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S O M M A I R E

Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter

les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de

borner la dimension cohomologique des k-algèbres par dessous; montrant que presque

aucune k-algèbre commutative est quasi-libre.

Mots-Clés: Algèbre Homologique Relative, Théorie De La Dimension, Algèbre Non-Commutative,

Cohomologie de Hochschild, Géométrie Non-Commutative
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S U M M A RY

The aim of this master’s thesis is two-fold. Firstly to develop and interpret the low

dimensional Hochschild cohomology of a k-algebra and secondly to establish a lower

bound for the Hochschild cohomological dimension of a k-algebra; showing that nearly

no commutative k-algebra is quasi-free.

Keywords: Relative Homological Algebra, Dimension Theory, Noncommutative Algebra, Hochschild

Cohomology, Noncommutative Geometry
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1

I N T R O D U C T I O N

Motivation

Noncommutative algebraic geometry is a rapidly developing area of contemporary

mathematical research. Amongst the many topics studied therein, the proposed notions

of a “noncommutative smoothness” such as Michel Van den Bergh’s concept [PH] and

Joachim Cuntz and Daniel Quillen’s concept [AE] seemed particularly interesting to me.

This master’s thesis found its beginnings in an attempt to understand the notion of

noncommutative smoothness proposed by Joachim Cuntz and Daniel Quillen, called

quasi-freeness. Defined similarly to the commutative notion of formal smoothness, quasi-

freeness is defined as the lifting of all the square-zero extensions of a k-algebra. My

driving question became “is this notion an analogue or a generalization of a classical

notion of smoothness?”

In the case where k is an algebraically closed field, Joachim Cuntz and Daniel Quillen

found that a k-algebra cannot be quasi-free if its Krull dimension is greater than 1 [AE].

Therefore it is possible for a k-algebra to be smooth and to not be quasi-free (for example

C[x, y] is such a C-algebra); whence over a field quasi-freeness is a noncommutative

analogue of smoothness and not a generalization thereof.
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introduction

Charles Weibel formulated an extension of the concept of a quasi-free k-algebra which

no longer required k to be an algebraically closed field but only to be a commutative

ring. This master’s thesis’s primary inspiration is to attempt to understand that notion

of quasi-freeness and to relate it to commutative k-algebras. The summary of my findings

is the content of theorem 7.

Organization Of This Master’s Thesis

This master’s thesis is organized around its two objectives. Firstly to prove that the

smallness of a certain numerical invariant, the Hochschild cohomological dimension of

a k-algebra A denoted HCdim(A/k), has certain implications on A’s properties:

1. Result 1: HCdim(A/k) = 0 if and only if all derivations of A in an (A, A)-bimodule

M are inner derivations if and only if Ω0(A/k) is a E k
Ae -projective Ae-module.

2. Result 2: HCdim(A/k) ≤ 1 if and only if all square-zero extensions of A lift if and

only if Ω1(A/k) is a E k
Ae -projective Ae-module.

(The notation and concepts mentioned above will be clarified in this master’s thesis).

In the case that k is a field results 1 and 2 were proven by Cuntz and Quillen in [AE]

and was the starting point for the development of many of their outstanding results on

quasi-free k-algebras.

The first central result in this master’s thesis generalises their work to the case where

k is an arbitrary commutative base ring and to attempt to characterise k-algebras for

which HCdim(A/k)≤ n. That more general result is then interpreted for the cases where

n = 0,1 and is presented here but is already known by [HI]. Moreover we extend the

result to n ≥ 2.

The second objective of this master’s thesis is to understand what commutative k-

algebras fail to be quasi-free, when k is no longer assumed to be field. This understanding

comes from an original result describing a lower bound on the Hochschild cohomological
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introduction

dimension of a commutative k-algebra which we build in chapter 3 and then apply it to

some concrete examples in chapter 4.

notation and conventions Unless otherwise stated:

1. N is the set of non-negative integers.

2. All k-algebras are assumed to be unital and associative.

3. A noncommutative k-algebra is a unital k-algebra that may or may not be commuta-

tive.

4. The term module will always be short for left-module.

5. k and R are assumed to be non-zero commutative unital associative rings.

6. A denotes a k-algebra.

7. For any natural number n, A⊗n will denote the n-fold tensor −⊗k − power of A

over k, A⊗1 is defined to be A and A⊗0 is defined to be k.
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2

H O C H S C H I L D T H E O RY

2.1 (A , A)-bimodules and enveloping k-algebras

The Hochschild cohomology of a k-algebra A is a cohomology theory of (A , A)-

bimodules instead of A-modules In order to capture the relationship of the k-algebra

A to its "modules" it seems appropriate to consider their left and right structures in a

simultaneous and compatible way.

2.1.0.1 General Definitions

Definition 1. (A , B)-bimodule

If A and B are k-algebras an (A , B)-bimodule is an k-module M which is both a left A-

module and a right B-module and satisfies the following compatibility axiom:

(∀c ∈ k)(∀m ∈ M)(∀a ∈ A)(∀b ∈ B)c · ((a ·m) · b) = (ca) · (m · b) = a · (m · cb) = a · (cṁ) · b

where a ·m denotes the left action of A on M and m · b denotes the right action of B on M.
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2.1 (A , A)-bimodules and enveloping k-algebras

Definition 2. Homomorphism of (A, B)-bimodules 1

If A and B are k-algebras and M and N are (A, B)-bimodules then a homomorphism of k-

modules φ : M→ N is said to be a homomorphism of (A, B)-bimodules if and only if it is both

a left A-module homomorphism and a right B-module homomorphism.

2.1.1 Ae-modules and (A, A)-bimodules

There is an occasionally more convenient way to view (A, A)-bimodules, by replacing

A by a certain related k-algebra.

Definition 3. Opposite k-Algebra

If A is a k-algebra then the opposite k-Algebra of A denoted Aop, is defined as having the

same underlying k-module structure as A but with its multiplication map µAop being the k-module

homomorphism µAop : Aop ⊗k Aop→ Aop defined as:

(∀a, b ∈ Aop)µAop(a, b) := µA(b, a) (1)

where µA : A⊗k A→ A is the multiplication map on A.

Definition 4. Enveloping k-Algebra

If A is a k-algebra then the enveloping k-Algebra of A is defined as the k-algebra A⊗k Aop

and is denoted Ae.

1. The category of (A, B)-bimodules and (A, B)-bimodule homomorphism is usually denoted by A ModB.
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2.1 (A , A)-bimodules and enveloping k-algebras

For a k-algebra A its categories of (A, A)-bimodules and left Ae-modules are equivalent

in the following way:

Proposition 1. If A is a k-algebra then every Ae-module is an (A, A)-bimodule and visa-

versa. Likewise every Ae-module morphism is an (A, A)-bimodule morphism and visa-versa.

Proof.

— If M is a left Ae-module then for all a, b, b′ ∈ A and for all m ∈ M define the left

action of a on m as a · m := (a ⊗k 1)m and the right action of b on m as m · b :=

(1⊗k b)m. This does indeed define an (A, A)-bimodule structure on M, since:

(a ·m) · b · b′ = ((a⊗k 1)m) · b · b′ (2)

= (1⊗k b)(a⊗k 1)m · b′ = (1⊗k b′)(1⊗k b)(a⊗k 1)m = (a⊗k bb′)m (3)

= (a⊗k 1)(1⊗k bb′)m (4)

= (a⊗k 1)(m · bb′) (5)

= a · (m · bb′) (6)

M is a right A module and the right and left A-module structures of M are com-

patible.

Moreover if c ∈ k and m ∈ M then:

c ·m = c⊗k 1 ·m = 1⊗k c ·m = m · c. (7)

Therefore the action of Ae on M is k-linear whence M is a k-module with left and

right A-module actions satisfying (1); whence M is an (A, A)-bimodule.

— Conversely, if M is an (A, A)-bimodule then M may be made into a left Ae-module

with left action defined (on elementary tensors) as: (∀a, b ∈ A)(∀m ∈ M)(a⊗k b) ·

12



2.1 (A , A)-bimodules and enveloping k-algebras

m := (am)b. This action is associative if a⊗k b, a′⊗k b′ ∈ Ae and m∈M then denoting

by � the multiplication in Aop and by • the multiplication in Ae:

(a⊗k b) · ((a′ ⊗k b′) ·m) = (a⊗k b) · (a′mb′) (8)

= ((aa′)m)(b′b) (9)

= (aa′ ⊗k b′b) ·m (10)

= (aa′ ⊗k b� b′) ·m (11)

= ((a⊗k b) • (a′ ⊗k b′)) ·m. (12)

Moreover 1⊗k 1 ·m = (1m)1 = m. Therefore M is an Ae-module.

— Likewise for any (A, A)-bimodule homomorphism and any Ae-module homomor-

phisms.

Remark 1. If A is a k-algebra and M is an Ae-module then M may be viewed as a right Ae

module as:

(∀a, b ∈ A)(∀m ∈ M)m ·r (a⊗k b) := (b⊗k a) ·m (13)

where ·r denoted the right action of Ae on M, indeed this action is associative and respects the

unit.

In view of proposition 1, (A, A)-bimodules and Ae-modules will be viewed inter-

changeably, as is convenient based on the context.

Example 1. If A is a k-algebra and n ∈ N then A⊗n+2 may be given the structure of an

Ae-module with action on elementary tensors a0 ⊗k ...⊗k an+1 in A⊗n+2:

(∀a, b ∈ A)(a⊗k b) · (a0 ⊗k ...⊗k an+1) := aa0 ⊗k ...⊗k an+1b. (14)
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2.1 (A , A)-bimodules and enveloping k-algebras

Proof. If a, b, a′, b′ ∈ A and (a0 ⊗k ...⊗k an+1) is an elementary tensor in A⊗n+2 then:

= (a′ ⊗k b′) · (a⊗k b) · (a0 ⊗k ...⊗k an+1) (15)

= (a′ ⊗k b′) · (aa0 ⊗k ...⊗k an+1b) (16)

= (a′aa0 ⊗k ...⊗k an+1bb′) (17)

= ((a′a⊗k bb′)) · (a0 ⊗k ...⊗k an+1) (18)

Therefore the action is associative; moreover it respects the unit since:

(1⊗k 1) · (a0 ⊗k ...⊗k an+1) = (1a0 ⊗k ...⊗k an+11) (19)

= (a0 ⊗k ...⊗k an+1) (20)

Example 2. If N and M are A-modules then Homk(N, M) has the structure of a (A, A)-

bimodule via the action:

(∀n ∈ N) (a, a′) · f (n) 7→ a f (a′ · n) (21)

where a, a′ ∈ A and f : N→ M is a k-module homomorphism.

Proof. Since (a f (n))a′ = (a f )(a′ · n) = a f (a′ · n) = a( f a′ · n) the left and right A-module

structures of Homk(N, M) are compatible. Therefore Homk(N, M) is indeed an (A, A)-

bimodule.
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2.1 (A , A)-bimodules and enveloping k-algebras

2.1.1.1 A Note On The Tensor Product of Ae-modules

If M and N are Ae-modules then by remark 1 M may be viewed as a right Ae-module,

which we denote Mr whence the tensor product M⊗Ae N may be defined as:

Definition 5. Tensor Product of Ae-modules

If M and N are Ae-modules then the tensor product of M and N over Ae is defined to be

the k-module Mr ⊗Ae N and is denoted by M⊗Ae N.

However we make use of a different tensor product of bimodules defined as usual as

follows:

Definition 6. Tensor Product of bimodules

Let A, B, C be rings, M be a (B, A)-bimodule and N be an (A, C)-bimodule.

The abelian group with basis the symbols m⊗A n, where m ∈ M and n ∈ N modulo its sub-

group generated by all the elements of the set:

{−(m + m′)⊗A n + m′ ⊗A n + m⊗A n, (22)

−m⊗A (n + n′) + m⊗A n + m⊗A n′, (23)

m⊗ (a · n)− (m · a)⊗A n|m, m ∈ M and n, n′ ∈ N and a ∈ A} (24)

is called the tensor product of M and N over A and is denoted by M⊗A N.

For any m ∈M and n ∈ N the coset of the symbol m⊗A n is called an elementary tensor and

is simply denoted by m⊗A n.

2.1.2 Hochschild Cohomology

The entire theory reviewed and developed in this master’s thesis revolves around a

particular exact sequence related to the Ae-module A called the Bar resolution of A 2 .

2. The word "Bar" in the phrase "Bar resolution of A" arises from an notational convention that has
generally fallen out of practice. Traditionally elementary tensors in A⊗n were denoted by a1|....|an as can be
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2.1 (A , A)-bimodules and enveloping k-algebras

Example 3. The Bar Resolution of A

If A is a k-algebra then there is an acyclic chain complex of Ae-modules denoted CB?(A),

defined as:

(∀n ∈N)CBn(A) := A⊗n+2 (25)

With the Ae-module structure on CBn(A) taken to be the one described in example 1. With

boundary operator:

(∀n ∈N)b′n(a0 ⊗ ...⊗ an+1) := ∑
i=0,..,n

(−1)ia0 ⊗ ...⊗ aiai+1 ⊗ ...⊗ an+1 (26)

(By convention: b′0 is the augmentation map A⊗k A→ A and b′−1 is the zero map from A to 0).

The augmented Bar resolution of A will be denoted ˆCB?(A).

Proof.

First for every n ∈N we define a k-linear map, which we denote sn and then we use

those maps to show that CB? is an acyclic chain complex.

For n ∈N define the k-linear maps sn : ˆCBn(A)→ ˆCBn(A) on elementary tensors as

a0 ⊗k ...⊗k an+1 7→ 1⊗k a0 ⊗k ...⊗k an+1 (27)

If a0 ⊗k ...⊗k an+1 ∈ ˆCB?(A) then:

b′n+1(sn(a0 ⊗k ...⊗k an+1)) + sn−1(b′n(a0 ⊗k ...⊗k an+1)) (28)

= b′n+1(1⊗k a0 ⊗k ...⊗k an+1)) + sn−1(
n

∑
i=0

(−1)ia0 ⊗k ..⊗k aiai+1 ⊗k ...⊗k an+1) (29)

=
n

∑
i=−1

(−1)i1⊗k a0 ⊗k ..⊗k aiai+1 ⊗k ...⊗k an+1

seen on page 114 of [MH]. Furthermore the choice of the phrase "resolution of A" will be explored in later
sections of this master’s thesis.
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2.1 (A , A)-bimodules and enveloping k-algebras

+
n

∑
i=0

(−1)i1⊗k a0 ⊗k ..⊗k aiai+1 ⊗k ...⊗k an+1 (30)

= 1a0 ⊗k . . . ⊗k an+1 +
n

∑
i=0

(−1) i 1 ⊗k a0 ⊗k . . ⊗k a i a i+1 ⊗k . . . ⊗k an+1 (31)

+
n

∑
i=0

(−1) i 1 ⊗k a0 ⊗k . . ⊗k a i a i+1 ⊗k . . . ⊗k an+1 (32)

= a0 ⊗k ...⊗k an+1 (33)

Therefore for every n ∈N:

b′n+1 ◦ sn + sn+1 ◦ b′n = 1 ˆCB?(A). (34)

Making use of (34) we first show that ˆCB? is a chain complex and we show that the

identity map ˆCB?(A) is chain homotopic to the 0-map on ˆCB?(A), therefore the homol-

ogy of ˆCB?(A) is trivial.

— We prove by induction on ? that CB? is a chain complex. If n = 1 then:

(∀a0, a1, a2 ∈ A)b′0 ◦ b′1(a0 ⊗k a1 ⊗k a2) = b′1(a0a1 ⊗k a1 − a0 ⊗k a1a2)

= a0a1a2 − a0a1a2 = 0.

Suppose for some n > 1 b′n ◦ b′n−1 = 0, then (34) implies:

b′n+1 ◦ b′n ◦ sn = b′n ◦ (1− sn−1 ◦ b′n) (35)

= b′n − b′n ◦ sn−1 ◦ bn (36)

= b′n − b′n − sn−2 ◦ b′n−1 ◦ b′n (37)

= 0 + sn−2 ◦ b′n−1 ◦ b′n (38)

= 0 by the induction hypothesis. (39)
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2.1 (A , A)-bimodules and enveloping k-algebras

Therefore b′n+1 ◦ b′n = 0 which completes the induction, showing that CB? is indeed

a chain complex.

— Furthermore (34) says that the identity map ˆCB?(A) is chain homotopic to the 0-

map on ˆCB?(A), therefore ˆCB?(A) is chain homotopic to an acyclic complex.

Definition 7. Hochschild Cohomology

The Hochschild cohomology of a k-algebra A with coefficients in an (A, A)-bimodule M, de-

noted HH?(A, M) is defined as:

HH?(A, M) := H?(HomAe(CB?(A), M), HomAe(b′?, M)) (40)

The coboundary map HomAe(b′?, M) is denoted by b?.

Proposition 2. The Hochschild cohomology of a k-algebra A with coefficients in an Ae-module

M may be computed as the cohomology of the following complex:

0→ M b0

→ Homk(A, M)
b1

→ Homk(A⊗2, M)
b2

→ .... (41)

Where the coboundary map bn is defined on f ∈ Homk(A⊗n, M) and a0 ⊗k ..⊗k an ∈ A⊗n as:

bn( f (a0 ⊗k ..⊗k an)) = a0 f (a1 ⊗k ..⊗k an) +
n−1

∑
i=0

(−1)i f (a0 ⊗k ...⊗k aiai+1 ⊗k ...⊗k an) + (−1)n f (a0 ⊗k ..⊗k an−1)an (42)

Proof. We show that the complexes HomAe(CB?(A), M) and (41) are naturally isomorphic

(whence their cohomology modules must be isomorphic).

— Viewing M as an (A, A)-bimodule as in proposition 1, if f : A⊗n→M is a k-module

homomorphism then define the Ae-module map f̂ : A⊗n+2 → M on elementary

tensors as:

f̂ (a0 ⊗k ..⊗k an+1) := a0 f (a1 ⊗k ..⊗k an)an+1. (43)

We verify that f 7→ f̂ is indeed a k-isomorphism.
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2.1 (A , A)-bimodules and enveloping k-algebras

The k-linear map f̂ is indeed an Ae-module map, since if (a⊗k b) is an elementary

tensor in Ae then:

(a⊗k b) · f̂ (a0 ⊗k ..⊗k an+1) = (a⊗k b) · a0 f (a1 ⊗k ..⊗k an)an+1 (44)

= aa0 f (a1 ⊗k ..⊗k an)an+1b (45)

= (aa0) f (a1 ⊗k ..⊗k an)(an+1b) (46)

= f̂ ((aa0)⊗k a1 ⊗k ..⊗k an ⊗k (an+1b)) (47)

= f̂ ((a⊗k b) · (a0 ⊗k a1 ⊗k ..⊗k an ⊗k an+1)) (48)

Since any Ae-module homomorphism g : A⊗n+2→M is k-linear, the map g̃ : A⊗n→

M defined on elementary tensors a0 ⊗k ..⊗k an ∈ A⊗n as:

g̃(a0 ⊗k ..⊗k an) 7→ g(1⊗k a0 ⊗k ..⊗k an ⊗k 1). (49)

is a k-module homomorphism whose two-sided inverse is the map f 7→ f̂ .

Denote this Ae-module isomorphism by Ψ : HomAe(A⊗n+2, M)→ Homk(A⊗n, M).

By definition HomAe(b′n, M) is the pre-composition of any f ∈ HomAe(A⊗n+2, M) by b′n.

By furthermore pre-composing f ◦ b′n by the Ae-module isomorphism Ψ the coboundary

map:

f ◦ b′n ◦Ψ(a0 ⊗k ..⊗k an) = f ◦ b′n(1⊗k a0 ⊗k ..⊗k an ⊗k 1)

= f (a0a1 ⊗k ..⊗k an +
n−1

∑
i=0

(−1)ia0 ⊗k ..⊗k aiai+1 ⊗ ..⊗k an + (−1)n+1a0 ⊗k ..⊗k an−1an)

= a0 f (a1 ⊗k ..⊗k an) +
n−1

∑
i=0

(−1)i f (a0 ⊗k ..⊗k aiai+1 ⊗ ..⊗k an) + (−1)n+1 f (a0 ⊗k ..⊗k an−1)an)

= bn( f )(a0 ⊗k ..⊗k an) (50)

is obtained.
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2.1 (A , A)-bimodules and enveloping k-algebras

Definition 8. Hochschild Cocomplex

For any k-algebra A and any Ae-module M the cocomplex in proposition 2 is called the

Hochschild cocomplex of A with respect to M and is denoted by CH?(A, M).

2.1.3 Computing the first few Hochschild Cohomology Groups

To better interpret the Hochschild cohomology groups the first few are computed. 3

2.1.3.1 HH0

Definition 9. Center of an A-bimodule 4

If M is an (A, A)-bimodule the collection of elements of M commuting with all the elements of

A is called the A-centre of M and is denoted ZA(M). That is:

ZA(M) := {m ∈ M|(∀a ∈ A)a ·m = m · a} (51)

Proposition 3. For any (A, A)-bimodule M, ZA(M) is an (A, A)-sub-bimodule of M.

Proof. Let a, b ∈ A and n, m ∈ ZA(M). Then:

— 1.

a · (n + m) = a · n + a ·m = n · a + m · a = (n + m) · a. (52)

therefore ZA(M) is closed under +.

2. Suppose there is some a ∈ A and n ∈ N such that −n 6∈ ZA(M) then: a · (−n) 6=

−n · a then by (52):

0 = a · (−n + n)

3. For example HH0(A, M) is reminiscent of the 0th group cohomology module of a G-module for a
group G or the 0th lie-algebra cohomology module of a g-module for some lie algebra g.

4. In particular if M is the (A, A)-bimodule A then ZA(A) is precisely the definition of the centre of A,
hence it inherits a ring structure.
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2.1 (A , A)-bimodules and enveloping k-algebras

= a · (−n) + a · n 6= −n · a + a · n

= −n · a + n · a

= (−n + n) · a = 0 (53)

a contradiction, therefore ZA(M) is closed under +inversion.

Hence ZA(M) is an abelian subgroup of M.

— Let a, b ∈ Ae then:

(ab) · n = a · (b · n) = a · (n · b) = (a · n) · b = (n · a) · b = n · (ab). (54)

Therefore ZA(M) is a Ae-submodule of M.

The 0th Hochschild cohomology group may be understood as describing ZA(M).

Proposition 4. Interpretation of HH0

For a k-algebra A and any (A, A)-bimodule M there is an isomorphism of k-modules:

HH0(A, M)
∼=→ ZA(M). (55)

Proof. By proposition 2: HH0(A, M) ∼= Ker(b0)/Im(0). Therefore:

HH0(A, M) ∼= Ker(b0)

= {m ∈ M|(∀a ∈ A)b0(m)(a) = 0}

= {m ∈ M|(∀a ∈ A)ma− am = 0}

= {m ∈ M|(∀a ∈ A)ma = am} = ZA(M). (56)
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2.1.3.2 HH1

Definition 10. (A, A)-Bimodule k-Derivation 5

A k-linear map D from A to an (A, A)-bimodule M is called a (A, A)-bimodule k-derivation

if and only if

(∀a, a′ ∈ A) D(aa′) = aD(a′) + D(a)a′. (57)

The k-module of all (A, A)-bimodule k-derivations of A into M is denoted Derk(A, M) .

Definition 11. Inner (A, A)-bimodule k-Derivation 6

An (A, A)-bimodule k-Derivation D : A→ M is said to be inner if and only if there exists

some m ∈ M such that:

(∀a ∈ A)D(a) = a ·m−m · a. (58)

The collection of all inner (A, A)-bimodule k-Derivations of A into M is denoted Innk(A, M).

Note 1. For legibility, when the context is clear (A, A)-bimodule k-derivations of A into M will

simply be called k-derivations of A into M or more plainly derivations.

HH1(A, M) may be understood as classifying derivations of k-algebra A into an (A, A)-

bimodule M.

Proposition 5. For every k-algebra A and every (A, A)-bimodule M there is an isomorphism of

k-modules:

HH1(A, M)
∼=→ Derk(A, M)/Innk(A, M) (59)

Proof. By proposition 2: HH1(A, M) ∼= Ker(b1)/Im(b0). Therefore:

—

Ker(b1) = { f ∈ Homk(A, M)|(∀
n

∑
i=0

ai ⊗k bi ∈ A⊗2) b1( f )(
n

∑
i=0

ai ⊗k bi) = 0} (60)

5. These are similar to crossed homomorphisms of groups.
6. These are reminiscent of principal crossed homomorphisms between groups.
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= { f ∈ Homk(A, M)|(∀a, a′ ∈ A) b1( f )(a⊗k a′) = 0} (61)

= { f ∈ Homk(A, M)|(∀a, a′ ∈ A) a f (a′)− f (aa′) + f (a)a′ = 0} (62)

= { f ∈ Homk(A, M)|(∀a, a′ ∈ A) f (aa′) = a f (a′) + f (a)a′} (63)

= Derk(A, M) (64)

— Similarly:

Im(b0) = { f ∈ Homk(A, M)|(∃m ∈ M)(∀a ∈ A) f (a) = ma− am} (65)

= Innk(A, M). (66)

Therefore HH1(A, M) ∼= Derk(A, M)/Innk(A, M) (as k-modules).

2.1.3.3 HH2

Definition 12. k-split Exact Sequence

Let k be a ring. A short exact sequence of k-modules:

0 M′ M M′′ 0
i π

(67)

is said to be k-split (or k-split-exact) if and only if there exists a k-module homomorphism

s : M′′→ M such that π ◦ s = 1M′′ ; the k-module homomorphism s is called a section of π.

Definition 13. k-Hochschild extension

A k-split-exact sequence Eπ of k-modules where π is a k-algebra homomorphism:

Eπ : 0 M B A 0
i π

(68)
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is called a k-Hochschild extension of A by M if both B and A are k-algebras and M is a two-

sided ideal in B. In such a setting M is said to extend A (alternatively A is said be extended by

M).

If M2 ∼= 0 then Eπ is said to be square-zero.

Lemma 1. If Eπ is a k-Hochschild extension of A by M then: Eπ is square-zero if and only if

M is an (A, A)-bimodule with action described as:

for all a ∈ A and for all m ∈ M the left action a ·m (resp. right action m · a ) is defined as the

multiplication am (resp. m a) in B, where ais any element in the π-fibre above a.

Proof.

— Let a ∈ A and m ∈ M.

— For any m ∈M and a ∈ A the action a ·m is well defined if and only if for any other

elements a′ and ain the π-fibre above a: am = a′m. In other words the action is

only well defined if and only if ( a− a′)m = 0m = 0. Therefore for every m in M

there is some m′ := ( a− a′) in M such that mm′ = 0. Hence in this way M is given

a well defined left A-module structure if and only if M is a square zero-ideal in B.

— Mutatis mutandis, A may be given a right A-module with action m · a defined as

the multiplication m ain B, where ais any element in the π-fibre above a if and only

if M is a square zero-ideal in B.

— Let a, a′ ∈ A and m ∈ M and choose some b ∈ π−1[a] and b′ ∈ π−1[a′] (by the above

remarks this calculation will be independent of this choice). Then the associativity

law of the k-algebra B implies:

a · (m · a′) = b(mb′) = (bm)b′ = (a ·m) · a′. (69)

Therefore the above left and right A-module structures are compatible. Hence M

is an (A, A)-bimodule if and only if Eπ is square-zero.
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Maintaining the notation of (68), since π splits B ∼= s(A) ⊕ M as k-modules, where

s : A→ B is a section of π (that is s is a k-module homomorphism satisfying: π ◦ s = 1A).

Moreover s(A)⊕M’s multiplicative structure is dependent on the choice of the section s

of π and may be understood as follows:

Proposition 6. Maintaining the notation of (68): if Eπ is a k-Hochschild extension of A by an

(A, A)-bimodule M then for every section s of π, s(A)⊕M’s multiplicative structure must be of

the form:

(∀a, a′ ∈ A)(∀m, m′ ∈ M)(a, m)(a′, m′) = (aa′, am′ + ma′ +Bs(a, a′)) (70)

where Bs is in CH2(A, M) and depends only on the choice of the section s.

Moreover Bs must be a 2-cocycle.

Conversely, if M is an (A, A)-bimodule and B : A⊗k A→ M is a 2-cocycle then:

E : 0 M M⊕ A A 0
(71)

determines a Hochschild extension with A⊕M’s multiplicative structure defined as:

(∀a, a′ ∈ A)(∀m, m′ ∈ M)(a, m)(a′, m′) = (aa′, am′ + ma′ +B(a, a′)) (72)

Proof.

1. If a, a′, b, b′ ∈ A, m, m′ ∈M, c, c′ ∈ and s : A→ B is k-section of π. Then s determines

a map Bs : A⊗k A→ B by Bs(a⊗k a′) := s(a)s(a′)− s(aa′). Since π is a morphism

of k-algebras then:

π ◦Bs(a⊗k a′) = π(s(a)s(a′)− s(aa′)) (73)

= π ◦ s(a)π ◦ s(a′)− π ◦ s(aa′) (74)
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= 1A(a)1A(a′)− 1A(aa′) (75)

= aa′ − aa′ = 0. (76)

Therefore Bs : A⊗2→ M.

Moreover Bs is k-linear, since:

Bs(a + cb⊗k a + c′b′) = s(a + cb)s(a + c′b′)− s((a + cb)(a′ + c′b′)) (77)

= (s(a) + cs(b))(s(a) + c′s(b′))− s(aa′ + cba′ + c′ab′ + cbc′b′) (78)

= s(a)s(a′) + s(cb)s(a′) + s(c′a)s(b′) + s(cb)s(c′b′)− s(aa′ + cba′ + c′ab′ + cbc′b′) (79)

= s(a)s(a′) + cs(b)s(a′) + c′s(a)s(b′) + cc′s(b)s(b′)− s(aa′)− cs(ba′)− c′s(ab′)− cc′s(bb′) (80)

= s(a)s(a′)− s(aa′) + cs(b)s(a′)− cs(ba′) + c′s(a)s(b′)− c′s(ab′) + cc′s(b)s(b′)− cc′s(bb′) (81)

= (s(a)s(a′)− s(aa′)) + c(s(b)s(a′)− s(ba′)) + c′(s(a)s(b′)− s(ab′)) + cc′(s(b)s(b′)− s(bb′)) (82)

=Bs(a⊗k a′) + cBs(b⊗k a′) + c′Bs(a⊗k b′) + cc′Bs(b⊗k b′). (83)

Therefore Bs : A⊗2→ M ∈ Homk(A⊗2, M) = CH2(A⊗2, M).

2. s(A)⊕M’s multiplicative structure must be of the form:

(∀a, a′ ∈ A)(∀m, m′ ∈ M)(a, m)(a′, m′) = (aa′, am′ + ma′ +Bs(a, a′)). (84)

Since s(A) ⊕ M’s product structure is entirely determined by the map Bs which

is entirely determined by the choice of π’s section s : A→ M then the choice of

multiplicative structure on B may be emphasised to depend on s via the notation

A oBs M .

3. It was assumed that all k-algebras were to be associative. It will now be verified

that (84) defines an associative multiplicative structure on A oBs M, that is it must
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be verified when it defines a k-algebra; in fact this condition will be that Bs is a

2-cocycle.

For Bs induce an associate product on B the following must hold for

(a, m), (a′, m′), (a′′, m′′) ∈ A oBs M:

(a, m)((a′ , m′)(a′′ , m′′)) = (a(a′a′′), a(a′m′′ + m′a′′ +Bs(a′ , a′′)) + m(a′a′′) +Bs(a, a′a′′)and (85)

((a, m)(a′ , m′))(a′′ , m′′) = ((aa′)a′′ , (aa′)m′′ + (am′ + ma′ +Bs(a, a′))a′′ +Bs(aa′ , a′′) (86)

Therefore A oBs M is associative if and only if (85) equalities with (86) if and only if :

aBs(a′, a′′) +Bs(a, a′a′′) =Bs(a, a′)a′′ +Bs(aa′, a′′). (87)

That is A is associative if and only if

0 = aBs(a′, a′′)−Bs(a, a′a′′) +Bs(aa′, a′′)−Bs(a, a′)a′′ = b2Bs(a, a′a′′). (88)

Therefore (88) implies that A oBs M is an associative k-algebra if and only if

A oBs M ∈ Ker(b2), where b2 denotes the 2nd coboundary map of the Hochschild

cocomplex.

Conversely, for every (A, A)-bimodule M the following is by definition a k-split exact

sequence:

E : 0 M M⊕ A A 0
. (89)

Moreover if B is a 2-cocycle, a verifications similar to (85)-(88), shows that:

(∀a, a′ ∈ A)(∀m, m′ ∈ M)(a, m)(a′, m′) = (aa′, am′ + ma′ +B(a, a′)) (90)
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describes a well-defined (associative) product structure on M ⊕ A, making it into a k-

algebra. Finally, since M was assumed to be an (A, A)-bimodule then lemma 1 implies

(89) is square-zero; whence E is a (square-zero) Hochschild extension.

Example 4. Trivial Extension

If M is an Ae-module then the 0 map 0 : A⊗k A→ M defines a square-zero extension of A by

M:
0 M A o0 M A 0

π

(91)

The k-Hochschild extension (91) is called the Trivial Extension of A by M.

Proof. By proposition 6 A o0 M is a k-algebra with multiplication given by:

(∀a, a′ ∈ A)(∀m, m′ ∈ M) (a, m)(a′, m′) = (aa′, am′ + ma′). (92)

Remark 2. Example 4 may seem a priori non-interesting, however it is of essential importance

in the proof of theorem 2. In part because it demonstrates that a square-zero extension of A by M

must always exist.

Definition 14. B-Crossed Product

If A is a k-algebra, M is an (A, A)-bimodule and B : A ⊗k A→ M is a 2-cocycle then the

k-algebra with underlying k-module structure A⊕M and with multiplicative structure:

(∀a, a′ ∈ A)(∀m, m′ ∈ M)(a, m)(a′, m′) = (aa′, am′ + ma′ +B(a, a′)) (93)

is called the B-Crossed Product of A by M and is denoted by A oB M. If B arises from a

section s : A→ M of π splitting the short-exact sequence of k-modules:

0→ M→ A⊕M π→ A→ 0. (94)
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then Bs will denote the 2-cocycle Bs(a⊗k a′) := s(a)s(a′)− s(aa′), in which case AoBs M will

denote the Bs-crossed product of A by M.

Proposition 7. Maintaining the notation of proposition 6, if s and s′ are sections of π and Bs

and Bs′ are their associative 2-cocycles then Bs −Bs′ is a 2-coboundary.

Therefore any k-Hochschild extension EBs determines a unique cohomology class independently

of the chosen section s splitting π.

Proof.

(∀a, a′ ∈ A)Bs(a⊗k a′)−Bs′(a⊗k a′)

= s(a)s(a′)− s(aa′)− s′(a)s′(a′) + s(aa′)

= s(a)s(a′)− s(a)s′(a′) + s(a)s′(a′)− s(aa′)− s′(a)s′(a′) + s(aa′)

= s(a)(s(a′)− s′(a′)) + (s(a)− s′(a))s′(a′) + (s(aa′)− s(aa′)).

= b1(s− s′)(a⊗k a′). (95)

Maintaining the notation of proposition 7, two Hochschild extensions

EB : 0 M B A 0 and

EB′ : 0 M B′ A 0

π

π′

(96)
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are said to be equivalent if and only if there is a k-algebra isomorphism:

φ : B→ B′ making the following diagram of Ae-modules commute:

0 M B A 0

0 M B′ A 0

π

π′

1M 1Aφ

(97)

Definition 15. Hochschild Classes

The equivalence classes of extensions of A by the (A, A)-bimodule M under the Hochschild

equivalence relation are called M, A-Hochschild classes.

Lemma 2. Maintain the notation of (96). Two k-Hochschild extensions EB and EB′ of A by M

are equivalent if and only if B−B′ is a 2-coboundary.

Proof.

— If B−B′ is a 2-coboundary then there exists a k-module homomorphism ζ : A 7→M

satisfying b1(ζ) =B−B′ (where b1 is the Hochschild cocomplex’s first coboundary

map). Choose some sections s of π and s′ of π′ (by proposition 7 this choice

does not affect B−B’s cohomology class) and define a k-module homomorphism

Φ : A oBs M→ A oBs′ M as:

(∀a ∈ A)(∀m ∈ M) Φ(a, m) := (a, m + ζ(a)). (98)

Φ has a two-sided inverse, the k-module homomorphism taking an element

(a, m) ∈ A oBs′ M to the element (a, m− ζ(a)) in A oBs M.
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Moreover Ψ is a k-algebra homomorphism since:

(∀a, a′ ∈ A)(∀m, m′ ∈ M)Φ((a, m)(a′, m′))

= (aa′, a ·m′ + m · a′ +Bs(a, a′) + ζ(aa′))

= (aa′, a ·m′ + m · a′ + a · ζ(a′) + ζ(a) · a′ +Bs′(a, a′))

= (a, m + ζ(a))(a′, m′ + ζ(a′)) = Φ(a, m)Φ(a′, m′).

Furthermore since:

(∀a ∈ A)(∀m ∈ M) π′ ◦Φ(a, m)

= π′(a, m + ζ(a))

= a = π(a, m)

Φ describes an equivalence of the k-Hochschild extensions EB and EB′ .

— Conversely, if EB and EB′ are isomorphic k-Hochschild extensions then an analo-

gous computation to (95) shows B−B′ is a 2-coboundary [HI].

Theorem 1. The Hochschild Class Correspondence Theorem (Hochschild ∼ 1944)

If A is a k-algebra and M is an (A, A)-bimodule then HH2(A, M) is in 1− 1 correspondence

with the set of M,A-Hochschild Classes.

Proof. By lemma 2 two extensions EB and EB′ of A by M are non-isomorphic if and only

if [B] and [B′] are distinct cohomology classes in H2(HomAe(CB?(A), M), HomAe(b′n, M)).
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2.2 the (A , A)-bimodules : Ωn (A/k)

If A is a k-algebra then its multiplication map µ A : A ⊗k A→ A is an (A , A)-bimodule

homomorphism, therefore µ A is an A e-module homomorphism hence its kernel is an

A e-module. This A e-module is denoted Ω1 (A/k) and has the following description:

Proposition 8. If A is a k-algebra then the A e-module Ω1 (A/k) is generated as an A e-module

by the tensors in A ⊗k A of the form 1 ⊗k a − a ⊗k 1, where a ∈ A.

Moreover there is k-linear map d : A → Ω1 (A/k) defined as d(a) 7→ 1 ⊗k a − a ⊗k 1

satisfing the following properties :

1. d(aa ′ ) = ad(a ′ ) + d(a)a ′

2. d(a + a ′ ) = d(a) + d(a ′ )

3. d(k) = 0

Therefore d is a derivation of A into Ω1 (A/k).

Proof. If a0 , . . , an , b0 , . . , bn ∈ A and
n
∑

i=0
a i ⊗k b i ∈ Ω1 (A/k) then:

0 = µ A (
n

∑
i=0

a i ⊗k b i ) =
n

∑
i=0

a i b i . (99)

Therefore:

0 = 0 − 0 =
n

∑
i=0

a i b i −
n

∑
i=0

a i b i =
n

∑
i=0

a i b i − a i b i (100)

=
n

∑
i=0

a i (1b i − b i 1) (101)

=
n

∑
i=0

a i (µ A (1 ⊗k b i ) − µ A (b i ⊗k 1)) (102)

=
n

∑
i=0

a i µ A (1 ⊗k b i − b i ⊗k 1) =
n

∑
i=0

a i d(b i ) . (103)
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Thus Ω1 (A/k) is generated as an A e-module by elements of the form 1 ⊗k a − a ⊗k 1

where a ∈ A. Moreover the association a 7→ 1 ⊗k a − a ⊗k 1 describes a map d : A →

Ω1 (A/k). The k-linearity as well as the properties of d may be deduced as follows:

1.

d(aa′) = 1⊗k aa′ − aa′ ⊗k 1 = (104)

= 1⊗k aa′ − a⊗k a′ + a⊗k a′ − aa′ ⊗k 1 (105)

= (1⊗k aa′ − a⊗k a′) + (a⊗k a′ − aa′ ⊗k 1) (106)

= (1⊗k a− a⊗k 1)a′ + a(1⊗k a′ − a′ ⊗k 1) (107)

= d(a)a′ + ad(a′) (108)

2.

d(a + b) = 1⊗k (a + b)− (a + b)⊗k 1 = 1⊗k a + 1⊗k b− a⊗k 1− b⊗k 1 (109)

= 1⊗k a− a⊗k 1 + 1⊗k b− b⊗k 1 = d(a) + d(b) (110)

3.

d(k) = 1⊗k k− k⊗k 1 = k⊗k 1− k⊗k 1 = 0 (111)

In particular the map d in proposition 8 is a k-derivation of A into Ω1(A/k).

Ω1(A/k) M

A

∃!

d
D

Figure 1 – The universal property of Ω1(A/k)
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Moreover the subsequent result says that for every k-derivation D of A into an (A, A)-

bimodule M there exists a unique (A, A)-bimodule map f : Ω1(A/k) → M such that

f ◦ d = D 7 . Implying:

Proposition 9. Universal property of Ω1(A/k) 8

If A is a k-algebra and M is an (A, A)-bimodule then there is an isomorphism of A-modules:

HomA ModA(Ω
1(A/k), M)→ Derk(A, M) (112)

Proof. Let D : A→M be a k-derivation then define the (A, A)-bimodule homomorphism

f : Ω1(A/k)→ M on
n
∑

i=0
ai ⊗k bi ∈Ω1(A/k) as:

f (
n

∑
i=0

ai ⊗k bi) :=
n

∑
i=0

aiD(bi). (113)

Therefore for any a ∈ A:

f (d(a)) = f (1⊗k a− a⊗k 1) = −D(1)a + D(a)1 = 0 + D(a) = D(a). (114)

Since d(A) generates the (A, A)-bimodule Ω1(A/k), the fact that f is an (A, A)-bimodule

homomorphism may be verified on the images of d as follows: suppose a, b, c, e ∈ A then:

f (d(a) + bd(c)e) = f (1⊗k a− a⊗k 1 + b⊗k ce− bc⊗k e) (115)

= −(D(1)a− D(a)1 + D(b)ce− D(bc)e) (116)

= −(−D(a) + D(b)ce− bD(c)e− D(b)ce) (117)

= D(a) + bD(c)e (118)

7. The universal property of Ω1(A/k) is analogous to the universal property of the A-module of Kähler
differentials in the case where A was a commutative k-algebra.

8. In other words the functor Derk(A,−) :A ModA →A Mod is corepresentable by the (A, A)-bimodule
Ω1(A/k).
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Since (∀
n
∑

i=0
ai ⊗k bi ∈Ω1(A/k))

n
∑

i=0
aibi = µA(

n
∑

i=0
ai ⊗k bi) = 0 then:

0 = D(0) = D(
n

∑
i=0

aibi) =
n

∑
i=0

D(ai)bi +
n

∑
i=0

aiD(bi). (119)

Therefore (119) implies:
n

∑
i=0

D(ai)bi = −
n

∑
i=0

aiD(bi). (120)

Together (120) and (118) imply:

f (d(a) + bd(c)e) = −D(a)− bD(c)e = (−D(a)− 0) + b(−0− D(c))e (121)

= (−D(a)1− 1D(a)) + b(−D(c)1− cD(1))e (122)

= f (a) + b f (c)e (123)

Therefore f is indeed an (A, A)-bimodule homomorphism.
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Definition 16. Ωn(A/k)

Let A be a k-algebra and n ∈N, then define:

Ωn(A/k) := Ker(b′n−1) (124)

where b′n−1 is the (n− 1)th differential in the augmented bar resolution of A.

Example 5.

1. Ker(b′−1 : A→ 0) = A = Ω0(A/k)

2. Ker(b′0 : A⊗2→ A) = Ω1(A/k)

Proof.

1. Ker(b′−1) = A.

2. b′0 = µA.
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2.3 some relative homological algebra

One last ingredient is needed to formulate the first two related results alluded to

on page 6 of this master’s thesis. This ingredient is a short discussion on the relative

homological algebraic framework first introduced in 1967 by Jonathan Mock Beck in his

doctoral thesis entitled: "Triples 9 , Algebras and Cohomology" [TC].

2.3.0.4 E k
A-Projective Modules

Definition 17. Projective module

If A is a k-algebra and P is an A-module, then P is said to be projective if and only if for every

short exact sequence of A-modules:

0 M N N′ 0
η ε

(125)

the sequence of k-modules:

0 HomA(P, M) HomA(P, N) HomA(P, N′) 0
η?

ε?

(126)

is exact.

If only certain A-epimorphisms are considered when verifying the universal property

of a projective A-module, then there would exist more A-modules which behave like

projective A-modules. Moreover the acknowledged A-epimorphisms could be fewer

thus only the epimorphisms exhibiting some special property could be considered, for

example:

Definition 18. E k
A-Epimorphism

9. The word triple has fallen out of practice and now is usually referred to as a monad.
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2.3 some relative homological algebra

For any k-algebra A, an epimorphism ε in A Mod is an E k
A-epimorphism if and only if ε’s

underlying morphism of k-modules is a k-split epimorphism in k Mod.

The class of these epimorphisms is denoted E k
A.

Remark 3. Straightaway from this definition it follows that the class of all epimorphisms in

A Mod always contains E k
A as a subclass (though the containment is not necessarily proper).

Definition 19. E k
A-Exact sequence

An exact sequence of A-modules:

.. Mi Mi+1 Mi+2 ..
φi−1 φi φi+1 φi+2

(127)

is said to be E k
A-exact if and only if:

for every integer i the there exists a morphism of k-modules ψi : Mi+1→ Mi such that:

φi = φi ◦ ψi ◦ φi. 10 (128)

In particular as short exact sequence of A-modules which is E k
A-exact is called an E k

A-short

exact sequence.

Example 6. The augmented bar complex ˆCB?(A) of a k-algebra A is E k
Ae -exact.

Proof. For every n ∈N let sn : CBn(A)→ CBn+1(A) be as in (27). sn is k-linear since:

Let a0 ⊗k ...⊗k an+1, a′0 ⊗k ...⊗k a′n+1 ∈ CBn(A), c ∈ k (129)

sn(a0 ⊗k ...⊗k an+1 + ca′0 ⊗k ...⊗k a′n+1) (130)

= 1⊗k a0 ⊗k ...⊗k an+1 + c1⊗k a′0 ⊗k ...⊗k a′n+1) (131)

= sn(a0 ⊗k ...⊗k an+1) + csn(a′0 ⊗k ...⊗k a′n+1). (132)

10. Property (128) is called E k
Ae -admissibility [SA] (alternatively it is called E k

Ae -allowable [MH]).
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2.3 some relative homological algebra

The sn show that each b′n satisfies property (128) since:

b′n ◦ sn−1 ◦ b′n (133)

= b′n ◦ (1 + b′n+1 ◦ sn) (134)

= b′n = b′n ◦ b′n+1 ◦ sn (135)

Since b′? is a coundary map bn ◦ bn+1 = 0; hence (135) equates to:

= b′n + 0 = b′n. (136)

Definition 20. E k
A-Projective module 11

If A is a k-algebra and P is an A-module, then P is said to be E k
A-projective if and only if for

every E k
A-short exact sequence:

0 M N N′ 0
η ε

(137)

the sequence of k-modules:

0 HomA(P, M) HomA(P, N) HomA(P, N′) 0
η?

ε?

(138)

is exact.

11. This definition is equivalent to requiring that P verify the universal property of projective modules
only on E k

A-epimorphisms [MH].
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2.3.0.5 An example: A⊗n+2 is E k
Ae -projective for all n ∈N.

Out of convenience it will be proven in a more general form once and for all:

Lemma 3. 12 If A is a k-algebra and T :k Mod→A Mod is a (contravariant) additive functor

then T takes k-split exact sequences to A-split exact sequences.

Proof. Suppose:

0 M N N′ 0
η ε

(139)

is a split-exact sequence in k Modop. Moreover, since (139) is split exact then by definition

there are morphisms s1 : N → M and s2 : N′ → N in k Mod satisfying s1 ◦ η = 1M and

s2 ◦ ε = 1N′ .

1.

T(s1) ◦ T(η) = T(s1 ◦ η) = T(1M) = 1T(M) (140)

Therefore T(η) is split-monic in A Mod.

2.

T(ε) ◦ T(s2) = T(ε ◦ s2) = T(1N′) = 1T(N′) (141)

Therefore T(ε) is split-epic in A Mod.

3. If there exists some x ∈ T(N) such that ε(x) = 0 then:

s2 ◦ ε(x) = s2 ◦ 0(x) = 0(x) = 0. (142)

Therefore 1N(x) = (η ◦ s1)(x) + (s2 ◦ ε)(x) = η(s1(x)); whence x ∈ Im(η). Therefore

Ker(ε) ⊆ Im(η).

4.

0 = T(0) = T(ε ◦ η) = T(ε) ◦ T(η) (143)

12. The dual category of an abelian category is abelian by the duality principle [MC] (though k Mod need
not be a category of Modules).
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2.3 some relative homological algebra

Therefore Im(η) ⊆ Ker(ε).

Therefore:

0 T(M) T(N) T(N′) 0
η ε

(144)

is a split-exact sequence of A-modules.

The contravariant case follows mutatis mutandis (since k Modop is also an abelian cate-

gory).

Proposition 10. A⊗n+2 is E k
Ae -projective for all n ∈N.

Proof. Suppose (145) is an E k
A-exact sequence:

0 M N N′ 0
η ε

(145)

Then viewing (145) as a split-exact sequence of k-modules, lemma 3 implies that the

additive functors Homk(A⊗n,−) take (145) to an exact sequences of Ae-modules which

is Ae-split:

0 Homk(A⊗n, N′) Homk(A⊗n, N) Homk(A⊗n, M) 0
η?

ε?

. (146)

(146) implies the top row of the following diragram of Ae-modules is exact. Furthermore

the Ae-module isomorphisms in (43) imply that Homk(A⊗n, X) ∼= HomAe(A⊗n+2, X), giv-

ing the commutativity of the diagram:

0 Homk(A⊗n, N′) Homk(A⊗n, N) Homk(A⊗n, M) 0

0 HomAe(A⊗n+2, N′) HomAe(A⊗n+2, N) HomAe(A⊗n+2, M) 0

∼= ∼= ∼=

. (147)
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Whence the bottom row must also be exact [IH]. Therefore HomAe(A⊗n+2,−) takes

takes split exact sequences in Ae Mod to exact sequences in k Mod, hence A⊗n+2 is E k
Ae -

projective.

E k
A-projective A-modules have analogous properties to projective A-modules. For ex-

ample they admit the following characterization.

Proposition 11. For any A-module P the following are equivalent:

E k
A -short exact sequence preservation property P is E k

A-projective.

E k
A -lifting property For every E k

A-epimorphism f : N→ M if there exists an A-module

morphism g : P→ M then there exists an A-module map f̃ : P→ N such that f ◦ f̃ = g.

E k
A -splitting property Every short E k

A-exact sequence of the form:

Eπ : 0 M N P 0
(148)

is A-split-exact.

E k
A -free direct summand property

13 There exists a k-module F, an A-module Q

and an isomorphism of A-modules φ : P⊕Q
∼=→ A⊗k F.

Proof. See [MH] pages 261 for the equivalence of 1,2 and 3 and page 277 for the equiva-

lence of 1 and 4.

13. If F is a free k-module, some authors call A⊗k F an E k
A-free module. In fact this gives an alternative

proof that Ae ⊗k A⊗n ∼= A⊗n+2 is E k
Ae -free for every n ∈N.
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2.3.0.6 E k
A-homological algebra

Proposition 12. Enough E k
A-projectives

If A is a k-algebra and M is an A-module then there exists an E k
A-epimorphism ε : P→ M

where P is an E k
A-projective.

Proof. By proposition 11 A⊗k M is E k
A-projective. Moreover the A-map ζ : A⊗k M→ M

described on elementary tensors as (∀a⊗k m ∈ A⊗k M)ζ(a⊗k m) := a ·m is epic and is

k-split by the section m 7→ 1⊗k m.

Definition 21. E k
A-projective resolution

If M is an Ae-module then a resolution P? of M is called an E k
A-projective resolution of M if

and only if each Pi is an E k
A-projective module and P? is an E k

A-exact sequence.

Example 7. The augmented bar complex ˆCB?(A) of A is an E k
Ae -projective resolution of A.

Proof. In example 2 ˆCB?(A) was seen to be an acyclic resolution of A. In proposition 10 it

was seen that for each n ∈N: ˆCB?(A) was a E k
Ae -projective Ae-module. Finally example

6 implies ˆCB?(A) is E k
Ae -exact.

Therefore ˆCB?(A) is an E k
Ae -projective resolution of A.

Remark 4. A nearly completely analogous argument to example 7 shows that for any

(A, A)-bimodule M, M⊗A
ˆCB?(A) is an E k

Ae -projective resolution of M [HI].

2.3.1 Relative Homological Algebra

Nearly all the usual homological algebraic machinery transfers over seamlessly to the

relativised framework by making the necessary tweaks [SA] (in fact most arguments are

identical with E k
A in place of the usual class of all the epimorphisms of the category A Mod).
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Definition 22. E k
A-relative Tor

If N is a right A-module, M is an A-module and P? is an E k
A-projective resolution of N then

the k-modules H?(P? ⊗A M) are called the E k
A-relative Tor k-modules of N with coefficients in the

A-module M and are denoted by Torn
E k

A
(N, M).

Remark 5. The E k
A-relative Tor functors may differ from the usual (or "absolute") Tor functors.

For example consider all the Z-algebra Z, any Z-modules N and M are E Z
Z -projective. In

particular, this is true for the Z-modules Z and Z/2Z. Therefore Torn
E Z

Z

(Z,Z/2Z) vanish for

every positive n, however Torn
Z(Z,Z/2Z) does not. For example, Tor1

Z(Z,Z/2Z) ∼= Z/2Z

[IH]. 14

Similarly there are E k
A-relative Ext functors:

Definition 23. E k
A-relative Ext

If N is and M are A-modules and P? is an E k
A-projective resolution of N then the k-modules

H?(HomA(P?, M)) are called the E k
A-relative Ext k-modules of N with coefficients in the A-

module M and are denoted by Extn
E k

A
(N, M).

Remark 6. The same modules as in remark 5 together with an analogous computation show that

a E k
A-relative Ext functor may differ from an (absolute) Ext functor. Likewise when k is a field

they equate [HI].

Both the definitions of E k
A-relative Ext and E k

A-relative Tor are independent of the choice

of E k
A-projective resolution:

Theorem 2. E k
A-Comparison theorem

If P? and P′? are E k
A-projective resolutions of an A-module N then for any A-module M there

are natural isomorphisms:

H?(HomE k
A
(P?, N))

∼=→ H?(HomE k
A
(P′?, N)) (149)

14. Constrastingly, the two bifunctors TorA(−,−) and TorE k
A
(−,−) may be identical in some cases (for

example when the basering is a field) [HI].
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and if P? and P′? are E k
A-projective resolutions of a right A-module N then:

H?(P? ⊗A N)
∼=→ H?(P′? ⊗A N) (150)

Proof. Nearly identical to the usual comparison theorem, see [MH].

For any A-module M Ext?
E k

A
(M,−) may behave analogously to the ExtA(M,−), for

example:

Proposition 13. If X is an A-module and 0→ N′ → N → N′′ → 0 is an E k
A-short exact

sequence then there exists a long exact sequences of k-modules:

...→ Extn+1
E k

A
(X, N′′) Extn

E k
A
(X, N′) Extn

E k
A
(X, N) Extn

E k
A
(X, N′′) Extn−1

E k
A
(X, N′)→ ...

∂n+1 ∂n

and

...→ Extn+1
E k

A
(N′, X) Extn

E k
A
(N′′, X) Extn

E k
A
(N, X) Extn

E k
A
(N′, X) Extn−1

E k
A
(N′′, X)→ ...

∂n+1 ′ ∂n ′

Proof. See [RH] page 253.

Instead of providing a proof of proposition 13, which is analogous to the classical case

of ExtA, it will now instead be shown that proposition 13 need not hold for short exact

sequences (which aren’t E k
A-exact). That is Ext?

E k
A
(X,−) (resp. Ext?

E k
A
(−, X)) need not take

a short exact sequence to a long exact sequence in general. An issue here is that there

exist short exact sequences which do not extend to a short exact sequence of E k
A-projective

resolutions (that is a short exact sequences of complexes, such that each complex is an

E k
A-projective resolution).
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Example 8. Z/2Z is an E Z
Z -projective module and

0→Z→Z→Z/2Z→ 0 (151)

is a short exact sequence of Z-modules which is not E Z
Z -short-exact.

Furthermore the exact sequence of Z-modules:

0→ 0→Z/2Z→Z/2Z→ 0 (152)

is an E Z
Z -short exact sequence.

Proof. Since Z/2Z∼= Z⊗Z Z/2Z, proposition 11 implies Z/2Z is an E Z
Z -projective mod-

ule.

Moreover (151) cannot be Z-split or else Z/2Z would be a torsion Z-submodule of

the torsion free Z-module Z.

The ExtZ and E Z
Z -relative Ext may differ:

Example 9. Ext1
Z(Z,Z/2Z) ∼= Z/2Z and Ext1

E Z
Z

(Z,Z/2Z) ∼= 0

Proof. Since (152) is a E Z
Z -projective resolution of the Z-module Z/2Z, there are natural

isomorphisms of Z-modules:

Ext1
E Z

Z

(Z,Z/2Z) ∼= Z/2Z. (153)

In contrast, since (152) is a E Z
Z -projective resolution of the Z-module Z/2Z then theo-

rem 2 implies:

Ext1
E Z

Z

(Z,Z/2Z) ∼= 0/0∼= 0. (154)
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Proposition 14. Dimension Shifting

If

...
dn+1→ Pn ... P1 P0 0

dn d2 d1

(155)

is a deleted E k
A-projective resolution of an A-module M then for every A-module N and for every

positive integer n there are isomorphisms natural in N:

Ext1
E k

A
(Ker(dn), N) ∼= Extn+1

E k
A
(A, N) (156)

Proof. By definition the truncated sequence is exact:

...
dn+j→ Pn+j ... Pn+1 Ker(dn) 0

dn+j−1 dn+1 η

, (157)

where η is the canonical map satisfying dn = ker(dn) ◦ η (arising from the universal prop-

erty of ker(dn)). Moreover since (155) is E k
A-exact, dn is k-split; whence η must be k-split.

Moreover for every j≥ n+ 1, dj was by assumption k-split therefore (157) is E k
A-exact and

since for every natural number m > n Pm is by hypothesis E k
A-projective then (157) is an

augmented E k
A-projective resolution of the A-module Ker(dn).

For every natural number m, relabel:

Qm := Pm+n and pm := dn+m. (158)

By theorem 2:

(∀N ∈A Mod)(∀m ∈N) Extm
E k

A
(Ker(dn), N) ∼= Hm(HomA(Q?, N)) (159)

= Ker(HomA(pn, N))/Im(HomA(pn+1, N)) (160)

= Ker(HomA(dn+m, N))/Im(HomA(dn+m+1, N)) (161)

47



2.3 some relative homological algebra

= Hm+n(HomA(P?, N)) (162)

∼= Extm
E k

A
(A, N). (163)

Analogous to the fact that for any A-module P, P is projective if and only if Ext1
A(P, N)∼=

0 for every A-module N there is the following result:

Proposition 15. P is an E k
A-projective module if and only if for every A-module N:

Ext1
E k

A
(P, N) ∼= 0 (164)

Proof.

— Suppose for every A-module Ext1
E k

A
(P, N) ∼= 0 and let

0→ N′→ N→ N′′→ 0 (165)

be an E k
A-short exact sequence of A-modules. Proposition 13 implies there is an

exact sequence:

Ext1
E k

A
(A, N′′) Homn

A(P, N′) Homn
A(P, N) Homn

A(P, N′′) 0
∂1

Since it was assumed that Ext1
E k

A
(P, N) ∼= 0 then:

0 Homn
A(P, N′) Homn

A(P, N) Homn
A(P, N′′) 0

is exact whence HomA(P,−) takes E k
A-short exact sequences to short exact sequences,

therefore P is E k
A-projective.
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— Conversely, since P is an E k
A-projective module:

..→ 0→ ...→ 0→ P 1P→ P→ 0 (166)

is an E k
A-projective resolution of P of length 0. We denote its corresponding deleted

E k
A-projective resolution by P?. Whence by theorem 2:

(∀X ∈A Mod) Ext1
E k

A
(P, X) ∼= H1(HomA(P?, X)) ∼= 0. (167)

2.3.2 The Hochschild Cohomology as the ExtE k
Ae
(A,−) functors

Since CB?(A) is an E k
Ae -projective resolution of A then theorem 2 and the definition of

the Ext?
E k

Ae
(A,−) functors imply that:

Proposition 16. For every Ae module N there are k-module isomorphisms, natural in N:

HH?(A, N)
∼=→ Ext?

E k
Ae
(A, N) (168)

Taking short E k
Ae -exact sequences to isomorphic long exact sequences.

Definition 24. Hochschild Homology 15 16

The Hochschild homology HH?(A, N) of a k-algebra A with coefficient in the (A, A)-bimodule

N is defined as:

HH?(A, N) := H?(P? ⊗A N) (169)

15. If A is a commutative k-algebra of essentially-finite type and k is Noetherian then HH?(A, A) ∼=
Ωn

A|k, where Ωn
A|k are the Kähler n-forms [HI], therefore the Hochschild homology provides yet another

noncommutative analogue of Ωn(A|k).
16. There is a duality relationship between the Hochschild cohomology and the Hochschild Homology

modules of a C-algebra explored in [RG]. In the case where A is the coordinate ring of a smooth affine
algebraic C-variety this relationship becomes even clearer [PH].
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where P? is an E k
Ae -projective resolution of A.

2.3.3 Two Cohomological Dimensions

The Hochschild cohomological dimension is the numerical invariant of prime focus in

this master’s thesis. All the results presented herein revolve around it.

Definition 25. Hochschild cohomological dimension

The Hochschild cohomological dimension of a k-algebra A is defined as:

HCdim(A/k) := sup
M∈Ae Mod

(sup{n ∈N#|HHn(A, M) 6 ∼=0}). (170)

Where N# is the ordered set of extended natural numbers.

The Hochschild cohomological dimension may be related to the following cohomolog-

ical dimension and to Ωn(A/k) as will be shown in theorem 3 below.

Definition 26. E k
A-projective dimension

If n is an natural number and M is an A-module then M is said to be of E k
A-projective

dimension at most n if and only if there exists a deleted E k
A-projective resolution of M of length

n.

If no such E k
A-projective resolution of M exists then M is said to be of E k

A-projective dimension

∞.

The E k
A-projective dimension of M is denoted pdE k

A
(M).

The following is a translation of a classical homological algebraic result into the setting

of E k
Ae -projective dimension, Ωn(A/k) and Hochschild cohomology:
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Theorem 3. For every natural number n, the following are equivalent:

1. HCdim(A/k) ≤ n

2. A is of E k
Ae -projective dimension at most n

3. Ωn(A/k) is an E k
Ae -projective module.

4. HHn+1(A, M) vanishes for every (A, A)-bimodule M.

5. Extn+1
E k

Ae
(A, M) vanishes for every Ae-module M.

Proof.

1 ⇒ 4 By definition of the Hochschild cohomological dimension.

4 ⇔ 5 By proposition 16.

3 ⇒ 2 Since Ωn (A/k) is E k
A e -projective:

0 → Ωn (A/k) → C Bn−1 (A)
b ′n−1→ . . . .

b ′0→ A → 0 (171)

is a E k
A e -projective resolution of A of length n. Therefore pdE k

Ae
(A) ≤ n.

3 ⇔ 4 By proposition 14 there are isomorphism natural in M:

(∀M ∈A e Mod)H H 1+n (A , M) ∼= Ext1+n
E k

Ae
(A , M) (172)

∼= Ext1
E k

Ae
(Ωn (A/k) , M) . (173)

Therefore for every A e-module M:

Ext1
E k

Ae
(Ωn (A/k) , M) ∼= 0 if and only if H H 1+n (A , M) ∼= 0. (174)

By proposition 15 Ωn (A/k) is E k
A-projective if and only if

Ext1
E k

Ae
(Ωn (A/k) , M) ∼= 0. (175)
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2 ⇒ 1 If A admits an E k
A e -projective resolution P? of length n then theorem 2 implies

there are natural isomorphisms of A e-modules:

(∀ j ∈ N)(∀M ∈A e Mod)Ext?
E k

Ae
(A , M) ∼= H ? (H om A e (P? , M)) . (176)

Since P? is of length n all the maps p j : Pj+1 → Pj are the zero maps therefore

so are the maps p?
j : H om A e (Pj ) → H om A e (Pj+1 ). Whence (176) entails that

for all j > n + 1 Ext?
E k

Ae
(A , M) vanishes. By proposition 16 this is equivalent

to H H j (A , M) vanishing for all j > n + 1 for all M ∈A e Mod. Hence A is of

Hochschild cohomological dimension at most n.

Note 2. If A is a k-algebra then a minor modification of the above argument (using an E k
A-

projective resolution of an A-module N in place of the bar resolution of the A e-module A), it can

be verified that for any extended natural number n and any A-module N, N is of E k
A-projective

dimension at most n if and only if Extm
E k

A
(N , M) ∼= 0 for all M ∈A Mod and for all m ≥ n.
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2.4 analysing properties of k-algebras via their hochschild cohomo-

logical dimension

The use of the Hochschild cohomology is that it may be used to characterise quasi-

free k-algebras (to be defined below in definition 28). Originally theorem 3 was shown

over a field by Cuntz and Quillen for n = 0, 1; however here we extend it further to any

commutative base ring k and to any n.

2.4.1 H Cdim(A/k) = 0 and Inner Derivations

Corollary 1 generalises a result of Cuntz and Quillen’s beyond the case where k is a

field:

Corollary 1. 17 The following are equivalent:

1. HCdim(A/k) = 0

2. A is a projective E k
Ae -module.

3. All derivations of A into an Ae-module M are inner.

Proof. By theorem 3: 1 and 2 are equivalent with HH1(A, M) ∼= 0 for every Ae-module

M; lemma 5 then rephrases this as saying Innk(A, M) = Derk(A, M) for every Ae-module

M.

17. Over a field k-algebras satisfying any of these properties were called separable by Cuntz and Quillen
in [AE].
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Example 10. 18 Z is a E Z
Z -projective Z-algebra.

Proof. Z⊗Z Z ∼= Z therefore Z is a direct summand of Z⊗Z Z. Whence the Z-algebra

Z is E Z
Z -projective by proposition 11.

Example 11. All the Z-derivations of Z[xi]i∈N into a Z[xi]
e
i∈N-module are inner.

Proof. Z[xi]
e
i∈N
∼=Z[xi]i∈N×N

∼=Z[xi]i∈N therefore Z[xi]i∈N is Z[xi]
e
i∈N-free; whence corol-

lary 1 applies.

18. The only examples of k-algebras A which satisfy HCdim(A/k) = 0 appearing in the literature are k-
algebra over a field k those which are Morita equivalent to A. This example is over a ring which isn’t a field
but it is still (trivially) Morita equivalent to the base ring Z.
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2.4.2 HCdim(A/k) ≤ 1 and Square-Zero Extensions

In the case where k is a field the following corollary yields a result of Cuntz and

Quillen’s [AE].

Definition 27. Lifting of a square-zero k-Hochschild extension

Let M be an (A, A)-bimodule and:

E: 0 M B A 0
π

(177)

be a k-Hochschild extension. Then (177) is said to lift if there is a section s of π which is a

k-algebra homomorphism.

Example 12. Let A be a k-algebra and M be an (A, A)-bimodule.

The trivial k-Hochschild extension of A by M lifts.

Proof.

— The zero k-map 0 : A→ A⊕M always exists since Ae Mod.

— The zero map: A→ A o0 M is a noncommutative k-algebra homomorphism since:

(∀c ∈ k)(∀a, a′, a′′ ∈ A)0(aa′ + ka′′) = 0 = 0(a)0(a′) + c0(a′′). (178)

Lemma 4. Let A be a k-algebra, M be an (A, A)-bimodule and

0→ M→ B π→ A→ 0 (179)

be a k-Hochschild extension of A by M.

Then (179) lifts if and only if (179) is equivalent to the trivial extension.
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2.4 analysing properties of k-algebras via their hochschild cohomological dimension

In particular there is always precisely one M, A-Hochschild class of k-Hochschild extensions

that contains a k-Hochschild extension that lifts.

Proof. (179) lifts if and only if there exists a section s : A→ B of π satisfying:

(∀a, a′ ∈ A) s(aa′) = s(a)s(a′) (180)

if and only if:

(∀a, a′ ∈ A) s(aa′)− s(a)s(a′) = 0 (181)

if and only if:

(∀a, a′ ∈ A) Bs(a⊗k a′) = 0. (182)

Since the M, A-Hochschild class of (179) is independent of the choice of section of π then

(179) lifts if and only if there exists a section s of π such that Bs = 0; that is (179) lifts if

and only if (179) is equivalent to the trivial Hochschild extension of A by M.

Furthermore since the trivial k-Hochschild extension always exists there is always pre-

cisely one M, A-Hochschild class of k-Hochschild extensions equivalent to a k-Hochschild

extension that lifts.

Corollary 2. 19

For a k-algebra A, the following are equivalent:

1. A is HCdim(A/k) ≤ 1.

2. Ω1(A/k) is a E k
Ae -projective Ae-module.

3. All k-Hochschild extensions of A by an (A, A)-bimodule lift.

Proof. Theorem 3 implies 1 and 2 are equivalent to HH2(A, M) ∼= 0 for all Ae-modules

M. Lemma 4 implies all extensions of A into an (A, A)-bimodule M lift if and only if

there is only one M, A-Hochschild class for all (A, A)-bimodules M. Since HH2(A, M)

19. Cuntz and Quillen prove many other results related to quasi-free k-algebras in their article [AE].
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2.4 analysing properties of k-algebras via their hochschild cohomological dimension

is naturally in bijection with the set of M, A-Hochschild classes, all extensions of A into

an (A, A)-bimodule M lift if and only if HH2(A, M) has only one element for all (A, A)-

bimodules M if and only if HH2(A, M) ∼= 0 for all (A, A)-bimodules M.

Definition 28. Quasi-free k-algebra 20

Any k-algebra satisfying any of the equivalent conditions in corollary 2 is called a quasi-free

k-algebra.

2.4.2.1 An Example

Definition 29. Tensor Algebra on M over B

If B is a k-algebra and M is a (B, B)-bimodule then the Tensor Algebra on M over B, denoted

TB(M) is the B-algebra defined as:

TB(M) := B⊕
⊕

n∈Z+

n⊗
B

M (183)

with multiplication defined on elementary tensors as:

(e1 ⊗ ...⊗k ej)× (ẽ1 ⊗ ...⊗k ẽk) 7→ e1 ⊗ ...⊗k ej ⊗ ẽ1 ⊗ ...⊗k ẽk. (184)

A direct verification shows:

Proposition 17. The tensor algebra is a (unital associative) B-algebra.

Proof. See the third chapter of [BA].

20. First introduced by Cuntz and Quillen in [AE], due to their lifting property the quasi-free k-algebras
are considered a noncommutative analogue to smooth k-algebras; that is k-algebras for which ΩA|k is a
projective A-module.
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2.4 analysing properties of k-algebras via their hochschild cohomological dimension

Proposition 18. Universal Property of the tensor algebra

Let A be a k-algebra, M be an (A, A)-bimodule and define the (A, A)-bimodule homomorphism

f : M→ TA(M) as:

(∀m ∈ M) f (m) = (0, m, 0, ..., 0, ...). (185)

For every homomorphism of k-algebras h : A → B (giving B the structure of an (A, A)-

bimodule) and for every (A, A)-bimodule homomorphism g : M → B there is exists a unique

A-algebra homomorphism φ : TA(M)→ B whose underlying A-module homomorphism satisfies

φ ◦ f = g.

Proof. Let B be a k-algebra whose A-algebra structure is given by the k-algebra homo-

morphism h : A→ B and let g : M → A be an (A, A)-bimodule homomorphism. We

construct the k-algebra homomorphism φ extending h whose underlying A-module ho-

momorphism satisfies φ ◦ f = g.

For every positive integer n, the map:

g′n :
n⊗

A
M→ A (186)

defined as: (∀m1, .., mn ∈ M) g′n(m1 × ...×mn) 7→ g(m1)....g(mn) (187)

is n-fold A-linear (on the right and on the left). By the universal property of the n-fold

tensor product there exists a unique A-linear (on the right and on the left) map:

φn :
n⊗

A
M→ A (188)

satisfying: (∀m1, .., mn ∈ M) φn(m1 ⊗A ...⊗A mn) 7→ g(m1)....g(mn). (189)

Relabel the k-algebra homomorphism h as φ0. Define the k-module homomorphism:

φ := ⊕
n∈N

φn : TA(M)→ A. (190)
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In fact φ is a k-algebra homomorphism since for every (m1 ⊗A ...⊗A mk),

(m1 ⊗A ...⊗A mj) ∈ Tk(M):

φ((m1 ⊗A ...⊗A mk)(m1 ⊗A ...⊗A mj)) (191)

= φ(m1)⊗A ...⊗A φ(mk)φ(m1)⊗A ...⊗A φ(mj) (192)

= φ((m1 ⊗A ...⊗A mk))φ((m1 ⊗A ...⊗A mj)). (193)

Finally, by construction:

(∀m ∈ M) φ ◦ f (m) = φ1(m) = g(m). (194)

Lemma 5. 21

If A is a quasi-free k-algebra and P is an E k
Ae -projective (A, A)-bimodule then TA(P) is a

quasi-free A-algebra.

Proof. Let

0→ M→ B π→ TA(P)→ 0 (195)

be a k-Hochschild extension of TA(P) by M. We use the universal property of TA(P) to

show that there must exist a lift l of (195).

Let p : TA(P)→ A be the projection k-algebra homomorphism of TA(P) onto A. p

is k-split since the k-module inclusion i : A→ TA(P) is a section of p; therefore p is an

E k
Ae -epimorphism and

0→ Ker(p ◦ π)→ B→ A→ 0 (196)

is a k-Hochschild extension of A by the (A, A)-bimodule Ker(p ◦ π). Since A is a quasi-

free k-algebra there exists a k-algebra homomorphism l1 : A→ B lifting p ◦ π. Hence B

21. Cuntz and Quillen proved lemma 5 in the case where k was a field.
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inherits the structure of an (A, A)-bimodule and π may be viewed as an (A, A)-bimodule

homomorphism. Moreover l1 induces an A-algebra structure on B.

Let f : P → TA(P) be the (A, A)-bimodule homomorphism satisfying the universal

property of the tensor algebra on the (A, A)-bimodule P. Since π : B→ A is an E k
Ae -

epimorphism and since P is an E k
Ae -projective (A, A)-bimodule, proposition 11 implies

that that there exists an (A, A)-bimodule homomorphism l2 : P→ B satisfying π ◦ l2 = f .

Since l2 : P→ B is an (A, A)-bimodule homomorphism to a A-algebra the universal

property of the tensor algebra TA(P) on the (A, A)-bimodule P (proposition 18) implies

there is an A-algebra homomorphism l : TA(P)→ B whose underlying function satisfies:

l ◦ f = l2.

Therefore l ◦ π ◦ l2 = l2; whence l ◦ π = 1TA(P); that is l is a A-algebra homomorphism

which is a section of π, that is l lifts π.

Example 13. Let n ∈N. The Z-algebra TZ(
n⊕

i=0
Z) 22 is quasi-free.

Proof. Since all free Z-modules are projective Z-modules and all projective Z-modules

are E Z
Z -projective modules, the free Z-module

n⊕
i=0

Z is E Z
Z -projective. Whence lemma 5

implies TZ(
n⊕

i=0
Z) is a quasi-free Z-algebra.

Example 14. If A is a quasi-free k-algebra then TA(Ω1(A/k)) is a quasi-free A-algebra.

Proof. By corollary 2 if A is quasi-free Ω1(A/k) must be an E k
Ae -projective (A, A)-bimodule;

whence lemma 5 applies.

22. The Z-algebra TZ(
n⊕

i=0
Z) is called a free associative Z-algebra on n + 1 letters.
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2.5 cuntz-quillen n-forms

In their paper [AE] Cuntz and Quillen define noncommutative n-forms in a different

manner than in this master’s thesis. This portion of this master’s thesis now closes with

a short side-note describing the similarities between these two notions. Explicitly it is

shown that Ωn(A/k) is E k
Ae -projective if and only if the Ae-module of Cuntz-Quillen n-

forms is E k
Ae -projective. Theorem 3 is then reformulated in terms of the Cuntz-Quillen

n-forms.

Denote by Ā the k-module A/k. The Ae-modules Ωn
k (A) have the following homolog-

ical description (reminiscent of Ωn(A/k)).

Proposition 19. Normalized Bar Resolution

If A is a k-algebra then there is an E k
Ae -projective resolution of A denoted by ¯CB?(A) called the

normalized bar Resolution of A defined as:

¯CBn(A) := A⊗k Ā⊗n ⊗k A (197)

Whose boundary operators are defined as:

b̄′n(a0 ⊗ ...⊗ an+1) := ∑
i=0,..,n

(−1)ia0 ⊗ ...⊗ āi ¯ai+1 ⊗ ...⊗ an+1 (198)

(By convention: b′0 is the augmentation map A⊗k A→ A and b′−1 is the zero map from A to 0).

Proof. The proof is analogous to example 7 and can be found on page 281 of [MH].

Definition 30. Cuntz-Quillen n-Forms

For any natural number n and any k-algebra A the module of n-Cuntz-Quillen forms on A is

defined as:

Ωn
k (A) := Ker(b̄′n−1 : ¯CBn→ ¯CBn−1) (199)

61



2.5 cuntz-quillen n-forms

By "coincidence" there are the following examples:

Example 15.

1. Ω1(A/k) = Ω1
k(A)

2. Ω0(A/k) = Ω0
k(A)

Proof. By definition b′0 = 0 = b̄′0 and b′1 = µA = b̄′1. Therefore proposition 30 together with

the definition of Ω1(A/k) and Ω0(A/k) imply the conclusion.

The "coincidence" of example 15 in fact runs deeper:

Proposition 20. If A is a k algebra and n is a natural number then the following are equivalent:

— Ωn(A/k) is E k
Ae -projective.

— Ωn
k (A) is E k

Ae -projective.

Proof. Example 7 implied that CB?(A) is an E k
Ae -projective resolution of A; likewise

proposition 19 implies that ¯CB?(A) is also an E k
Ae projective resolution of A.

Whence theorem 2 entails that for every Ae-module M there are natural isomorphisms:

(∀n ∈N)Hn(HomAe(CB?(A), M))
∼=→ Extn

E k
Ae
(A, M)

∼=→ Hn(HomAe( ¯CB?(A), M)). (200)

By definition Ωn(A/k) is the nth syzygy 23 of CB?(A), likewise proposition 30 implies

Ωn
k (A) is the nth syzygy of ¯CB?(A) therefore for every Ae-module M there are natural

isomorphisms:

(∀i, n ∈N) with i > 0: Exti
E k

Ae
(Ωn(A/k), M)

∼=→ Exti+n
E k

Ae
(A, M)

∼=→ Exti
E k

Ae
(Ωn

k (A), M) [IH]. (201)

Therefore (201) implies: Ωn(A/k) is E k
Ae -projective [MH] if and only if

for every positive integer i: Exti
E k

Ae
(Ωn(A/k), M) vanishes for all Ae-modules M

if and only if Exti
E k

Ae
(Ωn

k (A), M) vanishes for every Ae-module M

if and only if Ωn
k (A) is E k

Ae -projective [MH].

23. The nth syzygy of a chain complex < C? , ∂? > is the kernel of nth boundary map ∂n.
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2.5.1 Reformulating Theorem 3

Theorem 3 may now be expressed in terms of the Cuntz-Quillen n-forms.

Theorem 4. For every natural number n, the following are equivalent:

1. HCdim(A/k) ≤ n

2. A is of E k
Ae -projective dimension at most n

3. Ωn(A/k) is an E k
Ae -projective module.

4. Ωn
k (A) is an E k

Ae -projective module.

5. HHn+1(A, M) vanishes for every (A, A)-bimodule M.

6. Extn+1
E k

Ae
(A, M) vanishes for every Ae-module M.

Proof.

The equivalence of 1, 2, 3 , 5 and 6 follow from theorem 3. The equivalence of 3 and 4

are entailed by proposition 20.
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3

A L O W E R B O U N D F O R T H E H O C H S C H I L D C O H O M O L O G I C A L

D I M E N S I O N

3.1 a few homological dimensions

Assumption 1. Unless otherwise specified, for the remainder of this text any k-algebra will

always be commutative.

In commutative setting we now provide a method of obtaining examples of k-algebras

which are not quasi-free. More generally the purpose of this section is to provide a lower-

bound for the Hochschild Cohomological dimension of certain commutative k-algebras.

The argument revolves around bounding the Hochschild dimension of a regular com-

mutative k-algebra (to be defined below in definition 39) below via a series of intermedi-

ary numerical invariants associated to the algebra A.

64



3.1 a few homological dimensions

3.1.1 Regular Sequences And Flat Dimension

Definition 31. Regular element

Let A be a commutative ring and M be an A-module. A non-zero element x in a commutative

ring A is said to be M-regular (or an M-regular element), if and only if the A-module map

λx : M→ M defined on elements m of M as m 7→ x ·m is an injection and not a surjection.

If M is the A-module A then x is simply said to be regular (or a regular element) on A.

Example 16. If k is a commutative integral domain then the element x in k[x] is regular on k[x].

Proof. k is an integral domain then k[x] is an integral domain [AA]. Thus multiplication

by any element on the left (x in particular) is injective. Moreover x is by definition not a

unit in k[x].

Definition 32. M-Regular sequence

Let A be a commutative ring and M be an A-module. A sequence of elements x1, .., xn in A is

called an M-regular sequence if x1 is M-regular on M and for each i ∈ {2, .., n} xi is regular in

M/(x1, .., xi−1)M.

If there is an ideal I in A such that {x1, .., xn} ⊆ I then the regular sequence x1, .., xn is said to

be a M-regular sequence in I.

Moreover if M = A then x1, .., xn is called a regular sequence.

Example 17. If k is a commutative integral domain, then x1, .., xn is a regular sequence in

k[x1, .., xn].

Proof. For 0 < i < n set ki := k[x1, .., xi−n]∼= k[x1, ...xn]/(xn, ., xi) and set kn := k. Then xi is

a regular sequence in ki[xi] by example 16 and the result follows by iteration of example

16.
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3.1.1.1 Flat Dimension And Regular Sequences

The first bound between the Krull dimension and the Hochschild Cohomological di-

mension is a ring theoretical dimension, the flat dimension.

Definition 33. A-Flat Dimension

If A is a commutative ring then the A-flat dimension f dA(M) of an A-module M is the

extended natural number n, defined as the shortest length of a resolution of M by A-flat A-

modules. If no such finite n exists n is taken to be ∞.

Example 18. If A is a commutative ring and M is a flat A-module then f dA(M) = 0.

Proof. 0→ M
1M→ M→ 0 is an A-flat resolution of M of length 0.

Lemma 6. If A is a commutative ring then for any A-module M the following are equivalent:

1. The A-flat dimension of M is at most n.

2. For every left A-module N, Torn+1
A (M, N) is the trivial A-module.

Proof. Similar to the proof of theorem 3, see page 461 of [IH] for details.

3.1.1.2 The Koszul Complex

Definition 34. Exterior Power of a Module

If A is a commutative ring, n is a positive integer, M is an A-module and σ is a permutation

in the permutation group Sn with signature sgn(σ) then the nth-exterior power of M over k is

defined as the A-module:

n∧
A

(M) := M⊗n/{a1 ⊗A ...⊗A an − sgn(σ)aσ(1) ⊗A ...⊗A aσ(n)|a1, ..., an ∈ A, σ ∈ Sn}M.

(202)

An element of the equivalence class of a1, ..., an in
∧n

A(M) is denoted by a1 ∧ ...∧ an.
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Lemma 7. If A is a commutative ring and d is a positive integer then for every positive integer

n there is an isomorphism of A-modules:

Ξn :
n∧
A

(Ad)→ A(d
n). (203)

Where Ξn maps the set {ei1 ∧ ...∧ ein |1≤ i1 < ... < in ≤ d} in
∧n

A(Ad) to a basis of A(d
n).

Proof. See [BA] page 517.

A regular sequence of a ring is related to its flat dimension as follows:

Lemma 8. Koszul Complex

If A is a commutative ring, x1, .., xd is a regular sequence in A then and π : A→ A/(x1, .., xd)

is the canonical projection of A onto A/(x1, .., xd) then there is a A-free resolution of A/(x1, .., xd)

of length d described as:

...→
n+1∧

A

(Ad)
dn+1→

n∧
A

(Ad)
dn→ ...

d3→
2∧
A

(Ad)
d2→

1∧
A

(Ad)
d1→ A π→ A/(x1, .., xd)→ 0

where for every (n ∈N) dn is defined on a basis element ei1 ∧ ...∧ ein in
∧n+1

A (Ad) as:

dn(ei1 ∧ . . . ∧ ein) =
n

∑
j=1

(−1)i+1xij · ei1 ∧ . . . ∧ êij ∧ . . . ∧ ein . (204)

(where êij denotes the omission of the term eij in the expression ei1 ∧ ...∧ ein ). This resolution is

denoted by K?(A; x1, .., xn).

Proof. The A-freeness of K?(A; x1, .., xd) follows from lemma 7. Moreover, K?(A; x1, .., xn)’s

exactness is verified on page 152 of [HA]. Finally, for n > d > 0 since (n
d) = 0, the isomor-

phisms Ξn of lemma 7 implies
∧n

A(Ad) ∼= 0; whence K?(A; x1, .., xd) is of length d.
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Proposition 21. If n is a positive integer and if there exists a regular sequence x1, .., xn in A of

length n then:

n = f dA(A/(x1, .., xn)). (205)

Proof. Denote A/(x1, .., xn) by Ã.

— Since K?(A; x1, .., xn) is a free deleted resolution of Ã of length n and free A-modules

are flat A-modules [IH] K?(A; x1, .., xn) is a flat resolution of Ã of length n. There-

fore lemma 6 implies:

f dA(Ã) ≤ n. (206)

— Since K?(A; x1, .., xn) is an A-flat resolution of Ã then there are natural isomor-

phisms:

Torn
A(Ã, Ã) ∼= Hn(K?(A; x1, .., xn)⊗A Ã, d? ⊗A 1Ã) [IH]. (207)

However (x1, .., xn) is an ideal in A, therefore for all y in A and for every i ∈ {1, .., n}

yxi is in (x1, .., xn), whence ¯yxi = 0̄. Therefore:

dn ⊗A 1Ã((xp1 ∧ ...∧ xpi)⊗A ȳ) (208)

=
n

∑
j=1

(−1)i+1((xp1 ∧ ...∧ ˆxpj ∧ ...∧ xpi)⊗A ¯yxpj) (209)

=
n

∑
j=1

(xp1 ∧ ...∧ ˆxpj ∧ ...∧ xpi)⊗A 0̄ = 0. (210)

Hence:

Torn
A(Ã, Ã) = Ker(dn ⊗A 1Ã)/Im(dn+1) (211)

= (
n∧
A

(Ad)⊗A Ã)/0 Ξn→ (A(m
m) ⊗A Ã)/0∼= (A⊗A Ã)/0 (212)

= Ã. (213)
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Therefore by lemma 6:

f dA(Ã) ≥ n. (214)

Hence:

f dA(Ã) = n. (215)

Example 19. The Z[x]-flat dimension of Z as a Z[x]-module is precisely 1.

Proof. By example 16 x is a regular sequence on Z, moreover Z[x]/(x) ∼= Z. Therefore

proposition 21 therefore implies:

f dZ[x](Z) = 1. (216)

Example 20. The Z[x1, .., xn]-module Z’s Z[x1, .., xn]-flat dimension is precisely n.

Proof. x1, .., xn is a regular sequence in Z[x1, .., xn] by example 17, whence proposition 21

and Z[x1, .., xn]/(x1, .., xn) ∼= Z therefore implies:

f dZ[x1 ,..,xn](Z) = n. (217)

Corollary 3. If A is a local ring with maximal ideal m and x1, .., xn is a regular sequence in m

then:

f dA(A/(x1, .., xn)) = n. (218)

Proof. Proposition 21 with the assumption that A is local.
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Example 21. The Z[x1, .., xn]-module Z’s Z[x1, .., xn]-flat dimension is precisely n.

Proof. A direct consequence of example 19 and lemma 3.

As in example 21, regular sequences provide a direct and precise way of the computing

flat dimension of a ring.

One more ingredient related to the flat dimension will soon be needed.

Proposition 22. If A is a commutative ring and m is a maximal ideal of A then for any A-

module M f dAm
(Mm) is a lower-bound for f dA(M).

Proof. case 1 : f d A (M) is finite

1. Let d be the A-flat dimension of M. By definition, there is a deleted A-flat

resolution F? of M of length d. Since localization is exact [AA], Am ⊗A F? is an

exact sequence augmentable to Am ⊗A M ∼= Mm.

2. Again since localization is exact, Am is a flat A-module. Since the tensor prod-

uct of flat modules is again flat [IH] each Am ⊗A Fi in Am ⊗A F? is flat as an

Am-module.

3. Therefore, Am ⊗A Fi is an Am-flat resolution of Mm of length d. Whence, by

definition the A-flat dimension of Mm can therefore be at most d.

case 2 : f d A (M) is infinite

By definition of f d Am
(Mm ):

f d Am
(Mm ) ≤ ∞ = f d A (M) . (219)

Example 22. For any prime integer p the Z [x1 , . . , xn ]-module Z( p)’s Z[x1, .., xn](x1 ,..,xn ,p) -flat

dimension is at most n.
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Proof. For any prime integer p the ideal (x1, .., xn, p) is a maximal ideal in Z[x1, .., xn] [AA].

Therefore proposition 22 and example 21 imply Z(p)’s Z[x1, .., xn](x1 ,..,xn ,p)-flat dimension

is at most f dZ[x1 ,..,xn](Z) = n.

3.1.2 Projective Dimension

Definition 35. A-Projective Dimension

If A is a commutative ring and M is an A-module then the A-projective dimension pdA(M)

of M is the extended natural number n, defined as the shortest length of a deleted A-projective

resolution of M. If no such finite n exists n is taken to be ∞.

Lemma 9.

If A is a commutative ring and M is an A-module then f dA(M) ≤ pdA(M).

Proof. Since all A-projective A-modules are A-flat then any A-projective resolution is an

A-flat resolution.

Lemma 10.

If A is a commutative ring then for any A-module M the following are equivalent:

— The A-projective dimension of M is at most n.

— For every A-module N, the A-module ExtA
n+1(M, N) is trivial.

— For every A-module N and every integer m ≥ n + 1: ExtA
m(M, N) ∼= 0.

Proof. Nearly identical to the proof of theorem 3, see page 456 of [IH] for details.
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3.1 a few homological dimensions

3.1.2.1 Cohen-Macaulay At A Maximal Ideal

Definition 36. Cohen-Macauley at a maximal ideal 1

A commutative ring A is said to be Cohen-Macaulay at a maximal ideal m if and only if

either:

— Krull(Am) is finite and there is an Am-regular sequence x1, ..., xd in Am of maximal length

d = Krull(Am) such that {x1, .., xd} ⊆ m.

— Krull(Am) is infinite and for every positive integer d there is an Am-regular sequence

x1, .., xd in m on A of length d.

Example 23. Z[x1, .., xn] is Cohen Macaulay at the maximal ideal (x1, .., xn, p).

Proof. For legibility the ideal (x1, .., xn, p) will be denoted I.

I is a maximal ideal in Z[x1, .., xn] [AA]. The ring Z[x1, .., xn]I is of Krull dimension

Krull(Z[x1, .., xn]) = n + Krull(Z) = n + 1. Since Z is an integral domain then p is a

regular sequence on Z ∼= Z[x1, .., xn]/(x1, .., xn). Since x1, .., xn was a regular sequence

in Z[x1, .., xn] (by example 16), p, x1, .., xn must be a regular sequence on Z[x1, .., xn] [SP].

Moreover p
1 , x1

1 , .., x1
1 is a regular sequence in Z[x1, .., xn]I [SP]. Therefore there is a regular

sequence in Z[x1, .., xn]I of length equal to Z[x1, .., xn]I ’s Krull dimension, whence that

sequence must be maximal [SP]. Finally since p, x1, .., xn is contained in the maximal

ideal I (in fact it generates it [SP]) the localized sequence p
1 , x1

1 , .., x1
1 is contained in the

maximal ideal I in Z[x1, .., xn]I [SP]. Thus Z[x1, .., xn] is Cohen-Macaulay at I.

Note 3. In particular if A is a commutative Cohen-Macaulay ring at the maximal ideal m such

that Am is of finite Krull dimension and x1, .., xn is a maximal regular sequence in Am then the

A-module Am/(x1, .., xn) will play an important role in the rest of this argument.

1. Usually it is also required that a Cohen-Macaulay ring also be Noetherian.
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Proposition 23. If A is a commutative ring which is Cohen Macaulay at the maximal ideal m

and Krull(Am) is finite then:

Krull(Am) = f dAm
(Am/(x1, .., xn)) ≤ pdA(Am/(x1, .., xn)) (220)

Proof. Since A is Cohen-Macaulay at the maximal ideal m, there is a regular sequence

x1, .., xn in m of length n = Krull(Am). Denote Am/(x1, .., xn) by ξm. By corollary 3:

Krull(Am) = f dAm
(ξm). (221)

Proposition 22 applied to (221) entails:

Krull(Am) = f dAm
(ξm) ≤ f dA(ξm) (222)

Lastly lemma 9 bounds (222) above as follows:

Krull(Am) = f dAm
(ξm) ≤ f dA(ξm) ≤ pdA(ξm). (223)

3.1.3 Global Dimension

Definition 37. Global Dimension

The global dimension D(A) of a ring A, is defined as the supremum of all the A-projective

dimensions of its A-modules. That is:

D(A) := sup
M∈A Mod

pdA(M). (224)
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Two classical results on Global dimension are now presented. They do not play a direct

role in this paper but are presented only to showacase a more familiar interpretation of

the global dimension of a ring.

Theorem 5. Auslander–Buchsbaum-Serre Theorem

If k is a commutative Noetherian local ring then:

D(k) = Krull(k) if and only if k is regular (225)

Proof. See [IH].

Proposition 24. If k is a commutative Noetherian ring then D(k) equals to the supremum of

D(km) taken over every maximal ideal m of k.

Proof. See [IH].

Example 24. The global dimension of Z is equal to 1.

Proof. Since Z is a PID [AA] every maximal ideal in Z is of the form (p) for some

prime integer p [AA]. Since the localization of a commutative Noetherian ring is again

Noetherian [CA] each Z(p) is a Noetherian ring. Since (p) is a maximal ideal in Z(p)

then 1 ≤ Krull(Z(p)) ≤ Krull(Z) = 1. Whence theorem 5 implies D(Z) = 1; therefore

proposition 24 entails:

Krull(Z) = 1 = D(Z). (226)

74



3.1 a few homological dimensions

3.1.4 Relative Dimension Theory

The homological dimension theory presented thus far has been purely ring theoretic,

entirely overlooking the k’s role in any k-algebra A.

The E k
A-projective dimension and the A-projective dimension of a k-algebra A may be

related as follows:

Theorem 6. Hochschild (∼1958)

If k is of finite global dimension, A is a k-algebra which is flat as a k-module and M is an

A-module then:

pdA(M)− D(k) ≤ pdE k
A
(M) (227)

The proof of theorem 6 relies on the following lemma:

Lemma 11. If A is a k-algebra which is flat as a k-module then:

(∀M ∈k Mod) pdA(A⊗k M) ≤ pdk(M) (228)

Proof. If M is of k-projective dimension ∞ then the result is immediate. Suppose M is

of projective dimension n < ∞ and P? is a k-projective resolution of length n. Since A is

k-flat A⊗k P? is exact and for each i ∈N A⊗k Pi is A-projective since if Pi is projective

there exists a k-module Q and a set I such that Q⊕ P ∼=
⊕
i∈I

k therefore:

A⊗k Q⊕ A⊗k P ∼= A⊗k (Q⊕ P) ∼= A⊗k
⊕
i∈I

k ∼=
⊕
i∈I

A, (229)

thus A⊗k Pi is the direct summand of a free A-module; whence it is A-projective. There-

fore A⊗k P? A-projectively resolves A⊗k M; whence

pdA(A⊗k M) ≤ n = pdk(M). (230)
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3.1 a few homological dimensions

Lemma 12. If A is a k-algebra then for any k-module M there is an E k
A-exact sequence:

0 Ker(a) A⊗k M M 0
α

(231)

Where α be the map defined on elementary tensors (a⊗k m) in A⊗k M as a⊗k m 7→ a ·m.

Proof. α is k-split by the map β : M→ A⊗k M defined on elements m ∈M as m 7→ 1⊗k m.

Indeed if m ∈ M then:

α ◦ β(m) = α(1⊗k m) = 1 ·m = m. (232)

Lemma 13. If M and N are A-modules then:

pdA(M) ≤ pdA(M⊕ N). (233)

Proof.

(∀n ∈N)(∀X ∈A Mod) Extn
A(M, X)⊕ Extn

A(N, X) ∼= Extn
A(M⊕ N, X). (234)

Therefore Extn
A(M ⊕ N, X) vanishes only if both Extn

A(M, X) and Extn
A(N, X) vanish.

Lemma 10 then implies: pdA(M) ≤ pd(M⊕ N).

proof of theorem 6

Proof.

case 1: pdE k
A
(M) = ∞
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3.1 a few homological dimensions

By definition pd A (M) ≤ ∞ therefore trivially if pdE k
A
(M) = ∞ then:

pd A (M) ≤ pdE k
A
(M) + D(k) . (235)

Since k’s global dimension is finite hence (235) implies:

pd A (M) − D(k) ≤ ∞ = pdE k
A
(M) . (236)

case 2: pdE k
A
(M) < ∞

Let d := pdE k
A
(M) + D(k). The proof will proceed by induction on d.

base : d = 0

Suppose pdE k
A
(M) = 0.

By theorem 3 M is E k
A-projective. Lemma 12 implies there is an E k

A-exact se-

quence:

0 Ker(α) A ⊗k M M 0
α

. (237)

Proposition 11 implies that (237) is A-split therefore M is a direct summand of

the A-module A⊗k M. Hence lemma 13 implies:

pdA(M) ≤ pdA(M⊗k A). (238)

Lemma 11 together with (238) imply:

pdA(M) ≤ pdA(M⊗k A) ≤ pdk(M). (239)

Definition 38 and (239) together with the assumption that pdE k
A
(M) = 0 imply:

pdA(M) ≤ pdk(M) ≤ D(k) = D(k) + 0 = D(k) + pdE k
A
(M). (240)
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3.1 a few homological dimensions

Since k’s global dimension is finite then (240) implies:

pdA(M)− D(k) ≤ pdE k
A
(M). (241)

inductive step : d > 0

Suppose the result holds for all A-modules K such that pdE k
A
(K) + D(k) = d

for some integer d > 0. Again appealing to lemma 12, there is an E k
A-exact

sequence:

0 Ker(α) A ⊗k M M 0
α

. (242)

Proposition 11 implies A⊗k M is E k
A-projective; whence (242) implies:

pdE k
A
(Ker(α)) + 1 = pdE k

A
(M). (243)

Since Ker(α) is an A-module of strictly smaller E k
A-projective dimension than M

the induction hypothesis applies to Ker(α) whence:

pdA(Ker(α)) + 1≤ pdE k
A
(Ker(α)) + 1 + D(k) ≤ pdE k

A
(M) + D(k). (244)

The proof will be completed by demonstrating that: pdA(M)≤ pdA(Ker(α)) + 1.

For any N ∈A Mod Ext?A(−, N) applied to (242) gives way to the long exact

sequence in homology, particularly the following of its segments are exact:

Extn−1
A (A⊗k M, N) Extn−1

A (Ker(a), N) Extn
A(M, N) Extn

A(A⊗k M, N)
∂n

(245)
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3.1 a few homological dimensions

Since A ⊗k M is E k
A-projective pdE k

A
(A ⊗k M) = 0, therefore by the base case

of the induction hypothesis pdA(A⊗k M) ≤ pdE k
A
+ D(k) = D(k);thus for every

positive integer n ≥ D(k) (in particular d is at least n):

(∀N ∈A Mod) Extn−1
A (A⊗k M, N) ∼= 0∼= Extn

A(A⊗k M, N); (246)

whence ∂n must be an isomorphism. Therefore lemma 10 implies pdA(M) is at

most equal to pdA(Ker(α)) + 1.

Therefore:

pdA(M) ≤ pdA(Ker(α)) + 1≤ pdE k
A
(Ker(α)) + 1 + D(k) ≤ pdE k

A
(M) + D(k).

(247)

Finally since k is of finite global dimension then (247) implies:

pdA(M)− D(k) ≤ pdE k
A
(M); (248)

thus concluding the induction.
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3.2 a lower bound on the hochschild cohomological dimension

3.1.5 E k-Global Dimension

The final numerical invariant used herein will now be presented before the last central

result of this masters’ thesis is presented.

Definition 38. E k-Global dimension

The E k-global Dimension DE k(A) of a k-algebra A is defined as the supremum of all the

E k
A-projective dimensions of its A-modules. That is:

DE k(A) := sup
M∈A Mod

pdE k
A
(M). (249)

Remark 7. The classical global dimension ignores the influence of k on a k-algebra A; however

the relative theory takes it into account.

Example 25. D
E

Z(p) (Z(p)[x1, .., xn]) = n

Proof. See theorem 2 in [RG] with R := Z(p).

3.2 a lower bound on the hochschild cohomological dimension

This original result is the second central result of this master’s thesis and it is now

presented. One of its central purposes is to generalize the claim made by Cuntz and

Quillen at the beginning of [AE] stating that commutative k-algebras over a field are not

quasi-free is they are of Krull dimension above 1.

Note 4. Let A be a k-algebra, i : k→ A the morphism defining the k-algebra A and m a maximal

ideal in A. For legibility the E
ki−1 [m]

Am
-projective dimension of an Am-module N will be abbreviated

by pdEm,k(N) (instead of writing pd
E

k
i−1 [m]

Am

(N)).
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3.2 a lower bound on the hochschild cohomological dimension

Lemma 14. If A is a commutative k-algebra and m is a non-zero maximal ideal in A then for

every A-module M:

pdEm,k(Mm) ≤ pdE k
A
(M), (250)

where i : k→ A is the inclusion of k into A.

Proof. Since m is a prime ideal in A, i−1[m] is a maximal ideal in ki−1[m], whence the

localized ring ki−1[m] is a well-defined sub-ring of Am. Let

...
dn+1→ Pn ... P1 P0 M 0

dn d2 d1 d0

(251)

be an E k
A-projective resolution of an A-module M. The exactness of localization [CA]

implies:

...
dn+1→ Pn ⊗A Am ... P1 ⊗A Am P0 ⊗A Am M⊗A Am→ 0

dn ⊗A Am d2 ⊗A Am d1 ⊗A Am d0 ⊗A Am

(252)

is exact. It will now be verified that (252) is a Em,k-projective resolution of the Am-module

Mm.

the dn ⊗A Am are k i−1 [m ] -split

Since (251) was k-split then for every i ∈ N there existed a k-module homomor-

phism s i : Pn−1 → Pn (where for convenience write P−1 := M) satisfying d i =

d i ◦ s i ◦ d i . Since Am is a k i−1 [m ]-algebra Am may be viewed as a k i−1 [m ]-module

therefore the maps: s i ⊗A 1 Am
are k i−1 [m ]-module homomorphisms; moreover they

must satisfy:

d i ⊗A 1 Am
= d i ⊗A 1 Am

◦ s i ⊗A 1 Am
◦ d i ⊗A 1 Am

. (253)

Therefore (252) is k i−1 [m ]-split-exact.
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3.2 a lower bound on the hochschild cohomological dimension

the Pi ⊗A Am are Em ,k -projective

For each i ∈ N if Pi is E k
A-projective therefore proposition 11 implies there exists

some A-module Q and some k-module X satisfying:

Pi ⊕ Q ∼= A ⊗k X . (254)

Therefore:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼= (Pi ⊗A Q)⊗A Am
∼= (A⊗k X)⊗A Am

∼= (A⊗k X)⊗A (Am ⊗ki−1 [m]
ki−1[m]) (255)

Since A, k and ki−1[m] are commutative rings the tensor products −⊗A −, −⊗k −
and −⊗ki−1 [m]

− are symmetric [IH], hence (255) implies:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼= (A⊗k X)⊗A (Am ⊗ki−1 [m]
ki−1[m])

∼= (Am ⊗A A)⊗ki−1 [m]
(ki−1[m] ⊗k X) (256)

Since A is a subring of Am then (256) implies:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼= Am ⊗ki−1 [m]
(ki−1[m] ⊗k X). (257)

(ki−1[m] ⊗k X) may be viewed as a ki−1[m]-module with action ·̂ defined as:

(∀c ∈ k)(∀(c′ ⊗k x) ∈ ki−1[m] ⊗k X) c·̂(c′ ⊗k x) := c · c′ ⊗ x. (258)

Since (ki−1[m] ⊗k X) is a ki−1[m]-module then for each i ∈N (Pi ⊗A Am) is a direct

summand of an Am-module of the form Am ⊗ki−1 [m]
X′ where X′ is a ki−1[m]-module,

thus proposition 11 implies that Pi ⊗A Am is Am-projective.
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3.2 a lower bound on the hochschild cohomological dimension

Hence (252) is an Em,k-projective resolution of M⊗A Am
∼= Mm; whence:

pdEm,k(Mm) ≤ pdE k
A
(M). (259)

All the homological dimensions discussed to date are related as follows:

Proposition 25. If A is a commutative k-algebra and m be a non-zero maximal ideal in A such

that Am is flat as a ki−1[m]-module and D(ki−1[m]) is finite then there is a string of inequalities:

f dAm
(Mm)− D(ki−1[m]) ≤ pdAm

(Mm)− D(ki−1[m]) ≤ pdEm,k
(Mm) ≤ pdE k

A
(M) ≤ DE k (A) (260)

Proof.

1. By definition: pdE k
A
(M) ≤ DE k(A).

2. By lemma 14: pdEm,k(Mm) ≤ pdE k
A
(M)

3. Since Am is flat as a ki−1[m]-module and D(ki−1[m]) is finite theorem 6 entails:

pdAm
(Mm)− D(ki−1[m]) ≤ pdEm,k(Mm)

4. Lemma 9 implies:

f dAm
(Mm) ≤ pdAm

(Mm). (261)

Since the global dimension of ki−1[m] was assumed to be finite (261) implies:

f dAm
(Mm)− D(ki−1[m]) ≤ pdAm

(Mm)− D(ki−1[m]). (262)
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3.2 a lower bound on the hochschild cohomological dimension

Lemma 15. If A is a commutative k-algebra and M and N be A-modules, then there are natural

isomorphisms:

Extn
E k

A
(M, N) ∼= HHn(A, Homk(M, N)) ∼= Extn

E k
Ae
(A, Homk(M, N)). (263)

Proof.

— For any (A, A)-bimodule X, X⊗A M is an (A, A)-bimodule [IH][Cor. 2.53].

— Moreover there are natural isomorphisms:

HomA Mod(X⊗A M, N)
∼=→ HomA ModA(X, Homk Mod(M, N)) [IH][Thrm. 2.75]. (264)

In particular (264) implies that for every n in N there is an isomorphism which is

natural in the first input:

HomA Mod(A⊗n ⊗A M, N)
ψn→ HomA ModA(A⊗n, Homk Mod(M, N)). (265)

Whence if b′n+1 : A⊗n+3→ A⊗n+2 is the nth map in the Bar complex (recall example

7) and for legibility denote HomA ModA(b
′
n, Homk(M, N)) by βn. The naturality of

the maps ψn imply the following diagram of k-modules commutes:

HomA Mod(A⊗n+2 ⊗A M, N) HomA ModA(A⊗n+2, Homk Mod(M, N))

HomA Mod(A⊗n+3 ⊗A M, N) HomA ModA(A⊗n+3, Homk Mod(M, N))

ψn

ψn+1

ψ−1
n+1 ◦ βn ◦ ψn βn

.

(266)

— Therefore for every n in N:

(ψ−1
n+2 ◦ βn+1 ◦ ψn+1) ◦ (ψ−1

n+1 ◦ βn ◦ ψn)
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3.2 a lower bound on the hochschild cohomological dimension

= βn+1 ◦ βn = 0. (267)

Whence < HomA Mod(A⊗?+2 ⊗A M, N), (ψ−1
?+1 ◦ β? ◦ ψ?)> is a chain complex. More-

over the commutativity of (266) implies:

(∀n∈N) Hn(HomA Mod(A⊗?+2⊗A M, N)) =Ker(ψ−1
?+1 ◦ β? ◦ψ?)/Im(ψ−1

n+2 ◦ βn+1 ◦ψn+1)

∼= Ker(βn)/Im(βn+1) = Hn(HomA ModA(A⊗?+2, Homk Mod(M, N))).

= HHn(A, Homk(M, N)) (268)

Furthermore proposition 16 implies there are natural isomorphisms:

HHn(A, Homk(M, N)) ∼= Extn
E k

Ae
(A, Homk(M, N)); (269)

Whence for all n in N there are natural isomorphisms:

Hn(HomA Mod(A⊗?+2 ⊗A M, N)) ∼= HHn(A, Homk(M, N)) ∼= Extn
E k

Ae
(A, Homk(M, N)). (270)

— Finally if M is an A-module then < HomA Mod(A⊗?+2 ⊗A M, N), (ψ−1
?+1 ◦ β? ◦ ψ?) >

calculates the E k
A-relative Ext groups of M with coefficients in N; therefore there

are natural isomorphisms:

Hn(HomA Mod(A⊗?+2 ⊗A M, N)) ∼= Extn
E k

A
(M, N) [HI][pg. 289]. (271)

— Putting it all together, for every n in N there are natural isomorphisms:

Extn
E k

Ae
(A, Homk(M, N))∼= HHn(A, Homk(M, N))∼= Extn

E k
Ae
(A, Homk(M, N)). (272)
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3.2 a lower bound on the hochschild cohomological dimension

Theorem 7.

Let A be a commutative k-algebra and m be a non-zero maximal ideal in A such that Am is flat

as a ki−1[m]-module and D(ki−1[m]) is finite.

1. For every A-module M there is a string of inequalities:

f dAm
(Mm)− D(ki−1[m]) ≤ pdAm

(Mm)− D(ki−1[m])

≤ pdEm,k
(Mm) ≤ pdE k

A
(M) ≤ DE k (A) ≤ HCdim(A|k) (273)

2. If A is Cohen-Macaulay at some maximal ideal m

Then Krull(Am)− D(ki−1[m]) ≤ HCdim(A|k).

In this scenario: if Am is of Krull dimension at least 2+ D(ki−1[m]) then A is not Quasi-free.

Proof.

1. For any A-modules M and N lemma 15 implied:

Ext?
E k

A
(N, M) ∼= HH?(A, Homk(N, M)). (274)

Therefore taking supremums over all the A-modules M, N, of the integers n for

which (274) is non-trivial implies:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈N#|Extn(M, N) 6= 0})) (275)

= sup
M,N∈A Mod

(sup({n ∈N#|HHn(A, Homk(N, M)) 6= 0})). (276)

Homk(N, M) is only a particular case of an Ae-module; therefore taking supremums

over all A-modules bounds (276) above as follows:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈N#|HH?(A, Homk(N, M)) 6= 0})) (277)

≤ sup
M̃∈Ae Mod

(sup({n ∈N#|HHn(A, M̃) 6= 0})). (278)
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3.2 a lower bound on the hochschild cohomological dimension

The right hand side of (278) is precisely the definition of the Hochschild cohomo-

logical dimension. Therefore

DE k(A) ≤ HCdim(A|k) (279)

Proposition 25 applied to (279) then draws out the conclusion.

2. case 1 : Krul l (Am ) is finite

Since A is Cohen-Macaulay at m there is an Am-regular sequence x1 , . . , xd in m

of length d := Krul l (Am ) in Am. Therefore proposition 21 implies:

Krul l (Am ) = f d Am
(Am/(x1 , . . , xn )) . (280)

Part 1 of theorem 7 applied to (280) implies:

Krul l (Am ) − D(k i−1 [m ] ) = f d Am
(Am ) − D(k i−1 [m ] ) ≤ H Cdim(A |k) . (281)

Moreover the characterization of quasi-freeness given in corollary 2 implies that A

cannot be quasi-free if:

2 + D(k i−1 [m ] ) ≤ Krul l (Am ) . (282)

case 2 : Krul l (Am ) is infinite

For every positive integer d there exists an Am-regular sequence xd
1 , . . , xd

d in m

of length d. Therefore proposition 21 implies:

(∀d ∈ Z+ ) d = f d Am
(Am/(xd

1 , . . , xd
d )) . (283)
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3.2 a lower bound on the hochschild cohomological dimension

Therefore part one of theorem 7 implies:

(∀d ∈Z+) d− D(ki−1[m]) = f dAm
(Am/(xd

1 , .., xd
d))− D(ki−1[m]) ≤ HCdim(A|k). (284)

Since D(k) is finite:

∞− D(ki−1[m]) = ∞ ≤ HCdim(A|k). (285)

Since Krull(Am) is infinite (285) implies:

Krull(Am)− D(ki−1[m]) = ∞ = HCdim(A|k). (286)

In this case corollary 2 implies that A is not quasi-free.
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C O N C L U S I O N : N E G AT I V E E X A M P L E S

Example 26. Arithmetic Polynomial-Algebras

The Z-algebra Z[x1, .., xn] fails to be quasi-free for values of n > 1.

Proof. In example 23 it was observed that Z[x1, ...xn] is Cohen-Macaulay at the maximal

ideal (x1, ...xn, p) and is of Krull dimension n + 1 = Krull(Z[x1, ...xn]). In example 24 it

was observed that D(Z) = 1; whence by 2 of theorem 7: Z[x1, .., xn] fails to be Quasi-free

if 2≤ Krull(Z[x1, ...xn])− D(Z) = (n + 1)− 1 = n.

4.0.0.1 Cuntz’s and Quillen’s Formulation over a field

Cuntz’s and Quillen’s classical claim [AE] may be recovered as a special case of theo-

rem 7.

Definition 39. Regular C-algebra

A commutative C-algebra A is called regular if and only if for each maximal ideal m in A:

Krull(Am) is finite and there is a regular sequence x1, .., xd in m of length d = Krull(A) =

Krull(Am) such that the set {x1, .., xd} generates the maximal ideal m.

By definition:

Proposition 26. If A is a commutative regular C-algebra then A is Cohen-Macaulay at all of its

maximal ideals.
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Corollary 4. If A is a regular commutative C-algebra then A is not quasi-free if its Krull dimen-

sion exceeds 1.

Proof. The condition for 2 in theorem 7 will be verified to hold.

1. Since C is a field then all C-modules are free [IH], therefore every C-module is

projective M [IH]. By definition of the C-projective dimension of a k-module M:

(∀M ∈C Mod)pdC(M) = 0. (287)

Whence D(C) = 0.

2. Since C is a field, the C-module A is free [IH] therefore it is C-projective [IH] and

so it is C-flat [IH].

3. Since every C-algebra has a maximal ideal [AA] and A was assumed to be regular

as a C-algebra. Then there exists some maximal ideal m in A for which A is Cohen-

Macaulay at m.

Fix a maximal ideal m in A, since Krull(A) was assumed to equal Krull(Am) then 1,2

and 3 verify that if: Krull(A) = Krull(Am) > 1 then theorem 7’s 2 is applicable; whence

A fails to be quasi-free.

4.0.0.2 An application to affine algebraic C-Varieties

Algebraic C-varieties By viewing polynomials in C[x1, .., xn] as functions on Cn, to

Cn there may be associated a topological space whose underlying pointset is itself and

who’s topology is generated by the sets D( f ) := {z ∈ Cn| f (z) 6= 0} where f ∈ C[x1, .., xn]

(these are called principal open sets). This topological space is called affine n-space and

is denoted by An
C.

An affine C-algebra A is a C-algebra which contains no nilpotent elements and can be

written as the quotient C[x1, .., xn]/I of a polynomial C-algebra C[x1, .., xn] in n variables

by one of its ideals I (where n is some natural number) [LA]. To any such C-algebra A
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there may be attributed a topological space V(A) called the affine algebraic C-variety

associated to A. V(A)’s pointset is defined as {z ∈ Cn : (∀ f ∈ A) f (z) = 0} and V(A)’s

topology is defined as the topology induced by the inclusion function {z ∈ Cn : (∀ f ∈

A) f (z) = 0} ⊂ Cn.

If U is an open subset of V(A) then the collection of all C-valued functions f on U,

such that for each point x of U there exists an open neighbourhood Ux of x contained in

U and g, h ∈ A satisfying: for all v ∈Ux g(v) 6= 0 and f (v) = h(v)
g(v) , is denoted by OV(A)(U).

OV(A)(U) may be given the structure of a C-algebra. The elements of OV(A)(U) are

called regular functions on U [AA]. Moreover OV(A)(V(A)) ∼= A (as C-algebras) and

V(OV(A)(V(A))) = V(A) [AA].

If A and B are affine C-algebras then a continuous function φ : V(A)→ V(B) is said

to be a morphism (of affine C-varieties) if and only if for every open subset U of V(B)

and for every regular function f on U f ◦ φ|φ−1[U] is a regular function on φ−1[U] 1. For

example, if V(A) and V(B) are affine C-varieties such that V(A) is a topological subspace

of V(B), then the inclusion map i : V(A)→ V(B) is a morphism [LA] and V(A) is called

an affine sub-variety of V(B).

Definition 40. Linear algebraic C-group

A linear algebraic C-group is a triple GA :=< V(A), m, i > of an affine algebraic variety

V(A) which is a group, and two morphisms of affine C-varieties m : V(A)×V(A)→V(A) and

i : V(A)→ V(A) satisfying:

— (∀g, g′ ∈ V(A) m(g, g′) = gg′, where gg′ is the multiplication of the elements g and g′ of

the group V(A).

— (∀g ∈ V(A) i(g) = g−1, where g−1 is the multiplicative inverse of the element g of the

group V(A).

A is called the coordinate ring of GA.

Proposition 27. If A is the coordinate ring of a linear algebraic C-group is a regular C-algebra.

1. φ−1[U] is open by the continuity of φ.
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Proof. See [SP].

4.0.0.3 GL2(C)

The set of all 2× 2 matrices with coefficients in C may be viewed as the affine-algebraic

C-variety V(C[x1,1, x1,2, x2,1, x2,2]) [LA]. Since the sub-collections of all these matrices

consisting of the invertible 2× 2 matrices (that is the collection of all 2× 2 matrices with

entries in C whose determinant does not vanish) forms a group [AA], the sub-variety

of V(C[x1,1, x1,2, x2,1, x2,2]) consisting of all invertible 2× 2 can then viewed as a linear

algebraic C-group. Explicitly:

Proposition 28. The determinant det : A4
C→ C is a polynomial function, in particular (det) is

an ideal in C[x1,1, x1,2, x2,1, x2,2].

Proof. See [LA].

The collection consisting of all the invertible 2× 2 matrices with entries in C may be

viewed as the sub-variety of V(C[x1,1, x1,2, x2,1, x2,2]) on which the determinant function

does not vanish, that is:

Definition 41. General Linear C-group

The General Linear C-group denoted GL2(C), is defined as the triple:

< V(C[x1,1, x1,2, x2,1, x2,2](det)), mGL2(C), iGL2(C) > where mGL2(C) takes a pair of matrices

X,Y ∈V(C[x1,1, x1,2, x2,1, x2,2](det)) to their matrix multiplication XY and iGL2(C) takes a matrix

Y ∈ V(C[x1,1, x1,2, x2,1, x2,2](det)) to its inverse matrix Y−1.

Note 5. It is confirmed in [LA] that det, mGL2(C) and iGL2(C) are indeed morphisms of affine

C-varieties.

Example 27. The C-algebra C[x1,1, x1,2, x2,1, x2,2](det) is regular.

Proof. Since C[x1,1, x1,2, x2,1, x2,2](det) is the coordinate ring of a linear algebraic C-group

proposition 27 implies it is a regular C-algebra.
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4.0.0.4 T2(C)

Definition 42. Upper-Triangular Subgroup of GL2(C)

A upper-triangular subgroup of GL2(C) denoted T2(C) is the subgroup of GL2(C) isomor-

phic to the group of all (invertible) upper triangular matrices with coefficients in C.

Lemma 16. T2(C) is an affine algebraic C-group and its coordinate ring is isomorphic to the

C-algebra

C[x1,1, x1,2, x2,1, x2,2](det)/(x2,1).

Proof. See [BG].

Example 28. The C-algebraC[x1,1, x1,2, x2,1, x2,2](det)/(x1,2) is regular C-algebra.

Proof. Since T2(C) is an affine algebraic C-group proposition 27 implies

C[x1,1, x1,2, x2,1, x2,2](det)/(x1,2) is a regular C-algebra.

4.0.0.5 An application to affine algebraic varieties

Let be an affine algebraic C-variety V(A). For any point x in V(A) the ideal generated

by the collection of regular functions on V(A) vanishing at the point x is denoted by

I (x); in fact I (x) is a maximal ideal in A [SP]. Moreover for any affine-algebraic variety

V(A) there exists a point x such that AI (x) is regular. Since every regular local C-algebra

is Cohen Macaulay at its maximal ideal, then A is Cohen-Macaulay at I (x). Since C is a

field it is a regular local ring of krull dimension 0 theorem 5 implies D(k) = Krull(k) = 0,

moreover AI (x) is a C-vector space whence it is a C-free and so is a C-flat module.

Therefore theorem 7 applies if Krull(A) ≥ 2. In summary:

Corollary 5. 2

If V(A) is an affine C-variety and A’s Krull dimension is greater than 1 then the C-algebra A

is not quasi-free.

2. Corollary 5 implies that any affine algebraic C-variety which is not a disjoint union of curves or points
has a coordinate ring which fails to be quasi-free over C.
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Example 29. The C-algebra C[x1,1, x1,2, x2,1, x2,2](det) is not quasi-free.

Proof. C[x1,1, x1,2, x2,1, x2,2](det) is of Krull dimension 4 > 1 [LA] therefore theorem 7 ap-

plies.

94



B I B L I O G R A P H Y

[CE] Baues, H.-J.; Minian, E. G. Crossed extensions of algebras and Hochschild cohomology. The Roos

Festschrift volume, 1. Homology Homotopy Appl. 4 , No. 2, part 1, 63–82 , (2002).

[TC] Beck, J. M. Triples, algebras and cohomology. Repr. Theory Appl. Categ. No. 2 , (2003) , 1–59.

[BA] Bourbaki, N. Commutative algebra. Chapters 1–7, Elements of Mathematics. Springer-Verlag , (1989) ,

xxiv+625 pp.

[HA] Cartan, H. ; Eilenberg, S. Homological algebra, Princeton University Press , New-Jersey , (1956). xv+390

pp.

[NG] Connes, A. Noncommutative geometry, Academic Press, Inc., California , (1994), xiv+661 pp.

[CC] Cuntz, J. ; Quillen, D. Homology and nonsingularity, J. Amer. Math. Soc. 8 , No. 2 , (1995) , 373–442.

[AE] Cuntz, J. ; Quillen, D. Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 , No. 2 , (1995) ,

251–289.

[AA] Dummit, D. S.; Foote, R. M. Abstract algebra. Third edition, John Wiley & Sons, Inc., New-Jersey, (2004)

, xii+932 pp.

[CA] Eisenbud, D. Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics,

150, Springer-Verlag, New-York, (1995) , xvi+785 pp.

[LN] Ginzburg, V. Lectures on noncommutative geometry, arXiv preprint math/0506603 , (2005).

[AG] Hartshorne, R. Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag , New York-

Heidelberg , ( 1977) , xvi+496 pp.

[SA] Hilton, P. J. ; Stammbach, U. A course in homological algebra, Graduate Texts in Mathematics, Vol. 4.

Springer-Verlag , New York-Berlin , (1971) , ix+338 pp .

[RG] Hochschild G. Note on relative homological dimension, Nagoya Math. J. No. 13 , (1958) , 89-94 .

[CA] Hochschild G. On the cohomology groups of an associative algebra. , Ann. of Math. 46 , (1944) , 58–67 .

[RH] Hochschild G. Relative homological algebra, Trans. Amer. Math. Soc. 82 , (1956) , 246–269 .

[PH] Krähmer, U. Poincaré duality in Hochschild (co)homology, New Techniques in Hopf Algebras and Graded

Ring Theory , Brussels , (2009) , 19-23 pp .

i



BIBLIOGRAPHY

[FN] Lam, T.Y. A first course in noncommutative rings., Graduate Texts in Mathematics, 131. Springer-Verlag ,

New York , (1991) , xvi+397 pp .

[LC] Loday, J.-L. Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301. Springer-Verlag ,

Berlin , (1998) , xx+513 pp.

[MC] MacLane, S. Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5. Springer-

Verlag , New York-Berlin , (1971) , ix+262 pp.

[MH] MacLane, S. Homology, Classics in Mathematics. Springer-Verlag , New York-Berlin , (1995) , x+422

pp.

[BG] Milne, J. Basic Theory of Affine Group Schemes , online: http://www.jmilne.org/math/CourseNotes/AGS.pdf ,

(2012).

[IH] Rotman, J. J. An introduction to homological algebra, Pure and Applied Mathematics, 85. Academic Press,

Inc. , New-York-London , (1979) , xi+376 pp .

[TE] Sekiyama, H. Trivial extension of a ring with balanced condition, Proc. Amer. Math. Soc. 77 , No. 1 , (1979)

, 1-6 .

[LA] Springer, T.A. Linear algebraic groups. Second edition, Birkhäuser Boston, Inc., , Massachusetts , (1998) ,

xiv+334 pp .

[SP] Various. The Stacks Project, online: http://stacks.math.columbia.edu , (2014) .

[HW] Súarez Alvarez, Mariano. Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl

algebra under a finite group, J. Algebra 248, No. 1 , (2002) , 291–306 pp .

[RG] Van den Bergh, M. A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer.

Math. Soc. 126 , No. 5 , (1998) , 1345–1348 .

[HI] Weibel, Charles A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics,

38 , Cambridge , (1994) , xiv+450 .

ii


	Contents
	Introduction
	Hochschild Theory
	(A,A)-Bimodules and enveloping k-algebras
	Ae-modules and (A,A)-bimodules
	Hochschild Cohomology
	Computing the first few Hochschild Cohomology Groups

	The (A,A)-bimodules:  n(A/k) 
	Some Relative Homological Algebra
	Relative Homological Algebra
	The Hochschild Cohomology as the Ext EAek (A,-) functors
	Two Cohomological Dimensions

	Analysing properties of k-algebras via their Hochschild Cohomological dimension
	HCdim(A/k)=0 and Inner Derivations
	HCdim(A/k)1 and Square-Zero Extensions

	Cuntz-Quillen n-Forms
	Reformulating Theorem 3


	A lower bound for the Hochschild cohomological dimension
	A few Homological Dimensions
	Regular Sequences And Flat Dimension
	Projective Dimension
	Global Dimension
	Relative Dimension Theory
	Ek-Global Dimension

	A Lower Bound On The Hochschild Cohomological Dimension

	Conclusion: Negative Examples

