 38.0 174.5 14.5 6.3/4.1 6.7/23.5

CH-COOH H 30.4 10.3 29.5 9.7 30.3 9.5 0.1/0.8 0.8/0.2

H3C(QM)- C 179.5 19.8 170.7 33.0 161.0 38.0 18.6/18.2 9.7/5.0

CPHCOOHNH7 H 30.3 10.1 29.8 9.6 30.1 8.4 0.2/1.7 0.3/1.2

“ Calculations were perfornied at the PW9I/IGLO-l1l level. Absoltite deviation errors from full QM

resul ts.
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The NMR chemical shielding constants of neutral histidine were calculated for the

variotis systems: the full QM system, the QM subsystems capped by hydrogen-link atoms

and by capping potentials at the boundary, and the QTVI/MM system with capping

potentials at the boundary and point charges in the MM region. The resuits are collected

in Table 2.4. The molecular structure and capping scheme for neutral histidine are shown

in fig 2.3.

In this study, two types of point charges were used for comparison: Mulliken charges and

RESP (restrained electrostatic potential) charges based on Hartree-fock calculation. As

seen in Table 2.4, the shielding resuits of the capping carbon approach are better than

those of the hydrogen-link atom approach compared to full QM resuits for three different

types of magnetic nuclei (C, N, and H) but the QM/MM resu]ts do flot show any

significant improvement over the pure QM (C-Cap) resuits. Different types of point

charges mainly affect the nuclei close to the charges such as the J3-carbon and the 1-

nitrogen. for carbon shielding constants, Mulliken charges ( = 0.6/3.8 ppm, absolute

deviation errors of isotropic/anisotropic shieldings) give slightly better resuits than RESP

charges (z 3.7/8.2 ppm) but, for nitrogen shielding constants, the opposite trend is

found (Muli: 2.8/14.5 ppm; RESP: 1.8/11.7 ppm). In this case, since the

etectric field is flot so strong, there are no large differences between the QM/MM resuits

(N, Muli: = 2.7/22.0 ppm; RESP: 1.8/11.7 ppm) and the pure QM resuits with

QCPs (N: z 2.7/22.0 ppm).
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QM region

Figure 2.3. Optimized structure and numbering scheme of neutral histidine.
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Table 2.4. Calculated NMR chemical shielding constants (in pprn) for neutral histidine.t’

QM/MM QM

‘Mu11 RESP/Hf H-tink C-Cap Full

C1 ‘148.0/’33.6 138.1/47.7 125.7/30.8 155.3/29.8 148.2/25.0

C2 53.8/109.8 54.0/108.8 52.0/116.1 53.4/112.4 53.2/112.9

C3 51.6/102.0 51.1/102.5 50.1/107.9 53.3/101.1 53.3/98.6

C5 49.2/93.0 47.6/95.2 50.6/87.2 50.8/90.9 49.1/93.1

0.6/3.8 3.7/8.2 10.8/6.0 2.2/2.5

N4 -31.8/389.8 -31.4/389.7 -38.2/398.3 -31.2/384.5 -28.1/397.3

N6 76.3/115.7 74.8/121.5 77.1/95.6 76.8/106.0 74.5/137.2

2.8/14.5 1.8/11.7 6.4/21.3 2.7/22.0

H7 27.8/8.3 27.0/7.8 32.3/9.4 28.0/8.7 28.7/6.2

H5 27.8/6.7 27.3/5.8 31.8/10.6 28.0/7.1 28.1/7.2

HH 22.0/6.3 21.7/6.5 23.0/5.9 22.6/5.8 19.9/11.9

H9 24.2/3.6 24.2/3.5 24.3/4.1 24.3/3.6 24.3/4.6

Hit) 23.7/5.1 23.7/4.9 24.0/5.3 23.2/5.1 23.7/5.4

0.7/1.9 0.9/2.0 2.1/2.6 0.7/2.0

Calculations were perfbrmed at the PW9I!IGLO-II1 level. “ Mulliken charges were obtained at the

B3LYP/63tIG** level using the G98 program. e RESP charges were obtained using the Amber program

based on the Hartree-Fock electrostatic potential calculation. ‘ Isotropic shielding constants. e Anisotropic

shielding constants.
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finally, the NMR shielding constants of cystosine monophosphate (CMP) were

calculated and are Iisted in Table 2.5. In the QM/MM calculation, the pyrirnidine base

atoms in CMP are only included in the QM region and the backbone atoms (the pentose

and the phosphate) are treated as MM atoms. Ihe QM/MM boundary is treated with

QCPs. The QM/MM partition and numbering schernes are shown in Fig 2.4. The first

partition of the QM and MM regions was made at the carbon (Ccap(PI)) and the second

extended partition was made at the carbons (Ccap(Pl1)). In the hydrogen-link atom

approach, the capping carbon in the first partition is replaced with a hydrogen atom. In

this work, three kinds of point charges were used: Mulliken (Muil), RESP based on HF

calculation (HF). Two types ofQCPs are used: QCPs without Pauli repulsion (Cap 1) and

with Pauli repuistion (Cap2).

First, let us focus on the carbon shieldings. The isotropic shielding resuits of the QM/MM

(I’ 1.l2.4 ppm) and pure QM (IA 1.63.3 ppm) approaches are flot so different and

even the different types of charges (IA l.12.4 ppm) and the extension of the QM

region ( 2.0 ppm) do not give any large effect on the isotropic shieldings. However,

the anisotropic shielding resuits are rnuch more sensitive to the types of approaches

(QM/MM(Pl): 6.28.4 pprn; QM(PI): I 74—i 1.4 ppm) and partition schemes

(QM/MM(PtI): I’i 0.8 ppm). tt reflects that the types of charges (Mulliken, RESP-KF)

and potentials (Cap 1 and Cap2) are not important for both isotropic and anisotropic

shieldings. On the contrary, the extension of the QM region has a large effect on the

anisotropy of carbon.

Nitrogen shielding resLilts show a different trend from the carbon resuits. For the isotropic

shielding, the capping carbon approaches (PI+Capl: 4.5 ppm) give doser resuits to

the full QM resuits than the H-link approach (JAJ 14.6 ppm) and the Pauli repulsion

(PI+Cap2: 6.8 ppm) is not important in this case. The QM/MM results even

including the extended partition results (lAI 5.5—-8.4 ppm) do flot show any great

improvement to the pure QM results ([ 4.5—44.6 ppm). For the anisotropic shielding,

the inclusion of Pauli repulsion (PI+Cap2: Ai 32.9 ppm) makes the results of the pure
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C QM approaches PI+Cap1: I = 17.8 pprn) worse, and even in the QM/MM scheme the

same trend is shown. for QM/MM, the resuits with RESP charges ([A 4.OE-7.4 ppm)

are better than the others including the extended partition results (A 13223.1 ppm).

As seen in Table 2.5, for the oxygen shieldings, the pure QM resuits with capping

potentials (PI+Capl: 30.3/1 15.0 ppm) are much worse than the results with K-link

atoms ([A 20.6/20.2 ppm). The resuits (P1+Cap2: zN 22.0/66.6 pprn) can be irnproved

by the QCPs with Pauli repulsion but they are stili far from the full QM resu]ts. for

isotropic shieldings, the first partition (PI) QM/MM results 0.18.7 ppm) show

great improvement over the pure QM resuits but stiil their anisotropies (zf 107. tl69.9

ppm) are seriously deviated from the full QM results. This problem is alleviated with the

extended partition (Pli) (lAI 19.2 pprn). In this work, the electrostatic effects between

the MM and QM subregions are only included in the QM/MM approach and, therefore,

other short-range quantum interactions from the MM atoms (e.g. polarization, exchange

repulsion, charge transfer) should be considered in order to obtain accurate anisotropic

shielding constants ofthe oxygen. Here, this is achieved simply by the slight extension of

the QM part.



Chapter 2. QM/MMApproacÏiJbr Magnetic Properties 76

Figure 2.4. Optimized structure and numbering scheme of cytosine monophosphate

(CMP).

o
J
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MuÏÎ Kf MP2 Muli Mttll

C2 “16.4/ 16.0/ 16.1/ 16.5/ 16.7/

‘152.0 153.3 153.1 152.5 151.7

C3 87.4/ 84.4/ 85.3/ 88.2/ 88.9/

114.0 115.2 114.5 114.6 114.6

C4 25.5/ 24.9/ 25.3/ 28.3/ 34.0/

191.0 160.7 161.0 160.0 178.3

C8 23.0! 23.8/ 23.8/ 23.4/ 26.4/

78.5 77.5 77.3 76.1 65.3

“ 1.8/ 2.4/ 2.1/ 1.1/ 2.0/

6.2 8.4 8.1 7.9 0.8

NI 19.8/ 21.3/ 20.7/ 17.0/ 10,4/

264.9 265.4 265.6 265.8 259.8

N5 52.4/ 50.3/ 51.4/ 41.4/ 44.0/

88.6 134.1 124.0 74.7 175.4

N10 168.1/ 167.1/ 167.0/ 168.5/ 168.5/

95.2 93.2 93.3 95.8 97.1

5.5! 6.4/ 5,9/ 8.4/ 7.4/

18.4 4.0 7.4 23.1 13.2

09 -14.5/ -23.1/ -21.8/ -8.2/ -28.0/

312.3 286.8 294.2 349.6 475.9

(Al 0.1/ 8.7/ 7.5/ 8.3/ 13.7/

144.4 169.9 162.5 107.1 19.2

H-link

16.6/ 16.9/ 15.9/ 15.6/

152.7 152.5 151.5 151.1

88.2! 89.2/ 91.0/ 87.7/

106.0 108.9 110.2 114.3

32.6/ 35.1/ 36.8/ 29.4/

147.3 157.2 154.0 179.8

26.7/ 26.1/ 27.3/ 25.1!

69.1 65.9 73.0 66.1

1.6/ 2.4/ 3.3/

11.4 7.4 9,3

11.3/ 8.1/ 5.9/ 13.6!

274.6 277.6 278.1 260.2

55.4/ 51.4/ 90.8/ 61.8/

104.5 61.5 107.3 136.7

162.3/ 162.9! 160.2/ 167.2/

90.8 91.5 93.5 97.5

4.5/ 6.8/ 14.6/

17.8 32.9 17,1

-44.6/ -36.3/ -34.9/ -14.3/

341.7 390.1 436,7 456.7

30.3/ 22.0/ 20.6/

115.0 66.6 20.2

o

Calculations were performed at the PW9I!IGLO-111 level. “ Isotropic shielding constants. Anisotropic

shielding constants. “Absolute deviation errors from full QM resuits.

o Table 2.5. Calculated NMR chernical shielding constants (in ppm) for the base of cytosine

monophosphate (CMP).”

QM/MM QM

P1+Capl PI+CapI PI+Capl P1+Cap2 PI1+Capl Pl+Capl P1+Cap2 Pl+H Full
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2.4.2 Nuclear Spin-Spin Coupling Constants

In this work, the QM/MM approach using the electrostatic embcdding model of the QM

part has been applied to the calculation ofnucÏear spin-spin coup ling constant for the first

time. In order to consider the strong electrostatic effect, CMP was used for the

calculations. Calculated resuits at the various approaches are collected in Table 2.6. from

Table 2.6, we can see that the QM/MM resuits are in good agreement with the full QM

resuits and they are much better than the pure QM resuits with only QCPs. Mainly, the

spin-spin coupling constants of 1H913C2 (see Fig 2.4 for structure and numbering scheme)

are strongly affected by the MM partial charges and the others are not. Among

contributions of the coupling constant, the Fermi contact and spin dipolar cross terni (FC

SD) are most sensitive to the MM point charges. From the resuits, we can see that this

QM/MM approach is valid for NMR spin-spin coupling calculations and especially if

eÏectrostatic interactions between the QM and MM subsystems are strong and short range

quantum interactions are flot important, the QM/MM resuits will be very close to the full

QM resuÎts.
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G Table 2.6. Calculated NMR spin-spin coupling constants (in Hz) for the base of cystosine

monophosphate (CMP)f1

QM QM AÏ

Pl+Capl full QM/MM QM

‘H915N1

E1913C3

H91Ht

QM/MM

P1+Cap 1

Mul Î iken

“fC 179.71 167.02 181.00 1.29 13.92

PSO -0.4$ -0.17 -1.04 0.56 0.87

dDSQ 0.87 0.92 1.50 0.63 0.58

SUM 180.10 167.77 181.47 1.37 13.70

FC 2.61 2.95 2.00 0.61 0.95

PSO -0.33 -0.37 -0.44 0.1 1 0.07

DSO -0.09 -0.09 0.06 0.15 0.15

SUM 2.1$ 2.49 1.62 0.56 0.87

FC 4.75 5.13 3.84 0.91 1.29

P50 -0.6$ -0.75 -1.05 0.37 0.30

DSO -0.35 -0.35 0.00 0.35 0.35

SUM 3.72 4.04 2.79 0.93 1.25

fC 7.03 6.79 6.87 0.16 0.08

PSO 0.10 0.0$ -1.09 1.19 1.17

DSO -0.31 -0.31 0.96 1.27 1.27

SUM 6.82 6.55 6.74 0.08 0.19

“Calculations were perforrned at the P$6/IGLO-11I
orbit terni. c’ The diamagnetic spin-orbit term.

level. The Femi contact tenu. The pararnagnetic spin-
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2.4.3. Hyperfine Coupling Tensors

We begin by examining the influence of MM partial charges on the hyperfine structure

and Multiken atomic spin population of the QM region. To this end, we employ two

model systems, labeled as “C-Cap QM” and “QM/MM”. The first model (C-Cap QM)

consists of the pure QM subsystem, capped with “carbon” QCPs. It contains 42 atoms.

The QM/MM model additionatly incorporates MM partial charges (2140 and 1929 MM

atoms for azurin and stellacyanin, respectively). Results, obtained with these two models,

are compared to the experimental data [36-39], and to published QM resuits for an

extended rnodeÏ, capped by hydrogen link atoms (H-Link L-QM) [2]. In the latter case,

four aminoacids, directly coordinated to the copper center, were supplemented by the

atoms of the neighboring arninoacids, for a total of 11 7 and 93 QM atoms in azurin and

stellacyanin, respectively. DFT resuits for the extended model of stellacyanin, calculated

in the present work, were obtained for a slightly smaller model, where the peptide chain

ofthe axial arninoacid (G1n99) was not elongated. Tables 2.7 and 2.8 compare calculated

hyperfine parameters of azurin and stetlacyanin for these model systems. Mulliken spin

populations ofthe two models, studied presentty, are shown in Table 2.9.

From Tables 2.7 and 2.8, it can be seen that the capping pseudopotential technique gives

similar resuïts to the hydrogen link atom approach, but at a signiflcantly lower

computational cost (in ternis of numbers of electrons that have to be explicitly treated in

the QM subsystem). PotentialÏy, the capping carbon approach also provides a better

description of spin delocalization by retaining carbon atom character at the domain

boundary.

The qualitative difference between the protein environrnent of the copper center in azurin

and stellacyanin can be seen clearly from the simplffied ribbon structures, shown in

Figures 2.5 and 2.6. In azurin, the aminoacids directly coordinated to the copper center

are well screened by the protein backbone. The only exception is the 2 and £2 positions

of His 117, which are exposed to the solvent. On the other hand, in stellacyanin, parts of
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His46 and Kis94 opposite from the copper center are easily accessible for the solvent

molecules. These characteristic structural features lead to quite different trends in the

QM/MM resuits for the hyperfine structure and Mulliken spin population.

for the copper nucleus, the anisotropic hyperfine tensors of azurin are greatly affected by

the MM partial charges (changes of 8 32 MHz), but the isotropic hyperfine constant is

flot (change of 1 MHz). On the other hand, both the dipolar and isotropic constants of

stellacyanin copper are greatly affected by MM partial charges (changes of 5 18 MHz

and 17 MHz for the dipolar and isotropic constants, respectively). As can be seen from

Table 2.9, the unpaired electron spin populations (p and d-types) on the copper atom in

azurin and stellacyanin are increased by 0.038 and 0.017, respectively, under the

influence of MM charges. This illustrates the stronger influence of the MM charges on

the anisotropic tensors of the copper in azurin. (We note that dipolar tensors are mainly

deterrnined by the interaction between the nuclear spin and anisotropic spin-density

distribution, provided by the valence p and d-orbitals on copper). At the same time, the

isotropic results indicate that, in azurin, s-type populations on copper are flot affected by

MM charges, in contrast to stellacyanin.

In order to test the convergence ofthe QM!MM calculations with the QM subsystem size

for the copper center in stellacyanin, we also examined an alternative QM region for the

QM/MM calculation in this system (M-QM/MM). In this model (53 QM atoms), sorne

atoms of neighboring residues attached to Cys89 were transferred from the MM part into

the QM region. Because Cys89 sulfur interacts strongly with the copper (see Table 3),

accurate handiing of Cys89 may be expected to be more important, compared to His46

and His95. From the resuits (see M-QMJMM in Table 2), it is seen that the hyperfine

structures of the copper are not affected much by the elongation of Cys89 chain. By

inference, extension of the QM subsystem to the direct neighbours of the histidine

ligands, is Iikely to be even less important.

For the histidine nitrogen, in azurin, our QM/MM results for the hyperfine structure are in

good agreement with the previously published resuits for larger, pure QM models, and
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the experimental data. Nitrogen atoms, coordinated directly to the copper center (in 61

position), carry larger spin populations compared to the remote £2 nitrogen atoms. As a

result, catculated isotropic hyperfine parameters of 6-nitrogen atoms (Ris46: 15.6 MHz;

Hisll7: 18.5 MHz in C-Cap QM; 18.7 and 22.0 MHz in QM/MM; vs. 18.1 and 25.1

MHz in experiment) are somewhat more sensitive to MM charges, than those of E

nitrogen atoms (His 46: 0.56 MHz; HisI 17: 0.93 MHz in C-Cap QM; 0.62 and 1.21 MHz

in QM/MM; vs. 0.87 and 1.30 MHz in experiment). The absolute difference (3.1 and 3.5

MHz in 61 position; 0.06 and 0.2$ MHz in £2 position) of A0 values between the pure

QM (C-Cap QM) and QM/MM models indicates relatively strong effects from the MM

subsystem.

In stellacyanin, the QM/MM calculations give nitrogen byperfine parameters similar to

the QM resuits (L-QM, this work) for larger models. As can be seen from Table 2.7 and

Figure 2.6, the effects from the protein backbone and solvent molecules are small,

compared to azurin. At the same tirne, the resuits from the extended QM/MM model (M

QM/MM) are doser to the resuits from the large QM region (L-QM), and to the

experiment. This indicates that additional short-range interactions from neighbors of

Cys$9 (e.g. induction, exchange repulsion, charge transfer), completely neglected in

standard QM/MM models, should be treated explicitly.

For the cysteine f3-hydrogen, in azurin, the QM/MM A0 values (131: 30 MHz; 132: 54

MHz) represent a significant improvement relative to the pure QM (C-Cap QM) resuits

(34 and 64 MHz). The values are close to the previously published QM results [40, 41]

for larger models (2$ and 46 MHz in L-QMI; 2$ and 32 MHz in L-QM2), and to the

experiment (27 and 28 MHz). On the contrary, in stellacyanin, there is no significant

difference between the pure QM (C-Cap) (131: 33 MHz; 132: 40 MHz) and QM!MM (36

and 38 MHz) resuits and the QM/MM resutts are far from the QM values for a larger

model (f31: 22 MHz; 132: 27 MHz), and from experiment (13 and 16 MHz). In both cases,

there are still significant discrepancies between the QM/MM and experimental values for

13-hydrogens. Again, these discrepancies arise from the omission of short-range
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interactions of the cystein residue with the protein backbone. Treating these interactions

explicitly within the DFT region improves the resuits considerably (M-QM/MM - 131: 28

MHz; 132: 2$ MHz in stellacyanin).

for the histidine hydrogen, the QM/MM resuits are in better agreement with experirnent

than the pure QM (C-Cap) treatment of the radical center. In azurin, QM/MM A0 values

represent a significant change (0.11 0.34 MHz) relative to the pure QM (C-Cap) resuits,

except £2 hydrogen of His46. following the trend seen for other hyperfine parameters, in

stellacyanin, the QM/MM resuits deviate rnuch less from the pure QM resuits (by 0.02

0.13 MHz). In azurin, the hyperfine parameters of histidine hydrogens should be affected

mainly by the protein backbone (2: 0.24 MHz; £1: 0.34 MHz in His46, £1: 0.34 MHz in

His 117). while those of the 2 and £2 hydrogens in Ris 117 should be affected mainly by

solvent molecules (2: 0.21 MHz; £2: 0.11 MHz). In stellacyanin, an influence of the

soîvent may be expected for rnost hydrogens, but the effect (0.02 0.13 MHz) is less

pronounced than in azurin.

o
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Table 2.7. Calculated hyperflne pararneters ofazurin in MHz.”

QM/MM Exp’/

G

o

H-Link C-Cap H-Link H-Link

QM L-QMI1’__L-QM2’________

Cu A0 -109 -106 -105 -207 -158 -100

T 147 144 152 193

12 117 114 138 154

13 -263 -258 -290 -347

His46 N1 A10 15.6 15.6 18.7 20.3 16.1 18.1

T -1.7 -1.7 -2.2 -2.0 -1.3

T2 -1.4 -1.4 -1.9 -1.6 -0.8

13 3.1 3.1 4.1 3.6 1.2

NE-J A10 0.60 0.56 0.62 0.7 0.9 0.87

1 -0.14 -0.14 -0.18 -0.2 -0.17

12 -0.04 -0.04 -0.05 0.0 -0.07

T3 0.18 0.17 0.23 0.2 0.23

H62 A0 0.68 0.63 0.87 0.9 0.79 1.49

HE] A0 0.89 0.96 1.30 0.4 1.32 1.06/1.48

H A0 0.41 0.33 0.34 0.3 0.60 0.56

Hisll7 N61 A10 19.1 18.5 22.0 22.6 22.4 25.1

li -2.1 -2.0 -2.4 -2.2 -1.5

L -1.7 -1.6 -1.9 -1.7 -1.1

13 3.8 3.7 4.3 3.9 2.7

NE2 A1,0 1.01 0.93 1.21 1.0 1.5 1.30

T -0.19 -0.18 -0.19 -0.2 -0.32

12 -0.05 -0.05 -0.07 -0.1 -0.04

13 0.24 0.23 0.25 0.3 0.35

H62 A10 0.68 0.62 0.83 1.5 2.00 1.61

HEI A0 1.48 1.43 1.77 0.4 0.79 1.45/1.02

HE2 A10 0.70 0.66 0.77 0.4 1.06

CyslI2 H1 A0 34 34 30 28 28 27

H2 A0 60 64 54 46 32 28

“Calculations were perfonried at the BP tevel. ‘ UB1LYP resuits ofthe large model taken from Ref [381.

“BP results of the large model taken from Ref [40].’ ENDOR, ESEEM and NMR results taken from Ref

[36-39, 42].
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Table 2.8. CalcuÏated hyperfine parameters ofstellacyanin in MHz.t

H-Link C-Cap QM M-QM H-Link
E u

QM QM /MM /MM” L-QM
xp

Cli A10

T1

T,

T3

His46 N1 A10

T1

T2

T3

NE2 A0

T1

T3

A0

A1,,

T1

T

T3

N2 A0

T1

T,

T3

H82 A.,0

HEI A0

HE2 A10

Cys89 H1 A1.,,,

H7 A10

-73

176

113

-289

16.93

-2.15

-1.75

3.90

1.04

-0.18

-0.03

0.22

1.56

1.26

0.95

23.92

-3.10

-2.49

5.59

1.71

-0.23

-0.06

0.29

1.82

1.53

1.69

32

38

-70

172

112

-284

16.63

-2.12

-1.73

3.85

1.02

-0.18

-0.03

0.21

1.51

1.2$

0.89

23.54

-3.04

-2.45

5.49

1.64

-0.22

-0.06

0.29

1.74

1.50

1.67

33

40

-53

190

100

-289

16.49

-2.06

-1.66

3.72

0.96

-0.17

-0.04

0.21

1.48

1.25

0.76

25.33

-3.28

-2.63

5.91

1.6$

-0.25

-0.08

0.32

1.79

1.61

1.75

36

38

-53

19$

106

-304

17.75

-2.24

-1.82

4.05

1.04

-0.18

-0.04

0.22

1.65

1.32

0.81

26.43

-3.50

-2.82

6.32

1.75

-0.26

-0.0$

0.34

1.98

1.72

1.81

28

28

-59

175

93

-263

18.30

-2.45

-1.97

4.42

1.04

-0.21

-0.03

0.24

1.46

1.12

0.77

26.79

-3.39

-2.71

6.10

1.61

-0.26

-0.06

0.32

1.56

1.36

1.38

22

27

1.53/1.78

0.70/1.09

0.62

1.77/1.51

1.40/1.01

13

16

elongated by the atoms of

H82

His94 N61

CalcuÎations were pertbrrned at the B? level. ‘ The peptide eÎiain of Cys$9 is
neighbonng arnmoacids. C Ibis work. ‘ NMR results taken from Ref {39j.

o
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Table 2.9. Comparison of Mulliken spin populations for azurin and stellacyanin models, with

different approaches for the dangling bond capping.

Azurin Cysll2 His46 Hisll7

SteÏlacyanin Cys89 H1s46 His94

Ce S Hp

Azurjn H-LinkQM 0.236rÏ 0.661 0.014 0.026 0.031 0.037

-0.016” 0.020 0.013 0.024 0.008 0.009

C-Cap QM 0.230 0.666 0.018 0.029 0.033 0.037

-0.014 0.021 0.017 0.027 0.008 0.009

QM/MM 0.267 0.608 0.016 0.024 0.047 0.044

-0.013 0.019 0.016 0.023 0.009 0.011

Stellacyanin H-LinkQM 0.270 0.602 0.012 0.017 0.042 0.057

-0.008 0.015 0.011 0.016 0.011 0.012

C-Cap QM 0.264 0.611 0.0 12 0.0 19 0.044 0.057

-0.009 0.016 0.012 0.018 0.011 0.013

QM/MM 0.27$ 0.583 0.012 0.017 0.044 0.062

-0.006 0.013 0.012 0.017 0.009 0.015

‘Total spin populations (s-
, p- and d-type orbitais). “Spin populations ofs-type orbitals.
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Figure 2.5. The QM part in wild type azurin from Psetidomonas aeruginosa; terminal

carbon atoms were replaced by capping carbon atoms in the QM/MM calculations.
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Figure 2.6. The QM part in stellacyanin from Cucumis sativus; terminal carbon atoms

were replaced by capping carbon atoms in the QM/MM calculations.
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2.5. Conclusion

We proposed a QM/MM approach for the caiculations of various magnetic properties

such as NMR shielding tensors, nuclear spin-spin coupiing constants, and hyperfine

tensors. The technique employs one-electron carbon pseudopotentials, parameterized, for

capping bonds at the dornain boundary. Long-range interactions between the QM and

MM subsystems are treated by adding an electrostatic term, due to the MM charges, to

the one-electron part of the QM Kamiitonian. In this study, it is demonstrated that the

effects from the MM partial charges on the QM part rnainly transfer through field-free

KS orbitais and corresponding energies implicitly. Hence, we do not need to modify the

codes ofthe core integrals for magnetic properties which are not changed in this QM/MM

approach. This QM/MM approach was appÏied to calculations of various magnetic

properties: (1) NMR chemicai shielding tensors for several organic molecules, sorne

aminoacids (alanine and histidine), and a nucleic acid mode! (CMP) (2) NMR spin-spin

coupling constants for CMP (3) hyperfine structures for paramagnetic blue copper

proteins (Azurin and Stellacyanin).

This QM/MM approach shows two significant advantages: firstly, it can be implemented

easily without code modification. Capping potentiats can be treated as conventionat

effective core potentials, and point charges can be handied for energy calculations by

most DfT programs. Secondly, the magnetic parameters of biologicai systems are weIi

described by a small QM model surrounded by MM partial charges. This is in part due to

the use of the capping potentials, which reduce disturbances of the electronic structure of

the QM subsystem, arising from broken bonds at the domain boundary. At the same time,

care should be taken not to place the domain boundary too close to the nuciei of interest

which are strongiy affected by quantum effects. In the present study, the oxygen of CMP

in NMR chemicai shielding calculation and -hydrogens ofthe cysteine residue (directly

coordinated to the copper center) in hyperfine structure calculation were placed too close

to the domain boundary used in our initial QM/MM mode!. Adequate treatment of such

centers requires that additional short-range interactions at the boundary (induction,
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O exchange repulsion, and charge transfer) shouÏd be included. In this work, the desired

effects were achieved by a small increase in the size of the QM subsystem.

In sumrnary, our hybrid QM/MM method provides computationalÏy efficient access to

most magnetic parameters of the interesting local (QM) part in biological systems such as

proteins and nucleic acids, while at the same time including the essential effects from the

surroundings.

O
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ç Chapter 3. Paramagnetîc NMR Shifts

The goal of this chapter is to present and validate a new theoretical approach for NMR

chemical shifts in paramagnetic species within the framework of quantum rnechanics.

[1,2]. Through this chapter we mainly focused on theoretical works rather than

computationai applications. The detail applications wiil be shown in the following paper

[2] and the near future works. This chapter is organized as follows: In section 1, a general

introduction about paramagnetic NMR chemical shifis iticluding their unique character is

provided. In section 2, the previous theoretical approaches are reviewed. In section 3, we

introduce a general expression for the pararnagnetic NMR shielding based on the work of

Moon and Patchkovskii [1]. In section 4, for a special case (spatially non-degenerate

Kramers doublet), working equations are provided. In section 5, a new method is applied

to the NMR chemical shifi calculation of organic radicals (nitroxides) and

metaltoproteins (hemes and blue copper proteins) and the resuits are validated. In section

5, the conclusions ofthis chapter are presented.

3.1. Introduction

The existence ofunpaired electrons in a molecule has a great effect on the NMR signais

of magnetic nuclei through both fine broadening and a large shift ftom the position of

resonance [3-6]. This has been a huge obstacle to the study of paramagnetic systems by

NMR. [-lowever, under the conditions that the electron spin-lattice relaxation rate, 1/T1,

and/or the electron spin exchange rate, liTe, is much greater than the nuclear-electron

hyperfine interaction, the NMR signais can be detected [3-6]. In titis case, magnetic

nuclei sense only the time-averaged spin density of unpaired electrons which is

determined by the Boltzmann statistics at a certain temperature [6]. In the presence of a

magnetic field, the electron spin states will be populated differentiy and the paramagnetic

shifts arise from a smail population difference ofthe spin states.

94
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The NMR spectra of organic radicats can be detected in concentrated solutions since

electron exchange may be rapid enough [7-1 1]. The electron spin relaxation or ligand

exchange of rnany transition metal ion complexes in solution are also fast enough to

allow observation ofthe NMR spectra ofthe ligand nuclei [4]. from the observed NMR

shifis, the sign and magnitude of the electron spin density can be determined in a

straightforward manner. This is the advantage of NMR spectroscopy over electron spin

resonance (ESR) spectroscpy in which the sign of the electron spin density can not be

measured directly from the spectra [il].

for the interpretation of the paramagnetic NMR signais theoretical studies are

indispensible. Therefore, up to now, intensive theoretical studies for the NMR chemical

shifi in paramagnetic systems have been performed, based on the electronic structure

from ligand fïeld theory, magnetic susceptibility, and optical properties of paramagnetic

compounds together with a background in NMR theory and statistics [12-22]. Due to the

lack of generality of the equations and temperature dependence of the electron spin

density, it is hard to use flrst-principles electronic structure methods for paramagnetic

NMR shift calcutations. However, compietely non-empirical prediction of the

paramagnetic NMR chemicai shifts is finally becoming possible, since the recent rapid

development of first-principies methods enables us to calculate most magnetic resonance

parameters such as NMR chemical shifts, hyperfine coupling constants, and electronic g

tensors [25-28]. In fact, very recently, Mao et ai. reported the detail investigation of the

chemical shifts in some paramagnetic metalloprotein systems and showed a good

correlation between DfT resuits and experirnent [29]. Despite their successftil

computational results, stiii we can not see any theoretical work for the paramagnetic shift

itself because they just focused on the Fermi contact contribution which mainly depends

on the spin density of unpaired electrons. Later, Rinkevicius el al. reported the orbital

contribution to the shifis in some organic radicais for the first time [23]. In the work, they

emphasized the importance of the orbital contribution which is smaller than the Fermi

contact contribution but not negiigibie. However, they also ignored the pseudocontact

contribution and did not compare the orbital contribution with the shielding contribution

of corresponding diamagnetic compound which is usually used for experimentai works
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C (see section 3.4 for the detail description of the contributions). Hence, in this thesis, we

provide a complete, general expression for the paramagnetic shift [1] and a working

forrnaiism for the special case (isolated Kramers doublet state), which is derived by using

an effective spin Harniitonian and Boltzmann statistics using some assumptions: the

ground states are oniy therrnally populated and there are no second-order Zeeman

rnixings between thermaliy popuiated ground and excited states.

For implementation and validation ofthis new approacb, two types of systems are chosen

due to the abundant experimental data for them and their relatively simple electronic

structures. One is a series ofnitroxides which are stable in solution [7-1 1] and the other is

the metai active sites of metailoproteins such as copper complexes of blue copper

proteins [30-33] and ferric cyanide-imidazoie complexes of heme proteins [34]. The

NMR chemical shifis of the nitroxides and metal complexes are calculated within density

functional theory and the results are compared with the experirnentai data. They are also

correlated to other physical properties.

3.2. Short Theoretïcal Reviews of Paramagnetic Systems

Unpaired eiectrons may be deiocaiized over the whole system through the molecular

orbitais. In general, there are two types of delocalization: one is the direct delocaiization

through the moiecular orbitais with unpaired electrons and the other is the delocaiization

by spin polarization [6]. The magnetic nuciei of the system will interact with the

delocaÏized unpaired electrons. The interactions are often divided into two kinds of

interactions: the fermi contact and dipoiar interactions [12-22]. The Fermi contact

interaction arises from the spin density at a magnetic nucieus. This is the case where the

spin density exists in the s-type atomic orbitai of the magnetic nucleus. The dipoiar

interaction resuits from through-space interactions between the eiectron and nuclear

spins. In this case, one shouid evaluate an integrai over ail space. In common, the

isotropic NMR shifts ofparamagnetic moiecuies in solution are expiained by two contact
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terms, the fermi contact and pseudocontact ternis, which arise from the Fermi contact

and dipolar interactions, respectively.

Due to the rapid electron spin relaxation, the magnetic nuclei in a paramagnetic system

may experience a time-averaged electron spin density [3-6]. In this case, the NMR

spectra depend on the temperature of the system due to the BoÏtzmann distribution of the

electron spin density. If the thermal energy kT is much greater than the transition energy,

the time average of the spin projection is defined as [61:

Sexp(—E /kT)

1 \ —

_________________

— fiBS(S +1)
\ z/ s ——

exp( — E,1/kT)
‘Is -S

Here, E41 is the energy of the electron spin state M and denotes the rotationally

averaged g-value which is different from the free-electron g-value (2.0023) due to spin

orbit couplings in the system. fi is the Bohr magneton, k is Boltzman&s constant and T is

the temperature of the system. The external magnetic field B0 is aligned with the z

direction. In this approach, the abovementioned two assumptions are imposed.

The commonly used expressions for the isotropic pararnagnetic NMR shifts were derived

by McConneïl et al. [12,15] using the above spin density fornula. The Fermi contact terni

[12] takes the form:

FC
= A’

fiS’(S + 1)
(3.2)

L) 1V
gfi 3kT

where A° is the Fermi coupling constant, g is the nuclear g-value, and fiN is the

nuclear magneton. The pseudocontact terni [15,16] is given by:



Chapter 3. Pciramagnet le NMR Shifis 9$

C = fi2s(s + I) (3cos2 Q—1)
f(g) (33)

3kT R3

Here, Q is the angle between the principal symmetry axis and the vector made by the

metal ion and the magnetic nucleus of interest, R is the distance between the metal ion

and the nucleus, and F(g) is an algebraic function of the g-tensors which depends on the

relative magnitudes of electron relaxation times and rotational correlation tirnes. In this

case, it is assumed that the tinpaired electrons reside oniy in the centered metal and R is

large enough that the metal ion may be treated as a point dipole.

In the derivation of McConnell’s equations, two main assumptions, rnentioned above,

were irnposed, which restrict their application. In 1970, McGarvey et al. suggested more

general equations which can handle both zero fleld sptittings and thennaÏ Zeeman mixing

ofthe ground and excited states [13]. Their theory is as follows. The hyperfine interaction

can be expressed by three operators: the Fermi contact (FC), the dipolar (DIP), and the

nuclear-electron orbital (ORB) operators. The operators have the forms:

Hfc “N
(3.4)

and

3r.r,—Ir., i I
= g./3gI3N

-

- Iv (3.5)

and

H
=gflgj\,fl IIN,

‘IN (3.6)

o
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where is the Dirac delta function, rJN is the vector between the locus of the jth

electron and the nucleus N, s. is the electron spin angular momentum operator, tN is the

nuclear spin angular momentum operator, ‘N is the orbital angular momentum operator

ofthe ith electron from the nucleus N. If the nuclear spin transition energy is rnuch larger

than the hyperfine interaction, the nuclear spin can be quantized along the external

magnetic field (here, we assume that the magnetic fïeld is aligned with the z direction,

1 .z). The local magnetic field arising from the electron spin density at the nucleus

is obtained from an average over thermally populated states,

= (H FC + H + HDRB) z (3.7)

where z is the unit vector along the externaÏ magnetic fieÏd B. In McGarvey’s approach,

the thermal equilibrium values of the operators Hfc. , HJ)J]. , and 11t)RB were obtained

from a density matrix expression,

(H FC + H DI]’ + H = tr(p(H FC + “DII’ + H )) I tr(p) (3.8)

and

p = expt—H/kTl (3.9)

where p are the density matrix operator, tr denotes the trace and H indicates the time

independent nonretativistic Harniltonian for the system. Since the etectronic transition

energy is much greater than the electron spin transition energy, the system can be treated

by the perturbation method.

H=H0+117 (3.10)

and
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0 H zz—mB =/(L+g,S).B() (3.11)

where H0 is the field-free Hamiltonian, Hz is the electronic Zeeman Kamiltonian, m

represents the electron magnetic moment, L is the total orbital angular momentum

operator, and S is the total electron spin angular momentum operator. If the Hamiltonian

H0 bas the eigenstates f> for the Kramers multiplet and the corresponding eigenvalues

Ec, the density matrix elements for the case f — f’ are given by,

= e’
IkT

j5
— < I I >

(3 17Prr, mn —

and when f f’

—E /kT — —E1/kT
= e e

< I F, > (3.13)
EF E

Finally, McGarvey’s formula for the paramagnetic NMR shiifs in solution takes the form:

= 3kTe_ kT
{e_EI

/kT <f Im I Ç >< f Irc +H1 + H0 >

—E/kT —E1-IkT

— kT
e —

<Ç m >< f, I + H t)tP + H(,RB I Fn >}
FF(FF’) r —

(3.14)

where i (—x, y, z) represents the components of the principal axes in the system. Although

the lirnit of McConnell’s formulas can be overcome by this approach, stiÏÏ this requires

many other theoretical and empirical factors (e.g. magnetic susceptibility tensor and zero

field sppilting parameter) in order to have the final formulas of the fermi contact and

pseudocontact shifts [13,14]. 1f the transition energies between the different electronic

states are much greater than the thermal energy kT and zero field splittings do not exist,

McGarvey’s equation may be readily reduced to McConnell’s equations which are shown

O in Eqs (3.2) and (3.3).
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3.3. Paramagnetîc Shifts for the General Case

In the presence ofthe external magnetic field B, the nuclear magnetic moment M, and the

electronic magnetic moment m, the total electronic energy ofthe /th electronic state, only

including the terrns linear and bilinear in B and M, is given by:

E1(B,M,m)=< P1(B,M,m)I H(B,M,m)IP,(B,M,m)>
(3 15)

= +
ftB.O) B + M + B’ M

where the Hamiltonian H(B,M,m) is shown in Eq. (1.63). The B and M field-ftee energy

and the derivatives ofthe electronic energy with respect to B and M are defined as:

=< P1 (O,O,m) I H° + H’ I P, (O,O,m) > (3.16)

B )B=M=0 (3.17)

=< k{• (O,O,m) H°°° +(1+H°°)n1k k{J (O,O,m)>

=

(3.18)
=< P, (O,O,m) fl(I + I P, (O,O,m) >

f
f(B.M) =1 U

B=M=0

=< ‘P, (O,O,m) I Hb0)1 (O,O,m)> (3.19)

+ <P (B,O,m) I I Y (B,O,rn)

o
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where the operators are defined in Eqs. (1.66-1.73). The energy levels, arising from the

interactions with the fields B, M, and ni, can be populated by the thermal energy kT in

general. There is an important point related to the choice of the wavefunctions used for

the evaluation of the derivatives (Eqs. 3.17-3.19). The energy derivative E5°’ can be

taken for the eigenstates of the Hamiltonian adapted to the perturbation B due to its large

magnitude compared to the perturbation M. For example, the total energy E must include

the electronic Zeeman and spin-orbit operators (Eq. 3.1 7) variationally, but the hyperfine

terms (Eq. 3.1$) only through the first order [12]. The derivatives E5°’ are then

irnplicitly dependent on the direction ofthe magnetic fletd B.

If the electronic energy levels in the fields are in a thermal equilibrium, the average

energy in a temperature can be defined as:

(B, M, m)eBtmT

(E(B,M,m)) = (3.20)

Because of the different time scales of the nuclear and electron spin relaxation, the

Boltzmann energy factor W in Eq. (3.20) are not necessarily identical to E. In general,

the electron spin relaxation is rnuch faster than the nuclear spin relaxation and the nuclear

spins feel an average local magnetic fleld arising from the electron spins in a thermal

equilibrium state. In this case, equilibrium state populations can be determined by the

electron spin relaxation process. For the moment, it is sufficient to assume that

W1(B,M,m) can be expanded similarly to Eqs. (3.16-3.19).

Assuming that the equilibrium implied by Eq. (3.20) is fast on the NMR time scale, the

average components of the absolute NMR shielding tensor a are given by:

I (321

Ç BM
B NI
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= (f(B.M)) (3.22a)

_(Et0W0) (3.22b)

_(E8StWt.I)) (3.22c)

_-- (E(0.tW.1))
— (E°°)) (tVM))] (3.22d)

+
Ï

,
W 4î(t).I))

— (E (0.0)) (W(B.o) ii(0.M)) j (3.22e)
kT t) 0 0

In Eq. (3.22), the averages are taken in the absence ofmagnetic fields:

—‘• /kT

(x) = (3.23)
t) IkT

Note that a number of other terrns containing (E’°), (W(B.0) (E(o.o)WB.o)) of Eq.

(3.21) vanish since the fieÏd-free Hamiltonian and spin-orbit operator are invariant

through lime reversai and the operators with respect to E° are time-odd operators (Eq.

3.17) which have opposite expectation values in two Kramers conjugate states.

The first term (3.22a) is simply the Boltzrnann average of the familiar, orbital NMR

shielding tensor. The second terni (3.22b) describes the interaction of the nuclear

magnetic moment with the average spin-density, induced by the orbital- and eÏectron

spin-Zeeman interactions. The remaining three terms (3.22c,d,e) arise from the changes

in the eiectronic state populations, induced by flipping of the nuclear spin. Under the

conditions where the nuclear relaxation time is sufficiently long to allow observation of

the NMR transition, thermal populations of the electronic states are determined solely by

the orbital and electron spin-Zeeman interactions [12,13,15], so that:
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= 0 (3.24)

Finally, if the electron spin relaxation is faster than any spatial reorientation process (the

so-called “solid state case” [12,15]), derivatives of the Boltzmann energy factors and the

electronic energy, witb respect to the external fleld strength, coincide:

= (3.25)

Substituting Eqs. (3.24 and 3.25) into Eq. (3.22), we obtain the working equation for the

paramagnetic shielding tensor:

=
—

tB.O)) (3.26)
kT 0

[n Eq. (3.26), the second term is equivalent to the general-case expression ofKurland and

McGarvey [13]. The first term is the generalization of the orbital contribution of

Rinkevicius et al. [23].

Practical calculations of the paramagnetic shielding tensor can proceed as follows: first,

energies and wavefunctions for aIl therrnally accessible electronic states must be

determined, in the absence of magnetic fieÏds. for each of the states [35J, the orbital

NMR shielding tensor defines f.I)• The EPR g-tensor determines f°), while the

hyperfine A-tensor leads to E°’1. The Boltzmann averages in Eq. (3.26) then fully

determine the paramagnetic NMR shielding tensor. Obviously, each of the ingredients in

Eq. (3.26) can be treated independently, using the most suitable theoretical technique. A

similar approach was developed by Lohr, Miller, and Sharp [36], within the ligand field

theory.
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3.4. Paramagnetic Shifts for an lsolated Kramers Doublet State

Once magnetic parameters are obtained by quantum mechanical calculations, the energy

levels of the nuclear spin states in the presence of the external magnetic field and the

unpaired electrons can be described by an effective spin Hamiltonian [24]. In fact, the

observed energies and intensities of the spin transitions can be reproduced by the

effective spin Hamiltonian to a good approximation. At a certain temperature, the

electron spin states might flot be equally populated and the thennal average of the spin

density can be obtained from the Boltzrnann distribution if the electron spin relaxation

time is much shorter than the correlation time. For a doubly degenerate electronic ground

state (S 1/2), the expression of an effective spin Hamiltonian with an effective electron

spin and a nuclear spin lis given by:

=,ô’ (1 —a””).B+ST AI (3.27)

Kere, the electronic g-tensor g is defined as the sum of the free electron g-value ge and

the g-shift Ag (g = g(, I + Ag). The hyperfine tensor A is cornposed of the Fermi

(isotropic) contact coupling constant A° and the anisotropic dipolar tensor A”

(A = A’’l + A”).a°” represents the orbital nuclear shielding tensor. The total effective

spin is chosen to reproduce the experimental (2+1)-level multiplet structure. If the

external magnetic field is aligned to the z-direction, the effective spin Hamiltonian is

redefined as,

F1 =/3B,S’ .(gI+Ag).z_g/,B7I .(l_a!h).z+ST .(A”J +A”)I (3.2$)

where B7 is the z-direction component of the magnetic field and z is a unit vector.

For two contact coupled S1/2, 11/2 spins, the corresponding energy matrix using the

Q spin Hamiltonian can be defined as:
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1/2, 1/2> 1/2,-1/2> I-1/2, 1/2> 1-1/2,-1/2>

1/2B (g+Ag,1) I /2f3Bz (Ag, -iAg,)

<1/2, 1/21 -1/2gNN Bz (1-G,,) I/2gNNBZ(GX,-ia,) 1/4( A’- A

+1/4AP+J/4A1s0 +1/4(A-iA) +J/4(A-iA) -2iA)

1/23Bz (g+g,,) I/2PBz (Ag,-iAg,)

<1/2,-1/21 l/2gxBz (+ i.,) +1/2g B (1-a7,) 1/4 (A+ A)

+1/4 (A* j A) -1/4 A’-1/4 A0 +1/2 A5° -1/4 (A,P- i A)

1/2PBz (Ag7+ iAg,) -1/23B5 (ge+Ag,,)

<-1/2,1/21
1/4 (A + A) -l/2gNf3’Bz (1-a,,) 1/2gNNBZ (a,-ia,)

+1/4 (A’+iA) +I/2A’°
1/4A1/4A1s0 -1/4(A-iA’)

1/2f3Bz (Ag1,+ iAg,) -1/2PBz (ge+Ag,i)

<-1/2,-1/21
1/4 (Au- A 1/2gBz (a,.+ ia,) +I/2g\ Bz (I-a,,)

+ 2iA) - 1/4 (A+ ï A’) -1/4 (A+ i A) +I/4AP+1/4A0

In order to obtain the eigenstates, this energy matrix should be diagonalized. However,

since the g-tensor and the hyperfine tensor have different principal axes, the above energy

matrix can flot be diagonalized at the same time. This problem can be solved

approximately by the perturbation rnethod. In the high fleld lirnit (gL/3B » A), the

Hamiltonian can be divided into a zero-order part and a perturbation (H = H0 + H’):

H =/3B’ .(g,1+Ag).z (3.29)

H’ = (1 a”) z (A°1+ A”) IN (3.30)

Here, we can expect the contribution from H’ to be srnall compared with those from H0.

The energy matrix elements are readity separable into contributions from H0 and H’.
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The eigenftinctions in the zero-order approximation can be obtained by the

diagonalization of the matrix elernents purely retated to the electron spin states for a

nuclear spin state K,

I 1/2, K> -1/2, K>

< 1/2, KI 1/2Bz(ge+Aga) 1/2Bz(AgNZ-iAg-j

<-1/2, KI J/23B (g,+iAg,) -1/2I3Bz(ge+Ag,)

‘I diagonalization

jl,K> j2,K>

<1.KI 1/2E3BzAG,, O

<2, KI O -1/2I3BzAG,,

where the diagonalized g-tensor is defined as,

z\G [(Ag)2+(Ag1)2+ (ge+Agc:)22 (3.31)

The corresponding zero-order eigenfunctions by the diagonalization are given by,

1, K>cosO1/2, K>+sinOe-l/2, K>,

2, Kcos6H1/2, K>-sJn6e 1/2, K> (3.32)

Here, the angles Oand x are defined by the relations,

tan2O [(Agv)2+(Agi)2]12/(ge+Ag--), tanx Ag1/Ag (3.33)

o
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1 I2iBz AG

-1/2gN3N B (1-G7)

+1/4Tzz+1/4AIso

-lI213Bz

-1 /2gNI3NBz (1

-1/4 T. —1/4 A1s0

J /2gBz (-ia7)

-1/4 (T- j T7)

l/23B AG

l/2g’..3NBZ (OE1± ia:,) ±]/2g\f3\ Bz (1-G,,)

-1/4 (T+ j T.,.) +1/4 T,7+1/4 Also

The energy matrix elements of H’ can be redeflned by the basis sets 11,K>, 2,K>} and,

finafly, the effective hyperfine tensors T in the basis sets {1,K>, 2,K>} are given by,

cos26 At + sin26(cosxA- sinxA)

cos26 A+sin26(cosxA”-sinxA””) (3.34)

cos2O A” + sin28(cosxA - sinxA)

The reorganized energy matrix by the diagonalization are given, up to first order where

the off-diagonal ternis between the different electron spin states are flot considered by,

1, 1/2> 1,-1/2> 2, 1/2> 2,-1/2>

<1, 1/2 1 /2g3NBZ (c -iO\,)

+1/4 (T,- j T7)

1/2PBz AG

+1/2g\3\ Hz (1-a,,)

-1/4 T,2-1/4A’°

< 1.-1/2 1/2g\13\Bz (a,+ ia\7)

+I/4(T,+iT,)

<2,1/2
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In the high field limit (g/3AG» I), ail off-diagonal terms can be reasonably neglected

due to their small magnitude compared to the diagonal terms. In this zero-order

approximation, the energy levels are

= +1/2BAG_ — l/2g\B7(1 —

ui) + 1/47Z + 1/4A’

+1/2BAG + 1/2gflB7(1 — u’) — 1/4T — 1/4K”

(3.35)

—1/2B7AG — 1/2g/.B7(1 — uZ”) — l/47Z — 1/4K”

—1/2BAG_ + 1/2gJB7(1 — u) + 1/4T.. +

The nuclear spin transition energies are given by,

AE = E2 —Efl. = gJfl,B7(I —‘)—1I2T —112K”

(3.36)

AEZ =E4 —E3 =gfi5,B7(1—u[”)+1/2T. +l/2i1”

The flrst nuclear spin transition arises in the presence of an unpaired electron with

positive spin (S +1/2), the second nuclear spin transition happens with a negative

electron spin (S —1/2). Magnetic nuclei in a paramagnetic system rnight experience an

average additional field from the electron spin magnetic moment due to its fast

relaxation. If the electron spin relaxation is faster than any correlation, the thermal

average of the nuclear spin transition energies can be defined by the Boitzmann

distribution of the electron spin states as,

e_T e_E5

= -E,ikr E,kT 2Z
+

-E,kI EikT
AE (3.37)

e +e e +e
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Q where E denotes the energy of the electron spin state (1/2,BG.) and, in the limit t E5 «

(1-E/kT) (t+E5/kT)

= gfiBz(1 —u”) +*/3BG(T +
t3•38)

— f 3 ‘1 f)UIU

—gv, , —

where I represents the paramagnetic NMR shielding tensor.

The sanie process can be applied for the case that the extemal magnetic field is aligned to

the x- or y- direction. In general, the paramagnetic NMR shielding tensors for the

principal axes (1 x, y, z) take the forrn:

= — + A,s) (3.39)
4kTg]3:

In solution, rapid molecular rotation produces an average vatue of the shift anisotropy

and resuits in the isotropic shift,

IL() =Tr()
(3.40)

— ,n./, —

A’”
—

+ + GT j
4kTg/3 12kTg,8 . ... - --

where u =!Tr(a”) and Gjr, =LTr(G).

In the above equation, the second term denotes the fermi contact shift and the third term

presents the pseudocontact shifi. In this approach, unlike McConnell’s fomiula (see, Eq.
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3.3), the pseudocontact term is independent of geornetrical factors because the hyperfine

tensors can be calculated quantum mechanically. Therefore, a system with significant

delocalization of unpaired electrons can be treated without any further modifications of

the equations. In addition, the spin-orbit couplings between the populated ground states

and unpopulated excited states can be taken into account through the electronic g-tensors

which can be also calculated quantum rnechanically. tt should be noted that the shielding

constants o of paramagnetic molecules are different from that of diamagnetic

molecules because of the different orbitat contribution to the shiclding [23].

Finally, for the general case of more than one electron spin, the calculated isotropic NMR

chemical shifi of n paramagnetic molecule relative to a reference molecule is,

= — = + + (3.41)

where the shift due to the orbital shielding in a paramagnetic molecule, which is

analogous to the chernical shifi ofa diamagnetic molecule, is given by,

=
—

(3.42)

and the fermi contact shift is defined as,

FC = Aj
G1J3S(S + 1)

(3.43)
‘s”

gJj33kT

and the pseudocontact shift is expressed by the form,

=

[GT + GT + GTJ (3.44)
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C In rnost experirnental works, the hyperfine contact shift (c” = + ô) is obtained

from the shift difference between a paramagnetic molecule and a similar diamagnetic

molecule:

6h1
=

—

= (u’4 — !nh) (3Fc +
‘‘ ) — (o,’, —ut) (3.45)

(fC +

and

c5’ + + c5 (3.46)

Ibis approach neglects the errors from the orbital shielding and structual differences

between the paratilagnetic and diamagnetic molecules (Y,’ 5’). However, the fermi

contact shift often dominates the whole shifi and the errors can be neglected

reasonably. In fact, the contact shifts by this approximate approach are in good agreement

with those deterrnined by the temperature dependence of the NMR spectra.

In this work, we wilÏ compare two approaches (in Eqs. 3.41 and 3.46) and provide

numerical differences between them for some test systems. The individual contributions

ofthe paramagnetic shift wilÏ be calculated and investigated using the new equations.



o
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3.5. lmplementatïon and Computational Details

The procedure to obtain the chemical shifts in paramagnetic systems are composed of

two major steps. The first step is to calculate the orbital shift which requires a

modification of the existing methods which are on]y available for shielding calculations

of closed-shell systems. for this purpose, the deMon-NMR code [25,391 was rnodified

based on the deMon-EPR code [28] in this work. The second step is to calculate the

contact shifis which consist the fermi (Eq. 3.43) and pseudo (Eq. 3.44) contact shifts. for

this purpose, we calculated the hyperfine tensors whose explicit expressions are seen in

Eqs (1.122, 1.123) and tue electronic g-tensors where we considered only the one

etectron integrals of the paramagnetic second-order spin-orbit’orbital Zeeman cross term

and of the diamagnetic spin-Zeeman gauge correction.

For the comparison of the orbital shifts in paramagnetic systems with the chemical shifts

in corresponding diarnagnetic systems, we caïcuÏated the chemical shifts cY of the

diamagnetic compounds which were designed by modifying the charge and spin

multiplicity of paramagnetic compounds without any structural change. The NMR

calculations were performed using the sum-over-states density functional perturbation

theory (SOS-DfPT) shown in Eqs (1.107-1.1 11).

Finally, we calculated the paramagnetic shifts using the equations with orbital shifts (Eq.

3.41) and without orbital shifis (Eq. 3.46). The code for the paramagnetic shift was

combined with the deMon program [25,28,39] for an automatic procedure.
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3.5.1. Nitroxides

For proton NMR shift caïculations, a series of aromatic t-butyÏ nitroxide radicals were

chosen (Fig. 3.1). For ‘3C NMR shift calculations, a series ofaliphatic nitroxide radicaïs

were selected (Fig. 3.2). To investigate the sensitivity of the paramagnetic shifts to

structural changes, we calculated the ‘H chemical shifts in the aromatic compound (1) on

the orientation ofthe t-BuN(O)- subsituent to the arornatic ring and the C chemical shift

in the aliphatic compound I (in Fig 3.2) on the two conformers: chair and twisted forms.

Ah structures were optimized at the B3LYP [37]/6-31 IG** level using GAUSSIAN 98

[38] and from these caïculations the hyperfine coupling constants at the same level of

theory were also obtained. The optimized structures were used for magnetic property

calculations in the deMon program [25,39]. The PW9I exchange-correlation functional

[40] was used for NMR chemical shielding tensor calculation for the diamagnetic case

(closed sheil) since it lias given a slightly beller resuits than other pure GGA functionals

in a broad range ofdiamagnetic organic molecules [25]. The orbital shielding tensor, the

hyperfine tensor and the electronic g-tensor calculations were carried out using the

deMon program with the P86 [41], BP [41(b),42] and PW9I functionals. For the NMR

shielding and orbital shielding tensor calculations which are very sensitive to the gauge

origin, the IGLO method [43] was used, where the occupied MO’s were localized by the

methods of Boys [44(a)] and Pipek-Mezey [44(b)], respectively. On the contrary, the g

tensor is usually flot sensitive to the gauge origin and therefore the common origin

method was used [281. The Loc 1. approximation was used for the NMR shielding

calculations and the uncoupled SOS method was used for the orbital shielding

calculations [25]. Alt deMon calcutations were performed using a random numerical

integration grid with FINE angular quadrature and 64 radial points per atom. For the

fitting of charge density and exchange correlation potentials using Gaussian functions,

the auxiliary basis set (5,1:5,1) for H and (5,2:5,2) for the others were used. IGLO-Jil was

chosen as the orbital basis sets [43].



Cliapter 3. Parcnnagnetk NMR $1vfis 115

1. Rj=2-CH3

2. R1=2-CK3; R2=3-CH3

3. R=2-CH3; R24-CH3

4. R=2-CH; R2=5-CH3

5. R=2-CH3; R26-CN3

Q

Figure 3.1. Molecular structures and numbering schemes for a series of aromatic t-butyl

nitroxides. The angle denotes the ONC1 C2 dihedral angle.

H3
Chair Fonn

O—NO

Twisted Forrn

= +t)3() Kealirnol

(CH3)3C

H3

H.

W

II III

Figure 3.2. Molecular structures ofa series ofaliphatic nitroxide radicals.



Cliapter 3. Farainagnetie JVMR Sliifts 11 6

3.5.2. Blue Copper Proteins

Blue copper proteins have been intensively studied due to their unique spectroscopic

characteristics [47]. Their physical and spectral features can be sumrnarized as follows:

(1) The blue copper is involved in the long-range electron transfer process and therefore

magnetic spectroscopy studies have been widely perforrned, since one of the redox states

is pararnagnetic. (2) the blue copper has a ground state which is indicated by the

EPR spectrum result g1 > g± > 2.0023. (3) the blue copper exhibits an intense band (E

5000 M’cnï’) around 600 nm which is indicated by UV spectroscopy. The resuits

suggested the blue copper site is tetrahedrally distorted, producing a ligand-to-metai

charge transfer (from the thiolate sulfttr of the copper-bound cysteine to the copper)

which was confirmed by X-ray results [47]. The paramagnetic blue copper part has an

unpaired electron and its electronic stucture is less complicated due to rernoval of the

orbital degeneracy by structural distortion. In this work, four blue coppers were chosen

for study: azurin, steilacyanin, plastocyanin, and amicyanin. Their model stuctures are

shown in Fig. 3.3.

Ail calculations about NMR shielding tensors, hyperfine tensors, and g-tensors were

implemented using the deMon program [25,28,39]. Spin-unresticted Kohn-Sham

calculations were performed with the BP functionals [41(b),42] since it bas previously

shown to enable the accurate prediction of the hyperfine tensors [48] and g-tensors [2$]

of copper compounds. A double zeta plus poiarization (DZVP2) basis set [50(a)],

augmented by the most diffuse ftinctions (a Islp set) from ECP valence basis ofDolg et

ai. [50(b)], (l6slOp5d)/[9s6p4d] was used for copper and the IGLO-lil basis set [43] for

the main group atoms in ail cases. Moiecuiar structures of the models of azurin,

stellacyanin, plastocyanin, and amicyanin were taken from X-ray diffraction resuits

(4AZU, liER, IAG6, and 11D2 files from the Protein Data Bank). The remaining

hydrogen atoms were generated using the AMBER Xleap program [49], without

reoptirnizing the geornetry. For azurin, four aminoacids (His46, HisI 17, Cysi 12, and

G
Metl2l) were inciuded in calculations. Weakly bound G1y45 was flot included. For

steilacyanin, four aminoacids (His46, His94, Cys$9, and G1n99) were involved in
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Figure 3.3 X-ray structures ofthe oxidized blue copper protein modeis.
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calculations. For placystocyanin, four aminoacids (His37, His$7, Cys84, and Met92)

were considered in the calculations. In ail cases, the arninoacids of the models were

truncated at the a-carbon and the oniy side-chains were treated. Two approaches were

used for terminating the polypeptide chain. Hydrogen atoms and carbon quantum capping

potentials (QCPs) were added to the broken C-C covalent bond of the chain to satisfy the

vaÏency (here, the C-H bond length is set to 1 .09 À).

Mt1Zi=

Cysll2 (
Q -•

HisltZ }‘

«

eIs46

C
.. -

H - Ck

Azurin

- - -J

H) -

—
- c_

- u’

Cys

•_•*

HIs7

-

H

H.

PlastocyaninStellacyanin
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C 3.5.3. Ferric Cyanide-lmidazole Complexes of Heme Proteins

Four different cyanide-imidazole models of low-spin iron(Ilt) porphyrins were chosen in

order to validate the importance of the contact shifts to the total paramagnetic NMR shift

because this complexes show fair]y large contact contributions and in order to show some

useful applications for the determination ofthe nature of the proximal Ïigand in the ferric

systems through 13C NMR shift calculations of the iron-bound cyanide. These complexes

are quite helpfttl for the study of the paramagnetic NMR since the iron-bound cyanide

carbon has a strong interaction with the unpaired electron and its chemical shift is fairly

sensitive to the environment. The structures of the models are seen in Fig 3.4 where the

complex I is the model of cyanide-imidazol complexes of iron (III) protoporphyrinlX

dimethyl ester (PPDME) and the complex II is the model of sperm whale myoglobin

(Mb) and the complex III is the model of hurnan hemoglobin (Hb) or horse heart

cytochrorne (Cyt-c) and the complex IV is the model ofhorseradish peroxidase (KRP).

All calculations in this section are based on DfT and were carried out with the

Amsterdam Density Functional (ADF) program [46]. This program was chosen due to

some advantages for the calculations oftransitoin metal systems. For example, it provides

good and fast SCF energy convergence for the systems and various levels of relativistic

effects. The revPBE exchange-correlation functional [51] and the double-a valence

Slater-type orbital (STO) basis set plus two potarization functions (DZP) [52] were used

for the optimization. The BP fttnctional and the triple-e, valence Slater-type orbital (STO)

basis set plus two polarization functions (TZ2P) [52] were used for the magnetic property

calculations. in detail, the hvperfine tensors (all-eÏectron) and orbital shifis (frozen-core)

were calculated using the scalar Pauli Hamittonian [26]. The g-tensor calculations were

performed using the ZORA spin restricted rnethod [53] which often provides accurate g

tensors (especially g-tensor anisotropy) due to its good performance for the spin-orbit

coup lings.

C
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4. 4.%
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Figure 3.4 Schernatic view of the calculated cyanide-imidazole complex models of the low-spin

iron porphyrin. Here, II cornes from sperrn whale myglobin (Mb), III from hurnan rnyoobin

O (Hb) or horse heart cytochrorne c(Cyt-c), IV frorn horseradish peroxidase (HRP).
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3.6. Results and Discussion

3.6.1 Nitroxides

Table 3.1 compares the experimental 1H NMR chernical shifts in a series of aromatic t

butyl nitroxide radicals to the present DFT calculations with pure GGA functionals (BP,

P86 and PW91). for the DFT resutts, the root mean square errors (RMSE) are 14.39,

15.72 and 13.01 ppm over the experimental range of 115.47 ppm for the BP (R0.959,

slope’l.229, intercept’-l.5), P86 (R’0.946, slope1.167, intercept’I.S) and PW91

(R0.966, Slope1 .230, intercept-2.6) functionals, respectively. Here, the total number

ofthe protons for this statistics is 27. The discrepancies are reduced by about a factor of 2

if the proton shifts at the para-position are excluded from the statistics (RMSE, BP7.94,

P867.80, PW918.02 ppm). The DFT resuits show good correlations with the

experiment even without the solvent and thermal motional effects. The results of three

pure GGA fttnctionals (BP, P86 and PW9I) have a similar level of accuracy compared to

the experiment. Table 3.1 also shows the individual contributions of the BP chemical

shifts. In this work, the Fermi contact and pseudocontact shifis are calculated using the

newly derived equations (Eqs. 3.43 and 3.44). The fermi contact shifts dominate 1H

chemicat shifts and determine ail qualitative trends. On the other hand, the pseudocontact

shifis are negligible and just contribute less than 0.2 pprn to any of the K shifts in the

radicals. This is due to their smatl g-tensor anisotropies (shown in Table 3.2) and the

small magnitude of their anisotropic hyperfine tensors. In most cases, the orbital shifts

are smaller than the fermi contact shifis but flot negligible ‘;“5H 32 % for ail ‘H

shifis except the 4-H of2,6-dimethyl radical where the orbital contribution is even larger

than the fermi contact term). Therefore, the orbital contribution should be included to the

shifi calculations to have a better numerical agreement with experiment. Finally, Table

3.1 compares the orbital shifis to the chernical shifts in corresponding diamagnetic

systems. The differnces of two contributions are rather small (the mean absolute

deviation is 2.30 pprn) and it confirms the orbital shifts can be approximated by the

G diamagnetic shifts without a big loss ofaccuracy for ‘H chemical
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Table 3.1 Calculated isotropic ‘H NMR chernical shifts (in ppm) of a series of aromatic t-butyl

nitroxide radicals at 295K.’

. BP contributions

“EXP BP P86 PW9I

2-rncthyl

o

o

n 5PC 5h ,,C

t-bu-H -16.70 -12.04 -7.07 -17.14 -14.26 -0.02 2.24/1.53

2-CK 19.14 25.08 32.57 32.35 22.72 0.08 2.28/1.42

3-H 52.44 54.94 61.23 53.60 51.14 0.01 3.79/6.06

4-H -23.44 -60.80 -61.21 -52.92 -64.83 -0.01 4.04/5.45

5-H 60.02 59.42 61.82 60.38 53.19 0.00 6.23/6.21

6-H -55.45 -74.45 -63.05 -78.02 -79.88 -0.04 5.47/5.92

2,3-dimcthyl t-bu-1-1 -16.90 -13.27 -8.23 -14.49 -14.78 0.02 1.49/1.52

2-CH 15.84 18.30 18.22 14.52 15.23 -0.05 3.11/1.46

3-CH -5.05 -9.82 -9.95 -14.09 -15.50 0.00 5.68/1.66

4-1-1 -43.50 -39.74 -41.47 -53.43 0.01 9.92/5.29

5-H 61.43 6! .32 65.19 63.64 53.70 -0.02 7.64/6.06

6-H -50.14 -62.17 -61.99 -65.03 -74.83 -0.01 12.68/5.69

2,4-dimcthyl t-bu-H -15.50 -11.56 -6.15 -14.69 -13.86 -0.03 2.33/1.53

2-CH 20.15 27.95 30.71 28.91 24.21 0.08 3.66/].56

3-H 60.00 59.88 55.71 57.54 52.65 0.03 7.21/5.79

4-CH3 33.40 81.23 82.97 79.97 79.02 0.01 2.20/1.86

5-H 54.15 67.76 62.33 56.58 55.48 0.02 12.27/5.99

6-H -54.60 -80.29 -66.69 -78.41 -84.71 -0.02 4.44/5.89

2,5-dirnethyl t-bu-H -17.27 -11.94 -6.68 -14.94 -13.59 -0.04 1.69/1.55

2-CH 18.47 29.72 32.70 29.25 25.61 0.07 4.04/1.52

3-H 49.58 59.66 52.83 53.29 48.34 0.02 11.30/6.19

4-H -22.82 -57.56 -61.24 -46.35 -70.27 0.01 12.69/5.29

5-CH3 -7.07 -18.65 -14.70 -13.53 -19.53 0.00 0.88/1.82

6-H -53.60 -63.61 -59.38 -78.30 -73.25 -0.06 9.70/5.79

2,6-dirnethyl t-bu-H -24.47 -16.25 -11.07 -19.57 -18.88 0.03 2.60/1.37

2-CH 15.12 16.06 18.90 15.06 12.25 -0.12 3.93/1.99

3-H 59.66 69.83 67.00 68.43 59.78 -0.02 10.06/6.39

4-H -4.61 7.02 12.56 9.67 -0.32 0.00 7.34/6.69

“RMSE 14.39 15.72 13.01

7.94 7.80 8.02

TMS vas used as reference molecule (BP3 1.46, P8631,47, PW9131.49 ppm). “in Ref [8]. 11e
chernical shifis of diarnagnetic cornpounds were calculated at the PW9I level. “ Root mean square (mis)
enor. The nns errors in Ihe second une were obtained without the para-position shifis.
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e

Here, g1.=g3- 1 /2(g +g2).

In Table 3.3, the calculated fermi contact (isotropic) coupiing constants are coliected for

the four different functionais (BP, P86, PW9I and B3LYP). Ail results are exactly in the

same trend as the ‘H chemical shift results because the shifis are dominated by the Fermi

contact shifis which depend mainly on the Fermi contact coupling constants. in this case,

the pure GGA resuits show slightiy beller correlations with the experirnent than the

hybrid B3LYP functional resuÏts. The deviations of the caiculated constants from the

experiment are systematic according to the proton position as weil as the caiculated 1H

shifis in Table 3.1. In both resuits, the absolute errors between the calculations and

experiment have the trend for the proton position (meta < ortho <para). Hence, we can

infer that the errors may be related to the orientation of the t-BuN(O)-substituent which

strongly influence the spin density of the aromatic ring through the conjugation.

o

Table 3.2 Caiculated electronic g-values ofa series ofaromatic t-butyl nitroxide radicals.

g g g3 gj

2-mcthyl BP 2.002 2.008 2.013 2.008 0.008

P86 2.002 2.00$ 2.014 2.008 0.009

PW91 2.002 2.00$ 2.014 2.00$ 0.009

2,3-dimethyl BP 2.002 2.008 2.014 2.008 0.009

P86 2.002 2.00$ 2.014 2.008 0.009

PW9I 2.002 2.00$ 2.014 2.00$ 0.009

2,4-dimethyl BP 2.002 2.00$ 2.013 2.008 0.008

P86 2.002 2.008 2.014 2.008 0.009

PW9I 2.002 2.008 2.014 2.008 0.009

2,5-dimethyl BP 2.002 2.008 2.013 2.008 0.008

P86 2.002 2.00$ 2.014 2.008 0.009

PW9I 2.002 2.008 2.014 2.00$ 0.009

2,6-dimethyl BP 2.002 2.008 2.014 2.008 0.009

P86 2.002 2.008 2.014 2.008 0.009

PW9I 2.002 2.008 2.014 2.008 0.009
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o Table 3.3 Calculated Fermi contact (isotropic hyperfine) coupling constants (in MHz) ofa series

ofarornatic t-butyl nitroxide radicals.

BP P86 PWO1 B3LYP ‘EXP

2-mcthvl t-bu-H -0.531 -0.370 -0.633 -0.705 -0.65$

2-CH 0.846 1.127 1.049 1.045 0.680

3-H 1.905 1.859 1.683 1.911 1.722

4-H -2.415 -2.45$ -2.43$ -2.340 -1.112

5-H 1.981 2.013 1.86$ 2.005 2.005

6-H -2.975 -2.694 -3.051 -2.781 -2.307

2,3-dirncthyl t-bu-H -0.551 -0.39 1 -0.607 -0.738 -0.675

2-CH 0.567 0.598 0.518 1.044 0.549

3-CH1 -0.577 -0.586 -0.511 -0.790 -0.230

4-H -1.990 -1.891 -1.820 -1.784

5-H 2.000 1.992 1.892 1.89$ 2.030

6-H -2.787 -2.522 -2.645 -2.259 -2.13 I

2,4-dirnethyl t-bu-H -0.516 -0.339 -0.622 -0.707 -0.647

2-CH 0.902 0.997 0.975 0.979 0.686

3-H 1.961 1.926 1.806 1.985 1.753

4-CH3 2.943 3.016 2.898 2.463 1.179

5-H 2.066 2.040 1.931 2.058 1.974

6-H -3.155 -2.798 -3.148 -0.707 -2.302

2.5-dirnethyl t-bu-H -0.506 -0.345 -0.59 I -0.686 -0.669

2-CH 0.954 1.010 0.973 1.079 0.666

3-H 1.801 1.799 1.604 1.862 1.635

4-H -2.617 -2.504 -2.437 -2.366 -1.064

5-CH -0.72$ -0.732 -0.646 -0.949 -0.288

6-H -2.729 -2.380 -2.756 -2.652 -2.215

2,6-dirnethyl t-bu-H -0.703 -0.503 -0.831 -0.957 -0.986

2-CH 0.457 0.634 0.400 0.416 0.498

3-H 2.227 2.205 2.261 1.712 1.968

4-H -0.012 -0.030 -0.045 -0.054 -0.431

in Ref [8]. “ The root mean square elTors. The flTIS

para-position shi fis.

“RMSE 0.527 0.560 0.5 14 0.607

0.23$ 0.278 0.261 0.466

errors in the second une were obtained without the
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Table 3.4 Calculated fermi contact (isotropic hyperfine) coupting constants (in MHz) of 2-

methylphenyl-t-butylnitroxide radical according to the angle Ø.°

0 15 30 45 60 75 90 105 ‘EXP

t-Bu-H 0.14 0.01 -0.27 -0.57 -0.70 -0.75 -0.78 -0.80 -0.66

2-CH3 9.53 8.02 5.55 2.86 1.05 -0.10 0.44 1.06 0.68

3-H 2.92 2.86 2.64 2.25 1.91 1.32 1.03 0.96 1.72

4-H -7.68 -6.87 -5.48 -3.73 -2.35 -0.67 -0.04 -0.29 -1.11

5-H 3.00 2.83 2.62 2.29 2.01 1.88 2.06 2.55 2.01

6-H -7.24 -6.50 -5.35 -3.89 -2.79 -1.56 -1.27 -1.68 -2.31

Relative 3.93 2.93 1.35 0.28 0.00 0.47 0.93 1.19
Energies
(kcal/rnol)

‘ Calculations were perfonned at the B3LYP/6-3 I I G(d,p) level. “ in Ref [8].

Table 3.4 shows the fermi constant results of 2-methyl radical according to the angle

(see, fig 3.1). AIl structures were fully optimized except the angle at the B3LYP/6-

311 G(d,p) level and the fermi constants were also calculated at the same level. The

structural dependence is seen graphically with the energy potential curve in fig 3.5. from

the results, it is possible to understand the discrepancies of the ‘H chemical shifts

between the calculation and experiment. The global minimum structure has the value of

56.8° for the angle . In the angle range of 45° 75°, the relative energies to the global

minimum are less than 0.5 kcal/mol (thermal energy kT is around 0.6 kcal/mol at the

room temperature) and this refects the fact that the radical structure is so flexible at room

temperature. In that angle range, it is also shown that para- and ortho-position proton

shifts are very sensitive to the rotation but the other (meso-position and t-butyl protons)

shifts are less sensitive. In consequence, thermal motion effects will be significant for the

fl chemical shifts in these aromatic radicals and may lead a deviation from the T1 Cuie

law dependence of the paramagnetic chemical shifts. In this case, the solvent effect will

also affect greatly the DFT results because of the soft potential energy surface for the

angle . In fact, in the optimized structure of 2-methyl radical at the B3LYP/6-3 11 G(d,p)

using the isodensity surface polarized continuum model (IPCM) [54], the angle is about
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65° . Note that this calculation was done in the present work and the dielectric constant

(E2.2379) of carbon tetrachioride was used for the direct comparison with the

experiment [8]. The DfT resuits revised by this solvent effect show a good agreement

with the experiment especially for the fermi coupling constant at the para-position (cale.

1.754 MHz vs. exp. 1.722 MHz).

12.00
10.00
8.00 —.—2-CH3
6.00 —e—6-H
4.00-

z

_____

—À—3-H

t

0

______

4.00 --Bu-H

-10.00

0 15 20 45 60 75 90 105

0.0 liii

(degree)

Figure 3.5. Structural dependence of the Fermi contact (isotropic hyperfine) coupling constants in

2-methylphenyl-t-butylnitroxide radical by change of the angle Ø.
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The calculated ‘3C chemical shifis ofa series of aliphatic nitroxides are collected in Table

3.5. The stuctures used in this study are shown in fig 3.2. AIl the minimum structures of

the gas-phase calculations have the chair forrn. The DfT results ofthe chair forms show a

sirnilar trend in sign and magnitude, while the experirnental resuits in the radical I show a

quite different trend from those in the radicals IL and III. In fact, the radical I is thought

to exist in a twisted form in solution and, on the contaray, the radicals II and III are in a

chair form in solution based on the previous experimental work [9]. This can be

confirrned by the comparison between the DfT shifis and the experirnent. for the 13C

chemical shifts of the three radicals (1:twisted, II:chair, II1:chair), the RMSE of the BP

results is 203 ppm over the experimental range of 3112 ppm (N’12, R0.980,

slope0.941, interceptz5$.5 ppm). The resuits including the twisted form show a much

better correlation with the experiment than alI chair form resuits at the same level of

theory (N’12, R’0.961, slope0.722, interceptz67 ppm, RMSE’219 ppm). Furtherrnore,

since the energy difference between the two conformers of the radical I is very small
(‘-‘S

0.3 Kcal/mol at the B3LYP/6-31 IG(d,p) level), the relative stability of the

comforrnations in solution might 5e easily changed by the solvent effect. As a result, The

DfT results give a good prediction of ‘3C chemical shifts in the aliphatic radicals and, at

the same time, enable us to investigate the relationship between the shifis and molecular

structures. The remaining errors can be reduced by considering the solvent effect and the

motional effect arising from the rapid ring inversion.

Table 3.5 shows the individual contributions ofthe DfT shifts. The Fermi contact shifts

dominate the shifis and determine the trend following the experiment both in sign and

magnitude. In most cases the orbital contribution is srnall but flot negligible. for the ‘3C

chemical shifis at the -y-position, the orbital shifts are even comparable to the Femii

contact shifts ( /5 Imax44.7%). Therefore, the orbital contribution should 5e

included for an accurate prediction of the shifts. The calculated shifts of the diamagnetic

compounds 6’ , which have the sanie structure of the corresponding radical, have the

mean absolute deviation of 12 ppm from the orbital shifis
‘,“.

It implies that the

Ç diamagnetic shifis can readily replace the orbital shifis in most cases, but for the shifts at
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C the y-position the orbital contributions are important. The pseudocontact shifts are small

and negligible (the absolute value of the shifis are less than I ppm). This is due to the

srnall anisotropy of the g-tensors which is seen in Table 3.6. The contact shift

contributions of some heavy atoms in the aliphatic radicals are also shown in Table 3.6.

In these heavy atoms, we can see relatively large pseudocontact shifts but they are still

quite smaller than the Fenrii contact shifts ( /S I < 1%).

Finally, Table 3.7 lists the DFT results (BP, P86, and B3LYP) for the fermi contact

coupling contant in the aliphatic radicals and compares them to the experiment. The

B3LYP hybrid functional, on average, show a slightly better agreement with the

experirnent for the Fermi constant than the pure BP and P86 functionals. it implies that

the 13C chemical shifi results can be improved by using the hybrid functional, which was

already shown in the previous work [23]. However, in order to have some confidence in

the quality of the calculations, the solvent and motional effects should be included.

o
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Table 3.5 Calculated isotropic ‘3C NMR chemical shifts (in pprn) ofa series ofaliphatic nitroxide

radicals at 298 Kf’

3 BP contributions P86 contributions

“EXP BP P86 5’’ ô 5f 5P(

I(twisted) C(X -1460 -1569 -1474 -1588 0.01 18.7 -1484 0.03 10.4

1652 1786 1854 1786 -0.24 0.0 1848 -0.24 6.4

C. 660 717 749 668 0.23 48.9 707 0.20 41.5

C -112 -72 -77 -61 0.13 -10.6 -61 0.14 -16.0

1 (chair) C,, -751 -626 -804 0.12 52.7 -643 0.12 16.7

C 1237 1278 1221 -0.28 16.3 1268 -0.30 10.2

C. 190 260 194 0.15 -3.7 232 0.17 27.6

C -66 -42 -46 0.13 -19.7 -33 0.13 -9.4

11 (chair) C, -1125 -780 -639 -787 0.05 6.8 -643 0.05 3.7

1100 1316 1358 1300 -0.24 15.9 1349 -0.24 9.3

C. 355 136 182 125 0.14 10.4 160 0.16 21.9

-8 -51 -54 -56 0.14 4.6 -47 0.14 -7.2

III (chair) COE -1061 -639 -514 -688 0.07 49.4 54] 0.05 26.3

C 1462 1273 1325 1279 -0.27 -5.3 1322 -0.28 3.4

C. 249 137 147 121 0.17 16.0 155 0.18 -7.6

c -95 -31 -87 -58 0.15 25.9 -57 0.15 -30.6

163 1 75

The shifis are from 2,2,6,6-tetramethylpiperidine precursor of III. The calculated shielding constants are

CŒ(BP:122.6, P86:1 19.6 pprn), q, (BP:145.4, P86:142.4 pprn), C (BP:137.4, P86: 133.6 pprn), and the C1

sigiial is used for C of 1. These values are taken from Ref [231. The y carbon of I which is referenced to the

carbonyl carbon ofcyclohexanone (BP:-30.2, P$6:-33.7 ppm) and the ycarbon of II which is referenced to

the hydroxyl carbon of isopropyl alcohol (BP: 108.5, P86: 1 05.3 pprn) from this work. “in Ref [9]. C Mean

absolute enors from experiment.

o
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Table 3.6 Calculated ‘5N and I7 contact shifts (in pprn) and g-values of a series of aliphatic

nitroxide radicals at 298 K.’

P86

g g7 g3 g0

I N 2.002 2.008 2.014 2.008 33.3 12233 -24

0 -33.4 6542 -40

O(CO) -0.24 47 -0.1

Ii N 2.002 2.008 2.014 2.008 32.4 11914 -26

0 -33.3 652$ -44

0(H0) -0.20 39 0.1

III N 2.002 2.008 2.014 2.008 32.8 12061 -26

0 -33.2 6506 -43

“ Calculations were performed at the P86/IGLO-IlI level. h in MHz.

Q
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O Table 3.7 Calculated Fermi contact coupling (isotropic hyperfine) coupling constants (in MHz) of

a series ofaliphatic nitroxide radicals.t’

BP P86 B3LYP ‘EXP

I (twisted) -15.0 -14.1 -16.9 -14.3

C 16.9 17.5 15.4 16.0

C 6.3 6.7 6.1 6.4

C -0.6 -0.6 -0.6 -1.1

I (chair) C -7.6 -6.1 -9.2

c 11.6 12.0 10.6

C 1.8 2.2 1.8

C -0.4 -0.3 -0.7

II (chair) -7.6 -6.1 -9.4 -10.6

C 11.6 12.0 11.2 10.4

C• 1.8 2.2 1.1 3.4

C -0.44 -0.3 1 -0.56 -0.06

III (chair) -6.5 -5.1 -8.7 -10.1

C 12.1 12.5 11.1 13.7

C. 1.1 1.5 1.2 2.3

-0.90C -0.55 -0.54 -0.62

1 .26 1.45 1.18

a Calculations were carried out at the BP/IGLO-III, P86/IGLO-1tI, and B3LYP/6-311G(d,p) levels. ‘in Ref

[91. Mean absolute enors from experirnent.

G
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3.6.2. Blue Copper Proteins

Kere, we calculated the 1H NMR chemical shifts of the active sites in three blue copper

proteins (see, fig. 3.3) and investigated the fermi contact and pseudocontact

contributions to the total paramagnetic shifts. Computed 1H chemical shifis and their

individual contributions for the copper-bound histidines are collected and compared with

the experiment in Table 3.8. In most cases, the BP results are in good agreement with the

experiment and provide the trend following the experiment both in sign and relative

magnitude. However, for the shifts of 2 protons of His46 and HisI 17 in azurin and Li

protons of His46 in stellacyanin and of His37 in plastocyanin, the BP results are in poor

values. This discrepancies might arise from the fact that the NMR experiment has

performed in solution [31] while the calculations have carried out in gas phase using the

solid-phase X-ray structures.

The detail discussion for the relationship between the molecular and electronic structures

gives a useful guide for the problem. fig. 3.6 shows the structural differences of three

blue copper proteins in an illustrative way. The histidine rings of azurin are not linear to

the Cu-N6i o-bond. On the other hand, the histidine rings of stellacyanin and

plastocyanin are almost linear to the Cu-N61 o-bonds. This structural difference may

strongly affect the unpaired electron spin density distribution of the proteins. for

example, the Mulliken atomic spin populations of the s- and p- type orbitals in N&1 of

three blue coppers are as follows: 0.008e-0.024e, 0.011e-0.034e, and 0.011e-0.037e for

azurin, stellacyanin, and plastocyanin, respectively. The bent structure of azurin may

attenuate the direct spin delocalization through o-bonds and the spin-polarization through

7c-bonds in histidine. In Table 3.9, we can see that the calculated hyperfine structures of

azurin are systematically smaller than those of the other two proteins. This trend is also

shown in Table 3.10 where the calculated hyperfine structures of some heavy atoms of

the proteins are provided. It implies that the histidine rings of azurin may exist linearly to

the Cu-N1 o-bond in solution. In consequence, for an accurate prediction of the 1H
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o chemical shifts in the proteins, the structure optimization including the solvent effect

should be performed.

TabIe3.8. Calculated 1H NMR chernical shifts (in pprn) of the histidines in Nue copper protein

models.

BP contributions BP

cb “Exp

Azurin His46 Hb2 7.23 20.03 0.32(c1.3) 26.9 49.1 22.2

278 K HEI 7.87 26.09 -0.] 1(-4.5) 33.9 34.1 0.2

HE2 8.33 11.97 -0.]4(-1 .3) 20.2 26.9 6.7

HisI 17 Hb7 7.21 19.84 -0.42(-1.1) 26.6 54.0 27.4

H, 7.87 43.45 0.71(-3.4) 52.0 46.7 5.3

H7 8.18 20.45 -0.10 28.5

Stellacyanin His46 Hb2 7.19 42.26 -0.42(-l.3) 49.0 48.0 1.0

301 K H1 7.84 34.14 0.41(3.1) 42.4 29.8 12.6

H 8.01 25.64 -0.21(-1.4) 33.4 26 7.4

His94 Hb2 7.16 49.14 0.20(-1.0) 56.5 55.0 1.5

Ha 8.16 41.39 0.38(-5.4) 49.9 41.2 8.7

H 7.72 45.76 0.31 53.8

Plastocyanin His37 Hb2 7.10 39.68 -0.10(-1.0) 46.7 47.1 0.4

298 K 8.05 45.73 -0.20(-3.5) 53.6 35.6 18.0

H67 7.97 28.20 -0.18(-1.0) 36.0 31.4 4.6

His87 H7 7.09 48.21 0.08(-0.9) 55.4 51.6 3.8

H61 7.45 34.60 -0.1 1(-0.3) 41.9 35.6 6.3

F167 8.36 33.62 -0.03(-0.5) 42.0

in Ref [31]. ‘ The reference molecule is TMS ( = 31. 46 ppm at the sarne level). Resuits from

McConnell’s formula in Ref [31]. “Absolute deviations from the experirnent.
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C
Cu-S(MetI2l) 3.047 À
Cu-S(Cysll2)2.173À
Cu-N(His46) 2.1 17 À
Cu-N(Hisl t 7) 1.999 À
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— Cu-H=5.335À

I Cu-N1-C- H7 16.51°

/ LI
£2

Y-axis Cu-H5’= 5.2 16À
X-axis AzLtnfl Cu-N1-C- H,= 12.710

Cu-O(G1n99) 2.210 À
Cti-S(Cys89) =2.178 À
Cu-N(His46) 1.960 À
Cu-N(His94) 2.043 À

J
---- y

—
Kis46

-
Cu-H,= 5.176 À
Cu-N1-C- H73.52°

FlisI 17
Cu-H = 5. 198À

Steltacyanin Cu-N61-C- H67 = 4.57°
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Cu-S(Cys89) 2.149 À

/
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—
Cc N61 C H 4 98°
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Cu-N61-C- H37= 8.62°

Plastocyanin

figure 3.6. Top and side view of the active sites of the blue copper proteins and the selected

geometrical pararneters.
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Table 3.9. Calculated hyperfine structures (in MHz) of histidine hydrogens in blue copper protein

rnodels.

BP “Exp

j T 133 A10

Azurin His46 H -0.49 -0.39 0.8$ 0.68 1.49 0.81

Hcap42 H61 -1.55 -1.17 2.71 0.89 1.06 0.17

H -0.49 -0.36 0.85 0.41 0.56 0.15

HisI 17 H -0.53 -0.45 0.98 0.68 1.61 0.93

H61 -1.61 1.31 2.92 1.48 1.45 0.03

H6 -0.56 -0.40 0.95 0.70

Stellacyanin His46 H6 -0.56 -0.44 1.00 1.56 1.53 0.03

Hcap42 H61 -1.7$ -1.46 3.24 1.26 1.09 0.17

H6 -0.54 -0.39 0.92 0.95 0.62 0.33

His94 H5 -0.60 -0.49 1.09 1.82 1.77 0.05

H61 -1.73 -1.41 3.14 1.53 1.40 0.13

H6 -0.60 -0.43 1.02 1.69

Plastocyanin His37 H2 -0.56 -0.44 1.00 1.44 1.45 0.01

Hcap42 H61 -1.83 -1.50 3.33 1.66 1.14 0.52

H6-, -0.55 -0.39 0.94 1.02 0.74 0.28

His87 FI -0.56 -0.46 1.02 1.75 1.63 0.12

H61 -1.73 -1.44 3.18 1.25 1.01 0.24

H6-, -0.55 -0.40 0.95 1.22

in Ref [311. h Asolute deviations from the experirnent.

o



Chcipter 3. Parcimagnetic iVMR ShijIs 135

o

o

Table 3.10. Calculated byperfine structures (in MHz) of selected heavy atoms in blue copper

protein models.

“BP T T7 T3 A10

Azurin Cu 147 117 -263 -109/-100

Hcap42 His46 N51 -1.7/-1.3 -1.4/-0,8 3.1/1.2 15.6/18.1

NE2 -0.14/-0.17 -0.04/-0.07 0.18/0.23 0.60/0.87

Hisll7 N -2.1/-1,5 -1.7/-1,1 3.8/2.7 19.1/25.1

NE’ -0.19/-0.32 -0.05/-0.04 0.24/0.35 1.01/1.30

Stellacyanin Cu 176 113 -289 -73

t-Icap42 His46 N51 -2.2 -1.8 3.9 16.9

N62 -0.18 -0.03 0.22 1.04

His94 N51 -3.1 -2.5 5.6 23.9

N6 -0.23 -0.06 0.29 1,71

Plastocyanin Cu 145 131 -277 -94

Hcap42 His37 N -2.3 -1,9 4.2 17.1

N62 -0.19 -0.04 0.24 1,19

His87 N51 -2,6 -2.0 4.6 21,6

N67 -0.20 -0.05 0.25 1.40

‘ Ail calculations were performed with the HP ftrnctional. h 113e experirnental results in Ref[32].
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As seen in Table 3.8, in most case, the Fermi contact shifts dominate the ‘K chernical

shifts and determine the qualitative and quantitative trend of the ‘H chemical shifts. The

orbital shifts are comparable to the Fermi contact shifts in magnitude and they are,

therefore, important to predict the chemical shifts accurately. Note that in the calculations

the orbital shifts were approximated by the chemical shifts of the diamagnetic systems

and the ground ofthe approximation is provided by the study for ‘K chemical shifts in the

organic radicals discussed above. In most case, the pseudocontact shifis are small and

negligible.

Table 3.8 also compares two kinds of the pseudocontact shifts of the histidine protons:

one was calculated by using Eq. (3.44) newly derived in this work and the other by using

McConnell’s formula in Eq. (3.3) combined with the experimental factors. The former are

systematically smaller than the latter. This discrepancy can be attributed to the two

factors: (1) the limits of McConnell’s formula which arise from the assumptions used (2)

the calculation errors of the magnetic resonance parameters which are involved in the

new equation. McConneWs formula in Eq. (3.3) was derived based on the assumptions

that the unpaired electron resides only on the center metal ion and the electron spin can

be treated as point dipole. However, the blue copper active site exhibits a strong ligand

(thiolate sulfur of cysteine) to metal (copper) charge transfer (LTMCT) and the unpaired

electron delocalizes through the Cu-S bond. It may be proved by the analysis of the

atornic Mulliken spin density. For the copper and sulfur of azurin, stellacyanin, and

plastocyanin, the atomic spin densities are 0.236e-0.661e, 0.270e-0.6t)2e, and 0.258e-

0.623e at the BP/IGLO-I11 level. The copper bound histidine nitrogens also make a small

contribution to LTMCT. from the results, we can deduce that McConneÏl’s fomnila may

overestimate the pseudocontact shifts by the imposed assumptions. Therefore, the

calculated shifis using the new equation seern to be reasonable. Kowever, we need further

validation of the calculated values because the new equation depends on the accuracy of

the g-tensor anisotropy. The electronic g-tensors are calculated in the different conditions

(size and capping method) and collected in Table 3.9. Overall, the g, and g2 values are in

good agreement with the experimental results but the g3 values are systematically smatler

C than the experimental ones. As a result, the present pseudocontact shift resutts may be
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underestirnated due to the small g-tensor anisotropy. In this work, we only considered the

one electron integrals of the paramagnetic spin-orbit/orbital Zeeman cross term

g’(1e) and ofthe diamagnetic spin-Zeernan gauge correction i\g(1e) for g-tensor

calculations. From a theoretical point of view, the inclusion of two electon integral terms

and other terrns arising from relativistic effects is important. Kowever, the inclusion of

the two-electron terms rather deteriorates the g-tensor resuits calculated with pure GGA

ftinctionals [2$]. in this case, the simple g-tensor calculations with the only one-electron

terms give doser resuits to the experirnentaÏ data due to the cancelÏation of the errors

coming from the absence of the two-electron terms and the intrinsic limits of pure GGA

fttnctionals.

Table 3.11. Calculated g-values ofblue copper protein models.

g g2 g3

Azurin “Kcap42 2,021 2,094 2,169 2.095

“Ccap42 2,024 2.092 2.161 2,093

Hcap59 2.058 2.094 2.168 2.106

“Exp 2.052 2.052 2.260 2.121

Stellacyanin Hcap42 2,026 2.098 2.147 2.090

Ccap42 2.026 2.096 2.144 2.089

Ccap53 2.028 2.101 2.145 2.092

cHcap93 2.052 2.082 2.149 2,095

Exp 2.025 2.077 2.287 2.130

Plaslocyanin Hcap42 2.030 2.076 2.153 2.086

Ccap42 2,030 2.075 2.149 2.085

Exp 2,042 2.059 2.226 2,109

For the Hcap42 models, the u-carbons of the four Iigands directly bound with copper are tenninated by

hydrogen atoms and the number ofatoms in the models are 42 (sec. Fig. 3.3). h For the Ccap42 models, the

u-carbons of the four ligands directly bound with copper are terminated by capping carbons and the

number of atoms in the models are 42 (sec, Fig. 3.3). c In the Hcap59 and Ccap53 models. the peptide

ehains ofCysl 12 (azurin) and CysX9 (stellacyanin) are elongated. ‘in Ref[47]. ‘ In this mode!, the peptide

chains ofHis46. His94 and Cys89 are elongated.
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3.6.3. Ferric Cyanide-lmidazole Complexes of Heme Proteins

Table 3.12 compares calculated ‘3CN chemical shifis in cyanide-bound porphyrin

complexes (S’1/2) to the experirnent which is shown in Ref [34]. The DFT results

predict the shifts well both in sign and magnitude compared to the experiment. Although

there are rnany contributors to the errors in the predictions such as structuraÏ uncertainty,

methodological deficiencies, sotven and motional effects, a reasonable level of accuracy

seems to be achieved from the present calculations.

Table 3.12 also shows the relative importance of the different contributions to the ‘3CN

chemical shifis. In the porphyrins, the fermi contact terrn dominate the shifts and

determine ail quaiitative trends, as aiready seen in the previous studies, while the

pseudocontact (PC) term is flot negligible any more. In this case, the pseudocontact term

(239258 ppm) is even much larger than the orbital shift (-I 34 ppm). Ofien the PC term

is estimated by McConnell’s formula (Eq. 3.3) with experimental factors and has a value

of about 400 ppm for the cyanide-irnidazole complex (gnOE74, gr-1.89, g33.4) [34].

This value exhibits large difference (142161 ppm) from the present values which were

obtained by the accruate ZORA spin-orbit calculations for g-tensors and scalar relativistic

all-electron calculations using the Pauli Hamiltonian for hyperfine tensors (the results are

collected in Table 3.13 and 3.14). This discrepancy seems to arise from the point dipole

approximation used in McConnell’s where the induced paramagnetic moment is

concentrated on the centered metal ion, In most practical cases, the spin density is oflen

delocalized through the it-conjugated systems such as the porphyrin and imidazole or

through the spin-polarization process. The spin delocalization rnay attenuate the PC

contribution. This can be confirmed by the ZORA spin-orbit calculations for hyperfine

tensors where the terms due to the spin-polarization density at the nucleus are absent (it

seems to be a good approximation for the classicat point dipole-dipole interaction). In this

approach, the PC terms of the porphyrins show similar values (434-4$3 ppm) to the

emprical value and it implies that the PC shifis from McConneWs might be

G: overestirnated. The orbital shifi have the smallest contribution to the total shift, which
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Ç was flot seen in the previous studies. In this case, the orbital contribution is completely

neghgible.

Table 3.12. Calculated ‘3CN NMR chemical shifts (in pprn) in cyanide-bound prophyrin

complexes (S1/2) at 296 K.

EP contributions BP

complex b I’C 8,,, Exp

1 -13 -4500 154/257 -4359/-4230 -3926

11(Mb) -7 -4480 148/239 -4339/-4248 -4145

Ill(Hb/Cyt-c) -4 -4380 157/258 -4227/-4126 -4074/-3761

IV(HRP) 4 -4023 156/257 -3863/-3762 -3543

The orbital shifis were calculated at the BP/TZ2P(ftozen core) level using the ADF program. Scalar

relativistic effects were included using the Pauli Karniltonian (Pattli-scalar). ‘ for the Femii contact shifts,

the isotropic hyperfine constants were calculated at the BP/TZ2P(aIl-electron) level using the ADF program

(Pauli-scalar) and the experimental isotropic g-value vas used (2.01 in [34]). C for the psectdocontact

shifis, the resuits before the slash were calcu]ated using the experirnental g-values (g - 0.74, g- 1.89, g3-

3.4 in [341) and the resuits afier the slash were obtained from the g-tensors calculated using the ZORA

spin-orbit method [53]. In both case, the used anisotropic hyperfine tensors were calculated at the same

level as the isotropic hyperfine constants.

The g-tensors and hyperfine structures of the porphyrins are colÏected in Table 3.13 and

calculated fermi contact coupling constants of selected nuclei in the porphyrins are

shown in Table 3.14. The ZORA spin-orbit resuits for the g-tensors are in good

agreement with the experiment which can not be achieved by the Pauli approach. it

implies that for the accurate g-tensors (or g-tensor anisotropies) the two-component

rnethods like ZORA are essential in the porphyrins where the spin-orbit coupling is

important. For the hyperfine constants, the ADF results are consistent and follow the
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Q trend seen in the NMR experiment while the Gaussian resuits are not. tt seems to arise

from the disadvantage ofthe Gaussian-type basis sets for the Femii contact interaction.

Table 3.13. Calculated g-values of cyanide-bound prophyrin complexes ($1/2) and calculated

hyperfine structures of their cyanide carbons.’

sign of
complex g, g2 g A,0 11 L 13

gig2g3

I - 0.657 0.861 3.498 -42.40 -1.44 -3.25 4.70

11(Mb) - 0.690 0.917 3.451 -42,21 -1.36 -3.11 4.49

11I(Hb/Cyt-c) - 0.618 0.900 3.498 -41.27 -1.49 -3.27 4.76

IV(RP) + 0.002 1.178 3.493 -37.91 -1.46 -3.30 4.76

“EXP 0.74 1.89 3.4

“ The g-values were calcuÎated at the BP/IZ2P level using ZORA spin trnrestricted ftozen core method.

The hyperfine structures were calculated at the BP/TZ2P(atl-electron) level using scalar Pauli Hamiltonian.

h in Ref[34].

Table 3.14. Calculated fermi contact coupling constants (in MHz) of selected nuclei in cyanide

bound prophyrin complexes (S1/2).”

Compl ex

1 11 III IV

C -52.63/-42,40 -40.12/-42,21 -51.97/-41,27 -34.05/-37,91

N 1.57/1.72 1.04/1.62 1.26/1.59 1.10/1.24

Fe -16.00/-8,74 -17.79/-8.73 -17.48/-9.15 -17.34/-8,90

N1 -1.39/-3.33 -2.35/-3.47 -3.05/-3.59 -4.24/-3.35

N2 -0.09/-0.24 -0.30/-0.20 -0.08/-0.22 -l .24/-0.33

“for the Fermi constants, the results befbre the slash were calculated at the E3LYP/EPR-tlt[55] level using

the G98 program. 1-lere, the 6-3 11 G(d,p) basis set was used for iron. The results after the slash were

calculated at the BP/TZ2P(all-electron) level using the ADF program. Scalar relativistic effects were

mcl uded with the Pauli Hami] tonian.

G
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Figure 3.7. Numbering scheme of cyanide-imidazole complexes ofiron (III).

3.7. Conclusion

Uniike the closed-shell NMR shielding tensor, and rnany other NMR and EPR

parameters, paramagnetic NMR shielding is an intrinsically statistical property, deflned

oniy as an ensemble average. Calculations of the paramagnetic NMR shifts therefore

require knowiedge of magnetic parameters for thermally accessible excited states. In this

study, we derive the first complete, general expression for the shielding tensor in open

sheli species. The treatment considers ail relevant contributions iinear and bilinear in the

external magnetic field and nuclear spin. Calculated values can therefore be cornpared

directly to experirnent. In diamagnetic cornpounds, our expression reduces to the

“standard” closed-sheii NMR shielding tensor. For paramagnetic species, knowiedge of

the state energies in the absence of the fieid, together with the per-state orbitai shieldings,

Ç hyperfine tensors, and EPR g-tensors, is sufficient to determine the paramagnetic shifis.
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The theory takes a particularly simple forrn for an isolated Kramers doublet state, with no

thermalty accessible excited states.

The newly derived equations for the paramagnetic NMR shift only depend on the

magnetic resonance parameters (such as orbital shielding tensors, hyperfine tensors and

g-tensors) which can be caÏculated by first-principles methods. The importance of this

new theoretical approach can be sumrnarized by the two factors: (I) The new theory

validates McConnell’s formula for the Fermi contact shift in Eq. (3.2) quantum

mechanicaÏly within the sarne assumptions. The new formula is identified with

McConneiÏ’s. (2) The new formula for the pseudocontact shift in Eq. (3.32) can overcome

the restrictions of McConell’s formula in Eq. (3.3). Precisely speaking, the new formula

depends on the pure quantum mechanical parameters and can consider the delocalization

of the upaired electron spin density without any further approximation, but McConneil’s

depends on the geometrical factors arising from the classical point dipole approximation

and can not consider any quantum effect for the spin density distribution.

from the DFT calculations for the NMR chemical shifis in paramagnetic species

(nitroxides, blue copper proteins, and ferric cyanide-imidazoie complexes), we can

summarize as follows: (1) The DFT results are in good agreement with the experiment.

However, for the confidence of calculations, the solvent effect and thermal motion should

be included. (2) The Fermi contact shift dominates the total shift and determines ail

qualitative trend foïlowing the experirnent. (3) The orbital shifi is smalÏ, compared to the

Fermi contact term, but not negligible and can be readily replaced by the chemical shifts

of similar diamagnetic systems. However, for better numerical accuracy, this term should

be included correctly. (4) In most cases, the pseudocontact term is negligible but is

comparable to the orbital shift in magnitude for ‘3CN in iron porphyrin complexes which

exhibit large g-tensor anisotropies. In consequence, these DFT studies using the new

formulas for the NMR chemical shifts in paramagnetic species yieÏd an insight into the

relationship between NMR chemical shifis and the electronic and molecular structures

C directiy and in a systematic way.
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C Global Conclusions and Perspectives

The goal of this thesis was to develop a density functional approach to predict the NMR

chernical shifis of paramagnetic species which play an important role in the study of the

geometry and electronic structure of biornolecutes. Ail through this thesis, we tried to

keep in balance both theoretical and practical aspects for magnetic resonance simulations

related to paramagnetic NMR chemicai shifis.

Since unique features of the chemical shifts arise from strong interactions between

nuclear and electronic spins, magnetic resonance parameters for both spins should be

investigated. Therefore, we started this thesis by introducing general theories related to

the pararneters. We discussed the unit systems in electromagnetism and the Hamiltonian

in a magnetic field (minimal coupiing). We reviewed general density functional theories

especially for the Kohn-Sham (KS) approach and approximate exchange-correlation

functionals. Finaliy, we investigated magnetic resonance parameters such as NMR

chemicat shietding tensors, nuclear spin-spin coupiing tensors, electron-nuctear hyperfine

coupling tensors, and electronic g-tensors, based on density functional theory (DFT). We

here focused on one-component methods with ail-electron treatment, where the magnetic

parameters are expressed as the second derivatives of the total electronic energy with

respect to two perturbation parameters and spin-polarization of high-spin systems can be

properly treated. In addition, we expiained the theories based on the uncoupled DFT

(UDFT) method which is independent of a current density. The reasons are as follows:

(1) The working equations (3.41-3.44) ofparamagnetic NMR shifts are directly related to

NMR chemicaÏ shielding tensors, ESR A-tensors and g-tensors. b have consistent

resuits, ah terms should be treated in the sarne framework. (2) The shiifs are mainly

dominated by A-tensors (hyperfine tensors) and the spin-polarization density at the

nucleus is, therefore, important. (3) Until now, correct current density functionals have

not been developed and their effects on magnetic properties seern to be trivial [1]. (4) The

one-component methods based on UDFT can be easiiy combined with the present

QM/MM approach.

147
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Recent experiments for paramagnetic NMR shifts largeiy focus on biologicai systems.

Thus, in order to simulate the magnetic resonances of realistic modeis (inciuding severai

thousand atoms), we used a simple but effective QM/MM method where the QM region

is capped by one-clectron quantum capping potentiais (QCPs) and is eiectrostatically

influenced by MM point charges. We proved that the QCPs and MM charges mainly

contribute to the magnetic properties of the QM part through the KS orbitais and

corresponding energies which are obtained from the self-consistent solutions of the

magnetic field-free KS equations. Test caiculations for a range of systems demonstrated

that QCPs often reproduce wett the chemicaÎ shielding tensors of the QM subsystem.

Chemical shieiding anisotropies (CSA) are much more sensitive to QCPs than isotropic

shieldings but the sensitivity quickiy disappears as the number of bonds from QCPs

increases. For systems without strong eiectrostatic potentiais, the QM/MM resuits do not

show any great improvement for chemical shieldings over the pure QM resuits with

QCPs. On the contrary, the shieiding results of the pyrirnidine base atoms in CMP which

has strong electric fieÏds in the phosphates are greatly improved by the present QM/MM

approach. We extended this appiication to nuclear spin-spin coupling constants (CMP)

and hyperfine coupling tensors (biue copper proteins, in this case, whoie parts of proteins

were inciuded in the caiculations). Both magnetic parameters are also greatly improved

by the QM/MM approach. Unfortunately, the CSA of the oxygen atom in CMP and the

hyperfine structures of -hydrogen atoms in biue copper models show iarge deviations

from full QM resuits since they are very close to the domain boundary. In this case, the

short-range interactions at the boundary (induction, exchange repuision, and charge

transfer) shouid be included. From the practical point of view, these interactions can be

inciuded by a smaii increase in the size of the QM part or by expanding one-electron

terms in the KS equations which can be achieved by the effective fragment potential

(EFP) approacb [21. In the EFP, Coulombic, induction, and repulsive interactions are

represented via one-electron terms in the Flarniltonian. However, these additional terms

require some fifting procedures and we need code modification to use this approach in

DFT ftameworks, since the EfP was designed based on ab initio methods. On the other

hand, from the theoretical point of view, we need to have accurate descriptions of the

interactions in the boundary region within DFT frameworks. These can be achieved by
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C more sophisticated approaches. One of promising approaches is a hybrid QM/QM’

method on the basis of DfT and DfT based tight-binding (DFT-TB) [3]. In this

approach, we do flot need to introduce unphysical boundary conditions such as ftozen

boundary orbitais and capping potentials. In addition, the short range interactions

between the QM subsystems are treated correctÏy without any fitting parameters.

finalty, we derived the general equations for paramagnetic NMR chemical shifts, which

can potentiafly handie most cases and we gave a short guidance for the way to derive a

working equation for each different condition. We also provided working formulas for

the implementation of a special case (an isoÏated Kramers doublet state with no thermally

accessible excited states). The final formulas are composed of three terms: orbital shifi,

fermi contact shift, and pseudocontact shift. The newly derived Fermi contact term is

identical to McConnell’s in Eq. (3.2) which exhibits a T1 temperaffire dependence and

mainly depends on the isotropic hyperfine constant Aso. On the other hand, the newly

derived pseudocontact term is different from McConnelUs in Eq. (3.3) in that hyperfine

coupling tensors are obtained by first principles methods without any empirical factors.

By the new formula we can handie a strong spin delocalization beyond the limit of a

point-dipole approximation. The orbital shifis were approximated by the NMR shifts of

diamagnetic molecules which have the same geometries as paramagnetic molecules. for

validation ofthe new equations (Eqs. 3.4 1-3.44), we have performed test calculations for

some nitroxides, blue copper protein models, and heme protein models. we summarize

the resuits as follows: (1) In rnost cases, the orbital shifts are small but flot negligible and

can be readiÏy replaced by the chemical shifts of similar diamagnetic systems (2) The

Fermi contact term dominates chemical shifis and determines ail qualitative trends. (3)

The calculated chemical shifts exhibit a strong dependence on structural parameters and,

therefore, thermal motion effects should be considered for the paramagnetic NMR study

even in an approximation. (4) in most cases, the pseudocontact contributions are small

(less than 0.1 pprn for ‘H shifi in nitroxides; less than 1 ppm 13C shifis in nitroxides and

lfl shiifs in btue copper proteins) while they are large and not negligible for ‘3CN in iron

porphyrin complexes which exhibit large g-tensor anisotropies. In consequence, it is clear

that the present theoretical approach enables us to predict the NMR chemical shifis of
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open-sheli systems within DFT frameworks and to investigate the direct relationship

between the chernical shifts and the electronic and moiecular structures.

The present study shows the optimistic future of the DfT calculations for NMR chemical

shifts in open-sheli systems and at the same time leaves many works to be donc. First, the

orbital shielding contribution should be inciuded to bring the calculated shifis into a

better numerical agreement with experiment. It requires code modifications of ESR g

tensor programs based on one-component methods. In fact, this has already been donc by

Schreckenbach et al. in the ADf program [41 and, very recently, by Rinkevicius et ai. [5]

and also by us in the deMon program. Now, ail we need are to apply these methods to

various paramagnetic systems. Second, the chemical shifts of nitroxides exhibit a strong

dependence on the solvent and motional effects. To predict experimental spectra, it is

essential to calculate dynamic paramagnetic NMR shifts. The Car-Parrinello (CP)

molecular dynamics (MD) method [61 can be combined with DFT calculations for

magnetic properties. The CPMD rnethod is aiready incorporated into the deMon program

and it is possible to obtain motional average of the chemicai shifts in DFT frameworks.

Third, the active sites in blue copper proteins are surrounded by the other part. The

paramagnetic NMR shifis of the active sites must be affected by the environment because

they are very sensitive to minute variations of the electronic structure. QM/MM methods

can be combined with paramagnetic NMR caiculations. The geometry optimization ofthe

active site can be donc with the ON 10M type method [7] and the chemical shifts can be

calculated with the present QM/MM method (detaiÏs have explained in Chapter 2).

fourth, in the thesis, ail calculations for paramagnetic NMR shifts have been performed

using working equations for a special case (an isolated Kramers doublet states with no

thermally accessible excited states). On the fundarnentat side, other working equations,

which can treat strong zero-field splittings and thermal Zeeman mixing between ground

and excited states within DfT frameworks, shouid be discussed.
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