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CHAPITRE 5

ARTICLE 2: STATISTICAL MODEL BASED 3D SHAPE PREDICTION OF

POSTOPERATIVE TRUNKS FOR NON-INVASIVE SCOLIOSIS SURGERY

PLANNING

K. C. Assia,b,∗ , H. Labelleb, F. Cherieta,b

(a) École Polytechnique de Montréal, P.O. Box 6097, Succursale Centre-ville,

Montréal, Québec, Canada H3C 3A7

(b) Sainte-Justine Hospital Research Center, 3175 Côte-Sainte-Catherine,

Montréal, Québec, Canada H3T 1C5

5.1 Abstract

One of the major concern of scoliosis patients undergoing surgical treatment is the aesthetic

aspect of the surgery outcome. It would be useful to predict the postoperative appearance

of the patient trunk in the course of a surgery planning process in order to take into account

the expectations of the patient. In this paper, we propose to use the least squares support

vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for

adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction

with the support vector machine are compared. The methods are evaluated in terms of

their accuracy, based on the leave-one-out cross-validation performed on a database of 141

cases. The results indicate that the 3D shape predictions using a dimensionality reduction

obtained by simultaneous decomposition of the predictors and response variables have the

best accuracy.

5.2 Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformation of the spine and

rib cage, with a prevalence of approximately 3% in the general population. Depending on

the severity of the trunk deformity, a spine correction surgery may be required. Among

patients with AIS, 9% are treated by brace and one in a thousand needs surgery using

posterior spinal instrumentation and fusion to correct the deformity. Neglecting to proceed

for a surgical treatment may lead to functional complications such as postural, cardiac or

pulmonary problems.

One of the main concern of scoliotic patients undergoing surgery is the postoperative

external appearance of the trunk, i.e, the aesthetical aspect [17]. Assessment by surgeons
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of scoliosis surgery outcomes are not necessarily correlated with patient satisfaction and

vary with the observer [89]. Therefore, it would be important to be able to rigorously and

quantitatively predict the outcome of the surgery in a surgery planning process. This will

allow the surgeon to take into account the expectations of the patients.

Information technology in medicine is assisting physicians and clinicians in their practice

by providing computer based data management and processing tools as an aid in medical

decision making. Recently, Devedzic et al. [90] developed a web-based information system,

ScolioMedIS, to help health professionals monitor, manage and use clinical data from scolio-

sis patients. ScolioMedIS [90] uses parameterized 3D anatomical models of the spine for the

quantitative assessment of the deformity. By reducing the number of required radiographs,

the system allows to minimize the amount of radiation exposure. One of the turning points

in scoliosis research was the emergence, in the last two decades, of new techniques for the

human trunk surface topography data acquisition and processing, mostly based on optical

range image 3D technologies. The aim was to replace radiographic evaluation of scoliosis

with systems free from ionizing radiation. Pazos et al. [91] developed a non-invasive tech-

nique with a four digital cameras using a projected structured light for the acquisition and 3D

reconstruction of the whole trunk. This optical 3D digitizing system is used for clinical assess-

ment of the trunk external asymmetry. Shannon [92] developed a system using video based

motion capture technology allowing the simultaneous acquisition of multiple samples of back

surface shape and the locations of bony landmarks. This system leads to a quantitative and

reliable analysis of the trunk aesthetics. Some researchers have proposed, in the past recent

years, various efficient 3D surface analysis combined with different trunk landmarks identi-

fication and selection techniques to detect spinal and torso deformities, leading to different

trunk surface characterization schemes for scoliosis diagnosis. For example, using structured

splines models of the trunk surface, Ajemba et al. [93] proposed a method of characterizing

the torso shape deformity associated with scoliosis by both its type and severity. Seoud et

al. [69] used some trunk surface topography analysis techniques to obtain the prediction of

scoliosis curve types. These previous works succeeded in fulfilling their purpose but did not

address the surgical treatment outcome prediction problem. The present paper contribution

builds upon the above cited works in the analysis of the trunk surface topography for the

management of scoliosis and proposes a method to predict the postoperative trunk 3D shape.

Machine learning prediction techniques, particularly support vector machines (SVM),

have been increasingly and successfully applied to a wide variety of biological and medi-

cal engineering problems such as electroencephalography (EEG) signals analysis [64, 94],

electromyography (EMG) signals analysis for neuromuscular disorder detection [95], brain

glioma [65], heart disease diagnosis [96], macroinvertebrate image classification [97], and pro-
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tein recognition [98], to cite but a few examples. In the case of scolosis studies, one important

question that was addressed by different research groups, during the last few years, is about

relating the trunk surface with the configuration of the spine. Bergeron et al.[66] have inves-

tigated the correlation between the surface topography and the spinal curve, using support

vector regression. Jaremko et al.[67] have used neural-network approaches to study and es-

timate Cobb angle from the trunk external surface asymmetry measurements. Ramirez et

al. [68] have used support vector machine to assess the severity of the spine deformity from

surface topography data. Although these works find applications in the follow-up or diagnosis

of scoliosis patients, they were essentially limited to preoperative trunk shapes. These stud-

ies do not address the question of correlating the preoperative shape with the postoperative

shape. Finding a solution to such a question would have important applications in scoliosis

surgery planning.

Very few works have been done on the quantitative relationship between the preoperative

and the postoperative trunk surfaces. Simulation of the postoperative bone structure have

been conducted in [4]. But the study was limited only to the spine configuration. To the

best of our knowledge, the first work on the simulation of the postoperative trunk surface

in scoliosis surgery are the preliminary results reported in [29] by our research group. The

approach is based on a particle system model of the soft-tissue of the trunk. This simulator

has however some limitations. In particular, some aspect of the preprocessing requires the

output of a postoperative bone structures simulator [4] as a starting point. The approach

taken in the present work, is through shape prediction based on support vector machines, and

complements the simulator in [29]. The output of the study would provide to the simulator an

initial shape estimate to be used in the personalized trunk surface simulation. Our approach

takes into account information contained in a database of scoliotic trunk 3D shapes. To the

best of our knowledge, this is the first study of statistical based prediction of the postoperative

trunk 3D shape after spine surgery for AIS.

The main idea of statistical model-based shape prediction is to find statistically plausible

parameter values of the model, given the available patient data and some fitting criteria.

Most statistical machine learning techniques may not be effective for high-dimensional data.

Due to the curse of dimensionality, the accuracy and efficiency of most prediction algorithms

degrade rapidly as the data dimension increases. Medical images and anatomical shapes

data usually involves a large number of samples points and correlated features. Thus, it is a

prerequisite to reduce the data dimension so that the prediction methods can be applied to the

reduced data sets. For this reason, a typical prediction procedure may consist in four steps:

(i) feature extraction, (ii) feature dimensionality reduction, (iii) regression function learning,

and (iv) prediction [99]. The choice of support vector machine for regression as a learning
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method was motivated by its strong generalizability capability. Dimensionality reduction

is the process of mapping high-dimensional feature vectors onto lower-dimensional vectors

while maintaining sufficient information to reproduce most of the variability of the original

data set. Principal components analysis (PCA) [100] is by far the most popular unsupervised

linear technique for dimension reduction. PCA constructs a low-dimensional representation

of the data that describes as much of the variance in the data as possible. However, its

effectiveness is limited by its global linearity. Kernel PCA (KPCA) [101] is the reformulation

of the traditional linear PCA in a high-dimensional space that is constructed using a kernel

function. KPCA computes the principal eigenvectors of the kernel matrix, rather than those

of the covariance matrix. However, an important weakness of KPCA is that the size of the

kernel matrix is proportional to the square of the number of instances in the data set. The

Locality preserving projections (LPP) method [102] is a technique that aims at combining

the benefits of linear techniques and local nonlinear techniques for dimensionality reduction

by finding a linear mapping that minimizes the cost function of Laplacian eigenmaps. In

contrast to PCA, LPP method is capable of successfully identifying complex data manifolds

such as the Swiss roll. Neighborhood preserving embedding (NPE) [103] is similar to LPP.

However, NPE proceeds by minimizing the cost function of a local nonlinear technique for

dimensionality reduction under the constraint that the mapping from the high dimensional

to the low-dimensional data representation is linear. Partial Least Squares (PLS) [104, 105]

is a technique that generalizes and combines features from principal component analysis and

multiple regression. It is particularly useful when one needs to predict a set of dependent

variables from a very large set of independent predictor variables. The underlying assumption

of all PLS methods is that the observed data is generated by a process which is driven by a

small number of latent variables. In its general form, PLS creates orthogonal latent vectors

by using the existing correlations between the sets of input and output variables while also

keeping most of the variance of both sets. Due to its capability of effectively decreasing

the correlation between the input influence factors, the PLS method has proven to be useful

in situations where the number of observed variables is much greater than the number of

observations and high multicollinearity among the variables exists. These methods were

mainly used in the context of classification problems.

The aim of this paper is to compare different dimensionality reduction techniques for a

statistical model based shape prediction of the trunk. We report the results obtained using

a multivariate statistical model of the trunk feature curve. Five dimensionality reduction

techniques such as principal component analysis (PCA), Kernel principal component analysis

(KPCA), partial least squares (PLS), locality preserving projection (LPP) and neighborhood

preserving embedding (NPE) are considered and compared on a database of 141 scoliosis
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patients trunk shapes. The prediction results are evaluated using the leave-one-out cross-

validation.

5.3 Materials and Methods

The methods for the trunk 3D shape prediction are described in this section. All the eval-

uations were made on real clinical datasets obtained using a non-invasive medical imaging

system.

5.3.1 Data acquisition of the trunk surface

The data were acquired at the Sainte-Justine Hospital Research Center, and consist of 141

samples. Trunk data were acquired from patients with AIS of age between 11 and 18 years

old, who have undergone spine surgery. The acquisition protocol was described by Pazos

et al. [106, 88] and is summarized in this section. The surface geometry of the trunk is

acquired using a calibrated system composed of four 3D optical digitizers (InSpeck Inc.,

Montreal, Canada), each assembled with a CCD camera and a structured light projector,

placed around the patient (Figure 5.1). The acquisition process, identical for each scanner,

consists in projecting and capturing four fringe patterns deformed by the trunk’s external

shape. The system then computes, by triangulation, the depth of each surface point relative

to the reference plane of the digitizer. A fifth image, captured without fringes, defines the

texture data mapped on the surface. The entire trunk geometry is obtained by registering

and merging the partial surfaces obtained by each digitizer. This process takes 4-6 seconds

with the patient standing still in the upright position, arms slightly abducted to prevent oc-

cluded areas in the field of view of the lateral scanners. The resulting mesh contains 40k−70k

vertices, depending on the patient’s height and a previous study [88] of the system demon-

strated a reconstruction accuracy of 1.4mm over the whole torso of a mannequin. Before the

surface acquisition, visible landmarks are drawn on the patient’s skin. The accuracy of the

3D position of the identified landmarks was evaluated at 2.1± 1.5mm [20]. The homologous

landmarks coordinates for each geometry are latter used for the alignement of all the surfaces.

5.3.2 Feature curves representation of the trunk

The trunk surface may be viewed and represented as a finite collection of 3D curves. For

the purpose of this work, we are interested in characteristic anatomical curves on the trunk

external surface. One of the most visible features of the trunk external surface is the so-

called back valley. Figure 5.2 shows the back valley curve along the spinous processes of a

scoliotic patient in the preoperative and the postoperative status. The shape of this feature
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Figure 5.1 Trunk topography measurement and reconstruction. (A) Experimental set-up
of four optical digitizers. (B) Example of a Capturor 3D optical digitizer, consisting of a
CCD camera coupled with a structured light projector. (C) Set of four fringe images, each
offset by 1

4
phase, projected by a digitizer onto the back of a mannequin. A fifth image

provided the surface texture. (D) Resulting phase image from the four fringe images; surface
reconstruction uses the interferometry principle combined with active triangulation. (E) The
process of registering and merging the partial surfaces from the different digitizers produces
the complete trunk surface

Figure 5.2 Feature curves (back valley) of the trunk surface. Left: preoperative surface.
Right: postoperative surface. The curve top and bottom endpoints A and B correspond to
the spinous process of C7 and the spinous process of L5, respectively. C indicates the curve.

curve almost follows that of the spine. Due to the surgery procedure, the curve shape

has changed from preoperative to postoperative state. The upper and lower end points

(A and B) are anatomical landmarks corresponding to the spinous process of C7 (seventh
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cervical vertebra) and the spinous process of L5 (the fifth lumbar vertebra), respectively.

A positioning system ensured standard posture before data acquisition. The results of the

raw feature curve extraction is a polygonal line consisting of up to 75 three-dimensional

coordinates samples from the back surface located along the back valley (Figure 5.3). An

initial processing of the data provides a similar basis for comparison among all patients. To

begin, four surface markers appearing on the trunk datasets were used to translate the point

coordinates to a common 3D Euclidean space, having as origin the spinous process of L5

vertebra. The x-axis was oriented towards the front of the patient, the y-axis towards the

Figure 5.3 Anatomical landmarks for the normalization of the dataset. Four landmarks (A1)
PV , (A2) MPSIS , (A3) LASIS, and (A4) RASIS are considered to define a unified coordinate
systems. The origin is set at A2. The z-axis is perpendicaular to the (A2A3A4) plane. The
y-axis is parallel to ASIS and oriented to the left side of the patient. The x-axis is oriented
to the front of the patient.

patient left (parallel to the ASIS axis). That space was scaled to the unit length of the

distance between the endpoints A1 and A2 (Figure 5.3), after which the curve was rotated

about the origin such that the curve upper end point A1 coincide with the point (0,0,1). The

feature curves were represented explicitly as a finite set of corresponding points uniformly

sampled from a parameterized function f = f(t), f : [0, 1]→ R3, fitting the initial points.
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5.3.3 Statistical framework

The input and response variables xi and yi for the i-th observation (i = 1, . . . , n) are as

follow. The variables xi are obtained from the positions of N points uniformly sampled from

the feature curve of the preoperative trunk shape, while the variables yi are points sampled

from the postoperative trunk shape:

xi = [Px
1 Py

1 Pz
1 ... Px

N Py
N Pz

N ],

yi = [Qx
1 Qy

1 Qz
1 ... Qx

N Qy
N Qz

N ].

The data are scaled and centered according to the procedure described in Section 5.3.2. The

data matrices X and Y, of size n× 3N , contain the variables corresponding to the n prepro-

cessed samples xi and yi of the dataset. The aim is to predict the shape of the postoperative

curve 3D shape from the preoperative curve shape. The prediction of the postoperative 3D

trunk shape y from the preoperative trunk shape x can be performed using the Least Square

Support Vector Machine (LS-SVM) [107], in conjunction with a dimensionality reduction of

the data prior to the LS-SVM regression. In this study, five dimensionality reduction meth-

ods are investigated, namely the Principal Component Analysis (PCA), the Kernel Principal

Component Analysis (KPCA), the Partial Least Squares (PLS), the Locality Preserving Pro-

jection (LPP) and the Neighborhood Preserving Embedding (NPE). In the remanining of

this paper, we adopt the following notations. The dot on top of a variable indicates that it

is centered: v̇ = v − µV , µV being the sample mean.

Principal Component Analysis

The PCA approach [100] finds directions ui where the the variance of Ẋ (or similarly

uTi ẊẊTui) is maximum. For that, PCA solves the eigenvalue problem:

ẊT Ẋu = λu.

The reduced dataset is obtained by linear projection: X̃ = ẊT, where T is formed by the

eigenvectors of the centered covariance matrix.
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Kernel Principal Component Analysis

The Kernel PCA dimensionality reduction [101] computes the reduced dataset by the pro-

jection of the (training points) {xi}ni=1 as

P = ŨΛ̃1/2,

where the columns of Ũ are created by the eigenvectors {ũi}ni=1, and Λ̃ is a diagonal matrix

diag(λ̃1, ..., λ̃n) are obtained by solving the eigenvalue problem

Kũ = λ̃ũ,

with K = ΦΦT the (n×n) matrix associated to the (n×n) matrix of the centered nonlinear

mappings of the input variables {xi}ni=1 ∈ Rn.

Partial Least Squares

The PLS dimensionality reduction method [104, 105] finds pairs of direction ui, vi, so that

ρi = uTi ẊẎTvi

is maximal, with the constraint that both Ur = [u1, . . . ,ur] and Vr = [v1, . . . ,vr] form

orthonormal bases. Those directions are obtained by solving the eigenproblem:

SxySyxui = ρ2
iui

SyxSxyvi = ρ2
ivi

where Sxy,Syx are the sample covariance matrices of X and Y , and Y and X, respectively.

The scores Tr are given by the projection:

Tr = ẊTUr.

Locality Preserving Projection

The Locality Preserving Projection (LPP) method [102] is a linear approximation of the

nonlinear Laplacian EigenMap. It computes the mapped dataset X̃ = ẊA, where A is

composed by the eigenvectors of the generalized eigenvector problem

ẊTLẊv = λẊTMẊv,
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in which L is the graph Laplacean and M the degree matrix of the graph whose weights are

given by wij = e−
‖xi−xj‖

2

2σ2 .

Neighborhood Preserving Embedding

The NPE [103] projects the data with the projection X̃ = ẊB where the linear mapping

B is formed by the eigenvectors associated to the first smallest nonzero eigenvalues of the

generalized eigenproblem

ẊT (I−W)T (I−W)Ẋv = λẊT Ẋv,

where I represents the n×n identity matrix, and W the adjacency matrix of the neighborhood

graph.

5.3.4 Least Squares Support Vector Regression

The least squares support vector machine (LS-SVM) for regression [107] is used for the

prediction of the postoperative trunk 3D curve shapes. Given the dataset {(xi, yi)ni=1}, we

are interested in estimating a model of the form

y = wTφ(x) + b,

where x ∈ Rn, y ∈ R and φ(.) : Rn → Rnh is the mapping to a high dimensional feature

space. LS-SVM solves the optimization problem:

min
w,b,e

1

2
wTw + γ

1

2

N∑
i=1

e2
i

subject to yi = wTφ(xi) + b + ei, i = 1, ..., N,

(5.1)

where γ > 0 is a regularization parameter. The associated Lagrangian is:

Lα(w,b, e) =
1

2
wTw + γ

1

2

N∑
i=1

e2
i −

N∑
i=1

αi(w
Tφ(xi) + b + ei − yi).

The Karush-Kuhn-Tucker (KKT) conditions for optimality lead to the linear system[
0 1TN

1N ZTZ + 1
γ
I

][
b

α

]
=

[
0

y

]
,
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where

ZT =


φ(x1)Ty1

φ(x2)Ty2

...

φ(xN)TyN


The resulting LS-SVM model is given by ŷ(x) =

∑N
i=1 αiK(x,xi) + b, where K(xi,xj) =

φ(xi)
Tφ(xj) is the kernel function.

5.4 Results

A cohort of 141 scoliotic shapes data, from teenagers aged between 11 − 18 years old, are

considered. A few samples of the data set obtained by the procedure described in Section 5.3.2

Figure 5.4 Samples of scaled data of the preoperative curve (blue) and postoperative curve
(red). The data have been scaled to unit length of the distance between the curve endpoints.

are presented in Figure 5.4, where the preoperative back curves (blue) are shown along with

the postoperative curves (red).
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5.4.1 Validation

The dimensionality reduction methods combined to the LS-SVM regression for the trunk 3D

shape prediction are evaluated using the leave-one-out cross-validation procedure. A sample

of the data is, in turn, removed from the dataset and used as a test point. The statistical

model is trained by using the remaining samples. The prediction procedure is then applied

to the test sample. Each sample point is composed of a pair (preoperative and postoperative

shapes). The predicted curve can then be compared with the actual postoperative feature

curve and a shape prediction error can be computed. Quantitative prediction errors are

obtained by computing the distances between corresponding points on the predicted back

feature curve and the measured back curve of the postoperative test case. To evaluate

our results, we compute the prediction error in terms of the normalized root mean square

prediction error, which has the advantage of allowing prediction error to be measured on the

same scale for all observations.

5.4.2 Results

The leave-one-out cross validation procedure described in Sections 5.4.1 was conducted on

a database of n = 141 cases. The prediction errors distribution for the input data, reduced

to (25) components, are presented in Figure 5.5 for the dimensionality reduction methods

presented in Section 5.3.3. The mean prediction errors are 0.0145(±0.0067) for the classical

Figure 5.5 Comparison of the effect of dimensionality reduction methods on the trunk 3D
shape prediction using LS-SVR regression. Summary of prediction errors for different di-
mensionality reduction methods: Box plots of mean prediction errors. The performances are
compared in normalized root mean squared error (NRMS) terms. From left to right, Principal
Component Analysis, Kernel Principal Component Analysis, Partial Least Squares, Locality
Preserving Projection, and Neighborhood Preserving Embedding.

PCA method, 0.0148(±0.0086) for the KPCA, 0.0126(±0.0052) for the PLS, 0.0149(±0.0071)
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for the LPP and 0.0146(±0.0065) for NPE. It appears that the PLS has the best results,

on average, for the prediction. From these results it can be seen that the PLS-LSSVM

regression has better performances and smaller standard deviations compared to the other

methods. An example of the prediction with the PLS-LSSVM regression of postoperative 3D

shape is presented in Figure 5.6, where the three-dimensional predicted postoperative curve

is overlayed on the postoperative trunk surface mesh, along with the preoperative curve and

the actual postoperative back valley curve. As one can notice the 3D shape predicted by the

Figure 5.6 Three-dimensional visualization of the curve shape for an example patient. Overlay
of the predicted curves on the actual postoperative trunk surface. preoperative (black), actual
postoperative (green) and predicted postoperative with PLS-LSSVR (blue).

PLS-LSSVM regression is close to the actual postoperative shape.

5.5 Discussion

Since the back valley line is an open curve with well identified endpoints, the use of an

uniform sampling to define the corresponding points is reasonable. This procedure allows

to solve the point correspondence problem which is necessary for the statistical model. The

study, conducted on a database of 141 samples pairs, uses a finite set of corresponding points

on the trunk feature curves.

The different dimensionality reduction methods appears to perform in a similar way.

Unexpectedly, however, the kernel PCA appears to produce less accurate postoperative 3D
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shape predictions compared to the classical PCA. This may be due to the difficulties related

to the tuning parameters selection in the higher dimension space.

However, the PLS method in particular manages to capture well the relations between

the preoperative shape and the postoperative shape compared to the other methods. The

PLS exploits the correlation between the input space data and the response data, which

explain the better performance obtained on the predictions. It performs a simultaneous

decomposition of the input and response with the constraint that these components explain

as much as possible of the covariance between input and response data.

The LPP and NPE methods proved to generate results very similar to the PCA and

KPCA approaches. It is not surprising to see that the LPP and NPE methods perform on

average as good as the classical PCA, since the neighborhood information is exploited in

the prediction model. These results support the idea that closer points in the input shape

space are expected to behave similarly in the response shape space. However, we believe that

a procedure for learning the appropriate distance metric in the trunk shape spaces would

improve the accuracy performance of the predictions based on LPP and NPE.

5.6 Conclusion

To date, the statistical approaches to the trunk 3D shapes analysis for the clinical manage-

ment of scoliosis were mainly aimed at the scoliosis curve types detection and classification.

To the best of our knowledge, there exists no previous research reporting on the statistical

prediction of the trunk postoperative shape based on the preoperative data for surgically

treated patients with scoliosis. In the present paper, we have contributed to the analysis

of the trunk surface topography by proposing novel approaches to predict the postoperative

trunk 3D shapes of scoliosis patients. The approaches consist in the combination of dimen-

sionality reduction techniques with machine learning based prediction methods. This is the

first work on the subject.

The prediction of the postoperative 3D shapes of scoliotic trunks, stated as a regression

problem of predicting the positions of a finite set of points of the trunk feature curves knowing

their initial positions in preoperative state, has been approached using least squares support

vector machine. Different dimensionality reduction techniques in conjunction with the sup-

port vector regression have been compared. The accuracy of the prediction errors has been

analyzed using the leave-one-out cross-validation. Although, the methods performed simi-

larly on average, the PLS dimensionality reduction appears to provide better results. This

study may however have some limitations, in that in particular, anthropometric predictor

variables (such as gender, age, body mass index) were not explicitly included.



53

As a future work, additional landmark-curves will be considered in order to predict the

whole trunk surface. Some aspects of the present work will be useful as a complementary

data supplier to the framework of the personalized physically-based trunk soft-tissue modeling

used for surgery simulation [29] by providing an initial guess of the simulated trunk.
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[114] C.-É. Aubin, Y. Petit, I.A.F. Stokes, F. Poulin, M. Gardner-Morse, and H. Labelle.

Biomechanical modeling of posterior instrumentation of the scoliotic spine. Computer

Methods in Biomechanics and Biomedical Engineering, 6(1) :27–32, 2003.

[115] S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model allowing real-time

cutting, deformations and force-feedback for surgery training and simulation. The

Visual Computer, 16 :437–452, 2000.

[116] R. Harmouche, F. Cheriet, H. Labelle, and J. Dansereau. 3D registration of MR and

X-ray spine images using an articulated model. Computerized Medical Imaging and

Graphics, 36(5) :410 – 418, 2012.

[117] K.M Cheung and K.D Luk. Prediction of correction of scoliosis with se of the fulcrum

bending radiograph. J. Bone Joint Surg. Am., 79 :1144–1150, 1997.
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