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Résumé 

Quelque 30 % de la population neuronale du cortex mammalien est composée d’une 

population très hétérogène d’interneurones GABAergiques.  Ces interneurones diffèrent 

quant à leur morphologie, leur expression génique, leurs propriétés électrophysiologiques et 

leurs cibles subcellulaires, formant une riche diversité.  Après leur naissance dans les 

éminences ganglioniques, ces cellules migrent vers les différentes couches corticales.  Les 

interneurones GABAergiques corticaux exprimant la parvalbumin (PV), lesquels constituent 

le sous-type majeur des interneurones GABAergiques, ciblent spécifiquement le soma et les 

dendrites proximales des neurones principaux et des neurones PV+.  Ces interneurones sont 

nommés cellules à panier (Basket Cells –BCs) en raison de la complexité morphologique de 

leur axone.  La maturation de la connectivité distincte des BCs PV+, caractérisée par une 

augmentation de la complexité de l’axone et de la densité synaptique, se déroule 

graduellement chez la souris juvénile.  Des travaux précédents ont commencé à élucider les 

mécanismes contrôlant ce processus de maturation, identifiant des facteurs génétiques, 

l’activité neuronale ainsi que l’expérience sensorielle.  Cette augmentation marquante de la 

complexité axonale et de la synaptogénèse durant cette phase de maturation suggère la 

nécessité d’une synthèse de protéines élevée.  La voie de signalisation de la cible 

mécanistique de la rapamycine (Mechanistic Target Of Rapamycin -mTOR) a été impliquée 

dans le contrôle de plusieurs aspects neurodéveloppementaux en régulant la synthèse de 

protéines.  Des mutations des régulateurs Tsc1 et Tsc2 du complexe mTOR1 causent la 

sclérose tubéreuse (TSC) chez l’humain.  La majorité des patients TSC développent des 

problèmes neurologiques incluant des crises épileptiques, des retards mentaux et l’autisme.  

D’études récentes ont investigué le rôle de la dérégulation de la voie de signalisation de 

mTOR dans les neurones corticaux excitateurs.  Toutefois, son rôle dans le développement 

des interneurones GABAergiques corticaux et la contribution spécifique de ces interneurones 
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GABAergiques altérés dans les manifestations de la maladie demeurent largement inconnus.  

Ici, nous avons investigué si et comment l’ablation du gène Tsc1 perturbe le développement 

de la connectivité GABAergique, autant in vitro que in vivo. 

 

Pour investiguer le rôle de l’activation de mTORC1 dans le développement d’une BC unique, 

nous avons délété le gène Tsc1 en transfectant CRE-GFP dirigé par un promoteur spécifique 

aux BCs dans des cultures organotypiques provenant de souris Tsc1lox.  Le knockdown in 

vitro de Tsc1 a causé une augmentation précoce de la densité des boutons et des 

embranchements terminaux formés par les BCs mutantes, augmentation renversée par le 

traitement à la rapamycine.  Ces données suggèrent que l’hyperactivation de la voie de 

signalisation de mTOR affecte le rythme de la maturation des synapses des BCs.  Pour 

investiguer le rôle de mTORC1 dans les interneurones GABAergiques in vivo, nous avons 

croisé les souris Tsc1lox avec les souris Nkx2.1-Cre et PV-Cre.  À P18, les souris  Tg(Nkx2.1-

Cre);Tsc1flox/flox ont montré une hyperactivation de mTORC1 et une hypertrophie somatique 

des BCs de même qu’une augmentation de l’expression de PV dans la région périsomatique 

des neurones pyramidaux.  Au contraire, à P45 nous avons découvert une réduction de la 

densité des punctas périsomatiques PV-gephyrin (un marqueur post-synaptique 

GABAergique).  L’étude de la morphologie des BCs en cultures organotypiques provenant 

du knock-out conditionnel Nkx2.1-Cre a confirmé l’augmentation initiale du rythme de 

maturation, lequel s’effondre ensuite aux étapes développementales tardives.  De plus, les 

souris Tg(Nkx2.1Cre);Tsc1flox/flox montrent des déficits dans la mémoire de travail et le 

comportement social et ce d’une façon dose-dépendante.  En somme, ces résultats suggèrent 

que l’activation contrôlée de mTOR régule le déroulement de la maturation et la maintenance 

des synapses des BCs. 
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Des dysfonctions de la neurotransmission GABAergique ont été impliquées dans des 

maladies telles que l’épilepsie et chez certains patients, elles sont associées avec des 

mutations du récepteur GABAA.  De quelle façon ces mutations affectent le processus de 

maturation des BCs demeuret toutefois inconnu.  Pour adresser cette question, nous avons 

utilisé la stratégie Cre-lox pour déléter le gène GABRA1, codant pour la sous-unité alpha-1 du 

récepteur GABAA dans une unique BC en culture organotypique.  La perte de GABRA1 

réduit l’étendue du champ d’innervation des BCs, suggérant que des variations dans les 

entrées inhibitrices en raison de l’absence de la sous-unité GABAAR α1 peuvent affecter le 

développement des BCs.  La surexpression des sous-unités GABAAR α1 contenant des 

mutations identifiées chez des patients épileptiques ont montré des effets similaires en termes 

d’étendue du champ d’innervation des BCs.  Pour approfondir, nous avons investigué les 

effets de ces mutations identifiées chez l’humain dans le développement des épines des 

neurones pyramidaux, lesquelles sont l’endroit privilégié pour la formation des synapses 

excitatrices.  Somme toute, ces données montrent pour la première fois que différentes 

mutations de GABRA1 associées à des syndromes épileptiques peuvent affecter les épines 

dendritiques et la formation des boutons GABAergiques d’une façon mutation-spécifique. 
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Abstract 

About 30% of the total neuronal population in the mammalian cortex is composed by a very 

heterogeneous population of GABAergic interneurons. These interneurons differ in their 

morphology, gene expression, electrophysiological properties and subcellular targets, thus 

establishing a rich diversity. After birth in the ganglionic eminences these cells migrate to 

distinct cortical layers. Parvalbumin (PV) expressing cortical GABAergic cells which 

constitute the major GABAergic subtype specifically targets the soma and proximal dendrites 

of principal neurons and PV+ cells. These cells are often referred as Basket cells (BCs) 

because of the intricate morphological complexity of their axons. The maturation of the 

distinct connectivity of PV+ BCs, characterized by an increase of axon complexity and 

synapse density, occurs gradually in juvenile mice. Previous studies started to elucidate the 

mechanisms controlling this maturation process, including genetic factors, neuronal activity 

and sensory experiences. The striking increase in axonal complexity and synaptogenesis 

occurring during the maturation phase suggests the requirement for elevated proteins 

synthesis in order to sustain the developmental process. The Mechanistic Target Of 

Rapamycin (mTOR) pathway has been implicated in controlling several aspects of 

neurodevelopment by regulating protein synthesis. Mutations in the regulatory components 

Tsc1 and Tsc2 of mTOR-Complex1 (mTORC1) cause the disease Tuberous Sclerosis (TSC) 

in humans. The majority of TSC patients develop neurological problems including seizures, 

mental retardation and autism. Recent studies investigated the role of mTOR pathway dys-

regulation in excitatory cortical cells, however its role in the development of cortical 

GABAergic interneurons and the specific contribution of altered GABAergic cells in disease 

manifestation remain largely unknown. Here, we investigated whether and how Tsc1 

knockout perturbs GABAergic circuit development, both in vitro and in vivo.  
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To investigate the role of mTORC1 activation in BC development, we knocked out Tsc1 

expression, by transfecting Cre-GFP driven by a promoter specific for BCs in cortical 

organotypic cultures prepared from Tsc1lox mice. Tsc1 knockdown in vitro caused a 

precocious increase in bouton density and terminal branching formed by mutant BCs, which 

was reversed by Rapamycin treatment. These data suggest that mTOR pathway 

hyperactivation affects the timing of BC synapse maturation. To investigate the role of 

mTORC1 in GABAergic cells in vivo, we bred Tsc1lox mice with Nkx2.1-Cre and PV-Cre 

mice. At P18, Tg(Nkx2.1Cre),Tsc1flox/flox mice showed both mTORC1 hyperactivation and 

somatic hypertrophy in BCs along with increased expression of PV in the perisomatic region 

of pyramidal neurons. In contrast, by P45 we found a reduction of PV-gephyrin (post-

synaptic GABAergic marker) perisomatic puncta density. Study of BC morphology in 

organotypic cultures from the Nkx2.1-Cre conditional knockout confirmed the occurrence of 

a faster maturation rate initially which however collapsed at later stages. Additionally 

Tg(Nkx2.1Cre),Tsc1flox/flox mice exhibit Tsc1 dose-dependent deficits in working memory 

and social behaviour. All together, these results suggest that controlled mTOR activation 

regulates both the time course and the maintenance of BC synapses.  

Dysfunction of GABAergic neurotransmission has been implicated in several disease states 

like epilepsy and in some patients it is associated with mutations in the GABAA receptor. 

How these mutations affect the BC cell maturation process remains largely unknown. To 

address this question, we used the Cre-lox strategy to knockout the endogenous GABRA1 

gene coding for the GABAA-receptor alpha-1 subunit in single PV-expressing basket cells 

(BCs) in organotypic cultures. Cell-autonomous loss of GABRA1 reduced the extent of BC 

innervation field suggesting changes in inhibitory inputs caused by the absence of GABAAR 

α1 subunit may alter BC development. Over-expression of mutant GABAAR α1 subunits 

(found in patients diagnosed with epilepsy) show similar effects in terms of BC target 



vi 
 

coverage. Further studies involved the effect of these human mutations in the development of 

Pyramidal cell dendritic spines, which are the preferential site for excitatory synapse 

formation. Altogether, this data show for the first time that different GABRA1 mutations 

associated with genetic epilepsy syndromes can affect dendritic spine and GABAergic bouton 

formation in a mutation-specific manner. 
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Chapter 1: Introduction 

The mammalian cortex is made up of a multitude of neurons of which the vast majority are 

excitatory cells. Conversely, inhibitory cells (interneurons) constitute only ~20-30% of 

neurons.  These interneurons synthesize and release GABA which is the major inhibitory 

neurotransmitter in the adult CNS. The main focus of my PhD work is on the mechanisms 

regulating inhibitory circuit development. From a clinical perspective, growing evidence 

suggests that maldevelopment of the inhibitory circuits can lead to severe neuro-

developmental disorders. In this doctoral dissertation, I look into the role of two distinct 

genes namely, (a) spell it out the first time TSC1 and (b) spell it out the first time GABRA1 in 

GABAergic cell development in the cortex, using mouse genetics, organotypic cultures, 

confocal imaging and behavioural analysis. Further, this work shows that single-cell genetics 

may be a powerful tool to study neurodevelopmental disorders.  

1.1 Development of GABAergic cells in the cortex 

Probably, the most striking feature of the inhibitory neuronal population is its diversity, due 

to differences in terms of gene expression, electrophysiological properties and connectivity. 

For example, Parvalbumin (PV)-expressing basket cells in the cortex are fast-spiking (short 

action potential and high frequency of firing) and target the somata and proximal dendrites of 

neighbouring cells (Figure.1.1). Condensing this large and heterogeneous population into 

finite groups of interneurons based on the above mentioned features has been a challenging 

task. However, with the advent of new genetic tools recent studies have been able to dissect 

this diverse population into more generalized groups. A second striking feature of 

GABAergic cells lies in its long developmental time window which extends to several weeks 

after birth in rodents. Both of these aspects have been discussed in length in the following 



2 
 

two sections and primarily try to throw light on “from where they came” and “who they 

became” through intricate cellular and molecular mechanisms. 

1.1.1 Spatial and temporal origins of cortical inhibitory neurons 

The answer to understanding the basis of interneuron diversity in the post-natal cortex lies in 

the underlying mechanisms of gene expression of progenitor cells during embryonic stages in 

sub-cortical proliferative zones. In the embryonic brain, the telencephalon (which later forms 

the cortex in the adult brain) has three distinct zones which host the sub-cortical progenitor 

cells, namely the medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) 

along with the preoptic area (POA) (Figure.1.2). 

The medial ganglionic eminence is the major contributor of the cortical inhibitory cell 

population (~50-60%) and is the birthplace of large population of inhibitory progenitor cells 

in mice. The major populations of MGE-derived GABAergic interneurons are exclusively PV 

(Parvalbumin) and SST (Somatostatin)-expressing cells while a smaller diaspora of cells also 

express Reelin, NPY (Neuropeptide Y) or CR (Calretinin) along with SST. The Dlx class of 

genes have been the earliest genes to be correlated with interneuron migration from sub-

pallium to cortex1. Both PV- and SST- expressing interneurons greatly depend on the 

transcription factor Nkx2.1 for their generation. Previous studies have shown that Nkx2.1 

mutants lacked their ability to generate more than half of these two interneuron populations in 

the cortex2. Later studies involving both in vitro experiments3,4  as well as in vivo 

transplantation analysis3,5  showed that MGE-derived cells in the cortex consist of ~65% of 

PV- and remaining ~35% of SST-expressing interneurons. The Nkx2.1 transcription factor 

has both activator and repressor functions6. While it represses the expression of CGE-specific 

genes, it activates the Lhx6 gene in PV- and SST-expressing interneurons. Lhx6 in turn also 

activates other genes like Sox6 and Satb1 which further influences the post-natal 
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developmental process of the cortical interneurons7, 8. Interestingly, the ventricular zone in 

the MGE has different domains of progenitor cells and based on their spatial location, this 

region can be subdivided into five zones designated as pMGE1 to pMGE59.  

A                                                           B 

                                                                 B   

 

Figure.1.1 A, Different classes of interneuron in the cortical layers showing distinct pattern 
of connectivity based on the cellular region of target (adapted from Marin, 2012)216. B, 
Diversity of interneurons based on morphology, connectivity pattern, marker expression and 
intrinsic firing properties  (adapted from Kepecs and Fishell, 2014)11. 

 

The role of the CGE in its contribution to the cortical interneuron population is slowly 

emerging and has been recently estimated that ~30-40% cortical interneurons originate from 

CGE.  The CGE region is a caudal fusion of the MGE and LGE (Lateral Ganglionic 

Eminence) which begins at the coronal level of the mid-thalamus. Using in utero 

transplantation techniques, Nery and co-workers showed for the first time that CGE 

progenitor cells migrated to the cortex where they gave rise to a robust population of 

interneurons12. Further studies involving both in vitro and in vivo studies have corroborated 

this finding demonstrating that cortical interneurons with bipolar and double-bouquet 

Markers Morphology Connectivity Intrinsic 
properties 
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morphology are derived from the CGE and express CR (but not SST) and/or VIP5,13. Further 

studies show that the transcription factor CoupTF2 is richly expressed in CGE progenitors 

and experimental evidence support their role in migration of CGE-derived interneurons to the 

cortex. Almost, all CGE-derived interneurons express the 5HT3a receptor14.  

Finally, the POA is the third region that contributes to the cortical interneuron diversity15. 

Located ventrally to the MGE, the POA progenitor cells also express Nkx2.1 transcription 

factor but none of them express Lhx69. A small proportion of these POA cells express Nkx5.1 

and have electrophysiological properties similar to fast adapting neurons. However, they do 

not express PV, SST, CR or VIP making them distinctly different from interneurons derived 

from the MGE and CGE. 

These progenitors trudge through a long migratory path from subcortical ventral 

telencephalon to the cortex (Figure.1.2). This sojourn is guided by a variety of 

chemorepulsion, chemoattraction, migratory substrates and motogens16. These precursor cell 

show a strong migratory drive and express various motogens like hepatocyte growth 

factor/scatter factor (HGF/SF), glial derived neurotrophic factor (GDNF), brain derived 

neurotrophic factor (BDNF) and NT4 promoting tangential migration17-19. Chemorepulsive 

guidance cues provided by Eph-ephrin and Slit- Robo signalling have been well characterized 

in earlier20-22. Chemoattractrants involved in this guidance process include ErbB4-Neuroligin 

1 signalling and netrin23, 24. Therefore a variety of cues work in concert to ensure the passage 

of cortical interneurons to their final destination. 
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A                                                                   B 

 

                      

Figure 1.2. A, Distinct transcriptional profiles of spatially segregated progenitor cells give 
rise to cortical interneuron diversity (adapted from Gelman et al, 2010)10.B, Migration 
pathways of cortical interneuron subgroups from the ventral telencephalon (adapted from 
Wonders and Anderson, 2006)25. 

 

1.1.2 Post-natal development of Parvalbumin (PV) cells in the cortex 

1.1.2.1 PV cell identity and function 

After migrating to the cortex, the majority of MGE-derived interneurons become fast-spiking 

and start to express the calcium binding protein Parvalbumin (PV) by post-natal day 14(P14). 

This is achieved through the consorted action of several genes which includes Nkx2.1, Dlx5, 

Dlx6, Lhx6 and Sox6. Conversely, these genetic factors are not the only facets that shape the 

post-natal development of these cells. Multiple studies have focussed on the role of neuronal 

activity and sensory experience in shaping the connectivity of these cells. But before we try 
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to understand “how” they mature, it is important to know “what” a mature PV neuron is in 

terms of morphology and function.  

Parvalbumin (PV) expressing cells constitute about ~50% of the total interneuron population 

in the rodent cortex and even lesser in humans26. The majority of these cells are PV-

expressing basket cells (BC) which target the soma and proximal dendrites of principal 

excitatory cells while a less-abundant population consists of axon initial segment targeting 

Chandelier cells. The PV-expressing BCs can be further subdivided based on their 

morphology into large BCs, small BCs and nest BCs. The electrophysiological properties 

make these cells unique and the most reliable source of inhibition in the cortex. PV-

expressing BCs exhibit fast membrane kinetics, brief action potentials with large after 

hyperpolarisation , low input resistance and can sustain high frequency of firing rate27,28. The 

high expression of Kv3 voltage gated potassium channels essentially allows fast 

repolarization and termination of action potential rendering them capable of displaying such 

fast kinetics29, 30.  Additionally, the BC’s express P/Q type of presynaptic Ca2+ channels 

which facilitates the coupling of neurotransmitter release after an action potential31, 32. Also, 

the rich abundance of Ca2+ binding proteins like PV and Calbindin allows efficient buffering 

of Ca2+ inside the cell which in turn may shield it from Ca2+-induced excitotoxicity following 

fast-spiking activity.  

Our past understanding on the role of interneurons was reduced to providing local inhibition 

to excitatory cells through release of GABA, which serves as a guard against excess 

excitation33. However, the role of inhibition has been shown to be far more sophisticated 

since these interneurons form microcircuits at the local level and allows flow-control of 

information in the network in response to specific behavioural events. These microcircuit 

motifs can provide both feedforward and feedback inhibition. In feedforward inhibition, 

afferent excitatory axons activate both principal cells and interneurons in parallel. Feedback 
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inhibition occurs in a circuit when afferent excitatory axons activate principal cells which in 

turn activate interneurons forming a series. This type of inhibition can be further classified 

into recurrent and lateral feedback inhibition (Figure.1.3).  

 

A                                                                            B 

 

 

 

 

 

 

Figure 1.3. A, Inhibitory microcircuits can provide both feedforward and feedback inhibition. 
Feedback inhibition can be further divided into recurrent and lateral inhibition. B, 
Disinhibition of interneurons by inhibition of one interneuron by another (adapted from Hu et 
al, 2014)34. 

 

PV-expressing BCs perisomatically connect hundreds of neighbouring pyramidal cells and 

this allows them to control the excitability of the target cells. In this way BCs are able to 

provide feed-forward inhibition and execute temporal control of summation of excitatory 

inputs and spike generation within populations of pyramidal cells35 ,36. Interestingly, these 

PV-expressing BCs are highly connected with each other through both chemical and electric 

synapses (gap junctions) thereby creating a network of synchronously active BCs. This vast 

network of BCs is capable of triggering and maintaining gamma oscillations (high frequency 

waves of 30-90 Hz) in the cortex37, 38. Specifically, when fast-spiking BCs in the barrel cortex 

were activated using optogenetic techniques, gamma oscillations were amplified39. In 

contrast, specific activation of pyramidal cells only generated low frequency oscillations 

thereby dissociating the role of BCs in generation of gamma oscillations. In a separate study 

Feedforward Feedback 

PV PV 
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this finding has been recapitulated when light-driven (optogenic) inhibition of BC activity 

supressed gamma oscillations in vivo whereas activation of BCs generated emergent gamma-

frequency rhythmicity40. PV cells can also form disinhibitory microcircuits which have been 

recently implicated in controlling ocular dominance plasticity (permanent cortical 

unresponsiveness to one eye after loss of vision). Recent studies have shown that excitatory 

pyramidal cells through less activation of PV cells can in turn reduce inhibitory effects 

resulting higher excitation in them41. 

1.1.2.2 PV cell development 

The plethora of functional paradigms PV expressing BC cells are involved (both in 

singularity and as a network) resides in its capability to provide inhibition to a vast 

population of target neurons. This probably justifies the long duration of their post-natal 

maturation process in order to innervate and form synapses on a finite number of neurons.  

Various factors that shape maturation of PV-expressing BCs have come to light over the past 

two decades. GABA, apart from being the main inhibitory neurotransmitter in the vertebrate 

brain, also serves as a trophic factor that guides neuronal migration and neurite growth both 

during embryonic and post-natal development. New born pyramidal cells express GABAA 

receptors and receive GABAergic inputs on them even before excitatory synapses are 

formed42. In fact, GABA has a depolarizing effect and essentially acts as an excitatory 

neurotransmitter in immature neurons allowing efflux of Cl- through GABAA receptors; 

which promotes Ca2+ influx and signalling43, 44. The physiological basis of the excitatory 

function of GABA was correlated with high level of NKCC1 (Na-K-Cl-cotransporter 1) 

expression in the immature neurons.  NKCC1 causes increase in Cl- inside the cell which in 

turn shifts the equilibrium potential for GABA (EGABA) towards more depolarized values45. 

Therefore GABAA receptor activation leads to efflux of Cl- and causes depolarization of the 
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cell. A developmental switch occurs when the level of KCC2 (K-Cl-cotransporter 2) 

expression increases leading to reduced levels of Cl- inside the cell. This causes a shift of the 

EGABA towards more negative values allowing GABA to have an inhibitory effect in mature 

neurons46, 47. Overall, it is well established that GABA plays an important role in the 

development of the immature brain.  

However, the synaptogenesis and refinement of the innervation pattern of PV-expressing BCs 

continues till late adolescence both in rodents and primates48-50 Chattopadhyaya and co-

workers have reported the innervation pattern of BCs during post-natal weeks in organotypic 

culture system. This work has segregated the developmental time windows into various 

phases where BC innervation and target coverage is progressively enhanced between EP14 to 

EP3248 (Figure.1.4).  

 

A                                                                                    B 

                                                                                      

 

 

 

Figure 1.4. A, PV-expressing basket cells show increase in innervation field of target cells, 
axonal arborisation and synaptic density on target excitatory cells both in organotypic 
cultures and in vivo during the second and fourth post-natal weeks ( adapted from 
Chattopadhayaya et al, 2004)48. B, Schematic representing increased branching and synaptic 
density on target cells during this phase (adapted from Huang et al, 2007)51. 
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The cellular and molecular mechanisms involved in this maturation process are slowly 

emerging and implicates genetic factors, neuronal activity and sensory experiences working 

in concert to shape up their precise connectivity. Deprivation of sensory experience in the 

visual cortex either through dark rearing or intra-ocular TTX injection leads to reduced 

innervation of BCs48,49. Also sensory deprivation through whisker trimming alters the 

maturation process of PV cells in the somatosensory cortex52. Some molecules have been 

identified whose expression levels are activity and/or sensory experience dependent. One of 

the first molecules identified to be involved in GABAergic interneuron maturation process is 

Brain Derived Neurotrphic Factor (BDNF), which is expressed mainly by pyramidal cells. 

BDNF is upregulated following light stimulation in the visual cortex53,54  and is implicated in 

inhibitory synapse formation in hippocampal and cortical cultures55,56. 

Interestingly, GABA is another molecule that plays a strong role in regulating synapse 

maturation apart from its role as a trophic factor. GABA is produced by two enzymes, the 

GAD67 (Glutamate decarboxylase) which is the rate limiting enzyme and accounts for ~90% 

of GABA content and GAD65, which accounts for the remaining ~10%. Unlike GAD67, 

GAD65 is primarily localized at the pre-synaptic terminals57. Manipulating the level of GABA 

synthesis and release at different time points of developmental have yielded interesting 

insights. Deletion of GAD67, the chief GABA producing enzyme in single BCs during the 

peak of maturation phase resulted in reduced connectivity however did not affect connectivity 

when removed at later stages58. Germline reduction in single copy of GAD67 recapitulates 

aberrant reduction in perisomatic synapse maturation. Additionally, these deficits were 

rescued by agonists of GABAA and GABAB receptors suggesting a receptor-specific effect of 

GABA-mediated signalling during GABAergic synapse maturation. Separate studies have 

shown that transcription of Gad1 gene which leads to GAD67 expression are both activity-

dependent59 and sensitive to experience60. More recent study has shown that when GABA 
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neurotransmission is modulated by lowering excitability to fire action potentials it negatively 

affects global target coverage of single BCs at various time points in the developmental time 

window61. However, affecting synaptic vesicle release had opposing effects depending on the 

developmental stage of the BC. Wu and co-workers showed that complete removal of GABA 

synthesis by knocking out both GAD67 and GAD65 or removing vGAT leads to over-

proliferation of small synapse and overgrowth of axons62. This finding is corroborated by 

Baho and Di Cristo where disruption of GABA release lead to hyper-connectivity of target 

somas in single BCs. In summary, these results indicate that GABA per se is not essential for 

inhibitory synapse formation however GABAergic neuronal activity is necessary for 

validation and stabilization of synapses.  

 (PSA) is another molecule which is a negative regulator of synapse formation in the 

developing visual cortex. PSA is a long, linear homopolymer of α-2, 8-linked sialic acid that 

attaches almost exclusively to the neural cell adhesion molecule (NCAM) in vertebrates63.  

NCAMs exist as three different isoforms, NCAM120, NCAM140 and NCAM180.The levels 

of PSA in the visual cortex declines with eye opening and conversely this decline is impaired 

by visual deprivation. Enzymatic removal of PSA leads to premature increase in innervation 

of target cells by BCs64. Further study has shown that NCAM removal specifically in BCs 

during the maturation phase of their synaptic connections causes reduction in both the 

percentage of innervated pyramidal cells and density of synapses formed by BC onto them. 

This reduction can be rescued by addition of NCAM120 and NCAM140, but not 

NCAM18065.   

So far, a handful of genetic factors have been identified which is involved in shaping the 

developmental process of cortical PV cells. However, future studies will reveal more such 

genes that shape this process and how the expression and function of these genes are affected 

in neurodevelopment disorders.   
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Chapter 1.2 GABAA receptors in cortical synapse development  

GABA is the major inhibitory neurotransmitter in the adult CNS and acts by binding to post-

synaptic GABA receptors. GABA receptors are of 3 types, (1) GABAA receptors (ionotropic) 

(2) GABAB receptors (metabotropic) and (3) GABAC receptors (ionotropic). GABAA is most 

abundantly expressed in the adult mammalian cortex. GABA action mediated by GABAA 

receptors plays an important role in cortical development. This section briefly describes the 

genetics, structure and expression of GABAA receptors in the cortex and its subsequent role 

in epilepsy.     

1.2.1 GABAA receptors in the developing brain 

GABAA receptors are pentameric channels composed of different combination of subunits 

which differ in kinetic, pharmacological and localization properties (Figure 1.5). GABAA 

receptors are ionotropic receptors. These receptors open upon binding of the neurotransmitter 

GABA, thus allowing passage of anions (Cl- and HCO3
-) through them. GABAA receptors are 

also targets of several pharmacological agents like benzodiazepine-site (BZ-site) ligands, 

barbiturates, neurosteroids, intravenous anaesthetics (e.g. propofol and etomidate), inhalation 

anaesthetics (e.g. Isoflurane) and alcohol. In mature neurons, under normal conditions, the 

activation of GABAA receptors leads to hyperpolarization of cell membrane potential and 

inhibition of neuronal activity. GABAA receptors are not only present at postsynaptic sites, 

but also in extra-synaptic membranes. Earlier studies using whole-cell voltage-clamp 

recordings in developing neurons have shown that these extra-synaptic GABAA receptors are 

responsible for tonic inhibition66,67, while synaptic GABAA receptors mediate phasic 

inhibition.  
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Figure 1.5. Schematic illustration of the GABAA receptor and its associated binding sites 
(adapted from Uusi-Oukari and Korpi, 2010)68. 

 

1.2.1.1 GABAA receptor genetics 

A complex set of genes comprising of 19 genes codes for different GABAA subunits in 

mammals. These genes encode for a total of 8 subunit classes, namely α1–α6, β1–β3, γ1– γ3, 

δ, ε, θ, π, ρ1- ρ369. Further gene mapping studies showed that most genes are clustered in 

vertebrate chromosomes70,71. Fourteen of the 19 human GABAA receptor genes are clustered 

on four chromosomes, 4p12-p13, 5q31-q35, 15q11-q13 and Xq2871. Two clusters of four 

genes encode two α subunits, one β subunit, and one γ subunit (GABRA2, GABRA4, 

GABRB1, and GABRG1 on chromosome 4, and GABRA1, GABRA6, GABRB2, and GABRG2 

on chromosome 5). Chromosome 15 contain a cluster of three genes which comprises one α 

subunit gene (GABRA5), one β subunit gene (GABRB3), and one γ subunit gene (GABRG3). 

Another cluster in X chromosome consists of one α subunit gene (GABRA3), the θ subunit 

gene (GABRQ), and the ε subunit gene (GABRE). The θ and ε subunits have 50% identity 

similar to β and γ respectively. In mice, GABAA receptor genes are clustered similar to 

humans69. This clustering of GABA receptors which is evolutionary favoured could be 

because of in-built mechanisms that regulate the coordination of their expression. 
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Alternatively, it is also possible that this clustering arose from an ancestral αβγ receptor set 

by a series of duplications, sequence divergences, and chromosomal translocations72. 

1.2.1.2 GABAA receptor subunit composition and localization 

The most common subunit stoichiometry for a GABAA receptor is thought to be 2α/2β/γ. 

Sometimes the γ subunit is substituted by δ or θ69,73. Studies from other groups have reported 

the existence of different stoichiometry comprising of only α and β, 2α/β/2γ and 2α/β/2ε74. It 

is still not properly understood how these pentameric assemblies are formed. In the regular 

pentameric composition 2α/2β/γ, γ2 is more frequent than γ1 or γ3 and both the α and β 

subunits can be either identical or different. These combinatorial possibilities allow for at 

least 36 distinct GABAAR subtypes in CNS neurons. A handful of studies using in situ 

hybridization have revealed that the six α subunit variants largely correspond to distinct 

GABAA receptor subtypes, each with a specific distribution pattern that overlaps only 

partially with that of other α subunits75. On the other hand, according to the Allen Brain 

Atlas, the ρ1 and ρ2 subunit mRNAs (corresponding to GABAC receptors) are restricted to 

the superficial layers of the superior colliculus, and the π subunit mRNA is undetectable in 

the adult mouse brain. The presence of so many different GABAA receptors, which differ in 

kinetics properties, allow for a fine-tuning of inhibition in CNS. 

1.2.1.3 Maturation of GABAA receptors in cortical interneurons and pyramidal cells 

GABAA receptors are present in the brain from a very early stage in neuronal precursor cells. 

Earlier study in the rodent brain reported the presence of GABAA receptors in neural stem 

cells76,77  as well as migrating neuroblasts78. Interestingly, GABAA receptor is expressed in 

these precursor cells long before GABAergic synapses are formed. GABAA receptors 

composition undergoes a gradual change over the course of neuronal maturation. In the rat 

brain, the expression of α3, α5, and β3 mRNAs starts at late embryonic stages and peaks 
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during early postnatal development. Over time the expression of these three genes lowers and 

correspondingly there is increase in expression of α1, α4, β2, and δ during postnatal 

development in cortical neurons. The adult brain predominantly expresses these subunits. 

Also the expression of α2 and γ2 remain fairly constant during development79. These 

developmental changes in subunit expression are strongly correlated with decrease in decay 

time constant (τ) of GABAergic IPSC (inhibitory post-synaptic current). MGE-derived PV-

expressing cells in the neocortex acquire mature IPSC properties only after the third or fourth 

postnatal week which parallels with the decrease in τIPSC in these cells80,81. Similarly, CGE-

derived 5HT3R-expressing cortical neurons also display a sharp decrease in τIPSC
82. These 

developmental changes in terms of subunit expression also occur in excitatory cells. In 

cortical pyramidal cells, a similar decrease in IPSC decay kinetics is associated with 

upregulation of α1 and α4 and downregulation of α3 and α5 GABAA receptor subunits83-86. 

Altogether, it seems the changes in α subunit expression are a common phenomenon across 

all cortical neurons (both inhibitory and excitatory). Indeed, the increase in α1 subunit 

expression during development is observed both in rodents and primates, suggesting this are 

an evolutionary conserved process in mammals87,88. The α subunits also differ in their sub-

cellular distribution. While the α1 is uniformly distributed in the axosomato-dendritic 

domains, α2 is mainly located in the axon initial segment89,90. In summary, these observations 

suggest that GABAA receptor properties are finely regulated both in time and location, thus 

increasing the versatility of GABA-mediated inhibition. 

1.2.1.4 Specific roles of GABAA receptors subtypes 

Several studies involving constitutive deletion of GABAA receptor subunit genes indicate that 

deletion of one subunit can lead to changes in distribution and expression pattern of 

remaining subunits. For example, GABRA1-KO (α1-KO) mice show upregulation of α2-

containing GABAA and α3-containing GABAA receptors in regions where the a1 subunit is 



16 
 

abundant91,92. Also, δ-KO mice show increased α4 subunit expression as well as altered 

subcellular distribution, where α4 is usually associated with γ2 subunit93. However, most of 

the work clearly indicates that deletion of a particular subunit does not lead to a mere 

replacement by another type in the same cell. This is true especially in neurons, which have 

both post-synaptic and extra-synaptic receptors. Deletion of α subunit variants leads to loss of 

postsynaptic receptors and subsequent loss in post-synaptic currents, but extra-synaptic 

receptors are either unaffected or increased91,94. This increase in extra-synaptic receptors 

could be a compensation for the loss of post-synaptic receptors but needs further explanation. 

The GABRA1-KO (α1-KO) mice survived and displayed only moderate changes in 

behaviour91.  

Development of knock-in mice has shed more light to our understanding of the role of 

GABAA receptor subunits. The H101R knock-in mice, engineered to remove the diazepam-

binding site located at the α/γ interface of the pentameric complex have highlighted the role 

of each of the 4 α subunits95-98. In fact, this histidine to arginine mutation did not affect 

assembly, cell surface trafficking, regulation or gating of the GABAA receptors. Therefore, 

these studies allowed classification of the contribution of each subtype to the spectrum of 

diazepam’s effects in terms of behaviour. For example, while α1-containing GABAA 

receptors regulate sedation, anxiety-related behaviours are affected by allosteric modulation 

of α2-containing GABAA receptors99. These results indicate that, due to their subunit 

composition, GABAA receptor subtypes are unique entities defined to play specific functional 

roles, which cannot be interchanged in a specific neuronal type. 
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1.2.2 GABAA receptor α1 subunit mutations in seizures and epilepsy 

The primary source of inhibition in the cortex is comprised by GABA action mediated 

through GABAA receptors and disturbances in inhibition lead to abnormal neuronal activity.  

Seizures are defined as clinical manifestations of excessive/and or hyper-synchronous activity 

of neurons. Seizures can arise in different parts of the brain based on pathological conditions 

(e.g. a head injury). However, when seizures occur in a recurrent and unprovoked fashion 

chronically, the condition is termed epilepsy. Genetic generalized epilepsies (GGE) constitute 

~50% of all epilepsy cases, the cause of which can be attributed to genetic mutations100 

Mutations in GABAA receptors have been associated with GGE and primarily affect either 

(1) biogenesis or (2) function of GABAA receptors.  

GABAAR mutation Cell surface GABAAR 
composition 

Channel gating properties 

A322D Reduced surface expression Reduced whole cell current, 
altered gating kinetics 

D219N unaffected Altered gating kinetics 

K353delins18X Complete reduction n/a 

 

Table.1.1 Effect of different GABAAR mutations on cell surface composition and channel 

gating properties. 

As discussed earlier, α1 is the most common and widely expressed GABAA receptor subunit 

and several mutations in α1subunit have been identified in epileptic patients101,102 (Figure. 

1.6). One important question is how specific GABAA receptor subunit mutations contribute to 

the generation of epileptic brain circuits. One popular hypothesis in the field is that 

pathogenic mutations affect GABAA currents, therefore acutely altering network activity. On 

the other hand, many studies demonstrate that GABA actions regulate several steps of circuit 

development, including synapse formation. Altered GABAergic transmission during critical 
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development steps may this altered neural circuit formation. Part of my PhD work focussed 

on understanding the role of specific mutations in α1subunit of GABAA in morphological 

synapse development. In the next section I will briefly explain the identity of these specific 

mutations. 

 

 

                                    

Figure 1.6. Schematic representation of the GABAA receptor subunit topology, showing the 
location of autosomal dominant epilepsy mutations associated with 2 reported cases of α1 
subunit mutations (adapted and modified from Macdonald and Kang, 2009)103. 

 

1.2.2.1 GABAA receptor α1 subunit missense mutations 

Missense mutations alter codon nucleotide sequences, which results in incorporation of a 

different amino acid into the subunit.  If the altered amino acid is identified only in patients 

with the disease, it is classified as a mutation, but if the alteration is also identified in the 

general population, it is termed susceptibility variant. The GABAA receptor α1 subunit 

mutation (A322D) introduces a negatively charged aspartate into the middle of the M3 

transmembrane helix of the α1 subunit at residue A322 and is associated with autosomal 

dominant juvenile myoclonic epilepsy101. Co-expression of α1 subunit (A322D) with wild-
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type β2 and γ2 subunits reduced both total and surface α1 subunit levels. This mutation also 

leads to reduction in peak GABA-evoked currents both in heterozygous and homozygous 

condition. Gallagher and co-workers showed that this mutation lies in a transmembrane 

domain, which destabilized M3 α helix formation and impaired α1 subunit folding and 

pentamer assembly104. Endoplasmic Reticulum mediated cellular quality control processes 

are involved in the degradation of the misfolded proteins104. Another study reported a D219N 

missense mutation in a French Canadian family, which lead to reduced expression of GABAA 

receptors in the surface along with altering gating kinetics102. 

1.2.2.2 GABAA receptor α1 subunit frameshift mutations 

Frameshift mutations occur because deletion or insertion of one or two nucleotides causes a 

change in downstream codons, with or without a change in the frameshifted codon. 

Frameshift mutations alter amino acid sequence and can often lead to a pre-termination 

codon, which results in altered protein product. One mutation has been identified in the 

GABAA α1 receptor (975delC), which is autosomal dominant and is associated with 

childhood absence epilepsy (brief duration seizures occurring with high frequency). This 

frameshift mutation was predicted to create a premature stop codon at S326fs328X. Indeed, 

this frameshift mutation results in a premature translation–termination codon in exon 8 and in 

84 base pairs upstream of intron 8, which elicit nonsense mediated decay. Comparison of 

expression of wild-type and mutant α1 subunits tagged with EGFP (enhanced green 

fluorescent protein) revealed that this mutation does not allow integration of mutant α1 

subunits in the membrane. This was confirmed by confocal studies, which indicated the 

presence mutant α1 subunits only in the cytoplasm contrary to wild-type α1 subunits present 

in the membrane. Touchette-Lachance and co-workers found another α1 subunit mutation 

where an insertion of 25 nucleotides occurred in the intron close to the splice acceptor site of 
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exon 11(K353delins18X)102. Further analysis revealed that this mutation altered GABAA 

receptor function by a complete reduction of surface expression. 

So far, several mutations in the α1 subunit have been discovered in patients who suffer from 

milder to severe form of epilepsies. How these mutations affect both excitatory and inhibitory 

cell connectivity during cortical development is still unclear. 

 

1.3 The role of mTOR pathway in neurodevelopment 

The process of post-natal development of neurons requires integration of neuronal activity 

and synaptic inputs that correspondingly affect several basic cellular processes in order to 

maintain growth and attain functional maturity. In mammals, the mTOR (originally termed 

‘mammalian’ Target Of Rapamycin but now officially termed ‘mechanistic’ Target Of 

Rapamycin) kinase is a protein which provides anchorage to a signalling network called the 

mTOR pathway. The mTOR pathway (Figure. 1.7) integrates a large amount of 

environmental cues and mainly controls cellular processes that generate or use nutrients and 

energy. It is gradually becoming clear that the mTOR signalling affects most cellular 

functions (e.g. protein synthesis, lipid biosynthesis and autophagy); therefore play a central 

role in controlling basic cell behaviours like growth and proliferation. Consequently, 

dysregulation of the mTOR pathway has been implicated in several neurodevelopmental 

disorders like Tuberous Sclerosis (TSC1 and TSC2), PTEN hamartoma tumour syndromes 

(PTEN), Neurofibromatosis (NF1) and Fragile X Syndrome (FMRP). 

1.3.1 The biology of mTOR signalling pathway 

The TOR pathway is an evolutionarily conserved signalling pathway and the TOR protein 

was initially discovered in a genetic screen in budding yeast aimed to identify the target of 
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the antiproliferative drug Rapamycin105. Interestingly, the drug Rapamycin was isolated from 

the bacteria Streptomyces hygroscopicus found in the Easter Island (Rapa nui) by a Canadian 

scientific exploration team in 1964. The mammalian counterpart of TOR (mTOR), found by 

three independent research groups, is a protein serine/threonine kinase that belongs to the 

phosphatidylinositol 3-kinase (PI3K)-related kinase family106-108. The mTOR protein can 

exist as two complexes namely the mTORC1 and mTORC2 (Figure. 1.8). The mTORC1 has 

6 separate components apart from mTOR, of which the most defining are Raptor (regulatory 

associated protein of mTOR) and PRAS40 (proline-rich Akt substrate 40 kDa). The 

mTORC2 is even larger with 7 other components; of these, Rictor (rapamycin-insensitive 

companion of TOR), the mammalian stress-activated MAP kinase–interacting protein 1 

(mSin1), and Protor-1 and Protor-2 (protein observed with Rictor 1and 2) are unique to this 

complex. The effects of Rapamycin on the two complexes is still not well understood, 

however it is clear that Rapamycin forms a gain-of-function complex with the intracellular 

12-kDa FK506-binding protein (FKBP12)106,107. Although it was originally thought that the 

mTORC2 was insensitive to Rapamycin, recent studies have proved otherwise, as chronic 

treatment can suppress its assembly and activity109,110.  

Upstream regulation of mTORC1 and mTORC2 

mTORC1, the better characterized of the two complexes, can sense a diverse range of 

intracellular and extracellular cues like growth factors, stress, energy status, oxygen, amino 

acids, and further controls many major processes, which include protein and lipid synthesis 

and autophagy. Synaptic signals that activate the mTORC1 involve glutamate activation of 

NMDA receptors and TrkB receptor activation by neurotrophins (in particular by Brain 

Derived Neurotrophic Factor, BDNF). These signals converge onto mTORC1 through the 

PI3K and tuberous sclerosis complex proteins Tsc1 and Tsc2. Tsc1 (also known as hamartin) 

and Tsc2 (also known as tuberin) form a complex, which is a key upstream regulator of 
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mTORC1. The Tsc1-Tsc2 complex functions as a GTPase-activating protein (GAP) for the 

Ras homolog enriched in brain (Rheb) GTPase. The GTP bound Rheb directly interacts with 

mTORC1 and enhances its kinase activity. PI3K activates Akt (also known as protein kinase 

B, PKB) which directly phosphorylates TSC2 rendering it inactive. This leads to activation of 

Rheb and consequently mTORC1. 

 

 

               

Figure 1.7. The mTOR signalling network in the brain (adapted from Costa-Matiolli and 
Monteggia, 2013)111 
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Akt can also control mTORC1 in a TSC-independent manner by phosphorylating the 

PRAS40, which is an endogenous inhibitor of mTORC111. PTEN (phosphatase and tensin 

homolog) is another negative regulator of this pathway, which through its lipid phosphatase 

activity directly counteracts the kinase function of PI3K and the activation of Akt and 

mTORC1112. Contrary to mTORC1, mTORC2 is more recently discovered and not much is 

known about its upstream regulation. However, it is known that Akt can regulate mTORC2 

by phosphorylating at Ser473. Akt activation through NMDA, glutamate, neurotrophins as 

well long lasting changes in synaptic strength like L-LTP (late-Long term Potentiation) can 

converge onto mTORC2113. It’s a paradox that although mTORC2 does not play a role in 

protein synthesis per se, a reverse suppressor genetic screen in yeast revealed that assembled 

ribosomes directly bind to and activate mTORC2 in a PI3K-dependent manner114. This 

finding opens the possibility that chronic effects of Rapamycin on mTORC2 could be at least 

in part mediated through attenuation of ribosome biogenesis controlled by mTORC1.  

 

          

Figure 1.8. The components of mTORC1 and mTORC2 (adapted from Laplante and 
Sabatini, 2012)115. 
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Downstream regulation of mTORC1 and control of cellular processes 

Control of protein synthesis has been so far the most well studied process regulated by the 

mTORC1 both in neurons and other cell types. mTORC1 directly phosphorylates the 

translational regulators eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 

(4E-BP1) and S6 kinase 1 (S6K1), which separately controls the rate of translation. 4E-BP1 

functions as a translational inhibitor, but upon phosphorylation by mTOR it can no more bind 

to the cap-binding protein eIF4E, enabling it to participate in the formation of the eIF4F 

complex that is required for the initiation of cap-dependent translation. It was originally 

thought that S6K1 which phosphorylates the ribosomal S6 protein was involved in the 

translation of a special class of mRNA called 5’TOP mRNAs (mRNAs characterized by an 

oligopyrimidine tract at the 5’ end). It was later found that although mTOR is responsible for 

the translation of 5’TOP mRNAs, S6 protein is not involved in the process116. So, how 

mTORC1 controls the translation of these mRNAs still remains unknown. Apart from 4E-

BP1 and S6K1, mTORC1 regulates two other downstream effectors that can promote protein 

synthesis. mTOR activates the regulatory element tripartite motif-containing protein-24 (TIF-

1A), which facilitates its interaction with RNA Polymerase I (Pol I) and allows ribosomal 

RNA (rRNA) expression117.  mTOR phosphorylation of Maf1 (a Pol III repressor) induces 5S 

rRNA and transfer RNA (tRNA) transcription118,119. Other studies have further clarified the 

role of mTOR in mRNA translation using inhibitors to block mTOR active sites which 

consequently reduced the rate of protein synthesis in proliferating cells in culture120,121 

Altogether, these studies suggest that mTOR activation enhances the translational capacity of 

the cell through activation of several molecules involved in the translational machinery.  

Apart from its role in regulating protein synthesis, mTORC1 is also involved in the regulation 

of lipid biosynthesis. mTOR regulates the sterol regulatory element-binding protein 1/2 

(SREBP1/2) transcription factors that control the expression of numerous genes involved in 
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fatty acid and cholesterol synthesis122. mTOR also promotes the expression and activity of 

peroxisome proliferator-activated receptor γ (PPAR-γ), the master regulator of 

adipogenesis123.  

Not only does mTOR promote growth by positively regulating anabolic processes 

(biosynthesis of macromolecules) but also does so by negatively regulating autophagy, a 

catabolic process. Autophagy is required for degradation of damaged sub-cellular organelles 

which occurs during nutrient deficiency for cell survival. Inhibition of mTOR leads to 

activation of autophagosomes, which engulf cytoplasmic organelles and proteins and then 

fuse with lysosomes leading to degradation of cell components and recycling of cellular 

proteins. mTOR negatively regulates autophagy by directly phosphorylating 

ULK1/Atg13/FIP200 (unc-51-like kinase 1/mammalian autophagy- related gene 13/focal 

adhesion kinase family-interacting protein of 200 kDa)124,125. 

The mTORC2 signalling network  

As mentioned earlier, mTOR forms two complexes, mTORC2 is less well characterized of 

the two. Initially, it was believed that the mTORC2 was insensitive to Rapamycin. Since 

acute Rapamycin treatment did not affect mTORC2 signalling and FKBP2-Rapamycin 

complex did not bind to mTORC2, these two observations supported this hypothesis. 

However, later studies showed that chronic Rapamycin treatment affected mTORC2 

signalling by disrupting mTORC2 assembly109,126. mTORC2 controls several molecular 

players downstream to it like Akt, serum- and glucocorticoid-induced protein kinase 1 

(SGK1), and protein kinase C- α (PKC-α) (Figure. 1.9). mTORC2 activates Akt by 

phosphorylation at the Ser473 position127 . Depletion of mTORC2 leads to defective Ser-473-

Akt phosphorylation, which in turn affects forkhead box O1/3a (FoxO1/3a) phosphorylation 

(downstream target of Akt). Interestingly, other targets of Akt like TSC2 or GSK3-β are 
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unaffected128,129. This indicates that Akt activity is not exclusively regulated by mTORC2. 

Another target of mTORC2 is SGK1 whose activity is completely abolished upon mTORC2 

ablation130. Other studies have identified PKC-α as the third target of mTORC2. Activation of 

PKC-α along with other effectors like paxilin and Eho-GTPases can affect the actin 

cytoskeleton and hence regulate cell-shape in a cell-autonomous fashion131,132. Dysregulation 

of mTORC1 elicits a feedback response by negatively regulating Akt activity110,133. mTOR 

hyperactivity following Tsc1 inactivation leads to decreased levels of phosphorylated Ser473-

Akt. These findings are reversed upon Rapamycin treatment110 suggesting that attenuation of 

Akt activity is indeed a feedback effect of mTORC1 dysregulation.  

                       

Figure 1.9. The components of mTORC2 signalling pathway (adapted from Masui et al, 
2014)134. 
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1.3.2 Dysregulated mTOR signalling in Tuberous Sclerosis Complex  

Given that mTOR plays a central role in the regulation of several fundamental cellular 

processes, it is not surprisingly the dysregulation of the mTOR pathway leads to several 

disorders in humans, which are overall termed as ‘mTORopathies’. One of the most well-

studied genetics mTORopathy is Tuberous Sclerosis Complex (TSC), which is associated 

with mutations in the genes TSC1 and TSC2, encoding for the proteins hamartin and tuberin, 

respectively135.  

1.3.2.1 Tuberous Sclerosis  

Tuberous Sclerosis Complex (TSC) is an inheritable developmental disease where discrete 

lesions or growths are observed in several organs of body which includes heart, kidney, 

lungs, skin and brain136. TSC affects 1 in 6000 individuals worldwide. The three major 

neuropathological features associated with TSC are epilepsy (approximately 90% of 

patients), intellectual disability (approximately 50%), and autism (approximately 50%). Other 

neuropsychiatric morbidities may range from sleep disruption, attention-deficit hyperactivity 

disorder, and anxiety137. One of the key pathological features of TSC is the presence of 

tumor-like cortical malformations called ‘tubers’. Various types of human mutations 

inactivating TSC1 or TSC2 can independently lead to hyperactivity of the mTOR pathway. 

Mutations in TSC2 tend to have more severe phenotypes in patients138. Most patients are born 

with one mutation while a second mutation in the other functional allele occurs during early 

development in a subset of cells139,140. This process is called loss of heterozygosity (LOH) 

and has been often detected in peripheral and brain lesions141,142. 

It has been more than two decades since mutations in the two genes TSC1 and TSC2 have 

been associated with TS. The genetic inheritance of TSC is autosomal dominant (TSC1 

located on chromosome 9 and TSC2 on chromosome 16) and follows typical Mendelian 
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distribution. Mutations in a third gene TBC1D7 have been hypothesized to cause TSC but 

have not been associated with patients so far143. A broad spectrum of neurological symptoms 

along with lesions in brain, kidney and skin suggests the genetic mechanism of TSC is rather 

complicated. The vast majority of genetically diagnosed TSC patients fall under three 

categories: (1) ~33% of patients have inherited the mutations from their parents144, (2) 2-3% 

of patients have de novo mutations arising from germline mosaicism145 and (3) the rest of the 

patients are thought to have sporadic mutations in early somatic cells, which do not affect all 

organs to the same extent146. The widespread variability in phenotypes is attributed to the 

timing and spatial origin of these mutations which could be germline, somatic or inherited. 

Also, because mTOR has a complex biology, various mutations in TSC1/2 genes could affect 

different structural and functional domains of these proteins, thus differentially altering 

cellular localization, protein stability, and integration of upstream signals or regulation of 

GAP activity. These different effects could underlie the variability in disease manifestations 

observed in humans117, 146,147. Knudson and co-workers had proposed a two-hit hypothesis 

which results in LOH during development148. According to this hypothesis, lesions or tumors 

are formed when patients with inherited mutations suffer a second, somatic mutation. In fact, 

other studies have been able to support this hypothesis as they found two hits in the TSC 

alleles resulting in cortical tubers and subependymal giant cell astrocytoma (SEGA)149,150. 

However, it should be also taken into account that single mutations resulting in loss of 

function of TSC1 or TSC2 can give rise to lesions and tubers in absence of LOH. In summary, 

it is commonly observed that most TSC patients have one functional allele of TSC1 or TSC2 

at birth but a second hit can arise in somatic cells of certain patients. 

Epileptic seizures are a common phenotype in TSC patients and are often unresponsive to 

common drug-based therapies151,152. In most cases these seizures start very early in the form 

of infantile spasms which are epileptic spasms arising between three to twelve months after 
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birth. Although, most children can survive these spasms, over time they acquire other forms 

of seizures. In many patients, cortical tubers have been strongly correlated with seizure 

activity in the brain (Fig 1.10, A). These tubers are characterized by gliosis, loss of 

lamination, presence of giant cells and cytomegalic neurons that are dysmorphic and 

ectopically located153,154. In some patients, magnetic resonance imaging (MRI) scans of 

cortical tubers and focal inter-ictal discharges recorded by EEG suggest a similar spatial 

origin paving the option for surgical removal of cortical tubers155,156. Surgical removal of 

these tubers has been able to resolve seizures in this sub population of patients157. Further, 

autistic traits in terms of social responsiveness and cognition have been correlated with 

epileptiform activity. Therefore surgical removal of these tubers is a viable option for 

treatment in children with TSC158 at least to prevent epilepsy. On the other hand, it still 

remains a debate if epilepsy leads to autism in all affected individuals. How cortical tubers 

contribute to seizure activity still remains unclear. Major and co-workers found them to be 

electrically silent159 suggesting cortical tubers per se do not contribute to seizure initiation. 

However, it is possible that nascent tubers are epileptogenic, giving rise to short- and long-

distance seizure generations in a progressive fashion160. A few molecular evidences have 

been in favour of this hypothesis. One study found GABAA receptor expression is low in 

these tubers but conversely GABA levels were found to be low161. This reduction in GABAA 

receptors could be a compensatory mechanism to achieve adequate amount of inhibition in 

the pretext of low GABA availability. Additionally, cortical giant cells or cytomegalic cells 

(Fig 1.10B,C1-D2) display an immature complement of glutamate receptors which could 

underlie immature and hyperexcitable electrophysiological properties162. Another additional 

possibility is that the tissue surrounding the tubers is hyperexcitable and, thus responsible for 

seizure generation. In support of this hypothesis, the neuronal population surrounding these 
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tubers although histologically normal show an increased excitatory synaptic drive163. These 

observations were made in a cohort of 20 patients diagnosed with TSC. 

Finally, impairments in neuropsychological functions, including deficits in memory, attention 

and executive functions165-167, are very common in TSC patients. Whether these problems are 

caused by a direct effect of TSC mutations on synaptic and circuit-based formation and 

plasticity, or by indirect alterations caused by seizures, are still hotly debated. Likely, both 

factors can contribute depending on seizure severity and age-onset. 

 

 

 

 

 

 

 

Figure 1.10. A, Representative axial MRI scans of children with refractory epilepsy from 
TSC. B,Section of a tuber showing abundant giant cells and disorganized collections of 
dysmorphic neurons. C1-D2, Morphology of TSC cell types revealed by biocytin labeling 
showing four types of cell namely Pyramidal (C1), cytomegalic (C2), interneuron (D1), and 
(D2) giant cells (adapted from Cepeda et al, 2012)163. 

 

 

 

 

A 

B 

C1 

C2 

D1 

D2 



31 
 

1.3.2.2 Mouse models of TSC 

In order to gain a deeper insight into the cellular and molecular basis of TSC 

pathophysiology, several transgenic mice lines have been developed. For the sake of 

convenience, this section focusses only on germline (constitutive) and cell-type specific 

(conditional) knockout models of Tsc1 in mice. One of the key objectives behind the creation 

of these models is to recapitulate the disease phenotypes seen in humans and also to 

investigate the efficacy of various mTOR inhibitors in their reversal. The availability of 

various Cre-driver lines has facilitated the study of the specific contribution of different cell 

populations (excitatory, inhibitory and glial) in TSC disease manifestation.  

 

1.3.2.2.1 Germline knockout of Tsc1 in mice 

Goorden and co-workers generated a heterozygous germline knockout of Tsc1 (Tsc1+/- mice) 

to investigate the relationship between cerebral lesions, epilepsy and cognitive function167. 

Interestingly, these mice did show any spontaneous seizures, dysmorphic cells and had 

normal dendritic spine density in hippocampal granule cells. However, they developed 

cognitive impairments in terms of hippocampus based learning tasks and social behaviour. 

Most of other studies have used conditional knockout of Tsc1 resulting in either heterozygous 

or homozygous loss of the gene. 
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Promoter, Cre 
expression initiation 

Phenotypes in terms of morphology, seizure activity and 
behavior 

References 

Constitutive Impaired hippocampal-dependent tasks and social behavior. Goorden et al, 
2007167. 

mGFAP-Cre; E14.5 Macrocephaly, reactive gliosis, seizures. Uhlmann et al, 
2002168. 

SynapsinI-Cre; 
E12.5 

Macrocephaly, mislamination, cytomegaly, 
hypomyelanation and seizures. 

Meikle et al, 2007169. 

Nestin-Cre; E10.5 Macrocephaly, mislamination, cytomegaly, 
hypomyelanation, reactive gliosis and seizures. 

Anderl et al, 2011170. 

Nestin-rTet-Cre; 
E13.5 

Macrocephaly and cytomegaly. Goto et al, 2011171. 

Emx1-Cre; E10.5 Macrocephaly, mislamination, cytomegaly, 
hypomyelanation, reactive gliosis and seizures. 

Carson et al, 2012172; 
Margi et al, 2011190. 

Dlx5/6-Cre; E13.5 Macrocephaly, cytomegaly and reduced seizure threshold. Fu et al, 2012173. 

L7-Cre; P6 Cytomegaly, impairment of social behavior, repetitive 
behavior and communication defcits. 

Tsai et al, 2012175. 

Neonatal 
electroporation 

Macrocephaly and cytomegaly, presence of cortical tubers 
and low seizure threshold. 

Feliciano et al, 
2012176. 

 

Table.1.2 Mice models of Tuberous Sclerosis Complex (TSC) generated by loss of Tsc1. 

1.3.2.2.1 Conditional knockout of Tsc1 in mice 

One of the first studies was done by Uhlmann and co-workers where the authors knocked out 

Tsc1 alleles in cells which express the glial fibrillary acidic protein (GFAP) promoter168. This 

promoter allowed conditional deletion of Tsc1 in astrocytes and adult neuronal progenitor 

cells. These mice displayed severe seizures and reduced survival rates (median life span of 

three to four months). Meikle and co-workers have used a similar approach where they have 

crossed mice carrying a mutant and conditional (floxed) Tsc1allele with mice expressing Cre-



33 
 

recombinase under the synapsin-1 promoter169. These mice started to express Cre around 

embryonic (E) 12.5 day and had a low survival rate (median life span of 35 days). Further, 

they displayed severe seizure activity along with enlarged and dysplastic neurons (both 

excitatory and inhibitory) in the cortex and hippocampus. A more recent study used mice 

expressing Cre under the Nestin promoter crossed with either mice containing a mutant and a 

conditional Tsc1 allele, or two conditional Tsc1 alleles170,171. This approach allowed creating 

loss of function of both copies of Tsc1at different time points. The mice carrying the Tsc1 

mutant allele and floxed allele (Nestin-Cre::Tsc1mutant/flox) died at birth. However, the Nestin-

Cre::Tsc1flox/flox mice survived and displayed several hallmark features of TSC. Other mice 

models have used Cre-driver lines under promoters, which target different progenitor cells. 

For example, in Emx-Cre::Tsc1flox/flox mice, where Tsc1 is deleted in glutamatergic cells and 

astrocytes has reduced survival rates and display common TSC phenotypes172. Therefore 

different groups have studied the loss of Tsc1 in various progenitor cells that give rise to 

excitatory and/or glial cells Interestingly, most of the these studies indicate that only 

homozygous loss of Tsc1 in these conditional knockouts lead to development of TSC 

phenotypes although the disease condition in human is heterozygous with growing evidence 

that LOH occurs at some point. Many of these mice have reduced life span and develop 

spontaneous seizures. Contrary to these mice models, TSC in humans does not reduce life 

span severely although the quality of life is significantly impaired. Moreover, reduced life 

span of these mice poses a challenge to identify any correlation between Tsc1 loss in the 

targeted cell population with behavioural deficits diagnosed in humans.   

The effects of Tsc1 deletion in GABAergic circuits on seizures and life span are less well 

investigated.  In fact, only one study has focused on the role of Tsc1 in GABAergic cells 

using the Dlx5/6 promoter to drive Cre expression in all types of inhibitory interneurons 

(Table.1.1). These mice had reduced life span (60% mice die by two months), decreased total 
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inhibitory cell count and clustering of ectopic inhibitory cells in cortex. Although these mice 

did not show spontaneous seizures, exposure to a proconvulsant (flurothyl) revealed 

decreased seizure threshold173.  

Interestingly, ~30% of TSC patients have cerebellar abnormalities but the pathophysiology of 

these lesions is not well understood174. To explore this issue, Tsai and co-workers generated a 

mouse where Tsc1 is knocked out specifically in Purkinje cells starting from P6 using which 

L7-Cre line. Both heterozygous and homozygous loss of Tsc1 in mouse cerebellar Purkinje 

cells results in autistic-like behaviours, including abnormal social interaction, repetitive 

behaviour and deficits in vocalizations, in addition to decreased Purkinje cell excitability175. 

This study highlights the contribution of the cerebellum in the manifestation of autistic 

phenotypes. However, how the cerebellum modulates the social behaviour and other 

cognitive processes is subject to further investigation.  

A big drawback of these rodent models lies in its inability to recapitulate the presence of 

cortical tubers which is a hallmark of TSC. In a seminal work by Feliciano and co-workers, 

the authors used in utero electroporation (IUE) to incorporate plasmids expressing Cre at 

embryonic stages in mice with a mutant copy of Tsc1176.  By this approach, Cre expression 

was able to create LOH at an early stage of brain development. The resulting mice had 

ectopic neurons in the cortex and generated large clusters of cells in and above the corpus 

callosum (white matter). These ‘white matter nodules’ in cortex are probably the equivalent 

of the cortical tubers seen in TSC patients. 

TSC in humans is mainly characterized by presence of cortical tubers, epileptic seizures and 

autistic phenotypes. Constitutive or conditional deletion of one/two copies of Tsc1 is unable 

to reproduce tuberous malformations in the cortex although giant cells are common. Many of 

these models exhibit either spontaneous seizures or increased susceptibility to seizures. 
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Reduced life span in most of these models has been a challenge to adequately investigate the 

cellular and molecular basis of cognitive deficits associated with autism in TSC. It is perhaps 

impossible to create an exact model of the human condition in mice for a complex disease 

like TSC.  

1.3.2.3 Altered connectivity in TSC  

It has been suggested that tuber burden and seizures may contribute to cognitive deficits and 

neuropsychiatric problems in TSC. However, many of the above mentioned animal models 

hint at more subtle changes in synaptic connectivity as an underlying basis of these deficits as 

cognitive impairment persists in absence of tubers. The structural underpinnings of neuronal 

connectivity and communication in the CNS are constituted by dendrites, synapses and 

axons. For an individual neuron, the dendrites serve as antennae for receiving signalling 

inputs which is processed and sent down the axon to relay the output to connected cells. 

Therefore studying the morphology of axon, dendrite and synapses serves as a good proxy for 

analysing the development and maintenance of connectivity in the brain. This allows us to 

understand the changes that occur during development both in healthy and disease conditions. 

Several studies have tried to establish the role of mTOR pathway in the development of 

dendritic arborisation177,178. By using RNAi-based approaches, Urbanska and co-workers 

knocked down Rictor and Raptor and showed that both mTORC1 and mTORC2 play a role 

in the development of hippocampal pyramidal neuron dendritic morphology. However, post-

natal (P14-P16) deletion of Tsc1 by viral injection (encoding CreEGFP fusion protein) in 

hippocampal pyramidal neurons did not affect dendritic morphology179. Syn1-Cre-Tsc1mut/flox 

mice, described previously, exhibited increased apical dendritic thickness and abnormal 

polarity in sporadic cortical pyramidal cells110,169. Further, the authors observed a similar 

increase in structural complexity of basal dendrites in pyramidal neurons and olfactory bulb 
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granule neurons in the subventricular zone (SVZ)176. Altogether these studies indicate that the 

timing of Tsc1 ablation and subsequent dysregulation of the mTOR pathway has different 

effects on dendritic arborisation depending on the developmental time window.  

Spines are microscopic protrusions found on the membranes of most dendrites and are the 

post-synaptic site of ~90% of excitatory synapses180. Dendritic spines exhibit a high degree of 

structural plasticity whereby they undergo changes in shape and size driven by neural activity 

and experience. Alterations in spine density and spine morphology have been correlated with 

mental retardation and autistic phenotypes in humans and animal models181. Further, analysis 

of post-mortem brains from TSC patients revealed the presence of fewer spines on 

abnormally shortened dendrites of principal projection neurons, in cortical tubers182,183.  

Knockout of both Tsc1 alleles in pyramidal cells from hippocampal slice cultures resulted in 

fewer spines and increased spine length and head width184. The authors used mice at P5-P7 

for culture which were transfected after two days and the cells were analysed six days after 

transfection. Knocking out only one allele resulted in similar but less pronounced phenotype 

suggesting these effects are gene-dosage dependent.  All these effects were reversible by 

Rapamycin treatment suggesting a strong role of mTOR hyperactivity. Contrary to these 

findings, when both copies of Tsc1 were knocked out in vivo in post-mitotic pyramidal cells 

of the CA1 region of the hippocampus no changes were seen in terms of spine number and 

morphology179 using viral delivery of Cre at P14-P16. Meikle and co-workers found 

consistent results in ectopic and dysplastic cortical neurons in Tsc1flox/mutant mice which 

showed reduction in spine density without affecting spine length110. Contrary to the loss of 

spines in hippocampal pyramidal cells, loss of Tsc1in cerebellar Purkinje cells lead to 

increase in spine density175. Therefore the effect of Tsc1 loss on spine density varies greatly 

depending both on the timing of knockout and the cell-type being targeted.  
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Brain scans using diffusion tensor imaging suggest TSC patients have abnormalities in axonal 

structures including poor myelination185, 186. The development of axonal architecture depends 

on both cell internal factors as well as external cues in order to determine how many cells it 

will contact and how many synapse will form on each target. In one of the early studies, 

neurons deficient in Tsc1 showed ectopic axon formation in dissociated hippocampal cultures 

as well as in vivo in the SynI-Cre-Tsc1flox/flox mice187. Conversely, over-expression of Tsc1 

resulted in reduced axon formation along with lower mTOR activity in cultured neurons 6 

days in vitro after E17. The authors then investigated the molecules whose expression 

changes upon mTOR dysregulation and identified SAD Kinase as an interesting player. SAD 

kinase has implicated in axon development in C. elegans188. In separate studies,  mTOR has 

been shown to regulate expression of other molecules which determines cell polarity and 

axon specification like Tau and collapsing response mediator protein 2(CRMP2)189. In 

Tg(Emx1-Cre);Tsc1flox/mut mice, pyramidal neurons showed abnormal projections and dis-

arranged neurites and axons190. 

Certain questions still remains unanswered regarding how Tsc1/Tsc2 regulates connectivity 

in the developing brain. For example, it remains unknown if loss of Tsc1 in a wild-type 

background is different compared to a mutant background in terms of connectivity. Also how 

connectivity is affected due to heterozygous loss of Tsc1 prior to birth compared to acquiring 

an inactivating mutation in post-natal development is still unclear. The molecular 

mechanisms downstream of mTOR need to be further screened to assess how expression, 

activity and sub-cellular localization of candidate proteins may change following Tsc1 loss. 
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1.3.3 Dysregulated mTOR signalling in other neurodevelopmental disorders  

1.3.3.1 PTEN Hamartoma tumor syndrome 

The phosphatase and tensin homolog (PTEN) protein acts as a phosphatase, which can inhibit 

the mTOR pathway191. Germline mutations in the PTEN gene cause a group of rare disorders 

often termed as PTEN Hamartoma tumor syndromes (PHTS)192,193. These include Cowden 

syndrome (CS), Lhermitte-Duclos disease (LDD), and Bannayan-Riley-Ruvacalba syndrome 

(BRRS). CS is characterized by macrocephaly and benign hamartomas of the breast, thyroid, 

or endometrium, as well as malignant tumours. A minority of patients are also diagnosed with 

intellectual disability. In LDD, the cerebellum is severely affected and is characterized by 

dysplastic gangliocytomas, which clinically cause ataxia, seizure, or increased intracranial 

pressure192. BRRS is another disorder that comes under the umbrella of PHTS where patients 

suffer from macrocephaly, developmental delay and/or intestinal polyps194. Interestingly, all 

of these disorders (CS, LDD, and BRRS), arise following mutations in the PTEN gene clearly 

suggesting that additional factors are involved in causing specific phenotypes193,195. About 

1% of sporadic cases of autism have been linked with PTEN mutations, therefore in a clinical 

context, PTEN gene testing is often recommended when macrocephaly and autism features 

overlap196. In a mouse model where PTEN was knocked out in mature neuronal 

subpopulations in cortex and hippocampus using PTENflox/flox mice with Nse-Cre mice, 

macrocephaly was observed along with deficits in social behaviour197. Cre expression was 

seen in ~30-60% of neurons by fourth post-natal week. The affected neurons had larger 

somas, exuberant dendritic arborisation and increased dendritic spine density. In a very recent 

study, the loss of PTEN in GABAergic cells lead to reduction of SST+ cells but not PV+ cells 

of the cortex. Further, in these mice PV cells showed ectopic projections in cortical layer I. 

These mice also exhibit deficits in social behaviour198. Mice models of PTHS indicate the 

role of PTEN in cellular connectivity. PTEN is also a negative regulator of mTOR pathway 
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like TSC1/TSC2 and therefore could be a potential target to understand the pathophysiology 

involved in mTORpathies.  

1.3.3.2 Neurofibromatosis 

Neurofibromatosis (NF1) is a neurocutaneous disorder characterized by both benign and 

malignant tumours affecting both the central and peripheral nervous system. Similar to TSC, 

NF1 is autosomally inherited and the incidence rate is 1 in 2500-3000 live births. It primarily 

affects tissues originating from the neural crest. Clinical features of NF1 include the brain 

(glial tumors, macrocephaly), skin (cafe´ au lait spots, freckling, neurofibromas), kidney 

(renal artery stenosis), bone (sphenoid wing dysplasia) and endocrine systems. Most common 

symptoms include learning disabilities, attention-deficit hyperactivity disorder, sleep 

disruption and anxiety. Only ~10% of patients are diagnosed with epilepsy in NF1 and 

similar to PTHS macrocephaly is common too199. NF1 is caused by mutations in the NF1 

gene that encodes a GTPase-activating protein which suppresses the activity of the proto-

oncogene Ras. Mice deficient in Nf1 gene have Schwann cells with increased Ras activity 

and growth rate. Ras signalling is important for activation of the mTOR pathway200. 

Although NF1 loss leads to hyperactivation of mTORC1 which leads to tumorigenesis201, the 

regulation of mTORC1 by NF1 appears to be independent of TSC-Rheb202. 

1.3.3.3 Fragile X syndrome 

Fragile X syndrome is associated with dysfunction of the Fragile X mental retardation protein 

1 (FMRP) gene. FMRP1 protein functions as a translational repressor of mRNAs. Recently, it 

was discovered that the silencing of FMR1 is mediated by the formation of a DNA-mRNA 

duplex between the promoter and the trinucleotide repeat region of the mRNA203. Fragile X 

syndrome (FXS) is most commonly associated with mental retardation, occurring in about 

1:5000 males and roughly half as many females. Males diagnosed with FXS suffer from 
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intellectual disability along with motor abnormalities, speech delay, hyperactivity and 

anxiety. Many mice models have been developed to study FXS but only the studies relevant 

to this thesis work have been discussed in this section. Fmrp mutant mice exhibit elevated 

mTOR activity and protein synthesis. mGluR-dependent long term depression (LTD) which 

refers to a form of synaptic plasticity where weakening of synapses occur is exaggerated in 

these mice204,205. Genetic deletion of S6K1, one of the downstream effectors of the mTORC1 

involved in regulation of protein synthesis, was able to reduce the elevated level of protein 

synthesis and reversed neurophysiological and behavioural defects206. In a very interesting 

study, Bear and colleagues found that Tsc2+/- mice had hyperactivity of mTORC1 but did not 

favour protein synthesis of components involved in mGluR-LTD (long term changes in 

synaptic plasticity mediated through metabotropic glutamate receptors). Strangely, when 

these mice were crossed with the Fmrp1y/- mice, the resulting double mutants demonstrated 

normalization of mGluR-LTD, protein synthesis rates and cognitive behaviour204. 

Many studies involving animal models of several neurodevelopmental disorders strongly 

established the role of a dysregulated mTOR pathway. Therefore, these observations hold the 

promise for a common treatment. However, recent failures in clinical trials suggest that 

pathophysiological mechanisms could be different and unique to the disease condition. 

Treatment of neurodevelopmental disorders with Rapamycin and its analogues has a 

promising   future. In this work, in vitro application of Rapamycin was able to reverse the 

cellular phenotypes which have been discussed elaborately in chapter 4. However, the study 

of in vivo effects has been beyond the scope of this doctoral work and remains to be explored 

in the future. 
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1.4 Objectives of research 

 

1.4.1 Rationale 

Development of the inhibitory circuits in the neocortex is a long process and extends to the 

third or fourth post-natal weeks in rodents. There are several factors that influence how a 

single PV-expressing basket cell innervate a large number of neighbouring cells and to what 

extent they can form, mature and maintain a finite number of synapses on these target cells. A 

developing neuron requires a large amount of proteins in order to achieve the structural 

complexity attributed to mature neurons. There is accumulating evidence that mutations or 

dysfunctions in two groups of genes encoding proteins involved in, (1) control of protein 

synthesis and (2) synaptic function lead to developmental disorders and epilepsy. Altering the 

relative numbers, functions, and/or connectivity between excitatory neurons and inhibitory 

interneurons can lead to imbalances in excitation/inhibition ratio in the brain causing epilepsy 

and autism in humans. How the loss of these genes affects the development of inhibitory 

circuits and contributes to disease manifestation is not well understood. In my PhD work, I 

have investigated the role of Tsc1 (involved in translational control by regulating mTORC1) 

and GABAA receptor (inhibitory synaptic protein) in PV cell connectivity.  

 

1.4.2 Broader objectives 

 The role of Tsc1 in development of PV cell circuitry in the cortex. 

 The role of different GABAA receptor mutations in regulation of cortical excitatory 

and inhibitory cell connectivity. 
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1.4.3 Specific objectives 

 Study of mTORC1 activity during different ages during development in wild-type 

mice. 

 Study the effect on PV cell connectivity upon Tsc1 knockdown in single PV cells. 

 Study the effect on PV cell connectivity upon Tsc1 knockdown at the network level. 

 Study the effect of Tsc1 gene dosage and timing of knockout on behaviour and PV 

cell connectivity in conditional mouse models. 

 Effect of different GABAA receptor mutations in cortical PV cell connectivity. 

 Effect of different GABAA receptor mutations in cortical pyramidal cell connectivity. 
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Chapter 2. Materials and methods 

2.1 Animals 

Mice with loxP sites flanking exon 17 and 18 of Tsc1gene (Tsc1flox/flox) was purchased from 

Jackson Laboratories. The Tsc1flox/flox mice were bred with wild type mice of Sv129 

background to generate Tsc1flox/wt mice. Both Tsc1flox/flox and Tsc1flox/wt mice have been used 

for organotypic cultures to study Tsc1 knockout in single cells. Two separate transgenic mice 

lines expressing Cre recombinase, (1) Tg(Nkx2.1-Cre) and (2)Tg(PV-Cre) were maintained as 

pure colonies. The Tg(PV-Cre) mice was a kind gift from Dr. Elsa Rossignol. Tg(Nkx2.1-

Cre) was purchased from Jackson laboratories and have been previously described (Xu et al, 

2008)27. Backcross between Tsc1flox/flox mice and Tg(Nkx2.1-Cre) produced Tsc1flox/flox or 

Tsc1flox/+ (referred as Tsc1Ctrl), Tg(Nkx2.1-Cre);Tsc1flox/+ and Tg(Nkx2.1-Cre);Tsc1flox/flox 

mice. A similar breeding strategy was used to cross Tsc1flox/flox and Tg(PV-Cre) mice. All 

mice were housed under standard pathogen-free conditions in a 12h light/dark cycle with ad 

libitum access to sterilized laboratory chow diet. Animals were treated in accordance with 

Canadian Council for Animal Care and protocols were approved by the Animal Care 

Committee of CHU Ste-Justine Research Center. 

2.2 Genotyping of mice: 

DNA was extracted from mice tails and was genotyped to detect the presence of Cre alleles 

and Tsc1 alleles. Polymerase chain reaction (PCR) of the wild-type and conditional alleles of 

Tsc1 was performed using primers F4536 (5’ AGGAGGCCTCTTCTGCTACC -3’) ,R4830 

(5’- CAGCTCCGACCATGAAGTG -3’) and R6548 (5′-TGGGTCCTGACCTATCTCCTA-

3′) with band sizes of 295 bp for the wild-type and 480 bp for the floxed allele. Primers for 

characterizing Cre in Tg(Nkx2.1-Cre) breeding were F1 (5’-AAGGCGGACTCGGTCCA 

CTCCG-3’), F2(5’-AAGGCGGACTCGGTCCACTCCG-3’) and R1 (5’-TCGGATC 
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CGCCGCATAACCAG-3’) which generated 550bp and 220bp mutant and wild-type 

bands.Primers for characterizing Cre in Tg(PV-Cre) breeding were F1 (5’-CAGCCTCTGT 

TCCACATACACTCC-3’), F2(5’-GCTCAGAGCCTCCATTCCCT-3’) and R1 (5’- 

TCACTCGAGAGTACCAAGcAGGCAGGAGATATC-3’) which generated 400bp and 

526bp mutant and wild-type bands. 

2.3 DNA constructs 

PG67-GFP  was generated by subcloning of a10kb region of Gad1 gene promoter by gap 

repair in front of the GFP coding region in pEGFP(Clontech) as previously 

described(Chattopadhyaya et al.,2004)48. Cre, GABRA1-A322D, GABRA1- D219N, 

GABRA1-K353delins18X constructs (Cossette et al., 2002; Lachance-Touchette et al., 

2011)101,102, were subcloned inPG67 vector by using restriction site Pme1via sequence and 

ligation–independent cloning method (SLIC) (Li and Elledge,2007). All constructs were 

sequenced to confirm the presence of the mutations and to exclude any other variants that 

may have been introduced during PCR amplification. 

2.4 Slice culture and biolistic transfection 

Slice culture preparation was done as described by Stoppini et al., 1991. Postnatal day 4 or 5 

(P4 or P5) mouse pups from Tsc1flox/flox, Tsc1flox/wt , Tsc1Ctrl Tsc1flox/+ , Tg(Nkx2.1-Cre; 

Tsc1flox/+ or Tg(Nkx2.1-Cre; Tsc1flox/flox) mice were decapitated, and brains were rapidly 

removed and immersed in ice-cold culture medium (containing DMEM, 20% horse serum, 1 

mM glutamine, 13 mM glucose, 1 mM CaCl2, 2 mM MgSO4, 0.5 μm/ml insulin, 30 mM 

HEPES, 5 mM NaHCO3, and 0.001% ascorbic acid).  Coronal brain slices of the occipital 

cortex, 400 μm thick, were cut with a Chopper (Stoelting, Wood Dale, IL). Slices were then 

placed on transparent Millicell membrane inserts (Millipore, Bedford, MA), usually three 

slices/insert, in 30 mm Petri dishes containing 0.75 ml of culture medium. Finally, the slices 
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were incubated in a humidified incubator at 34°C with a 5% CO2-enriched atmosphere and 

the medium was changed three times per week. All procedures were performed under sterile 

conditions. Constructs to be transfected were incorporated into “bullets” that were made 

using 1.6 μm gold particles coated with a total of ~60 μg of the DNA(s) of interest. These 

bullets were used to biolistically transfect slices by Gene gun (Bio-Rad, Hercules, CA) at 

high pressure (180 ψ), and the transfected slices were incubated for 8 days in vitro under the 

same conditions as described above, before imaging. For each experimental group, cortical 

slices were prepared from at least three mice. On average 6-7 neurons were transfected per 

cortical organotypic slice. The majority of neurons labeled by this promoter were 

parvalbumin-positive basket cells (as described in Chattppadhyaya et al., 2004, 2007)48,58, 

while a minority (~10%) were pyramidal cells. Pyramidal cells were recognized by the 

complexity of their dendritic arbor, including an apical dendrite, and the presence of 

numerous dendritic spines. 

2.5 Immunohistochemistry and confocal imaging:  

Mice were perfused transcardially with 1X PBS AND 4% PFA. Brains were postfixed with 

4% PFA overnight followed by 30% sucrose solution in PBS. The brains were frozen with 

OCT and sagittal sections of 40 μm were produced using a cryostat.  The following primary 

antibodies were used for immunohistochemistry on mice cryosections or organotypic 

cultures: rabbit phospho-S6 (1:1000, Cell Signaling), mouse NeuN (1:400, Millipore), mouse 

PV (1:1000, Millipore), rabbit PV(1:1000, Swant), guinea pig PV (1:1000,Synaptic Systems), 

rabbit vGAT (1:1000, Synaptic Systems), mouse gephyrin (1:500, Synaptic Systems). 

Secondary antibodies were used to visualize primary antibodies which include Alexa-fluor 

488,555,594,633, and 647 (Life technologies). Images were taken on a Leica confocal 

microscope with a camera using the same exposure and acquisition settings for each section 

unless specified.  
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2.6 Image quantification in organotypic cultures and in vivo: 

For organotypic cultures, at least two confocal stacks of each basket cell axon arbor in the 

first 150μm from the basket cell soma using a 63X glycerol objective(NA1.3, Leica) and a 

Leica TCS SPE confocal microscope. Pyramidal neurons were imaged using a Leica confocal 

microscope SPE (63X glycerol immersion objective; NA1.3). Atleast 6 labeled pyramidal 

neurons, characterized by the presence of a well-defined apical dendrite, were randomly 

selected from cortical layers 2/3 and 5. Image stacks of basal dendrites were acquired with a 

z-step of 0.5μm and then reconstructed in 3D with Neurolucida (MicroBrightField) software. 

Cortical pyramidal cells from at least four animals were used for each experimental 

condition. Dendritic length,total spine density,spine morphology and spine length were 

quantified using NeuroExplorer software (MicroBrightField).Mushroom spines were defined 

as spine with a neck and bearing a head,which was at least twice as large as the neck. Thin 

spines were defined as dendritic protrusions shorter than 5μm and lacking a clearly defined 

head. Basket cells were analysed as discussed in Chattopadhyaya et al, 201365. For in vivo 

analysis, images were acquired on the same day using identical confocal parameters and 

either using 20x water immersion objective (for analysis of % of PV cells colocalizing with 

pS6+ cells) or 63x glycerol objective( for analysis of PV,vGAT,pS6, gephyrin intensity 

and/or puncta counting). Layer V of somatosensory cortex was imaged confocally with z-step 

size 1μm and images were exported in TIFF format.  Cell area of PV soma was counted using 

Image J (1.47v, NIH) or Neurolucida (MBF Softwares). Fluorescence intensity of pS6 signal 

in PV cells was calculated using Image J for the mean gray value. Intensity of PV and vGAT 

was calculated on a traced cross-sectional area around NeuN somas. Puncta quantification of 

PV, gephyrin and vGAT was done at both P18 and P45. PV, vGAT, gephyrin and PV/vGAT-

gephyrin colocalized punctas were identified visually around periphery NeuN+ soma and 

punctas located only at the confocal plane with the highest soma circumference (± 1μm) was 
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calculated manually on Neurolucida software. User was blind to genotype during the 

analysis. 

2.7 Western Blot : 

Western blots were performed on samples from four mice per group and from two separate 

experiments. Protein lysates were prepared by homogenizing tissue from rat hippocampus in 

50 mM Tris–HCl (pH 7.6), 2 mM EDTA, 1% Igepal CA-630 (Sigma-Aldrich), and one 

tablet of protease inhibitor cocktail (Roche, Mississauga, ON, Canada). Tissues were 

disrupted using needles and a syringe, and centrifuged at 10000 g for 10 min at 4°C; the 

supernatant was then collected. Protein levels were quantified by Bradford Protein Assay 

(Bio-Rad, Mississauga, Ontario, Canada), and their concentrations were adjusted with 

deionized water. Samples were mixed with an equal volume of 2x Laemmli buffer, boiled for 

5 min, and used immediately or stored at 80°C. Proteins were separated using 6.5% 

polyacrylamide separation gels and 5% stacking gels (Bio-Rad); equal amounts were loaded 

in each lane, and then transferred onto Immobilon-P Transfer Membrane, a poly(vinylidene 

difluoride) microporous membrane (Millipore, Temecula, California, USA). These 

membranes were then blocked by incubation in Tris-buffered saline blocking buffer with 5% 

dried milk and 0.1% Tween-20 solution. Membranes were probed with the following 

primary antibodies: anti-pS6 (Ser 240/244)1:10000, Cell Signalling) and anti-β actin 

(1:3000,Novus Biologicals). Rabbit or mouse HRP-conjugated secondary antibody used for 

detection of primary antibodies was purchased from Sigma-Aldrich. Immunoreactive bands 

were detected with Western Lightning Chemiluminescence Reagent Plus (PerkinElmer), and 

the signal was visualized by exposing the membrane to BioFlex MSI film for 

autoradiography, maximum sensitivity (InterScience). Bands for every sample were used for 

quantification, using imageJ software.  
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2.8 Analysis of rodent behaviour: 

 2.8.1 Open Field 

A mouse was placed at the centre of the open-field arena and the movement of the mouse was 

recorded by a video camera for 10 min. The recorded video file was later analysed with 

Smart video tracking system (v3.0, Harvard Apparatus). Total distance travelled during the 

10 minute period was calculated to measure exploratory behaviour. The open field arena was 

cleaned with 70% ethanol and wiped with paper towels between each trial. Investigators were 

blind to genotype during both recording and scoring of videos. 

2.8.2 Elevated plus maze 

A mouse was placed at the junction of the two open and closed arms. Apparatus consisted of 

two open arms without walls across from each other and perpendicular to two closed arms 

with walls with a centre platform. Experiment was performed as described in Vogt et al, 

2015198. Exploration time in this apparatus was recorded for 5 min with a video camera. 

Recorded video was scored to measure time spent in open arms, closed arms and centre 

regions respectively. 

2.8.3 T-maze 

The T-maze apparatus consists of a T-shaped walled chamber where mice (aged P43) are 

tested for two trials in order to assess working memory. An individual mouse was placed at 

the middle arm of the T-maze which walks was allowed to make a free choice to enter an arm 

at the T-junction. Once the mouse made a decision to go in left/right direction it was blocked 

in that chamber for 10 seconds and was taken out from the apparatus. It was allowed to rest in 

an empty cage for a period of 50 seconds and put back again in the middle arm to score if it 
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altered its choice for choosing the arm once at the junction. Each mouse was scored for one 

trial for three consecutive days. 

2.8.4 Three chambered social novelty test 

A three-chamber arena was used to assess the social recognition performance of the mice 

(Silverman et al., 2010)30. The tested animal (P38-P42) was placed in the middle of the 

central chamber and allowed to explore all the chambers for 10 min. During this habituation 

session, small wire cages were present, one in each opposite chamber. After habituation, an 

unfamiliar conspecific of the same sex and age (Stranger 1) was placed inside a small wire 

cage whereas the other remained empty. The tested animal was allowed to freely explore the 

three chambers of the apparatus for 10 min. At the end of this 10min, a new unfamiliar mouse 

of the same sex and the same age (Stranger 2) was placed in the previously unoccupied wire 

cage and the tested mouse was examined for an additional 10 min to assess preference for 

social novelty. Stanger 1 and stranger 2 animals originated from different home cages and 

had never been in physical contact with the tested mice or between each other. Social 

recognition was evaluated by quantifying the time spent by the tested mice in each chamber 

during the third 10 min session.  
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3.1 Abstract 

Mutations in genes encoding for GABAA receptor subunits are a well-established cause of 

genetic generalized epilepsy. GABA neurotransmission is implicated in several 

developmental processes including neurite outgrowth and synapse formation. Alteration in 

excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we 

investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine 

and GABAergic bouton formation. In particular, we examined the effects of three mutations 

of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of 

French Canadian families with genetic generalized epilepsy. We used a novel single-cell 

genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and 

simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in 

single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic 
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transfection. We found that GABRA1-/- GABAergic cells showed reduced innervation field, 

which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further 

found that the expression of the most severe GABRA1 missense mutation (α1-A322D) 

induced a striking increase of spine density in pyramidal cells along with an increase in the 

number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells 

slightly increased perisomatic bouton density, whereas other mutations did not alter bouton 

formation. All together, these results suggest that the effects of different GABAAR mutations 

on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot 

be always explained by a simple loss-of-function gene model. The use of single cell genetic 

manipulation in organotypic cultures may provide a better understanding of the specific and 

distinct neural circuit alterations caused by different GABAA receptor subunit mutations and 

will help define the pathophysiology of genetic generalized epilepsy syndromes. 

3.2 Introduction 

Genetic factors play a key role in the development and severity of genetic generalized 

epilepsy (GGE). Epilepsy-causing mutations have been identified in several GABAA receptor 

(GABAAR) subunits, including α1, β3, γ2, and δ subunits (Baulac et al., 2001;Wallace et al., 

2001;Cossette et al., 2002;Harkin et al., 2002;Kananura et al., 2002;Dibbens et al., 

2004;Audenaert et al., 2006;Maljevic et al., 2006;Sun et al., 2008;Tanaka et al., 

2008;Dibbens et al., 2009;Lachance-Touchette et al., 2010;Shi et al., 2010;Klassen et al., 

2011;Lachance-Touchette et al., 2011;Carvill et al., 2013;Epi et al., 2013;Tian et al., 

2013;Carvill et al., 2014;Hancili et al., 2014;Ishii et al., 2014;Johnston et al., 2014). 

GABAARs are ligand-gated ion channels that are permeable to chloride and bicarbonate 

anions and mediate most of cortical inhibitory neurotransmission. Their molecular structure 

comprises of a heteropentameric protein complex assembled from 19 different subunits (α1-
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6, β1-3, γ1-3, δ, ε, π, θ, and ρ1-3).  Although there is the potential for a high variability of 

combinations, the α1β2γ2 is the most abundant and represents approximately 60% of all 

GABAARs in adult brain (Sieghart and Sperk, 2002). Mutations in the GABRA1 gene are 

linked to a spectrum of endophenotypes of GGE syndromes as well as more severe forms of 

epilepsy associated with intellectual disability (Carvill et al., 2014). We previously reported 

D219N, A322D, K353delins18X mutations in families with autosomal dominant genetic 

generalized epilepsy (Cossette et al., 2002;Lachance-Touchette et al., 2011). Whether these 

mutations cause protein inactivation and thus loss of function is still unclear. Deletion of α1 

in mice produced EEG spike-wave discharges and absence-like seizures (Arain et al., 2012). 

This mouse model recapitulates some of the epilepsy phenotypes that were reported in human 

carriers of GABRA1 mutations (Cossette et al., 2002;Maljevic et al., 2006;Klassen et al., 

2011;Lachance-Touchette et al., 2011). In vitro investigations in heterologous cells 

demonstrated that GABRA1 mutants could affect mRNA transcript stability, cell surface 

GABAAR composition and channel gating properties (Cossette et al., 2002;Gallagher et al., 

2004;Krampfl et al., 2005;Maljevic et al., 2006;Gallagher et al., 2007;Lachance-Touchette et 

al., 2011;Carvill et al., 2014). By expressing wild type or mutant α1 in heterologous cells, we 

previously showed that A322D and K353delins18X mutations reduced GABA-evoked 

currents amplitude by impairing α1β2γ2 receptor surface expression due to endoplasmic 

reticulum retention (Krampfl et al., 2005;Lachance-Touchette et al., 2011). In addition, two 

GABRA1 mutations (A322D, D219N) exhibited altered gating kinetic properties (Lachance-

Touchette et al., 2011). Further, studies in cultured neurons revealed that α1-A322D mutation 

altered the kinetics and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs) 

in pyramidal neurons (Ding et al., 2010). These data support the hypothesis that reduced 

inhibition underlies network hyperexcitability in GGE associated with GABAAR mutations.  
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On the other hand, GABAAR mutations may also alter specific developmental processes. 

Alterations in the number and strength of inhibitory and excitatory synapses are thought to 

contribute to epilepsy (Bernard, 2012). In addition, GABA transmission have been shown to 

play a key role during brain development, influencing virtually all developmental steps from 

neurogenesis to the establishment of neuronal connectivity (Gaiarsa and Porcher, 2013;Kilb 

et al., 2013). Focusing in particular on synaptogenesis, recent studies demonstrated in 

organotypic cortical slices that endogenous GABA regulates axonal branching and synapse 

formation of cortical basket cells- a prominent class of GABAergic neurons- through the 

activation of GABAA and GABAB receptors (Chattopadhyaya et al., 2007;Baho and Di 

Cristo, 2012;Wu et al., 2012). GABAergic transmission can also play a critical role in 

excitatory synapse development. In pyramidal neurons of the cerebral cortices, excitatory 

synaptic inputs are made on small dendritic protrusions, called dendritic spines. Hayama and 

collaborators (2012) showed that dendritic spine shrinkage and elimination can be promoted 

either by uncaging of a caged GABA compound that mimics IPSCs or by tonic application of 

a GABAA agonist, muscimol (Hayama et al., 2013). Whether and how GABRA1 mutations 

affect dendritic spines and GABAergic bouton formation, thus contributing to the epilepsy 

phenotype has not been so far examined. 

 

So far, the vast majority of mutations in GABAAR subunits causing Human epilepsy are 

associated with loss-of-function, when assessing gating properties of the GABA-evoked 

currents in vitro (Macdonald and Kang, 2009). However, review of functional studies on 

GABRA mutations in heterologous cell system revealed controversial findings between 

different groups (reviewed in (Cossette et al., 2012)). For example, for long time no 

consensus was reached regarding the impact of GABRG2 missense mutations on GABA 

currents amplitude or kinetics as well as cell surface expression by using heterologous cell 
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culture.  Only the generation of a mouse model harbouring the γ2 point mutation (R82Q) 

dissipated all these ambiguities (Tan et al., 2007). The emergence of massive gene-

sequencing studies will generate an enormous amount of data, on the other hand developing 

mouse knock-in models for each new GABRA mutations is unrealistic, both because it is 

time consuming and far too expansive. 

 

Here, we propose of using single cell genetic manipulation to investigate the effects of 

different mutations of GABAA α1 subunit on both dendritic spine and GABAergic bouton 

formation in cortical organotypic slices, which maintain the three dimensional structure of the 

brain tissue and the tight spatial relationships between different cell types. In particular, we 

analyzed the density and morphology of pyramidal cell dendritic spines, which are the 

preferential postsynaptic site of glutamatergic synapses.  We also examined the axon 

morphology and bouton density of basket cells, which are the most prominent type of 

GABAergic interneurons in the cortex. 

3.3 Materials and methods 

Mice  

Funder mice B6.129(FVB)-Gabra1tm1Geh/J, first described in Vicini et al. (2001), were kindly 

gifted by Dr. Rudolph (McLean Hospital, Harvard Medical School) (Vicini et al., 2001). 

They were bred to establish a colony in the animal facility at the Centre de recherche du 

Centre hospitalier de l’Université de Montréal (CRCHUM). All mice were housed under 

standard pathogen–free conditions in a 12-hour light/dark cycle with ad libitum access to 

sterilized laboratory chow diet. Animals were treated in accordance with Canadian Council 

for Animal Care and protocols were approved by the Animal Care Committee of the 

CRCHUM and of CHU Ste-Justine Research Center. B6.129(FVB)-Gabra1tm1Geh/J mice 

were previously produced in a mixed background. The background was characterized with a 
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microsatellite panel consisting of 110 markers spread across the genome at about 15 cM 

intervals and was confirmed to be 99.08% congenic to C57BL/6J background (Charles River, 

NY). B6.129(FVB)-Gabra1tm1Geh/J mice possess three loxP sites on both sides of  the α1 

exon encoding an essential transmembrane domain of GABAA receptor. 

DNA constructs 

PG67-GFP was generated by subcloning of a 10 kb region of Gad1 gene promoter by gap 

repair in front of the GFP coding region in pEGFP (Clontech) as previously described 

(Chattopadhyaya et al., 2004).  We subcloned CRE, GABRA1-A322D, GABRA1-D219N, 

GABRA1-K353delins18X constructs (Cossette et al., 2002;Lachance-Touchette et al., 2011) 

in PG67 vector by using restriction site Pme1 via sequence and ligation–independent cloning 

method (SLIC) (Li and Elledge, 2007). All constructs were sequenced to confirm the 

presence of the mutations and to exclude any other variants that may have been introduced 

during PCR amplification. 

Slice culture and biolistic transfection 

Slice culture preparation was done as described by (Stoppini et al., 1991). Postnatal day 4 or 

5 (P4 or P5) mouse pups were decapitated, and brains were rapidly removed and immersed in 

ice-cold culture medium (containing DMEM, 20% horse serum, 1 mM glutamine, 13 mM 

glucose, 1 mM CaCl2, 2 mM MgSO4, 0.5 μm/ml insulin, 30 mM HEPES, 5 mM NaHCO3, 

and 0.001% ascorbic acid).  Coronal brain slices of the occipital cortex, 400 μm thick, were 

cut with a Chopper (Stoelting, Wood Dale, IL). Slices were then placed on transparent 

Millicell membrane inserts (Millipore, Bedford, MA), usually three slices/insert, in 30 mm 

Petri dishes containing 0.75 ml of culture medium. Finally, the slices were incubated in a 

humidified incubator at 34°C with a 5% CO2-enriched atmosphere and the medium was 

changed three times per week. All procedures were performed under sterile conditions. 
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Constructs to be transfected were incorporated into “bullets” that were made using 1.6 μm 

gold particles coated with a total of ~60 μg of the DNA(s) of interest. These bullets were used 

to biolistically transfect slices by Gene gun (Bio-Rad, Hercules, CA) at high pressure (180 

ψ), and the transfected slices were incubated for 8 days in vitro under the same conditions as 

described above, before imaging. For each experimental group, cortical slices were prepared 

from at least three mice. On average 6-7 neurons were transfected per cortical organotypic 

slice. The majority of neurons labeled by this promoter were parvalbumin-positive basket 

cells (as described in (Chattopadhyaya et al., 2004;Chattopadhyaya et al., 2007)), while a 

minority (~10%) were pyramidal cells. Pyramidal cells were recognized by the complexity of 

their dendritic arbor, including an apical dendrite, and the presence of numerous dendritic 

spines. 

Imaging and spine analysis of pyramidal cells 

Pyramidal neurons were imaged using a Leica confocal microscope SPE (63X glycerol 

immersion objective; NA 1.3). At least 6 labeled pyramidal neurons, characterized by the 

presence of a well-defined apical dendrite, were randomly selected from cortical layers 2/3 

and 5. Image stacks of basal dendrites were acquired with a z-step of 0.5 μm and then 

reconstructed in 3-D with Neurolucida (MicroBrightField) software. Cortical pyramidal cells 

from at least four animals were used for each experimental condition. Dendritic length, 

total spine density, spine morphology and spine length were quantified using NeuroExplorer 

software (MicroBrightField). Mushroom spines were defined as spine with a neck and 

bearing a head, which was at least twice as large as the neck. Thin spines were defined as 

dendritic protrusions shorter than 5 μm and lacking a clearly defined head. All 

quantifications were done blind to the treatment.  
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Analysis of basket cell innervation 

We quantified two aspects of basket cell axon innervation field – 1) the extent of perisomatic 

innervation around single neuronal somata (terminal branching and perisomatic GFP-positive 

bouton density) and 2) the percentage of potentially innervated cells in the field (percentage 

of innervation). We have previously shown that the vast majority of GFP-labeled boutons in 

our experimental condition most likely represent presynaptic terminals, by localization of 

pre- and post-synaptic markers and electron microscopy (Chattopadhyaya et al., 

2004;Chattopadhyaya et al., 2007;Wu et al., 2012). For each experimental group, we took 

care to acquire an equal number of basket cells localized in layers 2/3 and 5/6 of the cortex. 

We acquired at least two confocal stacks of each basket cell axon arbor in the first 150 μm 

from the basket cell soma using a 63X glycerol objective (NA 1.3, Leica) and a Leica TCS 

SPE confocal microscope. The typical confocal stack size was 116.4 X 116.4 μm with an 

average depth of 40–70 μm and a z-step of 1 μm. Analysis of basket cell perisomatic 

innervation and bouton size was performed essentially as described by Chattopadhyaya et al. 

(2013). Briefly, in our Three-Dimensional Sholl analysis, Sholl spheres with a 1 μm 

increment from the center of a pyramidal soma were used to quantify basket axon terminal 

branch complexity and bouton density around the pyramidal cell soma. Axon branch 

complexity around a single pyramidal cell soma was quantified by the average number of 

intersections between basket cell axons and the Sholl spheres in the first 9 μm from the center 

of the pyramidal cell soma. We choose 9 μm as the limiting radius for a Sholl sphere because 

it approximates the average pyramidal cell soma diameter measured from pyramidal neurons 

immunostained with NeuN antibody. Between 10 and 15 pyramidal neurons were analyzed 

for each basket cell. Bouton density around each pyramidal cell soma was measured within 

the same set of Sholl spheres and averaged among pyramidal neurons for each condition. 

Only pyramidal cell somata with Sholl spheres, which intersected the basket cell axon in the 
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first 9 μm from the center of their soma, were taken for analysis. Using this approach, we 

obtained an unbiased estimate of the number of presumptive boutons on individual labeled 

pyramidal cell soma. The percentage of neuron somata innervated by a basket cell was 

defined in a confocal stack by the number of NeuN-positive cells contacted by at least one 

GFP-positive-bouton divided by the total number of NeuN-positive cells. This was repeated 

over all the fields of each basket axon and the results were averaged (Chattopadhyaya et al., 

2013).  

All data were first averaged per basket cell; statistical analysis was then done using the 

number of basket cells as n. 

Statistical analysis 

Differences between groups were assessed with one-way ANOVA followed by post-hoc 

Holm-Sidak test for normally distributed data or one-way ANOVA followed by post-hoc 

Kruskal-Wallis test for not-normally distributed data. The cells analyzed derived from at least 

three different sets of experiments. Data are expressed in term of mean ± standard error of 

mean (SEM).   

3.4 Results 

GABRA1 is broadly expressed in the nervous system and GABAAR-mediated signalling plays 

multiple roles during development (Rossignol, 2011).  In order to examine how different 

GABRA1 mutants may affects the formation of dendritic spine and GABAergic bouton 

formation, we used a transgenic mouse carrying a conditional allele of GABRA1 (Vicini et 

al., 2001), which allows cell-type and developmental-stage restricted knockdown of GABRA1 

synthesis. In this floxed-GABRA1 mouse (GABRA1flox/flox), Cre-mediated recombination 
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results in excision of exon 8, causing a shift in reading frame and premature termination of 

translation.  

To inhibit GABRA1 expression in isolated pyramidal neurons and GABAergic basket cells 

and simultaneously label their dendritic and axonal arbors at high resolution, we used a 

previously characterized promoter region PG67 (Chattopadhyaya et al., 2004) to express either 

Cre recombinase together with GFP (PG67-GFP/Cre) or GFP alone (PG67-GFP) in cortical 

organotypic cultures of GABRA1flox/flox mice (Figure 1). For pyramidal neurons, we focussed 

our analysis on dendritic spines, because dendritic spine alterations have been observed both 

in experimental animal models of epilepsy (Wong, 2005;Ma et al., 2013) and in human 

epilepsy patients (Multani et al., 1994;Isokawa, 2000). GABAergic basket cells (BCs), which 

represent about 40% of all cortical GABAergic cells in rodents, form synapses onto the 

somata and proximal dendrites of excitatory pyramidal cells. Because of the perisomatic 

localization and strength of their synapses, BCs strongly control the firing output of 

pyramidal cells and are thought to be important contributors to the maintenance of the overall 

excitation/inhibition balance in the cortex (Haider and McCormick, 2009). Further, BCs 

could act as a gate to prevent runaway excitation, which underlies the propagation of 

epileptiform activity (Trevelyan et al., 2007). Previous studies have shown that the basic 

features of dendritic spine formation and of the maturation of perisomatic innervation by BCs 

onto pyramidal cells are retained in cortical organotypic cultures (Dunaevsky et al., 

1999;Chattopadhyaya et al., 2004;Di Cristo et al., 2004). We genetically manipulated 

pyramidal cells and BCs between the third and fourth postnatal week during which a 

significant and stereotyped maturation of BCs perisomatic innervation occurs 

(Chattopadhyaya et al., 2004;Chattopadhyaya et al., 2007;Di Cristo et al., 2007). Pyramidal 

cells from GABRA1flox/flox cultures transfected with PG67-GFP/Cre (referred here on as GABRA1-/- 

cells) from equivalent postnatal day 16 (EP16, P4 + 12 days in vitro) to EP24 showed no 
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significant alterations in the overall spine density and morphology compared to age-matched 

control transfected only with PG67-GFP (Figure 2G-H; Suppl Figure 1; total spine density 

GABRA1+/+ vs GABRA1-/-; 0.63 ± 0.04 vs 0.71 ± 0.05 spine/μm; p>0.05).  GABRA1-/- BCs 

showed a significant reduction in the number of contacted target cells (Figure 3H; 

GABRA1+/+ vs GABRA1-/-; 61 ± 2% vs 41 ± 3%; p<0.05). In turn, the perisomatic 

innervations they formed around contacted neurons did not differ from those formed by 

control age-matched BCs, in term of bouton density or terminal branching (Figure 3F; 

GABRA1+/+ vs GABRA1-/-; 9.1 ± 0.5 vs 9.6 ± 0.7 boutons/soma; p>0.05). The axon density 

and average internode axon length were also not significantly different between these two 

groups (Suppl. Figure 2), thus suggesting that knockdown of GABRA1 in this developmental 

time window did not affect overall axon growth. 

To explore whether and how specific GABRA1 mutants associated with GGE affect 

pyramidal cell spine and BCs GABAergic bouton formation, we inactivated the endogenous 

GABRA1 alleles and simultaneously re-introduced either GABRA1WT/WT or each of the 

GABRA1 mutant separately in single pyramidal and BCs from EP16-24. We choose this 

approach because global GABRA1 manipulations may alter the excitation/inhibition balance 

of the whole slice, therefore making it difficult to distinguish between specific effects of 

distinct GABRA1 mutants and unspecific, generalized effects of altered neuronal activity. In 

our experimental model, GABRA1 was deleted only in sparse neurons in an otherwise wild-

type background.  It is therefore unlikely that the overall excitation levels in the slices was 

altered. A second critical advantage of our single-cell labeling/genetic manipulation approach 

is that we could visualize, reconstruct and quantify at high-resolution the dendritic and axonal 

arbours of single neurons with their putative boutons.  

GABRA1WT/WT expression in GABRA1-/- pyramidal cells did not alter overall spine density 

(Figure 2G; GABRA1+/+ vs GABRA1WT/WT; 0.63 ± 0.04 vs 0.74 ± 0.05 spine/μm p>0.05), 
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although we observed a slight increase in the density of thin spines (Figure 2H; GABRA1+/+ 

vs GABRA1WT/WT; 0.02 ± 0.005 vs 0.09 ± 0.02 thin spines/μm; p<0.001). Importantly, 

GABRA1WT/WT expression rescued the number of target cells contacted by each GABRA1-/- BC  

(Figure 3H; GABRA1+/+vs GABRA1WT/WT; 61 ± 2% vs 59 ± 4%; p>0.05 and Figure 3H; 

GABRA1-/- vs GABRA1WT/WT; 41 ± 3% vs 59 ± 4%; p<0.001) suggesting that biolistic 

transfection of GABRA1WT/WT under the PG67 promoter can drive the expression of enough 

protein to rescue GABRA1 deficits in single cells. 

Interestingly, we found that α1-A322D expression in GABRA-/- pyramidal cells specifically 

and significantly increased both total spine density (Figure 2G; GABRA1+/+ vs GABRA1AD/AD; 

0.63 ± 0.04 vs 0.9 ± 0.1 spines/μm; p<0.05) and the proportion of mushroom-like spines on 

pyramidal cells basal dendrites (Figure 2H; Suppl Figure 1; GABRA1+/+ vs GABRA1AD/AD; 

0.48 ± 0.05 vs 0.8 ± 0.1 mushroom spines/μm; p<0.05). As dendritic spines are the 

preferential site for glutamatergic synapse formation and mushroom spines in particular tend 

to show larger EPSCs compared to other spine types (Lee et al., 2012), these data suggest 

that α1-A322D expression may increase both the number and strength of excitatory synapses. 

In parallel, we found that α1-A322D expression in GABRA1-/- BCs rescued the loss of 

innervated targets caused by GABRA1 deletion (Figure 3H; GABRA1+/+ vs GABRA1AD/AD; 

61 ± 2% vs 51 ± 2%; p>0.05) and further increased the number of GABAergic boutons 

formed by BCs onto target cell somata compared to age-matched controls (Figure 3F; 

GABRA1+/+ vs GABRA1AD/AD; 9.1 ± 0.5 vs 13 ± 1 boutons/soma; p<0.05), suggesting that α1-

A322D expression can increase the formation of GABAergic boutons.  

Finally, we found that the expression of the other mutants, α1-D219N or α1-K353delins18X, 

had no effects on spine density and morphology in GABRA1-/- pyramidal cells. On the other 

hand, α1-D219N expression failed to rescue the loss of innervated targeted cells caused by 

GABRA1 deletion (Figure 3H; GABRA1+/+ vs GABRA1DN/DN; 61 ± 2% vs 46 ± 5%; p<0.001) 
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and showed a trend towards reduced bouton density, which however did not reach 

significance (Figure 3F; GABRA1+/+ vs GABRA1DN/DN; 9.1 ± 0.5 vs 7.5 ± 0.8 boutons/soma; 

p>0.05). In summary, our data show a remarkably GABRA1 mutant-specific effects on both 

dendritic spine and GABAergic bouton formation. 

3.5  Discussion 

Altogether, our data show for the first time that different GABRA1 mutations associated with 

familial autosomal dominant GGE can affect dendritic spine and GABAergic bouton 

formation in a mutation-specific manner. Interestingly, GABRA1 deletion in single pyramidal 

neurons did not affect their dendritic spine density or morphology, likely due to the 

compensatory action of other α1 subunits of GABAAR. Consistently, α2 and α3 proteins were 

expressed at higher-level in the cerebral cortex of GABRA1-KO mice (Bosman et al., 

2005;Zeller et al., 2008). In the same mouse model, global deletion of the α1 subunit 

triggered an increase in the density of postsynaptic sites expressing α3 subunit in the 

molecular layer of the cerebellum, which has been interpreted as a reorganization of 

cerebellar networks (Kralic et al., 2006). On the other hand, GABRA1 deletion reduced the 

extent of BC innervation field in a cell-autonomous fashion (Figure 3), indicating that 

compensatory expression of other alpha subunits may not occur in GABAergic cells or that 

changes in inhibitory inputs caused by the presence of GABAAR lacking the α1 subunit may 

alter BC development. In fact, it has been shown that the maturation of the innervation field 

of GABAergic BCs is exquisitely dependent on neuron excitability and GABA release 

(Chattopadhyaya et al., 2007;Baho and Di Cristo, 2012;Wu et al., 2012). Consistent with this 

hypothesis, Purkinje cells from GABRA1-/- mice lacked spontaneous and evoked IPSCs 

(Fritschy and Panzanelli, 2006). In addition, stellate cell synapses on Purkinje cells dendrites 

were reduced by 75% in the same mouse model (Fritschy and Panzanelli, 2006).  

Unexpectedly, the expression of α1-WT in a knock-out background (GABRA1-/- pyramidal 
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neurons) increased the formation of thin spines, which are generally thought to represent 

immature/new synapses. One possibility is that the overexpression of α1-WT causes excess 

inhibition, which in turn promotes the formation of new excitatory synapses (Queenan et al., 

2012). Quantitative analysis of inhibitory and excitatory inputs onto transfected neurons will 

be necessary to clarify this issue and will be the focus on future studies. 

 

Surprisingly, we found that different α1 mutants have very different impacts on the 

development of GABAergic boutons and dendritic spines. The GABRA1 mutant that showed 

the most dramatic effects on both pyramidal cell spines and basket cell innervation field was 

α1-A322D. This observation is consistent with previous electrophysiological studies showing 

that this mutation has more severe effect in vitro on the gating properties of the GABA-

evoked currents, compared to other GABRA1 missense mutations (Macdonald et al., 

2010;Lachance-Touchette et al., 2011).  One possibility is that α1-A322D may act as 

dominant negative. Using cell cultures, Ding and collaborators (2010) showed that α1-A322D 

reduced the overall surface expression of GABAAR by associating with the wild type 

subunits within the endoplasmic reticulum and preventing them from trafficking to the cell 

surface (Ding et al., 2010;Lachance-Touchette et al., 2011). Reduction in cell surface 

expression of GABAAR resulted in decreased postsynaptic inhibition (Ding et al., 2010), 

which may in turn facilitate long-term potentiation (LTP) of excitatory synapses (Carlson et 

al., 2002). One of the main effects of LTP is the increase in AMPA-receptor density at 

postsynaptic sites on dendritic spines (Liu et al., 2005;Whissell et al., 2013), which correlate 

with the presence of more mature mushroom spines characterized by large heads (Luscher et 

al., 2000), consistently to what we observed (Figure 2).  Similarly, reduction of inhibition 

onto BCs could promote GABA release and, subsequently, formation of GABAergic boutons 

(Chattopadhyaya et al., 2007;Baho and Di Cristo, 2012). Therefore, these results suggest that 
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altered excitatory/inhibitory synaptic balance may be partially responsible for the increased 

excitability of cortical networks in human carriers of α1-A322D.   

 

Interestingly, α1-D219N expression in GABRA1-/- BC was unable to rescue the deficits in 

their innervation field, while it did not affect dendritic spine density. Our prior studies 

showed that GABAARs containing α1-D219N were trafficked to the membrane and that 

mutation altered GABAA receptor gating kinetics. In particular, GABAARs containing α1-

D219N have slower desensitization rates and faster off-kinetics compared to wild-type 

receptors (Lachance-Touchette et al., 2011). It is therefore possible that reduced inhibition 

may be partially responsible for both altered development of GABAergic cells and increased 

excitability of neuronal circuits in human carriers of α1-D219N.  Finally, the expression of 

α1-K353delins18X did not affect any of the developmental events we analyzed. We have 

previously reported that this frameshift mutation altered the downstream amino acid sequence 

and resulted in the introduction of a premature translation–termination codon (PTC) 

(Lachance-Touchette et al., 2011). The premature translation termination is likely to cause 

mRNA degradation by a process called nonsense-mediated mRNA decay (Baker and Parker, 

2004), thereby explaining why expression of α1-K353delins18X did not affect the phenotype 

of GABRA1-/- neurons.  

 

Altogether, our data suggest that a “loss-of-function” model may not always explain the 

effects of GABRA1 mutations on dendritic spines and GABAergic bouton formation. For 

example, reduced inhibition is most often mentioned as a cause of epileptic syndromes. Here, 

our data suggest that α1-A322D may instead increase the number of dendritic spines, which 

are the preferential site of excitatory synapse formation, an event that may result in higher 

cortical excitation.  These potential effects on developing neuronal networks need to be 
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further explored by recording miniature inhibitory (mIPSCs) and excitatory (mEPSCs) 

postsynaptic currents in transfected neurons. 

 

With the advance in the technology of large-scale multiplex sequencing or next-generation 

sequencing (NGS), it is now possible to obtain the sequence of the whole exome (WES) and 

even the whole genome (WGS) for a given individual. These methodological approaches are 

very powerful and are already opening new frontiers of genomics research. However, by 

sequencing many more genomes, we will need in vitro models to determine the functional 

biological role of all new variants that we will find. The use of heterelogous models such as 

HEK cells and xenopus oocytes may not be the best systems to test the impact of mutations in 

GABAAR subunits. For example, despite a large number of studies, the functional alterations 

caused by missenses mutations identified in GABRG2 in epileptic patients are still not well 

understood.  In fact, there is no consensus about the effect of the mutations R82Q, P83S, 

R177G and K328M on the GABA currents amplitude (Baulac et al., 2001;Wallace et al., 

2001;Bianchi et al., 2002;Bowser et al., 2002;Kang and Macdonald, 2004;Hales et al., 

2005;Audenaert et al., 2006;Kang et al., 2006;Eugene et al., 2007;Frugier et al., 

2007;Goldschen-Ohm et al., 2010;Lachance-Touchette et al., 2011;Huang et al., 2014;Todd 

et al., 2014). As another example, it is still debated whether β3-P11S, β3-G32R and γ2-P83S 

altered surface expression of the GABAAR or of the subunit itself (Tanaka et al., 

2008;Delahanty et al., 2011;Lachance-Touchette et al., 2011;Gurba et al., 2012). In addition, 

the exclusive use of non-neuronal cells will not answer the question on how biophysical 

alterations in mutated receptor properties may alter brain development and ultimately lead to 

hyperexcitable networks. Here, we suggest that organotypic slice cultures may provide an 

accessible system for investigating the specific effects of GABA receptor mutants on 

neuronal development. Moreover, in contrast to what occur in dissociated neuronal cultures, 
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organotypic slice cultures retain complex 3-dimensional interactions between different cell 

types as they occur in vivo. Therefore, we believe that the single cell genetic manipulation 

described here is a novel tool to understand how GABAA receptor mutants disrupt neuronal 

circuit formation and will help define the pathophysiology of genetic epilepsy syndromes. 
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3.7 Figures 

           

Figure 3.1 Figure 1.Schematic of the experimental approach. Single cell transfection 
strategy avoids altering the overall activity level in the cortex. 
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Figure 3.2 Figure 2.α1-A322D expression induces a significant increase in the number 
and maturation of dendritic spines in cortical pyramidal cells. (A1-A3) Confocal images 
showing pyramidal cells transfected with GFP (green) alone (control, GABRA1+/+ cells) or 
(B1-B3) GFP and CRE (GABRA1-/-) to knockdown endogenous α1 subunits, or GFP-CRE 
and either one of the wild-type or mutants α1 (C1-F3) to investigate the effects of different 
α1 mutants on spine density and morphology, in organotypic cultures. (A3-F3) High 
magnification images of dendrites from pyramidal cells in A2-F2. White arrowheads 
indicates mushroom spines, yellow arrowhead indicate a thin spine. (G, H) α1-A322D mutant 
pyramidal cells show significantly increased density of total (G) and mushroom-like spines 
(H) compared to control age-matched pyramidal cells (1-way ANOVA; *p<0.05). α1-WT 
expression induces a significant increase in thin-like spines (H, 1-way ANOVA; *p<0.05). 
GFP n=7; GFP-CRE n=9; GFP-CRE-WT n=7; GFP-CRE-A322D n=7; GFP-CRE-D219N 
n=6; GFP-CRE-K353delins18X n=7 pyramidal cells. Scale bars: A1-F1, 50 μm; A2–F2, 
10μm; A3-F3, 5 μm. 

 

 

 



69 
 

 

Figure 3.3 Figure 3.α1-A322D expression induces a significant increase in boutons 
formed by GABAergic cortical basket cells. (A-E) Low (A1-E1) and high magnification 
(A2-E2) confocal images showing basket cells transfected with GFP (green) alone (A, 
GABRA1+/+cells) or GFP and CRE (B, GABRA1-/- cells), or GFP-CRE and either one of the 
wild-type or mutants α1 subunits (C-E). Basket cells form terminal axon branching bearing 
numerous presynaptic boutons around NeuN (red)-positive somata (arrowheads). A3-E3 are 
high-magnification images from boxed areas in A2-E2. (F) GABRA1-/- basket cells 
transfected with α1-A322D show significant increase in bouton density (F). Local branching 
(G) does not differ across the groups. (H) GABRA1-/- basket cells contact less pyramidal 
somata compared to age-matched basket cells. This deficit is rescued by the expressions of 
α1-wild-type or α1-A322D but not of α1-D219N (1-way ANOVA; *p<0.05). GFP n=6; GFP-
CRE, n=6; GFPCRE- WT, n=6; GFP-CRE-A322D, n=6; GFP-CRE-D219N, n=4 basket 
cells. Scale bars: A1–E1, 50 μm; A2–E2, 10 μm; A3–E3, 5 μm. 
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Figure 3.4 Supplementary Figure 1. α1-A322D expression induces a significant increase 
in spines density in cortical pyramidal cells. (A) Spine length, (B) dendritic length and (C) 
dendritic length per branch order do not differ across the groups. (D) GABRA1AD/AD mutant 
pyramidal cells show significantly increased density of spines in dendritic branch order two 
and three compared to control age-matched pyramidal cells GABRA+/+ (1-way ANOVA; 
*p<0.05). GFP n=7; GFP-CRE n=9; GFP-CRE-WT n=7; GFP-CRE-A322D n=7; GFP-CRE-
D219N n=6; GFP-CRE-K353delins18X n=7. 
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Figure 3.5 Supplementary Figure 2. GABRA1 knockdown does not alter the overall 
axon growth basket cells. (A) Axonal density and (B) inter-node axon length are not 
significantly different between  GABRA1-/- and GABRA1+/+ basket cells. GFP n=6; GFP-CRE, 
n=6 basket cells. 
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4.1 Abstract 

Properly functional cortical circuits depend on the correct development of 

inhibitory interneurons.  In particular, the axonal arborisation and synapse density of 

parvalbumin (PV)-positive interneurons undergo striking changes in the young brain. The 

mechanisms controlling the development of PV interneuron connectivity are still not well 

understood. The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway, which 

is regulated by Tuberous Sclerosis (TSC) 1 and 2 proteins, has been implicated in controlling 

several aspects of neuronal development by integrating multiple extracellular signals to 

produce appropriate protein translation. How and whether mTORC1 signaling affects PV 

interneuron development is unknown. Here, we showed that Tsc1 knockout (KO) in single 

PV interneurons in cortical organotypic cultures caused a premature increase in terminal 

axonal branching and bouton density formed by mutant PV cells, which was reversed by 

Rapamycin treatment, followed by a striking loss of perisomatic innervation after the 4th 

postnatal week. To investigate the role of mTORC1 in PV cells in vivo, we bred Tsc1lox with 

Nkx2.1-Cre and PV-Cre mice to knockout Tsc1 before and after birth, respectively. Both 

conditional KO mice showed mTORC1 hyperactivation and somatic hypertrophy in PV cells.  

Consistently to what observed following Tsc1 KO in single PV cells, PV cell perisomatic 

innervations were increased at P18, but decreased at P45 in Nkx2.1-Cre;Tsc1lox/lox mice  

compared to controls. PV cell connectivity loss was more pronounced in PV-Cre;Tsc1lox/lox 

mice. Finally, both conditional KO mice showed alterations in anxiety and social novelty 

discrimination behavior. All together, these results suggest that mTORC1 signaling regulates 

both the time course and the maintenance of PV cell innervations, with the direction of the 

regulation depending on developmental stage. Further, altered PV cell connectivity may be 

one of the pathological mechanisms leading to cognitive deficits in neurodevelopmental 

diseases characterized by mTOR dysregulation. 
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4.2 Introduction 

Within the forebrain, GABAergic (γ-aminobutyric acid producing) interneurons possess the 

largest diversity in morphology, connectivity, and physiological properties (Fishell and 

Rudy, 2011). A fascinating hypothesis is that different interneurons may play partly distinct 

roles in neural circuit function and animal behavior. Cortical parvalbumin (PV)-positive 

basket cells (PV cells) specifically target the soma and proximal dendrites of pyramidal cells. 

PV cells can adjust the gain of the integrated synaptic responses and have been implicated in 

synchronizing the firing of neuronal populations and the generation of gamma oscillations 

(Cardin et al., 2009; Sohal et al., 2009; Takada et al., 2014), which are important for the 

maintenance of attention, working memory and for the refinement of executive functions in 

humans and rodents (Fries et al., 2001; Howard et al., 2003; Cho et al., 2006).  Importantly, 

PV cells have also been involved in experience-dependent development of cortical circuits. 

Indeed, many studies on the visual cortex have proposed that the timing of the critical period 

of heightened plasticity is set by PV cell maturation (Fagiolini et al.,2004; Fagiolini and 

Hensch, 2000; Di Cristo et al.,2007; Sugiyama et al., 2008; Morishita et al., 2015). Cortical 

PV cell connectivity develops largely in the first 4 postnatal weeks in rodents. In fact, at the 

individual cell level, PV cell axonal arbors become significantly more complex and the 

density of perisomatic synapses around targeted cells increases during this time period. The 

molecular players involved in this process are still not completely understood. 

Mechanistic target of rapamcyin (mTORC1) is a central player in cell growth throughout the 

organism. In the developing brain, mTORC1 dictates the overall growth of differentiating 

neuronal stem cells (Magri et al., 2011) and post-mitotic neurons (Kwon et al., 2003); further 

it is critical in defining neuronal polarity (Li et al., 2008), axon guidance (Jaworski and 

Sheng, 2006), dendritic arborization (Urbanska et al., 2012) and glutamatergic synapse 

formation (Tavazoie et al., 2005; Bateup et al., 2011).  In addition, in mature neuron, 
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mTORC1 regulates protein synthesis-dependent, synaptic changes underlying learning and 

memory (Lipton and Sahin, 2014). Monogenic mutations in critical molecular regulators of 

mTORC1 are underlying causes of several diseases (Costa-Mattioli and Monteggia, 2013). 

In particular, mutations in the mTORC1-negative regulators TSC1 or TSC2 causes Tuberous 

Sclerosis Complex, which is associated with neurological problems, including epilepsy, 

intellectual disabilities and autism (de Vries , 2010).   

Several studies have shown that TSC-mTORC1 signaling pathway in cortical excitatory 

neurons regulates their connectivity (Bateup et al., 2013; Bateup et al., 2011; Tavazoie et al., 

2005), however whether and how it modulates cortical PV cell connectivity is unknown.  

Here, we used a combination of single-cell genetic in cortical organotypic cultures, 

conditional knockout mice and high-resolution imaging to investigate the effects of Tsc1-

mTORC1 pathway on the development of PV cell connectivity. We found that PV cells 

lacking Tsc1 show a premature increase of their axonal arbor complexity and bouton density 

in the first three postnatal weeks, followed by a striking loss of connectivity by adulthood. 

Further, conditional KO mice lacking Tsc1 in PV cells show anxiety and social recognition 

deficits, which are more severe when mTOR hperactivation starts postnatally. 

4.3 Materials and Methods 

Animals 

Mice with loxP sites flanking exon 17 and 18 of Tsc1gene (Tsc1flox/flox) were purchased from 

Jackson Laboratories. The Tsc1flox/flox mice were bred with wild type mice of Sv129 

background to generate Tsc1flox/wt mice. Both Tsc1flox/flox and Tsc1flox/wt mice have been used 

for organotypic cultures to study the role of Tsc1 knockout in single PV cells. Two separate 

transgenic mouse lines expressing Cre recombinase, (1) Tg(Nkx2.1-Cre)27 and (2)Tg(PV-Cre) 

(Runyan et al., 2010) purchased from Jackson laboratories, were maintained as pure colonies. 
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Backcross between Tsc1flox/flox mice and Tg(Nkx2.1-Cre) produced Tsc1flox/flox or Tsc1flox/+ 

(referred as Tsc1Ctrl), Tg(Nkx2.1-Cre);Tsc1flox/+ and Tg(Nkx2.1-Cre);Tsc1flox/flox mice. A 

similar breeding strategy was used to breed Tsc1flox/flox and Tg(PV-Cre) mice. All mice were 

housed under standard pathogen-free conditions in a 12h light/dark cycle with ad libitum 

access to sterilized laboratory chow diet. Animals were treated in accordance with Canadian 

Council for Animal Care and protocols were approved by the Animal Care Committee of 

CHU Ste-Justine Research Center. 

Mice Genotyping  

DNA was extracted from mouse tails and genotyped to detect the presence of Cre alleles and 

Tsc1 conditional and wild-type alleles. Polymerase chain reaction (PCR) was performed 

using primers F4536 (5’AGGAGGCCTCTTCTGCTACC-3’), R4830 (5’- 

CAGCTCCGACCATGA AGTG -3’) and R6548 (5′-TGGGTCCTGACCTATCTCCTA-3′) 

with band sizes of 295 bp for the wild-type and 480 bp for the floxed allele. Primers for 

characterizing Cre in Tg(Nkx2.1-Cre) breeding were F1 (5’-AAGGCGGACTCGGTCCA 

CTCCG-3’), F2(5’-AAGGCGGACTCGG TCCACTCCG-3’) and R1 (5’-TCGGATC 

CGCCGCATAACCAG-3’) which generated 550bp and 220bp mutant and wild-type bands. 

Primers for detecting Cre in Tg(PV-Cre) breeding were F1 (5’-

CAGCCTCTGTTCCACATACACTCC-3’), F2(5’- GCTCAGAGCCTCCATTCCCT-3’) and 

R1 (5’-TCACTCGAGAGTACCAAGCAGGCAGGA GATATC-3’) which generated 400bp 

and 526bp mutant and wild-type bands. 

Slice culture and biolistic transfection 

Slice culture preparation was done as described by Chattopadhyaya and coworkers 

(Chattopadhyaya et al., 2013). Postnatal day 4 or 5 (P4 or P5) mouse pups were decapitated, 

and brains were rapidly removed and immersed in ice-cold culture medium (containing 
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DMEM, 20% horse serum, 1 mM glutamine, 13 mM glucose, 1 mM CaCl2, 2 mM MgSO4, 

0.5 μm/ml insulin, 30 mM HEPES, 5 mM NaHCO3, and 0.001% ascorbic acid).  Coronal 

brain slices of the occipital cortex, 400 μm thick, were cut with a Chopper (Stoelting, Wood 

Dale, IL). Slices were then placed on transparent Millicell membrane inserts (Millipore, 

Bedford, MA), usually three slices/insert, in 30 mm Petri dishes containing 0.75 ml of culture 

medium. Finally, the slices were incubated in a humidified incubator at 34°C with a 5% CO2-

enriched atmosphere and the medium was changed three times per week. All procedures were 

performed under sterile conditions. Constructs to be transfected were incorporated into 

“bullets” that were made using 1.6 μm gold particles coated with a total of ~60 μg of the 

DNA(s) of interest. These bullets were used to biolistically transfect slices by Gene gun (Bio-

Rad, Hercules, CA) at high pressure (180 ψ), and the transfected slices were incubated for 8 

days in vitro under the same conditions as described above, before imaging. For each 

experimental group, cortical slices were prepared from at least three mice. On average 6-7 

neurons were transfected per cortical organotypic slice. The majority of neurons labeled by 

this promoter were parvalbumin-positive (PV) basket cells (Chattopadhyaya et al., 2004; 

Chattopadhyaya et al., 2007); while a minority (~10%) were pyramidal cells. Pyramidal cells 

were recognized by the complexity of their dendritic arbor, including an apical dendrite, and 

the presence of numerous dendritic spines. 

Immunohistochemistry and confocal imaging 

Mice were perfused transcardially with 1X PBS AND 4% PFA. Brains were postfixed with 

4% PFA overnight followed by 30% sucrose solution in PBS. The brains were frozen with 

OCT and sagittal sections of 40 μm were produced using a cryostat (Leica).  The following 

primary antibodies were used for immunohistochemistry on mouse cryosections or 

organotypic cultures: rabbit anti-phospho-S6 (1:1000, Cell Signaling), mouse anti-NeuN 

(1:400, Millipore), mouse PV (1:1000, Millipore), rabbit anti-PV (1:8000, Swant), guinea pig 
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anti-PV (1:1000,Synaptic Systems), rabbit anti-vGAT (1:1000, Synaptic Systems), mouse 

anti-gephyrin (1:500, Synaptic Systems). Secondary antibodies to visualize primary 

antibodies were Alexa-fluor conjugated 488, 555,594,633, and 647 (Life technologies). 

Images were taken using a Leica confocal microscope (SPE and SP8) and water immersion 

20x (NA0.7) or glycerol immersion 63x (NA1.3) objective. 

Image quantification in organotypic cultures and in vivo 

For organotypic cultures, at least two confocal stacks of each BC axon arbor in the first 

150μm from the basket cell soma using a 63X glycerol objective (NA1.3, Leica) and a Leica 

TCS SPE confocal microscope. PV cells were analysed as discussed in28. For in vivo analysis, 

images were acquired on the same day using identical confocal parameters and either using 

20x water immersion objective (for analysis of % of PV cells colocalizing with pS6+ cells) or 

63x glycerol objective (for analysis of PV, vGAT, pS6, gephyrin intensity and/or puncta 

counting). Three confocal stacks from 3 different brain sections were acquired in layer V of 

somatosensory cortex with z-step size 1μm. Images were exported in TIFF format.  Cell 

soma of PV cells was quantified using Neurolucida (MBF Softwares). Fluorescence intensity 

of pS6 signal in PV cells was calculated using ImageJ. Intensity of PV and vGAT perisomatic 

staining was calculated on a traced cross-sectional area around NeuN somata using ImageJ. 

PV+, vGAT+, gephyrin+, PV+/vGAT+ and PV+/gephyrin+ punctas were counted around 

NeuN positive somata after selecting the confocal plane with the highest soma circumference 

using Neurolucida software. At least 10 NeuN positive somata were selected in each confocal 

stack. User was blind to genotype during all the analysis. 

 Western Blot  

Western blots were performed on samples from four mice per group and from two separate 

experiments. Protein lysates were prepared by homogenizing tissue from rat hippocampus in 
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50 mM Tris–HCl (pH 7.6), 2 mM EDTA, 1% Igepal CA-630 (Sigma-Aldrich), and one 

tablet of protease inhibitor cocktail (Roche, Mississauga, ON, Canada). Tissues were 

disrupted using needles and a syringe, and centrifuged at 10000 g for 10 min at 4°C; the 

supernatant was then collected. Protein levels were quantified by Bradford Protein Assay 

(Bio-Rad, Mississauga, Ontario, Canada), and their concentrations were adjusted with 

deionized water. Samples were mixed with an equal volume of 2x Laemmli buffer, boiled for 

5 min, and used immediately or stored at 80°C. Proteins were separated using 6.5% 

polyacrylamide separation gels and 5% stacking gels (Bio-Rad); equal amounts were loaded 

in each lane, and then transferred onto Immobilon-P Transfer Membrane, a poly(vinylidene 

difluoride) microporous membrane (Millipore, Temecula, California, USA). These 

membranes were then blocked by incubation in Tris-buffered saline blocking buffer with 5% 

dried milk and 0.1% Tween-20 solution. Membranes were probed with the following 

primary antibodies: anti-pS6 (Ser 240/244)1:10000, Cell Signaling) and anti-β actin (1:3000, 

Novus Biologicals). Rabbit or mouse HRP-conjugated secondary antibody used for detection 

of primary antibodies was purchased from Sigma-Aldrich. Immunoreactive bands were 

detected with Western Lightning Chemiluminescence Reagent Plus (PerkinElmer), and the 

signal was visualized by exposing the membrane to BioFlex MSI film for autoradiography, 

maximum sensitivity (InterScience). Bands for every sample were used for quantification, 

using imageJ software.  

Mouse behavior tests 

Investigators were blind to genotype during both testing and analysis. 

Open Field 

A mouse was placed at the centre of the open-field arena and the movement of the mouse was 

recorded by a video camera for 10 min. The recorded video file was later analyzed with 
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Smart video tracking system (v3.0, Harvard Apparatus). To measure exploratory behavior, 

total distance travelled during the 10 minute period was calculated. The open field arena was 

cleaned with 70% ethanol and wiped with paper towels between each trial.  

Elevated plus maze 

A mouse was placed at the junction of the two open and closed arms. Apparatus consisted of 

two open arms without walls across from each other and perpendicular to two closed arms 

with walls with a centre platform. Experiment was performed as described in Vogt et al, 

201529. Exploration time in this apparatus was recorded for 5 min with a video camera. 

Recorded video was scored to measure time spent in open arms, closed arms and center 

regions respectively. 

T-maze 

The T-maze apparatus consisted of a T-shaped walled chamber where mice (aged P43-45) 

were tested for two trials in order to assess working memory. An individual mouse was 

placed at the middle arm of the T-maze and was allowed to make a free choice to enter an 

arm at the T-junction. Once the mouse made a decision to go in left/right direction, it was 

blocked in that chamber for 10 seconds and was then taken out from the apparatus. The 

mouse was allowed to rest in an empty cage for a period of 50 seconds, then put back again in 

the middle arm and allowed to choose which arm to explore. This test was repeated for three 

consecutive days. 

Three chamber social novelty test 

A three-chamber arena was used to assess the social recognition performance of the mice 

(Silverman et al., 2010). The tested animal (P38-P42) was placed in the middle of the central 

chamber and allowed to explore all the chambers for 10 min fir habituation. After 
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habituation, a wire cage containing an unfamiliar conspecific of the same sex and age 

(Stranger 1) was placed inside in chamber 1 while an empty wire cage was placed in 

chamber 2. The tested animal was allowed to freely explore the three chambers of the 

apparatus for 10 min. Social approach was evaluated by quantifying the time spent by the 

tested mice in each chamber during the 10 min session. At the end of this 10min, a new 

unfamiliar mouse of the same sex and the same age (Stranger 2) was placed in the previously 

unoccupied wire cage and the tested mouse was examined for an additional 10 min to assess 

preference for social novelty. Stanger 1 and stranger 2 animals originated from different 

home cages and had never been in physical contact with the tested mice or between each 

other. Social novelty was evaluated by quantifying the time spent by the tested mice in each 

chamber during the third 10 min session. 

4.4 Results 

mTORC1 activation in PV cells significantly increased during their synapse 

proliferation phase 

The maturation of PV cell innervation is a prolonged process that reaches plateau only after 

4 postnatal weeks in mouse cortex (Chattopadhyaya et al., 2004). To investigate whether 

mTORC1 activation plays a role in this process, we first analyzed the time course of pS6 

expression, one of the direct downstream effectors of mTORC1, in PV cells identified by PV 

immunolabeling (Fig.1A). We found that both the proportion of PV cells expressing pS6 and 

the mean intensity of pS6 signal significantly increased between P18 and P26 in 

somatosensory cortex (Fig.1A-C; Student t-test, p<0.05). Similar results were obtained in 

visual cortex (data not shown), indicating that this process is not specific to a particular 

cortical region. To investigate whether increase of pS6 expression levels was a generalized 

phenomenon during this developmental window, we quantified pS6 levels in NeuN+ neurons 
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that represent for the most part pyramidal cells (Fig.1D). We found no significant difference 

in the number of NeuN+ cells expressing pS6 between P18 and P26 (Fig.1E; Student t-test, 

p>0.05). Further, western blot analysis of pS6 levels also failed to detect differences between 

P18 and P26 (Fig.S1; Student t-test, p>0.05), which is consistent with the notion that the 

increase of pS6 expression levels is cell-type specific during this developmental time 

window, as PV cells represent ~10% of all cortical neurons. Since between P18-26 the 

density of perisomatic GABAergic synapses formed by PV cells increased significantly 

(Chattopadhyaya et al., 2004), we hypothesized that mTORC1 activation plays a role in this 

process. 

Tsc1, in a protein complex with Tsc2, inhibits mTORC1 activation. Perturbations of TSC1, 

and thus mTORC1, clearly alter several aspects of neuronal function (Lipton and Sahin, 

2014); however, due to the many homeostatic feedback mechanisms that influence neural 

circuit development, it is unclear which perturbations are directly caused by Tsc1-mTORC1 

signaling dysregulation and which are induced as a consequence of altered neuronal activity. 

Next, we used in vitro and in vivo approaches to determine the cell-autonomous and network 

phenotypes resulting from genetic deletion of Tsc1 in cortical PV cells. 

mTORC1 hyperactivation in single PV cells induced a premature increase in bouton 

density and axon branching 

To examine the role of Tsc1 in the postnatal maturation of cortical PV cell connectivity, we 

used a transgenic mouse carrying a conditional allele of Tsc1 (Kwaitkowski et al., 2002), 

which allows cell type and developmental stage restricted knockout of Tsc1. To reduce Tsc1 

expression in PV cells and simultaneously label their axons and synapses, we used a 

previously characterized promoter region PG67 (Chattopadhyaya et al., 2004); to express 

either Cre recombinase together with GFP (PG67-GFP/Cre) or GFP alone (control) in PV cells 
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in cortical organotypic cultures from Tsc1flox/flox and Tsc1flox/wt mice. This approach allowed 

us to generate Tsc1-/- and Tsc1+/- PV cells in an otherwise wild-type background, respectively. 

Deletions of either one or both Tsc1 alleles significantly increased pS6 expression levels in 

transfected PV cells (Fig.S2; one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05), 

suggesting mTORC1 hyperactivation. Conversely, cell soma size was significantly increased 

only in Tsc1-/- PV cells (Fig. 2F; one-way ANOVA with Holm-Sidak post hoc analysis 

p<0.05). 

Previous studies have shown that the basic features of maturation of perisomatic innervation 

formed by PV cells onto pyramidal cells are recapitulated in cortical organotypic cultures (Di 

Cristo et al., 2004; Chattopadhyaya et al., 2004). PV cells start out with simple axons, which 

develop into complex, highly branched arbors in the subsequent 4 weeks with a time course 

similar to that observed in vivo (Chattopadhyaya et al., 2004). In particular, PV cell axonal 

arborization and bouton density increase significantly between EP18 (EP=P5+13 days in 

vitro) and EP24. To investigate the effect of premature mTORC1 activation on PV cell 

innervations, we biolistically tranfected PV cells at EP10 and analyzed them at EP18 

(Fig.S2A). Following Tsc1 deletion, we quantified two aspects of individual PV cell 

connectivity – 1) the extent of perisomatic innervation around single targeted somata 

(terminal branching and perisomatic bouton density) and 2) the fraction of potentially 

innervated somata (percentage of innervation). We have previously shown that the vast 

majority of GFP-labeled boutons in our experimental conditions most likely represent 

presynaptic terminals (Chattopadhyaya et al., 2004; Chattopadhyaya et al., 2007; Wu et al., 

2012).  We found that both Tsc1-/- and Tsc1+/- PV cells formed premature perisomatic 

innervations, characterized by increased bouton density (Fig.2A-C, D; boutons/soma in 

Tsc1+/+ 6.2 ± 0.2, Tsc1+/- 12.4 ± 0.8, Tsc1-/- 10.5 ± 0.6, one-way ANOVA with Holm-Sidak 

post hoc analysis, p<0.05) and terminal axonal branching around NeuN+ contacted somata 
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(Fig.2E; one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05). To determine 

whether the effects of Tsc1 deletion were due to mTORC1 hyperactivation, we treated 

cortical organotypic cultures with the mTORC1 inhibitor Rapamycin. Rapamycin treatment 

reversed the increase in bouton density in Tsc1-/- PV cells (Fig.S3E boutons/soma, 

Tsc1+/++Rapamycin, 7.8 ± 0.2 vs Tsc1-/-+Rapamycin 7.3 ± 0.4, one-way ANOVA, p>0.05) as 

well as terminal branching (Fig. S3H; one-way ANOVA, p>0.05). All together, these data 

suggest that mTORC1 hyperactivation lead to the premature formation of PV cell 

innervations in a cell autonomous manner. 

mTORC1 hyperactivation in single PV cells impaired the maintenance of PV cell 

connectivity  

Next, we asked whether the premature development of PV cell innervation was long-lasting. 

As described above, PV cells were transfected at EP10 and then analyzed either at EP24 

(during the peak of the proliferation of PV cell innervations) or at EP34 (after PV cell 

innervation have reached stability). At EP24, Tsc1-/- PV cells were indistinguishable from 

age-matched wild-type cells (Fig.3E-H; boutons/soma in Tsc1+/+ 9.15 ± 0.6, Tsc1-/- 8.9 ± 0.6, 

t-test, p>0.05).  Conversely, at EP34, Tsc1-/- PV cells showed significantly poorer 

innervations than age-matched Tsc1+/+ PV cells (Fig.3E-G; bouton/soma Tsc1+/+ 10.9 ± 1.0, 

Tsc1-/- 5.9 ± 1.0; t-test, p<0.01).  All together, these data show that dysregulated Tsc1-

mTORC1 signaling in individual PV cells alters the development of their innervations, 

inducing first a premature increase in axonal branching and bouton density followed by 

excessive pruning (Fig. 3I). 

Tsc1-mTOR signaling dysregulation in MGE-derived GABAergic neurons alters PV 

cell perisomatic synapse density in an age-dependent manner in vivo. 
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To investigate whether and how Tsc1 deletion affected PV cell innervations in vivo, we 

generated Tg(Nkx2.1-Cre);Tsc1flox/flox and Tg(Nkx2.1-Cre);Tsc1flox/+ mice. Nkx2.1 is a 

transcription factor expressed starting at E10.5 by GABAergic cell precursors in the medial 

ganglionic eminence (MGE), which will give rise to cortical PV cells and somatostatin 

(SOM)+ GABAergic cells (Xu et al., 2008)27. At P18, significantly more PV cells expressed 

pS6 at higher levels in Tg(Nkx2.1-Cre);Tsc1flox/flox  compared to Tg(Nkx2.1-Cre);Tsc1flox/+  

and Tsc1Ctrl mice, in  somatosensory cortex (Fig.S4A,D; pS6 intensity values normalized to 

Tsc1Ctrl). Conversely, Cre transfection in single PV cells in organotypic cultures increased 

mTORC1 activation independently of the number of floxed alleles (compare with Fig.2). On 

the other hand, consistent with what we observed following single-cell Tsc1 deletion, PV 

cell somata were significantly larger only in Tg(Nkx2.1-Cre);Tsc1flox/flox  mice (Fig.S4 B, E; 

Konglomerov-Smirnov test, p<0.01). Interestingly, by P45 PV cells showed a four and two-

fold increase in pS6 intensity in Tg(Nkx2.1-Cre);Tsc1flox/flox  and Tg(Nkx2.1-Cre);Tsc1flox/+ 

mice compared to control mice, respectively (Fig. S4D). PV cell somata were slightly larger 

in Tg(Nkx2.1-Cre);Tsc1+/flox compared to Tsc1Ctrl mice, even if not as large as those in 

Tg(Nkx2.1-Cre);Tsc1flox/flox  mice (Fig.4E,F), suggesting that deletion of one Tsc1 allele may 

have slow, cumulative effects in vivo, consistently to what previously reported in Purkinje 

cell-specific Tsc1 mutant mice (Tsai et al., 2012). 

It has been reported that Tsc1 deletion in cortical GABAergic neurons (Fu et al., 2012a) or 

Purkinje cells (Tsai et al., 2012) lead to neuronal loss in the targeted population. On the other 

hand, we did not observe any difference in PV cell density in conditional knockouts vs 

control littermates (data not shown). To investigate whether Tsc1 deletion, and consequent 

mTORC1 hyperactivation, affected perisomatic GABAergic synapses by PV cells, we 

immune-labeled brain sections with PV (which labels all PV cells), vGAT (presynaptic 

GABAergic marker) and gephrin (post-synaptic GABAergic marker). At P18, both 
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perisomatic PV signal intensity and PV+ puncta density were significantly increased in 

Tg(Nkx2.1-Cre);Tsc1flox/flox  compared to Tg(Nkx2.1-Cre);Tsc1flox/+  and Tsc1Ctrl mice (Fig.4 

D-E; one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05). On the other hand, the 

densities of perisomatic vGAT puncta, PV+/vGAT+  puncta,  gephyrin+ and PV+/gephyrin+ 

puncta were not significantly different between the genotypes (Fig.5 F, G; one-way 

ANOVA, p>0.05), suggesting that increased PV boutons surrounding pyramidal neurons 

many not be mature synapses.    

Interestingly, at P45, PV puncta intensity and density were significantly reduced in 

Tg(Nkx2.1-Cre);Tsc1flox/flox  compared to Tg(Nkx2.1-Cre);Tsc1flox/+  and Tsc1Ctrl mice (Fig.5; 

one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05). Further, the density of 

perisomatic PV+/gephrin+ puncta was also significantly reduced (Fig.6 G; one-way ANOVA 

with Holm-Sidak post hoc analysis, p<0.05), suggesting that PV cells formed less synapses 

onto pyramidal cells. An alternative possibility is that overall PV expression levels were 

reduced, therefore reducing our ability to detect perisomatic boutons formed by PV+ cells. 

We think this was unlikely, as the levels of somatic PV expression were not affected (data 

not shown).  

Tsc1-mTOR signaling dysregulation in MGE-derived GABAergic neurons alters the 

developmental time course and stability of PV cell axonal arbor and bouton density. 

Interestingly, we found that PV cell innervations were only affected in Tg(Nkx2.1-

Cre);Tsc1flox/flox  but not Tg(Nkx2.1-Cre);Tsc1flox/+ mice. On the other hand, Tsc1 deletion in 

single PV cells in cortical organotypic cultures affected PV cell axonal arbor and bouton 

density independent of the gene dosage (Fig.2). One possibility is that network single-allele 

deletion of Tsc1 may recruit compensatory signaling pathways in vivo, which are not 

activated when Tsc1 is deleted only in sparse PV cells or/and in vitro.  To address this 
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question, we analyzed single PV cell axonal morphology at high resolution in organotypic 

cultures from Tg(Nkx2.1-Cre);Tsc1flox/flox, Tg(Nkx2.1-Cre);Tsc1flox/+  and Tsc1Ctrl mice 

transfected with PG67-GFP at different developmental stages (Fig. 6 and 7). At EP18, before 

the peak of PV cell synapse proliferation, PV cells from both Tg(Nkx2.1-Cre);Tsc1flox/flox  

and Tg(Nkx2.1-Cre);Tsc1flox/+ mice formed more complex perisomatic innervations, 

characterized by increased perisomatic bouton density (Fig.6A-C, D; one-way ANOVA with 

Holm-Sidak post hoc analysis, p<0.01) and terminal branching (Fig.6E; one-way ANOVA 

with Holm-Sidak post hoc analysis, p<0.01) compared to age-matched control PV cells. On 

the other hand, at EP34, after PV cells axonal arbors had reached stability, PV cells from 

both genotypes showed significantly reduced perisomatic bouton density (Fig.7A-C, D; one-

way ANOVA with Holm-Sidak post hoc analysis, p<0.05), terminal branching (Fig.8E; one-

way ANOVA with Holm-Sidak post hoc analysis, p<0.05) and percentage of innervated 

pyramidal neurons (Fig.7F; one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05). 

Overall, these results confirm that embryonic deletion of Tsc1 had a biphasic effect on PV 

cell innervation development and maintenance, by first accelerating the formation of PV cell 

innervations and then impairing their maintenance. Further, both one and two Tsc1 allele 

deletion in PV cells at the single and network level showed similar effects on PV cell 

innervations in organotypic cultures, suggesting that compensatory mechanisms may be 

recruited in Tg(Nkx2.1-Cre);Tsc1+/flox mice in vivo, but not in vitro. 

Tsc1-mTOR signaling dysregulation in postnatal PV cells lead to reduced PV 

perisomatic synapses in adulthood. 

Nkx2.1-Cre transgene is activated in cortical PV and SOM GABAergic neurons from a very 

early point during embryonic development. Next, we asked to what extent postnatal deletion 

of Tsc1 in PV cells recapitulated the effects observed in Tg(Nkx2.1-Cre);Tsc1flox mice. To 

answer this question, we generated Tg(PV-Cre);Tsc1flox/flox and Tg(PV-Cre);Tsc1flox/+ mice. 



95 
 

PV expression peaks after the third postnatal week in cortex. By using the RCE GFP reporter 

mouse, we confirmed that about 50% of all PV cells expressed GFP by P18, while this 

proportion rose to more than 75% (77 5%; n=3 mice) in P45 mice. The late CRE expression 

precluded the analysis of perisomatic GABAergic innervation at P18. At P45, we observed a 

higher proportion of PV cells co-localizing with pS6 immunoreactivity in Tg(PV-

Cre);Tsc1flox/flox mice  (Fig.S5A,B; one-way ANOVA with Holm-Sidak post hoc analysis, 

p<0.05). Further, we found a 2.5-fold increase in pS6 intensity in PV cells from Tg(PV-

Cre);Tsc1flox/flox   mice (Fig. S5C). Soma size was significantly increased in both genotypes, 

but significantly more in Tg(PV-Cre);Tsc1flox/flox mice (Fig.S5D; K-S test, p<0.001). 

Interestingly, both perisomatic PV intensity and puncta density around excitatory cells was 

significantly decreased in somatosensory cortex in both mutant mice (Fig. 8A-C, D-E; one-

way ANOVA with Holm-Sidak post hoc analysis, p<0.05). Moreover, the density of 

perisomatic PV+/gephrin+ punctas was also significantly decreased in both genotypes 

(Fig.8G; one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05), suggesting that 

postnatal Tsc1 deletion, and consequent mTORC1 hyperactivation, lead to PV cell hypo-

connectivity independent of gene dosage.  

Tsc1-mTORC1 dysregulation in prenatal Nkx2.1-derived GABAergic cells or postnatal 

PV cells altered anxiety and social recognition. 

Deletion of Tsc1 in specific neuron types affects different behaviors, depending on the cell 

type and age of recombination33. Here, we found that deletion of both Tsc1 alleles in MGE-

derived GABAergic neurons caused increased exploratory behavior in the open field 

(Fig.9A, one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05) and anxiety in the 

elevated plus maze test (Fig.9B, one-way ANOVA with Holm-Sidak post hoc analysis, 

p<0.05). Interestingly, no behavior alterations could be detected before P30 in the two 
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above-mentioned behavioral paradigms (data not shown). Further, Tg(Nkx2.1-

Cre);Tsc1flox/flox but not Tg(Nkx2.1-Cre);Tsc1flox/+ mice, failed to alternate in the T-maze test 

(Fig.9C, one-way ANOVA with Holm-Sidak post hoc analysis, p<0.05), indicating the 

presence of working memory deficits.  

Conversely, postnatal deletion of both Tsc1 alleles in PV cells did not affect exploratory 

drive (Fig.9D; one-way ANOVA, p>0.01). In addition, Tg(PV-Cre);Tsc1flox/flox mice exhibit 

anti-anxiety like behavior in the elevated plus maze paradigm (Fig.9E; one-way ANOVA 

with Holm-Sidak post hoc analysis, p<0.05).  

Interestingly, we found deficits in social behavior in both mutant lines, which were however 

more severe in Tg(PV-Cre);Tsc1flox mice. Tg(Nkx2.1-Cre);Tsc1lox/lox and Tg(Nkx2.1-

Cre);Tsc1lox/+ mice showed a normal preference toward a mouse compared to an object 

(social approach; Fig.F1; two-way ANOVA, p>0.05), while they showed reduced interested 

towards a novel mouse compared to a known one (Fig.9D, two-way ANOVA with 

Bonferroni’s post hoc analysis, p<0.05), suggesting that social novelty recognition behavior 

may be more sensitive to mTORC1 hyper-activation in MGE-derived GABAergic neurons. 

Interestingly, both Tg(PV-Cre);Tsc1flox/flox and Tg(PV-Cre);Tsc1flox/+ mice showed deficits in 

social approach and social novelty paradigms (Fig.9G1-G2, two-way ANOVA with 

Bonferroni’s post hoc analysis, p<0.05). In summary, Tsc1 deletion in PV cells lead to 

specific cognitive alterations, in particular in the social behavior domain. 

4.5 Discussion 

Neocortical PV cells are characterized by striking specificity in target innervation and 

plasticity of synaptic connections (Le Magueresse et al., 2011). Development of the mature 

PV cell innervation fields is achieved through the ordered progression of a series of 

morphogenic events that include axon growth and branching, synapse formation and 
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refinement. mTORC1 pathway regulation by both genetic programs and neural activity is 

probably central to the establishment and plasticity of PV cell innervation patterns. In young 

neurons, mTORC1 pathway components are enriched in developing axons and contribute to 

local protein synthesis, which plays a role in axon interaction with their environment (Yoon 

et al., 2009; Choi et al., 2008; Nie et al., 2010). In fact, it has been proposed that 

extracellular cues guiding axon growth may converge onto mTORC1-dependent pathways 

(Yoon et al., 2009; Nie et al., 2010). Here, we showed that mTORC1 activation increases 

during the phase of PV cell synapse proliferation and that Tsc1 loss-induced mTORC1 

hyperactivation lead to prematurely increased PV cell innervations by P18, both in 

organotypic cultures and in vivo. As a widespread and general modulator of metabolism and 

local protein translation, mTORC1 in itself is unlikely to provide a specific signal for axon-

target interactions. For example, mTORC1 may regulate, either directly or indirectly, the 

synthesis of transcription factors (Kobayashi et al., 2015), adhesion molecules 

(Chattopadhyaya et al., 2013; Brennaman et al., 2013; Zhang et al., 2015) or components of 

GABAergic signaling (Chattopadhyaya et al., 2007; Baho and Di Cristo., 2012; Wu et al., 

2012; Fu et al., 2012b), which have been shown to regulate PV cell innervation, but that are 

not exclusively expressed by PV cells. On the other hand, the possibility that mTORC1 

activation may lead to the synthesis of specific molecular signals for the formation of distinct 

synaptic types, for example, glutamatergic vs GABAergic synapses, or soma-targeting,  vs 

dendrite-targeting, GABAergic synapses, cannot be excluded. Identification of the RNAs 

regulated by mTORC1 in defined cell types during specific developmental phases will 

provide insights into the mechanisms regulating PV cell synapse formation. 

One interesting finding is that dysregulation of Tsc1-mTORC1 signaling in MGE-derived 

precursors caused, after an initial acceleration of the formation of PV cell perisomatic 

boutons, a loss of PV cell innervations in adult mice. Loss of GABAergic inputs following 
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Tsc1 deletion has been reported in other adult mouse models. For example, Tg(Dlx5/6-

Cre);Tsc1flox/flox mice, where Tsc1 was knockout embryonically in all GABAergic 

interneurons, showed reduced density of both cortical and hippocampal interneurons in adults 

(Fu et al., 2012a). Further, deletion of Tsc1 specifically in postnatal pyramidal neurons 

induced cell-autonomous reduction of inhibitory inputs onto pyramidal cells (Bateup et al., 

2013). On the other hand, to our knowledge this is the first report showing that a phase of 

hyperinnervation may precede GABAergic connectivity loss. One interesting possibility is 

that mTORC1 hyperactivation may lead to the premature formation of more, but less efficient 

synapses. Our observation that, while the number and intensity of perisomatic PV+ puncta 

were increased in Tg(Nkx2.1-Cre);Tsc1flox/flox compared to Tsc1Ctrl mice, the density of 

perisomatic PV+/VGAT+ puncta was not, supports this hypothesis. Another, not exclusive, 

possibility is that mTORC1 may play different roles during distinct phases of PV cell 

development. For example, during the peak of PV cell synapse proliferation mTORC1 

activation may help to stabilize nascent synapses most likely in response to the suitability of 

the postsynaptic target or to the relative synaptic strength compared to neighboring synapses. 

In this scenario, indiscriminate activation of mTORC1 following Tsc1 deletion may then 

induce the stabilization of too many synapses, which would results in increased PV cell 

innervations. On the other hand, after PV cell innervation fields have reached maturity, 

mTORC1 activation may actually facilitate synaptic plasticity and destabilization. In this 

case, mTORC1 hyperactivation would indeed lead to the shrinkage of PV innervation fields. 

Similarly, it has been reported that blocking neural transmission has opposing effects on PV 

cell innervation fields depending on the developmental stage of the PV cells (Baho and Di 

Cristo, 2012; Wu et al., 2012). The molecular mechanisms underlying this response switch 

may likely involve changes in the transcriptional profile of PV cells, which occur between the 

second and fourth postnatal week (Okaty et al., 2009). 
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In this study, we consistently found that deletion of both Tsc1 alleles lead to initial increase, 

followed later on by a massive loss, of PV cell innervations, both in vivo and in organotypic 

cultures from Tg(Nkx2.1-Cre);Tsc1flox/flox mice. However, Tsc1 haploinsufficient PV cells 

showed altered innervation fields in vitro but not in vivo. Similarly, PV cell soma size and 

pS6 intensity expression levels were increased only in Tg(Nkx2.1-Cre);Tsc1flox/flox mice in 

vivo.  One possibility is that limited access to nutrients in vivo compared to the abundance of 

nutrients and growth factors present in the culture medium or/and the occurrence of different 

neuronal activity patters may recruit alternative pathways regulating mTORC1 downstream 

effectors in vivo. In addition, we cannot exclude that Tg(Nkx2.1-Cre);Tsc1flox/+ mice may 

show altered evoked cortical GABAergic responses even in absence of detectable 

morphological alterations. 

Mutations in several genes, whose protein products regulate mTORC1 activity, have been 

associated with neurodevelopmental disorders (Lipton and Sahin, 2014). A major question 

concerning neurodevelopmental disorders is how mutations in the different molecules 

genetically associated with these diseases converge to produce a common set of behavioral 

deficits. An influential hypothesis is that disrupted excitatory/inhibitory (E/I) balance is an 

initiating factor leading to perturbed circuit function. Altogether our data suggest that Tsc1 

deletion in PV cells alter their developmental trajectory, resulting in a progressive loss of PV 

cell connectivity in adulthood. Importantly, we found that alterations of PV cell connectivity 

following Tsc1 deletion were cell autonomous (refer to Fig.2); therefore they could be an 

important contributing mechanisms to cognitive alterations in Tuberous Sclerosis (TSC) 

patients. Interestingly, many TSC patients respond positively to the drug Vigabatrin, which is 

an irreversible inhibitor of the GABA degrading enzyme, GABA transaminase (Curatolo et 

al., 2001) suggesting deficits in GABAergic signaling. Further, loss of the phosphatase 

PTEN, an upstream modulator of mTORC1 whose mutations have been associated with 
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autisms spectrum disorders, led to altered distribution of MGE-derived cells and overall loss 

in cortical GABAergic neurons (Vogt et al., 2015). 

Here, we report that early embryonic deletion of Tsc1 in MGE-derived precursors, which 

generate cortical PV cells and SOM+ interneurons, lead to hyperactivity, increased anxiety 

and social novelty recognition deficits in young adults. Interestingly, postnatal Tsc1 deletion 

exclusively in PV cells induced similar, if not more severe, deficits in social novelty 

recognition, but did not increased anxiety or activity levels. Since Tg(PV-Cre);Tsc1flox/flox 

mice showed loss of cortical PV cell perisomatic boutons comparable, if not more 

pronounced, to what we observed in Tg(Nkx2.1-Cre);Tsc1flox/flox mice,  the difference in 

anxiety-related behavior is most likely due the involvement of different subcortical circuits, 

as both Nkx2.1 and PV are expressed by different and only partially overlapping subcortical 

neurons. 

In summary, our results show that regulated mTORC1 activation is critically involved in the 

establishment and maintenance of PV cell innervation in the cortex. Alterations of mTORC1 

activation, either by genetic or environmental causes, may therefore permanently alter PV 

cell circuits, thus affecting specific behaviors, depending on the extent and time course of 

mTORC1 signaling modifications. 
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Figure 4.3 
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Figure 4.6 
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Figure 4.S1 
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Figure 4.1.  mTOR activity increases specifically in PV cells between P18 and P26 . A, 
Coronal sections of mouse somatosensory cortex immunostained for pS6 (green) and PV 
(red) at P18 (A1) and P26 (A2). B, Significantly more PV cells express detectable levels of 
pS6  at P26 compared to P18 (t-test, *p<0.05). C, Mean pS6 intensity in individual PV cells 
is also significanly higher at P26 (t-test, *p<0.05), n= 4 animals at P18; n=3 animals at P26. 
D, Coronal sections of mouse somatosensory cortex immunostained for pS6 (red) and NeuN 
(blue) at P18 (D1) and P26 (D2). E, Percentage of colocalization of pS6 and NeuN is not 
significanlty different between the two developmental ages.  n=5 mice for both goups.  Scale 
bars in A1-A2, D1-D2, 75μm. Bar graphs in B, C and E represent mean ± SEM. 

Figure 4.2. Tsc1 knockout in single PV cells causes a premature increase of their axonal 
terminal branches and boutons density at EP18. A1, EP18 Tsc1+/+ PV cell showing 
characteristic branching (A2) and boutons (A3, arrowheads) on the postsynaptic somata 
indetified by NeuN immunostaining (blue). B, C, PV cells lacking one copy (B1-B3) or both 
copies (C1-C3) of Tsc1 show increase in bouton density (D) (one-way ANOVA with Holm-
Sidak post hoc analysis, *p<0.001) and local branching (E) (one-way ANOVA with Holm-
Sidak post hoc analysis, *p<0.05). F, Percentage of innervated cells for the 3 experimental 
groups (one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05). PV cells: n = 14 
Tsc1+/+ , n= 7 Tsc1+/-, n= 9 Tsc1-/- . Scale bars: A1-C1, 20 μm; A2-C2 10 μm, A3-C3, 3 μm. 
Data in D, E and F represent mean ± SEM. 

Figure 4.3. Tsc1 knockout in single PV cells impairs the long-term maintenance of their 
perisomatic innervations. A1, EP24 Tsc1+/+ and B1, Tsc1-/- PV cells show similar axonal 
branching (A2, B2) and perisomatic bouton density (A3, B3, arrowheads). C, EP34 Tsc1+/+ 

PV cell. D1, EP34 Tsc1-/- PV cell showing significantly decreased axonal branching 
(compare C2 and D2) and perisomatic boutons (compared C3 and D3).  (E) Bouton density  
(one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05),  (F, G) local branching 
(test, *p<0.05) and H, percentage of innervation are significantly reduced in EP34 Tsc1-/- PV 
cells (one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.001). I, Schematic 
representation of bouton density development during the post-natal maturation of Tsc1+/+ and 
Tsc1-/- PV cells. PV cells at EP24: n = 9 Tsc1+/+, n= 6 Tsc-/- PV cells. PV cells at EP34: n= 5 
Tsc1+/+, n= 5 Tsc1-/-. Scale bars: A1-C1, 20 μm; A2-C2 10 μm, A3-C3, 5 μm.  

Figure 4.4.  PV intensity and puncta density are increased in P18 Tg(Nkx2.1-
Cre);Tsc1flox/flox mice. A-C, Coronal sections of somatosensory cortex immunostained for PV 
(blue) and vGAT (grey)  in Tsc1Ctrl mice (A1-A3), Tg(Nkx2.1-Cre);Tsc1flox/+  mice (B1-B3) 
and Tg(Nkx2.1-Cre);Tsc1flox/flox  mice (C1-C3). Asterisk indicates the likely location of 
neuronal cell bodies. White arrowheads denote PV/vGAT-colocalized puncta while yellow 
arrowheads denote PV puncta that do not colocalize with vGAT puncta (D)(A1-C3). D, E 
Tg(Nkx2.1-Cre);Tsc1flox/flox  mice show increased PV immunostaining intensity (one-way 
ANOVA with Holm-Sidak post hoc analysis, *p<0.05) and puncta density (E) (one-way 
ANOVA with Holm-Sidak post hoc analysis, *p<0.05). F-I. Quantification show no 



114 
 

significant differences in the density of vGAT puncta (F), PV/vGAT puncta (G), gephyrin 
puncta (H) and PV/gephyrin puncta (I) between the 3 genotypes (one-way ANOVA, p>0.05). 
n = 5 Tsc1Ctrl mice, n= 5 Tg(Nkx2.1-Cre);Tsc1flox/+ mice, n= 4 Tg(Nkx2.1-Cre);Tsc1flox/flox 
mice. Scale bar: 10 μm.  

Figure 4.5.  Tg(Nkx2.1-Cre);Tsc1flox/flox mice show reduced putative PV+ perisomatic 
synapses at P45. A-C, Coronal sections of somatosensory cortex immunostained for PV 
(blue) and gephyrin (grey) in Tsc1Ctrl (A1-A3), Tg(Nkx2.1-Cre);Tsc1flox/+ (B1-B3) and 
Tg(Nkx2.1-Cre);Tsc1flox/flox  mice (C1-C3). Asterisks indicate the likely location of neuronal 
cell bodies. White arrowheads denote PV-gephyrin colocalized puncta while yellow 
arrowheads denote PV boutons that do not colocalize with gephyrin puncta (A1-C3). D, E, 
Tg(Nkx2.1-Cre);Tsc1flox/flox  mice show decreased PV immunostaining intensity (D), one-way 
ANOVA with Holm-Sidak post hoc analysis, *p<0.05) and PV puncta density (E) (one-way 
ANOVA with Holm-Sidak post hoc analysis, *p<0.001). F, Gephyrin puncta density is not 
significantly different between the 3 genotypes (one-way ANOVA, p>0.05). G, Tg(Nkx2.1-
Cre);Tsc1flox/flox  mice show reduced PV/gephyrin  colocalized puncta density (one-way 
ANOVA with Holm-Sidak post hoc analysis, *p<0.05). n = 5 mice for all genotypes. Scale 
bar: 10 μm.  

Figure 4.6. PV cells show prematurely rich perisomatic innervations in Tg(Nkx2.1-
Cre);Tsc1flox/flox and Tg(Nkx2.1-Cre);Tsc1flox/+ mice at EP18. A1, A PV cell (green) among 
NeuN immunostained neurons (blue) in cortical organotypic cultures from a Tsc1Ctrl mouse at 
EP18. A2, PV cells from Tsc1Ctrl animal show characteristic branching and boutons 
(arrowheads) on the postsynaptic somata (A3). PV cells from Tg(Nkx2.1-Cre);Tsc1flox/+ mice 
(B1-B3) and Tg(Nkx2.1-Cre);Tsc1flox/flox  mice (C1-C3) show increased bouton density (D) 
(one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05), and local branching (E) 
(one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05). F, Percentage of 
innervation (one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05). PV cells: n = 7 
from Tsc1Ctrl mice, n= 7 from Tg(Nkx2.1-Cre);Tsc1flox/+ mice, n= 6 from Tg(Nkx2.1-
Cre);Tsc1flox/flox mice. Scale bars: A1-C1, 20 μm; A2-C2 10 μm, A3-C3, 3 μm.  

Figure 4.7. PV cells show significantly reduced perisomatic innervations in Tg(Nkx2.1-
Cre);Tsc1flox/flox and Tg(Nkx2.1-Cre);Tsc1flox/+ mice at EP34 . A, A PV cell (green) among 
NeuN immunostained neurons (blue) in cortical organotypic cultures from a Tsc1Ctrl mouse at 
EP34. B, C, PV cells from Tg(Nkx2.1-Cre);Tsc1flox/+ mice (B1-B3) or Tg(Nkx2.1-
Cre);Tsc1flox/flox  mice (C1-C3) show decreased bouton density (D) (one-way ANOVA with 
Holm-Sidak post hoc analysis, *p<0.05), and local branching (E) (one-way ANOVA with 
Holm-Sidak post hoc analysis, *p<0.05). F, Percentage of innervation is also significantly 
lower for PV cells from Tg(Nkx2.1-Cre);Tsc1flox/flox mice (one-way ANOVA with Holm-
Sidak post hoc analysis, *p<0.05). Arrowheads indicate boutons. n = 6 PV cells for all 
genotypes. Scale bars: A1-C1, 20 μm; A2-C2 10 μm, A3-C3, 3 μm.  

Figure 4.8.  Postnatal knockout of Tsc1 in PV cells causes a significant reduction of 
putative PV perisomatic synapse at P45. A-C, Coronal sections of somatosensory cortex  
immunostained for PV (blue) and gephyrin (grey)  in Tsc1Ctrl mice (A1-A3), Tg(PV-
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Cre);Tsc1flox/+  mice (B1-B3) and Tg(PV-Cre);Tsc1flox/flox  mice (C1-C3). Asterisks indicate 
the likely location of neuronal cell bodies. White arrowheads denote PV-gephyrin colocalized 
boutons, while yellow arrowheads denote PV boutons that do not colocalize with gephyrin 
puncta (A1-C3). D, Perisomatic PV signal intensity (one-way ANOVA with Holm-Sidak post 
hoc analysis, *p<0.05). E, PV puncta density (one-way ANOVA with Holm-Sidak post hoc 
analysis, *p<0.05). F, gephyrin puncta density (one-way ANOVA, p>0.05). G, PV/gephyrin  
colocalized puncta (one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05). n = 5 
mice for all genotypes. Scale bar: 10 μm.  

Figure 4.9. Tsc1 knockout in GABAergic cells causes hyperactivity, anxiety behaviour 
and social behavioural deficits. A, Open field test: Quantification of distance travelled 
during exploratory activity in an open field arena at P33 shows increased exploratory drive in 
Tg(Nkx2.1-Cre);Tsc1flox/flox mice (one-way ANOVA with Holm-Sidak post hoc analysis, 
*p<0.05). n = 14 Tsc1Ctrl mice, n= 10 Tg(Nkx2.1-Cre);Tsc1flox/+ mice, n= 10 Tg(Nkx2.1-
Cre);Tsc1flox/flox mice. B, Elevated plus maze : Quantification of time spent in the open arms 
of elevated plus maze arena at P35 shows increased anxiety like behaviour in Tg(Nkx2.1-
Cre);Tsc1flox/flox mice (one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05). n = 
14 Tsc1Ctrl mice, n= 12 Tg(Nkx2.1-Cre);Tsc1flox/+ mice, n= 10 Tg(Nkx2.1-Cre);Tsc1flox/flox 
mice. C, T-maze : Tg(Nkx2.1-Cre);Tsc1flox/flox mice shows less spontaneous alterations in a 
T-maze paradigm for test of working memory (one-way ANOVA with Holm-Sidak post hoc 
analysis, *p<0.01). n = 23 Tsc1Ctrl mice, n= 10 Tg(Nkx2.1-Cre);Tsc1flox/+ mice, n= 20 
Tg(Nkx2.1-Cre);Tsc1flox/flox mice.D, Open field test: Quantification of distance travelled 
during exploratory activity in an open field arena at P33 shows exploratory drive in Tg(PV-
Cre);Tsc1flox/flox  and Tg(PV-Cre);Tsc1flox/+ mice  are similar to Tsc1Ctrl  (one-way ANOVA 
with Holm-Sidak post hoc analysis, p>0.05). ). n = 12 Tsc1Ctrl mice, n= 10 Tg(PV-
Cre);Tsc1flox/+ mice, n= 10 Tg(PV-Cre);Tsc1flox/flox mice. E, Elevated plus maze : 
Quantification of time spent in the open arms of elevated plus maze arena at P35 shows anti-
anxiety like behaviour in Tg(PV-Cre);Tsc1flox/flox mice (one-way ANOVA with Holm-Sidak 
post hoc analysis, *p<0.05). n = 21 Tsc1Ctrl mice, n= 13 Tg(PV-Cre);Tsc1flox/+ mice, n= 13 
Tg(PV-Cre);Tsc1flox/flox mice. F1, In the social approach paradigm, both Tg(Nkx2.1-
Cre);Tsc1flox/+ and Tg(Nkx2.1-Cre);Tsc1flox/flox  mice spend significantly more time with 
animal compared to object similar to Tsc1Ctrl mice, (two-way ANOVA with Bonferroni’s 
post hoc analysis, *p<0.05). F2, Unlike Tsc1Ctrl mice, both Tg(Nkx2.1-Cre);Tsc1flox/+ and 

Tg(Nkx2.1-Cre);Tsc1flox/flox  mice failed to show preference for social novelty (two-way 
ANOVA with Bonferroni’s post hoc analysis, *p<0.05). n = 14 Tsc1Ctrl mice, n= 15 
Tg(Nkx2.1-Cre);Tsc1flox/+ mice, n= 13 Tg(Nkx2.1-Cre);Tsc1flox/flox mice.  Unlike Tsc1Ctrl 
mice, both Tg(PV-Cre);Tsc1flox/+ and Tg(PV-Cre);Tsc1flox/flox  mice failed to show preference 
for social approach (G1) and social novelty (G2) (two-way ANOVA with Bonferroni’s post 
hoc analysis, *p<0.05). n ≥10 for each group in all behavioural studies. n = 12 Tsc1Ctrl mice, 
n= 15 Tg(PV-Cre);Tsc1flox/+ mice, n= 12 Tg(PV-Cre);Tsc1flox/flox mice.  Data in A-G 
represent mean ± SEM. 

Figure 4.S1.  pS6 expression levels are constant in the cortex between the 2nd and 4th 
post-natal week of development. A, Western blot for pS6 on somatosensory cortex of P18 
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and P26 mice. n = 4 animals at P18 and P26. Each lane represents a different animal. B, 
Quantification show no difference in pS6 expression levels (band at 32 KDa, Student t-test, 
p>0.05).Values in B represent mean ± SEM. 

Figure 4.S2. Tsc1 knockout in single PV cells lead to increase in mTOR activity and 
somatic hypertrophy. A, Schematics of experimental procedure. B, C, D PV cells from 
cortical organotypic cultures transfected with PG67 (Tsc1+/+ control cells) or PG67-Cre (Tsc1+/- 

and Tsc1-/-) immunostained for pS6 (red) at EP18. E, Somatic pS6 intensity is increased in 
both Tsc1+/- (C2) and Tsc1-/- PV cells (D2) compared to Tsc1+/+ PV cells (one-way ANOVA 
with Holm-Sidak post hoc analysis, *p<0.05). F, Tsc1-/- cells have increased soma area (one-
way ANOVA with Holm-Sidak post hoc analysis, *p<0.05). Scale bar: 10μm.  

 

Figure 4.S3. Premature increase in perisomatic innervations formed by Tsc1-/- PV cells 
is mTORC1-dependent. A, B, Tsc1-/- PV cell (green) shows more complex terminal axonal 
branching (A2, B2) and increased bouton density at EP18 (A3, B3, arrowheads) compared to 
control, age-matched PV cells. C, D: Rapamycin treatment from EP12-18 does not affect 
bouton density and local branching of Tsc1+/+ PV cells (C), while it normalizes perisomatic 
innervations formed by Tsc1-/- PV cells (D). Tsc1-/- PV cells show increased bouton density 
(E) (one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05) and local branching (F) 
(one-way ANOVA with Holm-Sidak post hoc analysis, *p<0.05) compared to the other 
groups. G, Percentage of innervation. PV cells: n = 14 Tsc1+/+ PV cells, n= 9 Tsc1-/- PV cells, 
n= 4 Tsc1+/+ + Rapamycin PV cells, n= 4 Tsc1-/- + Rapamycin PV cells, Scale bars: A1-D1, 
100 μm; A2-D2 and A3-D3, 5 μm.  

 

Figure 4.S4.  Cortical PV cells of Tg(Nkx2.1-Cre);Tsc1flox/flox mice show increased 
mTOR activity and somatic hypertrophy. A, Coronal sections of somatosensory cortex 
immunostained for PV (red) and pS6 (green) (A) or PV only (B) in Tsc1Ctrl mice (A1, B1), 
Tg(Nkx2.1-Cre);Tsc1flox/+  mice (A2, B2) and Tg(Nkx2.1-Cre);Tsc1flox/flox  red, mice (A3, B3) 
at P18. Lower panels show higher magnification of individual PV cells. C, In Tg(Nkx2.1-
Cre);Tsc1flox/flox  mice,  more PV cells colocalize with pS6 (one-way ANOVA with Holm-
Sidak post hoc analysis, *p<0.05) compared to Tg(Nkx2.1-Cre);Tsc1flox/+  and wild-type mice 
at P18 and P45. D, pS6 expression intensity in PV cells normalized to wild-type controls at 
P18 and P45. E, F, Quantification of PV cell area shows somatic hypertrophy in Tg(Nkx2.1-
Cre);Tsc1flox/flox  mice at both P18 and P45 (P18: K-S test, *p<0.01; P45: K-S test, 
*p<0.001), and in Tg(Nkx2.1-Cre);Tsc1flox/+  mice at P45 (P18: K-S test, *p<0.05),  n = 11 
Tsc1Ctrl mice, , n= 5 Tg(Nkx2.1-Cre);Tsc1flox/+ mice, n= 7 Tg(Nkx2.1-Cre);Tsc1flox/flox mice at 
P18. n = 6 mice for all genotypes at P45. Scale bar, 20 μm.  

Figure 4.S5. Cortical PV cells show increased mTOR activity and somatic hypertrophy 
in Tg(PV-Cre);Tsc1flox/flox mice.  A, Coronal sections of somatosensory cortex 
immunostained for PV (red) and pS6 (green) in Tsc1Ctrl (A1), Tg(PV-Cre);Tsc1flox/+  (A2) and 
Tg(PV-Cre);Tsc1flox/flox  mice (A3) at P45. Lower panels show individual PV cells. B, Both 
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Tg(PV-Cre);Tsc1flox/+ and Tg(PV-Cre);Tsc1flox/flox mice show increased percentage of 
colocalization of pS6 in PV cells (one-way ANOVA with Holm-Sidak post hoc analysis, 
*p<0.05). C, Quantification of pS6 expression intensity in PV cells normalized to wild-type 
controls show two-fold increase in Tg(PV-Cre); Tsc1flox/flox  mice, but not in Tg(PV-
Cre);Tsc1flox/+  mice is similar to controls. D, PV cells show somatic hypertrophy in mice 
mutant groups (K-S test, *p<0.001) at P45. n = 5 mice for all genotypes at P45. Scale bar, 20 
μm.  
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Chapter 5. Discussion 

About 50% of epilepsy patients suffer from genetic generalized epilepsy100. Progress in 

sequencing techniques in the past decades has lead to the identification of novel mutations in 

various ligand-gated ion channels (e.g. GABAA receptor) as a causative factor in epilepsy. 

While assessing mutaions in heterologous cell lines has been the norm to establish a loss-of-

fuction model to each of these mutations, there have been controversies in the past as data 

from different laboratories sometimes failed to overlap. Typically, to address such a situation 

one has to develop knock-out mice in order to gain further insight. From a futuristic 

perspective, this approach of mutational screening runs the risk of being a resourse-

consuming venture as the database of such mutations is non-exhaustive and will continue to 

grow owing to the progress in sequencing techniques. The work discussed in chapter 3, 

highlights a key advantage of using single-cell genetics technique as an alternative to 

heterologous cell line screening. The data further suggests that a simple loss of function 

model is a rather incomplete way of explaining a situation as different mutations in the same 

gene can lead to distinct consequences both at the cellular and synaptic levels. 

In chapter 4, the role of the mTOR pathway in PV+ BC development has been studied in both 

in vitro and in vivo conditions. The data suggests Tsc1 loss in both single PV+ cells and PV+ 

cell network leads to reduced PV connectivity in adulthood.  Further, two diferent Cre-

expressing transgenic mouse lines have been used which differs in the temporal and spatial 

origin of Cre expression. Interestingly, post-natal loss of Tsc1 in PV cells has more severe 

effects in terms of PV connectivity and social behavior. 

While chapter 3 highlights the key advantage of using single cell genetics as a powerful tool 

to identify how specific gene mutations lead to changes at cellular and synaptic levels, 
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chapter 4 extensively uses this technique to gain deeper insight on the nature of these changes 

over a developmental time window. In order to add multiple perspectives to the data 

discussed in chapter 3 and 4, this section attempts to answer the possible mechanisms 

involved, the limitations of this study, the clinical relevance as well the scope for future 

studies. 

5.1 Spatial and temporal origin of Tsc1 knockout determine the extent of PV cell 

connectivity alterations and mouse behavioral deficits 

As previous studies have highlighted that both the timing and spatial origin of Tsc1 loss 

contribute to diverse phenotypes, we used separate breeding strategies to address this aspect 

in GABAergic neurons. The Tg(Nkx2.1-Cre) line drives Cre expression in both SST- and PV-

expressing cells of the cortex and hippocampus (apart from other brain areas) and starts early 

at E10.5 in the basal telencephalon (Table5.1). This allowed us to achieve loss of Tsc1 in 

MGE-based progenitor cells at an embryonic stage and hence determine the early role of 

Tsc1 in PV cells. The second Cre-driving line, Tg (PV-Cre), has a late post-natal expression 

(P14) and henceforth allowed us to determine the effect of Tsc1loss on structural connectivity 

of PV cells during post-natal development. 

Primarily, we found that loss of Tsc1in Tg(Nkx2.1-Cre);Tsc1flox/flox mice causes an initial 

increase in axonal branching and boutons density of PV cells in juvenile mice (P18) followed 

by hypo-connectivity in young adults (P45). This phenomenon is also recapitulated in cortical 

organotypic cultures from these mice where individual PV-expressing cortical BCs show 

increased innervation at EP18 but strongly reduced axonal arbor and bouton density at EP32. 

One possible hypothesis is that bouton hyper-proliferation and excessive axon growth caused 

by mTOR hyperactivation in PV cells leads to consequent hypo-connectivity at later stages. 

In fact, even if more boutons are formed, they may not be correctly opposed to postsynaptic 
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specializations, therefore leading to less efficient synapses. Our data showing that while the 

number of PV perisomatic puncta is increased, the number of PV-gephyrin colocalizing 

puncta is not in P18 mice Tg(Nkx2.1-Cre);Tsc1flox/flox mice  compared to control littermates 

support this speculation. Another possibility is that mTOR activation may play two distinct 

and opposing roles in different phases of PV cell connectivity development. For example, 

mTOR activation may promote axon growth and bouton formation in actively growing PV 

cells, while it may constrain synapse plasticity in adult PV cells. More experiments will be 

required to clarify this point.  

Although Tg(PV-Cre);Tsc1flox/flox mice develop PV hypo-connectivity at later stages (P45), it 

is unknown if hyper-connectivity occurs at P18. In fact, while using the endogenous PV 

promoter to drive Cre expression confers PV-BC specificity, one limitation is that the Cre 

expression well after the first postnatal week. Whereas by P30 ~75% of PV cells show GFP 

expression when using a reporter line (RCE mouse, add reference), the proportion of GFP+ 

PV cells is more variable and closer to 50% in P18 mice (data not shown). It is therefore 

challenging to identify in which PV cell Tsc1 has already recombined by P18 and to 

selectively quantify their synaptic innervation. One possibility is to use a mouse where GFP 

is expressed upon Cre expression. As mentioned above, we indeed generated Tg(PV-

Cre);Tsc1flox/flox ; RCE mice and used them to monitor and quantify Cre-mediated GFP 

expression at different ages; however GFP signal was too low, even following antibody-

mediated amplification, to reliably quantify GFP+ puncta. 

Nevertheless, single-cell Tsc1 deletion in cortical organotypic cultures shows that cell-

autonomous loss of Tsc1 (heterozygous and homozygous) in single PV-expressing cortical 

PV cells leads to hyper-connectivity at EP18. However, it still needs to be ascertained if the 

mutant BCs loses connectivity over time. Moreover, as discussed above, it remains to be 

investigated if the apparent state of hyper-connectivity at P18 in vivo (increase in perisomatic 
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PV intensity and puncta density, Figure 4.4 D,E) or at EP18 in vitro (increase in PV-BC 

bouton density and axonal branching, Figure 4.6 D,E) reflect a state of functional maturity. 

Additional studies involving electron microscopy will reveal the pre- and post-synaptic ultra-

structures at these punctas or boutons to gain an understanding of their developmental state.  

Further, electrophysiological recording using dual patch technique is the most direct method 

to study the presence of functional synapses between a pair of cells. This technique consist in 

the stimulation of a PV cell with an electrode and subsequently recording of the inhibitory 

output of that cell on a nearby, connected pyramidal cell. Dual patch recordings will give 

further insight into the functional state of mutant PV cell synapses during different stages of 

development. 

Interestingly, our data also suggest that the inactivation of Tsc1 floxed alleles by the Tg(PV-

Cre) induces more severe phenotypes in terms of PV connectivity (reduced PV and PV-

gephyrin co-localized puncta density) compared to what observed in Tg(Nkx2.1-

Cre);Tsc1flox/flox mice (Fig.4.8 E,G). In fact, Tsc1 gene dosage plays a crucial role when Tsc1 

ablation occurs at an early stage as Tg(Nkx2.1-Cre);Tsc1flox/+ mice show PV cell connectivity 

similar to age-matched controls. On the other hand, post-natal loss of Tsc1 in Tg(PV-

Cre);Tsc1flox/+ mice causes significant deficits. Altogether, these data indicate that the 

temporal window of Tsc1 knockout is crucial in determining both the effect of gene dosage 

and the severity of loss of connectivity. 

Perhaps, the most intriguing observation made in this study is the dynamic shift in terms of 

PV cell connectivity during the developmental time course in the cortex. Loss of Tsc1 in 

glutamatergic pyramidal cells in hippocampus cultures lead to decrease in dendritic spine 

density184. However, in vivo loss of Tsc1 (in mice) has shown variable results in terms of 

spine density. While analysis of Tsc1 null-neuron pyramidal cells from a Tg(SynI-

Cre);Tsc1flox/flox mice recapitulate the in vitro findings in terms of spine density110, other 
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studies have contradicted them179. Therefore it remains controversial about the exact role of 

Tsc1 in excitatory synapse formation and maintenance in the context of spine density. 

However, electrophysiological recordings show increase in mEPSC frequency in Tsc1 

deficient pyramidal cells. This indicates that loss of Tsc1 increases the number of synapses 

formed onto the postsynaptic neuron179. Contrary to the loss of spines in hippocampal 

pyramidal cells, loss of Tsc1in cerebellar Purkinje cells lead to increase in spine density175. 

Therefore, in context of our findings in cortical PV cells, it is pertinent to complement the 

data with patch clamp recordings at the different time points in cortical development. 

Behavioral studies in both the conditional mouse models identify deficits in the social novelty 

paradigm. On the other hand, these mouse lines show opposite behavior in the elevated plus 

maze test, which suggest the presence of different anxiety responses. In fact, while the 

Tg(Nkx2.1-Cre);Tsc1flox/flox show strong anxiety-like behavior coupled with higher 

exploratory drive in the open field arena, Tg(PV-Cre);Tsc1flox/flox mice display a surprising 

lack of anxiety. There could be several possible explanations for this difference in anxiety 

response in the two conditional mouse models. The dual role of GABA in controlling 

anxiolytic or anxiogenic responses have been well acknowledged in studies involving 

Benzodiazepine mediated GABAA receptor modulations97,207. Further, the two mice models 

discussed above target different GABAergic cell populations with distinct spatial and 

temporal specificity (Table 5.1). Therefore differences arising due to modulation in 

GABAergic activity in different brain regions could contribute to the variability in anxiety 

responses in these animals.    

Given that mTOR hyperactivaion enhances the translational capacity of cells, it will be 

interesting to study if alterations in the expression of proteins involved either in maintenance 

of intrinsic excitability or control of synaptic inputs onto GABAergic cells contribute to the 

underlying mechanisms for the observed phenotypes. Both these factors contribute in 
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determining the extent of GABAergic output on target cells. For example, GABA activity 

itself is a crucial factor in determining the extent of connectivity in interneurons61, thus it will 

be interesting to explore whether the expression of proteins involved in the synthesis 

(GAD65/67), packaging (vGAT) or release of GABA itself is affected. Indeed, Chattopadhyaya 

and co-workers report increased bouton density and branching at EP18 in GAD67 knockout 

BCs58 which is recapitulated in our findings in Tsc1+/- and Tsc1-/- cells. Changes in intrinsic 

excitability could significantly impact GABA release. Previous studies have reported 

decrease in input resistance in Tsc1 deficient cells rendering them less excitable175,179. Raab-

Graham and co-workers have shown Kv1.1 channel expression is modulated by mTOR 

activity208. If Kv channel expression is modulated in Tsc1 deficient PV cells remains a 

question at large. It also needs to be investigated if excitatory inputs onto PV cells may be 

altered because of possible deficits in glutamatergic synapse composition. A potential 

candidate protein is neuronal activity-regulated pentraxin (Narp), which is known to be 

prominently present in excitatory synapses of PV cells and play a role in AMPA receptor 

clustering209. Other possibilities include perturbation in ErbB4-Nrg1signalling, which is 

involved in development of cortical inhibitory circuits210. 

Promoter 
driving Cre 
expression 

Time of Cre 
expression 

Brain regions targeted Cell 
types 

targeted 

Citation 

Nkx2.1 E10.5 Cortex, Hippocampus, 
Hypothalamus, Amygdala, 
Olfactory bulb, Striatum, 

Globus pallidus, Septum, and 
Nucleus basalis. 

PV,SST Xu et al, 
2008211. 

PV P14 Cortex, Hippocampus, 
Cerebellum and PV cells in 

other brain regions.  

PV Taniguchi et 
al, 2011212. 

 

Table 5.1. Cre expression under Nkx2.1 and PV promoters has different spatio-temporal 
origins. 
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5.2 Limitations of the study 

In this study, we have consistently found that knockout of both the Tsc1 alleles leads to an 

initial hyper-connectivity of PV cells both in vivo (Tg(Nkx2.1-Cre);Tsc1flox/flox) and in 

organotypic cultures. These results are recapitulated in Tsc1-/- BCs in an otherwise wild-type 

background in organotypic cultures at EP18. However, the effect of gene dosage is stronger 

in vivo as we do not observe any changes in terms of connectivity at P18 in the Tg(Nkx2.1-

Cre);Tsc1flox/+ mice. Conversely, BCs in organotypic cultures from Tg(Nkx2.1-Cre);Tsc1flox/+ 

mice as well as single cell knockouts (Tsc1+/-) have unusually high connectivity at P18 (Fig 

4.2 and 4.6). Therefore we found discrepancy in the degree of PV cell connectivity between 

in vivo and in vitro studies in the context of heterozygous loss of Tsc1. The answer might lay 

in differences in the external factors in the milieu while comparing an in vivo to an in vitro 

system. In a culture system, the medium has an abundance of nutrients and growth factors 

(e.g. insulin); whereas, nutrient availability in vivo is variable and probably more limited. As 

nutrient availability positively modulates mTOR pathway activity, a nutrient-rich 

environment might act as an additional cue to promote hyperactivity of the mTOR pathway. 

It would be interesting to see if the heterozygous loss of Tsc1 is still capable of exhibiting 

such pronounced hyper-connectivity when a depleted (reduced amount of insulin and other 

growth factors) medium is used.  

Our study of PV cell connectivity in vivo is focused in the somatosensory cortex. Mammalian 

cortex is highly segmented and each region is specialized to control various sensory, motor 

and cognitive processes. We have performed a battery of behavioral experiments, which 

implicates many cortical regions along with hippocampus, amygdala, nucleus accumbens and 

cerebellum. We report deficits in working memory and social behavior, which are complex 
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cognitive process and involve synchronized activation of multiple brain areas. Further 

investigation of PV cell connectivity in other cortical areas like the pre-frontal cortex is 

needed to clarify the cellular basis of these behavioral deficits. Such studies will also enable 

us to compare the extent of perturbation in PV circuitry in different brain regions. 

5.3 What drives the PV network from a state of hyper-connectivity to hypo-

connectivity: Possible role of altered PV-PV disinhibition 

PV-expressing cells not only contact hundreds of neighbouring excitatory cells but also target 

other PV cells. Since our findings clearly indicate loss of PV connectivity on excitatory cells 

at P45, it paves the road to hypothesize that PV-PV connectivity could be altered, too. There 

could be potentially two situations that can lead to PV-pyramidal cell hypo-connectivity, (1) 

PV cells can have hyper-connectivity on other PV cells at around P18 which will lead to a 

stronger disinhibition and eventually suppress the activity of PV cells, or (2) if the network of 

excitatory cells targeted by mutant PV cells impose a modulatory effect on the mutant PV 

cells causing to lose their connections. Interestingly, gephyrin immunostaining of PV cells in 

the Tg(Nkx2.1-Cre);Tsc1flox/flox show a sharp trend towards an increase of gephyrin punctas 

on PV cell somata at P45, which suggest that PV somata may be receiving more inhibition. 

On the other hand, at this same age, PV cell connectivity onto pyramidal cells is reduced. 

This preliminary observation needs to be validated by increasing the number of animals 

analyzed and by electrophysiological recordings from PV cells. It is reasonable to expect an 

increase in miniature inhibitory events on PV cells if the above-mentioned mechanism 

occurs. However, it is not possible to identify PV boutons on a PV cell with the 

immunostaining approach I used in my work. One alternative approach is to co-label for 

synaptotagmin 2 (SYT2), which is a vesicular protein present exclusively in PV cell 

terminals, gephyrin (postsynaptic GABAergic marker) and PV, and then quantify SYT2-

gephyrin colocalized puncta around PV cell somata. Increase in SYT2-gephyrin colocalized 
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punctas around PV somas would support our hypothesis, however, why the PV cells do not 

lose these connections unlike pyramidal cells would remain an open question. What factors 

modulate inhibitory inputs on other inhibitory cell is still not well understood and future work 

will reveal the underlying mechanisms involved in this process. 

5.4 Implication for human diseases 

Although this work per se was not aimed at creating an animal model of TSC, some key 

findings in terms of neuronal connectivity and social behavior have strong clinical 

correlations. Anxiety related behavior is often associated with TSC and our mice models 

recapitulate similar phenotypes. Many TSC patients have responded positively to the drug 

Vigabartin, which is an irreversible inhibitor of the GABA degrading enzyme GABA 

transaminase213 suggesting deficits in GABAergic signaling. 

Epileptic seizure is one of the most common comorbidity associated with TSC patients and 

some TSC mouse models have reported spontaneous epileptic seizures. Although we did not 

observe any spontaneous seizures in our mice models, we predict that these mice might have 

lower threshold for seizure susceptibility similar to what was reported for the Dlx5/6-Cre-

Tsc1lox/lox mice173 (Fu et al, 2011). EEG recordings may also reveal deficits in specific brain 

oscillation frequencies, as PV cells have shown to strongly regulate the power of gamma 

oscillations (30-80Hz range). 

The presence of giant interneurons has been reported from tissue biopsy of cortical tubers in 

TSC patients163. We observed somatic hypertrophy in PV cells in both Tg(Nkx2.1-

Cre);Tsc1flox/flox  and Tg(PV-Cre);Tsc1flox/flox mice in the absence of cortical tubers. 

Therefore, further investigation is needed to characterize the deficits in GABAergic network 

in TSC patients. 
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Altogether our data suggest that progressive loss of PV cell connectivity may lead to reduced 

inhibition in these mice. Importantly, an imbalance of excitation/inhibition (E/I) ratio has 

been suggested to be one of the underlying basis of specific behavioral deficits, in both 

autistic and epileptic patients and experimental animal models. Thus, PV cells 

hypoconnectivity caused by mTOR hyperactivation may contribute to altered cognition and 

social behavior in patients showing these phenotypes. 

5.5 GABAA receptors and epilepsy 

Although several reports have suggested that mutations in GABAA receptors are associated 

with epilepsy, how these GABAA mutations perturb cortical excitatory and inhibitory cell 

connectivity is poorly understood. Our findings suggest that pyramidal cell dendritic spines 

and BC axonal synapses are affected in a mutation-specific manner. It will be interesting to 

address if epilepsy in TSC patients shares a common mechanism of pathophysiology with 

epilepsy arising from GABAA receptor mutations, since in both cases there is an alteration in 

the excitation/inhibition (E/I) ratio. 

Loss of dendritic spine density has been reported in pyramidal cells in epilepsy patients. But 

this is often thought to be a product of epileptic seizures that lead to excessive glutamate 

release and excitotoxicity214. As discussed earlier, Tsc1 knockout in hippocampal pyramidal 

cells also lead to decreased spine density. Interestingly, we found that although the mutation 

A322D caused increase in spine density, D21N mutants showed a reverse trend. What 

molecular mechanisms are at work and how they differ in a mutation-specific manner 

remains to be explored in future. Further, expression of these mutant GABAA receptors in 

cortical BCs could change the inhibitory inputs on these cells which in turn will influence the 

excitability of the BCs. Electrophysiological recordings in both pyramidal and GABAergic 

BCs expressing mutant GABAA receptors will confirm if the amplitude and frequency of post 
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synaptic inhibitory current in these cells change. Lack of adequate inhibition is a common 

feature in an epileptic brain; however, if changes in the inhibitory inputs on GABAergic cells 

lead to hyperexcitability remains an open question. 

5.6 Concluding remarks 

In my thesis work, I have tried to address the broader objectives regarding the role of the 

mTOR pathway and GABAA receptors in cortical BC development. However, these findings 

demand deeper analysis into underlying mechanisms for the observed phenotypes both in 

vitro and in vivo. This section points at the possible avenues to answer questions, which have 

been outside the scope of this thesis. 

Epilepsy is perhaps the most common form of morbidity observed in TSC patients. Many of 

the conditional knockout models, where loss of Tsc genes occurs in excitatory, glial or 

inhibitory cells report seizure or a lower threshold for seizure susceptibility168-170,173,176. 

Although, both the GABAergic conditional mice models described in this work do not show 

spontaneous seizures, they must be screened for alteration in seizure threshold. 

Preconvulsants like fluorythyl or ketamine could be used for seizure induction in these 

models. Also, as discussed previously, PV cells control gamma oscillations in the brain. EEG 

recording of gamma oscillations from Tg(Nkx2.1-Cre);PTENflox/flox  mice show decrease in 

gamma oscillations during rest and increased gamma oscillations during social activity198. 

Since, PTEN is a negative regulator of mTOR pathway, similarly to Tsc1; it is very likely we 

will find similar deficits in terms of gamma oscillations in our mouse models.  

Deficits in social behavior, communication and repetitive behavior are core features of autism 

in human patients215. While we just tested our mice for social novelty paradigm, it is essential 

to look at other paradigms like sociability, reciprocal social behavior in home cage and 

separate cage and sexual motivation while interacting with opposite sex. In addition, marble 
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burying task and assessment of self-grooming are two paradigms that can be used to 

investigate repetitive behaviors in our models. Recording of ultrasonic vocalizations to assess 

mother-pup interaction will point out deficits in social communication.  

Finally, a complete transcriptional and proteomic profiling is necessary to identify candidate 

genes and proteins whose expression is dysregulated in PV cells in our mouse models. GFP 

tagging of PV cells will facilitate the sorting of PV cells from brain tissue using fluorescence 

assisted cell sorting (FACS) technique. Once sorted, these cells can be used for microarray 

analysis for quantifying expression profiles of mRNAs and proteins.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



133 
 

 
 
 
 
 
 
Chapter 6. Bibliography 
 
1. Anderson, S.A., et al., Interneuron migration from basal forebrain to neocortex: 

dependence on Dlx genes. Science, 1997. 278(5337): p. 474-6. 
2. Sussel, L., et al., Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal 

molecular respecification within the basal telencephalon: evidence for a 
transformation of the pallidum into the striatum. Development, 1999. 126(15): p. 
3359-70. 

3. Wonders, C.P., et al., A spatial bias for the origins of interneuron subgroups within 
the medial ganglionic eminence. Dev Biol, 2008. 314(1): p. 127-36. 

4. Xu, Q., et al., Origins of cortical interneuron subtypes. J Neurosci, 2004. 24(11): p. 
2612-22. 

5. Butt, S.J., et al., The temporal and spatial origins of cortical interneurons predict 
their physiological subtype. Neuron, 2005. 48(4): p. 591-604. 

6. Du, T., et al., NKX2.1 specifies cortical interneuron fate by activating Lhx6. 
Development, 2008. 135(8): p. 1559-67. 

7. Denaxa, M., et al., Maturation-promoting activity of SATB1 in MGE-derived cortical 
interneurons. Cell Rep, 2012. 2(5): p. 1351-62. 

8. Close, J., et al., Satb1 is an activity-modulated transcription factor required for the 
terminal differentiation and connectivity of medial ganglionic eminence-derived 
cortical interneurons. J Neurosci, 2012. 32(49): p. 17690-705. 

9. Flames, N., et al., Delineation of multiple subpallial progenitor domains by the 
combinatorial expression of transcriptional codes. J Neurosci, 2007. 27(36): p. 9682-
95. 

10. Gelman, D.M. and O. Marin, Generation of interneuron diversity in the mouse             
cerebral cortex. Eur J Neurosci, 2010. 31(12): p. 2136-41. 

11. Kepecs, A. and G. Fishell, Interneuron cell types are fit to function. Nature, 2014. 
505(7483): p. 318-26. 

12. Nery, S., G. Fishell, and J.G. Corbin, The caudal ganglionic eminence is a source of 
distinct cortical and subcortical cell populations. Nat Neurosci, 2002. 5(12): p. 1279-
87. 

13. Xu, Q., et al., Origins of cortical interneuron subtypes. J Neurosci, 2004. 24(11): p. 
2612-22. 

14. Tricoire, L., et al., Common origins of hippocampal Ivy and nitric oxide synthase 
expressing neurogliaform cells. J Neurosci, 2010. 30(6): p. 2165-76. 

15. Gelman, D.M., et al., The embryonic preoptic area is a novel source of cortical 
GABAergic interneurons. J Neurosci, 2009. 29(29): p. 9380-9. 

16. Guo, J. and E.S. Anton, Decision making during interneuron migration in the 
developing cerebral cortex. Trends Cell Biol, 2014. 24(6): p. 342-51. 

17. Polleux, F., et al., Control of cortical interneuron migration by neurotrophins and 
PI3-kinase signaling. Development, 2002. 129(13): p. 3147-60. 

18. Powell, E.M., W.M. Mars, and P. Levitt, Hepatocyte growth factor/scatter factor is a 
motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron, 
2001. 30(1): p. 79-89. 



134 
 

19. Pozas, E. and C.F. Ibanez, GDNF and GFRalpha1 promote differentiation and 
tangential migration of cortical GABAergic neurons. Neuron, 2005. 45(5): p. 701-13. 

20. Rudolph, J., et al., Ephrins guide migrating cortical interneurons in the basal 
telencephalon. Cell Adh Migr, 2010. 4(3): p. 400-8. 

21. Zhu, Y., et al., Cellular and molecular guidance of GABAergic neuronal migration 
from an extracortical origin to the neocortex. Neuron, 1999. 23(3): p. 473-85. 

22. Zimmer, G., et al., Ephrin-A5 acts as a repulsive cue for migrating cortical 
interneurons. Eur J Neurosci, 2008. 28(1): p. 62-73. 

23. Flames, N., et al., Short- and long-range attraction of cortical GABAergic 
interneurons by neuregulin-1. Neuron, 2004. 44(2): p. 251-61. 

24. Sanchez-Alcaniz, J.A., et al., Cxcr7 controls neuronal migration by regulating 
chemokine responsiveness. Neuron, 2011. 69(1): p. 77-90. 

25. Wonders, C.P. and S.A. Anderson, The origin and specification of cortical 
interneurons. Nat Rev Neurosci, 2006. 7(9): p. 687-96. 

26. DeFelipe, J., Cortical interneurons: from Cajal to 2001. Prog Brain Res, 2002. 136: 
p. 215-38. 

27. Markram, H., et al., Interneurons of the neocortical inhibitory system. Nat Rev 
Neurosci, 2004. 5(10): p. 793-807. 

28. Batista-Brito, R. and G. Fishell, The developmental integration of cortical 
interneurons into a functional network. Curr Top Dev Biol, 2009. 87: p. 81-118. 

29. Lau, D., et al., Impaired fast-spiking, suppressed cortical inhibition, and increased 
susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. J Neurosci, 
2000. 20(24): p. 9071-85. 

30. Rudy, B., et al., Contributions of Kv3 channels to neuronal excitability. Ann N Y 
Acad Sci, 1999. 868: p. 304-43. 

31. Zaitsev, A.V., et al., P/Q-type, but not N-type, calcium channels mediate GABA 
release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. J 
Neurophysiol, 2007. 97(5): p. 3567-73. 

32. Bucurenciu, I., et al., Nanodomain coupling between Ca2+ channels and Ca2+ 
sensors promotes fast and efficient transmitter release at a cortical GABAergic 
synapse. Neuron, 2008. 57(4): p. 536-45. 

33. Douglas, R.J., et al., Recurrent excitation in neocortical circuits. Science, 1995. 
269(5226): p. 981-5. 

34. Hu, H., J. Gan, and P. Jonas, Interneurons. Fast-spiking, parvalbumin(+) GABAergic 
interneurons: from cellular design to microcircuit function. Science, 2014. 345(6196): 
p. 1255263. 

35. Pinto, D.J., J.C. Brumberg, and D.J. Simons, Circuit dynamics and coding strategies 
in rodent somatosensory cortex. J Neurophysiol, 2000. 83(3): p. 1158-66. 

36. Pouille, F., et al., Input normalization by global feedforward inhibition expands 
cortical dynamic range. Nat Neurosci, 2009. 12(12): p. 1577-85. 

37. Tamas, G., et al., Proximally targeted GABAergic synapses and gap junctions 
synchronize cortical interneurons. Nat Neurosci, 2000. 3(4): p. 366-71. 

38. Szabadics, J., A. Lorincz, and G. Tamas, Beta and gamma frequency synchronization 
by dendritic gabaergic synapses and gap junctions in a network of cortical 
interneurons. J Neurosci, 2001. 21(15): p. 5824-31. 

39. Cardin, J.A., et al., Driving fast-spiking cells induces gamma rhythm and controls 
sensory responses. Nature, 2009. 459(7247): p. 663-7. 

40. Sohal, V.S., et al., Parvalbumin neurons and gamma rhythms enhance cortical circuit 
performance. Nature, 2009. 459(7247): p. 698-702. 



135 
 

41. Kuhlman, S.J., et al., A disinhibitory microcircuit initiates critical-period plasticity in 
the visual cortex. Nature, 2013. 501(7468): p. 543-6. 

42. Hennou, S., et al., Early sequential formation of functional GABA(A) and 
glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur J 
Neurosci, 2002. 16(2): p. 197-208. 

43. Ben-Ari, Y., Limbic seizure and brain damage produced by kainic acid: mechanisms 
and relevance to human temporal lobe epilepsy. Neuroscience, 1985. 14(2): p. 375-
403. 

44. Leinekugel, X., et al., Synaptic GABAA activation induces Ca2+ rise in pyramidal 
cells and interneurons from rat neonatal hippocampal slices. J Physiol, 1995. 487 ( 
Pt 2): p. 319-29. 

45. Delpire, E., Cation-Chloride Cotransporters in Neuronal Communication. News 
Physiol Sci, 2000. 15: p. 309-312. 

46. Rivera, C., et al., The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing 
during neuronal maturation. Nature, 1999. 397(6716): p. 251-5. 

47. Li, H., et al., Patterns of cation-chloride cotransporter expression during embryonic 
rodent CNS development. Eur J Neurosci, 2002. 16(12): p. 2358-70. 

48. Chattopadhyaya, B., et al., Experience and activity-dependent maturation of 
perisomatic GABAergic innervation in primary visual cortex during a postnatal 
critical period. J Neurosci, 2004. 24(43): p. 9598-611. 

49. Morales, B., S.Y. Choi, and A. Kirkwood, Dark rearing alters the development of 
GABAergic transmission in visual cortex. J Neurosci, 2002. 22(18): p. 8084-90. 

50. Lewis, D.A., D.W. Volk, and T. Hashimoto, Selective alterations in prefrontal 
cortical GABA neurotransmission in schizophrenia: a novel target for the treatment 
of working memory dysfunction. Psychopharmacology (Berl), 2004. 174(1): p. 143-
50. 

51. Huang, Z.J., G. Di Cristo, and F. Ango, Development of GABA innervation in the 
cerebral and cerebellar cortices. Nat Rev Neurosci, 2007. 8(9): p. 673-86. 

52. Jiao, Y., et al., Major effects of sensory experiences on the neocortical inhibitory 
circuits. J Neurosci, 2006. 26(34): p. 8691-701. 

53. Bozzi, Y., et al., Monocular deprivation decreases the expression of messenger RNA 
for brain-derived neurotrophic factor in the rat visual cortex. Neuroscience, 1995. 
69(4): p. 1133-44. 

54. Castren, E., et al., Light regulates expression of brain-derived neurotrophic factor 
mRNA in rat visual cortex. Proc Natl Acad Sci U S A, 1992. 89(20): p. 9444-8. 

55. Vicario-Abejon, C., et al., Neurotrophins induce formation of functional excitatory 
and inhibitory synapses between cultured hippocampal neurons. J Neurosci, 1998. 
18(18): p. 7256-71. 

56. Rutherford, L.C., et al., Brain-derived neurotrophic factor mediates the activity-
dependent regulation of inhibition in neocortical cultures. J Neurosci, 1997. 17(12): 
p. 4527-35. 

57. Pinal, C.S. and A.J. Tobin, Uniqueness and redundancy in GABA production. 
Perspect Dev Neurobiol, 1998. 5(2-3): p. 109-18. 

58. Chattopadhyaya, B., et al., GAD67-mediated GABA synthesis and signaling regulate 
inhibitory synaptic innervation in the visual cortex. Neuron, 2007. 54(6): p. 889-903. 

59. Patz, S., et al., Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA 
and protein expression in organotypic cultures of rat visual cortex. Eur J Neurosci, 
2003. 18(1): p. 1-12. 



136 
 

60. Benevento, L.A., B.W. Bakkum, and R.S. Cohen, gamma-Aminobutyric acid and 
somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. 
Brain Res, 1995. 689(2): p. 172-82. 

61. Baho, E. and G. Di Cristo, Neural activity and neurotransmission regulate the 
maturation of the innervation field of cortical GABAergic interneurons in an age-
dependent manner. J Neurosci, 2012. 32(3): p. 911-8. 

62. Wu, X., et al., GABA signaling promotes synapse elimination and axon pruning in 
developing cortical inhibitory interneurons. J Neurosci, 2012. 32(1): p. 331-43. 

63. Rothbard, J.B., et al., Differences in the carbohydrate structures of neural cell-
adhesion molecules from adult and embryonic chicken brains. J Biol Chem, 1982. 
257(18): p. 11064-9. 

64. Di Cristo, G., et al., Activity-dependent PSA expression regulates inhibitory 
maturation and onset of critical period plasticity. Nat Neurosci, 2007. 10(12): p. 
1569-77. 

65. Chattopadhyaya, B., et al., Neural cell adhesion molecule-mediated Fyn activation 
promotes GABAergic synapse maturation in postnatal mouse cortex. J Neurosci, 
2013. 33(14): p. 5957-68. 

66. Ben-Ari, Y., et al., gamma-Aminobutyric acid (GABA): a fast excitatory transmitter 
which may regulate the development of hippocampal neurones in early postnatal life. 
Prog Brain Res, 1994. 102: p. 261-73. 

67. Kaneda, M., M. Farrant, and S.G. Cull-Candy, Whole-cell and single-channel 
currents activated by GABA and glycine in granule cells of the rat cerebellum. J 
Physiol, 1995. 485 ( Pt 2): p. 419-35. 

68. Uusi-Oukari, M. and E.R. Korpi, Regulation of GABA(A) receptor subunit expression 
by pharmacological agents. Pharmacol Rev, 2010. 62(1): p. 97-135. 

69. Olsen, R.W. and W. Sieghart, GABA A receptors: subtypes provide diversity of 
function and pharmacology. Neuropharmacology, 2009. 56(1): p. 141-8. 

70. Bailey, M.E., et al., Genomic mapping and evolution of human GABA(A) receptor 
subunit gene clusters. Mamm Genome, 1999. 10(8): p. 839-43. 

71. Russek, S.J., Evolution of GABA(A) receptor diversity in the human genome. Gene, 
1999. 227(2): p. 213-22. 

72. Simon, J., et al., Analysis of the set of GABA(A) receptor genes in the human genome. 
J Biol Chem, 2004. 279(40): p. 41422-35. 

73. Patel, B., M. Mortensen, and T.G. Smart, Stoichiometry of delta subunit containing 
GABA(A) receptors. Br J Pharmacol, 2014. 171(4): p. 985-94. 

74. Jones, B.L. and L.P. Henderson, Trafficking and potential assembly patterns of 
epsilon-containing GABAA receptors. J Neurochem, 2007. 103(3): p. 1258-71. 

75. Fritschy, J.M. and P. Panzanelli, GABAA receptors and plasticity of inhibitory 
neurotransmission in the central nervous system. Eur J Neurosci, 2014. 39(11): p. 
1845-65. 

76. LoTurco, J.J., et al., GABA and glutamate depolarize cortical progenitor cells and 
inhibit DNA synthesis. Neuron, 1995. 15(6): p. 1287-98. 

77. Owens, D.F., et al., Excitatory GABA responses in embryonic and neonatal cortical 
slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. 
J Neurosci, 1996. 16(20): p. 6414-23. 

78. Manent, J.B., et al., A noncanonical release of GABA and glutamate modulates 
neuronal migration. J Neurosci, 2005. 25(19): p. 4755-65. 

79. Laurie, D.J., W. Wisden, and P.H. Seeburg, The distribution of thirteen GABAA 
receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J 
Neurosci, 1992. 12(11): p. 4151-72. 



137 
 

80. Doischer, D., et al., Postnatal differentiation of basket cells from slow to fast 
signaling devices. J Neurosci, 2008. 28(48): p. 12956-68. 

81. Okaty, B.W., et al., Transcriptional and electrophysiological maturation of 
neocortical fast-spiking GABAergic interneurons. J Neurosci, 2009. 29(21): p. 7040-
52. 

82. Le Magueresse, C., et al., "Small axonless neurons": postnatally generated 
neocortical interneurons with delayed functional maturation. J Neurosci, 2011. 
31(46): p. 16731-47. 

83. Bosman, L.W., T.W. Rosahl, and A.B. Brussaard, Neonatal development of the rat 
visual cortex: synaptic function of GABAA receptor alpha subunits. J Physiol, 2002. 
545(Pt 1): p. 169-81. 

84. Cohen, I., et al., On the origin of interictal activity in human temporal lobe epilepsy in 
vitro. Science, 2002. 298(5597): p. 1418-21. 

85. Dunning, D.D., et al., GABA(A) receptor-mediated miniature postsynaptic currents 
and alpha-subunit expression in developing cortical neurons. J Neurophysiol, 1999. 
82(6): p. 3286-97. 

86. Hutcheon, B., P. Morley, and M.O. Poulter, Developmental change in GABAA 
receptor desensitization kinetics and its role in synapse function in rat cortical 
neurons. J Physiol, 2000. 522 Pt 1: p. 3-17. 

87. Hendrickson, A., et al., Coincidental appearance of the alpha 1 subunit of the GABA-
A receptor and the type I benzodiazepine receptor near birth in macaque monkey 
visual cortex. Int J Dev Neurosci, 1994. 12(4): p. 299-314. 

88. Pinto, J.G., et al., Developmental changes in GABAergic mechanisms in human visual 
cortex across the lifespan. Front Cell Neurosci, 2010. 4: p. 16. 

89. Klausberger, T., J.D. Roberts, and P. Somogyi, Cell type- and input-specific 
differences in the number and subtypes of synaptic GABA(A) receptors in the 
hippocampus. J Neurosci, 2002. 22(7): p. 2513-21. 

90. Nusser, Z., et al., The alpha 6 subunit of the GABAA receptor is concentrated in both 
inhibitory and excitatory synapses on cerebellar granule cells. J Neurosci, 1996. 
16(1): p. 103-14. 

91. Kralic, J.E., et al., Compensatory alteration of inhibitory synaptic circuits in 
cerebellum and thalamus of gamma-aminobutyric acid type A receptor alpha1 subunit 
knockout mice. J Comp Neurol, 2006. 495(4): p. 408-21. 

92. Zeller, A., et al., Cortical glutamatergic neurons mediate the motor sedative action of 
diazepam. Mol Pharmacol, 2008. 73(2): p. 282-91. 

93. Peng, Z., et al., GABA(A) receptor changes in delta subunit-deficient mice: altered 
expression of alpha4 and gamma2 subunits in the forebrain. J Comp Neurol, 2002. 
446(2): p. 179-97. 

94. Peden, D.R., et al., Developmental maturation of synaptic and extrasynaptic GABAA 
receptors in mouse thalamic ventrobasal neurones. J Physiol, 2008. 586(4): p. 965-
87. 

95. Rudolph, U., et al., Benzodiazepine actions mediated by specific gamma-aminobutyric 
acid(A) receptor subtypes. Nature, 1999. 401(6755): p. 796-800. 

96. Low, K., et al., Molecular and neuronal substrate for the selective attenuation of 
anxiety. Science, 2000. 290(5489): p. 131-4. 

97. Crestani, F., et al., Contribution of the alpha1-GABA(A) receptor subtype to the 
pharmacological actions of benzodiazepine site inverse agonists. 
Neuropharmacology, 2002. 43(4): p. 679-84. 



138 
 

98. Yee, B.K., et al., A schizophrenia-related sensorimotor deficit links alpha 3-
containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci U S 
A, 2005. 102(47): p. 17154-9. 

99. Rudolph, U. and H. Mohler, Analysis of GABAA receptor function and dissection of 
the pharmacology of benzodiazepines and general anesthetics through mouse 
genetics. Annu Rev Pharmacol Toxicol, 2004. 44: p. 475-98. 

100. Engel, J., Jr., Intractable epilepsy: definition and neurobiology. Epilepsia, 2001. 42 
Suppl 6: p. 3. 

101. Cossette, P., et al., Mutation of GABRA1 in an autosomal dominant form of juvenile 
myoclonic epilepsy. Nat Genet, 2002. 31(2): p. 184-9. 

102. Lachance-Touchette, P., et al., Novel alpha1 and gamma2 GABAA receptor subunit 
mutations in families with idiopathic generalized epilepsy. Eur J Neurosci, 2011. 
34(2): p. 237-49. 

103. Macdonald, R.L., J.Q. Kang, and M.J. Gallagher, Mutations in GABAA receptor 
subunits associated with genetic epilepsies. J Physiol, 2010. 588(Pt 11): p. 1861-9. 

104. Gallagher, M.J., et al., The GABAA receptor alpha1 subunit epilepsy mutation A322D 
inhibits transmembrane helix formation and causes proteasomal degradation. Proc 
Natl Acad Sci U S A, 2007. 104(32): p. 12999-3004. 

105. Heitman, J., N.R. Movva, and M.N. Hall, Targets for cell cycle arrest by the 
immunosuppressant rapamycin in yeast. Science, 1991. 253(5022): p. 905-9. 

106. Brown, E.J., et al., A mammalian protein targeted by G1-arresting rapamycin-
receptor complex. Nature, 1994. 369(6483): p. 756-8. 

107. Sabatini, D.M., et al., RAFT1: a mammalian protein that binds to FKBP12 in a 
rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 1994. 78(1): p. 
35-43. 

108. Sabers, C.J., et al., Isolation of a protein target of the FKBP12-rapamycin complex in 
mammalian cells. J Biol Chem, 1995. 270(2): p. 815-22. 

109. Sarbassov, D.D., et al., Prolonged rapamycin treatment inhibits mTORC2 assembly 
and Akt/PKB. Mol Cell, 2006. 22(2): p. 159-68. 

110. Meikle, L., et al., Response of a neuronal model of tuberous sclerosis to mammalian 
target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to 
improved survival and function. J Neurosci, 2008. 28(21): p. 5422-32. 

111. Costa-Mattioli, M. and L.M. Monteggia, mTOR complexes in neurodevelopmental 
and neuropsychiatric disorders. Nat Neurosci, 2013. 16(11): p. 1537-43. 

112. Song, M.S., L. Salmena, and P.P. Pandolfi, The functions and regulation of the PTEN 
tumour suppressor. Nat Rev Mol Cell Biol, 2012. 13(5): p. 283-96. 

113. Huang, W., et al., mTORC2 controls actin polymerization required for consolidation 
of long-term memory. Nat Neurosci, 2013. 16(4): p. 441-8. 

114. Zinzalla, V., et al., Activation of mTORC2 by association with the ribosome. Cell, 
2011. 144(5): p. 757-68. 

115. Laplante, M. and D.M. Sabatini, mTOR signaling in growth control and disease. Cell, 
2012. 149(2): p. 274-93. 

116. Tang, H., et al., Amino acid-induced translation of TOP mRNAs is fully dependent on 
phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, 
and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol, 2001. 21(24): 
p. 8671-83. 

117. Mayer, K., et al., Characterisation of a novel TSC2 missense mutation in the GAP 
related domain associated with minimal clinical manifestations of tuberous sclerosis. 
J Med Genet, 2004. 41(5): p. e64. 



139 
 

118. Kantidakis, T., et al., mTOR associates with TFIIIC, is found at tRNA and 5S rRNA 
genes, and targets their repressor Maf1. Proc Natl Acad Sci U S A, 2010. 107(26): p. 
11823-8. 

119. Shor, B., et al., Requirement of the mTOR kinase for the regulation of Maf1 
phosphorylation and control of RNA polymerase III-dependent transcription in 
cancer cells. J Biol Chem, 2010. 285(20): p. 15380-92. 

120. Thoreen, C.C., et al., An ATP-competitive mammalian target of rapamycin inhibitor 
reveals rapamycin-resistant functions of mTORC1. J Biol Chem, 2009. 284(12): p. 
8023-32. 

121. Yu, K., et al., Biochemical, cellular, and in vivo activity of novel ATP-competitive and 
selective inhibitors of the mammalian target of rapamycin. Cancer Res, 2009. 69(15): 
p. 6232-40. 

122. Duvel, K., et al., Activation of a metabolic gene regulatory network downstream of 
mTOR complex 1. Mol Cell, 2010. 39(2): p. 171-83. 

123. Zhang, H.H., et al., Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 
pathway. PLoS One, 2009. 4(7): p. e6189. 

124. Jung, C.H., et al., ULK-Atg13-FIP200 complexes mediate mTOR signaling to the 
autophagy machinery. Mol Biol Cell, 2009. 20(7): p. 1992-2003. 

125. Hosokawa, N., et al., Nutrient-dependent mTORC1 association with the ULK1-Atg13-
FIP200 complex required for autophagy. Mol Biol Cell, 2009. 20(7): p. 1981-91. 

126. Phung, T.L., et al., Pathological angiogenesis is induced by sustained Akt signaling 
and inhibited by rapamycin. Cancer Cell, 2006. 10(2): p. 159-70. 

127. Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-
mTOR complex. Science, 2005. 307(5712): p. 1098-101. 

128. Guertin, D.A., et al., Ablation in mice of the mTORC components raptor, rictor, or 
mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, 
but not S6K1. Dev Cell, 2006. 11(6): p. 859-71. 

129. Jacinto, E., et al., SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates 
Akt phosphorylation and substrate specificity. Cell, 2006. 127(1): p. 125-37. 

130. Garcia-Martinez, J.M. and D.R. Alessi, mTOR complex 2 (mTORC2) controls 
hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-
induced protein kinase 1 (SGK1). Biochem J, 2008. 416(3): p. 375-85. 

131. Jacinto, E., et al., Mammalian TOR complex 2 controls the actin cytoskeleton and is 
rapamycin insensitive. Nat Cell Biol, 2004. 6(11): p. 1122-8. 

132. Sarbassov, D.D., et al., Rictor, a novel binding partner of mTOR, defines a 
rapamycin-insensitive and raptor-independent pathway that regulates the 
cytoskeleton. Curr Biol, 2004. 14(14): p. 1296-302. 

133. Shah, O.J., Z. Wang, and T. Hunter, Inappropriate activation of the 
TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell 
survival deficiencies. Curr Biol, 2004. 14(18): p. 1650-6. 

134. Masui, K., W.K. Cavenee, and P.S. Mischel, mTORC2 in the center of cancer 
metabolic reprogramming. Trends Endocrinol Metab, 2014. 25(7): p. 364-73. 

135. European Chromosome 16 Tuberous Sclerosis Consortium, 1993. Identification 
andcharacterization of the tuberous sclerosis gene on chromosome 16. Cell 75,1305–
1315. 

136. Crino, P.B., K.L. Nathanson, and E.P. Henske, The tuberous sclerosis complex. N 
Engl J Med, 2006. 355(13): p. 1345-56. 

137. Asato, M.R. and A.Y. Hardan, Neuropsychiatric problems in tuberous sclerosis 
complex. J Child Neurol, 2004. 19(4): p. 241-9. 



140 
 

138. Jansen, F.E., et al., Overlapping neurologic and cognitive phenotypes in patients with 
TSC1 or TSC2 mutations. Neurology, 2008. 70(12): p. 908-15. 

139. Green, A.J., M. Smith, and J.R. Yates, Loss of heterozygosity on chromosome 
16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet, 1994. 6(2): p. 
193-6. 

140. Sepp, T., J.R. Yates, and A.J. Green, Loss of heterozygosity in tuberous sclerosis 
hamartomas. J Med Genet, 1996. 33(11): p. 962-4. 

141. Kwiatkowski, D.J. and B.D. Manning, Tuberous sclerosis: a GAP at the crossroads 
of multiple signaling pathways. Hum Mol Genet, 2005. 14 Spec No. 2: p. R251-8. 

142. Tsai, V., et al., Fetal brain mTOR signaling activation in tuberous sclerosis complex. 
Cereb Cortex, 2014. 24(2): p. 315-27. 

143. Dibble, C.C., et al., TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream 
of mTORC1. Mol Cell, 2012. 47(4): p. 535-46. 

144. Au, K.S., et al., Molecular genetic basis of tuberous sclerosis complex: from bench to 
bedside. J Child Neurol, 2004. 19(9): p. 699-709. 

145.  Rose, V.M., Au, K.S., Pollom, G., Roach, E.S., Prashner, H.R., Northrup, H., 1999. 
Germ-line mosaicism in tuberous sclerosis: how common? American Journal of 
HumanGenetics 64, 986–992. 

146. Verhoef, S., et al., High rate of mosaicism in tuberous sclerosis complex. Am J Hum 
Genet, 1999. 64(6): p. 1632-7. 

147. Sancak, O., et al., Mutational analysis of the TSC1 and TSC2 genes in a diagnostic 
setting: genotype--phenotype correlations and comparison of diagnostic DNA 
techniques in Tuberous Sclerosis Complex. Eur J Hum Genet, 2005. 13(6): p. 731-41. 

148. Knudson, A.G., Two genetic hits (more or less) to cancer. Nat Rev Cancer, 2001. 
1(2): p. 157-62. 

149. Henske, E.P., et al., Loss of tuberin in both subependymal giant cell astrocytomas and 
angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis 
tumors. Am J Pathol, 1997. 151(6): p. 1639-47. 

150. Roberts, P.S., et al., Somatic mosaicism is rare in unaffected parents of patients with 
sporadic tuberous sclerosis. J Med Genet, 2004. 41(5): p. e69. 

151. Jansen, F.E., et al., Identification of the epileptogenic tuber in patients with tuberous 
sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia, 2006. 47(1): p. 
108-14. 

152. Jansen, F.E., et al., Epilepsy surgery in tuberous sclerosis: a systematic review. 
Epilepsia, 2007. 48(8): p. 1477-84. 

153. Mizuguchi, M., Abnormal giant cells in the cerebral lesions of tuberous sclerosis 
complex. Congenit Anom (Kyoto), 2007. 47(1): p. 2-8. 

154. Mizuguchi, M. and S. Takashima, Neuropathology of tuberous sclerosis. Brain Dev, 
2001. 23(7): p. 508-15. 

155. Jansen, F.E., et al., Diffusion-weighted magnetic resonance imaging and identification 
of the epileptogenic tuber in patients with tuberous sclerosis. Arch Neurol, 2003. 
60(11): p. 1580-4. 

156. Jansen, F.E., van Huffelen, A.C., Bourez-Swart, M., van Nieuwenhuizen, O., 2005. 
Con-sistent localization of interictal epileptiform activity on EEGs of patients 
withtuberous sclerosis complex. Epilepsia 46, 415–419. 

157. Bollo, R.J., et al., Epilepsy surgery and tuberous sclerosis complex: special 
considerations. Neurosurg Focus, 2008. 25(3): p. E13. 

158. van Eeghen, A.M., et al., Understanding relationships between autism, intelligence, 
and epilepsy: a cross-disorder approach. Dev Med Child Neurol, 2013. 55(2): p. 146-
53. 



141 
 

159. Major, P., et al., Are cortical tubers epileptogenic? Evidence from 
electrocorticography. Epilepsia, 2009. 50(1): p. 147-54. 

160. Boer, K., et al., Clinicopathological and immunohistochemical findings in an autopsy 
case of tuberous sclerosis complex. Neuropathology, 2008. 28(6): p. 577-90. 

161. Mori, K., et al., Decreased benzodiazepine receptor and increased GABA level in 
cortical tubers in tuberous sclerosis complex. Brain Dev, 2012. 34(6): p. 478-86. 

162. Talos, D.M., et al., Cell-specific alterations of glutamate receptor expression in 
tuberous sclerosis complex cortical tubers. Ann Neurol, 2008. 63(4): p. 454-65. 

163. Cepeda, C., et al., Enhanced GABAergic network and receptor function in pediatric 
cortical dysplasia Type IIB compared with Tuberous Sclerosis Complex. Neurobiol 
Dis, 2012. 45(1): p. 310-21. 

164. de Vries, P., et al., Consensus clinical guidelines for the assessment of cognitive and 
behavioural problems in Tuberous Sclerosis. Eur Child Adolesc Psychiatry, 2005. 
14(4): p. 183-90. 

165. de Vries, P.J., Genetics and neuropsychiatric disorders: genome-wide, yet narrow. 
Nat Med, 2009. 15(8): p. 850-1. 

166. Ridler, K., et al., Neuroanatomical correlates of memory deficits in tuberous sclerosis 
complex. Cereb Cortex, 2007. 17(2): p. 261-71. 

167. Goorden, S.M., et al., Cognitive deficits in Tsc1+/- mice in the absence of cerebral 
lesions and seizures. Ann Neurol, 2007. 62(6): p. 648-55. 

168. Uhlmann, E.J., et al., Astrocyte-specific TSC1 conditional knockout mice exhibit 
abnormal neuronal organization and seizures. Ann Neurol, 2002. 52(3): p. 285-96. 

169. Meikle, L., et al., A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes 
dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited 
survival. J Neurosci, 2007. 27(21): p. 5546-58. 

170. Anderl, S., et al., Therapeutic value of prenatal rapamycin treatment in a mouse brain 
model of tuberous sclerosis complex. Hum Mol Genet, 2011. 20(23): p. 4597-604. 

171. Goto, J., et al., Regulable neural progenitor-specific Tsc1 loss yields giant cells with 
organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci 
U S A, 2011. 108(45): p. E1070-9. 

172. Carson, R.P., et al., Neuronal and glia abnormalities in Tsc1-deficient forebrain and 
partial rescue by rapamycin. Neurobiol Dis, 2012. 45(1): p. 369-80. 

173. Fu, C., et al., GABAergic interneuron development and function is modulated by the 
Tsc1 gene. Cereb Cortex, 2012. 22(9): p. 2111-9. 

174. Bauman, M.L. and T.L. Kemper, Neuroanatomic observations of the brain in autism: 
a review and future directions. Int J Dev Neurosci, 2005. 23(2-3): p. 183-7. 

175. Tsai, P.T., et al., Autistic-like behaviour and cerebellar dysfunction in Purkinje cell 
Tsc1 mutant mice. Nature, 2012. 488(7413): p. 647-51. 

176. Feliciano, D.M., et al., Single-cell Tsc1 knockout during corticogenesis generates 
tuber-like lesions and reduces seizure threshold in mice. J Clin Invest, 2011. 121(4): 
p. 1596-607. 

177. Jaworski, J., et al., Control of dendritic arborization by the phosphoinositide-3'-
kinase-Akt-mammalian target of rapamycin pathway. J Neurosci, 2005. 25(49): p. 
11300-12. 

178. Urbanska, M., et al., Mammalian target of rapamycin complex 1 (mTORC1) and 2 
(mTORC2) control the dendritic arbor morphology of hippocampal neurons. J Biol 
Chem, 2012. 287(36): p. 30240-56. 

179. Bateup, H.S., et al., Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and 
increases excitatory synaptic function. J Neurosci, 2011. 31(24): p. 8862-9. 



142 
 

180. Harris, K.M. and S.B. Kater, Dendritic spines: cellular specializations imparting both 
stability and flexibility to synaptic function. Annu Rev Neurosci, 1994. 17: p. 341-71. 

181. Kelleher, R.J., 3rd and M.F. Bear, The autistic neuron: troubled translation? Cell, 
2008. 135(3): p. 401-6. 

182. Huttenlocher, P.R. and P.T. Heydemann, Fine structure of cortical tubers in tuberous 
sclerosis: a Golgi study. Ann Neurol, 1984. 16(5): p. 595-602. 

183. Machado-Salas, J.P., Abnormal dendritic patterns and aberrant spine development in 
Bourneville's disease--a Golgi survey. Clin Neuropathol, 1984. 3(2): p. 52-8. 

184. Tavazoie, S.F., et al., Regulation of neuronal morphology and function by the tumor 
suppressors Tsc1 and Tsc2. Nat Neurosci, 2005. 8(12): p. 1727-34. 

185. Krishnan, M.L., et al., Diffusion features of white matter in tuberous sclerosis with 
tractography. Pediatr Neurol, 2010. 42(2): p. 101-6. 

186. Widjaja, E., et al., Diffusion tensor imaging identifies changes in normal-appearing 
white matter within the epileptogenic zone in tuberous sclerosis complex. Epilepsy 
Res, 2010. 89(2-3): p. 246-53. 

187. Choi, Y.J., et al., Tuberous sclerosis complex proteins control axon formation. Genes 
Dev, 2008. 22(18): p. 2485-95. 

188. Kishi, M., et al., Mammalian SAD kinases are required for neuronal polarization. 
Science, 2005. 307(5711): p. 929-32. 

189. Morita, T. and K. Sobue, Specification of neuronal polarity regulated by local 
translation of CRMP2 and Tau via the mTOR-p70S6K pathway. J Biol Chem, 2009. 
284(40): p. 27734-45. 

190. Magri, L., et al., Sustained activation of mTOR pathway in embryonic neural stem 
cells leads to development of tuberous sclerosis complex-associated lesions. Cell 
Stem Cell, 2011. 9(5): p. 447-62. 

191. Zhou, J. and L.F. Parada, PTEN signaling in autism spectrum disorders. Curr Opin 
Neurobiol, 2012. 22(5): p. 873-9. 

192. Endersby, R. and S.J. Baker, PTEN signaling in brain: neuropathology and 
tumorigenesis. Oncogene, 2008. 27(41): p. 5416-30. 

193. Pilarski, R., et al., Cowden syndrome and the PTEN hamartoma tumor syndrome: 
systematic review and revised diagnostic criteria. J Natl Cancer Inst, 2013. 105(21): 
p. 1607-16. 

194. Lynch, N.E., et al., Bannayan-Riley-Ruvalcaba syndrome: a cause of extreme 
macrocephaly and neurodevelopmental delay. Arch Dis Child, 2009. 94(7): p. 553-4. 

195. Rodriguez-Escudero, I., et al., A comprehensive functional analysis of PTEN 
mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet, 
2011. 20(21): p. 4132-42. 

196. O'Roak, B.J., et al., Multiplex targeted sequencing identifies recurrently mutated 
genes in autism spectrum disorders. Science, 2012. 338(6114): p. 1619-22. 

197. Kwon, C.H., et al., Pten regulates neuronal arborization and social interaction in 
mice. Neuron, 2006. 50(3): p. 377-88. 

198. Vogt, D., et al., The parvalbumin/somatostatin ratio is increased in Pten mutant mice 
and by human PTEN ASD alleles. Cell Rep, 2015. 11(6): p. 944-56. 

199. Lipton, J.O. and M. Sahin, The neurology of mTOR. Neuron, 2014. 84(2): p. 275-91. 
200. Dasgupta, B. and D.H. Gutmann, Neurofibromin regulates neural stem cell 

proliferation, survival, and astroglial differentiation in vitro and in vivo. J Neurosci, 
2005. 25(23): p. 5584-94. 

201. Johannessen, C.M., et al., TORC1 is essential for NF1-associated malignancies. Curr 
Biol, 2008. 18(1): p. 56-62. 



143 
 

202. Banerjee, S., et al., Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth 
and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci U S A, 
2011. 108(38): p. 15996-6001. 

203. Colak, D., et al., Promoter-bound trinucleotide repeat mRNA drives epigenetic 
silencing in fragile X syndrome. Science, 2014. 343(6174): p. 1002-5. 

204. Auerbach, B.D., E.K. Osterweil, and M.F. Bear, Mutations causing syndromic autism 
define an axis of synaptic pathophysiology. Nature, 2011. 480(7375): p. 63-8. 

205. Sharma, A., et al., Dysregulation of mTOR signaling in fragile X syndrome. J 
Neurosci, 2010. 30(2): p. 694-702. 

206. Bhattacharya, A., et al., Genetic removal of p70 S6 kinase 1 corrects molecular, 
synaptic, and behavioural phenotypes in fragile X syndrome mice. Neuron, 2012. 
76(2): p. 325-37. 

207. Homanics, G.E., et al., Normal electrophysiological and behavioral responses to 
ethanol in mice lacking the long splice variant of the gamma2 subunit of the gamma-
aminobutyrate type A receptor. Neuropharmacology, 1999. 38(2): p. 253-65. 

208. Raab-Graham, K.F., et al., Activity- and mTOR-dependent suppression of Kv1.1 
channel mRNA translation in dendrites. Science, 2006. 314(5796): p. 144-8. 

209. Hsu, C.I., et al., Quantitative study of the developmental changes in calcium-
permeable AMPA receptor-expressing neurons in the rat somatosensory cortex. J 
Comp Neurol, 2010. 518(1): p. 75-91. 

210. Fazzari, P., et al., Control of cortical GABA circuitry development by Nrg1 and ErbB4 
signalling. Nature, 2010. 464(7293): p. 1376-80. 

211. Xu, Q., M. Tam, and S.A. Anderson, Fate mapping Nkx2.1-lineage cells in the mouse 
telencephalon. J Comp Neurol, 2008. 506(1): p. 16-29. 

212. Taniguchi, H., et al., A resource of Cre driver lines for genetic targeting of 
GABAergic neurons in cerebral cortex. Neuron, 2011. 71(6): p. 995-1013. 

213. Curatolo, P., M. Verdecchia, and R. Bombardieri, Vigabatrin for tuberous sclerosis 
complex. Brain Dev, 2001. 23(7): p. 649-53. 

214. Swann, J.W., et al., Spine loss and other dendritic abnormalities in epilepsy. 
Hippocampus, 2000. 10(5): p. 617-25. 

215. Bourgeron, T., A synaptic trek to autism. Curr Opin Neurobiol, 2009. 19(2): p. 231-4. 
216.     Marin O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 

13: p. 107-120. 
 
 


