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ABSTRACT

Adolescent idiopathic scoliosis (AlIS) is a deformity of $@ne manifested by asymmetry and deformities of the eatern
surface of the trunk. Classification of scoliosis deforesitaccording to curve type is used to plan management obseoli
patients. Currently, scoliosis curve type is determinesedaon X-ray exam. However, cumulative exposure to X-rays
radiation significantly increases the risk for certain @ndn this paper, we propose a robust system that can glassif
the scoliosis curve type from non invasive acquisition oftBIhk surface of the patients. The 3D image of the trunk is
divided into patches and local geometric descriptors dtar&ing the surface of the back are computed from eacthpatc
and forming the features. We perform the reduction of theedisionality by using Principal Component Analysis and
53 components were retained. In this work a multi-classsdias is built with Least-squares support vector machine
(LS-SVM) which is a kernel classifier. For this study, a newrled was designed in order to achieve a robust classifier
in comparison with polynomial and Gaussian kernel. The psep system was validated using data of 103 patients with
different scoliosis curve types diagnosed and classifiearbgrthopedic surgeon from the X-ray images. The average rat
of successful classification was 93.3% with a better rateredliotion for the major thoracic and lumbar/thoracolumbar
types.

Keywords: Scoliosis, Classifier design, 3D trunk image modeling.

1. INTRODUCTION

Adolescent idiopathic scoliosis (AlIS) is a deformity of $@ne manifested by asymmetry and deformities of the eatern
surface of the trunk. It consists of a complex curvature mttiree-dimensional space: inclination in the frontal plan
rotation of vertebrae in the horizontal plane and inversifiihe curves in the sagittal plane. This pathology is oftsible,
but it may pass as unnoticed during its development for yddrsre are a wide variety of deformities of the spine, howeve
a classification of major curve types is possible. The diassion of different deformities is used to group similaraes

in order to define an appropriate treatment strategy.

Currently, X-ray exam is performed in order to determinegbeliosis curve type and its severity. The scoliosis X-ray
includes the entire spine image, thoracic part (upper bactXhe lumbar part (lower back). Scoliosis curves are ifieds
by their location in the spine and the magnitude of the cutWaile 1 in 25 people have mild scoliosis deformities, only
1 in 200 adolescents have deformities that progress toneegither bracing or surgical treatment. Since there is &s ye
no reliable way to predict which deformities will progretiese suspected patients are monitored with a series of-ra
acquired semi-annually during rapid adolescent growthwéler, cumulative exposure to X-rays radiation signifibant
increases the risk for certain cancer (1).

During the last 30 years, many optical non invasive surfaeasurement systems have been developed based on a 3D
reconstruction of the back or of the whole trunk. The main gbthe non invasive approach is to reduce the radiographic
evaluation while providing reliable information to thergliian. Many methods have been developed for charactgrizin
scoliosis torso shape deformity (2; 3).
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However, to our knowledge, studies on non invasive pregafictif scoliosis type or severity using machine learning
method are limited (4; 5; 6; 7). In the first work (4), an artdicneural network combined with genetic algorithm is
used in order to estimate the Cobb angle. The results relvatthe system predict the Cobb angle within 5 degrees in
65 percent on the test. The major problem that occurs in thidyss the over-fitting because the machine gives a good
result on training samples but has poor predictive perfacealuring testing phase. In (5), a spinal curve was pratlicte
based on the trunk surface image. This study has attempti@tdta nonlinear correlation between the interior and the
exterior geometry. An array of support vector regressioatnmees is built to predict the spinal coefficients which daote
comprehensive features for spinal curve description. Hewehe results are moderate with 70-82% of correct priedfict
In (6), the authors proposed a prediction system where thiesis were classified into 3 severity groups (mild, modgrat
severe) using 3D back shape image combined with other itwdchke sex, age, etc. And, their system achieved 69-85%
accuracy in testing. In contrast, Lama et al.(7) have pregéar the first time a prediction of the scoliosis curve typig
only the trunk 3D image. In this work, the authors have com®d the Lenke classification which uses also bending test;
thus, the system gave a moderate result, 72% of correctfatation.

The previous studies have obtained moderate results fmatiguse of the small number of the available data which
is a critical problem in medicine research field. In fact, fleegformance of many learning algorithms, as artificial aéur
network, are very dependent on the number of training sanplas, in this paper, we propose an improved non invasive
classification system for scoliosis curve type (thoracigomeurve, thoracolumbar major curve, lumbar major curves a
double major curves) using a kernel classifier, Least Sguaw@port Vector Machine (LS-SVM) which has excellent ca-
pacity of generalization (8). In this study, a new kerneldiion is designed in order to empower the classifier perfocea
The 3D image of the back surface is divided into patches acal lpeometric descriptors are computed from each patch
forming the features and classification is performed usiograbination of LS-SVM classifiers. The proposed system is
illustrated in Figure 1.
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Figure 1. General overview of the Classification system.




2. MATERIALS AND METHODS
2.1 Data acquisition

Since many years, the acquisition of the trunk surface toaly is part of the routine evaluation of scoliosis pasent
at Sainte-Justine University Hospital Center (SJUHC) imideal (Canada). The acquisition system is composed of four
optical digitizers (CREAFORM, Montreal, Canada). Eachiagtdigitizer contains one color CCD camera and a strudture
light projector. The acquisition process of each digitizeas follows. Four fringe patterns, obtained by phasetishif
technique, are successively projected onto the surfaceedan the four resulting images and triangulation techaithe
system computes the depth of each surface point relativeetoeference plane. A fifth image, with no fringes, acquires
the texture of the surface which is then mapped onto the 3@nstouction.

For the reconstruction of the whole trunk, four scannerspd@eed around the patient (on the front, on the back
and at+60° laterally in front of the patient). Each digitizer reconstts a portion of the trunk. During the acquisition,
approximately 4 seconds, the patient stands still in théghpposition with the arms slightly abducted in order not to
obstruct the lateral scanners fields of view. Based on a +#ha#d calibration of the system that computes the rigid
transformations between the digitizers, the 4 portionshefttunk are registered and merged using EM software. The
resulting mesh is constituted of 40,000 to 70,000 nodesmi#ipg on the size of the patient. The accuracy of this system
was evaluated in (9), using markers placed on a mannequiseMmordinates were previously recorded by a computer
measuring machine. The results showed a reconstructiamamcof 1.4 mm over the whole torso and of 0.56 mm over
the back.

2.2 Features extraction

The 3D trunk image is divided inté equal parts using horizontal planes as shown in Figure 2-sindJcylindrical
coordinategp, ¢, z), each transversal slice is dividedsinpatches by varying the azimuth(see Figure 2-b). Thus, the
whole 3D image is split up inta * A patches and the geometric descriptors are calculated femtm gatch. First, we
approximate each patch (piece surface) by a plane and theahwector(v,, v,, v,) of this plane is kept as a descriptor.
Then, from each 3D trunk image, we comp@te: descriptors.
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Figure 2. Features extraction: (a)Decomposition of trumé& slices. (b) Decomposition of transversal slice intachas.

In this study, we sek = 17 andn = 13; and we consider only the back by fixiggbetweerh and=. We divided the
trunk in two regions: thoracic region and lumbar region. Titst 10 slices form the thoracic region and the rest cortsstu
the lumbar regiori. Thus, we obtained respectively 390 and 273 descriptothfvacic and lumbar regions. In sum we
have 663 descriptors for each 3D image.

*The relationship between the size of thoracic and lumbaionsgis approximatively T/L=1.4 according to Jean Cruveih
Anatomie descriptive, Volume 1, 1837, page 49.



In general, building a classifier based on statistical mdthaith an important number of features is not recommended
because working in high-dimensional space involves theecaf dimensionality problem. Thus, for this work, we apply
Principal Component Analysis (PCA), which is an orthogdimear transformation, in order to reduce the dimensiayali
of the data. The number of components is selected based oat&{60%) of the total variance in the observed variables
retained by the selected principal components: 28 comgerienthe thoracic region and 25 components for the lumbar
region (see Figure 3). Thus, we represent each trunk by 5@résa
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Figure 3. Rate of total variance in the observed variables. vthe number of principal components (a) Thoracic regib) Lumbar
region.

2.3 Classifier design

As classifier, we used Least Squares Support Vector MachieS{/M) which is based on the margin maximization
principle (8). Considering a binary classification problienolving a datasef(x1,v1), - - ., (z¢,y¢)} with z; € RY  and
y; € {—1,1}; nonlinear LS-SVM classifiers use the kernel trick to praglnonlinear boundaries. The decision function
given by an LS-SVMis :

f(@) = sign[w'é(z) + b] 1)

wherew andb are found by resolving the following optimization problerhiah expresses the maximization of the margin
2/||w|| and the minimization of the training error:

4
1, 1 )
Inin Sww + 572&- 2)
subjectto: & = y; — [w'd(z;) +b0] Vi=1,...0 (3)

LS-SVM is a variant of the standard SVM where the original S¥vmulation is modified at two points (10). First,
the inequality constraints with the slack variabjeare replaced by equality constraints. Second, a squareduostion
is considered in the objective function. These two esskemtialifications simplify the problem, which becomes a linear
system.

The Lagrangian of problem (2) is expressed by :
1 1 4 4
_ § : 2 § : Lo, _
L= Ew/w * 57 v & — e ai{yi — [w'é(z) + 0] — &}

whereq; are Lagrange multipliers, which can be positive or negdieeause of equality constraints.



The system arising from the Karush-Kuhn-Tucker conditisrigear, and the system of linear equations is expressed

in the following matrix form:
K+~ 1 a\ (Y
() ()= () ©
whereK;; = ¢(z;).6(x;); Y = (y1,..,ye)'s @ = (a1, ...,ap); andl = (1,...,1)

2.3.1 Design of a specific kernel

The idea behind kernels is to map training data nonlineattya higher-dimensional feature space via a mapping foimcti
® and to construct a separating hyperplane which maximizestrgin (11; 12). The construction of the linear decision
surface in this feature space only requires the evaluafialooproductsy(z;).¢(x;) = k(z,, z;), where the application
k:RYx R — R is called the kernel function. Using the kernel functiorg thecision function of SVM/LS-SVM is
expressed in the following forny.(z) = b+ >, cuk(z, z;).

When we consider LS-SVM like other kernel classifiers, theiod of the kernel corresponds to choosing a function
space for learning. The kernel determines the functionahfof all possible solutions. Thus, the choice of the kernel
is very important to construct a good machine. So, in ord@tt@in a good performance of the LS-SVM classifier, we
need first to design or choose a type of kernel and then to ggithe hyperparameters for improving the capacity of
generalization (13). In our context, we design a new kereebdtive from the Gaussian kernel where the features fr th
thoracic region and those for the lumbar region are weigtiiéerently.

Considering two examples = (x(1), ..., ¥(1), T(7+1) - T(r+1)) @AY = (Y(1), - Y(T), Y(T+1)s - Y(r+1)) Where
each element is formed i features obtained from the thoracic region dnfieatures from the lumbar region, we define
our kernel function by:

T T+L
k(z,y) = 61713[ —a) (v —ywp)?=b > (3G —v)’ (5)
i—1 J=T+1

wherea > 0 andb > 0 represent respectively the width of the kernel for the thiorand lumbar regions.

2.3.2 Classification Algorithm

LS-SVM like classical SVM was designed first for two-claselgem where the labels of the first class samples are
assigned tor-1 and the labels of the second class are assigned toConcerning multi-class problem, the classification
task is divided in several two-class problems with adegoaebination at the end. For our multi-class problem, we used
one-againgt-all technique with rejection when all the LS-SVM outputs areat®g. Thus, 3 LS-SVMs are trained, each
separating one class from the others. During the test pttestabel is found by the following equation:

y = argmax(w;¢(z) + b (6)

wherew; andb; are the corresponding parameters of the LS-SVM trainedsfpasating the samples of the clagsom the
others.

2.4 Validation

Our classification system is validated on the dataset of 3&btonages of 103 patients with adolescent idiopathic seoli
sis. The 3D trunk image and the radiography acquisitions l@en done at the same visit for each patient. Based on the
common clinical classification, the scoliosis curve tyfracic major curves, thoracolumbar major curves, lumkegom
curves and double major curves- was determined by an orttimpergeon from the X-ray images. The number of lumbar
major curves being too small, we mixed them with the thonaddar major curves since these two types are nearly similar.
The repartition of samples in these different classes iwatio Table 1.

Considering the size of the dataset (N=103) and the numbelas$es, we choose "leave-one-out” cross-validation
for estimating the performance of our classification systéfa validate the proposed system on the previous dataset and



we make comparison with different kernel functions. Forresgstem, the overall correct classification rate and cbrrec
classification per class are computed and the results aneteefin the following section.

Table 1. Distribution of the patients among the classes

Classes Curve type # patients
Class 1 Thoracic major 46
Class 2 Double major 25
Class 3 Lumbar/thoracolumbar major 32
Total 103

3. RESULTS AND DISCUSSION

We perform the LOO cross-validation procedure through feshmples with our classification system which gid&8%

of correct prediction. This result is interesting and shtie it is possible to predict the scoliosis curve type usinty
3D back surface image of the patients. Also, the result amsfthat the selected features extract the relevant infasmat
from the 3D back surface image for a scoliosis curve typestfiaation task.

In Table 2, we report the correct prediction per class. Gimgig these results (last column), it is remarkable that th
prediction of double major curve is the most difficult taskirther analysis of the result shows that almost the miselass
fication of double major curve samples are predicted as timmaajor curve. Thus, the major confusion of the classifier
is produced between the double major curve and thoracicrneajwe. In fact, we know that it is also very difficult to
an expert to separate these two groups using radiographs sptne when the main curvature of the double major curve
is thoracic. Thus, the clinicians in addition to the diffiece of the Cobb angle, develop the classification based on the
bending test. On the other hand, the moderate predictivecdgof our classification system for class 2 comes also from
the small number of the patients who have double major curties cohort.

Table 2. Classification rate per class

Curve type Polynomial kernel Gaussian kernel Proposeésyst
Thoracic major 90.7% 95.3% 95.3%
Double major 83.3% 81.25% 84.21%
Lumbar/thoracolumbar major 93.5% 96.4% 96.4%
Overall 90.2% 93.0% 93.3%

In order to quantify the impact of our kernel with respectte standard Gaussian kernel, we evaluate our system using
other kernel functions: polynomial kernel and Gaussiamé&eiWe used grid search method to select the optimal value of
the kernel parameters. The results are summarized in thee2ab

First, we note that the Gaussian kernel and the proposeeélkautperform the polynomial kernel. Since the proposed
kernel is built from the Gaussian kernel, we can concludettimGaussian kernel is more suitable than the polynomial
kernel for this classification task.

Second, with a designed kernel the recognition rate witiérctass 2, double major curve, was improved f&in25%
to 84.21%. Thus, the overall recognition rate increased also. Thaltssdemonstrate that the proposed kernel performs
better than the Gaussian kernel when we consider the ctad&ifi of the scoliosis patients who have double major curve
while keeping the good results achieved for class 1 and 3.

4. CONCLUSION

In this work, we proposed to build a system which is able tesifg the scoliosis curve type using 3D trunk images
which are obtained from non invasive acquisitions. Oureysts validated on 103 patients and we obtained promising



results. This shows that it is possible to find a relationgi@pveen the internal deformity and the torso shape defgrmit
in scoliosis with machine learning methods. Also, the rssnldicate that relevant features based on geometric appro
combined with statistical techniques can be extracted B8ntorso image in order to built a classification system with a
high capacity.

However, we note that the classification capacity of ouresydbr the double major curve could be ameliorated. Then,
we can improve this part of our system by including the begdéast descriptors. We expect that further work in this
direction will yield better results and will improve the pased system.
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