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Résumé 
Le co-transporteur KCC2 spécifique au potassium et chlore a pour rôle principal de 

réduire la concentration intracellulaire de chlore, entraînant l’hyperpolarisation des courants 

GABAergic l’autorisant ainsi à devenir inhibiteur dans le cerveau mature. De plus, il est aussi 

impliqué dans le développement des synapses excitatrices, nommées aussi les épines 

dendritiques. Le but de notre projet est d’étudier l’effet des modifications concernant 

l'expression et la fonction de KCC2 dans le cortex du cerveau en développement dans un 

contexte de convulsions précoces.  

Les convulsions fébriles affectent environ 5% des enfants, et ce dès la première année de 

vie. Les enfants atteints de convulsions fébriles prolongées et atypiques sont plus susceptibles 

à développer l’épilepsie. De plus, la présence d’une malformation cérébrale prédispose au 

développement de convulsions fébriles atypiques, et d’épilepsie du lobe temporal. Ceci 

suggère que ces pathologies néonatales peuvent altérer le développement des circuits 

neuronaux irréversiblement. Cependant, les mécanismes qui sous-tendent ces effets ne sont 

pas encore compris. Nous avons pour but de comprendre l'impact des altérations de KCC2 sur 

la survenue des convulsions et dans la formation des épines dendritiques.  

Nous avons étudié KCC2 dans un modèle animal de convulsions précédemment validé, 

qui combine une lésion corticale à P1 (premier jour de vie postnatale), suivie d'une convulsion 

induite par hyperthermie à P10 (nommés rats LHS). À la suite de ces insultes, 86% des rats 

mâles LHS développent l’épilepsie à l’âge adulte, au même titre que des troubles 

d’apprentissage. À P20, ces animaux presentent une augmentation de l'expression de KCC2 

associée à une hyperpolarisation du potentiel de réversion de GABA. De plus, nous avons 

observé des réductions dans la taille des épines dendritiques et l'amplitude des courants post-

synaptiques excitateurs miniatures, ainsi qu’un déficit de mémoire spatial, et ce avant le 

développement des convulsions spontanées. Dans le but de rétablir les déficits observés chez 

les rats LHS, nous avons alors réalisé un knock-down de KCC2 par shARN spécifique par 

électroporation in utero. Nos résultats ont montré une diminution de la susceptibilité aux 

convulsions due à la lésion corticale, ainsi qu'une restauration de la taille des épines. Ainsi, 

l’augmentation de KCC2 à la suite d'une convulsion précoce, augmente la susceptibilité aux 
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convulsions modifiant la morphologie des épines dendritiques, probable facteur contribuant à 

l’atrophie de l’hippocampe et l’occurrence des déficits cognitifs.    

Le deuxième objectif a été d'inspecter l’effet de la surexpression précoce de KCC2 dans 

le développement des épines dendritiques de l’hippocampe. Nous avons ainsi surexprimé 

KCC2 aussi bien in vitro dans des cultures organotypiques d’hippocampe, qu' in vivo par 

électroporation in utero. À l'inverse des résultats publiés dans le cortex, nous avons observé 

une diminution de la densité d’épines dendritiques et une augmentation de la taille des épines. 

Afin de confirmer la spécificité du rôle de KCC2 face à la région néocorticale étudiée, nous 

avons surexprimé KCC2 dans le cortex par électroporation in utero. Cette manipulation a eu 

pour conséquences d’augmenter la densité et la longueur des épines synaptiques de l’arbre 

dendritique des cellules glutamatergiques. En conséquent, ces résultats ont démontré pour la 

première fois, que les modifications de l’expression de KCC2 sont spécifiques à la région 

affectée. Ceci souligne les obstacles auxquels nous faisons face dans le développement de 

thérapie adéquat pour l’épilepsie ayant pour but de moduler l’expression de KCC2 de façon 

spécifique.  

 

Mots-clés : co-transporteur KCC2, cortex, convulsions fébriles atypiques, dysplasie corticale, 

modèle animal de TLE, susceptibilité aux convulsions, développement des synapses 

excitatrices.   
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Abstract 
The potassium-chloride cotransporter KCC2 decreases intracellular Cl- levels and 

renders GABA responses inhibitory. In addition, it has also been shown to modulate excitatory 

synapse development. In this project, we investigated how alterations of KCC2 expression 

levels affect these two key processes in cortical structures of a normal and/or epileptic 

developing brain.  

First, we demonstrate that KCC2 expression is altered by early-life febrile status 

epilepticus. Febrile seizures affect about 5% of children during the first year of life. Atypical 

febrile seizures, particularly febrile status epilepticus, correlate with a higher risk of 

developing cognitive deficits and temporal lobe epilepsy as adults, suggesting that they may 

permanently change the developmental trajectory of neuronal circuits. In fact, the presence of 

a cerebral malformation predisposes to the development of atypical febrile seizures and 

temporal lobe epilepsy. The mechanisms underlying these effects are not clear. Here, we 

investigated the functional impact of this alteration on subsequent synapse formation and 

seizure susceptibility. 

We analyzed KCC2 expression and spine density in the hippocampus of a well-

established rodent model of atypical febrile seizures, combining a cortical freeze lesion at 

post-natal day 1 (P1) and hyperthermia-induced seizure at P10 (LHS rats). 86% of these LHS 

males develop epilepsy and learning and memory deficits in adulthood. At P20, we found a 

precocious increase in KCC2 protein levels, accompanied by a negative shift of the reversal 

potential of GABA (EGABA) by gramicidin-perforated patch. In parallel, we observed a 

reduction in dendritic spine size by DiI labelling and a reduction of miniature excitatory 

postsynaptic current (mEPSC) amplitude in CA1 pyramidal neurons, as well as impaired 

spatial memory. To investigate whether the premature expression of KCC2 played a role in 

these alterations in the LHS model, and on seizure susceptibility, we reduced KCC2 

expression in CA1 pyramidal neurons by in utero electroporation of shRNA using a triple-

probe electrode. This approach lead to reduced febrile seizure susceptibility, and rescued spine 

size shrinkage in LHS rats. Our results show that an increase of KCC2 levels induced by 
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early-life insults affect seizure susceptibility and spine development and may be a contributing 

factor to the occurrence of hippocampal atrophy and associated cognitive deficits in LHS rats. 

Second, we investigated whether KCC2 premature overexpression plays a role in spine 

alterations in the hippocampus. We overexpressed KCC2 in hippocampal organotypic cultures 

by biolistic transfection and in vivo by in utero electroporation. In contrast to what was 

previously published, we observed that both manipulations lead to a decrease in spine density 

in the hippocampus, as well as an increase in spine head size in vivo. In fact, it has been 

previously shown that overexpressing KCC2 leads to an increase of spine density in the cortex 

in vivo. To prove that this discrepancy is due to brain regional differences, we overexpressed 

KCC2 in the cortex by in utero electroporation, and similarly found an increase in spine 

density and length. Altogether, our results demonstrate for the first time, that alterations of 

KCC2 expression are brain circuit-specific. These findings highlights the obstacles we will 

face to find adequate pharmacological treatment to specifically modulate KCC2 in a region-

specific and time-sensitive manner in epilepsy. 

 

Keywords : KCC2 cotransporter, cortex, atypical febrile seizures, cortical dysplasia, animal 

model of TLE, seizure susceptibility, excitatory synapse development. 
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Chapter I 

General Introduction 

 

This thesis’ project focuses on understanding the role of the cotransporter KCC2 in seizure 

susceptibility and hippocampal glutamatergic synapse alterations in a rat model of atypical 

febrile seizures. I will first review the normal cortical circuit development from embryonic to 

postnatal stages. Secondly, I will review KCC2 expression pattern, function and activation in 

the developing brain. Thirdly, I will review the key mechanisms implicated in epileptogenesis 

of mesial Temporal Lobe epilepsy (MTLE), febrile seizures and cortical dysplasia; and lastly, 

I will describe the chosen rodent model of atypical febrile seizure, which is a well-accepted 

preclinical model for MTLE.  

 

1. Cortical circuit development 

 

Proper brain function relies on the establishment of a precise and selective pattern of 

synaptic connectivity and an appropriate balance between excitatory and inhibitory synapses. 

Glutamatergic and GABAergic neurons are two major types of neurons that form excitatory 

and inhibitory outputs to their target neurons, respectively. The equilibrium between 

excitatory and inhibitory inputs is critical for the proper performance of the brain, and their 

imbalance may lead to various neurological disorders such as autism, schizophrenia and 

epilepsy1. My project focuses on cortical structures (neocortex and hippocampus), therefore I 

will emphasize on GABAergic and glutamatergic circuit development in these regions.  

 In the cortex, the main source of inhibition comes from a very heterogeneous 

GABAergic interneuron population that balances the predominant excitatory pyramidal cell 

population. Although interneurons (INs) represent a smaller percentage of all cortical neurons 

(∼20%), and GABAergic synapses only represent approximately 5% of all synapses onto PCs 
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mostly concentrated in perisomatic regions, their function is extremely crucial in shaping the 

spatial and temporal profile of principal cell firing, thereby controlling network activity and 

plasticity2-5. GABAergic innervation also controls the temporal synchrony of activity among 

large numbers of pyramidal neurons within a population, because one single GABAergic 

interneuron can innervate hundreds of pyramidal cells2,6,7. Futhermore, GABAergic INs differ 

greatly in dendritic and axonal morphology, gene expression, electrophysiological properties, 

input and output connectivity, and subcellular domain distribution and properties of their 

synapses. Recent reports suggest that there may be at least 20 different subtypes of INs in the 

neocortex or hippocampus8-17. This astounding variety of GABAergic INs indicates that they 

may serve distinct functions in cortical networks18-20. Further, INs expressing similar 

molecular markers but located in different brain regions may show differences in their 

functional or/and connectivity properties, making their classification overall controversial. For 

example, fast-spiking perisomatic-targeting GABAergic INs (basket cells), one of the most 

easily identifiable and accepted GABAergic cell type, primarily target either excitatory (in the 

neocortex and hippocampus) or inhibitory projection neurons (in the striatum and central and 

medial amygdala) depending on which structure they reside in. For all these reasons, 

classifying INs across different telencephalic regions is both a daunting task and a hotly 

debated issue, which no doubt will see a strong evolution in the next years with the application 

of recently developed techniques to identify neuron connectivity and single-cell genetic 

profiles18.  

The pyramidal cell population, representing the majority of neurons in the cortex, was 

for a long time thought to be homogenous. However, it is now well accepted that pyramidal 

neurons differ between layers and even within the same layer. Tyler W.A. et al. (2015) 

demonstrates that several neural precursor populations actually generate distinct pyramidal 

neurons in cortical layers II/III, which in turn exhibit different electrophysiological and 

structural properties depending on the precursor cell type from which they originated21. 

However, independent of their differences, all these populations are still grouped under the 

same general term of pyramidal cells (PCs). Altogether, these various types of excitatory and 

inhibitory neurons form the complex circuitry of the neocortex and hippocampus. To decipher 

through this intricate structure, I will first discuss more in details the embryonic development, 
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when these neurons are generated, and how they make their way to their final destinations. 

Secondly, I will explain how mature circuits are established through synaptogenesis, apoptosis 

and cortical plasticity.   

 

1.1. Embryonic development 

The cortex starts to develop into the neocortex and the hippocampus in utero. These 

structures gain their complexity when the neurons that compose them reach their final 

location. To establish such precise synaptic patterns in these regions, neurons pass through 

multiple checkpoints during development, such as cell fate determination, cell migration and 

localization. I will first describe the development of the neocortex and hippocampus. I will 

then review the diversity of neurons in these structures and when and where they are 

generated. Lastly, I will explain how they migrate toward and within the cortex.  

 

1.1.1. Cortex anatomy and structure 

The telencephalon consists of the pallium and subpallium. It is the pallium that gives rise 

to the neocortex and hippocampus. As described above, there are two broad classes of cortical 

neurons: INs that make local connections (mostly inhibitory GABAergic neurons), and 

projection neurons, which extent axons to distant intracortical, subcortical and subcerebral 

targets (mostly glutamatergic PCs22; and GABAergic neurons23). Until well after birth, these 

structures continue to develop into their mature state by circuits refinement2. This section will 

briefly describe how the hippocampus and the neocortex develop into their mature form.   

 

Hippocampus 

At the preplate stage (embryonic day 14; E14) the hippocampus neuroepithelium lobule 

of the lateral ventricale is composed of three morphogenetic components (see figure 1). The 

first one is the ammonic neuroepithelium, which generates PCs and INs of stratum oriens (SO) 
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and radiatum (SR). The second component is the dentate neuroepithelium, which generates 

granule cells and large neurons of stratum moleculare and hilus. Finally, the glioepithelium, 

the third component, produces glial cells. These components represent the ventricular zone 

where neurons emerge from to form the hippocampal plate stage (from E15-E19) to finally 

become the hippocampus 2,24. 

  

 

 

 

 

 

  

Figure 1. Embryonic hippocampal structures.  
Illustration adapted from Danglot et al. (2006)2. 

 

 

 

 

 

The mature hippocampus resembles a sea horse in shape, where PCs are densely packed 

together, creating a very tightly organized circuit. This circuit is also termed the trisynaptic 

excitatory pathway, because is formed by the connections between principal excitatory cells 

from the dentate gyrus (DG) and the cornus ammonis 3 and 1 (CA3, CA1; see Figure 2). The 

perforant path lead axons originating from the entorhinal cortex, which is located in the 

parahippocampal gyrus, to granule cells in the DG in the stratum moleculare (SM) layer in 

majority, and to the distal-most part of the apical dendrites of PCs in the stratum lacunosum-

moleculare (SLM) layer. This path is the main site of interaction between the hippocampus 
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and other brain regions. Further, granule cell axons, termed mossy fibers, innervate PCs in the 

CA3. These particular fibers are highly affected in many neurological disorders such as 

epilepsy, which leads to network reorganization, mossy fiber sprouting and the emergence of 

ectopic granule cells, suggesting that a tight regulation of the circuitry is pivotal for normal 

circuit development and connectivity. Finally, CA3 PCs axons contact the apical dendrite of 

CA1 pyramidal neurons, in a path termed Shaffer collaterals. CA1 pyramidal neurons then 

input back to the entorhinal cortex and subiculum2.   

 
 

Figure 2. Hippocampal anatomy and 
connectivity pattern. 
Image adapted from Neves et al. (2008)25, 
where the top figure illustrates the 
hippocampus as it is located in the mouse 
brain, and the bottom image illustrates the 
excitatory synaptic connectivity between 
the hippocampus and the entorhinal 
cortex.            

 

                   
 

The CA1 represents the output of the hippocampus, and is the focus of my project. CA1 

PCs as well as parvalbumin-expressing GABAergic INs are located in the SM. From this 

layer, basal dendrites and the axon of pyramidal cells extend upwards to the stratum oriens 

Entorhinal cortex 
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(SO) and alveus layer, while the apical dendrites extend downwards to the stratum radiatum 

(SR) and stratum lacunosum-moleculare (SLM) layer. The laminar segregation of afferent 

fibers and the compartmentalized structure of PCs in the hippocampus allow GABAergic INs 

to perform spatially segregated information processing at the same time. As they usually 

innervate distinct domains of their target cells, the strategic placement of inhibitory synapses 

indicates that they serve distinct functions in the hippocampal network4. Additionally, INs in 

the DG inhibit granule cell activity and allow to control and gate the incoming signals to the 

hippocampus. As such, blocking GABAA receptor in the hippocampus, in vivo and in vitro, 

induces epileptiform activity26,27, while potentiating GABAergic inhibition increases the 

amplitude of spontaneous gamma oscillations, impacting working memory28 and 

hippocampus-dependent memory tasks2,29. Altogether, the hippocampus formation is 

developed from very early on, and gains complexity through its diverse populations of 

neurons, and its precise organization of synaptic input. At the mature state, the hippocampus is 

critical for navigation, context-dependent learning and episodic memory30. 

 

Neocortex 

The mammalian cerebral cortex is comprised of six layers, which contains similar 

neuron subtypes as the hippocampus characterized by distinct projection patterns and gene 

expression profiles31. During early development, the cortical neuroepithelium located on the 

dorsolateral wall of the rostral neural tube expands, and give rise to neocortical PCs. From 

E10.5 the first layer adjacent to the ventricle is born and termed the ventricular zone (VZ) (see 

figure 3). As neurogenesis proceeds, an additional proliferative layer, which is termed the 

subventricular zone (SVZ), forms above the VZ, and an intermediate zone (IZ) forms above 

the SVZ. The VZ and SVZ contain the progenitor cells that will produce glutamatergic 

neurons of all neocortical layers. The first-born neurons form the preplate layer (PP) above the 

VZ/SVZ/IZ, which is then split into the superficial marginal zone (MZ) and subplate (SP) by 

around E12.5. In between these two layers begins to develop the cortical plate (CP), which 

will eventually grow to become the multilayered cortex. This laminar organization occurs in 

an ‘inside-out’ manner, meaning that newly generated neurons bypass those previously 
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generated (older) from the PP to reach the superficial CP32. Moreover, the superficial marginal 

zone will grow to become layer 1, while the IZ will be replaced by white matter. As 

development advances, and new neurons are generated and migrate towards their final 

destination, each cortical layer gets more clearly defined. Eventually, in the adult, there are no 

ventricular zones, just the white matter, the subplate and the six cortical layers.  

 

Figure 3. Cortical layers development.  
          Illustration adapted from Shibata et al, (2015)33. 
 

The neocortex is quite larger and thus, a more complex structure than the hippocampus. 

It extends to the whole brain, and controls most cognitive, executive, emotional and autonomic 

functions33. Cortical neurons form a variety of long-rage connections, from one region of the 

neocortex to the other, but also from the neocortex to other structures in the brain. As such, 

there are three major subtypes of cortical projection neurons: associative, commissural and 

corticofugal (see figure 4). Layers I to III are the primary origin and termination of 

intracortical afferents, which are either associative or commissural. Associative projection 

neurons project their axons within the ipsilateral cerebral hemisphere. Commissural, or 

callosal, projection neurons are located in layers II/III, V and VI, extend their axons across the 
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corpus callosum (CC) to the opposite hemisphere. Within this group, there are different PCs 

projections: one that extends a single projection to the contralateral cortex (PCs from layer 

II/II, V/VI); one that extends to the contralateral cortex as well as the ipsilateral and 

contralateral striatum (PCs from layer V); finally, one that extends to the contralateral cortex 

as well as the ipsilateral frontal cortex (PCs from superficial layer V). Furthermore, 

corticofugal projection neurons project out of the cortex towards subcerebral regions 

(subcerebral projection neurons) and the thalamus (corticothalamic neurons). Subcerebral 

projection neurons, termed type I layer V projection neurons, originate from the sensorimotor 

area of the cortex or from the visual cortex and extend towards the basal ganglia, brainstem 

and spinal cord. Corticothalamic neurons mostly from layer VI project subcortically to 

different nuclei in the thalamus22. The pathway from cortical neurons of layer VI to the 

thalamus is a glutamatergic excitatory pathway. They interconnect in a reciprocal manner 

since most thalamic neurons receive feedback from layer VI of the same cortical column they 

innervate. Additionally, the thalamic reticular nucleus is composed of GABAergic neurons 

that are mostly located dorsal and lateral to the thalamic relay nuclei. Cortical neurons from 

layer VI actually project to these thalamic reticular cells, on their way to innervate thalamic 

relay cells. Thus, while exciting these relay cells directly, they also inhibit them indirectly by 

activating the GABAergic reticular cells34. Consequently, corticothalamic modulation depends 

on the balance and communication of its monosynaptic excitation and its disynaptic 

feedforward inhibition, which is dynamic and activity-dependent. During low-frequency 

corticothalamic activity, there is a strong and long-lasting inhibition that blocks spiking of 

thalamic relay neurons. Contrastingly, high-frequency corticothalamic activity leads to an 

overall excitation and increased spiking probability of thalamic relay neurons35. Contrary to 

what was previously thought, there are ten times more cortical synapses than thalamic 

synapses onto layer IV stellate neurons. Using high-throughput light microscopy, validated by 

electron microscopy, Schoonover et al. (2014) demonstrated that thalamocortical synapses are 

slightly more proximal to the soma than cortical synapses. Despite the subtle anatomical bias, 

the fact that they only control one of ten excitatory synaptic inputs, thalamocortical and 

corticocortical inputs equally influence the membrane potential of cortical neurons from layer 

IV barrel cortex. Both classes of synapses are equivalent in strength; therefore, strength is 

likely not a predictor of thalamic efficacy and influence on cortical neurons36. 
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Figure 4. Major subtypes of neocortical projection neurons.   

          Illustration adapted from Franco and Müller (2013)37.  

Cortical neurons connect vertically to form small microcircuits, termed cortical columns, 

which span all six layers. Axons and apical dendrites of layer IV stellate cells (spiny 

glutamatergic neurons), or layer II/III and V/VI PCs all project vertically. Thalamocortical 

input is therefore transmitted to a narrow vertical column of PCs whose apical dendrites are 

contacted by stellate cell axons. This means that the same information is relayed up and down 

through the thickness of the cortex in columnar fashion. Neurons within a particular column 

tend to have very similar response properties. In the somatosensory cortex for example, all 

neurons from a particular column receive inputs from the same local area of the skin and 
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respond to a single class of receptors38. Finally, GABAergic neurons are spread out into all 

cortical layers, which I will discuss more in detail in the following section, and allow 

intracolumnar and intercolumnar activity synchronization. 

Primary cortical areas process sensory information or deliver motor commands directly 

to the spinal cord. The primary sensory areas receive most of their information directly from 

the thalamus; and a few synaptic relays are interposed between the thalamus and the peripheral 

receptors39. It has long been thought that layer IV excitatory and inhibitory cells were the 

principal targets of sensory information from the thalamus, which then relayed the information 

to layer II/III that then relayed it to layer V/VI PCs. However, accumulating evidence suggests 

that direct thalamocortical input onto layer VI, V and onto layer I may have been 

underestimated. Electrophysiological evidence suggests that many layer V/VI neurons respond 

and process sensory information just as quickly as layer IV neurons, in fact, even in parallel, 

which suggests that they receive direct input from the thalamus. As such, it seems that there 

are two processing systems that can possibly serve different functions: an upper strata from 

layer IV to layers II/III, and a lower strata in layer V/VI40. In addition, a recent study 

demonstrates that thalamocortical neurons project equally to layer IV and layer VI, and the 

input onto layer VI neurons are just as strong at P3-P5. However, after the first postnatal 

week, synapses in layer IV, and not layer VI, display experience-dependent strengthening 

through long-term potentiation (LTP). This process allows specific layer IV synapses to 

stabilize over layer VI synapses, most likely relying on axon branching increase and 

connectivity divergence, and not necessarily on individual strengthening of connections41. 

Finally, layer I is the molecular layer where most apical dendrites of PCs terminate, and has 

been shown to be essential for the feedback interactions in the cerebral cortex that underlie 

cognitive processes such as associative learning and attention42,43. It was thought that the 

excitatory input onto these apical dendrites were mostly cortical. However, Rubio-Garrido and 

others (2009) demonstrated, using various pathway tracers, that a large number of 

thalamocortical neurons, originating from most thalamic nuclei, converge onto layer I apical 

dendrites directly42. However, it is still unknown whether this thalamocortical input is 

different from the thalamocortical input that innervates layer IV.  
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 The relative size of each layer differs across all cortical regions. For example, the 

primary motor cortex has essentially no layer IV, though they have PCs that exhibit the 

prototypical properties of layer IV excitatory neurons in layer Va44. The motor cortex is 

primarily an output region and thus receives little sensory information directly from the 

thalamus. On the other hand, the primary visual cortex has a very prominent layer IV. Visual 

input onto the lateral geniculate nucleus creates a large and highly organized input onto layer 

IV; which can even be divided into three sublayers in humans and monkeys45,46. Furthermore, 

sensory information is processed in the neocortex through different pathways that extend 

towards secondary and tertiary sensory cortices, which produces progressively more complex 

information contributing to neural circuitry underlying complex behaviors.  

 

1.1.2. Neuron and interneuron generation and diversity 

GABAergic diversity  

Here, we will follow the GABAergic INs classification suggested by two recent 

reviews47,48; keeping in mind that other classifications may evolve based on future 

functional/genetic studies. Briefly, three groups of GABAergic INs account for nearly if not 

all cortical GABAergic neurons, at least in the somatosensory cortex. The first group 

comprises of GABAergic INs expressing the calcium-binding protein parvalbumin (PV), 

which traditionally include chandelier cells (ChC, or axo-axonic cells) and fast-spiking basket 

cells (FS-BC). Of note, it has been recently shown that only part of chandelier cells tested PV+ 

by immunostaining, ranging from 15% in the medial prefrontal cortex to around 50% in the 

barrel cortex49, showing current classifications are not perfect. The second group includes the 

somatostatin (SOM)-positive cells, which comprises Martinotti cells and X-94-cells50 in the 

cortex and the O-LM and bistratified cells in the hippocampus. PV+ and SOM+ cells represent 

the two largest population of INs in rodent neocortex (about 70% all of cortical INs). The third 

group includes GABAergic cells that express the ionotropic serotonin receptor 5HT3a 

(5HT3aR), which primarily populates neocortical layers I–III. In primary somatosensory 
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cortex, ∼40% of 5HT3a receptors-positive INs expresses vasointestinal peptide (VIP), while 

the large majority of the rest expresses reelin (See figure5). 

 

Figure 5. GABAergic interneuron diversity in the hippocampus.  
       Illustration adapted from Danglot et al, (2006)2.  
 

PV-positive FS-BCs represent around 40% of all INs, and include different subtypes, 

differing in size of innervation field (large, small or nested BC), location of axonal projection 

(intra or inter-columnar), gene expression and electrophysiological properties. As unifying 

characteristics, all BCs can produce action potentials at high frequency, hence the name fast-

spiking, and innervate the soma and proximal dendrites of both inhibitory and excitatory cells. 

This specific localization of synapses allows BCs to control action potential generation, 

timing, and synchrony in pyramidal cell populations, and make them very crucial for 

regulating their output. ChC or axo-axonic cells have a few similar electrophysiological 

properties as BCs such as high firing frequency with minimally adapting trains of action 

potentials, especially in the cortex49,51-54. However, their properties differ in their amplitude of 

afterhyperpolarization and their firing frequency55. ChCs also show a higher degree of spike 

frequency adaptation than BCs in the hippocampus53. Nevertheless, the main difference 
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between BCs and ChCs is the subcellular domain where they innervate PCs. ChCs specifically 

target the axon initial segment (AIS) of pyramidal cells, thus may strongly control the output 

of PCs49,54. In addition, it has been recently suggested that the synapses at the AIS made from 

ChC can actually be either excitatory or inhibitory52,56, but this remains controversial. 

Furthermore, a single FS-BC can innervate more than 1500 PCs and contact 60 other PV+ INs 

in the CA1, while it has been estimated that one ChC innervates from ∼100 PCs in 

somatosensory cortex57 up to ∼1000 PCs in the hippocampus 2,4,6,7. This large innervation field 

allows PV+ cells to exert a widespread influence on network activity58. In the hippocampus, 

FS-BCs and ChC are localized in the stratum pyramidale layer (SP) where PCs are 

concentrated, which permits their specific subcellular innervation pattern. In the cortex, the 

proportion of PV-expressing INs is biggest in layer IV, though they are also localized in all 

layers except layer I48. This spatial organization allows for an important synchronization of 

glutamatergic neurons59. In particular, FS-BCs play a critical role for the rhythmic 

synchronization on neuronal populations in the gamma band (30-80HZ)28. 

INs expressing the neuropeptide SOM usually show either a bursting firing pattern or an 

adapting regular-spiking, and target PC distal dendrites, thereby allowing them to control the 

efficacy and plasticity of synaptic inputs that terminate in the same dendritic domain3,4,60,61. In 

general, SOM+ cells can be very diverse and many recent studies have been focusing on 

identifying potential subtypes9,50,62,63. The most cited subclasses in the hippocampus are the O-

LM (also weakly positive for PV) or bistratified cells in the SR64-66. Altough O-LM INs 

innervate the distal apical dendrite of PCs in the SLM, their somata are located in the stratum 

oriens (SO); while bistratified cells, which also express the calcium-binding protein calbindin, 

innervate all PC dendrites. In the cortex, the major subclasses are Martinotti cells and X-94-

cells. Martinotti cells comprise 2 types that project their axon in layer I but differ in the 

position of the cell body (layer V vs layer II/III). X-94-like cell bodies are located in layer IV 

primarily and V, and specifically target other cells in layer IV50,67. Furthermore, around 30% 

of SOM+ cells also express the molecular marker calretinin (CR)68, and are mainly located in 

layer II/III and have similar properties as Martinotti cells but differ in dendritic field 

morphology68.  
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Finally, 5HT3aR+ INs are arguably the less characterized IN populations. Within this 

group, Reelin+ INs show late-spiking properties, and include neurogliaform cells; while VIP+ 

INs includes CR+ cells with irregular spiking, and CR- cells with fast-adapting spiking. In the 

hippocampus, these INs selectively inhibit other INs located in different layers2; while in the 

cortex, they are mainly concentrated in layer I and represent approximately 50% of INs in 

layer II/III. Additionally, another subtype that expresses 5HT3aR, also expresses the peptide 

cholecystokinin (CCK). Similarly to FS-BC, CCK-positive cells innervate soma and proximal 

dendrite of target cells (hence they are also called basket cells), however they have different 

firing patterns (spike trains at moderate frequencies), higher input resistance and slower 

membrane time constant. Finally, CCK+ cells express the type 1 cannabinoid receptors 

(Cb1R) presynaptically in the hippocampus69-72. These receptors mediate short-term 

depression of GABA release following depolarization of postsynaptic cells73, referred as 

depolarization-induced suppression of inhibition, which is activity-dependent69,70. A recent 

study shows that CCK binds to CCKB receptors on PCs, leading to synthesis and postsynaptic 

release of endocannabinoids. Activation of presynaptic CB1 receptors located on the axon 

terminals of CCK+ BCs results then in suppression of GABA release74. Likely, FS-BC and 

CCK-BC differentially impact information processing and rhythmic activity patterns75. CCK 

immunostaining within the cortex show sparse cellular labeling, raising the question of 

whether CCK-BC are much more abundant in hippocampus (in SP) than in cortex.  

 This short description of different INs types does not intend to be exhaustive but to 

convey the complexity underlying GABAergic circuits. Indeed, even within each group, there 

are many different types of cells, which emphasize the diversity of INs. Another important 

aspect is that the percentage of different INs may change depending from the brain region, and 

the species. For example, the total proportion of GABAergic neurons in the cortex might be 

much higher in primates (24–30%) compared with rodents (15%)76-78. Further, several 

differences have been reported in the phenotypic properties of cortical INs between rodent and 

primate brains77,79. Another example comes from the ChC, which are more numerous in the 

prefrontal cortex than in sensory cortices49,80. 

 Even when INs share common characteristics, such as subcellular targets or 

molecular markers, their individual function can change depending on the circuit they are 
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incorporated in, which adds another level of complexity. The advantage of INs diversity is that 

they can control neuronal networks in a very specific and finely tuned manner, releasing 

GABA at different time points and at different subcellular compartments. Further, recent 

studies show that different INs types act in concert to modulate and synchronize relevant 

signals depending on the behavioral state20,81,82. It is therefore plausible that any disruption of 

GABAergic interneuron development strongly affects neuronal networks dynamics, signal 

processing and ultimately brain cognition. In fact, GABAergic dysfunctions, or the more 

largely used “alterations of excitatory/inhibitory balance” have been implicated in numerous 

neurodevelopmental disorders like epilepsy, autism and schizophrenia83-88.  

 

GABAergic interneuron generation 

Neocortical GABAergic INs are generated embryonically in the ventral telencephalon 

(subpallium), in the medial, lateral and caudal ganglionic eminence (MGE, LGE and CGE, 

respectively) and in small part in the preoptic area (POA), from where they then migrate to 

their final destination2,89,90. The most generally accepted hypothesis is that the location and the 

timing of IN birth determine its identity. The generation of GABAergic INs occurs prior to 

principle cells generation, between embryonic day 13 (E13) and E18 in rat, and between E9 

and E17 in mouse91,92. In the hippocampus, CA1 and CA3 INs are generated before INs of the 

dentate gyrus 2,93,94,95 (E12-13 vs. E13-14). By using inducible genetic fate mapping, Miyoshi 

and colleagues (2007) showed that, similarly to PCs, INs that are generated earlier 

(E9.5/E10.5) migrate to deeper layers in the cortex, whereas INs that are generated later 

(around E15.5) migrate to more superficial layers8,9,96. PV+ and SOM+ INs derive from the 

MGE, but while FS-BCs are continuously generated throughout E9.5 to E16.5, SOM+ INs can 

be generated as early as E9.5 but are absent when progenitors are labeled at E15.5. CR+ and 

VIP+ INs are generated later (around E15.5) in the CGE and migrate preferentially to 

superficial layers of the cortex, where they represent the most numerous population of 

INs8,9,96. A recent study performing genetic fate mapping of Nkx2.1-expressing progenitors 

using Nkx2.1-CreER mice has demonstrated that ChCs generated from the ventral germinal 
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zone of the lateral ventricle, an Nkx2.1-expressing remnant of the MGE, starting from late 

gestation until close to birth7,97.  

Time and location specific determination of INs fate suggests that each IN subtype may 

be defined by a unique temporal combination of transcription factor expression. For example, 

SOM+ and PV+ cells that will migrate to the cortex and hippocampus preferentially derive 

from the dorsal and ventral zones of the MGE, respectively, and requires the expression of the 

transcription factor Nkx2.1. Nkx2.1 knockdown at E10.5 results in a switch of IN subtypes 

observed at more mature ages, with more VIP/CR+ neurons, which normally originate from 

the CGE, in place of PV+ and SOM+ INs98. The downstream cascade of Nkx2.1 includes the 

sequential activation of Lhx6 and Sox6. Lhx6 is essential for specification and migration of 

PV+ and SOM+ INs99. Lhx6-/- MGE cells may also acquire a CGE-like fate100. On the other 

hand, Sox6 genetic manipulation showed that this transcription factor is necessary for proper 

laminar migration and maturation but not specification of the MGE-derived INs10. The 

complete chain of transcriptional events that differentiate PV+ from SOM+ INs specification 

is still not fully understood. One of the suggested mechanisms is the preferential postnatal 

expression of distinct members of the Dlx gene family. Indeed, loss of Dlx5 or Dlx5/6 

preferentially reduces the number of mature PV+ INs101, while loss of Dlx1 affects the 

maturation and survival of SOM+ and CR+ INs102. Interestingly, early GABAergic 

neurogenesis, however, does not necessarily imply that they reach their final destination and 

are functional before glutamatergic PCs.  

 

Glutamatergic neuron diversity 

 Pyramidal cells represent 80% of neurons in the cortex, and are less diverse than 

GABAergic INs. In the neocortex, excitatory neurons located in layer II/III and V/VI are 

projection PCs, while spiny stellate cells in layer IV are excitatory INs. They all use glutamate 

as their primary neurotransmitter. Layer II/III PCs have smaller cell bodies than layer V/VI 

PCs. Stellate cells have dendrites extending in all direction, and form synapses with neurons 

near the cell body. These excitatory INs are the primary recipients of sensory information 

from the thalamus. PCs from layer II/III and layer V also have different electrophysiological 
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features. They differently express persistent sodium channels, which are important for 

maintaining recurring firing, and generating depolarizing afterpotentials and action potential 

bursts, therby generating different firing properties and different functional implications as 

they innervate different cortical and subcortical regions103. As such, a recent study published 

in Cerebral Cortex (2015) reveals that there are 10 different subtypes of PCs between layer II 

and VI in the prefrontal cortex of rats, depending on morphological and electrophysiological 

parameters. Briefly, layer II PCs have a unique morphology with a narrow basal field, but a 

wide apical dendritic field. Layer III PCs specifically displayed bursts of action potential upon 

current injection; whereas, layer V PCs have the largest voltage sags. Finally, layer VI PCs 

have the most diverse morphological features, where approximately 40% of them have long 

apical dendrites that extend all the way to layer I104.  

 In the hippocampus, there are at least three types of excitatory cells: PCs from 

CA1, PCs from CA3 and granule cells (GCs) in the dentate gyrus. DG is the primary gate that 

filters and processes sensory input entering the hippocampus. Consequently, GCs have low 

intrinsic excitability and fire sparsely105; which protects hippocampal circuits from runaway 

excitation106. As for CA regions, different layers of entorhinal cortex actually transmit distinct 

types of information to the CA3 vs. CA1 regions, suggesting specific regional differences107. 

CA3 place cells, which are hippocampal cells that discharge in a particular location in the 

environment, are important for the quick representation of spatiotemporal sequences, while 

CA1 place cells are important for comparing these new sequences to stored sequence 

information, suggesting that there is a heterogeneity between the CA3 and CA1108. 

Additionally, place cells are less frequently formed by CA3 than by CA1 cells, yet they were 

more stable and transmit more spatial information per spike than CA1 PCs109. On the other 

hand, there are differences in individual CA1 or CA3 pyramidal cells30. As such, it has been 

shown that CA1 and CA3 pyramidal cells have different firing rates, spike bursts, as well as 

other features of spike dynamics the are brain state-dependent. Another level of heterogeneity 

involves laminar differences, comparing deep and superficial layers of the CA1 region. Deep 

PCs have higher firing rate, more frequent bursts, and are differently influenced by oscillations 

during sleep-dependent brain states110, and project to different brain regions (amygdala vs 
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prefrontal cortex)111. Overall, these data suggest that hippocampal PCs differ in their activity 

dynamics, which likely contributes to distinctive computational roles. 

 

Glutamatergic neuron generation 

Pyramidal neurons and GCs derive from different neuroepithelium matrices from the 

hippocampal plate, as seen in figure 1. GCs are mostly generated postnatally (85%), starting 

by E20, until reaching a peak within the first postnatal week. Prenatally generated GCs rise 

from the dentate NE and migrate towards the future DG. However, postnatally generated GCs 

derive from the subgranular zone of the dentate gyrus itself, and more specifically, from the 

precursors cells born in the dentate NE that retained their proliferative capacity2,93. Of these 

postnatally born cells, around 10% are generated after P1824,93. 

The different populations of PCs on the other hand, originate from the periventricular 

NE, and rise from a variety of neural stem and progenitor cells22,38,112. Neocortical precursors 

are grouped into four major classes. The major neural precursors of the neocortex are radial 

glial cells (RGCs), which undergo self-renewing asymmetrical cell divisions in the VZ and 

SVZ to generate neurons and astrocytes21,22,113 (see figure 3). It is well established that RGCs 

are progressively fine-tuned to produce molecularly and morphologically distinct excitatory 

neurons between the six neocortical layers and hippocampus114. RGCs also divide to generate 

three types of intermediate progenitors (IPCs), to help generate PCs diversity, who divide 

themselves symmetrically in the VZ and SVZ. The different types of IPC classes are apical 

(aIPSC) in the VZ, basal (bIPC) that form the SVZ and basal radial glia (bRG)113,115. 

Recently, the classical model of corticoneurogenesis has been challenged (see figure 6). 

The classical model suggests that there is a homogeneous population of multipotent progenitor 

cells that produce different classes of PCs in sequential order, from deeper layers, to 

superficial layers from E11.5 to E17.5 in the mouse cortex and between E14-15 for CA3 PCs 

and E15-16 for CA1 PCs2,91,92. This model suggests that while progenitors can generate all 

PCs in early development, they become progressively restricted to generating only superficial 

neurons at later embryonic stages. Franco and others (2012)31, proposes another model, where 

there are two classes of progenitor cells with a defined fate of  giving rise either to PCs deep in 
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layers V and VI, or to superficial PCs in layers II to IV. In fact, SVZ-expressed transcripts 

(Svet1) and cut-like 2 (Cux2) are expressed in a population of dividing neurons in the SVZ 

(IPCs) during the generation of superficial-layer PCs, and specifically in postnatal PCs from 

layer II-IV. These results suggest that Svet1 and Cux2 are markers for upper-layer progenitor 

cells from the SVZ, and that laminar fate may be established even before differentiation31. 

Therefore, progenitors that are destined to form PCs in superficial layers may proliferate 

during early development, before they start to produce neurons, and then the SVZ may 

contribute to neurogenesis of superficial layers. A unifying model suggested by Marín (2012) 

hypothesizes that several progenitors lineages exist, which are restricted to producing either 

deep or superficial neurons. However, within each lineage there are intrinsic and extrinsic 

factors that control the production of different classes of PCs116. In accordance to this 

hypothesis, Tyler and colleagues (2015) demonstrates that even within the same superficial 

layer II/III, there are several neural precursor populations that give rise to 

electrophysiologically and structurally distinct PCs21, suggesting that electrophysiological and 

morphological properties of PCs are intrinsically specified at the precursor stage and that 

divergent routes of neurogenesis generate PC diversity21. Time-lapse microscopy revealed that 

cortical progenitors that are cultured in vitro, can continue to divide and produce neurons that 

express laminar markers, suggesting that generation of PC diversity seems, at least in part, to 

be due to intrinsic factors in the progenitor cells117.  

 
Figure 6. Representation of the different models of corticoneurogenesis proposed. 

          Illustration adapted from Marin (2012)118.  
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There are a number of genes that control cortical neurogenesis such as LIM homeobox 2 

(Lhx2), forkhead box G1 (Foxg1), empty spiracles homologue 2 (Emx2) and paired box 6 

(Pax6). They each have an essential role in cortical projection neuron generation, by 

repressing dorsal midline (Lhx2 and Foxg1) and ventral (Emx2 and Pax6) fates and 

specification of neocortical progenitors22,119. It has also been shown that Pax6 and Nr2e1 

control the VZ proliferation of progenitors, by controlling the kinetics of cell division and the 

choice of a progenitor to divide symmetrically or asymmetrically. Pax6 mutants have more 

progenitors undergoing asymmetrical division, as well as a decrease of number of Cux2-

expressing cells in the SVZ, suggesting they control the expansion of the SVZ and the 

generation of PCs of superficial layers22,120. In situ hybridization and transgenic mice studies 

reveal that there are a number of genes that determine layer- and subtype-specificity in the 

mouse neocortex (see22 for full list;121). For example, the orthodenticle homeobox 1 (Otx1) is 

expressed in 40 to 50% of subcerebral projection and layer VI neurons122; and Fez family zinc 

finger 2 (Fezf2) is expressed in all subcerebral projection neurons in the cortex and PCs in the 

hippocampus123. Both Otx1 and Fezf2 are expressed in VZ prior to the generation of layer V 

and VI neurons124. The list of genes involved in this process is quite extensive, but altogether, 

it seems that there are sequential steps of progressive differentiation, which are guided by 

transcription factor expression in subsets of progenitor cells, which thus differently generate 

lower-layers or upper-layers projection neurons.  

 

1.1.3. Migration 

After neurogenesis, postmitotic GABAergic and glutamatergic neurons position 

themselves in the developing neocortex through defined modes of migration, starting from 

soma translocation in early corticogenesis, to glia-guided and tangential migration later on22. I 

will first explain the modes of migration employed by GABAergic INs, and then those taken 

by PCs.  
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  GABAergic interneuron  

Using different labeling techniques such as DiI or electroporation of fluorophores in vivo 

or in vitro and time-lapse imaging, it has been widely shown that INs migrate tangentially 

from the MGE to the cortex125,126 and the hippocampus94,127,128. INs born before E14.5 from 

the LGE reach the olfactory bulb, the nucleus accumbens and the ones born after E14.5 reach 

the neocortex129,130. Finally, INs born in the CGE reach the cerebral cortex, the striatum, the 

amygdala, the nucleus accumbens and the hippocampus (both CA regions and dentate 

gyrus)131. INs derived from all these regions enter the neocortex through two different 

pathways, one that is superficial and reaches the marginal zone (MZ) and cortical plate (CP), 

and the other most prominent pathway goes through the SVZ and IZ94. There is also some 

crosstalk between these two paths, as INs that originate from the MGE reach the SVZ and then 

migrate radially or obliquely towards the CP and MZ132. Interestingly, most INs reach the 

hippocampus through a superficial pathway, below the MZ, where they can then change their 

mode of migration to radial to reach the different layers of the hippocampus94.  

A large bulk of evidence suggest that the migratory fate of INs is specified by 

transcription factors, which modulate the expression of signaling receptors and adhesion 

molecules, which in turn allow migrating cells to respond selectively to route-specific 

guidance molecules and growth factors. Further, it has been shown that GABAB, GABAA and 

AMPA receptor-mediate signaling stimulate INs migration as well, likely through membrane 

depolarization and increase of intracellular calcium levels94,128,133,134. In summary, GABAergic 

INs specification, migration and final positioning is determined by a strictly regulated 

sequence of combinatorial gene expression. Deficits in INs specification and migration, 

induced by either specific mutations or deletions of genes implicated in these developmental 

processes, are often associated with seizure in animal models. For example, mouse mutants for 

Dlx1/2135, Dlx5/6101, Sox 610, Arx136 (which are implicated in INs migration, final positioning 

and phenotypical maturation) to cite a few, show both deficits in specific INs population and 

seizure of varying severity.  Interestingly, migration disorder may be associated to deficits in 

structures that arise later in development, such as synapses. For example, Sox6 mutants mice 

show both a reduction of PV+ INs in all cortical layer and an immature synaptic phenotype of 

the PV INs that successfully reached the cortex10. A recent study found an association of 
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mutations in ARX and CXCR4, both essential for proper migration and laminar positioning of 

cortical GABAergic INs, with infantile spasms, a form of early-onset epileptic 

encephalopathy137. The astonishing speed of development of sequencing techniques has made 

whole exon sequencing cost and time effective in clinical settings. Therefore, I believe it is 

likely that in the next years research will identify mutations that, by altering the 

temporal/spatial regulation and expression levels of INs development regulators, may 

constitute a risk factor for the development of brain diseases. 

 

Glutamatergic neurons 

One day after PCs are generated, they emerge from the NE in VZ up to the IZ forming 

an agglomeration of cells2,24. The following day, they leave the IZ and migrate radially toward 

the cortical or hippocampal plate, depending on their final destination. Initially, somal 

translocation from the VZ towards the plia surface is predominant. At this stage, cells typically 

have a long (radially-oriented) leading process and a short transient trailing process, and they 

quickly and continuously migrate138. At later stages, it has been suggested that there are four 

different stages of migration of cortically derived neurons. First, bipolar neurons rapidly move 

to the SVZ; second, they remain in the IZ-SVZ for 24h, but develop a multipolar morphology, 

where they have the option of migrating tangentially, while extending and retracting its 

multiple processes, termed ‘multipolar migration’. Third, some neurons, but not all, can then 

return toward the ventricule through a reversal of polarity of its processes; while the neurons 

that remained in the IZ transform into a bipolar morphology, then slowly migrate to the CP 

through radial migration, guided by the RGCs2, and this migration mode is termed 

‘locomotion’. Lastly, when neurons reach the MZ, they anchor the tip of the leading process 

and detach from the radial glial fiber, this mode is refered to as ‘terminal translocation’. From 

generation to final destinations in the CP, this process can take about 4-5 days. 

Migration to the hippocampal plate (future CA regions) can take up to 4 days for CA1 

neurons, and longer for the CA3 neurons as they migrate further and through the CA1. 

Migration in the hippocampus and neocortex are similar in the beginning, however, when 

neocortical neurons begin the locomotion migration mode, CA1 PCs adopt the ‘climbing 
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mode’. Essentially, bipolar-like neurons (future CA1 PCs) migrate through the IZ to the 

hippocampal plate by using several scaffold RGCs, and dynamically extend and retract their 

branched leading processes in search of another RGC, and thus migrate in a zig-zag manner 

and causing migration speed to be lower than in the cortex. Despite CA1 and CA3 pyramidal 

layers being identifiable as early as E20-22, migration continues at birth139. In fact, postnatal 

local migration has been observed in the hippocampus. It has been postulated that GABAergic 

interneurons somata are redistributed from the dendritic to the cell body layers, and to the SR-

SLM border in the hippocampus from P5 to P152.  

Several extracellular matrix components, like fibronectin, chondroitin sulfate 

proteoglycans, reelin, neurocan and others are distributed along radial glial fibers, and are 

closely associated to migrating neurons and are believed to serve as a scaffold for CP 

formation, and guidance signal. Moreover, specific surface molecules are required for the 

recognition and adhesion during neuronal cell migration, but also to stop migration32. These 

surface molecules are specifically and transiently expressed in the leading process of 

migrating neurons, as well as the surface of neighboring radial glial fibers. For example, 

NJPA1 is a glial membrane protein localized at the junction of migrating neurons and radial 

glial fibers; blocking it by antibody causes the leading process to retract, microtubules to 

reorganize and the precocious detachment of migrating neuron from the radial glial shafts140. 

However, NJPA1 is only an example among hundreds of molecules that guide migrating 

neurons towards its final destination32. Indeed, most migration-regulating factors are either 

membrane bound, or secreted diffusible molecules that attract or repel neurons to a particular 

structure32. For example, brain-derived neurotrophic factors (BDNF), that influence the 

laminar-fate of PCs141. The phosphoprotein synapsin III was also shown to be important for 

radial migration and orientation of PCs in vivo; and the mechanism involves the upstream 

activation of Semaphorin-3A and phosphorylation of cyclin-dependent kinase-5 (CDK5) site 

of synapsin III142. Another signaling pathway involved in proper cell migration is the Wnt 

signal transduction. Mutations of this pathway have been found in models of neural tube 

defects143, which underlie their importance during neocortical and hippocampal development. 

In addition, a recent study evaluated that both Wnt canonical and non-canonical signaling are 

activated in pyramidal precursors during radial migration, and regulate the transition of 
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migrating neurons from multipolar to bipolar morphology. They found that the canonical 

pathway is triggered by Wnt5A expression, while the activation of the non-canonical pathway 

through ephrin-B1 controls the polarization and orientation of migrating neuron 144. Another 

example of molecular mechanism governing radial migration is through the activation of non-

hyperpolarizing GABAB receptors. Knocking down this receptor impaired neuronal migration 

and the polarized neurite morphology through alterations of the cAMP signaling and 

downstream phosphorylation of the kinase LKB1145.  

Furthermore, Cajal-Retzius neurons (CRN) are transient subpopulations of neurons that 

are present during gestation and are essential for migration. CRN are born by E10-12, and 

disappear by the second and third postnatal week respectively. They secrete reelin to help 

guide radial migration of projection neurons, and laminar specificity. CRNs also express the 

immunoglobulin-like adhesion molecule nectin1, and neocortical projection neurons express 

its binding partner nectin3, and their interaction is critical for radial migration146,147.  

Proper migration is the key to a structurally organized cortical circuit, and disrupting this 

process can lead to detrimental interference of proper cortical wiring. In fact, dysfuntion in 

migration have been known to cause cortical malformations, like cortical dysplasia, and are a 

risk factor for epilepsy. 

 

1.2. Postnatal development 

GABAergic and glutamatergic neurons are generated embryonically, nevertheless, their 

morphological maturation largely extends during the postnatal period. Many different 

processes characterize early postnatal development that lead to mature cortical circuits; such 

as local migration, axon guidance, synaptogenesis, apoptosis, and network formation and 

refinement. In fact, when do neurons stop migrating? When do they start to make synapses 

and form a mature stable and refined network? We will try to understand these processes in 

this next section.  
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During migration, ambient GABA and glutamate are part of the cues that stimulate 

interneuron motility. However, after reaching the neocortex and hippocampus, migrating 

neurons start to express the cotransporter KCC2. It has been established that KCC2 lowers the 

intracellular concentration of chloride, thereby controlling the reversal potential of Cl- and 

rendering GABAergic transmission hyperpolarization, through GABAA receptor activation. In 

fact, Bortone and Polleux (2009) have shown that the upregulation of KCC2 is necessary and 

sufficient to make migrating interneurons respond to GABA as a stop signal by negatively 

regulating the frequency of spontaneous intracellular calcium transients. Therefore, migrating 

cortical interneurons are able to sense the ambient levels of GABA and glutamate as a stop 

signal133.  Once these neurons have stoped migrating, and reached the final destinations, their 

axons begin to explore their new environement to find potential suiters and start to make new 

synapses to allow network communication. I will briefly present an overview of these 

processes.   

1.2.2. Axon guidance and synaptogenesis 

 

The establishment of precise neuronal connectivity requires neurons to extend axons and 

dendrites, which are guided to their target region and extended into specific layers. Axonal 

guidance and target recognition guides laminar and subcellular specificity, to finally produce 

the pre- and post-synaptic specialization components to form synapses. Within that region and 

those layers, the growth cone is the “exploratory” tip of extending axons that guides them to 

finer target fields to form synapses148,149.  

Growth cones are a highly motile structures at the tip of growing neurites which allow 

axons to advance, retract, turn and branch, and these behaviors are regulated by the 

reorganization and dynamics of the actin and the microtubule cytoskeleton. They are guided 

by the aid of molecular cues in the environment150,151, and can even respond to multiple 

attractive and/or repulsive molecular cues at the same time, with distinct signaling 

pathways148. They also respond to cell-surface adhesion molecules to regulate spatial 

specificity152, involving multiple structural protein families, such as the immunologlobin (Ig) 

superfamily, semaphorins, netrins, ephrins, neuropilins, plexins, Eph kinases and numerous 
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extracellular matrix glycoproteins. Some of these proteins can be associated to the plasma 

membrane, and thus act as receptors for secreted ligands, or extracellular matrix (ECM) 

components, or they may interact with proteins expressed on neighboring cells148.  

For example, neurofascin is an L1 family immunoglobulin cell adhesion molecule 

(L1CAM), which has been shown to promote IN axon pathfinding. The neuronal NF186 

isoform is associated to the ankyrinG-based cytoskeleton at the axon initial segment (AIS) of 

purkinje cells in the cerebellum. In fact, it is expressed in a subcellular gradient along the 

soma-AIS axis, which guides FS-BC axon terminals to the AIS of purkinje cells. AnkyrinG-

associated NF186 is also necessary for ‘pinceau’ synapse formation (FS-BC synapses 

ressembing a paint brush), and/or stabilization153. On the other hand, NF166, which interacts 

with NrCAM and axonin-1, is implicated in the induction of neurite outgrowth via FGFR1 

signaling. It is also expressed at the AIS and soma of dissociated hippocampal neurons and has 

been suggested to control gephyrin clusters formation at the axon hillock154,155. Another 

example involving the semaphorins signaling family, where knockouts of its signaling 

components lead to extended infrapyramidal mossy fiber axonal pathways and spontaneous 

seizures156-158. Furthermore, mechanical force has also been shown to regulate axon guidance 

and growth, as well as synapse formation and plasticity by regulating receptor-ligand 

interactions, protein conformational changes and cytoskeleton dynamics159. Altogether, axons 

are guided to their target by multiple mechanisms, involving the extracellular matrix, secreted 

and membrane-bound proteins and even mechanical force, displaying its complexity. 

Once an exploring axon recognizes a potential target, the mechanisms of synaptogenesis 

occur. In fact, this process can start very early on during development. As such, neurons that 

are present during gestation, such as CRN and subplate neurons (SPN) can already make 

synapses. SPNs constitutes a heterogeneous glutamatergic and GABAergic neuronal cell 

population that is curcial for axonal projection development and neocortical column 

formation147. Both CRN and SPN have glutamatergic and GABAergic synapses147,160. 

However, recording of evoked and spontaneous post-synaptic currents (sPSC) revealed that 

GABAergic synapses represent the major input to CRN from E14147,161, although they mediate 

excitatory responses in CRN and SPN147,162. Martinotti cells have been shown to form direct 

GABAergic synapses to CRN147, though they are not necessarily the only IN subtype 
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contacting CRN. Futhermore, there is evidence of direct synaptic contact between CRN and 

SPN163, thus proving that synaptogenesis occurs very early on.  

Nevertheless, mature and stable synapses are formed during postnatal development. PCs 

synapses are formed prior to GABAergic synapses, which are present from P5, however these 

newly formed synapses are immature, and are characterized by a small size and few synaptic 

vesicles2. GABAergic terminals and axon growth strongly increase in number between P7 and 

P21, where they finally reach their mature perisomatic innervation patterns6. FS-BC synapses, 

in particular, are detected only after P4 in layer V/VI of the visual cortex147,164; while in the 

barrel cortex, layer IV FS-BC only receive reliable excitatory thalamic input by P7147,165. 

Maturation of inhibitory innervation in the cortex is regulated by sensory experience, and thus 

activity-dependent.  

There are two modes of synapse formation (Figure 7), where a spine can either grow 

towards an ‘empty’ axon to form a new bouton, or can form a synapse towards an already 

existing boutons and create multiple synapse boutons. In this case, as they mature, the 

previously exisiting synapses can be eliminated. As single synapses start to form, the pre and 

postsynaptic components start to accumulate at the future site of the synapses. Initial immature 

GABAergic synapses function by multivesicular release, and synaptic transmission starts with 

GABA, which in early development can serve as a depolarizing transmitter. Immature 

synapses have a higher probability than mature synapses to release vesicles. Finally, 

maturation leads to an increase of synchronous over asynchronous release, characterized by 

the increase in release sites and the expression of the necessary vesicular release machinery 

components, thus increasing the probability of release at a particular synaptic contact in 

response to presynaptic action potential.  
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Figure 7. Two possible mechanisms of synapse formation. 
Illustration adapted from Holtmaat and Svoboda (2009)166.  

 

1.2.2. Network formation & Refinement 

 

During synaptogenesis, a lot of synapses are formed and axonal and dendritic arbors are 

even more widely distributed than in the adult. Then as a process of refinement, maturation 

eliminates inappropriate or weak synapses and axon collaterals. Another process of refinement 

is programmed cell death that occurs during early development, thereby reducing the number 

of neurons, also in the effort to produce strong and stable neuronal networks and connectivity. 

In this section, I will describe the process of apoptosis and critical period plasticity during 

which major changes occur. 

 

Apoptosis 

Refinement at the circuit level consists of a portion of neurons that undergo programmed 

cell death after interneuron migration. A recent paper published by Southwell et al., in Nature 

letters (2012) has proven that interneuron cell death is intrinsically determined. As evaluated 
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by the expression of an apoptosis marker, caspase 3, they assessed that most cell death occur 

from P7 to P11. Around 40% of interneurons were eliminated by Bax-dependent (the Bcl-2-

associated X) programmed cell death. Three important experiments analyze whether the 

process of apoptosis is dependent on neurotropic competition, or is intrinsically 

predetermined. Firstly, the process of programmed cell death in interneurons is maintained 

when cells are cultured in vitro. Moreover, this process is also maintained when embryonic 

interneuron precursor were transplanted in vivo, and were 6 to 10 days younger then 

endogenous interneurons. Indeed, programmed cell death occurred in a timely-manner for the 

endogenous neurons (at P7), whereas the transplanted cells only underwent apoptosis when 

they had reached their equivalent cellular age. Finally, the rate of apoptosis was independent 

of the amount of interneurons that were transplanted, or the lack of the neurotrophic TrkB 

receptor. These pivotal experiments strongly suggest that programmed cell death is intrinsic to 

the developing cell, and is the first in vivo and in vitro evidence that cell survival is not, at 

least solely, dependent on BDNF and TrkB as it was previously believed167-169. However, 

these experiments do not rule out that there may be other neurotrophic factors involved in cell 

survival. BDNF also binds to p75NTR to a lesser affinity, a receptor involved in apoptosis, 

thus should be studied. In fact, one hypothesis is that cell-cell contact and synaptic 

transmission could regulate cell survival. In fact, it has been shown that synapse maturation is 

activity-dependent. Could cell survival be activity-dependent? The first synapses appear by P2 

and progressively develop, while the peak of apoptosis occurs at P7. Could it be that the cells 

that cannot form synapses because there was not enough activity be the ones that die? In fact, 

Southwell et al. also show that transplanted interneurons get integrated to the circuit, and the 

frequency, but not the amplitude, of sIPSC recorded from endogenous pyramidal cells 

increased, regardless of the amount of cells that were transplanted. One hypothesis that arises 

is that inhibition is independent of population size, but is controlled by homeostatic regulation 

of synaptic strength and number169. These findings could explain why apoptosis takes place, 

because the control of inhibition doesn’t require as many interneurons. Early electrical activity 

can influence cell death. Studies in culture have shown that silencing spontaneous activity 

increases apoptosis170,171. Interestingly however, Southewell and colleagues reported that the 

percentage of cell death was independent of the number of transplated cells. Altogether, 
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though it seems clear that apoptosis is a normal occurrence in early development, the 

mechanism that regulate their programmed cell death is not yet fully understood. 

 

 Critical period of plasticity 

Network formation and refinement can take place at the circuit level, cellular level and 

molecular level. Indeed, once migration is completed, and synapses are forming and 

contributing to GABAergic maturation, the circuit is increasingly more complexe. Part of the 

normal refining of neuronal circuit requires activity and experience, and there is a specific 

timing where they are most important, to establish their mature wiring patterns. This is called 

the critical period, which has been defined as ‘a strict window during which experience 

provides information that is essential for normal development and permanently alters 

performance.’ by Hensch in 2005172. This process applies to the different regions of the cortex, 

but the clearest example is in the visual cortex, after eye opening. The closure of one eye, 

referred as monocular deprivation, during this critical period can cause a permanent loss of 

visual acuity from the closed eye, and a reorientation of binocular neurons to respond to visual 

input from the open eye172,173. It has been already established that GABAergic inhibition 

maturation takes part in the onset and time course of the critical period. In GAD65 knockout 

mice, where GAD65 is one of two enzymes necessary for GABA synthesis, normal ocular 

dominance plasticity is absent, and preserve the potential for plasticity throughout their life; 

however, delivery of diazepam to increase inhibition reverses the effects174,175. A few 

mechanisms involved in GABAergic maturation have been elucidated. For example, when 

BDNF expression is accelerated, GABAergic maturation and inhibition is also accelerated in 

the visual cortex, which prematurely closes the critical period of plasticity, and precociously 

increases visual acuity176 (see figure 8). BDNF-overexpressing transgenic mice also lead to a 

premature shift in the critical period opening, causing it to open and close sooner than it 

should177. Along with BDNF, it has been shown that activity-dependent downregulation of 

PSA, attached to NCAM cell adhesion molecule, regulates the timing of GABAergic 

maturation. As such, removing PSA prematurely promotes a precipitated maturation of 

functional FS-BC synapses, leading to enhanced inhibitory synaptic transmission, as well as a 
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premature onset of the critical period for ocular dominance plasticity173. In addition, the retina-

derived homeoprotein Otx2 was found to transfer to the visual cortex in an experience-

dependent manner, and promote critical period plasticity178. The developmental shift of 

NMDA receptor, from NR2B to NR2A, has also been involved in GABAergic maturation 

during critical period in the barrel cortex179. Moreover, reducing intracortical inhibition in 

adult wild type rats can partially reactivate ocular dominance (OD) plasticity in the visual 

cortex, and therefore was sufficient to reopen plasiticty after critical period is normally 

closed180. Conversely, interfering with the normally ‘excitatory’ GABAergic transmission 

during early development (from P3 to P8) prolonged the critical period plasticity in the visual 

cortex, without altering the structural or functional development of the region181. This suggests 

that inhibitory maturation, as well as early excitatory GABAergic transmission is crucial for 

the normal development of ocular dominance plasticity, and the adult level of inhibition 

actively restricts cortical plasticity; but it also suggest that the balance between excitation and 

inhibition is an important component of this plasticity.  

               

Figure 8. Representation of the time window where critical period for ocular dominance      
plasticity can occur in response to monocular deprivation.  

  Illustration adapter from Sale et al (2010)182. 
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In the absence of sensory experience, how do neuronal circuit develop? Adult cats that 

were dark reared from birth had immature visual cortical functions; as well as monocularly 

deprived cats during the critical period, which dramatically shifted neuronal spiking response 

in favor of the open eye183. These functional changes are accompanied by synapses pruning 

and axonal rearrangements184. However, a recent paper from Kang E et al. (2013) showed that 

sensory deprivation, by dark rearing mice from birth, doesn’t stop visual cortical development 

as was suggested previously, instead it delays it185. In fact, analyzing spatial frequency 

threshold of the behavioral optomotor task (OPT; reports mainly sub-cortical function) and 

visual acuity by visual evoked potentials (VEP; reflects mostly thalamocortical function) show 

an immature spatial vision until P34-35, however there is a slow recovery until P55-65. On the 

other hand, dark-reared mice re-exposed to light exhibit adult OPT threshold faster then 

control mice, and experience a rapid recovery of visual acuity, and plasticity of cortical 

circuitry185,186. Therefore, sensory deprivation delays the development of spatial vision but 

spontaneous activity is sufficient for potential visual circuitry and function. In addition, it also 

shows that depending when the pathology is present, and the length of it can determine how 

fatal the damages are. What happens if the timing of cortical plasticity is affected? In fact, 

these studies suggest that the timing of critical period is plastic itself depending on the timing 

of sensory experience. There are factors involved in GABAergic maturation that are expressed 

later in life to limit excessive circuit rewiring. For example, perineuronal nets (PNNs) that 

enwrap around FS-BCs in an activity-dependent fashion, and restrict plasticity in the adult by 

reaching its full maturation around the end of the critical period in the visual cortex. However, 

after dark rearing from birth PNN expression was overall reduced, as well as the density of 

FS-BCs, preferentially in layers II/III and V/VI187. Consequently, any alteration of one of 

these factors can affect the length of critical period. If critical period is open too long, the 

circuit may remain immature. The potential of making new connections could enhance 

learning, but it could also affect long-term memory if these connections do not remain. As 

such, the presence of the extracellular matrix (ECM) ends developmental plasticity by 

allowing structural stability. ECM removal in the auditory cortex of adult Mongolian gerbils 

during a specific phase of cortex-dependent auditory relearning, promotes an increase in 

relearning performance without erasing already established capacities. Promoting synapse 

plasticity via a reduction of ECM also enhanced the cognitive flexibility of reversal of 
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learning188. This study demonstrates that indeed we can possibly increase the learning process, 

as well as reversal of learning, due to circuit flexibility. However, certain deficits can be 

rescued by homeostatic mechanisms. For example, GAD67 is the other enzyme necessary for 

GABA synthesis. Selectively removing one allele of GAD67 in FS-BCs causes substantial 

inhibitory neurotransmission deficits, and increases PC excitability. However, these deficits 

were rescued in adult mice, suggesting that adult mice have the potential to compensate for 

early development alterations189.  

There has been recent evidence of cellular refinement, by pruning/elimination of 

inappropriate synapses and axon collaterals (see figure 9). In fact, this process can be activity-

dependent and/or guided by molecular signals. There is evidence of both. Firstly, the pattern 

of subcellular targeting of basket cells is maintained in the absence of sensory and thalamic 

input, suggesting that this process requires mainly genetically defined cell surface labels190. 

On the other hand, there is also evidence showing that the maturation of these synapses, 

defined in terms of perisomatic density, is strongly dependent on sensory inputs6, in addition 

to molecular cues191,192. As for pruning of inappropriate axon collaterals, there has been recent 

in vitro evidence that this process occurs in FS-BC193.  

 

 

 
Figure 9. Representation 
of morphology 
development, 
synaptogenesis and 
pruning during cortical 
circuit maturation and 
refinement 
 
Illustration adapted from 
Uribe-Querol et al 
(2013)194.  
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 Synaptic plasticity in the hippocampus has been extensively studied, for its capacity to 

store information, as this region is associated with episodic and spatial memory. The model of 

synaptic plasticity is long-term potentiation (LTP)195, which is enhanced following learning. 

LTP is produced when high frequency electrical stimulation of afferent fibers enhances 

synaptic transmission that can last a very long time (months). This process can be reversed 

with low-frequency stimulation in a timely manner, and this process is termed depotentiation, 

and only depotentiates recently activated synapses. Along with LTP, there are other activity-

dependent plasticity mechanisms, such as long-term depression (LTD), EPSP-spike 

potentiation, as well as spike-timing-dependent plasticity (STDP), and de-depression. LTD is 

the opposite process of LTP, where low-frequency stimulation weakens synaptic transmission. 

This form of plasticity is more present during development and less in the adult. It has been 

suggested to be a homestatic mechanisms to prevent overactivation of networks, or also serves 

as a learning mechanisms. This form of plasticity can also be revesed by high-frequency 

stimulation, causing de-depression. EPSP-spike potentiation refers to the potentiation of action 

potential probability of a given synaptic input. STDP is when pre- and postsynaptic cells are 

independently stimulated, and the timing at which the spikes are evoked determines the 

direction of plasticity.  Although many molecular components involved in these forms of 

plasticity have been elucidated, how synaptic plasticity in overall circuits leads to the storage 

and recall of information is still an open question25.  

 

In summary, hippocampal and neocortical development are specifically and temporally 

organized. In utero neuron generation by mutitple precursor cells produces the several 

subtypes of glutamatergic and GABAergic cells; which then use different locomotive 

processes to migrate to their final laminar positions. Once located in the right region, their 

neurites explore their environment for potential connections, thus initiates synapse formation. 

Finally, activity-dependent mechanisms of refinement allow to solidify strong connections and 

weed out innapropriate ones, thus forming stable and mature neuronal circuits. Each of these 

processes require numerous key factors to guide them, and to allow proper circuit activity for 

normal brain development. One important factor in normal circuit development is KCC2, a 

cation chloride cotransporter that I will discuss in the following section.   
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2. The Cation Chloride Cotransporter KCC2 

 

Cation Chloride Cotransporter (CCC) family consists of the solute carrier 12 (SLC12) 

gene family which encodes four types of K+-Cl- cotransporters (KCC1-4), two types of Na+-

K+-2Cl- cotransporters (NKCC1-2) and an Na+-Cl- cotransporter (NCC). The uptake of Cl- by 

NKCC1, NKCC2 and NCC is driven by the inwardly directed Na+ gradient, which is 

maintained by the Na+/K+-ATPase. Conversely, all KCCs (KCC1-4) mediate net Cl- efflux, 

which is driven by the respective outwardly directed K+ gradient, also through Na+/K+-

ATPase. Nevertheless, all CCC members are electroneutral, meaning they do not contribute to 

current changes, but rather they are implicated in the flux of ions, which is dependent on the 

intracellular-extracellular ionic gradient. Their principal role is the cotransporter activity, 

however, they are also involved in a number of biological processes, such as cell volume and 

blood pressure regulation, and either neuronal or neuroendocrine signalling, depending on the 

specific CCC member and posttranslational activation196-201. Some CCC members are 

expressed in all organ systems ubiquitously like NKCC2, and some are solely expressed in the 

CNS, like KCC2 and KCC4. NKCC2 and NCC are both primarily expressed in the kidney202. 

Finally, NKCC1 as well as KCC3 are also expressed in the peripheral nervous system (PNS), 

and even more specifically in neurons and glial cells for NKCC1196. Their C- and N-terminal 

domains are important for regulation of membrane expression203-206, basolateral and apical 

sorting in polarized epithelial cells207 and oligomerization208-211. 

Less is known about the NCC, NKCC2 and KCC1, KCC3 and KCC4, although they 

share similar structure, function and regulatory domains. First, KCC3 is widely expressed 

mainly in neurons in the rodent CNS and PNS, and undergoes a developmental upregulation, 

similar to KCC2212. Although KCC3 also contributes to neuronal Cl- regulation, its 

physiological function is still poorly understood213. Nevertheless, its absence or genetic 

impairment causes neurodegeneration with a reduced threshold for seizures214, as well as 

peripheral neuropathy associated with agenesis of the corpus callosum, referred to as the 

Andermann syndrome215. Furthermore, KCC1 mRNA is expressed in neurons and non-

neuronal cells in the rodent CNS at low levels216,217, whereas in the embryonic brain, it is only 

detected in the choroid plexus218. Finally, KCC4 mRNA is highly expressed in the VZ in the 
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embryonic brain, but its expression decreases to low levels in most of the adult rodent CNS, 

apart from the suprachiasmatic nucleus, brainstem and spinal cord218. Knockout mice of either 

KCC1 or KCC4 do not exhibit any obvious CNS phenotype219,220. In the human cortex, the 

expression of both KCC1 and KCC4 is very low, while KCC3 is consistently highly expressed 

throughout life196.  

KCC2 and NKCC1 are the two-most characterized CCC members, and are essential in 

determining the driving force of GABAergic currents. NKCC1 is almost ubiquitously 

expressed221 in the adult rodent CNS and PNS, in neurons and in glial cells 222. It was initially 

thought that NKCC1 underwent a downregulation during development in the rat and human 

brains223,224; however, several other studies reported a developmental upregulation of NKCC1 

mRNA225-227. This discrepancy is most likely due to the differential expression of the two slice 

variants, NKCC1a and NKCC1b, produced by the Slc12A2 gene221. In fact, the use of probes 

and antibodies that target exon 21, only detect NKCC1a and not NKCC1b226,228. Additionally, 

NKCC1b undergoes developmental upregulation, and its expression is higher than that of 

NKCC1a in the adult human brain229.  

Moreover, KCC2 shares a high homology with other KCCs (KCC1, KCC3 and KCC4); 

nevertheless, KCC2’s role is unique in the CNS development and function. It is preferentially 

and progressively expressed in neurons during development, and establishes the neuronal 

chloride concentration under isotonic conditions. It fact, its expression is essential for the 

switch to hyperpolarizing GABA current, and thus alterations of its expression and/or function 

has been implicated in many neurological disorders, such as epilepsy223,230-234, neuropathic 

pain235, spasticity following spinal cord injury236, autism237, and schizophrenia225,238,239. My 

thesis focuses on the effects of KCC2 alterations on seizure susceptibility and synaptic 

formation. In this section, I will first review KCC2 expression profile in the cortex and 

hippocampus, followed by a detailed review of its functions in the CNS and the mechanisms 

involved in its activation. 
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2.1. KCC2 structure and expression 

 

2.1.1. Structure and intrinsic KCC2 activity 

 

KCC2 is a glycosylated protein with twelve transmembrane domains and an intracellular 

N- and C-terminal that weighs 140KDa240,241. The electroneutral transporter carries ions at a 

stoichiometric ratio of 1K+: 1Cl-; however the coupled translocation mechanism is still 

unknown197. There is a twofold symmetry between the transmembrane 1 to 5 and 

transmembrane 6 to 10, in an inverted orientation (see figure 10). This pseudo-symmetry 

could be the basis for the transporting activity242 and there is evidence that the intracellular 

release may be regulated through the intracellular loop 1 (ICL1) that produces a flexible 

intracellular gate243. In addition, to the short loop connecting the transmembrane segments, 

there is a long extracellular loop (LEL 3) of approximately 100 amino acid (aa) residues244,245 

where multiple N-linked glycosylation sites were found246. However, their importance has not 

yet been identified197. Beside the glycosylated sites, there are four cysteines in the LEL of 

KCC2, which are likely substrates of intra- or intermolecular disulfide bonds. To evaluate 

their role, Hartmann et al. (2010), mutated these cysteines in HEK293 cells. These mutations 

rendered KCC2 fully inactive, likely due to the formation of incorrect disufide bridges; 

however, they did not affect the cotransporters’ expression and surface targeting197,247. KCC4 

is the closest CCC member to KCC2, and interestingly, mutations of the corresponding 

cysteines in KCC4 did not affect its transporter activity. Furthermore, a mutation of a specific 

amino acid, C568A, located in the 10th transmembrane domain, inactivates KCC2, and affects 

its interaction to the cytoskeleton (through protein 4.1N; see below for more details). 

However, it is unclear whether this mutation inhibits its intrinsic activity or affects its 

membrane trafficking, and whether it causes a conformational change248,249. 
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Figure 10. Schematic illustration of 

KCC2 structure. 

Image adapted from Medina et al, 
2014 that features the aa residues 
implicated in the transporter 
function, its cell surface stability 
and membrane internalization.  
 

 

 

 

Several studies demonstrate that both the N- and C-terminal domain are important for 

the intrinsic transporter activity of KCC2. First, truncating the N-terminal region inactivates 

the transporter activity, but did not affect its plasma membrane expression250. In the C-

terminal there is a leucine (L675), which has also been shown to be critical for KCC2’s 

transporter activity, but not its surface expression in heterologous expression systems251. The 

C-terminal domain is also packed with multiple tyrosine, serine and threonine phosphorylation 

sites that play a key role in the activation of the transporter; and they will be reviewed in detail 

in the following sections. This structure model of KCC2 (as seen in figure 10) is the only 

putative known structure to date; the three dimensional structure of KCC2, and other KCCs 

for that matter, are still not known196,252,253. In addition, the ion-transporting elements, the rate 

of transport, the mechanisms regulating the transport, but also the intracellular signalling 

cascades regulating the cotransporter have yet to be determined. Further studies regarding 

these issues will be important in order to develop potential (and clean) drugs targeting KCC2.   

A defining feature of KCC2 is its high constitutive transport activity under isotonic 

conditions, where the osmotic pressure across the plasma membrane is equivalent and water 

can move freely across the membrane without changing ionic concentrations254. This feature is 

crucial to maintain a low intracellular chloride concentration ([Cl-]i) in neurons. KCC2 

contains a structural motif of 15 amino acids (aa) long (1022–1037aa in exon 23) referred to as 
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the ISO domain, which is important for its isotonic activity255-257. This feature constitutes a 

pivotal difference between KCC2 and other KCCs, since the latter have low transporting 

activity under isotonic conditions, and would require cell swelling, or osmotic stress, to have a 

high transporting activity198. KCC4 could be strongly activated by hypotonic swelling, but not 

in isotonic conditions258,259. In fact, transferring the ISO domain to KCC4 of cultured 

hippocampal neurons rendered this transporter constitutively active in isotonic conditions, 

while deleting it from KCC2 reduces its cotransporter activity. Additionally, replacing this 

sequence in KCC2 by the corresponding KCC4 sequence abolished its constitutive activity, 

and instead allowed activation under hypotonic conditions like KCC4. These data suggest that 

KCC2 probably has two functionally different domains, the first being the specific ISO 

domain, and the second may be shared with the other KCCs that actually transport ions under 

hypotonic conditions (lower osmotic pressure, with more water and less solutes;197,252,256,257). 

Taken together, it is evident that both the N- and C-terminal region of KCC2 are involved in 

its intrinsic cotransporter activity, however their regulatory mechanisms are not yet completely 

understood.  

 

2.1.2. Expression profile 

 

KCC2 is abundantly expressed in neuronal cells of the CNS, as evaluated by western 

blot, electrophysiology, immunofluorescence and ribonuclease protection 

analysis216,226,240,244,260,261. KCC2 is the only KCC member that is not expressed in glia 

cells240,262. There are, however, certain subpopulations of adult CNS neurons that do not 

express KCC2, such as dopaminergic neurons of the substantia nigra263. Moreover, the number 

of KCC2-expressing neurons is developmentally upregulated in parallel with neuronal 

maturation in a caudal-rostral pattern218,227,264. As such, KCC2 protein is first expressed in the 

spinal cord and subcortical neurons during embryogenesis, and gradually increases in higher 

brain structures. At birth, mature KCC2 expression levels are already established in the spinal 

cord and brainstem; however, in the more rostral parts such as cortex, upregulation begins 

perinatally and mature pattern is reached by the second postnatal week227,264. This section will 

describe more specifically the expression pattern of KCC2 during development.  
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KCC2 transcript and protein expression starts at E12.5 in the immature brainstem and in 

developing spinal cord motoneurons as they first start to differentiate in the medulla and 

ventral horn222,264, and gradually increases across all the spinal cord and medulla at E15.5. The 

cerebellum starts to develop and Purkinje and granular cells start to be generated by E11. 

When Purkinje cells start to differentiate at E15, KCC2 is already visible, and increases until 

E18.5. Conversely, neurons destined for the granular and molecular layers differentiate later 

and migrate inward from the external cerebellum. As they reach their final destination 

beginning at P3, they start to express KCC2. Finally, all neurons of the cerebellum continue to 

gradually increase KCC2 expression postnatally. In parallel, the thalamus starts to develop 

from E12, and neurons in the dorsolateral nuclei begin to differentiate and start to express 

KCC2 by E15.5. However, dorsomedial thalamic nuclei differentiate later, and express KCC2 

at E18.5; while in the ventral thalamus and ventral lateral geniculate, KCC2 is expressed at 

E14.5. In addition, in the olfactory bulb originating from the telencephalon, KCC2 starts to be 

expressed by mitral cells (oldest olfactory neurons) at E15, and appear in all other neurons (for 

ex. tufted cells) by E18.5. The striatum differentiates after the olfactory bulb, yet KCC2 

follows the same transcriptional pattern in medium-sized spiny neurons. Neurons from the 

‘roof’ of the telencephalon begin to migrate to form the neopallial cortex, which becomes the 

outer gray layer of the cortex at E12. Finally, the basal part, which includes the piriform cortex 

finishes its differentiation before the cortical plate differentiation process begins, and thus, 

starts to express KCC2 before the rest of the neocortex, at E15.5 218,264.  

 

In the cortex, KCC2 has a particular area-specific distribution and age-related increase. 

It is first identifiable in the basal part of the neocortex (piriform and entorhinal cortices, 

referred to as the paleocortex). KCC2 (mRNA and protein) is already present in the piriform 

cortex at E15.5 in differentiated neurons. At birth, the labelling is already strong in dendrites 

and somas in superficial layers and also diffused in the neuropil; it then gradually increases 

and reaches its mature pattern after the first postnatal week. In contrast, in isocortical areas 

(neocortex and hippocampus), KCC2 is absent from the VZ or IZ during neurogenesis and 

migration. And, in the somatosensory or motor cortices, KCC2 labelling is very faint at birth 

in all layers but layer 1, where it is expressed in the neuropil. It is then progressively increased 
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in the entire neocortex during development. In fact, neocortical neurons differentiate later than 

the paleocortex suggesting that KCC2 expression correlates with the telencephalon 

development, as well as cortical neuron differentiation and maturation218,227,264,265. In fact, as 

soon as an immature neuron reaches their final position, the mRNA of KCC2 can be detected. 

To further understand KCC2 expression patterns, a few studies have evaluated layer-

specific differences in the sensory neocortex and hippocampus (see Figure 11). Firstly, as 

previously explained, KCC2 is already expessed in cortical layer 1 at birth, and this pattern 

continues throughout postnatal development. Other layers have a more complex pattern since 

neurons are still migrating to superficial layers in the cortical plate at birth. In layer V/VI, 

KCC2 is first localized in dendrites and cell bodies of non-pyramidal neurons, as seen by weak 

immunolabeling in small multipolar neurons, present until P3. Nonetheless, at P3, KCC2 is 

also weakly labeled in the cell body and dendrites of PCs. At P5, KCC2 levels increase in 

dendrites and on the surface of PCs somata and in the neuropil of layer V and in granule cells 

in layer IV. The staining intensity in the neuropil increases in layers IV/V/IV at P7, and 

appears homogeneous by P10. At this time, cell bodies as well as apical dendrites no longer 

have any clear KCC2 signal, as they enter the membrane. KCC2 immunolabelling increases 

until P14. However, in layer II/III KCC2 immunolabelling is negative at P5, and moderately 

increases starting from P7 in the bottom half of these layers. At P10, most neurons express 

KCC2 but they maintained a gradient pattern, where the intensity decreases from deep to 

superficial neurons; whereas after P12, KCC2 levels increase and are consistently 

homogeneous in the neuropil. In summary, KCC2 is localized in deeper layers after P7, and all 

layers after P10, and reaches its mature expression pattern (somata membrane and in the 

neuropil) across all cortical layers by P12266. Altogether, it seems KCC2 in expressed in a 

timely manner as neurons settle into their final destination in the neocortical layers. 

Interestingly, the timing of KCC2 expression in PCs corresponds to the development of 

GABAergic synapses, which appear at P3 and significantly increases after P5. Furthermore, 

both electrophysiological analysis of GABAergic driving force coupled with immunolabelling 

of GABA and VGAT (vesicular GABA transporter) suggest that GABA is 

‘excitatory’/shunting in superficial layers, while it is inhibitory in deeper layers of the cortex, 

during the first postnatal week266,267. After P10, GABA staining extends to superficial layers 
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and plays an inhibitory action in all neocortical neurons266-268. These expressional changes 

suggest that the developmental timing of GABAergic synapse formation in each cortical layer 

correlates to the timing of KCC2 expression266.  

 

 

 

Figure 11. Developmental 
localization of KCC2 in the 
mouse somatosensory cortex. 
 Illustration adapted from 266 
 
 
 
 
 
 

 

In the hippocampus, KCC2 transcript expression starts in the CA3 region at around 

E15.5, where the first pyramidal neurons settle in; and spreads to the CA1 region by E18.5. In 

the DG, where granule neurons are mostly generated postnatally, KCC2 expression increases 

during the first postnatal week. Finally, KCC2 mature levels are reached by P15218,227,264,266,269. 

Interestingly, the subcellular localization of KCC2 differs in the paleocortex, neocortex 

and hippocampus. From P0 to P12 in the paleocortex and neocortex, KCC2 is localized in 

transport vesicles and mostly in dendritic plasma membrane as observed by electron 

microscopy (EM) imaging. In superficial layers of the neocortex and paleocortex, KCC2-

positive transport vesicles increase with age; while in the hippocampus, they gradually 

decrease with age265,269. This difference may be due to either an increase in KCC2 synthesis 

and transport, or to an increase in the recycling of KCC2 at the membrane, in the cortex. 

Furthermore, KCC2 is highly expressed in the vicinity of excitatory synapses in the 

hippocampus close to extra-synaptic GABAA receptors (GABAAR)269,270 as well as in thalamic 

relay neurons, that receive cortical afferents271. The expression of KCC2 in dendritic spine 

heads in the cortex is still controversial, as a recent report has shown by EM that at P6 and 
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P12, KCC2 is located at the spine neck and not spine heads265. Finally, distribution of KCC2 

mRNA or protein levels discussed in this section are similar in the mouse and rat developing 

brains, with the only difference that the developmental timing is shifted about two days later in 

the rat compared to the mouse264.  

KCC2 expression is not only age- but also gender-specific. For example, at P1, KCC2 

protein levels are significantly higher in females than in males in the rat entorhinal cortex and 

hippocampus272. Consistently, CA1 pyramidal neurons show more hyperpolarized GABAergic 

postsynaptic currents in females from P4 to P14273. Interestingly, seizure susceptibility is 

strongly influenced by sexual hormonal difference between genders in the developing brain; 

which can regulate the excitation threshold and thus regulate seizure generalization274-276. The 

gender difference in KCC2 expression, and consequently in the onset of inhibitory 

GABAergic neurotransmission during brain development could partly explain why males are 

more susceptible to seizure than females. Other studies are necessary to understand whether 

these gender-based differences are due to differences in KCC2 protein levels only, or to the 

number of cells expressing this cotransporter272. 

Finally, the developmental upregulation of KCC2 is not only brain region- and gender-

specific, but also species-specific. Rodents are born with low cortical KCC2 expression and 

depolarizing GABAAR-mediated responses in cortical neurons. However, in the human 

neocortex, KCC2 mRNA is strongly upregulated during the second half of gestation225,228,277. 

In addition, immunohistochemical analysis demonstrates that most cortical neurons express 

KCC2 from the 25th postconceptional week onwards278. While an earlier study suggested that 

KCC2 is predominantly expressed postnatally in humans224, recent evidences support the 

hypothesis that KCC2 expression begins prenatally in the human neocortex196.   

 

2.1.3. Isoforms 

 

There are two different isoforms of KCC2: KCC2a and KCC2b. These isoforms are 

encoded by alternative exon one, and have different promoters regulating them, though both 

have similar transporter properties when expressed in HEK293 cells. The major structural 
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difference between the two isoforms is in the N-terminal section of the protein279. In mature 

cortex, hippocampus and cerebellum, the major isoform is KCC2b, which represents 80% of 

total KCC2. In the embryonic and neonatal brainstem, however, both isoforms have similar 

distribution (colocalization) and expression pattern280, suggesting they are initially regulated 

by common regulatory mechanisms. Moreover, KCC2b expression is increased during the first 

postnatal week in the cortex and cerebellum, while KCC2a does not increase postnatally in 

these regions, and even disappears in the adult thalamus and cerebellar Purkinje cells. In 

several noncortical regions including the basal forebrain, hypothalamus, brainstem and spinal 

cord, postnatal KCC2a expression is high. Concerning the subcellular localisation, both 

isoforms target dendrites, but they colocalize only partly. In the mature CNS, KCC2b is 

primarily located at the plasma membrane of neuronal somata and proximal dendrites in the 

hippocampus, entorhinal cortex, Purkinje neurons269,281, brainstem282, and spinal 

motoneurons222,236. Endogenous KCC2a, however, is not found at the plasma membrane of 

neuronal somata and proximal dendrites in any area of the postnatal CNS. On the other hand, 

KCC2a is present in neuronal dendrites, and colocalizes with dendritic MAP2, but only partly 

with KCC2b; thus, it may be that these isoforms are either separately localised in the dendrite 

(intracellular vs membrane) or they are located in different areas of the dendrite (proximal vs 

distal). The different N-terminal region of these isoforms can target different signals or 

interacting proteins, which could lead to different transporting mechanisms, or possibly 

intracellular retention mechanisms281, however further studies are needed to address this 

discrepancy. Its important to bear in mind that most studies on KCC2 expression have used 

mRNA probes and antibodies that detect both KCC2a and KCC2b, thus, unless stated 

otherwise, KCC2 refers collectively to both splice variants.  

 

2.2. Function  

 

Although low levels of KCC2 are expressed in the cortex at birth, its expression in the 

spinal cord and brainstem is already mature. As such, KCC2-/- mice (knockout of both 

isoforms) die at birth. They exhibit an increase in depolarizing GABA response, severe 
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deficits in motoneuron control, abnormal muscle tone and respiratory failure222,250. These 

phenotypes underline KCC2 importance in spinal cord and medulla development around birth. 

Similarly, overexpressing KCC2 precociously impairs neural development249. On the other 

hand, KCC2b-specific knockout mice maintain a small amount of KCC2 (~5%) and survive 

up to three weeks postnatally; however, they develop spasticity and recurrent generalized 

seizures associated with a substantial reduction of inhibitory interneurons in the cortex and 

hippocampus, until their eventual demise283. Finally, a partial knockout of both KCC2 

isoforms, which maintains 20-30% of functional KCC2, survive but suffer motor deterioration 

and present a reduced sensitivity to diazepam284. Even a 20–50% change of KCC2 expression 

in neurons alters neuronal network activity and circuit development285 (and our data). 

Silencing other CCC members expressed in the brain (NKCC1, KCC1, KCC3, and KCC4) 

causes markedly less dramatic changes phenotypes199,252. 

Overexpression of KCC2 produces a rapid and evident ion flux (within a few seconds; 
254,257,286-289), which can be reversed by furosemide, a non-selective blocker of KCC2254,289 or 

by VU0463271, a KCC2-specific inhibitor290. Dependent or independently of its cotransporter 

activity, KCC2 is implicated in several neuronal processes such as mature inhibitory 

GABAergic responses, neuron migration, dendritic outgrowth, synapse formation and 

maturation 252. In the following section, I will discuss these different functions in detail.  

 

2.2.1. GABA switch  

 

NKCC1 is the main functional cotransporter present during early embryonic 

development, starting its expression from E12.5-15.5291. In immature neurons, Na+/K+ATPase 

generates the Na+ gradient, and drives NKCC1 to increase the intracellular chloride 

concentration by importing Na+, K+ and 2Cl- inside the cell (see figure 12). In these 

circumstances, opening of the ionotropic GABAAR allows chloride to go outside the cell, to 

maintain normal gradient homeostasis, creating a depolarizing chloride current. As such, 

GABAergic neurotransmission in early development is shunting or, more controversially, 

‘excitatory’, by essentially reducing the threshold for action potential generation and 
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increasing intracellular concentration of Ca2+ 292. The depolarizing response of GABA does 

not necessarily imply that GABA excites neurons, alternatively, it could entail that it still has 

an inhibitory action on neurons due to the increased conductance than can shunt excitatory 

synaptic currents264,293. These characteristics allow GABA to serve as a trophic factor, and to 

tightly regulate cell proliferation, migration, axonal growth, synapse formation and cell 

death294-296. 

In the mature CNS on the other hand, GABA is predominantly inhibitory in function. 

This developmental shift in GABA action is due to a shift in the Cl- reversal potential. It has 

been widely shown that the developmental upregulation of KCC2 is responsible for the change 

in Cl- influx through GABAAR and GlyR (glycine receptors), and the shift of GABA function 

from excitatory/shunting to inhibitory222,287,292,297. The extrusion of Cl- by KCC2 is driven by 

the K+ gradient generated by Na+/K+ATPase. This gradual shift was observed towards the end 

of the first postnatal week in the neocortex and a week later in the hippocampus216,265,298. As 

proof of concept, blocking KCC2 in hippocampal culture by a KCC2-specific antisense 

oligonucleotide prevented the switch to inhibitory GABA action216. Additionally, all knockout 

models of KCC2, whether it is fully or partially inactivated, exhibit an increase in the 

intracellular chloride concentration and thus a reduction of GABAergic and glycinergic 

inhibitory strength222,283,299. In parallel, a precocious overexpression of KCC2 in immature 

cortical neurons produced a significant negative shift in the reversal potential of GABA 

(EGABA), demonstrating that the presence of KCC2 is sufficient to end the depolarizing period 

of GABA in developing cortical neurons248,287. Impaired KCC2 in neurological disorders such 

as epilepsy underlie an imbalance in chloride reversal potential and in GABA function, which 

has been shown in some cases to be one of the major causes of hyperexcitability in these 

paradigms198,231,232,300.  
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Figure 12. KCC2 and NKCC1 cotransporters are key for the developmental switch of 
GABAergic driving force.  

At birth (left), NKCC1 expression is prominent and loads the cell with Cl-. In this case, the 
reversal potential of GABA is more depolarized than the resting membrane potential, thus 
GABA is depolarizing. In the mature brain however (right), KCC2 is prominently expressed, 
and extrudes Cl- outside the cell. Adult neuron resting membrane potentials are more 
depolarized than the reversal potential of GABA, and thus hyperpolarize and inhibit.  
 

2.2.2. Role in neocortical development 

 

KCC2 is implicated in several neuronal processes such as migration and dendritic 

outgrowth. As such, overexpressing KCC2 in mouse embryos at E9.5-11.5 impairs the 

development of the neural tube (which remains thinner), and neural crest-related structures. It 

also leads to an abnormal body curvature and smaller brain structures. These results were 

mimicked when overexpressing a KCC2 mutant which cannot bind the cytoskeleton, 

suggesting that KCC2 structural interaction with cytoskeleton plays an important role in 

neuronal differentiation and migration249.  

During migration into the cortex, ambient GABA and glutamate initially stimulate the 

motility of interneurons through both GABAA and AMPA/NMDA receptor activation. Once in 
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the cortex, upregulation of KCC2 is necessary and sufficient to reduce interneuron migration 

by hyperpolarizing GABAergic action. Initially, GABAAR activation in migrating 

interneurons, with low expression of KCC2, induces calcium transients. These calcium 

transients disappear upon KCC2 upregulation. As such, blocking L-type voltage-sensitive 

calcium channel (VSCC) successfully stopped interneuron migration. These results suggest 

that the upregulation of KCC2 and hyperpolarizing GABAAR decreases the frequency of 

spontaneous intracellular Ca2+ transients initiated by VSCC activation which sends a stop 

signal to migrating interneurons133.  

Depolarizing GABA and glycine activity is believed to be important for the ontogeny of 

developing neuronal circuits before the maturation of sensory inputs147,295. As mentioned, 

GABA in early development act in concert with glutamatergic mechanisms and intrinsic 

excitatory circuits301 to produce intracellular Ca2+ transients, which activates downstream 

cascades with trophic actions. For example, depolarizing GABA was specifically proven to be 

important for the morphological maturation of cortical neurons. Cancedda et al. (2007) 

demonstrated that overexpressing KCC2 embryonically by in utero electroporation leads to a 

decrease in branch number and in total dendritic length, while there was no difference in 

pyramidal neuron migration. Comparably, they obtained the same results when they 

overexpressed an inward-rectifying K+ channel, which lowers the membrane resting potential 

like an overexpression of KCC2 does. Finally, the KCC2 transporter-deficient mutant did not 

affect neocortical morphology, suggesting that the early GABA ‘excitatory’ function is 

important for the morphological maturation of neonatal cortical neurons in vivo302.   

 

2.2.3. Role in glutamatergic development 

 

Recent reports reveal another important role for KCC2 postnatally: its role in dendritic 

spine development. The developmental upregulation of KCC2 is associated with 

synaptogenesis and in fact, a significant amount of KCC2 in cortical neurons is localized 

either at, or in the vicinity of dendritic spines269,270,303. The first evidence was provided by Li 

et al, (2007), that analyzed spine morphology in primary cultures of immature cortical neurons 
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from KCC2-/- mice, after two weeks in culture250. The lack of KCC2 in cortical neurons 

prevented spine maturation altogether leading to an increase of filopodia-like dendritic 

protrusions (≅5µm) that were branched and highly motile. They also observed less active 

excitatory synapses, by a reduction of VGLUT1 and PSD95 clusters (pre and postsynaptic 

structures), as well as a reduction in the frequency of miniature excitatory postsynaptic current 

(mEPSC). In KCC2+/- mice, where ~20% of KCC2 remains, there was no difference in spine 

density, but protrusions were longer at P16, similar to what reported in their previous in vitro 

analysis. This effect was shown to be independent of KCC2 cotransporter activity since 

transfecting KCC2-/- neurons with either wild-type or the N-terminal deleted KCC2 mutant 

construct (KCC2-ΔNTD), which is transport-deficient, rescued spine development. 

Furthermore, they found that the structural interaction of KCC2 to spine cytoskeleton is 

through the C-terminal domain and the protein 4.1N. They also observed aberrant dendritic 

protrusions in KCC2-/- neurons when they were continuously cultured with TTX, 

demonstrating that this effect is not due to a decrease of inhibitory function and subsequent 

hyperexcitability, and is in fact due to transporter- and activity-independent mechanism. On 

the other hand, removing KCC2 by shRNA in mature cultured hippocampal neurons, after 

spine formation and when KCC2 expression is higher, did not affect spine density or spine 

length. However, the authors found a reduced efficacy of excitatory synapses, due to an 

alteration of aggregation of AMPA receptors (AMPAR) in dendritic spines. This effect is 

independent of KCC2 cotransporter function; instead KCC2 seems to constraint the lateral 

movement of AMPAR, directly or indirectly at the spine head. Interestingly, the 4.1N protein 

that binds KCC2 and actin, also binds to GluR1 subunit of AMPAR304. Moreover, the actin 

cytoskeleton is important for synaptic AMPAR stabilization305, thus, direct or indirect 

interaction between KCC2, actin and AMPAR may affect the maintenance of AMPAR in 

dendritic spines. Therefore, KCC2 knockdown in early development reduces spine formation, 

while in mature neurons, after spine formation, does not compromise spine maintenance but 

reduces the efficacy of excitatory synapses303.  

Finally, a premature expression of KCC2 in the somatosensory cortex in vivo by in utero 

electroporation (E17.5) increases dendritic spine density of layer II/III pyramidal neurons at 

P10, P15 and P90, as well as increases frequency of mEPSC. The authors showed that 
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overexpressing both KCC2 mutant with N-terminal deletion (transporter deficient), or the 

isolated C-terminal domain (involved in transporter function and binding to actin) induces a 

similar increase in spine density; whereas overexpressing KCC2 C568A mutant, which affects 

both the transporter and structural function, did not affect spine density. These results imply 

KCC2 effect on spine density is transporter-independent, and instead mediated by the 

structural binding of its C-terminal domain to the actin-associated protein 4.1N306,307. 

Interestingly, blocking the expression of protein 4.1N in mature cultured hippocampal neurons 

increased the lateral diffusion of KCC2 away from excitatory synapses308. Consequently, 

modifications of KCC2 localization between the dendritic spines and the dendritic shaft could 

control the efficacy of excitatory synapses by constraining AMPA receptors at spine 

heads196,303,308. Altogether, these results demonstrate that KCC2 has an important function in 

dendritic spine development, and thus potentially in cognitive functions.  

Recent structural data suggests that KCC2 at the plasma membrane is responsible for Cl- 

homeostasis, while KCC2 in the cytoplasm is associated to its role in synaptogenesis and 

spinogenesis, which is independent of its cotransporters activity265, however further studies are 

required to confirm this hypothesis. In addition, KCC2 expression levels were thought to be 

negligible in the embryonic cortex. However, in embryonic hippocampi of KCC2-/- mice at 

E18.5, Khalilov and collegues (2011)309 observed an increase in spontaneous neural network 

activity, increased glutamatergic and GABAergic synapse density and increased frequency of 

spontaneous excitatory and inhibitory postsynaptic current (sEPSC, sIPSC). Interestingly, 

EGABA was unaffected, suggesting that KCC2 was not functionally active, but demonstrating 

that KCC2 already serves a function in embryonic hippocampus309, which warrants further 

exploration. 

The molecular signaling pathways that trigger the developmental upregulation of KCC2 

in spines remain inadequately understood196. BDNF embryonic overexpression increases 

synaptogenesis and precociously upregulates KCC2310. On the other hand, in BDNF-/- mice, 

KCC2 is normally upregulated during development234, suggesting that BDNF is not necessary 

to KCC2 expression. 

Furthermore, another important cell adhesion molecule termed neuroligin 2 also appears 

to be important in regulating KCC2 and the GABAergic functional switch, as well as 
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maintaining dendritic spines by increasing KCC2 expression311. Further experiments are 

essential to clarify the molecular mechanisms controlling KCC2 developmental upregulation 

and their interplay with synaptogenesis.  

 

2.2.4. Role as a neuroprotective agent 

 

Recently, it has been suggested that endogenous KCC2 may play a novel role as a 

neuroprotective agent288. KCC2-specific shRNA-mediated knockdown in primary and 

organotypic hippocampal cultures leads to an increase in [Cl-]i and prolongs the recovery time 

of intracellular chloride after imposing a chloride increase. Most importantly, these transfected 

neurons show a higher susceptibility to lipofectamine-dependent oxidative stress, as well as 

NMDA receptor-dependent excitotoxicity, and this effect is dependent on KCC2 cotransporter 

activity. Finally, coexpressing rat shRNA-KCC2 with mouse KCC2 restored the resistance of 

neurons to toxicity. Therefore, silencing KCC2 reduces neuronal resistance to toxicity and 

should be taken into account when performing these expression modifications. In fact, a 

minimal KCC2 protein domain in the N-terminal was recently identified as sufficient for 

KCC2-dependent neuroprotection312. Altogether, these results reveal new roles of KCC2 and 

open new neuroprotective strategies for a wide range of neurodegenerative diseases.  

 

2.3. Activation 

 

While the cotransporter activity of KCC2 is dependent of both the N-terminal and C-

terminal domain, the latter is also involved in KCC2 activity regulation through membrane 

expression, oligomerization and phosphorylation196,197. In fact, it has been shown that the 

presence of KCC2 in the plasma membrane does not necessarily imply that its cotransporter 

activity is activated313. It is only once it is activated that the number of active cotransporters in 

the membrane can determine its capacity and the ion-turnover. 
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NKCC1 and KCC2 are reciprocally regulated by the intracellular chloride concentration 

([Cl-]i). When [Cl-]i falls below the physiological threshold, NKCC1 is directly phosphorylated 

and leads to its functional activation, and thus restores the [Cl-]i
196,314. Conversely, an increase 

in [Cl-]i promotes the activation of KCC2, to extrude Cl- 289. In the following section, we will 

see more precisely how KCC2 is activated.  

 

 2.3.1. Membrane activation  

Membrane insertion and internalization  

The following section will focus on the surface expression of KCC2, from its insertion 

in the membrane and stabilization, to its turnover and internalization. Interestingly, in response 

to seizures, KCC2 undertakes quick withdrawal from the plasma membrane, thus reducing its 

cotransporter activity, and resulting in the reduction of hyperpolarizing GABA 

responses203,307,308,315-318. Therefore, it is important to understand the mechanisms involving 

this type of activation of KCC2. By visualizing the internalization process of KCC2, thanks to 

an extracellular tag, in HEK293 cells, Zhao and colleagues (2008) found a novel non-

canonical di-leucine motif (657LLXXEE662) in the C-terminal domain of KCC2 that is 

important for its constitutive internalization and for binding to the clathrin-binding adaptor 

protein-2 complex (See figure 14). The clathrin-mediated endocytosis pathway regulates the 

internalization of KCC2 in HEK cells205 and in cultured neuronal cells318. There are also a 

number of phosphorylation sites in the C-terminal region that are also implicated in the 

turnover regulation of KCC2, and they will be discussed later. The specific recycling 

mechanisms and the signaling pathways that regulate the membrane insertion of KCC2 are 

however, not completely elucidated.  

Several studies have evaluated the turnover rate of KCC2 in mature neurons. First, 

Rivera and colleagues (2005), used a biotinylation methodology and prepared hippocampal 

slice cultures with a slice chopper and found that KCC2 is reintroduced in the neuronal plasma 

membrane within 30 to 40 minutes297. However, Puskarjov and colleagues (2012) prepared 

slice cultures with a vibratome, which usually causes less neuronal damage, and reported that 
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the half time of turnover is much longer, ranging from several hours to days319. On the other 

hand, treating cultured hippocampal neurons with an inhibitor of endocytosis (dynasore) for 

45 minutes doubled the surface expression of KCC2204. Lastly, in heterologous expression 

systems, the entire functional pool of membrane KCC2 is recycled every 10 minutes203,205, 

demonstrating that it is possible for KCC2 to undergo rapid endocytosis, which can perhaps 

respond quickly to more stringent conditions. Longer processes can also be due to genomic 

regulation of KCC2, creating more indirect surface expression mechanisms. Few known 

molecules important for KCC2 membrane trafficking, such as TrkB receptor, protein kinase C 

(PKC) and 5-HT2A serotonin receptors320,321, will be touched on later.  

 

Lipid rafts 

There are two important studies that suggest that lipid rafts control KCC2 activity322,323. 

Lipid rafts represent a microdomain of specialized membranes that are enriched in 

glycosphingolipids and glycoproteins. They operate as organization centers where signaling 

molecules assemble and cluster and where they can regulate their activity. In neurons, 

approximately 50% of KCC2 molecules are associated with lipid raft markers, while the others 

are bound to non-raft markers322,323. Hartmann et al. (2009) stated that KCC2 is inactive when 

it is located in lipid rafts322. Conversely, Watanabe et al. (2009) suggested that KCC2 is 

actually active when they are located in rafts-like clusters323. These opposing statements can 

be explained by the use of different experimental models, and distinct wide-range acting 

pharmacological agents. After detailed critical analysis, Medina et al, (2014) proposed that 

KCC2 might be active as a membrane raft-associated protein, but concurs that more studies 

will be required to understand the role of KCC2 in lipid rafts252.   

 

 Oligomerization 

An important, but complex feature of KCC2 activity is its aptitude to oligomerize. 

Multiple biochemical and functional interaction have proven that KCC2, as well as other CCC 

members, form homo-oligomeric structures208-211,282,324. KCC2 has been reported to form 

molecular complexes consistent to monomers, dimers, trimers and tetramers282,325, either with 
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other KCC2 or with other CCC family members324,326. In addition, KCC2a and KCC2b 

isoforms form homo- and heterodimers in vivo, as well as in heterologous system 

(HEK293)280,281. It has been suggested that in the immature brain, there are more KCC2 

monomers, whereas in the adult, KCC2 is mostly in oligomeric forms282, and thus proposing 

that only the oligomeric form of KCC2 is cotransporter active. First, in the auditory brainstem 

nuclei, KCC2 complexes of higher molecular weight parallel transport activation282. KCC2 

tends to form aggregates at high concentrations in heterologous expression systems280, 

suggesting that the developmental upregulation of KCC2 could potentially push towards an 

oligomer state. However, it is also possible that KCC2 complexes are formed by association 

with other interacting proteins, like Neto2 (neuropilin and tolloid like-2) and the kainate 

receptors forming hetero-oligomers197. For example, Neto2, which is necessary for KCC2 

cotransporter function, preferentially associates with oligomeric KCC2327. Further, it was 

recently shown that kainate receptors form hetero-oligomeric complexes with KCC2. 

Interestingly, in GluK1/2 knockout mice, Mahadevan and colleagues (2014) reported an 

increase in monomeric KCC2 and a decrease in oligomeric KCC2325, thus suggesting that the 

kainate receptor may affect the KCC2 monomer/oligomer ratio. Interestingly, in conditions 

where the cotransporter activity of KCC2 was reduced, oligomeric KCC2 levels are reduced 

too323,325, suggesting that KCC2 activity promotes oligomerization.  

It is important to mention that although different groups have consistently found KCC2 

oligomerization, there are technical issues that limit the interpretation of their presence and 

functionality. KCC2 has been found to be resistant to SDS dissociation of protein complexes 

and denaturation328. The ability to form oligomers also changes depending on the experimental 

approach, whether we are looking at endogenous levels of KCC2 or whether it is 

overexpressed in heterologous systems. Depending on the length of the protein extraction 

protocol, there may be more complexes that are dissociated. Therefore, it can be difficult to 

interpret western blot analysis252.   

The mechanisms involved in oligomerization and how they affect KCC2 transporter 

activity also remains elusive. For example, we do not know whether oligomerization is critical 

for translocation to the surface, and/or internalization; or how many subunits are required to 

form an active transporter; and whether homo-oligomerization is necessary for transport 
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activity, or more precisely if each subunit mediates transport, but requires oligomerization to 

assume a transport active conformation. Most likely, when the crystal structure of KCC2 will 

be available, it will be easier to understand how oligomerization is required for cotransporter 

activity. Despite the lack of answers to these questions, I will describe the advancements we 

have seen so far in the field. Firstly, a yeast two-hybrid system analysis demonstrated that the 

full length C-terminal of KCC2 (or) and KCC4 form a dimer, but not truncated C-terminal 

fragments324. Another study using the rat hypothalamic cell line GT1-7 show that removing 

the last 28 aa of KCC2 caused an increase of monomers and a decrease of oligomers323. 

However, its not known whether this change in oligomerization is due to the absence of an 

important sequence for dimerization, or it is due to a change in the overall conformation of the 

protein; but taken together with the yeast two-hybrid experiments, these studies suggests that 

the C-terminal region may be important for oligomerization197. Furthermore, the tyrosine 

kinase inhibitor genistein triggered a substantial shift towards monomeric KCC2 in GFT1-7 

cells and a more depolarized reversal potential of GABA (EGABA), however, a phosphomimetic 

substitution of Tyr1087 in KCC2 in hippocampal neurons gave similar results323. Another 

study recently indicated that tyrosine phosphorylation of KCC2 causes an increase in the 

cotransporter degradation in hippocampal neurons and HEK293 cells204. However, the level of 

KCC2 parallels its tyrosine phosphorylation during development264. Taken together, these data 

show that the role of tyrosine phosphorylation in KCC2 oligomerization is still poorly 

understood.   

 

2.3.2. Signaling pathways regulating KCC2 function  

 

There are multiple signaling pathways involved in KCC2 activity (see Figure 14). In this 

section, I will provide an overview of the most characterized pathways involved in regulatory 

function, such as the phosphorylation of KCC2, its Zinc-mediated regulation, its protein-

protein interaction, its transcriptional regulation, and the role of trophic factors, like BDNF.  

 

Phosphorylation 
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One of KCC2 activation mechanisms relies on posttranslational modifications through 

phosphorylation198,329-332. KCC2 has multiple phosphorylation sites in its C-terminal region, 

which allow its specific functional and surface expression regulation. Initially, it was 

suggested that KCC2 is activated by endogenous protein tyrosine kinases333, and the amount 

of phosphorylated KCC2 increases during development264. However, it became evident that 

the regulation of KCC2 through phosphorylation is more complex than initially anticipated. 

Moreover, not only are there multiple phosphorylation sites in the KCC2 sequence, but there is 

also cross talk between these different sites197,252,329,334, only further complicating the issue. 

The first evidence came from the coexpression of WNK3 (with-no-lysine kinase 3, 

serine-threonine kinase) with CCCs in Xenopus oocytes, which resulted in the activation of 

NKCC1 and inactivation of KCC1 and KCC2335. The WNK family together with SPAK (a 

Ste20p-related proline/alanine-rich kinase) and OSR1 (an oxidative stress-responsive kinase -

1), also expressed in the CNS, form a signaling pathway implicated in the control of swelling-

induced regulation of CCC members, and is regulated by [Cl-]i and extracellular osmolarity336. 

All four WNK family members effectively block the cotransporter activity in KCC2-

overexpressed neurons337. The regulation of KCC2 by the WNK-SPAK/OSR1 signaling 

pathway involves the N-terminal Thr6 in KCC2a, and the C-terminal Thr906 and Thr1007 in 

KCC2b329,331,334,337. Phosphorylation of both Thr906 and Thr1007 significantly hinders the 

cotransporter activity, whereas their dephosphorylation leads to constitutively active 

cotransporter activity329,331,334. As such, Thr906 is partially phosphorylated in the neonatal 

mouse brain and dephosphorylated in the adult brain, suggesting that dephosphorylation of 

these aa residues contributes to the developmental upregulation of functional KCC2252. 

Precisely, Inoue et al. (2012) demonstrated that the phosphorylation of Thr906 and Thr1007 in 

the immature brain is supported by taurine, which acts through the WNK-SPAK/OSR1 

phosphorylation cascade. However, these studies were obtained by exogenous addition of 

taurine, KCC2 and WNK1 kinase, and it will be necessary to prove this model in vivo252. 

Finally, it was recently shown that WNK-regulated SPAK/OSR1 kinases directly 

phosphorylate Thr1007, but not Thr906334, suggesting a more indirect activation of Thr906 

(see summary table I below).  
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On the other hand, there are three residues in the C-terminal region of KCC2, Thr934, 

Ser937 and Ser 940, which are involved in phosphorylation-mediated activation. Interestingly, 

these residues are located in an exon that is only present in vertebrates, suggesting that the 

increased activation of KCC2 may have been an adapting mechanism to cope with a more 

complex CNS197,332. Phosphorylation of Ser940 by protein kinase C (PKC) increases surface 

expression of KCC2 as well as its transporter activity203 and clustering at the membrane338, 

and thus, decreased the internalization of KCC2203. More specifically, phosphorylation of 

S940 limits adaptor-protein 2 (AP2)-mediated endocytosis of KCC2, resulting in a stable 

population of membrane-localized KCC2. Consequently, dephosphorylating Ser940 

inactivated KCC2 and increased its endocytosis. In fact, there is a high level of phosphorylated 

Ser940 in resting conditions in cultured hippocampal neurons318; suggesting that the 

phosphorylation of this site is necessary for maintaining KCC2 activity under physiological 

conditions. Treating cultured hippocampal neurons with glutamate rapidly dephosphorylates 

Ser940 in a NMDA receptor and protein phosphatase-1 (PP1) dependent manner318. 

Furthermore, phosphorylation of Ser937 or Thr934 increases intrinsic KCC2 transport activity, 

without affecting its total abundance or surface expression, suggesting these residues are 

implicated in kinetic regulation of the transporter activity332. However, stausporine and NEM 

(N-ethylmaleimide), two broadband serine/threonine kinase inhibitors, have opposite effects 

on transporter activity depending on the phosphorylation state of Thr934 and Ser937332. Both 

agents activated transporter activity when Thr934/Ser937 were dephosphorylated, but 

inhibited it when Thr934/Ser937 were phosphorylated, which suggests that these agents may 

target other phosphorylation sites. Taken together, serine/threonine kinases can have a dual 

modulation on KCC2 activity, in which the intrinsic transport activity of KCC2 is increased by 

phosphorylation of Thr934, Ser937 or Ser940318,332 and decreased by phosphorylation of 

Thr906 and Thr1007331. 

Furthermore, a mutation in the residue Ser728 of KCC2 to alanine displayed an increase 

in the constitutive transporter activity, when PKC is activated; suggesting that 

dephosphorylation of this residue is required for KCC2 activation203. Although, this is likely 

an indirect effect since PKC does not directly phosphorylate Ser728 in HEK293 cells. 

Intriguingly, the constitutive activity associated with the phosphorylation of all these residues 
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(Ser940, 937, 728 and Thr934) requires a lot of metabolic energy and can affect the pH of the 

cell196, demonstrating that posttranslational modifications like phosphorylation can be an 

approach to reduce energetic costs.  

Moreover, the endogenous effect of tyrosine phosphorylation of KCC2 seems 

controversial. It is also unclear whether tyrosine phosphorylation occurs under physiological 

conditions. Basal activity was seen in cortex264 and in primary hippocampal cultures315,323, 

however, it was negligible in basal conditions in cultured hippocampal neurons in a study by 

Lee and colleagues (2010)204. In addition, Wake et al. (2007) demonstrated that neuronal 

activity, oxidative stress and BDNF treatment decreased tyrosine phosphorylation of KCC2, 

while Lee et al. (2010) shows an activation of tyrosine phosphorylation after pilocarpine-

induced status epilepticus, or muscarinic receptor agonist application315. In addition, there are 

two residues that are phosphorylated by tyrosine kinases: Tyr1087 and the less characterized 

Tyr903204. Lee and colleagues (2010) observed that phosphorylation of Tyr903/1087 

decreases the cell surface stability and total amount of KCC2 by increasing lysozomal 

degradation, while their dephosphorylation increases cell surface stability. This process was 

mediated specifically by Src-family tyrosine kinases through activation of the G-protein 

coupled muscarinic acetylcholine receptors (mAChRs), and this study suggested that tyrosine 

phosphorylation targets internalized KCC2 for lysozomal degradation. Conversely, other 

studies had previously found that phosphorylation of Tyr1087 abolishes KCC2 transporter 

activity, without affecting its cell surface expression, while dephosphorylation does not affect 

KCC2 transport in either oocytes, mammalian cell lines or neurons286,288,323. Watanabe et al. 

(2009) also found an implication of tyrosine phosphorylation of KCC2 in its recruitment into 

lipid rafts; which might recruit active or inactive KCC2 as explained above323. These 

conflicting results were explained as a difference of systems (oocytes vs. HEK293 cells), or 

the possibility that there are other targets of tyrosine phosphorylation in KCC2 in vivo, or they 

may activate different signaling cascades203. Additionally, both phosphorylation and 

dephosphorylation can increase in response to oxidative stress323, and thus, turnover of KCC2, 

which reduces cell surface expression, can also affect other kinases and phosphatases involved 

in cell surface stability of KCC2203. Taken together, these results suggest however, that 

tyrosine phosphorylation is associated with reduced KCC2 activity, while its 
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dephosphorylation potentiates the transporter. The mechanisms controlling its activity, 

through a change in surface expression or through changes in intrinsic activity, are still unclear 

and require more analysis. What is clear however, is that there are two different signalling 

pathways that are activated by tyrosine phosphorylation: cytosolic c-Scr kinase204,333 and 

BDNF-dependent TrkB receptor tyrosine kinase230,236,316,339. These kinases can themselves 

regulate multiple signalling cascades, and thus, it will be necessary to discover the exact 

regulatory pathways controlling tyrosine phosphorylation-mediated KCC2 activity252.  

In summary, these studies demonstrate that phosphorylation can activate or inactivate 

KCC2 transporter activity. Phosphorylation of tyrosine 903 & 1087 and threonine 906 & 1007 

are all associated with the inactivation of KCC2 transport activity, while phosphorylation of 

Ser940 activates KCC2. Table I summarizes what is currently known regarding the effect of 

phosphorylation on KCC2 activity. Moreover, according to public databases, there are a 

number of other phosphorylation sites in KCC2, implying that further studies will be 

necessary to better understand the role of phosphorylation on KCC2 function, the interaction 

between phosphorylated residues under fluctuating conditions, and to establish their role in 

vivo197. This will be especially important for designing pharmacological therapy aimed at 

regulating KCC2 function by modulating KCC2 phosphorylation.  

 

Table I. The effect of phosphorylation of key amino acids in KCC2  

 Amino acid 
residue 

Region in 
KCC2 

Cotransporter 
activity 

Membrane 
surface level 

Signalling pathway 
involved 

Serine Ser940 
Ser937 
Ser728 

C-term 
C-term 
C-term 

+ 
+ 
- 

Increased 
No difference 

? 

PKC 
? 
? 

Threonine Thr6 
Thr934 
Thr906 
Thr1007 

N-Term 
C-term 
C-term 
C-term 

-? 
+ 
- 
- 

? 
No difference 

? 
? 

? 
? 

WNK – SPAK/OSR1 
WNK – SPAK/OSR1 

Tyrosine Tyr 903 
Tyr1087 

C-term 
C-term 

- 
- 

Controversial 
Controversial 

c-Scr kinases &/or 
BDNF-TrkB tyrosine 

kinases 
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Protein-Protein interactions 

Another mechanism of KCC2 activation is dependent on its interaction to other proteins. 

There are multiple key molecules involved in KCC2 activity and the most important ones will 

be listed in this section. The first protein found to interact with KCC2 is the brain-type 

creatine kinase (CKB), which activates its cotransporter activity in HEK293 cells340 (see 

Figure 13). Furthermore, α2 subunit of the Na+-K+-ATPase pump interacts with KCC2. Na-K-

ATPase α2 subunit knockout mice (Atp1a2−/−) have decreased functional KCC2, and display 

respiratory deficits similar to those observed in KCC2-/- mice, suggesting that this interaction 

may be linked to normal breathing function341. Another interacting candidate is the protein 

associated with Myc (PAM), through which its regulatory chromatin condensation (RCC1) 

domain activates KCC2 function in HEK293 cells342. The CCC interacting protein 1 (CP1) 

was shown to physically and functionally interact with KCC2, and activate its cotransporter 

activity; however, CIP1 is downregulated during maturation, thus, its precise role is still under 

investigation326. Moreover, it was recently discovered that KCC2 interacts with the auxiliary 

subunit Neto2 of the kainate-type glutamate receptor (KAR), or directly to KAR 325,327. As 

described briefly before, Neto2 preferably binds to the active oligomeric form of KCC2, and 

losing this interaction leads to reduced KCC2-dependent Cl- extrusion and depolarizing 

GABAergic responses 327. Neto2 is part of a neuronal scaffolding platform that regulates the 

synaptic abundance of kainate receptors343, and may therefore have multiple regulatory 

functions on KCC2 activity, dependent on changing conditions and neuronal circuits activity, 

which can affect the organization of scaffolding proteins 252. Furthermore, the C-terminal 

domain of KCC2 binds to the cytoskeleton-associated protein 4.1N and regulates dendritic 

spine formation by stabilizing KCC2 at the plasma membrane of spines 250,306 and the 

aggregation of AMPA receptors at spine heads 303. Blocking this interaction leads to lateral 

diffusion of KCC2 away from glutamatergic synapses, and enhancing NMDAR activity also 

resulted in lateral diffusion 308. Finally, KCC2 also directly interacts with the beta isoform of 

Rac/Cdc42, the guanine nucleotide exchange factor (βPix), which itself binds to Rac (small 

GTPase of the Rho family) and Pak (p21-activated serine/threonine-protein kinase). The 

KCC2: βPix interaction activation results in a reduction of the phosphorylation of cofilin 

(Cof1) and a change of glutamatergic synapse properties252. 
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Figure 13. Illustration depicting both 
membrane-bound and cytosolic proteins 
that directly interacts with KCC2.  

Adapted from Medina et al (2014)252. It 
is not yet known whether they form a 
single complex, or whether they interact 
individually with different KCC2 pools.  

 

Transcriptional regulation 

In the Slc12A5 gene (encoding KCC2) promoter and proximal intron-1 regions, 10 

putative transcription factors binding sites have been found344, however only a few have been 

characterized. First, the early growth response 4 (Egr4) is a transcription factor that regulates 

KCC2 expression through BDNF and its receptor TrkB in immature neurons. Extracellular 

signal-regulated kinase 1/2 (ERK1/2) activates Egr4 344,345, however, blocking Egr4 signalling 

only decreases total KCC2 expression by less than ~50%344, suggesting that KCC2 

transcription is regulated by additional mechanisms. Another regulatory element implicated in 

the developmental upregulation of KCC2 is the E-box that binds to ubiquitously expressed 

USF1/2 (upstream stimulating factors 1 and 2346). Finally, there are two neuron-restrictive 

silencing elements (NRSE) that were also found in the Slc12A5 gene, however their regulation 

of KCC2 seems controversial347-349. Nevertheless, it seems that pathways regulating neuron-

restrictive silencing factor (NRSF), which binds to both NRSE, may contribute to the 

downregulation of KCC2 during epileptogenesis196,350. The other transcription factor binding 

elements have not been characterized yet.  

 

Role of trophic factors 

So far, we know that three trophic factors can modulate KCC2 functional expression, the 

brain-derived neurotrophic factor (BDNF), the insulin-like growth factor 1 (IGF-1) and 
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neurturin252,333,345. Since the regulatory action of BDNF on KCC2 has been the most 

characterized, I will focus on its function in this section. First evidence came from a transgenic 

overexpression of BDNF in vivo, which strongly promoted KCC2 mRNA expression310. 

Accordingly, deleting BDNF’s main receptor TrkB greatly reduced KCC2 mRNA 

expression351. Moreover, Ludwig et al. (2011) demonstrated that applying BDNF to immature 

hippocampal slice culture increased KCC2 protein levels, through Erg4-dependent 

transcription345. In contrast, BDNF application to mature neurons, in vivo and in vitro, had the 

opposite effect, and reduced KCC2 expression (mRNA and protein) and function 

(internalization and tyrosine phosphorylation), suggesting that BDNF action may be age- and 

maturation-dependent230,236,315,316,352. Consistently, overexpressing BNDF in vivo leads to a 

depolarizing shift in EGABA in mature dorsal horn neurons in the spinal cord235,339. 

Furthermore, scavenging endogenous BDNF or inhibiting the downstream cascade of BDNF-

TrkB, by introduction of a point mutation that uncouples TrkB from PLCγ1, prevents the 

activity-dependent reduction of KCC2 mRNA and protein expression230,316.  The difference 

between the effect in immature vs. mature brain may be due to the age-related difference of 

TrkB phosphorylation and activation of its downstream cascades, such as PLCγ1353. 

Interestingly, in mature but damaged neurons, BDNF can revert to its ability to promote 

KCC2 expression after an acute insult236,352. It is possible that injured neurons acquire 

properties of immature ones as an adaptive response to stimulate neuronal survival and 

rewiring300,352, which is the case when KCC2 is downregulated by seizures or ischemia354.    

Recent evidence suggests that KCC2 is regulated by calpain, the Ca2+ and BDNF-

activated protease. Calpain cleaves KCC2 in its C-terminal region and causes the loss of a 

~20-40kDa fragment308,319, which contains multiple critical sites for KCC2 function and 

regulation255,329, and thus causes a downregulation of both total and membrane-bound KCC2 

and compromises its cotransporter activity308,319. Additionally, calpain activation, as well as 

the dephosphorylation of Ser940, has been suggested to regulate the lateral mobility of KCC2 

within the plasma membrane308. Since the C-terminal region also contains the residue 

mediating KCC2 structural interaction to the cytoskeleton, calpain activation and cleavage of 

KCC2 may alter dendritic spine formation, and could potentially affect AMPA clustering in 

dendritic spines303; however, this remains to be substantiated.  
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The regulatory action of BDNF is tightly related to the thyroid hormone metabolism 

during development355. Interestingly, thyroxine regulates KCC2 expression in a similar 

manner than BDNF, by either activating or blocking it356,357. However, this effect was 

insensitive to inhibiting BDNF signaling, suggesting that these two molecules regulate KCC2 

expression through distinct pathways252. There is also evidence that steroid hormones regulate 

KCC2 expression, which has important implications for gender differences in the 

susceptibility to early-life seizures273,358. However, the specific mechanisms implicated in 

hormone regulation of KCC2 function require more detailed analysis. 

 

Zinc-mediated control 

Zinc has a bidirectional role in the regulation of KCC2. Firstly, intracellular Zn2+ rapidly 

blocks KCC2 activity359, however, the mechanisms of its action is not yet identified. In 

contrast, extracellular Zn2+ released from mossy fibres terminals significantly activates KCC2 

by increasing its insertion into the plasma membrane. Specifically, metabotropic zinc-sensing 

receptor (mZnR) is encoded by orphan Gq-coupled receptor (GPR39) and is coupled to 

PLC/ERK pathway (phospholipase C/extracellular-signal-regulated kinases). Zn2+-mediated 

activation of KCC2 is abolished by silencing GPR39 or inhibiting PLC or ERK 360, suggesting 

that Zinc may be one of the factors involved in regulating KCC2 surface insertion. In addition, 

it was shown that SNARE proteins are essential for the increased activity of KCC2 after Zn2+ 

stimulation of mZnR/GPR39361. More detailed analysis of the regulation of Zinc and its 

control of KCC2 intrinsic activity is necessary. In the following page, figure 14 illustrates the 

known signaling mechanisms involved in KCC2 regulation. 

 

 

Figure 14. Signaling pathways involved in KCC2 regulation, surface expression, endocytosis 
and membrane trafficking.  

(Next page) Illustration adapted from Medina et al. (2014). 
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2.3.3. Activity-dependent regulation 

 

Whether physiological patterns of neuronal activity control developmental upregulation 

of KCC2 expression and its cotransporter activity remains controversial. There are a few 

studies that demonstrate that a prolong blockade of GABAergic362 or glycinergic363 inputs in 

developing neuronal networks blocks the developmental upregulation of functional KCC2. In 

contrast, other studies have not found any changes in KCC2 functional expression after 

chronic inhibition of neuronal spiking (application of TTX which blocks sodium channels), or 

GABAergic neurotransmission (application of GABAA blocker picrotoxin) or glutamatergic 

neurotransmission (NMDAR and AMPAR inhibitors)311,364. Similarly, upregulation of KCC2 

is unaffected in vesicular inhibitory amino acid transporter (VIAAT)-knockout mice, despite 

the widespread absence of GABAergic synaptic transmission365. It is possible, however, that 

activity-dependent changes contribute to fine adjustments of post-translational regulation, such 

as phosphorylation, which activates KCC2 function252. In fact, neuronal activity controls 

BDNF release from both pre- and postsynaptic terminals366, and as seen previously, BDNF 

controls the developmental expression of KCC2, which suggests that BDNF can contribute to 

activity-dependent modulation of KCC2 in a context-dependent manner252.  

 

2.4. KCC2 modulation in disease  

 

Regulation of GABA driving force in different pathological conditions has recently 

come under scrutiny. More specifically, recent studies have looked at alterations of KCC2 

expression and function in epilepsy, neuropathic pain, autism, Down syndrome and motor 

spasticity. My project focuses on alterations of KCC2 in epilepsy, however, I will first briefly 

discuss the main hypothesis on the role of KCC2 alterations on these neurological disorders.  
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2.4.1 KCC2 alterations in different neurological disorders  

Neuropathic pain 

KCC2 has been greatly associated with neuropathic pain. In these conditions, 

nociceptive transmission drives through spinal nociceptive pathways, where peripheral 

neurons in the dorsal root ganglia contact neurons in the spinal dorsal horn, which then 

projects sensory information to the thalamus. In the spinal dorsal horn, the pain pathway is 

regulated by a network of local inhibitory INs, which discriminate nociceptive sensory 

pathways from non-nociceptive sensory pathways by releasing GABA or glycine (Gly). 

Tactile allodynia is a clinical condition, and a classical symptom of neuropathic pain, where a 

harmless stimulus is perceived as painful, which underlines a dysfunction of nociceptive 

channel threshold196,367. In fact, blocking GABAergic input (through spinal administration of 

GABAAR and GlyR antagonists) can cause this sensitivity to sensorial stimuli368. One of the 

mechanisms promoting spinal disinhibition, and underlying neuropathic pain symptoms, is an 

alteration of the Cl- homeostasis in the superficial spinal dorsal horn mediated by microglia-

released BDNF. Microglia-dependent synthesis and release of BDNF is dependent on the 

upregulation of the purinergic receptors P2X4Rs, which are typically expressed at negligible 

levels in resting microglia369. Chloride homeostasis alterations is brought upon microglial 

activation through multiple extracellular signals (which are still controversial367) associated 

with neuropathic pain, and a subsequent upregulation of P2X4Rs in microglia, release of 

BDNF, and activation of TrkB receptors in neurons of the superficial dorsal horn370 (see figure 

15). BDNF-TrkB activation then alters KCC2 function and thus chloride homeostasis339. As 

such, blocking this mechanism at any level rescues spinal inhibitory transmission, and the 

allodynia in neuropathic animals339,371. This mechanism of spinal disinhibition mediated by 

microglia to neuron signals, through P2X4Rs-BDNF-TrkB-KCC2 cascade, was also found 

following spinal cord injury372, and in morphine-induced hyperalgesia (pain hypersensitivity) 

where spinal microglia activation is dependent of opioid receptors in microglia371. Recently, 

the use of adenosine agonists (A3AR) has been shown to reverse neuropathic pain, through 

modulation of GABAergic neurotransmission by enhancing KCC2 activity373. Interestingly, 

anticonvulsant drugs also offer successful treatment for neuropathic pain, and suggests that 



 

67 

KCC2 regulation through BDNF-TrkB, and calpain are common causes of epilepsy and 

neuropathic pain367,374-376. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Microglia can regulate neuronal network excitability through BDNF-dependent 

release.  

Illustration adapted from Ferrini and De Koninck (2013)367 demonstrating a mature CNS 
network in normal conditions (left), where microglia is typically in the resting state (blue 
cells), and INs release GABA or Gly and KCC2 is actively extruding chloride. The 
illustration on the right represents the same network after an external incident activates 
microglia (red cells), which then activates the BDNF-TrkB-KCC2 cascade that results in 
spinal disinhibition.  

 

Autism 

Autism is a neurodevelopmental disorder characterized by impairment in 

communication and social interactions. There are multiple factors causing autism and they 

regroup both genetic and environmental vulnerabilities. Oxytocin is a hormone that is 

important for communication, and modulation of this hormone can induce labor377. Tyzio and 

colleagues (2014) focused on two animal models of autism, the first being mice that carry the 

fragile X mutation, and the second a valproate treatment in utero, to specifically understand 

the cellular and network alterations of GABAergic signaling that occur during delivery237. As 
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explained previously, GABAAR driving force is high in the fetal brain (E20-21), and reduced 

to adult levels at P15-20, due to the upregulation of KCC2. However during labor in rodents, 

there is an abrupt oxytocin-mediated decrease of the intracellular chloride levels, wherein 

GABAAR driving force is reduced, establishing inhibitory signaling, which exerts a 

neuroprotective and analgesic effect on newborns237,378,379. They reveal that this labor-specific 

switch is abolished in hippocampal CA3 PCs in both autism models, with GABAergic 

‘excitatory’ signaling even at P30, a downregulation of KCC2 expression and a shift from 

plasma membrane to cytoplasmic KCC2, and finally an enhancement of glutamatergic 

activity. Alternatively, bumetanide (NKCC1 antagonist) treatment to the mother restores the 

GABAergic developmental switch to inhibition at P0 in both conditions, and rescues the 

autistic-like phenotypes in the offsprings. In addition, blocking oxytocin signaling in naïve 

mothers causes the offsprings to display autistic-like phenotypes and reproduced the 

electrophysiological alterations observed in the autistic mouse models. Taken together, these 

results identify a deficiency in chloride regulation and GABAergic-mediated inhibition in both 

animal models of autism, and highlight the importance of oxytocin-mediated GABAergic 

inhibition during labor.  

  

Down Syndrome 

Down syndrome (DS) is the most frequent genetic cause of intellectual disability. 

Patients with DS have hippocampus-related learning and memory deficits and a low IQ. The 

best-characterized animal of trisomic DS is the Ts65Dn mouse, which carries an extra copy of 

the distal segment of mouse chromosome 16 (syntenic to the long arm of human chromosome 

21)380,381. This model replicates the hippocampus-dependent learning and memory 

impairments381,382, with impaired synaptic plasticity, such as LTP383. In some studies, an 

increase in GABAergic INs in the forebrain is observed384,385, and this increase is believed to 

increase in inhibition in DS mice, which could in turn affect synaptic plasticity and cognition. 

In fact, treatment with GABAAR antagonists rescues the LTP and cognitive impairments. 

However, other studies have not reported an increase in GABAAR-mediated inhibition in DS 

mice386,387; although, neither of these studies measured the functional activity of GABAergic 
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signaling. Deidda and colleagues (2015) recently reported that GABAAR signaling is 

excitatory in adult Ts65Dn mice, which induced a depolarizing shift of the reversal potential 

of GABAAR-driven Cl- currents (ECl), and an increase of NKCC1 surface expression in the 

hippocampus of DS mice, and of specimen from DS patients. Treating Ts65Dn mice with 

bumetanide, an NKCC1 inhibitor, rescued the shift of ECl, the LTP impairment as well as 

hippocampus-mediated memory deficits. In this case, how is inhibition sustained in DS mice? 

They observed that GABABR inhibition was increased, suggesting this could compensate the 

GABAAR-mediated excitation. Additionally, it is possible that specific cell compartments 

allow local shunting inhibition388. Altogether, this is another instance where the chloride 

gradient can have a major influence on neuronal network activity. 

 

Motor spasticity after spinal cord injury 

Spasticity is a severe complication following spinal cord injury. It is characterized by 

velocity-dependent increase in muscle tone, which causes hyperexcitable stretch reflexes, 

spasms and hypersensitivity to sensory stimulations. Approximately 75% of patients will 

develop muscle spasticity one year after the spinal cord injury, but only half receive 

medication for these symptoms389. Furthermore, the drugs commercially available only 

partially relieve the symptoms.    

It is believed that these symptoms are due to increased motoneuron excitability390. 

Additionally, inhibition is reduced below the lesion in spinal reflex pathways, which is 

observed as a decrease of presynaptic and recurrent inhibition391. This reduction of inhibition 

increases synaptic inputs in response to muscle stretch. A recent study showed that KCC2 is 

downregulated particularly in the membrane of motoneurons in the ventral horn following 

spinal cord injury in rats, thereby depolarizing EGABA, and reducing the strength of 

postsynaptic inhibition.  This mechanism underlies the disinhibition and electrophysiological 

correlates of spasticity. The downregulation of KCC2 after spinal cord injury is prevented by 

BDNF sequestering at the time of the injury236.  



 

70 

2.4.2. KCC2 in epilepsy 

Epilepsy is the second most common neurological disorder, with a prevalence of 

approximately 1% worldwide392. Altering GABAergic neurotransmission in experimental 

conditions can lead to seizure generation in vivo and epileptiform activity in vitro. In fact, ictal 

discharges (during seizures) are associated with intense interneuron firing and GABAA 

receptor (GABAAR) activation393. However, the hypothesis that epilepsy derives from an 

imbalance between excitation and inhibition has recently been seriously questioned, as it does 

not highlight the complexity and variety of circuit alterations that occur in the epileptic brain. 

This notion will be described more in detail in the following section. Nevertheless, 

GABAergic transmission has been shown to be greatly modified in multiple models of 

epilepsy, and considering the key role of KCC2 and NKCC1 in controlling the efficacy of 

inhibition, understanding alterations of their expression and function is an important aspect in 

understanding the subsequent circuit based alterations. In the following section, I will discuss 

modifications of KCC2 in adult epilepsy and neonatal seizures.  

 

Epilepsy in the adult brain 

Human studies 

Pathological activity has been studied in brain tissue obtained from surgical removal of 

epileptogenic zones from patients with phamarcoresistant epilepsy, and KCC2 deficits were 

observed. In fact, Huberfeld and colleagues analyzed tissue slices from patients with mesial 

temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis, and found that human 

tissue slices generated spontaneous interictal-like discharges (between ‘ictal’ or between 

seizures) that were initiated in the subiculum. PCs from the subiculum displayed depolarized 

GABAAR-mediated postsynaptic events, while ~30% of PCs were devoid of KCC2 mRNA. 

More specifically, the cells that were devoid of KCC2 were depolarized, while the other 

KCC2-positive cells were hyperpolarized during interictal events. Finally, they observed that 

bumetanide treatment to block NKCC1 produced a hyperpolarizing shift of the EGABA and 

supressed interictal discharges232,394. Furthermore, in human resected tissue, they also 

evaluated that KCC2 was downregulated in non-dysplatic neurons (non-giant neurons) that did 
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not migrate properly in patients with focal cortical dysplasia395. However, in one particular 

study, it was shown that membranes taken from human peritumoral epileptic cortex that were 

injected in Xenopus oocytes saw a stricking increase in NKCC1 expression, and a more 

modest upregulation of KCC2, however EGABA was depolarized396, suggesting that KCC2 

alterations may be context-dependent.  

 

Animal studies 

Numerous studies in rodents have also demonstrated that in mature cortical neurons (and 

spinal cord neurons) KCC2 is downregulated in response to seizure. It was observed in 

multiple models of epilepsy, such as models of temporal lobe epilepsy231,397, focal cortical 

dysplasia395,398, hypoxia-ischemia399. In particular, both in vivo and in vitro experiments 

display an aberrant shift towards increased NKCC1 and decreased KCC2 expression and the 

re-emergence of depolarizing GABAAergic signaling, which may underlie certain epileptic 

discharges in the adult brain231,232,400. Therefore, it is likely that activity-dependent 

mechanisms lead to KCC2 downregulation in pathological conditions.     

In fact, genetic impairment targeting KCC2 in rodents caused an increase in seizure 

susceptibility283,284, and typically affected the cotransporter activity and interaction with the 

cytoskeleton. A particular study demonstrated that status epilepticus induced by the 

administration of pilocarpine led to a progressive downregulation of KCC2, which decreased 

the efficacy of inhibition and thus abolished the function of the dentate gyrus as a 

hippocampal barrier against seizure originated from the entorhinal cortex401.  

The exact mechanisms leading to a downregulation of KCC2 are not completely 

understood, however there is evidence that they involve the activation of NMDARs and TrkB, 

calpain and potentially PP1 (protein phosphatase 1;230,319), as explained in the previous 

section. The TrkB has been shown to specifically activate PLCγ1 during epileptogenesis402. 

Additionally, there is evidence that KCC2 is specifically downregulated in models of seizures 

where there is the highest increase in BDNF and TrkB expression230.  

Furthermore, Silayeva and colleagues (2015), demonstrate directly that status epilepticus 

(SE; state of continuous seizures, lethal and leads to long-term neurological deficits in 



 

72 

survivors) inactivates KCC2. In particular, kainate-induced SE rapidly dephosphorylates 

KCC2 at the Ser940 site, and genetically ablating Ser940 phosphorylation accelerated the 

development and lethality of SE. This study suggests that deficits in KCC2 activity directly 

contribute to the pathophysiology of SE403. Furthermore, in a pilocarpine model of temporal 

lobe epilepsy, it was found that muscarinic acetylcholine receptors mAChRs activation was 

prolonged, and induced an increase of tyrosine phosphorylation of KCC2 and its subsequent 

degradation, thus reducing KCC2 activity204. However, some animals did not develop SE nor 

exhibited tyrosine phorsphorylation and internalization of KCC2 following pilocarpine 

injection, suggesting that there are other cellular mechanisms present to regulate tyrosine 

phosphorylation and subsequent degradation of KCC2 upon muscarinic activation203,204. 

In a clinical perspective, agents that control chloride gradient and reinstate inhibitory 

actions of GABA may thus open novel therapeutic approaches in these adult neurological 

conditions. Interestingly, a KCC2-selective analog (CLP257) was recently found, and this 

compound restores impaired Cl- transport in neurons with dysfunctional KCC2 activity and 

rescued KCC2 surface expression, thus offering chloride enhancer as a novel therapy for 

neurological diseases404. However, in the neonatal brain the situation is different, and we will 

see how in the next section. 

 

Epilepsy in the neonatal brain 

Depolarizing GABA during early development was found accountable for the reduced 

seizure threshold and increased seizure propensity in the neonatal brain, and thus explaining 

why the use of established GABAergic anticonvulsants (such as phenobarbital and 

benzodiazepine) were not very successful. In addition, inhibiting NKCC1 with bumetanide 

treatment in vitro and in vivo in animal models of neonatal seizures was shown to inhibit 

epileptic activity, and made it a candidate for anticonvulsant therapy224,300. The scientific and 

medical communities were hoping to treat refractory neonatal seizures by blocking NKCC1 

(with bumetanide) and thus restore the inhibitory balance and improve seizure susceptibility. 

In fact, this was the basis of two clinical trials (NCT01434225; NCT00380531). 

Unfortunately, one of the clinical trials (NCT01434225) was recently terminated, and they 
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concluded that treatment of NKCC1 antagonist to complement with phenobarbital was not a 

viable option to treat neonatal seizures. These clinical studies have not produced positive 

results, suggesting that the situation may be more complex405.  

Indeed, epilepsy in the developing brain is different than in adult epilepsy. The 

developing immature brain possesses different physiological properties, including neuronal 

ionic currents that typically last longer and are less selective. This allows immature neurons a 

higher probability of spiking activity and allows them to connect and fire together at the same 

time, and readily synchronize, thus making the developing brain more susceptible to 

seizures406,407. Interestingly, KCC2 is an important factor that underlies this susceptibility to 

seizure generation and facilitation. 

 

Human studies 

Until last year, no mutations of the Slc12A5 gene in patients had been reported, even 

though it was cloned two decades ago240. The first SLC12A5 point variant (KCC2-R952H) 

reported is a missence mutation identified in an Australian family with early onset febrile 

seizures. When introduced in neural stem cells or cortical KCC2-/- neurons in vitro, and by in 

utero electroporation in vivo, this variant caused cotransporter and spinogenesis deficits caused 

by an internalisation of KCC2 in rodent neurons, and strongly suggests that it is a 

susceptibility variant for febrile seizures307. The second study identified a new point variant, 

KCC2-R1049C, as well as KCC2-R952H, in a French-Canadian cohort with idiopathic 

generalized epilepsy. They found that these mutations alter its transporter function, trafficking 

and S940 phosphorylation regulation, and their predicted pathogenicity suggested that they are 

disease causing. Altogether, the authors reported that these mutations were a risk factor or 

contributed to the pathogenesis of human idiopathic generalized epilepsy. These data 

strengthen the genetic link between KCC2 and human epilepsy, and offer two alternative 

hypotheses where either the impairment of GABAAR-mediated inhibition enhances seizure 

susceptibility and/or the reduction of functional spines leads to a desynchronization of 

neuronal circuits that are seizure-promoting196,392,408. Finally, these two independent studies 

provide evidence that KCC2 dysfunction can predispose to epilepsy in humans.  
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A study published in 2010 was the first evidence that pediatric epilepsy differentially 

affects KCC2 expression. Analyzing human neocortex specimen of pediatric patients with 

focal cortical dysplasia (FCD), a form of intractable focal epilepsy, and age-matched controls 

demonstrated that KCC2 expression increases markedly with age in normal conditions, but in 

FCD tissue from patients older than 1 year of age had a reduction of KCC2 expression, 

whereas FCD patients younger than 1 year old had an increase in KCC2409. These results 

suggest that there is a time-sensitive modulation of KCC2 in epilepsy.  

 

Animal studies 

The first evidence of the dual effect on KCC2 expression and function comes from two 

studies by Galanopoulou, where three episodes of status epilepticus were induced by kainic 

acid treatment at P4-P6 rats. She observed that KCC2 mRNA expression was upregulated in 

the CA3 region of the neonatal hippocampus. In addition, CA1 pyramidal neurons displayed a 

hyperpolarizing shift of EGABA, associated with an increased or decreased immunoreactivity 

for KCC2 and NKCC1, respectively410,411. Furthermore, Khirug and colleagues (2010) 

provided another evidence of the differential expression of KCC2 due to a neonatal seizure412. 

The authors found that a single neonatale seizure induced by kainite injections between P5 and 

P7 leads to a precocious hyperpolarization of EGABA. While, they did not see a difference in 

the total amount of KCC2, they found an increase in the membrane surface expression of 

KCC2 and Na+-K+-ATPase α2, 1h after seizure onset. They found similar results when 

exposing hippocampal slices to kainite, and interestingly, effects on KCC2 surface expression 

and EGABA were blocked by the presence of the kinase inhibitor K252a. In cases of early-life 

seizure, it was suggested that KCC2 upregulation could be the brain trying to counteract the 

seizure-induced increase of intracellular Cl-, which leads to an increase in hippocampal 

hyperexcitability. However, this hypothesis remains to be proven. 

A recent study found that a single episode of kainate-induced neonatal seizure triggers a 

TrkB-dependent upregulation of neuronal Cl- extrusion by an increase in surface expression of 

KCC2, and can be temporally limited by calpain. However, this effect is transient and calpain-

mediated downregulation of KCC2 alters its function to extrude Cl-. Additionally, in BDNF-/- 
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mice, this KCC2 upregulation is impaired, through a significant reduction of surface 

expression, suggesting that the fast and functional activation of KCC2 following neonatal SE 

is BDNF-dependent. These results suggest that the seizure-induced release of BDNF in the 

early postnatal brain enhances GABAAR-mediated inhibition and hyperpolarizing EGABA. 

Interestingly however, in these BDNF-deficient mice (with no seizures), the normal 

developmental increase of KCC2 in not altered, suggesting that although BDNF can induce 

KCC2 upregulation, this mechanism is not BDNF-dependent234. In fact, it was shown that 

other trophic factors act in parallel, and even in a redundant manner to activate transcriptional 

pathways downstream of BDNF that regulate KCC2 expression413; suggesting that in BDNF-/- 

mice, other trophic factors may compensate this deficit, and induce the developmental increase 

of KCC2 expression. 

Conversely, it was shown that in an animal model of ischemia in the immature brain 

there was a downregulation of KCC2 acutely post-ischemia at P7, P10 or P12, and recovers 

from ischemic insult within a few days. These results suggest that ischemic injury significantly 

modulates the developmental profile of KCC2 and dictates the efficacy of anticonvulsant 

medications that follow414. In addition, it was reported that KCC2 was downregulated in the 

intact neonatal hippocampal preparation when seizure was induced with a sustained treatment 

of kainate415. Lastly, a recent study demonstrated a calpain-mediated cleavage of hippocampal 

KCC2 in a rat model of late gestation hypoxia-ischemia416. The fact that KCC2 upregulation is 

transient following a single neonatal seizure could potentially explain these differences234.  

In summary, it is evident that KCC2 is crucial in normal brain development, and the 

effects of its dysfunction in pathological conditions seem to be age- and context-dependent. 

The time at which an initial insult occurs, differentially affects KCC2 expression and function. 

In addition, numerous signalling pathways could rapidly modulate the activity of this 

transporter. However, the mechanism distinguishing the effects of KCC2 in adult brain versus 

developing brain are still under investigation. I am more specifically interested in the 

modulation of KCC2 in a model of temporal lobe epilepsy, where neonatal rats are subjected 

to cortical dysplasia and atypical febrile seizures. In the following section, I will discuss these 

subtypes of epilepsy and the main mechanisms that have been elucidated.  
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3. Epilepsy 

3.1. Definition 

 

Epilepsy is the second most common neurological disorder characterized by 

spontaneous recurrent seizures and affects 65 million people worldwide. Seizure incidence is 

highest in the first month of life417, and can trigger epilepsy and cognitive disorders in later 

life418. Epileptogenesis can occur due to genetic mutations or following an initial insult, which 

causes aberrant molecular, cellular and neuronal network activity modifications. The 

pharmacological treatments currently available are only seizure suppressing or antiepileptic, 

but they do not prevent the development of epilepsy. These drugs also lack a temporal, 

regional and cell-type specificity, therefore often causing side effects such as nausea, tremor, 

fatigue, low blood counts, abnormal liver function, cognitive impairment, bone loss, mood 

changes and teratogenic effects419. Additionally, not all patients respond to the available drugs; 

in fact a third of epilepsy patients develop drug-refractory epilepsy, meaning they are resistant 

to treatments420. In some cases, patients can undergo surgical removal of the epileptic region 

in the brain, which however, can also lead to negative side effects421. Further, this option does 

not always offer a long-term recovery from generalized seizures422. In addition, there are 

patients where even a surgical approach is not possible because the location of the seizure 

focus is such that removing it would lead to devastating neurological and cognitive 

consequences423. It is therefore very important to elucidate the mechanisms involved in 

epileptogenesis to develop more targeted treatments, which will hopefully benefit more 

patients.   

Studies of animal models of epilepsy and human tissue aimed at understanding the 

process of epileptogenesis following an initial insult demonstrate that there are multiple 

alterations that span from acute changes within minutes and days to chronic changes over 

weeks and months (see figure 16). The first changes include alterations of membrane 

depolarization and consequently ion channel kinetics, post-translational modifications and 

activation of immediate early genes. These initial changes then lead to neuronal death, 

activation of inflammatory cascades to finally, mossy fiber sprouting, network reorganization, 
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neurogenesis and gliosis. These processes are developmentally regulated, which could 

potentially explain the differences in epileptogenesis between adult and developing brains424. 

 
 

Figure 16. Illustration depicting the timing of key alterations during epileptogenesis 
following an initial insult.  

 Illustration adapted from Rakhade and Jensen (2009) 424. 

 

3.2. Mechanisms of ictogenesis and epileptogenesis 

 

 Epileptic convulsions are due to dysfunctional neuronal circuits subject to excessive 

and/or hyper-synchronous activity. In recent years, technological advances such as multi-site 

extracellular arrays, optogenetics and paired intracellular recordings are starting to enlighten 

how micro-scale networks are organized and their role in generating and modulating seizure 

activity. These recent discoveries are also challenging the well-established belief that epilepsy 

is an outcome of an excitation/inhibition imbalance425. In this section, I will describe the 

concepts regarding mechanisms of seizure generation, specifically termed ictogenesis, and 

mechanisms leading to epilepsy (epileptogenesis). First, all seizures seem to originate in local 
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microcircuits and then spread from that initial ictogenic zone. Second, seizures propagate 

through cerebral networks and engage critical microcircuits in distal nodes. This process can 

be diminished or blocked by suppressing activity in these nodes. The microcircuit motifs 

include feed-forward inhibition, feed-back inhibition, counter-inhibition and local recurrent 

excitatory circuits (see figure 17). Another important aspect is the outside influence to these 

local microcircuits, which include long-range excitatory or inhibitory connections. In fact, 

these microcircuit motifs are not isolated, but they are part of larger networks. However, 

dysfunction in these microcircuits (through epilepsy for example), which engages other local 

microcircuits, can then alter the overall dynamic of large-scale networks. I will next explain 

the concepts of these microcircuits more in details and how they are affected in epilepsy.  

 

 

Figure 17. Representation of 
the different microcircuit 
motifs involved in epilepsy.  
Schematic adapted from Paz 
and Huguenard (2015) 425.  
 

 

 

 

Recurrent excitation 

 

Local recurrent excitatory circuits are the simplest and most clearly affected in epilepsy. 

Most experimental models of epilepsy demonstrate that there is an increase in excitatory 

activity leading to hyperexcitability. For example, in the DG of the hippocampus, intricate 

changes in connectivity were observed as inputs onto GCs were increased from other GCs but 

also from hilar excitatory neurons and CA3 PCs after kainate treatment426, leading to 

hyperconnected neurons. Hyperconnected PCs were also observed in the neocortex following 

cortical malformations, such as focal cortical dysplasia427. 
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Feed-forward inhibition 

 

 Feed-forward inhibition is a type of microcircuit motif that has also been broadly 

implicated in several epilepsies. Feed-forward inhibition occurs when excitatory inputs from 

remote brain regions recruit local inhibitory networks that tune/control the strength and form 

of the efferent signals (see figure 17). It commonly occurs in neocortical and hippocampal 

networks, where I will focus on, but it can also occur in basal ganglia and thalamic networks. 

More specifically, sensory signal from the thalamus projects onto sensory receptive zone in 

the cortex in layer IV mostly, in the form of glutamatergic excitation. In fact, a single thalamic 

fiber can contact and excite both excitatory (PCs) and inhibitory (FS-BCs) cortical neurons in 

layer IV in a di-synaptic circuit. Therefore, while the PCs amplify and process the signals and 

propagate it to other PCs in other layers in their cortical column, FS-BCs also fire and release 

GABA onto excitatory cells in layer IV. This causes feed-forward inhibition, which sets a 

brief window for temporal synaptic integration, which in turn determines temporal precision in 

response to stimulation 428 and limits the overexcitation of the neocortex429. Feed-forward 

inhibition was found to rely on FS-BCs primarily, and more so than SOM-expressing INs 430. 

In addition, FS-BCs receive convergent excitatory inputs from multiple thalamocortical cells. 

Furthermore, considering individual FS-BCs can output to numerous PCs and spiny stellate 

neurons in layer IV, they can powerfully suppress their output and shunt the thalamocortical-

mediated excitation431. The same mechanism of feed-forward inhibition was observed in the 

dentate gyrus in the hippocampus, where entorhinal cortical excitatory project (perforant path) 

onto both FS-BC and granule cells, but their interaction is more dynamic. In fact, the perforant 

path preferentially targets FS-BC, and maybe other GABAergic interneurons in the DG, thus 

driving a large feed-forward inhibitory conductance in GCs432. However, it was also shown 

that FS-BCs specifically targets PCs with specific output projections in the CA1111. 

Altogether, this illustrates the underlying complexity of cortical large-scale networks, 

considering each of these particular interactions and microcircuits can have significant effects.  

 Consequently, disruption of feed-forward inhibition can lead to overexcitation of cortical 

networks and seizures. Incidentally, this was observed in multiple models of epilepsy, 

including those generated by cortical malformation like focal cortical dysplasia (which will be 

explained in details later)433, generalized-absence epilepsy models (absence seizures cause the 
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patient to zone-out or stare into space)434, and in in vitro models with chemoconvulsant-

induced epileptiform activity 430,435. A reduction of feed-forward inhibition is also consistent 

with the controversial hypothesis that BCs are ‘dormant’ in epilepsy. This hypothesis suggests 

that connectivity onto these cells would be reduced to a point, where they would fail to fulfill 

their role and regulate PCs in a timely-manner436. Consistently, loss of function of CaV2.1 

calcium channels selectively in neocortical PV INs altered GABA release, impaired their 

ability to restrain cortical pyramidal cell excitability, and thus altering feed-forward inhibition, 

and was sufficient to cause generalized seizures 437. Mutations of Scn1a gene, coding Nav1.1 

voltage-gated sodium channels essential for action potential generation and propagation of 

primarily GABAergic INs, underlie 80% of cases of Dravet Syndrome, a severe myoclonic 

epilepsy in infancy438; and 10% of generalized epilepsy with febrile seizure plus (GEFS+)439. 

In animal models of these disorders, PV- and SOM-expressing INs have reduced excitability, 

resulting in dis-inhibition of cortical networks 440. Further, Scn1a knockout in PV-expressing 

INs increased seizure susceptibility, while seizure threshold was unaltered when Scn1a was 

specifically inactivated in excitatory cells441. It was also found that feed-forward inhibition is 

involved in the propagation of epileptiform activity in mouse neocortical slices442-444. 

Considering the importance of PV-expressing INs in feed-forward inhibition on functional 

local excitatory neurons, the loss of this process can cause strong dysfunction of circuits, and 

can bridge epileptic activity between microcircuits. It is proposed that rescuing functional 

alterations of inhibition by reinstating proper feed-forward inhibition could prevent 

seizures425.  

 

Feed-back inhibition 

 

 Feed-back inhibition occurs when locally activated inhibitory neurons shape recurrent 

excitatory activity. Inhibitory cells can mediate both feed-back and feedforward inhibition, but 

it seems that PV-INs play a significant role in feed-forward inhibition, while SOM INs appear 

to be more important for feed-back inhibition. Cortical Martinotti neurons (expressing 

somatostatin) target distal dendrites of PCs, and provide a relative weaker inhibitory strength 

at baseline compared to PV INs. However, they are recruited by simultaneous repetitive 

activity of multiple presynaptic PCs, through a di-synaptic inhibitory feed-back pathway 
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between PCs. More specifically, Martinotti cells receive facilitating excitatory connections 

from PCs (from layer II/II and layer V) and provide inhibitory GABAergic input onto the 

apical and basal dendrites of the same PCs in layer I (self-inhibition) and neighboring PCs, 

thus influencing their dendritic integration. In the hippocampus, CA1 PCs activated by high-

frequency stimulation of neighboring PCs cause feed-back inhibition through O-LM 

interneuron activation445. Therefore, when there is an intense activation of local microcircuits 

during seizure, SOM INs can be recruited to dampen this activity to locally suppress the 

hyperactivity. Consistently, as mentioned previously, in the Dravet Syndrome, SOM INs are 

also affected and contribute to hyperexcitability of cortical circuits440. DLX1 deficient mice 

(Dlx1 is a transcription factor essential for GABAergic INs generation) display loss of SOM 

INs and calretinin-positive INs, which leads to reduction of inhibitory drive in the neocortex 

and hippocampus and generalized seizures135. Furthermore, ChCs can potentially also respond 

to hyperexcitability related to seizures, as a recent study suggests that ChC are not recruited by 

sensory stimulation (of whiskers), but by disinhibition following bicuculine (GABAR 

antagonist) application446. These results suggest that ChCs can be recruited by a significant 

increase in activity, which in the context of epilepsy can potentially prevent PCs action 

potential generation, and could act as a microcircuit ‘emergency brake’425. 

 

Counter-inhibition 

 

 Lastly, counter-inhibition, which is essentially inhibition of inhibition, occurs as local 

connections between activated inhibitory neurons can decrease output of other inhibitory cells 

and induce disinhibition or altered oscillatory coupling. First, there are INs that can make 

synapses onto themselves, such as PV INs447. Counter-inhibition of PV INs can potentially 

suppress its feed-forward inhibition of local microcircuits, and promote seizure propagation 

between regions. Furthermore, there are other interneurons that only contact, chemically 

and/or electrically, other INs of the same or different class, as discussed in the first section. 

For example, VIP-expressing INs specifically suppress SOM- (preferentially) and PV-

expressing INs, and thus mediate disinhibition 81. In the context of epilepsy, activation of these 

INs can promote overexcitation through disinhibition. For example, if SOM INs are 

suppressed by VIP INs, it would prevent SOM INs-mediated feed-back inhibition. However, if 
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these INs are suppressed, this could prevent hyperexcitation. 

 It is important to bear in mind that these individual microcircuits are not isolated, and 

epilepsy results from propagation of ictal activity through all microcircuits. Paz and 

Huguenard (2015) 425 suggest that an imbalance between different microcircuits can be 

ictogenic. However, it is also possible that there is an accumulative effect, such that small 

disruptions of microcircuits can occur spontaneously, but not have a harmful effect; whereas 

after reaching a certain threshold, disruption of multiple microcircuits at the same time could 

lead to seizure development.  

 

Finally, although a lot of studies on epilepsy started to reveal some key molecular 

mechanisms of ictogenesis and epileptogenesis, new studies have uncovered over 400 genes 

that were closely associated with epilepsy. Hopefully in the future, we will have a better idea 

of the molecular mechanisms inducing spontaneous recurrent seizures, as they are multi-

faceted and likely combine genetic and acquired alterations. We are interested in a rodent 

model of mesial temporal lobe epilepsy, with two predisposing early-life insults, and thus I 

will focus on few key molecular mechanisms implicated specifically in mTLE, and these 

neonatal insults.   

 

3.3. MTLE 

3.3.1. Definition and Incidence  

 

Mesial temporal lobe epilepsy (MTLE) is the most prevalent form of epilepsy, which 

accounts for a third of all cases, and is usually refractory to treatment448. Seizures originate 

from limbic structures such as the hippocampus, the parahippocampal gyrus and the amygdala. 

The hippocampus, located in the mesial temporal lobe, is particularly prone to generate 

seizures. This disease results in severe hippocampal sclerosis in approximately 50% of 

cases449. MTLE also leads to pyramidal cell loss in both CA regions, granule cell loss in 

dentate gyrus and gliosis as observed from epileptic tissues from surgical resections450-455. In 

addition, numerous GABAergic INs populations are affected, such as SOM- INs and 

neuropeptide Y-positive INs 456. MTLE typically begins in teenagers and even adults, however 
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it is believed that the initial insult occurs in early life during neural development. In fact, 

numerous studies, including one with a cohort of ~4000 patients, demonstrate that complex 

febrile seizures is the most common pathology associated with MTLE 449,457-460. The mean 

latency to develop MTLE after febrile seizures is between 8 to 11 years459,461,462. One 

possibility is that hippocampal sclerosis predisposes to prolonged febrile seizures and MTLE. 

A second possibility is that prolonged febrile seizures develop following an anatomical and/or 

genetic insult, and these seizures lead to hippocampal sclerosis and MTLE later in life 463. In 

fact, a retrospective study from Dr. Carmant’s group revealed that 66% of MTLE patients had 

a history of febrile seizures associated with focal cortical dysplasia, a cortical malformation 
464. Other studies provided evidence of dual pathology leading to MTLE. In fact, Magnetic 

resonance imaging (MRI) analysis found the presence of focal cortical dysplasia with febrile 

seizures465,466. Also, an MRI study of MTLE patients with or without a history of febrile 

seizures demonstrated that those with the history had a smaller hippocampus ipsilateral to the 

seizure focus, suggesting that there are at least two types of mesial temporal sclerosis 

originating from different pathogenetic pathways depending on the initial insult466,467. Indeed, 

other early childhood lesions observed in MTLE are birth trauma, head injury or meningitis. 

Moreover, both genders seem to be equally affected, and several cases of familial MTLE have 

been described468,469; however the prevalence of familial MTLE is uncertain.   

3.3.2. Mechanisms 

 

 Alterations of inhibition have been found in patients with MTLE and animal models of 

MTLE. First, loss of GABAergic INs is reported in human tissue461,470,471, as well as in 

experimental animal models472,473. In addition, GABAAR-mediated inhibitory responses is 

increased in GCs474, but decreased in CA1 PCs475, revealing regional reorganization 

differences and selective alterations of GABAAR subtypes. Vesicular neurotransmission of 

GABA is also affected in MTLE475.  In fact, despite dysfunction of GABAergic INs in the DG 

following TLE, the homeostatis activity of FS-BCs is maintained and limits overexcitation of 

the DG476. However, apart for the feed-forward inhibition circuit in the DG, there are direct 

projections from the entorhinal cortex to the CA1, through the temporoammonic pathway. In 

models of temporal lobe epilepsy (TLE) induced by pilocarpine or kainic acid injections, there 
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is neuronal loss in layer III of the entorhinal cortex, which is prevented by diazepam 

treatment477,478. Coincidently, neurons from layer III project to the CA1479, and in animal 

models of TLE, there is a loss of this particular feed-forward inhibition477. In the pilocarpine 

model of TLE, CA1 O-LM interneurons480, important for feed-back inhibition and feed-

forward inhibition in the extra-hippocampal inputs from the entorhinal cortex481, are lost. 

Consistent with the observation that mainly O-LM interneurons are reduced in CA1481, 

dendritic inhibition on PCs is specifically decreased482. Taken together, these changes would 

lead to a reduction of feed-forward inhibition from the entorhinal cortex to CA1. In fact, it was 

observed in a model of MTLE that the cortical input onto the DG of the hippocampus was not 

affected, and the input onto CA3, via Schaffer collaterals, is decreased (despite reduction of 

Schaffer-evoked inhibition), while the normally weak direct excitatory cortical input onto the 

CA1, via the temporoammonic pathway, is increased ten-fold483. These alterations of the 

temporoammonic pathway are critically situated to facilitate seizure generation and/or 

propagation in the hippocampus. In parallel to the O-LM-mediated reduction of dendritic 

CA1-PC inhibition, there is an increase in spontaneous GABAergic inhibition in the soma of 

PCs, resulting from an increase of activity of somatic projecting INs, namely FS-BC, in 

MTLE482. Furthermore, recurrent excitation in the hippocampus between the GD, CA3 and 

CA1 is increased following seizures. Altogether, these data show that the hippocampus 

contains different pathways, whose alterations can be important for ictogenesis.     

 In summary, a better understanding of the pathological alterations of MTLE in the 

developing brain will help develop more targeted treatments, depending on the initial insult. 

As such, the Carmant laboratory has developed a dual-pathology rodent model of MTLE. This 

model consists of the association of a focal cortical dysplasia with atypical febrile seizures, 

since patients with these pathologies have a higher risk of developing MTLE as adults. To 

understand the importance of studying MTLE, and the impact that cortical dysplasia (CD) and 

febrile seizures (FS) have on the brain, I will focus on these topics in the following sections.  
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3.4. Febrile seizures 

3.4.1. Definition and Incidence 

 

Febrile seizures (FSs) are by definition an epileptic seizure that occurs in infancy or 

childhood associated with fever, but without evidence of a CNS infection or other afebrile 

seizures (NIH & ILAE definition, 1993). FSs are the most common convulsive events in 

children between 6 months and 5 years of age, with a peak incidence at approximately 18 

months, and a prevalence of 2–14% depending on the population affected484. Febrile seizures 

can be divided into two subtypes: simple and complex FSs. Simple FSs are brief (<15min) and 

generalised convulsions, and occurs in isolation (only one seizure event within 24h). Simple 

FSs have not been associated with subsequent epilepsy or cognitive deficits in prospective and 

retrospective studies, and are considered benign485,486. On the other hand, complex FSs exhibit 

seizures that are atypical, prolonged (>15min) and focal or multiple (more than one convulsion 

in each episode of fever; or recurrent within 24h). These complex FSs account for 30-40% of 

FSs cases 487, and are a risk factor for MTLE 459,488,489. Behavioral manifestations of FSs and 

electroencephalogram (EEG) recordings demonstrate that seizures originate from limbic 

structures. MRI signals were also altered in these structures, mainly in the hippocampus and 

the piriform cortex, and to a lesser extend in the amygdala, without cell death490-492.  Finally, 

the gender differences in FSs are controversial. Most studies suggest that boys have a higher 

risk of developing FSs than girls493,494, while the opposite has also been reported495. Other 

longitudinal studies concluded that there are no gender-based differences485,496.  

 Generalized epilepsy with febrile seizures plus (GEFS+) is a clinical subset of familial 

FS. Patients with GEFS+ have FS beyond the age of 6, and can also have afebrile seizures, 

such as absences or myoclonic (brief muscle jerks) seizures. Numerous mutations have been 

associated with this disorder, and a classification system is starting to take form depending on 

the chromosomal location of these mutations. GEFS+ type 1 is associated with mutations of 

SCN1B, encoding the β1 subunit of the voltage-gated sodium channel NaV; GEFS+ Type 2 is 

associated with SCN1A encoding NaV1.1; and GEFS+ Type 7 has mutations in SCN9A 

encoding NaV1.7497. 
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3.4.2. Potential causes and risks  

 

FSs can be familial in some cases and sporadic in others, demonstrating that both genetic 

and environmental components contribute to their generation. I will discuss these two factors 

in this section. 

It is commonly believed that the temperature rise of the fever per se is the main risk 

factor for FS development, and is more critical than the actual temperature reached; however 

there is no evidence available to date to support this hypothesis498,499. Seizures typically 

develop within the first day of fever; however, they do not necessarily occur at the peak 

temperature during the fever. Nevertheless, the average temperature during fever of children 

with FS (average of 39.8oC) is usually higher than children with similar fever-illnesses500. 

However, measurements of fever reported in the literature differ due to the divergence of 

methodology used (axillary or rectal). In addition, any virus or bacteria that causes fever can 

provoke FSs. In particular, viral infections are regularly associated with FS501,502, while the 

prevalence of bacterial infections is low, but can be severe493,499.  

A family history of FS increases the risk for developing FS, in fact 25-45% of cases 

have a positive family history. Siblings or monozygotic twins of children experiencing FSs are 

reported to have a higher risk of developing FSs495,500,503. However, whether family history is a 

predictor of the severity of FSs is controversial504.  

A clear factor for severity and recurrence of FSs is the age of onset. When children had 

their first convulsions between one and two years of age, 33% of them would go on to have 

recurrent seizures, suggesting that the earlier the age of onset, the more the likelihood of 

recurrence485. Although the severity of the FSs has a negative correlation with behaviour 

outcome, FSs alone is not associated with severe cognitive deficits 486,504.  

In addition, FSs are more likely to develop in patients with a predisposition of genetic or 

perinatal insult nature, compared to the general population505. As such, high incidences of 

patients with initially focal or prolonged FSs reveal pre-existing brain abnormalities by 

MRI465.  Additionally, since the family history of FS or epilepsy increases the likelihood of 

children developing FSs, a genetic influence on the development of FS has identified genetic 

loci by linkage analysis in families with FS506,507. I will discuss this in detail in the next 
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section. Furthermore, neuronal migration disorders have shown to increase susceptibility to 

FSs508. In fact, cortical dysplasia (CD) is a typical pre-existing structural lesion that affects the 

susceptibility to FSs 509. In addition to predisposing to febrile seizures, there is a strong 

correlation (~80%) with CD and MTLE patients with hippocampal sclerosis as shown by MRI 

analysis510, suggesting CD may be a potential predisposing factor for the development of both 

FSs and MTLE 510,511.  

 

3.4.3. Long-term effects 

 

Children with complex FSs have an eighfold-increased risk of developing epilepsy 

compared to children with simple FSs, as well as control children 487. A 25-year follow-up 

study showed that while ~2% of children with simple FSs will develop spontaneous recurrent 

seizures (SRS), the overall risk rises to 7-49% when children with atypical FSs are included 
512. More specifically, it was reported that children with FSs with a single complex feature 

(focal, recurrent or prolonged) had a 6-8% chance to develop MTLE, while this risk increases 

to 17-22% for those with two complex features, and finally, the risk increase to 32-49% 

(depending on the cohorts) for children with FSs that have all three atypical features 512-514. 

This risk is also associated with the number of generalized seizures the children suffered from, 

and their family history, as explained previously512.  

Febrile status epilepticus (FSE; seizures lasting >30min) occurs in approximately 10% 

of children with FSs 465,515, and these children have a greater risk of developing epilepsy. It has 

become increasingly proven that a significant proportion of these children develop acute 

hippocampal injury on MRI that progress over the years toward hippocampal sclerosis, the 

pathological/radiological hallmark of MTLE, and even mesial temporal sclerosis in some 

cases457,458,492,516. Another recent study indicates that 20-30% of children with complex FSs - 

of either type - have definite hippocampal volume loss in the year following FSs, and authors 

suggest that the number of recurrent FSs has a role in the pathogenesis of long-term 

hippocampal injury517. Another prospective study suggests that the duration of FSs is a key 

factor leading to hippocampal injury466. However, a study with a larger population, and a long-

term evaluation of hippocampal injury is still necessary. In fact, a long-term and large 
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prospective study is currently in place to specifically understand the relationship between FSs, 

hippocampal/mesial temporal sclerosis and the development of MTLE. This study is named 

FEBSTAT and plans to understand the consequences of prolonged FSs in childhood. 

Preliminary results indicate that 25% of children experiencing prolonged FSs have definite 

MRI abnormalities518 but only 12% show neuroradiological evidence of hippocampal injury, 

and a subgroup of children with FSE also appear to have subtle pre-existing hippocampal 

abnormalities519. While the relationship between FSE, subsequent hippocampal sclerosis and 

MTLE is still not fully understood, all these studies show a causal relationship between FSE 

and TLE, but not other forms of epilepsy. Unfortunately, it has been proven that no treatment, 

acute or continuous, can prevent the development of MTLE520. 

 The long-term effects of FSs on cognitive development remain controversial. Several 

studies have demonstrated that FSs alone are not associated with severe cognitive 

deficits485,486,504,521. Furthermore, it was specifically shown that semantic memory was not 

impaired following FSs522. However, recent studies looking at particular memory processing 

and hippocampal-dependent recognition tests illustrate that there may be more subtle 

abnormalities than previously recognized523-525. Chang et al (2001) demonstrated that 6-year-

old children with a history of FSs actually outperformed control children on several working 

memory tasks, but underperformed on a task of delayed recognition, another working memory 

measure. In addition, experiencing FSs before the age of 1 was the only significant risk factor 

for deficits in mnemonic function525. Children with complex FSs had more severe impairments 

on episodic memory526 and delayed language development527. In addition, Roy et al (2011) 

showed that even a single FSE impacts visuomotor development, eye-hand coordination, and 

general cognitive development in infants from 3 to 21 months528. Moreover, Kipp and 

colleagues (2010) observed no difference of hippocampal volume on their group of 17 

children with both simple and complex FSs, however they had functional changes in MTL 

memory tasks and processing. They conducted a recognition memory experiment, which can 

help dissociate between familiarity (a quick matching process that is hippocampus-

independent) and recollection (slow recall-like process where detailed memories of a prior 

episode is retrieved, which is hippocampus-dependent). These tests revealed that recollection 

was deficient, and they hypothesised that children with FSs use familiarity processing to 

compensate for their degraded recollection524. Another study focused on children shortly after 
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prolonged FSs (~38 days), since they are the ones showing strong association with a 

hippocampal injury. They specifically investigated hippocampal-dependent memory, by visual 

paired comparison tasks, which is essentially like the novel-object recognition paradigm used 

to study rodent behaviour. This task was chosen because of the young age of the subjects 

(about 3 years old). Children were familiarised with two objects, and then with one familiar 

and one new object, immediately after or with a 5 min delay (same paradigm with faces). 

Children with prolonged FSs had recognition memory impairment following the 5min delay, 

and bigger deficits correlated with smaller hippocampal volumes. These impairments persisted 

a year later. The authors suggested that these children have a problem either in retaining the 

memory for 5 min or with retrieving the memory following the delay523. Finally, a recently 

published report from Tsai and colleagues (2015) used other tests that are more sensitive in 

detecting cognitive abnormalities and demonstrated that children with all complex aspects of 

FSs (prolonged, multiple or focal) have a lower full-scale intelligence quotient, and several 

cognitive impairments including perceptual reasoning and working memory deficits529. 

Altogether, these studies reveal persistent deficits in specific hippocampus-dependent memory 

tasks. Hopefully, the FEBSTAT study will address and conclude on whether FSE causes 

memory deficits in children with hippocampal injury519. 

 

3.4.4. Molecular alterations from human and animal studies 

 

Genetic mutations 

 

Recent genetic evidence suggests that FSs are genetically complex. There are reports of 

six susceptibility FS loci on several chromosomes, in particular 2q, with linkage to genes 

encoding sodium channel receptors, termed FEB1 to 6. In particular, mutations have been 

found in voltage-gated sodium channel α-1, α2 and β-1 subunit (SCN1A, SCN2A, SCN1B;439). 

However, the risk varies between families with similar conditions530. It has also been reported 

that FSs may be a hyperpolarization-activated cyclic nucleotide gated channels (HCN) 

channelopathy514,531. In addition, a mutation in the Slc12A5 gene, which encodes KCC2, has 

recently been reported in a particular Australian family with early childhood onset of FSs. 



 

90 

This mutation causes a missense variant in KCC2b (Arg952His;307). Mutations in the gene 

encoding GABAAR γ2 subunit have also been found in association with FSs532. Altogether, 

these findings suggest that the genetic aspect of FS is complex and likely multifactorial.  

Temperature increase  

 

The most accepted and stable experimental paradigm to induce FSs and increase the core 

body temperature is by exposure to heated dry air, which reproducibly generates generalized 

seizures in rodents463,533,534. The long-term effects of hyperthermia-induced seizures in rats are 

similar to those observed following FSs in humans, with a similar age-dependent manner. In 

fact, short FSs do not lead to the development of spontaneous recurrent seizures (SRS), 

whereas a third of rats with prolonged FSs have SRS in adulthood533. Although, there is no 

neuronal loss or mossy fiber sprouting, which are typically observed in models of MTLE, 

there is evidence of hippocampal excitability, with altered inhibitory drive and altered 

hippocampal circuits535,536.  

 Essentially, the increase in temperature by hyperthermia induces seizures in all rodents, 

suggesting that genetic susceptibility is not necessarily required for induction of FSs 532. 

However, it was reported that different mouse strains have different threshold of temperatures 

required to generate seizures 537, suggesting that genetic background may influence the 

susceptibility of developing FSs. Several genes have been implicated in the susceptibility to 

FSs in rodent models, such as genes encoding for sodium channels439, GABAAR538 and 

interneukins537, without discarding the possibility of interactions between these genes. The 

change in brain temperature can, in itself, influence neuronal functions, through temperature-

sensitive ion channels for example539, and consequently increasing the probability of 

generating general synchronized neuronal activity. Interestingly, a medication overdose that 

provokes hyperthermia, or hot baths, can induce seizures in young children540, suggesting that 

the increase in brain temperature is sufficient to generate seizures. It was also recently shown 

that during hyperthermia-induced seizures, there is an over-regulation of body temperature, 

through dysfunction of the thermoregulation process in the preoptic area and anterior 

hypothalamus (PO/AH), which appears to contribute to seizure generation541. 
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Inflammation 

 

Nevertheless, fever also induces an inflammatory response, in addition to the rise in 

temperature, which leads to cytokine secretion in the brain as well as in periphery in humans 

and rodents532,542. Interleukin-1b contributes to fever generation and conversely, fever induces 

cytokine synthesis in the hippocampus542. In rodents, following hyperthermia, there is an 

increase in inflammatory response, such as a release of cytokines, including interleukin-1β 

(IL-1β;533,537). In fact, in interleukin-1 receptor type I knockout mice, the temperature 

threshold for FSs is higher 532,537; conversely, when it was directly introduced in the immature 

brain, it triggered seizures. Overall, these results suggest that IL-1β may be implicated in the 

development of FSs. The signaling pathway downstream of interleukin-1 activates mitogen-

activated protein kinase (MAPK) and nuclear factor kappa-light-chain enhancer of activated B 

cells (NF-κB) signaling, which could lead to proconvulsive epileptic circuits463,514,532. 

Ultimately, it is believed that IL-1β can lead to FSs by reducing GABAAR currents, or through 

enhancing calcium conductance through the NMDAR543 thereby increasing neuronal 

excitability. In humans, there was an increased frequency of IL-1β in children with FS544. 

However, studies measuring IL-1β expression in children with FSs have given contradicting 

results545, and this issue remains debatable. However, hyperthermia and fever activate several 

other inflammatory cytokines, such as interleukin-6, Interleukin 1-RA and the alpha tumor 

necrosis factor (TNF α) but results are conflicting.  

 

Respiratory alkalosis 

 

Another mechanism implicated in the development of FSs is the hyperventilation and 

respiratory alkalosis induced by hyperthermia. In rodent models of FS, it has been shown that 

this factor can influence seizures by increasing intracortical pH546, and that alkalosis in the 

brain can lead to neuronal excitability. However, the clinical relevance of these findings 

remains controversial and lacks sustainable evidence 532,547.  In summary, there are a multitude 

of alterations in response to FSs, but the causative events remain unidentified.  
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3.5. Cortical dysplasia 

3.5.1. Definition and subtypes 

 

As seen in the first section, brain development undergoes very timely and organized 

stages to generate a functional laminar cortex. Disruptions during these processes can lead to 

malformations of cortical development (MCD), commonly associated with intractable 

epilepsy, cognitive impairment and motor and sensory deficits548. Focal cortical dysplasias 

(FCDs) were first reported in phamaco-resistant patients who underwent resection surgery. 

Examination of the resected brain tissue lead to the discovery of histopathologies, such as 

cortical disorganization and large ‘bizarre’ neurons, eventually termed dysmorphic neurons, 

and balloon cells  (malformed cells with potentially multiple nuclei) in half of these initial 

cases549. FCDs represent a subgroup of MCD that are characterized by a spectrum of 

pathological changes of cortical development and are thought to underlie pharmacoresistant 

focal epilepsy. FCDs are specifically characterized by abnormal cortical lamination 

(dyslamination), defects of neuronal migration, growth and differentiation leading to 

cytoarchitectural lesions and abnormalities of white matter, which can either be restrained to 

one discrete cortical area, or can involve several lobes and even the entire hemisphere464,511,550. 

In fact, FCD has been found to be the most common etiology in pediatric epilepsy surgery 

patients 551. In 2011, the International League Against Epilepsy (ILAE) classified FCDs into 

three types based on their histopathological and neuroradiological features550. FCD type I 

refers to isolated lesions, where the microscopic dyslamination of the neocortex (misaligned or 

disorganized layers) is either radial (Type Ia) or tangential (Type Ib), and is present in one or 

multiple lobes. FCD type II also refers to isolated lesions categorized by cortical 

dyslamination and abnormal cell development and maturation (dysmorphic neurons), without 

balloon cells (Type IIa) or with balloon cells (Type IIb). Finally, FCD type III occurs in 

association with hippocampal sclerosis (Type IIIa), or with epilepsy-associated tumours 

(EATs; Type IIIb), next to vascular malformations (Type IIIc), or in association with 

epileptogenic lesions acquired in early life (i.e. traumatic brain injury, encephalitis, etc.; Type 

IIId). This classification is still under discussion, in particular regarding the addition of a 

subtype that was previously thought more rare, where there is a combination of FCD type II 
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and hippocampal sclerosis or with EATs 552. Future studies are required to better understand 

the etiology and pathogenesis of each of these FCD subtypes.  

 

3.5.2. Risks and long-term effects 

 

Technical advances in neuroimaging can now detect more subtle cortical abnormalities 

as potential epileptogenic foci before the resection surgery, and will hopefully allow more 

successful presurgical screening 550,552. These abnormalities have been associated with both 

genetic and acquired factors, however the association between these factors and the 

mechanisms leading to epilepsy are still under investigation 548. These factors may directly 

affect hippocampal development and its connections, which could increase the susceptibility 

to seizures. In fact, retrospective studies as well as a study of two families afflicted with FSs 

indicate that pre-existing malformations of the hippocampus could predispose to FSs and 

epileptogenesis464,465. Alternatively, these genetic and environmental factors may affect the 

susceptibility to seizures indirectly, by enhancing the susceptibility of hippocampal neurons to 

seizure-induced neuronal loss. As such, hyperthermia caused significant cell loss in rats with a 

predisposed, but experimentally acquired, neocortical migration disorders508. 

Individuals affected with FCD display a wide range of symptoms that is dependent on 

the extent and region of the brain affected 553. However, epilepsy is the main symptom, it 

usually begins in childhood and is typically refractory to phamarcological treatment 554. Other 

symptoms include maladaptive behaviour and disorders, psychomotor retardation and learning 

disability555. Lastly, FCD patients can also suffer of homonymous hemianopsia (loss of half 

the field of view on the same side in both eyes;556,557) and have increased risk of developing 

sleep-related epilepsy.  

Incidence reports are sparse and since clear subtypes and terminology were only recently 

modified, the prevalence of each subtype of FCD remains to be evaluated. However, there are 

studies illustrating the differences between groups. Analysis of postsurgical resected tissue 

from patients with intractable epilepsy revealed that isolated FCD type I occurred 

approximately in 30% of patients. These patients suffered from more frequent seizures, with 
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either frontal or multilobar lesions, and had the worse postsurgical outcome compared to FCD 

type III 558,559. Patients with FCD type I associated with hippocampal sclerosis (which would 

now be considered type IIIa) had surgery in the temporal lobe (99% of cases) and displayed 

the longest duration of epilepsy. FCD with hippocampal sclerosis was also the most common 

pathological lesion association (35% of cases) compared to either isolated FCD (type I) or 

with other lesions (type III). Interestingly, FSs significantly correlated with the presence of 

FCD type IIIa (focal cortical lesion + hippocampal sclerosis) 558. In addition, timing of the 

developmental insult during gestation affects the severity of CD; thus, the earlier the insult, the 

greater the damage560. Accordingly, patients with larger lesions appear to present symptoms 

earlier than patients with smaller lesions. In addition, patients with central and parietal lesions 

displayed motor and sensory limb deficits and facial nerve palsy (swelling of facial nerves) 

and poor bilateral hand coordination. When the seizures are medically refractory, the motor 

defects become permanent. Cognitive impairment varies from mild impairment to severe 

cognitive and autism spectrum disorders depending on the severity of the FCD and the age of 

onset of epilepsy. As such, earlier onset and severe lesions were associated with psychiatric 

symptoms556. Evidence suggests that the surgical outcome of patients with FCD type II has a 

better seizure-free outcome, although they have an earlier age of seizure onset and more 

frequent seizures than FCD type I. Whereas, FCD type I has a worse surgical outcome, 

behavioural deficits and lower intelligence than FCD type II patients553. 

Importantly, studies in animal models as well as in patients with MTLE support a causal 

link between the presence of cortical dysplasia, the incidence of atypical FSs, and the 

subsequent development of hippocampal sclerosis and MTLE463,509,534,558,561,562. Subtle 

malformations of cortical development have been increasingly identified in patients with 

MTLE, and their combination is often referred to as dual pathology 464,561. As such, in children 

with refractory TLE, the most frequent pathological association was cortical dysplasia (64%), 

with or without mesial temporal sclerosis464 in association with FSs as well558,561. This strong 

association between FCD and hippocampal sclerosis in children with refractory TLE suggests 

that they may be common causal factors for FCD and hippocampal injury. Altogether, these 

results lead the group of Dr. Lionel Carmant to the hypothesis that during development the 

presence of a genetic or acquired subtle FCD causes the brain to be more susceptible to 
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prolonged FSs and seizure-induced limbic injury, therefore increasing the risk of developing 

MTLE.  

 

3.5.3. Mechanisms involved in ictogenesis and epileptogenesis 

 

Concerning the epileptogenesis mechanisms in FCD, the challenge has been to identify 

whether seizures originate from the dysplastic cortex and/or the surrounding area, as a 

proportion of patients continue to have seizures after surgical resection of the abnormal tissue. 

Another challenge is to identify the effects and mechanisms of dysmorphic cells in these 

regions, and the effect on the surrounding tissue on neuronal hyperexcitability and the 

development of epilepsy. The cellular mechanisms underlying FCDs in the development of 

intractable epilepsy are largely unknown, and believed to be multifactorial. In general, FCDs 

have been hypothesized to ensue from somatic mutations in progenitor cells during brain 

development 563.  

 

Cells types in FCDs 

 

FCD causes alterations of cell proliferation and differentiation, among other things, 

which causes the development of abnormal cells, in particular dysmorphic neurons, balloon 

cells and immature pyramidal neurons, which could contribute to seizure generation in FCD. 

Electrophysiological recordings of freshly resected dysplastic tissue from pediatric patients 

demonstrate that there are four types of abnormal-appearing cells. The first being the 

dysmorphic pyramidal neurons, which have an altered shape, are enlarged with abnormal 

orientation, a cytoskeletal structure with enriched neurofilaments, but do not have altered 

electrophysiological properties. The second type, intermediate cells (or cytomegalic or 

dysplastic cells), share both glial and neuronal features. These cells generated large and 

increased Ca2+ currents when depolarized, and displayed atypical hyperexcitable intrinsic 

membrane properties. Balloon cells have a thin membrane, with a pale and glassy cytoplasm 

with eccentric nucleus (sometimes two nucleus), and they express both neuronal and glial 

markers, although they present mostly glial-like features. Balloon cells do not display active 
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voltage- or ligand-gated currents, do not appear to receive synaptic input, and are thought to 

be electrically silent cells that could however still potentially promote synaptic reorganization 

in the surrounding cortex resulting in net excitability. Finally, the immature pyramidal neurons 

which derive from neuroblasts have a small soma, do not accumulate neurofilaments, and do 

not display any aberrant physiological features550,553. As described above, these 4 cell types 

are not expressed in all cases of FCD. Patients who do express the cytomegatic dysmorphic 

neurons and balloon cells usually have a higher seizure frequency than patients with FCDIIa, 

yet they have the best outcome after surgery564, suggesting that these cells clearly have an 

epileptogenic effect, and when they are removed, patients have a better outcome. 

 

Glutamate and GABAergic receptors 

 

Based on the observation that all subunits of NMDA and AMPA receptors are enhanced 

in FCD, although to a variable extent depending on experimental conditions in animals 

models, glutamatergic receptors are believed to contribute to the mechanism leading to 

hyperexcitability565. Furthermore, resection tissue analysis revealed alterations of synaptic 

density and of the proportion of excitatory and inhibitory synapses, compared to the 

surrounding tissue566, demonstrating that neuronal circuits are likely affected in the dysplastic 

tissue, which communicates and affects the surrounding tissue and could potential promote 

epileptogenesis. In fact, intracranial EEG recording of FCD patients revealed that the 

epileptogenic zone may encompass the lesion identified by MRI567, and may reveal complex 

propagation patterns to neighbouring or distant microcircuits, as explained previously. 

 In addition, in human neocortical resected tissue, they found a functional increase of 

NMDA and GABA responses. In brain slice models of ictal activity, treatment with 4-

aminopyridine (4-AP), a K+ channel blocker that increases neurotransmitter release usually 

does not generate ictal activity; however, in CD tissue it leads to NMDAR-mediated ictal 

discharges and GABAR-mediated interictal discharges. Importantly, ictal discharges can then 

blocked by NMDAR antagonists568. 

In tissue with FCD, GABAergic INs density and the expression of GABA transporters 

are reduced, leading to altered inhibition. In addition, parvalbumin and calbindin expression is 

reduced in CD, and these IN populations are abnormally localised in the cortex569. In FCD 
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type II, there is a greater decrease of GAD-labelled INs as compared to FCD type I557. In 

addition, neurons in dysplastic cortex have immature-like features, and GABA 

neurotransmission retains the immature feature of shunting/excitatory neurotransmitter570. 

Further, in FCD type II, GABAAR subunit composition recruits more of the immature γ2 

subunit, compared to the mature α1 subunit571. These results can explain the lack of effect of 

benzodiazepine treatment. 

 

Interleukin receptors 

 

Few molecules have been shown to play an important role in hyperexcitability 

development leading to seizures. IL-1β (interleukin-1β) and its receptor IL-1R are particularly 

interesting. In fact, IL-1β and IL-1R expression levels are increased in FCD surgical 

resections, and the number of neurons expressing both proteins positively correlated with the 

frequency of seizures572,573. The significance of these alterations, however, is still unknown. 

  

mTOR pathway 

 

A relationship between the mammalian target of rapamycin (mTOR) signalling pathway 

activation in dysmorphic neurons in FCDs and in several other cortical malformations has 

been recently identified. mTOR is a serine/threonine kinase protein involved in multiple stages 

of brain development, such as cell growth and proliferation, energy metabolism, inflammation 

and regulation of autophagy574 (see figure 18 below). Thus, this protein integrates multiple 

inputs and serves as a ‘focal node’ to nutrients, cytokines, hormones, cellular stressors and 

oxygen sensors. mTOR is formed by mTORC1 and mTORC2, which are two protein 

complexes. mTORC1 is the complex that is sensitive to rapamycin and integrates several 

inputs through the PI3K-AKT pathway (phosphoinositide -3-kinase/protein kinase B, both 

serine/threonine kinases;575). One of its role is to activate downstream signalling cascades 

involved in protein synthesis activation, through two different pathways, the first being the 

ribosomal protein S6/ribosomal protein S6 kinase beta-1 (S6-S6K1) pathway and the second 

being the eukaryotic initiation factor 4E binding protein-1/eukaryotic translation initiation 

factor 4E (4E-BP1/eIF4E) pathway. Conversely, mTORC2 is insensitive to rapamycin and 
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regulates cytoskeletal organization through different kinases. mTOR is regulated by different 

proteins, such as tuberous sclerosis complex 1 (TSC1) and 2 (TSC2), as well as PTEN 

(phosphatase and tensin homolog), neurofibromin 1 (NF1) and STE20-related kinase adaptor 

alpha (STRADA). An increase in mTOR signalling, through an increase of phosphorylated S6 

protein and kinase 1 (pS6, pS6K1) was observed in patients with FCD type IIb, but not FCD 

type I; it was also observed in other forms of cortical malformations that incidentally, can be 

associated with FCD such as gangliogliomas (AET)223,575. In fact, FCD type IIb and tubers, 

where >80% of balloon cells and giant cells, respectively, show increased phosphorylated 

S6K1 and S6. Additionally, some FCD type IIb also exhibit an activation of upstream P13K 

and AKT, and downstream substrates vascular endothelial growth factor (VEGF) and signal 

transducer and activator of transcription 3 (STAT3). Furthermore, PTEN kockout mouse 

model exhibited similar histopathological features to FCD, which were mostly rescued by 

rapamycin. Finally, mTOR signalling was also increased in TLE tissue resection, and their 

epileptic phenotype were rescued by rapamycin; suggesting that mTOR may be implicated in 

epileptogenesis. Balloon cells express immature markers, such as microtubule-associated 

protein 1B (MAP1B) or alpha-internexin. They also express stem cell markers, such as Sox2, 

Oct4, c-Myc, which is a feature linked with mTOR activation. Moreover, enhanced mTOR 

signaling can also modulate the expression of neurotransmitter receptors and ion channels. As 

such, these alterations, which have been shown to change membrane properties and synaptic 

organization, can result in neuronal hyperexcitability548. Overall, these observations suggest 

that cells in FCDs undergo impaired cell differentiation and retain immature features, and that 

morphological and functional changes at the cellular and circuit levels may lead to epilepsy, as 

well as focal deficits and cognitive impairment. 



 

99 

 
Figure 18. Schematic illustrating the mTOR signaling pathway in normal (left) and 
pathological in FCD (right) conditions.  
Several pathways converge on the TSC1/TSC2 complex, such as the RAS-MAPK, PI3K-
AKT-mTOR and AMPK. TSC1/TSC2 activation negatively regulates mTOR through the Ras 
homolog enriched in brain (Rheb). mTOR, in turn, regulates downstream substrates (S6K1/S6, 
4E-BP1/eIF4E) that subsequently control protein synthesis, cell growth, and energy 
metabolism. In cortical dysplasias, the mTOR pathway becomes hyperactive (thicker lines) by 
mutations of genes encoding upstream regulators, or through hyperactive components of the 
pathways that converge on TCS1/2 and mTOR itself following FCD (highlighted in red). This 
hyperactivity leads to increased cell growth and proliferation (for ex. balloon cells), which 
could result in lesion formation. Image adapted from 548. 
  

Human papilloma virus 

 

Recently, it was suggested that a virus may cause FCD, more particularly the human 

papilloma virus (HPV) 16 oncoprotein E6, which was found in some FCD type IIb 

patients576,577. Studying postsurgical human tissue demonstrated that E6 expression 

colocalized with pS6 protein in balloon cells. In fact, transfecting HPV16 in mice during 
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embryonic development lead to focal cortical malformations and an increase of pS6; 

suggesting that HPV16 may alter cortical development through mTOR activation (see figure 

18). More specifically, HPV16 E6 oncoprotein activates mTORC1 through two different 

paths. First, it binds TSC2 and thus promotes its ubiquitin-mediated degradation. Second, it 

activates phosphoinositide-3-dependent kinase 1 (PDK1) and AKT, thus inhibiting 

TSC1/TSC2578. The P13K-AKT-mTOR pathway promotes protein translation and thus 

favours the replication of double-stranded DNA virus (ex. CMV), which could thus lead to an 

easier spread of the infection to other cells579. Further studies will be necessary to confirm 

whether these viral infections cause FCD features directly, or indirectly via an increased 

inflammatory response. 

 

The etiologic relationship between focal cortical dysplasia, complex/atypical febrile 

seizures and mesial temportal lobe epilepsy remains to be elucidated. In the lab, we focus on 

FCD associated with FSs to gain insight into the mechanisms underlying epileptogenesis of 

TLE and the neuronal circuit alterations that occur in the hippocampus and cortex before the 

onset of spontaneous recurrent seizures.   

 

3.6. Dual pathology: LHS model 

 

 Based on these observations, the Carmant laboratory developed a rodent model 

combining both cortical focal dysplasia and FSs (LHS rats). Pups carrying a cortical dysplasia 

induced by unilateral and localized freeze lesion at P1, show shorter seizure onset time and 

more prolonged seizures when exposed to hyperthermia at P10 compared to naïve rats 534, a 

condition resembling febrile status epilepticus in children. In addition, the temperature 

necessary to induce generalized tonic-clonic convulsions during hyperthermia is also reduced, 

while the posthyperthermia depression is longer in rats carrying a cortical dysplasia, compared 

to naïve rats 534. The LHS model therefore reproduces the vulnerability, or increased 

susceptibility of a predisposed brain to FS. In addition, by adulthood, more than 90% of LHS 

rats develop spontaneous recurrent seizures and hippocampal sclerosis accompanied by 

synaptic alterations and spatial memory deficits 580,581. Thus, this model is clinically relevant, 
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as it reproduces well the association between the presence of a predisposing brain 

malformation, atypical FSs and the development of MTLE 463,582. However, the mechanisms 

underlying increased atypical FSs susceptibility and synaptic deficits are currently poorly 

understood.   

 Only two days after the hyperthermia-induced seizures (HSs), pups with a cortical lesion 

showed a decrease in the total volume of the brain, and in the ipsilateral hemisphere, cortex, 

subcortex and hippocampus volumes, which persisted at P22. The ipsilateral hippocampal 

atrophy was present despite the lack of cell death583. Moreover, limiting the duration of the 

seizures by diazepam treatment prevented the hippocampal atrophy. Finally, at P80, when rats 

develop spontaneous recurrent seizures, the hippocampal atrophy was more severe, and both 

the total hippocampus as well as the individual pyramidal layers were affected. This volume 

loss was accompanied by cell death, which was predominant in the CA1 region, and spine 

density reduction in CA1 pyramidal neurons. Low field potentials recordings confirmed that 

spontaneous recurrent seizures originate from the atrophied hippocampus581. Further, LHS rats 

suffered from learning and memory deficits in adulthood580. However, it was not clear before 

the start of my studies whether these deficits were a consequence of spontaneous recurrent 

seizures or whether they preceded them. 

 Electrophysiological recordings demonstrated that, already by P20, well before the onset 

of spontaneous recurrent seizures, CA1 pyramidal neurons were hyperexcitable, with an 

increase in evoked excitatory postsynaptic potentials (eEPSP) and an increase in the frequency 

of spontaneous excitatory postsynaptic current (sEPSC) onto CA1 interneurons584,585. The 

inhibitory activity in LHS rats was also affected. As such, the amplitude of both GABAA and 

GABAB inhibitory postsynaptic portentials (IPSP), and the evoked inhibitory postsynaptic 

currents (eIPSC) were increased584. In parallel, western blot analysis accompanied with 

electrophysiological recordings indicated that the ionotropic glutamate receptor NMDA 

expression was altered in the LHS rats. At P20, NR2B subunit was upregulated; while at P80, 

NR2A, but not NR2B, subunit was markedly overexpressed534,581. These results are in 

agreement with two other dual hit models, wherein the cortical dysplasia is induced either by 

treatment with the neurotoxin MAM (Methylazoxymethanol acetate) followed by pilocaprine-

induced seizures586, or by a prenatal freeze lesion followed by electrical kindling587. Therefore, 

network reorganization occurs relatively rapidly in the dual pathology model and likely leads 
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to the development of spontaneous recurrent seizure in adulthood.  

 

In summary, both individual pathologies (FCD and FSs) make the brain more 

susceptible to epilepsy, however the association of both strongly promotes epileptogenesis. 

Whether and how changes in inhibition promote seizures or protect the brain from seizures in 

the LHS model was yet to be established and it is the focus of my graduate work.
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Aims & Hypothesis 

 

 The neuron-specific KCC2 cotransporter is crucial for regulating the inhibitory 

GABAergic driving force and for glutamatergic spine development. This thesis project focuses 

on the effect of alterating KCC2 on both these aspects in both normal and seizure-related 

conditions.   

 Epilepsy typically causes severe GABAergic and glutamatergic dysfunction; however, 

the underlying molecular mechanisms remain to be elucidated. Recent efforts have focused on 

targeting molecules that establish the chloride gradient as a tool to modulate more efficiently 

GABAergic inhibition in epilepsy. The first project focuses on a dual-hit model, which 

reproduces the clinical situation where children with prolonged and atypical FSs are at higher 

risk of developing MTLE and cognitive problems. In fact, early-life seizures in a predisposed 

individual interfere with the proper development of hippocampal circuits and cause long-term 

neurological and psychiatric deficits. Ultimately, a better understanding of the consequences 

of atypical febrile seizures could help reduce the incidence of MTLE. Our hypothesis is that 

KCC2 alterations in the LHS model have detrimental effects on seizure vulnerability and spine 

development. Therefore, my project aims to evaluate KCC2 expression and function in our 

dual-hit model, and its effect on seizure susceptibility and excitatory synapse development. 

 A few studies have demonstrated that reducing KCC2 expression can directly affect both 

GABAergic drive and glutamatergic synaptic signaling, by distinct mechanisms. On the hand,  

the effect of premature KCC2 expression in circuit formation and spine development are less 

understood. Understanding how precocious KCC2 expression in the developing brain may 

affect specific long-term synapse formation is important, since in the neonatal brain, opposite 

to what occurs in adult, traumatic events such as seizures can lead to an increase in KCC2 

expression and activation. The second project aims to investigate the effects of premature 

KCC2 expression on dendritic spine formation in CA1 hippocampal pyramidal neurons, since 

this region is particularly affected by early-life seizures.  
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Abstract  

 Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive 

impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile 

seizures often carry a cortical malformation. This association has led to the hypothesis that the 

presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the 

risk for neurological sequelae. The mechanisms linking these events are currently poorly 

understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit 

development and function, by modulating GABAergic transmission and excitatory synapse 

formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in 

the epileptic adult brain, but its role in the developing brain is still controversial. 

In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-

induced seizures (LHS rats), we found premature and sustained increase in KCC2 protein 

levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we 

observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 

pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 

premature overexpression plays a role in seizure susceptibility and synaptic alterations, we 

reduced KCC2 expression selectively in hippocampal pyramidal neurons by in-utero 

electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced 

hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. 

Our findings demonstrate that KCC2 overexpression in a compromised developing brain 

increases febrile seizure susceptibility and contribute to dendritic spine alterations.  

 

Key words: atypical febrile seizures, temporal lobe epilepsy, cortical dysplasia, KCC2, seizure 

susceptibility, dendritic spines, in utero electroporation, shRNA, hippocampus. 
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Introduction 

 Febrile seizures (FSs) are the most common convulsive events in children between 6 

months and 5 years of age, with a prevalence of 2–14% in this population. Simple FSs are 

considered benign, whereas atypical febrile seizures, which account for 30-40% of FSs cases 

(Nelson and Ellenberg, 1976), are a risk factor for Mesial Temporal Lobe Epilepsy (MTLE) 

(Finegersh et al., 2011; French et al., 1993; Hamati-Haddad and Abou-Khalil, 1998). In fact, 

while only 2% of all children with FSs will develop epilepsy, the long-term risk of developing 

MTLE is much higher (32-49%, depending on the cohorts) for children with FSs that have all 

three atypical features: lateralized, prolonged and multiple FSs in a day (Annegers et al., 1987; 

Birca et al., 2004). Notably, individuals carrying a developmental defect in cortical 

architecture, termed focal cortical dysplasia, are more likely to develop atypical febrile 

seizures than the general population (Bocti et al., 2003; Hesdorffer et al., 2008). Studies in 

animal models as well as in patients with MTLE support a causal link between the presence of 

cortical dysplasia, the incidence of atypical FSs, and the subsequent development of 

hippocampal sclerosis and MTLE (Park et al., 2010; Scantlebury et al., 2004; Tassi et al., 

2010; Tassi et al., 2009). Based on these observations, we developed a rodent model 

combining both cortical focal dysplasia and FSs (LHS rats). Pups carrying a cortical dysplasia 

show shorter seizure onset time and more prolonged seizures when exposed to hyperthermia at 

P10 compared to naïve rats (Scantlebury et al., 2004), a condition resembling febrile status 

epilepticus in children. In addition, by adulthood, most LHS rats develop spontaneous 

recurrent seizures and hippocampal sclerosis accompanied by synaptic alterations and spatial 

memory deficits (Gibbs et al., 2011; Scantlebury et al., 2005). Thus, this model is clinically 

relevant, as it reproduces well the association between the presence of a predisposing brain 

malformation, atypical FSs and the development of neurological sequelae. The mechanisms 

underlying increased atypical FSs susceptibility in brains carrying a focal dysplasia are poorly 

understood. 
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KCC2 and NKCC1 are cation-chloride cotransporters, which are responsible for 

establishing the neuronal Chloride (Cl-) gradient that governs GABAergic inhibition. During 

development, the increase in KCC2 expression is responsible for the shift of GABA function 

from excitatory to shunting/inhibitory (Kaila et al., 2014). In addition to regulating the Cl- 

gradient, KCC2 modulates several aspects of neuronal development, including synapse 

formation (Fiumelli et al., 2013; Gauvain et al., 2011; Li et al., 2007). The immaturity of the 

GABAergic system and the presence of higher levels of intracellular Cl- in the developing 

neurons may in part account for the higher incidence of seizures during early postnatal 

development (Dzhala et al., 2005). This hypothesis led to the prediction that KCC2-activating 

or NKCC1-inibiting compounds would improve seizure controls in neonates (Dzhala et al., 

2005); however clinical trials testing this hypothesis have been so far disappointing (Pressler 

et al., 2015). Recent data suggest that different traumatic events in the developing brain, 

including seizures, induce an increase in KCC2 expression levels and/or activation 

(Galanopoulou, 2008; Khirug et al., 2010; Puskarjov et al., 2014). Thus, KCC2/NKCC1 

balance may be altered in a brain with pre-existing conditions, making it harder to predict the 

outcome of targeting their activity on seizure susceptibility. Further, whether and to what 

extent pathology-induced premature KCC2 expression contributes to long-term synaptic 

alterations remains to be investigated. 

 

Here, we test the hypothesis that KCC2 expression and function is prematurely 

increased in the LHS model, and that this event causes increased seizure susceptibility and 

altered synapse formation in the developing brain.  
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Materials and Methods 

Animals 

Sprague–Dawley pups were obtained from Charles River Laboratories (St. Constant, Quebec, 

Canada) at postnatal day 1 (P1). Pups were culled to 12 per dam, matched by gender, weighed 

and kept with their mother in a 12 h light/dark cycle with food and water ad libitum. Animal 

care and use conformed to institutional policies and guidelines (CIBPAR, Sainte-Justine 

Hospital Research Centre, Université de Montréal, Montreal, QC, Canada). This study 

complies with the ARRIVE guidelines. 

Freeze lesions and Induction of hyperthermic seizure 

A focal microgyrus and hyperthermic seizures were induced as described in (Scantlebury et 

al., 2004). Briefly, in anesthetized P1 rats, a cylindrical 2-mm diameter copper probe, cooled 

in liquid nitrogen, was brought into contact with the skull overlying the right fronto-parietal 

cortex, 2 mm caudal to bregma and 2 mm lateral to the sagittal suture, for 10s after skin 

incision. At P10 pups were placed individually at the bottom of a Plexiglas box through which 

warm dry air (45–52°C) was circulated by a standard hairdryer fitted on the uppermost part of 

a side panel. Each pup remained in the box until a generalized convulsion occurred. Pups 

were then moved to an ambient temperature surface and remained untouched for 30 min of 

observation.  

Western Blot 

Western blots were performed as described in (Ouardouz et al., 2010). Membranes were 

probed with the following primary antibodies: anti-KCC2 1:1000 (rabbit polyclonal IgG; Cat. 

no. 07-432, Millipore) and 1: 200 anti-NKCC1 (kindly gifted by Dr. Jim Turner, 

NIH/NIDCR) and anti-glyceraldehyde-3-phosphate dehydrogenase 1:4000 (GAPDH, mouse 

monoclonal IgG; Cat. no. AM4300; Applied Biosystems, Streetsville, Ontario, Canada). Each 

experimental group included 3 to 5 animals. All samples were run simultaneously. Bands 

were quantified using Image J software. The intensity of each KCC2 and NKCC1 band was 

first normalized over the intensity of the GAPDH band in the same lane (internal loading 

control). For each experimental group, KCC2 intensity levels were then normalized over the 
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control group represented by naïve animals of the same sex. 

Electrophysiology 

Electrophysiological recordings were essentially performed as in (Ouardouz et al., 2010). 

Hippocampal slices were prepared from male rats at P18-P22 (mEPSC experiment) or P11-

P15 (EGABA experiment). Male rats were anesthetized with isoflurane and decapitated. Brain 

tissue was quickly removed and placed in cold artificial cerebrospinal fluid (ACSF) 

containing in mM: 126 NaCl, 3 KCl, 2 MgSO4-H2O, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 10 

D-Glucose, bubbled with 95% O2 ⁄-5% CO2. The pH and osmolarity were adjusted to 7.3-7.4 

and 300-310mOsm, respectively. Hippocampal slices (300µm thick) were cut with a 

vibratome (VT1000S, Leica Microsystems) and transferred to a container filled with 

oxygenated ACSF at room temperature. After an hour of incubation, individual slices were 

placed into a recording chamber and continuously superfused with oxygenated ACSF heated 

at ±32°C with a temperature controller (TC-324B, Warner Instruments).  

Hippocampal CA1 pyramidal cells were visualized with an upright microscope (Olympus) 

fitted with a near-infrared CCD camera (XC-EI50, Sony). Patch pipettes were pulled from 

borosilicate glass tubing with a resistance ranging from 4 to 7MΩ.  Intracellular solutions 

used were K+-based or Cs+-based according to the experiment and contained in mM: 140 K-

gluconate, 5 NaCl, 2 MgCl2, 10 Hepes buffer, 0.5 EGTA, 10 phosphocreatine, 2 ATP Tris, 0.4 

GTP Li. For CsCl-based solution all K+ ions were replaced by Cs+, and the solution included 

the Na+ inhibitor N-(2,6-dimethyl-phenylcarbamoylmethyl) triethylammonium bromide QX-

314 (2mM; Sigma). The pH was adjusted to 7.2–7.3 with KOH or CsOH, respectively, and 

biocytine was added to the intracellular solutions for post-hoc confirmation of cell identity. 

Signals were digitized with a Digidata 1440A analog-digital converter (Molecular Devices), 

acquired at a sampling rate of 2kHz, low-pass filtered at 1kHz using an Axopatch 200B 

amplifier (Axon Instruments) and visualized using pClamp software 10 (Molecular Devices). 

Miniature excitatory postsynaptic currents (mEPSCs) were recorded in whole-cell 

configuration at a holding potential of -60mV and in presence of GABAA receptor antagonist 

Bicuculline methiodide  (5µM) and TTX (1µM). All events detected over 10min were 

analyzed. A total of 11 animals (11 cells from 6 male LHS, 10 cells from 5 male Ctrl) were 
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used for this experiments. To measure the reversal potential of GABA (EGABA), eIPSCs were 

evoked by a puff of 10uM GABA delivered in the vicinity of the CA1 pyramidal cell soma 

(30psi, 3ms, 20sec interval). In this protocol, 7,5ug/ml of gramicidin diluted in DMSO, and 

Alexa Fluor 488 were added to the intracellular solution containing in mM: 135 KCl, 4 NaCl, 

2 MgCl2, 0.5 CaCl2, 5 EGTA, 10 HEPES. EGABA current amplitudes were measured at the 

peak current evoked at 10mV incrementing holding potentials from -120 to -30mV, EGABA 

value representing the intercept of the current-voltage curve with the abscissa. All drugs were 

purchased from Sigma-Aldrich (Canada). A total of 13 male rats (7 cells from 6 LHS, 8 cells 

from 7 Ctrl) were used for this experiments. 

DiI labeling 

DiI labeling was performed essentially as previously described in (Gibbs et al., 2011). 

Labeled pyramidal cells were imaged 40-60 minutes after diolistic transfection. Only 

pyramidal cells with a complete soma and clearly labeled primary basal dendrite branches 

were imaged and traced. Because of the variability of DiI labeling, we chose to reconstruct 

only the first 120µm of the basal dendrites from the soma. We did not analyze apical dendrites 

because in the first 120µm from the soma, the density of spine was low and very variable. A 

total of 12 pyramidal neurons from 4 male rats per group were imaged using a Leica SP8 

confocal microscope and a 63x glycerol immersion objective (NA 1.3). Three labeled typical 

pyramidal neurons were randomly selected from the CA1 region of each animal. Image stacks 

of basal dendrites were acquired at 0.5 µm intervals and then analyzed with Neurolucida 

(MicroBrightField) software.  

Immunolabeling  

Brains were perfused in 4% paraformaldehyde/phosphate buffer, pH 7.4, submerged in 30% 

sucrose/PBS, then frozen in Tissue Tek. Slices were cut 80µm thick by cryostat, blocked in 

10% NGS and 1% Triton for 2h at room temperature, and incubated overnight at 4°C in 10% 

NGS, 0.1% Triton and different primary antibodies- NeuN, 1:400 (mouse monoclonal, Cat. 

no. MAB377 Millipore); KCC2, 1:200 (rabbit polyclonal, Cat. no. 07-432 Millipore); GFP, 

1:500 (chicken polyclonal, Cat. no. Ab13970 Abcam). The following secondary antibodies 

were used: Alexa (488, 555 or 633)-conjugated goat IgG (1: 400; Molecular Probes, 
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Invitrogen) or Alexa 488 goat anti-chicken IgY H&L (1:500, Cat. no. Ab150169 Abcam). 

NeuN staining was used to unequivocally identify the CA1 region in hippocampal slices. GFP 

staining was used to enhance GFP signal from transfected and electroporated cells. To 

quantify KCC2 expression levels, pyramidal cell membranes were outlined and the intensity 

levels were measured (ImageJ software), after background subtraction, for both the 

electroporated (GFP-positive) pyramidal cell and three neighboring cells in the same confocal 

plane. Ratios of KCC2 intensity levels in the transfected versus untransfected neighboring 

cells were then calculated and compared across the different experimental groups. For each 

construct, pyramidal cells from three different sections in the CA1 hippocampus were imaged 

from three different electroporated pups and quantified. 

In utero electroporation  

In utero electroporation was performed as in (Dal Maschio et al., 2012) at E17. KCC2 shRNA 

and Scramble shRNA were as described and characterized in (Succol et al., 2012). Both 

scramble and KCC2 shRNA were co-transfected with pCAG-ires-GFP. Scramble shRNA (co-

electroporated with pCAG-ires-GFP) and pCAG-IRES-GFP alone were used as controls, and 

pooled, as they did not show statistical difference in any of the analyzed parameters. 

Electroporated pyramidal neurons were imaged using Leica confocal microscopes (SPE and a 

SP8; 63x glycerol immersion objective; NA 1.3). An average of 2 labeled pyramidal neurons 

were randomly selected from CA1 area of each animal. Image stacks of basal dendrites were 

acquired at 0.5 µm intervals and then analyzed with Neurolucida (MicroBrightField) software. 

To avoid problems in identifying dendrite provenance in highly transfected areas, we 

analyzed only the basal dendrites included in four identically sized stacks centered around the 

soma, which in our imaging conditions represent the first 120µm of basal dendrites 

originating from the soma. Between 10 and 20 hippocampal CA1 pyramidal cells from at least 

four males were used for each experimental condition. Tiled image in Fig. 5B was acquired 

with a Zeiss confocal microscope (LSM880). 
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Imaging and spine analysis 

Hippocampal CA1 pyramidal neurons were imaged only from male experimental animals. 

Spine density, spine length, morphology and head diameter were quantified in 3-D using 

Neurolucida software, as described in (Fiumelli et al, 2013). We classified spines as: 

mushroom spines, identified by a clearly distinguishable enlargement of the head of the spine 

(compared to the neck); stubby spines, identified as structures with equal thickness between 

head and neck (minimum 0.3µm thick); thin spines as long and thin protrusions lacking a 

clearly defined head (maximum of 0.3µm thick). All quantification was done blind to the 

treatment. To measure spine head diameter in the shRNA-mediated knockdown experiments, 

we first deconvolved the acquired stacks using Volocity software. Images were then 

converted from green to rainbow lookup table, allowing a better delineation of the spine head 

area.  

Morris Water Maze Test 

Spatial learning memory was assessed as in (Scantlebury et al., 2004). Each group comprised 

of 11 to 14 animals.  

Statistical analysis 

All data analysis was performed in blind of treatment and construct use for electroporation. 

Differences between two experimental groups were assessed using Students t-test for 

normally distributed data and Mann-Whitney test for not normally distributed data. EGABA 

differences between groups were determined using an unpaired Student’s t-test. Differences 

between 3 or more experimental groups were assessed with one-way ANOVA and post hoc 

comparison. For non-normally distributed data, nonparametric Kruskal–Wallis one-way 

ANOVA test was used. In the shRNA experiment, two-way ANOVA with Holm-Sidak’s 

multiple comparison post hoc analysis was used to determine the relative contribution of the 

electroporated constructs (Factor 1, Ctrl constructs vs. KCC2shRNA) and of the presence of 

the dual pathology (Factor 2, LHS (cortical dysplasia at P1+hyperthermia induced seizure at 

P10) vs. naïve rats). Cumulative distributions were analyzed using the Kolmogorov-Smirnov 

test. All bar graph represent mean ± SEM.  
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Results 

Expression levels of functional KCC2 are prematurely increased specifically 

in male LHS rats. 

 Alterations of KCC2 protein levels, and consequently, shifts in the reversal potential of 

GABA (EGABA), have been reported in a number of studies on seizure and trauma, with the 

direction of the change depending on the seizure model and on the age at which seizures occur 

(Galanopoulou, 2008; Huberfeld et al., 2007; Khirug et al., 2010). In this study, we used a 

“double-hit” model of atypical febrile seizures, where rats were subjected to a cortical 

dysplasia induced by freeze lesion (L) at post-natal day 1 (P1) and to hyperthermia-induced 

seizures (HS) at P10 (Fig.1A; LHS rats). We focused our analysis on the hippocampus 

because we have previously shown that in adult LHS animals, seizures start in this region 

(Lévesque et al., 2009). To evaluate KCC2 expression, we performed western blot analysis in 

LHS hippocampus 10 days after hyperthermia-induced seizures, since we have previously 

shown that neuronal circuit alterations are already present at P20 (Ouardouz et al., 2010), 

even though spontaneous recurrent seizures occur only after the third postnatal month 

(Scantlebury et al., 2005). KCC2 expression levels were specifically increased in male LHS 

rats compared to male control animals (Ctrl), while they were not significantly different in the 

hippocampus of male rats subjected either to the cortical dysplasia (L) or the hyperthermia-

induced seizure (HS) alone (Fig.1B; Ctrl: 100±5%, L=104±16%, HS=119±11%, LHS 

(ipsilateral LHS male): 148±11%; 1-way Anova, p<0.05) or in male rats that received a sham 

surgery (125±46%; one-way Anova, p>0.05). Interestingly, this increase was specific to the 

hippocampus ipsilateral to the cortical focal dysplasia in LHS rats (Ctrl: 100±5%; 

contralateral LHS 99±3%, Student’s t-test p>0.05). Further, KCC2 levels were not 

significantly different in P20 LHS female rats as compared to female controls (Fig. 1B2, Ctrl 

female: 100±17%; LHS female: 80±15%, Student’s t-test: p>0.05), supporting the hypothesis 

that the effects of early-life insults on KCC2 expression are gender-specific (Galanopoulou, 

2008).  

 Next, we investigated whether the presence of the cortical dysplasia was sufficient to 

alter the time course of KCC2 expression before the hyperthermia-induced seizures at P10. 
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We found that KCC2 expression levels were significantly increased in the hippocampus of 

lesioned male pups already at P10 compared to age-matched littermates (Fig.1C; Ctrl: 

100±22%, L: 346±87%, Student’s t-test p<0.05); while NKCC1 levels were not changed 

(Suppl. Fig. 1; Ctrl: 100±15%, L: 84±25%, Student’s t-test p>0.05).  Thus, the presence of the 

cortical malformation induced a premature overexpression of KCC2, but not NKCC1, which 

was maintained up to P20 only in male rats that experienced the second hit, the hyperthermia-

induced seizures. The smaller difference in KCC2 expression levels between LHS and 

controls at P20 compared to P10 was likely due to the developmental increase in KCC2 

expression occurring physiologically in untreated animals. Interestingly, we have previously 

reported that KCC2 expression levels did not differ significantly in male LHS rats compared 

to controls at P80 (Gibbs et al., 2011), when the first spontaneous seizures occur, suggesting 

that the overexpression of KCC2 levels is confined to a critical period following the double 

insults.  

 To confirm that elevated KCC2 protein levels have a functional impact, we measured 

EGABA by gramicidin-perforated patch of pyramidal CA1 neurons in brain slices from P13-P15 

male LHS rats. Summary of all the recordings showed a hyperpolarizing shift of EGABA in LHS 

compared to control rats (Fig.1D, E; EGABA for Ctrl rats: -39.4±5.4mV vs. LHS rats: -

55.7±4.3mV, Student’s t-test p<0.05).  Altogether, these data suggest that EGABA is more 

hyperpolarized in CA1 neurons in LHS pups, consistent with what was previously reported in 

rats, which experienced kainate-induced status epilepticus during the first postnatal week 

(Galanopoulou, 2008; Khirug et al., 2010).  
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Excitatory synapses onto CA1 pyramidal cell basal dendrites are reduced in 

LHS rats. 

 Glutamatergic inputs impinging on pyramidal cells are formed almost exclusively on 

specialized dendritic protrusion called dendritic spines. Dendritic spine alterations have been 

observed both in experimental animal models of epilepsy and in human epileptic patients 

(Freiman et al., 2011; Jiang et al., 1998). To investigate whether spine density and 

morphology were affected in male LHS rats, we used diolistic transfection to label relatively 

sparse pyramidal neurons in the CA1 region of the hippocampus in P20 rats (Fig.2A). Spine 

density on CA1 pyramidal neuron basal dendrites in the hippocampus ipsilateral to the 

cortical dysplasia was not significantly different in LHS and control animals (Fig.2B-D; ctrl: 

1.05±0.05spine/µm vs. LHS: 0.93±0.07µm, Student’s t-test p>0.05), while spine head size 

was significantly reduced in LHS rats (Fig.2E; K-S test p<0.001).  

 To examine whether morphological spine alterations had a functional impact, we 

recorded miniature excitatory postsynaptic current (mEPSC) from CA1 pyramidal neurons. 

Consistent with the observed smaller spine sizes in CA1 pyramidal neurons, we found that the 

mean mEPSC amplitude was significantly smaller (Fig.3A,B; -15.1±1.5pA for Ctrl vs. -

10.3±1.5pA for LHS, Student’s t-test p<0.05), whereas interevent intervals (IEI) were not 

significantly different (Fig.3C; Student’s t-test p>0.05) in male LHS pups compared to control 

littermates. In addition, the mean decay constant (τ) was significantly shorter in LHS pups as 

compared to controls (LHS=30±3ms vs. Ctrl=84±26ms; t-test p=0.005), suggesting 

differences in glutamate receptor type or/and subunits composition between the two groups. 

Taken together, these results demonstrate that excitatory synapses impinging onto CA1 

neuron dendritic spines are weaker in LHS rats. These alterations may contribute to cognitive 

deficits; indeed, LHS male rats showed spatial memory deficits in the Morris water maze 

probe test already by P40 (Suppl. Fig. 2), long before the onset of spontaneous seizures, 

which occurs after P90 (Scantlebury et al., 2005). 
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Reducing KCC2 expression in hippocampal pyramidal neurons decreases 

hyperthermia-induced seizure susceptibility and rescues spine size in LHS 

rats. 

 VO0463271, the only available KCC2-specific antagonist, is rapidly metabolized when 

administered systematically (Delpire et al., 2012; Sivakumaran et al., 2015). Further, 

pharmacological treatments could affect KCC2 function in the whole brain, while seizure-

induced KCC2 upregulation is likely circuit and/or region specific. Therefore, to evaluate 

whether a premature increase in KCC2 expression in LHS rats contributed to seizure 

susceptibility and dendritic spine size reduction, we turned to a targeted genetic approach that 

allowed cell-type and brain-region specific manipulation of KCC2 levels, namely in utero 

electroporation of shRNAs at E17 using a triple-electrode probe (Dal Maschio et al., 2012) 

(Fig.4A). In particular, we specifically targeted pyramidal cells in the hippocampus 

underlying the cortical dysplasia, since KCC2 expression levels were selectively increased in 

this region (Fig.1). To label neurons at high resolution, we co-electroporated the shRNA 

constructs with a construct encoding for GFP. Pups electroporated with scramble 

shRNA+GFP or GFP alone were used as controls and pooled together as they did not show 

any significant difference on the specific parameters analyzed (hereon referred as the Ctrl 

group). Labeled pyramidal neurons were mostly confined to the dorsal region of the 

electroporated hippocampus (Fig. 4A). KCC2shRNA electroporation significantly decreased 

KCC2 intensity in electroporated pyramidal cells compared to neighboring, GFP-negative 

ones in both control and LHS rats (Fig.4B-C, Ctrl: 0.98±0.03a.u., KCC2 shRNA: 

0.52±0.03a.u.; Ctrl+LHS: 0.84±0.03a.u.; KCC2 shRNA+LHS: 0.61±0.03a.u.; two-way 

ANOVA, p<0.001 for Ctrl vs shRNA). As previously shown, the occurrence of cortical 

dysplasia at P1 increased hippocampal KCC2 expression (Fig.1C). However, since KCC2 

expression is hardly detectable in the CA1 region of P1 naïve pups, electroporation of 

KCC2shRNA at E17 and the subsequent embryonic expression of KCC2shRNA are unlikely 

to affect CA1 neuron development prior to birth.  

 Interestingly, we found that male pups electroporated with KCC2-shRNA and subjected 

to a cortical dysplasia at P1 (KCC2shRNA+LHS) showed significantly longer seizure onset 
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time when exposed to hyperthermia at P10 compared to male lesioned rats that were not 

electroporated (LHS) or male lesioned pups that were electroporated with control constructs 

(Ctrl+LHS) (Fig.5A,B). Conversely, the mean seizure onset time in KCC2-shRNA pups did 

not significantly differ from the one recorded in naïve rats (Ctrl) (Fig.5B, Ctrl: 

12:56±0:33min/sec; LHS: 10:24±0.24min/sec; Ctrl shRNA+LHS: 11:33±0.23min/sec; 

KCC2shRNA+LHS: 13:44±0.37min/sec, one-way ANOVA p<0.05). Most remarkably, the 

difference in seizure onset time was already evident in single litters electroporated with 

KCC2-shRNA when comparing littermates that were successfully transfected (identified by 

the presence of GFP+ pyramidal neurons) with littermates that were not (seizure onset time 

was in average 2.51±0.04min longer, in successfully transfected pups; n=3 litters). On the 

other hand, the difference in seizure onset time between pups showing GFP+ neurons vs. 

those that did not was negligible when control constructs were electroporated (mean 

difference 0.310±0.004min, n=4 litters). We performed this intra-litter analysis using litters 

where about 50% of male rats were successfully electroporated. Figure 6C shows the 

difference in seizure onset time in transfected vs. untransfected LHS animals in all 

electroporated litters combined (Ctrl (Scramble + GFP): transfected: 11:32±0:22min/sec vs. 

non-transfected: 11:33±0:19min/sec; KCC2 shRNA: transfected: 13:44±0:37min/sec, non-

transfected: 10:59±0:24min/sec; n=8 litters electroporated with KCC2-shRNA and n=11 

litters electroporated with control constructs; two-way ANOVA, p<0.001). Altogether, these 

data suggest that reducing KCC2 expression levels in hippocampal pyramidal neurons may 

actually have anticonvulsive effects in a young brain compromised by a pre-existing brain 

malformation. Another significant implication of these findings is that the premature increase 

in hippocampal KCC2 expression induced by early-life insults may actually contribute to 

increased seizure susceptibility. 

As a next step, we asked whether reducing KCC2 upregulation in male LHS rats 

affected the spine size alterations observed in CA1 pyramidal neurons at P20 (Fig.6). To 

avoid problems in identifying dendrite provenance in highly transfected areas, we analyzed 

only the basal dendrites included in four identically sized stacks centered around the soma, 

which in our imaging conditions represent the first 120µm of basal dendrites originating from 

the soma. When comparing LHS (Ctrl+LHS) and naïve (Ctrl) rats electroporated with control 
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constructs, we found no significant difference in spine density (Fig.6B,D, Ctrl: 0.99±0.04 

spine/µm vs. Ctrl + LHS: 1.15±0.05 spine/µm; two-way ANOVA p>0.05) between the two 

groups. On the other hand, spine diameter was significantly reduced in LHS rats compared to 

age-matched controls (Fig. 6E; K-S test p<0.001), consistent with what we observed using DiI 

labeling approach in post-fixed hippocampal slices (compare Fig.6 with Fig. 2).  

shRNA-mediated KCC2 reduction induced a small but significant decrease of overall 

spine density (Fig.6D; Ctrl: 0.99±0.04 spine/µm, KCC2shRNA: 0.82±0.06 spine/µm, 

Ctrl+LHS: 1.15±0.05 spine/µm KCC2shRNA+LHS: 0.92±0.06 spine/µm; two-way ANOVA 

p<0.05) and an increase in spine length (Fig.6F, K-S test, p<0.001). All the above changes 

were independent of the occurrence of the dual pathology (LHS factor within KCC2 shRNA, 

two-way ANOVA p>0.05). These data are in accordance with the reported critical role of 

KCC2 expression levels in spine formation (Fiumelli et al., 2013; Li et al., 2007). On the 

other hand, while spine head size was significantly reduced in LHS rats, electroporated with 

control constructs (Fig.6E; K-S test p<0.001), it was drastically increased following KCC2 

shRNA transfection exclusively in LHS rats (Fig.6E, K-S test p<0.001). Scatter plots of spine 

length vs. diameter (Fig.6G, H) clearly show that dendritic spines were markedly larger and 

longer specifically in KCC2shRNA+LHS rats. All together, these data suggest that overall 

KCC2 expression levels may determine the direction of the change in dendritic spine size 

following early-life insults. 

In summary, our data showed that premature KCC2 expression induced by the cortical 

dysplasia may be a significant factor contributing to the increased hyperthermia-induced 

seizure susceptibility and permanent alterations in excitatory circuit connectivity later in life. 

Conversely, reducing KCC2 expression in a region-specific subset of pyramidal cells is 

sufficient to delay hyperthermia-induced seizure onset and rescue long-term dendritic spine 

morphological deficits. 
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Discussion  

GABAA receptor function changes during development, becoming increasingly more 

inhibitory as neurons mature. This functional change is due to age-related differences in the 

relative abundance of KCC2 and NKCC1, which regulates Cl- homeostasis (Kaila et al., 

2014). Both in vivo and in vitro experiments have shown that a variety of insults, including 

trauma, nerve transections and seizures lead to the reappearance of less hyperpolarizing and 

sometimes depolarizing GABA responses in adult brain (Coull et al., 2003; Huberfeld et al., 

2007; Palma et al., 2006; van den Pol et al., 1996) (but see also (Karlocai et al., 2015)). In 

particular, in human epileptic temporal lobe tissue and epileptic adult rats, an aberrant shift 

towards increased NKCC1/KCC2 ratio and re-emergence of depolarizing GABAergic 

signaling may underlie epileptic discharges (Huberfeld et al., 2007; Palma et al., 2006). In a 

clinical perspective, agents that control Cl- gradient and reinstate inhibitory actions of GABA 

may thus open novel therapeutic approaches in these adult neurological conditions.  

Contrary to what occurs in the adults, traumatic events in the developing brain induce 

an increase in KCC2 expression and/or activation (Galanopoulou, 2008; Khirug et al., 2010; 

Puskarjov et al., 2014) (and our data). It has been previously hypothesized that upregulation of 

KCC2 function may be a mechanism to protect the brain from further damage by 

counteracting the massive increases in intracellular Cl− loads induced by trauma and seizures, 

which could in turn contribute to increased neural network activity (Galanopoulou, 2008). By 

using a novel approach to specifically direct the expression of KCC2 shRNA in hippocampal 

pyramidal neurons in vivo, we showed that premature KCC2 expression in the postnatal brain 

increases susceptibility to hyperthermia-induced seizures. Therefore our data suggest that 

premature KCC2 expression in the young brain is not protective but may instead contribute to 

long-term pathological outcomes. 

 We found that KCC2 expression levels were already strongly elevated in P10 pups with 

the cortical dysplasia, as compared to controls. Cortical dysplasia, caused either by genetic or 

environmental factors, promotes circuit hyperexcitability (Chevassus-au-Louis et al., 1999), 

which may in turn promote KCC2 expression. In fact, sustained neural activity is a major 

modulator of KCC2 expression and function (Fiumelli et al., 2005; Fiumelli and Woodin, 
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2007). On the other hand, KCC2 expression levels remained consistently higher at P20 only in 

animals subjected to hyperthermic seizures too, suggesting a cumulative effect of the double 

insult on KCC2 long-term expression. Interestingly, this effect was specific to males, 

consistently with previous findings showing that KCC2 expression time course in rat 

hippocampal pyramidal neurons are gender-specific in normal development and following 

multiple status epilepticus episodes in the neonate (Galanopoulou, 2008). Intriguingly, we 

have recently showed a sexual dimorphism in long-term vulnerability to develop epilepsy in 

the LHS model (Desgent S, 2012). Sexual dimorphic outcomes have been reported both in 

children (Donders and Hoffman, 2002; Lauterbach et al., 2001) and in rodent model of 

neonatal hypoxic-ischemic encephalopathy (Mirza et al., 2015); thus it will be interesting to 

investigate whether gender-specific stress or/and inflammatory signaling pathways are 

responsible for preferential KCC2 upregulation, which in turn may increase the risk for 

epilepsy and cognitive impairments in males. 

In our model, we observed consistently more negative EGABA in LHS CA1 pyramidal 

neurons compared to controls. Further, we have previously reported that the excitatory drive 

onto CA1 GABAergic interneurons is increased in LHS rats, which correlates with an increase 

in sIPSC onto CA1 pyramidal cells (Ouardouz and Carmant, 2012). At first glance, these 

changes aiming at enhancing the efficacy of GABAergic neurotransmission might act as an 

intrinsic mechanism to limit network hyperexcitability caused by the dual pathology 

(Ouardouz et al., 2010). On the other hand, shRNA-mediated reduction of KCC2 in 

hippocampal neurons was sufficient to lower seizure susceptibility in LHS rats. The most 

likely explanation is that KCC2 has a seizure-promoting action in specific conditions (Hamidi 

and Avoli, 2015; Kaila et al., 1997; Ruusuvuori et al., 2013; Vitanen et al., 2010). In 

hippocampal CA1 neurons, functionally excitatory GABAergic responses can be induced by 

high-frequency stimulation (Kaila et al., 1997). Such stimulation causes intense GABAergic 

interneuron firing, a consequent HCO3
−-dependent increase in [Cl−]i and a large depolarizing 

shift of EGABA in the target pyramidal neurons. Because CO2 readily permeates neuronal 

membranes, intraneuronal HCO3
−, which is lost owing to net efflux through GABAARs is 

replenished by the activity of cytosolic carbonic anhydrases (Ruusuvuori et al., 2013). Under 

these conditions, the increase in [Cl−]i leads to enhanced K+ and Cl− extrusion by KCC2, and 
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to a consequent increase in [K+]o, which further depolarizes both neurons and glia (Vitanen et 

al., 2010). In this scenario, increased functional levels of KCC2 may counter-intuitively 

contribute to the emergence of highly synchronized spontaneous network events, including 

seizures (Ruusuvuori et al., 2013). Our data demonstrate that limiting the increase of KCC2 

levels in a relatively small number of hippocampal pyramidal neurons is sufficient to rescue 

heightened febrile seizure susceptibility caused by cortical dysplasia, therefore supporting the 

hypothesis that premature KCC2 expression may have pro-convulsive effects in a predisposed 

brain. 

Recently, a point mutation in SLC12A5, the gene coding for KCC2 in humans, was 

reported in an Australian family with early childhood onset of FSs and two other point 

mutations were reported in French-Canadian cohort with idiopathic generalized epilepsy 

(Kahle et al., 2014). All these variants have been shown to exhibit significantly impaired Cl- 

extrusion capacities (Kahle et al., 2014). In these cases a large part of the KCC2 molecular 

pool exhibit altered function since very early embryonic development, while KCC2 expression 

is altered only after birth in the LHS model. In addition, KCC2 shRNA electroporation was 

limited to pyramidal neurons in the dorsal hippocampus and did not abolish completely KCC2 

expression (Fig. 4). Therefore, whether reduction of KCC2 expression/function plays a pro- or 

anticonvulsive role may depend on the cellular and developmental context and on the extent of 

the impairment of KCC2 function.  

Several studies show that KCC2 plays a role in different aspects of neuronal 

development, including synapse formation and AMPA receptor trafficking, by both ion-

transporter dependent and independent mechanisms (Chevy et al., 2015; Fiumelli et al., 2013; 

Gauvain et al., 2011; Li et al., 2007). It is thus possible that pathology-induced premature 

KCC2 expression may directly change the developmental trajectory of dendritic spine 

development in the hippocampus of LHS rats.  In fact, we observed that in LHS rats, dendritic 

spine size is reduced well before the onset of spontaneous recurrent seizures, which can 

exacerbate spine loss (Gibbs et al., 2011), and this loss is rescued by KCC2shRNA 

electroporation. In addition, it also possible that reduced seizure threshold in KCC2shRNA 

electroporated rats may indirectly contribute to rescue spine size. Interestingly, LHS rats 
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electroporated with KCC2 shRNA showed a significant increase in spine size compared to 

both control LHS and no-LHS groups. One possible explanation is that activity-dependent 

molecular signaling induced by seizures may affect spine development differently depending 

on KCC2 expression levels. For example, BDNF plays dual and opposite effects on 

GABAergic synaptic transmission in Purkinje neurons depending on KCC2 activity levels 

(Huang et al., 2012). In addition, it will be important to study whether and how alterations in 

spine size induced by KCC2 shRNA expression correlate with changes in synaptic 

transmission in vivo. 

Our results show that pyramidal cells electroporated with KCC2 shRNA have reduced 

spine density independently of the presence of the dual pathology. It is possible that the 

observed effects of KCC2 reduction on febrile seizure susceptibility may partly depend on 

these alterations. On the other hand, LHS rats electroporated with KCC2 shRNA show seizure 

onset time comparable to naïve rats, while control LHS rats seize faster, even if they do not 

show any significant difference in spine density compared to control rats. Nevertheless, future 

studies are required to understand whether the effects of reducing KCC2 expression in 

hippocampal pyramidal neurons on febrile seizure susceptibility are mainly transporter-

dependent or if they rely on long-term changes in pyramidal cell inputs.  

  Recently, it has been suggested that modulating chloride homeostasis might be a 

viable clinical tool to treat seizures in the developing brain. As the developing brain is more 

prone to seizure because of the immaturity of GABAergic inhibition and of higher level of 

intracellular chloride, a pharmaceutical approach designed to reduce intracellular chloride, by 

treatment with the NKCC1-inhibitor bumetanide, seemed a rational strategy (Dzhala et al., 

2005). However, clinical studies have failed so far to show reproducible results (Pressler et al., 

2015). In addition to the different abundance of NKCC1, KCC2 and carbonic anhydrase in full 

term babies compared to neonatal rats (Kaila et al., 2014), it is possible that, depending on the 

underlying seizure cause, KCC2 upregulation may in fact contribute to network 

hyperexcitability. Interestingly, a recent study found an overall increase in KCC2 expression 

in surgically removed hippocampi of patients with pharmacoresistent TLE, that developed 

seizures mostly in their teens or later, compared to control human tissue (Karlocai et al., 
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2015). Further, depending on the cortical focal dysplasia type, both increased and decreased 

levels of KCC2 have been reported in patients (Talos et al., 2012). Therefore, understanding 

how NKCC1 and KCC2 are affected by pre-existing conditions is a critical prerequisite for 

establishing whether pharmaco-modulation of chloride co-transporters may be therapeutically 

effective.  

Finally, our data suggest caution in interfering with chloride gradient for long-periods 

in the developing brain. Supporting this notion, bumetanide treatment in vivo during early 

postnatal period leads to altered timing of the critical period for experience-dependent 

plasticity (Deidda et al., 2015). These effects are dependent on the age of bumetanide-

treatment, underscoring the importance of studying the role of KCC2/NKCC1 in specific 

developmental and pathological conditions, by using animal models, which reproduce as 

closely as possible the human pathology. 
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Figures 

 

Figure 1. KCC2 expression levels are specifically increased in male LHS rats.  
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Figure 1. KCC2 expression levels are specifically increased in male LHS rats.  

A. Schematic representation of the LHS animal model. A freeze lesion is induced at P1, to 

mimic a cortical dysplasia and hyperthermic seizures are induced at P10. B1. Western blot 

analysis of KCC2 expression levels (band at 140KDa) in the hippocampus of different 

experimental groups at P20. Each lane represents a different animal. B2. Quantification shows 

that KCC2 is significantly increased only in male LHS (one-way Anova, *p<0.05). n=5 

Control rats (Ctrl); n=3 rats subjected only to cortical dysplasia (L); n=5 rats subjected only to 

Hyperthermia-induced Seizure (HS); n=3 male LHS; n=3 female LHS. C1. Western blot 

analysis of KCC2 expression levels in the hippocampus of P10 control rats (Ctrl) and of rats 

subjected to a cortical dysplasia (L). Each lane represents a different animal. C2. 

Quantification shows a threefold increase of KCC2 expression levels in L compared to Ctrl 

male pups (Student’s t-test, *p<0.05; Ctrl: n=8 males; L: n=5 L males). D. IV curve measured 

in CA1 pyramidal neurons in the gramicidin-perforated patch configuration. Example traces 

of current amplitudes in response to a GABA puff (arrow) at varying holding membrane 

potential of control (bottom insert) and of LHS (top insert). E. Mean EGABA values calculated 

from all CA1 pyramidal neurons recorded from Ctrl (black) and LHS (blue) rats. Each data 

point represents the result from one neuron, and the average value is depicted by the line 

(±SEM). EGABA is more hyperpolarized in LHS compared to Ctrl rats (Unpaired Student’s t-

test p<0.05). Ctrl: n=8 cells from 7 male rats, LHS: n=7 cells from 6 male rats. 

 

 

 

 

 

 



 

127 

Figure 2.  Spine size of CA1 pyramidal neuron basal dendrites is reduced in LHS rats.  
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Figure 2.  Spine size of CA1 pyramidal neuron basal dendrites is reduced in LHS rats.  

A. Schematic representation of DiI labeling approach. B. DiI labeled CA1 pyramidal neurons 

from control (Ctrl, B1) and LHS (B2) rats. Scale bar, 10µm C. High magnification of basal 

dendrites of CA1 pyramidal neuron in the lesioned hemisphere of a P20 LHS male, showing 

smaller spines (C2, arrows), compared to those observed in control pyramidal neurons (C1); 

Scale bar, 1µm. D. Mean spine density is not significantly different between LHS and Ctrl 

groups (Student t-test, p>0.05). E. The cumulative distribution of spine diameter is shifted 

toward smaller value for CA1 pyramidal neurons from LHS  (blue) compared to Ctrl (grey) 

rats (K-S test, p<0.001). n= 12 CA1 pyramidal neurons from 4 Ctrl rats; n= 12 CA1 pyramidal 

neurons from 4 LHS rats.  
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Figure 3. Functional maturation of glutamatergic synapses is impaired in CA1 

pyramidal neurons from LHS rats. 

A. Example traces of mEPSC recorded on CA1 pyramidal cells from a control (Ctrl) and a 

LHS rat at P20. Asterisks indicate single mEPSC events. B-C. Mean mEPSCs peak amplitude 

is significantly smaller in LHS compared to Ctrl rats (B, Student’s t-test, *p<0.05), while 

mean mEPSC interevent intervals (IEI) is not affected (C, Student’s t-test, p>0.05). N = 11 

cells from 6 male LHS and n=10 cells from 5 Ctrl male rats.  
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Figure 4. In utero electroporation of KCC2 shRNA significantly reduces membrane 

KCC2 expression in CA1 pyramidal neurons. 
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Figure 4. In utero electroporation of KCC2 shRNA significantly reduces membrane 

KCC2 expression in CA1 pyramidal neurons. 

A. Schematics of experimental procedure (left) and coronal brain section of electroporated 

P20 rat (right) showing that transfection is limited to one hippocampus. B. Image representing 

the reduction of KCC2 intensity. (B1) Membrane KCC2 expression (red) is clearly visible in 

electroporated Control CA1 pyramidal cells (top, green, boxed region), while it is reduced in 

KCC2shRNA-electroporated cells (bottom, green, boxed region). CA1 region is identified 

using NeuN immunostaining (blue). Scale bar, 10µm. (B2) High magnification images of 

boxed regions in B1. Arrows indicate KCC2 expression at the membrane. Scale bar, 5µm. C. 

KCC2 intensity is significantly reduced in pyramidal cells electroporated with KCC2 shRNA, 

compared to neighbouring, untransfected cells in both naive and LHS rats (two-way ANOVA, 

p<0.001). N = 40 cells from 3 Ctrl; n=65 cells from 3 KCC2 shRNA electroporated rats; n=70 

cells from 3 Ctrl + LHS rats; n=48 cells from 3 KCC2 shRNA + LHS rats.  
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Figure 5. shRNA-mediated KCC2 reduction in CA1 pyramidal neurons decreases 

hyperthermia-induced seizure susceptibility  in LHS rats. 

A. Schematics of experimental procedure. B. Seizure onset time during hyperthermia is 

significantly lower in non-electroporated LHS pups (LHS) or LHS pups electroporated in the 

hippocampus in utero with control constructs (Ctrl shRNA+LHS) compared to naïve pups 

(Ctrl) (one-way Anova, *p<0.05). On the other hand, mean seizure onset time in LHS pups 

electroporated with KCC2 shRNA (KCC2 shRNA+LHS) is not significantly different from 

the one recorded in Ctrl pups (one-way Anova, n.s. p>0.05). Ctrl: n=12, LHS: n= 32, Ctrl 

RNAi+LHS: n=17, KCC2 shRNA+LHS: n=7. C. Difference in mean seizure onset time 

between pups showing GFP-positive pyramidal neurons in CA1 region (transfected) versus 

pups lacking GFP-positive cells (untransfected), in litters electroporated with either 

KCC2shRNA (two-way Anova, *p<0.001) or Control constructs (two-way Anova, n.s. 

p>0.05). Ctrl shRNA+LHS: transfected pups n=17, untransfected pups n=26; KCC2 shRNA: 

transfected pups n=7, untransfected pups n=18.  
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Figure 6. shRNA-mediated KCC2 reduction in CA1 pyramidal neurons rescues spine 

size in LHS rats. 
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Figure 6. shRNA-mediated KCC2 reduction in CA1 pyramidal neurons rescues spine 

size in LHS rats. 

A. Schematics of experimental procedure. Image in right panel is representative of the level of 

transfection obtained with this technique. B. Examples of CA1 pyramidal neurons from naive 

(b1, b2) or LHS (b3, b4) pups electroporated with Control (Ctrl, b1, b3) or KCC2shRNA (b2, 

b4) constructs. Scale bar, 10µm; C. High magnifications images of basal dendrites from 

boxed region in the respective neurons showed in B. Arrows indicate mushroom spines. Scale 

bar, 1µm. D. Spine density is reduced in rats electroporated with KCC2 shRNA, 

independently on the presence of the dual pathology (two-way Anova, *p<0.05). E. 

Cumulative distribution of spine head size is shifted toward smaller values in Ctrl-LHS 

compared to naïve rats electroporated either with Ctrl or KCC2shRNA constructs (K-S test, 

p<0.001). On the other hand, LHS rats electroporated with KCC2shRNA show significantly 

larger spine diameters (K-S test, p<0.001; Ctrl: n= 18 pyramidal cells from 8 animals, KCC2 

shRNA: n=9 pyramidal cells from 4 animals, Ctrl+LHS: n=15 pyramidal cells from 8 animals, 

KCC2shRNA+LHS: n=7 from 6 animals). F. Spine length is increased in rats electroporated 

with KCC2 shRNA, independently on the presence of the dual pathology (K-S test, p<0.001).  

G-H. Scatter plots where each symbol represents a spine (diameter x spine length) in naïve 

(G) or LHS (H) rats electroprotaed with Ctrl or KCC2-shRNA constructs. Data point 

distribution in LHS rats electroporated with KCC2-shRNA is shifted to the right compared to 

the one in LHS rats electroporated with control constructs (H), which is indicative of the 

presence of larger and longer spines in the former group. Ctrl: n= 19 pyramidal cells from 8 

animals, KCC2 shRNA: n=9 pyramidal cells from 4 animals, Ctrl+LHS: n=14 pyramidal cells 

from 12 animals, KCC2shRNA+LHS: n=10 from 6 animals.  
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Supplementary Figure 1. NKCC1 expression is not affected in P10 lesioned pups.  

A. Western blot analysis of NKCC1 expression levels (band at 150KDa) in the hippocampus 

of P10 control rats (Ctrl) and of rats subjected to a cortical dysplasia (L). Each lane represents 

a different animal. B. Quantification shows no difference in NKCC1 expression levels 

between L and Ctrl male pups (Student’s t-test, p>0.05). Ctrl: n=8 males; L: n=4 males. 
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Supplementary Figure 2. LHS rats show spatial memory deficits.  

A. Distance travelled by P40 control (Ctrl) and LHS male rats in the Open Field, the day prior 

to Morris Water Maze testing. There is no statistical difference between control and LHS rats, 

demonstrating the lack of locomotive deficits in the latter group (Unpaired Student t-test, 

p>0.05). B. Mean time to reach the platform during training (Days 1-6) is no statistically 

different between control and LHS rats, suggesting that LHS rats have no major learning 

deficits. C. Examples of typical swimming pattern trajectories in the Morris Water Maze of a 

control and a LHS rat during the probe test (Day 7). D. The mean number of target crossings 

during the probe test is significantly lower for LHS than for Ctrl rats (Unpaired Student T test, 

*p<0.05), suggesting memory retention deficits in LHS rats. Ctrl: n= 14, LHS: n= 11 male 

rats. 
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Abstract 

The electroneutral KCC2 co-transporter is the major chloride (Cl-) extruder in mature 

neurons. The spatio-temporal regulation of KCC2 transcription and translation orchestrates 

the developmental shift of synaptic GABAergic transmission from depolarizing to 

hyperpolarizing or shunting. Recent studies also indicate a critical role for KCC2 in both 

glutamatergic synapse formation and functional maintenance. In fact, it has been shown, by 

either global or cell-and temporal-restricted downregulation of KCC2 expression, that KCC2 

reduction leads to immature dendritic spines in young cortical neurons, while it reduces 

AMPA receptor clustering in mature hippocampal neurons. Conversely, premature KCC2 

overexpression leads to an increased spine density in pyramidal cortical neurons. Whether the 

effects of alterations of KCC2 overexpression on dendritic spines are circuit-specific is 

unknown. Here, we performed site-specific in utero electroporation of KCC2 cDNA using a 

novel triple-electrode approach, to target either hippocamapal CA1 or somatosensory cortical 

pyramidal neurons. We found that KCC2 premature expression significantly decreased spine 

density in CA1 pyramidal neurons, while it had the opposite effect in cortical principal 

neurons. These effects were cell autonomous, because single-cell biolistic overexpression of 

KCC2 in hippocampal organotypic cultures also induced a reduction of dendritic spine 

density. Altogether, these results demonstrate that premature increase in KCC2 expression 

affects dendritic spine development in a brain region specific manner.  
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Introduction 

 

 KCC2 is a potassium-chloride cotransporter, the only member of the Cation Chloride 

Cotransporter family that is almost exclusively expressed in neurons. It has been widely 

shown that the increase in KCC2 expression during development is responsible for the shift of 

GABA function from excitatory to shunting/inhibitory (Chudotvorova et al., 2005; Fiumelli et 

al., 2005; Lee et al., 2005; Blaesse et al., 2006). KCC2 has gained a lot of attention recently 

because its downregulation, either as a putative cause or as a consequence of a pathological 

condition, can occur in diverse neurological conditions, including epilepsy, neuropathic pain 

and ischemia (Ferrini and De Koninck, 2013; Loscher et al., 2013; Kaila et al., 2014). By 

increasing intracellular Cl- concentration, downregulation of KCC2 reduces GABA 

transmission efficacy, thereby increasing network hyperexcitability. 

 

On the other hand, alterations of KCC2 expression likely have more complex consequences 

on circuit activity. In fact, in addition to regulating the Cl- gradient, recent data suggest that 

KCC2 may also modulate several aspects of neuronal development, including dendritic spine 

formation (Li et al., 2007; Gauvain et al., 2011; Fiumelli et al., 2013). Removing KCC2 in 

immature cortical neurons prevented spine maturation altogether, leading to an increase of 

filopodia protrusions (Li et al., 2007). Conversely, removing KCC2 in mature hippocampal 

neurons, after spine formation and when KCC2 expression is higher, did not affect spine 

density but reduced the efficacy of excitatory synapses, through an alteration of aggregation 

of AMPA receptors in dendritic spines (Gauvain et al., 2011). Interestingly, these effects were 

not due to reduction of transporter activity, but to altered interactions of KCC2 with the 

cytoskeleton (Li et al., 2007; Gauvain et al., 2011). All together these studies show that 

reduction of KCC2 expression can directly affects both GABA drive and glutamatergic 

synaptic signaling, by distinct mechanisms.   

 

Conversely, the effects of premature KCC2 expression in circuit formation are less 

understood. One study showed that in utero electroporation of KCC2 in cortical pyramidal 

cells induced a premature negative shift in EGABA that was in turn responsible for a reduction 
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of dendrite complexity (Cancedda et al., 2007). Using an identical strategy, a second study did 

not find any effects on dendritic arborisations but showed that premature expression of KCC2 

in cortical pyramidal neurons in vivo induced a long-lasting increase in dendritic spine density 

and spontaneous excitatory activity, through a mechanism that was independent of its ion 

transport function (Fiumelli et al., 2013). Understanding how precocious KCC2 expression in 

the developing brain may affect specific long-term synapse formation is important, since, 

opposite to what occurs in adult, in the neonatal brain traumatic events, including seizures 

(Galanopoulou, 2008, Awad et al, 2016), injury (Bos et al., 2013) and the presence of cortical 

malformation (Awad et al., 2016) actually lead to increased in KCC2 expression and 

activation. Here, we investigate the effects of premature KCC2 expression on dendritic spine 

formation in CA1 pyramidal neurons in the hippocampus, because this region is particularly 

affected by early-life seizures or the presence of cortical malformations (Galanopoulou, 2008, 

Awad et al, 2016).  
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Materials and methods 

Animals 

Sprague–Dawley pups were obtained from Charles River Laboratories (St. Constant, 

Quebec, Canada) at postnatal day 1 (P1). Pups were culled to 12 per dam, matched by gender, 

weighed and kept with their mother in a 12 h light/dark cycle with food and water ad libitum. 

Animal care and use conformed to institutional policies and guidelines (CIBPAR, Sainte-

Justine Hospital Research Centre, Université de Montréal, Montreal, QC, Canada). 

Hippocampal organotypic culture  

 Slice culture preparation was essentially as described in (Chattopadhyaya et al., 2004). 

Postnatal day 4 (P4) mouse pups were decapitated, and brains were rapidly removed and 

immersed in ice-cold culture medium (containing MEM, 20% horse serum, 1 mM glutamine, 

13 mM glucose, 1 mM CaCl2, 2 mM MgSO4, 0.5 µm/ml insulin, 30 mM HEPES, 5 mM 

NaHCO3, and 0.001% ascorbic acid). Coronal brain slices of hippocampus, 400 µm thick, 

were cut with a Chopper (Stoelting, Wood Dale, IL) into ice-cold culture medium. Slices were 

then placed on transparent Millicell membrane inserts (Millipore, Bedford, MA), usually 3-5 

slices/insert, in 30 mm Petri dishes containing 0.75 ml of culture medium. Finally, they were 

incubated in a humidified incubator at 34°C with a 5% CO2-enriched atmosphere, and the 

medium was changed three times per week. All procedures were performed under sterile 

conditions. Constructs to be transfected were incorporated into “bullets” or “co-bullets” made 

using 1.6 µm gold particles coated with 30 µg of the DNA of interest. These bullets were used 

to biolistically transfect slices by gene gun (Bio-Rad, Hercules, CA) at high pressure (180 Pa). 

Cultures were biolistically tranfected with either pCI-Tomato-pCI GFP alone, pCI-wtKCC2-

IRES-eGFP or pCI-mutKCC2-IRES-eGPF together with pCI-tdTomato, from equivalent post-

natal day (EP) 6 to EP20. Transfected slices were incubated under the same conditions as 

described above, before fixation and imaging.  
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In utero electroporation  

The day of mating (limited to 4 h in the morning) was defined as embryonic day zero 

(E0), and the day of birth was defined as postnatal day zero (P0). E17 timed-pregnant Sprague 

Dawley rats were anesthetized with isoflurane (induction, 4%; surgery, 2%), and the uterine 

horns were exposed by laparotomy. The DNA (2 µg/µl in water) together with the dye Fast 

Green (0.3 mg ml−1; Sigma, St Louis, MO, USA) was injected (5 µl) through the uterine wall 

into one of the lateral ventricles of each embryo by a sterile 30-gauge needle. After soaking 

the uterine horn with a phosphate-buffered saline (PBS) solution, the embryo's head was 

carefully held between tweezer-type circular electrodes (10 mm diameter; Nepa Gene, Bulldog 

Bio, Canada) to transfect the cortex. To target the hippocampus, we used the tweezer-type 

circular electrodes as well as a third electrode (7×6×1 mm, platinum-plated copper) which was 

accurately positioned for electroporation (Dal Maschio et al., 2012). For the electroporation, 

five electrical pulses (50 V, 50 ms, 150 ms intervals) were delivered with a square-wave 

electroporation generator (ECM 830, BTX, Harvard Apparatus). Following electroporation, 

the uterine horns were returned into the abdominal cavity, and embryos continued their normal 

development. At P20, rats were fixed by transcardial perfusion with 4% PFA in PBS (0.1M, 

pH 7.4). Perfused brains were then dissected, sectioned coronally in 80 µm thick-slices with a 

vibratome (Leica VT1000S), imaged and analyzed. Hippocampal CA1 and layer II/III 

pyramidal cells from at least four animals were used for each experimental condition.  

The cDNA encoding KCC2 full-length WT and the loss-of-function mutant KCC2-

C568A were previously described and cloned into pCAG-IRES-EGFP (Fiumelli et al., 2005; 

Cancedda et al., 2007). The pCAG vector bears a modified chicken b-actin promoter with a 

cytomegalovirus immediate-early enhancer that directs high and persistent expression levels in 

neurons in vivo of both KCC2 and Tomato (Niwa et al., 1991). The expressing vectors pCAG-

KCC2-IRES-EGFP and pCAG-KCC2-C568A-IRES-EGFP were co-transfected with pCAG-

IRES-tdTomato (Cancedda et al., 2007), and pCAG-IRES-tdTomato alone was used as a 

control. They will thereafter be termed ‘KCC2wt’, ‘KCC2mut’ and ‘Control’ respectively.  
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Imaging and spine analysis 

Pyramidal neurons were imaged using a Leica confocal microscope SPE or SP8 (63x 

oil immersion objective; NA 1.3). Two-three labeled typical pyramidal neurons were 

randomly selected from CA1 area or the somatosensory cortex of each analyzed animal. 

Pyramidal cells from at least four animals were used for each experimental condition. Four 

image stacks of basal dendrites were acquired (0.5 µm intervals) all around the pyramidal cell 

soma. To avoid bias due to variability in labeling between different cells and problems in 

identifying dendrite provenance in highly transfected areas, we analyzed only the basal 

dendrites included in four identically sized stacks centered around the soma, which in our 

imaging conditions represent the first 120µm of basal dendrites originating from the soma.  

Total spine density, spine morphology, spine length and dendritic length were 

analyzed and quantified using Neurolucida software (MicroBrightField). Mushroom spines 

were defined as spine with a neck and bearing a head, which was at least twice as large as the 

neck. Values for animals of the same experimental group were not statistically different and 

were pooled. All quantification were done blind to the treatment. To measure spine head 

diameter we first deconvolved the stacks using Volocity software, and the images were 

converted from GFP or tomato to rainbow coloring, allowing a better delineation of the spine 

area, by becoming white where fluorescence is brightest, all the way to black where there is 

no signal.  

Statistical analysis 

Differences between two experimental groups were assessed with t-test for normally 

distributed data and Mann-Whitney test for not normally distributed data. Differences between 

3 or more experimental groups were assessed with one-way ANOVA and post hoc 

comparison. For non-normally distributed data, nonparametric Kruskal–Wallis one-way 

ANOVA test was used. Cumulative distributions were analysed using the Kolmogorov-

Smirnov test. All results are expressed as mean ± SEM.  
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Results 

 

Premature KCC2 expression induces a long-term increase in dendritic spine density in 

cortical neurons (Fiumelli et al., 2012). However, whether KCC2 premature expression 

affects spinogenesis in hippocampal pyramidal neurons in the same fashion is unknown. To 

address this question, we overexpressed KCC2 by in utero electroporation at embryonic day 

17 (E17) specifically in the CA1 region of the hippocampus, by using a triple-electrode probe 

(Dal Maschio et al., 2012). We expressed two different forms of KCC2, the wild type form 

(KCC2wt) as well as KCC2 carrying the C568A mutation (KCC2mut), which lacks both the 

cotransporter activity and its binding activity to the protein 4.1N, which mediates the 

interaction with the cytoskeleton. KCC2-GFP plasmids were co-electroporated with Td-

Tomato, to label neuronal morphology. Control neurons were transfected with Td-Tomato 

alone. Transfected CA1 pyramidal cells were imaged and analyzed at P20 (Fig. 1A). 

Overexpression of KCC2wt, but not KCC2mut, significantly decreased spine density 

in basal dendrites of pyramidal cells (Fig 1B and C; Ctrl: 0.78±0.06 spine/µm; KCC2mut: 

0.82±0.08 spine/µm; KCC2wt: 0.62±0.04 spine/µm; one way ANOVA *:p<0.05). On the 

other hand, KCC2mut expressing cells showed significantly longer spines (Fig 1D; Ctrl: 

1.42±0.05 µm, KCC2mut: 1.63±0.02 µm, KCC2wt: 1.42±0.05 µm; one way ANOVA 

*:p<0.05). Longer spines have been suggested to represent immature thin or filopodia spine 

(Bosch and Hayashi, 2011), however KCC2mut expressing cells showed long spines with a 

distinctive mushroom head, which indicated that they were not immature. Although 

mushroom spine density was not significantly different in KCC2mut cells (Suppl. Fig. 1A; 

Ctrl: 0.30±0.03 spine/µm, KCC2wt: 0.23±0.03 spine/µm; KCC2mut: 0.35±0.05 spine/µm; 

one-way ANOVA p>0.05), spine diameter analysis revealed that KCC2mut cells had 

significantly larger spines compared to Ctrl and KCC2wt cells (Fig 1E; average Ctrl: 

0.650±0.009 µm, KCC2wt: 0.675±0.003 µm; KCC2 mut: 0.86±0.01 µm; one way ANOVA, 

*p<0.05; K-S test, **p<0.001) The scatter plot representation clearly showed the rightward 

shift to longer and bigger spines induced by KCC2mut overexpression (Fig.1F, red; Suppl. 

Fig. 1E). Additionally, overexpression of KCC2wt lead to larger spine heads compared to 
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controls, but smaller diameter than KCC2mut (Fig. 1E, KS test, **p<0.001). KCC2 

precocious overexpression in cortical neurons has been reported to affect dendrite 

development (Cancedda et al., 2007). As such, we reconstructed basal dendrites for up to 120 

µm from cell bodies, where we could reliably separate dendrites belonging to different 

pyramidal cells, and found that dendritic branch number and length were not majorly affected 

by KCC2wt or KCC2mut overexpression (Suppl. Fig 1C and D). The lack of effect of KCC2 

premature expression on CA1 basal dendritic length and complexity may be due to the 

different developmental stage of CA1 and cortical pyramidal neurons at the time of 

transfection.  

Next, we asked whether the effects of KCC2 overexpression in CA1 pyramidal 

neurons were due to cell autonomous or circuit-based effects. To address this question, we 

overexpressed KCC2wt in isolated pyramidal cells in hippocampal organotypic cultures, by 

biolistic transfection, from equivalent post-natal day (EP) 6 to EP20 (Fig. 2A). Similarly to 

what was observed following in utero-electroporation in vivo, KCC2 wt-overexpressing cells 

displayed a significant decrease in spine density compared to control pyramidal neurons (Fig. 

2B to D, Ctrl: 0.99 ± 0.12 spine/µm; KCC2wt: 0.56 ± 0.05 spine/µm; Mann-Whitney Rank 

Sum Test p<0.05). Spine density reduction was widespread along the dendritic arbor (Fig. 2E) 

and affected different spine types, including mushroom (Fig.2F, Ctrl: 0.61 ± 0.07 spine/µm; 

KCC2wt: 0.36 ± 0.05 spine/µm; t-test p<0.05), thin (Ctrl: 0.15 ± 0.02 spine/µm; KCC2wt: 

0.08 ± 0.01 spine/µm; t-test p=0.001) and stubby spines (Ctrl: 0.23 ± 0.04 spine/µm; KCC2wt: 

0.12 ± 0.01 spine/µm; trend but not significantly different, p>0.05). In contrast, average spine 

length was unaltered in KCC2wt-expressing cells compared to controls (Fig. 2G, Ctrl: 1.59 ± 

0.04 µm; KCC2wt: 1.75 ± 0.12 µm; t-test p>0.05). Overexpression of KCC2 from EP6-20 did 

not significantly affect the overall morphology of pyramidal cells, in terms of total dendritic 

length (Suppl. Fig. 2A, t-test p>0.05), and Scholl analysis of dendritic arbor complexity 

(Suppl. Fig 2B, t-test p>0.05 per radius, apart for first radius closest to soma). Thus, the 

reduction in spine density we observed was not due to a general delay in the maturation of 

pyramidal cell dendritic arbor.  

All together, these results confirm that premature overexpression of KCC2 leads to a 
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decrease of spine density onto CA1 pyramidal neurons, both in vivo and in vitro. Further this 

effect is cell autonomous, as low-density overexpression of KCC2 in organotypic cultures 

showed similar results as high-density KCC2 electroporation in vivo.  

It was previously reported that KCC2 premature expression following in utero 

electroporation in the somatosensory cortex caused a long-term increase in pyramidal cell 

spine density, while we observed the opposite effect following in utero electroporation of the 

hippocampus. To verify that our results were not due to technical or analysis differences, we 

electroporated the same constructs described above in somatosensory cortex, as described by 

(Fiumelli et al., 2013) (Fig. 3A-B). Consistently with this previous study, we found that 

KCC2wt precocious expression caused spine density increase (Fig. 3D, Ctrl: 1.41 ± 0.12 µm; 

KCC2wt: 2.17 ± 0.17 µm; one-way ANOVA, *p<0.05), while it did not affect spine head size 

(Fig. 3E, 3G, Ctrl: 0.61 ± 0.02 µm; KCC2wt: 0.61 ± 0.02 µm, one-way ANOVA p>0.05, K-S 

test, p>0.001) or spine length (Fig. 3F, Ctrl: 1.85 ± 0.04 µm; KCC2wt: 2.14 ± 0.12 µm, one-

way ANOVA p>0.05). KCC2mut expression, on the other hand, did not affect spine density, 

length or head size (Fig. 3D, one way ANOVA, p>0.05).  

All together our data demonstrate that the effects of KCC2 premature expression are 

circuit- and brain-region specific. 
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Discussion 

Proper function of neural circuits requires the orchestrated formation of trillion of 

synapses. Studying how synapses form is necessary to understand both how the brain 

functions normally and how this process goes awry in disease. These studies often focus on 

specific neuron cell types from specific brain region. However, one important question is 

whether molecular mechanisms regulating synapse formation in a specific neuronal cell type 

(for example, glutamatergic neurons) can be generalized to similar neurons localized in 

different brain regions. Our findings suggest caution is necessary before generalizing; in fact, 

we demonstrated that during the same developmental time window, KCC2 plays two distinct 

and opposing roles on synapse formation in CA1 region of the hippocampus and in the 

overlying somatosensory cortex, two structures that are often considered similar when 

synapse formation mechanisms are tackled. 

 

Because of KCC2 dual actions as mediator of inhibitory electrical signals, which is 

based on its regulation of Cl- currents, and as regulator of glutamatergic synapse formation, 

which is based on its structural interaction with the cytoskeleton, it has been suggested that 

KCC2 is perfectly poised to be a key molecular player in the synchronization of excitatory 

and inhibitory activities. Following this working hypothesis, an increase in KCC2 would both 

increase the inhibitory drive, by decreasing intracellular Cl- concentration, and the strength of 

excitatory synapses, by increasing both synapse density (Fiumelli et al., 2013) and GluR1-

containing AMPA receptor clustering (Gauvain et al., 2011). However, our results show that, 

while KCC2 overexpression indeed increases spine density in cortex, it actually has the 

opposite effect in hippocampus. Therefore, the role of KCC2 in matching glutamatergic and 

GABAergic activities is likely more complex than hypothesized so far and may be circuit and 

likely age-dependent. 

 

During neural circuit formation, synapse number is regulated both by hard-wired and 

activity-dependent mechanisms. In this context, we could envision the battling of two actions 

induced by KCC2 overexpression, the spinogenesis promoting effects, mediated by 

cytoskeleton interactions, and the transporter-mediated alteration of GABA driving force. In 
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fact, premature overexpression of KCC2 leads to more negative EGABA (Rivera et al., 2004; 

Cancedda et al., 2007; Galanopoulou, 2008; Khirug et al., 2010; Pellegrino et al., 2011), 

which may render spike generation less likely. Reduced neuronal activity may in turn impair 

synapse potentiation, therefore leading to synaptic loss. It is possible that the effects of KCC2 

premature expression on spinogenesis may be mediated by global alterations of neuronal 

activity, which may occur following high-density in utero electroporation. On the other hand, 

single-cell KCC2 overexpression in CA1 pyramidal neurons in hippocampal organotypic 

cultures, which most likely did not perturb network activity, induced dendritic spine loss 

similarly to what observed following in utero electroporation in vivo. Therefore, it seems 

more likely that it is the specific cellular context in which the transfected neurons develop that 

determine how KCC2 overexpression affects spine formation. 

 

What are the molecular mechanisms underlying the different effects of precocious 

KCC2 expression in cortical vs. CA1 pyramidal neurons?  The Brain Derived Neurotrophic 

Factor (BDNF) is one the strongest modulator of KCC2 activity. Most importantly, this 

modulation is age-dependent as BDNF accelerates KCC2 expression, and, possibly, its 

phosphorylation-mediated activation in developing neurons in normal condition or following 

seizures (Fiumelli et al., 2005; Fiumelli and Woodin, 2007; Khirug et al., 2010), while it has 

the opposite effects in adult neurons following injury, trauma or seizures (Kaila et al., 2014). 

BDNF expression levels increase after birth with a different developmental time course 

depending on the brain region. In particular, BDNF levels increase sharply between P10 and 

P15 in the visual cortex (Bozzi et al, 1995), but at least few days earlier in the dorsal 

hippocampus (data not shown). BDNF itself can either facilitate or inhibit GABAergic 

transmission depending on which specific age and neural circuits are investigated (Mizoguchi 

et al., 2003; Huang et al., 2012). Therefore, the different expression of BDNF, its receptor(s) 

and, possibly, downstream signaling components may contribute to the opposite effects of 

KCC2 on spine formation in the cortex and hippocampus. Another possibility is that KCC2 

localization may be regulated differently in CA1 vs. cortical pyramidal neurons during the 

first postnatal week. In fact, we observed KCC2 signal localized at the membrane in sparse 

CA1 pyramidal neurons at P1, while in the overlying cortex, KCC2 immunosignal, when it 

was detectable, was localized exclusively in pyramidal cell cytoplasm (data not shown). 
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However, whether KCC2 needs to be localized at the membrane to interact with the 

cytoskeleton, and thus influence synapse formation, is still a matter of controversy. 

 

We recently reported that electroporation of shRNA against KCC2 at E17.5 induced a 

reduction of spine density in CA1 pyramidal neurons quantified at P20 (Awad et al, 2016).  At 

first glance, this observation may appear discordant with the data presented here, showing that 

KCC2 overexpression by the same technique during the same developmental period also 

causes spine loss. Using shRNA-mediated manipulation and KCC2-deficient mice, a recent 

study showed that KCC2 interacts with and inhibits β-PIXb, a GEF for small GTPases Rac1 

and Cdc42, in hippocampal dissociated cultures (Llano et al., 2015). β-PIX, through activation 

of Rac1, forms part of the signaling cascade controlling cofilin-1 phosphorylation (Saneyoshi 

et al., 2008; Mizuno, 2013). Rac1 and cofilin-1 are known to play a pivotal role in spine 

morphogenesis. Interestingly, the activity of these two proteins must be tightly regulated to 

obtain normal spine formation. For example, knockdown of cofilin-1 by shRNA and 

overexpression of constitutively active cofilin-1 induces similar phenotype in developing 

neurons: long filopodia-like structures (Hotulainen et al., 2009; Shi et al., 2009). Similarly, 

both long-term increase and decrease of Rac1 activity leads to reduced number of spines 

(Nakayama et al., 2000; Zhang et al., 2003). In other words, the shift in actin turnover balance 

in either direction results in disrupted spine development. Therefore, either reducing or 

increasing KCC2 expression may alter the ratio between active and inactive forms of β-PIX, 

which in turn would alter both Rac1 and cofilin-1. 

 

Recently, several studies, including ours, showed that insults in the developing brain, 

such as seizures or cortical dysplasia (Galanopoulou, 2008; Khirug et al., 2010; Awad et al, 

2016), induced a premature expression of KCC2. Overall, our results suggest that these 

pathology-induced alterations of KCC2 expression may differentially affect the development 

of distinct neural circuits. It will be important to understand whether and how these specific 

circuit alterations affect diverse cognitive functions.  
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Figure 1. Precocious expression of KCC2wt from E17.5 to P20 in vivo decreases spine 
density in hippocampal CA1 pyramidal cells.  
A. Schematics of experimental procedure. Hippocampal pyramidal cells were electroporated 
in utero at E17.5 with Td-Tomato (Ctrl) or KCC2wt-GFP+Td-Tomato (KCC2wt) or 
KCC2mut-GFP+Td-Tomato (KCC2mut), then fixed and imaged at P20. Image at P20 is 
representative of the level of transfection obtained with this technique. Only tdTomato signal 
is shown. B. Representative basal dendrite segments from two different CA1 pyramidal cells 
showing that KCC2wt-expressing cells have fewer spines, while KCC2mut have longer spines 
(arrowheads). Scale bar 5 μm. C. Spine density is significantly reduced in KCC2wt-expressing 
cells compared to control and KCC2mut-expressing ones. (1-way Anova, *p<0.05). D. 
Cumulative distribution and average (insert) spine length (1-way Anova *p<0.05; 
Kolmogorov-Smirnov test, **p < 0.001). n= 8 for controls from 5 animals, n= 9 for KCC2wt 
from 5 animals, n=5 for KCC2mut from 3 animals. Values in C and D (insert) represent mean 
± SEM.  
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Figure 2. KCC2wt precocious expression decreases spine density in hippocampal CA1 
pyramidal cells in organotypic cultures.  

A. Schematics of experimental procedure. Hippocampal organotypic culture slices were 
biolistically transfected with pCI-GFP (Ctrl) and pCI-KCC2wt-IRES-GFP (KCC2wt) at P6, 
then fixed and imaged at P20. B-C. Low (B1,C1) and high (B2, C2) magnification of CA1 
transfected pyramidal cells show no gross difference in dendritic arbor morphology (B1-C1; 
NeuN immunostaining, blue). However, KCC2wt-expressing cells have fewer spines (c3, c4, 
arrowheads) compared to control cells (b3, b4, arrowheads). b3, b4 and c3, c4 are from boxed 
regions in B2, C2. Scale bars B1-C1, 50 μm; B2-C2, 10 μm; b3-b4-c3-c4, 2 μm. D. Spine 
density is strongly reduced in KCC2wt-overexpressing cells (Mann-Whitney Test, *p<0.05). 
E. Left, schematic of branch order definition. Right, Spine density in KCC2wt-expressing cells 
is overall reduced independently from the dendritic branch order (Mann-Whitney Test, 
*p<0.05). F. Both mushroom (Student’s t-test *p<0.05) and thin (Student’s t-test *p=0.001) 
spines are significantly reduced in KCC2wt-expressing cells. G. Cumulative distribution and 
average (insert) spine length show no statistical difference between KCC2wt-expressing and 
control cells (Student’s t-test p>0.05, ns). n= 6 pyramidal cells from controls, n= 6 pyramidal 
cells from KCC2wt. Values in D-G represent mean ± SEM. 
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Figure 3. Precocious expression of KCC2wt in layer II/III pyramidal cells from the 
somatosensory cortex from E17 to P20 in vivo increases spine density. 

A. Schematics of experimental procedure. Cortical pyramidal cells were electroporated in 
utero at E17.5 with Td-Tomato (Ctrl) or KCC2wt-GFP+Td-Tomato (KCC2wt) or KCC2mut-
GFP+Td-Tomato (KCC2mut), then fixed and imaged at P20. Image at P20 is representative of 
the level of transfection obtained with this technique. Only tdTomato signal is shown. B. 
Image including all layers of the somatosensory cortex at P20, illustrating the specific 
transfection of layer II/II pyramidal cells.  C. Representative basal dendrite segments from two 
different layer II/III pyramidal cells showing that KCC2wt-expressing cells have more spines, 
while KCC2mut have shorter spines (arrowheads). Scale bar 1 μm. D. Spine density is 
significantly increased in KCC2wt-expressing cells compared to control and KCC2mut-
expressing ones (1-way Anova, *p<0.05). E. Cumulative distribution and average (insert) 
spine head diameter illustrating that KCC2mutant have smaller spine heads (Kolmogorov-
Smirnov test, **p < 0.001). F. Spine length average demonstrates that both KCC2wt and 
mutant overexpression in layer II/III pyramidal neurons leads to longer spines (two-way 
Anova, *p<0.05).  G. Scatter plots where each symbol represents a spine (diameter x spine 
length) in naïve (grey open circle), KCC2 wt (blue) and KCC2 mut (red). Data point 
distribution shows that while spines of control cells are very condensed, both electroporated 
KCC2 constructs is more spread out, which is indicative of the presence of larger and longer 
spines. Ctrl: n= 7 cells from 4 animals; KCC2wt: n=8 cells from 5 animals, n=6 for KCC2mut 
from 3 animals. Values in D and F represent mean ± SEM.  
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Supplementary figure 1. Dendritic arbor analysis of electroporated CA1 pyramidal cells.  
A. Mushroom spine density was not different in KCC2mut cells, while it showed a non-
significant trend towards reduction in KCC2wt compared to controls.  B-D. Dendritic arbor 
analysis of CA1 cells electroporated with tdTomato (ctrl) or KCC2wt-GFP+Td-Tomato 
(KCC2wt) or KCC2mut-GFP+Td-Tomato (KCC2mut), then fixed and imaged at P20. Only 
basal dendrites for up to 120 µm from cell bodies, where we could reliably separate dendrites 
belonging to different pyramidal cells, were reconstructed. B. Schematic of branch order 
definition.  Branch length (C) and number (D) per order. Dendritic branch number and branch 
length were not majorly affected by KCC2 wt or KCC2 mut overexpression (* 1-way Anova, 
p<0.05). E. Graph representing the amount of spine of a specific diameter, compared to the 
total number of spines. This graph shows that drastic shift of spine enlargement in KCC2mut-
expressing cells  n= 8 for controls from 5 animals, n= 9 for KCC2wt from 5 animals, n=5 for 
KCC2mut from 3 animals. Bar graphs A, C, D and E represent mean ± SEM. 
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Supplementary figure 2. Dendritic arbor analysis of KCC2wt-expressing and control 
CA1 pyramidal cells in organotypic cultures.  

A. Total dendritic length is not significantly different. B. Scholl analysis representing the 
complexity of dendritic arbor. Overall, dendritic arbors were not singificantly affected by 
KCC2 wt overexpression. n= 6 pyramidal cells from controls, n= 6 pyramidal cells from 
KCC2wt. Bar graphs represent mean ± SEM. 
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Chapter IV 

General Discussion 

 

KCC2 alterations in epilepsy: pro- or anti-convulsive? 

 

Large evidence suggests that seizures may leave their imprint on the developing brain by 

altering the way that neurons differentiate, connect, and communicate to each other. This in 

turn may have functional and behavioral long-lasting consequences589. The cellular and 

molecular mechanisms underlying early-life seizure-induced alterations of neuronal circuit 

development are still not well understood. Contrary to what occurs in the adult brain, different 

traumatic events in the nervous system, including seizures and neuronal injury, induce an 

increase in KCC2 expression levels and function in the young brain411,412. In line with these 

findings, we showed that KCC2 expression is precociously increased in a rodent model of 

mesial temporal lobe epilepsy (MTLE) induced by two early-life insults. This observation 

likely explains the more negative EGABA we consistently recorded in CA1 pyramidal neurons 

from LHS rats compared to controls. Further, we have previously reported that the excitatory 

drive onto CA1 GABAergic interneurons is increased in LHS rats, which correlates with an 

increase in sIPSC onto CA1 pyramidal cells584. One possibility is that these functional changes 

enhance the efficacy of GABAergic inhibition, which might act as an intrinsic mechanism to 

protect the developing brain from hyperexcitability-induced damage caused by early-life 

insults (see summary figure 19). 

 

Interestingly, shRNA-mediated reduction of KCC2 in a small population of CA1 

pyramidal cells was sufficient to rescue the heightened febrile seizure susceptibility caused by 

the cortical dysplasia, suggesting that precocious KCC2 overexpression may have pro-

convulsive effects in a predisposed brain. As recently reported by the Kaila group, it is 

possible that the seizure-promoting effects of KCC2 occur in specific conditions. As such, 
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seizure-induced hyperactivity can lead to a deregulation of ionic homeostasis, as intracellular 

Cl- starts to accumulate through HCO3
- mediated-efflux, which increases Cl- and K+ extrusion 

through KCC2. Seizure activity can then cause an increase in extracellular K+ concentrations, 

making it increasingly difficult for Na+K+-ATPase to maintain homeostasis, causing 

depolarization of the potassium reversal potential. This ionic homeostasis deregulation 

compromises the resting membrane potential of neurons and subsequently reduces the 

threshold for seizure susceptibility590-592. Consequently, increased functional levels of KCC2 

may counter-intuitively contribute to the emergence of highly synchronized spontaneous 

network events, including seizures234,354,592.  

 

An alternative possibility, that cannot be excluded, is that the reduction of KCC2 during 

a critical period for circuit development may alter neuronal connectivity rendering the network 

somewhat less excitable. Reduction of KCC2 expression either in constitutive knockout mice 

or by shRNA transfection suggests that KCC2 plays a role in several aspects of neuronal 

development, including neuron migration133, synapse formation250,284,286,306, transcriptional 

switch of neurotransmitter receptor subunits593. While we did not observe any notable effects 

of shRNA-KCC2 on electroporated pyramidal cells localization, which ruled out neuron 

migration alterations, we found that CA1 neurons showed significantly reduced basal dendritic 

complexity and spine density in P20 electroporated rats. However, these alterations show no 

direct correlation with seizure onset time following exposure to hyperthermia, as LHS rats 

electroporated with KCC2-shRNA show seizure onset time comparable to naïve rats, while 

control LHS rats seize faster, even if they do not show alteration in basal dendrite complexity 

or spine density. Nevertheless, future studies are required to understand whether and how 

targeted alterations of KCC2 expression in CA1 neurons after neuronal differentiation alters 

network activity and, possibly, cognitive functions. 
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Potential circuit-based mechanisms underlying KCC2 effects on seizure 

susceptibility 

 

Although only a limited percentage of PCs were electroporated, they were sufficient to 

rescue seizure susceptibility. A possibility is that since we are electroporating on a specific 

embryonic day, we may be targeting a subset of CA1 PCs with specific projections. A study 

recently published in Neuron111 demonstrated that PV INs specifically target a subset of 

pyramidal cells according to their specific projections, and depth in the CA1 pyramidal layer. 

More specifically, Lee and collaborators found that PV INs evoked greater inhibition in deep 

CA1 PCs; and further segregated among deep PCs to preferentially innervate those that project 

to the amygdala. In parallel, reciprocal connectivity analysis showed more frequent excitatory 

inputs of superficial CA1 PCs onto PV INs; and PV INs preferentially received excitation 

from PCs that project to the prefrontal cortex. These results revealed bias in target selection 

and innervation by both glutamatergic and GABAergic local CA1 circuitry and further 

demonstrated the presence of heterogeneous IN-PC microcircuits. Consequently, an attractive 

hypothesis is that when we are electroporating at E17.5, we might be targeting a subpopulation 

of PCs, preferentially projecting to the amygdala. A recent study from our group demonstrated 

a tight relationship between the amygdala and hippocampus during kainic acid-induced 

seizures. In particular, this study suggested that gamma oscillations in the amygdalo-

hippocampal network could facilitate long-range synchrony and contribute to seizure 

propagation, while synchrony of this network correlated with seizure severity594. Thus, 

downregulating KCC2 in PCs specifically projecting to the amygdala may potentially have a 

bigger impact on seizure propagation and severity, compared to downregulating KCC2 in CA1 

PCs projecting to the prefrontal cortex. On the other hand, KCC2 reduction in prefrontal 

cortex-projecting PCs may be directly affecting the local feedback and/or feed-forward 

microcircuits of the CA1. As we discussed in the introduction, alterations of these 

microcircuits are closely related to seizure-induced alterations425. Perhaps, reestablishing 

normal levels of KCC2 in the hippocampus of LHS rats allows a rebalancing of altered 

hippocampal microcircuits. Nevertheless, it is possible that all types of CA1 PCs are targeted 
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by in utero electroporation; in this case the resulting outcome may be due to a cumulative 

effect of all these microcircuit changes. 

 

Mechanisms underlying differential KCC2 regulation following insults in 

young and adult brain 

 

As discussed previously, the effects of seizures on KCC2 expression and function are 

age-dependent, and in line with several pieces of evidence suggesting that neuronal signaling 

mechanisms are radically different in developing and mature brain. Whether alterations of 

KCC2 expression/function may play a pro- or anticonvulsive role may, therefore, depend from 

the cellular and developmental context and from the extent of the impairment of KCC2 

function. Supporting this notion, treatment with the NKCC1 inhibitor bumetanide in vivo 

during late embryonic development leads to permanent decrease in excitatory synaptic 

transmission and sensorimotor gating deficits595, while similar treatment during early postnatal 

period altered timing of the critical period for experience-dependent plasticity388. These effects 

are dependent on the age of bumetanide-treatment, underscoring the importance of studying 

the role of KCC2/NKCC1 balance in specific developmental and pathological conditions, by 

using animal models which reproduce as closely as possible the human pathology. 

 

 Age-related differences in KCC2 alterations following neurological insults only came to 

light very recently, and thus, the causes leading to these differences remain to be interpreted. 

A potential age-dependent mechanism involves the BDNF-mediated TrkB activation. In 

immature neurons, activation of BDNF-TrkB signaling increases KCC2 expression, whereas it 

downregulates KCC2 in the adult brain310,345,351,413. In addition, in neurons damaged by acute 

oxidative stress or excitotoxicity, BDNF promotes KCC2 expression352, which could be an 

adaptive response to promote neuronal survival and potential rewiring288. However, microglia-

released BDNF decreases KCC2 expression in spinal cord neurons following nerve 

transection, a mechanism that is thought to contribute to the onset of neuropathic pain. On the 
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other hand, in mature hippocampal neurons, BDNF-TrkB-mediated downregulation of KCC2 

seems to require the activation of intracellular signalling cascades initiated by the binding of 

PLCγ1 and Shc/FRS-2 (Src homology 2 domain containing transforming protein (Shc) and 

FGF receptor substrate 2) to the intracellular domain of the TrkB receptor. These signaling 

pathways activate second messengers and other downstream effectors, including cAMP 

CREB, which activates transcriptional machinery and thus regulates several genes involved in 

neuronal plasticity596. When the TrkB-PLCγ1 signaling cascade is blocked, Shc/FRS-2-

mediated pathway leads to an upregulation of KCC2316. These results suggest that there are 

distinct TrKB-mediated signaling pathways leading to KCC2 downregulation in mature 

neurons. Furthermore, BDNF also exerts an age-dependent effect on GABAAR function. In 

CA1 immature pyramidal neurons, BDNF quickly potentiates GABAAR-mediated currents 

whereas, in mature neurons, BDNF suppresses GABAAR function597. Furthermore, TrkB 

phosphorylation at its PLC binding site was found to be age-dependent353. The age- and insult-

dependent effects of BDNF on KCC2 expression, and GABAARs may be due to differential 

activation of TrkB and subsequent activation of distinct downstream signaling pathways in 

mature vs immature cortical neurons. Based on these observations, I hypothesize that LHS rats 

have an activity-dependent BDNF-TrkB activation, which in turn leads to upregulation of 

KCC2. 

 

 Another possible mechanism implicated in age-related differences involves the mTOR 

signaling pathway. A study treating young rats (3-4 weeks old) with rapamycin, to block the 

mTOR pathway, demonstrated an increase in severity to pilocarpine-induced seizures, as well 

as a reduction of the onset of seizure, but an increase of the total duration. This treatment also 

reduces the dosage necessary to induce seizures, and reduces KCC2 expression in the 

thalamus and hippocampus, without altering NKCC1 expression. In contrast, treating mature 

rats with rapamycin did not affect seizure sensitivity to pilocarpine, nor altered KCC2 

expression. Interestingly, blocking KCC2 with furosemide globally, or specifically in the 

thalamus also increased pilocarpine-induced seizure severity in young rats598. Previous reports 

have suggested that rapamycin may suppress epileptogenesis and seizures599,600, suggesting a 

role of the mTOR pathway in age-dependent seizure susceptibility. Considering that cortical 

dysplasia greatly alters the mTOR pathway, and pharmacological inhibition suppresses 
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seizures and neuronal hypertrophy in a mouse model of cortical dysplasia601, it is possible that 

KCC2 upregulation after P1 lesion in our model is associated to alterations in the mTOR 

pathway. The fact that mTOR signaling in epileptogenesis is also age-dependent makes it an 

attractive mechanism. 

 

KCC2 function before birth  

 

One potential caveat of our study is that we introduced shRNA into neurons before birth, 

thus, before the cortical lesion-induced increase in KCC2 expression. As discussed in the 

introduction, KCC2 mRNA is expressed in differentiated neurons when they reach their final 

position, and this process starts from E18.5 for CA1 PCs. We electroporated KCC2 shRNA in 

migrating pyramidal neurons from the lateral ventricle of the right hemisphere at E17.5. We, 

therefore, transfected neurons before they expressed KCC2 mRNA, and the shRNA should not 

have any effects until the migrating PCs reach their final positions. Another important point is 

that KCC2 protein expression is not clearly detectable before birth; instead it is faintly 

expressed and then gradually increases postnatally, within the first week. Furthermore, a study 

of KCC2-/- mouse embryo demonstrated that at E18.5, CA3 pyramidal cells did not have 

altered chloride gradient or EGABA. In fact, immunolabelling revealed that KCC2 was 

cytoplasmic in the majority of CA3 neurons at that age309. Consequently, although we are 

introducing shRNA before birth, the effects on hippocampal circuit formation should be 

limited. In addition, although KCC2 has been shown to affect the migration of interneurons133, 

we did not observe any alterations in layer formation or displaced neurons. In the extremely 

rare case that an animal presented with an abnormal-looking hippocampus, it was discarded 

and not analyzed (maybe 1-2 in hundreds).  

 

A recent study by Inoue et al, 2012 provides another evidence suggesting that KCC2 

functions mainly postnatally. The authors found that the ectopic expression of KCC2 is 

functional in postnatal, but not embryonic brain. They suggest that this difference may be 

related to the embryonic abundance of endogenous taurine, which acts through WNK1 
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signaling pathway to block KCC2 function337,602. In addition, in hippocampal neurons in vitro, 

although KCC2 was present at early stages, it was not functional, and needed to be activated 

(by phosphorylation, leading to increase in membrane surface expression, or/and 

oligomerization, etc.)299,333. As such, we reason that KCC2-shRNA affects KCC2 expression 

mainly in pups lesioned at P1, which show a dramatic increase in KCC2 expression levels 

over the next 10 days than in control brains, where there is a limited amount of KCC2.  

 

Long-term effects of the dual pathology 

 

Our group has previously reported that LHS rats exhibited spontaneous recurrent 

seizures from P80 onwards, spatial memory deficits both before and after the appearance of 

these spontaneous seizures, and finally dendritic spine loss. Glutamatergic synaptic alterations 

may contribute to the deficits in spatial memory. Moreover, the latent phase between the two 

early-life insults and the development of epilepsy demonstrates the occurrence of several 

neuronal circuit alterations well before seizure onset, as was also demonstrated by my work. In 

fact, the expression levels of KCC2 return to baseline in LHS at P80581, suggesting that the 

effects on KCC2 expression and function are crucial during epileptogenesis, but not in the 

recurrent generation of seizures. This is another evidence that KCC2 alterations are time-

sensitive.  

 

 Rescuing KCC2 overexpression in LHS pups during a critical postnatal window may 

also ameliorate the cognitive deficits observed in adult LHS rats. Preliminary experiments 

suggest that P40 LHS pups electroporated with KCC2-shRNA show improved learning 

compared to age-matched LHS pups electroporated with scramble-shRNA. On the other hand, 

KCC2shRNA electroporation in naïve rats does not appear to affect learning or memory as 

tested with the Morris water maze (preliminary observations). Another important question to 

explore is whether KCC2shRNA electroporation blocks epileptogenesis, which can be 

analyzed by EEG recording and seizure analysis in >P100 LHS rats. 
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KCC2 function in spine development: time and region-specificity 

 

Several studies suggested that KCC2 accumulates at glutamatergic synapses in spine 

heads of hippocampal pyramidal cells269,303. Further, the developmental increase of KCC2 

expression coincides with the most intense phase of synaptogenesis, increasing the likelihood 

that KCC2 modulates synapse formation, in normal conditions. In fact, it has yet to be 

established whether KCC2 proteins located in spines, which structurally promote spinogenesis, 

also actively transport K+/Cl- 196.  

 

Here, we report that spine head size and mEPSC amplitude in CA1 pyramidal cells is 

reduced in P20 LHS rats, well before the onset of spontaneous recurrent seizures, which 

eventually results in spine loss581 (See figure 19 below). In accordance with these data, we 

found that electroporation of KCC2-shRNA decreased spine density but did not affect spine 

head size, in CA1 pyramidal neurons in naive animals. In contrast, Khalilov et al (2011), 

reported a significant increase in the frequency of spontaneous IPSCs and EPSCs as well as 

enhanced network activity in CA3 hippocampal neurons from KCC2-/- E18.5 mouse embryos309. 

Further, suppressing KCC2 expression in mature neurons, after spine formation, did not affect 

spine density but reduced the efficacy of excitatory synapses through alteration of AMPA 

receptor aggregation in dendritic spines, an effect independent of KCC2 transporter function303. 

Finally, Purkinje-cell specific KCC2 knockout neither altered spine density nor their 

morphology213. Overall, these data suggest once again that the age and localization of the 

genetic manipulations need to be taken into account when studying KCC2 functional effects on 

circuit development.  

 

Surprisingly, LHS rats electroporated with KCC2-shRNA showed a significant increase 

in spine head size both compared to control LHS and control no-LHS groups (see figure 19). 

Multiple molecular and activity-dependent mechanisms likely underlie these alterations, as 

both GABAergic and glutamatergic receptor expression and function are altered in LHS 

compared to controls585 and inhibitory/excitatory balance regulates synapse formation and 

plasticity. As reported previously, BDNF is required for seizure-induced upregulation of 
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KCC2 in neonatal hippocampus234. One possible explanation as described in our first paper is 

that spine morphology may depend on the expression and interaction of activity-dependent 

factors, such as KCC2 and BDNF, both in normal and hyperactive networks.  

 

 Evidence that timing of KCC2 modulation is crucial on its effects on spine development 

first came from Li et al. (Neuron 2007), who showed that disrupting KCC2 expression in 

early-life leads to a lack of spine development and an increase in dendritic protrusions in the 

cortex, suggesting that KCC2 is important in spine formation 250. On the other hand, Gauvain 

et al. (2011) showed that reducing KCC2 expression by shRNA in mature hippocampal 

neurons (14DIV) no longer affected the density and formation of spines, but affected spine 

morphology through a loss of clustering of AMPAR at the membrane 303. This study suggests 

that KCC2 is required for proper spine maintenance in mature hippocampal neurons. Our data 

from shRNA-mediated downregulation of KCC2 in the hippocampus are consistent with these 

findings.  

 

Effects of KCC2 alterations are also sensitive to the brain region implicated.  

Overexpression of KCC2 in the cortex in vivo leads to long-term spine density increase306. In 

contrast to the cortex, overexpressing KCC2 in the hippocampus in vivo leads to spine density 

reduction (our data). These results propose that KCC2 is differently regulated in the 

hippocampus compared to the cortex, and/or the timing of KCC2 expression is different in 

these regions. Interestingly, preliminary observations suggest that KCC2 is already localized 

at the membrane of some CA1 PCs in the hippocampus at P1, while KCC2 immunoreactive 

signal is completely localized in PC cytoplasm in the cortex. These preliminary observations 

require further quantitative analysis; nevertheless they support the hypothesis of regional 

specificity of KCC2 expression and, possibly, function during early postnatal development. 

Additionally, the most probable mechanism underlying the regional differences of KCC2 

effects on spines may involve distinct BDNF-TrkB signaling activity. It will be interesting to 

investigate if the expression levels of BDNF and of activated TrkB increase earlier in the 

hippocampus than in cortex. Additionally, calpain activation (which cleaves a C-tern region of 

KCC2), as well as the dephosphorylation of Ser940, has been suggested to regulate the lateral 

mobility of KCC2 within the plasma membrane308, as previously discussed. KCC2’s 
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cytoskeleton binding domain is in the C-terminal region, suggesting that calpain activation and 

cleavage of KCC2 may alter dendritic spine formation, and could potentially affect AMPA 

clustering in dendritic spines303. It will be interesting to examine whether calpain expression is 

region specific, and how it is affected in an epileptic brain. 

 

Figure 19. Summary illustration depicting the alterations of KCC2 in the LHS model.  

The gray cells represent pyramidal cells, and the black cells represent PV-INs. In control 
conditions (left), a simple febrile seizure will not have any pathological effects. In the LHS 
rats (middle), there is a lesion that predisposes to febrile seizure susceptibility, causing 
atypical febrile seizures. The LHS rats show precocious overexpression of KCC2 and an 
increase of inhibitory drive onto CA1 PCs (thicker lines from basket cell). Finally, dendritic 
spines heads are smaller. Conversely, knockdown of KCC2 by shRNA in LHS rats (right) 
rescues febrile seizure susceptibility, KCC2 levels, and spine shrinkage.  
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Overall, it is clear that the timing of KCC2 modulation can differently affect different 

circuits, and perhaps the earlier expression of KCC2 in the hippocampus is necessary for its 

proper wiring and spine development, which reaches plateau before similar events in cortex. 

This is particularly important when we are looking for NKCC1 and KCC2 as therapeutic 

targets for pediatrics epilepsy224,405 or other developmental diseases, such as autism237,603 as 

we discussed previously. As such, in a pathological context, the hippocampus is particularly 

sensitive in epilepsy. Therefore, an early-life insult resulting in an increase of KCC2 

particularly in the hippocampus, where there already is initially more KCC2, may differently 

affect the overall network activity, and potentially cause a pro-convulsive effect. Therefore, 

treating children and adults with different types of epilepsy, implicating different brain areas, 

will most likely not produce the same effect. Altogether, changes of KCC2 expression or/and 

function in the brain may be harder to understand than we previously thought. An important 

question that remains to be resolved is whether and to what extent cognitive abilities are 

affected by alterations of KCC2 expression levels in specific circuits following pathological 

insults during development.   

 

Gender-based differences 

 

Consistent to what previously reported following status epilepticus or trauma in neonate 

rodents in vivo410,412, we found that KCC2 expression was increased specifically in male LHS 

rats. Interestingly, KCC2 expression in females, while more variable, was not significantly 

different compared to controls. This is consistent with previous findings showing that the 

expression time course of KCC2 and the efficacy of GABAA receptor signaling in rat CA1 

pyramidal neurons are gender-specific in normal development and following multiple status 

epilepticus episodes in the neonate410. Our lab has recently demonstrated that there are gender-

based differences in the long-term vulnerability to developing epilepsy in the LHS rats. First, 

the occurrence of spontaneous recurrent seizure occurred only in the adult male, and not 

female LHS rats534,580,604. While the mechanisms underlying this dimorphism are still not 

clearly elucidated, it is likely the stress response to the cortical dysplasia induced a P1 that 

plays a role604. While the histological damage induced by the cortical lesion was the same in 
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both sexes, corticosterone blood levels increased at P1 following the lesion in males but not 

female. On the other hand, androgenized females which received testosterone treatment 

showed a similar rise in corticosterone at P1 as their males littermates and also developed 

MTLE in adulthood604. These results suggest that the hormonal response to the freeze lesion 

may predispose the male brain to more severe hyperthermic seizures and the development of 

epilepsy. Finally, KCC2 expression may be preferentially increased in males in response to 

stress-induced GABAA receptor-mediated depolarization of CA1 pyramidal neurons605 or 

other gender-specific stress or/and inflammatory signaling pathways.  

 

Limitations of our study – Alternative strategies 

 

Studying the role of seizure-induced KCC2 variations in vivo has been so far hindered 

by the lack of specific KCC2 pharmacological inhibitors, which can be administrated via 

intraperitoneal or intravenous injections. We used shRNA-mediated knockdown, which is the 

best option to moderately reduce KCC2, and allow region-, time- and cell-specific alterations 

of KCC2 expression. The ideal condition would have been to use a tamoxifen-inducible 

plasmid, to selectively knockdown KCC2 starting from P1. The laboratory of Dr. Cancedda 

(our collaborators) has tried to produce this plasmid, however, it was never successful, as they 

could not reduce expression leakage. A limitation of our strategy is that shRNA-mediated 

KCC2 reduction may affect circuit development prior to the initial insult at P1 although as we 

suggested above, this effect is unlikely. However, pyramidal cell spine density reduction 

induced by KCC2shRNA expression prior to the hyperthermia could affect the overall circuit 

activity. On the other hand, we only transfected a small subpopulation of CA1 pyramidal 

neurons, thus it is unlikely that the entire hippocampal network activity is altered, an effect 

that would instead be induced by the use of pharmacological KCC2 inhibitors.  

 

As for KCC2 inhibitors, furosemide was the only available drug when we started this 

study. Furosemide, however, is not specific to KCC2 as it also inhibits NKCC1; it is also 

poorly permeant across the blood-brain barrier, and thus, not adequate for our in vivo 

experiments either. Recently, two new specific KCC2 inhibitors were produced. VU0240551 
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has been used in electrophysiology recordings in vitro, whereas VU046327 (generated by Dr. 

Delpire) effect following in vivo administration has only recently been demonstrated290. 

Administration of VU046327 actually increased seizure susceptibility, which is the opposite 

effect compared to what we found.  The most likely explanation is that most if not all KCC2 

activity is blocked by the concentration used in this study, while our approach reduces but 

does not block KCC2. Importantly, this compound is unstable, thus the authors had to infuse 

it directly into the brain during EEG recordings. Therefore, long-term treatment with this drug 

is simply not feasible during the first postnatal weeks, unless we cause further lesion by 

introducing stable cannula implant in the brain. Therefore, a ‘drug-free’ approach was and 

still is the best option. Additionally, it’s important to bear in mind that we did not want to 

fully eliminate KCC2 from the LHS brains, instead we wanted to reduce the overexpression 

observed in the hippocampus underneath the cortical dysplasia in these animals and see 

whether this would reverse the observed alterations. Therefore, the most appropriate 

experiment we could have done to limit KCC2 expression was shRNA-mediated knockdown 

in individual neurons without affecting the overall activity of cortical neuronal networks. 

  

A concern with using shRNAs is the possibility of having off-target effects or immune-

reactive side effects. Therefore, we used an established scramble control and KCC2 shRNA 

previously published. The reversal potential of GABA (EGABA) was successfully depolarized 

in the presence of KCC2 shRNA302. We also measured the level of KCC2 in electroporated 

animals and saw a ~50% decrease in membrane surface expression at P20. Transfected cells 

were still GFP+ at P50, which allowed us to perform learning and memory test in 

electroporated rats. We are currently investigating whether KCC2shRNA affects KCC2 

expression levels at P50 or later. 

 

An alternative experiment to prove that KCC2 upregulation is pro-convulsive in LHS 

animals is to pharmacologically enhance GABAergic signaling with a very low dose of 

diazepam, and see whether the seizure time onset is decreased590-592. This experiment would 

more specifically link KCC2 modifications to seizure susceptibility.  

 Finally, an important experiment would have been to examine the synaptic changes 

following KCC2 modulation by electrophysiology. In fact, both KCC2shRNA-mediated 
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knockdown and KCC2 overexpression in vivo affected spine density and morphology. 

Measuring miniature excitatory postsynaptic currents would have indicated the effect of spine 

alterations on estimated transmitter release, and thus, synaptic strength. 

 

Significance of this project 

 

Basic and clinical studies indicate that seizures in neonates have long-term neurological 

and psychiatric consequences. Current therapy for neonatal seizures is usually focused on 

early treatment with benzodiazepines and barbiturates, which exert their effects via 

modulation of GABA action at the GABAA receptor. Although these drugs are effective in 

adults, they do not control neonatal seizures well and may have adverse long-term effects on 

neurodevelopment, highlighting the need for novel approaches for treatment of seizures in the 

developing brain.  

 

Recent efforts have focused on targeting molecules that establish the chloride gradient 

[Cl−]i as a tool to modulate more efficiently GABAergic inhibition. It has been hypothesized 

that pharmacologically decreasing NKCC1 or promoting KCC2 function may promote the 

anticonvulsant effects of benzodiazepines and barbiturates in young brains. Unfortunately, 

two clinical trials evaluating bumetanide as a treatment for neonatal seizures (NCT00830531 

and NCT01434225) have been so far largely disappointing 606, indicating the need for a better 

understanding on how KCC2/NKCC1 regulates network excitability in the developing brain, 

particularly in a brain compromised by pre-existing conditions. 

 

Our dual-hit model has been well accepted by the medical community as it reproduces 

the clinical situation where children with prolonged, atypical FSs are at higher risk of 

developing medial temporal lobe epilepsy and cognitive problems than those experiencing 

simple FSs 580,581. This project constitutes an important advancement to the field since the role 

of pathology-induced, premature KCC2 upregulation in the developing brain is still highly 

controversial. The strength of this study resides in the innovative, targeted genetic approach to 

modulate KCC2 expression selectively in the dorsal hippocampus, using a triple-electrode 
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probe in our in utero electroporation experiments. This strategy allowed us to show for the 

first time that decreasing KCC2 expression in a limited number of hippocampal pyramidal 

neurons is sufficient to lower seizure susceptibility and rescue synaptic deficits in a clinically 

relevant model of atypical febrile seizures in the developing brain. It also brought to light 

regional differences of KCC2 modulation, further emphasizing the complexity of treating 

neonatal seizures. 

 
Finally, we believe these findings are of interest for its potential translational 

applications. Our data show that understanding the injury-specific alterations of KCC2 in 

clinical-relevant models is a critical prerequisite for investigating whether pharmaco-

modulation of chloride cotransporters may be therapeutically effective.  
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Conclusion 
 

Recent efforts have focused on targeting molecules that establish the chloride gradient 

as a tool to modulate GABAergic inhibition. KCC2 cotransporter progressively decreases the 

intracellular chloride concentration, and in turn is responsible for the shift in polarity of 

GABAergic transmission from mostly excitatory during early development to inhibitory in 

the adult. In addition, KCC2 has an important function in spine development and functional 

maintenance. It seems that the timing of the cotransporter’s developmental upregulation is 

ever so slightly different between the neocortex and the hippocampus. We showed that this 

region-specific difference leads to opposite effects on spine development, when KCC2 is 

prematurely increased. These results suggest that KCC2 in the developing brain is particularly 

sensitive to region-specific alterations, a phenomenon that could be heightened in a brain 

compromised by pre-existing conditions. As such, we evaluated the effect of two neonatal 

insults on febrile seizure susceptibility and spine development. 

 

 Febrile seizures (FSs) are the most common convulsive events in humans between 6 

months and 5 years of age, with a prevalence of 2–14% in this population. Simple FSs are 

considered benign, whereas children experiencing atypical FSs, which account for 30-40% of 

FS cases, run a higher risk (7%-49% depending on FS characteristics) of developing cognitive 

deficits and temporal lobe epilepsy as adults. Interestingly, patients with temporal lobe 

epilepsy that have experienced atypical FSs often carry a cortical malformation. This 

association has led to the hypothesis that a double-hit (cortical dysplasia and atypical febrile 

seizures) in the developing brain may precipitate the onset of neurological problems later in 

life. Our dual-hit model has been well accepted by the medical community as it reproduces 

the clinical situation where children with prolonged, atypical FSs are at higher risk of 

developing medial temporal lobe epilepsy and cognitive problems than those experiencing 

simple FSs 580,581. In this project, we report that LHS rats have a precocious and sustained 

increase of hippocampal KCC2 protein levels, resulting in a negative shift of the reversal 

potential of GABA (EGABA). In addition, excitatory synapses are significantly altered in CA1 

pyramidal neurons, which was accompanied by spatial memory deficits occurring before the 
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onset of spontaneous recurrent seizures. By using a novel approach to specifically direct the 

expression of KCC2 shRNA in CA1 pyramidal neurons, namely a triple-electrode probe 

during in utero electroporation experiments. We demonstrated that the precocious increase of 

KCC2 expression contributes to the occurrence of long-term alterations in dendritic spine size 

in CA1 pyramidal neurons and, surprisingly, to lowering the threshold for febrile induced 

seizures in vivo. Altogether, our results demonstrate for the first time, that alterations of 

KCC2 expression are region-specific and time-sensitive. Further, future studies will help us to 

better design targeted manipulation of KCC2 to alleviate neurological and cognitive problems 

caused by a variety of early-life insults. 
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