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Abstract

We consider the problem of conducting inference on nonparametric high-frequency estimators without

knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal

under general conditions that were not previously available in the literature. We suggest a procedure for

a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling

method is much more robust than the plug-in method based on the asymptotic expression for the variance.

Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even

when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plug-

in estimator substantially underestimates the sampling uncertainty. By construction, the subsampling

method delivers estimates of the variance-covariance matrices that are always positive semi-definite.

We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We

document significant variation in betas within year 2006, and find that tick data captures more variation

in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture

this variation we estimate a simple dynamic model for betas. The variance estimation is also important

for the correction of the errors-in-variables bias in such models. We find that the bias corrections are

substantial, and that betas are more persistent than the naive estimators would lead one to believe.
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1 Introduction

Financial econometrics has proposed many multivariate estimators for high frequency data over relatively

short intervals of time such as a day or a quarter. Inference in this setting requires estimation of the

variance-covariance matrices of the estimators, which can be of complicated form, and difficult to derive

or estimate. The current paper proposes to estimate the asymptotic variance-covariance matrices of high-

frequency estimators using a subsampling method, which does not rely on the expression of these matrices.

We apply the multivariate subsampling method to study time variation in financial betas. The failure of

the unconditional, constant beta Capital Asset Pricing Model of Lintner (1965) and Sharpe (1964) is widely

accepted, but there is no consensus on the nature of time variation in betas. To alleviate this problem,

in practice betas are often estimated on rolling windows of say 5 years of monthly data, see, e.g., Fama

and MacBeth (1973) and Fama and French (1992). It is not clear however what length of window is short

enough to warrant the assumption of constant betas within the window. The dynamics of betas has also been

modelled with parametric auto-regressive models, see, e.g., Braun, Nelson, and Sunier (1995), Bekaert and

Wu (2000), and Jostova and Philipov (2005). More recently, Andersen, Bollerslev, Diebold, and Wu (2005,

2006), Hansen, Lunde, and Voev (2010), and Patton and Verardo (2012) use high-frequency estimators in

auto-regressive models of lower-frequency beta. We contribute to this literature by developing robust tools

for econometric analysis of time-variation in betas under general conditions.

We prove the validity of the multivariate inference method for a general class of estimators including

many estimators of the integrated covariance matrices. This result holds under general conditions allowing

for a rich dynamics of stochastic volatility such as a Brownian semimartingale or long memory structure,

leverage effects, and for autocorrelated market microstructure noise. It is therefore a nontrivial extension

of the previously available univariate subsampling result in Kalnina (2011). The multivariate method has

the appealing property of always giving estimates of the variance-covariances matrices that are positive

semi-definite.

Importantly, our simulation study indicates that the multivariate subsampling method is much more

robust than the plug-in method based on the asymptotic variance-covariance matrix. In particular, when

we consider the Two Scales (TS) estimator of Aı̈t-Sahalia, Zhang, and Mykland (2005) and Zhang (2011)

calculated with parameters that minimise its finite sample Mean Squared Error (MSE) as suggested by Bandi

and Russell (2011), the subsampling method delivers estimates that are much closer to the finite sample

variance of the TS estimator than those of the plug-in method. The result is not driven by the failure of the

plug-in estimator; the plug-in estimator is quite close to the asymptotic variance, but the latter can differ

significantly from the finite sample variance. As a result, the tests based on the subsampling estimator have

better size properties than the tests based on the plug-in estimator across a wide range of tuning parameters

of the TS estimator.

We use the following data-driven method to choose the smoothing parameters of our procedure. We

simulate many paths from a Heston model fitted to daily option prices and high-frequency stock prices. We

then choose those bandwidths that deliver optimal performance. The researcher might want to use different
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bandwidths for inference and testing applications, and this method allows to choose the desired criterion.

We find that the subsampling performance is very stable across a wide range of parameters, and very similar

for the two criteria. See Sections 2.3 and 4 for further details.

We apply the multivariate subsampling method to high-frequency data on six stocks on the NYSE with

the ETF for S&P500 (SPDR) as the market factor. We consider two types of financial beta estimators:

those based on realized variances calculated with moderate frequency data (5, 10, or 20 minutes), and the

TS with tick data. We consider two complementary approaches. First, we consider a powerful approach

for nonparametric detection of breaks in betas. We find that for each stock, the TS estimator can find at

least one break in weekly betas in 2006, while moderate frequency estimators find at least one break in two

or four stocks depending on the frequency of data used. Second, we consider the estimation of dynamic

models of time variation in betas. Variance estimation is important to correct for the errors-in-variables

bias in such models; after bias-correction our results suggest that betas are more persistent than the naive

estimators would lead one to believe.

Several papers are related to the multivariate subsampling method. Kalnina (2011) shows the validity

of the univariate subsampling method for a general estimator in the absence of the leverage effect; she also

assumes the volatility is a Brownian semimartingale, which excludes, for example, the long memory property.

The method is partly related to the classical subsampling in the statistics literature for stationary data, see,

e.g., Politis and Romano (1994) and Lahiri, Kaiser, Cressie, and Hsu (1999). All the above methods and the

current method rely on the squared differences of the estimator calculated on nested subsamples of various

forms. In contrast, Mykland and Zhang (2014) recently develop an estimator of the asymptotic variance

that relies on the squared differences of adjacent estimators together with a bias correction.

The remainder of this paper is organized as follows. Section 2 introduces the framework and the mul-

tivariate subsampling method, and presents the main theoretical results. Section 3 describes methods of

analysis of time-variation in betas using the subsampled variances. Section 4 studies the finite sample prop-

erties of the proposed methods and investigates the choice of the tuning parameters. Section 5 contains an

empirical illustration. Section 6 concludes. All proofs are collected in the appendix.

2 High-Frequency Estimators and their Asymptotic Variances

2.1 Theoretical Framework

A large literature in financial econometrics is concerned with using high frequency data to estimate various

integrated functionals of the variance-covariance matrices of asset returns. They often assume the data are

discrete observations from some vector-valued process X, which follows a Brownian semimartingale,

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σsdWs, (1)
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where W is a d-dimensional Brownian motion and σs is a d× d stochastic volatility process. The the spot

covariance of X is the d × d matrix cs = σsσ
>
s . Often, the parameter of interest θ is an integral of some

vector-valued function of the spot covariance

θ =

∫ T

0
f(ct)dt, (2)

such as the integrated covariance
∫ T
0 ctdt. We consider fixed T , so set T = 1 without loss of generality. We

may also be interested in a estimating a nonlinear function γ = γ(θ) of θ.

An important application of this multivariate problem is estimation of the financial betas, i.e., the

exposures of assets to risk factors. In the simplest case, suppose Xt =
(
XS
t , X

F
t

)′
contains the log-price of

one stock XS
t and one factor XF

t , so d = 2. The analysis with more stocks and/or factors is not conceptually

more difficult, but involves more notation. A series of papers has considered the following measure of beta

of the stock,1

β := β (θ) =
θ2
θ1

, where θ =

( 〈
XF , XF

〉〈
XF , XS

〉 ) . (3)

In the above,
〈
XS , XF

〉
is the quadratic covariation between XS and XF , which is a natural measure of

the co-variability of two processes in continuous time. See Bollerslev and Zhang (2003) and Todorov and

Bollerslev (2010) for a discussion of how this beta is related to a discrete-time regression model.

At the highest frequencies such as one second, the assumption that data is drawn from a Brownian

semimartingale is not reasonable due to different market microstructure effects such as the bid-ask bounce.

To model data at such frequencies one usually assumes that data is generated by a contaminated process

Y = X + ε where ε represents the noise. Suppose we have n equi-distant observations on Y over [0, 1] at

times 0 = t0 < t1 < . . . < tn = 1. Then, β can be estimated using for example the Two Scales estimator of

Zhang (2011) (TS henceforth),2

̂〈XS , XF 〉
TS

=
[
Y S , Y F

](G1) − nG1

nG2

[
Y S , Y F

](G2)
(4)

where [
Y S , Y F

](Gj)
=

1

Gj

n∑
i=Gj

(
Y S
ti − Y

S
ti−Gj

)(
Y F
ti − Y

F
ti−Gj

)
, j = 1, 2.

The quantities ̂〈XF , XF 〉
TS

and
[
Y F , Y F

](Gl) are again defined analogously. In the above, nGj =
n−Gj−1

Gj

for j = 1, 2, G1 =
⌊
ϕTSn2/3

⌋
for some tuning parameter ϕTS , and G2/G1 → 0.

1See, e.g., Andersen et al. (2005), Andersen et al. (2006), Barndorff-Nielsen and Shephard (2004), and Bandi and Russell
(2005).

2Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) and Christensen, Kinnebrock, and Podolskij (2010) propose alter-
native multivariate volatility estimators that are robust to market microstructure noise.
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2.2 Inference for Multivariate Estimators

The asymptotic distribution of the beta estimator is obtained by applying the Delta method to the asymp-

totic distribution of the estimator of the bivariate vector θ in (3). Therefore, inference on beta requires

estimation of the multivariate covariance matrix of θ̂. Then, inference on γ̂ = γ(θ̂) can be performed by the

Delta method.

The asymptotic variances are often of complicated form and are therefore hard to estimate. In the

univariate case, Kalnina (2011) proposes a subsampling method that estimates the asymptotic variance of

a general estimator θ̂ without using the analytic expression of the asymptotic variance.

We extend the univariate subsampling method for variance estimation to the multivariate case and

prove its validity for a general estimator θ̂ under much weaker conditions than those previously available.

In particular, we allow for leverage effect in X as well as for much richer dynamics in the volatility ct; the

volatility may, for example, follow a long-memory process.

An estimator of the asymptotic variance of θ̂ can be constructed as follows. Recall that n is the total

number of observations. Form a series of longer blocks of observations, m consecutive returns in each block,

as well as a series of shorter blocks of observations, J returns in each block, J < m < n. For any time

interval [a, b], denote by θ̂ ([a, b]) the estimator θ̂ calculated using all price observations in the interval [a, b].

Using this notation, the subsampling estimator of the asymptotic variance-covariance matrix V is

V̂ sub =

(
1− J

m

)−1 J
n

1

K

K−1∑
k=0

τ2n

(n
J
θ̂shortk − n

m
θ̂longk

)(n
J
θ̂shortk − n

m
θ̂longk

)′
(5)

where

θ̂longk = θ̂ ([tkm, tkm+m]) and

θ̂shortk = θ̂
([
tkm+b(m−J)/2c, tkm+b(m−J)/2c+J

])
.

In the above, K = bn/mc is the number of subsamples, τn is the rate of convergence of θ̂ when n observations

are used, and the term (1− J/m)−1 is a finite sample adjustment factor. This adjustment is negligible

asymptotically, but improves finite sample behaviour; it has the usual motivation in variance estimation.

Note that V̂ sub, by construction, is positive semi-definite, which is an obviously key property for variance-

covariance matrix estimators.

A few comments on the intuition of the estimator V̂ sub are in order. Notice that n
m θ̂

long
k and n

J θ̂
short
k

estimate the same object, but one uses more observations than the other. Therefore, n
m θ̂

long
k can be used to

center n
J θ̂

short
k . The outer product of the differences is multiplied by the rate of convergence n

J τ
2
n of n

J θ̂
short
k ,

and then averaged over subsamples. Hence, the estimator approximates the sum of the variances of the

local estimators. The latter sum equals V if V is additive over time. Hence, V̂ sub estimates V under the

regularity assumptions described below.

The estimator V̂ sub in (5) uses non-overlapping blocks, but can be modified to use overlapping blocks.

The latter estimator is more efficient, but can be more computationally demanding. To describe the definition
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of the modified estimator, denote by s (for “shift”) the number of observations to roll the window to obtain

the next subsample, s ∈ {1, ...,m}. Then, the number of subsamples is K =
⌊
n−m
s + 1

⌋
, and the first

observation time in the lth long subsample is tls. The expression in (5) is obtained by setting s = m.

We use the following assumptions to prove the consistency of V̂ sub in (5). For any k1 × k2 matrix Q let

‖Q‖ =
√∑k1

j=1

∑k2
l=1Q

2
jl.

Assumption A1. θ and V are the following functions of the spot covariance path {cs, s ∈ [0, 1]},

θ =
1∫
0

f (cs) ds, V =
1∫
0

g (cs) ds where functions f and g are continuously differentiable.

Assumption A2. There exists a constant Bc, and α > 0 such that E
[
‖ct2 − ct1‖

2
]
≤ Bc |t2 − t1|α for all

t1 and t2. Also, {cs, s ∈ [0, 1]} is tight.

Assumption A3. J →∞, m→∞, J/n→ 0, m/n→ 0, J/m→ 0, and τ2n Jm
α/n1+α → 0.

Assumption A4. Let Ik,s =
[
tkm+b(m−s)/2c, tkm+b(m−s)/2c+s

]
. For both s = J and s = m,

1

K

K∑
k=1

n

s

τ2n
θ̂ (Ik,s)−

∫
Ik,s

f (cu) du


θ̂ (Ik,s)−

∫
Ik,s

f (cu) du


′

−
∫
Ik,s

g (cu) du

 p→ 0.

We now discuss the above assumptions. Examples of the parameters of interest θ satisfying Assumption

A1 include integrated covariance, integrated quarticity, integrated betas in high-frequency regression (see

section 4.2 in Mykland and Zhang (2006) and Zhang (2012)), and principal components (see Ait-Sahalia

and Xiu (2015)). The asymptotic variances V of the corresponding estimators of such θ typically also satisfy

Assumption A1. Assumption A2 is well known to be satisfied with α = 1 if ct is assumed to be a Brownian

semimartingale. Lemma 3 below shows that if one assumes a long-memory process with parameter α, then

Assumption A2 is satisfied with α = α. Assumption A3 requires that there are many observations in

each subsample and many subsamples. It also requires J/m to be small so that the long subsample can

approximate the true value for centering the estimator on the short subsample. The last requirement in

Assumption A3 arises due to the “discretization bias” in the volatility, i.e., from us implicitly approximating

ct by integrals of ct on short intervals. The less smooth is the volatility, the more restrictive the last condition

of Assumption A3 is. Assumption A4 is relatively high level, but it is simple. The term n/s is the inverse

of the length of the subsample; it ensures that each term in the sum is of order one. Notice that when we

choose the longer subsamples (s = m), we have

1

K

n

m

K∑
k=1

∫
Ik,m

g (cu) du =

K∑
k=1

∫
Ik,m

g (cu) du =

1∫
0

g (cu) du = V.

In this case, Assumption A4 requires that the sample second moment matrix, centered at the true (unknown)

parameter, converges in probability to V . Moreover, similar property is assumed to hold when we choose the
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shorter blocks (s = J) and scale up the estimator and the integrals by the larger factor n/J . This scaling

compensates for the fact that the union of the smaller blocks does not cover the whole interval [0, 1] (the

union has “holes”). Note that the smoothness condition on cs was already imposed in Assumption A2. The

substance of Assumption A4 is therefore a restriction on the dependence in the returns and on the tails of

the conditional distribution of the returns. Since the returns are usually modeled as a sum of a Brownian

semimartingale and short-memory market microstructure noise, these restrictions are usually satisfied.

With the above assumptions, the subsampling estimator of the asymptotic variance of a general estimator

is consistent:

Theorem 1. Suppose assumptions A1, A2, A3, and A5 hold, let V̂ sub be defined by (5). Then, as n→∞,

V̂ sub p→ V.

We illustrate the application of Theorem 1 in the TS example with d = 2 and the following dynamics of

the market microstructure noise ε =
(
εS , εF

)′
:

Assumption N. The noise εti is independent of the efficient price X, it is stationary, exponentially α-

mixing, and has finite (4 + δ)th moments for some δ > 0.

The asymptotic distribution of the TS estimator of the θ vector in (3) is

n1/6

 ̂〈XF , XF 〉
TS

̂〈XF , XS〉
TS

−( 〈
XF , XF

〉〈
XF , XS

〉 )
⇒MN

(
0, V TS

)
, (6)

where

V TS
11 = ϕTS

4

3

1∫
0

(cu,22)
2du+ 8(ϕTS)−2V ar

(
εF
)2

+ 16(ϕTS)−2 lim
n→∞

n∑
i=1

Cov
(
εF0 , ε

F
i/n

)2
(7)

was first derived in Aı̈-Sahalia et al. (2011).3 In (7), the first part is clearly a smooth function of cu. The

remaining parts do not change across time. Therefore, the whole expression V TS
11 is an integral of a smooth

function of cu and hence satisfies Assumption A1. The same argument applies to other elements of V TS .

The following corollary is proved in the appendix by verifying the assumptions of Theorem 1.

Corollary 2. Suppose log-price X satisfies equation (1) with d = 2, where bs and σs are adapted and càdlàg.

Let θ̂n be the TS estimator defined by (4), with sequences of parameters G1 and G2 satisfying G1 =
⌊
ϕTSn2/3

⌋
for some tuning parameter ϕTS, G2 is such that Cov (ε1, εG2) = o

(
n−1/2

)
, G2 → ∞, and G2/G1 → 0. Let

V be defined by V TS in (6), and V̂ sub be defined by (5). Suppose assumptions A2, A3 and N hold. Then,

V̂ sub p→ V.

3The expression for V TS
2,2 is rather complicated and can be found in Zhang (2011), while the expression for V TS

1,2 does not
seem to be available in the published literature, although it can be derived following the arguments of Zhang (2011).
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Since τn = n1/6 for the TS estimator, if volatility is a Brownian semimartingale, the last condition of

Assumption A3 is satisfied if Jm/n5/3 → 0. For general α > 0, the last condition of Assumption A3 is

Jmα/n2/3+α → 0.

As discussed above, Assumption A2 is satisfied with α = 1 if the volatility is Brownian seminartingale.

Lemma 3 below presents an alternative sufficient condition of Assumption A2 where volatility is a long-

memory process.

Lemma 3. Let x(t) = 1
2 ln ct be a scalar log-volatility process. Assume it follows dynamics

dx(t) = −κx(t)dt+ γdBα(t), t ∈ [0, T ]

where

Bα(t) =

∫ t

0

(t− s)α

Γ(1 + α)
dW̃ (s),

where W̃ (t) is a standard Brownian motion, and where γ, κ, and α are constants such that κ > 0, 0 < α < 1
2 .

Then, Assumption A2 is satisfied with α = α.

2.3 The Choice of Parameters for Subsampling

For practical application, one needs to choose specific values of m and J . Here we describe a recommended

data-driven method.

First, one fits a parametric model of the stock price dynamics to the real data, on which the subsampling

method is to be used. Note that one can use not only the price data, but also any additional data such as

data on options if it is available. For example, the model of Heston (1993) is particularly convenient for this

purpose. It is a parsimonious model with mean-reverting stochastic volatility, where the prices of options

are straightforward to calculate. It is well known how to estimate the parameters of this model. Second, one

draws many sample paths from this model, and calculates the subsampled variances for a range of values of

m and J . Then, one chooses the values that provide the best performance of the subsampling estimator.

This method has several advantages. First, one is typically concerned whether the analytic expressions

of the higher-order approximations with estimated parameters would match the finite sample performance

well. Second, while computationally intensive, the method is straightforward to implement. Third, this

method allows to easily specify and alter the criterion of interest.

3 Econometric Methods of Analysis of the Dynamic Properties of the

Betas

3.1 Tests of Parameter Constancy

Structural asset pricing models such as the conditional CAPM are often difficult to estimate, for example,

because they require specifying the information sets of investors. One solution to this problem has been
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to assume that betas are constant over moderately long periods of time such quarters or years (see, e.g.,

Lewellen and Nagel, 2006). The question remains whether a given selected interval is short enough for this

assumption to be reasonable.

We begin by introducing the necessary notation and describe simple tests of parameter constancy of some

scalar parameter β across k time periods (such as days, weeks, months, or quarters). We use the notation β

because we later apply this test to financial beta, but the test applies to any parameter of interest. Denote

by β̂ some generic estimator of β, where

β̂ =
(
β̂1 β̂2 . . . β̂k

)′
and β =

(
β1 β2 . . . βk

)′
,

and let ni be the number of observations in period i. The estimation errors β̂i − βi of most high-frequency

estimators are independent across time periods i = 1, 2, . . . , k (see, e.g., Mykland and Zhang, 2006), with

the asymptotic distribution

τn1ΦΣ−1/2
(
β̂ − β

)
⇒ N (0, Ik) , (8)

Σ = diag (V1, V2, ..., Vk) , and Φ = diag (φ1, φ2, . . . , φk) ,

where Σ has the asymptotic variances of β̂i for each period i on the diagonal, and Ik denotes the k × k
identity matrix. The rate of convergence of the estimator in period 1 is denoted as τn1 . In most applications

it is natural to assume that the number of observations ni across periods are of the same order of magnitude,

so that τni = τn1 (φi + o(1)) for some positive finite constants φi, i = 2, . . . , k.

The hypothesis of constancy of β is

H0 : β1 = . . . = βk, versus H1 : βi 6= βj for some i and j. (9)

Rewriting the null hypothesis asH0 : βi = β1 for i = 2, . . . , k as usual we have τ2n1
β̂′∆′

(
∆Φ−1ΣΦ−1∆′

)−1
∆β̂ ⇒

χ2
k−1, where matrix ∆ is (k − 1)× k and is defined as ∆ = (−ik−1, Ik−1), where ik−1 is a (k − 1)× 1 vector

of ones, so ∆β = 0k−1 under H0. The convergence to χ2
k−1 follows from (8). The subsampling method

described in the previous section can be used to estimate each of the elements of the diagonal matrix Σ;

denote this estimator by Σ̂. Since we have established the consistency of Σ̂ in the previous section, we have

the test statistic

τ2n1
β̂′∆′

(
∆Φ−1Σ̂Φ−1∆′

)−1
∆β̂ ⇒ χ2

k−1. (10)

We can similarly test the null hypothesis of constant betas jointly across stocks, i.e.,

H0 : β
(j)
1 = β

(j)
2 = . . . = β

(j)
k for each j,

where β
(j)
i denotes the beta of the jth stock in the ith time period. In this case, the matrix Σ̂ will be

block diagonal, with each block corresponding to a separate time period, and can also be estimated by the

subsampling method of the previous section.
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3.2 Nonparametric Search for Breaks in Betas

If the test for constant betas rejects, we do not have any information as to the number or timing of breaks.

This might be information we are interested in. We propose to search for breaks in betas nonparametrically

by considering each possible break time as a hypothesis and accounting for multiple testing.

A popular method for controlling for multiple testing is Bonferroni correction. It controls the family-wise

error (FWE, see (11) below), but is in general conservative. In a sense, Bonferroni correction achieves the

control of FWE by assuming the worst-case dependence structure across the test statistics. White (2000)

proposes a bootstrap-based solution that implicitly accounts for the dependence structure across the test

statistics. Romano and Wolf (2005) propose a stepwise procedure that accounts for the dependence structure

across the test statistics, controls FWE, and has higher power due to additional steps that can reject more

null hypotheses. The main example in Romano and Wolf (2005) is the search for outperforming trading

strategies.

We apply the ideas of Romano and Wolf (2005) to search for breaks in betas instead. Our multiple

hypotheses correspond to breaks in different periods. Since we know the dependence structure of estimation

errors in betas or their differences across periods, we can fully account for that and do not need to use

conservative testing methods.

Our setting is conceptually different from the classical literature on structural breaks in parametric

models, see, e.g., Andrews (1993). We do not need many betas to be the same to achieve their identification.

Instead, our setting reflects a situation where a lot of high frequency data is available for the purpose of

estimating each quantity of interest at lower frequency (such as one weekly beta).

We now describe the procedure. We consider the case of one asset, but the procedure can be extended

easily to search for simultaneous breaks across several assets. Suppose we have k time intervals, and we are

interested in finding the breaks in beta across these time intervals. Instead of one null hypothesis, we have

k − 1 null hypotheses. Label the null hypotheses by the intervals,

Hs : βs = βs+1 vs. H ′s : βs 6= βs+1

for s = 1, . . . , k − 1. We aim to control the family-wise error rate,

FWE = P {Reject at least one true null hypothesis} , (11)

i.e., we aim to construct a test that has lim supFWE ≤ α when all null k − 1 hypotheses are true.

Define the following k − 1 statistics w̃1, w̃2, . . . , w̃k−1 based on the differences between betas on the

subsequent intervals,

w̃ =
(
w̃1 w̃2 . . . w̃k−1

)′
= τn1∆β̂,
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where ∆ is a (k − 1)× k differencing matrix with ∆i,j = 1{i=j} − 1{i=j−1}. If all null hypotheses are true,

w̃ = τn1∆β̂ = τn1∆
(
β̂ − β

)
⇒MN

(
0,∆Φ−1ΣΦ−1∆′

)
.

Let Σ̂ be an estimator of Σ, and let ŝ2i be the the i’th element on the diagonal of
(

∆Φ−1Σ̂∆′
)

. We use

the standardized test statistics w =
(∣∣ŝ−11 w̃1

∣∣ , . . . , ∣∣ŝ−1k−1w̃k−1∣∣)′. The testing procedure is implemented

in a stepwise manner. Order elements of w according to their absolute values, from largest to smallest,

|wr1 | ≥ |wr2 | ≥ . . . ≥ |wrk−1
| (r1 is the index of the largest test statistic and so on). For the first step, the

ideal critical value is the 1− α/2 quantile of the sampling distribution of maxj |wj |,

c1 = c1(α) = inf

{
x : P

{
max

1≤s≤k−1
|wrs | ≤ x

}
≥ 1− α

2

}
.

Since we can estimate the joint distribution of w1, . . . , wk−1, the estimate of the above, ĉ1, can be obtained

by simulation. The test procedure is then to reject those null hypotheses, for which |wrs | > ĉ1.

The first step is sufficient to control FWE. However, adding further steps increases the power of the

procedure. The choice of critical values for subsequent steps is analogous. Suppose R1 hypotheses were

rejected in the first step. The ideal critical value c2 is the 1 − α/2 quantile of the sampling distribution of

maxR1+1≤s≤k−1 |wj | defined as

c2 = c2(α) = inf

{
x : P

{
max

R1+1≤s≤k−1
|wrs | ≤ x

}
≥ 1− α

2

}
,

and it can be estimated by simulation as before. For the jth step, the ideal critical value is

cj = cj(α) = inf

{
x : P

{
max

Rj−1+1≤s≤k−1
|wrs | ≤ x

}
≥ 1− α

2

}
,

where Rj−1 is the number of hypotheses rejected in the first j−1 steps (R0 = 0). The procedure is continued

until no new hypotheses can be rejected.

3.3 Estimation of Models of the Dynamics

When the hypothesis of constancy of betas is rejected, as an alternative to searching for breaks, researchers

are often interested in estimating models of the dynamics of the beta. Such models often also include

low-frequency macroeconomic and financial variables. For example, different asset pricing models imply

different dynamics for factor betas, motivating the researcher to estimate the dynamics in betas. If the

model includes lagged betas, the errors-in-variables leads to inconsistent parameter estimates. This problem

can however be addressed if we have access to the variance of the estimation error. We discuss this in more

detail in Section 5.3.
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4 Simulation Studies

The current section has two objectives. First, we investigate the suggested procedure for choosing the

subsampling parameters m and J . Second, we verify the performance of the subsampling variance estimators

in finite samples. We also discuss the choice of the parameters of the Two Scale estimator.

Monte Carlo Design

To make the Monte Carlo design realistic, we use a Heston (1993) model with parameters calibrated from

the data, and simulate the data to be irregular and asynchronous. We simulate the efficient log-price for six

stocks X(1), . . . , X(6) and the market portfolio X(7) over one week using the Heston (1993) model:

dX
(j)
t =

(
α
(j)
1 − c

(j)
t /2

)
dt+ σ

(j)
t dW

(j)
t

dc
(j)
t = α

(j)
2

(
α
(j)
3 − c

(j)
t

)
dt+ α

(j)
4

(
c
(j)
t

)1/2
dB

(j)
t , j = 1, . . . , 7,

where c
(j)
t =

(
σ
(j)
t

)2
, and W

(j)
t and B

(j)
t are Brownian Motions with Corr

(
W

(j)
t , B

(j)
t

)
= ρ(j). The latter

correlation induces the classical leverage effect for each of the stocks and the market portfolio.

To obtain realistic values of the dynamics of the efficient log-price, we calibrate them to the data as

follows. The parameters of processes X(1), . . . , X(7) are matched to data from the seven assets we use in the

empirical application: AIG, GE, IBM , INTC, MMM , and MSFT stock prices, and the SP500 index, see

Section 5.1 for further details on the data. For each of the six stocks, we collect full record transaction prices

as well as daily option data over the year 2006. For the market portfolio, we use the full-record transaction

prices of the S&P500 index ETF (ticker SPY) as well as the daily S&P500 index option data over the year

2006 (ticker SPX). The parameter α
(j)
4 is estimated using the following identity:

α
(j)
4 =

[c(j), c(j)]t

[X(j), X(j)]t
. (12)

The numerator is the quadratic variation of the spot variance of the jth asset. To estimated it, we use

moderate frequency price returns and the estimator of Vetter (2011), which has been extended to include

jump truncation by Jacod and Rosenbaum (2012). We estimate the denominator in the above with trun-

cated realized variance, see Mancini (2009). The initial value of the variance process is constrained to

equal the value of the parameter α
(j)
3 . Parameters α

(j)
2 , α

(j)
3 , and ρ(j) are chosen to minimise the sum of

squared weighted differences between the model-implied option prices and the observed option data of the

asset j, with weights being smaller when the bid-ask spread is larger. We set α
(j)
1 to 0.05 as in Zhang,

Mykland, and Aı̈t-Sahalia (2005). Finally, we set the correlation of the individual stock and the market

Corr
(
W

(j)
t ,W

(7)
t

)
= %(j), j = 1, . . . , 6, to the value of the realized beta with 50-tick observations of the jth

12



stock.4 In this model, the beta over [0,1] is

β(j) = %(j)
1∫

0

σ(j)u σ(7)u du

/ 1∫
0

(
σ(7)u

)2
du , j = 1, . . . , 6. (13)

Hence, we obtain six sets of parameters for the bivariate model with one stock and the market factor; we

denote them as scenarios (1), . . . , (6).

Microstructure noise is simulated as a normally distributed white noise with variance ξ(j)IQ(j), where

ξ(j) is a noise-to-signal ratio that equals either 0 or 0.001 (all estimated values of the noise-to-signal ratio are

between these two values, see Table E.1), and IQ(j) is the weekly integrated quarticity of the jth stock. We

simulate the noise to be i.i.d. to minimise the number of total scenarios and parameters, and concentrate

instead on the choice of key smoothing parameters; note that the properties of the univariate subsampling

method with autocorrelated and heteroscedastic noise have been documented before. Observed prices are

efficient log-prices plus noise.

We match the number of asynchronous observations of each asset, nj , j = 1, . . . , 7, to the data (see

the first column in Table E.1). To do so, we first simulate one week of 1 second synchronous observations.

From these, we take ni irregular and asynchronous observations by drawing a random permutation of all

1-second observation times in a week, taking the first ni of them, and sorting them. Observations are then

synchronized using the Refresh Time method,5 resulting in a random number of observations to be used for

estimation.

The Choice of Parameters of the Two Scale Estimator (Table M.1)

The Two Scale estimator is calculated according to equation (4) with G2 = 1 (for the i.i.d. noise) and the

finite sample adjustment suggested in Zhang, Mykland, and Aı̈t-Sahalia (2005). For implementation, we

need to select the G1 parameter. There are two principles of data-based selection of this parameter available

in the literature: by minimisation of the asymptotic variance (see Zhang, Mykland, and Aı̈t-Sahalia (2005))

and by minimisation of the finite sample MSE (see Corollary 3 of Bandi and Russell (2011), henceforth

BR). We denote the theoretical values of these rules by G?1 and GBR1 , respectively. Both depend on the

unobservable values of the integrated quarticity and the variance of the noise. The former can be estimated

by, e.g., 5-minute realized quarticity (see Barndorff-Nielsen and Shephard (2004)) and the latter can be

estimated by, e.g., the realized variance divided by twice the number of observations (see Bandi and Russell

(2008)). We denote the estimated values by Ĝ?1 and ĜBR1 , respectively. The last four rows of Table M.1

show the average over simulations of the four resulting values of G1 for the TS-beta estimator. The table

also shows the finite sample MSE across simulations of the TS-beta estimator for a range of G1. In all

4The realized beta estimator is defined as β̂RV = θ̂RV2 /θ̂RV1 where θ̂RV1 = [XF , XF ] =
∑n
j=1(XF

tj −XF
tj−1

)(XF
tj −XF

tj−1
) is

the realized variance of the market returns, θ̂RV2 = [XS , XF ] =
∑n
j=1(XS

tj −XS
tj−1

)(XF
tj −XF

tj−1
) is the realized covariance of

the stock and the market returns, and where θ is defined in (3).
5 See Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011).
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cases considered, the BR rule results in a smaller finite sample MSE than the rule based on the asymptotic

variance.

The Choice of Subsampling Parameters (Tables M.2-M.5)

To implement the subsampling estimator, we require a choice of J for the short subsample and m for the

long subsample. To obtain a data-driven method for choosing m and J , we calibrate a parametric model

to the data we use and choose the values of m and J that minimise the distance to the true finite sample

variability in the estimator. This strategy of choosing parameters is another reason for matching the Heston

model parameters to the data in the current section.

Tables M.2-M.3 show the average over simulations of the subsampled variances V̂ sub of the TS-beta esti-

mator. (The quantities V FS , V Asy, and V̂ pl are discussed below.) We find in that the values of subsampled

variances are relatively flat over wide ranges of m and J for all G1 considered indicating the method is

not very sensitive to the choice of the smoothing parameters. This is a very desirable property, but it does

imply that pinning down the exact values of J and m is difficult, as they lead to very similar finite sample

performances. In light of these results we choose J = 500 and m = 3000 for the applications.

We also consider the coverage of the nominal 0.95 confidence interval based on the TS-beta estimator.

The results are given in Tables M.4 and M.5. We again find that the results are relatively flat over wide

ranges of m and J . To control the number of total tables, Tables M.2-M.5 consider scenario (3) (with the

design calibrated to IBM data), but the same conclusions hold for other scenarios.

Performance of the Subsampling Estimator (Tables M.6-M.13)

We now consider the problem of assessing the performance of the subsampled variances, first, in matching

the true variability of the TS estimator, second, in terms of the coverage of the confidence intervals of the TS

estimator. Due to stochastic volatility, the asymptotic and finite sample variances vary across simulations.

In this setting, we can obtain the finite sample variability as the scaled mean squared estimation error, e.g.,

in the case of TS-betas, it is the average over simulations of n1/3
(
β̂TS − β

)2
. We denote it by V FS . We

also compare the subsampled variances with two benchmarks that rely on the analytic expression of the

asymptotic variances: the (unobserved) asymptotic variance V Asy, as well as its estimated counterpart V̂ pl

using the same estimation approach as for the choice of G1.

Tables M.6 and M.7 contain the results for the TS-beta estimator (see also Tables M.2 and M.3 for

these results in scenario (3)). The subsampling method appears to be much more robust than the plug-in

method based on the expression for the asymptotic variance. While the plug-in estimator estimates the

asymptotic variance well, the asymptotic variance itself is not very close to the finite sample variability V FS

for relatively small values of G1. The subsampling method, on the other hand, delivers good estimates of

the finite sample variability for the whole range of G1 considered. As can be seen from Table M.1, these

smaller values of G1 where subsampling method performs particularly well compared to V̂ pl (and V Asy),

are often close to the values of G1 that minimise the finite sample MSE of the TS-beta.
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We next present the results in terms of the coverage of the confidence intervals for the TS-beta estimator.

The results for scenarios (1)-(6) are collected in Tables M.8 and M.9. We confirm the conclusions above:

the subsampling method performa very well and is more robust than the plug-in method based on the

asymptotic variance with respect to the TS parameter G1.

Finally, we repeat the above analysis for the TS estimator of the variance of the stock, as this estimator

does not contain the nonlinearities of beta. The results are collected in Tables M.10-M.13. Again, the

subsampling method is more robust than the plug-in method V̂ pl with respect to the TS parameter.

5 Empirical Analysis

This section implements the above methods with real data using both moderate and high frequencies. We

use RV-based estimators for moderate frequencies (5, 10, and 20 minutes), and TS-based estimators for high

frequencies (tick data).

Some key implementation choices are as follows. To obtain the asymptotic variance of RV-based esti-

mators, we use Barndorff-Nielsen and Shephard (2004) estimator of the variance-covariance matrix of θ̂RV

(recall notation in (3)). The estimator of variance-covariance matrix of θ̂TS is obtained by subsampling. The

Two Scale estimator is implemented with the finite sample correction suggested in Aı̈t-Sahalia, Mykland,

and Zhang (2011). In all that follows, length of intervals [i− 1, i) is taken to be one week.

5.1 Data and Preliminary Analysis

We use high frequency transactions data on six individual stocks. They are American International Group,

Inc. (listed under the ticker symbol AIG), General Electric Co. (GE), International Business Machines Co.

(IBM), Intel Co. (INTC), Minnesota Mining and Manufacturing Co. (MMM), and Microsoft Co. (MSFT).

To proxy for the market portfolio, we use Standard and Poor’s Depositary Receipts (SPIDERS for short,

ticker symbol SPY), which are an Exchange Traded Fund set up to mimic the movements of the S&P 500

index. Our data covers the whole year 2006 and is obtained from the NYSE TAQ database. We clean

the data according to the recommendations of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) and

remove jumps with the thresholding methodology of Mancini (2009).

We start by analyzing the high frequency data. Table E.1 contains some summary statistics of the

data before synchronization: transactions per week, estimates of the noise variance, noise-to-signal ratio,

and autocorrelations of returns at first three lags. First autocorrelations are all large and negative, which

is typical of noisy data and unlikely to arise from Brownian Semimartingale. Second autocorrelations are

all positive, some are large. Alternating signs of autocorrelations indicate that the main component of the

noise is the bid-ask bounce. In fact, if we removed all zero returns, the remaining data would display very

persistent autocorrelation with alternating signs, see, e.g., Griffin and Oomen (2005). In the full data set

with zero returns, this effect is attenuated because the switching times of bid and ask are random. Third

autocorrelations are of different signs and small. The estimates of the noise variance (columns 2 and 3 in
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Table E.1) are very small, and in fact several orders of magnitude smaller than Hansen and Lunde (2006)

estimates for year 2004. For example, the simplest estimator of the noise variance is

ω̂2 = [X,X] /2n.

Our estimate for INTC in 2006 is 0.518 · 10−7, while Hansen and Lunde (2006) report this number for 2004

to be 0.46 · 10−3. Apart from the obvious fact that years are different, there are also important differences

in methodology. We calculate ω̂2 using the whole year, they calculate it every day and report the annual

average. Also, data cleaning can also be an important source of differences.

Table E.2 contains the same summary statistics for the data after synchronization. The number of

synchronized observations is smaller, especially after joint synchronization across assets. Noise variances are

larger as measured by ω̂2, but we can easily verify this is purely due to a larger finite-sample bias caused by

the smaller number of observations. In particular, the bias-adjusted estimators

ω̂2 =

(
[X,X]− 〈̂X,X〉

TSRV
)
/2n

are the same with and without synchronization.

Figure E.3 contains volatility signature plots for each individual stock (plots of realized variance against

the frequency used in its calculation), as well as the correlation signature plots (plots of realized correlation

against the frequency).6 Volatility signature plots show a large increase for highest frequencies, consistent

with the additive noise model where bias explodes as we sample more and more frequently. On the other

hand, realized covariances display the so-called Epps effect due to Epps (1979), i.e., they tend to zero as

the frequency increases, so that the realized correlations are also driven to zero.7 Not surprisingly, realized

beta signature plots in Figure E.4 show a clear bias towards zero for highest frequencies. Therefore, neither

realized variance, nor realized covariance should be calculated using the highest frequencies. On the other

hand, the Two Scale estimator, while using all the synchronized data, cancels both the effect of noise and

asynchronous observations and is consistent (see Zhang (2011)).

5.2 Testing the Constant Beta Hypothesis and the Search for Breaks

Figures E.5-E.7 show plots of estimated betas using β̂RV10min and β̂TS together with 95% confidence intervals,

which are based on the estimator of Barndorff-Nielsen and Shephard (2004) and subsampling, respectively.

In fact, similar series of confidence intervals for β̂RV10min was also graphed by Andersen et al. (2004) in their

Figures 13-15, except they used 10 minute and daily data to calculate estimated betas over intervals of one

quarter. In figures E.5-E.7, we see that beta is estimated more precisely using full record transaction prices.

6Realized correlation is defined as
[X,Y ]√

[X,X] [Y, Y ]
,

and for correlation signature plots the interval is taken to be the whole year 2006.
7Zhang (2011) analytically characterizes this bias for realized covariance based on previous-tick interpolated prices (Refresh

Time synchronization method is a special case since it also uses previous-tick interpolation).
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The two parameters in β̂TS were chosen as follows. We set G2 = 3 as no stocks (after synchronisation)

display autocorrelated returns beyond the second lag. G1 was chosen as 5G2. The two parameters of the

subsampling scheme were set to J = 500 and m = 3000 guided by the simulation results calibrated to the

data we use, see Section 4.

Table E.8 contains the results of the test for constant betas for individual stocks. The null hypothesis is

that the true beta is constant over some time period. We implement the test for five different time periods:

the whole year 2006 and each quarter separately. This means using k = 52 and k = 13 respectively in

equation (9). Four different tests are implemented based on four estimators: β̂RV5min , β̂
RV
10min , β̂

RV
20min and β̂TS .

The reader should be careful when interpreting the p-values since at this stage they are not adjusted to

reflect multiple testing. The null hypothesis of beta being constant over the whole year can be rejected using

a test based on any of the four estimators/frequencies. For shorter periods, answer varies depending on the

stock and the exact time period. The test based on β̂TS can reject the null, at 5% level of significance, for

all quarters with three exceptions (AIG Q1, IBM Q1, MMM Q3). The tests based on moderate frequencies

show similar results with generally smaller number of rejections.

Table E.9 contains the results of the joint test for constant betas. The null hypothesis tested is that the

betas of all 6 stocks are constant across some time interval. We implement the test for the same five time

periods and the same estimators as in the univariate case. One would in general expect that it is easier

to detect beta variation jointly across stocks (partly because more data is used, partly because the null

is different and is less likely to be true). Indeed, we see that with only one exception, even the moderate

frequency estimators now reject all null hypotheses.

We next implement the procedure for searching for breaks. Table E.10 shows the number of breaks found

among 52 weeks in 2006. The result of the procedure is also the timing of every break that is found (we

suppress it for brevity). Clearly, higher frequencies contain more information about breaks. For example,

the number of breaks detected by 5-min RV-beta is larger than by the 20-min based RV-beta. (INTC is

somewhat of an exception, which seems to be driven by a very large value of beta in the second week, so

the breaks before and after the second week are easy to identify). From Table E.10, the TS-beta reveals

at least one significant break in betas for every stock, while moderate frequency data does not find any for

GE and IBM. The number of identified breaks with high frequency data is higher for every stock and every

level of significance considered.

Overall, it seems that tick data contain important additional information about the variability in betas

over time. This finding does not appear to be specific to the highest frequency because RV-based beta at

5 minutes similarly contains more information than RV-based beta at 20 minutes. It is well known that

RV-based beta cannot be used at frequencies much higher than 5 minutes without accounting for the market

microstructure noise. Our results suggest that the noise-robust estimators such as the TS-beta is able to

extract additional information on time variation in betas while being robust to the noise contaminations.
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5.3 Consistent Estimation of the Dynamics of Betas

Given our empirical evidence suggesting multiple breaks in the betas, the question arises what drives these

changes. One approach used in financial econometrics is to model their joint behaviour with (observable)

macroeconomic fundamentals. For example, in the discrete-time (low-frequency) setting, Connor, Hagmann,

and Linton (2012) estimate a Fama-French model where betas are functions of observable variables. Using

daily data and the RV-beta estimator, Andersen et al. (2005) set up a state-space framework for betas and

macroeconomic fundamentals, where the beta dynamics depends on the value of beta in the previous period

as well as on the additional regressors. Authors estimate their model with the Kalman filter.

Following Andersen et al. (2005), suppose β follows a simple AR(p) model

βi = ρ1βi−1 + . . .+ ρpβi−p + γ′Xi + Ui, i = p+ 1, . . . , k, (14)

where βi is the value of financial beta in ith time period (such as a week, a month, or a quarter), and the

variables Xi could include low frequency macroeconomic or financial variables, as well as the intercept (we

follow the notation of Section 3.1).

Since the true βi is unobserved, in the empirical analysis it is replaced with its estimate β̂i for each i.

This substitution leads to the problem of measurement errors in covariates due to the β̂i−1 on the right-hand

side of equation (14). Let εi = β̂i − βi denote the difference between the estimated and the true βi, then εi

can be seen as the measurement error.

The presence of measurement errors in covariates β̂i means that we cannot use the standard OLS esti-

mators of ρ1, . . . , ρp, and γ as they are biased and inconsistent. However, it is possible to account for the

measurement errors and to provide consistent estimators of the parameters of interest, see, e.g., Andersen,

Bollerslev, and Meddahi (2005) who adjust the forecasting loss functions.

We first introduce some additional notation. Let βi,L = (βi−1, . . . , βi−p)
′, β̂i,L =

(
β̂i−1, . . . , β̂i−p

)′
,

Zi ≡
(
β′i,L, X

′
i

)′
, Ẑi ≡

(
β̂′i,L, X

′
i

)′
, ρ = (ρ1, . . . , ρp)

′, θ = (ρ′, γ′)′. Consider the infeasible OLS estimator

θ̂Infeasible =

 1

k − p− 1

k∑
i=p+1

ZiZ
′
i

−1 1

k − p− 1

k∑
i=p+1

Ziβi.

This estimator is infeasible because βi and βi,L are not observable. Replacing βi and βi,L with β̂i and β̂i,L

we obtain the feasible OLS estimator

θ̂OLS =

 1

k − p− 1

k∑
i=p+1

ẐiẐ
′
i

−1 1

k − p− 1

k∑
i=p+1

Ẑiβ̂i.

Let us consider the effect of replacing βi with β̂i. Remember that εi = β̂i−βi ∼a N
(
0, Vi/τ

2
ni

)
, and that
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E [εiεj ] = 0 for i 6= j. Usually εj are also uncorrelated with Xi and hence we have

1

k − p− 1

k∑
i=p+1

Ẑiβ̂i −
1

k − p− 1

k∑
i=p+1

Ziβi
p→ 0 as k → ∞,

1

k − p− 1

k∑
i=p+1

ẐiẐ
′
i −

1

k − p− 1

k∑
i=p+1

ZiZ
′
i − Ξk

p→ 0 as k → ∞,

where Ξk =
1

k − p− 1

k∑
i=p+1

diag
(
Vi−1/τ

2
ni−1

, . . . , Vi−p/τ
2
ni−p , 0, . . . , 0

)
. (15)

The feasible and infeasible OLS estimators differ because of the term Ξk. When this term is not negligible,

we should correct the OLS estimator. The term Ξk can be estimated by Ξ̂k, which is obtained by replacing

Vi with their estimators V̂i in equation (15). Hence, in for the empirical analysis we can use the Measurement

Error Corrected (MEC) estimator

θ̂MEC =

 1

k − p− 1

k∑
i=p+1

ẐiẐ
′
i − Ξ̂k

−1 1

k − p− 1

k∑
i=p+1

Ẑiβ̂i.

It is worth noting that in contrast to Kalman filter, this estimator does not need to assume that Ui (or εi)

are homoscedastic, which is important in finance applications.

To illustrate the described estimators, for each of the six stocks we estimate model (14) with p = 1 and

p = 2, where the betas are estimated by the TS-betas. We first consider the case with only the intercept

(Xi = 1). Then, for illustration we consider Xi = (1, V IXi−1)
′, where V IXi−1 is the (low frequency) CBOE

VIX at the end of week i−1. For comparison, we include both the results for the inconsistent OLS estimator

θ̂OLS and for the corrected estimator θ̂MEC . Table E.11 presents the results.

Several comments are in order. The betas of all stocks appear to follow stationary mean-reverting

processes, which is in line with the findings of Andersen et al. (2006). The measurement error corrections

are substantial; the MEC estimates indicate that betas are more persistent than the OLS estimates (suffering

from the attenuation bias) would suggest. This is important in practice, for example because well-known

anomalies in finance may be sensitive to the specification of the dynamics of betas, see Avramov and Chordia

(2006). The VIX does not appear to be an important determinant of the betas.8 It is worth noting that

the estimates for all of the considered stocks are qualitatively similar, which could be interpreted as an

illustration of the robustness of the methodology.

Considering the linear model (14) allows us to obtain explicit expression for the estimator θ̂MEC . Note

that we could also use the estimated V̂i to bias-correct the estimators in nonlinear models, although the

estimators may not have simple analytic expressions.

8For the OLS estimator, VIX is not statistically significant for any of the stocks and specifications (using Newey and West
(1987) estimator of standard errors). Also, ρ2 is not significantly different from zero for all stocks except INTC. We do not
present the standard errors for the OLS and MEC estimators since in the presence of leverage these would require an additional
analysis that is beyond the scope of this paper (see Andersen, Bollerslev, and Meddahi (2005) for a discussion).
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6 Conclusion

The current paper proves the validity of a multivariate subsampling method for inference on nonparametric

estimators with high-frequency data. The subsampling method estimates the asymptotic variance-covariance

matrices of multivariate high-frequency estimators without relying on the expression of these matrices. Our

theoretical result for the validity of the multivariate subsampling is a nontrivial extension of the existing

univariate results because we allow for the leverage effect in prices, as well as more general volatility dy-

namics. We study a data-driven bandwidth choice in a Monte Carlo study, and find that the performance of

the subsampling method is very stable across wide ranges of the bandwidths. We compare the finite sample

performance of the subsampling method with that of the plug-in method based on the expression of the

asymptotic variance. We find that the performance of the subsampling method is much more stable across

the TS parameters. Importantly, if the TS estimator is evaluated using the rule of Bandi and Russell (2011),

which minimises its finite sample MSE, the subsampling estimator works much better than the plug-in rule.

The underlying reason is the substantial difference between the asymptotic variance and the finite sample

variance of the TS estimator for certain ranges of the TS parameter.

We apply the multivariate subsampling method to the analysis of time variation in equity betas for six

stocks in 2006. We find strong evidence for variation in betas in 2006, and we identify multiple breaks across

weekly betas for each of the six stocks considered. Our results suggest that tick data contains substantially

more information on the time-variation in betas than data sampled at moderate frequencies such as five,

ten, or twenty minutes. We use a simple dynamic model to capture this time-variation in betas. We then

use the subsampled variances to correct for the errors-in-variables bias in this dynamic model. After the

bias-correction, the betas appear to be substantially more persistent than the naive estimators suggest.
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Zhang, L., P. Mykland, and Y. Äıt-Sahalia (2005). A tale of two time scales: determining integrated

volatility with noisy high-frequency data. Journal of the American Statistical Association, 100, 1394-1411.

Zu, Y., and P. Boswijk (2015). Estimating Spot Volatility with High-Frequency Financial Data. Journal

of Econometrics 181, 117-135.

A Proofs

A.1 Proof of Theorem 1

Let

θlongl =

lm/n∫
(l−1)m/n

f (cu) du, θshortl =

[(l−1)m+J ]/n∫
(l−1)m/n

f (cu) du,

V long
l =

lm/n∫
(l−1)m/n

g (cu) du, V short
l =

[(l−1)m+J ]/n∫
(l−1)m/n

g (cu) du.

The following two equations are proved below in Sections A.1.1 and A.1.2, respectively,

V −
K∑
l=1

m

J
V short
l = op(1) (16)

and

m

J

K∑
j=1

τ2n

∥∥∥∥θshortl − J

m
θlongl

∥∥∥∥2 = op(1). (17)

Introduce the following notation,

V̂ infeasible =
1

K

K∑
l=1

n

J
τ2nR

short
l

(
Rshortl

)′
, where

Rshortl =
n

J
θ̂shortl − n

J
θshortl .

Assumption A4 with s = J and (16) imply

V̂ infeasible − V = op(1).
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It remains to prove that

V̂ sub − V̂ infeasible = op(1). (18)

We rewrite this difference in terms of three types of components, dl, R
short
l , and Rlongl , where

dl =
n

m
θlongl − n

J
θshortl ,

Rlongl =
n

m
θ̂longl − n

m
θlongl .

In particular, we can represent the differences in (18) as follows,

V̂ sub − V̂ infeasible =
J

n

1

K

K∑
l=1

τ2n

(
−Rshortl Rlong′l −Rshortl d′l −R

long
l Rshort′l +Rlongl Rlong′l

+Rlongl d′l − dlRshort′l + dlR
long′
l + d′ld

′
l

)
. (19)

If we can show that

J

n

1

K

K∑
l=1

τ2nR
short
l Rshort′l = Op (1) , (20)

J

n

1

K

K∑
l=1

τ2nR
long
l Rlong′l = op (1) , (21)

J

n

1

K

K∑
l=1

τ2ndld
′
l = op (1) , (22)

then all terms in (19) are negligible by the Cauchy-Schwarz inequality, e.g.,

∣∣∣∣∣Jn 1

K

K∑
l=1

τ2n

(
Rshortl d′l

)∣∣∣∣∣ ≤
√√√√J

n

1

K

K∑
l=1

τ2n
(
Rshortl Rshort′l

)√√√√J

n

1

K

K∑
l=1

τ2n
(
dld
′
l

)
= op (1) .

Equation (20) follows from V̂ infeasible = V + op(1) = Op (1), equation (21) follows by Assumption A4 with

s = m together with equality V =
∑K

l=1 V
long
l , and equation (22) follows by (17). �

A.1.1 Proof of equation (16)

Let Ia,b =
b∫
a
‖cu − ca‖ du and Ia,b,t =

b∫
a
‖cu − ct‖ du. Consider a general matrix valued function η (c) :

Rd×d → Rq1×q2 , and let

H
η

a,b =

b∫
a

η (cu) du for any 0 ≤ a ≤ b ≤ 1.

26



We prove the following Lemma at the end of this Section,

Lemma 4. Suppose ϕ is a functional and is continuously differentiable. Let An ≤ an < bn ≤ Bn be

sequences with Bn −An → 0 as n→∞. Let ϕ∇ =
∑d

k1=1

∑d
k2=1 supt∈[0,1] |∂ϕ (ct)/ ∂ct,k1k2 |. Then∣∣∣∣ 1

Bn −An
Hϕ
An,Bn

− 1

bn − an
Hϕ
an,bn

∣∣∣∣ ≤ ϕ∇ ×{IAn,an,an + Ian,Bn
Bn −An

+
Ian,bn
bn − an

}
.

To prove equation (16), consider any k1, k2 ∈ {1, . . . , d} and let ϕ (·) denote function gk1k2 (·). We have

Vk1k2 −
K∑
l=1

m

J
V short
l,k1k2 =

K∑
l=1

(
V long
l,k1k2

− m

J
V short
l,k1k2

)
=

m

n

K∑
l=1

(
1

m/n
Hϕ

(l−1)m/n,lm/n −
1

J/n
Hϕ

(l−1)m/n,[(l−1)m+J ]/n

)
.

Applying Lemma 4 we obtain∣∣∣∣∣Vk1k2 −
K∑
l=1

m

J
V short
l,k1k2

∣∣∣∣∣ ≤ m

n

K∑
l=1

∣∣∣∣ 1

m/n
Hϕ

(l−1)m/n,lm/n −
1

J/n
Hϕ

(l−1)m/n,[(l−1)m+J ]/n

∣∣∣∣
≤ ϕ∇

m

n

K∑
l=1

{
I(l−1)m/n,lm/n

m/n
+
I(l−1)m/n,[(l−1)m+J ]m/n

J/n

}
. (23)

Assumptions A1 and A2 imply ϕ∇ = OP (1). Using Assumption A2 and Holder inequality we have

E [‖ct1 − ct2‖] ≤ B
1/2
c |t1 − t2|α/2, so for all l, m, n we have

1

m/n
E
[
I(l−1)m/n,lm/n

]
≤ B1/2

c (m/n)α/2 and
1

J/n
E
[
I(l−1)m/n,[(l−1)m+J ]m/n

]
≤ B1/2

c (J/n)α/2 .

Hence

E

[
m

n

K∑
l=1

{
I(l−1)m/n,lm/n

m/n
+
I(l−1)m/n,[(l−1)m+J ]m/n

J/n

}]
≤ B1/2

c K
m

n

((m
n

)α/2
+

(
J

n

)α/2)
= o (1) ,

as long as J/n → 0 and m/n → 0, since Km
n → 1. Using Markov inequality and equation (23) we obtain

Vk1k2 −
∑K

l=1
m
J V

short
l,k1k2

= oP (1) and hence equation (16) holds. �
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Proof of Lemma 4: We omit subscript n and replace An, an, bn, Bn with A, a, b, B, respectively.∣∣∣∣HA,B −
B −A
b− a

Ha,b

∣∣∣∣
=

∣∣∣∣∣∣
B∫
A

ϕ (cu) du− B −A
b− a

b∫
a

ϕ (cu) du

∣∣∣∣∣∣
=

∣∣∣∣∣∣
B∫
A

(ϕ (cu)− ϕ (ca)) du−
B −A
b− a

b∫
a

(ϕ (cu)− ϕ (ca)) du

∣∣∣∣∣∣
≤

B∫
A

|ϕ (cu)− ϕ (ca)| du+
B −A
b− a

b∫
a

|ϕ (cu)− ϕ (ca)| du

≤ ϕ∇


B∫
A

‖cu − ca‖ du+
B −A
b− a

b∫
a

‖cu − ca‖ du


≤ (B −A)ϕ∇

{
IA,a,a + Ia,B
B −A

+
Ia,b
b− a

}
. �

A.1.2 Proof of equation (17)

Fix any k and let ϕ (·) denote fk (·). Then, using Lemma 4 in Section A.1.1,

K∑
j=1

(
θshortl,k − J

m
θlongl,k

)2

=

(
J

n

)2 K∑
j=1

(
1

J/n
θshortl,k − 1

m/n
θlongl,k

)2

≤
(
J

n

)2 K∑
j=1

ϕ∇
2

(
I(l−1)m/n,lm/n

m/n
+
I(l−1)m/n,[(l−1)m+J ]m/n

J/n

)2

≤ 2ϕ∇
2

(
J

n

)2 K∑
j=1

(
I2(l−1)m/n,lm/n

(m/n)2
+
I2(l−1)m/n,[(l−1)m+J ]m/n

(J/n)2

)
.

To bound the sum, notice that by Cauchy-Schwarz inequality and Assumption A2 for any a < b

1

(b− a)2
E
[
I2a,b
]

=
1

(b− a)2
E


 b∫
a

‖cu − ca‖ du

2
 ≤ 1

(b− a)2
E

(b− a)

b∫
a

‖cu − ca‖2 du

 ≤ Bc (b− a)α .
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Thus,

E

(J
n

)2 K∑
j=1

(
I2(l−1)m/n,lm/n

(m/n)2
+
I2(l−1)m/n,[(l−1)m+J ]m/n

(J/n)2

)
≤ Bc

J2

n2
K

((m
n

)α
+

(
J

n

)α)
≤ 2Bc

J2

nm

(m
n

)α
.

Hence, we can use Markov inequality and ϕ∇ = OP (1) to obtain

m

J

K∑
j=1

τ2n

∣∣∣∣θshortl,k − J

m
θlongl,k

∣∣∣∣2 = OP

(
m

J
τ2n
J2

nm

(m
n

)α)
= OP

(
τ2n
Jmα

n1+α

)
,

so equation (17) follows from Assumption A3. �

B Proof of Lemma 3

The proof follows closely Comte and Renault (1998). The process x(t) = 1
2 ln ct can also be written as

x(t) =
∫ t
0 a(t− s)dW (s) with

a(x) =
γ

Γ(1 + α)

(
xα − κe−κx

∫ x

0
eκuuαdu

)
and W (s) a standard Brownian Motion. Let t1 ≤ t2. We have

E (ct2 − ct1)2

= E (exp(2x(t2))− exp(2x(t1)))
2

= e8
∫ t1
0 a2(x)dx + e8

∫ t2
0 a2(x)dx − 2e2

∫ t1
0 a2(x)dx+2

∫ t2
0 a2(x)dx+4

∫ t1
0 a(x)(a(t2−t1+x))dx

= e8
∫ t2
0 a2(x)dx

(
1 + e−8

∫ t2
t1
a2(x)dx − 2e−6

∫ t1
0 a2(x)dx−4

∫ t1
0 a(x)(a(x)−a(t2−t1+x))dx

)
≤ 2e8

∫ t2
0 a2(x)dx

(
1− e−6

∫ t2
t1
a2(x)dx−4

∫ t1
0 a(x)(a(x)−a(t2−t1+x))dx

)
.

The term inside the last parenthesis is necessarily nonnegative, and the term in the last exponential is

nonpositive. Moreover |
∫ t2
t1
a2(x)dx| ≤M2

1 |t2 − t1| with M1 = supx∈[0,1] |a(x)|, and since a is α-Hölder,

∣∣∣∣∫ t1

0
a(x)(a(x)− a(t2 − t1 + x))dx

∣∣∣∣ ≤ Cα |t2 − t1|α ∫ t1

0
|a(x)| dx ≤ Cα |t2 − t1|αM1,

we have ∣∣∣∣∫ t2

t1

a2(x)dx+

∫ t2

0
a(x) (a(x)− a(t2 − t1 + x)) dx

∣∣∣∣ ≤M2 |t2 − t1|α .

Finally, use ∀u ≤ 0, 0 ≤ 1− eu ≤ |u|, to conclude Assumption A2 with α = α. �
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C Proof of Corollary 2

We prove Corollary 2 by verifying the assumptions of Theorem 1. Assumption A1 is clearly satisfied with

f(u) = cu and g(u) such that its (1, 1) element is

g11(u) = ϕTS
4

3
c2u,11 + 8(ϕTS)−2V ar

(
εF
)2

+ 16(ϕTS)−2 lim
n→∞

n∑
i=1

Cov
(
εF0 , ε

F
i/n

)2
, (24)

and other elements of g(u) defined similarly (see references in the main text). Assumption A2 is directly

assumed in the statement of Corollary (sufficient conditions are discussed in the main text). Assumption

A3 is the restriction on the subsample sizes, that is also directly assumed by the statement of the Corollary.

Assumption A4 is verified by the calculations similar to Lemma 7 of Kalnina (2011); it makes use of

Assumption N. �
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E Figures and Tables for the Empirical Results

trans./week ω̂2 · 107 ω̃2 · 107 ξ̂ · 105 acf(1) acf(2) acf(3)

AIG 18,029 0.207 0.136 0.156 -0.320 0.102 -0.014
GE 29,015 0.228 0.188 0.189 -0.582 0.248 -0.118
IBM 20,070 0.162 0.095 0.117 -0.302 0.081 0.008
INTC 35,267 0.518 0.407 0.127 -0.525 0.200 -0.085
MMM 14,005 0.284 0.123 0.121 -0.269 0.092 0.006
MSFT 32,421 0.338 0.282 0.178 -0.555 0.224 -0.100
SPY 39,801 0.037 0.018 0.048 -0.352 0.065 0.006

Table E.1: Summary statistics of data before the synchronization. First column contains average number of trans-
actions per week. Second and third columns contains variance of the noise estimates over the whole year 2006,
ω̂2 = RV/2n, ω̃2 = (RV − ÎV )/2n where IV is estimated by the TSRV; n is the total number of transactions in 2006

for the corresponding stock. Fourth column contains estimated noise-to-signal ratio, ξ̂ = ω̂2/ÎV . Last three columns
contain autocorrelation functions of returns at first, second, and third lag.
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trans./week ω̂2 · 107 ω̃2 · 107 ξ̂ · 105 acf(1) acf(2) acf(3)

AIG(SPY) 15,425 0.220 0.138 0.282 -0.15 0.051 0.02
GE(SPY) 21,819 0.229 0.176 0.295 -0.221 0.058 0.015
IBM(SPY) 16,890 0.174 0.095 0.223 -0.166 0.052 0.021
INTC(SPY) 24,601 0.545 0.384 0.700 -0.247 0.060 0.016
MMM(SPY) 12,315 0.303 0.121 0.389 -0.114 0.048 0.014
MSFT(SPY) 23,322 0.347 0.267 0.451 -0.238 0.061 0.017

SPY(AIG) 15,425 0.059 0.011 0.045 -0.276 0.084 -0.006
SPY(GE) 21,819 0.049 0.014 0.040 -0.509 0.173 -0.059
SPY(IBM) 16,890 0.056 0.011 0.040 -0.257 0.069 0.011
SPY(INTC) 24,601 0.045 0.014 0.011 -0.439 0.132 -0.041
SPY(MMM) 12,315 0.071 0.011 0.031 -0.232 0.082 0.013
SPY(MSFT) 23,322 0.046 0.014 0.024 -0.476 0.155 -0.051

AIG(joint) 6,957 0.037 0.018 0.273 -0.111 0.010 -0.007
GE(joint) 6,957 0.032 0.015 0.262 -0.218 0.028 0.005
IBM(joint) 6,957 0.032 0.013 0.228 -0.08 0.010 -0.003
INTC(joint) 6,957 0.094 0.037 0.227 -0.174 0.002 -0.006
MMM(joint) 6,957 0.046 0.014 0.197 -0.103 0.032 0.003
MSFT(joint) 6,957 0.054 0.027 0.277 -0.199 0.013 -0.004
SPY(joint) 6,957 0.011 0.001 0.145 -0.014 0.028 0.010

Table E.2: Summary statistics of the data after the synchronization. The notation ”AIG(SPY)” means stock AIG
after it has been synchronized with SPY. By construction, number of transactions of AIG(SPY) is the same as that
of SPY(AIG). AIG(joint) means stock AIG after it has been synchronised with the other 6 series. See Table E.1
annotation for the meaning of the other column entries.
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Figure E.3: The solid lines (left y-axis) are the volatility signature plots, i.e., realized variance plotted against the
frequency (in ticks) used in its calculation. Dashed lines (right y-axis) are the realized correlation plots against the
frequency (in ticks). Data covers the whole year 2006.
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Figure E.4: Average weekly betas of individual stocks against the frequency (in ticks) used in their calculation. Data
year 2006.
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Figure E.5: Estimated betas for AIG and GE with 95% confidence intervals. Filled dots with rectangular CIs correspond
to β̂RV

10min, empty dots with error-bar-type CIs correspond to β̂TS. Weeks on the x-axis.
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Figure E.6: Estimated betas for IBM and INTC with 95% confidence intervals. Filled dots with rectangular CIs
correspond to β̂RV

10min, empty dots with error-bar-type CIs correspond to β̂TS. Weeks on the x-axis.
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Figure E.7: Estimated betas for MMM and MSFT with 95% confidence intervals. Filled dots with rectangular CIs
correspond to β̂RV

10min, empty dots with error-bar-type CIs correspond to β̂TS. Weeks on the x-axis.
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2006 Q1 Q2 Q3 Q4

Test based on β̂RV5min

AIG 177.32 (0) 20.37 (0.06) 35.09 (0) 46.79 (0) 41.43 (0)
GE 125.94 (0) 12.38 (0.416) 29.49 (0.003) 35.44 (0) 19.73 (0.072)
IBM 109.66 (0) 16.81 (0.157) 27.84 (0.006) 26.07 (0.011) 14.79 (0.253)
INTC 457.06 (0) 75.57 (0) 62.42 (0) 53.76 (0) 35.38 (0)
MMM 183.03 (0) 25.73 (0.012) 38.28 (0) 22.82 (0.029) 51.27 (0)
MSFT 282.25 (0) 19.57 (0.076) 97.53 (0) 87.92 (0) 46.59 (0)

Test based on β̂RV10min

AIG 101.53 (0) 19.77 (0.071) 19.37 (0.08) 18.26 (0.108) 26.23 (0.01)
GE 98.04 (0) 21.89 (0.039) 29.30 (0.004) 26.84 (0.008) 11.31 (0.503)
IBM 94.37 (0) 22.80 (0.029) 23.04 (0.027) 9.21 (0.685) 10.32 (0.588)
INTC 354.08 (0) 60.16 (0) 56.12 (0) 36.89 (0) 17.61 (0.128)
MMM 109.51 (0) 13.01 (0.368) 26.34 (0.01) 14.62 (0.263) 33.46 (0.001)
MSFT 171.86 (0) 15.58 (0.211) 43.02 (0) 50.03 (0) 33.49 (0.001)

Test based on β̂RV20min

AIG 79.93 (0.006) 26.59 (0.009) 12.66 (0.394) 9.68 (0.644) 18.99 (0.089)
GE 93.09 (0) 18.93 (0.09) 21.75 (0.04) 19.71 (0.073) 18.80 (0.093)
IBM 98.63 (0) 14.20 (0.288) 29.32 (0.004) 12.89 (0.377) 9.40 (0.668)
INTC 261.08 (0) 64.63 (0) 44.82 (0) 13.34 (0.345) 22.26 (0.035)
MMM 82.87 (0.003) 14.27 (0.284) 14.50 (0.27) 13.41 (0.34) 23.12 (0.027)
MSFT 104.92 (0) 21.23 (0.047) 19.97 (0.068) 24.02 (0.02) 18.53 (0.101)

Test based on β̂TS

AIG 333.65 (0) 17.59 (0.129) 59.45 (0) 114.00 (0) 41.42 (0)
GE 238.62 (0) 44.07 (0) 69.14 (0) 54.92 (0) 51.61 (0)
IBM 178.97 (0) 14.08 (0.295) 37.63 (0) 43.27 (0) 35.83 (0)
INTC 1111.55 (0) 153.92 (0) 83.24 (0) 106.38 (0) 49.51 (0)
MMM 268.93 (0) 47.89 (0) 36.55 (0) 17.07 (0.147) 82.21 (0)
MSFT 623.50 (0) 45.71 (0) 128.26 (0) 178.41 (0) 121.23 (0)

Table E.8: Values of the Chi-square test; corresponding p-values in parenthesis. The null hypothesis is that true betas
are constant over the some time interval. The top row indicates the corresponding time interval.
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β̂RV5min β̂RV10min β̂RV20min β̂TS

2006 937.6 (0) 700.8 (0) 545.2 (0) 3286.8 (0)
Q1 107.2 (0.005) 98.1 (0.022) 85.2 (0.138) 445.7 (0)
Q2 147.1 (0) 114.9 (0.001) 106.9 (0.005) 289.2 (0)
Q3 296.8 (0) 222.5 (0) 140.6 (0) 671.3 (0)
Q4 172.4 (0) 145.9 (0) 154.7 (0) 542.9 (0)

Table E.9: Values of the joint Chi-square test (see section 3.1); corresponding p-values in parenthesis. The null
hypothesis is that true betas for all 6 stocks are constant over a particular time interval, which is indicated in the
first column. First three methods (labelled β̂RV

5min, β̂RV
10min, and β̂RV

20min ) are based on the realized covariance and the
estimator of Barndorff-Nielsen and Shephard (2004) of its asymptotic variance; for the last column, Two Scale method
is used for point estimates of betas, and subsampling method is used to estimate their asymptotic variance-covariance
matrices.

AIG GE IBM INTC MMM MSFT

α = 0.01 1 (1,0,0) 0 (0,0,0) 0 (0,0,0) 2 (2,0,0) 0 (0,0,0) 4 (4,0,0)

β̂RV5min α = 0.05 2 (2,0,0) 0 (0,0,0) 0 (0,0,0) 3 (3,0,0) 1 (1,0,0) 6 (6,0,0)
α = 0.10 2 (2,0,0) 0 (0,0,0) 0 (0,0,0) 5 (5,0,0) 1 (1,0,0) 6 (6,0,0)

α = 0.01 0 (0,0,0) 0 (0,0,0) 0 (0,0,0) 3 (3,0,0) 0 (0,0,0) 1 (1,0,0)

β̂RV10min α = 0.05 0 (0,0,0) 0 (0,0,0) 0 (0,0,0) 3 (3,0,0) 0 (0,0,0) 1 (1,0,0)
α = 0.10 1 (1,0,0) 0 (0,0,0) 0 (0,0,0) 3 (3,0,0) 0 (0,0,0) 4 (4,0,0)

α = 0.01 0 (0,0,0) 0 (0,0,0) 0 (0,0,0) 2 (2,0,0) 0 (0,0,0) 0 (0,0,0)

β̂RV20min α = 0.05 0 (0,0,0) 0 (0,0,0) 0 (0,0,0) 2 (2,0,0) 0 (0,0,0) 1 (1,0,0)
α = 0.10 0 (0,0,0) 0 (0,0,0) 0 (0,0,0) 3 (3,0,0) 0 (0,0,0) 1 (1,0,0)

α = 0.01 2 (2,0,0) 3 (2,1,0) 1 (1,0,0) 8 (7,1,0) 1 (1,0,0) 10 (10,0,0)

β̂TS α = 0.05 4 (4,0,0) 4 (4,0,0) 2 (2,0,0) 9 (8,1,0) 2 (2,0,0) 12 (12,0,0)
α = 0.10 5 (5,0,0) 5 (5,0,0) 2 (2,0,0) 14 (13,1,0) 2 (2,0,0) 14 (13,1,0)

Table E.10: Number of the detected breaks in weekly betas during 2006, i.e., number of the rejected null hypotheses out
of 51. See Section 3.2 for the description of the test. Numbers in parenthesis are the breakdown of the total detected
breaks across first, second, and third step of testing; and α is the significance level. First three methods (labelled β̂RV

5min,

β̂RV
10min, and β̂RV

20min ) are based on the realized covariance and the estimator of Barndorff-Nielsen and Shephard (2004)
of its asymptotic variance; in the last three rows, the Two Scale method is used for point estimates of betas, and
subsampling method is used to estimate their asymptotic variance-covariance matrices.
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Stock ρOLS1 ρOLS2 γOLS1 γOLSV IX ρMEC
1 ρMEC

2 γMEC
1 γMEC

V IX

AIG 0.60 0.31 0.73 0.21
AIG 0.56 0.09 0.27 0.81 -0.08 0.20
AIG 0.59 0.34 -0.00 0.73 0.23 -0.00
AIG 0.56 0.08 0.30 -0.00 0.82 -0.08 0.24 -0.00

GE 0.24 0.45 0.32 0.41
GE 0.21 0.05 0.43 0.29 0.05 0.39
GE 0.20 0.60 -0.01 0.27 0.56 -0.01
GE 0.18 0.05 0.58 -0.01 0.25 0.04 0.54 -0.01

IBM 0.39 0.48 0.57 0.34
IBM 0.37 0.03 0.47 0.61 -0.09 0.38
IBM 0.39 0.51 -0.00 0.56 0.35 -0.00
IBM 0.37 0.02 0.50 -0.00 0.61 -0.10 0.40 -0.00

INTC 0.64 0.42 0.68 0.37
INTC 0.44 0.31 0.28 0.46 0.31 0.25
INTC 0.62 0.54 -0.01 0.66 0.46 -0.01
INTC 0.44 0.31 0.26 0.00 0.47 0.31 0.20 0.00

MMM 0.58 0.39 0.74 0.23
MMM 0.51 0.10 0.35 0.78 -0.07 0.26
MMM 0.55 0.54 -0.01 0.72 0.35 -0.01
MMM 0.50 0.08 0.50 -0.01 0.77 -0.09 0.39 -0.01

MSFT 0.43 0.46 0.48 0.43
MSFT 0.42 0.04 0.44 0.47 0.02 0.42
MSFT 0.37 0.71 -0.01 0.41 0.66 -0.01
MSFT 0.38 -0.02 0.70 -0.01 0.44 -0.05 0.67 -0.01

Table E.11: Estimated dynamics of the betas. OLS and MEC estimators are described in Section 5.3. Here ρj are the
AR(p) coefficients, γ1 is the intercept, and γV IX is the coefficient on V IXi−1.
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M Results of Monte Carlo Simulations

ξ = 0.000 ξ = 0.001
(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

G1 = 3 0.10 0.09 0.11 0.05 0.11 0.08 0.14 0.12 0.14 0.17 0.15 0.13
G1 = 5 0.11 0.10 0.12 0.06 0.13 0.09 0.13 0.12 0.13 0.11 0.14 0.11
G1 = 10 0.14 0.13 0.15 0.07 0.15 0.11 0.15 0.13 0.15 0.09 0.16 0.12
G1 = 15 0.17 0.15 0.17 0.09 0.18 0.13 0.17 0.16 0.18 0.10 0.19 0.13
G1 = 20 0.19 0.17 0.20 0.10 0.21 0.15 0.19 0.18 0.20 0.11 0.21 0.15
G1 = 50 0.29 0.26 0.30 0.15 0.32 0.22 0.29 0.27 0.31 0.16 0.33 0.23
G1 = 70 0.34 0.30 0.36 0.18 0.38 0.26 0.35 0.32 0.36 0.19 0.38 0.27

GBR1 2.00 1.90 2.00 1.67 1.74 1.75 4.64 4.19 3.99 11.99 4.37 6.07

ĜBR1 2.01 2.01 2.01 2.01 2.01 2.01 2.17 2.16 2.11 3.22 2.16 2.37
G?1 0.00 0.00 0.00 0.00 0.00 0.00 2.62 2.32 2.00 9.24 2.40 3.89

Ĝ?1 0.37 0.36 0.36 0.36 0.36 0.36 0.73 0.72 0.65 1.93 0.71 0.99

Table M.1: The last four rows denote the averages across simulations of GBR
1 , ĜBR

1 , G?
1, and Ĝ?

1, respectively. The
rows above them show the RMSE times a factor of 10 of the TS-beta for different values of the TS parameter G1 and
different scenarios (1)-(6). ξ is the noise-to-signal ratio.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3, V FS = 0.294 (V pl = 0.155, V Asy = 0.145)

100 0.286 0.284 0.283 0.283 0.283 0.284 0.283 0.284 0.284
200 0.295 0.294 0.294 0.293 0.293 0.293 0.293 0.295 0.295
300 0.299 0.297 0.297 0.297 0.296 0.296 0.296 0.298 0.299
400 0.302 0.299 0.299 0.299 0.298 0.297 0.299 0.300 0.302
500 0.300 0.300 0.299 0.299 0.298 0.300 0.302 0.304
600 0.301 0.301 0.301 0.299 0.298 0.300 0.303 0.305
800 0.303 0.302 0.302 0.300 0.299 0.301 0.305 0.308
1000 0.302 0.302 0.300 0.299 0.302 0.306 0.309

G1 = 5, V FS = 0.378 (V pl = 0.247, V Asy = 0.242)

100 0.359 0.357 0.356 0.356 0.355 0.356 0.355 0.356 0.357
200 0.376 0.374 0.374 0.373 0.372 0.372 0.373 0.374 0.376
300 0.381 0.380 0.380 0.378 0.378 0.377 0.378 0.380 0.381
400 0.383 0.383 0.383 0.381 0.381 0.380 0.382 0.384 0.386
500 0.384 0.384 0.383 0.382 0.381 0.384 0.385 0.388
600 0.386 0.385 0.384 0.383 0.382 0.384 0.387 0.390
800 0.388 0.387 0.385 0.384 0.383 0.386 0.389 0.394
1000 0.387 0.386 0.384 0.383 0.386 0.391 0.396

G1 = 10, V FS = 0.585 (V pl = 0.489, V Asy = 0.483)

100 0.542 0.537 0.534 0.533 0.534 0.534 0.533 0.533 0.535
200 0.586 0.583 0.581 0.580 0.580 0.580 0.581 0.582 0.583
300 0.600 0.598 0.596 0.595 0.595 0.595 0.597 0.597 0.599
400 0.596 0.605 0.604 0.601 0.602 0.602 0.605 0.605 0.608
500 0.607 0.607 0.605 0.606 0.606 0.610 0.609 0.613
600 0.610 0.609 0.608 0.609 0.609 0.612 0.613 0.616
800 0.612 0.614 0.612 0.613 0.613 0.617 0.617 0.624
1000 0.614 0.614 0.616 0.615 0.618 0.622 0.627

G1 = 20, V FS = 1.025 (V pl = 0.978, V Asy = 0.967)

100 0.836 0.823 0.815 0.813 0.812 0.812 0.810 0.808 0.810
200 0.978 0.971 0.964 0.962 0.962 0.962 0.961 0.960 0.964
300 1.016 1.020 1.013 1.012 1.012 1.012 1.012 1.010 1.010
400 0.991 1.041 1.036 1.034 1.036 1.036 1.038 1.032 1.036
500 1.051 1.048 1.048 1.050 1.050 1.051 1.047 1.051
600 1.055 1.057 1.057 1.060 1.060 1.060 1.057 1.059
800 1.049 1.070 1.070 1.075 1.075 1.076 1.070 1.076
1000 1.073 1.076 1.082 1.083 1.081 1.080 1.084

G1 = 50, V FS = 2.430 (V pl = 2.456, V Asy = 2.417)

100 1.079 1.007 0.975 0.958 0.950 0.942 0.940 0.929 0.932
200 1.840 1.814 1.783 1.768 1.762 1.757 1.754 1.745 1.747
300 2.019 2.082 2.056 2.042 2.039 2.033 2.031 2.023 2.023
400 1.852 2.205 2.187 2.176 2.174 2.169 2.168 2.159 2.164
500 2.266 2.261 2.253 2.253 2.251 2.251 2.245 2.241
600 2.285 2.307 2.303 2.305 2.305 2.306 2.300 2.298
800 2.200 2.360 2.366 2.372 2.377 2.380 2.374 2.367
1000 2.373 2.403 2.414 2.421 2.426 2.422 2.415

Table M.2: Sensitivity and choice of subsampling parameters J and m for the estimation of the variance of β̂TS (times
100). The numbers in the table represent average variance estimated by the subsampling estimator over N = 1000

replications. Scenario (3). These numbers are to be compared with the actual variability of β̂TS , V FS , which is the

average over simulations of n1/3
(
β̂TS − β

)2
. Noise-to-signal ratio is ξ = 0.000.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3, V FS = 0.496 (V pl = 0.223, V Asy = 0.169)

100 0.467 0.466 0.464 0.464 0.463 0.462 0.461 0.462 0.463
200 0.482 0.481 0.479 0.478 0.478 0.478 0.478 0.476 0.476
300 0.490 0.487 0.485 0.484 0.482 0.482 0.482 0.480 0.481
400 0.498 0.490 0.487 0.486 0.485 0.485 0.484 0.483 0.483
500 0.491 0.488 0.486 0.486 0.486 0.485 0.483 0.483
600 0.492 0.489 0.486 0.486 0.486 0.486 0.484 0.484
800 0.496 0.492 0.488 0.488 0.488 0.488 0.485 0.485
1000 0.492 0.489 0.489 0.489 0.488 0.485 0.486

G1 = 5, V FS = 0.447 (V pl = 0.287, V Asy = 0.251)

100 0.435 0.434 0.432 0.431 0.430 0.431 0.429 0.430 0.431
200 0.455 0.453 0.452 0.451 0.450 0.450 0.449 0.448 0.448
300 0.462 0.460 0.458 0.457 0.456 0.455 0.455 0.453 0.454
400 0.467 0.463 0.460 0.460 0.458 0.458 0.457 0.456 0.456
500 0.464 0.462 0.460 0.459 0.459 0.459 0.456 0.457
600 0.465 0.464 0.461 0.460 0.460 0.459 0.456 0.458
800 0.469 0.467 0.463 0.461 0.462 0.461 0.459 0.460
1000 0.468 0.463 0.462 0.462 0.460 0.458 0.460

G1 = 10, V FS = 0.625 (V pl = 0.532, V Asy = 0.486)

100 0.574 0.569 0.566 0.564 0.563 0.564 0.561 0.563 0.563
200 0.621 0.617 0.615 0.613 0.610 0.610 0.610 0.609 0.611
300 0.634 0.634 0.629 0.628 0.625 0.625 0.625 0.623 0.624
400 0.632 0.640 0.636 0.635 0.631 0.630 0.631 0.628 0.631
500 0.644 0.641 0.638 0.634 0.632 0.634 0.629 0.632
600 0.645 0.645 0.640 0.636 0.634 0.635 0.630 0.633
800 0.646 0.650 0.643 0.639 0.638 0.638 0.633 0.636
1000 0.652 0.644 0.640 0.639 0.637 0.633 0.637

G1 = 20, V FS = 1.063 (V pl = 1.055, V Asy = 0.968)

100 0.852 0.837 0.830 0.825 0.824 0.825 0.821 0.822 0.822
200 0.996 0.986 0.981 0.977 0.973 0.972 0.971 0.970 0.973
300 1.031 1.034 1.029 1.025 1.020 1.019 1.021 1.018 1.022
400 1.009 1.056 1.051 1.048 1.043 1.040 1.043 1.039 1.045
500 1.067 1.065 1.061 1.056 1.053 1.055 1.050 1.054
600 1.072 1.075 1.071 1.066 1.062 1.064 1.057 1.063
800 1.065 1.088 1.082 1.078 1.076 1.075 1.069 1.074
1000 1.092 1.084 1.083 1.083 1.077 1.074 1.081

G1 = 50, V FS = 2.569 (V pl = 2.657, V Asy = 2.418)

100 1.087 1.010 0.978 0.963 0.954 0.947 0.942 0.935 0.939
200 1.853 1.816 1.788 1.777 1.768 1.761 1.757 1.751 1.749
300 2.025 2.076 2.054 2.048 2.040 2.033 2.026 2.017 2.020
400 1.860 2.198 2.184 2.183 2.179 2.170 2.160 2.149 2.154
500 2.256 2.260 2.264 2.261 2.254 2.242 2.228 2.232
600 2.279 2.310 2.319 2.320 2.315 2.301 2.284 2.289
800 2.204 2.370 2.390 2.397 2.396 2.374 2.356 2.361
1000 2.383 2.422 2.438 2.441 2.411 2.398 2.401

Table M.3: Sensitivity and choice of subsampling parameters J and m for the estimation of the variance of β̂TS (times
100). The numbers in the table represent average variance estimated by the subsampling estimator over N = 1000

replications. Scenario (3). These numbers are to be compared with the actual variability of β̂TS , V FS , which is the

average over simulations of n1/3
(
β̂TS − β

)2
. Noise-to-signal ratio is ξ = 0.001.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3 (coverage is 0.839 for V pl and 0.826 for V Asy)

100 0.951 0.953 0.950 0.953 0.950 0.948 0.952 0.943 0.947
200 0.952 0.952 0.950 0.950 0.951 0.949 0.952 0.952 0.952
300 0.956 0.952 0.951 0.950 0.950 0.951 0.953 0.949 0.951
400 0.956 0.951 0.947 0.945 0.949 0.950 0.950 0.949 0.948
500 0.950 0.945 0.945 0.945 0.946 0.949 0.953 0.954
600 0.952 0.947 0.946 0.948 0.947 0.944 0.951 0.951
800 0.954 0.947 0.948 0.945 0.945 0.947 0.950 0.950
1000 0.955 0.949 0.946 0.944 0.946 0.947 0.950

G1 = 5 (coverage is 0.890 for V pl and 0.885 for V Asy)

100 0.947 0.946 0.948 0.944 0.948 0.942 0.945 0.950 0.947
200 0.948 0.945 0.948 0.945 0.946 0.944 0.947 0.946 0.948
300 0.954 0.945 0.944 0.947 0.947 0.944 0.946 0.947 0.949
400 0.951 0.946 0.943 0.948 0.948 0.945 0.948 0.948 0.952
500 0.948 0.944 0.946 0.948 0.946 0.946 0.954 0.956
600 0.950 0.948 0.947 0.946 0.945 0.951 0.950 0.955
800 0.955 0.949 0.945 0.942 0.943 0.950 0.953 0.956
1000 0.950 0.947 0.943 0.948 0.949 0.951 0.950

G1 = 10 (coverage is 0.933 for V pl and 0.936 for V Asy)

100 0.950 0.948 0.945 0.947 0.950 0.947 0.944 0.944 0.946
200 0.956 0.954 0.953 0.951 0.954 0.953 0.953 0.956 0.951
300 0.958 0.954 0.953 0.953 0.953 0.954 0.951 0.951 0.944
400 0.958 0.955 0.952 0.952 0.955 0.953 0.954 0.952 0.949
500 0.957 0.954 0.953 0.954 0.952 0.951 0.953 0.946
600 0.959 0.952 0.952 0.952 0.952 0.950 0.953 0.946
800 0.959 0.956 0.950 0.950 0.945 0.945 0.953 0.952
1000 0.953 0.952 0.948 0.947 0.945 0.950 0.948

G1 = 20 (coverage is 0.942 for V pl and 0.942 for V Asy)

100 0.919 0.913 0.911 0.914 0.914 0.918 0.915 0.913 0.916
200 0.939 0.939 0.934 0.942 0.942 0.944 0.934 0.937 0.940
300 0.947 0.945 0.945 0.948 0.949 0.947 0.944 0.942 0.947
400 0.947 0.949 0.945 0.945 0.947 0.947 0.945 0.942 0.945
500 0.947 0.943 0.946 0.949 0.945 0.947 0.940 0.949
600 0.948 0.943 0.947 0.942 0.944 0.943 0.937 0.948
800 0.948 0.947 0.944 0.942 0.947 0.942 0.942 0.944
1000 0.953 0.947 0.945 0.940 0.939 0.935 0.937

G1 = 50 (coverage is 0.945 for V pl and 0.949 for V Asy)

100 0.806 0.791 0.789 0.778 0.780 0.777 0.782 0.765 0.773
200 0.896 0.892 0.888 0.890 0.891 0.887 0.884 0.881 0.881
300 0.909 0.914 0.915 0.913 0.912 0.914 0.909 0.907 0.909
400 0.897 0.925 0.919 0.923 0.926 0.924 0.916 0.919 0.913
500 0.929 0.924 0.930 0.930 0.926 0.923 0.923 0.923
600 0.928 0.927 0.931 0.929 0.927 0.921 0.926 0.924
800 0.931 0.936 0.933 0.930 0.925 0.921 0.922 0.925
1000 0.942 0.937 0.931 0.925 0.922 0.921 0.922

Table M.4: Sensitivity and choice of subsampling parameters J and m for the coverage of the confidence interval
for β̂TS . The numbers in the table represent empirical coverage rate of the subsampling estimator over N = 1000
replications. Scenario (3). The nominal coverage rate is 0.95. Noise-to-signal ratio is ξ = 0.000.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3 (coverage is 0.801 for V pl and 0.736 for V Asy)

100 0.939 0.941 0.942 0.943 0.937 0.939 0.938 0.940 0.938
200 0.941 0.946 0.946 0.945 0.945 0.944 0.941 0.941 0.941
300 0.943 0.948 0.950 0.947 0.945 0.942 0.944 0.942 0.940
400 0.953 0.945 0.949 0.947 0.945 0.943 0.945 0.943 0.947
500 0.948 0.946 0.948 0.944 0.941 0.942 0.943 0.944
600 0.952 0.949 0.945 0.944 0.939 0.941 0.941 0.944
800 0.955 0.951 0.942 0.941 0.942 0.939 0.938 0.942
1000 0.951 0.946 0.946 0.941 0.937 0.938 0.936

G1 = 5 (coverage is 0.879 for V pl and 0.863 for V Asy)

100 0.941 0.939 0.938 0.937 0.938 0.939 0.937 0.936 0.936
200 0.940 0.943 0.943 0.940 0.943 0.944 0.943 0.941 0.941
300 0.947 0.942 0.943 0.945 0.949 0.945 0.946 0.943 0.942
400 0.951 0.943 0.944 0.946 0.948 0.947 0.945 0.948 0.947
500 0.943 0.947 0.946 0.945 0.948 0.947 0.948 0.948
600 0.944 0.947 0.947 0.946 0.949 0.945 0.947 0.946
800 0.949 0.949 0.946 0.942 0.942 0.946 0.945 0.945
1000 0.952 0.947 0.943 0.940 0.942 0.940 0.942

G1 = 10 (coverage is 0.926 for V pl and 0.914 for V Asy)

100 0.940 0.938 0.935 0.934 0.936 0.935 0.934 0.934 0.933
200 0.947 0.944 0.942 0.942 0.944 0.945 0.944 0.943 0.943
300 0.947 0.946 0.944 0.942 0.944 0.946 0.946 0.944 0.946
400 0.951 0.946 0.944 0.942 0.944 0.945 0.942 0.944 0.943
500 0.947 0.944 0.942 0.942 0.944 0.938 0.941 0.942
600 0.946 0.944 0.941 0.939 0.941 0.938 0.940 0.939
800 0.950 0.942 0.941 0.939 0.936 0.937 0.937 0.938
1000 0.944 0.944 0.939 0.935 0.932 0.937 0.937

G1 = 20 (coverage is 0.945 for V pl and 0.939 for V Asy)

100 0.924 0.914 0.911 0.910 0.911 0.913 0.913 0.912 0.910
200 0.940 0.933 0.933 0.929 0.931 0.932 0.931 0.928 0.930
300 0.940 0.937 0.939 0.935 0.934 0.936 0.932 0.932 0.929
400 0.940 0.942 0.941 0.936 0.937 0.937 0.933 0.933 0.937
500 0.941 0.944 0.944 0.939 0.939 0.937 0.935 0.936
600 0.947 0.947 0.944 0.938 0.939 0.938 0.936 0.936
800 0.946 0.942 0.942 0.937 0.934 0.935 0.935 0.937
1000 0.947 0.940 0.936 0.934 0.930 0.931 0.930

G1 = 50 (coverage is 0.955 for V pl and 0.940 for V Asy)

100 0.801 0.788 0.778 0.776 0.773 0.768 0.770 0.759 0.763
200 0.897 0.890 0.890 0.889 0.890 0.889 0.885 0.884 0.885
300 0.909 0.915 0.905 0.905 0.904 0.902 0.903 0.899 0.901
400 0.898 0.920 0.916 0.913 0.915 0.910 0.911 0.909 0.908
500 0.920 0.920 0.920 0.921 0.920 0.912 0.913 0.908
600 0.923 0.922 0.921 0.922 0.922 0.916 0.911 0.913
800 0.918 0.930 0.922 0.924 0.924 0.920 0.918 0.914
1000 0.931 0.926 0.925 0.921 0.922 0.919 0.918

Table M.5: Sensitivity and choice of subsampling parameters J and m for the coverage of the confidence interval
for β̂TS . The numbers in the table represent empirical coverage rate of the subsampling estimator over N = 1000
replications. Scenario (3). The nominal coverage rate is 0.95. Noise-to-signal ratio is ξ = 0.001.
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V̂ sub V̂ pl V Asy V FS V̂ sub V̂ pl V Asy V FS

(1) (2)
G1 = 3 0.256 0.135 0.126 0.259 0.088 0.047 0.044 0.081
G1 = 5 0.330 0.215 0.209 0.334 0.114 0.075 0.073 0.107
G1 = 10 0.524 0.425 0.419 0.535 0.181 0.148 0.147 0.170
G1 = 20 0.909 0.851 0.837 0.935 0.316 0.296 0.293 0.306
G1 = 50 1.938 2.137 2.093 2.159 0.680 0.743 0.734 0.718

(3) (4)
G1 = 3 0.245 0.130 0.122 0.232 0.305 0.155 0.145 0.301
G1 = 5 0.315 0.207 0.204 0.301 0.391 0.248 0.241 0.379
G1 = 10 0.502 0.410 0.407 0.474 0.616 0.490 0.483 0.574
G1 = 20 0.874 0.819 0.814 0.812 1.050 0.981 0.965 1.014
G1 = 50 1.895 2.057 2.035 1.903 2.255 2.477 2.414 2.414

(5) (6)
G1 = 3 0.298 0.155 0.145 0.294 0.183 0.098 0.092 0.172
G1 = 5 0.381 0.247 0.242 0.378 0.236 0.155 0.153 0.224
G1 = 10 0.606 0.489 0.483 0.585 0.376 0.307 0.305 0.355
G1 = 20 1.050 0.978 0.967 1.025 0.654 0.614 0.610 0.635
G1 = 50 2.251 2.456 2.417 2.430 1.410 1.539 1.526 1.496

Table M.6: The average over simulations of the following measures of dispersion of β̂TS (times 100): the subsampling

estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, the (unobserved) asysmptotic variance

V Asy, and an average over simulations of n1/3
(
β̂TS −β

)2
denoted by V FS. Scenarios (1)-(6) are described in Section

4. J = 500, m = 3000, and ξ = 0.000.
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V̂ sub V̂ pl V Asy V FS V̂ sub V̂ pl V Asy V FS

(1) (2)
G1 = 3 0.477 0.216 0.159 0.470 0.950 0.387 0.298 0.879
G1 = 5 0.421 0.263 0.222 0.406 0.399 0.219 0.165 0.386
G1 = 10 0.561 0.479 0.423 0.555 0.273 0.234 0.170 0.258
G1 = 20 0.930 0.947 0.841 0.939 0.351 0.416 0.299 0.350
G1 = 50 1.986 2.382 2.100 2.172 0.693 1.027 0.735 0.755

(3) (4)
G1 = 3 0.465 0.207 0.156 0.448 0.508 0.236 0.174 0.515
G1 = 5 0.402 0.246 0.216 0.390 0.472 0.301 0.252 0.461
G1 = 10 0.534 0.445 0.410 0.527 0.639 0.556 0.486 0.648
G1 = 20 0.881 0.879 0.815 0.893 1.055 1.103 0.967 1.095
G1 = 50 1.884 2.205 2.036 2.125 2.233 2.793 2.415 2.548

(5) (6)
G1 = 3 0.486 0.223 0.169 0.496 0.531 0.225 0.164 0.508
G1 = 5 0.459 0.287 0.251 0.447 0.367 0.216 0.179 0.365
G1 = 10 0.632 0.532 0.486 0.625 0.423 0.355 0.312 0.415
G1 = 20 1.053 1.055 0.968 1.063 0.671 0.691 0.612 0.670
G1 = 50 2.254 2.657 2.418 2.569 1.415 1.727 1.527 1.563

Table M.7: The average over simulations of the following measures of dispersion of β̂TS (times 100): the subsampling

estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, the (unobserved) asysmptotic variance

V Asy, and an average over simulations of n1/3
(
β̂TS −β

)2
denoted by V FS. Scenarios (1)-(6) are described in Section

4. J = 500, m = 3000, and ξ = 0.001.
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tsub tpl tAsy tsub tpl tAsy

(1) (2)
G1 = 3 0.941 0.838 0.820 0.955 0.865 0.850
G1 = 5 0.938 0.876 0.885 0.947 0.898 0.894
G1 = 10 0.943 0.923 0.927 0.955 0.939 0.938
G1 = 20 0.947 0.944 0.942 0.952 0.951 0.949
G1 = 50 0.925 0.946 0.940 0.931 0.952 0.949

(3) (4)
G1 = 3 0.952 0.860 0.843 0.945 0.844 0.822
G1 = 5 0.951 0.891 0.892 0.950 0.891 0.881
G1 = 10 0.954 0.932 0.933 0.946 0.932 0.927
G1 = 20 0.951 0.944 0.951 0.935 0.941 0.938
G1 = 50 0.937 0.944 0.949 0.921 0.945 0.941

(5) (6)
G1 = 3 0.946 0.839 0.826 0.956 0.855 0.852
G1 = 5 0.946 0.890 0.885 0.946 0.899 0.902
G1 = 10 0.952 0.933 0.936 0.956 0.936 0.945
G1 = 20 0.945 0.942 0.942 0.948 0.946 0.947
G1 = 50 0.926 0.945 0.949 0.933 0.945 0.947

Table M.8: Coverage of the confidence interval of β̂TS based on the following measures of dispersion of β̂TS: the sub-
sampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, and the (unobserved) asysmptotic
variance V Asy. Scenarios (1)-(6) are described in Section 4. J = 500, m = 3000, and ξ = 0.000.
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tsub tpl tAsy tsub tpl tAsy

(1) (2)
G1 = 3 0.945 0.809 0.724 0.956 0.800 0.725
G1 = 5 0.943 0.884 0.853 0.950 0.866 0.802
G1 = 10 0.949 0.937 0.922 0.949 0.930 0.884
G1 = 20 0.948 0.953 0.946 0.941 0.963 0.925
G1 = 50 0.928 0.950 0.944 0.931 0.977 0.946

(3) (4)
G1 = 3 0.947 0.816 0.760 0.934 0.810 0.738
G1 = 5 0.953 0.881 0.863 0.945 0.888 0.846
G1 = 10 0.942 0.931 0.924 0.939 0.925 0.907
G1 = 20 0.938 0.939 0.930 0.935 0.946 0.925
G1 = 50 0.928 0.949 0.938 0.914 0.958 0.944

(5) (6)
G1 = 3 0.941 0.801 0.736 0.940 0.816 0.758
G1 = 5 0.948 0.879 0.863 0.949 0.868 0.834
G1 = 10 0.944 0.926 0.914 0.941 0.926 0.912
G1 = 20 0.939 0.945 0.939 0.938 0.950 0.931
G1 = 50 0.920 0.955 0.940 0.924 0.960 0.945

Table M.9: Coverage of the confidence interval of β̂TS based on the following measures of dispersion of β̂TS: the sub-
sampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, and the (unobserved) asysmptotic
variance V Asy. Scenarios (1)-(6) are described in Section 4. J = 500, m = 3000, and ξ = 0.001.
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V̂ sub V̂ pl V Asy V FS V̂ sub V̂ pl V Asy V FS

(1) (2)
G1 = 3 0.073 0.035 0.033 0.061 0.222 0.108 0.101 0.212
G1 = 5 0.094 0.057 0.055 0.080 0.284 0.173 0.169 0.272
G1 = 10 0.147 0.112 0.110 0.126 0.447 0.342 0.337 0.429
G1 = 20 0.253 0.224 0.220 0.232 0.773 0.682 0.675 0.783
G1 = 50 0.557 0.560 0.551 0.555 1.701 1.705 1.687 1.797

(3) (4)
G1 = 3 0.032 0.016 0.015 0.032 0.115 0.047 0.044 0.095
G1 = 5 0.041 0.026 0.025 0.042 0.143 0.076 0.073 0.120
G1 = 10 0.066 0.051 0.051 0.067 0.212 0.150 0.146 0.196
G1 = 20 0.114 0.103 0.101 0.123 0.349 0.300 0.292 0.356
G1 = 50 0.253 0.257 0.254 0.280 0.744 0.749 0.731 0.736

(5) (6)
G1 = 3 0.042 0.021 0.019 0.040 0.068 0.032 0.030 0.064
G1 = 5 0.054 0.033 0.032 0.050 0.086 0.051 0.050 0.083
G1 = 10 0.085 0.065 0.064 0.081 0.135 0.101 0.101 0.130
G1 = 20 0.147 0.131 0.128 0.152 0.232 0.201 0.202 0.236
G1 = 50 0.323 0.327 0.320 0.342 0.509 0.502 0.505 0.538

Table M.10: The average over simulations of the following measures of dispersion of 〈̂X,X〉
TS

(times 107): the

subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, the (unobserved) asysmptotic

variance V Asy, and an average over simulations of n1/3
(
〈̂X,X〉

TS
− 〈X,X〉

)2
denoted by V FS. Scenarios (1)-(6) are

described in Section 4. J = 500, m = 3000, and ξ = 0.000.
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V̂ sub V̂ pl V Asy V FS V̂ sub V̂ pl V Asy V FS

(1) (2)
G1 = 3 0.102 0.046 0.036 0.099 0.723 0.296 0.225 0.655
G1 = 5 0.106 0.063 0.057 0.105 0.470 0.260 0.215 0.483
G1 = 10 0.151 0.121 0.112 0.152 0.518 0.407 0.353 0.542
G1 = 20 0.255 0.240 0.223 0.265 0.807 0.787 0.687 0.854
G1 = 50 0.559 0.599 0.556 0.596 1.734 1.957 1.710 1.869

(3) (4)
G1 = 3 0.046 0.021 0.017 0.045 0.149 0.061 0.048 0.138
G1 = 5 0.048 0.028 0.026 0.051 0.157 0.086 0.076 0.153
G1 = 10 0.069 0.054 0.051 0.073 0.219 0.164 0.149 0.209
G1 = 20 0.116 0.106 0.102 0.126 0.354 0.327 0.297 0.355
G1 = 50 0.255 0.266 0.254 0.283 0.764 0.817 0.742 0.791

(5) (6)
G1 = 3 0.055 0.025 0.021 0.054 0.125 0.052 0.041 0.108
G1 = 5 0.060 0.036 0.033 0.061 0.111 0.062 0.055 0.111
G1 = 10 0.088 0.068 0.064 0.091 0.146 0.112 0.103 0.153
G1 = 20 0.148 0.136 0.128 0.158 0.240 0.221 0.205 0.250
G1 = 50 0.324 0.339 0.321 0.351 0.518 0.551 0.513 0.557

Table M.11: The average over simulations of the following measures of dispersion of 〈̂X,X〉
TS

(times 107): the

subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, the (unobserved) asysmptotic

variance V Asy, and an average over simulations of n1/3
(
〈̂X,X〉

TS
− 〈X,X〉

)2
denoted by V FS. Scenarios (1)-(6) are

described in Section 4. J = 500, m = 3000, and ξ = 0.001.
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tsub tpl tAsy tsub tpl tAsy

(1) (2)
G1 = 3 0.961 0.870 0.856 0.948 0.837 0.825
G1 = 5 0.956 0.898 0.887 0.955 0.887 0.882
G1 = 10 0.951 0.923 0.921 0.952 0.918 0.917
G1 = 20 0.947 0.944 0.942 0.936 0.922 0.922
G1 = 50 0.945 0.949 0.951 0.931 0.936 0.939

(3) (4)
G1 = 3 0.952 0.833 0.821 0.965 0.837 0.820
G1 = 5 0.941 0.874 0.872 0.958 0.877 0.878
G1 = 10 0.932 0.899 0.906 0.942 0.903 0.910
G1 = 20 0.931 0.918 0.933 0.934 0.918 0.915
G1 = 50 0.925 0.933 0.936 0.918 0.935 0.951

(5) (6)
G1 = 3 0.950 0.833 0.830 0.948 0.844 0.827
G1 = 5 0.943 0.877 0.877 0.954 0.876 0.883
G1 = 10 0.939 0.905 0.912 0.949 0.909 0.918
G1 = 20 0.936 0.917 0.927 0.936 0.920 0.929
G1 = 50 0.928 0.932 0.941 0.927 0.932 0.936

Table M.12: Coverage of the confidence interval of 〈̂X,X〉
TS

based on the following measures of dispersion of 〈̂X,X〉
TS

:

the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, and the (unobserved)
asysmptotic variance V Asy. Scenarios (1)-(6) are described in Section 4. J = 500, m = 3000, and ξ = 0.000.
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tsub tpl tAsy tsub tpl tAsy

(1) (2)
G1 = 3 0.943 0.810 0.756 0.949 0.799 0.755
G1 = 5 0.943 0.865 0.844 0.942 0.843 0.812
G1 = 10 0.936 0.903 0.905 0.950 0.909 0.897
G1 = 20 0.933 0.927 0.929 0.938 0.933 0.917
G1 = 50 0.919 0.936 0.935 0.928 0.944 0.933

(3) (4)
G1 = 3 0.942 0.820 0.774 0.949 0.807 0.754
G1 = 5 0.940 0.845 0.848 0.946 0.845 0.838
G1 = 10 0.928 0.886 0.888 0.946 0.912 0.899
G1 = 20 0.924 0.923 0.917 0.925 0.925 0.928
G1 = 50 0.925 0.936 0.936 0.918 0.936 0.938

(5) (6)
G1 = 3 0.944 0.815 0.761 0.955 0.827 0.779
G1 = 5 0.940 0.854 0.844 0.944 0.848 0.830
G1 = 10 0.940 0.909 0.899 0.953 0.899 0.902
G1 = 20 0.937 0.926 0.924 0.935 0.919 0.917
G1 = 50 0.920 0.936 0.936 0.924 0.940 0.933

Table M.13: Coverage of the confidence interval of 〈̂X,X〉
TS

based on the following measures of dispersion of 〈̂X,X〉
TS

:

the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl, and the (unobserved)
asysmptotic variance V Asy. Scenarios (1)-(6) are described in Section 4. J = 500, m = 3000, and ξ = 0.001.
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