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Abstract 

Therapeutic drug monitoring is recommended for dose adjustment of potent 

immunosuppressive agents. Accumulating evidence supports the usefulness of the area 

under the curve (AUC) for monitoring cyclosporine (CsA) in hematopoietic stem cell 

transplantation (HSCT). However, the use of AUC in clinical settings is restricted for 

practical reasons. Limited sampling strategies using regression (R-LSS) and Bayesian 

(B-LSS) approaches have been used to estimate AUC. However, for adequate 

application in clinical settings, these LSS approaches should be convenient in terms of 

the number of required concentration-time points as well as the duration of sampling. 

Furthermore, a particular attention should be given to ensure their adequate development 

and validation. Moreover, irregularity in the time of blood sample collection may have a 

non-negligible impact on the prediction performance of R-LSS; this impact has not yet 

been studied.  

The investigation of these issues is the main focus of the current study in order to 

ultimately achieve convenient and reliable estimation of AUC using LSS. Pediatric 

HSCT patients receiving intravenous (IV) and oral (PO) CsA were investigated. 

Thorough regression and population-pharmacokinetic (Pop-PK) analyses were carried 

out in order to adequately develop and validate LSS. Several Pop-PK models were 

evaluated while bearing in mind their intended use for AUC estimation. The 

performance of B-LSS for targeting different versions of AUC was also investigated. 

Moreover, the impact of the deviations of actual sampling times from the planned 

nominal times on R-LSS prediction performance, in diverse sampling time deviation 

(STD) scenarios, was examined using a simulation approach.  
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These investigations led to the identification of LSS that have clinically 

acceptable predictive performance. These LSS are suitable for clinical application since 

they require 4 or fewer sampling points drawn within 4 hours post-dose. Besides, 

following the Pop-PK analysis, a two-compartment structural model with a lag time and 

a combined additive and proportional error was retained. However, the final covariate 

model did not improve B-LSS performance. It turned out that the structural models 

(without covariates) had a better performance. Moreover, B-LSS performed better for 

the estimation of the ‘underlying’ AUC derived from the Pop-PK simulated 

concentrations that exclude the residual errors, compared to their predictions of the 

observed AUC directly calculated using measured concentrations. Finally, our results 

showed that time deviation in blood sample collection have a significant impact on R-

LSS prediction performance. This impact depends on the number of the involved 

samples, but more importantly on the duration of the sampling process. Furthermore, 

sampling errors at time points at which the concentration changes rapidly are critical for 

AUC prediction. Moreover, we have shown that R-LSS may have similar performance 

in terms of nominal times, but their tolerance to STD can be quite different. Hence, 

adequate consideration of the impact of STD can lead to a more reliable selection and 

use of R-LSS. 

This thesis provided a thorough investigation of different issues related to LSS. 

Methodological improvement and proposition of new avenues have been realized while 

giving a careful consideration to ensure a convenient use in real-life clinical practice.  
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Résumé 

Le suivi thérapeutique est recommandé pour l’ajustement de la dose des agents 

immunosuppresseurs. La pertinence de l’utilisation de la surface sous la courbe (SSC) 

comme biomarqueur dans l’exercice du suivi thérapeutique de la cyclosporine (CsA) 

dans la transplantation des cellules souches hématopoïétiques est soutenue par un 

nombre croissant d’études. Cependant, pour des raisons intrinsèques à la méthode de 

calcul de la SSC, son utilisation en milieu clinique n’est pas pratique. Les stratégies 

d’échantillonnage limitées, basées sur des approches de régression (R-LSS) ou des 

approches Bayésiennes (B-LSS), représentent des alternatives pratiques pour une 

estimation satisfaisante de la SSC. Cependant, pour une application efficace de ces 

méthodologies, leur conception doit accommoder la réalité clinique, notamment en 

requérant un nombre minimal de concentrations échelonnées sur une courte durée 

d’échantillonnage. De plus, une attention particulière devrait être accordée à assurer leur 

développement et validation adéquates. Il est aussi important de mentionner que 

l’irrégularité dans le temps de la collecte des échantillons sanguins peut avoir un impact 

non-négligeable sur la performance prédictive des R-LSS. Or, à ce jour, cet impact n’a 

fait l’objet d’aucune étude.  

Cette thèse de doctorat se penche sur ces problématiques afin de permettre une 

estimation précise et pratique de la SSC. Ces études ont été effectuées dans le cadre de 

l’utilisation de la CsA chez des patients pédiatriques ayant subi une greffe de cellules 

souches hématopoïétiques. D’abord, des approches de régression multiple ainsi que 

d’analyse pharmacocinétique de population (Pop-PK) ont été utilisées de façon 

constructive afin de développer et de valider adéquatement des LSS. Ensuite, plusieurs 
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modèles Pop-PK ont été évalués, tout en gardant à l’esprit leur utilisation prévue dans le 

contexte de l’estimation de la SSC. Aussi, la performance des B-LSS ciblant différentes 

versions de SSC a également été étudiée. Enfin, l’impact des écarts entre les temps 

d’échantillonnage sanguins réels et les temps nominaux planifiés, sur la performance de 

prédiction des R-LSS a été quantifié en utilisant une approche de simulation qui 

considère des scénarios diversifiés et réalistes représentant des erreurs potentielles dans 

la cédule des échantillons sanguins.  

Ainsi, cette étude a d’abord conduit au développement de R-LSS et B-LSS ayant 

une performance clinique satisfaisante, et qui sont pratiques puisqu’elles impliquent 4 

points d’échantillonnage ou moins obtenus dans les 4 heures post-dose. Une fois 

l’analyse Pop-PK effectuée, un modèle structural à deux compartiments avec un temps 

de délai a été retenu. Cependant, le modèle final - notamment avec covariables - n’a pas 

amélioré la performance des B-LSS comparativement aux modèles structuraux (sans 

covariables). En outre, nous avons démontré que les B-LSS exhibent une meilleure 

performance pour la SSC dérivée des concentrations simulées qui excluent les erreurs 

résiduelles, que nous avons nommée « underlying AUC », comparée à la SSC observée 

qui est directement calculée à partir des concentrations mesurées. Enfin, nos résultats ont 

prouvé que l’irrégularité des temps de la collecte des échantillons sanguins a un impact 

important sur la performance prédictive des R-LSS; cet impact est en fonction du 

nombre des échantillons requis, mais encore davantage en fonction de la durée du 

processus d’échantillonnage impliqué. Nous avons aussi mis en évidence que les erreurs 

d’échantillonnage commises aux moments où la concentration change rapidement sont 

celles qui affectent le plus le pouvoir prédictif des R-LSS. Plus intéressant, nous avons 
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mis en exergue que même si différentes R-LSS peuvent avoir des performances 

similaires lorsque basées sur des temps nominaux, leurs tolérances aux erreurs des temps 

d’échantillonnage peuvent largement différer. En fait, une considération adéquate de 

l'impact de ces erreurs peut conduire à une sélection et une utilisation plus fiables des R-

LSS. 

Par une investigation approfondie de différents aspects sous-jacents aux 

stratégies d’échantillonnages limités, cette thèse a pu fournir des améliorations 

méthodologiques notables, et proposer de nouvelles voies pour assurer leur utilisation de 

façon fiable et informée, tout en favorisant leur adéquation à la pratique clinique. 
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Chapter 1 Introduction 

1 Therapeutic drug monitoring 

Therapeutic drug monitoring (TDM) aims at improving patient care by 

individually adjusting the dose. As such, it is crucial in clinical practice in the presence 

of considerable inter- or intra-individual pharmacokinetic (PK) variability, unpredictable 

dose-response relationship, or narrow therapeutic window [1]. In fact, under these 

conditions an uniform dose can result in significant variations in drug concentration (up 

to 10-fold range) and hence may lead to under or overexposure with therapeutic failure 

or serious undesirable effects, respectively [2-4].  

TDM involves the measurement of drug effects and concentrations, usually in 

plasma or blood, and the clinical interpretation of the results. It is used to individualize 

dosage to improve efficacy and avoid toxicity. TDM has been utilized in the clinical care 

of patients from the early 1960s [5]. Currently, this approach is routinely performed for 

dose adjustment of several medications in different therapeutic classes, such as digoxin 

(cardiovascular agents), phenytoin (antiepileptics), gentamicin (antibiotics), azathioprine 

(cancer chemotherapeutic agents), and cyclosporine (immunosuppressive agents). TDM 

goes beyond the individualization of therapy and can include detection of 

noncompliance to medical treatments, dose adjustment in patients with hepatic and renal 

dysfunction, as well as recognition of drug interactions.  

The major limitation associated with TDM is the requirement of a well-

established relationship between drug concentrations or derived PK markers and 
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therapeutic outcomes or toxicity. This pharmacokinetic/pharmacodynamic (PK/PD) 

relationship is necessary to establish therapeutic targets in order to guide dose 

adjustment. Therapeutic ranges are usually determined through retrospective studies that 

analyze available data to identify the values of drug concentrations or other surrogate 

markers (such as the area under the concentration-time curve (AUC)) associated with 

efficacy, treatment failure, and toxicity. These ranges are supposed to provide clinically 

acceptable efficacy with minimal risk of toxicity in most patients [6].  

The lack of well-established PK/PD relationship may lead to use empirical 

ranges determined using the observed exposures in patients with normal clearance 

receiving standard doses. For example, Evans et al. used AUC values of the 50th to 90th 

percentile of patients treated with conventional doses of methotrexate to establish target 

systemic exposures of this drug, for acute lymphoblastic leukemia in pediatrics [7]. 

Nonetheless, further investigations are needed to prove the safety and efficacy of such 

‘observational’ ranges. 

Indeed, when possible the therapeutic range should be determined through 

prospective concentration-controlled studies (as an alternative to dose-controlled 

studies) [8]. In the former study design, patients are randomized to different arms; in 

each one the doses are adjusted through TDM approach to achieve a predefined level of 

drug exposure. The clinical outcomes are compared to determine the range associated 

with the best benefit/risk ratio. Such studies provide a high level of evidence and have a 

significant impact on clinical practice. As an example, one can refer to the randomized, 
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double-blind, multicenter concentration-controlled trial for determining a therapeutic 

range of mycophenolate mofetil by Van Gelder et al. [9].  

In the context of TDM, the methods used for dose individualization can be 

classified into two main categories: 1) a priori methods, and 2) a posteriori methods [3, 

10]. A priori methods use available patient characteristics (weight, body surface area, 

genotype, creatinine clearance, etc.) and associated technique such as PK models or dose 

calculation formulas to determine the required dose in a given patient in order to achieve 

the desired level of exposure. The a priori methods take into account some inter-

individual variability by means of the patient characteristics integrated into PK models 

or calculation formulas and are easy to apply. However, their predictive performance is 

not expected to be as good as that of a posterior methods since they are not intended to 

consider intra-individual variability as well as unexplained inter-individual variability 

[10]. The a posteriori methods use the information obtained after drug administration 

(ex. drug concentrations) to calculate individual PK parameters and markers such as 

AUC and hence to estimate the adequate dose. These methods are particularly useful in 

the presence of large inter-individual variability as the dose adjustment will be based on 

actual drug exposure. 

TDM has become a standard of care for individual dose optimization of 

immunosuppressant drugs. Several PK markers have been proposed to carry out this 

monitoring. The common approach in most transplantation centers is to use one blood 

concentration (C0 for tacrolimus; C0 or C2 (Ct: concentration at time t in hours post-dose) for 

cyclosporine) [11-13] as the criterion to adjust the dosing regimen of these drugs. 
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However, treatment failure and toxicity still arise even when these monitoring 

parameters are within their target ranges. Thus, there is increasing interest in 

investigating other markers such as AUC which usually best reflects systemic drug 

exposure. In fact, AUC has been frequently studied as TDM marker for 

immunosuppressant drugs [2, 12, 14-16].  

In addition to the individualization of therapy through therapeutic monitoring 

approach, AUC is also involved in other clinical and research settings, such as 

bioequivalence studies and in vivo evaluation of enzyme activities via probe substrates. 

Bioequivalence studies are legally required in several countries for the approval of 

generic products, product line extensions, and new dosage forms. AUC is one of the 

main bioequivalence metrics. For example, the Canadian bioequivalence guidance 

documents require that 90% confidence interval of the relative mean AUC of the test 

(generic) to reference (original) products should be within 80.0% to 125.0% inclusively 

[17]. Given the expected correlation between the drug effect and AUC, a more 

restrictive interval, 90.0% to 112.0% inclusively, is required for critical dose drugs 

which are associated with small therapeutic index. In addition, AUC of some drugs can 

be used as a marker to assess in vivo enzyme activities. For example, the systemic 

clearance of midazolam has been used as a marker to evaluate in vivo CYP3A activity 

[18]. The estimation of systemic clearance is, usually, based on AUC. Hence, there is 

increasing interest in developing practical and accurate methods for AUC estimation. 

A dense concentration-time course sampling over a dosing interval has been used 

for an accurate estimation of the ‘full’ AUC (AUCfull) using the trapezoidal method. In 

clinical practice, AUCfull is calculated using the full set of the observed (measured) 

http://www.hc-sc.gc.ca/dhp-mps/prodpharma/applic-demande/guide-ld/bio/index-eng.php
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concentrations and it is referred to as observed AUC (AUCobs). However, this approach 

is associated with considerable disadvantages: prolongation of patient’s hospital stay, 

expensive costs, patient discomfort, etc. Therefore, alternative estimation based on a 

limited sampling strategy (LSS) approach that allows a reliable estimation of AUCfull, 

using fewer samples drawn within a shorter interval post-dose, is needed. Particularly, 

the use of LSS is an appealing approach for AUC-based TDM in clinical practice. 

Nevertheless, well-established and validated LSS are required to ensure effective and 

safe AUC-guided dose adjustments. 

2 Limited sampling strategies (LSS) 

A LSS typically consists of a subset  
ktt CC ,,

1
 † of the complete set of all available 

concentration-time points  tnt CC ,,
1
  used to estimate the AUCfull. For practical 

reasons, LSS consisting of a maximum of 4 concentration-time points are usually 

considered. According to the number of included points, LSS can be divided into 4 

subgroups, namely one, two, three, and four concentration-time point subgroups.  

The total number of possible LSS depends on the number of available 

concentration-time points. The general mathematical formula for combinations can be 

used to find the number of LSS of k points that can be chosen from a set of n points: 

𝐶𝑛
𝐾 =

𝑛!

𝑘! (𝑛 –  𝑘)!
 

 

                                                 

† Cti refers to the concentration at time ti in hours post-dose 
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So, for example, 9 available concentration-time points generate 9! / 1! (9-1)! = 9 LSS of 

one point, 36 LSS of 2 points, 84 LSS of 3 points, and 126 LSS of 4 points for a total of 

255 possible LSS.  

The current LSS development method often investigates a small group of LSS, 

pre-selected according to practical or PK considerations. Alternatively, this pre-selection 

is based on the coefficient of correlation (R2) or it can be completely arbitrary at the 

investigator’s discretion. This pre-selection procedure is intended to reduce the required 

computation workload. However, this justification is no longer relevant because of the 

increasing accessibility to helpful software and advanced calculation tools. Particularly, 

the use of the coefficient of correlation as the criterion of the pre-selection step may be 

misleading since this coefficient assesses correlation and cannot evaluate the prediction 

performance. Hence, in order to avoid missing a ‘good’ LSS through the unjustified but 

widely used pre-selection step, the performances of all possible LSS should be 

evaluated. Then, promising ones can be selected according to their predictive 

performance of AUC, along with other criteria designed to ensure their applicability in 

clinical settings. These criteria may include a restriction of sampling duration to a short 

period post-dose and the inclusion of a particular concentration-time point such as C0. 

LSS has been developed through two approaches, namely, the regression-based 

LSS (R-LSS) and Bayesian-based LSS (B-LSS). [19, 20]. 

2.1 Regression LSS 

The regression LSS approach (R-LSS) is performed to define a linear relationship 

between one or more concentration-time points (as independent variables) and AUC (as 
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a dependent variable). Multiple linear regression can be used to model this relationship 

in the form of equation: 

ktktpred CFCFFAUC  
110  

where 
k21 ttt C,,C,C  are the concentrations obtained at times 

k21 t,,t,t  ; k10 F,,F,F   

are fitting coefficients estimated using multiple linear regression to reduce the deviation 

of predicted AUC (AUCpred) from AUCfull by minimizing the objective function:  

 
2

1





n

i

(i)

full

(i)

pred AUCAUCO

 

where i denotes the ith profile; n is the number of studied profiles. Instead of the usually 

used ordinary multiple linear regression which only minimizes the squares of the 

prediction errors without taking into account their relative values when compared with

fullAUC , one can use weighted MLR that includes a weight w  in the objective function 

 
2

1





n

i

(i)

full

(i)

pred

(i) AUCAUCwO  

  The weight w is chosen to take into account the relative value of the prediction 

errors and defined as
2(i)

full

(i) 1/AUCw  . This approach aims to prevent large relative 

errors in the prediction of small AUC values, which can occur with ordinary linear 

regression analysis. 
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2.2 Bayesian LSS 

 Bayesian estimation is generally applied using a nonlinear mixed effected 

population-pharmacokinetic (Pop-PK) model, so it can take into account the PK 

characteristics of the typical population, represented by the Pop-PK model and the 

typical values of its parameters. In addition, this approach accounts for the individual 

characteristics of patients by including co-variables such as body weight in the model. 

As a posteriori dose adjustment method, Bayesian estimation also considers the residual 

random effects by using measured drug concentrations. These concentrations help to 

account for the intra-individual variability, as well as the unexplained fraction of the 

inter-individual variability.  

In Bayesian LSS (B-LSS), the estimated individual PK parameters are obtained 

through the empirical Bayesian approach. This estimation involves the use of the 

concentrations obtained in an individual patient according to the B-LSS to predict his 

PK parameters using a Pop-PK model. Then these parameters are used for the prediction 

of the patient’s drug concentrations corresponding to a full PK profile (ex. 9 

concentrations), as shown in Figure 1.1. Consequently, the AUC of a particular patient 

can be calculated. Hence, the Pop-PK model and the typical values of its parameters, 

considered as acquired prior knowledge of drug PK characteristics, helps to improve the 

estimation otherwise solely based on observed individual drug concentrations, 

considered as posterior knowledge measured after drug administration. More details 

about B-LSS approche are provided in Chapter 3. 
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Figure 1.1: Bayesian LSS procedure. 

2.3 Regression vs. Bayesian LSS 

For its simplicity, the use of R-LSS is practical and widely spread as a bedside 

application. In fact, the development of R-LSS includes the definition of associated 

mathematical equations, which then can be simply incorporated in common computer 

programs (ex. Excel®). This implementation permits an effortless calculation of the 

predicted AUC. However, their use is highly restrictive since the involved blood 

samples are assumed to be collected at the planned nominal times according the LSS 

while excluding or ignoring any possible deviations. 
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Bayesian method has important advantages, including the possibility of checking 

of modeling efficiency, by comparing the measured concentrations and the predicted 

concentration-time curve. One outstanding advantage of the Bayesian approach is its 

flexibility in terms of sampling times since no condition is imposed by either the 

construction of the associated Pop-PK model or the prediction of individual PK 

parameters, and the real sampling times can be used in case of deviations from the 

nominal ones. Nevertheless, the B-LSS that utilizes the real times will have a different 

predictive performance than the planned one. In addition, the use of B-LSS can be 

hampered by the requirement of well-established Pop-PK models, trained professionals, 

and advanced software that are not, usually, accessible in daily practice.  

 R-LSS B-LSS 

Approach Linear regression Empirical Bayesian approach 

Application 

based on 

Regression equation Pop-PK model 

Advantage Simplicity of development and 

use 

Flexibility for sampling time 

deviation 

Inconvenience Vulnerability to sampling time 

deviations 

Requirement of trained 

professionals and access to 

specialized software 

Table 1.1. Comparison between R-LSS and B-LSS. 

3 Sampling time deviation (STD) 

The remarkable technical advancement and the wide adaptation of good 

laboratory practice rules allow drug concentrations to be measured with considerable 
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accuracy and precision. However, unintentional errors in sample collection or processing 

still occur frequently in clinical practice. These errors can have a substantial impact on 

the accuracy of concentration measurements that will be inherited by surrogate markers 

such as AUC. Therefore, they can lead to wrong therapeutic decisions in the context of 

therapeutic drug monitoring. The effect of sample analytical processing errors is 

evaluated through analytical validations and quality control procedures. However, the 

impact of time errors in the sample collection is usually overlooked. It should be 

emphasized that, similarly to the noncompliance to medical therapy that may result in 

treatment failure in spite of using an effective drug [21-24], deviations in sample 

collection time may lead to significant errors in the estimation of PK markers in spite of 

using validated LSS (that would have acceptable prediction errors if samples were 

collected without deviation from planned nominal times). Consequently, a dose 

adaptation using these erroneous markers may lead to therapeutic failure or toxicity, In 

fact, considering sampling time deviation (STD) impact on the prediction performance 

of R-LSS is crucial to achieve a reliable AUS estimation for therapeutic drug 

monitoring. Figure 1.2 illustrates a simple example of STD.  

Saint Marcoux et al. [25] investigated the impact of STD on the accuracy of 

measuring concentrations 2 hours post-dose (C2) that were used as therapeutic drug 

monitoring marker. They found that a considerable difference, up to 30% from nominal 

C2 values, can occur with STD of 15 minutes. However, the impact of STD on the 

estimation of AUC using R-LSS is a more complex issue since it generally involves 

multiple sampling points for which the effects of time deviations may build up, interact, 

and potentially amplify. Moreover, the impact of STD may be different according to 
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samples’ positions on the concentration-time curve. Hence, a thorough investigation of 

this impact is necessary to determine the actual prediction errors of R-LSS in the 

presence of STD.  

Figure 1.2: Example of a sample time deviation in one concentration-time point, the last 

sample of the LSS (that includes C0, C2, and C4) being collected later than the planned 

nominal time of 4h post-dose; Ct is the concentration at time t in hours post-dose. 

4 Management of STD in clinical settings 

Appropriate management of STD in clinical settings is a critical subject. On one 

hand, overlooking STD can result in an inappropriate therapeutic drug monitoring 

decision. In fact, imprecisely estimated PK markers can cause failure to perceive or 

confirm the potential correlation between these markers and clinical outcomes. On the 

other hand, apart from sample collection performed in the strictly controlled conditions 
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such as phase I clinical trials and bioequivalence studies, sampling time errors are 

frequently observed. Hence, zero-tolerance approach cannot be suggested to avoid their 

undesirable effect on PK marker estimation. Such extreme approach can lead to ethical 

and sometimes clinical unacceptable frequent repeating of the sampling process that 

involves several samples in the case of LSS. However, procedures have to be implanted 

to reduce as possible its frequency and extent. 

Nonetheless, one can suppose that STD are likely a part of usual human behavior 

and while they can be reduced they cannot be entirely eliminated. Thus, to ensure 

adequate therapeutic drug monitoring in the presence of STD, the clinical and technical 

staff should be aware of its impact. A vital assistance for an appropriate management of 

this issue consists of providing the medical team with instructions and materials that 

allow a timely assessment of the impact of STD. Thus, necessary interventions can be 

applied in order to ensure an accurate estimate of AUC in case of an unintentional 

sampling time error. These interventions may include the use of corrective methods or 

alternative LSS. The repetition of the whole sampling process may be advised as a last 

resort only in the situation where no other practical and reliable solutions exist.  

5 Area under the concentration-time curve (AUC) 

The simplest and most common approach for the estimation of AUC is a 

numerical approximation method according to the trapezoidal rule [26], Figure 1.3. This 

method is based on considering the AUC of each segment defined by a time interval 

between two consecutive samples as a trapezoid and calculates its area by multiplying 

the average concentration by the section width. The total AUC is finally calculated by 
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adding the segment areas together. It is, therefore, a linear combination of all the 

available concentrations.  

 

Figure 1.3: Trapezoidal estimation of AUC. 

5.1 Full AUC  

AUCfull is calculated from all available concentrations according to the 

trapezoidal rule. The predicted AUC using LSS is compared to AUCfull to evaluate the 

predictive performance of LSS. Two types of AUCfull can be defined according to the 

concentration type used for its calculation, namely observed AUC (derived from 

measured concentrations) and ‘underlying’ AUC (derived from simulated 

concentrations). 



 

15 

5.1.1 Observed AUC 

Observed AUC (AUCobs) is the AUCfull calculated from all available measured 

concentrations. However, these measured or observed concentrations are known to be 

affected by random errors originating from sample collection, analytical method, and 

data processing. These errors could be inherited by the AUCobs; this attribute may raise 

the question of its reliability. 

5.1.2 Underlying AUC 

  The real systemic exposure of a drug would be ideally estimated using a large 

number (if possible continuous) of concentrations over the whole dosing interval. In 

addition, these concentrations should be obtained using an exact quantitative 

measurement in samples collected accurately according to the planned protocol 

schedule. Such idealist concentration-time profile cannot be obtained in clinical settings 

for ethical and technical reasons. However, it can be simulated using the drug Pop-PK 

model and the observed concentrations. Hence, it would be interesting to consider 

alternatively the AUCfull calculated directly from the simulated concentrations that 

excludes the residual errors (measurement and data processing errors). These 

concentrations are represented by IPRED using the nomenclature of NONMEM® (the 

mostly used software in Pop-PK analyses). This AUC is referred to as ‘underlying’ 

AUC, and can be noted as AUCIPRED. The difference between AUCobs and ‘underlying’ 

AUC is illustrated in Figure 1.4.  

Although the expected underlying concentrations cannot be directly measured in 

practice, they represent to a greater degree the inner property of a patient’s PK as it is 
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not altered by random errors. Consequently, the ‘underlying’ AUC should better reflect 

drug effect than AUCobs since its correlation with actual drug exposure is likely to be 

higher after eliminating the random noise associated with residual errors. 

 

Figure 1.4: Typical example of ‘underlying’ AUC vs. observed AUC.  

5.2 Predicted AUC using measured concentrations  

Predicted AUC (AUCpred) is the estimation of AUC using LSS. When measured 

concentrations are used the accuracy of estimation depends on their quality; time errors 

in sample collection can compromise quality of measurement and thus increase 

prediction errors particularly for R-LSS. As mentioned in a previous section, this 
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problem is usually overlooked and samples are assumed to be taken at nominal times 

while excluding or ignoring any possible deviations.  

5.3 Predicted AUC using simulated concentration 

In order to assess the impact of STD on the predictive performace of LSS, the 

difference between AUC predicted using concetrations obtained at nominal time 

(AUCnominal) and that predicted using concetrations collected at actual times (AUCactual) 

should be assessed and quantified. Adequate and comprehensive analyses of this 

problematic issue can only be realized using simulated concentrations to calculate these 

AUC. The use of simulated concentrations is intended to allow isolating the impact of 

STD from other sources of errors such as the analytical method. 

5.3.1 Nominal AUC 

AUCnominal is the predicted AUC using LSS if all required concentration-time 

points are collected correctly without any deviation from the nominal times of the LSS. 

However, we have to mention that even when sample collection is performed without 

error so that nominal time concentrations are available for the prediction of AUC using 

LSS, the prediction error will not be null since the AUCfull (used for the assessment of 

prediction error) is calculated by the trapezoidal method and not using LSS.  

5.3.2 Actual AUC 

AUCactual is the predicted AUC using LSS if one or more required concentration-

time points were collected with deviation from the nominal times of LSS. Different 

types (patterns) and level (extent) of deviation scenarios in sample collection can be 
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expected in clinical settings and thus should be taken into consideration to have adequate 

and comprehensive analyses of STD impact on LSS performance. Therefore, very 

intense sampling is needed to allow mimicking the diverse possible scenarios of time 

deviation in sample collection. The use of Pop-PK simulation is necessary to generate 

dense concentration-time profiles that allow investigation of such a complex topic.  

6 Evaluation of the prediction performance 

6.1 Cross-validation  

The identification of the most appropriate LSS that provides accurate and reliable 

predictions is critical for their safe and confident application in clinical settings. The 

objective of cross-validation is to evaluate the predictive performance adequately. 

Notably, this technique allows checking whether a model (ex. LSS) is suffering of the 

self-fitting problem that is characterized by a substantial deterioration in the model’s 

predictive performance when evaluated in independent data that were not used in model 

fitting. Hence, cross-validation gives an insight on how a model will generalize to a 

‘new’ dataset which is independent from the studied population.  

Typically, this process consists of two stages, namely the learning and validation 

steps (also referred to as training and testing steps). In the context of LSS investigations, 

the aim of the learning step is to define the LSS coefficients, which are the regression 

coefficients for R-LSS while they represent the typical values of Pop-PK parameters for 

B-LSS. Then, the LSS performances are verified in the validation step [27, 28].  
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Cross-validation methods can be classified as exhaustive and non-exhaustive 

techniques. The basic principle of the former is to split, in all possible ways, the 

available dataset into learning and validation subsets. For example, the leave-p-out-

cross-validation (LPOCV) involves using p data elements (ex. PK profiles) as the 

validation subset and the remaining n-p data elements as the training subset (where n is 

the number of the studied data elements). This procedure is repeated according all 

possible ways to divide the original dataset into a validation subset of p data elements 

and a training subset including the remaining ones. LPOCV requires to learn and 

validate Cn
p
 times; so when n is large and p≠1, it becomes difficult to perform the 

statistical calculation. However, leave-one-out cross-validation (LOOCV), which is a 

particular case of leave-p-out cross-validation with p = 1, doesn't have the calculation 

problem of the general LPOCV because Cn
1 = n. The application of LOOCV method in 

LSS studies is described in a dedicated section below. 

Non-exhaustive methods, such as K-fold cross-validation, are not intended to 

consider all possible splitting ways of the original dataset. In K-fold cross-validation 

technique, the investigated dataset is divided into K subsets, and the learning and 

validation steps are repeated K times. Each time, one of the K subsets is used for the 

validation, and the other K-1 subsets are put together to form the learning subset. One 

advantage of this method is that each data element is involved in the validation exactly 

once and in the training subset K-1 times, and it requires less calculation than exhaustive 

methods. However, this method shows bias and variance issues that decrease as K 

increases [29].  
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A variation of K-fold cross-validation is to divide the data randomly into training 

and validation sets for K different times as seen in Monte Carlo cross-validation. The 

avantage of this method (over k-fold cross-validation) is that the size of the training and 

validation subset is not dependent on the number of iterations (folds). However, some 

data elements may never be selected in the validation subset, whereas others may be 

selected more than once, and this may lead to biased results, particularly if K is small 

[29, 30]. The main disadvantage of the non-exhaustive methods is the non-constancy of 

the results if the analysis is repeated because of different randomization procedures used.  

Two group cross-validation is a simplification of the K-fold cross-validation 

method, where k=2 and the learning and validation procedure are performed just once as 

described in the following section. 

6.1.1 Two group cross-validation 

This approach is widely used for its simplicity and it is also known as learning-

testing split or holdout method. Hence, a part of the available dataset is used for the 

learning step (training subset) and the remaining data (validation subset) are used to 

evaluate the performance. The validation subset plays the role of ‘new data’, since they 

were not used in the estimating of LSS coefficients, Figure 1.5 outlines the application 

of the two group cross-validation in the context of LSS investigations.  

However, for appropriate learning and validation of LSS, the available dataset 

should include enough PK profiles, thus it can be divided into two subsets of adequate 

size. The number of PK profiles in the learning subset has to be sufficient to represent 

adequately the features of the studied population, and also the number of PK profiles 
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included in the validation subset should be sufficient to evaluate adequately the 

predictive performance. Besides, this technique can have a high variance. Particularly, 

its outcomes may depend greatly on which data elements are parts of the training subset 

and which are included in the validation subset. Therefore, the results may differ 

significantly according to the size of each data subset and how the division is made [30].  

 

Figure 1.5: Outlines of two group cross-validation of LSS. 
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6.1.2 Leave-one-out cross-validation (LOOCV) 

This approach allows adequate validation with a relatively small number of data 

elements. In this technique, the training and validation subsets are driven repeatedly 

from the available dataset so all data elements are exploited for the training and 

validation but in the same time the self-fitting phenomenon is avoided [27, 28].  

In this approach, for every LSS, each PK profile is left out of the analysis in turn. 

This subset of profiles is noted by i)(Y  (i = 1, …, n), where (-i) expresses that all profiles 

are considered but the temporary excluded ith one. Then, 
(i)

predAUC
 
is calculated using 

the ith profile’s concentrations along with the regression equation or Pop-PK parameters, 

developed using i)(Y  , for R-LSS and B-LSS, respectively. Hence, the prediction of 

(i)

predAUC  does not involve the previous knowledge of the concentrations of the 

temporary excluded ith PK profile or its 
(i)

obsAUC , in order to avoid the self-fitting 

phenomena. This operation is repeated until each one of the n available PK profiles has 

been left out of the analysis once. Using this approach,
 predAUC  are estimated for all 

profiles, Figure 1.6. 
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Figure 1.6: Outlines of leave-one-out cross-validation of LSS. 

6.2 Error indices 

The evaluation of the predictive performance of LSS can be accomplished 

statistically through error indices such as : relative prediction errors (E%), 95th percentile 

of the absolute values of relative prediction errors (95th PAE%), mean relative prediction 

error (ME%) and root mean squared relative prediction error (RMSE%); the last two 



 

24 

indices evaluate bias and precision, respectively [31]. Bias is the systematic error and 

represents the trend of constantly over- or under-estimating a variable. Precision is 

affected by the random error and reflects the extent of deviation in the prediction. These 

two error indices are negatively-oriented scores: lower values are better. Hence, a LSS 

will be less biased and more precise when the ME% and RMSE% are smaller. These 

indices are based on the following formulations: 
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These formulations are used to estimate the errors indices in the following 

Chapters.  

Sheiner and Beal [31] suggested guidelines for the evaluation of the predictive 

performance to ensure objective evaluation and comparability of results with other 

related studies. While these guidelines promote the measurement of the precision 

primarily by RMSE and alternatively using the median (not mean) absolute error 

(MAE), several authors continue to use the mean absolute errors instead. The 

comparison of these methods of precision measurements is not in the scope of this 
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thesis; nonetheless, one has to encourage using the former ones in favor of a more 

standard performance evaluation. Moreover, in the calculation of RMSE, the prediction 

errors are squared before they are averaged, so it gives a higher weight to large errors. 

This attribute indicates that RMSE is more useful when large errors are particularly 

undesirable which is the case in clinical settings.  

Finally, graphical methods can also be used to evaluate the performance of LSS, 

such as Bland-Altman and Mountain plots [32, 33]. Bland-Altman plot is a manner of 

data plotting designed to assess the concordance between two different techniques, 

usually, a new technique (ex. LSS : AUCpred) and a reference one (ex. trapezoidal 

method: AUCfull). In Bland-Altman plot, good LSS performance is characterized by 

narrow agreement limits (mean ± standard deviation range) as well as by homogeneous 

prediction errors for the small and the big AUC values, Figure 1.7.  

http://en.wikipedia.org/wiki/Data_plot
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Figure 1.7: Bland-Altman analysis of agreement between the full AUC and predicted 

AUC using three LSS with different level of predictive performance. The solid line 

represents the mean of the relative difference between the full and predicted AUC; the 

dotted line represents ± 1.96 x standard deviation of the mean; AUCfull, full AUC; 

AUCpred, predicted AUC. 

LSS can also be closely compared to each other using the folder empirical cumulative 

distribution plot, more commonly known as the Mountain plot, which is performed by 

calculating a percentile for each ranked relative difference between the new and 

reference techniques (i.e. relative prediction errors). A folded plot can be obtained by the 

following alteration, for all percentiles over 50, percentile = 100 - percentile. Percentiles 
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are then plotted against the relative differences [33]. In Mountain plot, a good LSS 

performance is characterized by narrow, symmetric Mountain plot with centered peak, 

Figure 1.8. 

 

Figure 1.8: Mountain plots analyzing agreement between the full AUC and predicted 

AUC for the same three LSS evaluated in Figure 1.7. 

7 Hematopoietic stem cell transplantation (HSCT)  

Hematopoietic stem cell transplantation (HSCT) is usually performed after an 

intensive myeloablative treatment which leads to severe or complete depletion of bone 

marrow cells. This transplantation consists of an intravenous (IV) infusion of stem cells 
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to restore an appropriate hematopoietic function in patients with bone marrow or 

immune system disorders. HSCT can be autologous or allogenic, according to the source 

of the transferred stem cells [34, 35].  

For patients who have no demonstrable malignancy in the blood or bone marrow 

(ex. patients with solid tumors), autologous transplantation is performed and the 

previously collected patient's stem cells are used as a rescue therapy after a medical 

intervention involving a high-dose myeloablative treatment.  

Allogenic transplantation, which refers to the use of stem cells from a donor other 

than the treated patient, is used in many malignant and nonmalignant disorders in order 

to replace the defective hematopoietic system in the host with a normal one from the 

donor. The degree of HLA match between the host and the donor is a critical issue in 

determining the transplantation outcomes; well-matched transplants decrease the risk of 

graft rejection and medical complications.  

There were more than 50 000 first HSCT reported from 1 327 centers in 71 

countries in 2006, according to a global survey conducted by the Worldwide network for 

blood and marrow transplantation. These transplantations were mainly performed in 

America (36%) and in Europe (48%), Figure 1.9. Medical indications were lymphoma 

(54%), leukemia (34%), solid tumors (6%), nonmalignant disorder (5%) or, others 

conditions (1%) [34]. HSCT remains associated with significant morbidity and mortality 

and represents one example of high cost and highly specialized medicine.  
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Figure 1.9: Global distribution of hematopoietic stem cell transplantations in 2006, 

adopted from Gratwohl et al. [34] with permission. 

8 Graft-versus-host disease (GVHD) 

Graft-versus-host disease (GVHD), which results from an indesirable 

immunological attack from the transferred immuno cells (particularly T-cells) on 

recipient organs or tissues, is the most important complication of allogeneic HSCT and 

is a major cause of morbidity and mortality in these patients [35]. Clinical 

manifestations involved the skin, the intestinal tract and the liver with GVHD classified 

into four grades (I-IV) depending on the degree of involvement of these three organs. 

The symptoms include dermatitis, cutaneous blisters, crampy abdominal pain with or 

without diarrhea, persistent nausea and vomiting, and hepatitis; other organ systems may 

be involved. GVHD is classified as acute when the symptoms manifest before 100 days 

after the transplantation and as chronic otherwise [36].  

http://europepmc.org/abstract/MED/11509929/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0018995
http://europepmc.org/abstract/MED/11509929/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0018995
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Acute GVHD (namely the grades II-IV) may occur in 35%–75% of allogeneic 

HSCT recipients [37]. While patients with grade II can have more than 80% probability 

of long-term survival, those with grade III and IV have a remarkably poor prognosis 

despite therapeutic interventions, with a long-term survival of 30% and 5%, respectively 

[37, 38].  

Chronic GVHD may occur in 30–65% of allogeneic HSCT recipients. For 

survivors who were disease-free two years after transplantation, this complication was 

the main cause of death, accounting for 66% of deaths in those who received a transplant 

for aplastic anemia, and was the second main cause of death (after disease relapse), 

accounting for 23-36% of deaths in those who received a transplant for leukemia [36, 

39].  

GVHD can occur even when the donor is a ‘perfectly’ matched (HLA-identical) 

sibling, however, increasing levels of HLA-mismatching increase the probability and the 

severity of the disease. If the prophylaxis is not provided, serious acute GVHD affects 

almost every recipient. Steroids are the first line of treatment, but patients with steroid-

refractory acute GVHD have long-term mortality rates that can reach 90% [36]. Hence, 

the GVHD prophylaxis is a standard of care for HSCT patients. 

The prophylaxis is based on the peri- and post-transplant administration of 

immunosuppressive agents to protect the host from the donor’s transferred immuno 

cells. Early studies showed the advantage of a combination prophylaxis using the 

calcineurin inhibitor, cyclosporine A (CsA), in combination with methotrexate over 

methotrexate alone [40]. Alternative combinations such as tacrulimus and methotrexate 

were investigated and a reduction in the incidence of acute GVHD was reported, 
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nonetheless there was no significant difference in the incidence of chronic GVHD as 

well as the overall and relapse-free survival rates [41-43]. In practice, the combination 

including CsA and methotrexate is the typical prevention regimen and is used routinely 

in most transplantation centers. Methotrexate is administrated intravenously on day 1, 3, 

6, and 11 after HSCT, and CsA is administrated by continuous IV infusion from one day 

before transplantation until its oral (PO) administration can be tolerated. CsA dose is 

adjusted according to its blood concentrations as well as serum creatinine levels to 

ensure efficacy and avoid renal toxicity. CsA is continued PO for 6-8 weeks and then 

tapered gradually and stopped 6 months after HSCT in stable patients [40, 43]. 

9 Cyclosporine A (CsA) 

CsA is mainly used as an immunosuppressant agent, and it is also prescribed as 

disease-modifying antirheumatic drug. Therapeutic drug monitoring is recommended for 

CsA dose adjustment because of its large PK variability and small therapeutic index [2, 

12, 13]. CsA is a typical example of immunosuppressive agents for which LSS are 

widely developed to estimate AUC, particularly in solid organ transplantation [13]. 

Recent studies support using AUC for CsA monitoring in pediatric HSCT recipients [44, 

45]. CsA served as a drug model in the LSS investigations carried out in this thesis.  

This drug is a cyclic polypeptide of 11 amino acids that is poorly soluble in 

water; the chemical structure of CsA is illustrated in Figure 1.10. 

http://en.wikipedia.org/wiki/Amino_acid


 

32 

 

Figure 1.10: The chemical structure of cyclosporine. 

9.1 Development 

CsA was discovered in Sandoz Laboratory in Basel, Switzerland in 1972. The 

other immunosuppressive agents, which were available at that time such as 

methotrexate, had significant toxicities, particularly due to their remarkable cytotoxic 

effects. Therefore, CsA, for its ability to suppress the immuno system without disturbing 

other cells significantly, was a revolution in organ transplantation medications and has 

become a cornerstone in immunosuppressant therapy. CsA is efficient in both 

suppressing the humoral- and cell-mediated immunity and does not cause bone marrow 

suppression. Hence, the elimination of anemia, leukopenia, and thrombocytopenia as 

adverse effects made CsA an interesting alternative immunosuppressive drug, 

particularly in HSCT recipients. 

 
CsA was originally brought to market under the brand-name Sandimmune®, 

which is available as soft gelatin capsules, oral solutions, and formulations for IV 
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administration. However, CsA has a very poor solubility in water, so Sandimmune® 

formulations are non-aqueous and exhibit variable absorption. Neoral® is a newer 

microemulsified form of CsA that is better absorbed [46]. Conventional (nonmodified) 

Sandimmune® and modified formulations (Neoral®) are not bioequivalent and should 

not be used interchangeably without close medical supervision. Neoral® is available as a 

solution and as soft gelatin capsules for PO administration (Figure 1.11). 

 

   

Figure 1.11: Package label for 100 mg Neoral® capsules. 

9.2 Mechanism of action  

The biochemical effect of calcineurin inhibitors, such as CsA, is ultimately the 

inhibition of T-cell activation [16, 47]. Calcineurin is a calcium/calmodulin-dependent 

protein phosphatase. Binding of foreign antigens to receptors on the T-cell surface leads 

to several signaling pathways, which in turn increase intracellular calcium concentration 

[Ca2+]. Increased [Ca2+] activates calmodulin and calcineurin B, which then activate the 

catalytic subunit of calcineurin called calcineurin A. This calcineurin dephosphorylates 

the nuclear factor of activated T-cell (NFAT) and permits this transcription factor to 

enter the nucleus (Figure 1.12). Then, it can influence synthesis and release of 

lymphokines particularly the interleukin-2 (IL-2), which is a regulator of T-cell 

proliferation and differentiation. The principal antagonistic action of CsA is binding to 
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the catalytic subunit of the calcineurin complex, leading to decreased dephosphorylating 

of NFAT, and so decreasing T-cell proliferation and growth [16, 47]. 

 

Figure 1.12: Schematic representation of a signaling pathway in which an increase in 

intracellular calcium leads to triggering the phosphatase activity of calcineurin, adopted 

from Ho et al. [47] with permission. 

9.3 Clinical use  

CsA is a cornerstone agent for the prophylaxis of graft-versus-host disease in 

HSCT patients. It is also indicated for the prophylaxis of organ rejection in kidney, liver, 

and heart allogeneic transplants. In addition, it can be prescribed alone or in combination 

for rheumatoid arthritis and psoriasis when first-line therapies have not adequately 

provided satisfactory outcomes [16].  
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9.4 Pharmacokinetics 

9.4.1 Absorption  

Following PO administration CsA absorption is variable, and it undergoes 

extensive first-pass metabolism. Modified oral formulations (Neoral®) have greater 

bioavailability than the conventional oral formulations (Sandimmune®) [46, 48-50]. 

Neoral® capsules are bioequivalent to Neoral® solution [51]. Generally, food affects 

CsA absorption and causes a small (< 20%) but consistent decrease in bioavailability 

[46]. however, the Neoral® solution can be mixed with fruit juice without affecting the 

rate or extent of CsA absorption [51, 52]. In HSCT recipients, graft-versus-host disease 

can result in diffuse inflammation that affects intestinal integrity which may cause 

reduction and delay in CsA absorption [53, 54]. 

9.4.2 Distribution 

CsA is widely distributed into body fluids and tissues; most of the drug is 

distributed outside the blood volume and accumulates in fat-rich organs, including 

adipose tissue and liver [55, 56]. In the blood, it is extensively distributed in erythrocytes 

in a saturable manner that depends on hematocrit, temperature, and the concentration of 

plasma proteins. Whole blood concentration was roughly twice the serum concentration 

when blood was separated at 37 degrees Celsius [57]. In the plasma, it binds to proteins, 

mainly to lipoproteins and, to a lesser extent, to albumin. The unbound fraction of CsA 

in plasma is approximately 2% [55, 56]. Schematic overview of CsA distribution and 

fate is shown in Figure 1.13.  
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Figure 1.13: Schematic overview of the distribution and the fate of cyclosporine and its 

metabolites in the body. RBC refers to red blood cells; CP, cyclophilin; CyA, 

cyclosporine; GIT, gastrointestinal tract; adopted from Faht et al [56] with permission. 

9.4.3 Metabolism 

CsA is mostly metabolized in the liver, principally by CYP3A, primarily 

CYP3A4, and to a less extent in the GI tract and the kidney [58, 59]. Hence, CsA has a 

high possibility of significant and multiple drug interactions, particularly with other 

drugs metabolized though CYP3A4 [56].  

9.4.4 Elimination  

CsA is excreted almost entirely as metabolites, with less than 1% appearing 

unchanged in the urine or feces. Elimination is primarily via bile with less than 5% 

excreted in the urine. The terminal half-life averages 8–27 hours (range: 4–50 hours). In 
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HSCT recipients, the clearance is higher in comparison to solid organ transplantation 

[53, 54, 60]. 

9.5 AUC monitoring and clinical outcomes 

In HSCT patients, high exposure of CsA is associated with leukemia relapse. On 

the other hand, low exposure increases the risk of graft-versus-host disease and the 

related mortality [61-63]. AUC describes better the bioavailable dose than single 

concentration-time point such as C0 and should correlate to a greater degree with the 

above-mentioned clinical outcomes.  

In pediatric HSCT, accumulating evidence supports performing CsA monitoring 

using AUC [44, 45]. A recent study has shown that steady state AUC of CsA was the PK 

index that correlated best with an anti- graft-versus-host disease effect; in addition, AUC 

values were significantly different in patients with diverse graft-versus-host disease 

grades [44]. In another study performed in pediatric HSCT patients diagnosed with acute 

myeloid leukemia, although no correlation was observed between CsA AUC and the 

incidence of acute graft-versus-host disease, AUC values below 3000 ng × h/mL were 

significantly associated with better survival rates and a lower risk of relapse while C0 

was not linked with these outcomes [45]. 

Moreover, in the setting of solid organ transplantations in several studies, AUC 

has been shown to be a good predictor of clinical outcomes such as acute and chronic 

rejection, graft survival, and nephrotoxicity [11, 15, 64-72].  
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Grant et al. studied the relationship between C0, the maximum concentration 

(Cmax), and AUC and graft rejection rates during the first month after transplantation, in 

de novo liver transplant recipients. On postoperative days 5 and 10, for Neoral® 

formulation, they found a significant inverse relationship between graft rejection and 

Cmax and AUC. No such relationship was shown for C0 [64]. 

Mahalati et al. found that AUC values were significantly lower in patients with 

acute renal rejection and significantly higher in patients with nephrotoxicity; 

nevertheless, 44% and 53% of patients with acute rejection and with nephrotoxicity, 

respectively, had C0 within the therapeutic range [65].  

Citterio et al. defined a cut-off concentration point at steady state (AUC/dose 

interval) = 450 ng/mL to discriminate patients who may be at risk for chronic renal 

rejection; nonetheless, those patients had similar C0 values; additionally, 18% of the 

patients had an average concentration less than the cut-off point [66]. 

Selen et al. examined several PK parameters as predictors of patient, graft, and 

rejection-free survival rates in early renal transplants; they found patients with an initial 

steady state (AUC/dose interval) ≥ 550 ng/mL had higher 1-year (88 %) and 6-year (66 

%) graft survival rates than patients with steady state < 550 ng/mL, who had 1- and 6-

year graft survival rates of 80 % and 59 %, respectively. Moreover, patients with steady 

state < 550 ng/mL had more severe rejection episodes than patients with steady state ≥ 

550 ng/mL (grades II and III; 71 % vs. 50 %; P = 0.036). In contrast, the C0 and Cmax 

values did not correlate with patient, graft, or rejection-free survival rates [67].  



 

39 

Bowles et al. investigated whether CsA AUC provided more useful information 

than single CsA concentration-time points regarding renal allograft rejection. Their 

results demonstrated that the mean AUC was lower at the time of rejection (3821 

ng.h/mL) than that of a matched group of non-rejecting patients (5479 ng.h/mL, P ≤ 

0.02). More interestingly, an AUC above 6400 h.ng/mL significantly differentiates 

rejection from non-rejection groups, whereas C0 and Cmax did not have such cut-off 

value [68].  

Kaplan et al. showed that recipients of simultaneous pancreas/kidney transplants 

without repeated rejection had significantly higher AUC than did those with recurrent 

rejection: 4663 vs. 2454 ng.h/mL, P < 0.05 [69].  

Grevel et al. confirmed that CsA concentration at steady state (AUC/dose 

interval) was significantly lower in patients suffering from renal rejection (with rejection 

mean = 127 ng/mL, without rejection mean = 163 ng/mL, P = 0.027). In addition, they 

demonstrated through a logistic regression analysis that the probability of rejection can 

be decreased by up to 40% if steady state concentrations never drop below 250 ng/mL 

[71].  

Kasiske et al. found that renal transplant recipients with acute rejection within 2 

or 4 weeks after study have 13-19% lower AUC (P < 0.05) compared to those who were 

rejection-free [72].  
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Kelles et al. pointed out that, in pediatric renal transplant recipients, AUC of 

patients with biopsy-proven CsA toxicity were significantly higher than those of patients 

without toxicity (P < 0.05) despite similar C0 [73]. 

Even though several studies demonstrated a correlation between CsA AUC and 

clinical outcomes, further prospective trials are still needed to confirm whether AUC-

based monitoring can further increase efficacy and avoid toxicity. However, evaluating 

the value of AUC as a marker for therapeutic drug monitoring of CsA is outside the 

scope of this thesis. 

10  Pharmacokinetic modeling  

Pharmacokinetics describes how the body affects a particular drug after 

administration through the mechanisms of absorption, distribution, metabolism, and 

elimination. Modeling generally involves the use of mathematical formulations and 

statistical approaches to describe and quantify observed data. PK models are used to 

describe the fate of a drug from its administration up to the moment at which it is 

completely eliminated from the body. In addition, PK model enables the simulation of 

new conditions such as changes in dose and posology, changes in absorption and 

elimination rate or extent, and the impact of drug interactions. Furthermore, applied with 

pharmacodynamic (PD) modeling, PK/PD analysis can be used to determine effective 

concentrations and to establish dosing regimens [74, 75].  



 

41 

10.1 Non-compartmental analyses  

Non-compartmental analyses (NCA) do not involve the assumption of drug 

distribution in specified physiologic or virtual compartment(s). NCA is generally the 

preferred methodology when the main purpose of investigation is to estimate the drug’s 

associated PK parameters, such as the maximum concentration (Cmax), the time spent to 

reach it (tmax), elimination half-life, etc., since it requires fewer assumptions than 

compartment approaches.  

Non-compartmental approach is based on the theory of statistical moments which 

is a mathematical concept explaining the distribution of data. Statistical moment 

approach was applied to PK analyses by the late 1970s [76, 77]. In PK modeling, 

statistical moments calculated from a set of concentration-time points correspond to an 

estimate of the true moments; much like the mean of a sample represents an estimate of 

the true mean of the entire population.  

The first three statistical moments represent AUC (calculated from moment 

zero), mean residence time (first moment), and variance of residence time (second 

moment). Typically, only the first two moments are used in PK studies. The zero 

moment defines the AUC from time zero to infinity (AUCinf) and relates the exposure of 

the drug to the concentrations as defined by the Equation 1.  

𝐴𝑈𝐶 = ∫ 𝐶 (𝑡)𝑑𝑡
∞

0
  (1) 

where C is the drug concentration and t is the time 
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AUC is typically calculated using the trapezoidal method that is performed by 

adding multiple small trapezoidal areas. Several approaches exist such as the linear and 

logarithmic trapezoidal rules that use the equations 2 and 3, respectively, to calculate 

AUC [78, 79].  

𝐴𝑈𝐶0−𝑡𝑛
 =  ∑  

1

2
 (𝑡𝑖+1 −  𝑡𝑖)  (𝐶𝑖+1 + 𝐶𝑖)

𝑛−1

𝑖=1

   (2) 

𝐴𝑈𝐶0−𝑡𝑛
 =  ∑  

𝑛−1 

𝑖=1

 (𝑡𝑖+1 −  𝑡𝑖)  (𝐶𝑖 −  𝐶𝑖+1)

 𝑙𝑜𝑔(𝐶𝑖/ 𝐶𝑖+1)
   (3) 

AUCinf is the sum of AUC from time 0 to the last measurable concentration 

(AUC
0−tn

) and the extrapolated AUC beyond the last measurable concentration to 

infinity (AUCtn-inf). The latter part is calculated as the last measurable concentration 

(CLast) divided by the apparent terminal elimination rate constant (Kel).  

𝐴𝑈𝐶𝑖𝑛𝑓 = 𝐴𝑈𝐶0−𝑡𝑛
 + (CLast/Kel)  (4) 

For a drug with first-order elimination, Kel is calculated from the slope of the 

logarithm of the concentration-time curve during the apparent terminal phase of the PK 

profile. 

The first statistical moment is involved in the measurement of the mean 

residence time (MRT) that shows how long drug molecules may spend in the body. 

MRT calculation is based on the area under the moment curve (AUMC) [80]. For a 

bolus IV administration, MRT is estimated by Equation 6.  
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𝐴𝑈𝑀𝐶 = ∫ 𝑡 𝐶 (𝑡)𝑑𝑡

∞

0

 

(5) 

𝑀𝑅𝑇 = 𝐴𝑈𝐶/ 𝐴𝑈𝑀𝐶  (6) 

AUMC has no physiological value and is simply a mathematical variable used to 

determine other PK parameters. In fact, the concentration-time curve, particularly its 

statistic moments AUC and MRT, can be used to obtain other useful PK parameters. For 

example, AUC is used to calculate the bioavailability (F) and the clearance (CL) as 

shown in the equations 7 and 8. These PK parameters, F and CL, measure the fraction of 

the drug administered dose that reaches the systemic circulation and the volume of blood 

or plasma from which the drug is removed per unit of time, respectively.  

𝐹 = 𝐷𝑜𝑠𝑒𝐼𝑉  × 𝐴𝑈𝐶𝑃𝑂 / 𝐷𝑜𝑠𝑒𝑃𝑂  × 𝐴𝑈𝐶𝐼𝑉 (7) 

𝐶𝐿 = 𝐷𝑜𝑠𝑒𝑝𝑜  ×  𝐹 / 𝐴𝑈𝐶𝑝𝑜  (8) 

Another important PK parameter is the total volume of distribution at the study 

state (Vss) that represent apparent volume into which the bioavailable part of the 

administered dose would have to distribute to achieve the measured concentration. This 

PK parameter is, usually, defined in compartmental analyses. However, Vss can be 

calculated using MRT without the assumption of a particular compartment model [81]. 

𝑉𝑠𝑠 = 𝐶𝐿 × 𝑀𝑅𝑇 (9) 
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Furthermore, other PK parameter such as Cmax and tmax, which correspond to the 

rate and extent of absorption, are usually drawn directly from the concentration-time 

curve without any interpolation of the data.  

10.2 Compartmental approach 

Compartmental PK models are rather simple mathematical schemes that represent 

complex physiologic spaces or processes. Compartmental models consist of hypothetical 

compartments representing the body or different components of the body and are used to 

explain how the drug is absorbed, distributed, and eliminated.  

In empirical PK analysis, each compartment represents a virtual volume in which a 

drug has homogeneous distribution. Multiple compartments with rational scheme and 

connections can be proposed to explain complexes PK features. Movement between 

compartments is described by rate constants that are, usually, labeled as Kij (where i and j 

are the connected compartments), Figure 1.14.  
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Figure 1.14: Typical scheme of two compartment PK model. 

Highly infused tissues such as the liver and kidneys are generally considered as one 

compartment (central compartment) in equilibrium with the systemic circulation. More 

poorly attained tissue as adipose tissue and skin may be considered to form a peripheral 

compartment. Central compartment can act as the depot and elimination one or it can be 

connected to other compartments where those processes take place. Transfers between these 

compartments can be of one or two directions with rate of order 0 (active transport with 

constant speed), order 1 (passive diffusion), or nonlinear. To select the best fitting for PK 

data, several models are tested, and the choice of the best model is based on visual and 

statistical criteria.  

In general, the PK model to estimate the PK parameters of an individual 'i' can be 

written as: 
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𝑌𝑖𝑗 = 𝑓(𝜃𝑖 , 𝑋𝑖𝑗) + 𝜀𝑖𝑗  

where Yij is the predicted value Y (ex. plasma concentraion) for the individual i at time j 

using the function f, which is a nonlinear function linking individual parameters i (ex. 

CL and V), constants xij (ex. dose, sampling time), and Yij. The residual error εij, 

difference between prediction and observation for the individual i at time j, represents 

measurement errors, model errors, etc. In individual approach, the estimation of PK 

parameters is based on individual PK profiles that are examined one by one, 

independently from each other. 

10.3 Population pharmacokinetics (Pop-PK) 

Population analyses of PK data including multiple PK profiles can be performed 

using two main approaches: conventional two-stage approach and mixed effect 

modeling approach. In the two-stage approach, in the first stage, the parameters are 

determined in each individual separately using individual concentration–time profiles. In 

the second stage, the descriptive statistics of these individual parameters, notably their 

mean and variance, are estimated [82]. The main difference between this approach and 

mixed effect modeling approach is the method of estimating PK parameters. While two-

stage analysis adopts an independent individual approach and requires a relatively 

intense and regular sampling for each profile, the later approach seeks to extract the PK 

parameters collectively from spare data without a requirement of regular or frequent 

individual sampling, Figure 1.15. As it is possible to achieve PK analysis from limited 

and irregular data collected in a large population, the mixed effect modeling approach is 

mainly useful during phases II and III clinical trials. It also allows performing PK 
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investigation in special populations as pediatric populations for which an intensive 

sampling is ethically restricted [74].  

 

Figure 1.15: Concentration–time profiles of the same study using two different 

approaches. In (a) the standard two-stage approach is applied to a rich dataset. (b) shows 
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the population approach with mixed effect modeling applied to the same dataset using 

only two data points for each individual so that a sparse dataset is created. In (a), in each 

of the six individuals 10 samples are available. The different symbols correspond to 

different individuals. Each black line corresponds to a separate fit to the 10 data points 

of each individual. In (b), which uses the mixed effect modeling approach, two samples 

of the 10 per subject in (a) are used. The different symbols correspond to the six 

different individuals. The black line illustrates the concentration–time plot based on the 

population mean values of the PK parameters (PRED). The grey lines show the plots of 

the individual patients, which are based on the population mean values together with the 

measured concentrations of the specific individual (IPRED), adopted from De Cock et 

al. [74] with permission.  

Pop-PK analyses are typically performed using nonlinear mixed effect models 

(NONMEM) proposed by Sheiner and Beal since 1972 [83, 84]. In this approach, PK 

parameters may be considered as random variables whose typical value and distribution 

(variability) are estimated. Hence, the PK profiles of a drug in a given population are 

modeled using fixed effect parameters that define the typical values and random effect 

parameters that describe the variability of the PK parameters in the population. These 

parameters are included in the structural and statistical (error) parts, respectively, of the 

mixed effect model. However, some PK parameters may not have variability (or are 

supposed without variability) because the available data do not allow to estimate its 

variability. For example, the variability in absorption lag time cannot be determined if 

the data do not include early samples to detect individual distinctions in this parameter. 

The structural part of the model also includes independent variables (ex. dose, time, 
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infusion rate) and additional variables or covariates (ex. weight, creatinine clearance) 

that belong to the fixed effect category. The covariates are added into the model to 

explain a fraction of the variability of PK parameters. 

The main feature of the Pop-PK approach is that it quantifies various levels of 

PK variability while seeking to describe their sources. This variability may be inter-

individual, intra-individual, and residual [74]. The source of variability may be related to 

demographic factors (age, weight, sex, race, morbidity, etc.), environmental (smoking, 

diet, compliance, co-medication, etc.), genetic (genetic polymorphism of enzymes and 

receptors, etc.), physiological (circadian cycle, activity, etc.), or other. 

Inter-individual variability (ηi) corresponds to the difference between the typical 

parameter of a population and that of an individual: ηi ~ N (0, ω2), ω2 quantifies the 

inter-individual variability. It is also possible to consider an intra-individual variability 

that corresponds to the variance over time of the parameter value in an individual ‘i’, 

Figure 1.16. 
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Figure 1.16: In (a), the inter-individual variability among three individuals who received 

the same dose is shown. (b) presents the intra-individual or residual variability by 

showing the concentration–time profile after repeated administration. Both these random 

variables are assumed to be normally distributed with a mean of zero and a variance of 

ω2 or σ2 respectively, adopted from De cock et al. [74] with permission. 
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The residual variability () refers to the unexplained variability in the observed 

data after considering other sources of variability. It is associated, for example, with 

measurement errors, model errors, etc. It quantifies the difference between the value 

predicted by the model and the observed value:  ~ N (0, σ2). In general, the equation of 

a Pop-PK nonlinear mixed effect model is: 

𝐶𝑖𝑗 = 𝑓(𝜃, 𝑛𝑖 , 𝑋𝑖𝑗, 𝑍𝑖, 𝜀𝑖𝑗)  

where Cij is the predicted concentration in subject i at time j, f is compartmental model, 

θ vector of typical population parameters, ηi vector of inter-individual variability 

associated with θ, Xij vector of independent fixed effect parameters including dose, 

sampling time, etc., Zi vector of selected covariates, and ij residual variability. Often the 

residual variability includes intra-individual variability. 

10.3.1 Model optimization and selection criteria 

The parameters of Pop-PK models are estimated so that the model predictions are 

most likely similar to available observed data. This similarity is, usually, assessed using 

maximum likelihood approaches. In this context, NONMEM® software uses quasi-

Newton algorithm and an extended least square method to minimize a model 

performance evaluation criterion called objective function value (OFV) which is 

considered as the cornerstone criterion for model construction, development, and 

comparison [85].  

Even though, other graphical and statistical methods are commonly used during 

modeling procedure, they are used often as complementary and secondary decisive 
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factors [86]. For example, in covariate analysis, forward inclusion backward exclusion 

method is communally used [85, 87]. In this method, OFV is lonely used as a criterion in 

the statistical tests performed to evaluate if the enhancement (or deterioration) of a 

model, observed after adding (or removing) a covariate, is statistically significant. 

However, the application of this method is habitually preceded by covariate-parameter 

plots and clinical evaluations as a complementary procedure to ensure a more selective 

and rational inclusion of plausible covariates and consequently ending up with a 

clinically meaningful and useful Pop-PK model.  

11 Primary hypothesis  

LSS can be used as a convenient approach to accurately estimate AUC in clinical 

settings. However, identifying reliable LSS requires the use of a well-established 

methodology that addresses the crucial development and application issues of LSS.  

12 Objectives 

12.1 General objective 

This research aims to establish a comprehensive methodology for the development 

and selection of LSS for convenient and accurate estimation of AUC. Furthermore, 

critical questions regarding LSS development and use are studied and discussed. These 

questions include among other: the choice of the best Pop-PK model for B-LSS 

application and the effect of sampling errors on R-LSS performance.  
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12.2 Specific objectives 

1. Identify and validate practical and reliable R-LSS and B-LSS for the 

prediction of AUC following IV and PO CsA in pediatric HSCT patients;  

2. Develop Pop-PK models for CsA in the pediatric HSCT population; 

3. Select the best Pop-PK model for B-LSS application by considering its 

intended use for AUC prediction;  

4. Evaluate the performance of B-LSS when targeting the prediction of 

different versions of AUC; 

5. Investigate STD impact on the predictive performance of R-LSS in 

diverse STD scenarios. 

These issues are investigated in the following chapters. 

13 Presentation of involved articles  

This thesis includes three articles that have been underwent peer-reviews and 

published in acknowledged scientific journals.  

These articles address the objectives of this thesis and are presented in the following 

chapters. Namely, Chapter 2 (Article I) establishes a comprehensive methodology for 

the development and selection of practical and accurate R- LSS. In Chapter 3 (Article 

II), the outlines of this methodology are adopted for investigating B-LSS, as a frequently 

used Pop-PK approach for AUC estimation. The ‘final’ covariate model, developed 

using the standard diagnostic criteria, is usually implemented for B-LSS application 

without rational justification. Thus, the AUC prediction errors of several Pop-PK 

models, in addition to the ‘final’ one, are compared in order to identify the most 

adequate model for B-LSS application. Besides, the performance of B-LSS when 

targeting the prediction of different versions of AUC is evaluated. Finally, in Chapter 4 
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(Article III), in order to evaluate the reliability of R-LSS, the impact of STD on the 

estimation of AUC by R-LSS, as a major concern that delays R-LSS adoption in clinical 

practice, is thoroughly investigated. In addition, the integration of STD analysis. as an 

essential element in R-LSS development procedure to guide their selection and use in 

clinical setting, is proposed and discussed. 

For the three articles, Sarem participated in the design of the study, conducted the 

analysis, interpreted and discussed the results, and drafted the manuscript. The 

agreements of all the coauthors, to include these articles in the present thesis, have been 

received. The title, authors, authors’ participations, and publication journal for each 

article are listed below: 

Article 1: Limited Sampling Strategies for Estimating Intravenous and Oral 

Cyclosporine Area Under the Curve in Pediatric Hematopoietic Stem Cell 

Transplantation 

S Sarem, MSc, F Nekka, PhD, O Barrière, PhD, H Bittencourt, MD, M 

Duval, MD, P Teira, MD, E Haddad, MD, PhD, Y Théorêt, PhD ,A-L 

Lapeyraque, MD and C Litalien, MD 

SS participated in study design, performed data analysis and 

interpretation, and drafted the manuscript. JL, FN, and CL participated in study 

design and coordination, data analysis and interpretation, and helped to draft the 

manuscript. OB helped to perform data analysis. YT and AL conceived the 

clinical study and helped to draft the manuscript and for acquisition of data. HB, 

MD, PT, and EH helped to review the manuscript and for acquisition of data. 

Therapeutic Drug Monitoring (Published). 
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Article 2: Bayesian Approach Application for Cyclosporine Area Under the 

Curve Estimation Using Limited Sampling Strategies in Pediatric Hematopoietic 

Stem Cell Transplantation 

S Sarem, MSc, J Li PhD, O Barrière PhD, C Litalien, MD; Y Théorêt, PhD, 

A-L Lapeyraque, MD, F Nekka, PhD 

SS participated in study design, performed data analysis and 

interpretation, and drafted the manuscript. JL, FN, participated in study design 

and coordination, data analysis and interpretation, and helped to draft the 

manuscript. OB helped to perform data analysis. CL, YT and AL conceived the 

clinical study and helped for acquisition of data. 

Theoretical Biology and Medical Modelling (Published). 

Article 3: Impact of Sampling Time Deviations on the Prediction of Area 

under Curve Using Limited Sampling Strategies 

S Sarem, MSc, F Nekka, PhD, I.S. Ahmed PhD, C Litalien, MD, J Li PhD 

SS participated in study design, performed data analysis and 

interpretation, and drafted the manuscript. JL, FN, participated in study design 

and coordination, data analysis and interpretation, and helped to draft the 

manuscript. CL and IA participated in study design and data interpretation and 

helped to draft the manuscript. 

Biopharmaceutics & Drug Disposition (Published). 

http://www.tbiomed.com/
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Abstract  

Background: The optimal monitoring strategy for cyclosporine (CsA) in pediatric 

hematopoietic stem cell transplantation (HSCT) patients remains unclear. Although there is a 

growing interest in the use of the area under the concentration-time curve (AUC), 

measurement of AUC in clinical settings is often impractical. The objective of this study was 

to identify and validate limited sampling strategies (LSS) for the prediction of CsA AUC 

following intravenous (IV) and oral (PO) administration in this population.  

Methods: Sixty-eight pediatric patients who underwent HSCT and received CsA were 

investigated. Twelve hour pharmacokinetic profiles (n=138) performed per standard of care 

were collected. Weighted multiple linear regression was used to investigate all possible LSS 

consisting of four or fewer concentration-time points. Their predictive performance was 

evaluated by leave-one-out cross-validation and external validation by measuring the root 

mean squared relative error (RMSE%) and the 95th percentile of the absolute relative error 

(95th PAE%). Values less than 20% were considered clinically acceptable. 

Results: Nine LSS (4 IV and 5 PO) convenient for clinical application proved to have 

clinically acceptable performance. Notably, LSS based on C0, C2, C4 was found to be accurate 

for estimation of CsA exposure following both IV and PO administration with the 95th PAE% 

of 19.7% and 17.5%, respectively.  

Conclusions: LSS using 3 or 4 concentration-time points obtained within 4 hours post-dose 

provide a convenient and reliable method to estimate CsA exposure in this population. These 

LSS may facilitate future research aiming at better defining the relationship between AUC and 

clinical outcomes. 
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Introduction 

Cyclosporine (CsA), a potent immunosuppressive agent, is widely used in 

hematopoietic stem cell transplantation (HSCT) for the prevention of graft-versus-host 

disease, which continues to be a major complication following allogeneic stem cell 

transplantation. Due to its narrow therapeutic index and large inter- and intra-individual 

variability, therapeutic drug monitoring has become a standard of care for CsA dosing 

optimization in order to prevent graft-versus-host disease while minimizing the occurrence of 

adverse effects and disease relapse (graft-versus-leukemia effect) [1, 2], although the optimal 

monitoring strategy remains unclear.  

The most widely used approach for CsA monitoring employed in HSCT patients is to 

determine whole blood trough concentration (C0) to adjust CsA dosing regimen. However, 

there is accumulating evidence indicating that C0 is not a good marker to assess CsA exposure 

in HSCT, with growing interest in the area under the concentration-time curve (AUC) because 

it is generally considered to be the best indicator of drug exposure [3-7]. Moreover, in the 

setting of solid organ transplantations, AUC has been shown to be a better predictor of acute 

and chronic rejection, graft survival, and nephrotoxicity than C0 [1, 8-15]. In pediatric HSCT 

recipients, one study has shown that CsA steady-state AUC was the pharmacokinetic (PK) 

index that correlated best with an anti- graft-versus-host disease effect; in addition, AUC 

values were significantly different in patients with diverse graft-versus-host disease grades [3]. 

In another study performed in pediatric HSCT patients diagnosed with acute myeloid 

leukemia, although no correlation was observed between CsA AUC and the incidence of acute 

graft-versus-host disease, AUC0-12h values below 3000 ng × h/mL were significantly 
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associated with better survival rates and a lower risk of relapse while C0 was not linked with 

these outcomes [4]. 

Even though the above findings support the use of AUC-based CsA therapeutic drug 

monitoring, measurement of full AUC in clinical settings is often impractical, particularly in 

children, as it necessitates obtaining multiple blood samples over the entire dosing interval. 

Alternatively, limited sampling strategies (LSS) allow reliable AUC estimation using a 

restricted number of samples drawn within a short period after drug administration. Several 

LSS have been reported for CsA AUC prediction in pediatric solid organ transplant recipients 

[2, 16]. However, they cannot be used in HSCT patients since they have not been validated in 

this transplant population. Moreover, HSCT recipients have different pharmacokinetics 

compared to solid organ transplant recipients; absorption is diminished and delayed [17], and 

clearance is higher [18]. In addition, intestinal integrity of HSCT recipients is often disrupted 

by the development of graft-versus-host disease and mucositis of the intestinal tract, resulting 

in diffuse inflammation which can affect intestinal absorption of CsA [17].  

Recently, several groups have developed LSS to predict CsA AUC in adult HSCT [19-

22]. Nevertheless, LSS remain to be specifically developed and validated for pediatric HSCT 

patients. The pharmacokinetics of CsA differ between adult and pediatric HSCT populations; 

children exhibit faster systemic clearance (normalized by body weight) of the drug and require 

higher CsA doses to achieve similar target blood concentrations [17, 18, 23, 24]. To date, a 

few studies have developed LSS for the prediction of CsA AUC in pediatric HSCT recipients 

[7, 25, 26]. Of these studies, two investigated pediatric patients who received CsA by 

intravenous (IV) infusion [7, 25]. Although these investigations reported regression LSS (R-

LSS) that performed well, they required samples to be drawn within eight hours post-dose, 
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which may impede their use outside of a research environment. Only one study developed 

LSS based on a Bayesian approach (B-LSS) for orally administrated (PO) or IV administered 

CsA [26], but this investigation failed to perform proper validation with an independent set of 

data. 

Therefore, the objective of this study was to identify and adequately validate practical 

R-LSS for AUC estimation of CsA following IV or PO administration in a pediatric HSCT 

population. The study aimed to establish the most comprehensive methodology developed to 

date, based on three main approaches: 1) an exhaustive LSS evaluation; 2) the use of a 

validation method to address the self-fitting issue; 3) the use of rational criteria for the 

selection of the best LSS.  

Materials and Methods 

Study population and design  

Pediatric patients (< 19 years) considered for inclusion in this retrospective study 

received IV (2-hour infusion) or PO CsA twice daily for graft-versus-host disease prophylaxis 

after undergoing HSCT from a sibling or unrelated donor/cord blood at the CHU Sainte-

Justine, and had 12h PK profiles performed as per standard of care. This study was approved 

by the Institutional Research Ethics Committee of the CHU Sainte-Justine. Pharmacokinetic, 

demographic, and other clinical data were collected from patient medical records. The study 

population comprised two cohorts of patients, a development cohort (Cohort A) and an 

external validation cohort (cohort B). The development cohort included 25 pediatric patients 

(15 males and 10 females) over a 12-month period from August 2009 to August 2010 (Table 



 

62 

 

2.1). The external validation cohort included 47 pediatric patients (31 males and 16 females) 

over a 24-month period from September 2010 to September 2012. The median age of Cohorts 

A and B patients at transplantation was 10.2 years (range 0.5 – 18.2) and 9.7 years (range 0.2-

18.5), respectively. Four patients were included in both cohorts; their PK profiles performed 

between August 2009 and August 2010 were included in Cohort A and the following ones in 

Cohort B.  

Table 2.1. Summary of patient characteristics for development cohort (Cohort A). 

Parameter Number or median (range) 

 IV PO 

Patients (n) 19 20 

Sex: male/female (n) 10/9 12/8 

Age at transplantation (yr) 10.5 (1-18) 11.1(0.5-18.2) 

Transplantation type: Sibling/Unrelated 

(n) 

10/9 13/7 

Qualified PK profiles (n) 23 39 

Formulation (n) 23 (IV) 19 (Susp) /20 (Cap) 

Time post transplantation (mth) 0.13 (0.1 – 1.7) 1.28 (0.7-9.1) 

Age at PK profile (yr) 10.4 (1 – 17.9) 11.9 (1.2-18.3) 

Weight (kg) 33 (10 – 81) 38 (8-83) 

Cyclosporine dose (mg/kg/d) 2.5 (1 – 3.2) 4.2 (1-8.3) 

Concomitant medication (n)   

     Corticosteroid  13 26† † 

     Calcium channel blocker 12 26† † 

     Azole antifungal 18 18† † 

Albumin (g/L)  32  (19 – 48) 32 (22-41) ‡ 

Creatinine (μmol/L)  33 (12 – 358) 50 (13-117) ‡ 

Bilirubin (μmol/L)  11 (5 – 64) 10 (3-596) ‡ 

AST (U/L)  20 (9-42) 24 (13-125) ‡ 

ALT (U/L)  24 (9 – 85) 31 (19-69) ‡ 

GGT (U/L)  35 (8-94) 32 (9-217) ‡ 

AP (U/L)  87 (1.9-203) 110 (53-302) ‡ 

Hb (g/dL)  93 (64-143) 87 (64-122) ‡ 

Hct (%) 25 (18-44) 26 (19-36) ‡ 

ALT, alanine aminotransferase; AP, alkaline phosphatase; AST, aspartate aminotransferase; Cap, capsule; Hb, 

hemoglobin; Hct, hematocrit; IV, intravenous; GGT, γ- glutamyltranspeptidase; n: number; PK, pharmacokinetic; 

PO, oral administration; Susp, suspension  

††Data available for 37 profiles. 

‡ Data available for 38 profiles.  
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Cyclosporine dose adjustment  

Since 2010, the medical team at the CHU Sainte-Justine caring for HSCT patients 

moved from C0- to AUC-based monitoring in light of controversy regarding the usefulness of 

dose adjustments based on CsA C0 [6]. CsA dose adjustments were made by the treating 

physician in accordance with institutional target AUC0-12h values, which were defined based 

on published data from renal transplantation studies [27, 28] and one adult HSCT study [29]. 

These were adapted by the team according to the patient’s underlying disease (three target 

ranges: AUC0-12h from 3000–5000 ng × h/mL for patients with malignant disease in whom a 

graft-versus-leukemia effect is desirable, AUC0-12h from 5000–7000 ng × h/mL for patients 

with sickle cell anemia who are at increased risk of seizures and in whom limitation of CsA 

neurotoxicity is desirable, and AUC0-12h from 7000–9000 ng × h/mL for patients with 

nonmalignant disease (e.g.: immunodeficiency syndromes, bone marrow failure syndromes) to 

optimize graft-versus-host disease prophylaxis). The correlation between these institutional 

targets and clinical outcomes has not yet been clearly established. 

Sample collection and analytical methods  

Serial blood samples were drawn before and at 2, 3, 4, 6, 8, 10, and 12 h after starting 

IV infusion (2-h infusion) and at 0.5, 1, 1.5, 2, 3, 4, 8 and 12 h after PO CsA administration. 

Concentrations were measured using ARCHITECTi2000SR® (Abbott Laboratories, Abbott 

Park, Illinois, USA). The lower and upper limits of detection were 30 and 1500 ng/mL, 

respectively. Blood samples with CsA concentrations > 1500 ng/mL were diluted with blank 

blood. The between-run coefficients of variation were 9.95% at 87 ng/mL, 8.64% at 340 
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ng/mL, and 9.25% at 850 ng/mL. All available steady-state PK profiles containing at least 

seven concentration-time points were incorporated in this study.  

Cohort A included 23 IV and 39 PO profiles. Fourteen patients had both IV and PO 

profiles (18 IV and 26 PO profiles), 5 patients had only IV profiles (5 profiles), and 6 patients 

underwent only PO profiles (13 profiles). Cohort B included 40 IV and 36 PO profiles. 

Twenty-three patients had both IV and PO profiles (25 IV and 25 PO profiles), 13 patients had 

only IV profiles (15 profiles), and 11 patients underwent only PO profiles (11 profiles). The 

associated observed AUC0-12h (AUCobs) were calculated according to the trapezoidal method. 

Individual CsA concentration-time profiles are shown in Figure 2.1 and Figure 2.2. 

 

Figure 2.1: Concentration-time course for the available IV profiles of Cohort A (development 

cohort) and Cohort B (external validation cohort). 
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Figure 2.2: Concentration-time course for the available PO profiles of Cohort A (development 

cohort) and Cohort B (external validation cohort). 

For PO administration, CsA concentration 2 hours after drug intake (C2) was greater or 

equal to C4 for 95 % of the profiles with a median C4/C2 ratio of 0.62 (0.29 – 1.35). 

LSS development and validation 

LSS development and validation were performed independently for IV and PO profiles 

through five steps: LSS definition, leave-one-out cross-validation (LOOCV), performance 

evaluation, selection, and external validation, as illustrated in Figure 2.3.  
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Figure 2.3: LSS development procedure; AUCobs, observed AUC; AUCpred, predicted AUC; F, 

fitting coefficients; (i) denotes the ith profile; (-i) denotes all profiles apart from the temporary 

excluded ith one; ME%, relative mean prediction error; RMSE%, relative root mean squared 

prediction error; Y, subgroup of profiles.  
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Step 1: LSS definition 

A ‘limited Sampling Strategy’ consists of a subset of all available concentration-time 

points used to predict the full AUC. For practical reasons, it was decided a priori to consider 

LSS consisting of a maximum of four concentration-time points. Thus, all LSS consisting of 

one, two, three, or four concentration-time points were considered (255 in total). The LSS 

were divided into four subgroups according to the number of concentration-time points. 

Weighted multiple linear regression (MLR) was used to model the linear relationship between 

LSS concentration-time points (independent variables) and AUC (dependent variable) in the 

form of: 

ktktpred CFCFFAUC  
110  

where 
k21 ttt C,,C,C  are the concentrations obtained at times 

k21 t,,t,t  ; k10 F,,F,F   are 

fitting coefficients estimated using weighted MLR to reduce the deviation of predicted AUC 

(AUCpred) from AUCobs by minimizing the objective function:  
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where i denotes the ith profile; n is the number of profiles; ‘ w ’ is the weight defined as 

2(i)

obs

(i) 1/AUCw  . Thus, weighted MLR includes a weight w  in the objective function which 

was chosen to take into account the relative value of the error. This prevents large relative 

errors in the prediction of small AUC values, which can occur with ordinary MLR.  

Step 2: Leave-one-out cross-validation  

Leave-one-out cross-validation was used as it allows validation (predictive 

performance evaluation) based on a relatively small dataset [30]. In this approach, for every 



 

68 

 

LSS, each profile is left out of the analysis in turn. This subgroup of profiles is symbolized as 

i)(Y  (I = 1,…, n), where (-i) denotes all profiles apart from the temporary excluded ith one. 

Then, the fitting coefficients 
i)(

k

i)(

1

i)(

0 F,,F,F


 are defined by performing weighted MLR 

on
 

i)(

t

i)(

t k1
C,,C


 and 

i)(

obsAUC


. Consequently, 
(i)

predAUC
 
is calculated using the following 

equation
(i)

t

i)(

k

(i)

t

i)(

1

i)(

0

(i)

pred k1
CFCFFAUC 


 . Hence, the prediction of 

(i)

predAUC  does not involve the knowledge of
(i)

obsAUC , to avoid self-fitting phenomena. This 

is repeated until each one of the n available profiles has been left out of the analysis on one 

occasion. Using this approach,
 predAUC was estimated for all profiles. 

Step 3: Performance evaluation  

Evaluation of the predictive performance of the 255 LSS was accomplished statistically 

through error indices and graphically with appropriate plots. For each LSS, the relative 

prediction error (E%) and 95th percentile of its absolute values (95th PAE%), mean relative 

prediction error (ME%) and root mean squared relative prediction error (RMSE%) were 

calculated; the last two indices evaluate bias and precision, respectively [31]. The following 

equations were used: 
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Step 4: Selection 

Three LSS were chosen from each LSS subgroup based on the presence of the 

following three criteria: 1) highest predictive performance according to ME% and RMSE%; 2) 

inclusion of C0 as it is a reference point well recognized by practitioners that allows 

compliance to be checked and aids the identification of patients with high CsA clearance, and 

3) concentration-time points within four hours of CsA administration. Moreover, in each 

subgroup, the LSS with the highest predictive performance was also selected regardless of 

whether it met the last two practical criteria or not.  

Step 5: External validation 

The predictive performance of the selected LSS was further evaluated in an external 

dataset (Cohort B) using the errors indices described in step 3. 

LSS considered suitable for clinical application were defined as those with RMSE% 

and 95th PAE% of less than 20% after both leave-one-out cross-validation and external 

validation. Modeling and computations were performed using MATLAB® (version 2008b, 

The MathWorks Inc, Natick, Massachusetts, U.S.A.). 

Results 

A total of 255 LSS derived from the development cohort (Cohort A) were considered 

in this investigation. As all had negligible bias following leave-one-out cross-validation (ME% 

less than 1.5% and 95% CI including 0), LSS selection was performed using RMSE% as the 

performance criterion along with the other two predefined criteria. Consequently, 28 LSS (14 
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for IV CsA and 14 for PO CsA) were selected, as shown in Table 2.2. The predictive 

performance of selected LSS, as determined by leave-one-out cross-validation, is presented in 

Table 2.3 and Table 2.4. The single concentration-time point LSS with the best performance 

involved C4. LSS based solely on C0 had a poor predictive ability with 95th PAE% of 67.11 

and 80.11% for IV and PO CsA, respectively. More frequent and/or longer sampling resulted 

in better prediction. The best overall predictive performances were obtained with LSS that 

consisted of C2, C3, C6, and C8 and C0.5, C2, C4, and C8 with 95th PAE% values of 5.2 and 6.3% 

for IV and PO CsA, respectively. 
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Table 2.2. Selected LSS for cyclosporine AUC0-12 prediction following IV and PO 

administration.  

Concentration-time points LSS equation: AUCpred (ng × h/mL)  

IV  

C2, C3, C6, C8 107.47 + 1.25 C2 + 1.66 C3 + 3.64 C6 + 4.83 C8 

C0, C2, C2.5, C4 -509.54 + 4.01 C0 + 1.23 C2 + 0.83 C2.5 + 5.51 C4 

C0¸C2, C3, C4 -457.51 + 5.23 C0 + 1.27 C2 + 1.25 C3 + 4.70 C4 

C0, C2, C2.5, C3 -529.35 + 8.55 C0 + 1.19 C2 + 0.71 C2.5 + 2.94 C3 

C2, C4, C10 0.33 + 1.38 C2 + 4.64 C4 + 6.07 C10 

C0, C2, C4 -424.37 + 3.77 C0 + 1.38 C2 + 6.62 C4 

C0, C2, C3 -473.01 + 9.06 C0 + 1.27 C2 + 3.55 C3 

C0, C2.5, C4 -311.49 + 2.79 C0 + 1.82 C2.5 + 7.29 C4 

C2, C6 297.00 + 1.67 C2 + 8.22 C6 

C0, C3 -223.32 + 9.91 C0 + 5.62 C3 

C0, C4 -32.99 + 1.80 C0 + 10.67 C4 

C0, C2.5 -250.28 + 8.05 C0 + 4.38 C2.5 

C4 -50.65 + 11.35 C4 

C0 1853.15 + 17.97 C0 

PO  

C0.5, C2, C4, C8 131.49 + 1.00 C0.5 + 1.74 C2 + 3.04 C4 + 5.52 C8 

C0, C1, C2, C4 -45.58 + 4.78 C0 + 0.99 C1 + 1.40 C2 + 4.16 C4 

C0¸C0.5, C2, C4 77.53 + 3.85 C0 + 1.05 C0.5 + 1.81 C2 + 4.13 C4 

C0, C1, C3, C4 57.53 + 3.77 C0 + 1.45 C1 + 2.18 C3 + 3.33 C4 

C1.5, C4, C8 75.66 + 1.87 C1.5 + 3.46 C4 + 6.12 C8 

C0, C1.5, C4 -46.41 + 4.84 C0 + 2.00 C1.5 + 4.51 C4 

C0, C2, C4 141.82 + 5.20 C0 + 2.16 C2 + 3.71 C4 

C0, C1, C4 62.23 + 3.75 C0 + 1.67 C1 + 5.77 C4 

C2, C8 286.02 + 2.70 C2 + 9.42 C8 

C0, C2 108.19 + 9.11 C0 + 3.43 C2 

C0, C3 641.37 + 4.74 C0 + 5.17 C3 

C0, C4 723.23 + 3.35 C0 + 6.93 C4 

C4 1007.22 + 7.78 C4 

C0 1897.22 + 14.12 C0 

AUCpred, predicted area under the concentration-time curve. 
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Table 2.3. Predictive performance of the selected LSS to estimate cyclosporine AUC following IV administration. 

Concentration-time 

points 
 

Leave-One-Out 

Cross-Validation 

(Cohort A) 

  
External Validation 

(Cohort B) 
 

 ME% (95% CI) RMSE% (95% CI) 95th PAE% ME% (95% CI) RMSE% (95% CI) 95th PAE% 

       

C2, C3, C6, C8 -0.12(-1.23, 0.99) 2.51(1.56, 3.18) 5.19 -1.51 (-3.09, 0.06) 5.08 (3.46, 6.30) 11.58 

C0, C2, C2.5, C4 0.13(-1.41, 1.68) 3.49(2.73, 4.11) 5.81 2.25 (-0.77, 5.28) 9.6 (6.55, 11.90) 21.65 

C0¸C2, C3, C4 0.18(-1.57, 1.92) 3.95(2.57, 4.96) 8.13 1.77 (-0.82, 4.36) 8.20 (4.36, 10.75) 15.47 

C0, C2, C2.5, C3 0.11(-2.27, 2.49) 5.38(3.50, 6.76) 11.30 1.03 (-1.28, 3.34) 7.20 (5.20, 8.76) 15.60 
       

       

C2, C4, C10 -0.04(-1.58, 1.51) 3.50(2.39, 4.33) 6.63 0.08 (-1.62, 1.80) 5.29 (3.78, 6.46) 11.80 

C0, C2, C4 0.11(-1.87, 2.10) 4.49(3.10, 5.54) 8.91 1.69 (-1.46, 4.84) 9.88 (6.18, 12.53) 19.73 

C0, C2, C3 0.10(-2.35, 2.55) 5.54(3.49, 7.01) 12.09 0.61 (-2.20, 3.42) 8.70 (5.76, 10.87) 19.89 

C0, C2.5, C4 -0.01(-3.81, 3.78) 8.59(5.61, 10.77) 18.51 6.3 (0.51, 12.08) 18.94 (10.64, 24.58) 48.76 
       

       

C2, C6 0.06(-2.21, 2.34) 5.15(3.28, 6.50) 10.36 -4.31 (-7.06, -1.55) 9.53 (6.58, 11.77) 21.99 

C0, C3 0.12(-4.13, 4.37) 9.60(5.61, 12.37) 18.60 3.77 (-1.10, 8.64) 15.51 (9.69, 19.67) 34.44 

C0, C4 0.41(-3.88, 4.70) 9.71(6.71, 11.98) 18.32 5.87 (-0.77, 12.52) 21.34 (9.16, 19.43) 51.95 

C0, C2.5 0.64(-5.26, 6.53) 13.35(9.30, 16.43) 23.89 4.09 (-0.98, 9.17) 16.20 (11.07, 20.06) 38.26 
       

       

C4 0.24(-4.01, 4.50) 9.64(6.74, 11.84) 16.99 6.42 (-0.70, 13.155) 22.93 (9.39, 31.04) 57.15 

C0 0.98(-12.8, 14.75) 31.16(9.92, 45.17) 67.11 -6.64 (-12.47, -0.80) 19.20 (15.84, 22.06) 33.33 

CI: confidence interval; Ctj: concentration at time tj in hours post-dose; ME%: mean relative prediction error; 

RMSE%: root mean squared relative prediction error; 95th PAE%: 95th percentile of absolute values of relative 

prediction errors. 
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Table 2.4: Predictive performance of the selected LSS to estimate cyclosporine AUC following PO administration.  

Concentration-time 

points 
 

Leave-One-Out 

Cross-Validation 

(Cohort A) 

  
External Validation 

(Cohort B) 
 

 ME% (95% CI) RMSE% (95% CI) 95th PAE% ME% (95% CI) RMSE% (95% CI) 95th PAE% 

       

C0.5, C2, C4, C8 0.01(-1.08, 1.10) 3.31(2.59, 3.90) 6.30 -2.43(-3.83, -1.03) 4.75 (3.18, 5.91) 9.54 

C0, C1, C2, C4 0.06(-2.06, 2.19) 6.48(5.15, 7.57) 12.17 -0.13(-2.12, 1.86) 5.8 (3.56, 7.40) 11.83 

C0¸C0.5, C2, C4 0.11(-2.15, 2.36) 6.87(5.12, 8.25) 13.70 -2.20(-4.40, 0.01) 6.78 (4.74, 8.33) 14.58 

C0, C1, C3, C4 0.09(-2.31, 2.48) 7.30(5.79, 8.54) 13.44 3.42 (0.96, 5.88) 7.94 (5.07, 10.02) 19.7 
       

       

C1.5, C4, C8 0.05(-1.80, 1.90) 5.63(4.22, 6.74) 11.82 0.43(-2.20, 1.33) 5.16(3.77, 6.25) 10.25 

C0, C1.5, C4 0.15(-2.62, 2.92) 8.43(5.97, 10.32) 16.71 -0.33(-3.07, 2.41) 7.99(5.81, 9.68) 16.18 

C0, C2, C4 0.17(-2.78, 3.11) 8.97(6.75, 10.73) 16.48 -3.15 (-5.96, -0.34) 8.78 (6.39, 10.65) 17.55 

C0, C1, C4 0.16(-2.95, 3.27) 9.48(6.81, 11.55) 15.77 2.38 (-1.12, 5.88) 10.46 (5.78, 13.62) 24.03 
       

       

C2, C8 0.15(-2.65, 2.94) 8.52(6.20, 10.34) 16.04 -4.59 (-8.17, -1.00) 11.42 (6.27, 14.88) 21.88 

C0, C2 0.16(-4.41, 4.74) 13.94(10.94, 16.39) 26.74 -5.95 (-10.10, -1.80) 13.47 (9.47, 16.53) 25.62 

C0, C3 0.21(-4.95, 5.37) 15.71(11.57, 18.97) 34.85 1.01 (-3.95, 5.98) 14.51 (10.15, 17.84) 26.94 

C0, C4 0.32(-5.21, 5.86) 16.86(13.12, 19.91) 32.70 -1.98 (-7.06, 3.10) 14.94 (10.59, 18.28) 28.53 
       

       

C4 0.36(-5.34, 6.05) 17.35(13.64, 20.39) 28.37 -0.18 (-5.98, 5.62) 16.90 (12.31, 20.50) 30.78 

C0 0.57(-11.29, 12.42) 36.10(25.39, 44.29) 80.11 -10.06 (-18.52, -1.62) 26.61 (17.6, 33.27) 48.90 

CI: confidence interval; Ctj: concentration at time tj in hours post-dose; ME%: mean relative prediction error; 

RMSE%: root mean squared relative prediction error; 95th PAE%: 95th percentile of absolute values of relative 

prediction errors.  
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The results of the external validation (Cohort B) are also shown in Table 2.3 and Table 

2.4. The prediction error indices were highly correlated with those of leave-one-out cross-

validation for PO CsA; LSS ranks in each subgroup (based on RMSE%) were always 

preserved. However these error indices were higher than those of leave-one-out cross-

validation for IV CsA. Nonetheless, 13 of the selected LSS (6 for IV and 7 for PO CsA) had 

predictive performances suitable for clinical application, with RMSE% and 95th PAE% values 

of less than 20% in both leave-one-out cross-validation and external validation. Among these 

LSS, nine met all predefined selection criteria, four for IV CsA ((C0, C2, C4), (C0, C2, C3), (C0; 

C2, C3, C4), (C0; C2, C2.5, C3)), and five for PO CsA ((C0, C1.5, C4), (C0 ; C2, C4), (C0; C1, C2, 

C4), (C0; C0.5, C2, C4) (C0; C1, C3, C4)).  

The predictive performances of three of the selected LSS, namely, the best ((C2, C3, 

C6, C8) for IV CsA and (C0.5, C2, C4, C8) for PO CsA), the worst (C0), as well as a clinically 

practical LSS (C0, C2, C4), are shown graphically; Bland-Altman analysis showed limits of 

agreement of less than 20% for all but the C0 LSS (Figure 2.4). 
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Figure 2.4: Bland-Altman analysis of agreement between observed AUC and predicted AUC 

using leave-one-out cross-validation. A) Prediction of cyclosporine AUC following IV 
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administration using three LSS: (C2, C3, C6, C8), (C0, C2, C4), and (C0); B) Prediction of 

cyclosporine AUC following PO administration using three LSS: (C0.5, C2, C4, C8), (C0, C2, 

C4), and (C0). The solid line represents the mean of the relative difference between observed 

and predicted AUC; the dotted line represents ± 1.96 x standard deviation of the mean; 

AUCobs, observed AUC; AUCpred, predicted AUC.  

Discussion 

This study consists of the largest pediatric cohort (68 patients and 138 PK profiles) investigated 

to date to develop and validate LSS for estimating IV and PO CsA AUC in children undergoing 

HSCT. Furthermore, the present study reports for the first time validated R-LSS for CsA 

administered orally in this population. Nine LSS (four for IV and five for PO CsA) convenient 

for application in clinical settings (four or fewer concentration-time points within 4 hours of 

drug administration) proved to have clinically acceptable performance. These LSS had 

RMSE% and 95th PAE% values of less than 20% in both leave-one-out cross-validation and 

external validation. Notably, LSS based on sampling at three concentration-time points (C0, C2, 

C4) was found to be accurate for CsA estimation following both IV and PO administration. 

Thus this LSS may represent a favorable method for clinical application, because use of the 

same sampling protocol following both IV and PO administration may limit the risks of 

procedural errors. LSS based solely on C0 had a poor predictive ability, which is in agreement 

with previous reports indicating poor correlation between C0 and CsA exposure [6, 7]. LSS 

with highest predictive performance in each subgroup were also identified whether or not they 

met the predefined practical criteria in order to assess the value of these criteria in terms of 

performance. As shown in Table 2.3 and Table 2.4, improved prediction performance could be 
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achieved if the requirement of including C0 was omitted and the sampling period was 

prolonged beyond four hours. However, considering the more clinically convenient LSS 

developed in this study that offer acceptable precision for clinical use, this gain in performance 

needs to be balanced against inconveniences associated with late sampling times in daily 

practice. 

In this study, leave-one-out cross-validation was initially performed in the 

development cohort (Cohort A) to estimate error indices of all possible one, two, three, or four 

concentration-time point LSS. This allowed selection of the best LSS according to their 

predictive performance along with practical criteria. Then, external validation was carried out 

to evaluate the performance of the selected LSS in an independent dataset (Cohort B) to avoid 

overestimation of the predictive performance. Prediction error indices estimated in the external 

validation for selected IV LSS were found to be higher than those obtained by leave-one-out 

cross-validation. These differences in predictive capacity may be secondary to the fact that IV 

PK profiles used for external validation (Cohort B) were more heterogeneous compared to 

those of Cohort A (Figure 2.1). For the selected PO LSS, the results of external validation 

were in line with those of leave-one-out cross-validation. Interestingly, PO PK profiles of both 

development and external validation cohorts displayed considerable variability (Figure 2.2). 

These observations reinforce the need for external validation and suggest that the presence of 

heterogeneity in the development cohort, although potentially associated with higher error 

indices estimated by leave-one-out cross-validation, increase robustness of LSS to accurately 

estimate CsA exposure in real-life settings. The coefficient of determination (R2) only 

estimates association and provides no information regarding predictive performance [31]; 

hence it is not reported in this paper.  
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The performances as well as the sampling times of the LSS proposed in the current 

study are comparable with those reported in adult HSCT population. For PO CsA, Hadjibabaie 

et al. found that the R-LSS including C0, C2, and C4 had the best performance among 50 tested 

LSS with a median absolute relative error of 4.8% [20]. Eljebari et al. performed pre-selection 

steps and validated 24 R-LSS. The LSS that consisted of C0.5, C2, and C4 had the best 

performance with RMSE% of 9.6% [21]. In another study, Eljebari et al. developed a B-LSS 

consisting of C0.5, C2 and C4, with RMSE% of 12.07% [21]. Wilhelm et al. suggested C0, C2, 

and C3 as the best LSS for Bayesian estimating of IV (3-hour infusion) and PO CsA AUC with 

mean absolute relative errors of 3.7% [22].  

In the pediatric HSCT population, Willemze et al. reported B-LSS that involved 

sampling within 4 hours post-dose and had smaller error indices; the LSS consisting of C0, C2, 

and C4 had a median absolute relative errors of 3.3% [26]. Nonetheless, their error indices 

were estimated using a small number of PK profiles (9 and 7 profiles for IV and PO CsA, 

respectively) and concentration-time points (6 per profile). Moreover, they did not carry out an 

external validation and the error indices were not reported separately for PO and IV LSS. The 

suggested R-LSS by Dupuis et al. had good performances but required samples to be drawn 

within eight hours and were developed and validated for IV CsA only [25]. In this paper, we 

developed the first validated R-LSS for PO CsA in pediatric HSCT, in addition to a more 

practical IV LSS for use in the clinical setting; these approaches do not require well trained 

professionals nor any sophisticated software such as is required to conduct B-LSS. 

Even though the LSS developed in this study allow accurate and precise CsA AUC 

estimation, to obtain the full clinical benefit, well-established AUC targets are required. There 

is at least one ongoing pharmacokinetic/pharmacodynamic trial that is aiming to better define 
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the target CsA AUC in pediatric HSCT recipients (ClinicalTrials.gov Identifier: 

NCT02175615). Furthermore, the predictive performances reported in this paper are only 

applicable for patients whose conditions and characteristics are comparable to those of patients 

considered in this investigation’s development and validation of LSS. For example, caution 

should be exercised if the proposed LSS are used in patients with C4/C2 ratios outside the 

range reported in this study (0.29 – 1.35). In addition, CsA concentrations should be measured 

with the specific immunoassay used in this study since immunoassays can also measure some 

of the drug’s metabolites and consequently overestimate the actual concentrations present 

[32]. Finally, as R-LSS rely on timed concentrations for AUC estimation, accurate sampling 

time is required in order to insure reliable prediction.  

In conclusion, the R-LSS developed in this study can predict CsA AUC in pediatric 

HSCT following both IV and PO administration with clinically acceptable prediction errors. 

They require four or fewer concentration-time points drawn within four hours after drug 

administration and, hence, are suitable for clinical use. Improved prediction could be achieved 

by increasing the sampling frequency and/or duration. These LSS may facilitate future 

research aiming at better defining the relationship between systemic exposure (AUC) and 

clinical outcomes such as prevention of graft-versus-host disease, disease relapse, CsA 

toxicities and overall survival. Subsequently, these LSS may also be employed in prospective 

trials to determine whether AUC-based monitoring of CsA is superior to C0-based monitoring, 

for short- and long-term outcomes in this population. 
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Abstract 

Background: The optimal marker for cyclosporine (CsA) monitoring in transplantation 

patients remains controversial. However, there is a growing interest in the use of the area 

under the concentration-time curve (AUC), particularly for CsA dose adjustment in 

pediatric hematopoietic stem cell transplantation (HSCT). In this paper, we develop 

Bayesian limited sampling strategies (B-LSS) for CsA AUC estimation using population 

pharmacokinetic (Pop-PK) models and investigate related issues, with the aim to improve 

B-LSS prediction performance. 

Methods: Twenty five pediatric HSCT patients receiving intravenous and oral CsA were 

investigated. Pop-PK analyses were carried out and the predictive performance of B-LSS 

was evaluated using the final Pop-PK model and several related ones. The performance of 

B-LSS when targeting different versions of AUC was also discussed. 

Results: A two-compartment structure model with a lag time and a combined additive and 

proportional error is retained. The final covariate model does not improve the B-LSS 

prediction performance. The best performing models for intravenous and oral CsA are the 

structure ones with combined and additive error, respectively. Twelve B-LSS, consisting of 

4 or fewer sampling points obtained within 4 hours post-dose, predict AUC with 95th 

percentile of the absolute values of relative prediction errors of 20% or less. Moreover, B-

LSS perform better for the prediction of the ‘underlying’ AUC derived from the Pop-PK 

model estimated concentrations that exclude the residual errors, in comparison to their 

prediction of the observed AUC directly calculated using measured concentrations. 

Conclusions: B-LSS can adequately estimate CsA AUC. However, B-LSS performance is 

not perfectly in line with the standard Pop-PK model selection criteria; hence the final 
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model might not be ideal for AUC prediction purpose. Therefore, for B-LSS application, 

Pop-PK model diagnostic criteria should additionally account for AUC prediction errors. 

Keywords 

Bayesian approach, Population pharmacokinetics (Pop-PK), Cyclosporine (CsA), Area 

under the curve (AUC), Limited sampling strategy (LSS). 
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Background 

Therapeutic drug monitoring is a common practice for the use of 

immunosuppressant drugs, which generally exhibit considerable inter- or intra- 

pharmacokinetic (PK) variability and narrow therapeutic window [1]. A non-monitored 

dosing can increase the risk for therapeutic failure or induce serious undesirable effects. 

Currently, therapeutic drug monitoring approach, which involves the measurement of drug 

concentrations and their interpretation, has become a standard of care in 

immunosuppressant therapy for dose optimization, with the aim of maximizing therapeutic 

benefits and minimizing adverse effects [1, 2]. In clinical practice, the pre-dose 

concentration (C0) is widely used as a PK marker for the therapeutic drug monitoring due 

to its accessibility. Nonetheless, treatment failure, adverse effects, and toxicity can still 

arise even in situations where C0 is within the recognized therapeutic range [3,4]. These 

risks call for the implication of other PK based surrogates, such as the area under the 

concentration-time curve (AUC) which is generally known as the best indicator of drug 

systemic exposure. While its use as an optimal marker for immunosuppressant agents 

monitoring remains controversial its correlation with clinical outcomes is increasingly 

being investigated [5-7]. 

When estimating AUC, we generally refer to the observed AUC, usually denoted 

AUCobs, which is obtained using the trapezoidal method. This method can be cumbersome 

for patients and their care providers since it requires a frequent sampling over a time 

interval long enough to fully represent the drug disposition. As an alternative, limited 

sampling strategies (LSS) have been proposed to predict AUC with an adequate precision, 

using a reduced number of sampling points drawn within a short time interval. LSS have 
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been applied with two main approaches, namely, the multiple linear regression-based LSS 

(R-LSS) and Bayesian-based LSS (B-LSS). 

The regression approach aims to establish a linear relationship between one or more 

concentration-time points (independent variables) and AUC (dependent variable) in the 

form of the following equation: 

ktktpred CFCFFAUC  
110  

where Ct1, Ct2, …, Ctk are the concentrations sampled at times t1, t2, …, tk, respectively; 

and F0 , F1, …, Fk are regression coefficients. For its simplicity, the use of regression LSS 

is widely spread as a bedside application. However, its use is highly restrictive since 

samples are assumed to be taken on nominal sampling times, excluding thus any possible 

deviation. 

The B-LSS approach requires the use of several drug concentrations in addition to a 

well-established population pharmacokinetic (Pop-PK) model for the estimation of AUC. 

This model, considered as the acquired prior knowledge of drug characteristics, helps to 

improve the estimation, otherwise solely based on the observed drug concentrations. With 

the B-LSS method, the estimated individual PK parameters are obtained using the 

empirical Bayesian approach; these parameters are then used for the prediction of drug 

concentrations and, consequently, the estimation of AUC.  

One advantage of the Bayesian approach over the regression LSS is its flexibility in 

terms of sampling time deviations which are readily considered when building the 

associated Pop-PK model and predicting the individual PK parameters; since the real 

sampling times can be used in case of sampling deviations from the nominal times. 
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Nevertheless, the use of B-LSS can be hampered by the need for trained professionals and 

specialized software. This situation is however changing progressively since many PK 

software packages with user-friendly interfaces are now made available. 

In both LSS approaches, the estimation of AUC aims to approximate the real AUC 

that could be reachable in ideal conditions of frequent blood samplings associated with 

perfect measurements that reflect precisely drug concentrations. However, only few 

samples are usually available. In addition, these samples are generally affected by different 

sources of errors, emanating from sample collection, measurement method, and data 

processing. These limitations can potentially be inherited by the observed AUC, and 

consequently raising the question of its reliability.  

It would be thus interesting to alternatively consider the AUC calculated directly 

from the estimated individual concentrations using the Pop-PK model, assuming the 

exclusion of the residual errors. These estimated concentrations are denoted IPRED in the 

usual notation of NONMEM®, the mostly used software in Pop-PK analyses. We refer to 

this AUC as ‘underlying’ AUC. The difference between observed AUC and ‘underlying’ 

AUC is illustrated in Figure 3.1. 

Although ‘underlying’ AUC cannot be directly measured in practice, we believe 

that it represents the intrinsic property of a patient’s PK profile as it is not altered by 

residual errors and hence can be a better predictor for drug effects, compared to the 

observed AUC where the residual errors are always present. 
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Figure 3.1: Underlying AUC (7448 ng.h/mL) Vs. Observed AUC (7017 ng.h/mL).  

Cyclosporine (CsA) is a typical example of immunosuppressive agents where LSS 

are widely used. Therapeutic drug monitoring is recommended for CsA dose adjustment 

because of its large PK variability and small therapeutic index [2, 8]. CsA is used mainly in 

hematopoietic stem cell transplantation (HSCT) for the prophylaxis of graft-versus-host 

disease. In this context, there is a growing interest in the use of AUC as a therapeutic drug 

monitoring marker [6, 7]. However, prospective trials are still needed to evaluate the 

efficacy of AUC guided dose adjustment. 

In HSCT, graft-versus-host disease can result in diffuse inflammation that affects 

intestinal integrity, thus causing reduction and delay in CsA absorption, while the 

clearance is reported higher in comparison to solid organ transplantation [9, 10]. Recently, 

LSS have been applied by several research groups to predict AUC for HSCT in adults [11-
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14]. However, their results cannot be directly transferred to pediatric patients who 

generally require higher doses, as they have faster systemic clearance and lower CsA 

exposure [9, 10, 15, 16]. Therefore, particular B-LSS in pediatric patients need to be 

developed and validated. 

To our knowledge, only three LSS studies for the prediction of CsA AUC in 

pediatric HSCT have been published. Willemze et al. found a good performance using B-

LSS for intravenous (IV) and oral (PO) CsA; however, they were tested on a small number 

of combinations of sampling points, with no validation reported [17]. Based on a 

population of 24 pediatric patients receiving 2 hours BID infusion, Sibbald et al. reported 

R-LSS [18]. These LSS are developed only for PK profiles obtained after the first CsA IV 

dose and their application is restricted to this particular condition. Recently, Dupuis et al. 

validated these LSS and reported new R-LSS for the prediction of AUC at the steady state 

[19]. The latter LSS showed a good performance but required samples to be drawn within 

8 hours post-dose and were developed and validated only for IV CsA. 

In this paper, we will develop practical B-LSS for the prediction of AUC in 

pediatric HSCT patients after IV and PO CsA administrations. In this context and based on 

available PK data of our pediatric population, we developed Pop-PK models of CsA 

following the general Pop-PK modeling steps, but with a particular care for its intended 

use in AUC prediction by B-LSS. Furthermore, to insure the LSS applicability in clinical 

settings, the number of concentration-time points and sampling duration were restricted to 

4 points or fewer drawn within 4 hours post-dose. Performance of these LSS is evaluated 

using well-established error indices. 
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Materials and methods 

Patients 

Pediatric patients receiving IV (2 hours infusion) or PO CsA twice daily for graft-versus-

host disease prophylaxis after undergoing HSCT from a sibling or unrelated donor, at the 

Centre Hospitalier Universitaire Sainte-Justine, were considered for inclusion in this 

retrospective study. Patients who were 19 years old or more were excluded. The study was 

approved by the institutional research ethics committee at the Centre Hospitalier 

Universitaire Sainte-Justine. Twenty-five pediatric patients were eligible for inclusion in 

this study over a period from August 2009 to August 2010. Eighteen of these patients have 

IV and PO pharmacokinetic profiles. Patients’ characteristics are summarized in Table 3.1. 

Cyclosporine dose adjustment 

Since 2010, the medical team at the Centre Hospitalier Universitaire Sainte-Justine caring 

for HSCT patients moved from C0- to AUC-based monitoring in light of controversy 

regarding the usefulness of dose adjustments based on CsA C0 [20]. Hence, CsA dose 

adjustments were made by the treating physician in accordance with institutional target 

AUC0-12h values, which were defined based on published data from renal transplantation 

studies [21, 22] and one adult HSCT study [23]. These were adapted by the team according 

to the patient’s underlying diseases.  
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Table 3.1: Patients’ information summary. 

Parameter (unit) Number or median (range) 

 IV PO 

Patients 19 20 

Sex: male/female 10/9 12/8 

Age at transplantation (year) 10.5 (1–18) 11.1(0.5-18.2) 

Transplantation type: Sibling/Unrelated 10/9 13/7 

Included PK profiles 23 39 

Formulation 23 (IV) 19 (Susp) /20 (Cap) 

Time post transplantation (month) 0.13 (0.1 - 1.7) 1.28 (0.7 - 9.1) 

Age at PK profile (year) 10.4 (1–17.9) 11.9 (1.2 - 18.3) 

Weight (kg) 33 (10–81) 38 (8–83) 

Cyclosporine dose (mg/kg/day) 2.5 (1–3.2) 4.2 (1–8.3) 

Concomitant corticosteroid 13 26† 

Albumin (g/L) 32 (19–48) 32 (22–41)‡ 

Creatinine (μmol/L) 33 (12–358) 50 (13–117)‡ 

Bilirubin (μmol/L) 11 (5–64) 10 (3–596)‡ 

AST (U/L) 20 (9–42) 24 (13–125)‡ 

ALT (U/L) 24 (9–85) 31 (19–69)‡ 

GGT (U/L) 35 (8–94) 32 (9–217)‡ 

AP (U/L) 87 (1.9 - 203) 110 (53–302)‡ 

Hb (g/dL) 93 (64–143) 87 (64–122)‡ 

Hct (%) 25 (18–44) 26 (19–36)‡ 

ALT: alanine aminotransferase; AP: alkaline phosphatase; AST: aspartate aminotransferase; Hb: 

hemoglobin; Hct: hematocrit; IV: intravenous administration; GGT: γ- glutamyltranspeptidase; PK: 

pharmacokinetic; PO: oral administration; Susp: suspension; Cap: capsule 

† Data available for 37 profiles. 

‡ Data available for 38 profiles. 

PK data 

All available steady state PK profiles that contained at least 7 concentration-time 

points were incorporated in this study for a total of 23 IV and 39 PO profiles. Blood 

samples were drawn before and at 2, 3, 4, 6, 8, 10, and 12 hours after CsA administration 
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for IV profiles and at 0.5, 1, 1.5, 2, 3, 4, 8 and 12 hours after CsA administration for PO 

profiles. Concentrations were measured using ARCHITECTi2000SR® (Abbott 

Laboratories, Abbott Park, Illinois, USA). The lower and upper limits of detection were 30 

and 1500 ng/mL, respectively. The between-run coefficients of variation were 9.95% at 87 

ng/mL, 8.64% at 340 ng/mL, and 9.25% at 850 ng/mL. Blood samples with CsA 

concentrations > 1500 ng/mL were diluted with blank blood. The associated observed 

AUC were calculated using the trapezoidal method. Individual CsA concentration-time 

profiles are reported in Figure 3.2. 

 

Figure 3.2: Concentration-time courses for the available full profiles. 
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Development of Pop-PK model 

Population PK analyses were performed using the nonlinear mixed effect approach 

as implemented in NONMEM® software (Version VII). The first order conditional 

estimation with interaction (FOCE-I) method was used to determine PK parameters and the 

associated variability. To define the structural model, one, two and three compartment 

models with first-order absorption and elimination were used to analyze available CsA 

data. The lag time in absorption was also tested for each model. The exponential model 

was used to describe inter-individual variability for PK parameters as expressed in Eq.1: 

ij j ijθ θ  EXP(η ) 
 

(1) 

where θij is the jth PK parameter for the ith individual, θj is the typical value of the 

population parameter; ɳij is a random variable characterizing the between subject 

variability. A combined version of additive and proportional models was used to test for 

residual variability (Eq.2): 

obs pred 1 2C  C  (1 ε ) ε   
 

(2) 

where Cobs and Cpred are the observed and predicted CsA blood concentrations, 

respectively; ɛ1 and ɛ2 are random variables describing the unexplained residual 

variability. 

The structural model was developed based on statistical significance in the 

reduction of the objective function value (OFV) using likelihood ratio test (LRT), as well 

as other standard indicators such as the model stability and the improvement in model 
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fitting. As usually done in pediatric Pop-PK modeling, weight had been initially integrated 

as an allometric scaling factor for the clearance and the volume of distribution [24]. The 

covariate model was then established by the forward inclusion backward elimination 

strategy, using Perl speaks NONMEM (PsN) script [25], in which a change of OFV greater 

than 6.63 and 7.87, associated with a p-value of 0.01 and 0.005, was used as selection 

criteria for statistical significance, respectively. A total number of 19 covariates were 

included in the plan. With a careful checking of graphical relationship and consideration of 

their clinical meaning, potentially meaningful covariates were tested (see model 

development details in Appendix of this Chapter). 

B-LSS development and validation 

Using the nine available sampling points of each PK profile included in this study, 

we evaluated the performance of all possible combinations that contain one, two, three, or 

four concentration-time points, which gives rise to a total number of 255 LSS to be tested. 

These LSS were divided into four subgroups according to the number of concentration-

time points included in the LSS plan. To allow validation despite the small number of 

available data, we used the leave-one-out cross-validation approach [26]. 

We briefly recall that, when using the leave-one-out cross-validation approach, 

each PK profile is left out in turn from the analysis, which gives rise to a partial dataset 

noted as Y(−i), i = 1, …, N, where i stands for the temporary excluded ith PK profile. Using 

the available Pop-PK model of CsA, we estimate the PK parameters associated with the 

partial dataset Y(−i).Then to estimate PK parameters of the excluded profile, the standard 

empirical Bayesian approach, as implemented in NONMEM®, is performed using, as 

initial values, the Pop-PK parameters previously obtained for Y(−i). This estimation 
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involves the LSS associated concentrations of the excluded profile. These PK parameters 

obtained for the ith profile are then used to predict its full concentration-time course that 

includes the 9 concentration-time points of the sampling protocol. Finally, the predicted 

AUC for the ith profile is calculated using the trapezoidal method. 

Performance of the 255 LSS is evaluated using error indices [27]. For each LSS, 

relative error (E%), the 95th percentile of the absolute values of relative prediction errors 

(95th PAE%), mean relative prediction error (ME%) and root mean squared relative 

prediction error (RMSE%) were calculated. These estimates were based on the following 

formulations: 
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(6) 

Moreover, since relative errors can induce bias when applied to highly 

asymmetrical data, the symmetry of the distribution and the range of estimated relative 

errors were also verified [28]. 

For each LSS subgroup defined above, four representative B-LSS were chosen to 

represent the overall performance. In each subgroup, the first chosen B-LSS corresponds to 

the one that has the highest predictive performance according to 95th PAE%. In addition to 
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this criterion, the following three B-LSS were selected according to two clinically oriented 

restrictions, namely the inclusion of C0 and the limitation of sampling to an interval of 4 

hours post-dose. As reported in the Results Section, 28 B-LSS (14 for IV and 14 for PO 

CsA) are obtained for each evaluated Pop-PK model. 

Figure 3.3 depicts the above procedure of B-LSS development and validation. 



 

100 

 

 

Figure 3.3: B-LSS development procedure; Y is the group of all profiles; Y(−i) is the 

subgroup of all profiles except the ith one, where i = 1,2…,N. 
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Analysis of B-LSS performance 

When investigating B-LSS performance using the structural model as well as the 

final model developed following the standard Pop-PK procedure, we noticed that the final 

model was not associated with the best performance. This non anticipated result raised the 

concern about the appropriateness of the final Pop-PK model, with regard to B-LSS 

application. Indeed, the decision for the final model is mainly determined through 

objective function value (OFV), a criterion which may not be adequate to optimize a model 

for B-LSS application. Hence, we decided to investigate the B-LSS performance using 

intermediate Pop-PK models that differ from the final one in terms of error models and 

included covariates. To report their B-LSS performance, we chose to use the 95th PAE% 

for its simplicity and clinical relevance [8]. The results for other performance indices, not 

reported here for space restriction, were consistent with those of the 95th PAE%. 

As mentioned above, we also estimated the ‘underlying’ AUC and used it as a 

reference for AUC predicted through B-LSS. Then the performance of B-LSS in this 

context is compared to their performance for the prediction of observed AUC. 

The commercial software package MATLAB® (2008b, The Math Works Inc, 

Natick, Massachusetts, U.S.A.) and NONMEM® (version VII, Icon Development 

Solutions, Ellicott City, MD) were used for modeling implementation and computations. 
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Results 

Final Pop-PK model 

The initial model analyses for the description of CsA PK data suggested a two-

compartment structure with a combined additive and proportional error model. This 

structural model was parameterized in terms of: clearance (CL), apparent volume of 

distribution of the central compartment (Vc), apparent volume of distribution of the 

peripheral compartment (Vp), inter-compartmental transfer rate (Q), absorption rate (KA), 

lag time in oral absorption (ALAG), and oral bioavailability (F). Inter-individual 

variability was estimated for CL, Vc, Q, KA, and F. 

Moreover, as usually suggested in pediatric literature, clearance and volume were 

scaled by weight with powers of ¾ and 1, respectively [24]. With this addition to the 

structural model, we have performed a standard covariate analysis which led to the final 

model that included weight (WT), age at profile date (AG), time post transplantation 

(TPT), alkaline phosphatase (AP), and dosage form (FORM). The details of model 

construction and estimated parameters can be found in the Appendix. 

Pop-PK model selection based on associated B-LSS performance 

The structural model with combined errors (Model 4 in Table 3.2) and the structural 

model with additive errors (Model 6 in Table 3.2) were selected as the best models for 

performing AUC prediction using B-LSS, for IV and PO profiles, respectively. Their 

selection was based on their performance in terms of 95th PAE%. Associated to these two 

models, 16 LSS (11 for IV and 5 for PO) had 95th PAE% of 20% or less.  
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The performance of B-LSS was evaluated using the structural, final, and several 

related Pop-PK models that differ from the final one in terms of error models as well as the 

covariates included. For each model, 28 LSS (14 for IV and 14 for PO) were selected using 

the above performance criteria. The results of the evaluated models are shown in Table 3.2. 

It is worth emphasizing that the final model did not give the best prediction for AUC 

though it has the least OFV. Associated to this model, 10 LSS (9 for IV and 1 for PO) had 

95th PAE% of 20% or less. 
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Table 3.2. Performance of B-LSS for cyclosporine AUC prediction using selected Pop-PK models. 

 Model 1 95th PAE% Model 2 95th PAE% Model 3 95th PAE% Model 4 95th PAE% Model 5 95th PAE% Model 6 95th PAE% 

OFV −1900  −1895  −1613  −1790  −1773  −1447  

IV C2, C2.5, C6, C10 10 C2, C3, C6, C8 11 C2, C2.5, C6, C10 23 C2, C2.5, C8, C10 7 C2, C2.5, C8, C10 8 C2, C2.5, C4, C6 15 

 C0, C2, C3, C4 18 C0, C2, C3, C4 18 C0, C2, C2.5, C4 27 C0, C2, C3, C4 14 C0, C2, C3, C4 14 C0, C2.5, C3, C4 22 

 C0, C2, C2.5, C4 19 C0, C2, C2.5, C4 19 C0, C2, C3, C4 27 C0, C2, C2.5, C3 15 C0, C2, C2.5, C3 15 C0, C2, C2.5, C4 24 

 C0, C2, C2.5, C3 19 C0, C2, C2.5, C3 19 C0, C2, C2.5, C3 27 C0, C2, C2.5, C4 16 C0, C2, C2.5, C4 16 C0, C2, C2.5, C3 24 

 C2, C2.5, C10 12 C2, C3, C8 13 C2, C2.5, C6 24 C2, C2.5, C8 10 C2, C2.5, C8 10 C2.5, C8, C10 16 

 C0, C2, C3 20 C0, C2.5, C3 20 C0, C2, C3 28 C0, C2, C3 16 C0, C2, C3 16 C0, C2.5, C4 20 

 C0, C3, C4 20 C0, C2, C3 21 C0, C2, C4 28 C0, C2.5, C3 18 C0, C2.5, C4 19 C0, C2, C4 22 

 C0, C2.5, C3 20 C0, C3, C4 21 C0, C2.5, C3 28 C0, C2.5, C4 19 C0, C2.5, C3 19 C0, C2.5, C3 24 

 C2.5, C6 17 C2.5, C6 17 C2.5, C6 27 C2.5, C8 15 C2.5, C8 15 C2.5, C8 20 

 C0, C3 21 C0, C3 22 C0, C3 31 C0, C2.5 20 C0, C2.5 21 C0, C2.5 23 

 C0, C4 23 C0, C4 24 C0, C2.5 32 C0, C3 20 C0, C3 21 C0, C2 27 

 C0, C2.5 24 C0, C2.5 25 C0, C4 37 C0, C4 25 C0, C4 24 C0, C3 30 

 C6 24 C6 23 C3 33 C4 23 C4 22 C2.5 28 

 C0 37 C0 37 C0 45 C0 40 C0 38 C0 51 

PO C1, C3, C4, C12 14 C1, C3, C4, C8 15 C1, C3, C4, C8 16 C1.5, C3, C4, C12 13 C1.5, C3, C4, C12 13 C1.5, C3, C4, C8 14 

 C0, C1, C3, C4 27 C0, C1, C3, C4 32 C0, C1, C3, C4 20 C0, C1, C2, C4 23 C0, C1.5, C3, C4 25 C0, C1.5, C2, C4 16 

 C0, C1, C2, C4 28 C0, C1, C2, C4 33 C0, C1, C2, C4 22 C0, C1.5, C3, C4 24 C0, C1, C2, C4 25 C0, C1.5, C3, C4 16 

 C0, C0.5, C3, C4 32 C0, C0.5, C3, C4 35 C0, C1.5, C2, C4 24 C0, C1, C3, C4 25 C0, C1, C3, C4 26 C0, C1, C3, C4 18 

 C1, C3, C4 21 C1, C3, C4 22 C1, C3, C4 20 C2, C4, C12 16 C1, C3, C8 17 C0.5, C3, C4 18 

 C0, C1, C4 35 C0, C1, C4 39 C0, C1, C4 30 C0, C1, C4 30 C0, C1, C4 30 C0, C2, C4 24 

 C0, C1.5, C4 38 C0, C0.5, C4 41 C0, C1.5, C4 33 C0, C2, C4 30 C0, C2, C4 33 C0, C1, C4 24 

 C0, C2, C4 40 C0, C1.5, C4 42 C0, C1, C3 35 C0, C2, C3 35 C0, C1.5, C4 36 C0, C1, C3 28 

 C1, C4 27 C1.5, C4 31 C1, C4 29 C1, C4 24 C1, C4 26 C1, C4 25 

 C0, C2 61 C0, C2 64 C0, C4 50 C0, C3 45 C0, C3 46 C0, C3 41 

 C0, C1 65 C0, C4 68 C0, C3 51 C0, C1 47 C0, C1 49 C0, C4 43 

 C0, C4 66 C0, C1 69 C0, C1.5 61 C0, C2 54 C0, C2 55 C0, C2 44 

 C3 45 C3 49 C4 41 C3 40 C3 40 C3 33 

 C0 99 C0 99 C0 100 C0 86 C0 85 C0 86 

Model 1: significant covariates included, combined error model (final model) 
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Model 2: significant covariates included, proportional error model 

Model 3: significant covariates included, additive error model 

Model 4: no covariates, combined error model (selected structural model): best model for B-LSS application regarding IV profiles 

Model 5: no covariates, proportional error model 

Model 6: no covariates, additive error model: best model for B-LSS application regarding PO profiles 

Ct: concentration at time t in hours post-dose, OFV: objective function value, 95th APE%: 95th percentile of absolute values of relative errors 
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Bayesian LSS performance 

Twelve B-LSS (8 for IV and 4 for PO, using models no. 4 and 6, respectively) 

that required 4 or fewer concentration-time points obtained within 4 hours post-dose, 

estimate AUC with 95th PAE% of 20% or less, Table 3.2. Among these LSS, (C0, C2, C3, 

C4) for IV and (C0, C1.5, C2, C4) for PO CsA, had the best performance, with 95th PAE% 

of 14% and 16%, respectively. However, it is possible to reduce the prediction error if a 

prolonged sampling period beyond 4 hours post-dose is allowed. For example, the LSS 

(C2, C2.5, C8, C10) had a reduced PAE% of 7% for IV CsA. 

Furthermore, the prediction of the ‘underlying’ AUC revealed that the selected 

B-LSS often had a better performance when the ‘underlying’ AUC was estimated rather 

than the observed AUC. Indeed, under the same conditions of 4 or fewer sampling 

points within 4 hours post-dose, we identified 15 B-LSS(instead of 12), that have 95th 

PAE% of 20% or less, Table 3.3. 
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Table 3.3. Performance of B-LSS for the prediction of observed and ‘underlying’ AUC 

using selected Pop-PK models. 

 LSS 

# 

Concentration-

time points 

Error indices (for observed AUC) Error index for 

‘underlying’ AUC 

RMSE% (Confidence 

interval) 

ME% (Confidence 

interval) 

E% 95th 

PAE%: 

95th PAE% 

<−20% [−20%, 

20%] 

>20% 

IV 1 C2, C2.5, C8, C10 4.39(3.26, 5.28) 1.19(−0.67, 3.06) 0 23 0 7 14 

 2 C0, C2, C3, C4 7.30(4.37, 9.36) 1.93(−1.18, 5.04) 0 23 0 14 17 

 3 C0, C2, C2.5, C3 7.71(4.32, 10.01) 1.75(−1.57, 5.07) 0 22 1 15 17 

 4 C0, C2, C2.5, C4 7.61(2.33, 10.51) 2.83(−0.30, 5.95) 0 22 1 16 19 

 5 C2, C2.5, C8 5.70(4.30, 6.81) 3.24(1.17, 5.31) 0 23 0 10 17 

 6 C0, C2, C3 8.14(4.63, 10.54) 2.40(−1.04, 5.84) 0 22 1 16 19 

 7 C0, C2.5, C3 9.85(7.16, 11.95) −0.61(−4.96, 3.73) 0 23 0 18 14 

 8 C0, C2.5, C4 9.53(6.42, 11.85) 0.89(−3.30, 5.09) 0 23 0 19 16 

 9 C2.5, C8 8.64(6.49, 10.36) 0.58(−3.24, 4.39) 0 23 0 15 14 

 10 C0, C2.5 11.33(8.25, 13.74) 1.05(−3.93, 6.04) 1 22 0 20 19 

 11 C0, C3 11.42(8.55, 13.69) −0.94(−5.97, 4.09) 1 22 0 20 15 

 12 C0, C4 12.11(8.19, 15.04) 2.65(−2.58, 7.87) 1 21 1 25 19 

 13 C4 13.88(10.30, 16.71) 4.36(−1.46, 10.19) 1 18 4 23 25 

 14 C0 23.32(16.81, 28.37) 0.55(−9.75, 10.86) 6 10 7 40 38 

PO 15 C1.5, C3, C4, C8 6.98(5.29, 8.33) −3.20(−5.24,−1.17) 0 39 0 14 16 

 16 C0, C1.5, C2, C4 7.50(4.97, 9.36) 0.70(−1.76, 3.15) 0 38 1 16 11 

 17 C0, C1.5, C3, C4 7.60(5.48, 9.25) −0.35(−2.85, 2.14) 0 39 0 16 14 

 18 C0, C1, C3, C4 9.34(6.62, 11.42) 0.43(−2.63, 3.50) 1 38 0 18 16 

 19 C0.5, C3, C4 11.73(7.27, 14.91) 0.08(−3.77, 3.93) 1 38 0 18 15 

 20 C0, C2, C4 11.02(8.00, 13.37) 3.40(−0.04, 6.84) 1 36 2 24 19 

 21 C0, C1, C4 10.26(6.11, 13.15) 0.48(−2.89, 3.84) 1 37 1 24 20 

 22 C0, C1, C3 13.08(9.20, 16.04) 2.07(−2.17, 6.31) 2 34 3 28 21 

 23 C1, C4 11.96(8.36, 14.70) −2.86(−6.68, 0.95) 4 34 1 25 25 

 24 C0, C3 18.65(11.05,23.94) 2.16(−3.92, 8.24) 4 31 4 41 34 

 25 C0, C4 21.37(16.26,25.47) 2.09(−4.89, 9.07) 6 23 10 43 38 

 26 C0, C2 21.19(12.55,27.21) 8.61(2.25, 14.97) 2 29 8 44 36 

 27 C3 17.46(12.77,21.14) −3.17(−8.81, 2.47) 7 29 3 33 30 

 28 C0 43.26(31.81,52.26) 15.62(2.37, 28.87) 7 14 18 86 87 

The selected Pop-PK models are the structural model with combined errors (Model 4 in Table 3.2) and 

the one with additive errors (Model 6 in Table 3.2) for IV and PO CsA, respectively. 

Ct: concentration at time t in hours post-dose, ME%: relative mean prediction error, RMSE%: relative root 

mean squared prediction error, 95th APE%: 95th percentile of absolute values of relative prediction errors. 
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Discussion 

Limited sampling strategies are gaining ground over extensive sampling in the 

drug development process and clinical practice, particularly in pediatric therapies. With 

the increasing use of Pop-PK modeling and Bayesian philosophy in drug R&D, we can 

notice the recent transition from classical R-LSS approach towards B-LSS. The current 

work investigates the use of B-LSS in the estimation of AUC, for CsA administered 

through IV or PO routes in pediatric HSCT. Taking into account clinical considerations, 

our approach uses the empirical Bayesian method as implemented in NONMEM® for 

the selection of the smallest set of sampling points (i.e. LSS) that allow accurate 

estimation of individual AUC. 

Through LSS development process, we have been led to question the 

appropriateness, for B-LSS application, of the final Pop-PK model, particularly when its 

development is mainly driven by the objective function value OFV. For this, we have 

tested several related Pop-PK models and found that the usually referred as the final one 

does not necessarily provide the best B-LSS performance for AUC prediction. This is in 

fact not counterintuitive since this final model is chosen under curve fitting criteria. The 

PK parameters found through this goodness of fit criteria might not give the best 

estimation of AUC, which is indeed a summary of the information carried by the 

concentration curve. It would be interesting in the future to directly integrate an 

additional constraint that minimizes prediction errors in AUC, within the model 

optimization process, in order to account for both curve fitting and AUC estimation. 
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The prediction error of B-LSS depends on the Pop-PK-model used to predict 

drug concentrations. Several Pop-PK model components such as covariate and error 

models can significantly influence the performance of B-LSS. In a standard Pop-PK 

model development, reduction in model objective function value OFV is the main 

criterion to judge the quality of the model. In this approach, Pop-PK parameters are 

estimated and optimized via a restricted maximum likelihood method implemented in 

NONMEM®. However, for B-LSS application to estimate AUC, a more efficient 

selection of Pop-PK models can be achieved by the additional consideration of the 

impact of Pop-PK model components on AUC prediction rather than only considering 

their impact on PK parameters estimation. In our case, for example, even though the 

structural model with combined error shows a better overall fit for PO profiles, it 

underestimates Cmax of individual profiles. The structural model with additive error 

allowed a better estimation of Cmax that has the main contribution to AUC value 

calculated by trapezoidal method and therefore this model is associated with a better 

performance of B-LSS. 

To develop B-LSS for CsA in pediatric HSCT and investigate its performance, 

we developed a Pop-PK model following the standard procedure, from the structural 

model to the final covariate model, while carefully keeping the intermediate tested 

models for comparison. In order to identify the model that best predicts AUC, the 

performance of the final model was compared with intermediate ones that differ in one 

or more model components. For each model, all possible one, two, three, or four 

concentration-time point LSS were investigated and their predictive performance 
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evaluated. Moreover, we studied the situation when B-LSS are targeting the ‘underlying’ 

AUC rather than the observed AUC and found that the B-LSS prediction performance is 

improved. Indeed, we have used the two models (no. 4 and 6 in Table 3.2 for IV and PO 

CsA, respectively), which have the smallest prediction errors for the observed AUC, and 

obtained a better performance when the ‘underlying’ AUC was estimated. 

The studied population covers a wide range of demographic and clinical 

characteristics that enables large applicability of the developed LSS. In addition, to 

avoid the overestimation of the predictive performance, the dataset used for validation 

has to be different from the one used for learning. However, the small number of 

initially available PK profiles, a common issue in pediatric research, led us to use leave-

one-out cross-validation approach. This method is generally used as an alternative to 

compensate for small datasets. When evaluating the LSS performance, relative errors 

indices, namely E%, ME% and RMSE%, were computed. However, we are aware that 

the use of relative errors might induce the bias when applied to highly asymmetrical 

data, thus their distribution was considered [28]. The 95th PAE% was used to initially 

compare B-LSS performance for the Pop-PK models since it is more frequently used in 

clinical setting for the evaluation of errors. Other error indices were calculated as well 

for all considered models and the detailed results are reported in Table 3.3 for the best 

performing ones, namely, for models no. 4 and 6 of Table 3.2 Particularly, the 12 

proposed B-LSS (8 IV and 4 for PO CsA) were verified for the absence of bias and their 

ME% were not significantly different from 0. Even though the LSS developed in this 

study allow accurate and precise CsA AUC estimation, we have to mention that further 
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prospective trials are still needed to determine whether AUC-based monitoring can 

increase efficacy and avoid toxicity. However, evaluating the value of AUC as a marker 

for therapeutic drug monitoring is outside the scope of this paper. 

In the current study, using standard model diagnostic criteria, we have 

constructed a two compartment Pop-PK model with lag time and combined error to 

characterize CsA PK data, which is in agreement with previous HSCT studies [11, 13, 

17, 20, 29]. In our structural model, CL was estimated to be 14.8 L/h with an inter-

individual variability of 31% (14.8, 31%), which are similar to the reported ones for 

pediatric patients (11.3, 36%) [17] and (15.3, 17%) [20]. However, higher values of CL 

were reported for adult populations (22.3, 27.7%) [11], (25.4, 38.7%) [13], and (52, 

42%) [29]. The covariate influence on CL was described in two studies. Willemze et al. 

[7] has shown power and linear relationships between CL and WT as well as CL and 

time post transplantation (TPT), respectively. Kim et al. [29] reported linear 

relationships between CL and sex as well as hematocrit. In our study, WT was included 

as an allometric covariate for both CL and VC, which is in agreement with the findings 

of Willemze et al. [7] and generally adopted in pediatric PK modeling [24]. In addition, 

we found relationships between CL and alkaline phosphatase (AP) as well as age at 

profile date (AG), the former relationship is compatible with the fact that CsA has 

hepatic metabolism and that its elimination depends on liver function. HSCT 

complication includes chronic and acute liver graft-versus-host disease for which 

alkaline phosphatase is a clinical marker [30,31]. In addition our investigation confirmed 

the inverse correlation between age and two PK parameters, namely, CL and Vc [15, 
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16]. Moreover, our results regarding the central and peripheral volume of distribution 

were within the range of the reported studies [11, 13, 17, 20, 29], where values largely 

vary (Vc: 12.9-52, Vp: 59.9-496). Furthermore, a lag time for CsA absorption was 

previously reported in three studies [11, 13, 17]. The present investigation showed the 

influence of two clinically relevant covariates on lag time, namely, time post 

transplantation and FORM. In HSCT patients, time post transplantation is related to the 

intestinal integrity that can affect CsA absorption [9] and, as expected, capsules need 

additional time to be available for absorption when compared to suspension. KA value 

was higher than that reported in adults [11, 13, 29] and close to estimates of Willemze et 

al. in pediatrics [17]. The CsA bioavailability in our study was estimated to be 59% with 

an IIV of 30%, which compares well with reported values [11, 17]. 

Conclusion 

B-LSS requiring 4 or fewer concentration-time points obtained within 4 hours 

post-dose can estimate CsA AUC in pediatric HSCT with acceptable prediction errors. 

However, the Pop-PK model developed using the standard model diagnostic criteria, 

does not always lead to the best model for B-LSS application. As we have seen in this 

paper, even the final covariate model gives a better fitting for concentration data in the 

sense of objective function value (OFV) than the structural model, the latter has a better 

AUC prediction than the former. Thus, for improved B-LSS application, more 

considerations with focus on the error in AUC prediction have to be taken into account 

in the development of Pop-PK models. Moreover, in the case where the prediction of the 
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‘underlying’ AUC is preferred compared to the observed AUC, as the residual error is 

excluded in the former, B-LSS can have a better performance. 
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Appendix 

Pop-PK model development 

Population PK analyses were performed using the nonlinear mixed effect model 

approach as implemented in NONMEM® software (Version VII). The first order 

conditional estimation with interaction (FOCE-I) method was used to determine PK 

parameters. 

To define the structural model, one, two and three compartment models with 

first-order absorption and elimination were used to analyze available CsA data. The lag 

time in absorption was also tested for each model. The exponential model was used to 

describe inter-individual variability for PK parameters as expressed in Eq.1: 

ij j ijθ θ  EXP(η ) 
 

(1) 

where θij is the jth PK parameter for the ith individual, θj is the typical value of the 

population parameter; ɳij is a random variable characterizing the between subject 

variability. A combined version of additive and proportional models was used to test for 

the residual variability (Eq.2): 

obs pred 1 2C  C  (1 ε ) ε   
 

(2) 
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where Cobs and Cpred are the observed and predicted CsA blood concentrations, 

respectively; ɛ1 and ɛ2 are random variables describing the unexplained residual 

variability. 

The structural model was developed based on statistical significance in the 

reduction of the objective function value (OFV) using likelihood ratio test (LRT), as 

well as other criteria such as the model stability and the improvement in model fitting. 

As usually done in pediatric Pop-PK modeling, weight was initially integrated as an 

allometric scaling factor for the clearance and volume of distribution. The covariate 

model was established using the forward inclusion backward elimination method. This 

approach was accomplished through three steps. In the first step, we set up the basic 

model by including weight as an allometric scaling factor for the clearance and volume 

of distribution into the structural model. Scatter plots of model parameters against each 

covariate helped to evaluate the potential covariate impact and the relation patterns. In 

the second step, each candidate covariate was screened in turn by incorporating it into 

the basic model to develop the intermediate models toward a full one. The difference in 

OFV obtained for a model with n + 1 covariates and the nested one with n covariates 

approximates the χ2 distribution with one degree of freedom, and a change of OFV 

greater than 6.63, associated with a p-value of 0.01, was considered for statistical 

significance. The following covariate were considered: weight (WT), age at profile date 

(AG), time post transplantation (TPT), sex, dosage form (FORM), co-administration of 

corticosteroid, calcium channel blocker and azole antifungal, blood urea nitrogen, 

albumin, total protein, total bilirubin, aspartate aminotransferase (ALT), alanine 
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aminotransferase (AST), gamma glutamyl transpeptidase (GGP), alkaline phosphatase 

(AP), hemoglobin, hematocrit, and red blood cell count. Only potentially clinically 

meaningful relationships were considered. Hence, we have tested the influence on CL of 

WT, AG, sex, FORM, co-administration of corticosteroid, calcium channel blocker and 

azole antifungal, blood urea nitrogen, albumin, total protein, total bilirubin, ALT, AST, 

GGP, AP, hemoglobin, hematocrit and red blood cell count; we have tested the influence 

on Vc, Q, and Vp of WT, AG, and sex; and finally tested the influence on KA and 

ALAG of AG, sex, TPT, and FORM. Sex, FORM, and co-medications were included in 

the model as categorical covariates in a linear mode. Other covariates were included as 

continuous ones in linear, exponential, and power modes; these covariates are centered 

to their median values. In the backward step, each covariate was independently removed 

from the full model to confirm its importance. An increase in OFV of more than 7.87 (p-

value, 0.005) was required to confirm that the covariate was significant. The final Pop-

PK model included all significant covariates. The Perl speaks NONMEM (PsN) toolkit 

was used for stepwise covariate model building [25]. 

Pop-PK results 

The initial analyses without covariates showed that a two-compartment model 

with lag time and combined error model described the CsA PK profile better than the 

other tested models. Thus, this is chosen as the structural model in the current study. The 

estimated PK parameters were CL, Vc, Vp, Q, KA, ALAG, and F. Inter-individual 

variability OMEGA can be estimated for CL, Vc, Q, KA and F; inter-individual 
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variability of Vc is highly correlated with that of CL and was estimated as a linear 

function of it. Parameter estimates for the structural model with combined and additive 

error model are shown in Table 3.4. 
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Table 3.4. Parameter estimates for the two structural Pop-PK models selected for B-LSS 

application. 

  Structural Pop-PK Model with Combined 

Residual Error 

Structural Pop-PK Model with Additive 

Residual Error 

PK parameters  NONMEM fixed 

effect parameters 

Inter-individual 

variability% 

NONMEM fixed 

effect parameters 

Inter-individual 

variability% 

estimate RSE% estimate RSE% estimate RSE% estimate RSE% 

CL (L/h) 14.82 7 31 14 14.49 8 32 15 

Vc (L) 31.8 9 †  24.91 10 †  

Q (L/h) 13.49 13 80 11 13.14 15 100 14 

Vp (L) 104.6 10 - - 86.15 8 - - 

KA (1/h) 0.71 16 83 11 0.58 13 75 10 

ALAG (h) 0.39 6 - - 0.39 6 - - 

F 0.61 10 32 24 0.61 11 29 24 

θ8 0.86 10 - - 1.02 15 - - 

Cov (CL, Q) - - 44 27 - - 48 22 

Residual error Prop. 17.5 - 

Add. 15 ng/mL 100 ng/mL 

The selected Pop-PK models are the structural model with combined errors (Model 4 in 

Table 3.2) and the one with additive errors (Model 6 in Table 3.2) for IV and PO CsA, 

respectively. 
† Inter-individual variability (Vc) = Inter-individual variability (CL) × θ8 

CL: clearance, Vc: apparent volume of distribution of the central compartment, Vp: 

apparent volume of distribution of the peripheral compartment, Q: inter-compartmental 

transfer rate, KA absorption rate, ALAG: lag time in oral absorption, F: oral 

bioavailability, RSE%: relative standard errors. 

The final model comprises the following covariates: WT, AG, TPT, and AP, and 

FORM. The estimated parameters are reported in Table 3.5. The relative standard errors 

(% RSE) of the parameters were acceptable, with a range from 0.05 to 0.30. Figure 3.4 

shows the relationship between the observed and the predicted CsA concentrations based 

on the final parameter estimates (PRED). Figure 3.5 shows the relationship between the 

observed and the individual predicted concentrations (IPRED). Both plots show good 

correlation, suggesting that the final model explains well the observed data, although 
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peak concentrations in several individuals were slightly underestimated by PRED. The 

values and distribution of weighted residual (WRES) were unsatisfactory confirming the 

adequate use of FOCE-I instead of FO as an estimation method. The conditional 

weighted residuals (CWRES) for model-predicted concentrations shown in the narrow 

rectangular distribution in function of observed concentration and time, Figure 3.6, are 

also acceptable. 
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Table 3.5. Final Pop-PK model parameter estimates. 

PK parameters  NONMEM fixed effect parameters Inter-individual variability% 

Estimate RSE% Estimate RSE% 

CL (L/h) θ1 = 15.66 5 17 11 

θ10 = −0.32 19 

θ11 = 0.0017 29 

Vc (L) θ2 = 36.68 9 2 7 

θ13 = −0.39 16 

Q (L/h) θ3 = 14.71 9 55 15 

θ12 = 0.023 18 

Vp (L) θ4 = 105 10 - - 

KA (1/h) θ5 = 0.8 15 72 10 

ALAG (h) θ6 = 0.46 3 - - 

θ8 = 0.005 5 

θ9 = −0.39 for suspension 19 

θ9 = −0.022 for capsule 18 

θ14 = −0.014 30 

F θ7 = 0.59 8 30 15 

Residual error Prop. 16% 

 Add. 19 ng/mL 

CL: clearance, Vc: apparent volume of distribution of the central compartment, Vp: 

apparent volume of distribution of the peripheral compartment, Q: inter-compartmental 

transfer rate, KA absorption rate, ALAG: lag time in oral absorption, F: oral 

bioavailability, WT: weight, AG: age at profile date, TPT: time post transplantation, AP: 

alkaline phosphatase, FORM: dosage form (suspension or capsule), RSE%: relative 

standard errors. 

 

         
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Figure 3.4: Relationship between the observed and the predicted cyclosporine 

concentrations based on the final parameter estimates (PRED).  

 

 

Figure 3.5 Relationship between the observed and the individual predicted 

concentrations (IPRED), black line: line of identity, red line, loess predictions. 
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Figure 3.6 Distribution of weighted residual (WRES) and conditional weighted residuals 

(CWRES), black line: line of identity, red line, loess predictions. 
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Abstract 

The regression limited sampling strategy approach (R-LSS), which is based on a 

small number of blood samples drawn at selected time points, has been used as an 

alternative method for the estimation of the area under the concentration-time curve 

(AUC). However, deviations from planned sampling times may affect the performance 

of R-LSS, and thus influence the related therapeutic decisions and outcomes. The aim of 

this study was to investigate the impact of different sampling time deviation (STD) 

scenarios on the estimation of AUC by R-LSS using a simulation approach. Three types 

of scenarios were considered going from the simplest case of fixed deviations, to 

random deviations and then to a more realistic case where deviations of mixed nature 

can occur. In addition, the sensitivity of R-LSS to STD in each involved sampling point 

was evaluated. A significant impact of STD on the performance of R-LSS was 

demonstrated. The tolerance of R-LSS to STD was found to depend not only on the 

number of sampling points but more importantly on the duration of the sampling 

process. Sensitivity analysis showed that sampling points at which rapid concentration 

changes occur were relatively more critical for AUC prediction by R-LSS. As a practical 

approach, nomograms were proposed, where the expected predictive performance of R-

LSS was provided as a function of STD information. The investigation of STD impact 

on the predictive performance of R-LSS is a critical element of R-LSS studies and 

should be routinely performed to guide their selection and use.  
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Introduction 

Therapeutic drug monitoring is a standard of care for dosing optimization of 

drugs that exhibit a narrow therapeutic index and large inter- and intra-individual 

variability in order to minimize the risk of treatment failure and dose-related serious side 

effects. In clinical practice, the trough concentration (C0) is often used as a dosing 

individualization marker; although in some instances its use has been disputed over and 

other therapeutic drug monitoring strategies have been suggested [1-5]. This is the case 

for cyclosporine (CsA), a widely used immunosuppressive agent, for which several 

published works have shown that pharmacokinetic (PK) markers other than C0, such as 

the area under the concentration-time curve (AUC), are more related to clinical 

outcomes [6-12]. The large intra-individual variability of CsA can affect the value of 

using PK parameters (such as AUC) to guide dose adjustment. This being said, two 

recent studies for CsA in pediatric hematopoietic stem cell transplantation patients 

showed relationships between AUC of CsA and clinical outcomes [11,12]. 

In order to estimate AUC accurately, multiple blood samples over the dosing 

interval are generally used. The cost of this rich sampling approach and its 

inconvenience to patients prevent its widespread application in clinical settings. As an 

alternative, limited sampling strategies (LSS), relying on the smallest possible number of 

blood samples drawn at selected time points (often with 4 or fewer samples), have 

become an appealing tool for the estimation of AUC. Two main LSS approaches have 

been used, namely, the multiple linear regression-based (R-LSS) and the Bayesian-based 

(B-LSS) methods [13, 14].  
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Since B-LSS resorts to advanced population pharmacokinetic (Pop-PK) models, 

which often require additional modeling and computational skills, the R-LSS, involving 

only linear equations, is commonly used. However, despite its simplicity, R-LSS 

application is restrictive since the real times at which sampling occcurs (termed actual 

times) are assumed to correspond exactly to the selected sampling times (termed 

nominal times), without accounting for possible sampling time deviations (STD) that 

can occur in a real-life setting. Hence, one advantage of B-LSS over R-LSS is its 

flexibility in terms of sampling times since no related condition is imposed by either the 

construction of the associated Pop-PK model or the prediction of individual PK 

parameters, and the actual sampling times can be used in case of deviations from the 

nominal ones.Indeed, while analytical tools and techniques have greatly progressed in 

analyzing drug samples in the last decades, effective therapeutic drug monitoring is still 

hindered by human factors, whether in sample collection or processing. Putting aside 

systematic errors from the laboratory work, time errors in sample collection are believed 

to be a crucial problem. Irregularity in the time of collecting blood samples may have a 

non-negligible impact on the estimation of therapeutic markers and thus influence 

clinical decisions and outcomes [14].  

Few studies have been devoted to this concern. In one study [15] where C2 (Ct is 

the concentration at time t in hours post-dose) was used as the therapeutic marker for 

CsA dosing adjustment, the authors investigated concentration errors as a function of 

STD. They found that, when increasing the STD, the relative concentration error with 

respect to nominal C2 could increase significantly. A considerable difference (up to 

30%) from nominal C2 values (which are themselves subjected to analytical inaccuracy 
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and imprecision) could result from a STD of 15 minutes. However, the estimation of 

AUC using R-LSS generally involves more than one sampling point for which the 

impact of STD may interact, accumulate, and even amplify. Moreover, this impact can 

differ from one sampling point to the other. All these issues call for a thorough 

investigation of the predictive performance of R-LSS in the presence of STD in order to 

set up guidelines for their selection and use. 

Therefore the aim of this study was to investigate the impact of different STD 

scenarios on the estimation of AUC by R-LSS. To address this issue, a simulation 

approach was adopted and CsA chosen as a drug model. 

Materials and Methods 

Regression limited sampling strategy 

AUC is generally estimated using the linear trapezoidal method which requires a 

dense sampling of 6 to 10 time points over a dosing interval. This approach limits the 

use of AUC as a dose adjustment criterion in daily practice. As an alternative, AUC can 

be estimated using limited sampling methods which only need a small number of 

samples collected at a priori selected time points. A commonly used approach is the 

multiple linear regression-based LSS (R-LSS). Mathematically, the estimation of AUC 

using R-LSS can be expressed as: 

ktktpred CFCFFAUC  
110  
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where 
k21 ttt C,,C,C  are the observed concentrations measured at a chosen set of time 

points 
k21 t,,t,t  and k10 F,,F,F   are the regression coefficients. 

In the current work, various scenarios of STD from nominal times (i.e. STD from 

selected time points) were generated in order to evaluate their impact on the precision of 

the estimation of AUC using R-LSS. To perform this evaluation, CsA, for which we 

have previously reported R-LSS [16] and B-LSS [17], was used as a drug model. 

Namely, the R-LSS developed for oral (PO) CsA in pediatric hematopoietic stem cell 

transplantation (HSCT) were investigated, Table 4.1. Among these R-LSS, the nine LSS 

that have had clinically acceptable prediction error indices were retained to be 

reevaluated in terms of their performance in the presence of STD.  

Table 4.1. Investigated R-LSS. 

LSS# 
Concentration-

time points 
LSS equation: AUCpred (ng × h/mL) 

 Error indices  

ME% (95% CI) RMSE% (95% CI) 
95th 

PAE% 

LSS1 C0.5, C2, C4, C8 131.49 + 1.00 C0.5 + 1.74 C2 + 3.04 C4 + 5.52 C8 0.01 (-1.08, 1.10) 3.31 (2.59, 3.90) 6.30 

LSS2 C0, C1, C2, C4 -45.58 + 4.78 C0 + 0.99 C1 + 1.40 C2 + 4.16 C4 0.06 (-2.06, 2.19) 6.48 (5.15, 7.57) 12.17 

LSS3 C0¸C0.5, C2, C4 77.53 + 3.85 C0 + 1.05 C0.5 + 1.81 C2 + 4.13 C4 0.11 (-2.15, 2.36) 6.87 (5.12, 8.25) 13.70 

LSS4 C0, C1, C3, C4 57.53 + 3.77 C0 + 1.45 C1 + 2.18 C3 + 3.33 C4 0.09 (-2.31, 2.48) 7.30 (5.79, 8.54) 13.44 

LSS5 C1.5, C4, C8 75.66 + 1.87 C1.5 + 3.46 C4 + 6.12 C8 0.05 (-1.80, 1.90) 5.63 (4.22, 6.74) 11.82 

LSS6 C0, C1.5, C4 -46.41 + 4.84 C0 + 2.00 C1.5 + 4.51 C4 0.15 (-2.62, 2.92) 8.43 (5.97, 10.32) 16.71 

LSS7 C0, C2, C4 141.82 + 5.20 C0 + 2.16 C2 + 3.71 C4 0.17 (-2.78, 3.11) 8.97 (6.75, 10.73) 16.48 

LSS8 C0, C1, C4 62.23 + 3.75 C0 + 1.67 C1 + 5.77 C4 0.16 (-2.95, 3.27) 9.48 (6.81, 11.55) 15.77 

LSS9 C2, C8 286.02 + 2.70 C2 + 9.42 C8 0.15 (-2.65, 2.94) 8.52 (6.20, 10.34) 16.04 

CI, confidence interval; Ct, concentration at time t in hours post-dose.  
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Sampling time deviation scenarios  

Three types of scenarios were considered going from the simplest case of fixed 

errors, to random errors represented by the most probable (generally normal) 

distributions and then to a more realistic case where errors of mixed nature can occur. 

The first type involved fixed time lengths that were uniformly added to or 

deduced from all nominal times simultaneously in order to represent an actual delay or 

advance in sampling times, respectively. Deviations up to 20 minutes were considered 

(±1, 2, 3, 4,…,20 minutes). The second type involved random deviations, which were 

generated by assuming a normal distribution centered on nominal times with standard 

deviations () ranging from 1 to 20 minutes, up to a maximum STD of 30 minutes. 

Actual times were obtained by the addition of these random deviations to nominal times. 

For each standard deviation value, 1000 cases of STD were generated for each R-LSS. 

The third type involved the combination of fixed and random deviations together. To 

produce this type of scenarios, STD were generated by assuming a normal distribution 

centered on fixed deviations between -15 and +15 minutes from nominal times (±1, 2, 3, 

4,…,15 minutes). 

Additionally, in order to identify those time points that are more vulnerable to 

STD in each R-LSS, a sensitivity analysis was performed for each time point separately, 

through the same procedure used to simulate sampling error scenarios for fixed and 

random STD. 
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Concentration time profiles  

For ethical and practical reasons, the above sampling scenarios were tested 

through a PK simulation approach, in the population in whom the investigated R-LSS 

were developed [16]. This reference population consisted of 25 pediatric patients 

(median of 10.2 years (range, 0.5 -18.2)) receiving CsA twice daily for graft-versus-host 

disease prophylaxis after HSCT. They underwent 39 steady-state PK profiles, with 

nominal time points at 0, 0.5, 1, 1.5, 2, 3, 4, 8 and 12 h after PO CsA administration. In 

the current investigation, all the concentrations at different time points (actual and 

nominal time points) were simulated using a Pop-PK model previously developed for 

the reference population [17] (Figure 4.1). Of a two-compartment nature with a lag time 

in absorption, the Pop-PK model identified a large inter-individual variability in the 

main PK parameters represented by lognormal distributions, and an unexplained 

variability represented by a combined additive and proportional error model. As 

suggested in the pediatric literature [18], allometric scaling was applied to the base 

model using the power law of 3/4 and 1 for the scaling of clearance and volume of 

distribution by weight, respectively. Moreover, several covariates were identified, 

including weight, age, time post transplantation, alkaline phosphatase, and formulation 

(capsule or suspension).  
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Figure 4.1: Concentration-time course of simulated PK profiles for PO cyclosporine in 

pediatric hematopoietic stem cell transplantation recipients. 

Estimation of AUC 

For a given R-LSS, the predicted AUC (AUCpred) was calculated using simulated 

concentrations at nominal times (AUCnominal) and simulated concentrations at actual 

times (AUCactual). The simulated PK profiles included the concentrations at every minute 

within the range of the studied sampling deviations, so that the concentrations associated 

with any scenario of STD are accessible for the calculation of the associated AUCactual. 

As mentioned in the Introduction, for AUC calculation using R-LSS, the simulated 
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concentrations at actual times are assumed to correspond exactly to the planned nominal 

times. 

In addition, AUCfull, which refers to the AUC obtained using simulated 

concentrations at all nominal times, was calculated using the trapezoidal method. The 

precision of R-LSS estimation of AUC was evaluated using prediction error indices that 

compare AUCfull with AUCpred (AUCnominal and AUCactual). The use of simulated data to 

calculate AUCfull and AUCpred allowed isolating the impact of STD from other error 

sources such as the analytical method or data transcription. 

Error indices 

The predictive performance of LSS was evaluated using the following error 

indices (EI): 1) the relative prediction error (E%), 2) the 95th percentile of the absolute 

values of relative prediction errors (95th PAE%), 3) the mean relative prediction error 

(ME%) and 4) the root mean squared relative prediction error (RMSE%). These 

estimates were based on the following formulations: 
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where i denotes the ith profile and AUCpred refers to the predicted AUC using R-LSS, 

which can be AUCnominal or AUCactual. Consequently, one has nominal and actual error 

indices, EInominal and EIactual, which refer to the prediction error indices due to the LSS 
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approximation of AUCfull when sampling occurs at nominal and actual times, 

respectively.  

For each STD scenario, the ratios EIactual /EInominal (ex. 95th PAE%actual/95th 

PAE%nominal) were calculated, representing the effect of STD on AUC estimation for a 

given R-LSS. Then, the expected error indices in the presence of STD (EISTD) were 

calculated by using these ratios to scale EI of the investigated R-LSS estimated using 

real data (EIreference) [16].This was expressed as: 

reference

alno

actual
STD EI

EI

EI
EI 

min

 

where EISTD refers to 95th PAE%STD, ME%STD or RMSE%STD and are reported as such in 

the Results section.  

In order to provide a graphical visualization of the impact of STD, nomograms 

were used to illustrate LSS performance within a plane of sampling error attributes, 

which consists of fixed and random STD, as the x and y axes, respectively. These 

nomograms provide an insight of LSS tolerance to STD and classify their performance 

for various combinations of fixed and random STD pair, as stable or not, according to a 

given threshold of predictive error (ex. 95th PAE%STD  20%).  

Software 

The commercial software package MATLAB® (2008b, The Math Works Inc, 

Natick, Massachusetts, U.S.A.) and NONMEM® (version VII, Icon Development 

Solutions, Ellicott City, MD) were used for calculations and simulations.  
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Results 

Diverse scenarios involving fixed, random, and mixed STD were investigated for 

their impact on the estimation of AUC using R-LSS. Nine R-LSS for CsA AUC 

estimation in pediatrics, reported in Table 4.1, were studied. They were divided into 3 

groups according to the number of required concentrations. Four from these R-LSS, 

namely LSS1 (that requires the following concentrations: C0.5, C2, C4, C8), LSS6 (C0, 

C1.5, C4), LSS7 (C0, C2, C4) and LSS8 (C0, C1, C4) were chosen to highlight the impact 

of STD. The choice of these LSS was guided by their stability (LSS1, best), 

susceptibility (LSS8, worst) as well as comparability (LSS6 and LSS7, similar 

performance for nominal times but likely to be discriminated through STD analysis). 

For fixed STD, the ratio between E%actual and E%nominal was correlated with the 

absolute value of the fixed sampling error with symmetric (the impact of STD depends 

mainly on its absolute values, LSS8) and slightly irregular (the impact of STD depends 

on its value but also on its type, delayed or in advance, LSS1, LSS6 and LSS7) shapes, 

Figure 4.2. The absence of symmetry indicates a different impact of STD whether the 

samplings are performed ahead or after nominal times. Every LSS has a different pattern 

of stability against STD dictated by the overall impact of time deviations of its sampling 

points. As shown, LSS1 was less sensitive to STD and had the best stability while LSS8 

had the worst. Moreover, even though LSS6 and LSS7 had comparable performance in 

terms of AUC estimation using real data (Table 4.1), the latter was less affected by STD. 
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Figure 4.2: Fixed STD impact: the ratio E%actual/E%nominal for four LSS (LSS1, LSS6, 

LSS7, and LSS8) used for cyclosporine AUC prediction (mean  SD), E%actual is the 

relative prediction error using actual times, E%nominal is the relative prediction error using 

nominal times. 

For random STD, eight of the nine studied LSS (all except LSS8) were stable 

against sampling errors when considering STD with a standard deviation up to 5 minutes 

(Table 4.2 and Figure 4.3). However, only four LSS (LSS1, LSS4, LSS5, and LSS9) still 

had 95th PAE%STD less than 20% when standard deviation increases to 10 minutes. In 

fact, an extended sampling to 8 hours, beyond the restriction of 4-hour post-dose, 

increased the stability as observed in the cases of LSS1, LSS5, and LSS9. Similarly, 4-

point LSS were less affected by STD than 3-point LSS. Particularly, the prediction error 
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of 3-point LSS can increase dramatically in the presence of STD as seen with LSS6 and 

LSS8. For all LSS, the prediction performance had an apparent inverse regression 

relationship with STD and only one LSS, namely LSS1, requiring 4 sampling points and 

an extended sampling duration of 8 hours, could predict AUC with 95th PAE%STD less 

than 20% in spite of standard deviation up to 20 minutes. 

Table 4.2. Error indices’ ratios (EIactual /EInominal) for random STD (described by the 

standard deviations of sampling errors in minutes). 

LSS# EIactual /EInominal 

 
RMSE%actual / RMSE%nominal 95th PAE%actual/95th PAE%nominal 

 5 (min) 10 (min) 15 (min) 5 (min) 10 (min) 15 (min) 

LSS1 1.31 1.75 2.06 1.50 2.02 2.39 

 LSS2 1.18 1.69 2.24 1.17 1.76 2.34 

LSS3 1.14 1.44 1.62 1.44 1.91 2.20 

LSS4 1.19 1.67 2.14 1.06 1.41 1.78 

LSS5 1.16 1.58 1.90 1.17 1.57 1.86 

LSS6 1.16 1.67 2.11 1.15 1.64 2.11 

LSS7 1.05 1.18 1.33 1.09 1.26 1.44 

LSS8 1.81 3.30 4.40 1.66 3.05 4.04 

LSS9 1.02 1.07 1.13 1.06 1.17 1.26 
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 Figure 4.3: Random STD impact: 95th PAE%STD for the nine LSS used for cyclosporine 

AUC prediction. Random STD is described by the standard deviation of the sampling 

errors, 95th PAE%STD is the 95th percentile of absolute values of relative prediction errors 

in the presense of STD. 
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When considering mixed STD, Figure 4.4, LSS1 and LSS8 did not show a 

further decline in their predictive performance compared with random STD alone. In 

contrast, fixed deviation combined with random deviation further reduced the prediction 

performance of LSS6 and LSS7.  

 

Figure 4.4: Mixed STD Impact (fixed deviations of 5 (in blue) and 15 (in red) minutes 

accompanied with random STD as well as random STD alone (in black)): 95th PAE%STD 

for four LSS (LSS1, LSS6, LSS7, and LSS8) used for cyclosporine AUC prediction. 

Random STD is described by the standard deviation of the sampling errors, 95th 

PAE%STD is the 95th percentile of absolute values of relative prediction errors in the 

presense of STD. 
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Figure 4.5 displays different zones of 95th PAE%STD values for four LSS. LSS1 

had a large clinically acceptable zone of 95th PAE%STD  20%, while LSS8 had the 

smallest one. These findings are in agreement with the above results. Moreover, LSS7 

had a larger acceptable zone of 95th PAE%STD  20%, compared to LSS6. Although, 

both LSS had similar predictive error indices when STD was not considered (Table 4.1), 

the nomograms revealed a better robustness of LSS7 in the presence of STD. Thus, the 

proposed nomograms provide an additional objective way for the comparison of LSS 

ability to estimate AUC, particularly in the clinical setting where STD are expected. It is 

also worth noticing that nomogram zones were not always centered on zero values of the 

fixed STD axes. This can be explained by the fact that the LSS do not necessarily have 

their best performance when nominal time concentrations (in the absence of all types of 

STD) are used; and some STD may have a positive impact by decreasing the prediction 

error. However, such observation does not indicate a sustained association between the 

improvement of LSS performance and a given STD, and should not lead to the 

recommendation of an advance or late sampling. 
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Figure 4.5: Nomograms for various combinations of random and fixed STD for four 

LSS (LSS1, LSS6, LSS7, and LSS8) used for cyclosporine AUC prediction. Red ×, for 

95th PAE%STD more than 20%; green ●, equal or less than 20%; and blue ○ equal or less 

than 15%. Random STD is described by the standard deviation of the sampling errors, 

95th PAE%STD is the 95th percentile of absolute values of relative prediction errors in the 

presense of STD. 

Sensitivity analysis for each sampling point in the presence of fixed and random 

STD highlighted that certain sampling points are more crucial for the prediction of AUC 

(Figure 4.6 and Figure 4.7, respectively). Figure 4.6 illustrates the impact of fixed STD 

on R-LSS performance when a time error occurs only on one sampling point, while 
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keeping a full compliance at other sampling times. It shows that C8 was the least 

sensitive point in LSS1 since its curve had an almost flat shape while C0.5 was the most 

sensitive to STD with a relatively abrupt and strong decrease in the predictive 

performance. The sensitivity of C2 and C4 was between these two extreme cases. For 

other LSS, C0 was always the least sensitive point, likely because less variation of 

concentration occurs around this sampling time, particularly in the presence of lag time 

in absorption, while C1, and C4 were the sampling point most affected by STD. For 

example, in the case of LSS7, a sampling delay of 10 minutes can be tolerated for C0 or 

C2 but not for C4, considering the 95th PAE%STD threshold of 20%. Thus, LSS 

performance was more sensitive to STD for those time points for which the 

concentration shows a rapid change, in other words, where the concentration-time curve 

has a large slope.  
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Figure 4.6: Sensitivity analysis for each sampling point in the presence of fixed STD for 

four LSS (LSS1, LSS6, LSS7, and LSS8) used for cyclosporine AUC prediction, 95th 

PAE%STD is the 95th percentile of absolute values of relative prediction errors in the 

presense of STD, Ct is the concentration at time t in hours post-dose. 

These sensitivity results are confirmed in Figure 4.7, where analysis was 

performed using random STD with the additional advantage of better delineating 

sampling points in terms of R-LSS sensitivity, where a sampling time point of a larger 

impact corresponds to a sensitivity curve with a greater slope. As an example, for LSS8, 

STD impact can be ordered as C0 < C4 < C1. 
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Figure 4.7: Sensitivity analysis for each sampling point in the presence of random STD 

for four LSS (LSS1, LSS6, LSS7, LSS8) used for cyclosporine AUC prediction. 

Random STD is described by the standard deviation of the sampling errors, 95th 

PAE%STD is 95th percentile of absolute values of relative prediction errors in the 

presense of STD, Ct is the concentration at time t in hours post-dose. 

Discussion 

A regression limited sampling approach has the advantage of being a simple and 

efficient way to estimate AUC, using a small number of sampling points obtained within 

a short time interval. However, its performance can be hampered by errors in sampling 

times, which is recognized as an unavoidable human factor that should be accounted for. 
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Similar to the issue of noncompliance in drug intake, known for its consequences on 

drug fate [19-22], the deviation from nominal sampling times of R-LSS may have a non-

negligible impact on AUC estimation and thus on clinical decision and therapeutic 

outcomes. Using CsA as a drug model, this study showed a significant impact of these 

deviations on the performance of R-LSS in predicting AUC. Therefore, a more reliable 

use of R-LSS should account for this aspect.  

The tolerance of R-LSS to STD does not only depend on the number of sampling 

points but more importantly on the whole duration of the sampling process. In fact, 

adding a late sampling point to a R-LSS does not only decrease its ‘nominal’ prediction 

error, but also increases its stability in case of STD. Another important finding is that, 

some R-LSS may have similar performance in terms of nominal times, but their 

tolerance to STD can be quite different, offering an additional criterion in the selection 

of R-LSS, with a preference for those which are more stable (tolerant to STD). In fact, 

the investigation of the impact of STD on the estimation of AUC using R-LSS is a vital 

element that should be routinely performed to guide their selection and use.  

To our knowledge, STD issue has not been previously investigated in the context 

of AUC estimation. This lack of investigation could be due to the difficulty (for ethical 

and practical reasons) of performing clinical studies using an irregular sampling protocol 

or intensive concentration-time samplings to mimic diverse sampling scenarios. This 

calls for a simulation-based approach. Hence, in the current paper, a Pop-PK model was 

used for simulating dense concentration-time profiles. Although an empirical 

polynomial regression model can also be used for such simulations, we adopted the Pop-

PK model as more mechanistic information can be taken into account, such as the drug 
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distribution between compartments and the absorption lag time. The use of these 

simulated data enabled us to thoroughly investigate the impact of a diversity of sampling 

scenarios on R-LSS performance. The current study allowed reevaluating R-LSS 

performance from a new angle of view. 

In order to have a clear idea about the relationship between STD and R-LSS 

performance, nomograms using different thresholds of error indices were proposed. The 

conception of these nomograms is in line with the nomographic charts that are usually 

used to assist clinical practice. Particularly, the nomograms can be useful in establishing 

sampling protocols that account for STD. As shown in Figure 4.5, for given values of 

95th PAE%STD, different zones of tolerance to sampling errors can be clearly delineated 

in the STD plane composed of the average of sampling errors (fixed STD, x axis) and 

their standard deviations (random STD, y axis). In fact, for each R-LSS, a nomogram 

can be developed to indicate the robustness of R-LSS to STD; hence R-LSS that have 

low tolerance to STD can be readily recognized to draw more attention in clinical 

practice in order to avoid errors during sampling procedure. Furthermore, during R-LSS 

development and selections process, these nomograms could also provide valuable 

information regarding the stability of R-LSS performance against STD.  

In case a sampling error occurs, it is crucial to recognize its impact and to decide 

whether additional or alternative procedures are necessary. As a bedside application, 

sensitivity analysis can be used to assess the impact of a sampling error on a single time 

point. If this sampling error is expected to result in an unacceptable AUC prediction 

error for the used R-LSS, an alternative R-LSS with complementary or substitute time 

points can be proposed, instead of restarting the whole sampling procedure. This 
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alternative R-LSS usually includes additional late sampling point that can provide an 

accurate prediction of AUC in spite of the encountered sampling error. For example, in 

LSS7 (C0, C2, C4), a sampling delay of 15 minutes in C4 can result in a prediction of 

AUC with 95th PAE%STD > 20%, Figure 4.6. In this case, C8 can be added in order to use 

the R-LSS composed of C0, C2, C4, C8, (AUC=162.03 + 1.65 C0+ 2.09 C2 + 2.57 C4 + 

5.43 C8) as an alternative. The new formula can predict AUC with 95th PAE%STD of 

14.9% in spite of 15 minutes error in C4. Another alternative is to rule out C4 and use R-

LSS composed of C0, C2, C8, (AUC=152.24 + 2.27 C0 + 2.77 C2 + 7.81 C8), but in this 

case with a 95th PAE% of 17.8% [16]. A comprehensive strategy to substitute R-LSS by 

alternative ones would be interesting to establish. This is however beyond the scope of 

the current paper and could be pursued in a future work. 

Conclusion  

Sampling time errors can considerably affect the predictive performance of R-

LSS. These limited sampling strategies may behave differently in the presence of 

distinctive scenarios of STD and exhibit various tolerability patterns. The impact of STD 

should be considered as an additional R-LSS selection criterion with a preference for 

those which are more stable and can also be used to point out restrictions and caveats for 

sampling errors that significantly affect the performance of R-LSS. Therefore, the 

investigation of STD impact on the prediction performance is an important element of 

R-LSS studies and should be routinely performed to guide their selection and use. 
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List of abbreviations 

AUC Area under the concentration-time curve 

AUCfull Full AUC : AUC estimated using the trapezoidal method and the full set of 

nominal simulated concentrations 

AUCpred Predicted AUC : AUC estimated using LSS method and simulated 

concentrations 

AUCnominal Nominal AUC  : AUC estimated using LSS method and nominal simulated 

concentrations 

AUCactual Actual AUC     : AUC estimated using LSS method and actual simulated 

concentrations in diverse sampling time deviation scenarios 

CsA Cyclosporine 

Ct Concentration at time t in hours post-dose 

E% Relative error  

EI Error indices 

ME% Mean relative prediction error 

Pop-PK Population pharmacokinetics 

R-LSS Regression limited sampling strategy 

RMSE% Root mean squared relative prediction error  

STD Sampling time deviation 

95th PAE% 95th percentile of absolute values of relative prediction errors 
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Chapter 5  Discussion 

The main goal of this thesis was to establish a comprehensive methodology for 

the development and selection of practical LSS for an accurate estimation of AUC. To 

achieve this objective, CsA was used as a drug model for which LSS were developed to 

predict its AUC in pediatric HSCT.  

The conventional approaches usually used in LSS investigations were 

carefully reevaluated and improved. Specifically, the weighted linear regression, 

which includes a weight in its regression objective function in order to account for the 

relative value of the prediction error, was used to build up the R-LSS. The addition of 

this weight aimed to prevent large relative prediction errors in the estimation of small 

AUC that can occur when using the ordinary linear regression instead. Moreover, a 

more sound choice of Pop-PK models, rather than the routine use of the ‘final’ 

model, was proposed to improve the predictive performance of B-LSS. In addition, 

the performance of B-LSS for targeting different versions of AUC was also investigated 

by comparing their predictions of the ‘underlying’ AUC which excludes the residual 

errors with those of the observed AUC directly calculated using the measured 

concentrations. As a final point, STD, which is recognized to occur frequently in 

clinical practice, was studied and its impact on R-LSS analyzed in order to improve 

their selection process and support their application in clinical settings.  

For a thorough LSS investigation, all possible combinations of concentration-

time points were evaluated, with no preliminary pre-selection phase in order to 

avoid exclusion of potentially suitable candidates. Then, LSS were selected according 
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to their predictive performance while paying careful attention to their applicability in 

clinical settings. As illustrated in Figure 5.1, in each LSS subgroup defined according to 

the number of included concentration-time points, representative LSS were chosen. 

First, LSS were selected according to their predictive performance in addition to 

two criteria that were considered to favor more practical LSS: 1) inclusion of C0 

since it is a reference point well recognized by the health professionals, in addtion it 

allows compliance to be checked and helps identifying patients with high clearance; 2) 

restriction to a sampling period of 4 hours post-dose for all included concentrations. 

Screening LSS using these practical criteria, which aim to select LSS that are more 

appealing for clinicians, may lead to overtake those associated with the best predictive 

performance. So, in each subgroup, the LSS which has the highest predictive 

performance was also selected whether it meets the last two practical criteria or not. In 

this way, the cost, in terms of performance, of considering practical criteria could also be 

assessed. In addition, the division into subgroups defined by the number of 

concentration-time points, when performing the selection process of LSS, allowed to 

evaluate the correlation between the number of these points and the predictive 

performance. 
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Figure 5.1: LSS selection scheme; all possible LSS of 4 or fewer points were derived 

from available profiles; these LSS were screened using practical criteria and predictive 

error indices to select the most convenient and accurate LSS, 95th PAE% is 95th 

percentile of absolute values of relative prediction errors. 

The optimal marker for CsA monitoring in transplantation patients remains 

controversial, nonetheless, there is a growing interest in the use of AUC, particularly 

for CsA dose adjustment in pediatric HSCT. The issue of the value of AUC as a 

marker for therapeutic drug monitoring is outside the scope of this thesis, and eventually 

prospective trials are needed to confirm the advantage of AUC-guided dose adjustment 

in termes of clinical outcomes. However, our study plays a key role in order to achieve, 
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in the end, adequate therapeutic drug monitoring for CsA. To reach this objective, one 

has indeed to begin with developing practical monitoring tools such as LSS for the 

estimation of AUC; then clinical or PK/PD studies can be conducted to establish AUC-

based therapeutic window and dosing guidelines. Finally, prospective trials can be 

carried out to evaluate the efficacy and safety of AUC-guided dosing regimens and to 

decide whether or not AUC-based monitoring is superior to that based on C0 for short- 

and long-term outcomes. The present study addresses the first goal by providing 

practical LSS, which accurately estimate AUC, and making them more accessible in 

clinical settings. Particularly, the reported LSS are desired to overcome the practical 

and ethical difficulties, mainly in the pediatric population, that may delay 

performing the needed trials to adequately evaluate AUC as a therapeutic drug 

monitoring marker. 

The error indices were selected carefully to adequately charectrize the 

performance of the evaluated LSS. The coefficient of determination (R2) only 

estimates the association between observed and predicted values and provides no 

information regarding the predictive performance; hence, it was not used for LSS 

evaluation. Absolute error indices, such as ME and RMSE, which are based on absolute 

(not relative) prediction errors, provide precious means for estimating the performance 

of LSS. However, they do not take into account the relative value of prediction errors. 

The relative error indices, such as ME% and RMSE%, provide more easily interpretable 

evaluation of the predictive performance, compared to absolute ones. However, their use 

has to be surrounded by cautions to ensure that their values are not affected by outliers 

or data asymmetry [88].  
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In addition, although RMSE% represents the deviation of the estimate (ex. 

AUCpred) from the target of the prediction (ex. AUCfull) its utility to guide LSS use in 

clinical practice is limited since its value cannot be straightforwardly interpreted in 

terms of an intelligible prediction error interval. For example, RMSE% does not involve 

that all or even 95% of the prediction errors are smaller than its value while 95th PAE% 

does. Hence, the 95th PAE% as well as the number of prediction errors within 

selected intervals can be reported to evaluate the LSS performance in a clinically 

oriented way. Nonetheless ME% as well as RMSE% should continue to be routinely 

reported for a complete predictive performance evaluation of LSS. ME% is necessary to 

identify the biased LSS, while RMSE% is usually used to compare the precision of 

prediction.  

The dataset used for the validation of LSS has to be different from that used in 

their learning process in order to avoid the overestimation of their predictive 

performance. However, the small size of available data, which is a common issue in 

pediatric research, may lead to use the leave-one-out cross-validation, a recognized 

validation technique in cases of small data. For the development of R-LSS in the Article 

I (Chapter 2) of this thesis, the initial design of the study included one cohort, namely 

Cohort A (PK profiles performed from August 2009 to August 2010), with a leave-one-

out cross-validation planned. Several developed R-LSS were shown to accurately 

estimate AUC according to this validation. Though, we decided to further challenge 

these R-LSS by testing their reliability in an external cohort, specifically Cohort B 

as it became available through collecting additional PK profiles (from September 2010 

to September 2012). This external validation did not delay the progress of the 
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planned R-LSS investigations since the additional PK profiles were collected while 

processing and analyzing the initially available data (Cohort A).  

The estimated performance of LSS and their reliability in real-life settings 

depends on the heterogeneity of the development cohort and hence its ability to 

accurately represent the studied population. The prediction error indices calculated in 

the external validation for the selected R-LSS for IV CsA were higher than those 

obtained by the leave-one-out cross-validation. These differences in predictive capacity 

may be due to the fact that the set of available IV PK profiles used for the leave-one-out 

cross-validation (Cohort A) was relatively small and more homogeneous compared to 

that used for the exteral validation (Cohort B), as shown in Figure 2.1 in Article I. These 

observations support the value of the external validation and indicate that when the 

available data are limited, and hence cannot exhibit the expected variability of the 

studied population, the validation results using leave-one-out cross-validation or 

other validation methods should be considered with caution since in these conditions 

over-estimation of the predictive performance ought to be anticipated. 

As a general rule, the estimated predictive performances of LSS are only 

applicable for patients whose conditions and characteristics are comparable to 

those considered in the LSS’s development and validation. For example, Patients 

receiving CsA three times a day (TID) were excluded from our LSS studies since they 

have different PK profiles compared to the investigated ones who received CsA twice a 

day (BID); therefore, the developed LSS are not intended for use in patients receiving 

CsA TID.  
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The performance of the reported R-LSS has been evaluated in the presence of 

large inter and intra-individual variability (several patients had multiple PK profile) and, 

as mentioned above, they are expected to maintain their predictive performance when 

applied in a similar population. The next step after AUC estimation is to decide if a dose 

adjustment is necessary; the large intra-individual variability of CsA can affect the 

value of the use of PK parameters (such as AUC) to guide dose adjustment [52, 89]. 

This being said, two recent studies for CsA in pediatric hematopoietic stem cell 

transplantation showed relationships between AUC of CsA and clinical outcomes [44, 

45]. Nonetheless, as mentioned above further studies are still needed to directly confirm 

the effectiveness and safety of AUC-guided dosing regimens.  

Patients’ characteristics were not accounted for in the equations of R-LSS as 

independent variables since no correlation was found in the studied population between 

LSS performance (their relative prediction errors) and these characteristics when 

evaluated using scatter plots. The Appendix I shows the scatter plots for patient’s 

characteristics (covariates) that were retained in the final CsA Pop-PK model. As an 

example, refer to the figures below showing relative prediction errors vs. patient age and 

concomitant azole antifungal drugs (Figure 5.2) and concomitant calcium-channel 

blocker (Figure 5.3) for the estimation of AUC by the R-LSS (C0, C2, C4). [52]However, 

since concomitant medications and other patients’ characteristics can increase or 

decrease systemic drug exposure (AUC), reliable LSS have to predict accurately 

AUC over a wide range of values, and this is the case of the reported LSS, as already 

shown in Bland-Altman Plots.  
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Figure 5.2: Prediction errors vs. concomitant azole antifungal drugs (+ for yes, ○ no) and 

patient age for the R-LSS (C0, C2, C4) used for estimating AUC of cyclosporine 

administrated A) IV and B) PO 
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Figure 5.3: Prediction errors vs. concomitant calcium-channel blockers (× for yes, ○ no) 

and patient age for the R-LSS (C0, C2, C4) used for estimating AUC of cyclosporine 

administrated A) IV and B) PO. 

In addition to the limited number of available profiles, accessible data may have 

other limitations, usually due to ethical and practical considerations, such as the limited 

number of samples collected for each PK profile. The limitations of collected PK data 

can impede performing deep and comprehensive studies. Particularly, in order to 

carry out investigations requiring a rich sampling approach, the use of Pop-PK 

simulation is an indispensable approach. Besides, the use of simulated data offers 

other interesting opportunities such as excluding or controlling the random noise 
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associated with residual errors (ex. estimating ‘underlying’ AUC), expanding the 

characteristics (ex. age) of the studied population, and considering a variety of PK 

features (ex. simulating patients with a renal dysfunction (low clearance)). Simulation 

approaches are increasingly used to enhance the cost-effectiveness in drug development, 

particularly in pediatrics [90]. In the Articles II and III included in this thesis,the 

simulated concentrations using a Pop-PK model that excludes the residual errors, i.e. 

IPRED in NONMEM® nomenclature, were used to allow broad investigations. In Article 

II, the ‘underlying’ AUC was estimated since its correlation with actual drug exposure is 

likely to be higher than AUCobs once the random noise associated with residual errors is 

eliminated.  

In Article III, the use of simulated data for the calculation of the full and 

predicted AUC allows to take apart sampling time error from the other errors, 

such as analytical method errors and data registration mistakes, that usually 

contribute to the inaccuracy in AUC prediction. However, we were aware that 

excluding the other sources of errors in AUC estimation can lead to nominal error 

indices (EInominal calculated using simulated concentration at nominal time without 

sampling times errors) that are likely smaller than those calculated using real data, as 

shown in Table 5.1. Likewise, the actual error indices (EIactual calculated using simulated 

concentration at actual times with sampling time errors) cannot be compared directly 

with those calculated using real data for estimating the impact of STD on R-LSS 

predictive performance. As shown in Figure 5.4, even though the STD can increase 

nominal 95th PAE% by almost 5 folds for LSS8 its actual 95th PAE% remains beyond 

the 20% threshold. Therefore, referring to actual 95th PAE% to estimate the impact of 
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STD can be misleading since this estimation does not consider the other sources of 

errors that are expected in real-life settings.  

However, the EIactual can be compared directly with the EInominal which have been 

calculated in the same simulated conditions, and their ratios (EIactual/EInominal) represent 

the impact of STD on LSS performance. Therefore more realistic error indices to be 

considered in clinical practice in case of STD can be estimated by linearly scaling these 

ratios using reference error indices (EI reference) calculated using real data as in the 

following formula: 

𝐸𝐼 𝑆𝑇𝐷 = (
𝐸𝐼𝑎𝑐𝑡𝑢𝑎𝑙

𝐸𝐼𝑛𝑜𝑚𝑖𝑛𝑎𝑙
) ×  𝐸𝐼 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

where EI STD is the estimated error indices in the evaluated STD scenario. 

Table 5.1. Reference and nominal 95th PAE% of the R-LSS studied for investigating STD 

impact.  

LSS# 
Concentration-

time points 
LSS equation: AUCpred (ng × h/mL) 95th PAE% 

      Reference Nominal 

LSS1 C0.5, C2, C4, C8 131.49 + 1.00 C0.5 + 1.74 C2 + 3.04 C4 + 5.52 C8 6.30 3.7 

LSS2 C0, C1, C2, C4 -45.58 + 4.78 C0 + 0.99 C1 + 1.40 C2 + 4.16 C4 12.17 4.0 

LSS3 C0¸C0.5, C2, C4 77.53 + 3.85 C0 + 1.05 C0.5 + 1.81 C2 + 4.13 C4 13.70 4.9 

LSS4 C0, C1, C3, C4 57.53 + 3.77 C0 + 1.45 C1 + 2.18 C3 + 3.33 C4 13.44 5.8 

LSS5 C1.5, C4, C8 75.66 + 1.87 C1.5 + 3.46 C4 + 6.12 C8 11.82 3.4 

LSS6 C0, C1.5, C4 -46.41 + 4.84 C0 + 2.00 C1.5 + 4.51 C4 16.71 4.1 

LSS7 C0, C2, C4 141.82 + 5.20 C0 + 2.16 C2 + 3.71 C4 16.48 6.3 

LSS8 C0, C1, C4 62.23 + 3.75 C0 + 1.67 C1 + 5.77 C4 15.77 3.0 

LSS9 C2, C8 286.02 + 2.70 C2 + 9.42 C8 16.04 6.5 
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Figure 5.4: Random STD influence represented by 95th PAE%actual (instead of 95th 

PAE%STD) for nine investigated R-LSS (shown in Table 5.1) used for cyclosporine AUC 

prediction. Random STD is described by the standard deviation of the sampling errors, 

95th PAE%STD is the 95th percentile of absolute values of relative prediction errors in the 

presense of STD, 95th PAE%actual is 95th percentile of absolute values of prediction errors 

initially estimated using simulated concentrations at actual sampling times. 

9
5

th
  
P

A
E

%
a

c
tu

a
l 



 

169 

 

Assessment of the impact of STD can be used as an additional LSS 

evaluation criterion to discriminate R-LSS that have similar prediction errors in 

terms of ‘nominal’ (without STD) predictive performance. In Article I, the R-LSS 

composed of C0, C2, and C4, which had clinically acceptable prediction errors, was 

considered the most practically convenient. Other LSS such as the one involving the 

concentrations C0, C1, and C4 had similar characteristics (it satisfied the practical 

selection criteria and even it had a slightly better prediction error). However, even 

though these two R-LSS had comparable ‘nominal’ predictive performance (16.48% and 

15.77% 95th PAE%, respectively) their tolerance to STD is quite different. The later LSS 

degrade dramatically while the former is more stable in the presence of STD, Figure 5.5.  

In addition, STD investigation revealed that the tolerance of R-LSS for STD 

depends on the number of chosen samplings and more importantly on the whole duration 

of the sampling process. In fact, adding a supplementary or a late sample point to R-

LSS, will not only decrease its ‘nominal’ prediction errors, but may also increase its 

stability in case of STD as seen with the LSS (C0.5, C2, C4, and C8). Since a reliable 

prediction, in real-life settings where STD are frequent, is mandatory for safe 

implementation of LSS in clinical practice, those LSS which are more stable against 

STD are preferable. In this sense, the investigation of STD should be routinely 

performed as an essential element in the development procedure of R-LSS (i.e. R-

LSS development procedure should routinely include STD investigations in addtion 

to the basic learning and validation steps) to guide their selection and use.  
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Figure 5.5: Random STD impact: 95th PAE%STD for the nine R-LSS studied for 

investigating STD impact (right plots) and four selected ones (center plots: LSS1, LSS6, 

LSS7, LSS8) used for cyclosporine AUC prediction, LSS1 had the best tolerability to 

STD, LSS7 had a better tolerability than LSS6 and LSS8 even though these three LSS 

share similar performance regarding nominal times. Random STD is described by the 

standard deviation of the sampling errors, 95th PAE%STD is 95th percentile of absolute 

values of relative prediction errors in the presense of STD. 

In fact, the final R-LSS choice3 for application in clinical practice should be 

personalized and guided by a rational judgment that carefully evaluates the 

                                                 

3 An initial choice should be made between R-LSS and B-LSS based on 1) their 

predictive performances (which are comparable in the case of CsA in pediatric 

HSCT), 2) feasibility of implantation and use of B-LSS (currently a major 

limitation for B-LSS adoption in clinical practice), 3) tolerance of R-LSS against 

STD (according to STD analysis), 4) the target AUC (Observed vs. Underling). 
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performance-cost balance of each LSS. This evaluation has to consider the required 

predictive performance according to patient’s clinical situation, anticipated extent and 

frequency of STD as well as the implied cost (frequency and duration of sampling and 

financial cost). For example, the R-LSS (C0, C2, C4) can be selected for a stable patient 

consulting in an external clinic at a hospital for whom a prediction error of 20% can be 

acceptable and a sampling duration of 4 hours is perferred. Then, during LSS 

application, STD assessment still has an important role since it allows identifying critical 

(sensible to STD) sampling points of each LSS in order to reduce sampling time errors at 

these points. For the R-LSS (C0, C2, C4), one should pay particular attention to accuratly 

collect the sample of C4, Figure 5.6. 

 

 

Figure 5.6: Sensitivity analysis, for each sampling point in the presence of random STD 

for four R-LSS (LSS1, LSS6, LSS7, LSS8) used for cyclosporine AUC prediction, 

showing two categories of sampling points A) with high tolerance for STD highlighted 

in green and B) with low tolerance for STD highlighted in red. Random STD is 
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described by the standard deviation of the sampling errors, 95th PAE%STD is 95th 

percentile of absolute values of relative prediction errors in the presence of STD, Ct is 

the concentration at time t in hours post-dose. 

However, during sample collection, in case of encountering a sampling time 

error, its impact should be evaluated and a decision can be taken promptly to use 

an alternative R-LSS if this sampling error may lead to estimate the AUC with 

unacceptable prediction error, as shown in Figure 5.7. The alternative R-LSS can use 

all or a subset of the samples already performed and usually includes an additional late 

sampling point in order to provide an accurate prediction of AUC. Even in cases where 

the impact of STD does not lead to a clinically significant prediction error, the medical 

team should be informed that a sampling error has been encountered, and an updated 

expected prediction error should be reported. Table 5.2 presents four R-LSS that can be 

used as alternative LSS in case of significant sampling errors since they are relatively 

stable against STD. Appendix II reports the STD analysis for these LSS. User-friendly 

software can be designed to assist the implantation of such interactive approach. 

Finally, the previous R-LSS approaches that predetermine some R-LSS to 

be used in all patients, without systematic consideration of STD, may lead to 

erroneous clinical decision and hamper therapeutic outcomes. Thus, this thesis 

proposes a more ‘personalized’ and interactive approach that provides the best 

LSS for each patient and suggests alternatives when a significant sampling error is 

involved.  
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Figure 5.7: Proposed approach for considering STD in the application of R-LSS, this 

approach involves the selection of the best LSS to be used for each patient individually 

and the use of alternative LSS in case of a significant sampling error, 95th PAE%STD is 

95th percentile of absolute values of relative prediction errors in the presence of STD.   
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 Table 5.2: Predictive performance of four additional (alternative) R-LSS to estimate 

cyclosporine AUC0-12h following PO administration. 

Concentration-time 

points 

Equations 

AUCpred (ng × h/mL)= 

ME% (95% CI) RMSE% (95% CI) 95th PAE% 

C0, C1.5, C4, C8 -13.22 + 1.46 C0 + 1.92 C1.5 + 

3.42 C4 + 5.16 C8 

0.03(-1.78, 1.85) 5.52(3.80, 6.82) 10.29 

C0, C2, C4, C8 162.03 + 1.65 C0 + 2.09 C2 + 

2.57 C4 + 5.43 C8 

0.05(-1.88, 1.98) 5.87(4.62, 6.90) 11.35 

C0, C1, C4, C8 115.86 + 0.98 C0 + 1.53 C1 + 

4.88 C4 + 4.26 C8 

0.09(-2.63, 2.80) 8.26(6.31, 9.83) 15.20 

C0, C2, C8 152.24 + 2.27 C0 + 2.77 C2 + 

7.81 C8 

0.11(-2.63, 2.86) 8.36(6.10, 10.14) 17.89 

CI: confidence interval; Ctj: concentration at time tj in hours post-dose; ME%: mean 

relative prediction error; RMSE%: root mean squared relative prediction error; 95th 

PAE%: 95th percentile of absolute values of relative prediction errors. 
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Chapter 6  Conclusion 

Comprehensive methodology and advanced STD analysis have been presented in 

order to achieve improved development and selection of LSS for AUC estimation.  

R-LSS and B-LSS, issued from this thesis, can predict CsA AUC in pediatric 

HSCT with clinically acceptable prediction errors. These LSS require four or fewer 

concentration-time points drawn within 4 hours post-dose and, hence, are convenient for 

clinical setting. Enhanced prediction could be achieved by increasing the sampling 

frequency or duration.  

For B-LSS, the conventional development procedure should be reviewed and 

improved. Notably, Pop-PK model construction, using the standard diagnostic criteria, 

does not always lead to the best model for B-LSS application. Indeed, the final covariate 

model gives a better fitting for concentration-time data in the sense of OFV than the 

structural model that does not include covariates; though the latter can better predict 

AUC. Pop-PK models specifically optimized for AUC estimation using B-LSS are 

needed. In order to develop appropriate and specific Pop-PK models for B-LSS, 

additional considerations, with a focus on their intended use for AUC prediction, have to 

be taken into account.  

In addition, in the case where the prediction of the ‘underlying’ AUC is preferred 

rather than the observed AUC, as the residual error is excluded in the former, B-LSS can 

have a better performance.  

For R-LSS, STD can have a significant impact on their predictive performance 

and should not be ignored; overlooking STD can lead to considerable errors in the 

estimation of AUC and hence can result in inappropriate AUC-based dose adjustment. 
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Since R-LSS behave differently in the presence of various scenarios of STD and show 

different tolerability patterns, the investigation of the effect of STD on the prediction 

performance has to be integrated as an essential element in R-LSS development 

procedure to guide their selection and use.  
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Chapter 7 Perspectives 

This thesis addressed major issues related to LSS development and clinical use; 

however there is still room for further investigations. Notably, it would be interesting to 

consider the impact of inter-occasion and inter-individual variability on the robustness of 

LSS. Indeed, similarly to the different sensitivities of LSS to STD, they can also differ in 

their sensitivity to inter-occasion and inter-individual variability.  

The STD analysis provided a thorough view of sampling error impact on R-LSS 

performance. Nonetheless, an effective integration of STD considerations in clinical 

practice requires the ‘translation’ of the reported comprehensive statistical indices and 

graphics, that represent the impact of STD, to clear and practical rules which can be 

easily understood and applied by the medical and technical staff (as example of such 

rules: for accurate estimation using LSS (C0, C2, C4), the sampling time error should 

not exceed 10 minutes for C4 and 15 minutes for C0 or C2 in case of a single error, and 

should not exceed 5 minutes for any sample in case of multiple sampling errors). 

Moreover, by analogy to identifying those time errors that cannot be tolerated for each 

R-LSS, it may be useful to set other rational rules in order to avoid the use of LSS when 

the PK profile seems to be problematic and hence large prediction error can be expected. 

These rules may be based on PK profile features or the relations between measured 

concentration values (ex. for accurate estimation using LSS (C0, C2, C8), the ratio C2 

/C8 should be greater than 2).  

The technical progress may make the development and use of R-LSS and B-LSS 

more accessible in the near future. In fact, in spite of the availability of a well-

established methodology and adequate PK data, medical research teams may defer the 
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development of R-LSS for other drugs and populations. Indeed, this task is difficult and 

time consuming when it should be carried out using non specialized software such as 

Excel® with manual repetition of the whole procedure for each evaluated LSS. Hence, 

R-LSS approach may be reinforced by integrating the established methodology in an 

interactive software with a user friendly interface that allows the automatization of R-

LSS development and selection. Moreover, this software may include advanced utilities 

and features such as STD analysis, and it can allow in-depth statistical investigations 

(Jackknife and Bootstrap confidence intervals for error indices, ranking and grouping of 

LSS according to multiple criteria, etc.). Besides, the use of interactive sample collection 

protocol, that accounts for actual sampling times and can promptly propose alternative 

R-LSS, may be facilitated if the data of LSS predictive performance and STD impact are 

integrated in an interactive smart phone application.  

For B-LSS, in order to be more adapted for clinical practice, they have to 

terminate their association with the requirement of trained professionals and access to 

specialized software. Namely, the implementation of cloud-based application or 

software, to facilitate B-LSS development and use, will be very helpful. Furthermore, an 

advanced model optimization and selection criteria should be investigated (ex. modified 

OFV that account for AUC prediction errors), rather than the routine use of conventional 

standards such as the usual OFV, for developing Pop-PK models that are optimized to 

provide the best prediction using B-LSS.  

In this thesis the prediction of CsA AUC has been studied as a typical case, 

however the developed methodology and STD analysis can be applied to investigate and 

improve the estimation of AUC using LSS for other drugs and populations. 
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Appendices 

Appendix I 

Relative prediction errors vs. patients’ covariates, for estimating cyclosporine 

AUC by R-LSS after PO and IV administration. 
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Figure I.1: Relative prediction errors vs. alkaline phosphatase, for estimating 

cyclosporine AUC by three R-LSS.  
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Figure I.2: Relative prediction errors vs. weight, for estimating cyclosporine AUC by 

three R-LSS.  
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Figure I.3: Relative prediction errors vs. time post transplantation, for estimating 

cyclosporine AUC by three R-LSS.  
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Appendix II 

Analyses of sampling time deviation impact for the four additional R-LSS 

reported in Table 5.2. 
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Figure II.1: Nomograms for various combinations of random and fixed STD for four 

additional R-LSS (LSS1: C0, C1.5, C4, C8; LSS2: C0, C2, C4, C8; LSS3: C0, C1, C4, C8; 

and LSS4: C0, C2, C8) used for cyclosporine AUC prediction; red ×, for 95th PAE%STD 

more than 20%; green ●, equal or less than 20%; and blue ○ equal or less than 15%. 

Random STD is described by the standard deviation of the sampling errors, 95th 

PAE%STD is the 95th percentile of absolute values of relative prediction errors in the 

presense of STD. 
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Figure II.2: Sensitivity analysis for each sampling point in the presence of fixed STD for 

four additional R-LSS (LSS1: C0, C1.5, C4, C8; LSS2: C0, C2, C4, C8; LSS3: C0, C1, C4, 

C8; and LSS4: C0, C2, C8) used for cyclosporine AUC prediction, 95th PAE%STD is the 

95th percentile of absolute values of relative prediction errors in the presense of STD, Ct 

is the concentration at time t in hours post-dose. 
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Figure II.3: Sensitivity analysis for each sampling point in the presence of random STD 

for four LSS additional R-LSS (LSS1: C0, C1.5, C4, C8; LSS2: C0, C2, C4, C8; LSS3: C0, 

C1, C4, C8; and LSS4: C0, C2, C8) used for cyclosporine AUC prediction. Random STD 

is described by the standard deviation of the sampling errors, 95th PAE%STD is 95th 

percentile of absolute values of relative prediction errors in the presense of STD, Ct is 

the concentration at time t in hours post-dose. 
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