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Résumé 

 

La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux 

interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du 

surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau 

dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies 

pour imiter les conditions les plus communes trouvées pendant les opérations de  récupération 

assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des 

surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une 

force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont 

présenté des pics détectables avec une amplitude croissante dans la région des étirements des 

groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce 

qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à 

une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des 

changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la 

concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et 

alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge 

positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui 

oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du 

point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface 

silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de 

la compensation de la charge négative à la surface par la charge positive du DTAC. Les 
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résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension 

interfaciale à pH 3, 7 et 11. 

Mots clés : Spectroscopie nonlinéaire, surfactants d’alkylammonium, interfaces minéraux/eau, 

mouillabilité, tension interfaciale, fracturation hydraulique.
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Abstract 

 

Sum Frequency Generation (SFG), an interface specific spectroscopic technique, was used to 

characterize the changes in the macromolecular structure of the cationic surfactant 

dodecyltrimethylammonium chloride (DTAC) at the silica/water interface at pH values 

ranging from 3 to 11. The experimental conditions were selected to mimic conditions common 

during enhanced oil recovery operations. In particular, silica was studied since it is one of the 

most abundant mineral components of sandstone reservoirs, and surfactant adsorption was 

studied at an ionic strength (100 mM NaCl) relevant to hydraulic fracturing fluids. SFG 

spectra showed detectable peaks with increasing amplitude in the methylene and methyl 

stretching region when the pH was lowered to 3 or increased to 11, suggesting changes in the 

surfactant aggregate structure at the silica/water interface at a DTAC concentration above the 

critical micelle concentration. In addition, changes in the SFG intensity were observed for the 

water spectrum when increasing the DTAC concentration from 0.2 to 50 mM under acidic, 

neutral or alkaline conditions. At pH 3, near the point of zero charge of the silica surface, the 

excess positive charge due to adsorption of the cationic surfactant creates an electrostatic field 

that orients water molecules at the interface. At pH 7 and 11, which are above the point of zero 

charge of the silica surface, the negative electrostatic field at the silica/water interface 

decreases in magnitude with surfactant adsorption due to compensation of the negative surface 

charge by the positively charged DTAC. The SFG results were correlated with contact angle 

and interfacial tension measurements at pH 3, 7 and 11.      
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Chapter 1 Introduction and Literature Review 

 

Surfactants are a unique group of chemicals able to modulate interfacial properties. The 

importance of surfactants in surface modification lies in their self-association and self-

assembly properties conferred by the presence of specific functional groups that lead to 

amphiphilic characteristics. The geometry and the stability of the surfactant structures are 

driven by the balance of van der Waals, hydrophobic, hydrogen-bonding and electrostatic 

interactions. Due to these forces, surfactants exhibit the fluid-like behaviors associated with 

colloids, complex fluids, and soft (structured) materials (1). Complex fluids are related to 

multi-component soft materials with non-Newtonian rheological behavior such as lipid 

membranes, cell suspensions and in general biological systems. Soft materials are systems 

easily deformed by  forces including polymers, colloids, foams, liquid crystals and gels (2). 

Specific conditions in the solution such as the presence and concentration of electrolyte, the 

pH, the solvent and the nature of the interfaces direct the formation of aggregates. Micelles, 

vesicles, bilayers, monolayers, cylinders and other morphologies can be formed as a 

consequence of the intermolecular forces mentioned here (1). These last structures can be the 

components of soft materials and soft materials at interfaces.  

 

Due to the molecular structure of surfactants consisting of functional groups with low 

attraction for the solvent (i.e. lyophobic or hydrophobic in water solutions) and a group with 

high attraction for the solvent (i.e. lyophilic or hydrophilic in water), surfactants can be 

oriented at interfaces. The lyophobic groups are mainly composed of aliphatic and aromatic 
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chains of different length and unsaturation degree, which confers an affinity for non-polar 

solvents or phases. According to the charge on the lyophilic group of the surfactant structure, 

surfactants can be classified as anionic, cationic, nonionic or zwitterionic. Most lyophilic 

functional groups undergo acid-base reactions leading to positive, negative or neutral charge. 

The electrostatic interactions arising from these charges then play an important role in 

determining the orientation and distribution of surfactants along an interface and their impact 

on the  free energies of the interfacial area (3).  

 

The pH dependence of surfactant properties has been an important subject of research because 

of its influence on micelle formation, modulating other properties such as solubility, interfacial 

tension, and rheological behavior of the phase that contains them and more specifically the 

interfacial area. Most of the ionic surfactants, such as soaps composed of fatty acids and salts, 

contain functional groups that are pH dependent.  At a certain pH value, a solution containing 

pH-sensitive surfactant might exhibit a binary surfactant mixture between the protonated and 

deprotonated forms of the surfactant. Even although, at certain pH conditions one of the 

ionized or protonated monomer surfactant forms should predominate, the micelles formed may 

contain important quantities of both forms of the surfactants. Maeda et al. studied the 

surfactant dodecyldimethylamine oxide with an electrolyte concentration of 0.1 M NaCl and at 

pH 3, and they found that 1% of the surfactant monomer was ionized while 10% of the 

molecules forming the micelles are ionized (4, 5). 

 

Within the forces responsible of adsorption of cationic surfactants on negatively charged 

surfaces, the Coulombic attractions are one of the most relevant. The ionic pair, formed 
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between the surfactant ion and the charged groups at the surface, trends to screen the surface 

charge density (6).  Therefore, ionization of the surface groups increases because of the 

adsorption of ionic surfactant when increasing the pH. Goloub et al. studied the adsorption of 

the cationic surfactants (dodecylpyridinium chloride and cetylpyridinium) on silica, in the 

presence of KCl as an electrolyte. According to those studies, specific interactions between the 

cationic surfactants and the surface diminish when the number of charged sites at the surface 

increases because of an increase in salt concentration and pH values. Those findings suggest 

that the hydrophobic interactions between the aliphatic chains and the surface play an 

important role, as well as during surfactant aggregation at the silica/water interface (6, 7). 

    

Because of the surface activity and self-assembly properties of surfactants, they have been 

widely used in a variety of applications including pulp and paper production, the food 

industry, paints, lacquers and plastics, mining, flotation and petroleum production, textiles and 

fibers, cosmetics and pharmaceuticals, agrochemicals, the leather and fur industry, as well as 

in detergents and cleaners (8). Due to the extensive use of surfactants, their release into the 

environment is ubiquitous. The environmental fate of these compounds is then determined in 

part by their interactions with mineral surfaces and natural organic matter found in soils.  

 

The discharge of surfactants into sewage-treatments plants and as a consequence their 

dispersion into the environment and surface water effluents and sludges is ubiquitous. The 

surfactant toxic effects are determined in part by the final concentration reached in the aquatic 

medium and the degradation capacity through microbial activity. However, the biodegradation 

process products might bioaccumulate and their long-term effects require further studies (9).  
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In addition, Olkowska et al. presented evidence of surfactant contamination in different 

ecosystems under the influence of anthropogenic activities and how atmospheric deposition 

can eventually enable the migration of anionic, nonionic and cationic surfactants into the 

environment. According to those results, in regions considered to have low human activity, 

high quantities of surfactants were measured through monitoring of depositions such as run-

off water, atmospheric precipitation, dew, and snow (10).        

 

1.1 Cationic alkylammonium surfactants 

 

Quaternary alkylammonium salts are a common type of cationic surfactant and are usually 

synthesized  from either fatty acid or petrochemical sources (11), the positive charge arises 

from the nitrogen atom containing four alkyl substituents. An important property of this type 

of surfactant is the existence of a positive electric charge, which remains under acidic, neutral 

and alkaline conditions (3). Dodecyltrimethylammonium chloride (DTAC) is an 

alkylammonium surfactant with an aliphatic saturated chain of 12 carbons and three methyl 

substituents linked to the nitrogen atom (Figure 1.1).  

 

 

 

Figure 1.1 Molecular structure of dodecyltrimethylammonium chloride. 

Previous studies have investigated the behavior of DTAC and its analogous bromide DTAB, 

in colloidal systems and the adsorption of cationic surfactants into environmental matrices (12, 

13). Quaternary alkylammonium surfactants are often electrostatically attracted to natural 

C
12

H
25

 N
+
(CH

3
)

3
 Cl

-
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surfaces and materials, such as clays and (oxy)hydroxides, which typically contain an intrinsic 

negative charge. As a consequence, and depending on the surfactant concentration in the 

medium, the hydrophobicity of mineral interfaces in the environment is modified by surfactant 

adsorption, which leads to not only the retention of surfactants in the soil but also impacts the 

mobility of other xenobiotic substances, such as the polycyclic aromatic hydrocarbons (14). 

 

DTAC and DTAB surfactants are used in Enhanced Oil Recovery operations (EOR). Salehi et 

al. performed a mechanistic study to describe the wettability alteration by DTAB adsorption to 

oil-wet carbonate rocks. According to those results, the cationic surfactant forms ionic pairs 

with the acidic components of crude oil. Once the ion-pair forms, the crude oil components 

adsorbed at the rock surface are removed, exposing the originally water-wet carbonate rock. 

These wettability changes are described in terms of imbibition where a wetting fluid (water) 

displaces a non-wetting fluid (oil) on the electrically charged rock surfaces. Thereby, fluids 

containing the cationic surfactant DTAB increase the recovery efficiency in surface carbonate 

rocks, due to oil displacement increasing the oil concentration in the fluidic phase recovered at 

the end of a hydraulic fracturing operation (15, 16). Therefore, the surfactant adsorption at the 

mineral surfaces in EOR is equally important to better understand the wettability changes at 

solid/liquid interfaces.    

 

1.2 Silica surface properties 

Although some studies regarding adsorption phenomena have elucidated the thermodynamics 

of how a solute interacts with a substrate under certain specific conditions (i.e. in an aqueous 

media and in the presence of electrolytes), there is a lack of information concerning how 
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changes in solvent structure and surface charge might direct solute adsorption. Such is the case 

for the silica surface when it is in contact with an aqueous medium at different pH values (17). 

 

As previously stated, the interaction of mineral surfaces with cationic surfactants is charge 

dependent, where the pH of the solution plays an important role not only in determining 

surfactant ionization but the surface charge of minerals as well. In this section some properties 

of the silica surface are discussed. Silica is one of the most abundant mineral oxides in   nature 

(18) and more specifically in sandstone oil reservoirs (19), which are often a target of EOR 

operations.  

 

The bulk silica structure is formed by siloxane units joined in a tetrahedral lattice. At the 

surface, the identity and distribution of the functional groups present depends on the 

conditions used to treat the surface such as the temperature, and when the silica is in solution, 

the pH and the concentration of electrolytes. Particularly, acid/base reactions at the 

silica/water interface are fundamentally important because the relative concentrations of the 

neutral silanol (-SiOH) and the ionized sites (-SiO
-
 or SiOH2

+
) determine the net surface 

charge, which influences the adsorption of other species such as metallic cations and cationic 

surfactants. Using second harmonic generation, a nonlinear optical technique sensitive to 

surface charge, Ong et al. determined the interfacial charge density at the silica/water interface 

for a range of pH values and obtained two pKa values for the silanol groups on the silica 

surface (20). According to this study, the first pKa was determined to be 4.5 and corresponded 

to 19% of the silanol sites whereas the second pKa was 8.5 and corresponded to the remaining 

81% of the surface sites.  Similarly, the experiments performed confirmed that the surface 
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potential is a function of pH with a maximum interfacial potential of 140 mV at pH 12 and in 

the presence of 0.5 M NaCl. On the other hand, at lower ionic strength the maximum surface 

potential was larger confirming that the presence of salt acts to screen the electrostatic field 

resulting from the negatively charged sites at the silica/water interface (20).  

 

The presence of two pKa values for the silica surface is characteristic of a diprotic acid and 

those pKa values are associated with two different hydrogen bonding environments of the 

silanol sites (21). According to Ong et al., the isolated surface silanol groups correspond to the 

acidic pKa value (~ 4.5). The second pKa of 8.5 was attributed to silanols that are hydrogen 

bonded to neighbors (17, 22). In addition, Meties and co-workers have reported that  15 % of 

the silanol sites had a pKa of 5.5 whereas the remaining 85% have a pKa of 9.0, using 

potentiometric titrations measurements, which correlates with the results described previously 

by Ong et al (23).  

 

The two pKa model proposed by Ong et al was based on experiments performed at high 

electrolyte concentration (0.5 M NaCl), but under low electrolyte concentration, the starting 

pH determines the number of the silanol sites observed. Darlington et al. established that at 

0.01 M NaCl and starting at a pH value of 7, two detectable pKa values were observed at 3.8 

±0.1 and 8.6 ± 0.1. On the other hand, when starting the titration under alkaline conditions (pH 

12), three pKa values were observed at 3.8 ± 0.3, 5.2 ± 0.5 and 9.6 ± 0.6. Furthermore, with a 

starting acidic pH value (pH 2) a slow SHG response was observed until a bulk pH of 4 and 

two pKa values of 5.3 ± 0.5 and 9.6 ± 0.6 were observed (21). 
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The pH value at which the net surface charge is equal to zero or the point of zero charge 

(PZC) of silica is between 2 and 4 (24). This means that at pH values lower than 2 the silica 

surface will be charged positively whereas at pH values higher than 4 the density of negatively 

charged sites is greater than the density of positively charged sites and thus the overall surface 

charge is negative (18). In this manner, the pH of the aqueous media determines the chemical 

nature of the substrate as well as the nature of the adsorbed compounds.  

 

1.3 Adsorption of cationic surfactants at the silica/water interface  

 

As mentioned above, the adsorption of charged species at the silica/water interface is pH 

dependent, because this parameter as well as the ionic strength of the solution will determine 

the electrostatic attraction between the surface sites and the charged adsorbates. Zhang and 

Somasundaran proposed a model to explain ionic surfactant adsorption on oppositely charged 

surfaces (25). It is named the Somasundaran-Fuerstenau model and it describes the interaction 

in four regions which are schematized in figure 1.2. The first region is characterized by the 

electrostatic adsorption of the charged head of the surfactant at the charged surface site, and 

this process is described by the Gouy-Chapman model, where the charge density is related 

with the electrostatic potential at the charged interface. In this region, the hydrocarbon chains 

of the surfactant do not have a preferential orientation and they might interact with 

hydrophobic sites at the surface. In the second region, when the surfactant concentration at the 

interface increases, the lateral interaction between the hydrocarbon chains increases leading to 

the formation of primary aggregates termed as hemimicelles (25). At this point of the 

isotherm, and because of the orientation of the hydrocarbon chains towards the bulk solution, 
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the surface is rendered hydrophobic or oil-wet. Evidence supporting this orientation of the 

hydrocarbon chains at this intermediate surfactant concentration has been presented by Hou et 

al. They performed contact angle and ζ potential experiments to study the adsorption of the 

cationic surfactant cetyltrimetylammonium bromide (CTAB) on a quartz surface at neutral pH. 

According to their results, there is an increase in the contact angle measurement resulting from 

a compact monolayer formed at the interface, which is accompanied by an increase in the ζ 

potential values (26). 

 

In the third region of the Somasundaran-Fuerstenau adsorption isotherm, as the solution phase 

surfactant concentration increases, the adsorption mechanism is driven by the hydrophobic 

forces between the adjacent hydrocarbon chains rather than the electrostatic attraction between 

the head of the surfactant and the charged sites at the surface. At this surfactant concentration, 

the surface charge is near zero. Finally, in the fourth and last region of the isotherm, the 

surfactant monomer concentration in solution is approximately constant due to the monomer-

micelle partitioning equilibrium and the adsorption density does not change because of the 

saturation of the surface with surfactant.  The surfactant concentration at which the slope 

changes between the third and the fourth regions of the isotherm is approximately equal to the 

critical micelle concentration (CMC) of the surfactant. The CMC strongly depends on solution 

conditions such as the ionic strength, the pH, the temperature and the identity of the counter–

ions present in the solution. When micelle formation takes place, the electrostatic repulsion 

between the charges on the surfactant molecules increases, but in the presence of electrolyte, 

the counter-ions decrease the repulsive interaction by screening the surfactant headgroup 

charge at the micelle surface allowing closer packing of the hydrocarbon chains. Velegol et al. 
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studied the effect of changing the identity of the counter-ion present in solution on surfactant 

interfacial structure by comparing CTAB with its analogous chloride CTAC. Atomic force 

microscopy images of CTAB and CTAC on silica showed that if the counter-ion is bromide 

and at a surfactant concentration 10 times the CMC, the aggregates are “worm-like” micelles 

adsorbed at the silica surface, whereas for CTAC at the same surfactant concentration the 

aggregates are circular projections (27). Hence the counter-ion clearly influences the size and 

the shape of the adsorbed aggregates.    

Figure 1.2 The four-region Somasundaran-Fuerstenau adsorption isotherm for ionic 

surfactants at charged surfaces. Further description in the main text.    

Correlating the four region adsorption isotherm for ionic surfactants  and in particular the third 

and fourth regions with experimental evidence, Hou et al. found that the contact angle 

decreases gradually in these regions for CTAB adsorbed on silica. This is attributed to the 

formation of a compact bilayer in which the hydrocarbon chains are buried in the adlayer and 

are not in direct contact with water rendering the surface more hydrophilic. ζ potential 
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measurements performed on the same system increased dramatically becoming more positive 

as the second layer of the aggregate facing the bulk solution was formed (26).     

 

1.4 Sum Frequency Generation  

 

Vibrational Sum Frequency Generation is a nonlinear optical spectroscopic technique with an 

inherent specificity to noncentrosymmetric systems used commonly to study surfaces and 

interfaces. To produce the SFG signal, two high energy laser beams, one with a fixed visible 

frequency ωVIS and a tunable infrared beam ωIR, are combined in time and space to produce a 

third beam which has a frequency that is the sum of the incident frequencies (ωSFG = ωVIS + 

ωIR). At non-charged interfaces, the SFG intensity is proportional to the square of the surface 

nonlinear susceptibility χ
(2)

 and the second order polarization PSFG. 

𝐼𝑆𝐹𝐺 ∝  |𝑃𝑆𝐹𝐺|2  ∝  |𝑋𝑁𝑅
(2)

+ ∑ 𝑋𝑅,𝜈
(2)

𝜈 |
2

 𝐸𝑉𝐼𝑆𝐸𝐼𝑅                           Eq.1.1 

Where (2)
NR and (2)

R represent the nonresonant and resonant components or the second order 

susceptibility (2)
, and EVIS and EIR are the electric fields generated by the visible and the 

infrared frequencies respectively (28, 29). The second order resonant susceptibility, (2)
R, is 

proportional to the number density of molecules, N, and the orientationally averaged 

polarizability <α
2
>. This last term is presented in angular brackets to indicate the average of 

the molecular orientations at the interface (30). 


𝑅

(2)
= 𝑁〈𝛼〉                                                   Eq. 1.2 

Thus, the square root of the SFG intensity is proportional to the density of molecules at the 

interface. The second order resonant susceptibility can be modeled as follows 
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
𝑅
(2)𝛼 ∑

𝐴𝜈

𝜔𝜈  − 𝜔𝐼𝑅− 𝑖𝛤𝑉
𝜈                                               Eq 1.3  

Where Aν is the amplitude of the vibrational mode ν, ων is the resonant frequency, ωIR is the IR 

frequency and Γν is the line width of the transition (29).  As it was stated before, SFG will be 

active only for molecules or vibrational modes without an inversion center, i.e. 

noncentrosymmetric systems. Previous studies of surfactant monolayers at interfaces 

(air/water (29), solid/water (31, 32), and oil/water (33)), have revealed that when the 

surfactant alkyl chains are in an all-trans conformation, they possess a local inversion center 

rendering the CH2 stretches SFG inactive. If the conformation of the surfactant chain is locally 

noncentrosymmetric and forms what is known as a gauche defect, then the SFG vibrational 

modes become active. The ratio of the methylene and methyl stretches is therefore used as an 

indicator of the degree of conformational order in monolayers studied by SFG (29, 31, 34, 35).  

 

At charged interfaces, there is a contribution from the third order polarization of the interface, 

which arises from the electrostatic field Eo.  

𝑃𝑆𝐹𝐺𝛼 (2)𝐸𝑉𝐼𝑆𝐸𝐼𝑅 +  (3)𝐸𝑉𝐼𝑆𝐸𝐼𝑅  ∫ 𝐸0 𝑑𝑧                                    𝐸𝑞. 1.4
∞

0

 

The presence of this electrostatic field aligns the orientation of the water molecules in the 

interfacial region due to the strong permanent dipole in water, and accordingly the 

centrosymmetry of the interfacial region is reduced. Thus, this third order contribution to the 

SFG intensity increases when the interface is electrically charged, because the electrostatic 

field would align the interfacial water molecules resulting in a more significant contribution to 

the nonlinear polarization (29).   
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The study of molecular aggregation at interfaces is challenging in the sense that the techniques 

utilized should provide a sensitive and selective response that is able to differentiate the 

interfacial region from the bulk solution. Vibrational nonlinear spectroscopy techniques 

including Second Harmonic Generation (SHG) and SFG offer a powerful tool to describe 

interfacial phenomena due to their intrinsic specificity for noncentrosymmetric systems. One 

of the most important applications of surfactants  lie in the petroleum industry where 

surfactants are used during the oil recovery process to change the wettability of mineral 

surfaces in sandstone reservoirs as well as the viscosity and permeability of the fluids 

containing the oil. The aim of this research project is to study the adsorption of a cationic 

surfactant, dodecyltrimethylammonium chloride (DTAC) at the silica/water interface with the 

spectroscopic technique Sum Frequency Generation over a range of pH varying from 3 to 11 

and at a salt concentration pertinent to hydraulic fracturing fluids (100 mM NaCl). 
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Chapter 2 Article  

 

The article presented in this chapter was submitted to publication on June 24
th

 2015 and 

published on September 23
th

 2015 in the Journal of Physical Chemistry C. The second author 

of this article, Mathilde Chaveau, was an intern during the summer of 2014. She developed the 

contact angle experiments as well as the interfacial tension measurements presented in the 

section 2.3.1. As first author, I performed the SFG experiments and wrote the article with the 

supervision of my research director Prof. Patrick L. Hayes. The article has been slightly 

modified in order to be compatible with the entire thesis.  

 

DOI: 10.1021/acs.jpcc.5b06058 

J. Phys. Chem. C 2015, 119, 23917−23927. 
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2.1 ABSTRACT 

 

Adsorption of the cationic surfactant dodecyltrimethylammonium chloride at the silica/water 

interface was studied using sum frequency generation (SFG) spectroscopy under high ionic 

strength (100 mM NaCl) and at pH values ranging from 3 to 11, which are conditions relevant 

to hydraulic fracturing in enhanced oil recovery operations. At surfactant concentrations above 

the critical micelle concentration, SFG spectra of the CH stretching region indicate a more 

noncentrosymmetric structure for the surfactant aggregate is formed at the interface under 

acidic or basic conditions compared to neutral conditions. The SFG spectra also indicate a 

change in the packing/ordering of the surfactant hydrophobic tails with pH as well. In 

addition, the observed changes in the SFG spectra of water upon the addition of surfactant 

vary depending on the pH. At pH 7 and 11, the SFG intensity decreases in the OH stretching 

region, indicating a decrease in the magnitude of the electrostatic potential at the interface 

when the cationic surfactant is adsorbed at the negatively charged silica/water interface. At pH 

3, an increase in the SFG intensity in the OH stretching region is attributed to an increase in 

the electrostatic potential at the silica/water interface due to the adsorption of a positively 

charged surfactant at a pH value close to the point of zero charge for the silica surface. These 

results demonstrate how the pH can influence the macromolecular structure of surfactants at 

mineral/water interfaces through the corresponding changes in the interfacial charge density 

and interfacial potential. In particular, we discuss how an unequal density of surfactants on 

each side of the interfacial bilayer or the adsorbed micelles may exist under either acidic or 

basic pH conditions.  
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2.2 INTRODUCTION  

 

Surface modification using surfactants is pertinent to numerous commercial products and 

industrial processes, including pharmaceuticals, mineral ore flotation, pesticides, domestic 

hygiene products, and enhanced oil recovery (36-39). In these examples, surfactants are used 

to modulate interfacial properties such as wetting and colloidal stability (40). Quaternary 

ammonium surfactants are cationic amphiphilic compounds in which the nitrogen atom is 

charged positively, and these cationic surfactants are commonly used as wetting agents in a 

variety of technologies, including in enhanced oil recovery where they are an additive in 

hydraulic fracturing fluids (41). Thus, understanding the interactions of quaternary ammonium 

surfactants with mineral/water interfaces is fundamentally important for the optimization of 

hydraulic fracturing fluids and other technologies. For example, if surfactants irreversibly bind 

to mineral/water interfaces and cannot be recovered during a hydraulic fracturing project, then 

the cost of the project may be prohibitive (42). In addition, if the chemicals used in hydraulic 

fracturing are released into the environment (43), then their fate will be determined, in part, by 

interactions with environmental interfaces (12, 44). 

 

Silica is one of the most abundant minerals in the earth’s crust (18) and hydrocarbon 

reservoirs (19). When in contact with water, the silica surface has an intrinsic surface charge 

that depends on the bulk pH, with the surface silanol groups becoming negatively charged at 

pH values greater than the point of zero charge (PZC). 

 

𝑆𝑖𝑂𝐻 + 𝐻2𝑂 ⇌ 𝑆𝑖𝑂− +  𝐻3𝑂+                                          Eq.    2.1 
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The PZC of the silica surface is generally located at pH values between 2 and 4 (24). 

According to nonresonant second harmonic generation studies of the silica/water interface 

performed by Ong et al., two pKa values (4.5 and 8.5) were found for the deprotonation of the 

silanol sites (20). The lower pKa value has been attributed to silanol groups associated with 

weakly hydrogen-bonded water, whereas the higher pKa value has been attributed to silanol 

groups associated with strongly hydrogen-bonded water (45). The relative surface 

concentration of these two sites depends on the electrolyte present in solution, but for NaCl, 

which is used in this study, the fraction of sites deprotonated at pH 7 is 20% (20, 45).
 

 

The influence of salt on the structure of water at mineral/water interfaces has been previously 

demonstrated in both experimental (46-48) and computational (49) studies. In general, the 

addition of salt leads to disruption of the hydrogen-bond network near the interface, and it also 

screens the static electric field from the charged silica surface. This screening leads to a 

shorter Debye length, which defines the depth of penetration of the static electric field into the 

adjacent aqueous solution. In the context of this study, the addition of salt also impacts the 

macromolecular structure of ionic surfactants by reducing the critical micelle concentration 

(CMC) via screening of the repulsion between the surfactant headgroups. 

 

In the limiting case of very low surfactant concentrations, adsorption of a cationic surfactant 

on silica occurs due to the Coulombic attraction between the surfactant headgroups and the 

silica surface sites (31). As a consequence, the net surface charge will decrease and the 

hydrophobicity will increase. Once a certain concentration of surfactant is reached, aggregates 
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form (50). Different measurement techniques have been used to constrain the possible 

macromolecular structures of surfactant aggregates at solid/liquid interfaces, including atomic 

force microscopy (27) and neutron scattering (51). In addition, the nonlinear optical technique 

sum frequency generation (SFG) spectroscopy has emerged as an important method for 

characterizing surfactant adsorption due to its sensitivity to the symmetry of the surfactant 

aggregation (e.g., monolayer versus bilayer), and its surface specificity, which allows the 

vibrational spectrum of the interfacial species to be measured. 

 

Although previous papers have described the macromolecular structure of cationic surfactants 

on silica at concentrations near the CMC,(27, 31) there is a lack of research investigating how 

the pH changes the aggregate structure in which techniques such as SFG are used to directly 

probe the surfactant at the solid/liquid interface. The pH is an important parameter in many 

different surfactant-containing technologies, including enhanced oil recovery (52), which 

potentially could alter the macromolecular structure of adsorbed surfactants through 

electrostatic interactions. Indeed, two previous studies of alkylammonium surfactant 

adsorption on silica, one at pH 11 and the other under neutral conditions (pH ≈ 5.5), exhibited 

very different SFG spectra in the C−H stretching region (31, 53). Under basic conditions, C−H 

resonances were observed, indicating the formation of asymmetric aggregates, whereas, under 

neutral conditions, no such resonances were observed, which indicates the formation of 

symmetric aggregates. While the pH and the corresponding differences in the silica surface 

charge are a plausible explanation for the observed differences, it is not possible to make a 

confident conclusion regarding the role of the pH because there are other differences between 
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the two studies that are confounding variables (i.e., the ionic strength and counterions present 

in solution). 

 

To address this unresolved question, the adsorption of the alkylammonium surfactant 

dodecyltrimethylammonium chloride (DTAC) at the fused silica/water interface is 

systematically studied here over a range of pH values using SFG for the first time (to our 

knowledge). In addition, contact angle and interfacial tension measurements are used as a 

complement to the SFG experiments. Experiments are carried out at high ionic strength (0.1 M 

NaCl) because surfactant-containing hydraulic fracturing fluids often contain high 

concentrations of salt, and it has been well demonstrated by the papers discussed in the 

Introduction that the addition of salt can change the water structure in the interfacial region as 

well as influence surfactant aggregation. Furthermore, the addition of a background electrolyte 

minimizes the change in ionic strength when the pH is adjusted, allowing the effect of the pH 

to be better separated from the effect of the changing ionic strength.  

 

Ultimately, the goal of this work is to better characterize the pH-dependent adsorption and 

macromolecular structure of surfactants at interfaces, which until now had not been 

systematically investigated using SFG spectroscopy. The interfacial macromolecular structure 

is fundamentally linked to the amount of surfactant adsorbed and the wettability of a surface, 

both of which are important to optimizing surfactant-based technologies (42, 54). In addition, 

the structure of water in the interfacial region is investigated, which has important implications 

for mineral reactivity, including dissolution and adsorption (44). 
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2.3 EXPERIMENTAL SECTION  

 

2.3.1. Contact Angle and Interfacial Tension Measurements. A First Ten Angstroms (FTA 

200) flexible video system was used to measure sessile contact angles on fused silica slides 

(Chemglass, CGQ-0640-01), as well as the interfacial tension via the pendant drop method. 

The slides were cleaned following the same procedure used for the fused silica windows 

analyzed in the SFG experiments, and this procedure is described in the next subsection. The 

CMC at different pH values and in the presence of 100 mM NaCl was determined from the 

interfacial tension measurements as discussed in section 2.4.1. 

 

2.3.2. Materials and Reagents. The DTAC solutions (Sigma-Aldrich, 99.0+%) were prepared 

in Millipore water (18.2 MΩ cm at 25 °C, TOC (total organic carbon) ≤ 3 ppb) or D2O (CDN 

Isotopes, 99.9 atom % D), and the pH or pD was adjusted with NaOH (Sigma-Aldrich, 

99.99%), NaOD (Sigma-Aldrich, 40 wt % in D2O, 99.5 atom % D), HCl (EMD, Omni Trace), 

and DCl (Sigma-Aldrich, 35 wt % in D2O, 99 atom % D) solutions. For the deuterated 

surfactant experiments, DTAB-d25 (dodecyl-d25-trimethylammonium bromide; CDN Isotopes, 

99.1 atom % D) was used. NaCl (Merck, 99.5%) was used to prepare the solutions with added 

salt. Prior to each experiment, an IR-grade fused silica window (ISP Optics, QI-W-38-3) and 

the slides for contact angle measurements were cleaned by being rinsed with Millipore water 

and then HPLC-grade methanol. The window and the slides were then dried at 100 °C for 2 h 

and plasma cleaned for 5 min at 400−800 mTorr of oxygen. It should be noted that there are 

some minor compositional differences between normal and IR-grade fused silica, most 

importantly the reduced concentration of hydroxyl ion in the IR-grade fused silica. However, 
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in the presence of water, both silica surfaces are generally expected to terminate in hydroxyl 

groups, which can be protonated or deprotonated (45, 55). 

 

A thin film of PMMA (poly(methyl methacrylate); MW 35000, Acros Organics) was 

deposited onto an IR-grade fused silica window, and the SFG spectrum at the silica/air 

interface was collected before and after each DTAC experiment. The maximum of the SFG 

peak corresponding to the CH symmetric stretch of the methoxy group in the polymer, which 

is nominally located at 2955 cm
−1

, was used to calibrate the frequency. The same experimental 

geometry and alignment were used for this calibration and the DTAC studies (53, 56). The 

DTAC solutions were contained in a custom-built Teflon reservoir, and the IR-grade fused 

silica window was clamped on the open top of the reservoir and sealed with a Viton O ring. 

Before the DTAC experiments, the sample cell was rinsed three times with the solution 

containing the surfactant. Aqueous DTAC, or DTAB-d25, solutions were introduced into the 

reservoir using a pipet and allowed to equilibrate for 20 min. All the experiments, including 

the SFG experiments, were carried out in duplicate to verify the reproducibility of the 

experiments. 

 

The pH of each solution was adjusted with dilute solutions of NaOH and HCl or with their 

deuterated analogues, and the pH was measured with a pH meter (Orion Star A121, Thermo 

Scientific). The solutions were prepared and the pH was adjusted the day before the 

experiments were carried out to allow for equilibration with ambient CO2. For multiple 

samples spanning the range of pH values used here, the pH value was verified after the 

samples were allowed to sit overnight in sealed bottles. In general, the change in pH was 
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negligible compared to the broad range of pH values used in these experiments and less than 

0.5, indicating that CO2 dissolution did not substantially alter the pH of the samples. 

 

2.3.3. SFG Spectroscopy. SFG spectroscopy is a nonlinear optical technique that allows the 

measurement of vibrational spectra with a high level of interfacial specificity. In the SFG 

experiment, two pulsed laser beams are overlapped on a sample, a visible beam with 

frequency ωvis and an infrared beam with tunable frequency ωIR, producing a third beam with a 

frequency that is the sum of the incident frequencies (ωSFG = ωvis + ωIR). The vibrational 

spectrum is measured by tuning the IR frequency and measuring the SFG intensity, which is 

enhanced when the IR frequency approaches the vibrational resonances of a molecule at the 

interface (35, 57). At an uncharged interface, the intensity of the emitted SFG light (ISFG) is 

proportional to the second-order nonlinear susceptibility of the interface (χ
(2)

). However, for 

charged interfaces, such as the silica/water interface at pH values not equal to the PZC, the 

SFG intensity will also contain a contribution from the third-order susceptibility (χ
(3)

) (46, 47). 

The total SFG intensity can then be expressed as 

𝐼𝑆𝐹𝐺 𝛼 |(2)𝐸𝑣𝑖𝑠𝐸𝐼𝑅 + (3) 𝐸𝑣𝑖𝑠𝐸𝐼𝑅 ∫ 𝐸0(𝑧)𝑑𝑧
∞

0
|

2
                                            Eq. 2.2 

where Evis and EIR are the visible and IR electric fields, E0 is the static electric field, and z is 

the distance normal to the interface. Furthermore, the second- and third-order susceptibilities 

are proportional to the number of molecules at the interface (N) and to the second- and third-

order polarizabilities (⟨α(2)⟩ and ⟨α(3)⟩). The angular brackets in the equation below indicate 

that the polarizabilities are averaged over the molecular orientations (30): 

(2) = 𝑁(2)〈𝛼(2)〉,  (3) = 𝑁(3)〈𝛼(3)〉                                  Eq. 2.3 
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Within the electric dipole approximation, ⟨α(2)⟩ is nonzero only in noncentrosymmetric and 

ordered environments, whereas ⟨α(3)⟩ is nonzero in isotropic environments and increases in 

magnitude in ordered noncentrosymmetric environments (47). 

 

For the silica/water interface, only the interfacial region is noncentrosymmetric, and the 

second-order contribution is therefore inherently interface specific due to anisotropic forces 

that lead to polar alignment of molecules. With respect to the third-order contribution, in 

principle, the interface specificity of this contribution is defined by the penetration depth of E0 

into the aqueous phase. The Debye length is a metric for this depth, and for the high ionic 

strengths used in this study (i.e., 100 mM NaCl), it is equal to ∼1 nm. Therefore, the SFG 

spectrum of the charged interface which arises from both the second- and third-order 

polarizations will be highly selective for the interfacial region. 

 

As shown in the following equation, SFG spectra are often modeled using a constant 

nonresonant background and a serie of Lorentzian functions for the frequency-dependent 

resonant response (30). 

ISFG(ωIR) =  |ANR + ∑
A

ω− ωIR− i
 |

2

                                          Eq. 2.4 

Here, ANR is the amplitude of the nonresonant contribution, Aν and ων represent the amplitude 

and the frequency of the resonant mode ν, and Γν is a damping constant. While Eq 2.4 does not 

explicitly account for the second- and third-order contributions to the SFG spectrum, the 

nonresonant and resonant terms could arise from the second- and/or third-order polarization. 
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The scanning SFG system (EKSLPA) consists of a PL2241 series picosecond laser that 

generates fundamental (1064 nm) and second harmonic (532 nm) beams that pump a      

PG501/ DFG parametric generator, which produces an IR beam that was tuned from 2700 to 

3850 cm
−1

. The 532 nm and tunable IR lasers were directed through an IR-grade fused silica 

window and overlapped in time and space at the solid/liquid interface with incident angles of 

49° and 55° from the surface normal (after refraction) for the visible and IR beams, 

respectively. The generated SFG signal is isolated using optical filters and a monochromator 

and is then detected by a photomultiplier tube. All SFG spectra are measured by monitoring 

the s-polarized SFG field generated by s-polarized visible light and p-polarized IR light. SFG 

spectra were collected with acquisition times ranging between 1 and 2 h per spectrum. The 

SFG data for each spectrum were normalized by dividing the SFG intensity at each 

wavelength by the product of the visible and infrared energies, which were monitored during 

the experiments using calibrated photodiodes and beam splitters. 

 

2.4 RESULTS AND DISCUSSION  

 

2.4.1. Contact Angle and Interfacial Tension Measurements. Figure 2.1a presents contact 

angle measurements on fused silica slides at pH 3, 7, and 11 with 100 mM NaCl. For all three 

pH values, at low surfactant concentration, the contact angle increases until a DTAC 

concentration of about 2 mM. According to Young’s equation (58), this trend indicates the 

adsorption of a hydrophobic monolayer of surfactant beyond the contact line, which decreases 

the interfacial tension at the silica/air interface, and/or the formation of hydrophobic domains 

at the silica/water interface, which increases the interfacial tension at this interface. Once the 
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maximum value for the contact angle is reached, the contact angle decreases to 15° 

asymptotically. This result is consistent with the formation of a bilayer (i.e., an extended 

planar bilayer or packed adsorbed micelles) at high surfactant concentrations, since much 

higher contact angles would be expected if the hydrophobic tail of the surfactant were exposed 

to the water (59).  

 

 
Previous work on cetyltrimethylammonium bromide (CTAB)-an alkylammonium surfactant 

with a hydrophobic chain that is four carbons longer than that of DTAC-using ζ potential 

measurements as well as ellipsometry has suggested that at a certain concentration a surfactant 

monolayer forms at the silica/water interfaces due to electrostatically driven adsorption (26). 

The hydrophobic chains of the surfactant molecules in the monolayer are exposed to the 

aqueous phase, leading to the observed increase in the contact angle. When the concentration 

of surfactant continues to increase, a compact bilayer may be formed with the hydrophilic 

headgroup now pointed toward the aqueous phase, which leads to a decrease in the contact 

angle. However, this proposed explanation for the change in wettability does not agree with an 

earlier study that indicates CTAB only forms centrosymmetric macromolecular structures at 

the silica/water interface (31). The reasons for this difference are not entirely clear, although 

both studies agree that bilayers exist at high surface coverage. Ultimately, it is difficult to infer 

the structure at the solid/liquid interface using only the contact angle data presented here due 

to the well-known fact that the interfacial tensions for the solid/liquid and solid/air interfaces 

cannot be independently quantified. SFG measurements can help to resolve this uncertainty. 
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Differences in the contact angle at acidic, neutral, and basic pH are observed below 

approximately 10 mM DTAC. Surfactant adsorption is influenced by several different types of 

interactions such as surfactant−surface electrostatic attraction as well as surfactant−water 

hydrophobic interactions. At pH 3, which is near the PZC, surfactant adsorption on the silica 

surface will be less favorable due to the reduced electrostatic attraction. Increasing the pH 

leads to higher negative surface charge density, which likely results in increased surfactant 
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Figure 2.1 (a) Sessile contact angle measurements as a function of the bulk DTAC 

concentration with 100 mM NaCl on a quartz surface. (b) Interfacial tension at the 

solution/air interface determined by the pendant drop method. 
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adsorption due to the greater extent of surfactant− surface electrostatic interactions (60). Thus, 

at basic pH, the increased surfactant adsorption at the silica surface may be responsible for 

higher contact angles than observed at acidic and neutral pH values. However, at surfactant 

concentrations greater than 10 mM, the interface is saturated or nearly saturated with 

surfactant at all pH values, and thus, there is no change in contact angle with the pH. This 

reasoning is consistent with a previous optical reflectometry study on cetylpyridinium bromide 

that measured an increase in surfactant adsorption with increasing pH at low surface coverages 

but no change in the amount of adsorbed surfactant with increasing pH at high surface 

coverages (61). 

 

Interfacial tension measurements were also performed on DTAC solutions with 100 mM NaCl 

at pH 3, 7, 9, and 11 (Figure 2.1b). For a given pH value, the CMC corresponds to the 

concentration at which the interfacial tension ceases to decrease with increasing surfactant 

concentration. Thus, the CMC at pH 3, 7, and 9 is 7 mM, whereas at pH 11 the CMC is 14 

mM. To obtain these values, the data in Figure 2.1b were interpolated according to the method 

described by Rehfeld et al (62). The quaternary ammonium on the surfactant headgroup is 

positively charged regardless of the pH, and also the change in ionic strength with the pH is 

negligible due to the addition of 100 mM NaCl. Thus, the difference in the CMC at pH 11 

relative to the more acidic pH values must be due to other factors. One possible explanation is 

the presence of OH
−
 ions that adsorb to the surface of micelles and displace chloride ions. It is 

known that the identities of the counterions can influence the CMC of alkylammonium 

surfactants (27), although it is not possible to conclude definitively from the interfacial tension 

measurements that OH
−
 adsorption is responsible for the change in CMC with the pH. Rather, 
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further experiments with a greater range of salt/OH
−
 concentrations are needed using 

surfactant that has been recrystallized to remove trace impurities (e.g., amines which exhibit 

acid/base chemistry). 

 

2.4.2. SFG Spectra of Adsorbed Surfactant. SFG experiments were carried out to 

characterize the interfacial vibrational spectrum of DTAC in the CH stretching region as a 

function of pD. These experiments for the CH stretching region were performed in D2O to 

avoid overlapping between the CH and OH resonances of water. Figure 2.2 presents the SFG 

spectra collected at different pD values in the presence of 100 mM NaCl using 15 mM DTAC. 

The concentration of DTAC was selected to ensure that all experiments were performed at a 

concentration above the CMC and where the contact angles did not exhibit a dependence on 

the pH. The SFG spectra were collected starting at a pD of 7, and then the pD was either 

increased or decreased until a pD of 3 or 11 was obtained. In both cases, the CH resonances 

exhibit a minimum in relative intensity at pD 7, and the intensity increases as the DTAC 

solution becomes more acidic or more basic. A similar trend was also observed for 

experiments carried out at a DTAC concentration of 10 mM that will be included in a future 

paper that examines the SFG spectra as a function of the DTAC concentration. The increase in 

the SFG intensity with the addition of base is consistent with a study carried out by Tyrode et 

al (31) at near-neutral conditions where CH resonances were not observed for CTAB adsorbed 

at the silica/water interface in which the lack of peaks was attributed to the centrosymmetric 

structure of the aggregate, as well as a later study by Hayes et al (53) carried out at pH 11 that 

observed CH peaks in the SFG spectra for the same surfactant and interface. The SFG spectra 
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shown in Figure 2.2 indicate that the surfactant macromolecular structure at the silica/water 

interface becomes more noncentrosymmetric with the addition of acid or base. 

 

To analyze the SFG spectra in more detail, the peaks were assigned to CH stretching modes as 

summarized in Table 2.1 using the spectra at pD 3 and 11 that exhibited the best signal-to-

noise ratios. The peak assignment was facilitated by comparing SFG spectra for DTAC and 

DTAB-d25 as shown in Figure 2.3. For DTAB-d25, which contains CH3 groups on the 
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Figure 2.2 SFG spectra in the CH stretching region for the surfactant DTAC adsorbed at the 

silica/D
2
O interface as a function of the pD. The conditions for the experimental results 

shown in each panel are the following: (a) 15 mM DTAC and pD 3−7 and (b) 15 mM 

DTAC and pD 7−11. The solid lines indicate fits of eq 2.4 to the data using the peak 

assignments in Table 2.1 and the parameters summarized in Tables 2.2 and 2.3. 
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quaternary ammonium headgroup but a deuterated tail, only one very weak peak was observed 

at ∼2970 cm
−1

, which indicates that the peaks appearing at lower wavenumbers are due to the 

methyl and methylene groups on the surfactant tail. For the DTAC spectra, the peaks observed  

 

 

 

 

 

 

 

at 2967 cm
−1

 (pD 3) and 2982 cm
−1

 (pD 11) are thus attributed to the methyl symmetric stretch 

for the surfactant headgroup (31). Then the SFG peaks observed at ∼2845 and 2876 cm
−1

 are 

assigned to the symmetric vibrational modes of the methylene and methyl groups of the 

surfactant tail, respectively. Continuing with the peak assignment, Fermi resonances of the 

symmetric stretches of the methylene and methyl groups of the tail were observed at 2907 and 

2925 cm
−1

, respectively. The resonances found in the range between 2907 and 2982 cm
−1

 

exhibit low intensities and low signal-to-noise ratios compared to the symmetric stretches, and 

therefore, the assignments of these resonances are relatively uncertain. In addition, whereas 

the methyl groups bonded directly to the nitrogen atom are spectroscopically resolved, there is 

no distinct peak for the methylene group adjacent to the nitrogen. The lack of distinct spectral 

features for this methylene could be due to the combination of both low SFG signals and small 
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Figure 2.3 SFG spectra for DTAB-d
25

 and DTAC in the presence of 100 mM NaCl and at 

pD 11. The spectra were collected at the silica/ D
2
O interface. The weak peak at ∼2970 

cm−1 in the spectrum of DTAB-d25 is attributed to the methyl asymmetric stretch for the 

surfactant headgroup. 
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shifts in the frequency of the vibrational resonances relative to the other methylene groups on 

the hydrophobic tail of the surfactant. 

 

Table 2.1 Assignments for the CH Stretching modes of adsorbed DTAC (28, 31, 35, 53, 56). 

Designation Mode 
Wavenumber (cm

-1
) 

(pD3, pD11) 

d
+
 CH2 symmetric stretch  2844, 2849 

r
+
 CH3 symmetric stretch 2876,2876 

d
+

FR CH2 symmetric stretch 

(Fermi resonance) 

2907, no peak 

r
+

FR CH3 symmetric stretch 

(Fermi resonance) 

2925, 2924 

r
+

HG CH3 symmetric stretch of the 

headgroup 

2967, 2982 

 

 

Focusing on the symmetric modes, the SFG spectra were fitted with Eq 2.4 in the range 

between 2750 and 2890 cm
−1

 to determine the amplitude of these modes. The results are 

presented in Figure 2.4. For the experiments from pD 7 to pD 11 (Figure 2.4b), the amplitudes 

for the methylene and methyl symmetric stretches increase with the pD, although the increase 

in the methyl symmetric stretch amplitude is within the estimated uncertainties of the fit. The 

observed trend is nevertheless consistent with an increasingly noncentrosymmetric 

macromolecular structure for the surfactant aggregate with respect to the surface plane (29, 31, 

35, 63). Therefore, a possible explanation for the increase in the amplitude of the methylene 

and methyl stretches is an increasingly unequal density of surfactant molecules between the 

side of the bilayer (or adsorbed micelles) directed toward the aqueous phase and the side 

directed toward the silica. 

 



Article 

 

33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
It is known that when the surfactant is in an all-trans conformation at an interface, the more 

symmetric structure results in a weaker methylene intensity in the SFG spectrum compared to 

the case where the chains contain gauche defects. The difference in intensity is due to the 

oppositely oriented oscillators in the all-trans conformation leading to SFG contributions that 

destructively interfere. Therefore, the ratio of the methyl to methylene amplitudes can be used 
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Figure 2.4 Amplitudes of the CH stretching symmetric modes and the corresponding ratios 

of the amplitudes (CH
3
/CH

2
). Data are plotted as a function of the pD. The amplitudes were 

obtained using eq 2.4 to fit the spectra in Figure 2.2. Fits were carried out for the spectral 

range between 2750 and 2890 cm−1. The data displayed and the corresponding conditions 

for each panel are the following: (a) amplitudes between pD 3 and pD 6, (b) amplitudes 

between pD 7 and pD 11, (c) ratios between pD 3 and pD 6, and (d) ratios between pD 7 and 

pD 11. For panels a and c, the results at pH 7 are not presented because the signal-to-noise 

ratios of the CH resonances were not sufficient to accurately fit the data. Panels c and d are 

plotted on the same vertical scale to facilitate comparison of the results. 
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as a qualitative indicator of the number of gauche defects (33, 34, 64). Within the uncertainties 

of this analysis, this ratio does not change between pD 7 and pD 11 (Figure 2.4d), which 

indicates that there is not a significant change in the packing of the surfactant tails. This result 

is consistent with the hypothesis given above that the increase in the SFG amplitudes is due to 

an unequal density of surfactants on each side of the aggregate rather than, for example, an 

increase in the number of gauche defects. 

 

In Figure 2.4a, the trends for the methylene and methyl symmetric stretches when increasing 

the acidity are somewhat different from those for increasing basicity. While the amplitude for 

the methyl group on the hydrophobic tail seems to increase, the amplitude of the methylene 

group in this pD range exhibits no trend. In addition, the ratio of the amplitudes (CH3/CH2) 

generally increases, although not for each pD step, indicating a reduction in the number of 

gauche defects when the pD is lowered to 3. If an unequal density of surfactant molecules in 

the two sides of the aggregate were to exist under acidic conditions, similar to that proposed 

for basic conditions, then the resulting increase in the methylene amplitude may be offset by 

the concurrent reduction in the number of gauche defects, which would explain the lack of an 

increasing or decreasing trend for the methylene amplitude. 

 

In general, when comparing neutral, acidic, and basic conditions (Figure 2.4c,d), the ratios 

indicate a higher incidence of gauche defects at neutral and basic pH and so a more disordered 

conformation of the surfactant at the silica/water interface. Another possible way that the 

conformation could be become more disordered is through the stronger interaction with the 

silica surface at neutral and basic pH, which results in a different conformation for the CH2 
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groups near the headgroup in the proximal leaflet compared to those in the distal leaflet of the 

bilayer. This asymmetry would increase the CH2 amplitude in the SFG spectra in a manner 

similar to a gauche defect. Regardless of the exact molecular origin of the more disordered 

conformation, it appears that the relatively strong electrostatic interaction between the silica 

and surfactant at neutral and basic pH distorts the structure of the aggregate possibly due to the 

roughness of the fused silica surface on the molecular scale. 

 

2.4.3. SFG Spectra of Water in the Presence of DTAC. In addition to carrying out SFG 

measurements in the CH stretching region, SFG spectra of water (2700−3850 cm
−1

) were 

collected as a function of the pH, NaCl concentration, and surfactant concentration to better 

understand how the electrostatic potential and charge varies at the interface. It has been 

previously established that the intensity of the SFG spectrum of water is sensitive to the 

electrostatic field created by surface-bound charges, because the electrostatic field gives rise to 

a third-order contribution to the SFG intensity as discussed above. In general, the intensity of 

the water spectrum is strongly correlated with the magnitude of the electrostatic field and 

charge density at the interface (46, 47, 49). Therefore, by analyzing the overall intensity for 

the SFG spectrum of water, one can obtain a qualitative measure of the surface change and 

interfacial potential for the silica/water system studied in this work. 

 

Figure 2.5 presents the SFG spectra for the silica/water interface at pH 3, 7, and 11 with added 

DTAC surfactant.  
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Specifically, Figure 2.5a shows the SFG spectra for DTAC concentrations ranging between 

0.2 and 20 mM at pH 7 without addition of salt, which exhibit two OH stretching resonances 

at ∼3200 and ∼3450 cm
−1

. These peaks have been attributed previously to strongly and 

weakly hydrogen-bonded water (48, 65), and while these peaks can provide important insight 

into the structure of water at interfaces, for this study we rather focus on the overall intensity 
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Figure 2.5 SFG spectra in the CH and OH stretching regions for DTAC at three different pH 

values: (a) pH 7 without salt, (b) pH 7 with 100 mM NaCl, (c) pH 3 with 100 mM NaCl, and 

(d) pH 11 with 100 mM NaCl. The spectra were collected at the silica/H
2
O interface. Note that 

the spectra are presented as image plots in which the DTAC concentration axis is not scaled 

linearly. Instead the concentrations for the SFG experiments were selected to sample the 

different regions in the contact angle and interfacial tension measurements, while also 

considering the relatively lengthy SFG acquisition times.  
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of the water spectrum. Thus, it is noted that the spectra at pH 7 without added salt show a clear 

trend of decreasing and then increasing intensity with the surfactant concentration. The 

decrease in SFG intensity can be explained by the decrease in the electrostatic field that 

penetrates into the solution when the negative charge of the silica surface is compensated for 

by the positively charged surfactant. (This decrease may also be due to the displacement of 

water molecules from the interface.) At higher concentrations, there is charge 

overcompensation where the interface becomes positively charged due to an excess of 

adsorbed surfactant. In previous work, the minimum in the SFG signal has been used to 

estimate the surfactant concentration at which the net surface charge is zero (31), and this 

concentration is ∼8 mM DTAC. Recent work by Hou et al (26) on CTAB adsorption to quartz 

has shown behavior similar to that observed here for neutral pH conditions without added salt. 

Specifically, in that work the ζ potential was originally negative, and this potential was 

neutralized at an intermediate surfactant surface density. As the concentration of the surfactant 

was increased further, the ζ potential became positive, indicating overcharging due to 

adsorption. These findings are entirely consistent with the SFG spectra described in this 

paragraph. 

 

In Figure 2.5b, the concentration range and the pH are the same as those used in Figure 2.5a, 

but the spectra were collected in the presence of salt (100 mM NaCl). Similar to the 

experiment without salt, the SFG intensity decreases at DTAC concentrations near 4 mM, but 

in contrast, the SFG intensity does not recover at the highest surfactant concentrations studied 

here. This difference can be explained by increased chloride adsorption to the aggregate, 

which balances the positive interfacial charge from the adsorbed surfactant. This conclusion is 
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consistent with a previous second harmonic generation study of CTAB adsorption to silica 

under high ionic strength conditions (10−500 mM NaCl), which found extensive chloride 

coadsorption within the aggregates and determined that the ratio of surfactant molecules to 

chloride is approximately 4:3 (56). Thus, taking into account the results presented here as well 

as this previous study, at the highest surfactant concentrations and in the presence of 100 mM 

NaCl, the sum of the charge from the silica, surfactant, and chloride at the interface is near 

zero, which means that the χ
(3)

 contribution due to the static electric field is relatively weak. 

 

Figure 2.5c shows the analogous results for pH 3 and 100 mM NaCl. For this pH the opposite 

trend is observed compared to that for pH 7. At low surfactant concentrations, the SFG signal 

remains constant, but at concentrations greater than 4 mM, the SFG intensity increases until 30 

mM with a subsequent decrease at the highest concentration, 40 mM. This behavior is 

consistent with the fact that, at pH 3, near the PZC, the silica surface is neutral or has a very 

low charge density. As surfactant concentrations are increased, aggregate formation still 

occurs at the interface despite weak electrostatic interactions. If the positive charge of the 

aggregates is not fully balanced by coadsorbed chloride, then the resulting positive 

electrostatic field would lead to the increase in SFG intensity that is observed in Figure 2.5c. 

The decrease in SFG intensity between 30 and 40 mM DTAC may be due to the high 

surfactant concentration relative to the added NaCl. At this concentration, it is expected that 

the surface is saturated or nearly saturated with surfactant on the basis of the contact angle 

measurements as well as the measured CMC. Thus, the increase in the bulk surfactant 

concentration does not substantially increase the interfacial charge density. However, the 

added surfactant and chloride in solution still screen the static electric field and thereby 
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decrease the χ
(3)

 contribution to the SFG intensity. A similar increasing trend followed by a 

decrease due to the competing effects of the surface charge density and electrostatic screening 

was observed by Covert et al. for the CaF2/water and poly(methyl methacrylate)/water 

interfaces (46).   

 

Lastly, the SFG spectra were also collected at pH 11 with 100 mM NaCl for concentrations of 

surfactant between 0.2 and 20 mM (Figure 2.5d). At low bulk surfactant concentrations, the 

SFG signal remains unchanged until 1.5 mM DTAC, but at concentrations above this value, 

the signal decreases and remains low at the highest DTAC concentrations studied. The trend in 

the SFG intensity is the same compared to that for the experiments at pH 7 with 100 mM 

NaCl, although the negative silica surface charge density is higher at basic pH. The static 

electric field due to the silica surface which gives rise to the χ
(3)

 contribution is reduced by 

adsorption of surfactant, but overcompensation of the negative surface does not occur. To 

determine if overcompensation of the silica surface charge is possible without added salt for 

pH 11, an SFG experiment was carried out under these conditions (data not shown). The trend 

in the intensity of the OH resonances is nearly identical to that observed for the experiment 

with 100 mM NaCl. The similar trends with and without added NaCl at pH 11 suggest that an 

excess of chloride is not needed to balance the positive charge due to the surfactant aggregate. 

Rather the deprotonated silanol sites, adsorbed chloride from dissolved DTAC, and/or 

adsorbed hydroxyl ions are sufficient to balance the positive charge. 

 

The relative intensity of the two peaks in the water SFG spectra has been used previously as 

an indicator of changes in the water coordination, and a shift in intensity from 3200 to 3450 
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cm
−1

 has been attributed to disruption of the hydrogen-bonding network (46). Focusing on the 

SFG spectra for the highest surfactant concentrations with 100 mM NaCl, for pH 3 the 

intensity maximum is at ∼3200 cm
−1

, whereas the spectra at pH 7 and 11 have greater 

intensity near 3450 cm
−1

 (as indicated by the blue and cyan regions). These differences 

indicate that water at the surfactant-containing silica/water interface is more ordered at pH 3 

versus pH 7 and 11, which is consistent with the conclusion that the interface is charged at pH 

3 and neutral or weakly charged at pH 7 and 11. The charged interface at pH 3 maintains the 

hydrogen-bonding network, despite the presence of added surfactant and salt, which acts to 

disrupt this network at pH 7 and 11. The differences in solvent structure have important 

implications for the reactivity of the surfactant-containing silica/water interface and can 

influence processes such as binding of coadsorbates as well as mineral dissolution (48, 66). 

 

Returning to the subject of the increase in the CMC concentration at pH 11, previous work at 

the air/water interface observed a change in the relative SFG intensity at 3200 and 3450 cm
−1

 

for increasing concentrations of NaOH (67), but the microscopic explanation for why the 

presence of OH
−
 in the interfacial region alters the SFG spectrum has been controversial. 

Changes in the SFG spectrum have been attributed to an excess of OH
−
 at the interface (68). 

However, recent modeling work has alternatively attributed these changes to two phenomena: 

(1) the formation of a buried electrical double layer in which the Na
+
 is slightly more buried at 

the interface and (2) the solvation of OH
− 

(69). Clearly, it is difficult to make a definitive 

conclusion on whether OH
−
 is adsorbed at the interface without molecular dynamics 

simulations and also without the use of heterodyne detection of the SFG spectra (70), and such 

work is outside the scope of this current paper. 
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Importantly, the SFG spectra of DTAC at the silica/H2O interface in the presence of 100 mM 

NaCl exhibit CH stretching modes as also observed in the experiments with D2O. In Figure 
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Figure 2.6 SFG spectra in the CH stretching region for high surfactant concentrations in the 

presence of 100 mM NaCl at (a) pH 7, (b) pH 3, and (c) pH 11. The spectra were collected 

at the silica/H
2
O interface.  
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2.6, the spectra for the CH stretching region are shown for the experiments with H2O. For pH 

7, the peaks are relatively weak for the methyl and methylene groups of the surfactant at 20 

mM DTAC, but these peaks are more prominent at pH 11, which is qualitatively similar to the 

result with D2O (Figure 2.2b). Once again, these results suggest the macromolecular structure 

of the surfactant becomes more noncentrosymmetric with the addition of base. 

 

The same comparison between pH 7 and pH 3 is more difficult due to the strong interference 

at pH 3 between the CH resonances and the shoulder of the OH resonances, which are very 

intense. Given that SFG is a coherent spectroscopy, the CH and OH contributions to the 

spectra can constructively or destructively interfere with each other, and quantifying the CH 

amplitudes requires careful deconvolution of this interference. Such interference effects may 

also explain why at pH 11 and pD 11 the SFG signal is 2 times higher when D2O is used 

instead of H2O. Even under basic conditions and in the presence of 20 mM DTAC and 100 

mM NaCl, there is still significant intensity in the OH stretching region that overlaps with the 

CH stretches (although the difference in CH peak intensity could also simply be due to small 

changes in the timing and alignment of the IR and visible lasers, since the data in Figures 2.2 

and 2.6 were collected on different days). As demonstrated above, we have ultimately chosen 

to carry out the SFG experiments in D2O to reduce the interference with the OH resonances. 

 

2.5 CONCLUSIONS 

 

Even though it is not possible to infer the exact aggregate structure formed at the silica/water 

interface by the adsorbed DTAC, SFG spectroscopy probes the changes in the symmetry of 
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the aggregate in a way that is not possible with other surface analysis techniques. While using 

D2O to better quantify peak amplitudes in the CH stretching region, an increase in the 

amplitudes for the CH symmetric stretches is observed when the pH increases from 7 to 11 or 

decreases from 7 to 3 for surfactant concentrations above the CMC. These trends in the SFG 

spectra with the pH indicate that a more noncentrosymmetric aggregate is formed under acidic 

or basic conditions.   

 

For the SFG spectra of water in the presence of 100 mM NaCl, the change in the water 

spectral intensity with increasing DTAC concentration is different at pH 3, 7, and 11. At pH 7 

and 11, the overall SFG intensity decreases with added DTAC. This result can be explained by 

the decrease in the electrostatic field at the silica/water interface when the positive DTAC 

adsorbs to the negatively charged silica, which will decrease the third-order contribution to the 

SFG spectrum. In contrast, at pH 3 the SFG intensity increases with added DTAC, which is 

consistent with an increase in the electrostatic field due to positively charged surfactant 

adsorbing at an interface that is not strongly charged. 

 

We propose the following explanation for the observed changes in the aggregate symmetry 

with the pH; this explanation is also summarized in Figure 2.7. For this figure it has been 

assumed that the adsorbed surfactant forms a bilayer; however, the same logic presented 

below applies if adsorbed micelles were formed instead. (We note that SFG is insensitive to 

transitions between these two different morphologies since they are both centrosymmetric.) 

Regarding other possible morphologies of the surfactant aggregate, the formation of wormlike 

micelles is unlikely given that previous studies of cetyltrimethylammonium, a C16 
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alkylammonium surfactant, observe the formation of wormlike micelles only at NaCl 

concentrations that are at least 5 times higher than the concentrations used in this work (56, 

71). In addition, given previous X-ray reflectometry and neutron reflection measurements, it is 

unlikely that a substantial amount of the surfactant adsorbs to the silica surface with its 

hydrophobic chain when the surface density of the surfactant is high (72, 73). For the pH 

values between 7 and 11, it is well-known that the silica surface becomes increasingly 

negatively charged due to deprotonation of silanol groups. This increase in charge makes 

adsorption more favorable on the side of the aggregate facing the silica surface relative to the 

side facing the aqueous solution. The distribution of surfactant molecules between the two 

sides of the aggregate is then increasingly noncentrosymmetric with increasing pH, giving rise 

to a more intense SFG spectrum in the CH stretching region. With decreasing pH from 7 to 3, 

the silica surface becomes neutral since the PZC is between pH 2 and pH 4. The density of the 

surfactant on the side of the aggregate facing the aqueous solution will be relatively low 

compared to that on the side facing the silica, because the silica and surfactant directly  

adsorbed to the silica will form a plane of positive charge that makes adsorption less favorable 

on the opposite side of the aggregate due to electrostatic repulsion. Some of the positive 

charge at the interface due to adsorbed surfactant will be offset by chloride that is coadsorbed, 

but the increasing intensity of the water resonances with the DTAC concentration at pH 3 

indicates that this coadsorption is not sufficient to completely neutralize the positive charge 

from the surfactant. 
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In addition, using the ratio of the methyl to methylene symmetric stretch amplitudes, it is 

possible to infer how the ordering of the surfactant tails changes as a function of the pH. 

Between pH 7 and pH 11, there is no significant change in the ordering despite the increasing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amplitude of the methyl and methylene symmetric stretches. A different trend is observed 

under acidic conditions where the spectra at pH 3 indicate the methylene groups are in a more 

symmetric environment, which may be due to a reduction in the number of gauche defects at 

pH 3 compared to pH 7.  

 

Figure 2.7 Proposed changes in the macromolecular structure of DTAC at the silica/water 

interface, which are induced by acidic or basic pH conditions. These changes are inferred 

from experiments carried out in 100 mM NaCl and at high surfactant surface coverages. At 

both pH 3 and pH 11, experiments suggest that the surfactant densities on the two sides of the 

aggregate are not equal (i.e., the density is higher on the side of the aggregate adjacent to the 

silica surface). The spheres with negative charge indicate the coadsorbed counterions (e.g., 

chloride). 



Article 

 

46 

 

From the SFG results described here, it is clear that the bulk pH can influence the 

macromolecular structure of surfactants at the silica/water interface. It is noted that even 

though this study has focused on adsorption to mineral/water interfaces under conditions 

relevant to hydraulic fracturing, including high ionic strength, the same phenomenon is 

relevant to other systems as well where there is a difference in electrostatic potential across an 

aggregate of amphiphilic molecules. For example, the adsorption of charged species to 

biological membranes is important in a variety of biological processes, and recent work has 

demonstrated that the attractive electrostatic interactions between a polypeptide and a 

phospholipid bilayer are sufficient to induce an asymmetric structure in the supported bilayer 

(74). Thus, electrostatically driven changes in macromolecular structure at interfaces may be 

important for a variety of environmental, industrial, and biological processes. 
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2.7 SUPPORTING INFORMATION 

 

Table 2.2 Parameters obtained from Figure 2.2 after fitting the spectra at pD 3 using Equation 

2.4. The fittings and uncertainties (one standard deviation) were calculated using the software 

package IGOR Pro v6.3.4.0.  

Designation Mode 
 (cm

-1
)    

d
+
 CH2 symmetric stretch 2844 ± 1 0.004 ± 0.002 6 ± 2 

r
+
 CH3 symmetric stretch 2876 ± 1 0.24 ± 0.03 32 ± 3 

d
+

FR 
CH2 symmetric stretch 

(Fermi resonance) 
2907 ± 1 0.04 ± 0.02 13 ± 3 

r
+

FR 
CH3 symmetric stretch 

(Fermi resonance) 
2925 ± 1 0.04 ± 0.02 12 ± 3 

r
+

HG 
CH3 symmetric stretch 

of head-group 
2982 ± 2 0.03 ± 0.01 23 ± 6 

  

 

Table 2.3 Parameters obtained from Figure 2.2 after fitting the spectra at pD 11 using 

Equation 2.4. The fittings and uncertainties (one standard deviation) were calculated using the 

software package IGOR Pro v6.3.4.0.  

Designation Mode 
 (cm

-1
)   

d
+
 CH2 symmetric stretch 2849±1 0.002 ± 0.001 4 ± 3 

r
+
 CH3 symmetric stretch 2876±1 0.33 ± 0.05 35 ± 3 

r
+

FR 
CH3 symmetric stretch 

(Fermi resonance) 
2924±1 0.14 ± 0.04 30 ± 4 

r
+

HG 
CH3 symmetric stretch 

of head-group 
2967±1 0.03 ± 0.01 13 ± 2 
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Chapter 3 Additional experiments 

The results in this section are complementary to the results presented in the article 

“Macromolecular Structure of Dodecyltrimethylammonium Chloride at the Silica/Water 

Interface Studied by Sum frequency Generation Spectroscopy” presented in Chapter 2 of this 

thesis. Calibration of the wavenumber scale for the SFG experiments and additional 

information regarding the adsorption of DTAC surfactant under acidic and alkaline conditions 

are discussed in this chapter. Finally, experiments in the OH region of the SFG spectra are 

presented to support the findings in Section 2.4.3. 

 

3.1 SFG spectrum of the polymer Poly(methyl methacrylate), PMMA, at the silica/air 

interface 

  

In order to monitor the stability of the SFG signal during the experiments, the SFG spectrum 

of the polymer PMMA was collected at the beginning as well as at the end of a set of 

experiments. Another important reason for measuring the SFG PMMA spectrum is to calibrate 

the wavenumber scale at a single point.  A thin layer of PMMA was drop cast onto a flat IR 

grade fused silica window. The window was previously cleaned according to the procedure 

described in Section 2.3.2 (Materials and Reagents). A solution of PMMA at a concentration 

of 2 wt % (prepared in HPLC-grade Acetone) was dried at room temperature onto the IR grade 

fused silica window. Once the solvent had been evaporated, the SFG spectrum of PMMA was 

collected by placing the window on the custom-built Teflon reservoir so that the laser beam 
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passed through the window before focusing on the PMMA surface. The first SFG spectrum of 

PMMA was collected after aligning the laser system and verifying the measured signal was 

due to SFG rather than scattered light from either the VIS or IR beams. Immediately after the 

last SFG spectrum is collected at the fused silica/water interface, the reservoir is dried 

carefully and the window containing the PMMA film is mounted on the reservoir, and a 

second PMMA spectrum is collected. The SFG spectra of PMMA were collected in a range 

from 2900 cm
-1

 to 3000 cm
-1

. A clear and distinct peak in the SFG signal must be observed 

between 2945 and 2955 cm
-1

, which corresponds to the CH symmetric stretch of the methoxy 

group in the polymer (75), to confirm that the stability and the quality of the SFG signal was 

sufficient during the SFG experiments. 

 

 

 

 

 

 

 

 

 

Figure 3.1 presents two PMMA spectra collected at the beginning (red circles) and at the end 

(black empty circles) of a set of DTAC experiments. According to these results, there is no 
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Figure 3.1 SFG spectra of PMMA at the PMMA/air interface, at the beginning (red 

circles) and at the end (black empty circles) of a set of DTAC experiments. The solid lines 

are the fits using a Gaussian function with a maximum peak value at 2951 and 2953 cm
-1

 

for the collected spectrum at the beginning and at the end of the experiment, respectively.  



Additional experiments 

 

50 

 

significant change in the wavenumber value where the stretch for the methoxy group of the 

PMMA polymer is observed. The SFG PMMA spectrum indicates thus that the SFG system is 

functioning properly and there is no major misalignment of the Vis and IR lasers.   In the case 

where there is a serious misalignment of the SFG system, no peak would be observed at 2955 

cm
-1

. In addition, if the peak is not near 2955 cm
-1

, then it is probable that there is a problem 

with the calibration of the wavenumber.  

 

3.2 CH stretching resonances of the surfactant DTAC at the silica/D2O interface 

 

According to the SFG spectra collected at different pH values and DTAC concentrations 

(Chapter 2, Figure 2.5), SFG intensity increases in the CH stretching region of the spectra 

(between 2700 and 3050 cm
-1

) at pH 3 and pH 11 when increasing the DTAC bulk 

concentration. At this point it is important to note that because of the overlapping between the 

CH and the OH resonances in the SFG spectrum, it was necessary to use a deuterated solvent 

(D2O) in order to eliminate this interference from the SFG spectrum of the surfactant adsorbed 

at the silica/water interface. For the results presented in this section as well as those of section 

2.4.2, the pD was adjusted using an Orion Star pH meter with a gel-filled epoxy-body 

pH/ATC electrode. Experiments using glass electrodes (76) to measure pH and pD have 

observed a correction factor of +0.4. This correction factor is negligible in this study since the 

pH was adjusted in steps of 1.   

 

 The SFG experiments were then carried out specifically in the CH stretching region in a 

wavenumber range from 2750 to 3050 cm
-1

. Figure 3.2a presents the results at pD 3 with 100 
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mM NaCl with DTAC concentrations ranging from 0.2 to 40 mM. According to these results, 

the SFG intensity increases with increasing DTAC concentration at concentrations near and 

above the CMC. (The CMC is 7 mM at pH 3 in the presence of 100 mM NaCl as presented in 

Section 2.4.1). This increase can be attributed to two factors: (1) the centrosymmetry of the 

DTAC aggregate adsorbed at the fused silica surface is disrupted and the adsorbed structure 

has a more noncentrosymmetric distribution of aliphatic chains, or (2) that the interfacial 

density of the surfactant is increasing even at concentrations above CMC, due to direct 

adsorption of micelles. 

 

A similar trend is observed at pD 11 both in the absence and in the presence of NaCl (Figure 

3.2b and c). The SFG intensity increases when increasing the DTAC bulk concentration 

suggesting a more noncentrosymmetric structure of the surfactant at the interface. For all the 

spectra presented in the CH region and when  using D2O (Figures 2.2, 2.3, and 3.2), the 

symmetric stretches for the methylene and the methyl groups  have a higher SFG intensity 

compared with the stretches at wavenumbers above 2900 cm
-1

.  

 

Regarding the peak assignment in the CH stretching region of the SFG spectra, the peaks at 

2845 ± 10 cm
-1 

and 2875 ± 10 cm
-1

 correspond to the symmetric stretches for the methylene 

and methyl groups respectively (Tables 2.1 and 3.1).  For the peak assignments between 2900 

and 3000 cm
-1

 the poor signal-to-noise ratio makes it more difficult to identify the different 

vibrational modes of the surfactant at the silica/D2O interface. Thus, our study and analysis are 

centered on the symmetric stretches. Despite this challenge, an important peak was observed 

at approximately 2970 cm
-1

. This peak is attributed to the CH symmetric stretch of the methyl  
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group linked to the quaternary amine. The assignment of this peak was facilitated by the SFG 

spectra comparison of the deuterated surfactant DTAB-d25 and DTAC according to the results 
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Figure 3.2 SFG spectra in the CH stretching region for the surfactant DTAC at the 

silica/D
2
O interface as a function of DTAC concentration. (a) DTAC with 100 mM NaCl at 

pD 3, (b) DTAC without the addition of salt at pD 11 and (c) DTAC with 100 mM NaCl at 

pD 11. The solid lines represent the fits using Equation 2.4 at the highest concentrations for 

the same set of spectra. 
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SFG Intensity (A.U.) 



Additional experiments 

 

53 

 

(Figure 2.3) already discussed in Chapter 2. Moreover, this assignment is consistent with the 

Raman spectra presented by Tyrode et al. for CTAB (31).   

 

The peak assignments for the Fermi resonances of the symmetric stretches (2915 ± 15 cm
-1

 

and 2925 ± 20 cm
-1

 for the Fermi resonances of the methylene and methyl symmetric 

stretches, respectively) are uncertain. In order to fully analyze the identity of the different 

peaks observed in the range between 2900 and 3000 cm
-1

, a study involving different 

polarization combinations and selective deuteration of the surfactant is required. Importantly, 

since the deuterated analogs are not commercially available, the synthesis of those compounds 

would be required.  

 

Table 3.1 Assignments for the CH stretching modes of adsorbed DTAC on silica. The results 

correspond to the SFG spectra displayed in Figure 3.2.  

Assignment Mode 

ων (cm
-1

) pD 3 

100 mM NaCl 

40 mM DTAC 

ων (cm
-1

) pD 11 

without NaCl 

20 mM DTAC 

ων (cm
-1

) pD 

11,  100 mM 

NaCl 

20 mM DTAC 

d
+
 CH2 symmetric stretch 2851 ±  1 2854 ± 1 2846 ± 2 

r
+
 CH3 symmetric stretch 2876 ± 1 2880 ± 1 2873 ± 3 

d
+

FR CH2 symmetric stretch  

(Fermi resonance) 

2922 ± 3 2928 ± 1 2915 ± 10 

r
+

FR CH3 symmetric stretch  

(Fermi resonance) 

2940 ± 1 2947 ± 1 2936 ± 6 

r
+
 HG CH3 symmetric stretch of 

the headgroup 

No peak 2978 ± 1 No peak 

 

Continuing with the analysis of the methylene and methyl symmetric stretches observed at pD 

3 and pD 11 and shown in Figure 3.2, the square root of the normalized SFG intensity as a 

function of the DTAC concentration is presented in Figure 3.3. The square root of the SFG 
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intensity in the CH region is equal to the SFG electric field, ESFG, and it is used as an indicator 

of the density of surfactant adsorbed at the silica/D2O interface, if one assumes there is no 

change in the centrosymmetry of the adsorbed surfactant. The data points at pD 11 have a 

similar behavior with and without addition of 100 mM NaCl. Initially, the ESFG increases with 

increasing DTAC concentration until 10 mM. After this surfactant concentration, between 10 

and 20 mM of DTAC, the ESFG is constant suggesting that the maximum surface coverage is 

reached and this observation is supported by the contact angle measurements (Figure 2.1a). 

 

 

 

 

 

 

 

 

 

 

 

  

The surfactant surface coverage may not be the same with and without the addition of salt, 

because the chloride anion decreases the electrostatic repulsion between the positively charged 

surfactants in the adlayer at the silica/D2O interface. However, the presence of a strong 

negative surface charge may also reduce this electrostatic repulsion thus the addition of NaCl 
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Figure 3.3 Normalized SFG Electric field corresponding to the symmetric methylene (a) 

and methyl (b) stretches as a function of surfactant concentration. Red circles are data at pD 

3 containing 0.1 M NaCl; blue triangles are data at pD 11 without addition of salt and green 

squares are data at pD 11 with 0.1 M NaCl. Uncertainties were estimated based on the 

standard deviation of the SFG intensity for seven wavenumbers selected from the baseline 

region (between 2770 and 2790 cm
-1

) for each spectrum collected under the same alignment 

and experimental conditions, e.g. the same pD and the presence or absence of salt. Since the 

estimated uncertainties are relatively low, those values are indicated by the size of the 

marker for each point presented on the graph.   
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may not have as strong an effect on the adsorbed surfactant density compared to less basic 

conditions. The increasing trend in SFG intensity is observed for the methylene (Figure 3.3a) 

and the methyl (Figure 3.3b) symmetric stretches, although there is a slight difference when 

comparing the relative intensity for the methyl symmetric stretch for the systems with and 

without added NaCl. This difference can be attributed to the different orientations of the 

methyl group with respect to the plane of the silica surface leading to a more 

noncentrosymmetric distribution of the methyl group at 100 mM NaCl. 

Regarding the results at pD 3 with 100 mM NaCl, the trend is different compared to the results 

presented for pD 11. The increase in SFG electric field is more gradual because of the low 

charge density of the silica surface at pD 3, which makes less favorable the electrostatic 

interactions between the surfactant and the silica surface. In spite of the weak electrostatic 

interactions, surfactant adsorption still occurs and it is directed by the hydrophobic forces of 

the adjacent aliphatic chains of DTAC (77). Given the range of the DTAC concentration tested 

at pD 3, it is expected that the saturation of the silica surface will be reached at higher DTAC 

concentrations than those studied here due to the absence of a flat region in Figure 3.3, as was 

observed at pD 11. Nevertheless, the overall amount of adsorbed surfactant might change very 

little at higher concentrations, and the change in the SFG intensity can be large because of 

differences in the packing and conformation of the surfactant under acidic conditions. 

 

3.3 SFG spectra of water in the presence of DTAC. Results at pH 3 and pH 11 without 

addition of salt. 

Experiments at pH 3 and pH 11 were performed in order to understand how the SFG spectrum 

of water changes with surfactant concentration under either acidic or basic conditions. In 
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contrast to the results presented in the previous chapter, these experiments were performed 

without the addition of excess salt. Results at pH 3 without addition of NaCl are presented on 

Figure 3.4a. According to these results, the SFG spectra increase in intensity in the CH 

stretching as well as in the OH stretching regions when increasing the DTAC concentration, at 

concentrations ranging between 2 mM and 20 mM. After this range of DTAC concentrations, 

the SFG intensity keeps constant until 50 mM of DTAC. As discussed earlier in this chapter, 

there is substantial overlapping of the CH and the OH resonances, hence SFG experiments in a 

deuterated solvent were conducted (Section 3.2).  

 

Summarizing the SFG results at pH 3 without addition of salt, in the OH stretching region 

(3000-3600 cm
-1

) the increasing SFG intensity is due to the presence of an increasingly 

positive electrostatic field at the silica/water interface, but at DTAC concentrations higher than 

20 mM there is either a saturation of adsorbed DTAC at the interface or if surfactant continues 

to adsorb above 20 mM DTAC then the resulting change in charge density is compensated for 

by co-adsorbed chloride. Comparing these results with the results at pH 3 in the presence of 

100 mM NaCl (Figure 2.5), a similar trend was observed under higher ionic strength, but the 

saturation of the silica surface is achieved at a lower concentration (10 mM DTAC). This 

behavior can be explained by the presence of chloride that decreases the electrostatic repulsion 

between the positively charged surfactant head-groups, which then permits stronger 

hydrophobic interactions between the alkyl chains of the surfactant and makes adsorption 

more thermodynamically favorable. Despite the fact that chloride anion is already in solution 

because it is the counterion of the surfactant salt, it seems that additional salt further screens 

the electrostatic repulsion between surfactants in the adlayer.   
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Panel 3.4b presents the SFG spectra collected at pH 11 for concentrations of surfactant 

between 0.2 and 20 mM. The SFG intensity in the OH stretching region decreased until a 

DTAC concentration of 1.5 mM. At higher concentrations of surfactant, the SFG intensity 

remained relatively low with no significant changes. These results follow the trend described 

at pH 7 and pH 11 in the presence of NaCl (Figures 2.5b and d, respectively), where the 

adsorption of surfactant reduces the net static electric charge at the interface, and there is no 

overcompensation of the negative surface charge. In other words, at pH 11 without added salt 

and at high surfactant concentrations, the positive charge due to the adsorbed surfactant is 

neutralized by the negative silica surface charge.  
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Figure 3.4 SFG spectra in the CH and OH stretching regions for DTAC at pH 3 (a) and pH 

11 (b). The solutions tested were prepared without adding NaCl. The spectra presented in 

this figure were collected at the silica/H
2
O interface. In addition, the spectra are presented as 

image plots and are not scaled linearly with respect to the DTAC concentration axis. 
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Conclusion and perspectives 

The pH influences not only the characteristics of compounds in the bulk solution but also at 

interfaces, and it can direct the interactions of these species with the surfaces of minerals. 

Adsorption of the cationic surfactant DTAC at silica/water interfaces, which have an 

increasingly negative charge density at pH values above the PZC, is directed by electrostatic 

interactions between the positively charged quaternary ammonium group of the surfactant and 

the silanol groups of the silica. At pH values near the PZC, the hydrophobic forces between 

the adjacent alkyl chains are responsible for surface adsorption and aggregation. At low 

surfactant concentration, the contact angle and interfacial tension measurements are relatively 

high. The decrease in contact angle at higher surfactant concentrations, at pH 3, 7 and 11, to a 

value of 15°, suggests bilayer formation in which the distal leaflet orients the quaternary 

ammonium group toward the bulk solution rendering the silica/solution interface hydrophilic.  

 

Conformational changes in the DTAC adlayer at the silica/water interface were probed using 

the interface specific technique, SFG. SFG spectra collected in the CH region (2700-3000   

cm
-1

) were performed using D2O to avoid overlapping with the OH stretches (3000-3600 cm
-

1
). The methylene and methyl stretches were observed to increase in intensity when increasing 

the acidity or the alkalinity of the solution containing the DTAC surfactant and 100 mM NaCl. 

To explain these observations, it is proposed that the surfactant adopts an increasingly 

noncentrosymmetric structure at the silica/water interface under acidic or basic conditions.  

Specifically, an unequal distribution of surfactant in the distal and proximal leaflets of the 

bilayer structure may explain the increase in SFG intensity at pH 3 and 11. Given the results 
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obtained when fitting the symmetric stretches of the methylene and methyl groups of the 

surfactant tail with a series of Lorentzian functions, there is not a significant change in the 

packing of the surfactant tails at basic pH values. However, there is a change in the packing of 

the surfactant under acidic conditions.  In particular, the ratio of the methyl-to-methylene 

amplitude increases, indicating a change in packing, but further experiments are required to 

elucidate the nature of this change.  

 

For the SFG spectra in the OH region collected at different surfactant concentrations 

(including the CMC) with 100 mM NaCl, at pH 3 there was an increase in the SFG intensity 

suggesting an increase in the electrostatic field at the silica/water interface. A plane of positive 

charge is created by adsorbed surfactant in the proximal leaflet. This plane will reduce 

adsorption in the distal leaflet due to electrostatic repulsion, consistent with the SFG results in 

the CH region as a function of decreasing pH. At pH 11, because of the high negative charge 

density of the silica surface, the adsorption of the cationic surfactant is more favorable in the 

proximal leaflet than in the distal leaflet, which explains the increasing SFG intensity in the 

CH region as the pH increases. Given the results obtained with the contact angle and the 

interfacial tension measurements that indicated bilayer formation at DTAC concentrations 

above the CMC, it appears that within the bilayer structure there are different relative amounts 

of surfactant in each leaflet when the pH is not neutral. 

 

The results presented in this document might be compared with a linear spectroscopic 

technique such as Raman, in order to quantify the amount of surfactant adsorbed at the 

solid/water interface and compare those results with the change in the conformation and 
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aggregation of the adsorbed layers observed in the SFG experiments. Even though for 

industrial applications the surfactant is not highly purified, SFG experiments studying 

recrystallized DTAC are recommended to investigate the influence of possible contaminants, 

such as aliphatic amines, on surfactant aggregates at the silica/water interface.  At the same 

time, the absence of a minimum in the interfacial tension measurements confirms the 

reasonably high purity of the commercially-bought surfactant used in this study, which was 

not recrystallized 

 

Given to the interface specificity provided by SFG, studies involving surfactants as well as 

compounds such as polycyclic aromatic hydrocarbons and organic alkyl acids, which are 

important components of oil, at silica or alumina based surfaces, could provide additional 

information about the interactions occurring at mineral interfaces inside oil reservoirs.  

Understanding these interactions is fundamentally important and will permit the optimization 

of the concentrations of additives used in hydraulic fracturing fluids, and thus reducing the use 

and the unnecessary waste of compounds that are potentially harmful for the environment. 
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