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Résumé 

Le papier bioactif est obtenu par la modification de substrat du papier avec des 

biomolécules et des réactifs. Ce type de papier est utilisé dans le développement de nouveaux 

biocapteurs qui sont portables, jetables et économiques visant à capturer, détecter et dans 

certains cas, désactiver les agents pathogènes. Généralement les papiers bioactifs sont fabriqués 

par l’incorporation de biomolécules telles que les enzymes et les anticorps sur la surface du 

papier. L’immobilisation de ces biomolécules sur les surfaces solides est largement utilisée pour 

différentes applications de diagnostic comme dans immunocapteurs et immunoessais mais en 

raison de la nature sensible des enzymes, leur intégration au papier à grande échelle a rencontré 

plusieurs difficultés surtout dans les conditions industrielles. Pendant ce temps, les 

microcapsules sont une plate-forme intéressante pour l’immobilisation des enzymes et aussi 

assez efficace pour permettre à la fonctionnalisation du papier à grande échelle car le papier 

peut être facilement recouvert avec une couche de telles microcapsules. 

Dans cette étude, nous avons développé une plate-forme générique utilisant des 

microcapsules à base d’alginate qui peuvent être appliquées aux procédés usuels de production 

de papier bioactif et antibactérien avec la capacité de capturer des pathogènes à sa surface et de 

les désactiver grâce à la production d’un réactif anti-pathogène. La conception de cette plate-

forme antibactérienne est basée sur la production constante de peroxyde d’hydrogène en tant 

qu’agent antibactérien à l’intérieur des microcapsules d’alginate. Cette production de peroxyde 

d’hydrogène est obtenue par oxydation du glucose catalysée par la glucose oxydase encapsulée 

à l’intérieur des billes d’alginate. Les différentes étapes de cette étude comprennent le piégeage 

de la glucose oxydase à l’intérieur des microcapsules d’alginate, l’activation et le renforcement  

de la surface des microcapsules par ajout d’une couche supplémentaire de chitosan, la 

vérification de la possibilité d’immobilisation des anticorps (immunoglobulines G humaine 

comme une modèle d’anticorps) sur la surface des microcapsules et enfin, l’évaluation des 

propriétés antibactériennes de cette plate-forme vis-à-vis l’Escherichia coli K-12 (E. coli K-12) 

en tant qu’un représentant des agents pathogènes. Après avoir effectué chaque étape, certaines 

mesures et observations ont été faites en utilisant diverses méthodes et techniques analytiques 

telles que la méthode de Bradford pour dosage des protéines, l’électroanalyse d’oxygène, la 
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microscopie optique et confocale à balayage laser (CLSM), la spectrométrie de masse avec 

désorption laser assistée par matrice- temps de vol (MALDI-TOF-MS), etc. Les essais 

appropriés ont été effectués pour valider la réussite de modification des microcapsules et pour 

confirmer à ce fait que la glucose oxydase est toujours active après chaque étape de 

modification. L’activité enzymatique spécifique de la glucose oxydase après l’encapsulation a 

été évaluée à 120±30 U/g. Aussi, des efforts ont été faits pour immobiliser la glucose oxydase 

sur des nanoparticules d’or avec deux tailles différentes de diamètre (10,9 nm et 50 nm) afin 

d’améliorer l’activité enzymatique et augmenter l’efficacité d’encapsulation. 

Les résultats obtenus lors de cette étude démontrent les modifications réussies sur les 

microcapsules d’alginate et aussi une réponse favorable de cette plate-forme antibactérienne 

concernant la désactivation de E. coli K-12. La concentration efficace de l’activité enzymatique 

afin de désactivation de cet agent pathogénique modèle a été déterminée à 1.3×10-2 U/ml pour 

une concentration de 6.7×108 cellules/ml de bactéries. D’autres études sont nécessaires pour 

évaluer l’efficacité de l’anticorps immobilisé dans la désactivation des agents pathogènes et 

également intégrer la plate-forme sur le papier et valider l’efficacité du système une fois qu’il 

est déposé sur papier.  

 

Mots-clés: Papier antibactérien / Encapsulation de la glucose oxydase / Microcapsules 

d’alginate / Inhibition de croissance de E. coli  
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Abstract 

Bioactive paper is obtained through the modification of paper substrate with biomolecules 

and reagents. It is used in the development of novel biosensors that are portable, disposable and 

inexpensive, aimed at capturing, detecting and in some cases deactivating pathogens. Generally 

bioactive papers are made by incorporating biomolecules such as enzymes and/or antibodies on 

to paper. The immobilization of such biomolecules on solid surfaces is widely used for different 

diagnostic applications such as in immunosensors and immunoassays but due to the sensitive 

nature of enzymes, their large scale incorporation into paper has faced several difficulties 

especially under industrial papermaking conditions. The functionalization of paper at large scale 

is possible because paper can be easily coated with a layer of microcapsules, which have proven 

to be an efficient immobilization platform for enzymes and to allow. 

In this study, we developed a generic alginate-based platform incorporating microcapsules 

that can be applied to current paper production processes to prepare antibacterial bioactive paper 

with the ability to capture pathogens on its surface and to deactivate them by producing an anti-

pathogenic agent. The design of the antibacterial platform is based on constant production of 

hydrogen peroxide as the antibacterial agent inside the alginate microcapsules. Hydrogen 

peroxide production is achieved through oxidation of glucose, catalyzed by the enzyme glucose 

oxidase encapsulated inside the alginate beads. The different steps of development included the 

entrapment of glucose oxidase inside alginate microcapsules, the reinforcement and surface 

activation of microcapsules by adding an additional layer of chitosan, investigating the 

possibility of immobilization of antibodies (human immunoglobulin G as a model antibody) on 

the surface of microcapsules and, finally, verifying the antibacterial properties of the system 

against Escherichia coli K-12 (E. coli K-12) as a representative pathogen. During development, 

certain measurements and observations were made using various analytical methods and 

techniques such as Bradford protein assay, oxygen electroanalysis, optical and confocal laser 

canning microscopy (CLSM), matrix assisted laser desorption/ionization- time of flight mass 

spectrometry (MALDI-TOF-MS), etc. Appropriate tests were performed to validate the 

successful modification of microcapsules and to ensure that glucose oxidase is still active after 

each modification. It was found that the encapsulated glucose oxidase maintained the specific 

enzymatic activity of 120±30 U/g. Subsequent efforts were made to immobilize glucose oxidase 
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on gold NPs of two different diameters (10.9 nm and 50 nm) to enhance the enzymatic activity 

and increase the encapsulation efficiency.   

The results obtained during this study demonstrate successful modifications on alginate 

microcapsules and also a successful response of such antibacterial platform regarding 

deactivation of the pathogen representative, E. coli K-12. The threshold for the enzymatic 

activity was found to be 1.3×10-2 U/ml for E. coli K-12 growth inhibition of 6.7×108 cells/ml. 

Further studies are needed to assess the efficiency of immobilized antibody in the capture of 

pathogens and also to incorporate the platform onto paper and to validate the efficiency of the 

system once it is coated on paper. 

 

Keywords: Antibacterial paper/ Glucose oxidase encapsulation/ Alginate microcapsules/ E. coli 

growth inhibition 
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1.1. Project design and objectives 

The objective of the project, as a part of Canada’s SENTINEL Bioactive Paper Network, 

is to develop a generic platform that can be applied to current paper production processes to 

prepare antibacterial bioactive paper that has the ability to capture pathogens on its surface and 

to deactivate them by producing an anti-pathogenic agent. As schematically demonstrated in 

Figure 1, this platform is based on alginate microcapsules carrying an active enzyme, glucose 

oxidase (GOx). While the enzyme is active inside microcapsules, in the presence of the substrate 

(glucose), a constant production of hydrogen peroxide occurs which can be used as an anti-

pathogenic agent. The pathogen capturing agent is an antibody specific to a given pathogen. The 

antibody needs to be covalently conjugated to the external surface of microcapsules to be able 

to capture the pathogens and with the production of hydrogen peroxide diffusing out of 

microcapsules, the pathogens are decomposed and therefore deactivated. The proposed 

microcapsule-based platform (which carries the enzymes inside and the antibody on its surface) 

will possess antibacterial properties and can be applied easily to industrial conventional paper 

production processes, either by coating the paper or by incorporating it into the paper pulp. 

Figure 1. Schematic view of the proposed antibacterial platform. 
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The specific steps in this project are as follows and the activity of the enzyme was 

measured after each step to evaluate possible losses; 

- Encapsulation of GOx in alginate microcapsules to prepare an enzymatically active 

platform. 

- Surface preparation and functionalization of alginate microcapsules using chitosan to 

add –NH2 functional groups on microcapsules. 

- Immobilization of IgG on the external surface of the alginate-chitosan microcapsules. 

- Testing the bacterial growth in the presence of the prepared system to verify its 

antibacterial properties and to determine the optimal conditions and the durability of the 

system. 

- GOx was immobilized on gold nanoparticles (NPs) and the effect of this immobilization 

on enzymatic activity was studied. 

1.2. Bioactive papers 

In modern times, mankind’s wellbeing is subject to various biological threats. 

Susceptibility against severe acute respiratory syndrome (SARS), water quality problems and 

incidents of tainted beef, for instance, underscore our vulnerability to biological hazards which 

is why we, as everyday water and food consumers, demand a safe and hygienic intake. Providing 

reliable food products and safety of the citizens have always been a concern for food production 

companies and regulatory authorities. To achieve such goals, paper-based sterile packaging, 

food wrap, face masks and protective clothing have been produced employing novel 

technologies and playing an important role in protecting us from pathogens1. 

Bioactive paper is a broad term used to define paper-based, portable, disposable and 

inexpensive biosensors aimed at capturing, detecting and in some cases deactivating pathogens. 

The research on bioactive paper is quite multidisciplinary as it lies at the interface of 

bioanalytical chemistry, paper chemistry and nanobiotechnology2. The history of bioactive 

paper dates back to 1952 when Martin and Syne won the Noble Prize in chemistry for the 

invention of paper chromatography3. Then in 1957, for the first time a paper-based bio assay 

was introduced by Free et al.4 for detection of glucose in urine samples. This paper based bio 
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assay was made by the incorporation of an enzyme, GOx, using a simple dipping procedure. 

Work has also been done to prepare a bacteria-based biosensor to detect low amounts of arsenic 

in potable water5. The color change in such biosensors indicated the presence of arsenic and it 

is visually detectable. The application then spread to Point-Of-Care (POC) tests, some quick and 

easy to do clinical tests which are used to diagnose diabetes, pregnancy and the presence of 

pathogens and infectious diseases such as AIDS, Malaria and Syphilis6. The incorporation of 

single-walled carbon nanotubes (SWNTs) and antibodies on to paper was described by Wang et 

al.7 to detect a water contaminant, microcystin-LR (MC-LR). Dip-coating of a strip of paper 

with carbon nanotubes and the antibody to MC-LR renders it conductive, and the change in 

conductivity of the paper strip was correlated to the presence of MC-LR in water samples. The 

possibility of printing antibodies on paper strips for blood type determination was demonstrated 

by Khan et al.8 and developed for inexpensive and portable blood-typing purposes. Savolainen 

et al.9 fabricated bioactive papers using three techniques, namely screen printing, rod coating, 

and flexo-printing. These methods were used to coat a paper with polyethylene (PE) 

microcapsules containing laccase. This bioactive paper, which contains laccase, was further 

improved by Virtanen et al10. Yu et al.11 have also designed a microfluidic paper-based 

chemiluminescence analytical device (μPCAD) for simultaneous detection of glucose and uric 

acid in urine samples. This lab-on-paper biosensor implements some enzymatically catalyzed 

oxidation reactions (GOx and urate oxidase) as well as the chemiluminescence reaction between 

a rhodanine derivative and generated hydrogen peroxide. In recent years some bioactive paper 

strips were invented for rapid detection of pathogens like E. coli based on intracellular enzyme 

(β-galactosidase or β-glucuronidase) activity12. Similarly, for rapid self-diagnosis of bacterial 

vaginosis Zhang and Rochefort13 developed an effective paper-based spot assay technique 

emphasizing its fast response and long-term storage stability. At the same time, some sensing 

platforms were designed for detection of phenols14 and pesticides15,16 which can potentially be 

used in the preparation of paper-based sensors. Another platform based on gold NPs, suitable 

for point-of-care applications, was developed to detect food-borne pathogens based on sensing 

of RNA markers17. 
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1.2.1. Functionality 

Certain advantages are found in using paper instead of plastic to prepare a bioactive 

surface. Biodegradability is an important characteristic of paper since it is made from naturally 

abundant cellulose and also it is more energy efficient. Its cellulosic structure is proven to be 

more compatible with proteins and biomolecules. The porous structure of paper facilitates a 

lateral flow assay and plays both roles of filtering and pumping by capillary forces and therefore, 

even in more complex paper-based microfluidic devices, there is no need to use an external 

power source to exert an interaction between the sample and the bioactive agent immobilized 

on the paper. Moreover, such paper substrates are inexpensive so they can be used to decrease 

the cost of diagnostic devices that are handy for on-site detection and can easily get to market 

since they are a proven technology to control the bacterial contamination in food samples.2 

1.3. Immobilization of biomolecules on paper 

There are certain structural and surface chemical properties of paper that affect the 

immobilization of biomolecules. Structural properties such as the porosity, mass distribution, 

the degree of crystallinity of fibers, their preferred orientation and accessible area of paper for 

immobilization influence the maximum quantity of biomolecules that can be immobilized.  

Surface chemical properties of paper such as the surface energy, surface sizing additives, 

cellulose grafting additives and plasma treatments of paper surface are factors that influence the 

facility of biomolecule immobilization and the reporting strategies2. Functionalization of paper 

is feasible either during the paper making process or on the finished paper. The goal in 

biomolecule immobilization on paper is to retain active biomolecules with maximal density and 

minimal leaching. In general, there are four methods available for this purpose: physical 

immobilization, covalent and affinity-based attachment, immobilization on carriers and 

entrapment18. 

1.3.1. Physical immobilization 

 In the physical immobilization method, the biomolecule adheres to the surface of the 

paper spontaneously via van der Waals and electrostatic interactions. This method is extensively 
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used in contact printing or non-contact paper printing (i.e. inkjet printing). These interactions 

can be improved by pre-coating of paper with cationic polymers, which graft well onto cellulose 

and render the surface highly cationic. Or in cases of neutral biomolecules, pre-coatings with a 

layer of hydrophobic molecules will enhance such interactions19. One of the potential problems 

of this method arises in certain cases of biomolecules that are not highly cationic thus their 

interaction with the paper surface (which is weakly anionic) is rather weak and results in the 

leaching of those biomolecules during assays in which the ionic strength of the media is high or 

the pH values are above 7. Another challenge would be the orientation of adhered biomolecules, 

which is essential to maintain their bioactivity. For instance, in the case of immobilizing 

bacteriophages on paper, a polyvinylamine pre-coating is required to render the surface of the 

paper positively charged so that the bacteriophage’s head (with a net negative charge) can be 

attached to the paper surface while the tail (with a net positive charge) remains still active to 

interact with the bacteria20. One drawback in using such modifications to increase electrostatic 

or hydrophobic interactions is that there is a high chance of encountering some non-specific 

binding onto paper which can be reduced by using blocking agents such as Tween 20 surfactant 

or bovine serum albumin (BSA) after the adsorption of the species of interest, but adding another 

step to the manufacturing process can be costly and in some cases difficult21.  

1.3.2. Covalent and affinity-based attachment 

In this approach a direct covalent bond acts as a bridge between biomolecules and paper. 

Since cellulose does not contain a significant chemically active group on its structure, some 

chemical modifications are needed to activate the surface of paper. These chemical 

modifications usually involve multiple steps, which adds to the manufacturing cost of the final 

product. One of the proposed solutions to resolve such difficulty is to fuse a cellulose-binding 

module (CBM) – generally a protein– to the biomolecule and then immobilize the biomolecule 

via such CBMs which attach to cellulose spontaneously. But seemingly, to synthesize such 

CBMs requires extra protein engineering which limits the versatility in large scale productions.18 
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1.3.3. Immobilization on carriers  

In the method using carriers, the biomolecules are first attached to a carrier molecule 

which is then printed onto paper surface. For instance, it was demonstrated that antibodies and 

DNA aptamers can be covalently attached to carboxylic poly(N-isopropylacrylamide) microgels 

and then printed on paper stripes to be used for paper chromatography22. The microgels are 

mechanically entrapped on paper and those biomolecules retain their recognition capabilities. 

After applying the microgels on paper strips it is necessary to let them dry before rewetting the 

paper. The drying will force the microgels to penetrate the fiber network of the paper as a result 

of capillary forces22. Using water-soluble carriers provides the possibility to incorporate them 

into water-based inks, but this method still suffers from the added complexity to the 

manufacturing process18.  

1.3.4. Entrapment 

Entrapment of biomolecules is carried out by entangling them in a network of cross linked 

polymers through a sol-gel process while maintaining the activity of the biomolecule. This 

network should be tight enough to prevent the leaching of biomolecules and at the same time it 

has to be porous enough to let smaller molecules such as reactants, substrates and target species 

pass through the gel and have access to active sites of biomolecules. Among all polymers, sol-

gel based silica and alginate-silica sol-gel hybrid are the most popular matrices for entrapment 

of biomolecules.23  

Encapsulation of biomolecules and microorganisms is another type of entrapment. In fact, 

this general term refers to a class of technologies which forms a polymeric matrix or shell around 

solids, liquids or gases, which traps them inside. The formation of encapsulated species is 

usually done is a single step and the particle size that is created using the encapsulation technique 

usually ranges from 1µm to 1000 µm; therefore, the particles are called “microcapsules” and the 

process is termed “microencapsulation”. Microcapsules have extensive applications as drug 

delivery systems in pharmaceutical and medical technology to protect the drug from 

environmental adverse effects, to eliminate incompatibilities, to stabilize sensitive drugs and 

also to mask their bad taste24. Apart from medical and pharmaceutical industries, microcapsules 



8 
 

have vast applications in other fields like in cosmetics, electronics, waste treatments, detergents, 

photography, graphics and paint industry, agriculture and food industry, etc25. 

1.4. Enzyme encapsulation 

As mentioned in Section 1.3, the biomolecule should maintain a high activity after the 

immobilization process. In the case of enzyme encapsulation, often the enzymatic activity is 

reduced during the encapsulation process26 (i.e. once it is trapped inside a microcapsule). There 

could be losses in enzyme quantity during the encapsulation process. Also, the heterogeneous 

confined space inside a microcapsule imposes some conformational changes in the structure of 

the enzyme resulting from interactions between the protein and the cross linked polymeric 

network of the microcapsule. These interactions, such as Lifshitz-van der Waals forces, dipolar 

or hydrogen bonding, conformational entropy, electrostatic forces, coulomb and hydrophobic 

dehydrations may stabilize certain conformations of the enzyme that are not favorable for the 

enzymatic activity. Also the diffusion rate of the substrate and other reactants across the 

microcapsules’ wall, which is controlled by the porosity, is a limiting factor for enzymatic 

activity because it reduces the access of the substrates to the enzyme’s active site26. However, 

in a very few reported cases, researchers were able to maintain the enzymatic activity. As 

demonstrated by Montalvo-Ortiz et al.27 the use of hydrogen peroxidase (HRP) NPs instead of 

a lyophilized protein formulation encapsulated in poly(lactic-co-glycolic) acid (PLGA) 

microspheres through the standard water-in-oil-in- water (w/o/w) methods, will enhance the 

encapsulation efficiency as well as reducing burst release and enhancing the enzymatic activity 

during release from PLGA microspheres.  

In recent years, biopolymers such as polysaccharides, proteins and lipids have been widely 

used as the matrix of microcapsules in microencapsulation process. There are five criteria that 

limit our choice of biopolymers for a given application: being a natural emulsifier for proteins 

and lipids, permeability for gases, the chemical composition and existing functional groups, the 

possibility of surface modification and finally its large scale availability in market with a 

reasonable price. A combination of all these criteria allows us to choose a compatible 

biopolymer for a certain application by granting them favorable properties such as mechanical 
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stability for storage, elasticity, biocompatibility, biodegradability and non-toxicity, etc28. A list 

of such biopolymers conventionally used as the matrix of microcapsules is given in Table 1. 

Table 1. Commonly used biopolymers in microencapsulation process (reproduced from 
reference 28).  

1.4.1.  Alginate-chitosan microcapsules 

Among all biopolymers commonly employed as the membrane material and the matrix 

for encapsulation, alginate is the most conventional and successful one because of its 

biocompatibility. It is also common to cover negatively charged polyamino acid polylysine 

microcapsules with an extra layer of alginate in order to improve biocompatibility of such 

membranes29. Alginate is the anion of alginic acid, which is a linear copolymer of β-D-

mannuronic acid (M) and α-L-guluronic acid (G) covalently linked together in different 

sequences or blocks. The M and G monomers are arranged in the alginate chain, to form three 

different sequences namely M-block (two M monomers attached together), G-block (two G 

monomers attached together) and alternating GM-block (a G monomer and an M monomer 

attached to each other). These different blocks composing the alginate linear body are illustrated 

in Figure 2. This anionic biopolymer is extensively found in cell walls of brown algae.30  

Divalent cations, such as calcium can crosslink alginate chains to form an “egg box model” 

structure. The formation of such structures is a result of an interaction between the divalent 

cation and the G-blocks of alginate, which creates a gel network (Figure 3)31,32. The ratio 

Source Polysaccharide-based Protein-based Lipid-based 

Plants 
Starch, 

Cyclodextrine, 
Pectine, etc. 

Gluten, 
Protein extracts from green 

beans, soy beans, lupine, etc. 

Hydrogenated palm oil, Vax, 
Lecithin (soy), etc. 

Aquatics 
Carrageenans, 

Alginate, 
Agarose. 

  

Animals or 
microbes 

Xanthan, 
Dextrose, 
Chitosan, 
Gellan. 

Gelatin, Collagen, 
Caseins, Albumins 

Lecithin (egg) 

Genetics  Recombination proteins  
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between the monomers and their sequential composition is the factor that determines the 

physical properties of the gel such as strength and the porosity of the gel33. To prepare calcium-

alginate microcapsules, a solution of alginate is poured in the form of tiny droplets into a bath 

of calcium chloride. When each droplet arrives into the calcium chloride bath the gelation 

process happens and the droplet will be solidified while maintaining its spherical shape and thus 

becomes a microcapsule34.  

 

2+ 

Figure 2. Different sequences (blocks) found in a linear chain of Alginic Acid. M = β-D-
mannuronic acid. G = α-L-guluronic acid. 

Figure 3. "Egg box” model of gel formation resulting from the crosslinking of alginate chains 
using calcium ion (adapted from references 31 and 32 ). 
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The encapsulation method using calcium alginate gels was chosen in our research because 

of its mild encapsulation conditions for biomolecules, non-toxicity, low cost and its ease of use. 

The characteristics of microcapsules such as permeability and wall thickness can also be easily 

controlled by changing the encapsulation parameters. Some of the drawbacks associated with 

this method are low stability in the presence of citrate, lactate and phosphate (most likely 

because of their affinity for calcium ion) and also high porosity of the membrane which may 

result in leakage of the immobilized biomolecule35. The porosity of such microcapsules allows 

low molecular weight substrates such as glucose and oxygen molecule (in this study) to pass 

through the microcapsule’s wall; therefore, they can diffuse in and out of the microcapsule.  

Chitosan is a linear polysaccharide composed of β-(1-4)-linked D-glucosamine (de-

acetylated unit) and N-acetyl-D-glucosamine (acetylated unit). Chitosan is derived from its 

natural source, chitin, which is a long-chain polymer of a N-acetylglucosamine abundantly 

found in exoskeletons of crabs, lobsters, shrimps and insects36. The structure of these two 

biopolymers are shown in Figure 4. 

There are several methods to prepare alginate-chitosan microcapsules. Basically chitosan 

has an ionotropic affinity for alginate (Figure 5). A one-stage preparation process involves 

droplet addition of alginate solution into an aqueous solution of chitosan which results in 

microcapsule formation comprising an alginate core and a chitosan layer. The opposite process 

is also possible to prepare chitosan core microcapsules with an alginate layer by pouring 

chitosan solution in the form of small droplets into an alginate bath33. In a two-stage procedure, 

Figure 4. Chitosan formation from the deacetylation of its natural source, chitin. 
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calcium-alginate microcapsules are prepared (Section 2.1) followed by incubation in a solution 

of chitosan to cover them with an extra chitosan layer for which the procedure will be discussed 

in Section 2.2. 

1.4.2. Encapsulation methods 

In general microencapsulation procedures are performed in three steps37. The first step is 

the addition of the biomolecule, or the species which is to be encapsulated, to the encapsulation 

matrix. This step normally involves the dissolution of the species to be encapsulated into the 

matrix. The second step includes liquid/liquid or liquid/air mechanical dispersion of 

encapsulation matrix and the third step is to stabilize microcapsules either by chemical methods 

such as polymerization or by physical methods such as evaporation, solidification, coalescence 

or by physicochemical methods such as gelification or coacervation.  

 Dispersion methods 

The common event in all dispersion methods is that the encapsulation matrix containing 

the target species (which are meant to be encapsulated) must be dispersed in the form of droplets 

in the stabilizing media to form microcapsules. Prilling, nebulization, emulsification and micro-

dispersion are different methods of dispersion, which are explained briefly in the following 

sections. 

Figure 5. Ionotropic affinity between alginate and chitosan. 
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 Prilling methods  

Basically, in prilling methods, a laminar flow of the encapsulating matrix and the 

biomolecule target is created by passing it through a narrow nozzle and this flow is broken up 

in to small droplets having a relatively small dispersion in size (i.e. with a maximum standard 

deviation of 10 % of the average particle size). The breaking up of such laminar flow is done by 

applying an electrostatic potential that reduces the surface tension of the flow (having flow rates 

of a few milliliters per hour) resulting in formation of small droplets. A schematic operating 

view of such nozzle is shown in Figure 6a38. It can also be performed using a vibrating nozzle 

which works well with low viscosity solutions and higher flow rates (a few liters per hour). 

Other prilling methods involve cutting off the laminar jet using a rapidly rotating disk (Figure 

6b38) or grid, which are effective for higher viscosities (more than 200 mPa·s). 

In our study we used the vibrating nozzle prilling method because it gives narrow size 

dispersion of the beads and also because of its compatibility to operate with the viscosity of 

sodium alginate solutions.  

Figure 6. a) Schematic operation view of a laminar flow breaking up using an electrostatic 
potential. b) Laminar flow breaking up using a rotating disk. (reproduced from reference 38) 

a)                                                                 b) 
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 Nebulization 

Nebulization or spray-drying, is a technique in which a flow of the encapsulation matrix 

is passed through a liquid/air nozzle or sometimes it is jetted to the surface of a spinning disk at 

high speed. The droplets formed using this method normally have a relatively wide dispersion, 

i.e. standard deviation of 30 – 50 % of the average particle size. The source of such a wide 

dispersion is the use of turbulent flow instead of a laminar flow in comparison with prilling 

methods. The advantage of this method is the availability of its commercialized equipment in 

industry for large scale productions. 

 Emulsification 

In this method the encapsulation matrix containing the target species is dispersed in 

another immiscible liquid and the small droplets are formed with the help of violent agitation 

using a turbine or stirrer. The droplets may have a wide particle size dispersion (standard 

deviation of 30-50 %) with the high level of agitation there is a possibility of denaturing the 

target species; for instance, in case of living cells, they may get disrupted under strong agitation.  

For industrial large scale productions (tons per hour), a system of continuous flow has been 

designed using static mixers. 

 Microdispersion 

The principle of microdispersion is the same as emulsification, which is described in 

Section 1.4.2.1.3, but the dispersion of two immiscible liquids is done with the help of a 

surfactant. The average droplet size is relatively small (less that one micrometer) and 

thermodynamically speaking, such micro-emulsions are generally more stable than normal 

emulsions.  

 Stabilization methods 

After creating small droplets of the encapsulation matrix in the previous dispersion step, 

a stabilization method is required so that they are solidified to form microcapsules while 

trapping the target species inside them. The solidification of hot matrices (previously melted) 
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can easily be achieved by cooling them to the temperature where they become solid once more. 

Sometimes it is possible to evaporate the solvent of the encapsulation matrix using dry hot air 

and the technique is therefore called evaporation. Many of the polymers used as the matrix of 

encapsulation can be jellified in a jellification process either by using low temperature or certain 

chelating ions. For instance, agarose can be jellified by lowering the temperature and alginate 

can be crosslinked using calcium ions. In the polymerization method, a polymeric network is 

formed by the polymerization of the monomeric units in the presence of the agent to be 

encapsulated. For instance, in an emulsion we may incorporate two different monomers, one in 

each phase. These two monomers can react with each other to create a polymer at the interface 

of the two phases i.e. around each droplet. In the coacervation method, the precipitation of a 

polymer is induced by changing the physico-chemical parameters of the media such as acidity, 

ionic strength, etc.  

In our study we used the jellification process of alginate using calcium ions because of the 

mild conditions for stabilization of microcapsules in the presence of biomolecule targets (GOx 

in this case) without adding a reactive agent or altering the temperature, which could be 

devastating to the biomolecule and its functionality. 

1.5. Enzymatic activity 

Enzymes are catalysts in biochemical reactions essential to the functionality of living 

systems. Each enzyme has an active site that interacts with a substrate to catalyze the latter’s 

transformation to the products. Despite the similarity of the catalysis principles between the 

enzymes and non-protein based catalysts, enzymes have unique properties in their performance. 

An enzymatically catalyzed reaction rate is usually enhanced to the order of 106 to 1012 times39. 

The condition for optimal activity of most of enzymes is quite moderate, i.e. operating 

temperature of below 100˚C, atmospheric pressure and a pH value almost neutral. The substrates 

and the reactants of each enzyme are specific to a great extent. The activity of an enzyme is 

tunable by adjusting the regulatory parameters such as allosteric control (modification of an 

enzyme to induce a change in the shape of the enzyme to change the interaction of the active 

site with the substrate)39 and covalent modification of the enzyme, for instance covalent 

bioconjugation of the enzyme and silver NPs40. The choice of GOx in this study was based on 
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the fact that this enzyme is well known and characterized to a high extent and also it catalyzes 

a reaction whose product (hydrogen peroxide) has antibacterial properties. 

1.5.1. Glucose oxidase overview 

GOx (β-D-glucose: oxygen 1-oxireductase) is a flavoprotein that catalyzes the oxidation 

reaction of β-D-glucose. This enzyme can be produced and purified from different fungi among 

which Aspergillus niger (Figure 7a41) and Penicillium species (Figure 7b42) are the most 

common sources of this enzyme. Perhaps Aspergillus niger is the most conventional source of 

GOx meanwhile the enzyme produced from Penicillium species has a more efficient enzymatic 

activity. Different types of GOx from different sources have different detailed compositions but 

all of them have in common a co-factor, flavine adenine dinucleotide (FAD), which is tightly 

entangled in the polypeptide chain but not covalently attached to the protein. This unit plays an 

important role in the activity of GOx43.  

As mentioned before, GOx catalyzes the oxidation reaction of β-D-glucose to D-glucono-

δ-lactone using molecular oxygen as an electron acceptor (Equation 1). As shown in Figure 844, 

the FAD co-factor plays an important role in the catalytic activity of the enzyme by participating 

in the oxidation-reduction reaction. In the reductive half-reaction, glucose is oxidized to 

glucono-lactone (which is subsequently hydrolyzed to gluconic acid) while FAD is reduced to 

a) b) 

Figure 7. a) GOx from Aspergillus niger (adapted from reference 41) and b) GOx from 
Penicillium amagasakiense (adapted from reference 42). 
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FADH2. In the oxidative half-reaction, FADH2 transforms back to FAD while giving an electron 

to molecular oxygen and reducing it to hydrogen peroxide. 

Equation 1 ߚ െ ܦ െ ݁ݏ݋ܿݑ݈݃ ൅ ܱଶ
ீை௫
ሱۛሮ ܦ െ ݁݊݋ݐ݈ܿܽߜ݁݊݋ܿݑ݈݃ ൅	ܪଶܱଶ 

1.5.2. Glucose oxidase applications 

GOx has been widely used in biotechnology and the pharmaceutical, food and beverage, 

electronics and textile industries43. In pharmaceutical and clinical chemistry, GOx is the enzyme 

used in nearly all types of glucose biosensors. The glucose biosensor for diabetes monitoring is 

an important field of application for this enzyme and it is even in some cases lifesaving. These 

biosensors are extensively used to monitor and detect the blood sugar fluctuations for patients 

having diabetes who are prone to hyperglycemia (high blood glucose content) or to 

hypoglycemia (low blood glucose content). This enzyme also can be used to prepare oral care 

products thanks to bacteriocide properties of H2O2 which is produced during the oxidation 

reaction.43  

Also the presence of glucose in some food may boost the growth of harmful 

microorganisms which reduces the food’s shelf time and produces unwanted bad taste and 

Figure 8. Details of the oxidation reaction of glucose (adapted from reference 44). 
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inconvenient color. Therefore, in food and beverage industry GOx is successfully used to 

remove the residual glucose content from food or beverages to increase their durability and shelf 

time. To remove the H2O2 produced in food products, the use of catalase is favorable to 

transform H2O2 to water and oxygen. For instance, during the production of egg powder, using 

the combination of the two enzymes, GOx and catalase, during the drying process prevents the 

appearance of the brown color. Also it is used to remove the oxygen from the top of the bottled 

beverages and food packing. Moreover, the gluconic acid (produced form hydrolysis of D-

glucono-δ-lactone) can act as a food additive for acidity regulation purposes.43 

In the electronics industry, bio-electronic devices need biofuel cells as a power supply. 

GOx is one of the biocatalysts that is used in biofuel cells to convert biochemical energy to 

electrical energy. In one of the approaches, enzymatically catalyzed oxidation reaction of 

glucose can be used in anode, coupled with the enzymatically catalyzed reduction of dioxygen 

in cathode using dioxygen-reducing enzyme such as laccase. All material used in such biofuel 

cells are biocompatible and biodegradable.43 

In textile industry, the produced H2O2 can be used as the bleaching agent for scoured 

woven cotton fabric also the gluronic acid can act as the stabilizer in the process so there is no 

need to use a stabilizing agent. Also the combination GOx/ hydrogen peroxidase (HRP) can be 

used to oxidize the colored components since H2O2 is produced and then it is rapidly consumed 

to oxidize and subsequently bleaches the natural fibers.43  

In this project, the production of H2O2 from the reaction of glucose with oxygen will be 

used to deactivate pathogens.  

1.5.3. Enzyme kinetics 

As mentioned before, enzymes are biological catalysts but their function is much more 

complicated than normal catalysts. Some enzymes conduct a reaction on a single substrate while 

others may act on two or more substrates39. In the simplest case where the enzyme deals with 

one single substrate, it has been found that in low concentrations of the substrate, the rate of the 

reaction varies linearly with the initial concentration of the substrate which means the reaction 

is following first-order kinetics while at high concentrations of the substrate, the reaction rate 
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becomes independent of the initial substrate concentration which means the kinetics of the 

reaction has a zero-order pattern. The change in the concentrations of the different species 

involved in a single substrate enzymatic reaction is demonstrated in Figure 945. 

The behavior of the enzymes was first studied and defined in 1913 by Leonor Michaelis 

(1875-1949) and Maud L. Menten (1879-1960) as Equation 246: 

Equation 2   ܧ ൅ ܵ ⇄ ܵܧ → ܧ ൅ ܲ 

where E, S and P are the enzyme, substrate and the product, respectively and ES is the enzyme-

substrate complex, k values are rate constants for each reaction. In Equation 2, when the 

concentration of the substrate is much bigger than the concentration of the enzyme, it can be 

assumed that all the enzyme is transformed to the enzyme-substrate complex so the second step 

of the reaction is the rate-determining step (RDS) so the rate of the reaction (υ) can be expressed 

as: 

Equation 3   ߭ ൌ ௗሾ௉ሿ

ௗ௧
ൌ െ ௗሾௌሿ

ௗ௧
ൌ ݇ଶሾܵܧሿ 

Figure 9. Concentration change of the species in a single substrate enzymatic reaction. S: 
substrate, E: enzyme, P: product, ES: enzyme-substrate complex (reproduced from 

reference 45). 

k1                     k2 

k-1 
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The steady state assumption which allows us to assume that the change in the concentration of 

ES in time equals zero, provides an estimation for the concentration of the enzyme-substrate 

complex: 

 Equation 4   ሾܵܧሿ ൌ ௞భሾாሿబሾௌሿ

௞షభା௞మା௞భሾௌሿ
 

Where [E]0 is the initial concentration of the enzyme and at any time point and it equals the 

concentration of free enzyme plus the concentration of the enzyme in the form of the complex 

with substrate ([E]0 = [E] + [ES]). By substitution of Equation 4 in Equation 3 and also 

considering the fact that the maximum rate of the reaction occurs when the substrate exists at 

high concentrations which converts all of the enzyme to ES (i.e. Vmax=k2[E]0), further 

rearrangement of the Equation 3 results in: 

 Equation 5   ߭ ൌ ௏೘ೌೣ	ሾௌሿ

ሾሺ௞షభା௞మሻ ௞భ
ൗ ሿାሾௌሿ

 

By defining ܭ௠ ൌ	 ௞షభା௞మ
௞భ

		as Michealis-Menten constant, Equation 5 can be written as: 

Equation 6   ߭ ൌ ௏೘ೌೣ	ሾௌሿ

௄೘ାሾௌሿ
 

Two boundaries of substrate concentration can be imagined, one where [S] is much bigger than 

Km, as can be seen in Figure 1045, the rate of the reaction reaches its maximum value and 

independent of [S] which means it is zero-order. The other extreme is met when [S] is much 

lower than Km, so the rate of the reaction becomes first-order (Equation 7) and it is preferably 

said that no rate determining step exists in the kinetics of the reaction46. 

 Equation 7   υ ൌ ௞మ	
௄೘
	ሾܧሿ଴ሾܵሿ 

It can be easily perceived from Equation 6, when the rate of reaction is at one-half of Vmax, the 

value of [S] equals the value of Km. Smaller values of Km indicates that the saturation of the 

enzyme (total conversion of the enzyme to enzyme-substrate complex) occurs at lower substrate 

concentrations and thus, the affinity of the enzyme for its substrate is relatively high. Greater 

values of Km, similarly means that the affinity of the enzyme for the substrate in relatively low 
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so higher concentrations of the substrate are needed to saturate the enzyme. In our study, we 

will make sure to operate at Vmax to be able to measure the enzymatic activity of GOx. 

1.6. Escherichia coli (E. coli) 

In our study, E. coli was selected as a representative model of pathogens.  E. coli is an 

abbreviation for Escherichia coli (Figure 11)47 that is attributed to a group of bacteria that reside 

in the intestines of humans and animals. They are mostly found in contaminated food or water 

so disinfecting processes on food and water such as proper cooking of meat and raw vegetables, 

water treatments, pasteurization of dairy products and juices as well as controlled contact with 

animals in petting zoos and farms can highly reduce the risk of spreading such bacteria. 

Infections of E. coli are both gastrointestinal and extraintestinal. Severe stomach cramps, 

diarrhea, vomiting, a mild fever for certain strand of bacteria kidney failure are the symptoms 

and adverse effects of E. coli on human body48. Since the term biotechnology first emerged 

during a meeting at a Hawaiian delicatessen in 1972, E. coli has been extensively used for 

research purposes in microbiology and biological engineering research specially as a host for 

propagating and cloning engineered plasmids49. In our study, E. coli K-12 was used as a 

Figure 10. The plot of the initial rate of the reaction versus the concentration of substrate 
(reproduced from reference 45). 
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representative pathogen because there are non-pathogenic strains of this bacteria which can be 

safely manipulated in laboratories for research purposes. 

1.6.1. Bacterial growth 

Growth is a characteristic of all living organisms and is a general definition used when a 

living organism increases its cellular mass or the number of cells. About half a century ago (or 

even earlier), researchers were able to understand the general laws of bacterial growth50. This 

growth is greatly affected by environmental factors such as pH, temperature, osmotic pressure, 

the content of nutrients, etc. Bacteria are unicellular microorganisms and in favorable conditions 

for their growth, they start consuming the nutrients in the media and attain certain size and 

consequently, they divide into two cells through a binary fission process. In this process a parent 

bacteria cell is divided into two new daughter cells while its genetic material (DNA) duplicates 

and each daughter cell receives one copy of DNA51. Different steps of such reproduction process 

for an E. coli bacteria cell is schematically illustrated in Figure 1252. Generally, prokaryotic 

organisms have chosen binary fission as their primary method of reproduction. 

Figure 11. Scanning electron micrograph of Escherichia coli, grown in culture and adhered 
to a cover slip (reproduced from reference 47). 
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The growth pattern for each bacteria is varied in different ecological conditions. The 

number of cells (Nt) after a certain time (t) can be predicted from Equation 8 where N0 is the 

initial number of bacteria cells and τ is the time required for a single cell to grow and duplicate53. 

Equation 8   ௧ܰ ൌ ଴ܰ2
௧ ఛൗ  

The bacterial growth curve is an indication of a bacteria’s population by plotting the binary 

logarithmic scale of the number of cells at each time point versus time. The resulting graph is 

illustrated in Figure 1352. This graph exhibits four distinctive stages of the bacterial life cycle 

provided that bacteria are cultured in an isolated culture media where no additional nutrients or 

space are added and also no waste or dead cells are removed from the culture media. The first 

stage is the lag phase which occurs after the bacteria are added to the culture medium. In fact, 

this time elapse before the growth phase (second stage) is the period of time required for the 

organisms to adapt themselves to the new environment so the population growth at this period 

close to 0. The second stage is the growth phase and the binary logarithm of the number of cells 

grows linearly with time according to Equation 9 obtained by rearranging Equation 8. 

Equation 9   ݈݃݋ଶ ቀ ௧ܰ
଴ܰ

ൗ ቁ ൌ ݐ ߬ൗ  

Figure 12. Different steps of a binary fission process in E. coli cell (reproduced from 
reference 52). 
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This growth phase which also called log phase is the period of optimal population growth 

depending of the growth conditions. Eventually, however, when the growing population 

approaches the upper limit, the media runs out of nutrients and space. At this point, the bacterial 

population levels off and population growth becomes nearly 0 again. This stage, called the 

stationary phase and may last for a long period of time. The last stage of this life cycle is called 

the death phase. The waste and dead cells begin to accumulate and the population declines 

because of the lack of nutrients. Some species that are able to form spores can persist beyond 

this stage and can regenerate a population if conditions once again become favorable. In this 

study, the effect of H2O2 generated by the enzymatically catalyzed reaction of glucose on the 

lag phase of the bacterial growth were studied.  

Figure 13. Life cycle of a bacterial growth (reproduced from reference 52) . 
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1.7. Structure of the thesis 

As mentioned in Section 1.1, the goal of this research is to develop a generic antibacterial 

platform that relies on the use of immobilized enzymes and can be applied to current paper 

production processes. The design, preparation and characterization of such a platform and its 

impact on the enzymatic activity is presented in the current study. This antibacterial platform 

was designed to trap GOx in microcapsules consisting of an alginate-calcium matrix. The 

enzymatic activity of GOx in the presence of its substrates (glucose and O2) produces an 

antibacterial agent, H2O2, which leaches out of the microcapsules and decomposes pathogens in 

the media. In this regard, non-pathogenic bacteria, E. coli K-12, was proposed as a model. Since 

this platform is destined to be used in a laboratorial papermaking process (in future research) 

and it will be incorporated onto paper, it has to be structurally robust against mechanical stress. 

Therefore, a layer of chitosan was used to cover the surface of alginate microcapsules. Also, to 

be able to capture low amounts of pathogens on the surface of microcapsules and to increase the 

efficiency of the system, the immobilization of a given antibody (selective to a certain pathogen) 

was considered. Since antibodies against E. coli are expensive and available only in small 

amounts, human Immunoglobulin G (human IgG) was selected as a model antibody. It was 

assumed that developing a successful immobilization method for this model antibody, while 

maintaining the enzymatic activity of encapsulated GOx, could be applied to other antibodies 

with similar structure. After the preparation of this platform, its antibacterial properties against 

our model pathogen were investigated. It is important to note that the application of this 

antibacterial platform onto paper was not pursued in this research and will be the subject of the 

future studies. 

As will be presented in following sections of this research, the encapsulation of GOx 

resulted in a reduction in its enzymatic activity. Therefore, we came up with the idea that 

immobilization of GOx on gold nanoparticles (NPs), before encapsulation, could possibly 

increase its enzymatic activity. The goal of this sub-project (Chapter 5) was to compensate the 

enzymatic activity loss during the encapsulation process and also to increase the encapsulation 

efficiency. 
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This thesis is composed of seven chapters. The current chapter includes an introduction to 

the scientific notions of this research and provides background knowledge for readers to be able 

to understand this project. The second chapter presents the detailed description of all materials, 

protocols, methods and the instruments with which the research was carried out. All the 

observations, measurements and data regarding the preparation of encapsulated GOx are 

brought to the reader in chapter three. The results and discussion regarding the study on 

antibacterial properties of our microcapsules are presented in chapter four along with the 

interpretations and discussions to justify those obtained results. Chapter five contains the data 

regarding the immobilization of GOx on gold NPs and the effect of this immobilization on the 

enzymatic activity. Since this part of the project is considered as a sub-project (additional to the 

main stream of the project), the introduction and experimental procedures for this part of the 

study are presented in the same chapter as the corresponding results and discussion. The sixth 

chapter presents the conclusion of this project and opens a window to the future possible works 

which lie ahead. Finally, the seventh chapter of this thesis provides all the implemented 

bibliographic references to support the ideas discussed in the thesis.  



 
 

 

Chapter 2. Instruments and experimental methods
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2.1. Enzyme encapsulation 

The encapsulation of enzyme is achieved by ionotropic jellification of small droplets of 

alginate solution, which contain GOx. This process also involves laminar jet break-up of the 

solution. The encapsulation efficiency is then determined to evaluate the amount of encapsulated 

enzyme.  

2.1.1. Laminar jet break-up encapsulation 

 Method 

For the preparation of encapsulated enzyme, a laminar jet break-up54 with a vibrational 

nozzle method of dispersion was used in combination with a further gelification of the 

encapsulation matrix as a stabilization method using the Inotech Encapsulator® IE-50 R (Figure 

14) which is a semi-automated instrument for encapsulation of biomolecules and pharmaceutics. 

Setting different instrumental parameters helps us to control and determine the size of 

microcapsules (beads). The bead size varies from 100 µm to > 1000 µm in diameter according 

to the encapsulation parameters and the size of the nozzle with size dispersion of about 5 % in 

Figure 14. Inotech Encapsulator® IE-50 R. 
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terms of relative standard deviation. Bead production rate is rather high i.e. 50-3000 beads per 

second depending on the bead size and viscosity of the encapsulation-product mixture. This 

technique possesses low sheer stress which results in high cell viability when microorganisms 

undergo encapsulation. The schematic view of the Inotech Encapsulator® IE-50 R54 is shown in 

Figure 1554 along with presentation of different parts of the instrument. The encapsulation 

Figure 15. Schematic representation of Inotech Encapsulator® IE-50 R (reproduced from 
reference 54). 
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solution is introduced into the system via a syringe pump with laminar flow before it reaches 

the vibrating nozzle the laminar flow is created. Thus, the flow is broken up resulting in the 

formation of microscopic droplets. Then these micro droplets are dispersed using an electrostatic 

field and incubated in the gelification bath (containing Ca2+ ions).  

 Materials 

Alginic acid sodium salt from brown algae (low viscosity) and GOx from Aspergillus 

niger were purchased from Sigma-Aldrich and were used to prepare encapsulation matrix-

enzyme mixture. Calcium chloride dihydrate (CaCl2.2H2O) from Sigma-Aldrich was used to 

prepare the jellification solution (bath). The water used in all procedures was purified by a 

MilliQ system to a resistivity of 18 MΩ.cm.  

 Protocol 

A solution of alginate (0.7 m/v %) was prepared by dissolving sodium alginate in water 

along with stirring and heating under the boiling point to minimize evaporative losses. The 

encapsulation matrix-enzyme mixture was prepared by adding a weighed amount of GOx 

powder to alginate solution and then completing the solution to volume with water. The final 

concentration of enzyme in the mixture was set to be approximately 0.5 mg/ml (the exact 

concentration of the enzyme was measured in the encapsulation efficiency evaluation step). This 

mixture was then filtered using a Whatman nylon 5 µm filter before introduction to the 

Encapsulator instrument. The encapsulation parameters, which were optimized for the quality 

of beads and their dispersion, are given in Table 2. After the formation of microcapsule in 

calcium chloride bath, they were incubated for 30 minutes then they were simply filtered out 

using a vacuum Buchner funnel and filter paper followed by several rinsing steps using the 

calcium chloride solution (0.1 M). 

Table 2. Glucose oxidase encapsulation parameters. 

Encapsulation Parameter Value Encapsulation Parameter Value 

Syringe pump flow rate 2.6 ml/min Electrostatic charge voltage 1.41 kV 

Frequency 1376 Hz 
Calcium chloride bath 
concentration 

0.1 M 
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2.1.2. Encapsulation Efficiency 

To evaluate the encapsulation efficiency, we needed to measure how much enzyme is 

encapsulated. Therefore, the Bio-Rad protein assay was used to analyze the protein content of 

the calcium chloride bath which is an indicator of the amount of GOx lost during the 

encapsulation process. Knowing the total amount of the enzyme introduced to Inotech 

Encapsulator®, we were able to calculate indirectly the encapsulation efficiency. 

 Method for protein assay 

The Bio-Rad protein assay is a method for the determination of solubilized protein based 

on the method of Bradford55 that involves the addition of an acidic dye to the protein solution 

and the formation of protein-dye complex that absorbs light maximally at a different wavelength 

than its unbound form. The absorbance of light is linearly proportional to the concentration of 

the complex, which correlates to the concentration of protein in a given solution. In this case, 

the complex forming dye is Coomassie® Brilliant Blue G-250 (Figure 16) and its maximum 

absorbance wavelength shifts from 465nm to 595 nm once it is bound to proteins. The unbound 

form of the dye has three charge states: cationic form (red), neutral form (green) and anionic 

form (blue). However, when it binds to protein, it is converted to a stable un-protonated anionic 

blue form (λmax=595 nm). It has been found that Coomassie blue primarily binds to aromatic 

and basic amino acid residues especially arginine56. In this method the calibration curve can be 

obtained using Bovine Serum Albumin (BSA) and provides us with a linear range of 0.04 to 0.2 

Figure 16. Coomassie® Brilliant Blue G-250. The protein complexation dye in Bradford 
protein assay. 
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mg/ml or using Bovine Gamma Globulin with a linearity ranging from 0.04 to 0.3 mg/ml57. 

These concentrations refer to the final concentration of the protein in the spectrophotometric 

cell. In our study since no standard solution is commercially available for GOx, we chose BSA 

as the protein standard for the calibration curve. 

 Materials  

Protein assay dye reagent concentrate was purchased from Bio-Rad Laboratories, Inc. and 

BSA protein micro standards (1 mg/ml) from Sigma-Aldrich. 

 Protocol 

Dye reagent was prepared by diluting 1part dye reagent concentrate with 4 parts MilliQ 

water. Three to five diluted stock solutions of BSA standard were prepared ranging from 0.2 to 

0.9 mg/ml and 100 µl of each standard solution is added to 5.0 ml of the dye reagent and then 

vortexed for a few seconds. These solutions were incubated at room temperature for at least 5 

minutes (but not for more than one hour) and their absorbance was measured using a Varian 

Cary 100 Bio UV-Vis Spectrophotometer at λ=595 nm. Sample preparation was carried out 

similarly and to prepare the blank sample 100 µl of calcium chloride (0.1 M) was added to dye 

reagent to represent the matrix of calcium bath. 

2.2. Modification of alginate microcapsules with chitosan 

 Method 

Taking the affinity of chitosan for alginate to our advantage, we were able to cover 

microcapsules with an extra layer of chitosan. Different methods are available for such 

modification. One of these methods is simple incubation of microcapsules in a solution of 

chitosan (0.15 % w/v) in acetate buffer (50 mM)  pH 5.0 containing calcium chloride (0.1 M)33. 

The high concentration of calcium cations in the incubation solution stabilizes microcapsules 

and prevents their rupture resulting from diffusion of calcium from microcapsules out to the 

solution. 
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 Materials 

Acetate buffer was prepared using sodium acetate trihydrate (CH3COONa.3H2O) that was 

purchased from American Chemicals Ltd. and glacial acetic acid A.C.S. reagent from J.T.Baker. 

Chitosan, medium molecular weight (deacetylation degree of 75-85 %) was purchased from 

Sigma-Aldrich. 

 Protocol 

A solution of chitosan (0.15 % w/v) in acetate buffer (50 mM) pH 5.0 containing calcium 

chloride (0.1 M) was prepared by dissolving chitosan and calcium chloride in acetate buffer with 

vigorous shaking for at least 45 minutes. Then approximately 6.0 g of microcapsules were added 

to 200 ml chitosan solution and allowed to incubate overnight. Microcapsules were then 

recovered on filter paper using a vacuum Buchner funnel and washed with calcium chloride 

solution (0.1 M) and stored at 4˚C for further analysis. 

2.3. Microcapsule characterization 

Confocal laser scanning microscopy (CLSM) was used to take fluorescent images of the 

microcapsules. To do so, chitosan must be labeled with fluorescein isothiocyanate (FITC), a 

very common fluorophore that can easily react with amino groups on chitosan structure (Figure 

17). Also to determine the presence of nitrogen that originates from chitosan in the composition 

of alginate-chitosan microcapsules (without encapsulated GOx), Elemental Analysis technique 

was used.  

Figure 17. Fluorescein isothiocyanate (FITC) reaction with amino groups. 
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2.3.1. Imaging methods 

 Optical imaging 

Traditional optical transmission images were taken using a MOTIC BA310 optical 

microscope. 

 Confocal laser scanning microscopy imaging 

Confocal laser scanning microscopy (CLSM) is a useful imaging technique that has the 

ability to produce images from different depths of a thick sample. The images are taken point 

by point and out-of-focus information is eliminated resulting in high resolution 3D images. The 

CLSM technique was developed by Marvin Minsky in 195758 and grew in popularity over the 

proceeding decades thanks to advances in laser technology and computer science. The 

fluorescence signal is greatly improved since an intense laser or arc-discharge source is usually 

used for excitation which improves fluorescence emission intensity. The detector for such 

devices is usually a photomultiplier tube (PMT) which has high quantum efficiency in the near-

UV, visible and near IR.  

 Materials 

Fluorescein isothiocyanate (FITC) Isomer I was purchased from EMD Chemicals. 

 Method 

In our research, a Leica TCS SP5 II CLSM58 equipped with three point laser sources 

controlled by high speed acousto-optic tunable filters was used which is schematically shown 

in Figure 1858 . The excitation laser sources for this device include helium neon (λ=633 nm), 

diode-pumped solid state (DPSS: λ=561 nm), and argon ion (λ=458/488/514 nm). The source 

that we used for our study was the 488 nm argon ion line and the emission signal was captured 

at 500 nm. These excitation and emission wavelengths are standard for fluorescein 

isothiocyanate (FITC), which was our fluorophore label.  
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In order to label chitosan with fluorescein isothiocyanate (FITC), a certain amount of 

chitosan was dissolved in acetic acid 0.1 M to reach the final chitosan concentration of 1 % m/v. 

The use of acetic acid allowed us to dissolve chitosan in an aqueous solution.  FITC was 

dissolved in anhydrous methanol (2 mg/ml) and in order to react FITC with chitosan, 50 ml of 

FITC in methanol solution was added to 100 ml of the aforementioned chitosan solution along 

with addition of an extra 100 ml of anhydrous methanol. This mixture was agitated in the dark 

for three hours. Precipitation of FITC- tagged chitosan was done using a 1 L of NaOH solution 

(0.1 M) then dissolved in acetate buffer (5mM at pH 5.0) followed by a dialysis process in the 

same buffer during three days at 4˚C and by changing the dialysis solution twice per day to 

remove the excess amount of FITC .The recovered FITC-labeled chitosan solution was used to 

cover our microcapsules through procedure described in Section 2.2.1.1. 

Figure 18. Confocal laser scanning microscope Leica TCS SP5(reproduced from 
reference 58). 
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2.3.2. Elemental analysis 

Elemental analysis was used to determine the elemental composition of a substance which 

can provide us the percentage of the elements, C/H/N/S, with a good precision. The analysis 

was performed at Laboratory of elemental analysis, Département de chimie, Université de 

Montréal using EAS1180, Fisons instruments S.p.A.59 

2.4. Antibody Immobilization 

In this study, human immunoglobulin G (IgG) was used as a model antibody to verify the 

possibility of antibody immobilization onto the external surface of the designed microcapsule-

based platform. The choice of this model antibody was made according to its availability and 

cost since an IgG specific for our model pathogen, E. coli, was not available in large quantities 

with a reasonable cost. The chosen immobilization method is a covalent coupling reaction using 

glutaraldehyde. 

2.4.1. Method 

Glutaraldehyde covalent coupling method could be used to immobilize antibodies on 

alginate-chitosan microcapsules. Glutaraldehyde (Pentane-1, 5-dial) is one of the most well-

known and easy to handle agents for protein cross linking that has been used in many fields of 

research and science. The reactivity of glutaraldehyde toward protein originates from the 

reaction between glutaraldehyde’s single linear molecular form (because in an aqueous solution, 

glutaraldehyde can form a cyclic hemiacetal as well as dimers, trimers, etc.) and several reactive 

functional groups residues on the body of protein. In fact, glutaraldehyde can react with amine, 

thiol, phenol and imidazole groups on amino acid side-chains60. It is also a simple and mild 

coupling agent to immobilize biomolecules (enzymes and antibodies) on water insoluble carriers 

because the reaction happens in aqueous buffer solution under conditions close to physiological 

pH. Different possible reactions between proteins and glutaraldehyde are summarized in Figure 

1960.  
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The glutaraldehyde coupling reaction has three different main steps61. In the first step our 

alginate-chitosan microcapsules are incubated with glutaraldehyde to activate the amino groups 

of chitosan. Ideally glutaraldehyde molecules are attached to the surface of microcapsules via 

one of its formyl group (formation of imine bond) while the other end is free for the next step 

of immobilization process. The second step includes the incubation of glutaraldehyde-activated 

microcapsules with human IgG as a model antibody. In this step the incubation solution must 

contain calcium ions to prevent the swelling of microcapsules as a result of calcium ions removal 

from microcapsules by the antibody because calcium ion tends to bind to the antibody while 

reducing its immunoaffinity. Adding 5 mM as the maximum concentration of calcium ion in the 

reaction buffer prevents stability loss of microcapsules but maintains the affinity of the 

antibody61. In the final step, unreacted free ends of glutaraldehyde are end-capped with glycine 

to reduce the risk of unwanted crosslinking reactions. A schematic presentation of these steps 

are shown in Figure 20.  

Figure 19. Reactions of glutaraldehyde with proteins under acidic or neutral conditions. The 
labels I, IV and V refer to different forms of glutaraldehyde in the original document. I: 

Monomer (single molecular from). IV: Cyclic hemiacetal form. V: Polymeric species of cyclic 
hemiacetal form (reproduced from reference 60) . 
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2.4.2. Materials 

Anhydrous sodium tetraborate (Na2B4O7), sodium chloride, glycine (C2H5NO2), 

glutaraldehyde solution grade I, 50 % (C5H8O2) were all supplied by Sigma-Aldrich. IgG from 

human plasma (MW=150 kDa) was purchased from Athens Research & Technology, Inc. 

2.4.3. Protocol 

A mass of 0.50 g of microcapsules (previously dried on filter paper) was added to 2 ml of 

borate buffer (0.1 M) pH 7.2 containing CaCl2 (5 mM) and glutaraldehyde (0.25 % w/v) and 

stirred at room temperature for 60 min. Microcapsules were then filtered out on filter paper using 

a Buchner funnel and rinsed 4 times with 3 ml of borate buffer (0.1 M) pH 7.2 containing CaCl2 

(5 mM) to remove the excess amount of glutaraldehyde completely. Glutaraldehyde-activated 

microcapsules were added to a solution of the same buffer containing CaCl2 (5 mM) and human 

IgG (0.2 mg/ml) and stirred at 4˚C. After 60 min, 0.05 ml of glycine solution (1 M) was added 

and incubated for another 60 min. Finally, microcapsules were filtered out and rinsed once with 

NaCl (0.5M) and three times with 3 ml borate buffer (0.1 M) pH 7.2. 

Figure 20. Different steps of antibody immobilization on alginate-chitosan microcapsules. 
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2.5. Antibody immobilization confirmation 

2.5.1. Method 

 To check if covalent binding of the antibody was successful, the Matrix Assisted Laser 

Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) technique was 

used. Laser desorption/ ionization (LDI) technique was invented half a century ago. It is a 

technique in which the dry sample is hit by a high intensity laser beam that results in desorption 

and ionization of the sample for further analysis by the analyzer component of the mass 

spectrometer. Its drawback in comparison with other similar desorption techniques such as field 

desorption (FD), plasma desorption (PD) and fast atom bombardment (FAB) is that its 

application is limited to low-mass organic salts and light-absorbing organic molecules and a 

tremendous effort was needed to desorb and ionize biomolecules especially when their mass 

exceeds 2000 Da. To fix this problem, large biomolecules were co-crystallized with an organic 

compound (differs for the type of biomolecule) which facilitates the desorption process and 

increases the rate of ionization. This laser desorption technique assisted by an organic matrix, 

MALDI along with a time of flight mass analyzer is capable of producing mass spectra of 

biomolecules and polymers of a few 100,000 Da.62 

2.5.2. Protocol 

A solution of sinapinic acid (20 mg/ml) in 1:1 acetonitrile: 0.2 % v/v trifluoroacetic acid 

(TFA) in water was prepared and used as the matrix material. On the MALDI plate, 

microcapsules were sandwiched between two layers of matrix since they were not soluble. First 

the surface of the allocated place on the plate was covered with the matrix (approximately a few 

microliters). After letting it dry for a couple of minutes, microcapsules were added on to the 

dried matrix. The amount of added microcapsules was not necessarily known. After drying, a 

few more small droplets of the matrix were added on top of microcapsules. The MALDI-TOF-

MS experiment was carried out using Burker’s Ultraflex TOF/TOF instrument with laser 

intensity of 70 %. Data acquisition was made in the m/z range of 20,000 to 350,000 Da, all in 

positive polarity mode with 7500-20000 laser pulses at each shot. At least 30 shots were made 

randomly on the surface of the samples, for each analysis. The samples analyzed by this 



40 
 

 
 

experiment were microcapsules with and without immobilized human IgG, all without 

encapsulated GOx.  

2.6. Activity measurements  

The enzymatic activity can be calculated by measuring the initial rate of oxidation reaction 

of glucose which is catalyzed by GOx enzyme. The oxygen content of a solution in a closed 

system decreases in the presence of GOx and its substrate, glucose. This diminution of oxygen 

content can be followed by various techniques, one of which is the oxygen electroanalytical 

technique.  

2.6.1. Method 

To measure GOx activity, the oxygen electroanalysis technique was used by plotting the 

percentage of dissolved oxygen content versus time in a closed Clark-Cell oxygen electrode 

containing glucose and encapsulated GOx. This electrochemical sensor for oxygen is based on 

the reduction of O2 on a Pt electrode and it is named after his inventor Leyland C. Clark (1959). 

To measure the partial pressure of oxygen in gas phase or in dissolved form, this electrochemical 

sensor has widely been used in environmental studies, in bacterial attack progression monitoring 

in sewage water treatments, in monitoring and controlling the O2 level in fermentation of 

alcoholic beverages as well as in medicine in monitoring of physiological analytes63. The 

detection range of dissolved O2 for this device varies from 2.84 µM (i.e. 0.01 %) to 284 µM (i.e. 

100 %) at 25˚C. The main advantage of Clark-Cell oxygen electrode for O2 detection is that its 

membrane is gas-permeable but not ion-impermeable which separates the system from the 

sensing platinum electrode (cathode). This important role of the membrane prevents electrode 

passivation and poisoning resulting from a direct contact in cases where the sensing electrode is 

placed inside the system64. 

The different parts of the Clark-Cell64 device are schematically shown in Figure 21. The 

device is comprised of two electrodes. The working electrode (cathode) is a platinum disc, 2 

mm in diameter covered with a membrane. O2 diffuses through the membrane and is reduced at 

the surface of this electrode. The counter and reference electrode is a silver ring with a surface 
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ten times larger than that of the platinum electrode and the conduction between these two 

electrodes is achieved with a solution of NaCl (3 M) which saturates a tissue paper covering the 

two electrodes. The gas-permeable membrane is made of Teflon with a thickness of 12.7 µm. 

By applying a potential to the cathode, diffused O2 is reduced (Equation 10) at the surface of 

platinum and a current flows between two electrodes which is proportional to the partial pressure 

of O2 in the system. The oxidation reaction on silver anode and the overall electrochemical 

reaction is given in Equation 11 and Equation 12, respectively. 

Equation 10   ܱଶ ൅ ଶܱܪ2 ൅ 4݁ି →  ିܪ4ܱ

Equation 11   ݃ܣ ൅ ି݈ܥ → ݈ܥ݃ܣ ൅ ݁ି 

Equation 12   4݃ܣ ൅ ܱଶ ൅ ଶܱܪ2 ൅ ି݈ܥ4 → ݈ܥ݃ܣ4 ൅  ିܪ4ܱ

Figure 21. Schematic view of Clark-Cell oxygen electrode (adapted from reference 64). 

Counter/Reference electrode 

with a water jacket for temperature control 
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2.6.2. Materials 

D-(+)-Glucose (C6H12O6), ACS grade reagent was purchased from Sigma-Aldrich. The 

same materials were used to prepare acetate buffer as described in Section 2.2.1.2. 

2.6.3. Protocol 

A solution of glucose (100 mg/ml), the substrate for GOx, was prepared in acetate buffer 

(50 mM) pH 5.0. For each activity measurement, either for free enzyme or encapsulated enzyme, 

2.0 ml of the glucose solution was diluted with 3.0 ml of acetate buffer in Clark-Cell oxygen 

electrode then the enzyme was also added to the solution chamber. The percentage of oxygen 

was plotted versus time and the slope of the liner region of the plot was taken in to consideration 

as the initial rate of the oxidation reaction. Throughout this thesis, the uncertainty for each 

measured data is reported as ± standard deviation (SD). 

2.7. Bacterial growth inhibition  

Preliminary studies on bacterial growth inhibition properties of the designed platform 

were carried out using E. coli K-12 as a model pathogen and cultivating them on a petri dish. 

Then the effect of enzymatic activity on the bacterial growth was studies in more detail by 

measuring the optical density of the bacteria culture media. 

2.7.1. Bacterial growth on petri dish 

 Method 

The bacteria were spread uniformly on Luria-Bertani (LB) broth culture media65 

containing agar gel in a petri dish and any antibacterial agent which is to be tested is placed on 

the central spot on a paper disc. In such a culture system, bacteria will grow on the surface of 

the gel while making the gel turbid except over the regions in which there exists some 

antibacterial effect. So anti-bacterial region stays more transparent comparing with the turbid 

surface of the agar gel.  
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 Materials 

All materials needed to prepare bacteria’s culture media were used at bacteriological grade 

and purchased from Bioshop Canada Inc.  

 Protocol 

The LB broth culture media is made by adding tryptone (10 g), yeast extract (5 g) and 

NaCl (10 g) to some MilliQ water followed by pH adjustment to 7.0 with NaOH (5 M) and 

volume adjustment to 1 L. Then the broth was autoclaved at 121 ˚C for 25 minutes. 

Sterilized warm LB broth culture media containing 2 % agar gel and 10% glucose was 

poured in a petri dish and cooled to room temperature. Then 100 µl of a saturated solution of E. 

coli K-12 (made by adding some bacteria to LB broth culture media and incubating at 37 ˚C for 

16 hours) was added on to the gel and spread uniformly to create a carpet-like layer of bacteria. 

A certain mass of microcapsules with encapsulated GOx (and microcapsules without 

encapsulated GOx for the control sample) was spread on a piece of sterilized paper disc (d=1.6 

cm). This paper was placed in the center of the petri dish and subsequently, the petri dish was 

incubated at 37 ˚C for 16 hours.  

2.7.2. Optical density measurements for bacterial growth in Luria-Bertani 

broth 

 Method 

LB broth culture media is one of the richest culture media for bacteria and provides 

essential nutrients for them to grow fast and also with a good growth yield. This culture medium 

is commonly used in steady-state bacterial growth researches and exhibits a high level of 

reproducibility. During steady-state growth studies (the middle linear section of the second stage 

of the bacteria life cycle as presented in Section 1.6.1), it is assumed that all intrinsic properties 

of the cells such as the mean volume, mass, density and the macromolecular composition of the 

cells remain constant and all extrinsic parameters such as optical density of the culture medium, 

the number of cells per milliliter, the protein content per milliliter, etc. increase doubly at the 
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same doubling time for reproduction of cells for instance, the doubling time for E. coli K-12 in 

LB broth culture media is 20 minutes. The ambient parameters such as temperature, pH and the 

composition of the medium also need to be kept constant.66 

 Materials 

All materials needed to prepare bacteria’s culture media were used at bacteriological grade 

and purchased from Bioshop Canada Inc.  

 Protocol 

Each bacteria culture was done in a sterilized 250 ml- Erlenmeyer flask by adding 95 ml 

of LB broth culture media, 5 ml of glucose (40 % w/v) in addition to the desired amount of GOx 

or microcapsules and the number of E. coli K-12 to initiate the bacterial growth. Then the 

Erlenmeyer flask was sealed and incubated at 37 ˚C under agitation. The optical density of each 

batch was measured by transferring 1 ml of the culture media in to a disposable cuvette and 

reading the absorbance (turbidity measurements) at λ=600 nm by Cary 100 Bio UV-Vis 

Spectrophotometer. All manipulations were done in the vicinity of a flame to ensure the absence 

of other bacterial contaminations.  

 



 
 

 

Chapter 3. Enzyme encapsulation 
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3.1. General objectives 

As previously mentioned in Section 1.1, the goal of the project is to develop an 

antibacterial platform that can be applied to current paper production processes, which has the 

ability to capture pathogens on its surface and to deactivate them by producing an anti-

pathogenic agent. To achieve this goal, the first phase of this research included the preparation 

of alginate microcapsules and the encapsulation of GOx at the same time. Then the surface of 

these microcapsules had to be functionalized by chitosan. Finally, the possibility of 

immobilizing human IgG (our model antibody) on the external surface of the alginate-chitosan 

microcapsules was evaluated. Control experiments were performed to confirm the successful 

modification of microcapsules after each step and the activity of GOx was also monitored after 

each modification to ensure that the enzyme is still active. So this chapter contains the result and 

discussion regarding all aforementioned steps. 

3.2. Size distribution of microcapsules 

Alginate microcapsules were transferred onto a microscope slide and were observed using 

conventional light microscopy (Figure 22). A sample of 234 microcapsules were examined 

statistically to find their size distribution. The size distribution, which was manually measured 

using the scale provided by the microscope, is presented in Figure 23 and an average diameter 

Figure 22. Optical microscopy image of alginate microcapsules. 
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of 120±20 µm was found for microcapsules prepared using the microencapsulation conditions 

described in Section 2.1.1.3. In Figure 22 microcapsules appear to be collapsed, which is due to 

the mechanical pressure of the microscope slide cover. 

3.3. Encapsulation efficiency 

The encapsulation efficiency in our study is defined as the percentage of enzyme 

encapsulated in comparison with the total amount of enzyme introduced to the Encapsulator (see 

Section 2.1.1.1). For each preparation of a batch of microcapsules, the total amount of the 

enzyme (GOx) was obtained be measuring the flow rate and the time during which the 

encapsulation solution (GOx in aqueous sodium alginate) was poured into the calcium chloride 

bath. From this total amount of enzyme, inevitably, some of it is dispersed in calcium chloride 

bath once each small droplet reached the bath. Another portion of the enzyme diffused out of 

microcapsules in early stages of encapsulation process where the wall thickness of 

microcapsules was not thick enough to prevent the diffusion of enzyme molecules due to the 

time required for calcium ions to get incorporated into microcapsules’ wall network. Therefore, 

until the wall thickness reached its maximum, some of the enzyme passed through the pores of 

Figure 23. Histogram of microcapsules size distribution. 
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microcapsules’ wall. To determine the loss of enzyme in the calcium chloride bath, a Bradford 

protein assay was used to quantify the protein content of the bath. A typical calibration curve 

using BSA (bovine serum albumin) as the standard is shown in Figure 24. The amount of 

encapsulated enzyme was simply calculated by subtracting the amount of enzyme found in 

calcium chloride bath from the total amount of the enzyme introduced to the system. Using the 

aforementioned approach, the encapsulation efficiency was found to be 47 % in optimal 

conditions i.e. for a solution of GOx (0.5 mg/ml) in sodium alginate (7 % w/v) and formation of 

microcapsules in calcium ion bath (0.1 M)*.  

3.4. Chitosan modification  

Alginate, the main component in the structure of microcapsules, does not contain a 

significantly active functional group that can easily serve for further modification of 

microcapsules i.e. immobilization of antibody. That is why we decided to cover our 

microcapsules with a layer of chitosan. As described in Section 1.4.1, chitosan possesses amino 

                                                 
* The Data was obtained previously in Dr. Rochefort’s group by a summer intern. 
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Figure 24. A typical Bradford assay calibration curve using BSA as the standard. The 
concentration values refer to the total protein concentrations in spectrophotometric cell. 



49 
 

 
 

groups that can be protonated at acidic pH. Thus these amino groups carry positive charges 

which creates an ionotropic affinity for negatively charged carboxyl groups of alginate. Simple 

incubation of microcapsules in chitosan will form a layer of chitosan on the surface of alginate 

microcapsules. Another advantage of this extra layer is that the rigidity of microcapsules 

increases and they become more resistant in the presence of mechanical stress however, the 

porosity of microcapsules is reduced after the addition of chitosan layer67. 

To confirm a successful chitosan coverage of microcapsules, elemental analysis was 

carried out on empty alginate-chitosan microcapsules. The result of this analysis is given in 

Table 3. The presence of 0.54 % nitrogen is a confirmation of successful chitosan coverage 

because the only substance which contains nitrogen is chitosan because alginate does not have 

any nitrogen in its structure. 

Table 3. Elemental analysis result on alginate and alginate-chitosan microcapsules. 

To further confirm the coverage of alginate microcapsules by chitosan, it was suggested 

that chitosan be labeled with the fluorophore, fluorescein isothiocyanate (FITC). Therefore, 

chitosan was first derivatized with FITC and consequently used to cover alginate microcapsules. 

Apparently, despite FITC reacted the amino groups on the structure of chitosan, there existed 

some unreacted amino groups that could interact with alginate on the body of microcapsule.  

Both transmission and fluorescent images were taken using  confocal laser scanning microscopy 

(CLSM) (see Section 2.3.1.2.2) and the images are presented in Figure 25. The fluorescent 

signal from FITC-labeled chitosan in Figure 25b is a confirmation of the attained chitosan 

coverage. However, microcapsules appeared to be collapsed due to the mechanical pressure of 

the microscope slide cover. 

Sample Nitrogen (%w/w) Carbon (%w/w) Hydrogen (%w/w) 

Alginate microcapsules 0 40.91 4.54 

Alginate-chitosan 
microcapsules 

0.54 29.07 4.75 
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3.5. Antibody immobilization 

To investigate the possibility of antibody immobilization on microcapsules, human 

immunoglobulin (IgG) was chosen as a model antibody with glutaraldehyde as the coupling 

agent as mentioned in Section 2.4.1. Keeping the concentration of calcium ion at 5 mM in these 

steps was needed to prevent the disassembly of microcapsules caused by the loss of calcium 

ions that bind the alginate chains together.  According to the literature, this amount of calcium 

ions is low enough not to reduce the immunoaffinity of IgG61.  

The immobilization of human IgG was tested using MALDI-TOF-MS. First, analysis was 

carried out on a sample of pure human IgG and the mass spectra is shown in Figure 26. Two 

characteristic peaks, one at ~150 kDa attributed to m/z of singly charged protonated IgG 

[M+H]+, and another one at ~75 kDa attributed to m/z of doubly protonated IgG [M+2H]2+ 

(Figure 26a). The very small peak observed at ~100 kDa remains unidentified. The same 

analysis on underivatized microcapsules shows a broad peak, typical for polysaccharides 

resulting from different polymeric chains of alginate with different lengths, which appear at 

many different and overlapping values of m/z (Figure 26b). The analysis of microcapsules with 

human IgG immobilized on their outer surface with MALDI-TOF-MS is shown in Figure 26c 

and depicted the presence of both characteristic peaks (the broad peaks for alginate and the pair 

of narrow peaks for the IgG) in the spectrum. It was quite important that MALDI-TOF-MS 

signal come from the antibody that is covalently attached to microcapsules and not those bound 

a) 

Figure 25. CLSM transmission images (a) and fluorescent images (b) of alginate microcapsules 
covered with FITC-labeled chitosan. 

b) 
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non-specifically via adsorption which could possibly give a false positive signal. To make sure 

of the absence of non-covalently bound antibody on the surface of microcapsules, a control 

sample experiment was carried out by omitting the linking agent (glutaraldehyde) from the 
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Figure 26. MALDI-TOF-MS spectra of human IgG (a), alginate microcapsules (b) 
and human IgG immobilized on alginate microcapsules (c). 
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immobilization reaction process. The obtained MALDI-TOF-MS spectrum was identical to that 

of bare microcapsules confirming that the antibody is attached covalently (results not shown).  

3.6. Activity measurements 

Our goal is to maintain the activity of the enzyme after encapsulation of GOx and also 

after each modification step. By definition, the activity of an enzyme in terms of a “Unit (U)” is 

defined as the µmoles of substrate consumed in one minute. “The specific activity” is defined 

as the activity of the enzyme in units per one gram of enzyme’s protein content, i.e. U/g. The 

activity measurements were carried out using the oxygen electro-analysis technique described 

in Section 2.6. So for each activity measurement, a certain amount of microcapsules was 

carefully weighed and transferred to the oxygen electrode cell. It was assumed that all our 

solutions were naturally saturated with oxygen, i.e. 284 µM at 25˚C . The solution in the cell 

was buffered with acetate buffer (50 mM, pH 5.0) and an excess amount of glucose (50 mg/ml) 

was added. The Clark-Cell electrode monitors the percentage of oxygen as a function of time. 

As predicted, the amount of oxygen stayed constant before the addition of glucose which is a 

proof that the signal is stable and also that the instrument works well. The oxygen content started 

to decrease after the addition of glucose and the initial slope of this curve, where the substrate 

(oxygen) existed in a high concentration, indicated the initial rate of the reaction. According to 

the notions explained in Section 1.5.3, the initial rate of the reaction has the maximum value of 

reaction rate that is also proportional to the concentration of the enzyme. The slope of the curve 

(% of oxygen versus time) stays constant as long as the reaction rate stays constant. This slope, 

which is in fact the	ୢሾ୓మ	%ሿ
ୢ୲

	, can easily be converted to the	ୢሺஜ୫୭୪	୭୤	୥୪୳ୡ୭ୱୣሻ
ୢ୲

 by knowing the 

stoichiometry of the reaction and also knowing the total amount of dissolved oxygen at 100 % 

of saturation at the temperature of the experiment as follows. According to the stoichiometry of 

the glucose oxidation reaction, the glucose to O2 ratio is 1:1; therefore, the enzymatic activity 

in terms of consumed µmoles of glucose is equal to that for µmoles of O2. Also knowing that at 

25˚C, the concentration of dissolved O2 in a saturated solution is 284 µM, the slope can be 

transformed in to the 	ୢሺஜ୫୭୪	୭୤	୓మሻ
ୢ୲

 as shown in Equation 13, where V is the total volume of the 

solution in the oxygen electrode cell in milliliters. A typical curve showing the rate of oxygen 
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consumption is given in Figure 27. Control experiments were conducted with empty 

microcapsules (i.e. without GOx) and no reduction in oxygen content was observed, confirming 

that the presence of GOx is needed to reduce the O2 content. 

Equation 13   
ௗሺஜ௠௢௟	௢௙	ைమሻ

ௗ௧
ൌ ଶ଼ସ௏

ଵ଴଴଴
ൈ ௗሺ%ைమሻ

ௗ௧
 

To find the activity per gram of enzyme it was necessary to find out the total amount of 

the enzyme per unit of mass of microcapsules. In this regard, using the encapsulation efficiency, 

the total mass of encapsulated enzyme was divided by the total mass of obtained microcapsules 

in the same encapsulation batch. Performing the aforementioned method on five separate 

batches showed that with the applied encapsulation conditions, the amount of encapsulated 

enzyme is 0.82 ± 0.04 mg of enzyme per each gram of microcapsules.  

Figure 27. The oxygen content evolution in Clark-Cell oxygen electrode in the presence of 
alginate microcapsules. 
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The results of enzymatic activity measurements on free enzyme and on microcapsules 

after each modification step are given in Table 4. As can be seen, the enzymatic specific activity 

of GOx is reduced after its encapsulation in alginate microcapsules. This reduction can be due 

to the imprisonment of the enzyme in a confined space and being entangled in a network of 

alginate chains that possibly results in stabilizing certain conformations of the enzyme that are 

unfavorable for enzymatic activity. Moreover, once the enzyme is encapsulated, enzymatic 

activity is not merely dependent on the activity of the enzyme itself but also depends on the 

diffusion rate of the substrates (glucose and oxygen) through the microcapsule’s wall. The 

porosity and the thickness of the wall, as well as the density of the polymeric network inside the 

microcapsules are the factors that limit the accessibility of the substrates to the enzyme. All 

these unfavorable parameters have resulted in the reduction of enzymatic activity.  

Table 4. Activity measurements after each modification step on microcapsules. 

The second step of modification i.e. covering the microcapsules with chitosan also results 

in specific activity reduction. This event was also predictable since covering microcapsules with 

another layer will potentially decrease the porosity of the wall which as mentioned before could 

result in a lower diffusion rate for substrates. It was imagined that incubation of microcapsules 

overnight in a solution of chitosan may be accompanied by the gradual leaching of the enzyme 

out of microcapsules. So the incubation solution was assessed for protein by the Bradford 

method. The results did not show a significant leaching out of enzyme that could be detectable 

by Bradford method. Therefore, it was assumed that after the formation of microcapsules in 

Sample 
Specific Activity  

( U/ g
protein

) 

Free GOx enzyme (5.3±0.1)×104 

Encapsulated GOx in microcapsules (4.3±0.3)×102 

Encapsulated GOx in chitosan-modified microcapsules (1.3±0.2)×102 

Encapsulated GOx in chitosan-modified microcapsules after 
antibody immobilization 

(1.2±0.3)×102 
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calcium chloride bath and incubation for at least 30 minutes, the microcapsule’s wall becomes 

thick enough not to let the enzyme escape away from microcapsules.  

After the last modification step (i.e. immobilization of an antibody on microcapsules), it 

was expected that a decrease in enzymatic activity might be observable, which can be explained 

by two possible sources. One is the addition of another complex layer of biomolecules on the 

surface of microcapsules and another source is the use of glutaraldehyde during the 

immobilization step. As a small but highly reactive molecule, some glutaraldehyde can possibly 

diffuse into microcapsules and crosslink or handcuff the enzyme in some ways. But the 

reduction in enzymatic activity was observed to be really small and below the confidence 

interval of the measurement since a relatively low concentration of glutaraldehyde (0.25 % w/v) 

is used. Also, the amino groups on the surface of the microcapsules are more accessible for 

glutaraldehyde to react with rather than the enzyme inside microcapsules. It is also possible that 

the glutaraldehyde could crosslink chitosan, making it less porous to glucose. 

3.7. Summary 

In this chapter, it was demonstrated that GOx can be encapsulated in alginate 

microcapsules. Also the surface of such microcapsules can be functionalized and covered with 

an extra layer of chitosan to increase the mechanical stability of the capsules and to add amino 

groups required to subsequently link antibodies on the capsules. A successful immobilization of 

human IgG as a model antibody was confirmed by MALDI-TOF-MS. The enzymatic activity 

of GOx was measured after each step and the results showed that the enzyme have maintained 

its activity during the preparation of our designed platform. 



 
 

 

Chapter 4. Bacterial growth inhibition 
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4.1. General objectives 

The next step of our study, after the preparation and characterization of the proposed 

antibacterial platform consisted in the evaluation of the antibacterial properties of the 

microcapsules. Therefore, in the present chapter, the effect of the enzymatic activity (originated 

from encapsulated GOx in alginate microcapsules) on the growth of E. coli K-12, our model 

bacteria, is studied. Also the results and discussion of the inhibition of bacterial growth are 

brought to the attention of the readers.  

4.2. Inhibition of bacterial growth in a petri dish 

In preliminary studies, to evaluate the antibacterial properties of microcapsules containing 

GOx, 1.007 g of microcapsules containing GOx were spread on a sterilized paper disc (d=1.6 

cm) and placed at the central spot of a petri dish containing sterilized LB broth culture media 

with 2 % agar gel, 10 % glucose and a carpet of E. coli K-12 on top of the culture media (see 

Section 2.7.1) . For the control sample, 1.007 g of empty microcapsules (without GOx) were 

used on the central paper disc. In general, in the absence of any antibacterial activity, the bacteria 

will grow on the petri dish and as the result of the bacterial growth the culture media becomes 

turbid due to the optical density of the bacteria. In the presence of an antibacterial agent in any 

region on the petri dish, no bacterial growth near the region of antibacterial activity will occur 

thus, no turbid area is observable, which means the culture media stays transparent. In our 

experiment, after 16 hours of incubation at 37˚C, both petri dishes were observed visually to see 

the possible bacterial growth inhibition. The result is shown in Figure 28 and as can be seen, on 

petri dish with microcapsules containing GOx (Figure 28-right), a transparent halo had appeared 

around the paper disc showing that the bacteria was inhibited to grow in the region where there 

was some GOx. Apparently glucose (present in the culture media) was able to diffuse into 

microcapsules where it is engaged in the oxidation reaction thus producing some hydrogen 

peroxide that could diffuse away from the microcapsules. This amount of hydrogen peroxide 

was enough to prevent the bacterial growth in the vicinity of treated paper disc. While for the 

control experiment (Figure 28-left), since there was no GOx in the system and therefore no 

hydrogen peroxide production occurring, the bacteria were able to grow freely. 
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4.3. Growth inhibition threshold 

For further understanding of the antibacterial activity of our designed microcapsule-based 

platform we decided to analyze the inhibition of bacterial growth at a scale larger than a petri 

dish. Therefore, the growth inhibition was studied by monitoring the optical density of E. coli 

K-12 at 600 nm approximately once every 30 min during a time window of 24 hours. In this 

regard microcapsules containing GOx (providing a known amount of enzymatic activity) were 

added to the LB broth culture media according to the procedure described in Section 2.7.2.  

Since hydrogen peroxide is the antibacterial agent in our system and it is produced 

gradually in the media and on the other hand E. coli growth is a dynamic process of living cells, 

in presence of some enzymatic activity, the bacterial growth is assumed to be a function of 

different factors. The bacteria are growing while consuming the glucose as a nutrient, and on 

the opposite side while the enzyme is still active, we will have a constant consumption of glucose 

and a constant production of hydrogen peroxide which is then consumed to decompose the 

bacteria. Since the bacteria are living cells, they are trying to grow; therefore, at each certain 

time-point the total population of the bacteria is a function of their growth rate and their 

decomposition rate.  

Figure 28. Bacterial Growth inhibition on petri dish with microcapsules containing glucose 
oxidase (right) and microcapsules without glucose oxidase (left) applied to a 2 cm2 paper 

disc placed at the centre of the petri dish. 
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It was obviously assumed that there would be a threshold for the amount of enzymatic 

activity in the system that can effectively inhibit the bacterial growth of a certain initial number 

of bacteria. To find the optimized enzymatic activity or in other words, to find the threshold 

which can also be defined as the “optimal effective enzymatic activity”, different concentrations 

(as U/ml) of free GOx were tested while keeping the initial concentration of E. coli cells 

constant. In a set of parallel experiments, 100 µl of a saturated solution of E. coli K-12 

(previously cultivated in LB broth culture media and incubated in 37˚C for 16 hours) was added 

to LB broth culture media through the experimental set up and conditions as described in Section 

2.7.2.3. Knowing that the saturated cellular concentration of E. coli in LB broth culture media 

is approximately 6.7×109 cells/ml66, the 100 µl amount of bacteria in our experiment provides 

6.7×108 cells/ml of E. coli. The enzymatic activity was created by adding GOx ranging from 0 

to 1.9×10-2 U/ml in different culture batches while keeping the initial amount of bacteria 

constant. The bacterial growth in all batches was observed and plotted as shown in Figure 29. 

Figure 29. Effective enzymatic activity threshold inhibiting bacterial growth for six different 
concentrations (in U/ml) of free GOx. 
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 The sample containing 0 U/ml, is considered as the control sample which demonstrate the 

normal growth of E. coli. and reached the stationary phase of bacteria’s life cycle in about 4.8 

hours after the incubation at 37˚C. As can be seen in Figure 29, normal bacterial growth 

exponential phase faces a difficulty to initiate and therefore a relatively large lag phase was 

observed in presence of enzymatic activity or more precisely, the production of hydrogen 

peroxide in culture media. Consequently, at 0.9×10-2 U/ml of free GOx, the stationary phase 

was attained after approximately 6.5 hours. Similarly, 1.1×10-2 U/ml of free GOx activity will 

delay the growth even more and the stationary phase appeared 7.5 hours after the start of 

incubation. Surprisingly, at 1.3×10-2 U/ml the bacteria had a real problem for growth and with 

a relatively large delay (in comparison with lower amounts of enzymatic activity in the culture 

media), the stationary phase appeared after 12 hours of incubation. For the samples containing 

higher enzymatic activity i.e. for the samples containing 1.5×10-2, 1.7×10-2 and 1.9×10-2 U/ml 

no growth was observed which means apparently the bacteria’s decomposition rate is larger than 

their growth rate. In this case either the bacteria decomposed totally at earlier stages or the 

population is kept so low that it could not enter the exponential growth phase.  Therefore, 

1.3×10-2 U/ml was considered as the maximum enzymatic activity that E. coli K-12 could 

tolerate and grow, although with relative difficulty.  

Moreover, besides exerting a lag in bacterial growth, the presence of enzyme with a certain 

activity was observed to have an adverse effect on the growth rate during the exponential growth 

phase of the bacteria’s life cycle. To evaluate this, the slope of growth was calculated by linear 

regression for each exponential growth phase and the trend lines are presented in Figure 30. As 

can be seen from the slopes, the rate of growth is another factor that can be affected by the 

presence of some enzymatic activity in the culture media. With an increase in the enzymatic 

GOx activity from 0 to 1.3×10-2 U/ml, the slope decreases consequently showing that the 

decomposition rate exceeds the growth rate accordingly.  

To summarize this part of the study, we can conclude that the presence of enzymatic 

activity on bacterial growth showed a total inhibition effect for concentrations of GOx 

corresponding to activity of more than 1.3×10-2 U/ml and also showed a delaying effect that 

increased with GOx. This delay on the time the bacteria’s life cycle reaches its stationary state 
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was observed to be partly as a result of elongation in the bacteria’s lag phase and also as a 

decrease in the slope of the exponential growth phase. It should be mentioned that the optical 

densities of the culture media for all batches were checked after 24 hours and the condition of 

all samples had stayed the same as what had been measured after 12 hours. 

To check the reproducibility of the system and also to see if our antibacterial 

microcapsules behave in the same manner as free enzyme, the following four different samples 

(each repeated in triplicate) were prepared and analyzed: i) a control sample with zero enzymatic 

activity i.e. no free GOx; ii) a sample containing 1.3×10-2 U/ml generating from free GOx; iii) 

a sample containing 1.3×10-2 U/ml generating from our antibacterial microcapsules; and iv) a 

sample containing 1.9×10-2 U/ml generating from our antibacterial microcapsules. All twelve 

samples were incubated with E. coli K-12 under the same conditions as previously mentioned 

in the current section.  The result of optical density monitoring at different time points for all 

four samples including their error bars (SD, n=3) are presented in Figure 31. As was expected 

for the first sample, normal growth was observed because no enzymatic activity and thus no 

Figure 30. Linear regression of the exponential growth phase from the graphs in Figure 29 for 
free GOx. 
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hydrogen peroxide was present to meddle with bacterial growth. The bacteria in the second 

sample (containing free GOx with enzymatic activity equal to the determined threshold) 

succeeded to grow after approximately 12 hours. Although the third sample contained the 

threshold amount of enzymatic activity, the encapsulated enzyme showed slightly less inhibition 

than the free enzyme for the equivalent enzymatic activity. Such behavior could be possibly due 

to the imperfection of experimental conditions. It was observed that through the incubation and 

strong agitation of the incubation vessel (an Erlenmeyer), some of the microcapsules adhere to 

the inner wall of the vessel therefore these microcapsules may not contribute to the total 

enzymatic activity of the solution. For the forth series of samples containing encapsulated GOx 

at 1.9×10-2 U/ml, since the enzymatic activity in the culture media is higher than the threshold 

determined in Figure 29 for inhibition, no bacterial growth was observed, as expected. Also, 

and the adhesion of microcapsules to the inner wall of the vessel, is not effective enough to 

reduce the enzymatic activity inside the solution to a level below threshold. Thus, our designed 

microcapsules have depicted the expected antibacterial properties above the aforementioned 

threshold.  
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Another step for optimizing the bacterial growth inhibition is to find the initial number of 

bacteria that could not grow in the presence of a certain level of enzymatic activity and thus the 

generated hydrogen peroxide. Therefore, in another series of experiments, the enzymatic activity 

was kept at constant value of 1.9×10-2 U/ml and different initial amounts of E. coli K-12 ranging 

from 0.67×109 to 3.0×109 cells/ml were tested for growth. The results, which are given in Figure 

32 demonstrate that a population of 0.67×109 cells/ml E. coli bacteria sample could not grow in 

the presence of 19 mU/ml GOx whereas a larger initial population were able to grow. However, 

a relative delay in bacterial growth was observed proportional to the initial amount of the 

bacteria. 

4.4. Summary 

In this chapter, the antibacterial properties of our designed platform was verified against 

E. coli K-12 as a model pathogen. Preliminarily, a successful inhibition of bacterial growth was 

observed in a petri dish. furthermore, the detail of this bacterial growth inhibition was studied 
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by monitoring the optical density of the culture media which represented the number of bacteria 

at different time points of bacterial growth. In this regard a threshold of enzymatic activity in 

the media was found to be effective to prevent certain initial amount of bacteria from growing. 

Similarly, the minimum initial amount of bacteria that could grow at certain amount of 

enzymatic activity was also determined. 

 



 
 

 

Chapter 5. Immobilization of glucose oxidase on gold 

nanoparticles
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5.1. General objectives 

Since the encapsulation of GOx in alginate microcapsules results in reduction of its 

activity and losses in enzyme during the encapsulation procedure (see Section 3.6), we evaluated 

the immobilization of the GOx on gold NPs prior to its encapsulation. Our hypothesis is that 

enzyme immobilization on gold NPs could possibly increase the enzymatic activity and 

potentially compensate the activity loss in the microcapsules. This idea is based on the 

assumption that immobilization of enzyme molecules on massive gold NPs could possibly 

reduce the mobility of the enzyme and thus could reduce the diffusion of the enzyme at early 

stages of encapsulation while the thickness of the microcapsules’ wall is not large enough to 

prevent the loss of enzyme in the calcium chloride bath. Another advantage could be an increase 

in the enzyme’s shelf life and thermostability that can be considered as an asset in preparation 

of a durable antibacterial paper that maintains its properties on larger time scales as well as being 

operative in wider range of temperatures. 

5.2. Introduction 

Recently, metal NPs, especially gold NPs, have played an extensive role in biochemistry 

and biomedical research because of their high reactivity to living cells (in terms of translocation 

into the cells) , their large surface area to volume ratio, their various sizes and shapes and most 

importantly their stability at high temperatures68. In comparison with other metals, gold NPs are 

most preferable for applications such as drug and gene delivery, due to their inertness and lower 

cytotoxicity. All these applications are feasible through a bioconjugation process in which 

biomolecules are attached to gold NPs via a bifunctional ligand68. In the case of GOx, a 

bioconjugation method was proposed in which gold NPs are functionalized by carboxyl 

terminated thiol groups (HS—R—COOH) i.e. using mercaptoundecanoic acid (MUA). It has 

also been shown that thermostability of the enzyme is enhanced once it is immobilized on gold 

NPs (d=20 nm)69. Meanwhile, another study showed the same immobilization process of GOx 

on gold NPs (d=5 nm) will enhance the  enzymatic activity greatly as well as its shelf life70. The 

same study showed a lower value of Michealis-Menten constant (Km) for the immobilized 

enzyme compared to that of the free enzyme and an enhancement of 1.56-fold in the enzymatic 
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affinity was found. The enhancement in thermostability of GOx was also shown using 

bioconjugation of this enzyme on gold nanorods71. However, a very recent study yielded 

completely different results, showing that the immobilization of GOx on gold NPs (d=37 nm) 

has an adverse effect on enzymatic activity. This decrease was explained by a decrease in the 

percentage of the enzyme’s α-helix conformation, which contributes to its enzymatic activity 

once it is attached to the surface of gold NPs. It seems that the closer to the surface of the 

nanoparticle the enzyme is, the lower the activity becomes72.  

5.3. Methods 

5.3.1. Preparation of thiol-modified gold nanoparticles 

The synthesis of gold NPs was carried out using the conventional Turkevich method73 

which includes the reduction of hydrogen tetrachloroaurate (III) (HAuCl4.3H2O, Sigma-

Aldrich) using trisodium citrate dihydrate (Sigma-Aldrich) through reaction presented in 

Equation 14 and heating the solution to the boiling point. Citrate ions also act as the stabilizing 

agent for gold NPs which prevents them from forming aggregates. All glassware was rinsed 

with Aqua Regia (a 1:3-mixture of nitric acid and hydrochloric acid) followed by rinsing with 

MilliQ water to remove all traces of metallic contaminations. These NPs were then incubated 

overnight in a solution of MUA in ethanol to undergo a process of ligand exchange during which 

citrate is replaced with MUA to give thiol-modified gold NPs for further reactions. NPs were 

removed from the solution by centrifugation followed by several washes with ethanol and re-

dispersion in phosphate buffer (10mM, pH 6.8 with 0.2 mg/ml Tween-20). 

Equation 14 2	݈ܥݑܣܪସ 	൅ 	4	ܰܽଷܥଷܪହܱ଻ → ଶܪ ൅ ଴ݑܣ	2 ൅ ଶܱܥ	4 ൅ ହܱହܪହܥܽܰ	4 ൅  ݈ܥܽܰ	8

5.3.2. Immobilization of glucose oxidase on gold nanoparticles 

Immobilization of GOx on thiol-modified gold NPs was carried out based on a coupling 

reaction using N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide (EDC) activation and N-

hydroxy-succinimide (NHS). A summary of the whole process is schematically illustrated in 

Figure 33 69. A sample of 1.0 mg of the NPs were reacted with a freshly prepared solution of 50 
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mM NHS and 200mM EDC for 10 min. Then, NHS-terminated gold NPs were separated from 

the reaction solution by centrifugation (at 8000 rpm for 10 min) and washed with phosphate 

buffer (10 mM, pH 6.8, with 0.2 mg/ml Tween-20) several times. The NHS-terminated gold 

NPs were then incubated with 0.8 mg/ml GOx in phosphate buffer (10 mM, pH 6.8) overnight 

under argon atmosphere. The mixture was then centrifuged to discard free GOx which remains 

in the supernatant and washed by phosphate buffer, and re-dispersed in the same buffer for 

further analysis. The detail of this series of reactions is given in Figure 34. 

Figure 33. Schematic illustration of enzyme immobilization on gold nanoparticles 
(adapted from reference 69). 

Glucose oxidase 

Figure 34. Mechanism of the reactions resulting in immobilization of glucose oxidase on 
thiol-modified gold nanoparticles. 
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5.4. Enzymatic activity measurements 

Several attempts were made to measure the enzymatic activity of GOx immobilized on 

gold NPs using the oxygen electroanalysis method described in Section 2.6.1. This method was 

found to be practically impossible as a result of the strong aggregation of NPs observed in the 

Clark-Cell and also due to relatively low sensitivity of this technique. We therefore, used the 

spectrophotometric method of horseradish peroxidase (HRP) and its substrate, 3,3′-

dimethoxybenzidine (o-dianisidine). In this method, glucose is oxidized in the presence of GOx 

which produces hydrogen peroxide (Equation 1). Then, hydrogen peroxide is used rapidly to 

oxidize o-dianisidine through an enzymatically catalyzed reaction using HRP to form the 

oxidized dimer form of o-dianisidine which absorbs visible light at λmax= 455 nm, as shown in 

Equation 15. The details of this reaction are schematically illustrated in Figure 3574. Typically, 

to measure the enzymatic activity, 2.5 ml of a solution of 0.33mM of o-dianisidine in phosphate 

buffer (0.1 M pH 6.8), 0.1 ml of a solution of 0.02 % HRP and 0.3 ml of 18 % glucose solution 

were mixed in a spectrophotometric cell and then a certain amount of GOx bound to gold NPs 

solution was added and the absorbance evolution was observed as a function of time at 455 nm. 

Equation 15 ܪଶܱଶ ൅ ݋ െ ሻ݀݁ܿݑ݀݁ݎሺ	݁݊݅݀݅ݏ݅݊ܽ݅݀ → ଶܱܪ ൅ ݋	 െ  ሻ݀݁ݖ݅݀݅ݔ݋ሺ	݁݊݅݀݅ݏ݅݊ܽ݅݀

Figure 35. The reaction scheme of peroxidase oxidation of o-dianisidine (reproduced from 
reference 74). 
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To calculate the enzymatic activity, after plotting the evolution of absorbance (A) versus 

time as shown in Figure 36, the slope of the linear part of the curve (at early stages of the 

reaction) is determined which corresponds to the enzymatic activity of GOx as follows: the slope 

of the curve corresponds to 
೩ಲ೚ష೏೔ೌ	ሺ೚ೣሻ

೩೟
	ሺ௠௜௡షభሻ, knowing that ε, the extinction coefficient for the 

oxidized form of o-dianisidine at 455 nm equals to 11300 (M-1cm-1)75 and the thickness of the 

spectrophotometric cell which represents the light path (b) equals 1 cm, on the basis of the Beer-

Lambert law (A= ε.b.C) the slope can easily be converted to ೩ሾ೚ష೏೔ೌ	ሺ೚ೣሻሿ
೩೟

	ሺெ	௠௜௡షభሻ and by taking 

the stoichiometry of the reactions into consideration (Equation 1 and Equation 15), we can 

conclude that: 

Equation 16  ೩ሾ೚ష೏೔ೌ	ሺ೚ೣሻሿ
೩೟

	ሺெ	௠௜௡షభሻୀି
೩ሾಹమೀమሿ

೩೟
	ሺெ	௠௜௡షభሻୀష೩ሾ೒೗ೠ೎೚ೞ೐ሿ೩೟ 	ሺಾ	೘೔೙షభሻ  

And since the total volume of the solutions in the spectrophotometric cell, V(ml) is also a known 

parameter, therefore, the enzymatic activity can be determined from Equation 17 as follows:   

Equation 17 Enzymatic activity (µmoles of glucose/min) ൌ
௏௱ሾ௚௟௨௖௢௦௘ሿ

ଵ଴଴଴௱௧
ൌ ௱ሾஜ	௠௢௟௘௦	௢௙	௚௟௨௖௢௦௘ሿ

௱௧
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5.5. Results and discussion 

5.5.1. Preparation of gold nanoparticles  

In our study, two sets of gold NPs having different sizes were tested for the GOx 

immobilization. The first set of gold NPs had an average diameter of 10.9±1.8 nm (Figure 37). 

The average diameter and size distribution for these gold NPs (Figure 39) that were prepared 

using the method described in Section 5.3.1 were determined using transmission electron 

microscopy (TEM). The UV-Vis extinction spectra is also provided in Figure 38. The other set 

was gold NPs of ~50 nm in diameter. The approximate diameter of these NPs was determined 

from its UV-Vis extinction spectra by finding the ratio of its absorbance value at λSPR to the 

absorbance value at 450 nm and by comparing the calculated ratio with the values mentioned in 

the literature. This method of size determination was developed by Haiss et al.76 in 2007. The 

UV-Vis extinction spectra (Figure 40) of such NPs was obtained and the ratio A527nm/A450nm 

yields the value equal to 2.03 which determines the average diameter of 50 nm for this sample 

of gold NPs.  

Figure 37. TEM image of gold NPs of d=10.9 nm. 
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Figure 39. Histogram of gold NPs’ size distribution with average diameter equal to 10.9 nm 
as determined by TEM image treatment. 
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Gold NPs with an average diameter of 10.9 nm were prepared according to the method 

explained in Section 5.3.1 and a batch of gold NPs with an average diameter of 50 nm was 

provided by Dr. Jean-François Masson’s research laboratories at Université de Montréal. After 

functionalizing these two sets of gold NPs with MUA, we used them for GOx immobilization. 

To be able to calculate the enzymatic activity, it was necessary to determine the amount of 

enzyme that could possibly be immobilized on gold NPs. For this, a Bradford protein assay was 

used to analyze the enzyme solution before and after the incubation step with the NPs. After the 

incubation and centrifugation steps, samples were taken from the supernatant for quantification 

of the amount of the enzyme which stayed unreacted and free in the solution. It is evident that 

the difference of those two amount indicate the amount of immobilized enzyme on NPs (the 

results are presented and discussed in Sections 5.5.2 and 5.5.3). The NPs were then redispersed 

in phosphate buffer (10 mM, pH 5.8) for storage at 4˚C. These NPs were consequently observed 

by TEM, their zeta potential (ξ) was measured and their enzymatic activity was determined 

using HRP/o-dianisidine spectrophotometric method. 
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5.5.2. Immobilization of glucose oxidase on gold nanoparticles with average 

diameter of 10.9 nm 

In the enzyme immobilization process, three samples of gold NPs (d=10.9 nm) were tested 

including a control sample for which the linking reactants (EDC/NHS) were eliminated to see 

if the enzyme could be physically adsorbed on the surface of gold NPs. The details of these 

samples are given in Table 5 along with the amount of the enzyme immobilized as determined 

by performing the Bradford protein assay on the enzyme solution before and after incubation 

with gold NPs. Although it could be expected that a sample with more NPs provides more 

surface available for the enzyme to be immobilized, it was observed that lower amounts of 

protein were immobilized. This observation suggests that a single enzyme molecule is possibly 

attached to more than one nanoparticle when high concentrations of NPs were used in the 

incubation step. As we will see, this results in a deactivation of the enzyme. 

Table 5. Immobilized enzyme content on gold NPs of d=10.9 nm. 

The results from activity measurements, which were obtained using HRP/o-dianisidine 

spectrophotometric method are given in Table 6. Surprisingly, a very low specific activity was 

observed for the enzyme immobilized on gold NPs of d=10.9 nm compared to free enzyme. 

Moreover, the specific activity (U/g of protein) for the sample using larger amount of NPs was 

higher than that of the sample with smaller amount of NPs. Regardless of this difference in 

specific activity, both of these two values are very much lower than the activity of free enzyme. 

One possible explanation for this observation could be the denaturation of the enzyme during 

S
am

p
le 

Description 

Enzyme content in solution (mg), n=3 Total 
immobilized  
enzyme (mg) 

Efficiency 
(%) 

Before incubation  After incubation  

1  0.46 mg of gold NPs 18.16±0.06 17.19±0.02 1.01±0.08 5.6±0.5 

2  0.10 mg of gold NPs 15.84±0.04 9.44±0.02 6.42±0.06 40.5±0.5 

3 
 0.10 mg of gold NPs 
 Control without EDC/NHS 

17.01±0.02 17.03±0.02 - - 
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the immobilization process. The favorable conformation for the enzymatic activity of GOx 

could undergo certain changes that may have resulted in a reduction in enzymatic activity. 

Another possible explanation could be based on the proximity of the size of  GOx (d=4.3 nm)77 

to the size of NPs (d= 10.9 nm). Since the enzyme’s size is close to the nanoparticle’s size, there 

is a chance of having a very few number of immobilized enzyme per a single nanoparticle. Also 

there is a possibility that a single enzyme attaches to two or more NPs, exerting some unwanted 

interactions that may alter the favorable conformation of the enzyme which ends up in a decrease 

in enzymatic activity. This hypothesis is also justified by studying the UV-Vis spectra of gold 

NPs before and after immobilization of GOx. As can be seen in Figure 38, the λSPR of gold NPs 

shifted to larger wavelengths and this redshift of 58 nm is accompanied by the λSPR peak 

broadening which can be a proof to the fact that the immobilization of the enzyme resulted in 

coalescence of gold NPs. The coalescence of gold NPs creates agglomerations of particles with 

different sizes whose size distribution contributes to the λSPR peak broadening. In fact, by 

attaching to two or more particles, the enzyme could act as a chemical glue for the gold NPs. In 

order to evaluate these possibilities, another sample of gold NPs with a larger size was used to 

carry out the immobilization. 

Table 6. Enzymatic activity measurements for free glucose oxidase and different nanoparticle 
samples of d=10.9 nm. 

Sample Description 
Specific enzymatic activity  

(U/g of protein), n=3 

0 Free GOx (13.2±0.2)×104 

1  0.46 mg of gold NPs (8.1±0.5)×101 

2  0.10 mg of gold NPs 7.4±0.3 

3  0.10 mg of gold NPs 
 Control without EDC/NHS 

No activity observed 
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5.5.3. Immobilization of glucose oxidase on gold nanoparticles with average 

diameter of ≈50 nm 

A set of three samples was prepared and tested with these gold NPs and the amount of the 

enzyme immobilized in each sample was determined by performing the Bradford protein assay 

on the enzyme solution before and after incubation of gold NPs (Table 7). Similar to the previous 

set, for the sample with more NPs in incubation step, it was observed that smaller amount of 

protein was immobilized comparing to the sample with smaller quantity of NPs. As previously 

observed in the study GOx immobilization on smaller gold NPs (Section 5.5.2), here again the 

idea that a single enzyme molecule can possibly attach to more than one NP  and thus, possible 

coalescence of NPs could be suggested. However, the amount of coalescence is not as large as 

in the case of smaller gold NPs because the UV-Vis extinction spectra of such gold NPs  in 

Figure 40 (after immobilization of GOx) does not show a significant redshift or peak broadening 

in comparison with that of the gold NPs of d=10.9 nm (Figure 38) . No significant differences 

in protein content was found before and after incubation for the sample without using EDC/NHS 

showing that the enzyme was not immobilized without anchoring group. 

Table 7. Immobilized enzyme content on gold NPs of d≈50 nm. 

The results of the activity measurements for these three samples are given in Table 8. As 

can be seen, sample 1 which has higher amount of NPs (and also contains smaller amount of 

immobilized enzyme) shows a significant value of specific enzymatic activity comparing to 

sample 2 that has smaller amount of NPs (and also contains more immobilized enzyme). Also 

in comparison with sample 1 of the previous set in Section 5.5.2 (that contains same mass of 

S
am

p
le 

Description 
Enzyme content in solution (mg), n=3 Total 

immobilized  
enzyme (mg) 

Efficiency 
(%) 

Before incubation  After incubation 

1  0.46 mg of gold NPs 17.24±0.05 16.27±0.03 0.97±0.08 5.6±0.5 

2  0.10 mg of gold NPs 14.45±0.05 10.30±0.04 4.15±0.09 28.7±0.7 

3 
 0.10 mg of gold NPs 
 Control without EDC/NHS 

16.64±0.03 16.68±0.07 - - 
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NPs with smaller size), this sample exhibits a larger value of enzymatic activity. This 

observation suggests that greater coalescence phenomenon occurs in case of immobilization of 

GOx on smaller gold NPs. A higher coalescence results in a lower enzymatic activity due to the 

smaller diffusion rate of substrate to the active sites of the enzyme when the aggregation of NPs 

happens. But regardless of such an improved activity by just increasing the size of gold NPs, 

there is still a big difference between the activity of free enzyme and immobilized enzyme which 

is totally unfavorable to our need. Possibly in certain cases, the enhanced thermostability and 

increased shelf life of the GOx after immobilization on gold NPs (as stated in previous studies69-

71) could be tempting to use this combination (nanoparticle-enzyme) in the encapsulation 

process. For sample 3 (the control sample without using reagents EDC/NHS in incubation step), 

no significant enzymatic activity was observed. Further details on the properties of gold NPs 

after the modification steps are required to understand the changes in the NPs’ surface. 

Table 8. Enzymatic activity measurements for free glucose oxidase and different nanoparticle 
samples of d≈50 nm. 

The effect of immobilization of GOx on a wavelength which corresponds to the NPs’ 

Surface Plasmon Resonance (SPR) was also observable in UV-Vis extinction spectra of NPs 

after the immobilization step. As can be seen in Figure 40 the λSPR of gold NPs undergoes a red 

shift of 12 nm comparing to the λSPR of gold NPs stabilized by citrate and is one of the proofs 

that the chemistry of the surface of gold NPs have changed.  

Sample Description 
Specific enzymatic activity  

(U/g of protein), n=3 

0 Free GOx (13.2±0.2)×104 

1  0.46 mg of gold NPs 
 Normal reaction conditions 

(11.2±0.3)×102 

2  0.10 mg of gold NPs 
 Normal reaction conditions 

(17.7±0.6)×101 

3  0.10 mg of gold NPs 
 Reaction without EDC/NHS 

No activity observed 
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Imaging of gold NPs covered with MUA and GOx immobilized-gold NPs (Figure 41(a) 

and (b) respectively) were acquired using transmission electronic microscopy (TEM). As can be 

seen in Figure 41(b) , a semi-transparent layer of the enzyme covers the NPs which forms 

structures known as the “fried egg”. For further confirmation of the presence of the enzyme 

attached to NPs, a few drops of silver nitrate (1 % w/v) had been added to the TEM grid in both 

images in  Figure 41 and as the result of reduction of silver ions to Ag0 by oxidative amino acids 

present in the protein, tiny NPs of silver are formed in areas which the enzyme exists unlike for 

the grid containing gold NPs with MUA in Figure 41(a). These Ag NPs are more visible in 

Figure 42(a), which is a magnified image of Figure 41(b) and the energy-dispersive X-ray 

Figure 41. TEM images of gold nanoparticles with MUA (a) and  gold nanoparticles with 
immobilized glucose oxidase (b). 

(a)                                                                (b) 

Magnified zone  

Figure 42. Magnified TEM image of glucose oxidase- immobilized gold nanoparticles (a) and 
EDS of the specified region (b) . 

EDS 

   (a)                                                   (b) 
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spectra (EDS) of the specified region on the photo is presented in Figure 42(b) confirming the 

presence of silver element around each gold NPs which gives a peak at ~3KeV in the spectra. It 

should be noted that the addition of silver nitrate solution on conventional copper-made TEM 

grids was impossible due to the oxidation and therefore corrosion of copper grids by silver ions. 

So in order to prevent this, we had to use TEM grids made of gold. 

Another way to follow the surface modification of gold NPs is to measure the zeta 

potential (ξ) of these particles. The zeta potential for this set of gold NPs were also measured 

and in a DTS1070 disposable capillary cell using a Malvern Zetasizer Nano ZS instrument and 

the results are given in Table 9. The zeta potential is a parameter which shows how strongly 

ions of opposite charge are bound to the charged surface to form a charged layer. This layer of 

ions with opposite charge plays an important role to stabilize gold NPs in the solution and 

prevent them from aggregation and therefore precipitation because a strongly-bound charged 

layer will repulse other particles with the same charge and that is why the particles could never 

get close enough to each other to form a larger aggregate of solid that could precipitate.  

Table 9. Zeta potential measurements of different gold NPs samples of d≈50 nm. 

In our case it was observed that gold NPs covered with MUA have a zeta potential value 

of -35.9 mV, which explains a relative stability of these gold NPs in a solution at pH 5.8 (10 

mM phosphate, pH 6.8, 0.2 mg/ml Tween-20) compared to the samples with immobilized GOx. 

This stability results from the carboxyl group at the end of MUA which covers the NPs. This 

Sample Description Zeta potential (mV) (n=3) 

0 Gold NPs-MUA (in phosphate 10mM, pH 6.8, 0.2 mg/ml 
Tween-20) 

-35.9±0.1 

1 
Gold NPs-enzyme (in phosphate 10mM, pH 5.8)  
Immobilization conditions: 
 0.46 mg of gold NPs 

-4.0±0.9 

2 
Gold NPs-enzyme (in phosphate 10mM, pH 5.8)  
Immobilization conditions: 
 0.10 mg of gold NPs 

-5.6±0.9 

3 
Gold NPs-enzyme (in phosphate 10mM, pH 5.8)  
Immobilization conditions: 
 0.10 mg of gold NPs (Control without EDC/NHS) 

-9.4±0.9 
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carboxylic acid is a highly polar functional group and also dissociable to form carboxylate ion 

which is negatively charged. Another reason for this large value of zeta potential was the use of 

Tween-20 as a non-ionic surfactant which creates extra stability69. After the immobilization of 

the enzyme on gold NPs the zeta potential decreases to values close to zero. Such a low value 

for zeta potential could be another factor for a decrease in enzymatic activity. Since the particles 

have low stability in solution and they tend to form aggregates, the active site of the enzyme 

may not be easily accessible for the substrates and also the slow diffusion of the substrate on the 

aggregates could result in a decrease in enzymatic activity of GOx.  

To study the effect of zeta potential on enzymatic activity, it was suggested that we first 

increase the stability of NPs. Since we were dealing with an enzyme, the use of Tween-20 as a 

non-ionic surfactant was not recommended since it may alter the activity of the enzyme directly 

by stabilizing certain conformations. Another choice was to increase the pH to increase the 

negative charge on GOx (knowing that the isoelectric point of this enzyme is 4.278). According 

to the targeted application of these gold NPs, which is to use them in the encapsulation process, 

the maximum pH that can be reached is at pH 7.0 since calcium ions could potentially produce 

precipitation of calcium hydroxide at alkaline pH values. Another set of NPs was prepared using 

the same conditions as sample 1 in the previous set (0.46 mg of gold NPs incubated with GOx) 

and this time the particles were dispersed in phosphate buffer (10 mM, pH 6.8). Subsequently, 

the activity and zeta potential were measured at pH 6.8 as shown in Table 10. 

Table 10. Zeta potential and enzymatic activity of glucose oxidase immobilized- gold NPs of 
d≈50 nm. 

Sample Description 
Zeta potential (mV) 

(n=3) 

Enzymatic activity 
(U/g of enzyme) 

(n=3) 

1 

Gold NPs-enzyme (in phosphate 10mM, pH 5.8)  
Immobilization conditions: 
 0.46 mg of gold NPs 
 Normal reaction conditions 

-4.0±0.9 (11.2±0.3)×102 

2 

Gold NPs-enzyme (in phosphate 10mM, pH 6.8)  
Immobilization conditions: 
 0.46 mg of gold NPs 
 Normal reaction conditions 

-25.4±0.2 (25.7±0.7)×102 
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The results, given in show that the zeta potential has increased by increasing pH to 6.8. In 

addition, the enzymatic activity is also nearly doubled comparing to pH 5.8. In fact, this 

observation supports the that the enzymatic activity decreases by increasing the chance of 

aggregation of NPs. It should also be noted that that the enzymatic activity itself is pH 

dependent. The optimum pH for GOx is 5.5 and by increasing the pH to 6.8 the enzymatic 

activity decreases about 10 % of the maximum activity69. However, apparently avoiding the 

aggregation is much more effective in increasing the enzymatic activity. But in a larger 

viewpoint, the immobilization of GOx on gold NPs under these conditions results in a significant 

decrease in enzymatic activity which is unfavorable for our application of encapsulation 

purposes. As mentioned earlier, since the previous studies have shown a better thermostability 

and shelf life of immobilized enzyme on gold NPs, the encapsulation of such a combination is 

subject to a debate, whether the increased thermostability will compensate the significant losses 

in enzymatic activity or not. 

5.6. Summary 

To conclude this section, the immobilization of GOx on gold NPs, although successful, 

did not provide the expected increase in activity. While it may help to increase the 

thermostability and shelf life of GOx, the immobilization on NPs will need to be improved to 

achieve high enzymatic activity before these enzyme immobilized-gold NPs can be applied to 

the encapsulation process. After the immobilization of GOx on gold NPs, the results of 

enzymatic activity measurements showed a decrease in enzymatic activity of GOx due to two 

main reasons. First the possible conformation change of the enzyme and second the coalescence 

of the gold NPs in which the enzyme acted as a chemical glue to aggregate the gold NPs. The 

latter’s effect is more significant once the immobilization of the enzyme is done on gold NPs 

with a size close to the size of GOx itself.  
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The present research aimed at investigating the possibility of GOx encapsulation and the 

immobilization of antibodies on the outer surface of alginate microcapsules to construct an 

antibacterial platform for paper coating and finally for the preparation of bioactive paper in 

larger scales which has the ability to capture the pathogens and to deactivate them using the 

chemical anti-pathogenic agent, hydrogen peroxidase, produced inside microcapsules by GOx 

activity. 

Throughout this study it has been demonstrated that GOx can be encapsulated in alginate 

microcapsules using the vibrational break up of laminar flow encapsulation technique and 

stabilization of microcapsules in a calcium chloride bath presenting the encapsulation efficiency 

of 47 % while maintaining some of the enzymatic activity. These microcapsules have an average 

diameter of 120±20 µm and their size distribution was obtained using traditional optical 

microscope. Since the surface of alginate microcapsules does not contain a significantly 

chemically active group, they could easily be covered with another layer composed of chitosan 

using the ionotropic affinity between these two polymers. Chitosan contains amino groups 

which can be used for further modifications. This successful coverage was monitored by 

elemental analysis which showed the presence of nitrogen in the structure of microcapsules that 

can only be found in the structure of chitosan since alginate does not contain nitrogen. Also 

chitosan coverage was observable by using FITC-labeled chitosan that produced a fluorescent 

signal in laser scanning microscopy. Human IgG was chosen as a model antibody to check the 

possibility of immobilization of antibodies on the outer surface of microcapsules using the 

glutaraldehyde coupling reaction. To demonstrate the successful immobilization, MALDI-TOF-

MS was used and the superimposition of two distinctive peaks of the antibody with the broad 

peak resulting from the polysaccharide structure of microcapsules was observable showing the 

covalent immobilization of human IgG on microcapsules. To measure the enzymatic activity of 

our designed platform, oxygen electroanalysis was used after the enzyme encapsulation and also 

after each modification step. Although the results show a decrease in enzymatic activity 

especially after encapsulation of GOx, we were able to maintain some of its activity showing 

that our approach has been successful to prepare the desired immobilization platform and we 

expect it to be adaptable to various enzyme-antibody combinations. 
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To verify the antibacterial properties of our designed platform, E. coli K-12 was chosen 

as a model pathogen. Preliminary observation of bacterial growth inhibition was made by its 

cultivation in LB broth culture media in a petri dish and the emergence of transparent halo 

around the central spot where the microcapsules were placed depicted successful bacterial 

growth inhibition. The detail of this bacterial growth inhibition was studied using optical density 

measurements of the culture media at different time points in order to determine a threshold of 

enzymatic activity with which we are able to inhibit bacterial growth. This threshold was found 

to be 1.3×10-2 U/ml for E. coli K-12 growth inhibition of 6.7×108 cells/ml. Similarly, the 

minimum initial amount of bacteria that could grow at an enzymatic activity equal to 1.9×10-2 

U/ml was found to be 6.7×108 cells/ml. At this enzymatic activity threshold, the behavior of 

antibacterial microcapsules was also compared to the behavior of free GOx. The immobilization 

of GOx on gold NPs did not show a significant enhancement and instead, a decrease in 

enzymatic activity.  

For the future work of this study, since we already demonstrated that human IgG can be 

immobilized on our microcapsules, some quantitative analysis is be required to determine the 

immobilization efficiency. Also it may be needed to immobilize a specific antibody which has 

an affinity for a specific pathogen in order to check if the antibody stays active after 

immobilization so that we can possibly observe the efficiency of the system in capturing and 

deactivation of the pathogen. Moreover, since so far we checked and monitored the antibacterial 

properties of the microcapsules during a period of 24 hours, it is suggested that complementary 

studies be done to monitor this characteristic over a larger time windows (i.e. ranging from a 

few weeks to a few months). Finally, these antibacterial microcapsules are to be introduced to  

the laboratorial paper coating process in order to check the efficiency of the system once it is 

coated on paper. This process can be done using a cylindrical laboratory coater (Figure 43) as 

previously performed in Dr. Rochefort’s research group for a combination of the enzyme laccase 

encapsulated in poly(ethyleneimine) microcapsules79. In the related study, it was demonstrated 

that the encapsulated enzyme maintains its activity once the microcapsules are coated on paper 

surface. Therefore, we expect that our hydrogen peroxide producing microcapsules, once 

modified with antibodies could be used to make an efficient bioactive paper with antibacterial 

properties at large scales. 
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Figure 43. Cylindrical laboratory coater -CLC 7000 (reproduced from reference 79). 
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