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Résumé 

Dues à leur importance croissante dans la dégénérescence musculaire, les 

mitochondries sont de plus en plus étudiées en relation à diverses myopathies.   Leurs 

mécanismes de contrôle de qualité sont reconnus pour leur rôle important dans la 

santé mitochondrial.  Dans cette étude, nous tentons de déterminer si le déficit de 

mitophagie chez les souris déficiente du gène Parkin causera une exacerbation des 

dysfonctions mitochondriales normalement induite par la doxorubicine.  Nous avons 

analysé l’impact de l’ablation de Parkin en réponse à un traitement à la doxorubicine 

au niveau du fonctionnement cardiaque, des fonctions mitochondriales et de 

l’enzymologie mitochondriale.  Nos résultats démontrent qu’à l’état basal, l’absence 

de Parkin n’induit pas de pathologie cardiaque mais est associé à des dysfonctions 

mitochondriales multiples.  La doxorubicine induit des dysfonctions respiratoires, du 

stress oxydant mitochondrial et une susceptibilité à l’ouverture du pore de transition 

de perméabilité (PTP).  Finalement, contrairement à notre hypothèse, l’absence de 

Parkin n’accentue pas les dysfonctions mitochondriales induites par la doxorubicine 

et semble même exercer un effet protecteur. 

 

Mots clés : mitochondrie, respiration, ROS, mPTP, muscle cardiaque, autophagie, 

parkin, mitophagie, doxorubicine. 
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Summary 

Mitochondria are becoming the focus of many studies because of their increasingly 

important role in cellular damage and related myopathies.  Their endogenous quality 

control mechanisms are recognized for their crucial role in mitochondrial health.  In 

our study, we attempted to determine if the deficit of mitophagy in Parkin deficient 

mice would cause an exacerbation of mitochondrial dysfunctions usually induced by 

doxorubicin.  We have analyzed the impact of the ablation of Parkin in response to 

treatment with doxorubicin at the level of cardiac functions, mitochondrial functions 

as well as mitochondrial enzymology.  Our results demonstrated that at baseline, the 

absence of Parkin didn’t induce cardiac pathologies but was associated with many 

mitochondrial dysfunctions.  Doxorubicin induced respiratory dysfunctions, 

mitochondrial oxidative stress as well as greater susceptibility to permeability 

transition pore (PTP) opening.  Finally, contrary to our hypothesis, the absence of 

Parkin, didn’t exacerbate mitochondrial dysfunctions induced by doxorubicin and 

seemed to have a protective effect.   

 

Key words: mitochondria, respiration, ROS, mPTP, cardiac muscle, autophagy, 

parkin, mitophagy, doxorubicin.    
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Foreword 

 

This memoir was done under the supervision of Dr. Yan Burelle who runs a 

laboratory focused on mitochondrial dysfunctions and their implications in different 

pathologies.  His laboratory has the appropriate equipment to study mitochondrial 

respiration, reactive oxygen species production, calcium regulation through the 

permeability transition pore, cell death signaling and other mitochondria related 

events.  This memoir appropriately depicts mitochondrial dysfunctions related to 

doxorubicin-induced cardiotoxicity. 
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1.1 Introduction: 

 

Mitochondria are specialized organelles originating from the symbiotic 

engulfment of aerobic-proteobacteria by pre-eukaryotic cells more than 1.5 billion 

years ago. Over the course of evolution, mitochondria have evolved as specialized 

organelles with a plethora of cellular functions. They play a central role in adenosine 

triphosphate (ATP) production through oxidative phosphorylation (OXPHOS). They 

actively participate in cellular Ca2+ dynamics by their capacity to take up and release 

Ca2+(Bernardi 2013). They generate metabolic outputs, which can modulate multiple 

signalling cascades, and nuclear gene expression programs through genetic and 

epigenetic mechanisms. They constitute one of the main sources of reactive oxygen 

species (ROS), which can participate in cell signalling or cell dysfunction/death under 

physiological and pathological conditions respectively (Inoue, Sato et al. 2003). 

Finally, in response to stress-induced signalling events converging to mitochondria, 

or of intrinsic dysfunctions within mitochondria caused by acute or chronic 

pathological conditions, these organelles can trigger apoptotic and necrotic cell death 

through permeabilization of their double membrane system (Bernardi 2013).  

 

Considering the vital importance of mitochondria in cellular homeostasis, 

sophisticated mechanisms have evolved to prevent the accumulation of 

mitochondrial functional abnormalities through the continuous turnover of 

organelles. This process involves the replacement of mitochondrial biomass through 

mitochondrial biogenesis, and the balanced degradation of dysfunctional or damaged 
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organelles through various quality control (QC) mechanisms, which remain poorly 

understood (Kissova, Deffieu et al. 2004).  

 

In the heart, where mitochondria account for 30-35% of cardiomyocyte 

volume, abnormalities in one or several facets of mitochondrial function have been 

involved in a wide variety of cardiac diseases including ischemia-reperfusion injury, 

overload-induced ventricular remodelling, chronic heart failure, genetic 

cardiopathies, as well as cardiopathies associated with sepsis or anthracyclin-based 

chemotherapy (Ballinger 2005). However, despite this knowledge, little is known 

about the role of mitochondrial QC in disease development in the heart, and the 

relationship between mitochondrial QC and the appearance of mitochondrial 

dysfunction. 

 

Recently, our laboratory and others have focused on mitophagy, a QC process 

whereby mitochondria destined for elimination are sequestered in double membrane 

autophagosomes, and delivered to lysosomes for subsequent degradation (Kissova, 

Deffieu et al. 2004). Indeed, while this process is emerging as central for proper 

cellular homeostasis, its role in the heart remains unclear. More specifically, the role 

of mitophagy in the development of cardiopathies, and the appearance of 

mitochondrial dysfunction during disease remains largely unknown.  
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For this reason, the purpose of this M.Sc. thesis was to determine the potential 

impact of genetically impairing mitophagy on the development of stress-induced 

mitochondrial and cardiac dysfunction. For this purpose, we chose to use 

doxorubicin-induced cardiotoxicity as a model due to the well-established impact of 

doxorubicin on mitochondrial functions and structure, and the clinical relevance of 

this model.  

 

Considering the nature of the experimental work, the literature review 

presented below provides an overview of mitochondrial structure and function, with 

a discussion on the impact of doxorubicin on various facets of mitochondrial biology 

in the heart.  This is followed by the presentation of essential concepts that pertain to 

mitochondrial QC, particularly mitophagy, and how these processes may be impacted 

in the context of doxorubicin-induced mitochondrial and cardiac toxicity. 

 

 

 

1.2 The essential of mitochondrial biology: Morphology and functions 

1.2.1  Mitochondrial Morphology: 

 

Mitochondria, similar to their bacterial ancestors are composed of two 

membranes, the outer (MOM) and inner (MIM) membranes, which delineate 3 

distinct compartments, the cytoplasm, the inter-membrane space (IMS) and the 
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mitochondrial matrix (1). The MOM, which is characterized by a smooth appearance 

when imaged by electron microscopy, separates the organelle from the cytosolic 

compartment. It is composed of 50% lipids and 50% proteins, some being integral 

and harbouring trans-membrane domains, and others being peripheral. These 

proteins are involved in various functions including fatty acid and protein import into 

mitochondria, exchange of hydrophilic solutes, and creation of docking sites to enable 

interactions between mitochondria and other organelles(Linden, Nelson et al. 1989).  

 

The MIM, which is characterized by a rough appearance when imaged by 

electron microscopy, has a much higher protein density. It also has a much larger 

surface area then the MOM, which allows the formation of multiple folds or 

invaginations called cristae. These cristae form a microenvironment where electron 

transport complexes and mobile electron carriers forming the respiratory chain are 

preferentially concentrated to improve their catalytic efficiency (Frey and Mannella 

2000).  The MIM is in general very impermeable to proteins, metabolites, and solutes. 

Transport across the membrane is therefore mediated by a wide variety of specific 

membrane-spanning carrier proteins including the translocase of the inner 

membrane (TOM) complex, the adenine nucleotide exchanger (ANT), numerous ion 

and di- or tri-carboxylate carriers, electron transport chain (ETC) complexes, and the 

ATP synthase. 
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Finally, the matrix is the innermost compartment where a large variety of 

biological processes take place. The matrix contains among other components, 

mitochondrial DNA, which encodes the RNA’s required for the synthesis of some ETC 

complex subunits, and a wide range of enzymes including those of the Krebs cycle and 

β-oxidation, which are essential for biosynthetic processes and energy metabolism. 

 

 As shown in Figure 1 mitochondria has typically been represented as a bean-

shaped organelle. However, it is now commonly accepted that mitochondrial 

morphology can vary extensively, ranging from this classical bean-shaped 

appearance to elongated and highly branched network-like configurations. Moreover, 

experimental evidence revealed that mitochondrial morphology is i) dynamic, ii) 

tightly regulated by specific sets of proteins including Mitofusins (MFN1, MFN2), 

Optic-atrophy factor-1 (OPA1), and Dynamin-Related Protein-1 (DRP1), and iii) 

intimately linked to mitochondrial QC, and key mitochondrial functions such as 

respiration, ROS production, and signalling of cell death (Inoue, Sato et al. 2003) 

(Bernardi 2013). 
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Figure 1: Mitochondrial Structure 
 

 

 

Figure 1: Mitochondrial Structure 
MOM: mitochondrial outer-membrane 
IMS: intermembrane space 
MIM: mitochondrial inner-membrane 
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1.2.2 Mitochondrial OXPHOS 

 

Mitochondria are central hubs of cellular bioenergetics capable of converting 

redox energy contained in the C-H bonds of nutrients, into phosphate energy 

contained in ATP (2). To achieve this function, mitochondria rely not only on its own 

array of metabolic processes (e.g. the Krebs cycle, β-oxidation, and oxidative 

phosphorylation (OXPHOS) machinery) but also on interactions with other pathways 

(ex: glycolysis), or organelles (ex: peroxisomes) involved in intermediary 

metabolism, which provide them with key substrates such as pyruvate and fatty acids, 

and with reducing equivalents (e.g. NADH and FADH2) that can directly fuel OXPHOS 

for ATP synthesis (2). 

 

     The process of OXPHOS relies on the electron transport chain, a series of four 

multi-units metal-containing complexes (CI, CII, CIII, CIV), and two mobile electron 

carriers (coenzyme Q and cytochrome c) present in or on the MIM particularly in 

cristae (2). Together, these proteins are involved in a series of oxido-reduction 

reactions whereby chemical energy contained in NADH and FADH2 is converted into 

a proton electrochemical gradient (ΔμH+) across the MIM, which can in turn be used 

to drive energy consuming processes such as ATP synthesis (2).  

 

More specifically, NADH feeds its electrons at the level of NADH-CoQ 

dehydrogenase (CI), where electrons are transferred to Coenzyme Q (CoQ) through a 
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series of oxido-reduction steps involving flavine mononucleotide (FMN) and several 

iron-sulphur clusters. Reduced CoQ (QH2), a lipid mobile carrier than shuttles the 

electrons to CoQ-cytochrome c reductase (CIII), where they are transferred to the 

mobile electron carrier cytochrome c through a succession of reaction involving heme 

and iron-sulfur clusters containing subunits. Reduced cytochrome c ultimately 

shuttles these electrons to cytochrome c oxidase (CIV), where they are transferred to 

molecular oxygen through a series of steps involving iron and copper containing 

subunits, thus allowing the formation of H2O. During this process, these redox 

reactions allow CI, CIII and CIV to pump protons across the MIM (12H+: 4H+ per 

complex per mole of NADH) to generate the proton electro-chemical gradient (2). 

 

As for FADH2, the other electron shuttle of importance, it feeds its electrons at 

the level of succinate dehydrogenase (SDH or CII), which transfers them to the 

ubiquinone pool directly. In doing so, this electron pathway bypasses CI, thereby 

reducing the bioenergetics efficiency of FADH2 (8H+/mole of FADH2) compared to 

NADH (10H+/mole of NADH). Physiologically, the FADH2 and NADH electron 

pathways function in parallel, although the proportion of NADH vs FADH2 may vary 

depending on the mixture of energy substrate oxidized (2). 

 

Like most metabolic process, the levels of substrates and end-products exert a 

thermodynamic control on the overall reaction rate of the ETC. This means that the 

electron flow, and thus oxygen consumption is regulated by the NADH/NAD+ 
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FADH2/FAD+ (e.g. the substrates) ratios on the one hand, and ΔμH+ (the product) on 

the other hand. Processes that consume ΔμH+, or stimulate the production of NADH 

and FADH2 will increase flux through the ETC, while high ΔμH+ and more oxidized 

NADH/NAD+ and FADH2/FAD+ ratios will lower ETC flux (2).  

 

ATP synthesis is one of the main processes that consume ΔμH+. This is 

achieved by the FoF1-ATPase located in the MIM, which couples the re-entry of 

protons into the mitochondrial matrix to the synthesis of ATP from ADP and Pi. In 

addition, a number of other processes tend to dissipate ΔμH+, and thus stimulate 

respiration including: i) passive or facilitated diffusion of H+ directly through the MIM, 

or through uncoupling proteins (UCP’s), ii) electrogenic transport of several ions and 

metabolites and iii) physiological or pathological slippage of proton pumps along the 

ETC. In vivo, mitochondrial respiration rates will therefore vary considerably 

depending on ATP demand, but will also be modulated by the various energy 

consuming or dissipating processes (2). 

 

   From a physiopathological standpoint, a number of factors can negatively impact 

the capacity of mitochondria to generate ATP. This includes shortage of metabolic 

substrate and/or O2, dissipation of ΔμH+ independent of ATP synthesis, inhibition of 

and/or physical damage to one or several complexes involved in OXPHOS, and 

damage to mtDNA that impair the capacity to synthetize new ETC complexes. As 
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reviewed below, doxorubicin directly impacts myocardial OXPHOS through several 

of these mechanisms (2). 

Figure 2: The Electron Transport Chain 

 

 

Figure 2: The Electron Transport Chain 
By pumping protons into the IMS, the ETC creates an electrochemical gradient across the IMM or 
MIM enabling re-entering of protons through the complex V and synthesis of ATP.    
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1.2.3 Reactive oxygen species 

In addition to ATP production, mitochondria are also known as important 

sources of cellular reactive oxygen species (ROS). In general, free radicals are species 

containing one or more unpaired electrons, conferring them an important degree of 

reactivity. Oxygen being itself a free radical, it is a favoured recipient of unpaired 

electrons. Thus, the superoxide anion (O2- ) is almost always the first step in the 

formation of free radicals and is accordingly referred to as the primary reactive 

oxygen species (ROS) (Inoue, Sato et al. 2003). O2-  either interacts with nitric oxide 

based molecules to form reactive nitrogen species (RNS), such as peroxynitrite 

(ONOO- ), or, is dismutated into the more stable non-radical ROS, hydrogen peroxide 

(H2O2), by superoxide dismutases (SOD). Finally, hydrogen peroxide can lead to the 

formation of potentially damaging secondary ROS, through enzyme- or metal-

catalyzed reactions (Valko, Leibfritz et al. 2007) (3).  

Although several sources of O2-  exist in cells, mitochondria, which harbor in 

their ETC a complex succession of oxido-reduction reactions, constitute one of the 

major production sites.  Complexes I and III of the ETC are known as the principle 

contributors to mitochondrial O2-  production.  Historically, complex III in particular 

was suggested as the main source of superoxide particularly under conditions of high 

redox states (i.e. inhibition of complex III downstream of the Q cycle), which promote 

the accumulation of ubisemiquinone, the reactive intermediate of the Q cycle 

(Turrens 2003). Ubisemiquinone then reacts with molecular oxygen to generate O2-  
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primarily in the mitochondrial matrix but also in the inter-membrane space (St-

Pierre, Buckingham et al. 2002) (Han, Williams et al. 2001) (3). 

However, it is increasingly recognized that complex I may actually be the main 

physiological source of O2-  in the ETC.  Complex I generates superoxide at the level 

of the flavin mononucleotide centers (FMN) under conditions of forward electron 

when the complex  I is fed with NADH. This is particularly evident when complex I is 

inhibited downstream of FMN centers by rotenone, which will increase the reduction 

state of FMN centers and promote electron leaks. In  addition, complex I can also 

generate large amounts of O2-  when the ETC is fed with substrates for complex II (i.e. 

with FADH2 donors). In this condition, FADH2 allows to reverse electron flow through 

complex I, which causes a large increase in O2-  at the level of the ubiquinone binding 

site (Q site).  This phenonemon is exacerbated under conditions where forward and 

reverse electron flow are promoted by the simultaneous presence of NADH and 

FADH2 donors to the ETC, which causes an important reduction of complex I. ROS 

production in vivo is therefore likely to be very sensitive to changes in redox state 

and to the absolute electron flux through the ETC (Turrens 2003, Brand 2010) (3). 

Being a primary site of potentially damageable O2- , mitochondria are 

endowed with a complex array of enzymatic and non-enzymatic antioxidant systems. 

Manganese-dependent superoxide dismutase (Mg-SOD or SOD2) is abundently 

expressed in the mitochondrial matrix where it is responsible for the rapid 

dismutation of O2-  into H2O2., while Zinc-dependent SOD (Zn-SOD or SOD1), is 
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responsible for the dismutation of  O2-  in the intermembrane space and cytosol. A 

number of enzymatic systems exist to eliminate H2O2 within mitochondria including 

i) the glutathione system catalyzed by glutathione peroxidase and reductase, ii) 

catalase,  and iii) the peroxiredoxins system. In addition to these enzymatic systems, 

non-enzymatic antioxidants such as tocopherol (Vitamin E), retinoids (Vitamin A) or 

ascorbates (Vitamin C) also confer some degree of protection against oxidative stress 

(Inoue, Sato et al. 2003) (Cadenas and Davies 2000) (3). 

When the balance between oxidants and antioxidants is lost, there is excess in 

ROS production and subsequent creation of oxidative stress.  This can lead to 

mitochondrial DNA damage as the hydroxyl radical (OH.) reacts with both the purine 

and pyrimidine bases of DNA.  By doing so, it permanently damages the genetic 

material of the cell by modifying its composition.  Oxidative stress can also cause 

peroxidation of membrane phospholipids. The third common side effect of excess 

ROS is protein damage.  The proposed mechanism of action is the formation of a 

carbon-centered radical from reacting with a hydroxyl radical.  The carbon-centered 

complex creates a peroxyl radical by reacting with oxygen to finally react with a 

protonated superoxide forming alkyl peroxide. These reactions can ultimately cause 

peptide bond cleavage. (Valko, Rhodes et al. 2006).                   

Although ROS/RNS can cause harm, their presence to a certain extent is 

required for normal physiological function. In fact, physiological ROS production, by 

activating transcription factors such as MAP-Kinase/AP-1 and NF-kB pathways, is 
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necessary for intracellular signaling, regulation, proliferation and apoptosis. 

Preservation of this delicate equilibrium is thus crucial to maintain normal cellular 

responsivity and avoid adverse effects of oxidative stress on nucleic acids, membrane 

lipids, and proteins (Devasagayam, Tilak et al. 2004). 

In terms of doxorubicin-induced cardiac dysfunction, we will review later that 

generation of excess O2-  at the level of the ETC is a central mechanism driving 

mitochondrial damage and ultimately cardiomyocyte abnormalities. 
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Figure 3: Mitochondrial ROS production and Scavenging 

 

 
Figure 3: Mitochondrial ROS production and Scavenging 
In the cytosol, CuZnSOD detoxifies superoxide anions produced at the complexes I and III of the 
electron transport chain into hydrogen peroxide before being transformed into water by glutathione 
peroxidase.  Inside the matrix, MnSOD detoxifies the superoxide anions produced by both 
complexes I and III before peroxiredoxin detoxifies the peroxide into water.  
SOD: Superoxide dismutase. Gpx: glutathione peroxidase. Prx: Peroxiredoxin. GR: Glutathione 
Reductase. GSH/GSSG reduced/oxidized glutathione.        
 
 
 
 
 
 
 

1.2.4 Mitochondrial membrane permeation and cell death signalling 

Mitochondria also play a key role in the regulation of cell death by their 

capacity to trigger necrosis and apoptosis through permeation of their membranes. 
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Membrane permeation can result from the activation of multiple signaling pathways 

that converge to mitochondria, or from intrinsic dysfunction within mitochondria 

caused by acute or chronic pathological conditions (Kroemer, Galluzzi et al. 2007) .  

 

There is emerging evidence that there is an important distinction to be made 

between outer and inner membrane permeabilization, with each having different 

modes of regulation and different physiological implications (Kroemer, 2007, Phys 

Rev). Although the molecular underpinnings differentiating the two remain unclear, 

the consensus so far establishes that outer membrane permeabilization is performed 

by the insertion of Bcl-2 family BH-3 oligomers into the outer membrane, while inner 

membrane permeabilization is achieved through opening of the mitochondrial 

permeability transition pore (mPTP), which, as described later, is believed to be 

involved in doxorubicin-induced mitochondrial dysfunction (Chacon and Acosta 

1991).  

 

1.2.4.1 The permeability transition pore 

 

Mitochondrial permeability transition was initially described on isolated 

mitochondria as a sudden increase in membrane permeability to solutes in presence 

of high Ca2+ levels. While this phenomenon was believed to be caused by non-specific 

membrane damage, it is not widely recognized to be mediated by the mPTP, a high 

conductance non-specific channel of the inner membrane, which according to the 
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latest model, is formed by ATP synthase dimers at the crest of mitochondrial cristaes 

(Bernardi 2013). Prolonged and irreversible opening of this pore allows the 

equilibration of solutes of < 1500 Da across the mitochondrial membrane, which has 

several consequences including i) loss of membrane potential, ii) ATP hydrolysis 

through reversal of the ATP synthase, iii) swelling of the mitochodnrial matrix, and 

ultimately rupture of the outer mitochondrial membrane, and iv) release of several 

apoptotic factors including cytochrome c, AIF, SMAC/DIABLO and Endonuclease G 

(Du, Wang et al. 2004).  

 

Regulation of the mPTP is complex and implies a number of modulators. 

Accumulation of Ca2+ in the matrix is the single most important inducer of mPTP 

opening (Choo, Johnson et al. 2004). However, several factors facilitate pore opening 

by increasing its sensitivity to Ca2+ accumulation of inorganic phosphate, reduced 

membrane potential, depletion of ATP and ADP, and oxidative stress being some of 

the most important ones (Brenner and Moulin 2012). In contrast, divalent cations 

such as Mg2+ and adenylates which all bind to the ATP synthase, act as partial 

inhibitors (Beutner, Ruck et al. 1998). 

 

In addition to these regulators, cyclophilin-D (Cyp-D), a member of the 

immunophilin family protein located exclusively in the mitochondrial matrix 

constitutes an important endogenous sensitizer of the mPTP (Baines, Kaiser et al. 

2005). In response to Ca2+ overload or oxidative stress, CypD which is soluble in the 



 

  

19 

matrix is recruited from the inner membrane where it binds the lateral stalk of ATP 

synthase dimers, thus promoting its conversion into the mPTP configuration 

(Bernardi 2013). Cyclosporin-A, the prototypical partial inhibitor of mPTP opening 

was shown to bind Cyp-D specifically thus preventing its membrane recruitment 

under conditions of mitochondrial stress (Bernardi, Krauskopf et al. 2006). 

 

Although the molecular identity of the mPTP has remained elusive for a long 

time, recent studies by the group of Bernardi have provided strong evidence that it is 

in fact formed by ATPsynthase dimers located at the crest on mitochondrial cristae 

(Bernardi 2013). This model is currently the only one able to account for all the 

functional and regulatory features of the mPTP that were previously established 

(Bernardi 2013). 

 

1.3 Mitochondrial quality control 

Maintenance of an optimally functioning mitochondrial pool is absolutely 

essential for cellular homeostasis, particularly in the heart, in which these organelles 

occupy more than 30 % of cellular volume. Over the recent years, it has become clear 

that this essential function is achieved through the action of several quality control 

mechanisms that collectively insure mitochondrial repair, and/or clearance of 

damaged molecular components or entire organelles. In particular, general 

autophagy, and the more specific form of autophagy termed mitophagy have emerged 

as important determinants of mitochondrial health, particularly in cells that are 
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terminally differentiated and are rich in mitochondria such as cardiomyocytes 

(Gottlieb, Finley et al. 2009). 

 

In this section, I will begin by depicting a general overview of autophagy and 

its mechanisms.  I will follow this up with a description of a more selective but still 

misunderstood autophagic process called mitophagy. .       

 

1.3.1 Autophagy: Mechanisms and Pathways 

 

Autophagy consists of a very important and complex cellular process that 

enables cells to maintain their energy levels in situations of starvation and rid 

themselves of protein aggregates and damaged organelles.  Many molecular 

pathways allow autophagy to work its course in response to many different situations 

such as starvation, infections, and damage induced by stress and cellular alterations.  

There are different subgroups of autophagy depending on the organelles or proteins 

targeted for degradation.  In fact, there is macro-autophagy and micro-autophagy 

described by De Duve and Wattiaux as well as chaperones mediated autophagy 

explained by Dice(De Duve and Wattiaux 1966) (Chiang, Terlecky et al. 1989) .  In this 

section of the literature review, we will focus on macro-autophagy (autophagy).   

 

 Regulated by the insulin pathway, starvation is an extensively researched 

method of promoting autophagy.  Conversely, a high caloric diet can inhibit 
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autophagy, thus playing a role in obesity.  Type II diabetes, sedentary lifestyles, and 

metabolic syndromes are also characterized as having reduced levels of autophagy 

(Donati 2006) (Etgen, Oldham et al. 2002).  An experiment in which a common 

autophagic regulator, p62 was knocked out resulted in insulin resistant obese mice 

proving the clear relationship between autophagy and metabolism (Rodriguez, Duran 

et al. 2006).  There are many other examples of the protective virtue of autophagy.  

Amongst these, in an acutely induced stressful environment such as ischemia-

reperfusion, murine myocytes have been found to have a highly autophagic response 

(Gustafsson and Gottlieb 2008).  Exercise has been known to be cardioprotective for 

quite some time, but is now also confirmed to be correlated with a high autophagic 

response (Dohm, Tapscott et al. 1987).  Autophagy has also been shown to be related 

to ageing since many autophagic genes such as Atg2, Atg8a, Atg18, and bchs exhibit 

decline in expression with times allowing for subsequent higher expression of 

dysfunctional protein aggregates (Simonsen, Cumming et al. 2008).   

 

To paint a big picture, the autophagic cargo is engulfed by a double-membrane 

structure built from nearby organelle membranes (autophagosome) and fuses with 

lysosomes for degradation purposes enabled by many lysosomial enzymes.  Work in 

yeast resulted in the discovery of 35 Autophagy Related Genes (Atgs), which are 

highly conserved proteins that play important roles in the molecular pathways of 

autophagy (Takeshige, Baba et al. 1992) (Tsukada and Ohsumi 1993) (4).  There are 

4 main steps in the autophagic process.  The first step consists of the initiation of the 
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formation of phagophore assembly site (PAS: Phagophore Assembly Site).  The 

second step is the elongation and closing of the autophagosome.  The third step is the 

maturation of the autophagosome by fusing with the lysosome.  Finally, the fourth 

step consists of the degradation and recycling of the autophagic cargo by lysosomial 

enzymes.  Throughout these 4 steps, complex signalization and regulatory stimuli act 

at different levels (4).   

 

 

The initiation of the formation of PAS is crucial since it establishes what 

cellular organelle is to be degraded.  Ubiquitine ligase enables ubiquitination of 

proteins.  This allows the recruitement of P62-SQSTM1, which interacts with the 

ubiquitin and allows the damaged proteins destined for degradation to link to an 

LC3 protein (homologue to ATG8), which is found at the surface of PAS (Pankiv, 

Clausen et al. 2007) (Itakura and Mizushima 2011) (Kabeya, Mizushima et al. 2000). 

     

Once the damaged organelle is recognized, membrane precursors initiate the 

formation of the double membrane of the autophagosome near the damaged material 

destined for degradation.  Autophagosomes can originate from different sources such 

as the endoplasmic reticulum, the Golgi apparatus, the endosomes, the plasmic 

membrane and even the mitochondrial membranes (Hayashi-Nishino, Fujita et al. 

2009). 
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In mitochondria, formation of the autophagosomes has been found to be 

dependent on mitofusine 2 (MFN2), which is a protein that also plays an important 

role in fusion and fission of the mitochondrial network.  This points to a clear 

relationship between regulation of autophagy and mitochondrial morphology 

remodeling (Zhao, Huang et al. 2012).   

 

In addition to the linking of the damaged organelles to the autophasome, the 

formation, elongation and closing of the later requires the assembly of a series of 

proteins (Atgs) at the PAS.  These Atgs belong to two conjugation systems: Atg5,12,10 

and Atg4,3,7(Suzuki, Kubota et al. 2007).  Together, these systems enable the 

formation of molecular complex on Atg16L and the subsequent insertion of LC3 in the 

membrane of PAS (Kang, Zeh et al. 2011).   

       

As mentioned earlier, the autophagy machinery is the result of many different 

complex signalization pathways.  The most characterized of these is focuses on mTOR 

(Mamalian Target of Rapamycin).  MTOR is a kinase that plays a crucial role in the 

coupling between the energetic cellular stage and the anabolic/catabolic balance.  

Although both mTORC1 and mTORC2 exists, only mTORC1 is sensitive to rapamycine 

and plays a role in autophagy.  As an important metabolic sensor, activated mTOR 

prevents autophagy to rather favor protein synthesis.  However, in a situation of 

starvation and energy deficit, inhibition of mTORC1 leads to autophagy signalization 

in coordination with other signaling pathways such as FOXO3a-NFkB, which 
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regulates transcription of autophagic regulated genes.  The mTOR complex goes on to 

link itself to Unc-51-like kinase1 (ULK1) and Atg proteins enabling initiation and 

elongation before disassociating itself to bind to the endoplasmic reticulum (ER) 

(Laplante and Sabatini 2012).  Inactivation of mTORC1, in state of starvation prevents 

the phosphorylation of mATG13, thus enabling formation of complex ULK1- mATG13-

mATG17 (Lv, Huang et al. 2014).  This shows the critical role of mTOR as a regulator 

in the autophagy process as a whole.   

 

The specific orientation and localization in the intracellular space of mTORC1 

is necessary and enabled by phosphatidylinositol-3-phosphate (PI(3)P) at the 

membranes.  Pi(3)P formation results from PI3Kinase-III Vps34, which is recruited at 

PAS due to ULK1 Beclin-1 complex, which itself is recruited to the ER.  The Beclin1 

Vps34 complex is thus crucial in the process resulting in elongation of the 

phagophore.   

 

After the phagophore has completed the elongation process, its membrane 

extremities fuse together enabling it to close and become an autophagosome.  During 

this closing process, the phagophore is slightly modified to allow its fusion with the 

lysosome once it has become an autophagosome.  One of the most important 

modifications stated above consists of the cleavage of LC3 proteins of the outside 

membrane of the autophagosome by ATG4 (Kirisako, Ichimura et al. 2000).   
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There are many proteins that play the role of fixation adaptors to the 

membrane and facilitate the fusion of the autophagosome to the lysosome.  For 

example, Rab7-interacting lysosomal protein (RILP) causes RAB7 to allow for the 

formation of tubules between the autophagosome and the lysosome, while FYCO1 

activates RAB7 enabling the transfer of the autophagosome to the lysosome along 

these tubules (Harrison, Bucci et al. 2003).  Another example of fixation adaptor 

protein is TECPR1, which enables the elongation process by allowing the interaction 

between ATG5-ATG12 and PI3P (Chen, Fan et al. 2012).   

 

Another important group of proteins that play an essential role in the fusion 

process are lysosomal-associated membrane proteins LAMP1 and LAMP2.  In fact 

these proteins are adaptors at the interface between the lysosome and 

autophagosome.  Interestingly, animal KO studies have only shown a strong 

autophagosome accumulation in LAMP2 KO (Jager, Bucci et al. 2004).   

 

After the autophagosome has completely fused to the lysosome, the damaged 

organelles are degraded by many hydrolases, lysosomial proteases as well as the 

acidic environment found in these organelles.   

 

While autophagy is necessary to ride the cell of its damaged organelles, excess 

autophagy is equally detrimental.  For this reason, there are many mechanisms of 

autophagy inhibition although most are still misunderstood.   
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An important mechanism of autophagy inhibition is sequestration of BECLIN-

1 at the endoplasmic reticulum surface by BCL2 proteins such as BCL2 and BCL-Xl, 

which are more commonly known for their anti-apoptotic behavior (Bonnefoy-

Berard, Aouacheria et al. 2004).  While BCLs can inhibit autophagy by linking itself 

and sequestering Beclin, it is unable to do so in a situation of cellular stress or lack of 

energy.  It was also recently discovered that the interaction between BCL2 and 

BECLIN-1 requires nutrient-activated autophagy factor-1(NAF-1).  In fact, studies 

showed ablation of NAF-1 prevents BCL-2 from linking to BECLIN-1, thus stimulating 

autophagy (Chang, Nguyen et al. 2010).       

 

There are many other mechanisms by which autophagy can be inhibited at all 

different steps of the autophagic process.  While MTOR can inhibit autophagy at the 

induction stage, PI(3)P dephosphorylation, BCL-2 and NAF-1 prevent formation of 

the previously mentioned PAS.  Autophagy can also be inhibited at the elongation 

process.  For instance, the FLIP protein limits lipidation of LC3, preventing the 

elongation process to take place (Khalfan and Klionsky 2002).   

  

Although its exact mechanisms are still unknown, autophagy has been shown 

to play a major role in cardioprotection by disabling damaged proteins to overly harm 

their cellular environment (Cuervo, Bergamini et al. 2005).  Lysosomes have been 

shown to be critical for adequate heart functioning.  In fact, deficiencies in lysosomal 
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degradation capacities resulted in dilated cardiomyopathies.  Defects related to 

mutations of lysosomal-associated membrane proteins have also been shown to 

cause acute cardiomyopathies just like in Danon disease (Axe, Walker et al. 2008) 

(Itakura and Mizushima 2010) (Klionsky, Baehrecke et al. 2011).   

 

The cardioprotective role of autophagy has also been studied in pre-

conditioning situations.  Many of the agents used to mimic pharmacological 

conditioning are potent sources of autophagy.  In chronically ischemic environments, 

autophagy has been found to be upregulated and cardioprotective (Gustafsson and 

Gottlieb 2008).  
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Figure 4: Macro-Autophagy pathways 

 

 

Figure 4: Macro-Autophagy pathways 
Here is a depiction of macro-autophagy and its pathways. Image taken from Maiuri et al. 2007. 
Steps 1 is represented by stages 1 and 2; step 2: 3,4; step 3:5 and step 4:6. 

1.3.2 Mitophagy 

 

While autophagy can be non-selective, it can also target specific organelles that 

are dysfunctional in order to selectively degrade them.  Since mitochondria have such 

a pivotal role in pathologies, it isn’t surprising that they have their own quality control 

mechanism.  In this section, we will elaborate on the particular mechanisms behind 

the specific degradation of damaged mitochondria. 
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Autophagy of mitochondria has been termed mitophagy.  Although healthy 

mitochondria (efficiently produce ATP, have respectable membrane potential, don’t 

produce much ROS, have few modified proteins, and have good amounts of OPA-1), 

undergo fusion and fission cycles, damaged mitochondria are excluded from the cycle 

and are discarded by autophagy.  While mitophagy was first discovered in yeast, its 

mechanisms are fairly misunderstood.  One study determined that the mitochondrial 

protein Uth1p played a role in mitophagy since mitochondrial degradation was 

delayed in its absence while the autophagic machinery remained active (Kissova, 

Deffieu et al.2004).  Other studies in yeast showed that regulatory intermediates such 

as Atg32 must also play a role in mitophagy since its mutant cell counterpart prevents 

mitophagy (Kanki, Wang et al.2009) (Okamoto, Kondo-Okamoto et al. 2009).     

 

Experiments have shown that photodamaged mitochondria were selectively 

captured by autophagosomes.  Membrane potential is important for the importation 

of mitochondrial proteins.  It is thus necessary to have high enough membrane 

potential to replace damaged proteins (Kubli and Gustafsson 2012).  

1.3.2.1 Role of Parkin in mitophagy 

In mammals, there are two distinct pathways leading to mitophagy and both 

of these pathways are activated by the depolarization of the mitochondrial 

membrane.  The first pathway requires adaptors at the mitochondrial membrane, 

while the second pathway simply relies on receptors of autophagy.  Inhibition of 

complex 1 of the ETC by a meperidine derivative (MPTP) caused Parkinsonian 
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syndrome (Langston, Ballard et al. 1983).  After similar symptoms were discovered 

in models without the Park 2 gene, a clear relation was discovered between Parkin 

and mitochondria (Greene, Whitworth et al. 2003).  Coded by Park2, Parkin is an E3-

ligase that was then studied in mammals because it’s mutation in humans were 

associated with early onset familial forms of Parkinson’s disease (i.e 10% of all 

Parkinson’s cases) (Greene, Whitworth et al. 2003).   

 

It is a protein ligase that consists of a 60 amino acid linker surrounded by an 

N-terminal ubiquitin-like domain and four zinc-finger domains.  Although its role is 

misunderstood, Parkin is mostly studied for its impact on bioenergetics and 

mitochondrial quality control (Exner, Lutz et al. 2012).  The relation between Parkin 

and mitochondrial maintenance was introduced by loss of function mutations in 

Drosophila melanogaster (Greene, Whitworth et al. 2003).    In fact, Parkin gets 

recruited to depolarized mitochondria to engage its elimination by specialized 

autophagy (mitophagy) (Geisler, Holmstrom et al. 2010, Narendra, Kane et al. 2010) 

(Vives-Bauza, de Vries et al. 2010).  Narendra et al. showed that overexpression of 

Parkin used mitophagy to remove mitochondria that had lost their membrane 

potential (Narendra, Jin et al. 2010).  Since Parkin selectively binds itself to damaged 

mitochondria, it is believed to be a key player of mitophagy (Grenier, McLelland et al. 

2013). 
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Upon studying Parkin in mammals, the protein was found to be located in the 

cytosol but recruited to the mitochondria to lead to its degradation.  In order to prove 

that Parkin’s autophagic role was specific to the mitochondria, similar in vitro assays 

were conducted in cells, in which the initiation step of autophagy was inhibited (ATG5 

KO).  This study showed that Parkin is in fact enabling autophagy specifically at the 

mitochondrial level (Scarffe, Stevens et al. 2014).   

  

To better understand Parkin’s role in mitophagy, one must understand its 

interaction with Pink1 as depicted in figure 5.  Pink1 consists of a mitochondrial 

serine/threonine-protein kinase that is also mutated in recessive cases of PD 

(Valente, Salvi et al. 2004). Its role is to protect cells from mitochondrial damage. 

Pink1 is and upstream regulator of Parkin function since overexpression of Parkin 

can salvage the phenotype of Pink1 knockout whereas overexpression of Pink1 is 

incapable of salvaging the absence of Parkin (Clark, Dodson et al. 2006).  Many other 

studies have showed that Pink1 must be present in order for Parkin to be recruited 

to the damaged mitochondria (Geisler, Holmstrom et al. 2010) (Narendra, Kane et al. 

2010) (Vives-Bauza, de Vries et al. 2010).  

 

The Pink1/Parkin pathway depends on the state of the mitochondrial 

membrane potential.  In normal mitochondria, Pink1 makes its way to the inner 

membrane by the TIM/TOM complex and is cleaved and degraded.    However, in 

mitochondria without membrane potential, Pink1 positions itself on the outer 
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membrane of the mitochondria and recruits Parkin (Narendra, Tanaka et al. 2008, 

Narendra, Jin et al. 2010) (Lazarou, Jin et al. 2012).   The Pink1/Parkin complex 

initiates autophagic degradation of the peroxisome specific to the mitochondria 

(mitophagy) by ubiquitilating outer mitochondrial membrane (OMM) proteins that 

go on to recruit other proteins to initiate mitophagy (Chan, Salazar et al. 2011) 

(Geisler, Holmstrom et al. 2010) (Lee, Nagano et al. 2010) (Narendra, Jin et al. 2010) 

(Tanaka 2010) (Yoshii, Kishi et al. 2011).  

 

In studies where Pink1 was mutated, Parkin wasn’t recruited (Geisler, 

Holmstrom et al. 2010) (Okatsu, Saisho et al. 2010) (Vives-Bauza, de Vries et al. 2010).  

The detail mechanisms behind the recruitement of Parkin by Pink1 aren’t 

understood.  Some suggests a physical interaction between Pink1 and Parkin by in 

vitro co-immunoprecipitation (Sha, Chin et al. 2010).  The nature of the substrates 

that are polyubiqitinated by Parkin is also unknown.  Some of these have been 

identified such as VDAC, Mfn 1/2, and Bcl-2. (Geisler, Holmstrom et al. 2010) 

(Narendra, Jin et al. 2010) (Gegg, Cooper et al. 2010) (Chen, Gao et al. 2010). 

 

Once Parkin transports dysfunctional mitochondria to the perinuclear region, 

p62 colocalizes to the mitochondria and enables autophagy by attaching to LC3 for 

regular autophagic degradation (Okatsu, Saisho et al. 2010).   
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However, research has shown that p62 is dispensable leading to believe in 

alternative pathways such as Nix/BNIP3L and BNIP3 (Hanna, Quinsay et al. 2012).   

When the mitochondrial membrane is depolarized, BNIP3 and NIX, proteins with a 

BH3 profile like the BCL-2 family of proteins, are recruited to the mitochondrial 

membrane (Chen, Ray et al. 1997).  These proteins are monitored by HIF-1 (cellular 

hypoxia sensor) and FOXO3 in starved cells (Zhang, Bosch-Marce et al. 2008) 

(Mammucari, Milan et al. 2007).  Upon membrane depolarization, NIX and BNIP3 

recruit LC3, which is stabilized by LIR.  FUNDC1 is also a mitochondrial protein 

activated by hypoxia and capable of recuiting LC3II (Liu, Feng et al. 2012).   

 

Mitophagy is also thought to be enabled by cardiolipins.  These phospholipids 

of the inner mitochondrial membrane move to the outer membrane following a 

depolarization and directly recruits LC3-II.  It is important to note however that 

cardiolipin induced mitophagy seems to result more from dysfunctions in the 

complexes of the respiratory chain and mitochondrial integrity than depolarization 

itself (Chu, Ji et al. 2013). 

 

Mitophagy consists of a system of degradation specific to the mitochondria and 

can result from different situations.  In fact, mitophagy can come as a consequence of 

oxidative stress from hypoxia, starvation or mitochondrial dysfunctions.             
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Figure 5: Mitophagy and the Pink1/Parkin pathway 

 

 

Figure 5: Mitophagy and the Pink1/Parkin pathway 
Here is a brief depiction of mitophagy and its pathways.  The image was taken from Scherz-Shouval 
et al. 2011. 
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1.4 Mitochondrial dysfunctions in cardiotoxicity model to anthracyclines 

1.4.1 Doxorubicin short term-cardiotoxicity and long term heart failure 

 

Cancer is characterized by uncontrolled cellular proliferation resulting in the 

formation of tumors.  The general objective of anti-cancer therapies, is to interfere 

with key processes involved in cellular proliferation, in order to promote 

commitment of cancer cells to apoptotic or necrotic cell death or senescence. 

However, due to the relative inefficacy in targeting anti-cancer drugs specifically to 

tumors, most chemotherapeutic treatment induce collateral damage in healthy 

tissues and organs. 

 

Doxorubicin is a common chemotherapy compound used for the treatment of 

several cancers including lymphoblastic and myeloblastic leukaemias, 

neuroblastomas, bone marrow sarcomas, malignant lymphomas, and carcinomas of 

the thyroid, breast, and bladder cancer.  Doxorubicin is a member of the  

anthracyclines, family of natural antibiotics which display a planar ring structure that 

facilitates its integration in the DNA double helix resulting in the inhibition of DNA 

replication and transcription in dividing cells (Gewirtz 1999).  

 

Due to its relatively short half-life doxorubicine is preferably administered 

intravenously.  In human, the treatment is usually given over a 3-4 week interval and 

does not exceed a cumulative dose of 450-550 mg/m2 because of the exponentially 
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proportional risk of heart failure (Swain, Whaley et al. 2003).    Indeed, acute cardiac 

failure occurs in about 20% of cases, for patients that receive doses exceeding 500 

mg/m2 (Swain, Whaley et al. 2003).  However, at lower doses, cardiac dysfunctions 

can occur at later stages of the treatment or even up to 20 years post treatment 

depending on the patient. Strategic dosage control has actually attenuated 

doxorubicine cardiotoxicity. However, long-term complications are common and 

drug interaction can also accentuate damages.  Currently, the lack of understanding 

of the pathogenic mechanisms underlying antracycline-induced cardiotoxocity 

remains an obstacle to the development of cardioprotective countermeasures (Swain, 

Whaley et al. 2003) (Zhang, El-Sikhry et al. 2009).   

 

Rodent models generally recapitulate key features of the cardiac disease 

observed in patients following both acute and chronic treatment.  For instance, in 

mice, left ventricular pressure is significantly reduced following acute treatment with 

15mg/kg/day of doxorubicin for 3 days (Zhang, Shi et al. 2009). An increase in 

telesystolic diameter is also observed following chronic treatment with 1.5 or 3 

mg/kg/week doxorubicin during 5 weeks followed by a 2 week wash-out period 

(Zhang, Shi et al. 2009). The availability of these models allowed to investigate the 

cellular mechanisms underlying cardiac toxicity. 
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1.4.2 Impact of Doxorubicin on mitochondria 

 

Among the mechanisms identified, mitochondrial dysfunctions are suggested 

as one of the major contributor. Indeed, several studies have shown that Doxorubicin 

accumulates in mitochondria where it promotes oxidative stress, which in turn 

induces several deleterious consequences such as: oxidative damage to proteins, 

lipids, and mtDNA, reduction of ETC and Krebs cycle enzymes activity, respiratory 

impairments, increase propensity to opening of the PTP, and activation of 

mitochondria-dependent cell death signalling (Yen, Oberley et al. 1999) (Santos, 

Moreno et al. 2002) (Serrano, Palmeira et al. 1999).   

1.4.2.1 Oxidative stress 

 

Excessive generation of ROS is a critical factor underlying the cardiotoxic effect 

of doxorubicin. Initially, supports for this hypothesis came from studies showing that, 

5-Iminodaunorubicin, which does not lead to excessive ROS production had no 

adverse effect on mitochondrial and cardiac functions (Davies and Doroshow 1986). 

Further mechanistic studies revealed that doxorubicin entertains a futile redox cycle 

at the level of complex 1 of the respiratory chain, where it allows production of 

semiquinone intermediates (Davies and Doroshow 1986), which are oxidized to form 

highly reactive superoxide anions that overwhelm mitochondrial antioxidant 

capacities. 
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This effect of doxorubicin is facilitated by the fact that this drug displays a 

particular affinity for mitochondrial lipids, particularly cardiolipin.  Owing to this 

affinity, doxorubicin readily insert itself in the mitochondrial membranes, where it 

promotes lipid peroxidation (Huart, Brasseur et al. 1984). Malondialdehyde (MDA) 

levels, a known marker of lipid peroxidation, are increased by nearly threefold in 

heart mitochondria from rats treated with 6 injections of 2.5mg/kg i.p. of doxorubicin 

over a 2 week period (Arafa, Mohammad et al. 2014). The accumulation of oxidative 

stress is also evident in mitochondrial DNA in comparison to the nuclear DNA.  

Indeed, after acute doxorubicin intoxication, studies revealed a 2-fold increase in 8-

hydroxy-2’deoxyguanosine (8OHdG) adducts, a marker of DNA oxidative damage, in 

mitochondrial DNA relative to nuclear DNA, which clearly support preferential 

oxidative damage to mitochondria. Studies also show that mitochondrial 

dysfunctions and oxidative damage to mtDNA persists five weeks after an 8 week 

treatment with doxorubicin (Serrano, Palmeira et al. 1999), illustrating the fact that 

damage incurred at the level of the electron transport chain, particularly complex I 

enables a self-perpetuating cycle of oxidative stress weeks following the last injection.         

 

1.4.2.2 Cellular respiration impairments caused by oxidative stress (ETC, Kreb cycle 

enzymes and respiratory impairments)  

 

As mentioned above, doxorubicin-induced oxidative stress can lead to the 

inhibition of ETC and Krebs cycle enzymes, ultimately resulting in respiratory 
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impairments. For instance, exposure of isolated mitochondria to doxorubicin was 

shown to lead to a 35% decrease in complex I activity (4.5  ± 0.6 vs 7.0  ± 0.9 

nmol/min/mg) (Santos, Moreno et al. 2002) resulting in a 20 % decrease in ADP-

stimulated state 3 respiration (336 ± 26 vs 425 ± 53 natoms O/min/mg), but no 

changes in basal state 4 respiration in presence of substrates for complex I. Similarly 

Solem et al. reported a significant reduction of state 3 respiration (358 ± 81 vs 529 ± 

48 natoms O/min/mg protein), reduced respiratory control ratio (RCR) (5.2 ± 1.3 vs 

9.3 ± 0.6) and no change in basal complex I-driven state 4 respiration following 

treatment with doxorubicin  (Solem, Henry et al. 1994).  Another study in mice 

treated with doxorubicin reported similar observation. However, this study also 

reported that doxorubicin led to reduced complex II activity and thus impaired state 

3 respiration and RCR in presence of the complex II substrate succinate (Yen, Oberley 

et al. 1999).  

 

Doxorubicin treatment was also shown to inhibit respiratory chain activity 

even more severely when coupled in an iron complex.  Indeed, in a study performed 

on pig-heart submitochondrial particles, respiratory chain activity was severely 

inhibited following administration of an adryamicyn-Iron complex as compared to 

10-15% when doxorubicin was administered alone (Demant and Jensen 1983).  

 

Studies have also showed a clear correlation between the extent of lipid 

peroxidation and respiratory chain inhibition reinforcing the impact of mitochondrial 
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oxidative stress in doxorubicin-induced respiratory impairments (Demant and 

Jenson 1983 & Praet et al, 1984). 

 

1.4.2.3 Mitochondrial permeability transition 

 

In addition to the above-mentioned impairments, histopathological analyses 

have shown that acute and chronic treatments with doxorubicin leads to significant 

disorganization of mitochondrial structure, and an abnormal swelling of the matrix. 

(Zhou, Palmeira et al. 2001), which is a typical consequence of mitochondrial 

membrane permeabilization following opening of the PTP.  Furthermore, electron 

microscopy studies showed that doxorubicin treatment leads to the formation of 

calcium hydroxyapatite deposits in cardiomyocytes, which localize to mitochondria 

(Aversano and Boor 1983), further pointing to calcium overload as a trigger for PTP 

opening. Direct measurement of susceptibility to Ca2+-induced opening of the PTP in 

isolated mitochondria have repeatedly shown that doxorubicin treatment 

significantly increases susceptibility to PTP opening (Zhou, Starkov et al. 2001). This 

susceptibility has been ascribed to the well-established role of oxidative stress in 

sensitizing the PTP to Ca2+ (Chacon and Acosta 1991) (Zoratti and Szabo 1995). 

 

Studies with cyclosporine-A, the prototypical partial inhibitor of the PTP, 

suggest that opening of the PTP plays an important role in doxorubicin-induced 

cardiotoxicity. Indeed, administration of cyclosporine-A to doxorubicin-treated rats 
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prevent the reduction of Ca2+-retention capacity, an indicator of the propensity to PTP 

opening. Cyclosporin-A was also shown to blunt the sensitization to Ca2+-induced 

mitochondrial depolarization observed following treatment with doxorubicin 

(Solem, Henry et al. 1994) (Solem and Wallace 1993). 

 

Overall, it is therefore clear that doxorubicin induces multiple mitochondrial 

abnormalities encompassing oxidative damage to lipids, proteins and DNA, which 

ultimately impairs bioenergetics function and promotes triggering of cell death 

through opening of the PTP. Consequently, mitochondria are increasingly viewed as 

targets for interventions aimed to limit the cardiotoxic effects of antracyclin-based 

chemotherapy. Currently proposed strategies include mitigation of oxidative stress 

using mitochondria-targeted anti-oxidants and prevention of PTP opening using 

cyclosporine-A derivatives. Furthermore, with the recent discovery of mitochondrial 

quality control mechanisms such as mitophagy, targeting of these processes is 

emerging as a future therapeutic avenue to limit mitochondrial dysfunction. 

However, the role of mitophagy in the heart remains largely unexplored and it is 

currently unclear whether modulation of this process can have an impact on disease 

trajectory. 
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 My research hypothesis consists that the deficit of mitophagy in Parkin -/- 

would cause an exacerbation of mitochondrial dysfunctions normally induced by 

doxorubicin.  In order to verify this hypothesis, we submitted Parkin deficient mice 

to an acute treatment of doxorubicin and analyzed the impact of genotype and 

treatment on morphology and cardiac functions, diverse mitochondrial functions as 

well as mitochondrial content and enzymatic activity.   

 



 

  

 

3 EXPERIMENTAL STUDY 
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3.1 Methodology 

3.1.1 Animals 

 

The animal ethics committee of the University of Montreal in conjunction with 

the Canadian Council of Animal Care approved all the experimental protocols used.  

Wild type (WT) and Parkin-deficient (Parkin-/-) mice from INSERM-Sanofis-

Adventis(Chen, Xu et al. 2011) were taken care of and kept at the Institut de 

Recherche en Immunologie et en Cancérologie (IRIC) of the University of Montreal.  

The precise n number used for each experiment is indicated in the figure legend.  Mice 

ranging eight to twelve weeks old were injected i.p with doxorubicin (15mg/kg) or 

with PBS (vehicle) because these doses had been shown to cause mitochondrial 

toxicity (Palmeira, Serrano et al. 1997).  Injections were made at 0 and 48 hours to 

emulate the injection timing used in this acute setting (Kawaguchi, Takemera et al. 

2012).  Animals were then used for experiments five days following the last injection 

to see if Parkin might have a protective property as established previously in the lab 

(Piquereau, Godin et al. 2013).  Body weight was monitored daily.  Animals were then 

anaesthetized for echocardiography and euthanized by cervical dislocation.    Hearts, 

lungs and livers were rapidly excised and weighed. Subsequently, hearts were either 

flash frozen and stored in a -80°C freezer or immediately used for the preparations of 

permeabilized cardiac fibers. 
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3.1.2 Echocardiography 

Mice were sent to the Lady Davis institute for a week for acclimation to their 

new environment.  The following week, mice were subjected to the Doxorubicin 

treatment protocol as described above.  Cardiac morphology and functions were 

analyzed in anesthetized mice by echocardiography 

 

3.1.3 Permeabilized heart fibers 

Left ventricles were removed and placed into pre-cooled buffer A (inmM: (2.77 

CaK2EGTA, 7.23 K2EGTA, 6.56 MgCl2, 0.5 dithiothreitol (DTT), 50K-MES, 20 imidazol, 

20 taurine, 5.3 Na2ATP, 15 phosphocreatine, pH7.3 at 4°C).   Small fiber bundles of 

the left ventricule were manually dissected under a microscope and permeabilized 

with saponin (50ug/ml) for 30 minutes.  Fiber bundles were then washed three times 

for 10 minutes in buffer B (in mM:2.77 CaK2EGTA, 7.23 K2EGTA, 1.38 MgCl2, 3.0 

K2HPO4, 0.5 dithiothreitol, 20 imidazole, 100 K-MES, 20 taurine, pH 7.3 at 4°C) 

supplemented with BSA (2 mg/ml) and kept on ice until respirometry is performed 

and analyzed.  In terms of the ghost fibers without myosin, they were permeabilized 

with saponin and washed three times in Buffer B.  They were then washed three times 

for 10 minutes in Buffer C (in mM: K-MES 80, HEPES 50, taurine 20, DTT 0.5, MgCl2 

10, pH 7.3 at 4°C) and incubated for 30 minutes with agitation at 4°C in Buffer D (in 

mM: KCL 800, HEPES 50, taurine 20, DTT 0.5, MfCl2 10, ATP 10, pH 7.3 at 4°C) to 

extract myosin.  The bundles were finally washed three times in low-EGTA sucrose 
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buffer (in mM: 250 sucrose, 10 Tris base, and 0.1 EGTA, pH 7.4) and kept on ice until 

Ca2+-induces PTP assays (Picard, Csukly et al. 2008). 

 

3.1.4  Mitochondrial respiration 

Fibers (about 0.3mg dry) bathed in specify volume solution B (in mM: 2.77 

CaK2EGTA, 7.23 K2EGTA (100nM free Ca2+), 6.56 MgCl2 (1mM free Mg2+), 20 taurine, 

0.5 DTT, 50 K-methane sulfonate (160mM ionic strength), 20 imidazole, pH 7.1)) 

were used to determine mitochondrial respiratory function.  Respiration was 

measured using Clark type electrodes at 25 oC under continuous low speed magnetic 

stirring (5% of maximal speed).  Respiratory rates were measured at each step of the 

following sequence of substrates and inhibitors: the complex I substrates glutamate-

malate (GM)(5, 2.5mM); ADP (2mM); complex I inhibitor amytal (2mM); the complex 

II substrate succinate (5mM); the uncoupler CCCP (1μM); the complex III inhibitor 

antimycin-A (AA) (8μM); the complex IV substrates N, N’, N’- tetramethyl-p-

phenylenediamine dihydrochloride (TMPD)-ascorbate (0.9mM, 9mM); and the 

complex IV KCN (0.6mM). This sequence allowed determining the respiratory 

performance of mitochondria using specific segments of the electron transport chain 

as well as various respiratory states including baseline, maximal ADP-stimulated and 

uncoupled respiration. 
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3.1.5 Mitochondrial ROS production 

Fibers (about 0.5mg dry) bathed in specify volume solution Z (in mM: 110 K-

MES, 35 KCl, 1 EGTA, 5 K2HPO4, 3 MgCl26H2O, 0.5mg/ml BSA, 1.2U/ml horseradish 

peroxidase, pH 7.3, 37°C) supplemented with the fluorescent probe Amplex 

Red(20μM: excitation-emission: 563-587nm) were used to determine mitochondrial 

hydrogen peroxide (H2O2) release(Ascah, Khairallah et al. 2011).  Release of H2O2, 

was measured by fluorescence spectroscopy in quartz microcuvettes under 

continuous magnetic steering.  Fluorescence was first read at baseline and substrates 

were then added sequentially as follows: glutamate (5mM); succinate (5mM); ADP 

(10mM); and antimycin-A (8μM).   

 

3.1.6 Calcium rentention capacity (CRC) 

 

Ghost fibers (about 0.5mg dry) incubated at 23°C bathed in specify volume 

CRC solution (in mM: 250 sucrose, 10 MOPS, 0.005 EGTA, 10 Pi-Tris, pH 7.3) in a 

quartz microcuvette with continuous magnetic stirring. To this was added: 

glutamate-malate (GM) (5:2.5mM) and 0.5nM oligomycin and the fluorescent probe 

calcium green (5N: excitation –emission: 505-535nm) in order to determine calcium 

retention capacity of mitochondria(Picard, Csukly et al. 2008).  After adding the 

previous substrates, a pulse of 20 nmol calcium (Ca2+) was added to determine CRC 

per mg of dry fiber weight in the cuvette,.  CRC refers to the amount of calcium 

accumulated in mitochondria before their PTP opens and releases it. Concentration 
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of calcium was calculated in relation to the standard curve relating calcium 

concentration to fluorescence of calcium-green.   

3.1.7 Enzymology 

The enzymatic activities of citrate synthase (CS), aconitase, complex I, complex 

II, complex I+III, and complex IV were measured by spectrophotometry on a plate 

reader using enzyme-coupled assays (Marcil, Ascah et al. 2006, de Wit, Scholte et al. 

2008).  The enzymatic activities were all given in mU/min/mg of protein except for 

aconitase, which was expressed in mU/min/mg/mg tissue.  Each complex is given a 

specific substrate enabling us to read absorption differences over a period of time.   

 

Citrate synthase (CS) consists of the first enzyme in the Krebs cycle that 

transforms acetyl-CoA and oxaloacetate into citrate and releases CoA-SH.  The change 

in absorbance of DTNB at 412nm depicts the CS activity and the buffer used consisted 

of 100mM Tris 200mM, 200mM Acetyl CoA, 200mM DTNB, 1% Triton X-100 10% and 

water.  The disulfure brigde of DTNB is cleaved by the thiol part of CoA-SH and 

produce 2 NTBs.  These DTTBs ionise in water and emit a yellow coloration that can 

absorb light at 412nm.  The molecular coefficient of extinction of DTNB is 13.6 Lmol-

1cm-1. 

Equation:    

 

Complex 1 (CI) activity is measured by changes in absorbance of NADH at 

340nm.  Complex 1 oxydizes NADH into NAD+.  The buffer used consisted of 50mM-
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2mM of KPi buffer 50mM, 1mg/mL BSA, 250mM KCN, 200mM NADH, 0.4mM 

Antimycine A (AA) and 100mM of Decylubiquinone.  In order to isolate CI, AA and 

KCN inhibit CIII and CIV respectively.  Finally, CI is inhibited with 20mM rotenone at 

the end of the reaction to correct for CI-independent NADH oxidation.  CI enzymatic 

activity is the difference between the two slopes obtained.  The equation is the same 

as the one used to calculate CS and the molar coefficient of extinction of NADH at 

340nm is 6220 Lmol-1cm-1. 

 

The activity of Complex 2 (CII) corresponds to the variation of absorption of 

DCIP @ 600nm.  The buffer used to measure the enzymatic activity of CII consists of 

50mM-2mM of KPi-EDTA tampon 50mM-2mM, 1mg/mL BSA, 240mM, Rotenone 

4mM, AA 0.4mM, 100mM Decylubiquinone, DCIP 100mM, Succinate 10mM and ATP 

2mM.  The oxidation of succinate and decylubiquinone by CII enables the reduction 

of DCIP.  The electron flux is inhibited by inhibition of CI by rotenone and inhibition 

of CIV by KCN. Malonate 10mM is then added to inhibit CII and correct the slopes by 

measuring the autoreduction of DCIP.  The molar coefficient of extinction of DCIP is 

16.3 Lmol-1 cm-1 and the equation to calculate the enzymatic activity of CII is the same 

as the one for CS. 

 

The activity of complex I+III consists of the increase of absorbance of 

cytochrome c due to its reduction. The buffer used consists of KPI, BSA 1mg/ml, 

NADH 0.8mM, cytochrome c 40uM, 0.4mM KCN and rotenone 4uM. NADH donates 
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electrons to complex I before being transferred to complex III, which enables the 

latter to reduce cytochrome c.  The KCN is used to inhibit complex IV and prevent the 

oxidation of cytochrome c, which has a molar coefficient of extinction of 29.5mM-1.  

Rotenone is also added in order to block complex I.  The difference in the slopes prior 

and after adding rotenone represents the enzymatic activity of complex I+III.         

 

CIV activity is measured by the decrease in absorbance of oxidized cytochrome 

c by CIV.  To get this measurement, we must start by giving CIV reduced and purified 

cytochrome c. The buffer used to measure CIV is composed of 50mM KPi buffer 

25mM, dodecylmaltoside 0.1% and cytochrome c 100mM.  Finally, the molar 

coefficient of extinction of DCIP is 29.5 lmol-1cm-1 and the equation is once again the 

same as the one to calculate CS.     

3.1.8 Statistical analysis 

All results are expressed as mean ± SEM. For statistical analysis 2-way ANOVA 

tests were used to compare the effect of the genotype and doxorubicin treatment. 

Bonferonni’s multiple comparison tests were performed to determine where the 

differences were located. A P value of  P<0.05 was considered statistically different. 

All analyses were performed using Prism 6.0 (GraphPad Sofware). 
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3.2 Results 

3.2.1 Echocardiography and morphometric analyses 

Figure 6 summarizes the impact of Parkin deficiency and doxorubicin 

administration on mice morphometric parameters. At baseline, Parkin-deficient mice 

had a 9.5% smaller body weight compared to the WT mice (p=0.049*). The weight of 

the heart, liver and lungs also tended to be lower in Parkin-deficient mice, consistent 

with the lower body weight. In WT mice, treatment with doxorubicin led to an almost 

significant 1.2 % loss of body weight (p=0.06). Heart, lung and liver weights were not 

significantly changed following treatment with doxorubicin. As opposed to WT mice, 

treatment with doxorubicin in parkin-deficient mice did not show a reducing trend in 

variation of body weight.  After treatment with doxorubicin in WT mice, only body 

weight showed a strong reducing trend, while doxorubicin had no noteworthy effect 

in Parkin-deficient mice. 

Figure 7 presents results from preliminary echocardiography analyses. At 

baseline, we observed no difference between WT mice and Parkin-deficient mice in 

terms of their cardiac index and ejection fraction, which is in agreement with our 

previous results obtained with Millar catheterization (Piquereau, Godin et al. 2013).      

End systolic and diastolic volumes tended to be lower in Parkin-deficient mice, but no 

significant difference could be detected with the limited sample size available (n=3 in 

each group).  After treatment with doxorubicin, there were no significant differences 

in the cardiac index and ejection fraction in both WT and Parkin-deficient mice.  

However, WT mice displayed a reducing trend of left end-systolic and diastolic 
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ventricular volume following treatment with doxorubicin, while these changes were 

less apparent in Parkin-deficient mice, likely due to the variability observed in 

baseline volumes.  Mitochondrionopathy can precede cardiotoxicity in certain cases 

preventing the observation of cardiac dysfunction following treatment with 

doxorubicin (Pereira, Pereira et al. 2012).  This lack of effect was also demonstrated 

in the lab after raising the n number.    

Figure 6: Effect of doxorubicin on morphometric parameters in WT and Parkin -/- mice 

 

Figure 6: Effect of doxorubicin on morphometric parameters in WT and Parkin -/- mice.  
Doxorubicin’s effect on body weight (A) (n=8-11), heart weight (B) (n=5-8), lung weight (C) (n=3-
6) and liver weight (D) (n=3-6) were measured in both WT and parkin -/- mice. 15mg/kg of 
doxorubicin was administered by intraperitoneal injection. *, significantly different within same 
experimental conditions (P<0.05). 
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Figure 7: Effect of doxorubicin on cardiac function parameters in WT and Parkin-/- mice 

 

Figure 7: Effect of doxorubicin on cardiac function parameters in WT and Parkin-/- mice.  
Doxorubicin’s ejection fraction (A), cardiac index (B), left ventricle volume in diastole (C) and 
systole in both WT and parkin -/- mice (n=3).    
 

3.2.2 Mitochondrial Respiration 

Following these initial observations, experiments were conducted to assess 

the impact of Parkin ablation and doxorubicin treatment of various aspects of 

mitochondrial function. We first measured mitochondrial respiration in cardiac 

permeabilized fibers to study different respiratory states in presence of substrates 

feeding specific complexes of the electron transport chain. As shown in Figure 8, at 

baseline levels, there was a significant reduction in most respiratory states in Parkin-

deficient mice. In Parkin-deficient mice, respiration with substrates feeding complex 
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I stimulated by ADP (p=0.0077**), complex II (0.0064*), and complex IV (p=0.0090**) 

were all significantly lower than in their WT counterparts. Respiration at the level of 

complex I stimulated by glutamate-malate (GM) (p=0.052*) was nearly significantly 

smaller as well. In mice treated with doxorubicin, we observed a systematic reduction 

in respiration in mitochondria from WT mice (CI:p=0.0216*; ADP stimulated CI: 

p=0.0067** or CII: p=0.0029**; CIV: p=0.0066**).  However, in Parkin-deficient mice, 

treatment with doxorubicin had no negative impact on respiration under all 

conditions.  The effects of doxorubicin were completely abolished in Parkin -/- mice. 
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Figure 8: Effect of doxorubicin on mitochondrial respiration in WT and Parkin-/- mice 

 

 

Figure 8: Effect of doxorubicin on mitochondrial respiration in WT and Parkin-/- mice.  Rates 
of respiration of WT and KO mice treated and not treated with doxorubicin following sequential 
addition of: complex I substrates glutamate-malate (GM)(5, 2.5mM) (n=6-7); ADP (2mM) (n= 6); 
complex I inhibitor amytal (2mM) (not shown); the complex II substrate succinate (5mM) (n=4-6); 
chain uncoupler CCCP (1μM) (not shown); complex III inhibitor antimycin-A (AA) (8μM) (not 
shown); and the complex IV substrates N, N’, N’- tetramethyl-p-phenylenediamine 
dihydrochloride (TMPD)-ascorbate (0.9mM, 9mM)(n=3-6); complex IV KCN (0.6mM) (not 
shown).  *, significantly different within same experimental conditions (P<0.05).  **, significantly 
different (P<0.01). 
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3.2.3 Enzymology 

 

We then measured enzymatic activity of citrate synthase, aconitase, and 

complexes I, II, I+III, and IV of the respiratory chain.  At baseline, enzymatic activity 

of complexes I, and I+III showed a reducing trend in Parkin-deficient mice in 

comparison to WT mice.  However, the activity of citrate synthase, complexes II and 

IV, and aconitase, was not different between the two groups (Figure 9 and 10).  In WT 

mice, treatment with doxorubicin induced a reducing trend in the enzymatic activity 

of complexes I and I+III, while the activities of CS, complex II, and complex IV were 

not affected. As expected, doxorubicin treatment also induced a reduction in 

aconitase activity in the heart of WT mice (p=0.0270*).  In contrast, in Parkin-

deficient mice, treatment with doxorubicin did not significantly worsen the activity 

of these enzymes beyond the levels observed. 
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Figure 9: Effect of doxorubicin on citrate synthase and enzyme activity of complexes of the 
ETC in WT and Parkin-/- mice 

 

 

 

Figure 9: Effect of doxorubicin on citrate synthase and enzyme activity of complexes of the 
ETC in WT and Parkin-/- mice.  Enzymatic activities in mU/min/mg tissu of different complexes 
I (A) (n=4), I+III (B) (n=4-5), CS (C) (n=4-6), II (D) (n=4-6) and IV (E) (n=4-6) of the ETC for 
both WT and KO mice in basal conditions and treated with doxorubicin.  *, significantly different 
within same experimental conditions (P<0.05). 
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Figure 10: Effect of doxorubicin on aconitase activity in WT and Parkin-/- mice 
 
 
 

 

 

Figure 10: Effect of doxorubicin on aconitase activity in WT and Parkin-/- mice. Aconitase 
activity in WT and KO mice (n=4) in basal and doxorubicin treated conditions. *, significantly 
different within same experimental conditions (P<0.05). 
 

3.2.4 Mitochondrial H2O2 release 

Mitochondrial H2O2 release per unit of oxygen consumed was directly 

measured using the Amplex red probe. While significant differences were observed 

under different conditions tested, we focus solely on when the respiratory chain was 

fed with the complex II substrate succinate, which maximizes ROS production by 

promoting reverse electron flow through complex I.  As shown in Figure 11, under 

baseline conditions, mitochondrial H2O2 release was systematically greater in Parkin-
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deficient mice compared to WT mice under all conditions tested but significant 

differences were evident when the respiratory chain was fed with the complex II 

substrate succinate (p=0.0108).  In WT mice, treatment with doxorubicin induced a 

significant increase in H2O2 release (p<0.0001), particularly in presence of the 

complex II substrate succinate. In contrast, in Parkin-deficient mice, the increase in 

H2O2 release following doxorubicin treatment was blunted in presence of succinate. 
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Figure 11: Effect of doxorubicin on mitochondrial H2O2 release in WT and Parkin-/- mice 

 

 

Figure 11: Effect of doxorubicin on mitochondrial H2O2 release in WT and Parkin-/- mice.  
Hydrogen peroxide production per unit of oxygen consumed in WT and KO mice in basal 
conditions and post-treatment with doxorubicin following sequential addition of glutamate (5mM) 
(n=7-11); succinate (5mM) (n=6-11); ADP (10mM) (n=7-11); and antimycin-A (8μM) (not 
shown).  The data was normalized by oxygen consumed in order to accurately depict the correlation 
between oxygen consumed and ROS produced. *, significantly different within same experimental 
conditions (P<0.05). **, significantly different (P<0.01). 

 

3.2.5 Calcium Retention Capacity 

We also examined the susceptibility of mitochondria to Ca2+-induced opening 

of the permeability transition pore (PTP).  At baseline, susceptibility to PTP opening 

was greater in Parkin-deficient mice in comparison to WT mice, as evidenced by 

lower calcium retention capacities (p=0.0477*) and time to pore opening was nearly 
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significantly lower than it’s basal WT counterpart (p=0.0504).  In WT mice, treatment 

with doxorubicin significantly enhanced sensitivity to PTP opening (CRC: p=0.0259*, 

time to opening: p=0.098**). However, in Parkin-deficient mice, susceptibility to PTP 

opening was not deteriorated beyond levels observed at baseline (12).  
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Figure 12: Effect of doxorubicin on PTP opening in WT and Parkin-/- mice 

 

Figure 12: Effect of doxorubicin on PTP opening in WT and Parkin-/- mice 
Time necessary for opening of PTP (n=4-7) and calcium retention capacity (CRC) (n= 5-6) of WT 
and KO mice in both basal situation and following treatment with doxorubicin. *, significantly 
different within same experimental conditions (P<0.05). 
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3.3 Discussion 

Mitochondrial quality control mechanisms are increasingly considered as being 

central determinant of mitochondrial health in mammalian tissues, particularly in 

energy demanding tissues such as the heart where these organelles are abundant. In 

the present study we aimed to determine whether selective autophagy of 

mitochondria (i.e. mitophagy) through the Parkin-dependent pathway is required for 

the maintenance of normal mitochondrial and cardiac function, and important to 

mount adequate response to mitochondrial stress in a well-characterized model of 

antracyclin-induced cardiotoxicity. Although mitochondrial quality control was not 

formally investigated, it currently represents the main factor linking Parkin to 

mitochondrial function.  Our results show that genetic inactivation of Parkin at the 

germline level does not induce overt cardiopathy under normal baseline conditions, 

but nevertheless causes multiple but moderate mitochondrial dysfunctions, 

suggesting that Parkin participates in baseline mitochondrial quality control. As 

expected, in vivo treatment with doxorubicin induced multiple mitochondrial 

abnormalities in wild type mice that were clearly observable in absence of heart 

failure. However, in contrast to our initial hypothesis, genetic inactivation of Parkin 

did not enhance mitochondrial dysfunctions induced by doxorubicin, and even 

seemed to exert a protective effect, through mechanisms that remain to be elucidated.   
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3.3.1 Role of Parkin in the maintenance of baseline cardiac and mitochondrial 

phenotype 

Under baseline conditions, we observed that the absence of Parkin did not 

significantly impair cardiac function. Both the cardiac index and the ejection fraction 

showed no difference in Parkin-deficient mice in comparison to WT mice.  In terms of 

cardiac volumes, both the end systolic and end diastolic volumes tended to be lower 

in Parkin deficient mice compared to controls, but the difference did not reach 

statistical significance, possibly due to the small sample size inherent to these 

preliminary experiments. However, despite the absence of a clear cardiac phenotype, 

the absence of Parkin was nevertheless associated with multiple mitochondrial 

dysfunctions such as impairment of mitochondrial respiration, increased production 

of reactive oxygen species and reduced calcium retention capacity, which is indicative 

of greater susceptibility to PTP opening.  These baseline results are in line with 

previous findings from our laboratory (Piquereau, Godin et al. 2013).  It is interesting 

to note however, that a previous study by another laboratory reported no difference 

in baseline mitochondrial functions in Parkin-deficient mice compared to controls 

(Kubli, Zhang et al. 2013).  Although the reasons underlying this difference are 

unclear, one possibility is that in this latter study, measurements were performed on 

isolated mitochondria. The use of this more disruptive preparation could explain the 

differences with our laboratory’s results.  
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3.3.2 Impact of Doxorubicin on cardiac and mitochondrial function 

As expected, treatment with doxorubicin resulted in mitochondrial 

dysfunctions at multiple levels.  Our study and previously published experiments 

(Yen, Oberley et al. 1999) (Santos, Moreno et al. 2002) (Serrano, Palmeira et al. 1999)  

confirmed the ability of doxorubicin to inhibit mitochondrial respiration and trigger 

a significant rise in ROS production leading to oxidative stress and reduction in the 

threshold for calcium induced PTP opening. Interestingly, most previous studies   

(Zhang, El-Sikhry et al. 2009) have reported these mitochondrial abnormalities at 

significantly advanced stages of cardiopathy at a time when hemodynamic function 

was impaired. In contrast, in our study, our preliminary echocardiography results 

suggest that we were able to observe these changes prior to overt signs of cardiac 

dysfunction. This suggests that mitochondrial dysfunctions are not simply a 

consequence of heart failure but rather, a pathogenic mechanism.    

3.3.3 Impact of Parkin deficiency in response to doxorubicin. 

In response to treatment with doxorubicin, our study indicates that Parkin 

deficiency did not worsen mitochondrial functions and if anything, suggested a 

protective effect. In terms of morphometric analysis, Parkin deficiency blunted the 

effect of doxorubicin on animal weight loss.  Decline in cardiac mitochondrial 

functions and enzymology were also not observed in Parkin deficient mice treated 

with doxorubicin although comparison to WT mice is partly confounded by the fact 

that Parkin-KO hearts had lower mitochondrial functions to begin with.  There is also 

the possibility of a ceiling effect of the KO that may mask the effect of doxorubicin.  
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While we do not have a definite explanation for this, as discussed below, we believe 

that these data cannot be simply interpreted as an indication that mitophagy is 

detrimental in the context of doxorubicin-induced cardiotoxicity.    

3.3.3.1 Germline knockout of the Park2 gene produces a complex phenotype: 

Compensatory mechanisms add an important degree of complexity to the 

study of specific quality control mechanisms such as mitophagy.  Studies in our 

laboratory as well as other previously published experiments (Hsieh, Pai et al. 2011) 

have reported activation of macro-autophagy in myocytes following sepsis induction. 

There are two types of compensatory mechanisms related to mitophagy: i) activation 

of alternate mechanisms of mitophagy and ii) enhanced macro-autophagy.   

 

To support the role of alternate mitophagy mechanism, our laboratory has 

previously demonstrated that there is more LC3-II recruited to mitochondria in 

Parkin-deficient hearts compared to WT (Piquereau, Godin et al. 2013).  This not only 

suggests the existence of compensatory mechanisms that can protect Parkin-deficient 

mice, but it also suggests the existence of other mitophagic mechanisms then the 

Parkin/Pink-1 pathway.  As suggested by others, alternate E-3 ligases may 

compensate for Parkin-deficiency (Ding, Ni et al. 2010).  In yeast, mitophagy can also 

be achieved via a ubiquitin-independent pathway with direct binding of ATG8 family 

of mitochondrial autophagy receptors.  In yeast, this pathway requires ATG32 

receptor (Kanki, Wang et al. 2009) while in mammalian cells, NIX and BNIP3 are 

mitochondrial autophagy receptors (Novak, Kirkin et al. 2010). It is notable that both 
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NIX and BNIP3 are recruited to mitochondria in WT and Parkin-KO hearts in response 

to sepsis (Piquereau, Godin et al. 2013). Altogether, these results thus suggest the 

possibility that Parkin ablation in the heart does not overtly compromise stress-

induced mitophagy. However, this does not really contribute to explain how Parkin 

deficiency seems to attenuate the negative impact of doxorubicin observed in the 

present study. 

 

In terms of enhanced macro-autophagy, our laboratory was recently first to 

report that Parkin-deficiency is associated with an upregulation of macro-autophagy 

(Piquereau, Godin et al. 2013).  In fact, baseline transcripts of major autophagy-

regulated genes were found to have increased expression in Parkin-deficient mice 

when compared to WT.  Moreover, autophagy flux measured in vivo by the 

accumulation of LC3-II, was significantly higher in Parkin-KO hearts both at baseline 

and in response to LPS treatment (Piquereau, Godin et al. 2013).  Morphological 

experiments also confirmed the increased number of autophagosomes in Parkin-

deficient mice hearts in comparison to WT mice.  Also, large autophagosomes 

containing mitochondrial remnants, damaged cellular material and lipid droplets 

were found in Parkin KO mice but not in WT mice following LPS treatment 

(Piquereau, Godin et al. 2013). Together these data suggested that genetic 

inactivation of Parkin at the germline level results in a compensatory upregulation of 

less specific forms of autophagy. As discussed below, we believe that this constitutive 
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activation of macro-autophagy may contribute to explain the paradoxically beneficial 

effect of Parkin-deficiency in response to doxorubicin.  

 

Several studies were recently performed to examine the role of macro-

autophagy in the heart in response to stress. In mouse models, evidence suggest that 

doxorubicin blunts the autophagic process, which in turns contribute to the 

cardiopathic phenotype.  More specifically, Kawaguchi et al. reported that 

doxorubicin treatment leads to the accumulation of several autophagy makers in 

adult mouse hearts (LC3-II, P62 and Cathepsin D) and neonatal cardiomyocytes 

(Kawaguchi, Takemura et al. 2012). However, several evidence indicate that this 

accumulation is caused by reduced autophagosome clearance rather than activation 

of autophagosome formation: i) blockade of the lysosomal degradation by cloroquine 

did not further enhance LC3-II accumulation, ii) doxorubicin administration in fact 

inhibited AMPK-ULK1, a major trigger of autophagy. Moreover, starvation prior to 

doxorubicin administration was able to mitigate Doxorubicin-induced cardiac 

dysfunction, which was associated with a lower accumulation of LC3-II puncta and 

restoration of AMPK-ULK1 activation, suggesting that re-activation of autophagy was 

beneficial. Studies performed in vitro in H9C2 cardioblasts also reported that the 

autophagy inducer rapamycin mitigated doxorubicin-induced cellular toxicity 

(Kawaguchi, Takemura et al. 2012) (Sishi, Loos et al. 2013).    Therefore, it is tempting 

to speculate that in our study, constitutive activation of macro-autophagy contributes 

to explain the apparently protective effect of Parkin-deficiency in mice treated with 
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doxorubicin.   However, this hypothesis remains to be tested by measuring the 

autophagy flux of the different groups. 

  

It should be mentioned that conflicting results exist with respect to the effect 

of doxorubicin treatment on cardiac autophagy. Indeed, several studies performed in 

rat models suggest that doxorubicin treatment results in excessive activation of 

autophagy, which in turn promotes cardiac dysfunction (Lu, Wu et al. 2009) Chen, 

Kobayashi et al. 2009).  Indeed, a study by the group of Lu et al. demonstrated that 

doxorubicin stimulated cardiac autophagy (Lu, Wu et al. 2009). Rat neonatal 

cardiomyocytes treated with doxorubicin showed an increase in the number of 

autophagic vesicles.  Another group also reported that autophagy was upregulated 

following treatment with doxorubicin (Dimitrakis, Romay-Ogando et al. 2012).  

Similar to Lu et al., the latter group concluded doxorubicin resulted in excessive 

activation of autophagy based on the enhanced accumulation of autophagosomes 

following blockage of lysosomal degradation with cloroquine. Two other studies also 

reported evidences suggesting excessive activation of autophagy in rat models of 

doxorubicin cardiotoxicity. 

 

Kobayashi et al (Kobayashi, Volden et al. 2010) demonstrated a clear increase 

in autophagic flux (LC3-II/I) in cells treated with doxorubicin.  They also found an 

increase in the number of autophagic vesicles and Beclin1 resulting in an increase in 

the cardiotoxicity induced by doxorubicin.  Kobayashi also analyzed cell death when 
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doxorubicin was administered with rapamycin (stimulator of autophagy) and 3MA 

(autophagy inhibitor). Rapamycin in conjunction with doxorubicin caused an 

increase in cell death while 3MA was protective. Finally, another study (Smuder, 

Kavazis et al. 2013)performed in rat hearts reported that doxorubicin administration 

stimulated the LC3 flux and enhanced the expression of several autophagy related 

genes (Atg12, Atg12-5, Atg7, Atg4). 

 

Currently, the only hypothesis to explain the conflicting data with respect to 

the effect of doxorubicin on cardiac autophagy is inter-species differences, i.e. 

doxorubicin blocks and over stimulates autophagy in mice and rats respectively 

(Dirks-Naylor, 2013).  Overall, results obtained in Parkin-deficient mice following 

treatment with doxorubicin have thus revealed a phenotype that is more complex 

than initially expected. Future studies are needed to provide more definite 

explanations. Importantly, strategies such as the use of cardiac-specific inducible 

Parkin knockout models should be used to try to limit the occurrence of 

developmental compensation such as upregulation of macro-autophagy (Dimitrakis, 

Romay-Ogando et al. 2012).  This would allow to more specifically test the role of 

mitophagy in the cardiac response to doxorubicin. In addition, a more direct 

investigation of mitophagy and macro-autophagy should be performed to directly 

confirm the impact of doxorubicin on these quality control mechani
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In mammalian tissues, mitochondrial quality control mechanisms play an important 

role in mitochondrial health.  The objective of our study was to determine if Parkin-

dependent mitophagy was necessary in the maintenance of normal mitochondria and 

cardiac function in response to doxorubicin-induced cardiotoxicity.  In line with 

previous findings in our laboratory, at baseline, the absence of Parkin did not induce 

a cardiac phenotype, but was associated with several mitochondrial dysfunctions 

such as respiratory impairment, elevated production of ROS and greater 

susceptibility to calcium-induced PTP opening; advocating for the fact that at 

baseline, Parkin contributes the maintenance of normal mitochondrial function. 

Similarly, doxorubicin also induced multiple mitochondrial dysfunctions in wild type 

mice that preceded cardiac dysfunctions.  This suggests that mitochondrial 

dysfunctions might represent a pathological mechanism as opposed to a consequence 

of doxorubicin-induced cardiotoxicity. Finally, in contrast to our hypothesis, the 

absence of Parkin did not accentuate mitochondrial dysfunctions following treatment 

with doxorubicin and even seemed to have a certain protective effect.  Several factors 

could contribute to explain this peculiar observation.  First, it is possible that since 

our parkin-deficient mice are already negatively impacted at baseline level, the 

subsequent consequences of treatment with doxorubicin cannot be appropriately 

measured.  Second, the existence of compensatory mechanisms, particularly the 

constitutive activation of macro-autophagy in Parkin knockout mice could afford a 
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certain level of protection considering that in mice models, impaired autophagy is 

suggested to contribute to doxorubicin-induced cardiomyopathy. However, 

considering the existing debate on the role the response of cardiac autophagy to 

anthracyclins, further work is required to elucidate this question



 

    

 

5  BIBLIOGRAPHY 

 

 

 

 

 

 

 

 

 

 

 



 

   

76 

 

 

Arafa, M. H., N. S. Mohammad, H. H. Atteia and H. R. Abd-Elaziz (2014). "Protective 
effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in 
male experimental rats." J Physiol Biochem 70(3): 701-711. 

 
Ascah, A., M. Khairallah, F. Daussin, C. Bourcier-Lucas, R. Godin, B. G. Allen, B. J. 
Petrof, C. Des Rosiers and Y. Burelle (2011). "Stress-induced opening of the 
permeability transition pore in the dystrophin-deficient heart is attenuated by 
acute treatment with sildenafil." Am J Physiol Heart Circ Physiol 300(1): H144-
153. 

 
Aversano, R. C. and P. J. Boor (1983). "Histochemical alterations of acute and 
chronic doxorubicin cardiotoxicity." J Mol Cell Cardiol 15(8): 543-553. 

 
Axe, E. L., S. A. Walker, M. Manifava, P. Chandra, H. L. Roderick, A. Habermann, G. 
Griffiths and N. T. Ktistakis (2008). "Autophagosome formation from membrane 
compartments enriched in phosphatidylinositol 3-phosphate and dynamically 
connected to the endoplasmic reticulum." J Cell Biol 182(4): 685-701. 

 
Baines, C. P., R. A. Kaiser, N. H. Purcell, N. S. Blair, H. Osinska, M. A. Hambleton, E. 
W. Brunskill, M. R. Sayen, R. A. Gottlieb, G. W. Dorn, J. Robbins and J. D. Molkentin 
(2005). "Loss of cyclophilin D reveals a critical role for mitochondrial 
permeability transition in cell death." Nature 434(7033): 658-662. 

 
Ballinger, S. W. (2005). "Mitochondrial dysfunction in cardiovascular disease." 
Free Radic Biol Med 38(10): 1278-1295. 

 
Bernardi, P. (2013). "The mitochondrial permeability transition pore: a mystery 
solved?" Front Physiol 4: 95. 

 
Bernardi, P., A. Krauskopf, E. Basso, V. Petronilli, E. Blachly-Dyson, F. Di Lisa and 
M. A. Forte (2006). "The mitochondrial permeability transition from in vitro 
artifact to disease target." FEBS J 273(10): 2077-2099. 

 
Beutner, G., A. Ruck, B. Riede and D. Brdiczka (1998). "Complexes between porin, 
hexokinase, mitochondrial creatine kinase and adenylate translocator display 
properties of the permeability transition pore. Implication for regulation of 
permeability transition by the kinases." Biochim Biophys Acta 1368(1): 7-18. 

 
 



 

   

77 

Bonnefoy-Berard, N., A. Aouacheria, C. Verschelde, L. Quemeneur, A. Marcais and 
J. Marvel (2004). "Control of proliferation by Bcl-2 family members." Biochim 
Biophys Acta 1644(2-3): 159-168. 

 
Brand, M. D. (2010). "The sites and topology of mitochondrial superoxide 
production." Exp Gerontol 45(7-8): 466-472. 

 
Brenner, C. and M. Moulin (2012). "Physiological roles of the permeability 
transition pore." Circ Res 111(9): 1237-1247. 

 
Cadenas, E. and K. J. Davies (2000). "Mitochondrial free radical generation, 
oxidative stress, and aging." Free Radic Biol Med 29(3-4): 222-230. 

 
Chacon, E. and D. Acosta (1991). "Mitochondrial regulation of superoxide by Ca2+: 
an alternate mechanism for the cardiotoxicity of doxorubicin." Toxicol Appl 
Pharmacol 107(1): 117-128. 

 
Chan, N. C., A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa, R. L. Graham, 
S. Hess and D. C. Chan (2011). "Broad activation of the ubiquitin-proteasome 
system by Parkin is critical for mitophagy." Hum Mol Genet 20(9): 1726-1737. 

 
Chang, N. C., M. Nguyen, M. Germain and G. C. Shore (2010). "Antagonism of Beclin 
1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1." 
EMBO J 29(3): 606-618. 

 
Chen, D., W. Fan, Y. Lu, X. Ding, S. Chen and Q. Zhong (2012). "A mammalian 
autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 
conjugate." Mol Cell 45(5): 629-641. 

 
Chen, D., F. Gao, B. Li, H. Wang, Y. Xu, C. Zhu and G. Wang (2010). "Parkin mono-
ubiquitinates Bcl-2 and regulates autophagy." J Biol Chem 285(49): 38214-38223. 

 
Chen, G., R. Ray, D. Dubik, L. Shi, J. Cizeau, R. C. Bleackley, S. Saxena, R. D. Gietz and 
A. H. Greenberg (1997). "The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric 
mitochondrial protein that activates apoptosis." J Exp Med 186(12): 1975-1983. 

 
Chen, K., X. Xu, S. Kobayashi, D. Timm, T. Jepperson and Q. Liang (2011). "Caloric 
restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced 
cardiomyocyte death by multiple mechanisms." J Biol Chem 286(25): 21993-
22006. 

 
Chiang, H. L., S. R. Terlecky, C. P. Plant and J. F. Dice (1989). "A role for a 70-
kilodalton heat shock protein in lysosomal degradation of intracellular proteins." 
Science 246(4928): 382-385 



 

   

78 

 
Choo, Y. S., G. V. Johnson, M. MacDonald, P. J. Detloff and M. Lesort (2004). "Mutant 
huntingtin directly increases susceptibility of mitochondria to the calcium-
induced permeability transition and cytochrome c release." Hum Mol Genet 
13(14): 1407-1420. 

 
Chu, C. T., J. Ji, R. K. Dagda, J. F. Jiang, Y. Y. Tyurina, A. A. Kapralov, V. A. Tyurin, N. 
Yanamala, I. H. Shrivastava, D. Mohammadyani, K. Z. Qiang Wang, J. Zhu, J. Klein-
Seetharaman, K. Balasubramanian, A. A. Amoscato, G. Borisenko, Z. Huang, A. M. 
Gusdon, A. Cheikhi, E. K. Steer, R. Wang, C. Baty, S. Watkins, I. Bahar, H. Bayir and 
V. E. Kagan (2013). "Cardiolipin externalization to the outer mitochondrial 
membrane acts as an elimination signal for mitophagy in neuronal cells." Nat Cell 
Biol 15(10): 1197-1205. 

 
Clark, I. E., M. W. Dodson, C. Jiang, J. H. Cao, J. R. Huh, J. H. Seol, S. J. Yoo, B. A. Hay 
and M. Guo (2006). "Drosophila pink1 is required for mitochondrial function and 
interacts genetically with parkin." Nature 441(7097): 1162-1166. 

 
Cuervo, A. M., E. Bergamini, U. T. Brunk, W. Droge, M. Ffrench and A. Terman 
(2005). "Autophagy and aging: the importance of maintaining "clean" cells." 
Autophagy 1(3): 131-140. 

 
Davies, K. J. and J. H. Doroshow (1986). "Redox cycling of anthracyclines by cardiac 
mitochondria. I. Anthracycline radical formation by NADH dehydrogenase." J Biol 
Chem 261(7): 3060-3067. 

 
De Duve, C. and R. Wattiaux (1966). "Functions of lysosomes." Annu Rev Physiol 
28: 435-492. 

 
de Wit, L. E., H. R. Scholte and W. Sluiter (2008). "Correct assay of complex I 
activity in human skin fibroblasts by timely addition of rotenone." Clin Chem 
54(11): 1921-1922; author reply 1922-1924. 

 
Demant, E. J. and P. K. Jensen (1983). "Destruction of phospholipids and 
respiratory-chain activity in pig-heart submitochondrial particles induced by an 
adriamycin-iron complex." Eur J Biochem 132(3): 551-556. 

 
Dennemarker, J., T. Lohmuller, S. Muller, S. V. Aguilar, D. J. Tobin, C. Peters and T. 
Reinheckel (2010). "Impaired turnover of autophagolysosomes in cathepsin L 
deficiency." Biol Chem 391(8): 913-922. 

 
Devasagayam, T. P., J. C. Tilak, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi and R. D. Lele 
(2004). "Free radicals and antioxidants in human health: current status and future 
prospects." J Assoc Physicians India 52: 794-804. 



 

   

79 

 
 
Dimitrakis, P., M. I. Romay-Ogando, F. Timolati, T. M. Suter and C. Zuppinger 
(2012). "Effects of doxorubicin cancer therapy on autophagy and the ubiquitin-
proteasome system in long-term cultured adult rat cardiomyocytes." Cell Tissue 
Res 350(2): 361-372. 

 
Ding, W. X., H. M. Ni, M. Li, Y. Liao, X. Chen, D. B. Stolz, G. W. Dorn, 2nd and X. M. Yin 
(2010). "Nix is critical to two distinct phases of mitophagy, reactive oxygen 
species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated 
mitochondrial priming." J Biol Chem 285(36): 27879-27890. 

 
Dirks-Naylor, A. J. (2013). "The role of autophagy in doxorubicin-induced 
cardiotoxicity." Life Sci. 

 
Dohm, G. L., E. B. Tapscott and G. J. Kasperek (1987). "Protein degradation during 
endurance exercise and recovery." Med Sci Sports Exerc 19(5 Suppl): S166-171. 

 
Donati, A. (2006). "The involvement of macroautophagy in aging and anti-aging 
interventions." Mol Aspects Med 27(5-6): 455-470. 

 
Du, J., X. Wang, C. Miereles, J. L. Bailey, R. Debigare, B. Zheng, S. R. Price and W. E. 
Mitch (2004). "Activation of caspase-3 is an initial step triggering accelerated 
muscle proteolysis in catabolic conditions." J Clin Invest 113(1): 115-123. 

 
Etgen, G. J., B. A. Oldham, W. T. Johnson, C. L. Broderick, C. R. Montrose, J. T. 
Brozinick, E. A. Misener, J. S. Bean, W. R. Bensch, D. A. Brooks, A. J. Shuker, C. J. Rito, 
J. R. McCarthy, R. J. Ardecky, J. S. Tyhonas, S. L. Dana, J. M. Bilakovics, J. R. Paterniti, 
Jr., K. M. Ogilvie, S. Liu and R. F. Kauffman (2002). "A tailored therapy for the 
metabolic syndrome: the dual peroxisome proliferator-activated receptor-
alpha/gamma agonist LY465608 ameliorates insulin resistance and diabetic 
hyperglycemia while improving cardiovascular risk factors in preclinical models." 
Diabetes 51(4): 1083-1087. 

 
Exner, N., A. K. Lutz, C. Haass and K. F. Winklhofer (2012). "Mitochondrial 
dysfunction in Parkinson's disease: molecular mechanisms and 
pathophysiological consequences." EMBO J 31(14): 3038-3062. 

 
Frey, T. G. and C. A. Mannella (2000). "The internal structure of mitochondria." 
Trends Biochem Sci 25(7): 319-324. 

 
Gegg, M. E., J. M. Cooper, K. Y. Chau, M. Rojo, A. H. Schapira and J. W. 
Taanman(2010). "Mitofusin 1 and mitofusin 2 are ubiquitinated in a 



 

   

80 

PINK1/parkin-dependent manner upon induction of mitophagy." Hum Mol Genet 
19(24): 4861-4870. 

 
 
Geisler, S., K. M. Holmstrom, D. Skujat, F. C. Fiesel, O. C. Rothfuss, P. J. Kahle and W. 
Springer (2010). "PINK1/Parkin-mediated mitophagy is dependent on VDAC1 
and p62/SQSTM1." Nat Cell Biol 12(2): 119-131. 

 
Gewirtz, D. A. (1999). "A critical evaluation of the mechanisms of action proposed 
for the antitumor effects of the anthracycline antibiotics adriamycin and 
daunorubicin." Biochem Pharmacol 57(7): 727-741. 

 
Gottlieb, R. A., K. D. Finley and R. M. Mentzer, Jr. (2009). "Cardioprotection 
requires taking out the trash." Basic Res Cardiol 104(2): 169-180. 

 
Greene, J. C., A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany and L. J. Pallanck 
(2003). "Mitochondrial pathology and apoptotic muscle degeneration in 
Drosophila parkin mutants." Proc Natl Acad Sci U S A 100(7): 4078-4083. 

 
Grenier, K., G. L. McLelland and E. A. Fon (2013). "Parkin- and PINK1-Dependent 
Mitophagy in Neurons: Will the Real Pathway Please Stand Up?" Front Neurol 4: 
100. 
 
Gustafsson, A. B. and R. A. Gottlieb (2008). "Eat your heart out: Role of autophagy 
in myocardial ischemia/reperfusion." Autophagy 4(4): 416-421. 

 
Han, D., E. Williams and E. Cadenas (2001). "Mitochondrial respiratory chain-
dependent generation of superoxide anion and its release into the intermembrane 
space." Biochem J 353(Pt 2): 411-416. 

 
Hanna, R. A., M. N. Quinsay, A. M. Orogo, K. Giang, S. Rikka and A. B. Gustafsson 
(2012). "Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 
protein to selectively remove endoplasmic reticulum and mitochondria via 
autophagy." J Biol Chem 287(23): 19094-19104. 

 
Harrison, R. E., C. Bucci, O. V. Vieira, T. A. Schroer and S. Grinstein (2003). 
"Phagosomes fuse with late endosomes and/or lysosomes by extension of 
membrane protrusions along microtubules: role of Rab7 and RILP." Mol Cell Biol 
23(18): 6494-6506. 

 
Hayashi-Nishino, M., N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori and A. 
Yamamoto (2009). "A subdomain of the endoplasmic reticulum forms a cradle for 
autophagosome formation." Nat Cell Biol 11(12): 1433-1437. 

 



 

   

81 

Hsieh, C. H., P. Y. Pai, H. W. Hsueh, S. S. Yuan and Y. C. Hsieh (2011). "Complete 
induction of autophagy is essential for cardioprotection in sepsis." Ann Surg 
253(6): 1190-1200. 

 
Huart, P., R. Brasseur, E. Goormaghtigh and J. M. Ruysschaert (1984). "Antimitotics 
induce cardiolipin cluster formation. Possible role in mitochondrial enzyme 
inactivation." Biochim Biophys Acta 799(2): 199-202. 

 
 
Inoue, M., E. F. Sato, M. Nishikawa, A. M. Park, Y. Kira, I. Imada and K. Utsumi (2003). 
"Mitochondrial generation of reactive oxygen species and its role in aerobic life." 
Curr Med Chem 10(23): 2495-2505. 

 
Ishihara, N. and N. Mizushima (2009). "A receptor for eating mitochondria." Dev 
Cell 17(1): 1-2. 

 
Itakura, E. and N. Mizushima (2010). "Characterization of autophagosome 
formation site by a hierarchical analysis of mammalian Atg proteins." Autophagy 
6(6): 764-776. 

 
Itakura, E. and N. Mizushima (2011). "p62 Targeting to the autophagosome 
formation site requires self-oligomerization but not LC3 binding." J Cell Biol 
192(1): 17-27. 

 
Jager, S., C. Bucci, I. Tanida, T. Ueno, E. Kominami, P. Saftig and E. L. Eskelinen 
(2004). "Role for Rab7 in maturation of late autophagic vacuoles." J Cell Sci 117(Pt 
20): 4837-4848. 

 
Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, 
Y. Ohsumi and T. Yoshimori (2000). "LC3, a mammalian homologue of yeast 
Apg8p, is localized in autophagosome membranes after processing." EMBO J 
19(21): 5720-5728. 

 
Kang, R., H. J. Zeh, M. T. Lotze and D. Tang (2011). "The Beclin 1 network regulates 
autophagy and apoptosis." Cell Death Differ 18(4): 571-580. 

 
Kanki, T., K. Wang, Y. Cao, M. Baba and D. J. Klionsky (2009). "Atg32 is a 
mitochondrial protein that confers selectivity during mitophagy." Dev Cell 17(1): 
98-109. 

 
Kassiotis, C., K. Ballal, K. Wellnitz, D. Vela, M. Gong, R. Salazar, O. H. Frazier and H. 
Taegtmeyer (2009). "Markers of autophagy are downregulated in failing human 
heart after mechanical unloading." Circulation 120(11 Suppl): S191-197. 

 



 

   

82 

Kawaguchi, T., G. Takemura, H. Kanamori, T. Takeyama, T. Watanabe, K. Morishita, 
A. Ogino, A. Tsujimoto, K. Goto, R. Maruyama, M. Kawasaki, A. Mikami, T. Fujiwara, 
H. Fujiwara and S. Minatoguchi (2012). "Prior starvation mitigates acute 
doxorubicin cardiotoxicity through restoration of autophagy in affected 
cardiomyocytes." Cardiovasc Res 96(3): 456-465. 

 
 
 

Khalfan, W. A. and D. J. Klionsky (2002). "Molecular machinery required for 
autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae." 
Curr Opin Cell Biol 14(4): 468-475. 

 
Kirisako, T., Y. Ichimura, H. Okada, Y. Kabeya, N. Mizushima, T. Yoshimori, M. 
Ohsumi, T. Takao, T. Noda and Y. Ohsumi (2000). "The reversible modification 
regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and 
the cytoplasm to vacuole targeting pathway." J Cell Biol 151(2): 263-276. 

 
Kissova, I., M. Deffieu, S. Manon and N. Camougrand (2004). "Uth1p is involved in 
the autophagic degradation of mitochondria." J Biol Chem 279(37): 39068-39074. 

 
Klionsky, D. J., E. H. Baehrecke, J. H. Brumell, C. T. Chu, P. Codogno, A. M. Cuervo, J. 
Debnath, V. Deretic, Z. Elazar, E. L. Eskelinen, S. Finkbeiner, J. Fueyo-Margareto, D. 
Gewirtz, M. Jaattela, G. Kroemer, B. Levine, T. J. Melia, N. Mizushima, D. C. 
Rubinsztein, A. Simonsen, A. Thorburn, M. Thumm and S. A. Tooze (2011). "A 
comprehensive glossary of autophagy-related molecules and processes (2nd 
edition)." Autophagy 7(11): 1273-1294. 

 
Kobayashi, S., P. Volden, D. Timm, K. Mao, X. Xu and Q. Liang (2010). 
"Transcription factor GATA4 inhibits doxorubicin-induced autophagy and 
cardiomyocyte death." J Biol Chem 285(1): 793-804. 

 
Kostin, S., L. Pool, A. Elsasser, S. Hein, H. C. Drexler, E. Arnon, Y. Hayakawa, R. 
Zimmermann, E. Bauer, W. P. Klovekorn and J. Schaper (2003). "Myocytes die by 
multiple mechanisms in failing human hearts." Circ Res 92(7): 715-724. 

 
Kroemer, G., L. Galluzzi and C. Brenner (2007). "Mitochondrial membrane 
permeabilization in cell death." Physiol Rev 87(1): 99-163. 

 
Kubli, D. A. and A. B. Gustafsson (2012). "Mitochondria and mitophagy: the yin and 
yang of cell death control." Circ Res 111(9): 1208-1221. 

 
Kubli, D. A., X. Zhang, Y. Lee, R. A. Hanna, M. N. Quinsay, C. K. Nguyen, R. Jimenez, 
S. Petrosyan, A. N. Murphy and A. B. Gustafsson (2013). "Parkin protein deficiency 



 

   

83 

exacerbates cardiac injury and reduces survival following myocardial infarction." 
J Biol Chem 288(2): 915-926. 

 
Langston, J. W., P. Ballard, J. W. Tetrud and I. Irwin (1983). "Chronic Parkinsonism 
in humans due to a product of meperidine-analog synthesis." Science 219(4587): 
979-980. 

 
Laplante, M. and D. M. Sabatini (2012). "mTOR Signaling." Cold Spring Harb 
Perspect Biol 4(2). 

 
Lazarou, M., S. M. Jin, L. A. Kane and R. J. Youle (2012). "Role of PINK1 binding to 
the TOM complex and alternate intracellular membranes in recruitment and 
activation of the E3 ligase Parkin." Dev Cell 22(2): 320-333. 

 
 
Lee, J. Y., Y. Nagano, J. P. Taylor, K. L. Lim and T. P. Yao (2010). "Disease-causing 
mutations in parkin impair mitochondrial ubiquitination, aggregation, and 
HDAC6-dependent mitophagy." J Cell Biol 189(4): 671-679. 

 
Linden, M., B. D. Nelson and J. F. Leterrier (1989). "The specific binding of the 
microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain 
mitochondria." Biochem J 261(1): 167-173. 

 
Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, 
L. Huang, P. Xue, B. Li, X. Wang, H. Jin, J. Wang, F. Yang, P. Liu, Y. Zhu, S. Sui and Q. 
Chen (2012). "Mitochondrial outer-membrane protein FUNDC1 mediates 
hypoxia-induced mitophagy in mammalian cells." Nat Cell Biol 14(2): 177-185. 

 
Lu, L., W. Wu, J. Yan, X. Li, H. Yu and X. Yu (2009). "Adriamycin-induced autophagic 
cardiomyocyte death plays a pathogenic role in a rat model of heart failure." Int J 
Cardiol 134(1): 82-90. 

 
Lv, P., J. Huang, J. Yang, Y. Deng, J. Xu, X. Zhang, W. Li, H. Zhang and Y. Yang (2014). 
"Autophagy in muscle of glucose-infusion hyperglycemia rats and streptozotocin-
induced hyperglycemia rats via selective activation of m-TOR or FoxO3." PLoS One 
9(2): e87254. 

 
Maiuri, M. C., E. Zalckvar, A. Kimchi and G. Kroemer (2007). "Self-eating and self-
killing: crosstalk between autophagy and apoptosis." Nat Rev Mol Cell Biol 8(9): 
741-752. 
 
Mammucari, C., G. Milan, V. Romanello, E. Masiero, R. Rudolf, P. Del Piccolo, S. J. 
Burden, R. Di Lisi, C. Sandri, J. Zhao, A. L. Goldberg, S. Schiaffino and M. Sandri 



 

   

84 

(2007). "FoxO3 controls autophagy in skeletal muscle in vivo." Cell Metab 6(6): 
458-471. 

 
Marcil, M., A. Ascah, J. Matas, S. Belanger, C. F. Deschepper and Y. Burelle (2006). 
"Compensated volume overload increases the vulnerability of heart mitochondria 
without affecting their functions in the absence of stress." J Mol Cell Cardiol 41(6): 
998-1009. 

 
Nakai, A., O. Yamaguchi, T. Takeda, Y. Higuchi, S. Hikoso, M. Taniike, S. Omiya, I. 
Mizote, Y. Matsumura, M. Asahi, K. Nishida, M. Hori, N. Mizushima and K. Otsu 
(2007). "The role of autophagy in cardiomyocytes in the basal state and in 
response to hemodynamic stress." Nat Med 13(5): 619-624. 

 
Narendra, D., L. A. Kane, D. N. Hauser, I. M. Fearnley and R. J. Youle (2010). 
"p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not 
mitophagy; VDAC1 is dispensable for both." Autophagy 6(8): 1090-1106. 

 
Narendra, D., A. Tanaka, D. F. Suen and R. J. Youle (2008). "Parkin is recruited 
selectively to impaired mitochondria and promotes their autophagy." J Cell Biol 
183(5): 795-803. 

 
Narendra, D. P., S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier, J. Shen, M. R. Cookson 
and R. J. Youle (2010). "PINK1 is selectively stabilized on impaired mitochondria 
to activate Parkin." PLoS Biol 8(1): e1000298. 

 
Novak, I., V. Kirkin, D. G. McEwan, J. Zhang, P. Wild, A. Rozenknop, V. Rogov, F. Lohr, 
D. Popovic, A. Occhipinti, A. S. Reichert, J. Terzic, V. Dotsch, P. A. Ney and I. Dikic 
(2010). "Nix is a selective autophagy receptor for mitochondrial clearance." EMBO 
Rep 11(1): 45-51. 

 
Okatsu, K., K. Saisho, M. Shimanuki, K. Nakada, H. Shitara, Y. S. Sou, M. Kimura, S. 
Sato, N. Hattori, M. Komatsu, K. Tanaka and N. Matsuda (2010). "p62/SQSTM1 
cooperates with Parkin for perinuclear clustering of depolarized mitochondria." 
Genes Cells 15(8): 887-900.  
 
Okamoto, K., N. Kondo-Okamoto and Y. Ohsumi (2009). "Mitochondria-anchored 
receptor Atg32 mediates degradation of mitochondria via selective 
autophagy." Dev Cell 17(1): 87-97. 
 
Palmeira, C. M., J. Serrano, D. W. Kuehl and K. B. Wallace (1997). "Preferential 
oxidation of cardiac mitochondrial DNA following acute intoxication with 
doxorubicin." Biochim Biophys Acta 1321(2): 101-106. 

 



 

   

85 

Pankiv, S., T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. 
Bjorkoy and T. Johansen (2007). "p62/SQSTM1 binds directly to Atg8/LC3 to 
facilitate degradation of ubiquitinated protein aggregates by autophagy." J Biol 
Chem 282(33): 24131-24145. 

 
Pereira, G. C., et al. (2012). "Mitochondrionopathy phenotype in doxorubicin-
treated Wistar rats depends on treatment protocol and is cardiac-specific." PLoS 
ONE 7(6): e38867. 
 
Picard, M., K. Csukly, M. E. Robillard, R. Godin, A. Ascah, C. Bourcier-Lucas and Y. 
Burelle (2008). "Resistance to Ca2+-induced opening of the permeability 
transition pore differs in mitochondria from glycolytic and oxidative muscles." Am 
J Physiol Regul Integr Comp Physiol 295(2): R659-668. 

 
Piquereau, J., R. Godin, S. Deschenes, V. L. Bessi, M. Mofarrahi, S. N. Hussain and Y. 
Burelle (2013). "Protective role of PARK2/Parkin in sepsis-induced cardiac 
contractile and mitochondrial dysfunction." Autophagy 9(11): 1837-1851. 

 
Rodriguez, A., A. Duran, M. Selloum, M. F. Champy, F. J. Diez-Guerra, J. M. Flores, M. 
Serrano, J. Auwerx, M. T. Diaz-Meco and J. Moscat (2006). "Mature-onset obesity 
and insulin resistance in mice deficient in the signaling adapter p62." Cell Metab 
3(3): 211-222. 

 
Santos, D. L., A. J. Moreno, R. L. Leino, M. K. Froberg and K. B. Wallace (2002). 
"Carvedilol protects against doxorubicin-induced mitochondrial 
cardiomyopathy." Toxicol Appl Pharmacol 185(3): 218-227. 

 
Scarffe, L. A., D. A. Stevens, V. L. Dawson and T. M. Dawson (2014). "Parkin and 
PINK1: much more than mitophagy." Trends Neurosci 37(6): 315-324. 

 
Scherz-Shouval, R. and Z. Elazar (2011). "Regulation of autophagy by ROS: 
physiology and pathology." Trends Biochem Sci 36(1): 30-38. 
 
Serrano, J., C. M. Palmeira, D. W. Kuehl and K. B. Wallace (1999). "Cardioselective 
and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin 
administration." Biochim Biophys Acta 1411(1): 201-205. 

 
Sha, D., L. S. Chin and L. Li (2010). "Phosphorylation of parkin by Parkinson 
disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB 
signaling." Hum Mol Genet 19(2): 352-363. 

 
Simonsen, A., R. C. Cumming, A. Brech, P. Isakson, D. R. Schubert and K. D. Finley 
(2008). "Promoting basal levels of autophagy in the nervous system enhances 
longevity and oxidant resistance in adult Drosophila." Autophagy 4(2): 176-184. 



 

   

86 

 
Sishi, B. J., B. Loos, J. van Rooyen and A. M. Engelbrecht (2013). "Autophagy 
upregulation promotes survival and attenuates doxorubicin-induced 
cardiotoxicity." Biochem Pharmacol 85(1): 124-134. 

 
Smuder, A. J., A. N. Kavazis, K. Min and S. K. Powers (2013). "Doxorubicin-induced 
markers of myocardial autophagic signaling in sedentary and exercise trained 
animals." J Appl Physiol (1985) 115(2): 176-185. 

 
Solem, L. E., T. R. Henry and K. B. Wallace (1994). "Disruption of mitochondrial 
calcium homeostasis following chronic doxorubicin administration." Toxicol Appl 
Pharmacol 129(2): 214-222. 

 
Solem, L. E. and K. B. Wallace (1993). "Selective activation of the sodium-
independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by 
doxorubicin." Toxicol Appl Pharmacol 121(1): 50-57. 

 
St-Pierre, J., J. A. Buckingham, S. J. Roebuck and M. D. Brand (2002). "Topology of 
superoxide production from different sites in the mitochondrial electron 
transport chain." J Biol Chem 277(47): 44784-44790. 

 
Suzuki, K., Y. Kubota, T. Sekito and Y. Ohsumi (2007). "Hierarchy of Atg proteins 
in pre-autophagosomal structure organization." Genes Cells 12(2): 209-218. 

 
Swain, S. M., F. S. Whaley and M. S. Ewer (2003). "Congestive heart failure in 
patients treated with doxorubicin: a retrospective analysis of three trials." Cancer 
97(11): 2869-2879. 

 
Takeshige, K., M. Baba, S. Tsuboi, T. Noda and Y. Ohsumi (1992). "Autophagy in 
yeast demonstrated with proteinase-deficient mutants and conditions for its 
induction." J Cell Biol 119(2): 301-311. 

 
Tanaka, A. (2010). "Parkin-mediated selective mitochondrial autophagy, 
mitophagy: Parkin purges damaged organelles from the vital mitochondrial 
network." FEBS Lett 584(7): 1386-1392. 
Tsukada, M. and Y. Ohsumi (1993). "Isolation and characterization of autophagy-
defective mutants of Saccharomyces cerevisiae." FEBS Lett 333(1-2): 169-174. 

 
Turrens, J. F. (2003). "Mitochondrial formation of reactive oxygen species." J 
Physiol 552(Pt 2): 335-344. 

 
Valente, E. M., S. Salvi, T. Ialongo, R. Marongiu, A. E. Elia, V. Caputo, L. Romito, A. 
Albanese, B. Dallapiccola and A. R. Bentivoglio (2004). "PINK1 mutations are 
associated with sporadic early-onset parkinsonism." Ann Neurol 56(3): 336-341. 



 

   

87 

 
Valko, M., D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur and J. Telser (2007). "Free 
radicals and antioxidants in normal physiological functions and human 
disease." Int J Biochem Cell Biol 39(1): 44-84. 

 

Valko, M., C. J. Rhodes, J. Moncol, M. Izakovic and M. Mazur (2006). "Free radicals, 
metals and antioxidants in oxidative stress-induced cancer." Chem Biol Interact 
160(1): 1-40. 

 
Vives-Bauza, C., R. L. de Vries, M. Tocilescu and S. Przedborski (2010). 
"PINK1/Parkin direct mitochondria to autophagy." Autophagy 6(2): 315-316. 

 
Xie, M., C. R. Morales, S. Lavandero and J. A. Hill (2011). "Tuning flux: autophagy 
as a target of heart disease therapy." Curr Opin Cardiol 26(3): 216-222. 

 
Xu, X., K. Chen, S. Kobayashi, D. Timm and Q. Liang (2012). "Resveratrol attenuates 
doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-
mediated autophagy." J Pharmacol Exp Ther 341(1): 183-195. 

 
Yen, H. C., T. D. Oberley, C. G. Gairola, L. I. Szweda and D. K. St Clair (1999). 
"Manganese superoxide dismutase protects mitochondrial complex I against 
adriamycin-induced cardiomyopathy in transgenic mice." Arch Biochem Biophys 
362(1): 59-66. 

 
Yoshii, S. R., C. Kishi, N. Ishihara and N. Mizushima (2011). "Parkin mediates 
proteasome-dependent protein degradation and rupture of the outer 
mitochondrial membrane." J Biol Chem 286(22): 19630-19640. 

 
Zhang, H., M. Bosch-Marce, L. A. Shimoda, Y. S. Tan, J. H. Baek, J. B. Wesley, F. J. 
Gonzalez and G. L. Semenza (2008). "Mitochondrial autophagy is an HIF-1-
dependent adaptive metabolic response to hypoxia." J Biol Chem 283(16): 10892-
10903. 

 
Zhang, Y., H. El-Sikhry, K. R. Chaudhary, S. N. Batchu, A. Shayeganpour, T. O. Jukar, 
J. A. Bradbury, J. P. Graves, L. M. DeGraff, P. Myers, D. C. Rouse, J. Foley, A. Nyska, 
D. C. Zeldin and J. M. Seubert (2009). "Overexpression of CYP2J2 provides 
protection against doxorubicin-induced cardiotoxicity." Am J Physiol Heart Circ 
Physiol 297(1): H37-46. 

 
 
Zhang, Y. W., J. Shi, Y. J. Li and L. Wei (2009). "Cardiomyocyte death in doxorubicin-
induced cardiotoxicity." Arch Immunol Ther Exp (Warsz) 57(6): 435-445. 

 



 

   

88 

Zhao, T., X. Huang, L. Han, X. Wang, H. Cheng, Y. Zhao, Q. Chen, J. Chen, H. Cheng, R. 
Xiao and M. Zheng (2012). "Central role of mitofusin 2 in autophagosome-
lysosome fusion in cardiomyocytes." J Biol Chem 287(28): 23615-23625. 

 
Zhou, S., C. M. Palmeira and K. B. Wallace (2001). "Doxorubicin-induced persistent 
oxidative stress to cardiac myocytes." Toxicol Lett 121(3): 151-157. 

 
Zhou, S., A. Starkov, M. K. Froberg, R. L. Leino and K. B. Wallace (2001). 
"Cumulative and irreversible cardiac mitochondrial dysfunction induced by 
doxorubicin." Cancer Res 61(2): 771-777. 

 
Zoratti, M. and I. Szabo (1995). "The mitochondrial permeability transition." 
Biochim Biophys Acta 1241(2): 139-176. 



 

 

 

 

  


