
Université de Montréal

Advances in scaling deep learning algorithms

par Yann N. Dauphin

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

June, 2015

c© Yann N. Dauphin, 2015.

Résumé
Les algorithmes d’apprentissage profond forment un nouvel ensemble de mé-

thodes puissantes pour l’apprentissage automatique. L’idée est de combiner des
couches de facteurs latents en hierarchies. Cela requiert souvent un coût compu-
tationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi,
l’utilisation de ces méthodes sur des problèmes à plus grande échelle demande de
réduire leur coût et aussi d’améliorer leur régularisation et leur optimization. Cette
thèse adresse cette question sur ces trois perspectives.

Nous étudions tout d’abord le problème de réduire le coût de certains algo-
rithmes profonds. Nous proposons deux méthodes pour entrainer des machines
de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions
sparses à haute dimension. Ceci est important pour l’application de ces algorithmes
pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011;
Dauphin and Bengio, 2013) utilisent l’échantillonage par importance pour échan-
tilloner l’objectif de ces modèles. Nous observons que cela réduit significativement
le temps d’entrainement. L’accéleration atteint 2 ordres de magnitude sur plusieurs
bancs d’essai.

Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes
profondes. Les résultats expérimentaux démontrent qu’un bon régularisateur est
crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al.,
2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui
combine l’apprentissage non-supervisé et la propagation de tangente (Simard et al.,
1992). Cette méthode exploite des principes géometriques et permit au moment de
la publication d’atteindre des résultats à l’état de l’art.

Finalement, nous considérons le problème d’optimiser des surfaces non-convexes
à haute dimensionalité comme celle des réseaux de neurones. Tradionellement,
l’abondance de minimum locaux était considéré comme la principale difficulté dans
ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résul-
tats en statistique physique, de la théorie des matrices aléatoires, de la théorie des
réseaux de neurones et à partir de résultats expérimentaux qu’une difficulté plus
profonde provient de la prolifération de points-selle. Dans ce papier nous proposons
aussi une nouvelle méthode pour l’optimisation non-convexe.

Keywords: apprentissage profond, réseaux de neurones, optimisation à haute
dimensoin, machine de Boltzmann, auto-encodeurs.

ii

Summary
Deep learning algorithms are a new set of powerful methods for machine learn-

ing. The general idea is to combine layers of latent factors into hierarchies. This
usually leads to a higher computational cost and having more parameters to tune.
Thus scaling to larger problems will require not only reducing their computational
cost but also improving regularization and optimization. This thesis investigates
scaling from these three perspectives.

We first study the problem of reducing the computational cost of some deep
learning algorithms. We propose methods to scale restricted Boltzmann machines
(RBM) and denoising auto-encoders (DAE) to very high-dimensional sparse dis-
tributions. This is important for applications of deep learning to natural language
processing. Both methods (Dauphin et al., 2011; Dauphin and Bengio, 2013) rely
on importance sampling to subsample the learning objective of these models. We
show that this greatly reduces the training time, leading to 2 orders of magnitude
speed ups on several benchmark datasets without losses in the quality of the model.

Second, we introduce a powerful regularization method for deep neural nets.
Experiments have shown that proper regularization is in many cases crucial to
obtaining good performance out of larger networks (Hinton et al., 2012). In Rifai
et al. (2011), we propose a new regularizer that combines unsupervised learning and
tangent propagation (Simard et al., 1992). The method exploits several geometrical
insights and was able at the time of publication to reach state-of-the-art results on
competitive benchmarks.

Finally, we consider the problem of optimizing over high-dimensional non-
convex loss surfaces like those found in deep neural nets. Traditionally, the main
difficulty in these problems is considered to be the abundance of local minima. In
Dauphin et al. (2014a) we argue, based on results from statistical physics, random
matrix theory, neural network theory, and empirical evidence, that the vast major-
ity of critical points are saddle points, not local minima. We also propose a new
optimization method for non-convex optimization.

Keywords: deep learning, neural networks, high-dimensional non-convex opti-
mization, Boltzmann machines, auto-encoders.

iii

Contents

Résumé . ii

Summary . iii

Contents . iv

List of Figures . viii

List of Tables . ix

1 Introduction . 1
1.1 Introduction to machine learning 2
1.2 Model families . 4
1.3 Optimization . 5
1.4 Regularization . 6
1.5 Supervised Learning . 7

1.5.1 Naive Bayes . 8
1.5.2 Logistic regression . 8
1.5.3 Deep Neural Networks . 9

1.6 Unsupervised Learning . 9

2 Deep Learning . 11
2.1 Deep neural networks . 11

2.1.1 Approximation power . 13
2.1.2 The power of distributed representations 13
2.1.3 Practical details . 14

2.2 Restricted Boltzmann machines . 15
2.2.1 Conditionals . 16
2.2.2 Sampling . 17
2.2.3 Learning . 17

2.3 Regularized auto-encoders . 20
2.3.1 Denoising auto-encoders . 20
2.3.2 Contractive auto-encoders 23
2.3.3 Links between auto-encoders and RBMs 25

2.4 Stacking RBMs and AEs . 25

iv

2.4.1 Deep belief nets . 26
2.4.2 Stacked auto-encoders . 26

2.5 Why does pretraining work? . 27
2.6 Beyond pretraining . 28
2.7 Challenges . 29

3 Prologue to first article . 30
3.1 Article Detail . 30
3.2 Context . 30
3.3 Contributions . 31

4 Scaling DAEs to high-dimensional sparse inputs with importance
sampling . 32
4.1 Related Work . 33
4.2 Denoising Auto-Encoders . 34

4.2.1 Introduction . 34
4.2.2 Training . 36
4.2.3 Motivation . 36

4.3 Scaling the Denoising Auto-Encoder 37
4.3.1 Challenges . 37
4.3.2 Scaling the Encoder: Sparse Dot Product 37
4.3.3 Scaling the Decoder: Reconstruction Sampling 37

4.4 Implementation . 40
4.4.1 Encoder . 40
4.4.2 Decoder . 40

4.5 Experiments . 42
4.6 Conclusion . 45

5 Prologue to second article . 47
5.1 Article Detail . 47
5.2 Context . 47
5.3 Contributions . 48

6 Scaling RBMs to high-dimensional sparse inputs with impor-
tance sampling . 49
6.1 Reconstruction Sampling . 50
6.2 Restricted Boltzmann Machines . 51
6.3 Ratio Matching . 52
6.4 Stochastic Ratio Matching . 53
6.5 Experimental Results . 55

6.5.1 Using SRM to train RBMs 57
6.5.2 Using RBMs as feature extractors for NLP 59

v

6.6 Conclusion . 60

7 Prologue to third article . 62
7.1 Article Detail . 62
7.2 Context . 62
7.3 Contributions . 63

8 Regularizing deep networks with a geometric approach 64
8.1 Contractive auto-encoders (CAE) 66

8.1.1 Traditional auto-encoders 66
8.1.2 First order and higher order contractive auto-encoders . . . 67

8.2 Characterizing the tangent bundle captured by a CAE 68
8.2.1 Conditions for the feature mapping to define an atlas on a

manifold . 69
8.2.2 Obtaining an atlas from the learned feature mapping 69

8.3 Exploiting the learned tangent directions for classification 70
8.3.1 CAE-based tangent distance 70
8.3.2 CAE-based tangent propagation 71
8.3.3 The Manifold Tangent Classifier (MTC) 71

8.4 Related prior work . 72
8.5 Experiments . 74
8.6 Conclusion . 77

9 Prologue to Fourth article . 78
9.1 Article Detail . 78
9.2 Context . 78
9.3 Contributions . 79

10 Identifying the challenges in high-dimensional non-convex opti-
mization . 80
10.1 The prevalence of saddle points in high dimensions 81
10.2 Experimental validation of the prevalence of saddle points 83
10.3 Dynamics of optimization algorithms near saddle points 85
10.4 Generalized trust region methods 87
10.5 Attacking the saddle point problem 88
10.6 Experimental validation of the saddle-free Newton method 91

10.6.1 Existence of Saddle Points in Neural Networks 91
10.6.2 Effectiveness of saddle-free Newton Method in Deep Feedfor-

ward Neural Networks . 93
10.6.3 Recurrent Neural Networks: Hard Optimization Problem . . 94

10.7 Conclusion . 95
10.8 Appendix . 96

vi

10.8.1 Description of the different types of saddle-points 96
10.8.2 Reparametrization of the space around saddle-points 97
10.8.3 Empirical exploration of properties of critical points 97
10.8.4 Proof of Lemma 1 . 99
10.8.5 Implementation details for approximate saddle-free Newton . 100
10.8.6 Experiments . 100

11 Conclusion . 102

References . 104

vii

List of Figures

2.1 Graphical depiction of a one layer neural network (DNN) 12
2.2 Graphical model of the restricted Boltzmann machine (RBM) . . . 15
2.3 Schematic of the Denoising Auto-Encoder 21
2.4 Graphical model of the deep belief network (DBN). Image repro-

duced from Bengio (2009b). 26

4.1 Schematic of the Denoising Auto-Encoder 35
4.2 Experimental Results of reconstruction sampling on Amazon (small

set) . 43
4.3 Experimental Results of reconstruction sampling on RCV1 44
4.4 Learning curve with reconstruction sampling on the Full Amazon set 46
4.5 Embedding learned by the sampled DAE on Amazon 46

6.1 Average speed-ups achieved with SRM 58
6.2 Average norm of the gradients for xi = 1 and xi = 0 59

8.1 Visualization of the tangents learned by CAEs 75
8.2 Visualization of the tangents learned by local PCA 75

10.1 Empirical validation of the prevalence of saddle points 84
10.2 Behavior of optimizers near saddle points 86
10.3 Evaluation of optimization methods for small MLPs 90
10.4 Empirical results using SFN for deep auto-encoders and recurrent

networks . 93
10.5 Different saddle point structures . 98

viii

List of Tables

6.1 Generative performance of the RBMs trained with SRM. 57
6.2 Classification results on RCV1 for SRM pretrained DNNs 59
6.3 Classification results on 20 Newgroups for SRM pretrained DNNs . 60

8.1 Classification accuracy with the tangent distance given by the CAE 76
8.2 Classification results with the MTC in a semi-supervised setting . . 76
8.3 Classification results with the MTC in a fully supervised setting . . 77
8.4 Classification results with the MTC for Covertype 77

ix

List of Abbreviations

AE Auto-Encoder

AIS Annealed Importance Sampling

CAE Contractive Auto-Encoder

CD Contrastive Divergence

CNN Convolutional Neural Network

DAE Denoising Auto-Encoder

DBN Deep Belief Network

DNN Deep Neural Network

I.I.D Independent and Identically-Distributed

KL Kullback-Leibler

MLP Multi-Layer Perceptron

MTC Manifold Tangent Classifier

PCD Persistent Contrastive Divergence

RBM Restricted Boltzmann Machine

RM Ratio Matching

SDAE Stacked Denoising Auto-Encoder

SFN Saddle-Free Newton

SGD Stochastic Gradient Descent

SML Stochastic Maximum Likelihood

SRM Stochastic Ratio Matching

SVM Support Vector Machine

x

Acknowledgments

I feel lucky to have been part of the LISA lab (predecessor of the MILA). Yoshua
Bengio instilled in his lab a deep passion for creativity and a degree of openness
that allows collaboration to flourish. This has had a profound impact on me. I am
also grateful to Yoshua for the experience and advice he has shared with me.

I am thankful to have had amazing people to discuss and argue about ideas
with. There have been too many to count, but I am particularly in the debt of
my collaborators: Salah Rifai (AKA the idea factory), Xavier Glorot, Gregoire
Mesnil, Xavier Muller, Harm de Vries, Pascal Vincent, Surya Ganguli, Kyun-hyun
Cho, Caglar Gulcere. I would also like to thank Ian Goodfellow, Aaron Courville,
Guillaume Alain, Laurent Dinh and Mehdi Mirza. Frederic Bastien too for his work
on Theano and giving us clusters that work. These are some of the people that
have made my days at the lab pleasant.

I am also thankful to my parents for sharing with me their passion for knowledge
and my aunts, cousins and friends for supporting me through these 5 years. To my
roommates Fedo, Manu and Marina sorry for forgetting the milk so many times
but it was for a good cause. And thanks to Robert Panet-Raymond for taking the
time to do a college course that motivated me to do a Ph.D.

xi

1 Introduction

Deep learning algorithms are a new development in machine learning. They

are generating a lot of interest because they have achieved state-of-the-art results

in significant benchmarks for artificial intelligence. These tasks include computer

vision (Krizhevsky et al., 2012), language modelling (Mikolov et al., 2011), and

automatic speech recognition (Seide et al., 2011). These advances and theoreti-

cal considerations have led some to hypothesize that deep learning may be a key

component in learning AI-hard tasks (Bengio, 2009a). AI-hard tasks are those

whose difficulty is equivalent to solving general purpose artificial intelligence. In

particular, deep learning is a powerful solution to the problem of perception in

intelligent systems. Whereas traditional machine learning requires humans to craft

task-specific features, deep learning automatically learns features from raw data.

It does so by learning a hierarchy of non-linear features from the input data. One

significant challenge that remains to be solved on the road to solving AI-hard tasks

is that of scale. Deep learning algorithms must be scaled both in terms of the

sizes of the datasets they can handle and the size of the models themselves. For

reference, one of the biggest deep learning (Krizhevsky et al., 2012) system has 109

connections, while the human brain has 1015 connections. This thesis studies the

issue of scaling deep learning algorithms.

Chapter 1 is an introduction to machine learning. It is followed by a review

of the new developments brought forth by deep learning in Chapter 2. The sub-

sequent chapters describe work that has been done in the context of this thesis.

Chapters 4 and 6 describe new methods to scale unsupervised deep learning algo-

rithms to high-dimensional sparse distributions. In chapter 8, we propose a new

regularization method for large deep neural networks. Finally, we investigate the

problem of optimizing high-dimensional deep neural networks in chapter 10 and

propose practical solutions.

1

1.1 Introduction to machine learning

Machine learning is the study of algorithms that can learn from examples. It

is a form of artificial intelligence that combines notions from both statistics and

optimization. The goal of a learning algorithm is to automatically learn a function

f̂ that can perform some task of interest. In comparison, most other AI approaches

rely on human labor to specify program behaviour (Hayes-Roth et al., 1984). The

distinctive quality of learning algorithms is that they are not explicitly programmed

for the task of interest. For example, such an algorithm could learn to differentiate

between cats and dogs using only a set of examples D = {(x0,y0), . . . , (xn,yn)}.
On the one hand, the algorithm must discover the hidden statistical link between

the images xi and the corresponding labels yi. This involves a search process over

many different functions or hypotheses. Based on the dataset D it might reach the

hypothesis for instance that cats have upright ears while dogs do not. However, it

is not as simple as finding an hypothesis that fits the dataset. While all the dogs in

D may have droopy ears it does not guarantee that all dogs do. Machine learning

requires statistical induction: how to make good inferences from past data. Thus,

the learning algorithm must find a hypothesis that fits the available data and even

the unseen future data. This section explains how machine learning solves this

problem.

In machine learning, learning consists in searching for the best function f within

a family of functions F that performs a task. This function f is found through

optimization. The ability of a function f to perform the task is measured by

a so-called loss function L. For example, the error function might measure the

number of misclassified objects within D. Mathematically, we can express learning

as approximating the following operation

f̂ = arg min
f∈F

1
|D|

∑
(x,y)∈D

L(f(x),y) (1.1)

In other words, we are trying to find a function f̂ that most accurately predicts

the labels y from the inputs x. While there are other formulations, this one reveals

some of the key aspects of machine learning. First, it is key to find an efficient

approximation of the arg min operation. The naive solution of exhaustive search

on the set F will not scale. There are several models families where F is infinite.

2

In practice, optimization methods are used to navigate the space. We will discuss

some of these methods in Section 1.3. Another important aspect is the choice of

the model family F . There are many different families like neural networks and

support vector machines. We will cover several in Section 1.2. The choice of the

model family will influence the ease of optimizing the model. More importantly,

it determines how well we will be able to mimic the true function f ∗(x) = y with

f̂ . If the model family is too small, it may not include a function that matches f ∗.

This can be one of the causes of underfitting. Underfitting occurs when the model

does not properly match the data. However, choosing a really large model family is

not a silver bullet. If it is too large, we may find a function f̂ that behaves exactly

like f ∗ on the examples in D but behaves wildly differently on unseen examples.

This is a common cause of overfitting. Models that suffer from overfitting have

confused noises in the data with actual statistical relationships. Intuitively, we can

see this can be mitigated by having more examples in D. Another solution is the

use of regularizers. We will cover model families in Section 1.2 and regularizers in

Section 1.4.

Overfitting separates machine learning from optimization. We want f̂ to mimic

f ∗ on examples that may not be in D. This is known as generalization. Gen-

eralization is important because D usually contains a relatively small number of

examples. Collecting a dataset that would perfectly represent f ∗ is extremely hard.

In fact, there are several tasks where the number of examples is infinite. Consider

for examples problems where the input is an image. There are an infinite number

of possible images with continuous-valued pixel intensities. The generalization er-

ror tells us the average error on all possible examples. Assuming the examples are

sampled from a distribution (x,y) ∼ P (x,y), the generalization error also known

as the risk is

R(f) =
∫

x,y
L(f(x),y)P (x,y)dxdy (1.2)

Notice the relation between Equation 1.1 and 1.2. In Equation 1.1 the integral is

replaced by an empirical average on D. Thus, Equation 1.1 minimizes the empirical

risk R̂, giving it the name empirical risk minimization (Vapnik, 1999). In general,

it is not possible to compute R(f). The integral may involve an infinite number

of elements and P (x,y) is usually not known. We can minimize the generalization

3

error by the proxy of the empirical risk R̂, though the resulting generalization

error is not perfectly matched by the minimized empirical risk. Thankfully, the

generalization error can be probabilistically upper-bounded by a function of the

empirical risk (Vapnik, 1999; Valiant, 1984). In the next sections, we explore in

more depth the issues raised in this introduction.

1.2 Model families

A model family is the set of functions F that are explored. The choice of the

model family is very important. It determines the functions that can be learned

and how efficiently they can be learned. There are two big branches of of model

families.

In the parametric families, the different models are obtained by modifying a

finite parameter vector. For example, consider the problem of predicting the flip

of a coin. We could model this with a family of the form the coin will fall on heads

with probability d. The variable d is the parameter that will differentiate between

different models. We can see here for example that the number of models is infinite

if the parameter d is floating point with infinite precision. In general, you can write

the model families as

F = {f(θ)|θ ∈ Θ} (1.3)

where θ = (θ1, . . . , θn) is the parameter vector and Θ is the set of possible pa-

rameters (often Θ = Rn). The function f uses the parameter vector to determine

its operation in some way. Another example of a parametric model family is a

Turing machine with different program tapes to read. An advantage of parametric

models is that they have a compact representation θ. In many cases, this makes

optimization of these models straightforward. Popular parametric models include

the logistic regression and deep neural networks with a fixed size. Without con-

sidering cross-validation, deep learning algorithms fall mainly in this category and

thus this document will focus on parametric models. Several parametric models

will be discussed in later sections.

4

On the other hand we have non-parametric families. Contrary to parametric

families, they cannot be represented by a finite vector of parameters. Typically, the

size of the model will needs to grow with the number of training examples. Non-

parametric models encompass a wide array of very different models because there

are no limitations on their form. This makes sense because they are defined as the

complement of the more restricted parametric set of families. In some cases, it is

an advantage that F can be very large. This can allow non-parametric models to

fit the data very well. The downside is that an element often cannot be represented

compactly. Representative models for this class include k-nearest neighbours (k-

NN) and k-means. These models will not be covered in-depth in this thesis.

1.3 Optimization

Optimization is the process through which a good function f is selected from

the model family F . Optimizing a model is also known as learning or training the

model. Properly choosing the optimization method determines how efficiently we

will find good functions f . Thus in practice, the optimization method limits the

kind of functions that can be learned. If it is not efficient enough, even if there are

good functions in F , we might not be able to find them.

In parametric models, optimization is mostly done using gradient based meth-

ods. The parametric function f in Equation and the loss L are usually differentiable

with respect to the parameters θ. This allows us to perform steepest descent with

the first-order gradient. In neural networks, the backpropagation algorithm can

be used to obtain the gradients efficiently (LeCun et al., 1998). Gradient descent

is a local search method that relies on calculating the gradient of R̂ to find good

directions to move in parameter space. −∂R̂
∂θ

tell us in which direction to move θ

to most decrease the empirical risk R̂. Optimization starts at a random point in

parameter space. Often this is either θi = 0 or θ ∼ N (µ, σ2). Optimization is an

iterative procedure that gradually moves in parameter space until it approximately

reaches the minimum (∂R̂
∂θ

= 0). At each step t the parameters are updated such

that

θt+1 = θt − η∂R̂(θt)
∂θt

.

5

The value η is called the learning rate. It controls how fast optimization will

move in parameter space. It cannot be set too high because that would cause the

optimization process to oscillate wildly in the parameter space. It cannot be too

small either because then learning might be impractically slow. The learning rate

must be found through a process of trial and error. Optimization must be performed

to convergence with different learning rates and the learning rate resulting in the

best empirical risk R̂ is chosen. Usually a separate set of examples V called the

validation set is used to find the best learning rate. The learning rate is refered to

as a hyper-parameter because it is like an extra parameter to be optimized over.

The are more powerful optimization methods that make use of high-order deriva-

tives of the function. For instance, the Newton methods relies on the curvature

information in the Hessian to automatically adjust a learning rate for each param-

eter. These more powerful methods will be covered to some extent in Chapter

10.

1.4 Regularization

Regularization is used to prevent overfitting. Regularization helps the model to

extend or generalize to unseen examples. To do so, it relies on an inductive bias to

choose which model will generalize well. An inductive bias is a set of assumptions

about the function to be learned. We must choose the function which corresponds

best with the data and the inductive bias.

Most regularizers can be understood from Occam’s razor. It states that among

competing hypotheses, the hypothesis with the fewest assumptions should be selected.

It was popularised by the philosopher William of Ockham in the 13th century. For

example, consider the problem of the existence of Mugs. On on the hand, we can

hypothesize they have been created by humans, on the other we can believe they

were created by Leprechauns. Occam’s razor tells us to believe the former because

it doesn’t assume the existence of never before seen magical Leprechauns. In terms

of machine learning, Occam’s razor dictates to select the model with the lowest

complexity. The complexity of the model can be measured in various ways. The

most common way is to use a Tikhonov regularization (Tikhonov and Arsenin,

6

1977) which measures the p-norm of the parameters

Ω(θ) = ‖θ‖p.

The regularizer is taken into account by optimizing both the empirical risk and the

measure of complexity

f̂ = arg min
fθ∈F

R̂(fθ) + Ω(θ).

Usually, the magnitude of the parameters θ can be said to correlate with the degree

of belief of the model in some pattern. When the 1-norm is used, then the regu-

larization ensures that we believe in as few things as possible. Regardless of how

much we believe in them. If the 2-norm is used then it prevents believing in any-

thing too strongly. Both of these assumptions may be beneficial, depending on the

task. Another inductive bias is that a good model should use the minimum amount

of input features. This can be implemented through feature selection algorithms

(Kira and Rendell, 1992).

There has been a breakthrough in regularization led by Hinton et al. (2006a);

Bengio et al. (2007a) with the appearance of a new powerful data-dependent reg-

ularization method. In these models, the inductive bias is given by modelling the

distribution of the data. This has led to further research in this domain (Tikhonov

and Arsenin, 1977; Hinton et al., 2012; Wang and Manning, 2013; Zeiler and Fer-

gus, 2013). This renewed interest for regularization is due to the renewed interest

in deep neural networks. In Chapter 8 we will explore two new data-dependent

regularizations for deep neural nets.

1.5 Supervised Learning

Supervised learning algorithms predict a label y from an input x. Labelled

datasets have the form {(x1,y1), . . . , (xN ,yN)}. The goal of supervised learning

algorithms is to recover a function f : X → Y which maps from the input space X

to the target space Y . Functions of this form are known as classifiers. Classifiers are

used in some of the most popular applications of machine learning. For example,

7

in automatic speech recognition the inputs x are acoustic frames and the labels y
are phonemes.

1.5.1 Naive Bayes

The naive Bayes classifier is one of the simplest machine learning algorithms.

The purpose of the algorithm is to learn a function p(y|x) which takes an input x
and assigns it a label y. The label is one of k possible labels. Using Bayes theorem

we can rewrite the conditional as

p(y|x) = p(y)p(x|y)
p(x)

The model is called naive because the different input dimensions are considered

conditionally independent. This gives us

arg max
y

p(y|x) = arg max
y

p(y)
n∏
i=1

p(xi|y).

We can see that predicting p(y|x) in this model relies on learning the marginal prob-

ability of each class p(yk) and the conditional probability of each input given the

class label p(xi|yk). Therefore, the parameters of this model are θ = (p(yk), p(xi|yk)).
The parameters are learned essentially by counting the frequencies of each proba-

bilities in the training data. This model is used for simple problems with little data,

most often in natural language processing, because the independence assumption

is too strong for most real-world problems.

1.5.2 Logistic regression

The logistic regression is a very popular machine learning algorithm for classi-

fication. The logistic regression is expressed as

p(y|x) = σ(Wx + b)

where σ(x) = 1
1+e−x is the logistic function, W ∈ Rm×n, and b ∈ Rn. m is the

number of classes and n is the number of input features. The logistic regression

uses a linear projection followed by a logistic to perform classification. The loss

8

function is given by

L(x,y) = − log p(y|x) = −yT log p(y|x)− (1− yT) log(1− p(y|x))

where y is a one-hot vector. For binary classification this simplifies to the cross-

entropy function. It measures the distance between the true probability distribution

and the model distribution. The parameters of this model are found by performing

gradient descent on the empirical risk. The logistic regression is widely used because

it has the benefit of convex optimization and it can scale to large datasets and

large input sizes. However, it is limited to learn linear class boundaries. Thus it

is important to use good feature extractors before feeding the data to the logistic

regression. A common practice in computer vision is to use handcrafted or off-the-

shelf features like SIFT Lowe (1999).

1.5.3 Deep Neural Networks

This type of algorithm will be studied throughout this thesis. They receive a

more in-depth treatment in Section 2.1.

1.6 Unsupervised Learning

Unsupervised learning is the task of finding hidden structure in unlabelled data.

Unlabelled datasets have the form {x1, . . . ,xN} where x are the input. Unlike

in supervised learning there is no direct label to be predicted. It is up to the

practitioner to decide on a proxy task that will help learn structure in the input.

There are many possible proxy tasks, but they usually rely on one of 3 principles

for learning structure.

The first is the idea of clustering. Clustering algorithms will group similar

examples in the same cluster or partition of the input space. Similarity is often

defined as the distance in Euclidean space, but other more appropriate similarity

measure can be used. Such algorithms include k-means and Gaussian mixture

models (GMMs). In general the clustering approach will learn the biggest modes

in the data. This is useful in some cases, but it may be too crude for many tasks.

9

Another idea is auto-association. A model with latent factors can be trained

to reconstruct the input. This will force the latent factors to encode information

that describes the example well. The latent factors can then be used as a new

representation of the input. The various regularized auto-encoders described in

Chapter 2.3 fall into this category. Using these models as features extractors has

been shown to help classification on various benchmarks (Vincent et al., 2010; Rifai

et al., 2011).

Finally there is the idea of density estimation. Density estimation algorithms

will estimate the density of examples in the dataset. This will force the model to

learn about how probability is distributed in the input space. If the density model

has latent factors, they can be used as a representation. Interestingly, clustering

can be thought as a very crude way to do density estimation. As we will see in

Section 2.3.3 auto-encoders with proper regularization have also been shown to

do density estimation. This goes to show these three learning principles are quite

related. The RBMs (Chapter 6.2) and other graphical models are good examples

of density estimators.

10

2 Deep Learning

Deep learning is a novel approach to machine learning that relies on learn-

ing multiple levels of features. Hinton et al. (2006a); Bengio et al. (2007a) were

the first papers to show significant gains training deep neural networks. These

early papers relied on unsupervised learning algorithms for feature extraction. The

features learned by stacks of models such as restricted Boltzmann machines and

auto-encoders were used as input to traditional classifiers. A particularly successful

alternative was to use the parameters of these models as initialization for a deep

neural net. This novel initialization method called pretraining was in fact shown

to be a novel data-dependent regularizer (Erhan et al., 2010). The renewed inter-

est for deep neural nets has led to a lot of exploration and set new benchmarks

notably in automatic speech recognition (Dahl et al., 2012) and object recognition

(Krizhevsky et al., 2012). It has been discovered since then that unsupervised pre-

training is not the only way train deep neural networks. Pretraining is useful as

a regularizer that helps reduce over-fitting. Other regularizers have recently been

found to successfully train deep neural networks (Hinton et al., 2012; Goodfellow,

2013; Wang and Manning, 2013; Zeiler and Fergus, 2013). However, the core idea

remains to train deep features hierachies with some form of regularization to ensure

good generalization.

Section 2.1 describes deep neural networks. Section 6.2 introduces the restricted

Boltzmann machine. The various regularized auto-encoders are described in Section

2.3. Section 2.5 presents some of the research explaining why pretraining has been

found to be helpful for deep networks. Finally, Section 2.6 and 2.7 discuss new

developments and challenges in the field of deep learning.

11

Figure 2.1: Graphical depiction of a one layer neural network (DNN). Image reproduced from
Bengio (2009b).

2.1 Deep neural networks

A deep neural network is the combination of a logistic regressor with a learnt

non-linear feature transform Ψ. This approach alleviates the problem of having to

extract meaningful features through hand-crafting or off-the-shelf methods. The

feature transform Ψ is learnt so that the it makes the input more linearly separable.

The feature transform Ψ can be thought of as stack of logistic regressors where the

targets are not known. The output units of these intermediary logistic regressions

are known as hidden units because of this. A process known as back-propagation is

used to propagate down the error from the top logistic regressors whose labels are

known to the ones in the feature transform Ψ. This will cause the hidden units to

help decrease the overall error of the network.

A single hidden layer neural network (illustrated in Figure 2.1) is typically

characterized by the following equations

h1(x) = ψ1(W1x + b1)

o(h) = ψ2(W2h + b2)

The parameters W1,W2 are called the weight matrices. They represent patterns

the hidden units are sensitive to and b1, b2 are offsets. The dot product is used

to measure the distance between these patterns and the input. A unit will be

strongly activated if the input is strongly co-linear with the pattern in it’s weight

vector (with the right offset).

The so-called activation functions ψ1, ψ2 are non-linear element-wise scalar func-

tions that control the behaviour of the unit. Without these non-linear functions

(ψ1(x) = x) the dot products could be collapsed and the resulting input to out-

put function would be linear. In other words, these functions are what allows the

12

network to learn non-linear functions of its input. Popular choices are the logistic

sigmoid (1
1+e−x), the tanh, and the rectified linear unit (max(0, x)) (Glorot et al.,

2011a). It is common to train networks with the logistic sigmoid as the activation

for hidden units ψ1 but several papers have reported better performance using the

rectified linear units Glorot et al. (2011a); Hinton et al. (2012). Finding and jus-

tifying activation functions for the hidden layers is still an open research subject

(Goodfellow et al., 2013).

The output activation function ψ2 could be any function but the choice is typi-

cally guided by the type of the targets. For regression problems a linear activation

is often used (ψ2(x) = x). As we shall see this is justified in some cases because

the network predicts the mean of a gaussian. For 1-of-k classification problems a

softmax function is used. The softmax is defined by the following function

p(yk|xi) = exk∑
j e

xj

The output is a proper probability because the normalization factor over classes

ensures that
∑
p(yk|h) = 1. As we shall see, combined with the proper loss function,

the probabilistic justification is that we are learning a multinomial distribution over

the labels.

2.1.1 Approximation power

In a one layer network the feature transform Ψ is represented by the function

h1. We can add hidden layers by feeding h1 as input to another hidden layer h2

with different parameters and feeding h2 to the output layer. A one hidden layer

network is a universal approximator Hornik et al. (1989). Given enough hidden

units, it can approximate any function. Adding hidden layers will help the network

learn functions more efficiently. If the function to be learned can be factorized into

sub-procedures then a deeper neural network will be exponentially smaller then it’s

shallow counterpart (Delalleau and Bengio, 2011; Pascanu et al., 2014).

2.1.2 The power of distributed representations

The representation Ψ learned by the DNN can be quite powerful. To better

understand why, we can compare with an algorithm like Gaussian mixture models

13

(GMM). In the GMM, the feature representation Ψ describes how well the example

matches each Gaussian of the mixture. The class of the example is affected mostly

by the closest mean. Thus we can say that a GMM with N means and O(N)
parameters partitions the space into N sections.

In comparison, the hidden units forming Ψ are like logistic regressions but none

of the output units are mutually exclusive. Each unit in Ψ partitions the space

independently into two partitions. These binary partitions give rise to many others

through combinations. Thus a DNN with N hidden units and O(N) parameters

partitions the input space into 2N partitions. This allows the DNN to encode the

properties of the examples by disentangling factors of variation (Bengio, 2009b).

Disentangling the factors of variation means encoding each factor of variation in

a different dimension of Ψ. This will allow classification on a specific property or

a combination of them to be a linear operation in the space Ψ. The advantage of

such a representation is that it would be more compact and would allow for better

classification results.

Remarkably, disentangling factors of variation allows non-local generalization.

Generalization in local methods like k-NN and decision trees is done by extrap-

olating from nearby examples. Local methods cannot generalize to zones in the

input space that are far from training examples. With non-local generalization the

network can properly operate with unseen examples. It is made possible because

the network identifies properties or subspaces where the unseen example may be

similar to the training examples. For example, a network may never have seen an

example of a blue dog, but if the network disentangles the color from the object,

the output logistic can properly classify the example as a dog.

2.1.3 Practical details

The weight matrices W ∈ Rm×n can be initialized with a uniform distribu-

tion [−
√

6
m+n ,

√
6

m+n] for tanh activation units and ReLU units Glorot and Bengio

(2010). This initialization will ensure that early during training the gradients have

zero-mean and unit standard deviation which will make it faster LeCun et al.

(1998).

For regression, the loss function is usually the mean-squared error (MSE)

L(x,y) = ‖y− o(h1(x))‖2

14

Figure 2.2: Graphical model of the restricted Boltzmann machine (RBM). Image reproduced
from Bengio (2009b).

when the targets y are continuous unnormalized values. Combined with a linear

output layer this amounts to predict the means of a gaussian. The loss function

used for binomial probability vectors is the cross-entropy

L(x,y) = −yT log o(h1(x))− (1− yT) log(1− o(h1(x)))

where y is a binary vector. If the activation of the output layer is a softmax,

o(h1(x)) will learn the conditional p(yi = 1|x). The gradients for the output

logistic regression is the same as the gradient for a regular logistic regression. The

gradients for the hiddens layers are found using the chain rule (Rumelhart et al.,

1986).

Deep neural nets are prone to overfitting because they can learn highly non-

linear functions. An advance in regularization (Hinton et al., 2006a; Bengio et al.,

2007a) has created a surge in interest for these models. Another cause of this

resurgence is the appearance of fast graphical processing units (GPUs) that can

run DNNs very fast.

2.2 Restricted Boltzmann machines

A restricted Boltzmann machine (RBM) is an undirected graphical model with

binary variables (Hinton et al., 2006b): observed variables x and hidden variables

h. It is defined by the joint probability over {x,h}

P (x,h) = e−E(x,h)∑
x′,h′ e−E(x′,h′)

15

where the energy function E is given by

−E(x,h) = hTWx + bTh + cTx

with parameters θ = (W,b, c).
The Boltzmann machine is one of the first so-called generative models. The

idea is to fit the parameters of the distribution P (x,h) so that they correspond

to a real-world distribution of interest. We can then generate new examples from

the model using sampling techniques like Gibbs sampling. It can also be used to

answer questions about the distribution using its conditional distributions.

The distinguishing characteristic of the RBM is the presence of non-linear hid-

den units h. It is these units that make the RBM one of the most powerful gen-

erative models (Salakhutdinov and Murray, 2008). The hidden units of the RBM

can learn to represent hidden factors at play in the distribution. In images for

example, it is clear that nearby pixels are related but the relation between distant

pixels is quite complicated. A model that only incorporates interactions between

visible variables would fail to capture these distant interactions. Instead, the RBM

is able to detect edges and object parts as hidden factors that cause the activation

of the pixels. These hidden factors can be thought of abstract conditions that are

entangled to create what is captured by the visible units.

2.2.1 Conditionals

The restricted Boltzmann machine is distinguished from the Boltzmann machine

by the lack of connections inside the set of visible units, and similarly for the

hiddens. This gives the RBM closed-form conditionals which can be computed

quite efficiently. This limitation does not prevent the RBM from being a universal

approximator Le Roux and Bengio (2010).

The conditional distributions over observed and hidden variables are

P (hj = 1|x) = σ(
∑
i

Wjixi + bj)

P (vi = 1|h) = σ(
∑
j

Wjihj + ci)

with the logistic sigmoid σ(x) = 1
1+e−x . Computing both conditionals are in O(mn)

16

where m is the number of latent factors and n the number of visibles.

These conditionals are the base of inference in this model. We can use the

RBM has a feature extractor through P (h|x). We can generate from the model by

combining P (h|x) and P (x|h) with block Gibbs MCMC, described below.

2.2.2 Sampling

It is possible to sample new examples from the learned distribution P (x). This

is particularly useful for learning as we will see, but it also has practical applica-

tions Bengio et al. (2013). Samples are obtained by running a Markov chain to

convergence. Typically the Gibbs sampling transition operator is used.

Gibbs sampling over a distribution X = (X1, . . . , XN) iterates over N sampling

subsets of Xi ∼ P (Xi|X−i) where X−i includes all the variables but the one at

index i. This process is guaranteed to converge to the distribution on X (Bishop,

2006).

For the RBM, we can reduce the number of sampling sub-steps from N to

2 because there are two independent groups of units. We have for the visibles

P (xi|x−i,h) = P (xi|h) and similarly for the hiddens. Sampling is done by alter-

nating between P (h|x) and P (x|h). This process is known as block Gibbs sampling

because we are sampling blocks of variables at a time.

A step in the Markov chain is given by

ht+1 ∼ P (h|xt)

xt+1 ∼ P (x|ht+1)

We can obtain a sample by iterating these steps until convergence which is guar-

anteed for t = ∞. In practice, a small number is steps is enough to reach the

stationary distribution.

2.2.3 Learning

There are several principles that can be used to estimate the parameters of the

RBM. These methods rely on different inductive principles, but the guiding prin-

ciple is to match certain statistics of the target distribution and of the distribution

of the model.

17

Stochastic maximum likelihood

The classic way of training this model is through maximum likelihood. This re-

quires an expression for the likelihood of a sample. It can be found by marginalizing

analytically over h to obtain

P (x) = e−F (x)∑
x′ e−F (x′)

where the free energy F has the expression

−F (x) = cTx +
∑
j

log(1 + e
∑

i
Wjixi+bj)

Training the model is in principle as simple as following the gradient of the

negative log-likelihood

−∂ logP (x)
∂θ

= Edata

[
∂F (x)
∂θ

]
− Emodel

[
∂F (x)
∂θ

]

However, this gradient is intractable because the second expectation is combina-

torial. Stochastic Maximum Likelihood or SML (Younes, 1999; Tieleman, 2008)

estimates this expectation using sample averages taken from a persistent MCMC

chain (Tieleman, 2008). Starting from xi a step in this chain is taken by sampling

hi ∼ P (h|xi), then we have xi+1 ∼ P (x|hi). SML-k is the variant where k is the

number of steps between parameter updates, with SML-1 being the simplest and

most common choice, although better results (at greater computational expense)

can be achieved with more steps.

Training the RBM using SML-1 is on the order of O(dn) per update where d is

the dimension of the input variables and n is the number of hidden variables. In

the case of high-dimensional sparse vectors with p non-zeros, SML does not take

advantage of the sparsity. More precisely, sampling P (h|x) (inference) can take

advantage of sparsity and costs O(pn) computations while “reconstruction”, i.e.,

sampling from P (x|h) requires O(dn) computations. Thus scaling to larger input

sizes n yields a linear increase in training time even if the number of non-zeros p

in the input remains constant.

18

Ratio matching

Ratio matching (Hyvärinen, 2007) is an estimation method for statistical mod-

els where the normalization constant is not known. It is similar to score matching

(Hyvärinen, 2005) but applied on discrete data whereas score matching is limited to

continuous inputs, and both are computationally simple and yield consistent esti-

mators. Score matching estimates the parameters by matching the local directions

of maximum likelihood near input points. The use of Ratio Matching in RBMs

is of particular interest because their normalization constant is computationally

intractable.

The core idea of ratio matching is to match ratios of probabilities between the

data and the model. Thus Hyvärinen (2007) proposes to minimize the following

objective function

Px(x)
d∑
i=1

[
g

(
Px(x)
Px(x̄i)

)
− g

(
P (x)
P (x̄i)

)]2

+
[
g

(
Px(x̄i)
Px(x)

)
− g

(
P (x̄i)
P (x)

)]2

(2.1)

where Px is the true probability distribution, P the distribution defined by the

model, g(x) = 1
1+x is an activation function and x̄i = (x1, x2, . . . , 1−xi, . . . , xd). In

this form, we can see the similarity between score matching and ratio matching. The

normalization constant is canceled because P (x)
P (x̄i) = e−F (x)

e−F (x̄i) , however this objective

requires access to the true distribution Px which is rarely available.

Hyvärinen (2007) shows that the Ratio Matching (RM) objective can be sim-

plified up to constants in θ to

JRM(x) =
d∑
i=1

(
g

(
P (x)
P (x̄i)

))2

(2.2)

which does not require knowledge of the true distribution Px. This objective can

be described as ensuring that the training example x has the highest probability

in the neighborhood of points at hamming distance 1.

In Chapter 6 we prove that one can rewrite Eq. 2.2 in a form reminiscent of

auto-encoders:

JRM(x) =
d∑
i=1

(xi − P (xi = 1|x−i))2. (2.3)

This will be useful for reasoning about this estimator. The main difference with

19

auto-encoders is that each input variable is predicted by excluding it from the

input.

Applying Equation 2.2 to the RBM we obtain JRM(x) = ∑d
i=1 (σ(F (x)− F (x̄i)))2

.

The gradients have the familiar form

−∂JRM(x)
∂θ

=
d∑
i=1

2ηi
[
∂F (x)
∂θ

− ∂F (x̄i)
∂θ

]
(2.4)

with ηi = (σ(F (x)− F (x̄i)))2 − (σ(F (x)− F (x̄i)))3
.

A naive implementation of this objective is O(d2n) because it requires d com-

putations of the free energy per example. This is much more expensive than

SML, as noted by Marlin et al. (2010). Thankfully, as we argue here, it is pos-

sible to greatly reduce this complexity by reusing computation and taking advan-

tage of the parametrization of RBMs. This can be done by saving the results

of the computations α = cTx and βj = ∑
iWjixi + bj when computing F (x).

The computation of F (x̄i) can be reduced to O(n) with the formula −F (x̄i) =
α− (2xi− 1)ci +∑

j log(1 + eβj−(2xi−1)Wji). This implementation is O(dn) which is

the same complexity as SML. However, like SML, RM does not take advantage of

sparsity in the input.

2.3 Regularized auto-encoders

A regularized auto-encoder (AE) is a feed-forward neural network trained to

reconstruct its input. The original insight of the auto-encoder is that by rebuilding

the input you use the input as the teaching signal in gradient descent. However,

simply learning does not guarantee that the model will learn interesting patterns in

the data. Classical auto-encoders limit the capacity by setting the number of latent

factors below the dimension of the input, forming an under-complete representa-

tion. This restricted the model to learning a subspace of the principal components

(Bourlard and Kamp, 1988). Recently, several models have been using different

forms of regularization that allow learning richer features from the input (Vincent

et al., 2010; Rifai et al., 2011). Notably these regularizers allow learning over-

complete representations which have more features than inputs. Unlike RBMs the

20

AEs are not primarly motivated by probabilistic modelling. However, a recent line

of papers Vincent (2011); Rifai et al. (2012); Alain and Bengio (2013) (one of which

I’ve co-authored) has shown that regularized auto-encoders have a probabilistic in-

terpretation.

2.3.1 Denoising auto-encoders

The DAE is a learning algorithm for unsupervised feature extraction Vincent

et al. (2010): it is provided with a stochastically corrupted input and trained

to reconstruct the original clean input. Its training criterion can be shown to

relate to several training criteria for density models of the input through Score

Matching Hyvärinen (2005); Vincent (2011). It is also possible to show that the

denoising objective yields to learning about the data distribution by using local

moments and learning the score (Alain and Bengio, 2013). Alain and Bengio (2013)

shows that the difference vector between the reconstruction and the input is the

model’s guess as to the direction of greatest increase in the likelihood, whereas

the difference vector between the noisy corrupted input and the clean original is

nature’s hint of a direction of greatest increase in likelihood (since a noisy version

of a training example is very likely to have a much lower probability under the

data generating distribution than the original). It can also be shown that the

DAE is extracting a representation that tries to preserve as much as possible of the

information in the input (Vincent et al., 2010).

noise

g

x̃ x

h

h

Figure 2.3: Schematic of the Denoising Auto-Encoder

The denoising auto-encoder reconstruction f(x) = h(g(x)) is composed of an

encoder function g(·) and a decoder function h(·) (see Figure 2.3). During training,

the input vector x ∈ [0, 1]d is partially and randomly corrupted into the vector x̃.

The encoder takes x̃ and maps it into a hidden representation h ∈ [0, 1]d′ . The

decoder takes the representation h and maps it back to a vector z in the input

space ([0, 1]d in our case). The DAE is trained to map a corrupted input x̃ into the

21

original input x such that g(h(x̃)) ≈ x. This forces the code h to capture important

and robust features of x. Many corruption processes are possible, but they should

have the property of generally producing less plausible examples. Typically, inputs

are corrupted by randomly setting elements of x to 0 or 1, or adding Gaussian

noise. The typical shallow encoder has the form

a1 = W(1) · x̃ + b(1)

h = s1(a1) (2.5)

where sa is a non-linear function like the sigmoid sa(u) = 1/(1 + exp(−u)), W(1)

is a d′× d weight matrix and b(1) is a d′× 1 vector. The function computed by the

decoder is

a2 = W(2) · h + b(2)

z = s2(a2) (2.6)

Where W(2) is a d× d′ weight matrix and b(2) is a d× 1 vector.

Training

Given a dataset Dn = (x(1),x(2), . . . ,x(n)), the parameters (W(1), b(1), W(2),

b(2)) are trained by stochastic gradient descent to minimize a negative log-likelihood

R̂(f,Dn) = 1
n

n∑
i

− log p(x(i)|f(x̃(i)) = 1
n

n∑
i

d(x(i), f(x̃(i)))

where d is a measure of the log-likelihood.

The measure that is typically used for binary vectors or vectors of binomial

probabilities is the cross-entropy (or Bernouilli log-likelihood).

d(x, z) = −
d∑
k

[xklogzk + (1− xk)log(1− zk)]

The L2 distance is preferred when the input is continuous and without bounds

because it corresponds to a Gaussian log-likelihood:

d(x, z) = ‖x− z‖2

22

The training updates of the denoising auto-encoder with a single layer neural

net is in O(mn) where m is the dimension of the input and n the number of hidden

units.

The noise distribution is chosen through cross-validation. In most cases the

binomial distribution will lead to better performance for binary vectors and the

Gaussian will work better for continuous inputs. The level of the noise is an im-

portant hyper-parameter in this model. Theory (Alain and Bengio, 2013) suggests

that the score is best estimated with a small noise but in practice the noise levels

are quite high. Typical values for the probability the binomial corruption are be-

tween 0 and 1, and the optimal standard deviation when using gaussian noise is

also usually found between 0 and 1.

Justification as a generative model

Vincent (2011) showed that a particular parametrization of the denoising auto-

encoder is equivalent to the application of score matching of to a particular gen-

erative model. The connection was quite brittle but it planted the idea that the

DAE could have a proper theoretical justification. The link was also interesting

because it shed light on what is captured by the DAE to model the distribution.

Score matching (Hyvärinen, 2005) is a parameter estimation method that relies on

matching a local statistic called the score ∂ log p(x)
∂x between the model distribution

and the data distribution. The score indicates the direction of highest likelihood

increase around the example. The link to score matching is evidence towards the

idea that the simple and efficient denoising objective learns the directions of highest

likelihoods.

Alain and Bengio (2013) establishes a more general link between denoising auto-

encoders and generative models. Assuming only small noise and a mean squared

error reconstruction, they show that after training the score is given by

∂ log p(x)
∂x

= r(x)− x
σ2 +O(σ2)

The probability distribution can be recovered by integrating over the score. In

practice this is inefficient, but recovering the distribution is not required to use the

DAE has a feature extractor. Bengio et al. (2013) further generalized these results

to arbitrary noise and arbitrary parametrization of the denoising auto-encoder.

23

2.3.2 Contractive auto-encoders

The contractive auto-encoder (Rifai et al., 2011) (CAE) is an unsupervised

learning algorithm for feature extraction which uses a Tikhonov regularization

(Tikhonov and Arsenin, 1977) on the learned features. The regularization helps

achieve robust features that have been found to reach state-of-the-art performance

on several benchmarks (Rifai et al., 2011, 2012). The CAE learns about the input

distribution by capturing the local directions of variations around the input points.

The CAE comprises an encoder function

h = h(x) = σ(W · x + b(1))

and a decoder function

z = r(h) = σ(WT · h + b(2)).

The distinctive characteristic of the CAE is that the loss combines the recon-

struction error with a penalty on the Frobenius norm of the Jacobian of the hidden

mapping

R̂(f,Dn) = 1
n

n∑
i

d(x(i), r(h(x(i)))) + λ

∥∥∥∥∥∂h(x(i))
∂x(i)

∥∥∥∥∥
2

.

The hyper-parameter λ is to be cross-validated and optimal values are typically

within 0 and 1. The training objective is in O(mn) where m is the dimension of

the input and n the number of hidden units.

The CAE captures information about the input through the two opposing forces

in its loss function. The reconstruction is a term that guarantees that features

conserve information about the input. It can be thought of as a soft way to ensure

the encoder is a bijective mapping (Le et al., 2011), at least near the training

examples. The Jacobian penalty encourages the model to be invariant and in the

limit with λ → ∞ it would force the model to learn a constant feature mapping.

The Jacobian penalty is known as contractive and gives the model its name.

The Jacobian measures the variation of each hidden unit with respect to vari-

ations in the input ∂hi
∂xi

= hi(1 − hi)Wij. Minizing this variation can be achieved

either by saturating the hidden units (setting them close to 0 or 1) or reducing

the norm of the weights. However, the CAE cannot simply reduce the norm of

24

the weights because the same weights are used for encoding and decoding. This

is known as tied weights. The model must therefore learn to saturate and ignore

certain variations in the input.

The contraction forces the model to discard as many directions of variations

as possible. The reconstruction forces the model to keep the directions that occur

in the data. The result is that the features hi(x) are only sensitive to directions

in the input that actually occur in the data. (Rifai et al., 2011) has shown that

these correpond to tangents of the data manifold. The tangents can be recovered

by an eigen-decomposition of the Jacobian where the eigen-vectors with non-zero

eigen-values are the local tangents at that point. As we will show in Chapter 8 this

insight can be used to further regularize a deep neural network.

2.3.3 Links between auto-encoders and RBMs

RBMs have generally been preferred to auto-encoders because they have more

theoretical justification. However, the auto-encoders are generally simpler to un-

derstand and implement. A simple look at the conditionals of the RBM and the

encoder/decoder of the AEs suggest that the models are similar in some way. Elu-

cidating the links between these two model families has been the subject of several

papers Bengio and Delalleau (2009); Vincent (2011); Alain and Bengio (2013);

Swersky et al. (2011).

Vincent (2010); Alain and Bengio (2013) have confirmed the intuition that

certain auto-encoders capture the probability distribution through local statistics.

This result is generalized by Bengio et al. (2013) who shows that auto-encoders

with arbitrary noise and arbitrary parametrizations are generative models. This

constitutes a very flexible framework for generative models.

Swersky et al. (2011) has shown that applying score matching to any parame-

terization of an RBM will lead to an auto-encoder. This encourages a new way to

approach modeling with unsupervised models. The probabilistic framework of the

RBM can be used to reason about the models but they can be implemented simply

by transforming them into auto-encoder form using score matching.

25

Figure 2.4: Graphical model of the deep belief network (DBN). Image reproduced from Bengio
(2009b).

2.4 Stacking RBMs and AEs

The RBMs and AEs form basic learning modules that can be stacked to create

deep architectures (Hinton et al., 2006a; Bengio et al., 2007a). Stacking these

feature extractors will allow each layer to gradually learn more abstract features.

Experiments have shown that these more abstract features can be useful on several

classification problems (Le et al., 2012; Dahl et al., 2012).

Traditionally a feature extraction pipeline will include many layers of hand-

crafted or off-the-shelf features. Popular off-the-shelf features for vision include

SIFT (Lowe, 1999) for example. One ground-breaking idea pioneered by Hinton

et al. (2006a); Bengio et al. (2007a) is to learn these features automatically using

unsupervised data which is often easy to obtain. These features will have the

advantage of being more tuned to the data and often the classification task. A

paper which I’ve co-authored (Bengio et al., 2013) also shows deep algorithms lead

to better mixing during sampling.

2.4.1 Deep belief nets

Stacking RBMs leads to a generative model called the deep belief net (DBN).

The training algorithm is a greedy iterative procedure. The RBM at layer l is

trained on pseudo-data sampled from the posterior p(h|x) of the model at layer

26

l − 1. This results in the following generative model

p(v, h(1), · · · , h(L)) =
[
L−1∏
l=1

p(h(l−1)|h(l))
]
p(h(L−1), h(L)).

Surprisingly this model combines both directed and undirected connections even

though the basic RBM is undirected (Figure 2.4). The last layer has undirected

connections while the other layers are directed top-down. Exact inference in the

model is intractable because of the depth and the presence of the directed con-

nections. The features can be extracted by propagating the posterior over hiddens

upward in the model. Hinton et al. (2006a) suggest using the last layer of the DBN

as features or using the DBN to pretrain a deep neural network. In the case of

pretraining, the parameters of the trained DBN are used as a starting point for the

optimization of the DNN.

2.4.2 Stacked auto-encoders

Recent work (Bengio et al., 2007a; Vincent et al., 2010; Rifai et al., 2011) has

shown that several regularized auto-encoders can take advantage of depth. The

earliest work (Bengio et al., 2007a) generalizes the result of (Hinton et al., 2006a)

with RBMs to classical auto-encoders. Even without regularization the classical

auto-encoder trained with a greedy layer-wise fashion is able to reduce the error on

MNIST from 2.4% to 1.4% Bengio et al. (2007a). In most work with auto-encoders

(Bengio et al., 2007a; Vincent et al., 2010; Rifai et al., 2011) a greedy layer-wise

scheme is used to obtain a deep architecture. This means training an auto-encoder

at layer l on the representation learned by the auto-encoder at layer l − 1. There

has been interest for deep auto-encoders that are trained globally but this is still

an open research area. A difficulty of this approach is that of optimizing such a

deep auto-encoder.

2.5 Why does pretraining work?

Experiments have shown that pretraining helps mainly as a regularizer and as

an aid to optimization to some extent (Erhan et al., 2010). As a regularization,

27

the prior enforced by pretraining is that the supervised task is based on the factors

that explain some of the variations salient in the input data. In traditional machine

learning, we assume the targets are directly related to the observations and we

model this directly. In the case of pretraining for supervised tasks, we assume both

the observations and the targets are caused by latent factors. In this framework, it

makes sense to model the latent factors. Moreover, the targets are typically one-hot

vectors which convey little information about the patterns to be detected. Learning

the distribution of the observation has the benefit of being very rich in information

because the targets are dense vectors. This allows the unsupervised model to

quickly recover the latent factors (Erhan et al., 2010). When the parameters of the

unsupervised model are used to initialize a neural network they set it up in a local

basin of attraction. The pretraining process will saturate the hidden units making

it more difficult to move far in optimization space. This will force the optimizer

to seek a minimum that is close to the initialization (Erhan et al., 2010). Some

evidence suggests that pretraining is also useful to optimization (Erhan et al., 2010).

However, my experiments on datasets larger than those considered in (Erhan et al.,

2010) have shown that pretraining does not help in these regimes (over 1 billion

examples), which contradicts the notion that it helps optimization.

2.6 Beyond pretraining

Glorot et al. (2011a) has gone beyond the breakthrough of (Hinton et al., 2006a;

Bengio et al., 2007a) by showing yet another way to train deep neural nets. It is

a sizeable departure from both (Hinton et al., 2006a; Bengio et al., 2007a) because

it does not rely on unsupervised pretraining in any way. This makes the approach

simpler to use for practitioners and more applicable to very large-scale labeled

datasets. Glorot et al. (2011a) shows that DNN with ReLU activation units can

be trained without layer-wise pretraining. Hinton et al. (2012) further explores

this direction using a new regularization. The idea is to set with probability p a

random subset of the hidden units to 0 during the training of the DNN. At test

time, the parameters are divided by p as a correction. This procedure helps to

fight co-adaptation in the hidden units. Another explanation proposed by (Hinton

et al., 2012) is that dropout is an efficient way to do bagging with an exponential

28

amount of networks with shared parameters. An element of this bag corresponds

to a network with a particular subset of its units dropped-out. Dividing by p can be

thought of as a crude way to average over all possible networks. Several other works

have started exploring alternative ways to train deep networks without layer-wise

pretraining (Goodfellow, 2013; Wang and Manning, 2013; Zeiler and Fergus, 2013).

Another possible way beyond pretraining is joint optimization of a discrimina-

tive generative model (?). This approach relies on optimizing an objective related

to the pseudo-likelihood of a deep Boltzmann machine (Salakhutdinov and Hinton,

2009a). This would eliminate the cumbersome pretraining phase by combining it

with supervised finetuning. Another advantage is that it would allow the features

at different layers to learn to cooperate. The regularization occurs by forcing the

hidden features to generate both the labels and the observations. Rasmus et al.

(2014) has shown impressive results using a related approach, reaching 0.60% on

MNIST.

In Chapter 8 we propose a geometric way to regularize deep neural networks

that does not require pretraining. The idea is to penalize the Lipshitz constant

of a deep neural network, thus leveraging the basic idea of smoothness to achieve

generalization.

2.7 Challenges

There are numerous open questions in deep learning. One significant question

is what makes a good representation? There have been many serious attempts at

answering this question experimentally (Bengio et al., 2007a; Vincent et al., 2010;

Rifai et al., 2011). Experimental evidence has shown that the specific encoding for

the representation may be as important as the principle used to learn it (Coates

and Ng, 2011). Another important issue is how to learn tasks where examples

cannot easily be represented by vectors. This will be crucial in creating systems

that can properly handle natural language. Unlike images, sentences cannot easily

be represented by a fixed vector because they have variable length. New approaches

Socher et al. (2011); Sutskever (2012) have recently been proposed but it remains

an open problem. The question that is the focus of this document is how to scale

these algorithms to large-scale problems? On one hand, the unsupervised learning

29

algorithms used in deep learning do not scale well with input size. This limits the

application of deep learning in natural language processing where the inputs can be

quite large. On the other hand, training networks with large hidden representations

is not well studied. Anecdotal evidence suggests diminishing returns for larger

networks.

30

3 Prologue to first article

3.1 Article Detail

Large-scale learning of embeddings with reconstruction sampling.

Yann N. Dauphin, Xavier Glorot, Yoshua Bengio. Proceedings of the Proceedings

of the 28th International Conference on Machine Learning (ICML 2011).

Personal Contribution.

Yoshua Bengio proposed the original idea that led to this paper. I was respon-

sible for the practical implementation of the method. This required implementing

numerous missing sparse operators in the Theano library (Bastien et al., 2012).

Xavier Glorot ran the experiments on one dataset, while I ran the experiments on

a second dataset. Xavier Glorot and I collaborated closely to tune the algorithm

to obtain good results. I contributed heavily to the writing, with Yoshua Bengio

writing the introductory sections.

3.2 Context

This paper was motivated by removing a roadblock for denoising auto-encoders

in natural language processing. The deep learning breakthrough of Hinton and

Salakhutdinov (2006) had shown that using unsupervised algorithms to pretrain

deep neural nets led to superior results. This observation had been applied to

vision problems (Lee et al., 2009) and speech recognition (Dahl et al., 2010). In

comparison, deep learning were not generating as much interest and breakthroughs

in natural language processing. One drawback to unsupervised learning methods

used in deep learning is that they were not capable of leveraging sparsity. This is

crucial for applications to text because they often deal with large sparse vectors.

31

It appeared that solving this problem could allow much wider use of deep learning

in this context.

3.3 Contributions

This paper allowed training denoising auto-encoders with very large sparse in-

puts. While the method is approximate, we demonstrate that it does not degrade

the quality of the mode significantly. We observed that speed-ups of over an order

of magnitude could be obtained without degradation in our experiments.

We also contributed experiments demonstrating the effectiveness of deep learn-

ing for natural language processing. We achieved two state-of-the-art results in this

paper. Following this, Glorot et al. (2011c) noted that the use of reconstruction

sampling allowed using a larger vocabulary and thus allowed better performance

on an important sentiment classification benchmark. The method was also used

to win the Unsupervised Learning and Transfer Learning Challenge (Mesnil et al.,

2012). The task here was to learn representations for text that supported good

transfer between domains. Finally, the method has helped garner more interest in

using unsupervised methods with textual data (Deoras and Sarikaya, 2013; Lauly

et al., 2014; Vincent, 2014).

32

4

Scaling DAEs to
high-dimensional sparse
inputs with importance
sampling

In recent years, there has been a surge of interest for unsupervised representation

learning algorithms, often for the purpose of building deep hierarchies of features 1.

See Bengio (2009b) for a recent review of Deep Learning algorithms, which are

based on unsupervised learning of representations, one layer at a time, in order to

build more abstract higher-level representations by the composition of lower-level

ones. These representations are often used as input for classifiers, and measuring

classification error is a good way, also chosen here, for evaluating the usefulness

of these representations. One problem with these unsupervised feature learning

approaches is that they often require computing a mapping from the learned rep-

resentation back into the input space, e.g., either to reconstruct the input, denoise

it, or stochastically generate it. Consider learning tasks where the input space is

huge and sparse, as in many Natural Language Processing (NLP) tasks. In that

case, computing the representation of the input vector is very cheap because one

only needs to visit the non-zero entries of the input vector, i.e., multiply a very

large dense matrix by a very sparse vector. However, reconstructing a huge

sparse vector involves computing values for all the elements of that vector, and

this can be much more expensive. For example with a bag-of-words representation

of a 100-word paragraph and a vocabulary size of 100,000 words, computing the re-

construction from the representation is 1000 times more expensive than computing

the representation itself.

The main contribution of this work starts from a very simple idea: train

to reconstruct only the non-zeros and a random subset of the zeros.

This introduces a bias in the reconstruction error (giving more weight to non-zeros

than to zeros), which can be potentially beneficial or detrimental, but that can

be corrected by a reweighting of error terms. The idea has also been refined in

the context of the Denoising Auto-encoder, used for unsupervised learning of the

1. see NIPS’2010 Workshop on Deep Learning and Unsupervised Feature Learning,
http://deeplearningworkshopnips2010.wordpress.com/

33

embeddings in our experiments. Instead of focusing only on the non-zeros of the

uncorrupted input, we include also the non-zeros of the corrupted input, in order to

sample the inputs on which the error is most likely to be large (since this minimizes

the variance of our sampling-based estimator).

4.1 Related Work

There has been much previous work on learning embeddings for NLP. See Ben-

gio (2008) for a review in the context of neural-network based models, which are

related to the approach described here. The foundation of these ideas is the connec-

tionist idea of distributed representations, even for symbolic data Hinton (1986).

In NLP, this idea has been explored in particular using linear embeddings of words,

e.g., with Latent Semantic Indexing (LSI) and related approaches Deerwester et al.

(1990); Schutze (1993). Keep in mind that this is essentially based on finding

principal components of the co-occurrence matrix (words co-occurring in the same

document), and that a linear auto-encoder with squared reconstruction error with

a bag-of-words representation would find the same representation as LSI. The com-

bination of connectionist ideas and NLP was first explored at the character level,

e.g. Miikkulainen and Dyer (1991), and later for words and language models Bengio

et al. (2001) with a neural probabilistic language model. S of such models. Ben-

gio et al. (2001) showed that these models could substantially improve on models

based purely on n-grams in terms of perplexity, while Schwenk and Gauvain (2002)

showed how to exploit these language models in state-of-the-art speech recognition

systems. A core computational limitation of these models is that the neural network

prediction (e.g., of the next word given previous words) consists of a probability

for each word in the vocabulary, which makes computation scale with vocabulary

size. In early work, this was addressed by limiting the vocabulary of the predicted

words (and possibly using a cheaper predictor such as n-grams for the other ones).

In order to address this computational limitation and scale to larger vocabular-

ies and larger datasets, two kinds of approaches were introduced in the past: using

a tree structure for the predictions, or using sampling to visit only a few of the pos-

sible words. The approach introduced here is of the second kind. Tree-structured

predictors are based on learning a class hierarchy and require only visiting the path

34

from the root to the leaf corresponding to the observed word Morin and Bengio

(2005); Mnih and Hinton (2009). Sampling-based algorithms rely on stochastic

approximations of the gradient which only require to compute the prediction on a

small subset of the words Bengio and Sénécal (2003, 2008); Collobert and Weston

(2008). Whereas the early attempts Bengio and Sénécal (2003, 2008) are focused

on correctly estimating conditional probabilities (for the next word), Collobert and

Weston (2008) only try to rank the words, with a criterion that can be written as

a sum over words (comparing the score of the observed word with the score of any

other word). This sum can be estimated by a Monte-Carlo sample. This works

even with a single sample in the context of stochastic gradient descent, where we

do a very large number of stochastic updates but each of them is small, hence

averaging out much of the sampling noise. Whereas all these focused on predicting

the next word, we focus here on reconstructing an input bag-of-words, or more

generally a very sparse high-dimensional vector, since this kind of reconstruction

is a basic requirement for many Deep Learning algorithms. We are not trying to

predict word probabilities, only to learn good embeddings (which are used as part

of a classifier) so we do not really need the reconstruction outputs to be calibrated

probabilities.

4.2 Denoising Auto-Encoders

4.2.1 Introduction

In this paper we have applied the proposed idea of sampling reconstructions

in the context of the Denoising Auto-Encoder (DAE) as the building block for

training deep architectures, because our preliminary experiments found that a par-

ticular form of DAE surpassed the state-of-the-art in a text categorization task of

sentiment analysis Glorot et al. (2011b). The DAE is a learning algorithm for unsu-

pervised feature extraction Vincent et al. (2008): it is provided with a stochastically

corrupted input and trained to reconstruct the original clean input. Its training

criterion can be shown to relate to several training criteria for density models of the

input, either via bounds Vincent et al. (2008) or through Score Matching Hyvärinen

(2005); Vincent (2010). Intuitively, the difference vector between the reconstruc-

tion and the input is the model’s guess as to the direction of greatest increase in the

35

likelihood, whereas the difference vector between the noisy corrupted input and the

clean original is nature’s hint of a direction of greatest increase in likelihood (since

a noisy version of a training example is very likely to have a much lower probability

under the data generating distribution than the original). It can also be shown that

the DAE is extracting a representation that tries to preserve as much as possible

of the information in the input Vincent et al. (2008).

noise

g

x̃ x

h

h

Figure 4.1: Schematic of the Denoising Auto-Encoder

The Denoising Auto-Encoder reconstruction f(x) = h(g(x)) is composed of an

encoder function g(·) and a decoder function h(·) (see Figure 4.1). During training,

the input vector x ∈ [0, 1]dx is partially and randomly corrupted into the vector

x̃. The encoder takes x̃ and maps it into a hidden representation h ∈ [0, 1]dh .

The decoder takes the representation h and maps it back to a vector z in the input

space ([0, 1]dx in our case). The DAE is trained to map a corrupted input x̃ into the

original input x such that g(h(x̃)) ≈ x. This forces the code h to capture important

and robust features of x. Many corruption processes are possible, but they should

have the property of generally producing less plausible examples. Typically, inputs

are corrupted by randomly setting elements of x to 0 or 1, or adding Gaussian

noise. The encoder function used in Vincent et al. (2008) is

a1 = W(1)x̃ + b(1)

h = s1(a1) (4.1)

where sa is a non-linear function like the sigmoid sa(u) = 1/(1 + exp(−u)), W(1)

is a dh × dx weight matrix and b(1) is a dh × 1 vector. In Vincent et al. (2008) the

36

function computed by the decoder is

a2 = W(2)h + b(2)

z = s2(a2) (4.2)

Where W(2) is a dx × dh weight matrix and b(2) is a dx × 1 vector.

4.2.2 Training

Given a dataset Dn = (x(1),x(2), . . . ,x(n)), the parameters (W(1), b(1), W(2),

b(2)) are trained by stochastic gradient descent, following Vincent et al. (2008), to

minimize the cross-entropy

R̂(f,Dn) = 1
n

n∑
i

L(x(i), f(x̃(i)))

L(x, z) =
d∑
k

H(xk, zk)

=
d∑
k

−[xklogzk + (1− xk)log(1− zk)]

where H is the cross-entropy, x and z are considered as vectors of binomial proba-

bilities.

4.2.3 Motivation

The Denoising Auto-Encoder can learn a representation from unlabeled data,

but it can be later fine-tuned using labeled data. The ability to exploit large

quantities of unlabeled data is very important because labeled data are usually

scarce. Obtaining labeled data usually requires paying for the manual labeling of

unlabeled samples. Furthermore, in the context of Natural Language Processing,

the World Wide Web is a gold mine of unlabeled data. In contrast, using a purely

supervised training approach (i.e. SVMs, CRFs) can only exploit the scarce labeled

data.

The hypothesis that has been confirmed earlier for specific datasets Vincent

et al. (2008) is that the representation h learned by the DAE makes the statis-

tical structure of the input clearer, in the sense that it can be advantageous for

37

initializing a supervised classifier. It has been shown that Auto-Encoders (espe-

cially deep ones) go beyond Principal Component Analysis (PCA) by capturing

multi-modal interactions in the input distribution Japkowicz et al. (2000); Hinton

and Salakhutdinov (2006). In other words, the encoder learns to project x into a

space h where the original factors of variation of the data tend to be better sepa-

rated. Experimental results show that using h instead of x as input to a classifier

can significantly help achieve better generalization Erhan et al. (2010); Larochelle

et al. (2007).

4.3 Scaling the Denoising Auto-Encoder

4.3.1 Challenges

The dot products involved in the training of the DAE are expensive. The

computations involved in g, h, the gradient ∇g through g, and the gradient ∇h
through h are all in O(dx× dh), where dx is the size of the sparse input vector and

dh is the size of the representation code.

This is problematic in the context of Natural Language Processing because the

desired input size dx may be in the millions.

4.3.2 Scaling the Encoder: Sparse Dot Product

We can take advantage of sparsity in any dot product u · v because the null

elements ui or vi do not influence the result. This is also true for the matrix-vector

product. Therefore, we can reduce the cost of the dot product by computing

only the operations linked to non-zero elements, i.e., g ∈ O(dNNZ × dh), where

dNNZ is the number of non-zero elements in x. The theoretical speed-up would

be dx/dNNZ . This also applies to the gradient with respect to W(1) (∂R̂/∂W(1) =
∂R̂/∂a1x′). In practice, the speed-up is smaller because working with dense vector

and matrix multiplications can be done more efficiently on modern computers,

i.e., there is an overhead for handling sparse vectors. In our experiments we have

found the overhead to be on the order of 50%. On the other hand, the biggest

loss in comparison to a dense implementation comes from losing the use of BLAS’

38

optimized matrix-matrix product (GEMM), when training the model by showing

one minibatch at a time (e.g. 10 in our experiments). The speedup from the dense

matrix-matrix multiplication is on the order of 3 in our experiments, hence for the

sparse computation to be advantageous, the sparsity level must be high enough to

compensate for these two disadvantages).

4.3.3 Scaling the Decoder: Reconstruction Sampling

We introduce reconstruction sampling to make the decoder scalable. The idea

is to calculate the reconstruction cost L based only on a sub-sample of the input

units:

L̂(x, z) =
d∑
k

p̂k
qk
H(xk, zk)

where we introduce p̂ ∈ {0, 1}dx with p̂ ∼ P (p̂|x), and scalar weights 1/q. The

sampling pattern p̂ controls whether a given input unit will participate in the learn-

ing objective for this presentation of the example x. If training iterates through

examples in the training set, the next time x is seen again, a different pattern p̂
may be sampled. In this paper, we have found that an effective sampling procedure

is to choose P (p̂|x) to reconstruct all non-zero inputs and a set of randomly chosen

zero inputs. The average number of sampled units is defined as dSMP .

The scalar weights 1/qk allow us to compensate for non-uniform choices of the

sampling probabilities for the corresponding binary random variables p̂k. If qk =
E[p̂k|k,x, x̃], then this is an importance sampling scheme, i.e., the expected cost

is guaranteed to be unchanged by the sampling procedure since E[p̂k
qk
|k,x, x̃] = 1.

This is related to but different from Bengio and Sénécal (2003), in which x is a

one-hot vector indicating what is the next word, and there is less information about

which bits it matters most to sample.

We propose L̂ instead of L as a (stochastic) training objective because it can be

computed more efficiently, and we empirically find that it yields similar solutions

for the same number of training updates. If pk = 0, then zk need not be computed

since it does not influence the cost L̂. Calculating each zk = s2(W(2)
k h + b(2)

k) is on

the order of O(dh). Therefore, computing only the units zk that are sampled yields

h ∈ O(dSMP × dh)

39

with the expected speed-up of dx/dSMP
.

The gradients for L̂ can also be calculated more efficiently. The gradient for the

elements zk where pk = 0 is null, so ∂R̂
∂z contains only dSMP non-zero values. We

calculate the gradients using the sparse dot product presented in section 4.3.2:

∂R̂

∂W(2) = ∂R̂

∂a2
h′

∂R̂

∂h
= W(2)′ ∂R̂

∂a2

The speed-up for both operations is on the order of dx/dSMP
.

Sampling probabilities The optimal sampling probabilities P (p̂|x) are those

that yield the minimum variance of the estimator (under the assumption that we

choose the weights 1/q in order to get an unbiased estimator), since the total error

of the sampling-based estimator is variance plus bias squared (and we are setting the

bias to 0). Like for importance sampling, the minimum variance is achieved when

P (p̂|x) is proportional to the absolute value of the original distribution (uniform

here) times the integrand, which here is just the reconstruction loss. Hence we

should ideally pick those bits k on which the model is most likely to make a large

error, but of course we do not know that before we sample which ones to reconstruct.

The heuristic we propose is to always pick those bits k on which either xk = 1 or

x̃k = 1, and to pick the same number of bits randomly from the remainder. Let

C(x, x̃) = {k : xk = 1 or x̃k = 1}. Then we choose to reconstruct unit k with

probability

P (p̂k = 1|xk) =

 1 if k ∈ C(x, x̃)
|C(x, x̃)|/dx otherwise

(4.3)

The motivation for this heuristic is that because of the input sparsity, the 1’s tend

to come more as a surprise than 0’s, and hence yield a larger reconstruction error.

Regarding the cases where the auto-encoder input xk = 1 when xk 6= 1, these

also tend to yield large errors, because the auto-encoder has to uncover the fact

that those bits were flipped due to the corruption process, and cannot just copy

them from the input. A smaller-variance estimator could probably be obtained

by numerically estimating the average error associated to different bits depending

on whether or not it is a 1 or a 0 in xk and x̃k, but we have found that with

40

this simple scheme we achiExperimental Results on Amazon (small set)eve the

same accuracy curve (as a function of number of updates) as with the dense (not

sampled) training scheme, hence there is not much room left for improvement.

In fact, it is questionable whether perfectly unbiasing the sampling scheme (i.e.

choosing corrections qk = P (p̂k = 1)) is what most helps produce the most useful

embeddings, e.g., as measured by classification error from the learned intermediate

features, on a predictive task of interest. For example, it could be argued that

in the case of sparse input vectors, the non-zero inputs provide more important

information and that error on them should be penalized more, which would argue

in favor of choosing weights 1/qk constant (e.g. 1). We therefore experiment with

both the unbiased scheme (eq. 6.7) and a biased scheme (qk = 1).

4.4 Implementation

4.4.1 Encoder

We implement the encoder as:

h = s1(SparseDotCSR(x̃,W(1)) + b(1))

SparseDotCSR(A,B) = AB. Note the operation is transposed compared to equa-

tion 4.1. In this setting, W(1) is a dx × dh, b(1) is 1 × dh. SparseDotCSR is more

efficient when the sparse operand appears first. The input x and x̃ are stored in

Compressed Sparse Row (CSR) format.

The gradient is given by:

∂R̂

∂W(1) = SparseDotCSC(x′, ∂R̂
∂a1

)

Where xT is in Compressed Sparse Column (CSC) format.

For reference, the implementation of SparseDotCSR is given in Algorithm 1.

The implementation of SparseDotCSC is similar. NON-ZERO-INDICES(u) returns

the set of non-zero indices in the row vector u. AXPY(α,A,B) = αA + B is part of

the BLAS programming interface Lawson et al. (1979).

41

In our experiments, AXPY is provided by the highly optimized Goto BLAS Goto

and Geijn (2008). Note that this is an important optimization. Typical implemen-

tations of Auto-Encoders rely on BLAS for their dot products, our operations must

also leverage BLAS to be competitive.

Algorithm 1 SparseDotCSR(A, B)

Input: A = [Aij]M×K , B = [Bij]K×N
Output: C = [Cij]M×N

for m = 1 to M do
for all k ∈ NON-ZERO-INDICES(xm) do

Cm ← AXPY(Amk,Bk,Cm)
end for

end for

4.4.2 Decoder

The decoder is implemented as:

z = s2(SamplingDot(h,W(2), p̂) + b(2))

SamplingDot(A,B,C) outputs C ◦ (AB), where ◦ is element-wise multiplica-

tion. In comparison with equation 4.2, the operations are transposed and W(2) is

supposed to be dh × dx while b(2) is 1× dx.
The key differences between SamplingDot and C ◦ (AB) are:

1. The values in AB set to 0 by the element-wise product with C are not

calculated.

2. The B matrix is expected to be dx × dh instead of dh × dx. In other words,

SamplingDot assumes B is transposed. This allows cache-friendly traversal

of that matrix. This is especially important because in our setting B is a

huge matrix.

W(2) is stored as dx × dh instead of dh × dx.

42

The gradients are calculated as:

∂R̂

∂W(2) = SparseDotDense(
∂R̂

∂a2

′

,h)

∂R̂

∂h
= SparseDotDense(

∂R̂

∂a2
,W(2))

SparseDotDense calculates the dot product between a sparse matrix represented in

dense format and a dense matrix. As explained in section 4.3.3, ∂R̂
∂a2

contains very

few non-zero elements. It isn’t converted into a sparse representation because the

conversion is expensive and would have to be performed for each training update.

The implementation for SamplingDot is given in Algorithm 2. The implemen-

tation of SparseDotDense is similar to Algorithm 1. DOT(u,v) = u · v is the vector

dot product. It is part of the BLAS programming interface and is implemented by

Goto BLAS in our experiments.

Algorithm 2 SamplingDot(A, B, C)

Input: A = [Aij]M×K , B = [Bij]N×K , C = [Cij]M×N
Output: D = [Dij]M×N

for m = 1 to M do
for n = 1 to N do

if Cmn 6= 0 then
Dm ← DOT(Am,Bn)

end if
end for

end for

4.5 Experiments

We perform two sets of experiments on two popular NLP datasets. First, we

show the properties and effectiveness of our approach in a setting where we can

compare with the non-sampled version of the training algorithm for DAEs. Second,

we train large-scale models on the Amazon dataset.

43

0 20 40 60 80 100Sampling Ratio (%)
0

5

10

15

20

25
Te

st
Se

t E
rro

r (%
)

0 50 100 150 200 250 300Epochs
13

14

15

16

17

18

19

20

Te
st

Se
t E

rro
r (%

)

Non-Sampled
2% Sampled

0 50 100 150 200 250 300Epochs
0

1000

2000

3000

4000

5000

6000

Te
st

Se
t R

ec
on

str
uc

tio
n E

rro
r

Non-Sampled
2% Biased Sampling
2% Unbiased Sampling

0 5 10 15 20 25 30 35 40CPU Time (Hours)
13

14

15

16

17

18

19

20

Te
st

Se
t E

rro
r (%

)

Non-Sampled
2% Sampled

Figure 4.2: Experimental Results on Amazon (small set). Increasing the sampling approxima-
tion does not hurt classification error, but yields a 10.5x speedup. The biased estimator gets a
worse reconstruction error, but not the unbiased one, and both convergence curves (in terms of
training epochs) are similar for all models.

Amazon Multi-Domain Sentiment Dataset. Sentiment analysis aims to de-

termine the judgment of a writer given a textual comment. We investigate our

reconstruction sampling method on the Amazon sentiment analysis data set, in-

troduced by Blitzer et al. (2007). It proposes a collection of more than 340, 000
product reviews on 25 different domains. For tractability, a smaller and more

controlled dataset has been released, containing four different domains, with 1000

positives and 1000 negatives examples for each domain and a few thousands of

unlabeled data. Our experiments will be conducted on both versions, we will refer

to this last version as “small Amazon” and to the complete set as “full Amazon.”

Reuters Corpus Volume I (RCV1) is a popular benchmark for document clas-

sification Lewis et al. (2004). It consists of over 800,000 real-world news wire stories

44

0 20 40 60 80 100Sampling Ratio (%)
0.70

0.75

0.80

0.85

0.90
Te

st
Se

t F
1 (

%)

0 10 20 30 40 50 60 70CPU Time (Hours)
0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Te
st

Se
t F

1 (
%)

Non-Sampled
2% Sampled

0 50 100 150 200 250 300Epochs
0

500

1000

1500

2000

2500

Te
st

Se
t R

ec
on

str
uc

tio
n E

rro
r

Non-Sampled
2% Biased Sampling
2% Unbiased Sampling

Figure 4.3: Experimental Results on RCV1. Increasing the sampling approximation does not
hurt test F1, but yields a 12x speedup. The biased estimator gets a worse reconstruction error,
but not the unbiased one.

represented in bag-of-words vectors with 47,236 dimensions. The dataset is split

into a training set with 23,149 documents and a test set with 781,265 documents.

The are three categories of labels to predict: Topics, Industries and Regions. There

are 103 non-mutually exclusive topics. We focus our experiment on predicting the

topics of documents. As proposed by Lewis et al. (2004) the performance measure

is the F1.0 over the test set.

Training Methodology. In our experiments, we perform unsupervised feature

extraction using DAEs and we use these features as input to classifier. On the

Amazon dataset, we train linear SVMs Fan et al. (2008). On the RCV1 dataset, a

logistic regression is used.

We train a set of baseline DAEs that perform no sampling as well as a set of

DAEs that have multiple levels of sampling. On the small Amazon and RCV1

dataset, we reduce the vocabulary to the 5000 most frequent input tokens in order

to make the training of the baseline practical. On the full Amazon dataset, we kept

25,000 dimensions.

DAEs are trained with a minibatch size of 10. We reserve 10% of the training

set of each dataset as a validation set. All hyper-parameters, for the DAEs and the

classifiers, are chosen based on the performance on the validation set. We monitor

validation and test error at different training epochs.

On the Amazon datasets we train linear SVMs for sentiment classification on

different domains (4 on the small Amazon and 7 on the large scale Amazon), The

reported value is the averaged test error and its standard deviation across domains.

The experiments are run on a cluster of computers with a double quad-core

45

Intel(R) Xeon(R) CPU E5345@2.33GHz with 8Gb of RAM.

Results. The kinds of embeddings learned on the Amazon data is shown in Fig-

ure 4.5, where the learned representations are non-linearly mapped to 2 dimensions

by t-SNE van der Maaten and Hinton (2008).

Sampling has no effect on the quality of the representation learned. In Figure

4.2 (top-left) and 4.3 (left), we plot the test set accuracy for different levels of

sampling. We observe the DAEs trained by reconstructing only 2% of the input

units give results as good as the DAEs trained without sampling. However, we have

found that the representation never reaches the same quality when the sampling

probability doesn’t depend on x (i.e. P (p̂k = 1) = dSMP/dx).

One epoch is a training pass through the training set. Figure 4.2 (top-right)

shows that the DAEs trained using sampling converge as fast in terms of epochs

(i.e. in term of training updates) as the DAE trained without. The sampling DAE

is trained to reconstruct only 2% of the input units. While initially the baseline

DAE converges faster, after a few epochs both DAEs exhibit similar convergence.

In order to assess the quality of the obtained results, we compared the averaged

test error over the 4 domains with published results by Blitzer et al. (2007), we

obtained an averaged test error of 13.7%, whereas they reported 16.7%.

Figure 4.2 (bottom-right) and 4.3 (middle) show that the training of DAEs

using sampling is much faster. In particular, we compare the learning curve of

a DAE that reconstructs only 2% of the input units and the baseline DAE. The

sampling DAE converges 10.5x faster on the Amazon dataset and 12x faster on the

RCV1 dataset.

Figure 4.2 (bottom-left) and 4.3 (right) show the effect of the term q on the

convergence of the reconstruction cost. In the biased DAE we set qk = 1 and

in the unbiased DAE we use qk = E[p̂k|k,x, x̃]. This experiment shows that the

DAE trained with the unbiased objective converges to the same reconstruction cost

as the baseline while the unbiased version does not (since it minimizes a different

cost). However, the networks using the biased and unbiased objectives converge

similarly in terms of the quality of the representation.

Figure 4.4 shows the speed-up and training curves obtained on the full Amazon

dataset, where the sampled reconstruction model converges 22 times faster, and

reconstructing about 0.5% of the inputs. Keep in mind that the baseline dense

46

0 100 200 300 400 500 600 700 800 900CPU Time (Hours)
8

9

10

11

12

13

14

15

16

17

Te
st

Se
t E

rro
r (%

)

Non-Sampled
0.5% Sampled

Figure 4.4: Experimental Results on Full Amazon set: test error vs CPU time. The speed-up
is about 22x.

training has been optimized already for speed (e.g., choosing the minibatch size

and optimized code).

4.6 Conclusion

We have introduced a very simple optimization to speed-up training of unsu-

pervised learning algorithms such as auto-encoders when the input vectors are very

large and very sparse. The basic idea is to reconstruct only the non-zero’s and a

random subsample of the zero’s of the input vector. A weighting scheme similar to

importance sampling yields an unbiased estimator. On a dataset with a large in-

put size we have found speed-up’s of up to 22x, even comparing to optimized dense

computation (using minibatches and BLAS’ optimized matrix-matrix multiplica-

tions). We expect much larger speed-ups will be obtained in applications involving

very large sparse input vectors, where the degree of sparsity is even larger than

those tested here (2% and .5%).

47

Figure 4.5: Embeddings learned on the Amazon sentiment data for a randomly selected set of
word stems. Colors indicate the Amazon domain, showing that the embedding large scale (left)
naturally discovers these categories. Right: zoom showing semantically similar words grouped
near each other, on the topic of electronics.

48

5 Prologue to second article

5.1 Article Detail

Stochastic Ratio Matching of RBMs for Sparse High-Dimensional

Inputs. Yann N. Dauphin, Yoshua Bengio. Proceedings of the Advances in Neural

Information Processing Systems 26 (NIPS’13).

Personal Contribution.

I proposed the idea that allowed extending the reconstruction sampling (Dauphin

et al., 2011) method to restricted Boltzmann machines. I implemented the algo-

rithm and performed all the experiments. I was responsible for writing the descrip-

tion of the algorithm and of ratio matching as well as the experimental section.

Yoshua Bengio wrote the introductory sections and did general editing of the pa-

per.

5.2 Context

Before this paper was published, it was costly to train binomial RBMs with

large sparse inputs. Dauphin et al. (2011) had proposed a solution for the denoising

auto-encoders, but this method did not apply directly to RBMs. The crux of the

difficulty resided in the fact that it was hard to subsample the input without biasing

the Gibbs chain. Dahl et al. (2012b) introduced a method for training RBMs with

softmax inputs. The method replaces the traditional Gibbs chain with iterations

of Metropolis-Hastings sampling. This allowed training on word observations in

the form of n-grams. The experiments showed this approach was quite useful in

practice. This made the application of RBMs to language modelling tractable.

However, it left open the question of training on general high-dimensional sparse

distributions.

49

5.3 Contributions

The paper extends the work described in (Dauphin et al., 2011) to binomial

RBMs. We were able to reformulate the objective ratio matching in a manner that

is similar to auto-encoders. Using this, we were able to devise a good importance

sampling distribution inspired by (Dauphin et al., 2011). We showed that this

technique can be successfully unbiased using importance weights. Experimentally,

the RBMs trained using the proposed method of stochastic ratio matching are able

to match the performance of RBMs trained with either ratio matching or stochastic

maximum likelihood. The RBMs were evaluated based on their estimated negative

log-likelihood on two natural language processing datasets. The stochastic ratio

matching method led to orders of magnitude speed-ups. When used to pretrain

neural networks, we obtained state-of-the-art results on two topic classification

datasets.

50

6

Scaling RBMs to
high-dimensional sparse
inputs with importance
sampling

Unsupervised feature learning algorithms have recently attracted much atten-

tion, with the promise of letting the data guide the discovery of good represen-

tations. In particular, unsupervised feature learning is an important component

of many Deep Learning algorithms (Bengio, 2009a), such as those based on auto-

encoders (Bengio et al., 2007b) and Restricted Boltzmann Machines or RBMs (Hin-

ton et al., 2006b). Deep Learning of representations involves the discovery of several

levels of representation, with some algorithms able to exploit unlabeled examples

and unsupervised or semi-supervised learning.

Whereas Deep Learning has mostly been applied to computer vision and speech

recognition, an important set of application areas involve high-dimensional sparse

input vectors, for example in some Natural Language Processing tasks (such as the

text categorization tasks tackled here), as well as in information retrieval and other

web-related applications where a very large number of rarely non-zero features can

be devised. We would like learning algorithms whose computational requirements

grow with the number of non-zeros in the input but not with the total number of fea-

tures. Unfortunately, auto-encoders and RBMs are computationally inconvenient

when it comes to handling such high-dimensional sparse input vectors, because

they require a form of reconstruction of the input vector, for all the elements of the

input vector, even the ones that were zero.

In Section 6.1, we recapitulate the Reconstruction Sampling algorithm (Dauphin

et al., 2011) that was proposed to handle that problem in the case of auto-encoder

variants. The basic idea is to use an importance sampling scheme to stochastically

select a subset of the input elements to reconstruct, and importance weights to

obtain an unbiased estimator of the reconstruction error gradient.

In this paper, we are interested in extending these ideas to the realm of RBMs.

In Section 6.2 we briefly review the basics of RBMs and the Gibbs chain involved

in training them. Ratio matching (Hyvärinen, 2007), is an inductive principle

and training criterion that can be applied to train RBMs but does not require

51

a Gibbs chain. In Section 6.3, we present and justify a novel algorithm based

on ratio matching order to achieve our objective of taking advantage of highly

sparse inputs. The new algorithm is called Stochastic Ratio Matching or SRM.

In Section 6.5 we present a wide array of experimental results demonstrating the

successful application of Stochastic Ratio Matching, both in terms of computational

performance (flat growth of computation as the number of non-zeros is increased,

linear speedup with respect to regular training) and in terms of generalization

performance: the state-of-the-art on two text classification benchmarks is achieved

and surpassed. An interesting and unexpected result is that we find the biased

version of the algorithm (without reweighting) to yield more discriminant features.

6.1 Reconstruction Sampling

An auto-encoder learns an encoder function f mapping inputs x to features

h = f(x), and a decoding or reconstruction function g such that g(f(x)) ≈ x for

training examples x. See Bengio et al. (2012) for a review. In particular, with the

denoising auto-encoder, x is stochastically corrupted into x̃ (e.g. by flipping some

bits) and trained to make g(f(x̃)) ≈ x. To avoid the expensive reconstruction g(h)
when the input is very high-dimensional, Dauphin et al. (2011) propose that for each

example, a small random subset of the input elements be selected for which gi(h)
and the associated reconstruction error is computed. To make the corresponding

estimator of reconstruction error (and its gradient) unbiased, they propose to use

an importance weighting scheme whereby the loss on the i-th input is weighted by

the inverse of the probability that it be selected. To reduce the variance of the

estimator, they propose to always reconstruct the i-th input if it was one of the

non-zeros in x or in x̃, and to choose uniformly at random an equal number of

zero elements. They show that the unbiased estimator yields the expected linear

speedup in training time compared to the deterministic gradient computation, while

maintaining good performance for unsupervised feature learning. We would like to

extend similar ideas to RBMs.

52

6.2 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is an undirected graphical model with

binary variables (Hinton et al., 2006b): observed variables x and hidden variables

h. In this model, the hidden variables help uncover higher order correlations in the

data.

The energy takes the form

−E(x,h) = hTWx + bTh + cTx

with parameters θ = (W,b, c).
The RBM can be trained by following the gradient of the negative log-likelihood

−∂ logP (x)
∂θ

= Edata

[
∂F (x)
∂θ

]
− Emodel

[
∂F (x)
∂θ

]

where F (x) is the free energy (unnormalized log-probability associated with P (x)).
However, this gradient is intractable because the second expectation is combina-

torial. Stochastic Maximum Likelihood or SML (Younes, 1999; Tieleman, 2008)

estimates this expectation using sample averages taken from a persistent MCMC

chain (Tieleman, 2008). Starting from xi a step in this chain is taken by sampling

hi ∼ P (h|xi), then we have xi+1 ∼ P (x|hi). SML-k is the variant where k is the

number of steps between parameter updates, with SML-1 being the simplest and

most common choice, although better results (at greater computational expense)

can be achieved with more steps.

Training the RBM using SML-1 is on the order of O(dn) where d is the dimen-

sion of the input variables and n is the number of hidden variables. In the case

of high-dimensional sparse vectors with p non-zeros, SML does not take advantage

of the sparsity. More precisely, sampling P (h|x) (inference) can take advantage of

sparsity and costs O(pn) computations while “reconstruction”, i.e., sampling from

P (x|h) requires O(dn) computations. Thus scaling to larger input sizes n yields

a linear increase in training time even if the number of non-zeros p in the input

remains constant.

53

6.3 Ratio Matching

Ratio matching (Hyvärinen, 2007) is an estimation method for statistical models

where the normalization constant is not known. It is similar to score matching

(Hyvärinen, 2005) but applied on discrete data whereas score matching is limited

to continuous inputs, and both are computationally simple and yield consistent

estimators. The use of Ratio Matching in RBMs is of particular interest because

their normalization constant is computationally intractable.

The core idea of ratio matching is to match ratios of probabilities between the

data and the model. Thus Hyvärinen (2007) proposes to minimize the following

objective function

Px(x)
d∑
i=1

[
g

(
Px(x)
Px(x̄i)

)
− g

(
P (x)
P (x̄i)

)]2

+
[
g

(
Px(x̄i)
Px(x)

)
− g

(
P (x̄i)
P (x)

)]2

(6.1)

where Px is the true probability distribution, P the distribution defined by the

model, g(x) = 1
1+x is an activation function and x̄i = (x1, x2, . . . , 1−xi, . . . , xd). In

this form, we can see the similarity between score matching and ratio matching. The

normalization constant is canceled because P (x)
P (x̄i) = e−F (x)

e−F (x̄i) , however this objective

requires access to the true distribution Px which is rarely available.

Hyvärinen (2007) shows that the Ratio Matching (RM) objective can be sim-

plified to

JRM(x) =
d∑
i=1

(
g

(
P (x)
P (x̄i)

))2

(6.2)

which does not require knowledge of the true distribution Px. This objective can

be described as ensuring that the training example x has the highest probability

in the neighborhood of points at hamming distance 1.

We propose to rewrite Eq. 6.2 in a form reminiscent of auto-encoders:

JRM(x) =
d∑
i=1

(xi − P (xi = 1|x−i))2. (6.3)

This will be useful for reasoning about this estimator. The main difference with

auto-encoders is that each input variable is predicted by excluding it from the

input.

Applying Equation 6.2 to the RBM we obtain JRM(x) = ∑d
i=1 (σ(F (x)− F (x̄i)))2

.

54

The gradients have the familiar form

−∂JRM(x)
∂θ

=
d∑
i=1

2ηi
[
∂F (x)
∂θ

− ∂F (x̄i)
∂θ

]
(6.4)

with ηi = (σ(F (x)− F (x̄i)))2 − (σ(F (x)− F (x̄i)))3
.

A naive implementation of this objective is O(d2n) because it requires d com-

putations of the free energy per example. This is much more expensive than

SML as noted by Marlin et al. (2010). Thankfully, as we argue here, it is pos-

sible to greatly reduce this complexity by reusing computation and taking advan-

tage of the parametrization of RBMs. This can be done by saving the results

of the computations α = cTx and βj = ∑
iWjixi + bj when computing F (x).

The computation of F (x̄i) can be reduced to O(n) with the formula −F (x̄i) =
α− (2xi− 1)ci +∑

j log(1 + eβj−(2xi−1)Wji). This implementation is O(dn) which is

the same complexity as SML. However, like SML, RM does not take advantage of

sparsity in the input.

6.4 Stochastic Ratio Matching

We propose Stochastic Ratio Matching (SRM) as a more efficient form of ratio

matching for high-dimensional sparse distributions. The ratio matching objective

requires the summation of d terms in O(n). The basic idea of SRM is to estimate

this sum using a very small fraction of the terms, randomly chosen. If we rewrite

the ratio matching objective as an expectation over a discrete distribution

JRM(x) = d
d∑
i=1

1
d
g2
(
P (x)
P (x̄i)

)
= dE

[
g2
(
P (x)
P (x̄i)

)]
(6.5)

we can use Monte Carlo methods to estimate JRM without computing all the terms

in Equation 6.2. However, in practice this estimator has a high variance. Thus it

is a poor estimator, especially if we want to use very few Monte Carlo samples.

The solution proposed for SRM is to use an Importance Sampling scheme to ob-

tain a lower variance estimator of JRM . Combining Monte Carlo with importance

55

sampling, we obtain the SRM objective

JSRM(x) =
d∑
i=1

γi
E[γi]

g2
(
P (x)
P (x̄i)

)
(6.6)

where γi ∼ P (γi = 1|x) is the so-called proposal distribution of our importance

sampling scheme. The proposal distribution determines which terms will be used

to estimate the objective since only the terms where γi = 1 are non-zero. JSRM(x)
is an unbiased estimator of JRM(x), i.e.,

E[JSRM(x)] =
d∑
i=1

E[γi]
E[γi]

g2
(
P (x)
P (x̄i)

)
= JRM(x)

The intuition behind importance sampling is that the variance of the estimator

can be reduced by focusing sampling on the largest terms of the expectation. More

precisely, it is possible to show that the variance of the estimator is minimized when

P (γi = 1|x) ∝ g2(P (x)/P (x̄i)). Thus we would like the probability P (γi = 1|x) to

reflect how large the error (xi−P (xi = 1|x−i))2 will be. The challenge is finding a

good approximation for (xi−P (xi = 1|x−i))2 and to define a proposal distribution

that is efficient to sample from.

Following Dauphin et al. (2011), we propose such a distribution for high-dimensional

sparse distributions. In these types of distributions the marginals Px(xi = 1) are

very small. They can easily be learned by the biases c of the model, and may even

be initialized very close to their optimal value. Once the marginals are learned, the

model will likely only make wrong predictions when Px(xi = 1|x−i) differs signifi-

cantly from Px(xi = 1). If xi = 0 then the error (0−P (xi = 1|x−i))2 is likely small

because the model has a high bias towards P (xi = 0). Conversely, the error will

be high when xi = 1. In other words, the model will mostly make errors for terms

where xi = 1 and a small number of dimensions where xi = 0. We can use this to

define the heuristic proposal distribution

P (γi = 1|x) =

 1 if xi = 1
p/(d−∑j 1xj>0) otherwise

(6.7)

where p is the average number of non-zeros in the data. The idea is to always

56

sample the terms where xi = 1 and a subset of k of the (d −∑j 1xj>0) remaining

terms where xi = 0. Note that if we sampled the γi independently, we would get

E[k] = p.

However, instead of sampling those γi bits independently, we find that much

smaller variance is obtained by sampling a number of zeros k that is constant

for all examples, i.e., k = p. A random k can cause very significant variance in

the gradients and this makes stochastic gradient descent more difficult. In our

experiments we set k = p = E[∑j 1xj>0] which is a small number by definition

of these sparse distributions, and guarantees that computation costs will remain

constant as n increases for a fixed number of non-zeros. The computational cost of

SRM per training example is O(pn), as opposed to O(dn) for RM. While simple,

we find that this heuristic proposal distribution works well in practice, as shown

below.

For comparison, we also perform experiments with a biased version of Equation

6.6

JBiasedSRM(x) =
d∑
i=1

γig
2
(
P (x)
P (x̄i)

)
. (6.8)

This will allow us to gauge the effectiveness of our importance weights for unbiasing

the objective. The biased objective can be thought as down-weighting the ratios

where xi = 0 by a factor of E[γi].
SRM is related to previous work (Dahl et al., 2012a) on applying RBMs to high-

dimensional sparse inputs, more precisely multinomial observations, e.g., one K-ary

multinomial for each word in an n-gram window. A careful choice of Metropolis-

Hastings transitions replaces Gibbs transitions and allows to handle large vocabu-

laries. In comparison, SRM is geared towards general sparse vectors and involves

an extremely simple procedure without MCMC.

6.5 Experimental Results

In this section, we demonstrate the effectiveness of SRM for training RBMs.

Additionally, we show that RBMs are useful features extractors for topic classifi-

cation.

57

Datasets We have performed experiments with the Reuters Corpus Volume I

(RCV1) and 20 Newsgroups (20 NG). RCV1 is a benchmark for document clas-

sification of over 800,000 news wire stories (Lewis et al., 2004). The documents

are represented as bag-of-words vectors with 47,236 dimensions. The training set

contains 23,149 documents and the test set has 781,265. While there are 3 types of

labels for the documents, we focus on the task of predicting the topic. There are a

set of 103 non-mutually exclusive topics for a document. We report the performance

using the F1.0 measure for comparison with the state of the art. 20 Newsgroups is

a collection of Usenet posts composing a training set of 11,269 examples and 7505

test examples. The bag-of-words vectors contain 61,188 dimensions. The postings

are to be classified into one of 20 categories. We use the by-date train/test split

which ensures that the training set contains postings preceding the test examples

in time. Following Larochelle et al. (2012), we report the classification error and

for a fair comparison we use the same preprocessing 1.

Methodology We compare the different estimation methods for the RBM based

on the log-likelihoods they achieve. To do this we use Annealed Importance Sam-

pling or AIS (Salakhutdinov and Murray, 2008). For all models we average 100 AIS

runs with 10,000 uniformly spaced reverse temperatures βk. We compare RBMs

trained with ratio matching, stochastic ratio matching and biased stochastic ratio

matching. We include experiments with RBMs trained with SML-1 for comparison.

Additionally, we provide experiments to motivate the use of high-dimensional

RBMs in NLP. We use the RBM to pretrain the hidden layers of a feed-forward

neural network (Hinton et al., 2006b). This acts as a regularization for the network

and it helps optimization by initializing the network close to a good local minimum

(Erhan et al., 2010).

The hyper-parameters are cross-validated on a validation set consisting of 5% of

the training set. In our experiments with AIS, we use the validation log-likelihood

as the objective. For classification, we use the discriminative performance on the

validation set. The hyper-parameters are found using random search (Bergstra

and Bengio, 2012a) with 64 trials per set of experiments. The learning rate for

the RBMs is sampled from 10−[0,3], the number of hidden units from [500, 2000]
and the number of training epochs from [5, 20]. The learning rate for the MLP is

1. http://qwone.com/̃ jason/20Newsgroups/20news-bydate-matlab.tgz

58

sampled from 10−[2,0]. It is trained for 32 epochs using early-stopping based on the

validation set. We regularize the MLP by dropping out 50% of the hidden units

during training (Hinton et al., 2012). We adapt the learning rate dynamically by

multiplying it by 0.95 when the validation error increases.

All experiments are run on a cluster of double quad-core Intel Xeon E5345

running at 2.33Ghz with 2GB of RAM.

6.5.1 Using SRM to train RBMs

Table 6.1: Log-probabilities estimated by AIS for the RBMs trained with the different estimation
methods. With a fixed budget of epochs, SRM achieves likelihoods on the test set comparable
with RM and SML-1.

Estimates Avg. log-prob.

log Ẑ log(Ẑ ± σ̂) Train Test

RCV1
Biased SRM 1084.96 1079.66, 1085.65 -758.73 -793.20
SRM 325.26 325.24, 325.27 -139.79 -151.30
RM 499.88 499.48, 500.17 -119.98 -147.32
SML-1 323.33 320.69, 323.99 -138.90 -153.50

20 NG
Biased SRM 1723.94 1718.65, 1724.63 -960.34 -1018.73
SRM 546.52 546.55, 546.49 -178.39 -190.72
RM 975.42 975.62, 975.18 -159.92 -185.61
SML-1 612.15 611.68, 612.46 -173.56 -188.82

We can measure the effectiveness of SRM by comparing it with various estima-

tion methods for the RBM. As the RBM is a generative model, we must compare

these methods based on the log-likelihoods they achieve. Note that Dauphin et al.

(2011) relies on the classification error because there is no accepted performance

measure for DAEs. As both RM and SML scale badly with input dimension, we

restrict the dimension of the dataset to the p = 1, 000 most frequent words. We

will describe experiments with all dimensions in the next section.

As seen in Table 6.1, SRM is a good estimator for training RBMs and is a good

approximation of RM. We see that with the same budget of epochs SRM achieves

log-likelihoods comparable with RM on both datasets. The striking difference of

more than 500 nats with Biased SRM shows that the importance weights success-

59

fully unbias the estimator. Interestingly, we observe that RM is able to learn better

generative models than SML-1 for both datasets. This is similar to Marlin et al.

(2010) where Pseudolikelihood achieves better log-likelihood than SML on a subset

of 20 newsgroups. We observe this is an optimization problem since the train-

ing log-likelihood is also higher than RM. One explanation is that SML-1 might

experience mixing problems (Bengio et al., 2013).

Figure 6.1: Average speedup in the calculation of gradients by using the SRM objective com-
pared to RM. The speed-up is linear and reaches up to 2 orders of magnitude.

Figure 6.1 shows that as expected SRM achieves a linear speed-up compared

to RM, reaching speed-ups of 2 orders of magnitude. In fact, we observed that the

computation time of the gradients for RM scale linearly with the size of the input

while the computation time of SRM remains fairly constant because the number

of non-zeros varies little. This is an important property of SRM which makes it

suitable for very large scale inputs.

The importance sampling scheme of SRM (Equation 6.7) relies on the hypoth-

esis that terms where xi = 1 produce a larger gradient than terms where xi = 0.

We can verify this by monitoring the average gradients during learning on RCV1.

Figure 6.2 demonstrates that the average gradients for the terms where xi = 1 is 2

orders of magnitudes larger than those where xi = 0. This confirms the hypothesis

underlying the sampling scheme of SRM.

60

Figure 6.2: Average norm of the gradients for the terms in Equation 6.2 where xi = 1 and
xi = 0. Confirming the hypothesis for the proposal distribution the terms where xi = 1 are 2
orders of magnitude larger.

6.5.2 Using RBMs as feature extractors for NLP

Having established that SRM is an efficient unbiased estimator of RM, we turn

to the task of using RBMs not as generative models but as feature extractors. We

find that keeping the bias in SRM is helpful for classification. This is similar

to the known result that contrastive divergence, which is biased, yields better

classification results than persistent contrastive divergence, which is unbiased. The

bias increases the weight of non-zeros features. The superior performance of the

biased objective suggests that the non-zero features contain more information about

the classification task. In other words, for these tasks it’s more important to focus

on what is there than what is not there.
Table 6.2: Classification results on RCV1 with all 47,326 dimensions. The DBN trained with
SRM achieves state-of-the-art performance.

Model Test set F1

Rocchio 0.693
k-NN 0.765
SVM 0.816

SDA-MLP (Rec. sampling) 0.831
RBM-MLP (Unbiased SRM) 0.816
RBM-MLP (Biased SRM) 0.829
DBN-MLP (Biased SRM) 0.836

61

On RCV1, we train our models on all 47,326 dimensions. The RBM trained with

SRM improves on the state-of-the-art (Lewis et al., 2004), as shown in Table 6.2.

The total training time for this RBM using SRM is 57 minutes. We also train a

Deep Belief Net (DBN) by stacking an RBM trained with SML on top of the RBMs

learned with SRM. This type of 2-layer deep architecture is able to significantly

improve the performance on that task (Table 6.2). In particular the DBN does

significantly better than a stack of denoising auto-encoders we trained using biased

reconstruction sampling (Dauphin et al., 2011), which appears as SDA-MLP (Rec.

Sampling) in Table 6.2.

Table 6.3: Classification results on 20 Newsgroups with all 61,188 dimensions. Prior results
from (Larochelle et al., 2012). The RBM trained with SRM achieves state-of-the-art results.

Model Test set Error

SVM 32.8 %
MLP 28.2 %
RBM 24.9 %
HDRBM 21.9 %

DAE-MLP (Rec. sampling) 20.6 %
RBM-MLP (Biased SRM) 20.5 %

We apply RBMs trained with SRM on 20 newsgroups with all 61,188 dimen-

sions. We see in Table 6.3 that this approach improves the previous state-of-the-art

by over 1% (Larochelle et al., 2012), beating non-pretrained MLPs and SVMs by

close to 10 %. This result is closely followed by the DAE trained with reconstruc-

tion sampling which in our experiments reaches 20.6% test error. The simpler RBM

trained by SRM is able to beat the more powerful HD-RBM model because it uses

all the 61,188 dimensions.

6.6 Conclusion

We have proposed a very simple algorithm called Stochastic Ratio Matching

(SRM) to take advantage of sparsity in high-dimensional data when training dis-

crete RBMs. It can be used to estimate gradients in O(np) computation where

62

p is the number of non-zeros, yielding linear speedup against the O(nd) of Ratio

Matching (RM) where d is the input size. It does so while providing an unbi-

ased estimator of the ratio matching gradient. Using this efficient estimator we

train RBMs as features extractors and achieve state-of-the-art results on 2 text

classification benchmarks.

63

7 Prologue to third article

7.1 Article Detail

The manifold tangent classifier. Salah Rifai, Yann N. Dauphin, Pascal

Vincent, Yoshua Bengio, Xavier Muller. Proceedings of the Advances in Neural

Information Processing Systems, 2011 (NIPS 2011).

Personal Contribution.

The original idea for this paper was conceived by combining two projects from

Salah Rifai and me. Both Salah Rifai and I have agreed to share first-authorship,

with Salah’s name coming first. We are both responsible for the core idea of us-

ing the learned tangents of contractive auto-encoder for classification. Salah Rifai

was in charge of training the contractive auto-encoders well for our experiments.

I implemented the tangent propogation framework needed to make use of the ex-

tracted tangents and ran the semi-supervised and supervised learning experiments.

Notably, I was responsible for the state-of-the-art results on MNIST.

7.2 Context

This paper arose from the general interest in obtaining or encouraging invariance

in deep neural networks. Goodfellow et al. (2009) had observed that deep networks

naturally learned more invariant representations with each added layer. However,

it is not clear improve invariance to task-independent transformation. In the case

of images, convolutional networks are a well accepted way of achieving certain

invariances (Jarrett et al., 2009). The use of convolutional and max-pooling affords

the network some translation and rotation invariance among others. It does not

offer more high-level invariances or even task-specific invariances.

64

We were interested in a framework for invariance that allowed invariance over

a large variety of transformations, and that was applicable to multiple domains.

Simard et al. (1992) proposed a framework that fulfilled half these requirements.

It allowed invariance to several geometric transformations, but they had to be

known in advance. Thus, the paper only proposed transformations for the domain

of images. It did not provide any specific insight for other domains, like natural

language or speech and even images undergo transformations that are difficult to

formalize. In this paper, we were interested in generalizing tangent propagation to

any distribution by learning the invariances using a contractive auto-encoder.

7.3 Contributions

This paper was important to the understanding of the contractive auto-encoder

in a manifold perspective. We proposed a method to extract tangents from the

contractive auto-encoder. Experimentally, we were able to show that the tangents

visually match the analytical tangents for vision problems. We showed that when

applied to other domains, like natural language processing, the tangents still corre-

sponded to credible transformations. These insights were key to the creation of a

generative process for contractive auto-encoders (Rifai et al., 2012). This process

moves by following the tangent directions in the latent space. This has in turn

led to further discoveries about the generative nature of auto-encoders. Alain and

Bengio (2013); Bengio et al. (2014) discovered that denoising auto-encoders learn

local properties of the distribution and devised a new generative process.

We demonstrated experimentally that the tangents learned by the contractive

auto-encoder were useful in creating task-specific invariances across several tasks.

We confirmed that these invariances were especially important when the amount of

labelled data is low. We showed through experiments on the Covertype dataset that

this invariance framework extended to non-vision data. Furthermore, we obtained

state-of-the-art results on the MNIST dataset.

65

8 Regularizing deep networks
with a geometric approach

Much of machine learning research can be viewed as an exploration of ways

to compensate for scarce prior knowledge about how to solve a specific task by

extracting (usually implicit) knowledge from vast amounts of data. This is espe-

cially true of the search for generic learning algorithms that are to perform well

on a wide range of domains for which they were not specifically tailored. While

such an outlook precludes using much domain-specific knowledge in designing the

algorithms, it can however be beneficial to leverage what might be called “generic”

prior hypotheses, that appear likely to hold for a wide range of problems. The

approach studied in the present work exploits three such prior hypotheses:

1. The semi-supervised learning hypothesis, according to which learning

aspects of the input distribution p(x) can improve models of the conditional

distribution of the supervised target p(y|x), i.e., p(x) and p(y|x) share some-

thing (Lasserre et al., 2006). This hypothesis underlies not only the strict

semi-supervised setting where one has many more unlabeled examples at his

disposal than labeled ones, but also the successful unsupervised pre-training

approach for learning deep architectures, which has been shown to signifi-

cantly improve supervised performance even without using additional unla-

beled examples (Hinton et al., 2006a; Bengio, 2009b; Erhan et al., 2010).

2. The (unsupervised) manifold hypothesis, according to which real world

data presented in high dimensional spaces is likely to concentrate in the vicin-

ity of non-linear sub-manifolds of much lower dimensionality (Cayton, 2005;

Narayanan and Mitter, 2010).

This is believed to be the reason why it is possible to obtain sensible models

even in high dimensions, in spite of the curse of dimensionality. It stems

from the view that, from a given point of high probability density (such as a

point form the training set), there are only a comparatively small number of

local directions of transformations that will yield a point with equally high

66

probability density (that “looks” like the data), while a majority of directions

would move towards less likely,“degraded”, observations. Further support for

this hypothesis can be argued from the observation that uniformly random

generated points in high dimensional spaces almost never look like training

data.

3. The manifold hypothesis for classification, according to which points

of different classes are likely to concentrate along different sub-manifolds,

separated by low density regions of the input space.

The recently proposed Contractive Auto-Encoder (CAE) algorithm (Rifai et al.,

2011), based on the idea of encouraging the learned representation to be robust to

small variations of the input, was shown to be very effective for unsupervised fea-

ture learning. Its successful application in the pre-training of deep neural networks

is yet another illustration of what can be gained by adopting hypothesis 1. In ad-

dition, Rifai et al. (2011) propose, and show empirical evidence for, the hypothesis

that the trade-off between reconstruction error and the pressure to be insensitive

to variations in input space has an interesting consequence: It yields a mostly con-

tractive mapping that, locally around each training point, remains substantially

sensitive only to a few input directions (with different directions of sensitivity for

different training points). This is taken as evidence that the algorithm indirectly

exploits hypothesis 2 and models a lower-dimensional manifold. Most of the di-

rections to which the representation is substantially sensitive are thought to be

directions tangent to the data-supporting manifold (those that locally define its

tangent space).

The present work follows through on this interpretation, and investigates whether

it is possible to use this information, that is presumably captured about manifold

structure, to further improve classification performance by leveraging hypothe-

sis 3. To that end, we extract a set of basis vectors for the local tangent space at

each training point from the Contractive Auto-Encoder’s learned parameters. This

is obtained with a Singular Value Decomposition (SVD) of the Jacobian of the

encoder that maps each input to its learned representation. Based on hypothesis

3, we then adopt the “generic prior” that class labels are likely to be insensitive

to most directions within these local tangent spaces (ex: small translations, rota-

tions or scalings usually do not change an image’s class). Supervised classification

algorithms that have been devised to efficiently exploit tangent directions given as

67

domain-specific prior-knowledge (Simard et al., 1992, 1993), can readily be used in-

stead with our learned tangent spaces. In particular, we will show record-breaking

improvements by using TangentProp for fine tuning CAE-pre-trained deep neural

networks. To the best of our knowledge this is the first time that the implicit

relationship between an unsupervised learned mapping and the tangent space of a

manifold is rendered explicit and successfully exploited for the training of a clas-

sifier. This showcases a unified approach that simultaneously leverages all three

“generic” prior hypotheses considered. Our experiments (see Section 8.5) show that

this approach sets new records for domain-knowledge-free performance on several

real-world classification problems. Remarkably, in some cases it even outperformed

methods that use weak or strong domain-specific prior knowledge (e.g. convolu-

tional networks and tangent distance based on a-priori known transformations).

Naturally, this approach is even more likely to be beneficial for datasets where no

prior knowledge is readily available.

8.1 Contractive auto-encoders (CAE)

We consider the problem of the unsupervised learning of a non-linear feature

extractor from a dataset D = {x1, . . . , xn}. Examples xi ∈ Rd are i.i.d. samples

from an unknown distribution p(x).

8.1.1 Traditional auto-encoders

The auto-encoder framework is one of the oldest and simplest techniques for the

unsupervised learning of non-linear feature extractors. It learns an encoder function

h, that maps an input x ∈ Rd to a hidden representation h(x) ∈ Rdh , jointly with

a decoder function g, that maps h back to the input space as r = g(h(x)) the recon-

struction of x. The encoder and decoder’s parameters θ are learned by stochastic

gradient descent to minimize the average reconstruction error L(x, g(h(x))) for the

examples of the training set. The objective being minimized is:

JAE(θ) =
∑
x∈D

L(x, g(h(x))). (8.1)

68

We will will use the most common forms of encoder, decoder, and reconstruction

error:

Encoder: h(x) = s(Wx+ bh), where s is the element-wise logistic sigmoid s(z) =
1

1+e−z . Parameters are a dh × d weight matrix W and bias vector bh ∈ Rdh .

Decoder: r = g(h(x)) = s2(W Th(x) + br). Parameters are W T (tied weights,

shared with the encoder) and bias vector br ∈ Rd. Activation function s2 is

either a logistic sigmoid (s2 = s) or the identity (linear decoder).

Loss function: Either the squared error: L(x, r) = ‖x − r‖2 or Bernoulli cross-

entropy: L(x, r) = −∑d
i=1 xi log(ri) + (1− xi) log(1− ri).

The set of parameters of such an auto-encoder is θ = {W, bh, br}.
A fully linear auto-encoder (without non-linearity s and s2) with squared recon-

struction error and dh < d will learn the same subspace as Principal Component

Analysis, but this is no longer the case with non-linearities (Japkowicz et al., 2000)

particularly when using tied weights.

Historically, auto-encoders were primarily viewed as a technique for dimension-

ality reduction, where a narrow bottleneck (i.e. dh < d) was in effect acting as a

capacity control mechanism. By contrast, recent successes (Bengio et al., 2007b;

Ranzato et al., 2007; Kavukcuoglu et al., 2009; Vincent et al., 2010; Rifai et al.,

2011) tend to rely on rich, oftentimes over-complete representations (dh > d), so

that more sophisticated forms of regularization are required to pressure the auto-

encoder to extract relevant features and avoid trivial solutions. Several successful

techniques aim at sparse representations (Ranzato et al., 2007; Kavukcuoglu et al.,

2009; Goodfellow et al., 2009). Alternatively, denoising auto-encoders (Vincent

et al., 2010) change the objective from mere reconstruction to that of denoising.

8.1.2 First order and higher order contractive auto-encoders

More recently, Rifai et al. (2011) introduced the Contractive Auto-Encoder

(CAE), that encourages robustness of representation h(x) to small variations of

a training input x, by penalizing its sensitivity to that input, measured as the

Frobenius norm of the encoder’s Jacobian J(x) = ∂h
∂x

(x). The regularized objective

minimized by the CAE is the following:

JCAE(θ) =
∑
x∈D

L(x, g(h(x))) + λ‖J(x)‖2, (8.2)

69

where λ is a non-negative regularization hyper-parameter that controls how strongly

the norm of the Jacobian is penalized. Note that, with the traditional sigmoid

encoder form given above, one can easily obtain the Jacobian of the encoder. Its

jth row is obtained form the jth row of W as:

J(x)j = ∂hj(x)
∂x

= hj(x)(1− hj(x))Wj. (8.3)

Computing the extra penalty term (and its contribution to the gradient) is similar

to computing the reconstruction error term (and its contribution to the gradient),

thus relatively cheap.

It is also possible to penalize higher order derivatives (Hessian) by using a

simple stochastic technique that eschews computing them explicitly, which would

be prohibitive. It suffices to penalize differences between the Jacobian at x and the

Jacobian at nearby points x̃ = x + ε (stochastic corruptions of x). This yields the

CAE+H (Rifai et al., 2011) variant with the following optimization objective:

JCAE+H(θ) =
∑
x∈D

L(x, g(h(x))) + λ ||J(x)||2 + γEε∼N (0,σ2I)
[
||J(x)− J(x+ ε)||2

]
,

(8.4)

where γ is an additional regularization hyper-parameters that controls how strongly

we penalize local variations of the Jacobian, i.e. higher order derivatives. The

expectation E is over Gaussian noise variable ε. In practice stochastic samples

thereof are used for each stochastic gradient update. The CAE+H is the variant

used for our experiments.

8.2 Characterizing the tangent bundle captured

by a CAE

Rifai et al. (2011) reason that, while the regularization term encourages insen-

sitivity of h(x) in all input space directions, this pressure is counterbalanced by the

need for accurate reconstruction, thus resulting in h(x) being substantially sensi-

tive only to the few input directions required to distinguish close by training points.

The geometric interpretation is that these directions span the local tangent space

70

of the underlying manifold that supports the data. The tangent bundle of a smooth

manifold is the manifold along with the set of tangent planes taken at all points

on it. Each such tangent plane can be equipped with a local Euclidean coordinate

system or chart. In topology, an atlas is a collection of such charts (like the locally

Euclidean map in each page of a geographic atlas). Even though the set of charts

may form a non-Euclidean manifold (e.g., a sphere), each chart is Euclidean.

8.2.1 Conditions for the feature mapping to define an atlas

on a manifold

In order to obtain a proper atlas of charts, h must be a diffeomorphism. It

must be smooth (C∞) and invertible on open Euclidean balls on the manifold M
around the training points. Smoothness is guaranteed because of our choice of

parametrization (affine + sigmoid). Injectivity (different values of h(x) correspond

to different values of x) on the training examples is encouraged by minimizing

reconstruction error (otherwise we cannot distinguish training examples xi and xj

by only looking at h(xi) and h(xj)). Since h(x) = s(Wx + bh) and s is invertible,

using the definition of injectivity we get (by composing h(xi) = h(xj) with s−1)

∀i, j h(xi) = h(xj)⇐⇒ W∆ij = 0

where ∆ij = xi − xj. In order to preserve the injectivity of h, W has to form a

basis spanned by its rows Wk, where ∀ i, j ∃α ∈ Rdh ,∆ij = ∑dh
k αkWk. With this

condition satisfied, mapping h is injective in the subspace spanned by the variations

in the training set. If we limit the domain of h to h(X) ⊂ (0, 1)dh comprising values

obtainable by h applied to some set X , then we obtain surjectivity by definition,

hence bijectivity of h between the training set D and h(D). LetMx be an open ball

on the manifoldM around training example x. By smoothness of the manifoldM
and of mapping h, we obtain bijectivity locally around the training examples (on

the manifold) as well, i.e., between ∪x∈DMx and h(∪x∈DMx).

8.2.2 Obtaining an atlas from the learned feature mapping

Now that we have necessary conditions for local invertibility of h(x) for x ∈ D,

let us consider how to define the local chart around x from the nature of h. Because

71

h must be sensitive to changes from an example xi to one of its neighbors xj, but

insensitive to other changes (because of the CAE penalty), we expect that this will

be reflected in the spectrum of the Jacobian matrix J(x) = ∂h(x)
∂x

at each training

point x. In the ideal case where J(x) has rank k, h(x + εv) differs from h(x) only

if v is in the span of the singular vectors of J(x) with non-zero singular value. In

practice, J(x) has many tiny singular values. Hence, we define a local chart around

x using the Singular Value Decomposition of JT (x) = U(x)S(x)V T (x) (where U(x)
and V (x) are orthogonal and S(x) is diagonal). The tangent plane Hx at x is given

by the span of the set of principal singular vectors Bx:

Bx = {U·k(x)|Skk(x) > ε} and Hx = {x+ v|v ∈ span(Bx)},

where U·k(x) is the k-th column of U(x), and span({zk}) = {x|x = ∑
k wkzk, wk ∈

R}. We can thus define an atlas A captured by h, based on the local linear

approximation around each example:

A = {(Mx, φx)|x ∈ D, φx(x̃) = Bx(x̃− x)}. (8.5)

Note that this way of obtaining an atlas can also be applied to subsequent layers

of a deep network. It is thus possible to use a greedy layer-wise strategy to initialize

a network with CAEs (Rifai et al., 2011) and obtain an atlas that corresponds to

the nonlinear features computed at any layer.

8.3 Exploiting the learned tangent directions

for classification

Using the previously defined charts for every point of the training set, we pro-

pose to use this additional information provided by unsupervised learning to im-

prove the performance of the supervised task. In this we adopt the manifold

hypothesis for classification mentioned in the introduction.

72

8.3.1 CAE-based tangent distance

One way of achieving this is to use a nearest neighbor classifier with a similarity

criterion defined as the shortest distance between two hyperplanes (Simard et al.,

1993). The tangents extracted on each points will allow us to shrink the distances

between two samples when they can approximate each other by a linear combina-

tion of their local tangents. Following Simard et al. (1993), we define the tangent

distance between two points x and y as the distance between the two hyperplanes

Hx,Hy ⊂ Rd spanned respectively by Bx and By. Using the usual definition of dis-

tance between two spaces, d(Hx,Hy) = inf{‖z−w‖2|/ (z, w) ∈ Hx×Hy}, we obtain

the solution for this convex problem by solving a system of linear equations (Simard

et al., 1993). This procedure corresponds to allowing the considered points x and

y to move along the directions spanned by their associated local charts. Their

distance is then evaluated on the new coordinates where the distance is minimal.

We can then use a nearest neighbor classifier based on this distance.

8.3.2 CAE-based tangent propagation

Nearest neighbor techniques are often impractical for large scale datasets be-

cause their computational requirements scale linearly with n for each test case.

By contrast, once trained, neural networks yield fast responses for test cases. We

can also leverage the extracted local charts when training a neural network. Fol-

lowing the tangent propagation approach of Simard et al. (1992), but exploiting

our learned tangents, we encourage the output o of a neural network classifier to

be insensitive to variations in the directions of the local chart of x by adding the

following penalty to its supervised objective function:

Ω(x) =
∑
u∈Bx

∣∣∣∣∣
∣∣∣∣∣∂o∂x(x) u

∣∣∣∣∣
∣∣∣∣∣
2

(8.6)

Contribution of this term to the gradients of network parameters can be com-

puted in O(Nw), where Nw is the number of neural network weights.

73

8.3.3 The Manifold Tangent Classifier (MTC)

Putting it all together, here is the high level summary of how we build and train

a deep network:

1. Train (unsupervised) a stack of K CAE+H layers (Eq. 8.4). Each is trained

in turn on the representation learned by the previous layer.

2. For each xi ∈ D compute the Jacobian of the last layer representation

J (K)(xi) = ∂h(K)

∂x
(xi) and its SVD 1. Store the leading dM singular vectors

in set Bxi .

3. On top of the K pre-trained layers, stack an output layer of size the number

of classes. Fine-tune the whole network for supervised classification 2 with

an added tangent propagation penalty (Eq. 8.6), using for each xi, tangent

directions Bxi .

We call this deep learning algorithm the Manifold Tangent Classifier (MTC). Al-

ternatively, instead of step 3, one can use the tangent vectors in Bxi in a tangent

distance nearest neighbors classifier.

8.4 Related prior work

Many Non-Linear Manifold Learning algorithms (Roweis and Saul, 2000;

Tenenbaum et al., 2000) have been proposed which can automatically discover the

main directions of variation around each training point, i.e., the tangent bundle.

Most of these algorithms are non-parametric and local, i.e., explicitly parametrizing

the tangent plane around each training point (with a separate set of parameters for

each, or derived mostly from the set of training examples in every neighborhood),

as most explicitly seen in Manifold Parzen Windows (Vincent and Bengio,

2003) and manifold Charting (Brand, 2003). See Bengio and Monperrus (2005)

1. J (K) is the product of the Jacobians of each encoder (see Eq. 8.3) in the stack. It suffices
to compute its leading dM SVD vectors and singular values. This is achieved in O(dM × d× dh)
per training example. For comparison, the cost of a forward propagation through a single MLP
layer is O(d× dh) per example.

2. A sigmoid output layer is preferred because computing its Jacobian is straightforward and
efficient (Eq. 8.3). The supervised cost used is the cross entropy. Training is by stochastic gradient
descent.

74

for a critique of local non-parametric manifold algorithms: they might require a

number of training examples which grows exponentially with manifold dimension

and curvature (more crooks and valleys in the manifold will require more examples).

One attempt to generalize the manifold shape non-locally (Bengio et al., 2006) is

based on explicitly predicting the tangent plane associated to any given point x,

as a parametrized function of x. Note that these algorithms all explicitly exploit

training set neighborhoods (see Figure 8.2), i.e. they use pairs or tuples of points,

with the goal to explicitly model the tangent space, while it is modeled implicitly by

the CAE’s objective function (that is not based on pairs of points). More recently,

the Local Coordinate Coding (LCC) algorithm (Yu et al., 2009) and its Local

Tangent LCC variant (Yu and Zhang, 2010) were proposed to build a a local chart

around each training example (with a local low-dimensional coordinate system

around it) and use it to define a representation for each input x: the responsibility

of each local chart/anchor in explaining input x and the coordinate of x in each local

chart. That representation is then fed to a classifier and yield better generalization

than x itself.

The tangent distance (Simard et al., 1993) and TangentProp (Simard et al.,

1992) algorithms were initially designed to exploit prior domain-knowledge of di-

rections of invariance (ex: knowledge that the class of an image should be invariant

to small translations rotations or scalings in the image plane). However any al-

gorithm able to output a chart for a training point might potentially be used, as

we do here, to provide directions to a Tangent distance or TangentProp (Simard

et al., 1992) based classifier. Our approach is nevertheless unique as the CAE’s un-

supervised feature learning capabilities are used simultaneously to provide a good

initialization of deep network layers and a coherent non-local predictor of tangent

spaces. TangentProp is itself closely related to the Double Backpropagation

algorithm (Drucker and LeCun, 1992), in which one instead adds a penalty that

is the sum of squared derivatives of the prediction error (with respect to the net-

work input). Whereas TangentProp attempts to make the output insensitive to

selected directions of change, the double backpropagation penalty term attempts

to make the error at a training example invariant to changes in all directions. Since

one is also trying to minimize the error at the training example, this amounts to

making that minimization more robust, i.e., extend it to the neighborhood of the

training examples. The term “double backpropagation” comes from idea that one

75

needs to compute derivatives through derivatives: the gradient of the penalty term

with respect to the parameters can be computed by unfolding the computation of

the regular backpropagation (on top of the forward propagation computation), and

then computing (backwards) gradients through both the forward propagation and

backpropagation sub-networks.

Also related is the Semi-Supervised Embedding algorithm (Weston et al.,

2008). In addition to minimizing a supervised prediction error, it encourages each

layer of representation of a deep architecture to be invariant when the training

example is changed from x to a near neighbor of x in the training set. This al-

gorithm works implicitly under the hypothesis that the variable y to predict from

x is invariant to the local directions of change present between nearest neighbors.

This is consistent with the manifold hypothesis for classification (hypothesis

3 mentioned in the introduction). Instead of removing variability along the local

directions of variation, the Contractive Auto-Encoder (Rifai et al., 2011) ini-

tially finds a representation which is most sensitive to them, as we explained in

section 8.1.

8.5 Experiments

We conducted experiments to evaluate our approach and the quality of the

manifold tangents learned by the CAE, using a range of datasets from different

domains:

MNIST is a dataset of 28×28 images of handwritten digits. The learning task

is to predict the digit contained in the images. Reuters Corpus Volume I is a

popular benchmark for document classification. It consists of 800,000 real-world

news wire stories made available by Reuters. We used the 2000 most frequent words

calculated on the whole dataset to create a bag-of-words vector representation. We

used the LYRL2004 split to separate between a train and test set. CIFAR-10 is

a dataset of 70,000 32 × 32 RGB real-world images. It contains images of real-

world objects (i.e. cars, animals) with all the variations present in natural images

(i.e. backgrounds). Forest Cover Type is a large-scale database of cartographic

variables for the prediction of forest cover types made available by the US Forest

Service.

76

We investigate whether leveraging the CAE learned tangents leads to better

classification performance on these problems, using the following methodology:

Optimal hyper-parameters for (a stack of) CAEs are selected by cross-validation

on a disjoint validation set extracted from the training set. The quality of the fea-

ture extractor and tangents captured by the CAEs is evaluated by initializing an

neural network (MLP) with the same parameters and fine-tuning it by backpropa-

gation on the supervised classification task. The optimal strength of the supervised

TangentProp penalty and number of tangents dM is also cross-validated.

Results

Figure 8.1: Visualisation of the tangents learned by the CAE for MNIST, CIFAR-10 and RCV1
(top to bottom). The left-most column is the example and the following columns are its tangents.
On RCV1, we show the tangents of a document with the topic ”Trading & Markets” (MCAT)
with the negative terms in red(-) and the positive terms in green(+).

Figure 8.2: Tangents extracted by local PCA on CIFAR-10. This shows the limitation of
approaches that rely on training set neighborhoods.

Figure 8.1 shows a visualization of the tangents learned by the CAE. On MNIST,

the tangents mostly correspond to small geometrical transformations like transla-

tions and rotations. On CIFAR-10, the model also learns sensible tangents, which

seem to correspond to changes in the parts of objects. The tangents on RCV1-v2

correspond to the addition or removal of similar words and removal of irrelevant

words. We also note that extracting the tangents of the model is a way to visualize

77

what the model has learned about the structure of the manifold. Interestingly,

we see that hypothesis 3 holds for these datasets because most tangents do not

change the class of the example.

Table 8.1: Classification accuracy on several datasets using KNN variants measured on 10,000
test examples with 1,000 training examples. The KNN is trained on the raw input vector using
the Euclidean distance while the K-layer+KNN is computed on the representation learned by
a K-layer CAE. The KNN+Tangents uses at every sample the local charts extracted from the
1-layer CAE to compute tangent distance.

KNN KNN+Tangents 1-Layer CAE+KNN 2-Layer CAE+KNN
MNIST 86.9 88.7 90.55 91.15
CIFAR-10 25.4 26.5 25.1 -
COVERTYPE 70.2 70.98 69.54 67.45

We use KNN using tangent distance to evaluate the quality of the learned

tangents more objectively. Table 8.1 shows that using the tangents extracted from

a CAE always lead to better performance than a traditional KNN.

Table 8.2: Semi-supervised classification error on the MNIST test set with 100, 600, 1000 and
3000 labeled training examples. We compare our method with results from (Weston et al., 2008;
Ranzato et al., 2007; Salakhutdinov and Hinton, 2007).

NN SVM CNN TSVM DBN-rNCA EmbedNN CAE MTC
100 25.81 23.44 22.98 16.81 - 16.86 13.47 12.03
600 11.44 8.85 7.68 6.16 8.7 5.97 6.3 5.13
1000 10.7 7.77 6.45 5.38 - 5.73 4.77 3.64
3000 6.04 4.21 3.35 3.45 3.3 3.59 3.22 2.57

As described in section 8.3.2, the tangents extracted by the CAE can be used for

fine-tuning the multilayer perceptron using tangent propagation, yielding our Man-

ifold Tangent Classifier (MTC). As it is a semi-supervised approach, we evaluate

its effectiveness with a varying amount of labeled examples on MNIST. Follow-

ing Weston et al. (2008), the unsupervised feature extractor is trained on the full

training set and the supervised classifier is trained on a restricted labeled set. Ta-

ble 8.2 shows our results for a single hidden layer MLP initialized with CAE+H

pretraining (noted CAE for brevity) and for the same classifier fine-tuned with

tangent propagation (i.e. the manifold tangent classifier of section 8.3.3, noted

MTC). The methods that do not leverage the semi-supervised learning hypothesis

78

(Support Vector Machines, traditional Neural Networks and Convolutional Neural

Networks) give very poor performance when the amount of labeled data is low. In

some cases, the methods that can learn from unlabeled data can reduce the classi-

fication error by half. The CAE gives better results than other approaches across

almost the whole range considered. It shows that the features extracted from the

rich unlabeled data distribution give a good inductive prior for the classification

task. Note that the MTC consistently outperforms the CAE on this benchmark.

Table 8.3: Classification error on the MNIST test set with the full training set.

K-NN NN SVM DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 0.95% 0.95% 0.81%

Table 8.3 shows our results on the full MNIST dataset with some results taken

from (LeCun et al., 1999; Hinton et al., 2006a). The CAE in this figure is a two-

layer deep network with 2000 units per layer pretrained with the CAE+H objective.

The MTC uses the same stack of CAEs trained with tangent propagation using 15

tangents. The prior state of the art for the permutation invariant version of the task

was set by the Deep Boltzmann Machines (Salakhutdinov and Hinton, 2009b) at

0.95%. Using our approach, we reach 0.81% error on the test set. Remarkably, the

MTC also outperforms the basic Convolutional Neural Network (CNN) even though

the CNN exploits prior knowledge about vision using convolution and pooling to

enhance the results.

Table 8.4: Classification error on the Forest CoverType dataset.

SVM Distributed SVM MTC
4.11% 3.46% 3.13%

We also trained a 4 layer MTC on the Forest CoverType dataset. Following

Trebar and Steele (2008), we use the data split DS2-581 which contains over 500,000

training examples. The MTC yields the best performance for the classification task

beating the previous state of the art held by the distributed SVM (mixture of several

non-linear SVMs).

79

8.6 Conclusion

In this work, we have shown a new way to characterize a manifold by extracting a

local chart at each data point based on the unsupervised feature mapping built with

a deep learning approach. The developed Manifold Tangent Classifier successfully

leverages three common “generic prior hypotheses” in a unified manner. It learns

a meaningful representation that captures the structure of the manifold, and can

leverage this knowledge to reach superior classification performance. On datasets

from different domains, it successfully achieves state of the art performance.

80

9 Prologue to Fourth article

9.1 Article Detail

Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre,

Kyunghyun Cho, Surya Ganguli, Yoshua Bengio. Proceedings of the Advances in

Neural Information Processing Systems 27 (NIPS’14).

Personal Contribution.

The paper proposes an experimental validation of the work of theoretical physi-

cists (Bray and Dean, 2007) and an optimization algorithm called saddle-free New-

ton. I contributed to both. Surya Ganguli proposed validating the theoretical

predictions made by Bray and Dean (2007) about the distribution of saddle points.

Razvan Pascanu and I were responsible for these experiments. I devised the experi-

mental protocol. Razvan was responsible for obtaining results for one dataset while

I labored on a second one. Razvan Pascanu had proposed using the square of the

Hessian to better handle negative curvature. I determined experimentally that this

was not optimal. I improved on the idea by proposing to use the absolute value of

the Hessian. This quantity better conserves the curvature information. I ran the

experiments using this algorithm using feedfoward networks. Caglar Gulcehre and

Kyunghyun Cho ran the experiments with recurrent neural networks.

9.2 Context

It was commonly thought that the main difficulty in training deep neural net-

works was the presence of multiple local minima. This was considered a serious

81

drawback to using neural networks because the issue of multiple local minima can-

not be resolved. For this reason, some researchers have avoided using neural net-

works. Concurrently to this, researchers in disparate litteratures have shown that

some non-convex models have a relatively small amount of local minima. Bray

and Dean (2007); Fyodorov and Williams (2007) were able to show that high-

dimensional random gaussian fields possess an exponential amount of saddle points

and exponentially few local minima. This ran counter to cursory intuition and

stood in stark contrast with the beliefs of neural network researchers. One of the

objectives of this paper was to see if these results would apply to neural networks.

As such, there were no optimization algorithm expressly designed to allow escaping

saddle points efficiently. The paper was also interested in proposing something in

that department.

9.3 Contributions

To our knowledge the paper was the first experimental validation of the pre-

dictions made in either Bray and Dean (2007) or Fyodorov and Williams (2007).

We demonstrated that there is a strong correlation between the index of a critical

point and the training error. We also showed the eigenvalues of the Hessian fol-

low Wagner’s semi-circular distribution. This confirms the prediction that saddle

points are prevalent in the optimization landscapes of neural networks. Following

this experimental confirmation, Choromanska et al. (2014) was able to theoreti-

cally prove this for deep rectifier networks. This may be an important element to

motivate the application of neural networks to wider domains. Kim et al. (2014)

note this in their application of neural networks to search for gravitational-wave

signals.

We also presented an optimization better suited to non-convex optimization.

It attained better results than gradient descent on several problems. This has led

to more research in trying to make better optimizers for non-convex problems.

Ge et al. (2015) proposes modifications to gradient descent to guarantee global

convergence. Hazan et al. (2015) introduces a new optimization method based

on continuations. It allows avoiding critical points by smoothing the optimization

surface.

82

10
Identifying the challenges in
high-dimensional
non-convex optimization

It is often the case that our geometric intuition, derived from experience within

a low dimensional physical world, is inadequate for thinking about the geometry

of typical error surfaces in high-dimensional spaces. To illustrate this, consider

minimizing a randomly chosen error function of a single scalar variable, given by

a single draw of a Gaussian process. (Rasmussen and Williams, 2005) have shown

that such a random error function would have many local minima and maxima,

with high probability over the choice of the function, but saddles would occur with

negligible probability. On the other-hand, as we review below, typical, random

Gaussian error functions over N scalar variables, or dimensions, are increasingly

likely to have saddle points rather than local minima as N increases. Indeed the

ratio of the number of saddle points to local minima increases exponentially with

the dimensionality N .

A typical problem for both local minima and saddle-points is that they are

often surrounded by plateaus of small curvature in the error. While gradient descent

dynamics are repelled away from a saddle point to lower error by following directions

of negative curvature, this repulsion can occur slowly due to the plateau. Second

order methods, like the Newton method, are designed to rapidly descend plateaus

surrounding local minima by multiplying the gradient steps with the inverse of

the Hessian matrix. However, the Newton method does not treat saddle points

appropriately; as argued below, saddle-points instead become attractive under the

Newton dynamics.

Thus, given the proliferation of saddle points, not local minima, in high dimen-

sional problems, the entire theoretical justification for quasi-Newton methods, i.e.

the ability to rapidly descend to the bottom of a convex local minimum, becomes

less relevant in high dimensional non-convex optimization. In this work, which is

an extension of the previous report Pascanu et al. (2014), we first want to raise

awareness of this issue, and second, propose an alternative approach to second-

order optimization that aims to rapidly escape from saddle points. This algorithm

83

leverages second-order curvature information in a fundamentally different way than

quasi-Newton methods, and also, in numerical experiments, outperforms them in

some high dimensional problems involving deep or recurrent networks.

10.1 The prevalence of saddle points in high

dimensions

Here we review arguments from disparate literatures suggesting that saddle

points, not local minima, provide a fundamental impediment to rapid high dimen-

sional non-convex optimization. One line of evidence comes from statistical physics.

Bray and Dean (2007); Fyodorov and Williams (2007) study the nature of critical

points of random Gaussian error functions on high dimensional continuous domains

using replica theory (see Parisi (2007) for a recent review of this approach).

One particular result by Bray and Dean (2007) derives how critical points are

distributed in the ε vs α plane, where α is the index, or the fraction of negative

eigenvalues of the Hessian at the critical point, and ε is the error attained at the

critical point. Within this plane, critical points concentrate on a monotonically

increasing curve as α ranges from 0 to 1, implying a strong correlation between the

error ε and the index α: the larger the error the larger the index. The probability

of a critical point to be an O(1) distance off the curve is exponentially small in the

dimensionality N , for large N . This implies that critical points with error ε much

larger than that of the global minimum, are exponentially likely to be saddle points,

with the fraction of negative curvature directions being an increasing function of

the error. Conversely, all local minima, which necessarily have index 0, are likely

to have an error very close to that of the global minimum. Intuitively, in high

dimensions, the chance that all the directions around a critical point lead upward

(positive curvature) is exponentially small w.r.t. the number of dimensions, unless

the critical point is the global minimum or stands at an error level close to it, i.e.,

it is unlikely one can find a way to go further down.

These results may also be understood via random matrix theory. We know that

for a large Gaussian random matrix the eigenvalue distribution follows Wigner’s

famous semicircular law (Wigner, 1958), with both mode and mean at 0. The

84

probability of an eigenvalue to be positive or negative is thus 1/2. Bray and Dean

(2007) showed that the eigenvalues of the Hessian at a critical point are distributed

in the same way, except that the semicircular spectrum is shifted by an amount

determined by ε. For the global minimum, the spectrum is shifted so far right,

that all eigenvalues are positive. As ε increases, the spectrum shifts to the left

and accrues more negative eigenvalues as well as a density of eigenvalues around 0,

indicating the typical presence of plateaus surrounding saddle points at large error.

Such plateaus would slow the convergence of first order optimization methods,

yielding the illusion of a local minimum.

The random matrix perspective also concisely and intuitively crystallizes the

striking difference between the geometry of low and high dimensional error surfaces.

For N = 1, an exact saddle point is a 0–probability event as it means randomly

picking an eigenvalue of exactly 0. As N grows it becomes exponentially unlikely to

randomly pick all eigenvalues to be positive or negative, and therefore most critical

points are saddle points.

Fyodorov and Williams (2007) review qualitatively similar results derived for

random error functions superimposed on a quadratic error surface. These works in-

dicate that for typical, generic functions chosen from a random Gaussian ensemble

of functions, local minima with high error are exponentially rare in the dimen-

sionality of the problem, but saddle points with many negative and approximate

plateau directions are exponentially likely. However, is this result for generic error

landscapes applicable to the error landscapes of practical problems of interest?

Baldi and Hornik (1989) analyzed the error surface of a multilayer percep-

tron (MLP) with a single linear hidden layer. Such an error surface shows only

saddle-points and no local minima. This result is qualitatively consistent with the

observation made by Bray and Dean (2007). Indeed Saxe et al. (2014) analyzed the

dynamics of learning in the presence of these saddle points, and showed that they

arise due to scaling symmetries in the weight space of a deep linear MLP. These

scaling symmetries enabled Saxe et al. (2014) to find new exact solutions to the

nonlinear dynamics of learning in deep linear networks. These learning dynamics

exhibit plateaus of high error followed by abrupt transitions to better performance.

They qualitatively recapitulate aspects of the hierarchical development of semantic

concepts in infants (Saxe et al., 2013).

In (Saad and Solla, 1995) the dynamics of stochastic gradient descent are an-

85

alyzed for soft committee machines. This work explores how well a student net-

work can learn to imitate a randomly chosen teacher network. Importantly, it

was observed that learning can go through an initial phase of being trapped in the

symmetric submanifold of weight space. In this submanifold, the student’s hidden

units compute similar functions over the distribution of inputs. The slow learning

dynamics within this submanifold originates from saddle point structures (caused

by permutation symmetries among hidden units), and their associated plateaus

(Rattray et al., 1998; Inoue et al., 2003). The exit from the plateau associated

with the symmetric submanifold corresponds to the differentiation of the student’s

hidden units to mimic the teacher’s hidden units. Interestingly, this exit from the

plateau is achieved by following directions of negative curvature associated with a

saddle point. sin directions perpendicular to the symmetric submanifold.

Mizutani and Dreyfus (2010) look at the effect of negative curvature on learning

and implicitly at the effect of saddle points in the error surface. Their findings are

similar. They show that the error surface of a single layer MLP has saddle points

where the Hessian matrix is indefinite.

10.2 Experimental validation of the prevalence

of saddle points

In this section, we experimentally test whether the theoretical predictions pre-

sented by Bray and Dean (2007) for random Gaussian fields hold for neural net-

works. To our knowledge, this is the first attempt to measure the relevant statistical

properties of neural network error surfaces and to test if the theory developed for

random Gaussian fields generalizes to such cases.

In particular, we are interested in how the critical points of a single layer MLP

are distributed in the ε–α plane, and how the eigenvalues of the Hessian matrix

at these critical points are distributed. We used a small MLP trained on a down-

sampled version of MNIST and CIFAR-10. Newton method was used to identify

critical points of the error function. The results are in Fig. 10.1. More details about

the setup are provided in Appendix 10.8.3.

86

MNIST

(a) (b)
CIFAR-10

(c) (d)

Figure 10.1: (a) and (c) show how critical points are distributed in the ε–α plane. Note that
they concentrate along a monotonically increasing curve. (b) and (d) plot the distributions of
eigenvalues of the Hessian at three different critical points. Note that the y axes are in logarithmic
scale.

87

This empirical test confirms that the observations by Bray and Dean (2007)

qualitatively hold for neural networks. Critical points concentrate along a mono-

tonically increasing curve in the ε–α plane. Thus the prevalence of high error saddle

points do indeed pose a severe problem for training neural networks. While the

eigenvalues do not seem to be exactly distributed according to the semicircular law,

their distribution does shift to the left as the error increases. The large mode at 0

indicates that there is a plateau around any critical point of the error function of

a neural network.

10.3 Dynamics of optimization algorithms near

saddle points

Given the prevalence of saddle points, it is important to understand how various

optimization algorithms behave near them. Let us focus on non-degenerate saddle

points for which the Hessian is not singular. These critical points can be locally

analyzed by re-parameterizing the function according to Morse’s lemma below (see

chapter 7.3, Theorem 7.16 in Callahan (2010) or Appendix 10.8.2:

f(θ∗ + ∆θ) = f(θ∗) + 1
2

nθ∑
i=1

λi∆v2
i , (10.1)

where λi represents the ith eigenvalue of the Hessian, and ∆vi are the new param-

eters of the model corresponding to motion along the eigenvectors ei of the Hessian

of f at θ∗.

If finding the local minima of our function is the desired outcome of our opti-

mization algorithm, we argue that an optimal algorithm would move away from the

saddle point at a speed that is inverse proportional with the flatness of the error

surface and hence depndented of how trustworthy this descent direction is further

away from the current position.

A step of the gradient descent method always points away from the saddle point

close to it (SGD in Fig. 10.2). Assuming equation (10.8) is a good approximation

of our function we will analyze the optimality of the step according to how well

the resulting ∆v optimizes the right hand side of (10.8). If an eigenvalue λi is

88

positive (negative), then the step moves toward (away) from θ∗ along ∆vi because

the restriction of f to the corresponding eigenvector direction ∆vi, achieves a

minimum (maximum) at θ∗. The drawback of the gradient descent method is not

the direction, but the size of the step along each eigenvector. The step, along

any direction ei, is given by −λi∆vi, and so small steps are taken in directions

corresponding to eigenvalues of small absolute value.

(a) (b)

Figure 10.2: Behaviors of different optimization methods near a saddle point for (a) classical
saddle structure 5x2 − y2; (b) monkey saddle structure x3 − 3xy2. The yellow dot indicates the
starting point. SFN stands for the saddle-free Newton method we proposed.

The Newton method solves the slowness problem by rescaling the gradients in

each direction with the inverse of the corresponding eigenvalue, yielding the step

−∆vi. However, this approach can result in moving toward the saddle point.

Specifically, if an eigenvalue is negative, the Newton step moves along the eigen-

vector in a direction opposite to the gradient descent step, and thus moves in the

direction of θ∗. θ∗ becomes an attractor for the Newton method (see Fig. 10.2),

which can get stuck in this saddle point and not converge to a local minima. This

justifies using the Newton method to find critical points of any index in Fig. 10.1.

A trust region approach is one approach of scaling second order methods to non-

convex problems. In one such method, the Hessian is damped to remove negative

curvature by adding a constant α to its diagonal, which is equivalent to adding α to

each of its eigenvalues. If we project the new step along the different eigenvectors

of the modified Hessian, it is equivalent to rescaling the projections of the gradient

on this direction by the inverse of the modified eigenvalues λi + α yields the step

−
(
λi/λi+α

)
∆vi. To ensure the algorithm does not converge to the saddle point,

89

one must increase the damping coefficient α enough so that λmin + α > 0 even

for the most negative eigenvalue λmin. This ensures that the modified Hessian is

positive definnite. However, the drawback is again a potentially small step size in

many eigen-directions incurred by a large damping factor α (the rescaling factors

in each eigen-direction are not proportional to the curvature anymore).

Besides damping, another approach to deal with negative curvature is to ignore

them. This can be done regardless of the approximation strategy used for the

Newton method such as a truncated Newton method or a BFGS approximation (see

Nocedal and Wright (2006) chapters 4 and 7). However, such algorithms cannot

escape saddle points, as they ignore the very directions of negative curvature that

must be followed to achieve escape.

Natural gradient descent is a first order method that relies on the curvature

of the parameter manifold. That is, natural gradient descent takes a step that

induces a constant change in the behaviour of the model as measured by the KL-

divergence between the model before and after taking the step. The resulting

algorithm is similar to the Newton method, except that it relies on the Fisher

Information matrix F.

It is argued by Rattray et al. (1998); Inoue et al. (2003) that natural gradient

descent can address certain saddle point structures effectively. Specifically, it can

resolve those saddle points arising from having units behaving very similarly. Mizu-

tani and Dreyfus (2010), however, argue that natural gradient descent also suffers

with negative curvature. One particular known issue is the over-realizable regime,

where around the stationary solution θ∗, the Fisher matrix is rank-deficient. Nu-

merically, this means that the Gauss-Newton direction can be orthogonal to the

gradient at some distant point from θ∗ (Mizutani and Dreyfus, 2010), causing op-

timization to converge to some non-stationary point. Another weakness is that the

difference S between the Hessian and the Fisher Information Matrix can be large

near certain saddle points that exhibit strong negative curvature. This means that

the landscape close to these critical points may be dominated by S, meaning that

the rescaling provided by F−1 is not optimal in all directions.

The same is true for TONGA (Le Roux et al., 2007), an algorithm similar to

natural gradient descent. It uses the covariance of the gradients as the rescaling

factor. As these gradients vanish approaching a critical point, their covariance will

result in much larger steps than needed near critical points.

90

10.4 Generalized trust region methods

In order to attack the saddle point problem, and overcome the deficiencies of

the above methods, we will define a class of generalized trust region methods, and

search for an algorithm within this space. This class involves a straightforward

extension of classical trust region methods via two simple changes: (1) We allow

the minimization of a first-order Taylor expansion of the function instead of always

relying on a second-order Taylor expansion as is typically done in trust region

methods, and (2) we replace the constraint on the norm of the step ∆θ by a

constraint on the distance between θ and θ + ∆θ. Thus the choice of distance

function and Taylor expansion order specifies an algorithm. If we define Tk(f, θ,∆θ)
to indicate the k-th order Taylor series expansion of f around θ evaluated at θ+∆θ,
then we can summarize a generalized trust region method as:

∆θ = arg min
∆θ

Tk{f, θ,∆θ} with k ∈ {1, 2}s. t. d(θ, θ + ∆θ) ≤ ∆. (10.2)

For example, the α-damped Newton method described above arises as a special

case with k = 2 and d(θ, θ + ∆θ) = ||∆θ||22, where α is implicitly a function of ∆.

10.5 Attacking the saddle point problem

We now search for a solution to the saddle-point problem within the family

of generalized trust region methods. In particular, the analysis of optimization

algorithms near saddle points discussed in Sec. 10.3 suggests a simple heuristic

solution: rescale the gradient along each eigen-direction ei by 1/|λi|. This achieves

the same optimal rescaling as the Newton method, while preserving the sign of the

gradient, thereby turning saddle points into repellers, not attractors, of the learning

dynamics. The idea of taking the absolute value of the eigenvalues of the Hessian

was suggested before. See, for example, (Nocedal and Wright, 2006, chapter 3.4) or

Murray (2010, chapter 4.1). However, we are not aware of any proper justification

of this algorithm or even a detailed exploration (empirical or otherwise) of this idea.

One cannot simply replace H by |H|, where |H| is the matrix obtained by taking

the absolute value of each eigenvalue of H, without proper justification. While we

91

might be able to argue that this heuristic modification does the right thing near

critical points, is it still the right thing far away from the critical points? How can

we express this step in terms of the existing methods ? Here we show this heuristic

solution arises naturally from our generalized trust region approach.

Unlike classical trust region approaches, we consider minimizing a first-order

Taylor expansion of the loss (k = 1 in Eq. (10.2)). This means that the curvature

information has to come from the constraint by picking a suitable distance measure

d (see Eq. (10.2)). Since the minimum of the first order approximation of f is at

infinity, we know that this optimization dynamics will always jump to the border

of the trust region. So we must ask how far from θ can we trust the first order

approximation of f? One answer is to bound the discrepancy between the first and

second order Taylor expansions of f by imposing the following constraint:

d(θ, θ + ∆θ) =
∣∣∣∣f(θ) +∇f∆θ + 1

2∆θ>H∆θ − f(θ)−∇f∆θ
∣∣∣∣ = 1

2
∣∣∣∆θ>H∆θ

∣∣∣ ≤ ∆,
(10.3)

where ∇f is the partial derivative of f with respect to θ and ∆ ∈ R is some

small value that indicates how much discrepancy we are willing to accept. Note

that the distance measure d takes into account the curvature of the function.

Eq. (10.3) is not easy to solve for ∆θ in more than one dimension. Alternatively,

one could take the square of the distance, but this would yield an optimization

problem with a constraint that is quartic in ∆θ, and therefore also difficult to

solve. We circumvent these difficulties through a Lemma:

Lemma 1. Let A be a nonsingular square matrix in Rn×Rn, and x ∈ Rn be some

vector. Then it holds that |x>Ax| ≤ x>|A|x, where |A| is the matrix obtained by

taking the absolute value of each of the eigenvalues of A.

Proof. See Appendix 10.8.4 for the proof.

Instead of the originally proposed distance measure in Eq. (10.3), we approxi-

mate the distance by its upper bound ∆θ|H|∆θ based on Lemma 1. This results

in the following generalized trust region method:

∆θ = arg min
∆θ

f(θ) +∇f∆θ s. t. ∆θ>|H|∆θ ≤ ∆. (10.4)

Note that as discussed before, we can replace the inequality constraint with

an equality one, as the first order approximation of f has a minimum at infinity

92

M
N

IS
T

(a) (b) (c)

C
IF

A
R

-1
0

(d) (e) (f)

Figure 10.3: Empirical evaluation of different optimization algorithms for a single-layer MLP
trained on the rescaled MNIST and CIFAR-10 dataset. In (a) and (d) we look at the minimum
error obtained by the different algorithms considered as a function of the model size. (b) and (e)
show the optimal training curves for the three algorithms. The error is plotted as a function of
the number of epochs. (c) and (f) track the norm of the largest negative eigenvalue.

and the algorithm always jumps to the border of the trust region. Similar to

(Pascanu and Bengio, 2014), we use Lagrange multipliers to obtain the solution

of this constrained optimization. This gives (up to a scalar that we fold into the

learning rate) a step of the form:

∆θ = −∇f |H|−1 (10.5)

This algorithm, which we call the saddle-free Newton method (SFN), leverages

curvature information in a fundamentally different way, to define the shape of the

trust region, rather than Taylor expansion to second order, as in classical methods.

Unlike gradient descent, it can move further (less) in the directions of low (high)

curvature. It is identical to the Newton method when the Hessian is positive

definite, but unlike the Newton method, it can escape saddle points. Furthermore,

unlike gradient descent, the escape is rapid even along directions of weak negative

curvature (see Fig. 10.2).

The exact implementation of this algorithm is intractable in a high dimensional

problem, because it requires the exact computation of the Hessian. Instead we

93

Algorithm 3 Approximate saddle-free Newton

Input: Function f(θ) to minimize
for i = 1→M do

V← k Lanczos vectors of ∂2f
∂θ2

s(α) = f(θ + Vα)
|Ĥ| ←

∣∣∣ ∂2s
∂α2

∣∣∣ by using an eigen decomposition of Ĥ
for j = 1→ m do

g← − ∂s
∂α

λ← arg minλ s((|Ĥ|+ λI)−1g)
θ ← θ + V(|Ĥ|+ λI)−1g

end for
end for

use an approach similar to Krylov subspace descent (Vinyals and Povey, 2012).

We optimize that function in a lower-dimensional Krylov subspace f̂(α) = f(θ +
αV). The k Krylov subspace vectors V are found through Lanczos iteration of the

Hessian. These vectors will span the k biggest eigenvectors of the Hessian with high-

probability. This reparametrization through α greatly reduces the dimensionality

and allows us to use exact saddle-free Newton in the subspace. 1 See Alg. 3 for the

pseudocode.

10.6 Experimental validation of the saddle-free

Newton method

In this section, we empirically evaluate the theory suggesting the existence of

many saddle points in high-dimensional functions by training neural networks.

10.6.1 Existence of Saddle Points in Neural Networks

In this section, we validate the existence of saddle points in the cost function of

neural networks, and see how each of the algorithms we described earlier behaves

near them. In order to minimize the effect of any type of approximation used in the

1. In the Krylov subspace, ∂f̂
∂α = V

(
∂f
∂θ

)>
and ∂2f̂

∂α2 = V
(
∂2f
∂θ2

)
V>.

94

algorithms, we train small neural networks on the scaled-down version of MNIST

and CIFAR-10, where we can compute the update directions by each algorithm

exactly. Both MNIST and CIFAR-10 were downsampled to be of size 10× 10.

We compare minibatch stochastic gradient descent (MSGD), damped Newton

and the proposed saddle-free Newton method (SFN). The hyperparameters of SGD

were selected via random search (Bergstra and Bengio, 2012b), and the damping

coefficients for the damped Newton and saddle-free Newton 2 methods were selected

from a small set at each update.

The theory suggests that the number of saddle points increases exponentially as

the dimensionality of the function increases. From this, we expect that it becomes

more likely for the conventional algorithms such as SGD and Newton methods

to stop near saddle points, resulting in worse performance (on training samples).

Figs. 10.3 (a) and (d) clearly confirm this. With the smallest network, all the

algorithms perform comparably, but as the size grows, the saddle-free Newton

algorithm outperforms the others by a large margin.

A closer look into the different behavior of each algorithm is presented in

Figs. 10.3 (b) and (e) which show the evolution of training error over optimiza-

tion. We can see that the proposed saddle-free Newton escapes, or does not get

stuck at all, near a saddle point where both SGD and Newton methods appear

trapped. Especially, at the 10-th epoch in the case of MNIST, we can observe the

saddle-free Newton method rapidly escaping from the saddle point. Furthermore,

Figs. 10.3 (c) and (f) provide evidence that the distribution of eigenvalues shifts

more toward the right as error decreases for all algorithms, consistent with the

theory of random error functions. The distribution shifts more for SFN, suggesting

it can successfully avoid saddle-points on intermediary error (and large index).

2. Damping is used for numerical stability.

95

10.6.2 Effectiveness of saddle-free Newton Method in Deep

Feedforward Neural Networks

Deep Autoencoder

(a) (b)
Recurrent Neural Network

(c) (d)

Figure 10.4: Empirical results on training deep autoencoders on MNIST and recurrent neural
network on Penn Treebank. (a) and (c): The learning curve for SGD and SGD followed by saddle-
free Newton method. (b) The evolution of the magnitude of the most negative eigenvalue and the
norm of the gradients w.r.t. the number of epochs (deep autoencoder). (d) The distribution of
eigenvalues of the RNN solutions found by SGD and the SGD continued with saddle-free Newton
method.

Here, we further show the effectiveness of the proposed saddle-free Newton

method in a larger neural network having seven hidden layers. The neural network

is a deep autoencoder trained on (full-scale) MNIST and considered a standard

benchmark problem for assessing the performance of optimization algorithms on

neural networks (Sutskever et al., 2013). In this large-scale problem, we used the

Krylov subspace descent approach described earlier with 500 subspace vectors.

96

We first trained the model with SGD and observed that learning stalls af-

ter achieving the mean-squared error (MSE) of 1.0. We then continued with the

saddle-free Newton method which rapidly escaped the (approximate) plateau at

which SGD was stuck (See Fig. 10.4 (a)). Furthermore, even in these large scale

experiments, we were able to confirm that the distribution of Hessian eigenvalues

shifts right as error decreases, and that the proposed saddle-free Newton algorithm

accelerates this shift (See Fig. 10.4 (b)).

The model trained with SGD followed by the saddle-free Newton method was

able to get the state-of-the-art MSE of 0.57 compared to the previous best error

of 0.69 achieved by the Hessian-Free method (Martens, 2010). Saddle free Newton

method does better.

10.6.3 Recurrent Neural Networks: Hard Optimization Prob-

lem

Recurrent neural networks are widely known to be more difficult to train than

feedforward neural networks (see, e.g., Bengio et al., 1994; Pascanu et al., 2013). In

practice they tend to underfit, and in this section, we want to test if the proposed

saddle-free Newton method can help avoiding underfitting, assuming that that it is

caused by saddle points. We trained a small recurrent neural network having 120

hidden units for the task of character-level language modeling on Penn Treebank

corpus. Similarly to the previous experiment, we trained the model with SGD until

it was clear that the learning stalled. From there on, training continued with the

saddle-free Newton method.

In Fig. 10.4 (c), we see a trend similar to what we observed with the previ-

ous experiments using feedforward neural networks. The SGD stops progressing

quickly and does not improve performance, suggesting that the algorithm is stuck

in a plateau, possibly around a saddle point. As soon as we apply the proposed

saddle-free Newton method, we see that the error drops significantly. Furthermore,

Fig. 10.4 (d) clearly shows that the solution found by the saddle-free Newton has

fewer negative eigenvalues, consistent with the theory of random Gaussian error

functions. In addition to the saddle-free Newton method, we also tried continuing

with the truncated Newton method with damping, however, without much success.

97

10.7 Conclusion

In summary, we have drawn from disparate literatures spanning statistical

physics and random matrix theory to neural network theory, to argue that (a)

non-convex error surfaces in high dimensional spaces generically suffer from a pro-

liferation of saddle points, and (b) in contrast to conventional wisdom derived from

low dimensional intuition, local minima with high error are exponentially rare in

high dimensions. Moreover, we have provided the first experimental tests of these

theories by performing new measurements of the statistical properties of critical

points in neural network error surfaces. These tests were enabled by a novel ap-

plication of Newton’s method to search for critical points of any index (fraction of

negative eigenvalues), and they confirmed the main qualitative prediction of theory

that the index of a critical point tightly and positively correlates with its error level.

Motivated by this theory, we developed a framework of generalized trust re-

gion methods to search for algorithms that can rapidly escape saddle points. This

framework allows us to leverage curvature information in a fundamentally different

way than classical methods, by defining the shape of the trust region, rather than

locally approximating the function to second order. Through further approxima-

tions, we derived an exceedingly simple algorithm, the saddle-free Newton method,

which rescales gradients by the absolute value of the inverse Hessian. This algo-

rithm had previously remained heuristic and theoretically unjustified, as well as

numerically unexplored within the context of deep and recurrent neural networks.

Our work shows that near saddle points it can achieve rapid escape by combining

the best of gradient descent and Newton methods while avoiding the pitfalls of

both. Moreover, through our generalized trust region approach, our work shows

that this algorithm is sensible even far from saddle points. Finally, we demonstrate

improved optimization on several neural network training problems.

For the future, we are mainly interested in two directions. The first direction

is to explore methods beyond Kyrylov subspaces, such as one in (Sohl-Dickstein

et al., 2014), that allow the saddle-free Newton method to scale to high dimensional

problems, where we cannot easily compute the entire Hessian matrix. In the second

direction, the theoretical properties of critical points in the problem of training a

neural network will be further analyzed. More generally, it is likely that a deeper

understanding of the statistical properties of high dimensional error surfaces will

98

guide the design of novel non-convex optimization algorithms that could impact

many fields across science and engineering.

10.8 Appendix

10.8.1 Description of the different types of saddle-points

In general, consider an error function f(θ) where θ is an N dimensional contin-

uous variable. A critical point is by definition a point θ where the gradient of f(θ)
vanishes. All critical points of f(θ) can be further characterized by the curvature

of the function in its vicinity, as described by the eigenvalues of the Hessian. Note

that the Hessian is symmetric and hence the eigenvalues are real numbers. The

following are the four possible scenarios:

– If all eigenvalues are non-zero and positive, then the critical point is a local

minimum.

– If all eigenvalues are non-zero and negative, then the critical point is a local

maximum.

– If the eigenvalues are non-zero and we have both positive and negative eigen-

values, then the critical point is a saddle point with a min-max structure

(see Figure 10.5 (b)). That is, if we restrict the function f to the subspace

spanned by the eigenvectors corresponding to positive (negative) eigenvalues,

then the saddle point is a maximum (minimum) of this restriction.

– If the Hessian matrix is singular, then the degenerate critical point can be

a saddle point, as it is, for example, for θ3, θ ∈ R or for the monkey saddle

(Figure 10.5 (a) and (c)). If it is a saddle, then, if we restrict θ to only change

along the direction of singularity, the restricted function does not exhibit a

minimum nor a maximum; it exhibits, to second order, a plateau. When

moving from one side to other of the plateau, the eigenvalue corresponding

to this picked direction generically changes sign, being exactly zero at the

critical point. Note that an eigenvalue of zero can also indicate the presence

of a gutter structure, a degenerate minimum, maximum or saddle, where a

set of connected points are all minimum, maximum or saddle structures of

the same shape and error. In Figure 10.5 (d) it is shaped as a circle. The

99

error function looks like the bottom of a wine bottle, where all points along

this circle are minimum of equal value.

A plateau is an almost flat region in some direction. This structure is given

by having the eigenvalues (which describe the curvature) corresponding to the

directions of the plateau be close to 0, but not exactly 0. Or, additionally, by having

a large discrepancy between the norm of the eigenvalues. This large difference

would make the direction of “relative” small eigenvalues look like flat compared to

the direction of large eigenvalues.

10.8.2 Reparametrization of the space around saddle-points

This reparametrization is given by taking a Taylor expansion of the function f

around the critical point. If we assume that the Hessian is not singular, then there

is a neighbourhood around this critical point where this approximation is reliable

and, since the first order derivatives vanish, the Taylor expansion is given by:

f(θ∗ + ∆θ) = f(θ∗) + 1
2(∆θ)>H∆θ (10.6)

Let us denote by e1, . . . , enθ the eigenvectors of the Hessian H and by λ1, . . . , λnθ
the corresponding eigenvalues. We can now make a change of coordinates into the

space span by these eigenvectors:

∆v = 1
2

e1
>

. . .

enθ>

∆θ (10.7)

f(θ∗ + ∆θ) = f(θ∗) + 1
2

nθ∑
i=1

λi(ei>∆θ)2 = f(θ∗) +
nθ∑
i=1

λi∆v2
i (10.8)

10.8.3 Empirical exploration of properties of critical points

To obtain the plot on MNIST we used the Newton method to discover nearby

critical points along the path taken by the saddle-free Newton algorithm. We

consider 20 different runs of the saddle-free algorithm, each using a different random

seed. We then run 200 jobs. The first 100 jobs are looking for critical points

near the value of the parameters obtained after some random number of epochs

(between 0 and 20) of a randomly selected run (among the 20 different runs) of

100

(a) (b)

(c) (d)

Figure 10.5: Illustrations of three different types of saddle points (a-c) plus a gutter structure
(d). Note that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The
shape of the function is that of the bottom of a bottle of wine. This means that the minimum
is a “ring” instead of a single point. The Hessian is singular at any of these points. (c) shows a
Monkey saddle where you have both a min-max structure as in (b) but also a 0 eigenvalue, which
results, along some direction, in a shape similar to (a).

101

saddle-free Newton method. To this starting position uniform noise is added of

small amplitude (the amplitude is randomly picked between the different values

{10−1, 10−2, 10−3, 10−4} The last 100 jobs look for critical points near uniformally

sampled weights (the range of the weights is given by the unit cube). The task

(dataset and model) is the same as the one used previously.

To obtain the plots on CIFAR, we have trained multiple 3-layer deep neural

networks using SGD. The activation function of these networks is the tanh func-

tion. We saved the parameters of these networks for each epoch. We trained 100

networks with different parameter initializations between 10 and 300 epochs (cho-

sen randomly). The networks were then trained using the Newton method to find

a nearby critical point. This allows us to find many different critical points along

the learning trajectories of the networks.

10.8.4 Proof of Lemma 1

Lemma 2. Let A be a nonsingular square matrix in Rn×Rn, and x ∈ Rn be some

vector. Then it holds that |x>Ax| ≤ x>|A|x, where |A| is the matrix obtained by

taking the absolute value of each of the eigenvalues of A.

Proof. Let e1, . . . en be the different eigenvectors of A and λ1, . . . λn the correspond-

ing eigenvalues. We now re-write the identity by expressing the vector x in terms

of these eigenvalues:

|x>Ax| =
∣∣∣∣∣∑
i

(x>ei)ei>Ax
∣∣∣∣∣ =

∣∣∣∣∣∑
i

(x>ei)λi(ei>x)
∣∣∣∣∣ =

∣∣∣∣∣∑
i

λi(x>ei)2
∣∣∣∣∣

We can now use the triangle inequality |∑i xi| ≤
∑
i |xi| and get that

|x>Ax| ≤
∑
i

|(x>ei)2λi| =
∑
i

(x>ei)|λi|(ei>x) = x>|A|x

102

10.8.5 Implementation details for approximate saddle-free

Newton

The Krylov subspace is obtained through a slightly modified Lanczos process

(see Algorithm 4). The initial vector of the algorithm is the gradient of the model.

As noted by Vinyals and Povey (2012), we found it was useful to include the

previous search direction as the last vector of the subspace.

As described in the main paper, we have ∂f̂
∂α

= V
(
∂f
∂θ

)>
and ∂2f̂

∂α2 = V
(
∂2f
∂θ2

)
V>.

Note that the calculation of the Hessian in the subspace can be greatly sped up by

memorizing the vectors Vi
∂2f
∂θ2 during the Lanczos process. Once memorized, the

Hessian is simply the product of the two matrices V and Vi
∂2f
∂θ2 .

We have found that it is beneficial to perform multiple optimization steps within

the subspace. We do not recompute the Hessian for these steps under the assump-

tion that the Hessian will not change much.

Algorithm 4 Obtaining the Lanczos vectors

Input: g← −∂f
∂θ

Input: ∆θ (The past weight update)
V0 ← 0
V1 ← g

‖g‖
β1 ← 0
for i = 1→ k − 1 do

wi ← Vi
∂2f
∂θ2

if i = k − 1 then
wi ← ∆θ

end if
αi ← wiVi

wi ← wi − αiVi − βiVi−1
βi+1 ← ‖wi‖
Vi+1 ← w

‖wi‖
end for

10.8.6 Experiments

Existence of Saddle Points in Neural Networks

For feedforward networks using SGD, we choose the following hyperparameters

using the random search strategy (Bergstra and Bengio, 2012b):

103

– Learning rate

– Size of minibatch

– Momentum coefficient

For random search, we draw 80 samples and pick the best one.

For both the Newton and saddle-free Newton methods, the damping coefficient

is chosen at each update, to maximize the improvement, among {100, 10−1, 10−2, 10−3, 10−4, 10−5}.

Effectiveness of saddle-free Newton Method in Deep Neural Networks

The deep auto-encoder was first trained using the protocol used by Sutskever

et al. (2013). In these experiments we use classical momentum.

Recurrent Neural Networks: Hard Optimization Problem

We initialized the recurrent weights of RNN to be orthogonal as suggested by

Saxe et al. (2014). The number of hidden units of RNN is fixed to 120. For

recurrent neural networks using SGD, we choose the following hyperparameters

using the random search strategy:

– Learning rate

– Threshold for clipping the gradient (Pascanu et al., 2013)

– Momentum coefficient

For random search, we draw 64 samples and pick the best one. Just like in the

experiment using feedforward neural networks, the damping coefficient of both the

Newton and saddle-free Newton methods was chosen at each update, to maximize

the improvement.

We clip the gradient and saddle-free update step if it exceeds certain threshold

as suggested by Pascanu et al. (2013).

Since it is costly to compute the exact Hessian for RNN’s, we used the eigen-

values of the Hessian in the Krylov subspace to plot the distribution of eigenvalues

for Hessian matrix in Fig. 10.4 (d).

104

11 Conclusion

In this thesis we have proposed several new methods to help scale neural net-

works. Scaling is an important question for AI because current neural networks are

still orders of magnitude smaller than those found in mice. As a case in point, scal-

ing is one of the reasons behind the resurgence of neural networks in the mid-2000s.

The state-of-the-art in several fields was broken by training much bigger but albeit

classical neural networks on GPUs. Thus it stands to reason that further scaling

these models will lead to improvements that will bring us closer to AI.

To this effect, we have proposed new methods in Chapters 3 and 6 to reduce the

computational cost of several unsupervised learning models on high-dimensional

sparse data. This is important to their application to problems in natural lan-

guage processing. We have shown that these models can take advantage of spar-

sity through the use of importance sampling without decreasing the quality of the

models learned. We observed speed-ups of orders of magnitude. What’s more,

the models trained using this approach achieved then state-of-the-art results, for

instance of the Amazon sentiment analysis dataset and the RCV1 topic detection

dataset.

Furthermore, we went beyond reducing the computational cost and proposed

a new method to combat overfitting in neural networks. It is well known that

increasing the capacity of a model can have detrimental consequences on its gen-

eralization. Therefore, proper generalization methods are important if we are to

significantly scale these models. In chapter 8, we introduce a new kind of data-

dependent regularizer. This regularizer relies on enforcing invariance of the classifier

to learned transformations of the data. We were able to show that the transfor-

mations (rotation/translation) in several problems like MNIST, CIFAR and RCV1

could be learned in an unsupervised fashion using contractive auto-encoders. This

method was able to reach then state-of-the-art results on the permutation invari-

ance MNIST with 0.81% test error.

Finally, we have shown that training neural networks don’t suffer as much from

105

local minima as previously thought. This may explain some of the success in train-

ing them in spite of the fears about local minima. We have confirmed experimen-

tally in Chapter 10 the theoretical arguments brought forth by statistical physicists

to show that there are exponentially more saddle points in high-dimensional loss

surface than local minima. We have shown that properly addressing the chal-

lenges brought upon by saddle points with the saddle-free Newton method can sig-

nificantly improve performance over the damped Newton method for non-convex

problems.

As future work, I am working on a new optimizer tailored for non-convex prob-

lems. In particular, I am interested in devising an algorithm which can take bet-

ter advantage of the computational resources at hand. Currently, training neural

networks does not typically take advantage of multiple GPUs. Practitioners take

advantage of additional resources by cross-validating different hyper-parameters on

different machines. While that may have worked in the past, training on some of

the current benchmarks takes up to a month. Thus it would be wise to use addi-

tional computational resources to actually reduce the training time by distributing

training.

106

Bibliography

(-1). Journal of Machine Learning Research.

(-1). Advances in neural information processing systems 26 (nips’13). In Ad-

vances in Neural Information Processing Systems 26 (NIPS’13). NIPS Founda-

tion (http://books.nips.cc).

(-1, April). International conference on learning representations 2014. In Interna-

tional Conference on Learning Representations 2014(Conference Track).

(-1a). Proceedings of the 30th international conference on machine learning

(icml’13). In Proceedings of the 30th International Conference on Machine Learn-

ing (ICML’13). ACM.

(-1b). Proceedings of the twenty-eight international conference on machine learn-

ing (icml’11). In Proceedings of theTwenty-eight International Conference on

Machine Learning (ICML’11).

Alain, G. and Y. Bengio (2013). What regularized auto-encoders learn from the

data generating distribution. In International Conference on Learning Represen-

tations (ICLR’2013).

Baldi, P. and K. Hornik (1989). Neural networks and principal component analysis:

Learning from examples without local minima. Neural Networks 2, 53–58.

Bastien, F., P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron,

N. Bouchard, and Y. Bengio (2012). Theano: new features and speed improve-

ments. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.

Bengio, Y. (2008). Neural net language models. Scholarpedia 3 (1), 3881.

Bengio, Y. (2009a). Learning deep architectures for AI. Now Publishers.

107

Bengio, Y. (2009b). Learning deep architectures for AI. Foundations and Trends

in Machine Learning 2 (1), 1–127. Also published as a book. Now Publishers,

2009.

Bengio, Y., A. Courville, and P. Vincent (2012). Representation learning: A review

and new perspectives. Technical report, arXiv:1206.5538.

Bengio, Y., A. Courville, and P. Vincent (2013, August). Representation learning:

A review and new perspectives. Pattern Analysis and Machine Intelligence,

IEEE Transactions on 35 (8), 1798–1828.

Bengio, Y. and O. Delalleau (2009, June). Justifying and generalizing contrastive

divergence. Neural Computation 21 (6), 1601–1621.

Bengio, Y., R. Ducharme, and P. Vincent (2001). A neural probabilistic language

model. In T. Leen, T. Dietterich, and V. Tresp (Eds.), Advances in Neural

Information Processing Systems 13 (NIPS’00), pp. 932–938. MIT Press.

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2007a). Greedy layer-wise

training of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman (Eds.),

Advances in Neural Information Processing Systems 19 (NIPS’06), pp. 153–160.

MIT Press.

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2007b). Greedy layer-wise

training of deep networks. In NIPS’2006.

Bengio, Y., H. Larochelle, and P. Vincent (2006). Non-local manifold Parzen win-

dows. In Y. Weiss, B. Schölkopf, and J. Platt (Eds.), Advances in Neural Infor-

mation Processing Systems 18 (NIPS’05), pp. 115–122. MIT Press.

Bengio, Y., G. Mesnil, Y. Dauphin, and S. Rifai (2013). Better mixing via deep

representations. See ICM (1a).

Bengio, Y. and M. Monperrus (2005). Non-local manifold tangent learning. In

L. Saul, Y. Weiss, and L. Bottou (Eds.), Advances in Neural Information Pro-

cessing Systems 17 (NIPS’04), pp. 129–136. MIT Press.

Bengio, Y. and J.-S. Sénécal (2003). Quick training of probabilistic neural nets by

importance sampling. In Proceedings of the conference on Artificial Intelligence

and Statistics (AISTATS).

108

Bengio, Y. and J.-S. Sénécal (2008). Adaptive importance sampling to accelerate

training of a neural probabilistic language model. IEEE Trans. Neural Net-

works 19 (4), 713–722.

Bengio, Y., P. Simard, and P. Frasconi (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE Transactions on Neural Networks 5 (2),

157–166. Special Issue on Recurrent Neural Networks, March 94.

Bengio, Y., E. Thibodeau-Laufer, and J. Yosinski (2014). Deep generative stochas-

tic networks trainable by backprop. In Proceedings of the Thirty-one Interna-

tional Conference on Machine Learning (ICML’14).

Bengio, Y., L. Yao, G. Alain, and P. Vincent (2013). Generalized denoising auto-

encoders as generative models. See NIP (1).

Bergstra, J. and Y. Bengio (2012a, February). Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, 281–305.

Bergstra, J. and Y. Bengio (2012b). Random search for hyper-parameter optimiza-

tion. J. Machine Learning Res. 13, 281–305.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Blitzer, J., M. Dredze, and F. Pereira (2007). Biographies, bollywood, boom-boxes

and blenders: Domain adaptation for sentiment classification. In Proceedings of

the Association for Computational Linguistics (ACL’07), pp. 440–447.

Bourlard, H. and Y. Kamp (1988). Auto-association by multilayer perceptrons and

singular value decomposition. Biological Cybernetics 59, 291–294.

Brand, M. (2003). Charting a manifold. In S. Becker, S. Thrun, and K. Obermayer

(Eds.), Advances in Neural Information Processing Systems 15 (NIPS’02), pp.

961–968. MIT Press.

Bray, A. J. and D. S. Dean (2007, Apr). Statistics of critical points of gaussian

fields on large-dimensional spaces. Phys. Rev. Lett. 98, 150201.

Callahan, J. (2010). Advanced Calculus: A Geometric View. Undergraduate Texts

in Mathematics. Springer.

109

Cayton, L. (2005). Algorithms for manifold learning. Technical Report CS2008-

0923, UCSD.

Choromanska, A., M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun (2014). The

loss surface of multilayer networks. arXiv preprint arXiv:1412.0233 .

Coates, A. and A. Y. Ng (2011). The importance of encoding versus training with

sparse coding and vector quantization. In ICML’2011.

Collobert, R. and J. Weston (2008). A unified architecture for natural language

processing: Deep neural networks with multitask learning. In W. W. Cohen,

A. McCallum, and S. T. Roweis (Eds.), Proceedings of the Twenty-fifth Interna-

tional Conference on Machine Learning (ICML’08), pp. 160–167. ACM.

Dahl, G., R. Adams, and H. Larochelle (2012a, July). Training restricted boltzmann

machines on word observations. In J. Langford and J. Pineau (Eds.), Proceedings

of the 29th International Conference on Machine Learning (ICML-12), ICML

’12, New York, NY, USA, pp. 679–686. Omnipress.

Dahl, G. E., R. P. Adams, and H. Larochelle (2012b). Training restricted Boltz-

mann machines on word observations. In ICML’2012.

Dahl, G. E., M. Ranzato, A. Mohamed, and G. E. Hinton (2010). Phone recognition

with the mean-covariance restricted Boltzmann machine. In Advances in Neural

Information Processing Systems (NIPS).

Dahl, G. E., D. Yu, L. Deng, and A. Acero (2012). Context-dependent pre-trained

deep neural networks for large vocabulary speech recognition. IEEE Transactions

on Audio, Speech, and Language Processing 20 (1), 33–42.

Dauphin, Y. and Y. Bengio (2013). Stochastic ratio matching of RBMs for sparse

high-dimensional inputs. See NIP (1).

Dauphin, Y., X. Glorot, and Y. Bengio (2011, June). Large-scale learning of em-

beddings with reconstruction sampling. See ICM (1b).

Dauphin, Y., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio (2014a).

Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization. In NIPS’2014.

110

Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio

(2014b). Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. In Advances in Neural Information Processing Systems,

pp. 2933–2941.

Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman

(1990). Indexing by latent semantic analysis. Journal of the American Society

for Information Science 41 (6), 391–407.

Delalleau, O. and Y. Bengio (2011). Shallow vs. deep sum-product networks. In

Advances in Neural Information Processing Systems 24 (NIPS’11), pp. 666–674.

Deoras, A. and R. Sarikaya (2013). Deep belief network based semantic taggers for

spoken language understanding. In INTERSPEECH, pp. 2713–2717.

Drucker, H. and Y. LeCun (1992). Improving generalisation performance using

double back-propagation. IEEE Transactions on Neural Networks 3 (6), 991–

997.

Erhan, D., Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Ben-

gio (2010, February). Why does unsupervised pre-training help deep learning?

SeeJML (1), pp. 625–660.

Erhan, D., A. Courville, Y. Bengio, and P. Vincent (2010, May). Why does un-

supervised pre-training help deep learning? In JMLR W&CP: Proceedings of

the Thirteenth International Conference on Artificial Intelligence and Statistics

(AISTATS 2010), Volume 9, pp. 201–208.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin (2008). LIBLIN-

EAR: A library for large linear classification. 9, 1871–1874.

Fyodorov, Y. V. and I. Williams (2007). Replica symmetry breaking condition

exposed by random matrix calculation of landscape complexity. Journal of Sta-

tistical Physics 129 (5-6), 1081–1116.

Ge, R., F. Huang, C. Jin, and Y. Yuan (2015, March). Escaping From Saddle

Points — Online Stochastic Gradient for Tensor Decomposition. ArXiv e-prints .

111

Glorot, X. and Y. Bengio (2010, May). Understanding the difficulty of training deep

feedforward neural networks. In JMLR W&CP: Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and Statistics (AISTATS 2010),

Volume 9, pp. 249–256.

Glorot, X., A. Bordes, and Y. Bengio (2011a, April). Deep sparse rectifier neural

networks. In JMLR W&CP: Proceedings of the Fourteenth International Con-

ference on Artificial Intelligence and Statistics (AISTATS 2011).

Glorot, X., A. Bordes, and Y. Bengio (2011b). Deep sparse rectifier neural networks.

Glorot, X., A. Bordes, and Y. Bengio (2011c, June). Domain adaptation for large-

scale sentiment classification: A deep learning approach. See ICM (1b), pp.

97–110.

Goodfellow, I. (2013). Piecewise linear multilayer perceptrons and dropout. Tech-

nical report, arXiv:1301.5088.

Goodfellow, I., Q. Le, A. Saxe, and A. Ng (2009). Measuring invariances in deep

networks. In Y. Bengio, D. Schuurmans, C. Williams, J. Lafferty, and A. Culotta

(Eds.), Advances in Neural Information Processing Systems 22 (NIPS’09), pp.

646–654.

Goodfellow, I. J., D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio (2013).

Maxout networks. See ICM (1a), pp. 1319–1327.

Goto, K. and R. A. v. d. Geijn (2008, May). Anatomy of high-performance matrix

multiplication. ACM Transactions Mathematical Software 34, 12:1–12:25.

Hayes-Roth, F., D. Waterman, and D. Lenat (1984). Building expert systems.

Hazan, E., K. Y. Levy, and S. Shalev-Swartz (2015, March). On Graduated Opti-

mization for Stochastic Non-Convex Problems. ArXiv e-prints .

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceed-

ings of the Eighth Annual Conference of the Cognitive Science Society, Amherst

1986, pp. 1–12. Lawrence Erlbaum, Hillsdale.

Hinton, G. E., S. Osindero, and Y. Teh (2006a). A fast learning algorithm for deep

belief nets. Neural Computation 18, 1527–1554.

112

Hinton, G. E., S. Osindero, and Y.-W. Teh (2006b). A fast learning algorithm for

deep belief nets. Neural Computation 18, 1527–1554.

Hinton, G. E. and R. R. Salakhutdinov (2006, July). Reducing the dimensionality

of data with neural networks. Science 313 (5786), 504–507.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov

(2012). Improving neural networks by preventing co-adaptation of feature detec-

tors. Technical report, arXiv:1207.0580.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks

are universal approximators. Neural networks 2 (5), 359–366.

Hyvärinen, A. (2005). Estimation of non-normalized statistical models using score

matching. Journal of Machine Learning Research 6, 695–709.

Hyvärinen, A. (2007). Some extensions of score matching. Computational Statistics

and Data Analysis 51, 2499–2512.

Inoue, M., H. Park, and M. Okada (2003). On-line learning theory of soft committee

machines with correlated hidden units –steepest gradient descent and natural

gradient descent–. Journal of the Physical Society of Japan 72 (4), 805–810.

Japkowicz, N., S. J. Hanson, and M. A. Gluck (2000). Nonlinear autoassociation

is not equivalent to PCA. Neural Computation 12 (3), 531–545.

Jarrett, K., K. Kavukcuoglu, M. Ranzato, and Y. LeCun (2009). What is the best

multi-stage architecture for object recognition? In Proc. International Confer-

ence on Computer Vision (ICCV’09), pp. 2146–2153. IEEE.

Kavukcuoglu, K., M. Ranzato, R. Fergus, and Y. LeCun (2009). Learning invariant

features through topographic filter maps. In Proceedings of the Computer Vision

and Pattern Recognition Conference (CVPR’09), pp. 1605–1612. IEEE.

Kim, K., I. W. Harry, K. A. Hodge, Y.-M. Kim, C.-H. Lee, H. K. Lee, J. J. Oh,

S. H. Oh, and E. J. Son (2014). Application of artificial neural network to search

for gravitational-wave signals associated with short gamma-ray bursts. arXiv

preprint arXiv:1410.6878 .

113

Kira, K. and L. A. Rendell (1992). The feature selection problem: Traditional

methods and a new algorithm. In Proceedings of the Tenth National Conference

on Artificial Intelligence, pp. 129–134.

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). ImageNet classification with

deep convolutional neural networks. In Advances in Neural Information Process-

ing Systems 25 (NIPS’2012).

Larochelle, H., D. Erhan, A. Courville, J. Bergstra, and Y. Bengio (2007). An

empirical evaluation of deep architectures on problems with many factors of vari-

ation. In Z. Ghahramani (Ed.), Proceedings of the 24th International Conference

on Machine Learning (ICML’07), pp. 473–480. ACM.

Larochelle, H., M. I. Mandel, R. Pascanu, and Y. Bengio (2012). Learning algo-

rithms for the classification restricted boltzmann machine. Journal of Machine

Learning Research 13, 643–669.

Lasserre, J. A., C. M. Bishop, and T. P. Minka (2006). Principled hybrids of

generative and discriminative models. In Proceedings of the Computer Vision

and Pattern Recognition Conference (CVPR’06), Washington, DC, USA, pp.

87–94. IEEE Computer Society.

Lauly, S., H. Larochelle, M. Khapra, B. Ravindran, V. C. Raykar, and A. Saha

(2014). An autoencoder approach to learning bilingual word representations. In

Advances in Neural Information Processing Systems, pp. 1853–1861.

Lawson, C. L., R. J. Hanson, D. R. Kincaid, and F. T. Krogh (1979, Septem-

ber). Basic linear algebra subprograms for fortran usage. ACM Transactions

Mathematical Software 5, 308–323.

Le, Q., M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Ng

(2012). Building high-level features using large scale unsupervised learning. In

ICML’2012.

Le, Q. V., A. Karpenko, J. Ngiam, and A. Y. Ng (2011). ICA with reconstruction

cost for efficient overcomplete feature learning. In J. Shawe-Taylor, R. Zemel,

P. Bartlett, F. Pereira, and K. Weinberger (Eds.), Advances in Neural Informa-

tion Processing Systems 24, pp. 1017–1025.

114

Le Roux, N. and Y. Bengio (2010, August). Deep belief networks are compact

universal approximators. Neural Computation 22 (8), 2192–2207.

Le Roux, N., P.-A. Manzagol, and Y. Bengio (2007). Topmoumoute online natural

gradient algorithm. Advances in Neural Information Processing Systems .

LeCun, Y., L. Bottou, G. B. Orr, and K.-R. Müller (1998). Efficient backprop.

In Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science

LNCS 1524. Springer Verlag.

LeCun, Y., P. Haffner, L. Bottou, and Y. Bengio (1999). Object recognition with

gradient-based learning. In Shape, Contour and Grouping in Computer Vision,

pp. 319–345. Springer.

Lee, H., R. Grosse, R. Ranganath, and A. Y. Ng (2009). Convolutional deep belief

networks for scalable unsupervised learning of hierarchical representations. In

L. Bottou and M. Littman (Eds.), Proceedings of the Twenty-sixth International

Conference on Machine Learning (ICML’09). Montreal, Canada: ACM.

Lewis, D. D., Y. Yang, T. G. Rose, and F. Li (2004, December). Rcv1: A new

benchmark collection for text categorization research. 5, 361–397.

Lewis, D. D., Y. Yang, T. G. Rose, F. Li, G. Dietterich, and F. Li (2004). Rcv1: A

new benchmark collection for text categorization research. Journal of Machine

Learning Research 5, 361–397.

Lowe, D. (1999). Object recognition from local scale-invariant features. In Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE International Confer-

ence on, Volume 2, pp. 1150–1157 vol.2.

Marlin, B., K. Swersky, B. Chen, and N. de Freitas (2010). Inductive principles

for restricted Boltzmann machine learning. In Proceedings of The Thirteenth

International Conference on Artificial Intelligence and Statistics (AISTATS’10),

Volume 9, pp. 509–516.

Martens, J. (2010). Deep learning via hessian-free optimization. In International

Conference in Machine Learning, pp. 735–742.

115

Mesnil, G., Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. J. Goodfellow, E. Lavoie,

X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and

J. Bergstra (2012). Unsupervised and transfer learning challenge: a deep learning

approach. In I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver (Eds.),

JMLR W& CP: Proceedings of the Unsupervised and Transfer Learning challenge

and workshop, Volume 27, pp. 97–110.

Miikkulainen, R. and M. G. Dyer (1991). Natural language processing with modular

PDP networks and distributed lexicon. Cognitive Science 15, 343–399.

Mikolov, T., A. Deoras, S. Kombrink, L. Burget, and J. Cernocky (2011). Empirical

evaluation and combination of advanced language modeling techniques. In Proc.

12th annual conference of the international speech communication association

(INTERSPEECH 2011).

Mizutani, E. and S. Dreyfus (2010). An analysis on negative curvature induced

by singularity in multi-layer neural-network learning. In Advances in Neural

Information Processing Systems, pp. 1669–1677.

Mnih, A. and G. E. Hinton (2009). A scalable hierarchical distributed language

model. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Eds.), Advances

in Neural Information Processing Systems 21 (NIPS’08), pp. 1081–1088.

Morin, F. and Y. Bengio (2005). Hierarchical probabilistic neural network language

model. In R. G. Cowell and Z. Ghahramani (Eds.), Proceedings of the Tenth

International Workshop on Artificial Intelligence and Statistics (AISTATS’05),

pp. 246–252.

Murray, W. (2010). Newton-type methods. Technical report, Department of Man-

agement Science and Engineering, Stanford University.

Narayanan, H. and S. Mitter (2010). Sample complexity of testing the manifold

hypothesis. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and

A. Culotta (Eds.), Advances in Neural Information Processing Systems 23, pp.

1786–1794.

Nocedal, J. and S. Wright (2006). Numerical Optimization. Springer.

116

Parisi, G. (2007). Mean field theory of spin glasses: statistics and dynamics. Tech-

nical Report Arxiv 0706.0094.

Pascanu, R. and Y. Bengio (2014, April). Revisiting natural gradient for deep

networks. See ICL (1).

Pascanu, R., Y. Dauphin, S. Ganguli, and Y. Bengio (2014). On the saddle point

problem for non-convex optimization. Technical Report Arxiv 1405.4604.

Pascanu, R., T. Mikolov, and Y. Bengio (2013). On the difficulty of training

recurrent neural networks. In ICML’2013.

Pascanu, R., G. Montufar, and Y. Bengio (2014, April). On the number of inference

regions of deep feed forward networks with piece-wise linear activations. See ICL

(1).

Ranzato, M., F. Huang, Y. Boureau, and Y. LeCun (2007). Unsupervised learn-

ing of invariant feature hierarchies with applications to object recognition.

In Proceedings of the Computer Vision and Pattern Recognition Conference

(CVPR’07). IEEE Press.

Ranzato, M., C. Poultney, S. Chopra, and Y. LeCun (2007). Efficient learning of

sparse representations with an energy-based model. In NIPS’2006.

Rasmus, A., T. Raiko, and H. Valpola (2014). Denoising autoencoder with mod-

ulated lateral connections learns invariant representations of natural images.

CoRR abs/1412.7210.

Rasmussen, C. E. and C. K. I. Williams (2005). Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT Press.

Rattray, M., D. Saad, and S. I. Amari (1998, December). Natural Gradient Descent

for On-Line Learning. Physical Review Letters 81 (24), 5461–5464.

Rifai, S., Y. Bengio, A. Courville, P. Vincent, and M. Mirza (2012). Disentangling

factors of variation for facial expression recognition. In European Conference on

Computer Vision.

117

Rifai, S., Y. Bengio, Y. Dauphin, and P. Vincent (2012). A generative process for

sampling contractive auto-encoders. In Proceedings of the Twenty-nine Interna-

tional Conference on Machine Learning (ICML’12). ACM.

Rifai, S., Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller (2011). The manifold

tangent classifier. In NIPS’2011. Student paper award.

Rifai, S., G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X. Glorot

(2011). Higher order contractive auto-encoder. In European Conference on Ma-

chine Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML PKDD).

Rifai, S., P. Vincent, X. Muller, X. Glorot, and Y. Bengio (2011, June). Contractive

auto-encoders: Explicit invariance during feature extraction. See ICM (1b).

Roweis, S. and L. K. Saul (2000, December). Nonlinear dimensionality reduction

by locally linear embedding. Science 290 (5500), 2323–2326.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning representa-

tions by back-propagating errors. Nature 323, 533–536.

Saad, D. and S. A. Solla (1995, Oct). On-line learning in soft committee machines.

Physical Review E 52, 4225–4243.

Salakhutdinov, R. and G. Hinton (2009a). Deep Boltzmann machines. In Pro-

ceedings of the Twelfth International Conference on Artificial Intelligence and

Statistics (AISTATS 2009), Volume 8.

Salakhutdinov, R. and G. E. Hinton (2007). Learning a nonlinear embedding by

preserving class neighbourhood structure. In Proceedings of the Eleventh Inter-

national Conference on Artificial Intelligence and Statistics (AISTATS’07), San

Juan, Porto Rico. Omnipress.

Salakhutdinov, R. and G. E. Hinton (2009b). Deep Boltzmann machines. In Pro-

ceedings of The Twelfth International Conference on Artificial Intelligence and

Statistics (AISTATS’09), Volume 5, pp. 448–455.

Salakhutdinov, R. and I. Murray (2008). On the quantitative analysis of deep belief

networks. In W. W. Cohen, A. McCallum, and S. T. Roweis (Eds.), Proceedings

118

of the Twenty-fifth International Conference on Machine Learning (ICML’08),

Volume 25, pp. 872–879. ACM.

Saxe, A., J. McClelland, and S. Ganguli (2013). Learning hierarchical category

structure in deep neural networks. Proceedings of the 35th annual meeting of the

Cognitive Science Society , 1271–1276.

Saxe, A., J. McClelland, and S. Ganguli (2014). Exact solutions to the nonlinear

dynamics of learning in deep linear neural network. In International Conference

on Learning Representations.

Schutze, H. (1993). Word space. In C. Giles, S. Hanson, and J. Cowan (Eds.),

Advances in Neural Information Processing Systems 5 (NIPS’92), San Mateo

CA, pp. 895–902. Morgan Kaufmann.

Schwenk, H. and J.-L. Gauvain (2002). Connectionist language modeling for large

vocabulary continuous speech recognition. In International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), Orlando, Florida, pp. 765–768.

Seide, F., G. Li, and D. Yu (2011). Conversational speech transcription using

context-dependent deep neural networks. In Interspeech 2011, pp. 437–440.

Simard, P., B. Victorri, Y. LeCun, and J. Denker (1992). Tangent prop - A for-

malism for specifying selected invariances in an adaptive network. In J. M. S.

Hanson and R. Lippmann (Eds.), Advances in Neural Information Processing

Systems 4 (NIPS’91), San Mateo, CA, pp. 895–903. Morgan Kaufmann.

Simard, P. Y., Y. LeCun, and J. Denker (1993). Efficient pattern recognition using

a new transformation distance. In C. Giles, S. Hanson, and J. Cowan (Eds.),

Advances in Neural Information Processing Systems 5 (NIPS’92), pp. 50–58.

Morgan Kaufmann, San Mateo.

Socher, R., C. Manning, and A. Y. Ng (2011). Parsing natural scenes and natural

language with recursive neural networks. In Proceedings of the Twenty-Eighth

International Conference on Machine Learning (ICML’2011).

Sohl-Dickstein, J., B. Poole, and S. Ganguli (2014). Fast large-scale optimization

by unifying stochastic gradient and quasi-newton methods. In ICML’2014.

119

Sutskever, I. (2012). Training Recurrent Neural Networks. Ph. D. thesis, Depart-

ment of computer science, University of Toronto.

Sutskever, I., J. Martens, G. E. Dahl, and G. E. Hinton (2013, May). On the

importance of initialization and momentum in deep learning. In S. Dasgupta

and D. Mcallester (Eds.), Proceedings of the 30th International Conference on

Machine Learning (ICML-13), Volume 28, pp. 1139–1147. JMLR Workshop and

Conference Proceedings.

Swersky, K., M. Ranzato, D. Buchman, B. Marlin, and N. de Freitas (2011). On

autoencoders and score matching for energy based models. In ICML’2011. ACM.

Tenenbaum, J., V. de Silva, and J. C. Langford (2000, December). A global ge-

ometric framework for nonlinear dimensionality reduction. Science 290 (5500),

2319–2323.

Tieleman, T. (2008). Training restricted Boltzmann machines using approximations

to the likelihood gradient. In ICML’2008, pp. 1064–1071.

Tikhonov, A. N. and V. Y. Arsenin (1977). Solutions of Ill-posed Problems. Wash-

ington D.C.: W. H. Winston.

Trebar, M. and N. Steele (2008). Application of distributed SVM architectures

in classifying forest data cover types. Computers and Electronics in Agricul-

ture 63 (2), 119 – 130.

Valiant, L. G. (1984, November). A theory of the learnable. Commun. ACM 27 (11),

1134–1142.

van der Maaten, L. and G. E. Hinton (2008, November). Visualizing data using

t-SNE. Journal of Machine Learning Research 9, 2579–2605.

Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks,

IEEE Transactions on 10 (5), 988–999.

Vincent, P. (2010, November). A connection between score matching and denoising

autoencoders. Technical Report 1358, Université de Montréal, DIRO.

Vincent, P. (2011, July). A connection between score matching and denoising

autoencoders. Neural Computation 23 (7), 1661–1674.

120

Vincent, P. (2014). Efficient exact gradient update for training deep networks with

very large sparse targets. arXiv preprint arXiv:1412.7091 .

Vincent, P. and Y. Bengio (2003). Manifold Parzen windows. In NIPS’2002. MIT

Press.

Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol (2008). Extracting and

composing robust features with denoising autoencoders. In W. W. Cohen, A. Mc-

Callum, and S. T. Roweis (Eds.), Proceedings of the Twenty-fifth International

Conference on Machine Learning (ICML’08), pp. 1096–1103. ACM.

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010, Decem-

ber). Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion. SeeJML (1), pp. 3371–3408.

Vinyals, O. and D. Povey (2012). Krylov Subspace Descent for Deep Learning. In

AISTATS.

Wang, S. and C. Manning (2013). Fast dropout training. In ICML’2013.

Weston, J., F. Ratle, and R. Collobert (2008). Deep learning via semi-supervised

embedding. In W. W. Cohen, A. McCallum, and S. T. Roweis (Eds.), Proceedings

of the Twenty-fifth International Conference on Machine Learning (ICML’08),

New York, NY, USA, pp. 1168–1175. ACM.

Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices.

The Annals of Mathematics 67 (2), 325–327.

Younes, L. (1999). On the convergence of Markovian stochastic algorithms with

rapidly decreasing ergodicity rates. Stochastics and Stochastic Reports 65 (3),

177–228.

Yu, K. and T. Zhang (2010, June). Improved local coordinate coding using local

tangents. In L. Bottou and M. Littman (Eds.), Proceedings of the Twenty-seventh

International Conference on Machine Learning (ICML-10). ACM.

Yu, K., T. Zhang, and Y. Gong (2009). Nonlinear learning using local coordi-

nate coding. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and

121

A. Culotta (Eds.), Advances in Neural Information Processing Systems 22, pp.

2223–2231.

Zeiler, M. D. and R. Fergus (2013). Stochastic pooling for regularization of deep

convolutional neural networks. Technical Report Arxiv 1301.3557.

122

	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	1 Introduction
	1.1 Introduction to machine learning
	1.2 Model families
	1.3 Optimization
	1.4 Regularization
	1.5 Supervised Learning
	1.5.1 Naive Bayes
	1.5.2 Logistic regression
	1.5.3 Deep Neural Networks

	1.6 Unsupervised Learning

	2 Deep Learning
	2.1 Deep neural networks
	2.1.1 Approximation power
	2.1.2 The power of distributed representations
	2.1.3 Practical details

	2.2 Restricted Boltzmann machines
	2.2.1 Conditionals
	2.2.2 Sampling
	2.2.3 Learning

	2.3 Regularized auto-encoders
	2.3.1 Denoising auto-encoders
	2.3.2 Contractive auto-encoders
	2.3.3 Links between auto-encoders and RBMs

	2.4 Stacking RBMs and AEs
	2.4.1 Deep belief nets
	2.4.2 Stacked auto-encoders

	2.5 Why does pretraining work?
	2.6 Beyond pretraining
	2.7 Challenges

	3 Prologue to first article
	3.1 Article Detail
	3.2 Context
	3.3 Contributions

	4 Scaling DAEs to high-dimensional sparse inputs with importance sampling
	4.1 Related Work
	4.2 Denoising Auto-Encoders
	4.2.1 Introduction
	4.2.2 Training
	4.2.3 Motivation

	4.3 Scaling the Denoising Auto-Encoder
	4.3.1 Challenges
	4.3.2 Scaling the Encoder: Sparse Dot Product
	4.3.3 Scaling the Decoder: Reconstruction Sampling

	4.4 Implementation
	4.4.1 Encoder
	4.4.2 Decoder

	4.5 Experiments
	4.6 Conclusion

	5 Prologue to second article
	5.1 Article Detail
	5.2 Context
	5.3 Contributions

	6 Scaling RBMs to high-dimensional sparse inputs with importance sampling
	6.1 Reconstruction Sampling
	6.2 Restricted Boltzmann Machines
	6.3 Ratio Matching
	6.4 Stochastic Ratio Matching
	6.5 Experimental Results
	6.5.1 Using SRM to train RBMs
	6.5.2 Using RBMs as feature extractors for NLP

	6.6 Conclusion

	7 Prologue to third article
	7.1 Article Detail
	7.2 Context
	7.3 Contributions

	8 Regularizing deep networks with a geometric approach
	8.1 Contractive auto-encoders (CAE)
	8.1.1 Traditional auto-encoders
	8.1.2 First order and higher order contractive auto-encoders

	8.2 Characterizing the tangent bundle captured by a CAE
	8.2.1 Conditions for the feature mapping to define an atlas on a manifold
	8.2.2 Obtaining an atlas from the learned feature mapping

	8.3 Exploiting the learned tangent directions for classification
	8.3.1 CAE-based tangent distance
	8.3.2 CAE-based tangent propagation
	8.3.3 The Manifold Tangent Classifier (MTC)

	8.4 Related prior work
	8.5 Experiments
	8.6 Conclusion

	9 Prologue to Fourth article
	9.1 Article Detail
	9.2 Context
	9.3 Contributions

	10 Identifying the challenges in high-dimensional non-convex optimization
	10.1 The prevalence of saddle points in high dimensions
	10.2 Experimental validation of the prevalence of saddle points
	10.3 Dynamics of optimization algorithms near saddle points
	10.4 Generalized trust region methods
	10.5 Attacking the saddle point problem
	10.6 Experimental validation of the saddle-free Newton method
	10.6.1 Existence of Saddle Points in Neural Networks
	10.6.2 Effectiveness of saddle-free Newton Method in Deep Feedforward Neural Networks
	10.6.3 Recurrent Neural Networks: Hard Optimization Problem

	10.7 Conclusion
	10.8 Appendix
	10.8.1 Description of the different types of saddle-points
	10.8.2 Reparametrization of the space around saddle-points
	10.8.3 Empirical exploration of properties of critical points
	10.8.4 Proof of Lemma 1
	10.8.5 Implementation details for approximate saddle-free Newton
	10.8.6 Experiments

	11 Conclusion
	 References

