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Résumé 

L'endothéline-1 (ET-1) et l'angiotensine II (Ang II) jouent un rôle important dans le 

maintien de la pression artérielle et l'homéostasie vasculaire. Une activité accrue de ces 

peptides vasoactifs est présumée contribuer au développement de pathologies vasculaires, 

telles que l'hypertension, l'athérosclérose, l'hypertrophie et la resténose. Ceci est causé par 

une activation excessive de plusieurs voies de signalisation hypertrophiques et 

prolifératives, qui incluent des membres de la famille des Mitogen Activated Protein 

Kinases (MAPK), ainsi que la famille phosphatidylinositol 3-kinase (PI3-K) / protéine 

kinase B (PKB).  Bien que l'activation de ces voies de signalisation soit bien élucidée, les 

éléments en amont responsables de l'activation des MAPK et de la PKB, induite par l'ET-1 

et Ang II, demeurent mal compris. Durant les dernières années, le concept de la 

transactivation de récepteurs et/ou non-récepteurs protéines tyrosine kinases (PTK) dans le 

déclenchement des événements de signalisation induits par les peptides vasoactifs a gagné 

beaucoup de reconnaissance. Nous avons récemment démontré que la PTK Insulin-like 

Growth Factor type-1 Receptor (IGF-1R) joue un rôle dans la transduction des signaux 

induits par l’H2O2, menant à la phosphorylation de la PKB.  Étant donné que les peptides 

vasoactifs génèrent des espèces réactives d'oxygène, telles que l’H2O2 lors de leur 

signalisation, nous avons examiné le rôle de d’IGF-1R dans la phosphorylation de la PKB 

et les réponses hypertrophiques dans les cellules muscle lisse vasculaires (CMLV) induites 

par l'ET-1 et Ang II. AG-1024, un inhibiteur spécifique de l'IGF-1R, a atténué la 

phosphorylation de la PKB induite à la fois par l'ET-1 et Ang II. Le traitement des CMLVs 

avec l’ET-1 et Ang II a également induit une phosphorylation des résidus tyrosine dans les 

sites d'autophosphorylation d'IGF-1R, celle-ci a été bloquée par l’AG-1024. En outre, l’ET-

1 et l’Ang II on tous les deux provoqué la phosphorylation de c-Src, une PTK non-

récepteur, bloqué par PP-2, inhibiteur spécifique de la famille Src.  La PP-2 a également 

inhibé la phosphorylation de PKB et d’IGF-1R induite par l’ET-1 et l’Ang II.  De plus, la 

synthèse de protéines ainsi que d’ADN, marqueurs de la prolifération cellulaire et de 

l’hypertrophie, ont également été atténuée par l’AG-1024 et le PP-2 
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Bien que ce travail démontre le rôle de c-Src dans la phosphorylation PKB induite 

par l'ET-1 et Ang II, son rôle dans l’activation des MAPK induit par l’ET-1 dans les 

CMLVs reste controversé. Par conséquent, nous avons examiné l'implication de c-Src dans 

l’activation de ERK 1/2, JNK et p38MAPK, par l'ET-1 et Ang II, ainsi que leur capacité à 

régulariser l’expression du facteur de transcription Early growth transcription factor-

1 « Egr-1 ». ET-1 et Ang II ont induit la phosphorylation de ERK 1/2, JNK et p38MAPK, 

et ont amplifié l'expression d'Egr-1 dans les CMLVs. Cette augmentation de la 

phosphorylation des MAPK a été diminuée par la PP-2, qui a aussi atténué l’expression 

d’Egr-1 induite par l’ET-1 et l’Ang II. Une preuve supplémentaire du rôle de c-Src dans ce 

processus a été obtenue en utilisant des fibroblastes embryonnaires de souris déficientes en 

c-Src (Src -/- MEF).  L’expression d’Egr-1, ainsi que l’activation des trois MAPKs par 

l’ET-1 ont été atténuées dans les cellules Src -/- par rapport au MEF exprimant des taux 

normaux Src.  En résumé, ces données suggèrent que l'IGF-1R et c-Src PTK jouent un rôle 

essentiel dans la régulation de la phosphorylation de PKB et des MAPK dans l’expression 

d’Egr-1, ainsi que dans les réponses hypertrophiques et prolifératives induites par l'ET-1 et 

Ang II dans les CMLVs. 

Mots-clés : Endotheline-1, Angiotensin II, PKB, MAPK, IGF-1R, c-Src, VSMC, Egr-1, 

prolifération, hypertrophie 
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Abstract 

Endothelin-1 (ET-1) and angiotensin II (Ang II) play important roles in maintaining 

blood pressure and vascular homeostasis, and a heightened activity of these vasoactive 

peptides is thought to contribute to the development of vascular pathologies, such as 

hypertension, atherosclerosis, hypertrophy and restenosis.  This is caused by an excessive 

activation of several growth and proliferative signaling pathways, which include members 

of the mitogen-activated protein kinase (MAPK) family, as well as the phosphatidylinositol 

3-kinase (PI3-K)/protein kinase B (PKB) pathway.  While the activation of these signaling 

pathways is well elucidated, the upstream elements responsible for ET-1 and Ang II-

induced MAPK and PI3-K/PKB activation remain poorly understood.  During the last 

several years, the concept of transactivation of receptor and/or non-receptor protein tyrosine 

kinases (PTK) in triggering vasoactive peptide-induced signaling events has gained much 

recognition.  We have recently demonstrated that insulin-like growth factor-1 receptor 

(IGF-1R) plays a role in tranducing the effect of H2O2, leading to PKB phosphorylation. 

Since vasoactive peptides elicit their responses through generation of reactive oxygen 

species, including H2O2, we investigated whether IGF-1R transactivation plays a similar 

role in ET-1 and Ang II-induced PKB phosphorylation and hypertrophic responses in 

VSMC. AG-1024, a specific inhibitor of IGF-1R, attenuated both ET-1 and Ang II-induced 

PKB phosphorylation in a dose-dependent manner. ET-1 and Ang II treatment also induced 

the phosphorylation of tyrosine residues in the autophosphorylation sites of IGF-1R, which 

was blocked by AG-1024.  In addition, both ET-1 and Ang II evoked tyrosine 

phosphorylation of c-Src, a non-receptor PTK, and pharmacological inhibition of c-Src 

PTK activity by PP-2, a specific inhibitor of Src-family tyrosine kinase, significantly 

reduced PKB phosphorylation as well as tyrosine phosphorylation of IGF-1R induced by 

the two vasoactive peptides. Furthermore, protein and DNA synthesis, markers of cell 

growth and proliferation, enhanced by ET-1 and Ang II were also attenuated by AG-1024 

and PP-2.  
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While this work demonstrates the role of c-Src in ET-1 and Ang II-induced PKB 

phosphorylation, its role in ET-1-induced MAPK signaling and  regulation of transcription 

factors, such as early growth response factor-1 (Egr-1), which was recently shown to be 

expressed in atherosclerotic plaque, remains controversial in VSMC. Therefore, we have 

also investigated the involvement of c-Src in ET-1 and Ang II-induced ERK 1/2, JNK and 

p38mapk activation, as well as Egr-1 regulation. ET-1 and Ang II-induced the 

phosphorylation of ERK 1/2, JNK and p38mapk, and enhanced the expression of Egr-1 in 

aortic VSMC.  This increased phosphorylation was decreased by PP-2.  Further proof for 

the role of c-Src in this process was obtained by using mouse embryonic fibroblasts (MEF) 

deficient in c-Src (Src -/- MEF). ET-1-induced Egr-1 expression, as well as MAPK 

activation, were found to be downregulated in Src -/- MEF, as compared to MEF 

expressing normal Src levels. In summary, these data demonstrate that IGF-1R and c-Src 

PTK play a critical role in mediating both PKB and MAPK phosphorylation and Egr-1 

expression, as well as hypertrophic and proliferative responses induced by ET-1 and Ang II 

in VSMC.  

Keywords: Endothelin-1, Angiotensin II, PKB, MAPK, IGF-1R, c-Src, VSMC, Egr-1, 

proliferation, hypertrophy 
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Chapter 1 

Introduction 



 

 

1.1 Obesity, Diabetes and Hypertension: The Modern Epidemic 

The insulin resistance syndrome, more commonly known as the metabolic 

syndrome, has been described as a cluster of multiple risk factors leading to the 

development of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD).  

Among these risk factors are obesity, irregular blood lipids (dyslipidemia), insulin 

resistance and hypertension 1.  These risk factors, beginning with insulin resistance, are 

caused by both genetic (where certain individuals or populations may be more likely to 

develop the metabolic syndrome due to their unique genetic background) and 

environmental/lifestyle factors, such as diet and exercise.  Globally, the incidence of 

metabolic syndrome is rising at an alarming rate 2, yet the true prevalence of the disease is 

unknown, partly due to the lack of an accepted definition to define the metabolic syndrome.  

To understand insulin resistance and the metabolic syndrome, and how this dysregulation of 

hormonal signaling affects various aspects of normal physiology and pathophysiological 

states, it is important to define insulin, and to understand its functions in normal physiology. 

Insulin is the primary hormone involved in blood glucose control.  In response to 

increasing blood glucose levels, pancreatic β-cells secrete insulin, which stimulates glucose 

uptake in muscle and fat tissues via stimulation of glucose transporter 4 (GLUT4) from 

intracellular sites to the plasma membrane 3 and triggers inhibition of gluconeogenesis and 

glucose release by the liver by stimulating glycogen synthesis and inhibiting glycogenolysis 

and gluconeogenesis, respectively.  In addition, insulin is an anabolic hormone, which 

promotes lipid synthesis and suppresses lipid degradation.  These actions are all mediated 

by an intricate signaling cascade initiated by the binding of insulin to its receptor.  An 

impaired insulin signaling and action results in a drastic decrease in glucose transport, 

glycogen synthesis, and lipid generation, leading to dysregulation of the physiological 

effects of insulin, which normally leads to insulin resistance, and T2DM 4.  When added to 

other environmental and genetic factors, this impaired signaling leads to symptoms of the 

metabolic syndrome, which can turn in to T2DM and CVD. 
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1.1.1 Insulin resistance and the metabolic syndrome 

Simply put, insulin resistance is a condition in which the body produces insulin, but 

cannot use it properly.  In a more scientific fashion, it is a condition in which insulin, 

exogenous or endogenous, produces an abnormally low biological response with respect to 

a decrease in blood glucose levels 5.  Insulin resistance is the earliest detectable metabolic 

trait of pre-diabetes, and possibly the most important risk factor in the development of Type 

2 diabetes mellitus (T2DM).  In the pre-diabetic state, or insulin resistance, serum insulin 

concentrations are elevated to compensate for insulin resistance in peripheral tissues, and to 

maintain a normal glucose balance.  This is a compensatory mechanism, known as 

hyperinsulinemia.   

Hyperinsulinemia exists to maintain normal glucose levels, or normoglycemia, 

during the prediabetic/insulin resistant state.  Even though normoglycemia may be 

maintained in some, it has been shown that other patients will have increased fasting 

glucose or impaired glucose tolerance (IGT) after a 2 hour oral glucose challenge, of 140 to 

199 mg/dL 6.  Hyperinsulinemia is a stress on the pancreas, and may, at some point, not be 

able to handle this increased work load, and as a result its insulin secretory response may 

decrease.  A decrease in insulin levels may cause a rise in blood glucose, leading to 

diabetes. 

 Today, it is almost impossible to speak of insulin resistance without talking about 

the metabolic syndrome.  In fact, after having done an in depth review of the literature on 

the subject, I have come to realize that if not for the clinical definition of insulin resistance, 

the terms metabolic syndrome and insulin resistance have come to be almost 

interchangeable.  Essentially, the metabolic syndrome is a constellation of abnormalities 

that is associated with increased risk for the development of T2DM and atherosclerotic 

vascular disease, such as heart disease and stroke 2. 

 As mentioned earlier, insulin levels may decrease after prolonged insulin resistance, 

yet in most of these insulin resistant individuals, large amounts of insulin continue to be 

secreted to overcome this defect in insulin action, thereby maintaining normal or near-

normal glucose tolerance.  While this compensatory hyperinsulinemia prevents the 
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development of hyperglycemia, these individuals run a risk of suffering from a certain 

degree of IGT, high plasma triglyceride (TG) and low high-density lipoprotein cholesterol 

(HDL-C), or “good cholesterol” levels, obesity, and most importantly, essential 

hypertension 7, 8.  These seem to constitute the cluster of risk factors leading to T2DM and 

CVD. 

 The first guide lines for the diagnosis of metabolic syndrome were presented in 

1998 by the World Health Organization (WHO) 9.  This definition was later modified by 

the European Group for the Study of Insulin Resistance (EGIR) to focus more on glucose 

intolerance and insulin resistance 10.  In 2001, the National Cholesterol Education 

Programme Adult Treatment Panel III (ATPIII) again revised the metabolic syndrome 

diagnosis criteria.  It is based more on plasma glucose levels and dyslipidemia, and omits 

insulin resistance as a criteria 11.   More recently, the American Heart Association (AHA) 

released its own criteria, which mirror the ATPIII, with the exception of stricter fasting 

glucose criteria 1.  The most recent definition of the metabolic syndrome criteria comes 

from the International Diabetes Federation, which names abdominal obesity and insulin 

resistance as the most important factors leading to metabolic syndrome 12.  Despite these 

more recent definitions, the most widely used definition and criteria to diagnose the 

metabolic syndrome remain those of the ATP III, and as such, we will concentrate on those 

criteria here.  The ATPIII identifies 5 components of the metabolic syndrome that relate to 

CVD: abdominal obesity (waist circumference), atherogenic dyslipidemia, high density 

lipoprotein (HDL) cholesterol levels, glucose intolerance, and high blood pressure 11.  

Visceral obesity is the form of obesity most strongly linked with insulin resistance 

and with the presence of related metabolic abnormalities of the metabolic syndrome.  

Clinically, it presents increased waist circumference. However, the mechanisms underlying 

the association between abdominal obesity and the metabolic syndrome are not fully 

understood.  It has been assumed that abdominal adipose tissue releases an excess of fatty 

acids and cytokines that contribute to insulin resistance.  For example, visceral adipose 

tissue secretes adipokines like adiponectin and inflammatory cytokines such as interleukin-

6 (IL-6) and tumor necrosis factor (TNF)-α, which contribute to the insulin resistant, 
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proinflammatory, and hypertensive states 13.  In fact, visceral adiposity and insulin 

resistance are connected by TNF-α at the molecular level.  Studies have shown that in 

adipocytes, TNF-α causes serine phosphorylation of IR and IRS-1, impairing insulin 

signaling.  This leads to increased lipolysis, as well as decreased adiponectin levels, and an 

increase in circulating free fatty acids (FFA) 14, 15 

Dyslipidemia and HDL levels present in routine lipoprotein analysis by high 

triglyceride levels, exceeding 200mg/dL and reduced concentrations of high density 

lipoproteins (HDL) cholesterol, usually below 40mg/dL 5.  In addition, it is characterized 

by other lipoprotein abnormalities, such as elevated apolipoprotein B, small low density 

lipoprotein (LDL) particles, caused by enriched triglycerides, and small HDL particles 5.  

The combination of these factors increases the atherogenicity of LDL, even though LDL 

levels are usually not increased.  Lipoprotein metabolism is regulated by genetic and 

environmental (diet, exercise or lack thereof) factors and both can aggravate dyslipidemia. 

Glucose intolerance presents as impaired fasting glucose (levels of 110 to 125 

mg/dL) or IGT (levels of 140 to 199 mg/dL) after a 2 hour oral glucose challenge, of 1.75 

Kg of glucose per Kg of body weight for children and 75 g of glucose for adults 6.  These 

glucose levels are intermediates between normal values and overt diabetes.  When glucose 

intolerance evolves into diabetes-level hyperglycemia due to the failure of the 

hyperinsulinemia mechanism described earlier, high glucose levels constitute a major, 

independent risk factor for CVD. 

Blood pressure has been shown to be elevated in overweight/obese patients with 

insulin resistance or glucose intolerance.  In fact, 50-60% of patients suffering from 

essential hypertension are insulin resistant to some degree 16. Blood pressure regulation is 

complex and affected by dietary factors, physical activity and renal/adrenal organ function. 
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1.2 The metabolic Syndrome, Hypertension and Cardiovascular 

Disease 

Obesity, diabetes, and the metabolic syndrome have clearly been shown to cause 

endothelial dysfunction 17.  Endothelial dysfunction is commonly characterised by reduced 

nitric oxide (NO) dependent activity, which leads to hypertension, coronary heart disease, 

and accelerated atherosclerosis 18.  Glucotoxicity (deleterious effects of hyperglycemia) and 

lipotoxicity (negative effects of increased plasma FFA and low HDL), as well as increased 

pro-inflammatory signaling are all adverse effects of the metabolic syndrome, which 

worsen insulin resistance, and contribute to endothelial dysfunction, hypertension and 

CVD. 

1.3 Hypertension 

Blood pressure is defined as the force that blood exerts on the vessel walls.  

Hypertension (HT), or high blood pressure, is a chronic medical condition characterized 

mainly by elevated arterial blood pressure 19.  The worldwide prevalence of hypertension is 

estimated to be at 1 billion people, and contributes to approximately 7.1 million deaths per 

year worldwide 20.  Persistent HT is a major risk factor contributing to pathophysiological 

events such as stroke, heart attack, heart failure and chronic renal failure  21.  In the United 

States, it is estimated that approximately 50 million people (almost 1 in 4 adults) suffer 

from hypertension 19, with proportions varying according to race, age, geographic location, 

gender and economic status.  To add to these factors, not all people suffering from HT 

suffer from the same type of HT, as multiple types of HT exist.  Furthermore, as blood 

pressure is not static, and varies from one minute to another in the day due to multiple 

external stimuli, it is difficult to define HT, in order to establish accepted treatment 

guidelines.  Here, I will define blood pressure and discuss several of the proposed 

definitions of HT, as well as several different types of HT, and the differences between 

them. 
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1.3.1 Definition of hypertension  

Blood pressure is calculated by measurements of systolic pressure (SBP) over 

diastolic blood pressure (DBP), measured in millimeters of mercury (mmHg).  Systolic 

pressure is the peak pressure in the arteries, which occurs near the end of the cardiac cycle, 

during ventricular contraction.  Diastolic pressure is the lowest pressure in the arteries, 

occurring at the start of the cardiac cycle, when the ventricles are filling with blood.  It can 

be said that “normal” or healthy adult blood pressure, when taken at a resting state 

(normally how blood pressure is taken) is 115mmHg systolic over 75mmHg diastolic, read 

as 115/75 mmHg 22.  As mentioned earlier, blood pressure is not static, as it undergoes 

natural variations from one heart beat to another, in response to simple stimuli, such as 

movements, nutrients or metabolites in the circulation, exercise, disease and stress.  High 

blood pressure (or hypertension (HT)) can be clinically diagnosed by either a SBP above 

140mmHg or a DBP above 90 mmHg, measured at least twice, on at least 2 subsequent 

visits to have blood pressure taken 19.  Although these criteria help diagnose HT so that a 

patient can receive the proper treatment, recent studies show that a great deal of damage 

may have already occurred to the cardiovascular system by the time or before a patient’s 

blood pressure reaches 140/90 mmHg.  In fact, the Framingham Heart Study has shown 

that for every increase of 20/10 mmHg, from a base blood pressure of 120/80 mmHg, the 

risk of development of cardiovascular disease doubles 23.  Further to this data which 

highlights the increased risk of cardiovascular complications associated with blood pressure 

levels that used to be considered normal, the Joint National Committee on prevention, 

detection, evaluation and treatment of high blood pressure (JNC) convened to re-evaluate 

the definition of hypertension 22.  In this new definition, blood pressure is separated into 4 

different categories (Table 1): 

Normal: This category is composed of individuals with an SBP under 120 mmHg and a 

DBP under 80 mmHg. 

• Prehypertension: This category is composed of individuals with an SBP between 

120-139 mmHg and a DBP between 80-89 mmHg. 
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• Stage 1 hypertension: This category is composed of individuals with an SBP 

between 140-159 mmHg and a DBP between 90-99 mmHg. 

• Stage 2 hypertension: This category is composed of individuals with an SBP over 

160 mmHg and a DBP over 100 mmHg. 

Longutidinal studies, such as the Framingham Heart Study, have shown the long-term 

effects of prolonged hypertension.  Based on such studies and others, the new JNC 

definitions have made it easier to diagnose hypertension and the increased blood pressure 

conditions which precede HT.  By adding a category to include “pre-hypertensive” patients 

(Table 1), individuals in whom early intervention could reduce blood pressure could easily 

be identified.  These patients would be counseled to adopt lifestyle changes, which may not 

only lower blood pressure, but help prevent the progression of HT with age, and may 

prevent HT altogether 22.  It is important to note however, that the prehypertension category 

does not imply that an individual suffers from HT.  This category was created to identify 

patients at risk of developing HT, such as individuals suffering from obesity, diabetes and 

kidney disease.  While there is no pharmacological therapy suggested to treat the increase 

in blood pressure in the prehypertenvise group, patients in both stage 1 and stage 2 

hypertension groups must receive pharmacological therapy, in addition to lifestyle changes, 

to decrease HT, and its associated risks, such as angina, myocardial infarction, stroke or 

chronic kidney disease 24.  Lifestyle changes include weight reduction through decreased 

caloric intake and exercise (Table 2), the adoption of an exercise/physical activity plan 

consisting of moderate exercise (at least 30 minute moderate walk 3 to 4 times per week), a 

reduction in dietary sodium intake (Table 2), as well as limiting the consumption of alcohol 

to no more than 2 drinks per day for men and 1 drink per day for women 24.  Adoption of 

lifestyle changes alone have been shown to reduce SBP by 2-20 mmHg 25-28, prevent/delay 

the incidence hypertension and increase the efficiency of antihypertensive pharmacological 

therapy 29.  When the adoption of lifestyle changes is not sufficient, pharmacological 

therapies must be included in treatment plans.  These pharmacological therapies include 

diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotensin II (Ang II) 

antagonists, and α- and β-blockers.  Unfortunately, not all people suffering from HT suffer 
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from the same type of HT, as multiple forms of HT exist, and as such, treatments must be 

personalized. 
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1.3.2 Varying forms of hypertension 

 As mentioned above, multiple forms of HT exist, and specific classifications have 

been defined to identify them.  HT is classified under 2 main categories: essential, or 

idiopathic HT, and secondary HT.   

Essential hypertension (EHT) is diagnosed when no clear medical cause can be 

identified to explain the increased blood pressure 30.  This is the most common type of 

hypertension, with approximately 95% of all HT being diagnosed at EHT 19, 30.  It is 

unassociated with secondary causes, such as renovascular disease, renal failure, 

pheochromocytoma, aldosteronism or monogenic HT 19.  Multiple pathophysiological 

factors have been suggested to contribute to the development of essential HT, among them, 

obesity, high sodium intake, high alcohol intake, and inadequate potassium and calcium 

intake 31-37.  It is for this reason that HT has been termed a heterogeneous disorder, as 

different patients have different causal factors leading to HT 19.  Insulin resistance (IR) 

and/or glucose intolerance has also been shown to play an important role in the 

development of EHT.  Blood pressure has been shown to be elevated in overweight/obese 

patients with IR.  In fact, 50-60% of patients suffering from EHT are insulin resistant to 

some degree 16.  Blood pressure regulation is complex and affected by dietary factors, 

physical activity and renal/adrenal organ function. 

To complicate matters further, the presence of obesity, IR and EHT are hallmarks of 

the metabolic syndrome, a constellation of abnormalities that is associated with an 

increased risk of development of type 2 diabetes mellitus (T2DM) and atherosclerotic 

vascular disease, such as heart disease and stroke.  Obesity, diabetes, and the metabolic 

syndrome have clearly been shown to cause endothelial dysfunction 17, commonly 

characterized by reduced nitric oxide production, leading to HT, coronary heart disease and 

accelerated atherosclerosis 18. 

Secondary hypertension (SHT), unlike EHT, is caused by an identifiable 

secondary cause, usually a pre-existing medical condition, such as congestive heart failure, 
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liver damage, kidney damage, hormonal irregularities, certain types of cancers and different 

types of medications 38.  It is less frequent as well, affecting only about 5% of people with 

HT 38.  Here, I will briefly describe SHT associated to 1) chronic kidney disease and 2) 

gestational hypertension, which are two of the more common forms of SHT encountered. 

Chronic kidney (renal) disease, also known as renal parenchymal disease, is the 

most common cause of SHT.  HT may be an early sign of renal disease and may be present 

even before a decline in renal function, yet it is mostly caused by renal artery stenosis.  

Renal artery stenosis causes the kidney attached to the constricted arteries to become 

ischemic, leading to an increased activation of the renin-angiotensin system (RAS) 39.  An 

increased production of Ang II leads to augmented aldosterone secretion, causing sodium 

and water retention, leading to hypertension 39, 40.  Renal artery stenosis may be unilateral, 

affecting the artery going only to one kidney, or bilateral, affecting the arteries going to 

both kidneys.  The latter is the most common cause of renal failure.  In the case of 

unilateral stenosis, volume overload of the affected kidney is avoided, as the contralateral 

kidney responds to the rise in blood pressure through increased excretion of sodium 

through the urine, or natriuresis 41.  In the case of bilateral stenosis, or in patients with only 

one functional kidney, there is no compensatory diuresis, thus inhibiting sodium excretion. 

Open surgical revascularization was at one point the only treatment available for 

renal artery stenosis.  In fact, this method is still the primary treatment used in patients 

where the stenosis extends into segmental arteries, or involves multiple small arteries or the 

early branching primary renal artery 41.  Balloon angioplasty and especially renal artery 

stent insertion have also become popular “surgical” treatments, especially with the 

development of stents coated with different types of medications 42.  Pharmacological 

treatment options include angiotensin-converting enzyme inhibitors, angiotensin receptor 

blockers and calcium channel blockers, which are recommended for the treatment of 

unilateral renal artery stenosis-induced hypertension only.  However, caution must be 

exercised with the use of these medications, and their administration must be carefully 

monitored by constant laboratory testing, as they may cause acute renal failure 41, 43.  These 

treatments are, for the most part, very successful in terms of restoring blood pressure to 
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normal levels, as well as preventing further renal, endocrine or cardiac complications, such 

as atherosclerosis, cardiovascular disease, heart failure and stroke.  Unlike EHT, adoption 

of healthy lifestyle changes will not cure HT due to renal artery stenosis, but will certainly 

cause no harm! 

Gestational hypertension (GHT) is another type of secondary hypertension.  

Gestational HT is defined as the onset of HT more than 20 weeks into the pregnancy 44.  To 

be considered GHT, blood pressure must return to normal within 12 weeks after the birth.  

Therefore, the diagnosis of GHT is often made in retrospect 45.  GHT is the most common 

medical complication of pregnancy 44.  Treatments for GHT are very limited, due to the fact 

that most antihypertensive medications have been found to be teratogenic to some degree. 

It is also a temporary diagnosis, which may include the eventual development of 

preeclampsia 46.  Up to 50% of women diagnosed with GHT develop preeclampsia 47, 

which is defined as the development of hypertension and proteinuria after 20 weeks of 

gestation, even into the first week postpartum 48. Preeclampsia is a condition endangering 

both the mother and the fetus, and is responsible for up to 20% of maternal mortality, as 

well as the majority of morbidities, prenatal deaths, preterm births and fetus growth 

restrictions 48.  Treatment options for GHT and preeclampsia are limited, as many 

pharmacological treatments may pose severe risks to the fetus 45.  The most common 

antihypertensive used in GHT is the sympathetic nervous system inhibitor α-methyldopa, 

which has shown few or no lasting side effects to the mother or foetus 45, yet in depth 

studies on methyldopa, as well as many other classes of antihypertensives, are lacking.  For 

the most part, treatment of GHT includes bed rest and limiting movement, and if the 

pregnancy is close to term, labour is induced.  If the development of preeclampsia occurs, 

the most common treatment is for labour to be induced, especially if gestation is close to or 

at 32 weeks 45, 48. 

Cardiovascular Diseases 

According to the World Health Organization (WHO), more people die of 

cardiovascular diseases (CVD) yearly than any other cause or pathological condition, with 
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approximately 17.3 million deaths due to CVDs in 2008, a number which is predicted to 

rise to 23.6 million by the year 2030 49.  Alterations in vascular smooth muscle cell 

(VSMC) growth, migration, proliferation and plasticity is believed to contribute to 

abnormal vascular functions associated with or leading to CVDs, such as hypertension, 

atherosclerosis, and stenosis after angioplasty 50-52.  Under normal physiological conditions, 

vasoactive peptides, such as angiotensin II (Ang II) and endothelin-1 (ET-1), normalize 

blood pressure through the regulation of salt and/or water homeostasis, sympathetic nervous 

system modulation, as well as VSMC contraction and relaxation 53-56.  Increased levels of 

both ET-1 and Ang II, present in certain pathophysiological states, such as essential 

hypertension, obesity, or advanced stages of diabetes, have been suggested to contribute to 

the pathogenesis of CVDs, by activating signaling events intimately linked to migration and 

proliferation of VSMC 53, 57-59. 

1.4 Endothelins 

Originally identified in 1988 by Yanagisawa et al. from porcine aortic endothelial 

cell cultures 60, endothelin (ET) is the most potent vasoconstrictor peptide known.  Today, 

ET has been characterized in almost all organs and physiological systems, and remains one 

of the most important regulators of blood pressure, sodium and water homeostasis in the 

body 61.  ET also exhibits important mitogenic and inotropic properties, can stimulate the 

renin-angiotensin-aldosterone system (RAAS) as well as the sympathetic nervous system 

(SNS) 54-56.  The general role of ET is to increase vascular tone and blood pressure in 

response to potential hypotensive states.  However, through its mitogenic properties, ET is 

thought to play an important role in vascular remodeling associated with hypertension, 

which contributes to the development of various CVDs 62, by increasing cell proliferation, 

hypertrophy and cell migration, through the activation of several signal transduction 

pathways linked to these events in the cardiovascular system 63, 64. 
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1.4.1 Structure, Regulation and Biosynthesis of ET-1 

 Three members of the mammalian ET gene family exist and have been 

characterized: ET-1, ET-2 and ET-3 61.  All three ET peptides are 21 amino acids long 

connected by two interchain disulfide bonds (Cys1-Cys15 and Cys3-Cys11) at the N-

terminal end, with a cluster of three polar charged side chains on amino acid residues 8-10 

and a hydrophobic C-terminus (residues 16-21) containing the aromatic indole side chain at 

Trp21, essential for its loop configuration and its bioactivity 61 (Figure 1).  The ET-2 

peptide shares a 90% sequence homology with ET-1, varies from it by only two amino acids 

(Trp6-Leu7), while ET-3 shares 71 % sequence homology with ET-1 and ET-2, and varies 

by six amino acids (Thr2, Phe4-Thr5-Tyr6-Lys7 and Tyr14).  ET-1 is encoded by a gene on 

chromosome 6 in humans (chromosome 13 in mouse), while ET-2 and ET-3 are encoded by 

independent genes located on chromosomes 1 and 20, respectively 65.  The sequences for all 

ET family members are preserved in mammals, and are related to the sarafotoxin snake 

venom 66 (Figure 1).  Among the three ET peptides, ET-1 is the most important isopeptide 

in the vasculature. 

 Multiple stimuli, including hypoxia, shear stress, lipoproteins, hormones and growth 

factors, free radicals and endotoxins, can induce and/or increase ET-1 generation, while 

others, such as nitric oxide (NO), natriuretic peptides, nitrovasodilators, heparin and 

prostaglandins, all of which increase intracellular cyclic guanosine monophosphate (cGMP) 

levels, inhibit ET-1 production 67.  Production of ET-1 is regulated by the preproET-1 gene, 

at the transcriptional level 68.  Binding sites for multiple regulatory elements, such 

activating protein 1 (AP-1), CAAT-binding nuclear factor 1 (NF-1), nuclear factor of 

activated T-cells (NFAT)-binding domains and GATA binding protein 2 are located in the 

5’ promoter region of the preproET-1 gene, which mediate ET-1 mRNA induction by 

several factors, including Ang II and transforming growth factor-β (TGF-β) 69.  The 

adenine-uracil-rich motifs present in the non-translated 3’ region mediate selective 

destabilization of preproET-1 mRNA, contributing to the relatively short biological half-life 

of ET-1 (15-20 minutes) 65. 
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Figure 1: Structure of the Endothelins. Amino acid sequences of the three members of 
the endothelin family and of the structurally related snake venom toxin sarafotoxin S6b.  
All three ET peptides are 21 amino acids long connected by two interchain disulfide bonds 
(Cys1-Cys15 and Cys3-Cys11) at the N-terminal end ET-1 (top right) is a 21 amino acid 
cyclic peptide with two disulphide bridges joining the cysteine residues at positions 1-15 
and 3-11. Grey circles indicate where amino acids differ from those of endothelin-1. 
(Haynes WG, J. Hypertens 1998, 16(8):1081-98) 
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Compared to all other cell types, ET-1 is primarily produced in vascular endothelial cells, 

which express high levels of ET-1 mRNA, preproET-1 mRNA and its converting enzyme 
65.  ET-1 has also been shown to be produced by the heart, kidney, the posterior pituitary 

gland and the CNS 67.  ET-1 is also expressed in VSMC, yet its production in this cell type 

is 100 fold less than in endothelial cells 70.  While ET-2 is secreted by heart, kidney and 

endothelial cells (albeit in limited quantities), ET-3 does not seem to be present in 

endothelial cells, and is secreted mainly by the CNS, gastro-intestinal (GI) and endocrine 

systems 71, 72.   

The formation of the mature ET-1 peptide is preceded by multiple steps, including 

the cleavage of precursor peptides. Human ET-1 mRNA encodes a 212 amino acid peptide 

named preproET-1 61.  The signal sequence is then cleaved by a signal peptidase to form 

proET-1, which is further cleaved by dibasic-pair-specific endopeptidases, including furin 

and PC7, to from bigET-1, a 38 amino acid peptide whose vasoconstrictor efficacy is two 

orders of magnitude less than that of the mature ET-1 peptide 73.  BigET-1 is then cleaved 

between Trp21 and Val22 by one of several endothelin converting enzymes (ECE) to form 

the mature 21 amino acid ET-1 peptide (Figure 2). 

Three isoforms (ECE-1, ECE-2 and ECE-3) of ECE have been identified, all 

belonging to a family of zinc peptidases and related to neutral endopeptidase-24.11 and Kell 

protein, but not to angiotensin converting enzyme (ACE).  ECE-1 is the isoform 

predominantly found in endothelial cells, and has the greatest affinity for BigET-1, but has 

been found to proteolyze other peptides as well.  Four isoforms of ECE-1 exist (ECE-1a, -

1b, -1c and -1d) and all are derived from alternative splicing of the same gene 74, 75.  ECE-

1a is primarily expressed in intracellular vesicles and on the cell surface of ET-1 “producer” 

cells, such as endothelial cells, while ECE-1b is located mostly near the trans-Golgi 

network, in the endosomal compartment of “responder” cells, such as VSMC.  ECE-1b is 

then transported to the plasma membrane where it is responsible for the cleavage of 

extracellular BigET-1 61, 76.   ECE-1c and ECE-1d are both located on the extracellular face 

of the plasma membrane 73. 
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 ECE-2 hydrolyzes ET-1, and has a 60% homology with ECE-1.  It also has four 

isoforms, which vary at the amino acid terminus level, possibly responsible for their 

different intracellular localization 77.  The optimal functional pH of ECE-2 is 5.5, and it has 

virtually no activity at pH 7.0, indicating that ECE-2 is involved in intracellular processes, 

particularly at the level of the trans-Golgi network 61, 77.  ECE-1 and ECE-2 are relatively 

selective for big ET-1, having much less activity in cleaving big ET-2 and big ET-3, yet 

ECE-1 and ECE-2 knockout mice still display significant levels of ET-1, indicating that ET-

1 formation may also be regulated by other proteases and/or enzymes, yet their 

physiological relevance is not clear 78.  While ECE-3 has been identified, studies have 

demonstrated that it has a preferential activity for ET-3 76. 

In healthy subjects, circulating concentrations of ET-1 in venous plasma are in the 

range 0.1-10 pmol/l 79.  While these concentrations are lower than the concentrations able to 

induce vascular constriction in vivo and in vitro, ET-1 concentrations at the interface 

between VSMC and endothelial cells are many times higher 61, 70.  This is supported by 

studies demonstrating that ET-1 is secreted by cultured endothelial cells into the basolateral 

(towards VSMC) compartment and not apically 80.  In a similar fashion, renal tubule cells 

secrete ET-1 towards the interstitium, and only minimally into the urine 61.  As such, rather 

than acting as a circulating endocrine peptide, ET-1 acts primarily as a paracrine factor, 

affecting local cell and tissue metabolism.  Consequently, ET-1 levels in circulation do not 

reflect its full physiological impact.  This phenomenon has led to the use of venous plasma 

BigET-1 and inactive ET-1 C-terminal fragment concentrations as markers for endothelial 

ET-1 synthesis, as they better reflect the quantities of ET-1 generated, as opposed to 

measuring ET-1 generation.  This is due to the efficient clearance mechanism of ET-1, 

owing to its short half life (approx. one minute, although its pressor effects are maintained 

for up to one hour) and the unusual binding characteristics of the ET receptors for their 

ligand, which is almost irreversible 81, 82. 

Circulating ET-1 is eliminated mainly by the kidney, liver and lungs, the latter of 

which is responsible for more than 50% of the elimination of ET-1 in humans 81.  ET is 

degraded mainly by endopeptidases, such as neutral endopeptidase (NEP), found in the 
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proximal tubules of the kidney, and cathepsin G, generated in vascular endothelial and 

pulmonary epithelial cells 83.  ET-1-binding to its cell-surface receptors and subsequent 

lysosomal internalization and degradation are also important mechanisms in ET-1 

clearance.  This theory stems from studies showing that pulmonary clearance of labelled 

ET-1 can be blocked by pre-treatment of the cells with a large dose of unlabelled ET-1, 

suggesting that ET-1 clearance is receptor-dependent 84.  Investigations have also shown an 

increase in plasma ET-1 levels following a pharmacological blockade of the ETB receptor 
85, yet in most studies the pharmacological blockade of the ETA receptor had little impact on 

plasma ET-1 levels 61.  However, studies using specific disease models in which there is 

thought to be some degree of ETB dysfunction, such as the ETB-deficient rat, or the DOCA-

salt hypertensive rat model, pharmacological blockade of the ETA receptor led to an 

increase in circulating ET-1 levels 84, 86.  As such, it cannot be concluded that the ETA 

receptor does not play a role in ET clearance.  Moreover, plasma ET levels are increased 

within 15 minutes of ET receptor blockade, without any effect on C-terminal fragment and 

Big ET-1 concentrations, confirming that the increase in ET levels is not entirely due to 

peptide synthesis, but is mediated by ET-1 receptor displacement 87, 88.     

1.4.2 ET-1 Receptors 

All mammalian ET receptors are coded from two separate genes 61.  ETA and ETB 

are the two main ET-1 receptor subtypes through which ET-1 exerts its biological effects in 

a paracrine/autocrine fashion.  Both of these receptors have been cloned in humans 89, 90, 

and belong to the rhodopsin class A of seven transmembrane guanine nucleotide-binding 

protein (G protein)-coupled receptors (GPCRs), which signal through activation of G 

proteins.  GPCRs have an approximate 400 amino acid sequence with an N-terminal 

extracellular region and C-terminal intracellular region, and contain seven 22-27 

hydrophobic amino acid transmembrane domains.     

The ETA receptor contains 427 amino acids, and its gene is located on chromosome 

4.  ETA has the strongest affinity for ET-1, yet binds ET-2 to a lesser or equal extent, and 

can also bind ET-3, albeit to a much lessor extent that ET-2 and ET-1 91.  Studies have 
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recently reported the existence of splice variants of the ETA receptor in the rat anterior 

pituitary gland, of which one variant was found to have reduced efficacy in stimulating 

adenylyl cyclise activity and mobilizing intracellular calcium (Ca2+) 92.  Nevertheless, it 

remains to be seen if these splice variants exist in other tissues and have a significant 

physiological contribution. 

The ETB receptor, whose gene is located on chromosome 13, contains 442 amino 

acids, and has the capacity to bind all ET peptides with equal affinity 89, 93.  Several splice 

variants of the ETB receptor have been identified.  One in particular contains an additional 

10 amino acids, is found only in humans, and appears not to present any differences in 

cellular signalling events 94.  A second ETB receptor variant was found to have important 

differences in the cytoplasm domain and the 3’-untranslated domain, yet this splice variant 

is thought to function primarily as a clearance receptor, as it has shown little to no cellular 

signalling activity 95.  An ETB receptor splice variant has also been discovered in the rat 

brain and possibly other tissues, yet its functional characteristics have yet to be identified 96.  

ETB receptors are found predominantly in endothelial and renal tubule cells, yet are 

expressed in smaller quantities in VSMC, cardiomyocytes, hepatocytes, osteoblasts, 

neurons, epithelial cells and fibroblasts 61, 90. 

ET receptors couple to the Gi, Gq, Gs and Gα12/13 members of the G protein family, 

regulating various signalling cascades, including adenylyl cyclases, nitric oxide synthase 

(NOS), serine/threonine kinases, tyrosine kinases, cyclooxygenases, amongst others 61, 69.  

More often than not, ETA and ETB receptors have opposite actions, depending on their 

localization, even in the same organ, yet many exceptions exist.  For example, in the 

vasculature, both ETA and ETB receptors located on VSMC induce ET-1-induced 

vasoconstriction, cell adhesion and cell growth (Figure 2).  In opposition, ETB receptor 

binding of ET-1 in endothelial cells induces vasorelaxation, through the release of nitric 

oxide (NO) and prostacyclin on to VSMC 97, as well as contributing to the prevention of 

endothelial cell apoptosis, inhibition of ECE-1 expression and increase in ET-1 clearance 98 

(Figure 2).  Many pharmacological ET receptor agonists and antagonists have been  
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Figure 2: Factors affecting regulation of ET-1 synthesis and its subsequent ET receptor mediated actions on 
vascular smooth muscle cells. The generation and secretion of ET-1 is regulated by multiple factors, including 
hypoxia, shear stress and various growth factors and peptides. The formation of the mature ET-1 peptide is preceded 
by multiple steps.  In humans, ET-1 mRNA encodes a 212 amino acid peptide named preproET-1, which is cleaved 
by a signal peptidase to form proET-1.  ProET-1 is again cleaved by dibasic-pair-specific endopeptidases, including 
furin and PC7, to from bigET-1, a 38 amino acid peptide. BigET-1 is then cleaved between Trp21 and Val22 by one 
of several endothelin converting enzymes (ECE) to form the mature 21 amino acid ET-1 peptide.  In the vasculature, 
binding of ET-1 to ETA and ETB receptors on VSMCs induces vasoconstriction, cell adhesion and cell growth. In 
opposition, binding of ET-1 to ETB receptor on endothelial cells induces vasorelaxation, through the release of nitric 
oxide (NO) and prostacyclin on to VSMCs. ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; CNP, C-
type natriuretic peptide; TGF-β, transforming growth factor β.(Adapted from Remuzzi, G. et al., Nat.Rev.Drug. Disc 
2002, 1(12):986-1001) 
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developed and used to better identify and understand the role of ET receptors in 

physiological states.  For example, BQ123 and BQ788 are highly selective ETA and ETB 

receptor antagonists, respectively, while sarafotoxin 6c is a powerful and highly selective 

ETB receptor agonist 99.  Orally active ET receptor antagonists have also been developed 

and used clinically, such as Bosentan, an ETA/B receptor antagonist, as well as Sitaxsentan, a 

selective ETA receptor inhibitor 99.  Use of such compounds has also helped to identify the 

phenomenon of ETA and ETB receptor heterodimerization, possibly affecting receptor 

functionality, since ETA/ETB heterodimers were shown to have delayed ET receptor 

internalization and a prolonged increase in intracellular Ca2+ in response to ET-1 100, 101. 

1.4.3 Biological actions of ET-1 

1.4.3.1 ET-1 in the vasculature and heart 

Hickey et al. were the first to demonstrate that media taken from cultured 

endothelial cells produced constriction in classic muscle bath preparations 102.  Yanagisawa 

et al. later isolated and purified the peptide and gave it the name endothelin, stemming from 

its endothelial cell origin 60 and demonstrated that a bolus injection of ET caused a transient 

hypotension immediately followed by a prolonged increase in blood pressure 60.  Later 

studies indicated that these effects are due to ETB and ETA receptor, respectively.  However, 

further detailed studies have shown that ETB receptor is also implicated in vasoconstriction 

and induction of hypertensive effects of ET.  In VSMC, ETA and ETB activation by ET 

leads to the vasoconstrictor response of ET (Figure 2).  Both receptor types were shown to 

be present on the plasma membrane, cytosol, nuclear envelope membrane and the 

nucleplasm of human VSMC 103. 

On the other hand, ETB activation by ET in the endothelium leads to the transient 

vasodilatation response described earlier, usually followed by vasoconstriction (Figure 2).  

Studies have attributed this vasodilation to the generation of NO via the activation of 

endothelial NOS (eNOS).  Activation of eNOS is thought to occur through ET-1-induced 

protein kinase B (PKB) phosphorylation and activation in endothelial cells 104.  The 
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subsequent ETB receptor-dependent vasoconstriction mediated by ET-1 varies, however, 

from one vascular bed to another 61.  Veins seem to have a more potent ETB receptor-

dependent vasoconstriction action than arteries, yet the functional implication of these 

findings remains to be determined 105.  Results from several investigations have suggested 

that NO release and vasodilatation are mediated by ETB1 receptor isotype, while the 

subsequent vasoconstriction requires ETB2 receptor isotype 106.  It is interesting to note that 

hypotension does not occur when ET concentrations rise slowly, as opposed to a bolus dose 
107. As mentioned earlier, ET response varies from one vascular bed to another.  Renal and 

coronary vascular beds are the most sentitive to the systemic vasoconstrictor effects of ET-

1, however, hindquarter skeletal muscle beds display only a minimal ET-1-induced 

constriction 108-110.  Mesenteric vascular beds, like their coronary counter parts, have a 

potent ET-1-induced vasoconstrictor response 110 (Figure 3).  The concentration and 

localisation of the different ET receptors in these vascular beds may be the cause of this 

varying degree of ET-1-induced response.  In VSMC, ET-1 is known to also act as a 

mitogenic factor, as long-term treatment of VSMC resulted in an increased growth and 

proliferation of this cell type, which was shown to be mediated through ET-1-induced ETA 

receptors activation 111, 112 (Figure 3).  As well as being a mitogenic peptide in VSMC, ET-1 

also displays co-mitogenic properties, potentiating the effects of such growth factors as 

epidermal growth factor (EGF), platelet derived growth factor (PDGF) and basic fibroblast 

growth factor (bFGF) 112. 

In the heart, the regulation of cardiac function regulated by the ET system has been 

fairly well studied, particularly the role of ET in cardiac pathophysiological conditions, such 

as cardiac hypertrophy, ischemia/reperfusion injury, arrhythmias and congestive heart 

failure 61 (Figure 3).  In terms of production, there is some controversy as to whether or not 

cardiomyocytes produce ET-1.  Several studies have reported ET-1 mRNA, mature peptide 

and/or production in rat and chick neonatal cardiomyocytes, as well as adult porcine 

cardiomyocytes 113-116.  In contrast, others have demonstrated the absence of ET-1 mRNA in 

cardiomyocytes from adult pig and rat hearts 117, 118.  This has led to the speculation that 
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neonatal or embryonic hearts may produce larger amounts of ET-1 than healthy adult, 

which may produce small amounts 61. 

While it may only be produced in small amounts in the heart, ET-1 secreted from 

VSMC and/or endothelial cells has an impact on cardiomyocyte function 119.  In general, ET 

has positive inotropic effects on the heart, which is to say an increase in cardiac 

contractility, yet this varies from species to species, ET dose and duration of exposure, 

sympathetic nerve activity, underlying cardiac pathology and other contributing factors 

(reviewed in 120).  Several studies have shown an increase in cardiomyocyte contractility by 

ET-1 in several species, including mouse, rat, dog and human, yet other studies have 

detected little or no ET-1-enhanced cardiomyocyte contractility, possibly due to the 

aforementioned factors 121-125.  Despite the fact that the inotropic effects of exogenous ET-1 

were examined in these studies, they did not look at the inotropic effect of endogenous ET-

1.  In studies where the ET-1 gene was knocked out specifically in mouse cardiomyocytes, 

the mice displayed an increase in cardiac cell apoptosis associated with the development of 

a dilated cardiomyopathy as of seven months of age.  Until then, no difference in left 

ventricular function was observed.  These studies suggest that while ET-1 production by 

cardiomyocytes in required for their survival, it may not be crucial for a normal heart 

function for a large part of the animals’ life 126.  In a similar fashion, mice in which the ETA 

receptor gene was deleted, specifically in cardiomyocytes, displayed normal baseline and 

Ang II-induced cardiac contractility, suggesting that ET-1-induced cardiomyocyte 

contractility is not of physiological relevance 127.  These conclusions are based on the 

hypothesis that the ETA receptor is responsible for the inotropic effects of ET (reviewed in 
61, 128).  However, diffusion of BQ123, a selective pharmacological inhibitor of ETA receptor 

subtype, into left coronary artery of patients presenting with atypical chest pain, reduced 

contractility.  These results confirm that ET exerts a positive inotropic effect via ETA 

receptor 129.  Cardiac contractility in response to endogenous ET was also examined in vitro, 

in studies examining the response of cardiac muscle to stretch test.  An increase in both 

rapid and slow cardiac muscle shortening and/or developed force, due to the Frank-Starling 

mechanism and slow force response, respectively, was observed after myocardial stretch, 
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with the study concluding that ET may be involved in slow force response 130.  This was 

confirmed by studies showing that ETA receptor antagonism inhibited slow force response 

in cat cardiac papillary muscle after mechanical stretch 131, yet had no effect on the Frank-

Starling response in intact hearts of normal rats 132, substantiating the notion that 

cardiomyocyte-derived endogenous ET is important to cardiac adjustments, and plays a 

physiological role 61. 

1.4.3.2 ET-1 in the nervous system 

ET is known to play an important role in the development of the neural crest and of 

enteric neurons, as well as of peripheral sympathetic ganglia which modulate systemic 

hemodynamics 133, 134, where both ET-1 and ET-3 production has been demonstrated in 

neurons cultured from superior cervical ganglion (SCG) 135, as well as in the dorsal root 

ganglia 136.  These results demonstrate a clear presence of ET in neurons within the 

sympathetic ganglia.  Spontaneously hypertensive rats (SHR) have been shown to have 

increased SCG ET-1 levels, as compared to Wistar Kyoto rats (WKY), yet it is not clear as 

to whether or not this is a significant contributing factor to the increased hypertensive state 

of SHR 137. 

 

ET mRNA and mature peptides are also present in regions of the hypothalamus and 

brain stem known to regulate brain function, such as the paraventricular nuclei, dorsal 

motor nucleus of the vagus nerve, medulla oblongata, choroid plexus and rostral brain 

regions 136, 138.  Intracerebroventricular (ICV) administration of ET-1 or ET-3 caused an 

increase in blood pressure and a decrease in heart rate in conscious rats, effects which were 

reversed by paraventricular nuclei produced NO, suggesting that the hypertensive effect of 

centrally administered ET may involve baroreflex activity, yet direct ET-induced baroreflex 

modulation is not clearly demonstrated 139, 140.  ET-1 ICV injection was also shown to 

produce a pressor response in SHR and WKY 141.  Furthermore, ETA receptor blockade 

decreased blood pressure in SHR, but not in WKY, suggesting that endogenous ET-1 from 

the central nervous system (CNS) causes a tonic hypertensive effect through the ETA 
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receptor in SHR 141.  Earlier, Yamamoto et al. reported that ICV ET-1 injections stimulate 

vasopressin secretion leading to increased blood pressure with a reduction in renal water 

and electrolyte excretion 142 (Figure 3).  It has been also reported that ET, via both 

sympathetic nervous system and the hypothalamo-pituitary-adrenal axis, and through its 

interaction with brain natriuretic peptide (BNP) in the CNS, may regulate cardiovascular 

and hormonal functions 143. 

Studies have also demonstrated that ET peptides have the capacity to modulate the 

release of classical neurotransmitters and influence action potential generation (Figure 3), 

through the implication of the ETB receptor, which plays a role in modulation of ATP 

release, and the ETA receptor, which is implicated in catecholamine biosynthesis 144, 145.  It 

may be concluded from these investigations that ET-1, through the activation of ETB 

receptor Gi proteins, can inhibit ATP release by decreasing Ca2+ influx through L-type Ca2+ 

channels 61.  In summary, the ET system is present in sympathetic ganglia, and is involved 

in cardiac and vascular innervations, release of neurotransmitters and action potential 

generation, and as such, participates both directly and indirectly in the regulation of blood 

pressure. 

ET-1 can also affect baroreceptor activity (Figure 3), yet this mechanism is not fully 

understood 61.  In the dog, baroreceptor activity is inhibited by direct exposure to ET-1 146; 

however, perfusion of low concentrations (1 nM) of ET-1 in isolated rat carotid sinus 

increased baroreceptor activity, while perfusion with high concentration (10-100 nM) 

decreased it 147.  These results suggest that the paracrine actions of ET-1 on baroreceptors 

modulate baroreflex activity and alter blood pressure 61.  In summary, the CNS can 

synthesize and bind ET through its baroreceptors, leading to a modulation in systemic 

hemodynamics, yet the mechanisms through which these events take place are still vague. 

1.4.3.3 ET-1 in the kidney 

Early studies following the discovery of ET-1 in endothelial cells found that ET-1 

was produced in large quantities in the kidney, an organ which was identified as a major 

player in the ET system 148.  In fact, the inner medulla of the kidney was shown to contain 
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the greatest concentration of immunoreactive ET-1 in the whole body, using the pig as a 

model 148.  Later studies showed that every cell type in the kidney had the capacity to 

synthesize ET-1 and also contained ET receptors, which were predominantly abundant in 

the vasculature and the medullar regions 61, and that the kidney was up to 10-fold more 

sensitive to the vascular effects of ET-1 than other organ beds 149, 150.  As such, it is not 

unexpected that the ET system is capable of regulating kidney function and multiple renal 

functional parameters, such as total and regional blood flow, sodium (Na) and water 

excretion, drug transporters and acid/base control, cell proliferation, inflammation and 

glomerular filtration rate (GFR).  The renal ET system has also been shown to play an 

important role in regulating renal injury and disease progression in several pathological 

conditions 69 (Figure 3). 

Exogenously administered high doses of ET-1 have been shown to reduce renal 

blood flow and GFR in both animals and humans 151-154.  These effects have been linked to 

decreased Na and water excretion 155.  In studies where ET receptor agonists were 

administered prior to intravenous administration of BigET-1, ET-1 or ET-3, there was an 

increase in Na excretion 156-159, but others shown the opposite 160-162.  Concentrations of ET 

seem to dictate the type of response elicited, yet it should be noted that the control of 

urinary Na excretion by the renal ET system cannot be fully identified by experiments 

which have a generalized effect on the kidney. 

Evidence from studies using systemic administration of ET seems to be more 

concrete.  These studies have shown an increase in urinary water excretion 160-162, a 

natriuretic, diuretic and hypotensive effect of ET in the renal medulla.  Also, by using 

transgenic mice exhibiting collecting duct-specific knockout of ET-1 that were given either 

a normal or high-sodium diet, or given regular water intake, and whose blood pressure and 

metabolites were examined, Kohan et al. confirmed that ET-1 promotes sodium and water 

excretion 163, 164.  The potential mechanisms by which ET-1 may increase Na and water 

excretion are the inhibition of tubular Na+/K+-ATPase activity in the proximal tubule and 

collecting duct 165, and the effects of anti-diuretic hormone (ADH) on tubular osmotic 

permeability, leading to a decrease in water re-absorption in the collecting duct 166. 
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Similarly to other tissues, the vascular effects in the kidney are mediated by the 

activation of either ETB and/or ETA receptors.  Many investigations have shown that ET 

receptor subtype varies in the kidney in a species-specific manner, and as such, one species 

may contain more of one receptor subtype than another.  In humans, it has been suggested 

that approximately 70% of the ET receptors in the renal cortex and the medulla are of the 

ETB receptor subtype 167.  In terms of response, the natriuretic and diuretic effects of ET-1 

appear to occur via ETB receptor activation, since these effects were blocked solely by ETB 

receptor antagonism, and not by ETA receptor antagonist treatment 168.  Furthermore, ETB 

receptor knockout mice have been shown to be hypertensive, with an increased renal 

retention of sodium 169.  In summary, the majority of studies seem to conclude that an 

increase in blood volume is associated with an increase in renal ET-1 production, 

suggesting that endogenous ET-1 produced by the kidney has an overall natriuretic effect. 

1.4.3.4 ET-1 and the endocrine system 

 While certain corticosteroids, such as cortisol,  and thyroid hormones can affect 

blood pressure, it is not their primary role to do so and as such, do not interact as much with 

the ET system.  On the other hand, hormones such as aldosterone, catecholamines, 

natriuretic peptides and Ang II directly impact on blood pressure regulation and interact 

with the ET system, which has been shown to stimulate their secretion.  The adrenal gland 

is one such example.  Both human and animal adrenal glands have been shown to produce 

ET-1, with the discovery of ET-1 mRNA present in these glands 170-173.  ET-1 stimulates 

both cortical and medullo adrenal hormones, enhances the release of aldosterone from 

isolated cortical zona glomerulosa cells and stimulates adrenaline release from medullary 

chromaffin cells 174, 175.  

 ET can also stimulate production and release of atrial natriuretic peptide (ANP) by 

the myocardium 61 (Figure 3).  In rat studies, ET-3 infusion was able to cause an increase in 

plasma ANP levels 176.  ET-1 was also able to cause ANP plasma level increases, along with 

natriuresis, which was blocked by administration of an anti-ANP antibody 177.  ET-1 can 

also increase ANP peptide and mRNA production in isolated rat adult and neonatal atrial 
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myocytes 178, as well as in ventricular myocytes 179.  In fact, ET-1 is the most potent 

secretagogue known to date 180.  It can also lead to increases in brain natriuretic peptide 

(BNP) mRNA and peptide in cultured rat atrial and ventricular myocytes 152, 181.  While ET-

1 may potently increase natriuretic peptides, their biological effects are often opposite.  For 

instance, ET-induced renal vasoconstriction is prevented by ANP, while ANP-induced 

vasorelaxation is inhibited ET-1 in rat aortic SMC, through a decrease in cGMP levels 182, 

183.  In cardiac myocytes, ET-1 was able to inhibit cardiac natriuretic peptide (CNP)-

induced increases in cGMP and decreases in contractility 184.  ANP was also able to 

decrease basal, ANG II- and thrombin-induced ET-1 synthesis in human endothelial cells 
185.  In summary, while local cardiac ET-1 can generate natriuretic peptide production, ANP 

can then in turn downregulate the cardiac and vascular effects of ET-1. 

Adipose tissue is another important player in the endocrine system which may be 

affected by ET-1 actions.  ET-1 was shown to inhibit adiponectin secretion through a 

phosphatidylinositol 4, 5-bisphosphate (PIP2)/actin-dependent mechanism in basal and 

insulin-stimulated 3T3-L1 adipocytes 186.  A decrease in adiponectin expression and 

secretion by white adipose tissue has been positively correlated with a decrease in insulin 

sensitivity and observed in insulin-resistant states such as obesity, type 2 diabetes and CVD 
186 (Figure 3).  A recent study has demonstrated that stimulation of adipocytes with ET-1 

leads to an increased secretion of Interleukin-6 (IL-6), a pro-inflammatory cytokine.  

Increased levels of IL-6 are also thought to contribute to insulin-resistance and CVD 

(Figure 3).  These studies imply that increased levels of IL-6 mediate ET-1-induced insulin 

resistance 187. 
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Figure 3: Biological actions of ET-1 on various systems leading to multiple 
pathophysiological states. ET-1 plays an important role in maintaining blood pressure and 
vascular homeostasis, yet a heightened ET-1 activity can lead to increases in systemic and 
pulmonary vasoconstriction, cardiac cell hypertrophy and proliferation, water and sodium 
retention, modulations in baroreceptor activity and modulation of various hormones.  
These physiological changes are thought to contribute to the development of vascular 
pathologies, such as hypertension, atherosclerosis, restenosis, arrhythmias, congestive 
heart failure, kidney disease, glucose intolerance and diabetes.  
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1.5 Role of ET-1 in cardiovascular disease 

The significant implication of ET-1 in multiple cellular functions and in many 

physiological systems signifies that a dysregulation of the ET system should lead to the 

development of multiple cardiovascular pathophysiological states, such as hypertension, 

atherosclerosis, cardiac hypertrophy, congestive heart failure and coronary artery disease, 

as well as CVDs linked to diabetes, pulmonary hypertension, kidney failure and other 

important processes (reviewed in 61). 

1.5.1 Role of ET-1 in essential and experimental hypertension 

 Studies investigating the role of ET in essential hypertension have revealed no 

change in plasma concentrations of ET-1 in hypertensive patients as compared to plasma 

concentrations of normotensive patients 188, most probably due to the fact that ET-1 is 

generally produced and acts in an autocrine and/or paracrine fashion.  As such, plasma 

concentrations of ET-1 are not an accurate indicator of essential hypertension.  However, 

other factors, such as age, smoking and renal dysfunction, seem to lead to more significant 

increases in ET-1 levels than does essential hypertension 189.  Ethnicity also seems to play a 

significant role in the measurement of ET-1 levels in hypertensive patients, as increased 

plasma ET-1 levels were observed in hypertensive African Americans 190.  While ET-1 

levels may not be a clear indicator of hypertension, it is interesting to note that increased 

levels of preproET-1 are regularly detectable in the endothelium of small arteries of 

patients with moderate or severe hypertension 191, correlating with the enhanced role of 

hypertrophic signalling caused by increased ET-1 levels.  In VSMC, increased levels of 

ET-1 protein and mRNA have been shown to lead to the formation of larger elastic and 

muscular arteries in hypertensive patients 192.  Despite the difficulty in detecting ET-1 due 

to its low levels in plasma, increased ET-1 signaling is thought to contribute to 

hypertensive states, based on studies using ETA or ETB receptor antagonism (Figure 3).  

ETA receptor antagonism led to a greater vasodilation response in forearm vessels of 

patients with essential hypertension, as compared with normotensive subjects, in whom 
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vasodilation was also observed 193.  In contrast,   ETB antagonism induced forearm 

resistance artery vasoconstriction in normotensive subjects, yet led to vasodilation and 

increased forearm circulation of hypertensive subjects 194, 195, indicating that a 

vasoconstrictor effect of ETB receptors are found in hypertensive but not normotensive 

individuals.  An increased expression of vasoconstricting ETB receptors on VSMC of 

African Americans may explain, in part, the important role of the ET system in these 

hypertensive patients 190.  Furthermore, selective, as well as dual-acting ET receptor 

blockers can reduce systemic blood pressure, as described in an Australian study of 293 

patients with mild-to-moderate essential hypertension which were treated with Bosentan, an 

ETA/ETB receptor antagonist 196.  The reduction in blood pressure by Bosentan was similar 

to that observed in patients treated with the angiotensin converting enzyme (ACE) inhibitor 

enalapril 196.  Darusentan, a selective ETA receptor antagonist, also significantly reduced 

blood pressure in hypertensive human patients 197, without elevation of liver enzymes, a 

side-effect of Bosentan.   

While pharmacotherapy may be one means to help combat hypertension, physical 

activity and an active lifestyle have been long lauded for its beneficial effects.  In fact, 

recent data indicates that moderate aerobic exercise reduces ET-1-mediated vasoconstrictor 

tone 198 (Table 2). These reductions in the activation of the ET-1 system by aerobic exercise 

could contribute to the known beneficial effects of exercise in the treatment and/or 

prevention of hypertension and CVDs. 

The pressor actions of ET-1 are also thought to contribute to the pathogenesis of 

CVDs in animal and experimental models of hypertension 60.  Significant increases in ET-1 

plasma concentrations are observed in certain models of hypertension, such as 

deoxycorticosterone acetate (DOCA) salt-hypertensive rats, DOCA salt-treated 

spontaneously hypertensive rats (SHR), Dahl salt-sensitive rats, Ang II-induced 

hypertension, 1-kidney 1-clip Goldblatt hypertensive rats, and stroke-prone SHR (reviewed 

in 199).  All are experimental models of hypertension that exhibit an increase in systemic 

levels of ET-1.  This increase in ET-1 production and signalling has been associated with 

the remodelling and hypertrophy of the vasculature, including resistance arteries 200.  
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Pharmacological antagonism of either one or both ET receptors led to regression of growth 

and hypertrophy, as well as a decrease in blood pressure. 

Proliferation of VSMC in blood vessels of the aforementioned models of 

experimental models of hypertention, induced by ET-1, may be mediated partly by 

increased ROS production.  Several studies have reported that ET-1 activates NADPH 

oxidase in VSMC and in blood vessels, leading to an increased ROS production 201-203.  

Similar results were seen in studies using an aldosterone-induced hypertensive model, 

where systolic blood pressure, plasma ET, systemic oxidative stress, and vascular NADPH 

activity were all increased and were associated with an increase in small artery 

hypertrophic remodeling  204.   

1.5.2 Role of ET-1 in atherosclerosis and heart failure 

The main characteristics of atherosclerosis vary and include a wide range of events, 

such as endothelial cell injury, vessel inflammation, infiltration of monocytes in the vessel 

wall, release of growth factors and cytokines, lipid accumulation in foam cells and 

migration of VSMCs to the intima region of the artery (reviewed in 205) (Figure 4).  Due to 

its hypertrophic and pro-inflammatory effects, ET-1 plays a major role in the development 

of atherosclerosis, in addition to its role as a blood pressure modulator 206, through 

elevation of ET-1 protein and receptor levels in experimental models of atherosclerosis and 

in human coronary artery atherosclerotic plaques 207-209.   ECE-1 has also been shown to be 

significantly increased in apolipoprotein E-deficient (apoE) atherosclerotic mice 210, adding 

yet another arm of the ET system to the development of atherosclerosis.  ETA receptor 

antagonism was able to reduce atheroma formation in these atherosclerotic apoE mice 211.  

The same study also revealed that chronic ETA receptor blockade normalized NO-mediated 

endothelial dysfunction, an important component in the development of atherosclerosis 211.  

Furthermore, through infusion of BQ123, an ETA receptor antagonist, Bohm et al. observed 

an improvement in coronary vascular function in patients with coronary artery disease, 

suggesting that ET receptor blockade may be a possible therapeutic strategy to improve 

coronary vascular function in patients with atherosclerosis 212.   
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Ballinger et al. have also recently contributed to the notion of development of 

atherosclerosis by ET-1 through the ETA receptor in studies showing that ETA receptor 

activation by ET-1 led to an increase in the size of glycosaminoglycans (GAG) on 

chondroitin/dermatan sulfate proteoglycans synthesized by VSMC 213.  This increase in 

GAG size lead to an increase in low density lipoprotein (LDL) binding, and increased 

vessel lipid binding is a known early event in human coronary artery atherosclerosis 213. 

In addition to atherosclerosis, increased ET-1 levels have also been associated with 

animal and human heart failure 214, 215 (Figure 3), and studies have established a positive 

correlation between ET-1 plasma levels and cardiac hemodynamics and function in patients 

with congestive heart failure 216.  Low cardiac output, a common symptom of heart failure, 

leads to an increase in ET-1 production.  This phenomenon has been demonstrated in 

models of low cardiac output and in models of low ventricular filling pressures, produced 

by constriction of the thoracic inferior vena cava 217.  The increased production of ET-1 can 

in turn stimulate the secretion of multiple neurohormones, which can cause long-term 

effects on the heart, and contribute to the development and progression of heart failure 218.  

A possible treatment option may be the blockade of ETA and/or ETB receptors (reviewed in 
219).  Initial studies in patients with symptomatic heart failure, such as the REACH study 

(Research on Endothelin Antagonism in Chronic Heart Failure) and the ENABLE 

(Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) trial 

showed no improvements in clinical status of patients upon treatment with ET antagonists, 

and were prematurely stopped due to unexpected increases of adverse events, such as 

hypotension and abnormal liver function 220, 221.  However, others have demonstrated the 

beneficial effects of ETA and/or ETB receptor blockade in limiting the complications of 

heart failure 222, 223.  Amongst several pharmacological compounds, Bosentan was able to 

improve and pulmonary hemodynamics in heart failure patients 222.  Similar results were 

observed in a 3-year clinical study of end-stage heart failure patients with pulmonary 

hypertension, on a waiting list for cardiac transplantation 223.  Bosentan was able to 

significantly improve hemodynamic parameters in these patients, and increased their one-

year survival rates on the cardiac transplantation waiting list by 20% 223.  Despite these and 
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other positive results, more research is needed in this area to adjust treatment dosages with 

the goal of reducing negative side effects or to develop more potent, less toxic molecules to 

help improve the quality of life of heart failure patients through ET-1 cascade interactions. 

1.6 Angiotensin II and the Renin-Angiotensin-system (RAS) 

 The RAS is one of the principal hormonal systems regulating blood pressure, blood 

flow, fluid volume and electrolyte balance in the body 224.  As well as being part of the 

endocrine system, it also acts in both a paracrine and autocrine fashion on local tissues and 

organs.  Angiotensin II (Ang II) is the primary effector of this system and has been found to 

play a role in most, if not all, organs, including the heart and vasculature, brain and 

kidneys, having both necessary beneficial functions and pathological effects (reviewed in 
53).  Short term stimulation leads to vasoconstriction and salt/water homeostasis, which 

leads to the regulation of blood pressure.  Long term exposure, or chronic stimulation, has 

been shown to stimulate hypertrophic effects in VSMCs, as well as being involved in 

cardiac hypertrophy and remodeling, in-stent restenosis, renal fibrosis and a host of other 

mechanisms leading to other cardiopathophysiological states 53. 

1.6.1 Structure, Regulation and Biosynthesis of Angiotensin II through 

the RAS 

 To understand the full extent of its structure and regulation, the biosynthesis of Ang 

II by the RAS must first be described in detail.   

 Classically, the substrate of the RAS system is angiotensinogen (AGT), a plasma α-

glycoprotein, part of the serpin serine-protease inhibitor family, synthesized by the liver 

and always present in the plasma in high concentration.  AGT mRNA has also been 

recently discovered in brain, male and female reproductive systems, heart, vasculature and 

skin (reviewed in 225).  AGT is cleaved in the circulation by the aspartyl protease renin, an 

enzyme secreted from the granular cells of the juxtaglomerular apparatus of the kidney, 

usually in response to a decreased NaCl sensing by the macula densa of the distal tubules in 

the kidney, extracellular fluid volume or blood pressure (Figure 5). 
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Figure 5: Synthesis of Angiotensin II (Ang II) by the renin-angiotensin system (RAS).  
Angiotensinogen, a plasma α-glycoprotein, synthesized by the liver and always present in the 
plasma in high concentration, is cleaved in the circulation by the aspartyl protease renin, an 
enzyme secreted from the granular cells of the juxtaglomerular apparatus of the kidney, 
usually in response to a decreased NaCl, extracellular fluid or blood pressure, to form the 
decapeptide angiotensin I.  During passage through the lungs via pulmonary circulation, Ang I 
is again cleaved to form the octapeptide angiotensin II (Ang II) by the dipeptidyl 
carboxypeptidase angiotensin I converting enzyme (ACE), a membrane-bound 
metalloproteinase predominantly expressed in high concentrations on endothelial cell surface 
in the pulmonary circulation. Ang II can then lead to multiple physiological effects through 
activation of its two main membrane bound receptors, Ang II type 1 receptor (AT1R) and Ang 
II type 2 receptor (AT2R). (Adapted from Angus PW et al., J Gastroenterol Hepatol 2008, 
23(9):1327-38)  
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  Once secreted into the blood, renin will cleave a leucine-valine bond (in humans, or a 

leucine-leucine bond in other species) of AGT to form the decapeptide angiotensin I (Ang 

I).  During passage through the lungs via pulmonary circulation, Ang I is again cleaved to 

form the octapeptide angiotensin II (Ang II) (Figure 5).  The dipeptidyl carboxypeptidase 

angiotensin I converting enzyme (ACE), a membrane-bound metalloproteinase 

predominantly expressed in high concentrations on endothelial cell surface in the 

pulmonary circulation, is responsible for the cleavage of Ang I to form Ang II, by cleavage 

of the C-terminal histidine and leucine amino acids of Ang I 226. 

 Ang II, also known as Ang (1-8) (Figure 6), is an 8 amino acid peptide (free amino 

group-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-free carboxyl group) 227.  Free N-terminal and C-

terminal groups allow for further cleavage of Ang II to generate smaller peptides, such as 

the formation of Ang (2-8) (Figure 6), also known as Ang III, formed by the removal of the 

N-terminus amino acid aspartic acid (Asp) by Aminopeptidase A (APA).  The Ang III 

peptide consists of seven amino acids starting from the second amino acid of Ang II 228.  

Ang III is biologically active, with approximately 40% of the vasocontricting properties 

and 100% of the aldosterone stimulating properties of Ang II.  Ang III can be further 

cleaved at its Arg-Val N-terminal bond by aminopeptidase N or B to form Ang IV (known 

as Ang (3-8)) 229 (Figure 6).  Ang IV has been shown to affect the central nervous system, 

and has been shown to signal through its own distinct receptor (AT4R), with some of its 

actions opposing those of Ang II 229.  Another angiotensin peptide, Ang (1-7), is formed 

from the cleavage of either Ang I by APA, ACE, neutral endopeptidase (NEP) and 

prolylendopeptidase (PEP) on both N- and C-terminal amino acid bonds, or by cleavage of 

Ang II by APA and ACE2, an ACE homologue that acts as a carboxypeptidase by 

selectively removing the C-terminal Phe amino acid from Ang II 230.  Both Ang (1-7) and 

ACE2 have recently been demonstrated to have biological activity leading to vasodilation 

and many other actions, opposing the vasoconstrictor actions of Ang II 230. 
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Figure 6: Structure of Angiotensins.  Angiotensin I (Ang I) is a decapeptide (Ang-(1-10)) formed by 
the cleavage of angiotensinogen by the aspartyl protease renin.  This peptide can be fragmented by 
several different enzymes, such as Angiotensin I converting enzyme 1 or 2 (ACE1 or ACE2) to form 
other biologically active angiotensin peptides, such as Angiotensin II (Ang II). Ang II, also known as 
Ang (1-8), is an 8 amino acid peptide.  Free N-terminal and C-terminal groups allow for further 
cleavage of Ang II to generate smaller peptides, such as the formation of Ang III (2-8) formed by the 
removal of the N-terminus amino acid aspartic acid (Asp) by Aminopeptidase A (APA). Ang III is also 
biologically active, with approximately 40% of the vasocontricting properties and 100% of the 
aldosterone stimulating properties of Ang II.  Ang III can be further cleaved at its Arg-Val N-terminal 
bond by aminopeptidase N (APN) to form Ang IV (known as Ang (3-8)).  Another angiotensin peptide, 
Ang (1-7), is formed from the cleavage of either Ang I by APA, ACE, neutral endopeptidase (NEP) 
and prolylendopeptidase (PEP) on both N- and C-terminal amino acid bonds, or by cleavage of Ang II 
by APA and ACE2, an ACE homologue that acts as a carboxypeptidase by selectively removing the C-
terminal Phe amino acid from Ang II.  Amino acids are given numerical values, where 1, aspartic acid; 
2, arginine; 3, valine; 4, tyrosine; 5, isoleucine; 6, histidine; 7, proline; 8, phenylalanine; 9, histidine; 
10, leucine. (Angus PW et al., J Gastroenterol Hepatol 2008, 23(9):1327-38).  
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1.6.2 Ang II Receptors 

 The effects of Ang II are mediated by two main membrane bound receptors, Ang II 

type 1 receptor (AT1R) and Ang II type 2 receptor (AT2R), both of which have been cloned 

and characterized 231, 232.  AT3R and AT4R subtypes have also been described 233, 234, yet 

these subtypes have not been fully characterized and do not account for the main vasoactive 

effects of Ang II 235. 

 The AT1R is a seven transmembrane-domain G protein-coupled receptor, activating 

PLC through the heterotrimeric Gq protein, although it may also signal through Gi, G11/13, 

and Gs 
236.  The AT1R has an approximate molecular weight of 50 kDa and is composed of 

359 amino acids.  It has four extracellular (including the N-terminus), four intracellular 

(including the C-terminus) and seven α-helical transmembrane domains.  The N-terminus, 

first and third extracellular loops contain the epitopes for peptide binding 53.  AGTR1, the 

gene which codes for AT1R, is located on chromosome 3q21-25, spanning approximately 

60kb and includes five exons and four introns 237.  Multiple factors have been shown to 

regulate AGTR1 expression, such as LDL, insulin, IGF-1, hyperglycemia, hypoxia and 

sodium chloride, only to name a few 53.  

 The AT1R is widely distributed throughout the cardiovascular systems and is also 

abundantly found in the renal, endocrine and nervous systems in humans 237.  In the 

vasculature, VSMC present high levels of AT1R, while low levels of AT1R are detected in 

the adventitia 237.  Through myocardial biopsies, high levels of AT1R were also discovered 

in atrial and ventricular myocytes, as well as fibroblasts, of the human heart 238.  As 

compared to humans, rodents have two functionally distinct subtypes of the AT1R, the 

AT1AR and the AT1BR.  Both have more than 95% amino acid sequence homology between 

themselves 239.  While angiotensin receptors do not have an intrinsic kinase activity, they 

are phosphorylated on serine, threonine and tyrosine residues, which are important for 

receptor activation, regulation and desensitization responses 240. 
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 Like the AT1R, the AT2R is also a GPCR consisting of 363 amino acide, with an 

approximate molecular weight of 44 kDa.  The AT2R only has a 30% homology with the 

AT1R and the AGTR2 gene coding the AT2R is located on chromosome X 241.  AT2R is 

mainly expressed in fetal mesenchyme, uterine smooth muscle, brain, ovary, adrenal 

medulla and heart, and plays an important modulatory role during embryonic development 
241.  AT2R expression decreases rapidly, however, after birth.  In adults, this receptor is 

expressed mainly in pancreas, heart, kidney, adrenal brain and vascular tissues (reviewed in 
235).  Furthermore, unlike the AT1R, the AT2R does not undergo receptor internalization, 

and has been shown to counteract several of the vasoconstrictor effects of the AT1R 242. 

Most of the vascular effects of Ang II are mediated by the AT1R 53.  This receptor is 

responsible for the vasoconstrictor effects of Ang II, as well as vascular cell hypertrophy 

and retention of sodium.  AT1R activation has also been shown to increase ROS 

production, as well as taking part in the induction of inflammatory and fibrotic processes in 

the vasculature, such as superoxide production, endothelin secretion, lipid peroxidation and 

adhesion molecule expression (reviewed in 243).  Ang II can mediate these effects either by 

direct AT1R activation, or by indirectly causing the secretion of other growth factors, 

vasoactive peptides or inflammatory cytokines, through a cross talk with other intracellular 

signaling cascades.  In general, the hypertrophic effects of Ang II are mediated by the 

activation of pathways that involving the phosphorylation of tyrosine residues of certain 

proteins, generally leading to enhanced gene expression (reviewed in 235). 

The exact physiological roles of the AT2R have yet to be elucidated, yet it seems 

that as a general rule, the AT2R antagonizes several of the Ang II-induced AT1R activated 

events, inducing vasodilation, apoptosis and inhibiting cell growth and hypertrophy 244.  

The physiological relevance of AT2R blood pressure regulation was initially demonstrated 

with the overexpression of this receptor in VSMC of transgenic mice, in which Ang II 

infusion did not lead to an increase in blood pressure, but did so in wild type mice 245.  

Aortic explants from the AT2R overexpressing transgenic mice had an increased cGMP 

production, as well as a decreased Ang II-induced vascular constriction.  The results of this 

study also showed that the AT2R in VSMC is responsible for an increased production of 
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bradykinin, leading to a stimulation of the NO/cGMP cascade, which in turn promotes 

vasodilation 245.  Despite these results, the AT2R has also been shown to be implicated in 

certain pathophysiological conditions.  For example, the ratio of AT2R to AT1R increases 

dramatically in the heart of heart failure patients 246.  It has also been reported that the level 

of AT2R increased in vascular inflammation and injury 247.  AT2R activation has also been 

shown to have pro-inflammatory and hypertrophic effects, such as NF-κβ activation, 

leading to vascular and cardiac hypertrophy 248-250.  These contradictory results concerning 

the AT2R emphasize our limited understanding of the signaling and physiological role of 

the AT2R. 

1.6.3 Biological actions of Ang II 

1.6.3.1 Ang II and the RAS in the vasculature and heart 

 While renin in the vascular wall is quite difficult to detect due to very low 

concentrations, renin mRNA been detected in both human and rat vessels 225, 251.  ACE is 

abundant in both the vasculature and heart, and is localized predominantly on endothelial 

cell surface, with smaller quantities present in the adventitia and minute levels found in 

VSMC, yet ACE levels in VSMC have been shown to increase in certain 

pathophysiological states, such as neointimal formation 252, 253 (Figure 7).  Both AT1R and 

AT2R are present in the vasculature, albeit in different cell types.  Cultured VSMC were 

shown to express only the AT1R, while cultured endothelial cells were shown to express 

both AT1R and AT2R 231, 254.  Nonetheless, AT2R distribution in vascular cell types is still a 

matter of debate, as recent studies have suggested AT2R expression in VSMC as well 255. 

 RAS in the vasculature contributes to the regulation of cardiovascular homeostasis, 

through the opposing effects of the two Ang II receptor subtypes and their impact on 

vascular function.  While it is difficult to distinguish the effects of vessel wall generated 

Ang II to those of plasma generated Ang II in in vivo studies, several studies have been 

successful in demonstrating the conversion of Ang I to Ang II in isolated perfused rat 
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hindquarters, which was inhibited by ACE inhibition, demonstrating the presence of a 

functional RAS system in the vasculature contributing to the formation of local Ang II 256.   

 Similarly to the vasculature, difficulties in distinguishing between plasma-born and 

intra-cardiac produced Ang II in the heart have been encountered.  Even so, the actions of 

RAS inhibitors, such as ACE inhibitors and Ang II receptor blockers, on the heart can be 

explained by modulation at the local cellular level.  Such is the case of cardiac remodeling 
225. 

 Several studies have demonstrated the presence, albeit low, of renin mRNA in 

cardiac tissue 251, 257, 258.  Transgenic rats carrying a genomic construct of the mouse Ren-2 

gene under control of its own promoter expressed high levels of renin mRNA in the heart 
259, providing further proof that at least in certain species, the heart is source of extrarenal 

renin production.  Cardiac ACE production is also quite evident and can easily be measured 

in both rat and human heart tissue 251, 260.  As for cardiac Ang I and Ang II, studies using 

radiolabeled peptides have demonstrated that more than 90% of Ang I and more than 75% 

of Ang II are synthesized locally in the heart 261. 

1.6.3.2 Ang II in the nervous system 

 The existence of the RAS system in the nervous system and the brain has been 

known since the early 1960’s, through cross-circulation studies in dogs demonstrating 

interactions between Ang II and the central nervous system leading to an increase in blood 

pressure 262.  Shortly thereafter, renin activity was reported in the human brain, and renin 

mRNA was confirmed in synaptosomes, as well as in the rat and mouse brain 263, 264.  The 

hypothalamus, pituitary and pineal glands seem to be the regions of the brain exhibiting 

high renin-like activity 265, 266.  Renin protein and mRNA is also measurable in astrocytes, 

neurons and glia cells in human, rat and mouse samples 263, 266, 267.  More recently, renin 

promoter activity was detected in mouse astrocytes and neurons 268, leaving little room for 

doubt that brain renin truly exists. 

 ACE is also clearly expressed throughout multiple regions of the brain, including 

the choroid plexus, caudate putamen, cerebellum, brain stem and the hippocampus 269, and 
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seems to colocalize with renin in synaptosomal fractions of several brain regions, including 

the thalamus, hypothalamus and posterior pituitary gland 264.  The detection of Ang II in the 

brain is also quite clear and distinguishable, since the blood-brain barrier was shown to be 

impenetrable to Ang II 270.  The highest levels of brain Ang II are detected in the 

hypothalamus, pituitary gland and cerebral cortex, yet is also present in the cerebellum, 

hippocampus, olfactory bulb and brain stem 271. 

 Angiotensin receptors have easily been detected in brain tissue 272.  While both 

AT1AR and AT1BR mRNA have been detected in the hippocampus, cingulated cortex and 

choroid plexus of the rat brain, much higher levels of AT1BR than AT1AR were detected in 

the anterior pituitary gland 273.  It is widely accepted that the AT1AR seems to be involved 

in the control of central blood pressure, while the AT1BR controls drinking responses in 

rodents such as mice 274.  AT2R was also detected in several brain regions, including nuclei 

of the thalamic, medial geniculate and optic tract regions 275.  Distribution of AT1R and 

AT2R in the mouse brain closely resembles that of the rat, yet in human brain tissue, only 

the AT1R was detected in the forebrain, midbrain, pontine, medullary spinal cord and 

choroid plexus, while both AT1R and AT2R were detected in the molecular layer of the 

cerebellum, in contrast to results obtained from rat cerebellum 276.  Unlike other tissues, 

however, the brain and nervous system are also rich in AT4R, which binds Ang IV, which 

seems to be implicated in stress, spatial learning and memory acquisition 277.  These Ang 

IV binding sites seem to be abundant in cortex, hippocampus, amygdale and thalamus of 

mice, while rat AT4R were also present in the piriform cortex, habenulae, colliculi and the 

arcuate nucleus of the hypothalamus 278, 279.  Despite this plethora of knowledge, it still 

seems that brain Ang II receptors remain to be characterized.  A study demonstrated that 

the majority of Ang II receptors in the gerbil brain differed from the AT1R, AT2R and the 

AT4R 280.  As such, extensive research remains to be accomplished to fully characterize the 

RAS system in the brain and nervous system.  The RAS functional impact on blood 

pressure regulation, drinking and food intake, effect on the blood-brain barrier, central 

actions on the reproductive system, as well as its actions on motor control, behavior and 
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emotions and the visual system are quite evident and well documented (reviewed in 225) 

(Figure 7). 

1.6.3.3 Ang II in the kidney 

The intrarenal RAS system has been studied to an extensive length, yet difficulties 

in determining the contributions of plasma Ang delivered to regions of the kidney from 

locally produced renal Angiotensin still exist, as the RAS is known to act in an endocrine, 

paracrine, autocrine and intracrine fashion 281.  Nonetheless, the kidney is unique, as every 

component of the RAS has been detected and compartmentalized in the tubular and 

interstitial networks 282, with renal Ang II found in levels much greater than can be 

explained by delivery from arterial blood flow.  These results substantiate the notion that 

the majority of the Ang II concentrations found in renal tissues are generated locally from 

angiontensinogen (either delivered to the kidney or locally produced in proximal tubular 

cells) 283, 284. 

Renin is present in the kidney, secreted by cells in the juxtaglomerular apparatus, 

which is then channeled to the renal interstitium, leading to production of renal Ang I 285.  

ACE is present in the kidney, and found in abundance in the proximal and distal tubules, as 

well as in the collecting ducts and in renal endothelial cells 286.  As such, all components 

required to produce Ang II are present in the nephron. 

The activation of AT1R and AT2R, which are distributed in various regions of the 

kidney, are responsible for most of the actions of Ang II on renal function.  The AT1R is 

abundantly present in the proximal tubule, the ascending limb of the loop of Henle, the vasa 

recta, arcuate arteries, and juxtaglomerular cells 287.  In rodents, the AT1AR seems to be 

expressed on the renal microvasculature in both the cortex and medulla, afferent and 

efferent arterioles VSMC, epithelial cells of the thick ascending limb of Henle, the 

proximal tubular apical and basolateral membranes, as well as mesangial cells, distal 

tubules, collecting ducts, and cells of the macula densa (reviewed in 282).  It should be 

noted, however, that afferent arterioles express both the AT1AR and AT1BR, while efferent 

arterioles express only the AT1AR 288.  Multiple studies have suggested the importance of 
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the intrarenal RAS sytem and the angiotensin receptors in the regulation of blood pressure.  

Amongst them, Coffman et al. clearly reported a 20mmHg decrease in blood pressure in a 

kidney specific AT1AR knock-out mouse displaying normal AT1AR expression in all other 

tissues 289.  Further evidence from both clinical and experimental kidney transplant studies 

have shown that kidney recipients had higher blood pressure post-transplantation if the 

kidney came from a hypertensive or high blood pressure prone donor 290, strengthening the 

role of the intrarenal RAS system in the pathobiology of hypertension (Figure 7).  The 

endocrine role of the RAS system and Ang II was described earlier in the introduction of 

the RAS, and as such, will not be repeated here. 
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Figure 7: Biological actions of Ang II on various systems leading to multiple 
pathophysiological states. Ang II plays an important role in maintaining blood pressure 
and vascular homeostasis, yet a modulation in Ang II production and signaling events can 
lead to increases in systemic and pulmonary vasoconstriction, cell hypertrophy and 
proliferation, water and sodium retention, changes in neurotransmitter secretion and SNS 
activity, and modulation of various hormones.  These physiological changes are thought to 
contribute to the development of vascular pathologies, such as hypertension, 
atherosclerosis, restenosis, arrhythmias, congestive heart failure, kidney disease, glucose 
intolerance and diabetes.  
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1.7 Role of Ang II in Cardiovascular Disease 

1.7.1 Role of Ang II in hypertension 

While the abnormalities leading to the development of essential hypertension 

remain obscure, recent studies have suggested that Ang II and the RAS play a critical role 

in the development of renal dysfunction and essential hypertension 291 (Figure 7).  This 

notion stems from the effectiveness of ACE inhibitors and Ang II receptor blockers in the 

treatment of essential hypertension, even in subjects with relatively normal Ang II plasma 

levels 292.  Other studies have shown that transplantation of a kidney from a hypertensive 

subject to a normotensive recipient causes hypertension in the latter and transplantation of a 

kidney from a normotensive subject to a hypertensive patient cures the latter’s 

hypertension, in both human and animal experiments (reviewed in 291), further supporting 

the involvement of Ang II and the RAS system in the development of essential 

hypertension.  Other studies have also added a more novel mechanism, oxidative stress, 

which can be activated by both ET-1 and Ang II, and leads to multiple pressor effects 

potentiating Ang II’s vasocontricting effects, in the development of essential hypertension 
293 (Figure 7). 

Several experimental models of hypertension involving modulation of the RAS 

system also exist and have been and continue to be useful in elucidating the role of Ang II 

in the development of hypertension.  One such model is the Goldblatt two kidney one clip 

model, where one renal artery is constricted and the other untouched, resulting in a 

sustained increase in blood pressure due to increased plasma renin and subsequent increase 

in Ang II production, as salt and water retention remain normal due to one intact kidney 294.  

Approximately six weeks into the kidney constriction, the increase in Ang II levels will 

lead to excessive aldosterone release from the adrenal cortex, causing salt and water 

retention, at which point the hypertension of this model will become volume dependent 294 

(Figure 7).  Subcutaneous infusion of low doses of Ang II for a prolonged period of time 

(usually four to eight weeks) is also effective in causing hypertension in animal models 295.  
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Recent studies have also placed the importance of Ang II and the RAS in genetic models of 

hypertension, such as the SHR, where chronic RAS inhibition improved medularry blood 

flow, increased renal perfusion and response to Ang II, as well as blocking the development 

of hypertension in SHR 296 

1.7.2 Role of Ang II in atherosclerosis and heart failure 

Atherosclerosis is a pathology affecting whole arteries and can lead to damage to 

multiple organs, as well as myocardial and cerebral infarction and peripheral artery disease.  

The development of atherosclerotic plaque involves the migration and proliferation of 

VSMC whose phenotype changes as the disease progresses 53.  Atherosclerosis is caused by 

an accumulation of focal or diffuse lipid-packed and fibro-proliferative plaque in the vessel 

intima, leading to narrowing of the vessel lumen, which is different from the concentric 

medial thickening observed in hypertension.  Many researchers regard atherosclerosis as 

being an inflammatory disease, with Ang II leading to the progression and destabilization 

of atherosclerotic plaque through its pro-inflammatory actions 297 (Figure 7).   

Both systemic and local RAS and Ang II-AT1R signaling contribute to the 

development of atherosclerosis, through the ability of Ang II to increase expression of 

certain adhesion molecules (which promote monocyte invasion into the vasculature), 

chemokines and cytokines.  These molecules cause endothelial cell dysfunction, 

proliferation of VSMC and oxidation and uptake of LDL, through the Ang II-induced ROS 

generation by VSMCs 298.  In more advanced stages of atherosclerosis, MMP and PAI-1 

expression are stimulated by Ang II, which causes a destabilization of atherosclerotic 

plaque 299, 300.  Experimentally, ACE inhibitors have been used to strengthen the link 

between Ang II and atherosclerosis in a large number of animal studies.  The 

atherosclerosis-prone apoE-deficient (apoE-/-) mouse is one of the more frequently used 

atherosclerosis animal models.  In a recent study, treatment with fosinopril, an ACE 

inhibitor, of the apoE-/- mouse for a period of 12 weeks reduced atherosclerotic lesions by 

up to 70% 301.  Other studies using olmesartan, an AT1R blocker, have observed a potent 
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suppression in atherosclerotic lesion formation in apoE-/- mice 302.  These studies 

strengthened the notion that Ang II-AT1R signaling inhibition reduces the size of 

atherosclerotic lesions, but also stabilizes atherosclerotic plaque 302.  In contrast, several 

studies have shown that stimulation of AT2R leads to an inhibition of atherosclerosis 

through inhibition of oxidative stress.  These studies also indicated that AT1R blockers 

have the capacity to stimulate AT2R, as shown in a study using valsartan, whose anti-

atherosclerotic effects were attenuated in AT2R-deficient mice 303. 

In regards to heart failure, local Ang II concentrations have been found to be 

dramatically increased in the failing heart, with cardiac Ang II production increasing as 

heart failure progresses 304 (Figure 7).  However, the full role of Ang II and the RAS in 

heart failure are not completely understood, as studies have shown contradictory results.  

For example, several transgenic mouse models overexpressing one or several components 

of the cardiac RAS have been used in experimentation, with some showing increases in 

ventricular hypertrophy and fibrosis and others maintaining normal cardiac size and 

function (reviewed in 305).  Others have further demonstrated that hemodynamic changes 

play a greater role in ventricular hypertrophy than do local Ang II levels 306.  More recent 

studies using transgenic mice expressing cardiac myocyte specific Ang II-producing fusion 

protein have shown that Ang II does not alter ventricular size or cardiac function if 

hemodynamic loading remains intact, yet in hypertensive animals, cardiac Ang II potently 

enhanced inflammatory responses and oxidative stress, which lead to an increase in cardiac 

cell death 306, 307.  These results clearly indicate that Ang II plays a role in heart failure, yet 

the precise mechanisms by which it does so remain obscure.  What seems to be a general 

consensus in many studies, however, is the role of oxidative stress generated by both ET-1 

and Ang II on the vasculature and the heart, in addition to their hypertrophic and 

proliferative effects on those systems, leading to varied cardiovascular pathologies.  To 

fully understand these effects, we must identify the signaling cascades activated by ET-1 

and Ang II, which can lead to both physiological and pathophysiological events. 
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1.8 ET-1 and Ang II-induced signalling events in VSMC 

As mentioned earlier, ET-1 and Ang II signal through ETA/ETB receptors and 

AT1R/ AT2R, respectively.  Both of these receptors belong to the GPCR family of seven 

transmembrane-domain G-protein bound receptors.  G proteins of the GPCRs are 

heterotrimetric proteins composed of three distinct subunits; α, β and γ subunits 308 (Figure 

8). The GDP bound form of α binds tightly to βγ and is inactive, whereas the GTP bound 

form of α dissociates from βγ and serves as a regulator of effector proteins. Both α-GTP 

and βγ subunits can interact with effectors. This activation cycle is terminated by intrinsic 

GTPase activity of α-subunit. The GDP-bound form of the α-subunit has a high affinity for 

βγ subunit, with which it re-associates to form the heterotrimer in the basal resting state 308.  

Gαq is associated to the activation of phospholipase C (PLC), leading to the formation of 

inositol 1,4,5-trisphosphate (IP3) and diacyglycerol (DAG), modulating downstream 

calcium signaling to activate calcium/calmodulin and protein kinase C (PKC), leading to 

the activation of the PI3-K/PKB and MAPK pathways 309, 310 (Figure 8). 
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Figure 8: Vasoactive peptide-induced activation of the phosphoinositide cascade through 
GPCR activation in VSMC. ET-1 and Ang II signal through ETA/ETB receptors and AT1R/ 
AT2R, respectively.  Both of these receptors belong to the GPCR family of seven transmembrane-
domain G-protein bound receptors. The GDP bound form of Gα binds tightly to Gβγ and is 
inactive, whereas the GTP bound form of Gα dissociates from Gβγ and serves as a regulator of 
effector proteins. Both Gα-GTP and Gβγ subunits can interact with effectors. This activation cycle 
is terminated by intrinsic GTPase activity of α-subunit. The GDP-bound form of the α-subunit has 
a high affinity for βγ subunit, with which it re-associates to form the heterotrimer in the basal 
resting state.  Gαq is associated to the activation of phospholipase C (PLC), leading to the 
formation of inositol 1,4,5-trisphosphate (IP3) and diacyglycerol (DAG), modulating downstream 
calcium signaling to activate calcium/calmodulin and protein kinase C (PKC), leading to the 
activation of the PI3-K/PKB and MAPK pathways.  
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1.8.1 ET-1 and Ang II-induced activation of the phosphatidylinositol 3-

kinase (PI3-K)/protein kinase B (PKB) pathway 

PI3-Ks are a family of lipid kinases that phosphorylate the D3 hydroxyl group (3’-

OH) of the inositol ring in phosphatidyl inositol (PI) 311.  Products of the PI3-K reaction 

include phosphatidylinositol-3-monophosphate (PIP), phosphatidylinositol-3,4-

bisphosphate (PIP2) and phosphatidylinositol-3, 4, 5-trisphosphate (PIP3) 312.  This lipid 

kinase has been divided into classes I, II and III.  Class I PI3-Ks are heterodimeric proteins, 

each of which consists of a 110 kDa catalytic subunit and an associated regulatory subunit.  

This class is further divided into classes IA and IB, of which class IA has three isoforms (α, 

β and δ) of the catalytic p110 subunit and several forms of regulatory subunits (p85α, 

p55α, p50α, p85β  and p55γ).  Class IB, on the other hand, has only one member of the 

catalytic subunit called p110γ and one form of the regulatory subunit p101.  Class IA is 

activated by receptor PTK (RPTK), while class IB is activated by GPCR 313.  In vitro, PI, 

PIP, and PIP2 are phosphorylated by class I PI3-K enzymes to form PIP, PIP2 and PIP3.  In 

vivo, phosphorylation of PIP2 is favored, which is responsible for the formation of PIP3 313, 

314. 

Class II PI3-Ks, consisting of two major mammalian subclasses, α and β, contain a 

carboxy-terminal C2 domain, a protein module originally observed in PKC molecules, with 

phospholipid binding sites.  There are no known regulatory subunits in this class, which 

may not even be necessary.  

Class III PI3-Ks are thought to represent the primordial PI3-K that gave existence to 

the other classes, due to the fact that it is the only class of PI3-K enzymes present in yeast.  

PI is the only substrate recognized by this class and is phosphorylated to generate PI3P 315, 

316.  Class III PI3-Ks induce local increases in PIP3, which are thought to be required for 

agonist-independent membrane trafficking processes 316. 

Generally, the p85 subunit of PI3-K binds to and is activated by IRS-1, in turn 

activating the p110 catalytic subunit of PI3-K, which catalyses the phosphorylation PI 

lipids, forming PIP3 and PIP2 317 (Figure 9).  It is important to note that PI3-K activation in 
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response to other growth factors, e.g. EGF, PDFG, etc, has been shown to signal through an 

IRS-independent pathway, leading to PKB activation 318, 319.  Following PI3-K activation, 

formation of PIP3 and PIP2 generates recognition sites for Pleckstrin Homology (PH) 

domain containing proteins, principally 3’-phosphoinositide-dependent kinase 1 (PDK1), 

which is translocated to the plasma membrane along with PKB 317, 320, and other related 

serine/threonine protein kinases, which are responsible for phosphorylating and activating 

several downstream signaling protein kinases, such as PKB, protein kinase C-zeta (PKC-ζ), 

and p70 ribosomal S6 kinase (p70s6k) 321, 322 (Figure 9).  PKB is a 57 kDa protein, given its 

name due to its high homology with protein kinase A (PKA) and PKC.  PKB, also known as 

Akt, exists as three isoforms, PKBα/Akt1, PKBβ/Akt2 and PKBγ/Akt3 323.  All PKB 

isoforms have an amino-terminal PH domain, a central catalytic Ser/Thr kinase domain and 

a carboxy-terminal regulatory domain that contains the hydrophobic motif (HM) 324, 325.  

PDK1, which is thought to be constitutively active, phosphorylates Thr 308 in PKB 326, 

stabilizing the activation loop in an active form.  This phosphorylation is a prerequisite for 

kinase activation, but phosphorylation of Ser 473 is necessary for full PKB activation.  The 

nature of putative Ser 473-PKB kinase called PDK2 is still controversial 327, although 

several candidates have been suggested 328.  Aside from its well characterized role as 

regulator of glucose transport, glycogen synthesis, gluconeogenesis and lipogenesis, PKB 

also plays an important role in protein synthesis, cell growth and cell survival 329-333 (Figure 

9). 

Several studies have demonstrated a role of the PI3-K/PKB pathway in vasoactive 

peptide-induced signaling events in multiple cell types, including VSMC, cardiomyocytes 

and human umbilical vein endothelial cells, leading to increased cell survival, hypertrophy 

and proliferation.  These physiological responses contribute to the development of 

cardiovascular diseases, such as atherosclerosis and stenosis after angioplasty 64, 203, 334, 335. 
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Figure 9: Vasoactive peptide-induced activation of the PI3-K/PKB cascade in VSMC.  ET-1 and Ang 
II bind to their respective GPCRs, causing enhanced activity of PLCβ through Gαq/11 activation, leading to 
the conversion of phosphatidylinositol 4, 5 biphosphate (PIP2) to inositol 1, 4, 5 trisphosphate (IP3) and 
diacylglycerol (DAG).  This increase in IP3 causes an elevation of intracellular calcium (Ca2+) and DAG-
dependent PKC activation.  PKC/ Ca2+ or other signaling intermediates activate R- and/or NR-PTKs, like 
EGFR, IGF-1R, PYK2 and c-Src, by inducing their phosphorylation on target tyrosine residues.  Activation 
of these PTKs leads to the phosphorylation of docking proteins, such as IRS-1. Phosphorylated  IRS-1  
and/or  R-PTK bind to the p85 subunit of PI3-K and lead to its activation.  Activated PI3-K catalyzes the 
phosphorylation of PIP2 to phosphatidylinositol 3, 4, 5 triphosphate (PIP3).  PIP3 recruits PKB and PDK-
1/2, Pleckstrin homology (PH) domain-containing proteins, to the plasma membrane, where PDK-1 and -2 
phosphorylate PKB on threonine and serine residues, which in turn phosphorylates several downstream 
effectors, which contribute to protein synthesis, cell growth, survival, and gene transcription.  
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1.8.2 ET-1 and Ang II-induced activation of the Mitogen-Activated 

Protein Kinase (MAPK) pathway 

MAPKs constitute a family of serine/threonine protein kinases which are widely 

conserved among eukaryotes, and are involved in many cellular responses, such as cell 

proliferation, cell differentiation, cell movement and cell death 336, 337.  In mammalian cells, 

5 MAPK families have been identified, including ERK1/2, c-Jun N-terminal kinase 1, 2 

and 3 (JNK1/2/3), also called stress-activated protein kinase (SAPK), p38α/β/γ/δ MAPK, 

ERK5 and ERK7 336, 337. 

 The groups of vertebrate MAPK studied most extensively to date are ERK1/2, 

JNKs, and p38 kinases 336, 337.  ERK1/2 are stimulated by mitogens, such as polypeptide 

growth factors (IGF-1, platelet-derived growth factor (PDGF), colony stimulating factor-1 

(CSF-1), etc.) as well as insulin and phorbol 12-myristate 13-acetate (PMA).  In contrast, 

SAPKs and p38 MAPK are potently induced by a wide variety of stressors, including 

ultraviolet irradiation, gamma irradiation, anisomycin, heat shock and chemotherapeutic 

drugs, yet recent studies have also implicated SAPK/JNK and p38 MAPK in vasoactive 

peptide-induced proliferative responses 338-344.  The JNK and p38 MAPK pathways are also 

activated by ischemia or reperfusion after ischemia, and by inflammatory cytokines 345.  

 The ERK 1/2, JNK and p38 MAPK pathways follow a similar sequence of 

activation, in which a stimulus activates a MAPKKK, which will then activate a MAPKK, 

which is an upstream activator of MAPK, the final effector of the cellular response.  

MAPKKKs are Ser/Thr kinases, and are activated through phosphorylation and/or as a 

result of their interaction with a small GTP-binding protein of the Ras/Rho family in 

response to extracellular stimuli (Figure 10).  Activation of MAPKKKs phosphorylate and 

activate MAPKKs, which then phosphorylates Thr and Tyr residues in the activation loop 

of the kinase, stimulating MAPK activity (Figure 10). Once activated, MAPKs 

phosphorylate target substrates on Ser or Thr residues followed by a proline.  ERK1/2 is the 

primary MAPK activated (Figure 10).  This pathway consists of the MAPKKKs (A-Raf, B-

Raf and Raf-1), the MAPKKs (mitogen and extracellular signal regulated kinase 1 and 2 
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(MEK1/2)), and the MAPKs (ERK1 and ERK2) (Figure 10).  Signals from activated 

receptor tyrosine kinase (RTK) or GPCR to Raf/MEK/ERK are transmitted through 

different isoforms of the small GTP-binding protein such as Ras.  As mentioned earlier, 

IGF-1R transduces its effect through IRS proteins, where phosphorylated IRS serves as a 

docking site for Grb-2/Son of Sevenless (SOS), whereas Grb-2/SOS binds directly on the 

activated EGFR to turn on MAPK signaling.  This triggers a conformational change in Ras, 

a GTP exchanger, resulting in its activation (Figure 10).  Once activated, Ras binds to a 

wide range of downstream effector proteins, including isoforms of the Ser/Thr kinase Raf.  

Raf then binds to, and phosphorylates, the dual-specificity protein kinase MEK-1 and -2, 

the latter of which phosphorylates ERK1/2 within a conserved Thr-Glu-Tyr (TEY) motif in 

their activation loop.  ERK1/2 can then be translocated to the nucleus where it can 

phosphorylate and activate a number of transcription factors involved in gene activation 337, 

346 (Figure 10).  It can also activate a number of cytosolic proteins, such as p90rsk through 

its proline directed Ser/Thr kinase activity.  Other members of the MAPK family, such as 

JNK and p38 MAPK, are activated in a similar fashion and mediate cellular functions by 

phosphorylating downstream targets. 

Overwhelming evidence exists to support a vasoactive peptide-induced MAPK 

activation in multiple systems, including oligodendrocyte progenitor cells, pancreatic 

stellate cell, aortic and mesenteric artery-derived VSMC, increasing cell growth and 

hypertrophy, leading to complications such as atrial fibrillation due to left ventricle 

hypertrophy, vascular remodelling, cardiac hypertrophy and coronary artery disease 203, 347-

351. 
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Figure 10: Vasoactive peptide-induced activation of the MAPK pathway in VSMC.  ET-1 and Ang II 
bind to their respective GPCRs, causing enhanced activity of PLCβ through Gαq/11 activation, leading to the 
conversion of phosphatidylinositol 4, 5 biphosphate (PIP2) to inositol 1, 4, 5 trisphosphate (IP3) and 
diacylglycerol (DAG).  This increase in IP3 causes an elevation of intracellular calcium (Ca2+) and DAG-
dependent PKC activation.  PKC/ Ca2+ or other signaling intermediates activate R- and/or NR-PTKs, like 
EGFR, IGF-1R, PYK2 and c-Src, by inducing their phosphorylation on target tyrosine residues.  Activation of 
these PTKs leads to the phosphorylation of docking proteins, such as IRS-1, which serve as docking sites for 
Grb-2/SOS.  The latter can bind directly to activated R-PTK, triggering a conformational change in Ras, a 
GTP exchanger, resulting in its activation.  Once activated, Ras binds to Raf, a Ser/Thr kinase, which binds to 

and phosphorylates the dual-specificity protein kinases MEK-1/2, which phosphorylate ERK1/2.  ERK1/2 can 
then translocate to the nucleus, and regulate cell growth, proliferation and hypertrophy through 
phosphorylation of transcription factors. Other members of the MAPK family, such as JNK and p38 MAPK, 
are activated in a similar fashion and mediate cellular functions by phosphorylating downstream targets.  
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1.8.3 ET-1 and Ang II-induced transactivation of receptor and non-

receptor protein tyrosine kinases (R-/NR-PTK) 

Activation of growth factor receptor and/or non-receptor protein tyrosine kinases (R-PTK 

or NR-PTK) has been implicated in transducing the downstream effects of GPCR, leading 

to the stimulation of the PI3-K/PKB and MAPK cascades, which are involved in mediating 

the migratory, proliferative, and hypertrophic responses of ET-1 and Ang II 50. GPCR 

ligands activate R- and/or NR-PTKs through a process termed “transactivation”.  Daub et 

al. first identified this process in 1996, by showing that ET-1 enhanced the tyrosine 

phosphorylation of epidermal growth factor receptor (EGFR) 352.   

1.8.3.1 Epidermal Growth Factor Receptor (EGFR) 

The EGFR is one of four members belonging to the Erythroblastic Leukemia Viral 

Oncogene (erbB) family of R-PTK.  As such, EGFR is also known as ErbB1 (ErbB2, 

ErbB3, and ErbB4 are the other 3 members of this family).  This family of transmembrane 

receptors undergoes homodimerization or heterodimerization to induce 

autophosphorylation and receptor tyrosine kinase activation in response to ligand binding 
353, 354.  The EGFR is universally expressed in a variety of cell types, and is most abundant 

in epithelial cells and many cancer cells 353, 355, 356.  This receptor contains an extracellular 

ligand binding domain, a single transmembrane domain and a cytoplasmic tyrosine kinase 

autophosphorylation and regulatory domain (reviewed in 357).  Recent work has shown that 

in basal conditions, the kinase domain of the EGFR exists in an autoinhibitory 

conformational state, and ligand binding-induced dimerization and changes in conformation 

allow its autophosphorylation, resulting in its activation 358.  This event activates the 

intrinsic tyrosine kinase activity of the intracellular domain, leading to receptor 

autophosphorylation on several key tyrosine residues located in the COOH-terminal tail of 

the receptor 359.  These phosphorylated tyrosine residues then act as docking sites for SH2 

and phosphotyrosine-binding domain containing cytoplasmic proteins, such as Grb-2/SOS 

and the p85 subunit of PI3-K 360, involved in the activation of multiple signaling pathways, 
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including MAPK and PKB.  Both ligand-dependent and -independent mechanisms for its 

activation have been suggested 361.  To date, seven different ligands, in addition to EGF, are 

known to bind to the EGFR and cause its activation 362, 363.   

Multiple studies have shown that Ang II, and more recently, ET-1, can cause the 

activation, and subsequent phosphorylation of EGFR through receptor transactivation, a 

phenomenon stemming from the binding of Ang II to its AT1R 364, and ET-1 to the ETA 

receptor 365.  Furthermore, a role of ETB receptor in ET-1-induced EGFR transactivation 

has also been demonstrated in VSMC, through the use of the N-terminally truncated or full-

length ETB receptor 365.  ET-1 and Ang II-induced EGFR activation has been demonstrated 

in multiple cell types, including VSMC, cardiomyocytes, intestinal epithelial cells, 

preglomerular VSM, C9 cells and pancreatic stellate cells 351, 366-373.  Ang II and ET-1-

induced ERK1/2 and PKB phosphorylation were also found to be EGFR-dependent based 

on studies using pharmacological inhibitors of EGFR, like AG1478 and PD153035.  For 

example, Ang II-induced p38 MAPK and ERK1/2 phosphorylation was attenuated by 

AG1478 339.  Furthermore, Ang II-induced PKB phosphorylation was associated with 

EGFR transactivation in rat aorta VSMC and in intestinal epithelial IEC-18 cells 369, 374.  

ET-1-induced ERK1/2 phosphorylation through EGFR activation was also demonstrated in 

rat cardiomyocytes as well as in rat renal tubular cells 372, 375.  More importantly, the 

transactivation of EGFR by ET-1 and Ang II has been suggested to play an important role 

in vasoactive peptide-induced physiological responses linked to MAPK and PKB signaling, 

such as growth, hypertrophy and proliferation, in multiple cell types, including VSMC 364, 

367, 372, 376.  For example, ET-1-induced EGFR transactivation has been implicated in protein 

and DNA synthesis and c-Fos gene transcription in VSMC 373, 377.  In addition, a role of 

EGFR in vascular contraction in mouse aortic ring segments and rabbit basilary artery rings 

has been reported 378, 379. 

It is well known that VSMC from spontaneously hypertensive rats (SHR) exhibit 

exaggerated cell proliferation compared to VSMC from normotensive Wistar Kyoto 

(WKY) rats 380.  This was thought to occur due to elevated levels of Giα proteins in VSMC 

from SHR.  However, recent reports suggest that endogenously produced ET-1 and Ang II 
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contribute to the enhanced proliferation of VSMC from SHR, through EGFR 

transactivation 381, linking growth factor receptor transactivation to the deleterious 

hypertrophic effects of elevated ET-1 and Ang II levels found in hypertensive states.  In 

these studies, EGFR, AT1R, ETA and ETB receptor inhibition decreased exaggerated 

ERK1/2 phosphorylation found in VSMC from SHR to levels found in VSMC from WKY, 

suggesting that endogenous ET-1 and Ang II-induced MAPK signaling contributes to the 

enhanced cell growth of VSMC in SHR through EGFR transactivation 381. 

1.8.3.2 Insulin-like Growth Factor Type 1 Receptor (IGF-1R) 

IGF-1R, another transmembrane R-PTK, is a tetrameric protein consisting of 2 α- 

and 2 β-subunits, and has a high degree of homology with the insulin receptor 382. IGF-1R 

is activated by IGF-1 and associated growth factors, such as IGF-2, albeit with lower 

affinity.  Importantly, IGF-1R differs from other R-PTKs in that it exists on the cell surface 

as a covalent dimeric structure, which requires domain rearrangement for activation 383, 

whereas other R-PTKs, like the EGFR described earlier, dimerize or oligomerize upon 

ligand binding to trigger receptor activation 384.  The α-subunit of IGF-1R contains the IGF-

1-binding site.  The β-subunit comprises an intracellular PTK domain that is critical for 

transducing most of the downstream signaling 382.  The α-chain and the 195 residues of the 

β-chain make up the extracellular part of the IGF-1R 383. The mature α2β2 receptor also has 

a single transmembrane sequence (906-929 residues) and a 408-residue cytoplasmic 

domain, which possesses tyrosine kinase activity. The N-terminal half of the IGF-1R also 

contains 2 homology domains, L1 and L2, separated by the Cys-rich region (Cys148 to 

Cys298).  It has been shown that residues 131-315 (Cys-rich and L1 and L2 flanking 

regions) are required for binding IGF-1 385.  This cytoplasmic domain is flanked by 2 

regulatory regions: a juxtamembrane region, which plays a major role in docking of IR 

substrates (IRSs), Shc  and receptor internalization 386, and a 108-residue long carboxy-

terminal tail consisting of 2 phosphotyrosine-binding sites 386, 387.  IGF-1-binding to 

extracellular α-subunits triggers a conformational change in the β-subunit, resulting in its 

trans-autophosphorylation in multiple tyrosine residues and evoking the PTK catalytic 
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activity of the receptor 388. Activated IGF-1R phosphorylates several downstream 

substrates, such as Shc and IRSs 1-4, in multiple tyrosine residues 389, 390.  Phosphorylated 

IRSs serve as docking proteins for many SH2 domain-containing molecules, including 

growth factor receptor-binding protein 2 (Grb2), the p85 subunit of PI3-K, NcK and SH-

phosphatase 2 Grb2 binding to the activated receptor, which recruits SOS, leading to the 

subsequent activation of the MAPK and/or PI3-K/PKB pathways 391, 392.   

While EGFR transactivation by vasoactive peptides has been well described, the 

requirement of IGF-1R in vasoactive peptide-induced signaling is only more recently 

coming to light in studies showing a requirement of IGF-1R activation in AngII-induced 

downstream signaling 393.  These studies bridge the gap with studies done over a decade 

ago, demonstrating the stimulatory effect of AngII on the tyrosine phosphorylation of IGF-

1R β-subunit as well as on IRS-1 rat aortic VSMC 394.  Ang II treatment enhanced tyrosine 

phosphorylation of the β-subunit of IGF-1R in smooth muscle cells (SMC) isolated from 

porcine arteries 395.  IGF-1 neutralizing antibody was also used in these experiments, 

confirming that Ang II-induced IGF-1R phosphorylation was in fact ligand-independent 395.  

While this study also showed that AngII-induced phosphorylation of p85 and p70s6k was 

significantly attenuated by pre-treatment of SMC with AG1024, a selective 

pharmacological inhibitor of IGF-1R-PTK activity, this drug failed to attenuate AngII-

induced ERK1/2 activation 395.  In contrast, AG1024 attenuated AngII-induced 

phosphorylation of ERK1/2/5 and p38MAPK in mesenteric VSMC 396, 397.  Further 

consolidating the potential cross-talk of between the Ang II and IGF-1/IGF-1R systems are 

studies showing that Ang II increases IGF-1mRNA and protein in heart tissue and VSMC 
398, 399, and that IGF-1 can increase AT1R expression in VSMC 400.  Moreover, Nguyen et 

al. have also demonstrated that IGF-1R antisense-induced reduction in IGF-1R was 

associated with an inhibition of Ang II-induced vascular responses, as well as AT1R 

expression and functionality, in spontaneously hypertensive rats (SHR) and Wistar Kyoto 

rats (WKY) 401, 402.  These, and other studies showing that dominant negative or antisense 

oligonucleotide of IGF-1R are able to attenuate neointima formation in an injured carotid 
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artery rat model 403, support a potential pathogenic role of upregulated IGF-1R signalling in 

vascular disease. 

1.8.3.3 c-Src 

 c-Src, also known as Src or p60c-Src, is a NR-PTK and is the cellular homologue of 

the v-Src avian oncogene of the Rous sarcoma virus, a chicken tumour virus, discovered by 

Peyton Rous 404.  It is a member of the Src family of NR-TK, which contains 10 other 

members, including Blk, Brk, Fgr, Frk, Fyn, Hck, Lck, Lyn, Src, Srm, and Yes 405.  Src 

family of NR-TK play a vital role in cell differentiation, proliferation, and survival 

signaling mechanisms, as well as in cell adhesion, morphology and motility (reviewed in 
406).  Src, Yes and Fyn are ubiquitously expressed in all cells, yet expression levels vary 

among certain cell types, such as platelets, neurons, and osteoclasts, which have been found 

to express 5–200-fold higher levels of Src protein than other cells 407.  Structurally, each 

member of the Src family contains a short N-terminal membrane anchor, or SH4 domain, 

which contains a 14 carbon myristoyl group.  This domain is followed by a poorly-

conserved ‘unique’ region of 40 to 70 residues, an SH3 domain of 50 residues, which can 

bind to specific proline-rich sequences, an SH2 domain of 100 residues, which can bind to 

Tyr phosphorylation sites, an SH2-linker domain rich in proline residues, an SH1 250 

residue tyrosine kinase catalytic domain, and a short C-terminal regulatory region 

containing conserved tyrosine residues 407.  Each domain of the Src structure plays an 

important role in Src function.  For example, studies have demonstrated that myristoylation 

allows the membrane localization of Src and is essential for proper functioning of Src in 

cells 407, yet others have demonstrated that myristoylated Src is found free in the cytosol, 

and as such, does not guarantee Src binding to the cell membrane 406.  Myristoylation takes 

place on the myristoyl-rich SH4 (N-terminal) domain, which then binds to the cell 

membrane.  The SH1 domain is the most conserved domain in all the tyrosine kinases, and 

contains an ATP-binding domain.  Tyr 416/418 (416 in chicken and 418 in human) and Tyr 

527/530 (527 in chicken and 530 in human) are the two major tyrosine phosphorylation 

sites which regulate Src activity.  Phosphorylation of Tyr 416/418, through an auto-
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phosphorylation mechanism, is required for full c-Src activity, while phosphorylation of 

Tyr 527/530, a site located in the C-terminal regulatory region, is a negative regulator, 

whose phosphorylation inhibits c-Src activity 408.  In a physiologically normal state, c-Src is 

found in an inactive state, or “closed” conformation, where the phosphorylated Tyr 527/530 

site is linked to the SH2 domain, and the SH2-linker domain is bound to the SH3 domain, 

keeping the Tyr 416/418 dephosphorylated.  Dephosphorylation of Tyr 527/530 causes a 

conformational change and disrupts the bond of this site with the SH2 domain, thus 

“opening” the conformation of the c-Src molecule, allowing for access of ATP to the 

catalytic site and release of ADP, leading to its auto-phosphorylation on Tyr 416/418, and 

causing c-Src activation 409.  In growth factor receptor signaling, the SH2 domain of c-Src 

binds to Tyr phosphorylated subunits of the growth factor receptor in question, leading to a 

conformational change and allowing for Tyr 416/418 phosphorylation and subsequent c-Src 

activation. 

In the vasculature, especially VSMC, GPCR-linked contractile responses, induced 

by Ang II and phenylephrine, have been associated with c-Src activation 410, 411.  

Furthermore, the use of PP-1 and PP-2, pyrazolopyrimidine-based selective inhibitors of 

Src family tyrosine kinases 412, has indicated a role of Src in mediating H2O2, ET-1 and 

Ang II-induced transactivation of the EGFR and PDGFR in several cell types 64, 413-416.  ET-

1 and Ang II-induced MAPK activation has also been reported to be primarily dependent on 

the activation of c-Src in different cell types, including VSMC 417.  In Src-deficient VMSC 

derived from c-Src knockout mice, activation of ERK1/2 by Ang II was significantly 

decreased, as compared to VSMC from wild type mice 418, 419.  c-Src rescue in these cells 

through retroviral vector transfection caused a significant increase in Ang II-induced 

ERK1/2 phosphorylation, demonstrating that c-Src activation is necessary for Ang II-

induced signal transduction in VSMC 419.   

Both c-Src and IGF-1R have been implicated in the activation of NAD(P)H oxidase 

system 396, and since both ET-1 and Ang II trigger their effect through the generation of 

ROS 203, activation of IGF-1R and c-Src may be an early event in tranducing vasoactive 

peptide-induced ROS generation, leading to the activation of growth promoting and 
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hypertrophic signaling pathways.  In fact, c-Src has also been shown to be activated in 

response to ROS, including H2O2, in different cell types 414, 416, 420-422.  Furthermore, 

through the use of PP-1 and PP-2, a role of c-Src in mediating H2O2–induced ERK1/2 

phosphorylation in VSMCs derived from mesenteric arteries 423, in CHO-IR cells 422 and in 

renal cells 414, 424 has been shown.  A requirement of c-Src has also been shown in H2O2-

induced PKB phosphorylation CHO-IR cells 422, renal cells 414, rat-2 fibroblasts 425 and, 

more recently, in A10 VSMCs 421.  Thus, c-Src appears to play a key role in signaling the 

effects of  H2O2, as well as vasoactive peptides. 

1.8.3.4 Proline-rich Tyrosine Kinase (PYK2) 

 PYK2 is a cytosolic Ca2+-dependent, proline-rich tyrosine kinase 426, also known as 

calcium-dependent tyrosine kinase, cell adhesion kinase β, or related adhesion focal 

tyrosine kinase (RAFTK), as it has a similar overall structural organization to the focal 

adhesion kinase (FAK) non-receptor tyrosine kinases 427.  Like FAK, PYK2 has a C-

terminal focal-adhesion targeting domain, a catalytic tyrosine kinase domain which is 

centrally located, an unstructured proline-rich region, and a N-terminal FERM domain, 

which can bind and auto-inhibit the kinase activity of the tyrosine kinase domain 428.  

However, recent reports demonstrate that the PYK2 FERM domain and the FAK FERM 

domain regulate the activity of PYK2 and FAK, respectively, but do so in different ways 
429, indicating a role of the PYK2 FERM domain in the regulation of PYK2 activity 429.  

PYK2 is activated by autophosphorylation in Tyr 402, located in its catalytic domain.  

PYK2 has been proposed to facilitate the linkage between integrin receptors, 

heterodimeric transmembrane receptors that connect the extracellular matrix to the 

cytoskeleton, and the activation of signaling pathways, such as the PI3-K/PKB and MAPK 

pathways 426, 430.  Additionally, G-protein-associated ERK signaling was shown to be 

enhanced by PYK2 overexpression 426, which is further supported by studies showing that 

PYK2 inactivation, or mutation of its auto-phosphorylation sites, attenuates G-protein-

induced ERK phospohorylation 431.  Moreover, the increases in intracellular Ca2+ and PKC 

activation via Gαq activation by Ang II have been well characterized, and appear to be the 
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main mechanism by which PYK2 is phosphorylated on Tyr 402, and thus fully activated 

by, Ang II 432.  The activated PYK2 forms a complex with shc and Grb/SOS, resulting in 

the activation of the Ras/MAPK and PI3-K pathways 433.  ET-1 was also shown to induce 

PYK2 phosphorylation in several cell types, including rabbit and rat VSMC 203, 349, 434.  

This phosphorylation was blocked by BQ123, an ETA receptor inhibitor, but not by BQ788, 

an ETB receptor blocker, demonstrating that ET-1-induced PYK2 phosphorylation is 

dependent of ETA receptor activation 434.  Furthermore, this study also showed that the Ca2+ 

channel blocker SK&F 96365 inhibited ET-1-induced PYK2 phosphorylation, linking ET-

1-induced PYK2 phosphorylation to an increase in Ca2+ levels caused by ETA receptor G-

protein activation 434, similar to Ang II-induced PYK2 phosphorylation 435.  Furthermore, 

vasoactive peptide-induced MAPK and PKB activation have been linked to c-Src and 

PYK2 complex formation with either EGFR and/or IGF-1R, leading to their subsequent 

activation and downstream signaling 436, 437.  However, a recent report has suggested that 

Ang II activates MAPK signaling through a c-Src-dependent mechanism, while ET-1 

activates MAPK signaling through a c-Src-independent mechanism 418.  Thus, PYK2 may 

activate EGFR signaling in a c-Src-independent fashion, yet the mechanism through which 

ET-1 signals MAPK activation still remains controversial.  Nevertheless, it is quite evident 

that PYK2 plays an important role in mediating vasoactive peptide-induced signaling 

pathways involved in cell migration, proliferation, and hypertrophy. 

1.8.3.5 Potential mechanisms contributing to ET-1 and Ang II-induced R-/NR-PTK 

transactivation 

While the precise events that trigger the transactivation of R-/NR-PTK in response 

to vasoactive peptides are not clear, several mechanisms have been suggested.  Studies 

have shown that inhibitors of matrix metalloproteinases (MMP), such as GM6001 and 

doxycyclin, attenuated ET-1 and Ang II-induced EGFR transactivation 438, 439.  MMPs act 

mainly by disrupting the link between growth factors and their transmembrane precursors, 

as is the case for heparin-bound-EGF (HB-EGF), allowing EGF to bind to EGFR, and 
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leading to tyrosine kinase activation and stimulation of hypertrophic and growth promoting 

signaling cascades 440. 

Another proposed mechanism of R-PTK transactivation by vasoactive peptides is 

through their capacity to induce the generation of reactive oxygen species (ROS).  ET-1 has 

been shown to activate reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) 

oxidase, resulting in ROS generation in endothelial cells 441, and increased H2O2 levels via 

ETA receptor binding in pulmonary smooth muscle cells 442.  This increase in ROS 

generation has been linked with the ET-1-induced activation of ERK1/2, JNK, p38 MAPK, 

PKB and PYK2 203, 443.  For its part, Ang II has also been shown to induce ROS generation 

in multiple cell types, including cardiomyocytes, endothelial cells and VSMC 444-446, which 

appears to play a direct role in Ang II-induced vascular hypertrophy through the activation 

of hypertrophic signaling pathways 447, 448.  ET-1-induced ROS generation in VSMC was 

suppressed by N-Acetylcysteine (NAc), a ROS scavenger, and diphenyleneiodonium (DPI), 

an inhibitor of NAD(P)H oxidase 
203.  DPI and NAc pre-treatment of VSMC also inhibited 

ET-1-induced ERK1/2, PKB, and PYK2 phosphorylation, demonstrating that ROS are 

critical mediators of ET-1-induced signaling events linked to growth-promoting 

proliferative and hypertrophic pathways in VSMCs.  Observations that both ROS e.g. 

H2O2, and vasoactive peptides, induce the tyrosine phosphorylation of IGF-1R and EGFR, 

and pharmacological blockade or genetic ablation of the R- and/or NR-PTK activity 

resulted in the attenuation of ET-1 and Ang II-induced ERK1/2 and PKB phosphorylation 

have suggested that ROS may serve as intermediates to enhance the tyrosine 

phosphorylation of R- and NR-PTKs 64, 415, 421, 423, 449.  It should be noted that ROS 

molecules have been shown to inhibit the activity of protein tyrosine phosphatases 

(PTPases), such as PTP-1B 450, and SH-2 domain-containing tyrosine phosphatase-2 (SHP-

2) 451. PTPase inhibition can cause a shift in the phosphorylation-dephosphorylation cycle, 

leading to a net increase of tyrosine phosphorylation of R- and/or NR-PTK421, 422, which 

may contribute to the activation of the ERK1/2 and PKB signaling cascades.  It has also 

been reported that PTEN, which catalyzes PIP3 dephosphorylation, becomes inactivated by 

oxidation of Cys 124 in its catalytic domain subsequent to treatment with H2O2 or ROS-
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generating peptides 452-455, leading to an increase of PIP3 levels and a subsequent increase in 

PKB activation. 
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1.9 Objectives of the present study 

Among various growth factor PTKs, the role of transactivation of EGFR in 

promoting the downstream responses to both ET-1 and Ang II in VSMC has been studied 

in some detail. Ang II has also been shown to induce tyrosine phosphorylation of EGFR in 

VSMC and a role of EGFR transactivation in Ang II-induced activation of ERK1/2 and 

PKB signaling, hypertrophy and proliferation of VSMC has been reported. Similarly, a 

critical role of EGFR transactivation in mediating ET-1-induced signaling events such as 

ERK1/2, p70S6K activation as well as protein and DNA synthesis, gene expression has been 

reported in several cell types.  However, in contrast to the well-studied role of EGFR 

transactivation in mediating the responses of both of these vasoactive peptides, the 

involvement of other growth factor receptors in this process has not been investigated in 

detail. Furthermore, the role of c-Src, a non-receptor tyrosine kinase, in ET-1-induced 

MAPK signaling remains controversial in VSMC. While both ET-1 and Ang II seem to 

activate PKB through the same c-Src-dependent mechanism, a recent report has suggested 

that Ang II activates MAPK signaling through a c-Src-dependent mechanism, whereas ET-

1 activates MAPK signaling through a c-Src-independent mechanism 418.  In addition, 

studies have suggested that the early growth transcription factor-1 (Egr-1) plays an 

important role in multiple cardiovascular pathological processes, including the pathogenesis 

of atherosclerotic lesions and neointimal thickening after vascular injury.  While a growing 

number of studies have examined Egr-1 expression in response to Ang II in several cell 

types, including VSMC, little is known on ET-1-induced Egr-1 responses in VSMC.  

Our laboratory has previously demonstrated that transactivation of insulin-like 

growth factor type 1 receptor (IGF-1R) plays a key role in triggering H2O2-induced 

phosphorylation of PKB in VSMC and that a cross-talk exists between the c-Src family of 

PTK and IGF-1R in mediating this effect.  Since ET-1 and Ang II have been shown to 

increase the production of ROS, such as O2 
- and H2O2 in VSMC, the objective of the 

present study was to elucidate the following aims: 
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1. Whether IGF-1R transactivation contributes to ET-1 and Ang II-induced activation 

of PKB and on hypertrophic and proliferative responses in VSMC. 

 

2. Study the role of a cross talk between c-Src and IGF-1R PTK in ET-1 and Ang II-

induced activation of PKB and subsequent hypertrophic and proliferative events 

induced by these vasoactive peptides. 

 

3. Examine if the non-receptor protein tyrosine kinase c-Src differentially regulates 

ET-1 and Ang II-induced ERK 1/2, JNK and p38MAPK activation. 

 

4. Study a possible role of c-Src NR-PTK in ET-1 and Ang II-induced modulation of 

early growth transcription factor-1 (Egr-1) in VSMC. 
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Chapter 2 

Role of insulin-like growth factor 1 receptor and c-Src in 

endothelin-1 and angiotensin II-induced PKB 

phosphorylation, and hypertrophic and proliferative 

responses, in vascular smooth muscle cells. 
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2.1 Abstract  

Endothelin-1 (ET-1) and angiotensin II (Ang II) are believed to contribute to the pathogenesis 

of vascular abnormalities such as hypertension, atherosclerosis, hypertrophy and restenosis. 

During the last several years, the concept of transactivation of growth factor receptors, such 

as epidermal growth factor receptor (EGFR) in triggering vasoactive peptide-induced 

signaling events, has gained much recognition. We demonstrated that insulin-like growth 

factor-1 receptor (IGF-1R) plays a role in tranducing the effect of H2O2, leading to protein 

kinase B (PKB) phosphorylation. Since vasoactive peptides elicit their responses through 

generation of reactive oxygen species, including H2O2, we investigated whether IGF-1R 

transactivation plays a similar role in ET-1 and Ang II-induced PKB phosphorylation and 

hypertrophic responses in VSMC. AG-1024, a specific inhibitor of IGF-1R protein tyrosine 

kinase (PTK), attenuated both ET-1 and Ang II-induced PKB phosphorylation in a dose-

dependent manner. ET-1 and Ang II treatment also induced the phosphorylation of tyrosine 

residues in the autophosphorylation sites of IGF-1R, which was blocked by AG-1024. In 

addition, both ET-1 and Ang II evoked tyrosine phosphorylation of c-Src, a non-receptor 

PTK, and pharmacological inhibition of c-Src PTK activity by PP-2, a specific inhibitor of 

Src-family tyrosine kinase, significantly reduced PKB phosphorylation as well as tyrosine 

phosphorylation of IGF-1R induced by the two vasoactive peptides. Furthermore, protein and 

DNA synthesis enhanced by ET-1 and Ang II were also attenuated by AG-1024 and PP-2. In 

conclusion, these data suggest that IGF-1R and c-Src PTK play a critical role in mediating 

PKB phosphorylation as well as hypertrophic and proliferative responses induced by ET-1 

and Ang II in A-10 VSMC. 

 

Key words: Endothelin-1, Angiotensin II, IGF-1R, c-Src, PKB, Growth, VSMC. 
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2.2 Introduction 

  Endothelin-1 (ET-1) and angiotensin II (Ang II) are considered important vasoactive 

peptides in the vascular system. ET-1 is a potent vasoconstrictor peptide (Webb 1997) 

predominantly secreted by endothelial cells, whereas Ang II is the main component of the 

renin-angiotensin system (Touyz and Schiffrin 2000). Both of these vasoactive peptides exert 

their biological effects through interaction with specific heterotrimeric GTP binding protein 

coupled receptor (GPCR) in vascular smooth muscle cell (VSMC) (Bouallegue et al. 2007a; 

Touyz and Schiffrin 2000). ET-1 exerts its biological actions through the activation of two 

receptor subtypes, ETA and ETB (Arai et al. 1990; Sakurai et al. 1990), whereas Ang II acts 

via AT1 and AT2 receptors (de Gasparo et al. 2000). In recent years, it has become evident 

that both peptides play a critical role in vascular complications such as atherosclerosis 

(Mathew et al. 1996), hypertension (Haynes and Webb 1998) and restenosis after angioplasty 

(Burke et al. 1997). These actions are believed to be mediated through the activation of 

multiple signaling pathways which include: the mitogen-activated protein kinases (MAPKs), 

including extracellular signal-regulated kinases 1/2 (ERK1/2); c-Jun-NH2-terminal kinase 

(JNK) and p38mapk (Bogoyevitch et al. 1994; Yamboliev et al. 1998; Yoshizumi et al. 1998; 

Sorokin et al. 2001; Bouallegue et al. 2007a); as well as phosphatidylinositol 3-kinase (PI-

3K) and its downstream effectors such as protein kinase B (PKB) (Foschi et al. 1997; 

Bouallegue et al. 2007a). An intermediary role of the transactivation of growth factor 

receptor protein tyrosine kinases (PTK) in transducing ET-1 and Ang II-induced signaling 

responses has been suggested (Yamauchi et al. 2002; Kodama et al. 2002; Kodama et al. 

2003; Sorokin et al. 2001; Flamant et al. 2003). Among various growth factor PTK, the role 

of transactivation of epidermal growth factor receptor (EGFR) in promoting the downstream 

responses to both ET-1 and Ang II in VSMC has been studied in some detail (Chansel et al. 

2006; Li and Malik 2005). Ang II has also been shown to induce tyrosine phosphorylation of 

EGFR in VSMC (Eguchi et al. 1999b; Eguchi et al. 1999a) and a role of EGFR 

transactivation in Ang II-induced activation of ERK1/2 and PKB signaling, hypertrophy and 

proliferation of VSMC has been reported (Eguchi et al. 1999a; Ohtsu et al. 2006; Bokemeyer 
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et al. 2000; Eguchi et al. 2001; Li and Malik 2005). Similarly, a critical role of EGFR 

transactivation in mediating ET-1-induced signaling events such as ERK1/2, p70S6K 

activation as well as protein and DNA synthesis, gene expression (Iwasaki et al. 1998) and 

contraction (Chansel et al. 2006; Kawanabe et al. 2004) has been reported in several cell 

types. However, in contrast to the well-studied role of EGFR transactivation in mediating the 

responses of both of these vasoactive peptides, the involvement of other growth factor 

receptors in this process has not been investigated in detail. We have demonstrated that 

transactivation of insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in 

triggering H2O2-induced phosphorylation of PKB in VSMC and that cross-talk exists 

between the c-Src family of PTK and IGF-1R in mediating this effect (Azar et al. 2007). 

Since ET-1 and Ang II have been shown to increase the production of reactive oxygen 

species (ROS) such as O2
- and H2O2 in VSMC (Daou and Srivastava 2004; Griendling et al. 

1994; Cheng et al. 1999), we investigated whether IGF-1R transactivation also contributes to 

ET-1 and Ang II-induced activation of PKB and on hypertrophic and proliferative responses 

in VSMC and whether c-Src plays a role in this process. 

2.3 Materials and Methods 

2.3.1 Materials 

ET-1 and Ang II were purchased from American Peptide Inc (USA). AG-1024, PP-2 

and PP-3 were from obtained from Calbiochem. The phospho-specific-Ser473-PKB, total 

PKB and horseradish peroxidase-conjugated anti-rabbit antibodies were procured from 

New England Biolabs (Beverly, MA). Anti-phospho-specific-IGF-1R (phospho-

Tyr1131/1135/1136) and anti-phospho-specific-c-Src (phospho-Tyr418) antibodies were obtained 

from Biosource. Anti-IGF-1R and anti-cSrc antibodies were obtained from Santa Cruz 

Biotech (Santa Cruz, CA). The enhanced chemiluminescence (ECL) detection system kit 

was purchased from Amersham Pharmacia Biotech (Baie d’Urfé, QC, Canada). Leucine L-

(4,5-3H) and (3H) Thymidine were obtained from MP Biomedicals (OH, USA) 
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2.3.2 Methods 

Cell culture 

A-10 VSMC were maintained in culture with DMEM containing 10% fetal bovine serum at 

370 C in a humidified atmosphere of 5% CO2, as previously described (Bouallegue et al. 

2007b). Cells were grown to 80-90% confluence in 60-mm plates and incubated in serum-

free DMEM 5h prior to the treatments. 

 

Cell lysis and Immunoblotting  

Cells incubated in the absence or presence of various agents were washed twice with ice-cold 

PBS and lysed in 200 μl of buffer (25 mM Tris-HCl, pH 7.5, 25 mM NaCl, 1 mM Na 

orthovanadate, 10 mM Na fluoride, 10 mM Na pyrophosphate, 2 mM benzamidine, 2 mM 

ethylenebis(oxyethylenenitrolo)-tetraacetic acid, 2 mM ethylenediamine tetraacetic acid, 1 

mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, 1% Triton X-100, 0.1% sodium 

dodecyl sulfate (SDS), and 0.5 μg/ml leupeptin) on ice. Cell lysates were centrifuged at 

12,000g for 10 min at 40 C. Protein concentrations were measured by Bradford assay. Equal 

amounts of protein were subjected to 7.5% SDS-polyacrylamide gel (SDS-PAGE), 

transferred to PVDF membranes (Millipore, MA, USA) and incubated with respective 

primary antibodies, polyclonal phospho-specific-Ser473-PKB (1:1,000) or phospho-cSrc 

(1:2,000) or phosphor-IGF-1R (1:1,000) antibodies. The antigen-antibody complex was 

detected by horseradish peroxidase-conjugated second antibody (1:2000) and protein bands 

were visualized by ECL. The intensity of specific bands was quantified by NIH Image 

software as described previously (Pandey et al. 1999). 

 

Measurement of [3H]Leucine and [3H]Thymidine incorporation. 

Subconfluent A-10 VSMC were plated in 24-well plates and treated for 20 h with ET-1 or 

Ang II (100nM). To assess the role of IGF-1R or c-Src, cells were pretreated for 30 min with 

5 µM of AG-1024 or PP-2, respectively, prior to stimulation with either ET-1 or Ang II. 

Protein and DNA synthesis were assessed by addition of 2 μCi/mL of [3H]leucine or 
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[3H]Thymidine respectively as described previously (Bouallegue et al. 2007b). Following the 

completion of the experimental protocol, A-10 cells were washed four times with ice-cold 

NaCl (150 mM) and incubated with 1 ml of cold 5% trichloroacetic acid for 30 min. 

Subsequently, cells were washed twice with ice-cold water and incubated with 500 μl of 0.4 

N NaOH. Aliquots were counted in a scintillation counter to determine the incorporation of 

radioactivity. 

 

Statistics 

The data are means ± SE of three individual experiments. Statistical significance was 

determined with paired or unpaired Student’s t test. 
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2.4 Results  

2.4.1 Attenuation of ET-1 and Ang II-induced PKB phosphorylation by 

AG-1024 in A-10 VSMCs. 

 Both ET-1 and Ang II have been shown to transactivate EGFR in many cell types 

(Kodama et al. 2002; Iwasaki et al. 1998) and an important role of this transactivation in 

mediating ET-1-induced ERK1/2 activation has been reported (Iwasaki et al. 1998). 

However, involvement of IGF-1R in ET-1 and Ang II-induced phosphorylation of PKB has 

not been investigated in VSMC. Therefore, by using AG-1024 (3-bromo-5-t-butyl-4-

hydroxy-benzylidenemalonitrile), a specific pharmacological inhibitor of IGF-1R-PTK 

activity (Parrizas et al. 1997), we examined the involvement of IGF-1R in this process. As 

shown in Fig.1, pretreatment of A-10 VSMCs with AG-1024 for 30 min dose-dependently 

attenuated both ET-1 and Ang II-induced phosphorylation of PKB and 10μM AG-1024 was 

found to completely abrogate PKB phosphorylation induced by both these vasoactive 

peptides. 

2.4.2 ET-1 and Ang II induce tyrosine phosphorylation of IGF-1R  

 Since tyrosine phosphorylation of IGF-1R β subunit is essential for its activation, we 

examined whether stimulation of cells with these two vasopeptides would result in an 

enhanced tyrosine phosphorylation of IGF-1R β subunit. This was achieved by using a 

phospho-specific antibody that recognizes IGF-1R phosphorylated on tyrosine residues 1131, 

1135 and 1136, critical sites of autophosphorylation necessary for the activation of IGF-1R 

(Hernandez-Sanchez et al. 1995). As shown in Fig.2, both ET-1 and Ang II were able to 

evoke an increase in tyrosine phosphorylation of IGF-1R, which was blocked by pretreatment 

of cells with AG-1024. 
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2.4.3 Attenuation of ET-1 and Ang II-induced PKB phosphorylation by 

PP-2 in A-10 VSMCs. 

The Src family of non-receptor PTKs has been implicated in triggering some 

signaling responses of Ang II (Eguchi et al. 1999b) and ET-1(Shah et al. 2006), however, 

involvement of these PTKs in mediating ET-1 and Ang II-induced PKB phosphorylation in 

VSMC has not been examined. Therefore, by using PP-2 (4-amino-5-(4-chlorophenyl)-7-(t-

butyl)pyrazole(3,4-d) pyrimidine), a specific blocker of Src-family PTK (Hanke et al. 1996), 

we investigated the role of Src PTK in this process. As shown in Fig.3, pretreatment of 

VSMC with PP-2 prior to stimulation with ET-1 or Ang II inhibited PKB phosphorylation 

induced by both ET-1 and Ang II in a dose-dependent manner. At 5 μM, PP-2 almost 

completely inhibited PKB phosphorylation. However, PP-3 (4-amino-7-phenylpyrazole(3,4-

d) pyrimidine), an inactive analog of PP-2, had no effect. 

2.4.4 ET-1 and Ang II induce tyrosine phosphorylation of c-Src  

Since c-Src activation requires enhancement in the phosphorylation of a Tyr 418 

conserved tyrosine residue (referring to human Src sequence) located in its activation loop 

(Thomas and Brugge 1997), we determined whether ET-41 and Ang II were capable of 

inducing phosphorylation of this tyrosine residue in A-10 VSMC. As shown in Fig.4, both 

ET-1 and Ang II treatment resulted in increased phosphorylation of Tyr418 on c-Src. 

Moreover, pretreatment with PP-2 prior to stimulation of cells with these vasoactive peptides 

blocked this response, yet PP-3 had no effect (Fig.4).  

2.4.5 Attenuation of ET-1 and Ang II-induced tyrosine phosphorylation of 

IGF-1R β subunit by PP-2.  

c-Src has been shown to increase the phosphorylation of autophosphorylation sites of 

the IGF-1R β subunit both in vitro and in vivo (Peterson et al. 1996). Therefore, we 

determined the contribution of c-Src in ET-1 and Ang II-induced tyrosine phosphorylation of 

IGF-1R β subunit in A-10 VSMC. As shown in Fig.5, pretreatment of VSMC with PP-2 
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significantly attenuated vasoactive peptide-induced phosphorylation of IGF-1R β subunit. 

PP-3, on the other hand, was unable to inhibit IGF-1R phosphorylation induced by vasoactive 

peptides (Fig.5)  

2.4.6 Lack of Involvement of IGF-1R in ET-1/Ang II-induced c-Src 

phosphorylation. 

We have shown that H2O2-induced c-Src phosphorylation is mediated through IGF-

1R PTK  (Azar  et al. 2006). As a result, we investigated whether a similar mechanism was 

also involved in vasoactive peptide-induced increase in c-Src phosphorylation. As shown in 

Fig.6, pretreatment of cells with AG-1024 failed to inhibit Tyr418 phosphorylation of c-Src by 

either ET-1 or Ang II treatment.  

2.4.7 Attenuation of ET-1 and Ang II-induced protein and DNA synthesis 

by AG-1024 and PP-2.  

Both ET-1 and Ang II have been shown to induce increases in protein and DNA 

synthesis in mediating cell hypertrophy and proliferation (Bouallegue et al. 2007b; Di et al. 

2005; Haider et al. 2002; Yang et al. 2005; Hashim et al. 2006). Therefore, we examined 

whether IGF-1R and/or c-Src-PTK contributed in mediating the effect of ET-1 or Ang II on 

protein and DNA synthesis in A-10 VSMC. As shown in Fig.7, both of these vasoactive 

peptides increased the rate of protein (Fig.7.A) and DNA (Fig.7.B) synthesis, as determined 

by incorporation of [3H] Leucine into total cellular proteins and [3H] Thymidine into DNA of 

VSMC, respectively. However, the blockade of IGF-1R by AG-1024 or c-Src PTK activity 

by PP-2 significantly decreased both protein and DNA synthesis induced by these two 

vasoactive peptides. PP-3, an inactive analog of PP-2 had no effect (Fig.7). 
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2.5 Discussion 

There is an increasing body of evidence that suggests an important role of growth 

factor receptor transactivation in mediating vasoactive peptide-induced signaling pathways in 

VSMC. Among various growth factor receptors, the transactivation of EGFR has been 

studied in great detail in response to Ang II. However, transactivation of IGF-1R in triggering 

the responses of both ET-1 and Ang II remains poorly characterized. We provide evidence to 

suggest that ET-1 and Ang II, important GPCR ligands with a critical role in the pathogenesis 

of hypertensive vascular disease, induce the phosphorylation of PKB in an IGF-1R-

dependent fashion. We also show that both of these vasoactive peptides enhance the 

phosphorylation of key tyrosine residues in the autophosphorylation site of IGF-1R β subunit. 

Although Ang II has been shown to increase tyrosine phosphorylation of IGF-1R in VSMC 

(Lauzier et al. 2007; Zahradka et al. 2004; Du et al. 1996), and a role of IGF-1R 

transactivation in Ang II-induced phosphorylation of ERK1/2 and p70S6K has been suggested, 

no studies investigating the role of IGF-1R transactivation in either ET-1 or Ang II induced 

PKB phosphorylation in VSMC have been conducted. Thus, to our knowledge, the results 

reported here are the first to identify an involvement of IGF-1R in tranducing the downstream 

effects of ET-1 and Ang II in activating PKB in VSMC.  

 Another important finding of these studies is that the Src family of non-receptor PTKs 

are key mediators of ET-1/Ang II-induced PKB phosphorylation. We demonstrated that both 

of these vasoactive peptides can induce phosphorylation of Tyr 418 located in the activation 

loop of c-Src and that pharmacological blockade of c-Src-PTK activity not only inhibited ET-

1 and Ang II evoked phosphorylation of PKB, but also blocked IGF-1R tyrosine 

phosphorylation. These data suggest that c-Src is upstream of IGF-1R in the signaling 

cascade leading to PKB phosphorylation by both ET-1 and Ang II in VSMC. In fact, 

previous studies have shown that c-Src can catalyze the phosphorylation of IGF-1R β subunit 

on the same tyrosine residues that are autophosphorylated subsequent to the binding of IGF-

1R to its receptor (Peterson et al. 1996). Thus, c-Src-induced phosphorylation of these sites in 

IGF-1R in VSMC can trigger downstream effects leading to PKB phosphorylation. Earlier 
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work reported the phosphorylation of c-Src by ET-1 (Shah et al. 2006; Mishra et al. 2005) 

and Ang II (Eguchi et al. 1999b; Kyaw et al. 2004), and a requirement of c-Src in ET-1 and 

Ang II-induced PKB and p70S6K activation has been demonstrated (Bokemeyer et al. 2000; 

Zahradka et al. 2004). However, current studies indicate that c-Src activation is essential in 

triggering IGF-1R phosphorylation by ET-1 and, provide the molecular basis by which the 

ligand-independent transactivation of IGF-1R occurs in VSMC in response to vasoactive 

peptides. 

Both c-Src and IGF-1R have been implicated in the activation of NAD(P)H oxidase 

system (Touyz et al. 2003b; Touyz et al. 2003a), and since both ET-1and Ang II trigger their 

effect through ROS generation (Daou and Srivastava 2004; Touyz et al. 2004), it may be 

suggested that phosphorylation and activation of IGF-1R and c-Src is one of the early events 

in tranducing the signals of ET-1 and Ang II for ROS generation and subsequent activation of 

signaling pathways, linked to cellular hypertrophy and proliferation. This notion is supported 

by our results showing that blockade of IGF-1R PTK by AG-1024 or c-Src by PP-2 not only 

attenuated PKB phosphorylation but also attenuated protein as well as DNA synthesis 

induced by ET-1 and Ang II in A-10 VSMC. 

Involvement of PKB and its downstream effectors in regulating the hypertrophic and 

proliferative responses in VSMC has been suggested (Bouallegue et al. 2007a; Ivey et al. 

2008). Pharmacological blockade of PI3K activity with wortmannin was reported to inhibit 

ET-1 and Ang II-induced protein as well as DNA synthesis in VSMC (Li et al. 2006; Hashim 

et al. 2006). PKB activation results in the phosphorylation of several of its downstream 

substrates including mammalian target of rapamycin (mTOR) which has been implicated in 

the translational initiation of protein synthesis (Gingras et al. 2001). mTOR complex 1 

(mTORC1), through phosphorylation of ribosomal S6 kinases (S6K) and eukaryotic initiation 

factor 4E binding protein (eIF4EBPI) enhances translational efficiency of cap-dependant 

mRNA translation leading to enhanced protein synthesis and cell growth (Gingras et al. 

2004). PKB via its effects on cell cycle regulatory proteins such as p21cip1 and p27 kip1 is 

believed to control cell cycle progression and cell proliferation (Shin et al. 2002). 
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In conclusion, the results of this investigation demonstrate that ET-1 and Ang II 

induce the phosphorylation of PKB through a c-Src and IGF-1R PTK-dependent pathway, 

with c-Src being upstream to IGF-1R in this signaling cascade. Moreover, IGF-1R and c-Src 

appear to be key mediators of hypertrophic and proliferative responses of both ET-1 and Ang 

II in A-10 VSMC.  
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2.7 Figure legends  

Figure 1. Pharmacological blockade of IGF-1R abolishes ET-1 and Ang II-induced 

PKB phosphorylation in A-10 VSMCs.  

Serum-starved quiescent A-10 VSMC were pretreated in the absence (0) or presence of the 

indicated concentration of AG-1024 for 30 min followed by stimulation with 100nM of ET-

1 (section A) or Ang II (section B) for 5 min. Cell lysates were immunoblotted with 

phospho-specific-Ser473-PKB antibodies (top panels in each section). Blots were also 

analyzed for total PKB (middle panels of each section). Bottom panels (bar diagrams) in 

each section represent average data quantified by densitometric scanning of immunoblots 

shown in the top panel. Values are the means ± SE of at least three independent 

experiments and are expressed as percentages of phosphorylation, where phosphorylation 

observed with ET-1 alone (for section A) or Ang II alone (for section B) is defined as 

100%. P<0.05 was considered as statistically significance versus ET-1 stimulation alone for 

section A or versus Ang II alone for section B. * indicates that P<0.05; ** indicates that 

P<0.005 and † indicates that P<0.0005. 

Figure 2. Pharmacological blockade of IGF-1R attenuates ET-1 and Ang II-induced 

IGF-R phosphorylation in A-10 VSMCs.  

Serum-starved quiescent A-10 VSMC were pretreated in the absence (0) or presence of 

10µM AG-1024 for 30 min followed by stimulation with 100nM of ET-1 (section A) or 

Ang II (section B) for 5 min. Cell lysates were immunoblotted with phospho-specific-Tyr 
1131,1135,1136 IGF-1R antibodies (top panel in each section). Blots were also analyzed for total 

IGF-1R (middle panels of each section). Bottom panels (bar diagrams) in each section 

represent average data quantified by densitometric scanning of immunoblots shown in the 

top panel. Values are the means ± SE of at least three independent experiments and are 

expressed as percentages of phosphorylation, where phosphorylation observed with ET-1 

alone (for section A) or Ang II alone (for section B) is defined as 100%. P<0.05 was 
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considered as statistically significance versus ET-1 stimulation alone for section A or 

versus Ang II alone for section B. † indicates that P<0.0005. 

Figure 3. Pharmacological blockade of c-Src abolishes ET-1 and Ang II-induced PKB 

phosphorylation in A-10 VSMCs.  

Serum-starved quiescent A-10 VSMC were pretreated in the absence (0) or presence of 

10µM PP-3 or presence of the indicated concentration of PP-2 for 30 min followed by 

stimulation with 100nM of ET-1 (section A) or Ang II (section B) for 5 min. Cell lysates 

were immunoblotted with phospho-specific-Ser473-PKB antibodies (top panels in each 

section). Blots were also analyzed for total PKB (middle panels of each section). Bottom 

panels (bar diagrams) in each section represent average data quantified by densitometric 

scanning of immunoblots shown in the top panel. Values are the means ± SE of at least 

three independent experiments and are expressed as percentages of phosphorylation, where 

phosphorylation observed with ET-1 alone (for section A) or Ang II alone (for section B) is 

defined as 100%. P<0.05 was considered as statistically significance versus ET-1 

stimulation alone for section A or versus Ang II alone for section B. * indicates that 

P<0.05; ** indicates that P<0.005 and † indicates that P<0.0005. 

Figure 4.  Pharmacological blockade of c-Src attenuates ET-1 and Ang II-induced c-

Src phosphorylation in A-10 VSMCs.  

Serum-starved quiescent A-10 VSMC were pretreated in the absence (0) or presence of 

10µM PP-3 or presence of 10µM PP-2 for 30 min followed by stimulation with 100nM for 

5 min of ET-1 (section A) or Ang II (section B). Cell lysates were immunoblotted with 

phospho-specific-Tyr418-c-Src antibodies (top panels in each section). Blots were also 

analyzed for total cSrc (middle panels of each section). Bottom panels (bar diagrams) in 

each section represent average data quantified by densitometric scanning of immunoblots 

shown in the top panel. Values are the means ± SE of at least three independent 

experiments and are expressed as percentages of phosphorylation, where phosphorylation 

observed with ET-1 alone (for section A) or Ang II alone (for section B) is defined as 
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100%. P<0.05 was considered as statistically significance versus ET-1 stimulation alone for 

section A or versus Ang II alone for section B. † indicates that P<0.0005. 

Figure 5. Pharmacological blockade of c-Src attenuates ET-1 and Ang II-induced IGF-

1R phosphorylation in A-10 VSMCs.  

Serum-starved quiescent A-10 VSMC were pretreated in the absence (0) or presence of 

10µM PP-3 or presence of 10µM PP-2 for 30 min followed by stimulation with 100nM for 5 

min of ET-1 (section A) or Ang II (section B). Cell lysates were immunoblotted with 

phospho-specific-Tyr1131/1135/1136-IGF-1R antibodies (top panels in each section). Blots were 

also analyzed for total IGF-1R (middle panels of each section). Bottom panels (bar diagrams) 

in each section represent average data quantified by densitometric scanning of immunoblots 

shown in the top panel. Values are the means ± SE of at least three independent experiments 

and are expressed as percentages of phosphorylation, where phosphorylation observed with 

ET-1 alone (for section A) or Ang II alone (for section B) is defined as 100%. P<0.05 was 

considered as statistically significance versus ET-1 stimulation alone for section A or versus 

Ang II alone for section B. 

Figure 6. Pharmacological blockade of IGF-1R had no effect on ET-1 and Ang II-

induced c-Src phosphorylation in A-10 VSMCs.  

Serum-starved quiescent A-10 VSMC were pretreated in the absence (0) or presence of 

10µM AG-1024 for 30 min followed by stimulation with 100nM for 5 min of ET-1 (section 

A) or Ang II (section B). Cell lysates were immunoblotted with phosphor-specific Try418-c-

Src antibodies (top panel in each section). Blots were also analyzed for total c-Src (middle 

panels of each section). Bottom panels (bar diagrams) in each section represent average data 

quantified by densitometric scanning of immunoblots shown in the top panel. Values are the 

means ± SE of at least three independent experiments and are expressed as percentages of 

phosphorylation, where phosphorylation observed with ET-1 alone (for section A) or Ang II 

alone (for section B) is defined as 100%. P<0.05 was considered as statistically significance 

versus ET-1 stimulation alone for section A or versus Ang II alone for section B.  
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Figure.7. Pharmacological blockade of IGF-1R or c-Src attenuates ET-1 and Ang II-

induced DNA and protein synthesis in A-10 VSMC.  

Serum-starved quiescent A-10 VSMC were stimulated with ET-1 or Ang II (100 nM). Cells 

were pretreated with or without either 5 μM of AG-1024, PP-2 or PP-3 for 30 min before 

ET-1 or Ang II stimulation. Cells were then labeled with [3H]Leucine (section A) or 

[3H]Thymidine (section B) for 20 h as described in Materials and Methods. Values are the 

means ± SE of three independent experiments and are expressed as percentage of change in 

[3H]leucine incorporated into total cellular proteins (section A) and in [3H]Thymidine 

incorporated into DNA (section B) over the basal values. P<0.05 was considered as 

statistically significance. * versus control, † versus ET-1 stimulation alone and ‡ versus 

Ang II stimulation alone.  
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Chapter 3 

Requirement of c-Src, a Non-Receptor Tyrosine Kinase 

in both Endothelin-1 and Angiotensin II-induced ERK 

1/2, JNK and p38 MAPK, as well as Egr-1 activation in 

Vascular Smooth Muscle cells. 
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3.1 Abstract 

A heightened activity of Endothelin-1 (ET-1) and angiotensin II (Ang II), key 

vasoactive peptides implicated in the maintenance of blood pressure and vascular 

homeostasis, is thought to contribute to the development of vascular pathologies, such as 

hypertension, atherosclerosis, hypertrophy and restenosis.  This occurs through the 

hyperactivation of growth promoting signal transduction pathways, including PI3K/PKB 

and the MAPK pathways, and regulation of transcription factors, such as early growth 

response factor-1 (Egr-1), which was recently shown to be expressed in atherosclerotic 

plaque.  We have previously shown that c-Src, a non-receptor protein tyrosine kinase (NR-

PTK), is an upstream regulator of ET-1 and Ang II-induced activation of PKB in vascular 

smooth muscle cells (VSMC).  However, the role of c-Src in ET-1-induced MAPK 

signaling remains controversial in VSMC. Therefore, in the present studies, we have 

investigated the involvement of c-Src in ET-1 and Ang II-induced ERK 1/2, JNK and p38 

MAPK activation, as well as Egr-1 regulation. ET-1 and Ang II-induced the 

phosphorylation of ERK 1/2, JNK and p38mapk, and enhanced the expression of Egr-1 in 

rat aortic A10 VSMC, as well as VSMC derived from thoracic aorta of adult Sprague 

Dawley rats.  This increased phosphorylation was decreased by PP-2, a specific 

pharmacological inhibitor of Src.  Further proof for the role of c-Src in this process was 

obtained by using mouse embryonic fibroblasts (MEF) deficient in c-Src (SYF). ET-1-

induced Egr-1 expression, as well as MAPK activation, was found to be downregulated in 

SYF, as compared to MEF expressing normal Src levels. In summary, these data indicate 

that c-Src PTK plays a critical role in mediating ET-1 and Ang II-induced MAPK 

phosphorylation and Egr-1 expression through a c-Src dependent mechanism in VSMC. 

Keywords: Endothelin-1, Angiotensin II, VSMC, ERK, JNK, p38 MAPK, c-Src, Egr-1. 
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3.2 Introduction 

Alterations in vascular smooth muscle cell (VSMC) growth, migration, proliferation 

and plasticity is believed to contribute to abnormal vascular functions associated with or 

leading to CVDs, such as hypertension, atherosclerosis, and stenosis after angioplasty 1-3.  

Under normal physiological conditions, vasoactive peptides, such as angiotensin II (Ang II) 

and endothelin-1 (ET-1), normalize blood pressure through the regulation of salt and/or 

water homeostasis, sympathetic nervous system modulation, as well as VSMC contraction 

and relaxation 4-7.  Increased levels of both ET-1 and Ang II, present in certain 

pathophysiological states, such as essential hypertension, obesity, or advanced stages of 

diabetes, have been suggested to contribute to the pathogenesis of CVDs, by activating 

signaling events intimately linked to migration and proliferation of VSMC 4, 8-10.  Ang II 

acts primarily through the activation of its two main receptors, Ang II type 1 receptor 

(AT1R) and Ang II type 2 receptor (AT2R), both of which are 7 transmembrane domain 

guanine nucleotide-binding protein (G Protein)-coupled receptors (GPCR) 11.  These 

receptors are primarily found in blood vessels, but also in heart, lung liver and brain tissues 
4.  ET-1 exerts its biological actions through the activation of its two receptor subtypes, ETA 

and ETB 12, 13, both of which, like the Ang II receptors, belong to the GPCR family.  GPCR 

stimulation leads to the activation of several downstream growth and proliferative signaling 

cascades, which include members of the mitogen-activated protein kinase (MAPK) family, 

as well as the phosphatidyl-inositol 3-kinase (PI3-K)/protein kinase B (PKB) pathway. 

MAPKs constitute a family of serine/threonine protein kinases which are widely 

conserved among eukaryotes, and are involved in many cellular responses, such as cell 

proliferation, cell differentiation, cell movement and cell death 14, 15.  The groups of 

vertebrate MAPK studied most extensively to date are ERK1/2, JNKs, and p38 MAPK 14, 

15.  ERK1/2 are stimulated by mitogens, such as polypeptide growth factors (IGF-1, 

platelet-derived growth factor (PDGF), colony stimulating factor-1 (CSF-1), etc.) as well as 

insulin and phorbol 12-myristate 13-acetate (PMA).  In contrast, SAPKs and p38 MAPK 

are potently induced by a wide variety of stressors, including ultraviolet irradiation, gamma 
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irradiation, anisomycin, heat shock and chemotherapeutic drugs.  Recent studies have also 

implicated SAPK/JNK and p38 MAPK in vasoactive peptide-induced proliferative 

responses 16-22.  These pathways are also activated by ischemia or reperfusion after 

ischemia, and by inflammatory cytokines 23.  Overwhelming evidence exists to support a 

vasoactive peptide-induced MAPK activation in multiple systems, including 

oligodendrocyte progenitor cells, pancreatic stellate cell, aortic and mesenteric artery-

derived VSMC, increasing cell growth and hypertrophy, leading to complications such as 

atrial fibrillation due to left ventricle hypertrophy, vascular remodelling, cardiac 

hypertrophy and coronary artery disease 24-29. 

 c-Src, also known as Src or p60c-Src, is a non-receptor protein tyrosine kinase (NR-

PTK).  In the vasculature, especially VSMC, GPCR-linked contractile responses, induced 

by Ang II and phenylephrine, have been associated with c-Src actvation 30, 31.  Furthermore, 

the use of PP-1 and PP-2, pyrazolopyrimidine-based selective inhibitors of Src family 

tyrosine kinases 32, has indicated a role of Src in mediating H2O2, ET-1 and Ang II-induced 

transactivation of the EGFR, IGF-1R and PDGFR in several cell types 33-37.  We have 

shown a role of c-Src in mediating ET-1 and Ang II-induced PKB phosphorylation, cell 

hypertrophy and proliferation 37.  Another study showed that, in VMSC derived from c-Src 

knockout mice, activation of ERK1/2 by Ang II was significantly decreased, as compared to 

VSMC from wild type mice 38, 39.  c-Src rescue in these cells through retroviral vector 

transfection caused a significant increase in Ang II-induced ERK1/2 phosphorylation, 

demonstrating that c-Src activation is necessary for Ang II-induced signal transduction in 

VSMC 39.  While both ET-1 and Ang II seem to activate PKB through the same c-Src-

dependent mechanism, a recent report has suggested that whereas Ang II activates MAPK 

signaling through a c-Src-dependent mechanism, ET-1 activates MAPK signaling through a 

c-Src-independent mechanism 38.  Despite the fact that the role of c-Src as a mediator of 

Ang II signaling is clear 37, 40, 41, its role in ET-1-induced signaling events remains 

controversial. 

 In the present studies, we examined the role of c-Src as an upstream regulator of 

both ET-1 and Ang II-induced ERK 1/2, JNK and p38 MAPK phosphorylation and 
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modulation of early response growth factor-1 (Egr-1), a transcription factor downstream of 

ERK1/2 that plays a regulatory role in several cardiovascular pathological processes, by 

down-regulating c-Src through pharmacological inhibition in aortic VSMC, as well as using 

a c-Src knockdown cell model. 

 

3.3 Materials and Methods 

3.3.1 Materials 

Chemicals.  Cell culture reagents were purchased from Gibco (Burlington, ON).  ET-1 was 

purchased from American Peptide (Sunnyvale, CA) and Ang II from Sigma Chemical 

(Oakville, ON). PP-2 and PP-3 were purchased from Calbiochem (Carlsbad, CA). The 

enhanced chemiluminescence (ECL) detection system kit was purchased from Amersham 

Pharmacia Biotech (Baie d’Urfé, QC).  

Antibodies. Phospho-SAPK/JNK (Thr183/Tyr185) (#4668), phospho-p38 MAPK 

(Thr180/Tyr182) (#4631), phospho-c-Src (Tyr416) (#2101), total SAPK/JNK (#9252), total 

GAPDH (#5174) and Anti-rabbit IgG, horseradish peroxidase-linked secondary antibody 

(#7074) were procured from Cell Signaling Technologies (Danvers, MA).  Phospho-

ERK1/2 (Thr202/Tyr204) (sc-16982-R), total ERK (sc-154), total p38 MAPK (sc-7972), 

total c-Src (sc-8056), total Egr-1 (sc-110) and anti-mouse IgG, horseradish peroxidase-

linked secondary antibody (sc-2005) were purchased from Santa Cruz Biotechnologies 

(Santa Cruz, CA). Anti-phospho-specific-c-Src (phospho-Tyr418) antibody was obtained 

from Invitrogene (Camarillo, CA). 

3.3.2Methods 

Cell culture.  Rat aorta A-10 VSMC (CRL-1476, ATCC) were maintained in 75-cm2 flasks 

culture with Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine 

serum and antibiotics at 37ºC in a humidified atmosphere of 5% CO2, as previously 

described 37.  Cells were passed upon reaching confluence with 0.5% trypsin-containing 
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0.2% EDTA and plated in 60mm dished.  Cells were grown to 90% confluence and 

incubated in serum-free DMEM 18h prior to the treatments.   

VSMC derived from thoracic aorta of eight week old Sprague Dawley rats were isolated as 

previously described 42.  Briefly, male Sprague-Dawley rats were sacrificed and the 

descending thoracic aorta was excised. Adhering fat and connective tissue were removed by 

blunt dissection. Vessels were then opened longitudinally and preincubated in DMEM 

containing 1 mg/ml type II collagenase, 0.5 mg/ml type I elastase, penicillin (100 U/ml), 

and streptomycin (100 g/ml) for 15-20 min at 37ºC. The adventitia was carefully removed 

under a dissecting microscope and the luminal surface scraped with forceps to remove 

endothelial cells. After dissection, aortas were placed in fresh enzyme solution, minced and 

incubated (37°C) for an additional 60-90 min with tituration at 30-min intervals. Solution 

was then centrifuged, and the pellet was gently resuspended in fresh DMEM containing 

10%FBS with antibiotics, and maintained in 75-cm2 flasks.  Cells were then maintained in 

the same fashion as A10 VSMC.  Cells from passages 3-8 were used for experimentation. 

Mouse embryonic fibroblasts deficient for c-Src, Yes and Fyn (SYF) (CRL-2459, ATCC) 

and expressing endogenous wild type c-Src but not Yes and Fyn (Src +/+)(CRL-2497, 

ATCC) were maintained in 75-cm2 flasks culture with Dulbecco’s modified Eagle’s 

medium (DMEM) containing 10% fetal bovine serum and antibiotics at 37ºC in a 

humidified atmosphere of 5% CO2.  Cells were passed upon reaching confluence with 0.5% 

trypsin-containing 0.2% EDTA and plated in 60mm dished.  Cells were grown to 90% 

confluence and incubated in serum-free DMEM 18h prior to the treatments. 

Cell lysis and Immunoblotting.  Cells incubated in the absence or presence of various 

agents were washed three times with ice-cold PBS and lysed in 200 µl of lysis buffer (25 

mM Tris-HCl, pH 7.5, 25 mM NaCl, 1 mM Na orthovanadate, 10 mM Na fluoride, 10 mM 

Na-pyrophosphate, 2 mM benzamidine, 2 mM ethylenebis (oxyethylenenitrolo)-tetra acetic 

acid, 2 mM ethylenediamine tetra acetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% 

Triton X-100, 0.1% sodium dodecyl sulfate (SDS) and 1% Protease Inhibitor Cocktail 

(PIC)) on ice. Cell lysates were centrifuged at 12,000g for 10 min at 4ºC. Protein 

concentrations were measured by Bradford assay. Equal amounts of protein were subjected 



 

 

 

110

to 7.5% SDS-polyacrylamide gel (SDS-PAGE), transferred to PVDF membranes 

(Millipore, Billerica, MA) and incubated with respective primary antibodies.   The antigen-

antibody complex was detected by horseradish peroxidase-conjugated second antibody and 

protein bands were visualized by ECL. The intensity of specific bands was quantified by 

Quantity One Image Software (Bio-Rad, Hercules, CA). 

Egr-1 nuclear extraction protocol. To decrease dilution and interference by cytosolic 

proteins and to amplify the signal of Egr-1 in cell lysates, cells incubated in the absence or 

presence of pharmacological agents were lysed and nuclear protein was isolated for 

subsequent immunoblotting.  Briefly, cells were washed twice with ice-cold PBS and 

collected in 500μl of buffer solution containing 10mM Hepes, 10mM KCl, 0.1mM EDTA, 

0.1mM EGTA, 1mM PMSF, 1mM protease cocktail inhibitor and 1mM NaOV. Lysates 

were put on ice for 15 minutes before the addition of 10% NP40 detergent.  Lysates were 

then vortexed for 10 seconds at highest setting before being centrifuged at 13000RPM for 4 

minutes at 4oC. The supernatant (corresponding to the cytoplasmic fraction) was saved and 

transferred in a clean tube and stored at -80oC for future use. The pellet was resuspended in 

60μl, by pipeting up and down several times, in buffer containing 10mM Hepes, 400mM 

NaCl, 0.1mM EDTA, 0.1mM EGTA, 1mM PMSF, 1mM protease cocktail inhibitor and 

1mM NaOV. Lysates were sonicated by performing 6 cycles at 10 seconds per cycle with 

30 second intervals and then centrifuged at 13000 RPM for 5 minutes at 4oC. Pellet was 

discarded and the supernatant, corresponding to the nuclear fraction, was collected. Protein 

concentrations were measured using Bradford assay. 

Statistics.  The results presented are means ± SE of three independent experiments, 

performed in duplicate, with standard errors.  Statistical analyses were performed by 

analysis of variance (one-way ANOVA), followed by Dunnett’s multiple comparison post 

test, where applicable, using Prism 5 (GraphPAD software Inc.).  p values < 0.05 were 

considered significant. 
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3.4 Results 

3.4.1 Inhibition of c-Src PTK attenuates ET-1 and Ang II-induced 

phosphorylation of ERK 1/2 in A10 VSMC. 

Several studies have previously produced evidence supporting vasoactive peptide-

induced ERK 1/2 activation in multiple systems, including oligodendrocyte progenitor cells, 

pancreatic stellate cell, aortic and mesenteric artery-derived VSMC 24-29.  In this study, we 

confirmed that both ET-1 and Ang II, at a 100nM concentration, induced the phosphorylation 

of ERK 1/2, JNK and p38MAPK in a time dependent fashion in both A10 VSMC and 

isolated rat aortic VSMC and determined the time points at which peak phosphorylation 

occurred (data not shown).  Our lab has also recently demonstrated a role of c-Src in 

mediating ET-1 and Ang II-induced PKB phosphorylation through Tyr 418 phosphorylation 

of c-Src in VSMC, which was blocked by PP-2 (4-amino-5-(4-chlorophenyl)-7-(t-

butyl)pyrazole(3,4-d) pyrimidine), a specific blocker of Src family of PTK 37.  Here, by using 

PP-2, we have investigated a role of c-Src in ERK 1/2 phosphorylation in A10 VSMC.  As 

shown in Fig. 1, both ET-1 (panel A) and Ang II (panel B) potently enhanced the 

phosphorylation of ERK 1/2.  However, pre-treatment of A10 VSMC with PP-2 for 30 

minutes dose-dependently attenuated both ET-1 and Ang II-induced phosphorylation of ERK 

1/2.  However, PP-3 (4-amino-7-phenylpyrazole(3,4-d) pyrimidine), an inactive analog of 

PP-2, had no effect.  No alterations on the total amounts of ERK 1/2 were observed under 

these experimental conditions.  Similar experiments were performed in VSMC isolated from 

rat aorta and identical results were obtained (supplementary figure S1). 

3.4.2 ET-1 and Ang II-induced phosphorylation of JNK/SAPK and p38 

MAPK is attenuated by c-Src PTK inhibition in A10 VSMC. 

c-Jun N-terminal kinase (JNK) and p38 MAPK are both expressed in multiple cell 

types, including endothelial and VSMC.  While ERK 1/2 has been extensively studied in 
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terms of vasoactive peptide induced activation, the activation of JNK and p38mapk, being 

associated more often with inflammatory cytokines and cellular stress, is not.  Nonetheless, a 

few studies have shown an activation of JNK and p38 MAPK by Ang II and norepinephrine 

in cardiac myocytes, VSMC, and human mesangial cell.  Furthermore, the role of c-Src in the 

activation of JNK and p38 MAPK in VSMC has been examined in very few studies, which 

provide conflicting results as to the location of p38mapk in the cascade of signaling events 38, 

43.  Therefore, by using PP-2, we have investigated a role of c-Src in JNK and p38 MAPK 

phosphorylation in A10 VSMC.  Both ET-1 (panel A) and Ang II (panel B) potently 

enhanced the phosphorylation of JNK (Fig.2) and p38mapk (Fig.3).  Treatment of A10 

VSMC with PP-2 for 30 minutes prior to either ET-1 or Ang II stimulation dose-dependently 

inhibited JNK (Fig.2) and p38 MAPK (Fig.3) phosphorylation by both peptides.  PP-3, on the 

other hand, was unable to inhibit JNK or p38 MAPK phosphorylation induced by vasoactive 

peptides. No alterations on the total amounts of JNK or p38 MAPK were observed under 

these experimental conditions.  Similar experiments were performed in VSMC isolated from 

rat aorta and identical results were obtained (Supplementary figures S2 and S3). 

3.4.3 Inhibition of c-Src PTK attenuates ET-1-induced early growth 

response factor-1 (Egr-1) transcription factor expression in A10 VSMC. 

Recent studies have suggested that the Egr-1 transcription factor plays an important 

role in multiple cardiovascular pathological processes, including the pathogenesis of 

atherosclerotic lesions and neointimal thickening after vascular injury 44, 45.  Low levels of 

Egr-1 are generally found in normal vessels, yet its expression is rapidly increased in both 

endothelial and VSMC in response to injury, a state in which Egr-1 exerts potent chemotactic 

and mitogenic effects, possibly contributing to the vascular remodeling commonly observed 

in various pathological forms of vascular disease 46.  A growing number of studies have 

examined Egr-1 expression in response to Ang II in several cell types, including VSMC 47, 48, 

yet very little work has been done on ET-1-induced Egr-1 response.  Therefore, we wished to 

determine if ET-1 would upregulate Egr-1 expression in A10 VSMC. As shown in Fig.4, 

stimulation of serum-starved VSMC with 100nM ET-1 time-dependently increased 
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expression of Egr-1 protein (panel A).  To examine a role of c-Src in ET-1-induced Egr-1 

expression, cells were treated with either 10 µM PP-2 or PP-3 prior to ET-1 treatment for one 

hour.  PP-2 treatment decreased ET-1-induced Egr-1 expression in A10 VSMC (Fig.4 panel 

B) confirming the essential role of c-Src in Egr-1 expression.  PP-3, an inactive analog of PP-

2, was without any effect.  Similar experiments were performed in VSMC isolated from rat 

aorta and identical results were obtained (Supplementary figure S4). 

3.4.4 Effect of c-Src knockdown in ET-1 and Ang-II-induced ERK 1/2, 

JNK and p38  MAPK phosphorylation and Egr-1 expression 

To further confirm a role of c-Src PTK in vasoactive peptide-induced MAPK 

activation, we utilized mouse embryonic fibroblasts harvested from mouse embryos which 

have a functional null mutation in both alleles of the Src family PTK coding for c-Src (SYF) 
49.  Mouse embryonic fibroblasts expressing endogenous wild type c-Src (Src +/+) were used 

as control cells in these experiments.  Furthermore, to insure the decrease of c-Src in SYF 

cells as compared to Src +/+ cells, blots were probed with total c-Src antibody, and as seen in 

panel E of Fig.5, there is a clear decrease in c-Src content in the SYF cells as compared to the 

Src+/+ cells. 

Since previous studies have investigated a role of c-Src in Ang II-induced responses, 

we have focused on studying the uncertain role of c-Src in ET-1-induced responses.  As 

shown in Fig.5, ET-1 treatment caused a time-dependent increase of ERK 1/2 (panel A), JNK 

(panel B) and p38 MAPK (panel C) phosphorylation in c-Src +/+ cells, however, this 

response was blunted in SYF cells.  No alterations on the total amounts of ERK 1/2, JNK or 

p38 MAPK were observed under these experimental conditions.  Furthermore, to examine a 

role of c-Src in ET-1-induced Egr-1 expression, both SYF and Src+/+ cells were treated for 

1, 2 or 3 hours with 100 nM ET-1.  Cells were lysed and nuclear protein was isolated and 

immunoblotted for Egr-1.  As shown in panel D of Fig.5, ET-1-induced Egr-1 expression is 

decreased in SYF cells as compared to Src +/+ MEF.   

 



 

 

 

114

3.5 Discussion 

c-Src is a member of the Src family of NR-TK, which contains at least 10 other 

members, including Blk, Brk, Fgr, Frk, Fyn, Hck, Lck, Lyn, Src, Srm, and Yes 50.  The Src 

family of NR-TK play a vital role in cell differentiation, proliferation, and survival signaling 

mechanisms, as well as in cell adhesion, morphology and motility (reviewed in 51). The 

studies performed here demonstrate a role of c-Src in both ET-1 and Ang II-induced ERK 

1/2, JNK and p38 MAPK phosphorylation, through pharmacological inhibition of c-Src in 

immortalized VSMC, primary culture of aortic VSMC derived from aorta of eight week old 

Sprague Dawley rats, as well as mouse embryonic fibroblast from c-Src knockout mice. 

The present data further suggest that both ET-1 and Ang II signal through a similar c-

Src dependent pathway, leading to MAPK activation, opposing the notion of the existence of 

2 distinct signaling pathways taken by ET-1 and Ang II, which lead to GPCR-mediated 

MAPK activation in VSMCs 38.  While Yogi et al. clearly show a role of c-Src in Ang II-

induced MAPK activation, they identified ET-1-induced ERK 1/2 and JNK phosphorylation 

as a c-Src-independent event.  Curiously, ET-1-induced p38 MAPK phosphorylation was 

inhibited in c-Src -/- mesenteric VSMC 38.  Our findings clearly demonstrate that ET-1-

induced p38 MAPK phosphorylation is inhibited by PP-2 just as potently as ET-1-induced 

ERK 1/2 and JNK phosphorylation in aortic VSMC and mouse embryonic fibroblasts.  A 

recent study showing that incubation of aortic rings with ET-1 leads to an increase in ERK 

1/2 phosphorylation, which was suppressed by co-incubation with PP-2, further supports a 

role of c-Src as an upstream regulator of MAPK activation 52.  Thus, the work presented here, 

as well as previous work from our laboratory 37 and that of others 52, supports the notion that 

c-Src is an important regulator of both ET-1 and Ang II-induced hypertrophic and 

proliferative signaling pathways in VSMCs.  This is in contrast to work showing that Src 

tyrosine kinases do not contribute to vascular trophic signaling of ET-1 53. 

Previous studies from our laboratory have detected c-Src Tyr 418 phosphorylation 

induced by ET-1, Ang II and H2O2 in as little as five minutes in VSMC 37, 54 which is in 

contrast to studies in whole aorta, where c-Src phosphorylation was detected only after 
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several hours of treatment with ET-1 52.  In these studies, it was demonstrated that both of 

these vasoactive peptides can induce the Tyr 418 phosphorylation of c-Src activity, in VSMC 

and that pharmacological inhibition of c-Src by PP-2 not only inhibited ET-1 and Ang II-

induced c-Src phosphorylation, but also inhibited IGF-1R tyrosine phosphorylation, as well 

as PKB phosphorylation and activation 37.  These studies imply that c-Src activation is 

essential in triggering IGF-1R phosphorylation by both Ang II and ET-1, and therefore 

provide a molecular basis by which the ligand-independent transactivation of IGF-1R occurs 

in VSMC, in response to vasoactive peptides 37.  Thus, our present and past findings provide 

evidence to support that ET-1 and Ang II lead to phosphorylation and subsequent activation 

of c-Src through Tyr 418 phosphorylation, and not solely through de novo synthesis of c-Src, 

as suggested by other studies 52. 

The results presented here also reveal a role of c-Src in ET-1-induced Egr-1 

expression in VSMC.  Egr-1, which plays an important role in vascular biology, belongs to 

the family of zinc finger transcription factors which also includes Egr-2, Egr-3, and Egr-4 55.  

It is an 80-82 kDa nuclear phosphoprotein expressed in multiple cell types, including both 

endothelial and VSMCs, following stimulation by either cytokines or inflammatory stimuli 

(i.e. hypoxia, shear stress, etc...) or growth factors (EGF, PDGF).  These studies lead to 

vascular remodelling and the development of vascular diseases like atherosclerosis and 

restenosis 56-58.  However, Egr-1 is very weakly expressed in normal, healthy vessel wall 

tissue.  Several studies, including one in VSMCs, have investigated the capacity of Ang II to 

stimulate Egr-1 protein and mRNA expression 59, yet few have investigated the role of ET-1-

induced Egr-1 expression.  Furthermore, these studies were not performed in VSMC, but 

either in cardiomyocytes or mouse muscle cells, and were not able to correlate ET-1-induced 

Egr-1 mRNA with an increase in functional Egr-1 protein in these cells 60, 61.  Our results 

clearly demonstrate that ET-1 treatment of VSMC and mouse embryonic fibroblasts induces 

the expression of Egr-1 protein in as little as 1 hour.  We further show that pharmacological 

blockade or genetic knockdown of c-Src PTK inhibits ET-1-induced Egr-1 expression in both 

cell types.  Therefore, to our knowledge, the results presented in this study are the first to 

explore the role of c-Src in ET-1-induced Egr-1 expression in VSMC.  ERK1/2 has also 
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proven to play an important role in Egr-1 activation in both endothelial and VSMC 59, 62 

through work demonstrating that inhibition of Egr-1 gene expression inhibits VSMC 

migration and proliferation 63.  Thus, it may be suggested that the downregulation of ET-1-

induced VSMC hypertrophy and proliferation by c-Src inhibition, demonstrated in our 

previous studies 37, may be due to its capacity to regulate MAPK signaling and Egr-1 protein 

expression.  This notion is supported by work showing that the blockade of ET-1-induced 

Egr-1 mRNA through antisense oligonucleotides (ASO) inhibited ET-1-induced hypertrophy 

in isolated rat cardiomyocytes 64. 

In summary, the results of this investigation demonstrate that ET-1 and Ang II induce 

the phosphorylation of ERK 1/2, JNK and p38 MAPK through a c-Src PTK-dependent 

pathway.  Moreover, c-Src appears to be a key mediator of ET-1-induced Egr-1 expression, 

further clarifying the signaling mechanisms implicated in mediating the hypertrophic and 

proliferative responses of both ET-1 and Ang II in aortic VSMC. 
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3.7 Figure legends  

Figure 1. Pharmacological blockade of c-Src abolishes ET-1 and Ang II-induced 

ERK1/2 phosphorylation in A10 VSMCs. Serum-starved quiescent A10 VSMC were 

pretreated in the absence (0) or presence of 10µM PP-3 or the indicated concentration of 

PP-2 for 30 minutes, followed by stimulation with ET-1 (100nM) (panel A) or Ang II 

(100nM) (panel B) for 5 min. Cell lysates were immunoblotted with phospho-specific-

Thr202/Tyr204-ERK1/2 antibodies. Blots were also analyzed for total ERK.  Bar diagrams 

in each panel represent average data quantified by densitometric scanning of immunoblots 

shown in the same panel. Values are the means ± SE of three independent experiments and 

are expressed as a fold increase in phosphorylation, where basal phosphorylation observed 

(no stimulation) is defined as 1.  P<0.05 was considered as statistically significance versus 

ET-1 stimulation alone in panel A or versus Ang II alone in panel B. * indicates that 

P<0.05; ** indicates that P<0.001 and *** indicates that P<0.0001. 

Figure 2.  Pharmacological blockade of c-Src attenuates ET-1 and Ang II-induced 

JNK phosphorylation in A10 VSMCs. Serum-starved quiescent A10 VSMC were 

pretreated in the absence (0) or presence of 10µM PP-3 or the indicated concentration of 

PP-2 for 30 minutes, followed by stimulation with ET-1 (100nM) (panel A) or Ang II 

(100nM) (panel B) for 5 min. Cell lysates were immunoblotted with phospho-specific-

Thr183/Tyr185-JNK antibodies. Blots were also analyzed for total JNK.  Bar diagrams in 

each panel represent average data quantified by densitometric scanning of immunoblots 

shown in the same panel. Values are the means ± SE of three independent experiments and 

are expressed as a fold increase in phosphorylation, where basal phosphorylation observed 

(no stimulation) is defined as 1.  P<0.05 was considered as statistically significance versus 

ET-1 stimulation alone in panel A or versus Ang II alone in panel B. * indicates that 

P<0.05; ** indicates that P<0.001 and *** indicates that P<0.0001. 

Figure 3.  Pharmacological blockade of c-Src attenuates ET-1 and Ang II-induced p38 

MAPK phosphorylation in A10 VSMCs. Serum-starved quiescent A10 VSMC were 
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pretreated in the absence (0) or presence of 10µM PP-3 or the indicated concentration of 

PP-2 for 30 minutes, followed by stimulation with ET-1 (100nM) (panel A) or Ang II 

(100nM) (panel B) for 5 min. Cell lysates were immunoblotted with phospho-specific-

Thr180/Tyr182-p38 MAPK antibodies. Blots were also analyzed for total p38 MAPK.  Bar 

diagrams in each panel represent average data quantified by densitometric scanning of 

immunoblots shown in the same panel. Values are the means ± SE of three independent 

experiments and are expressed as a fold increase in phosphorylation, where basal 

phosphorylation observed (no stimulation) is defined as 1.  P<0.05 was considered as 

statistically significance versus ET-1 stimulation alone in panel A or versus Ang II alone in 

panel B. * indicates that P<0.05; ** indicates that P<0.001 and *** indicates that 

P<0.0001.  

Figure 4.  Pharmacological blockade of c-Src attenuates ET-1-induced Egr-1 protein 

expression in A10 VSMCs. Serum-starved quiescent A10 VSMC were treated without (0) 

or with 100nM ET-1 for the indicated time periods (section A) or were pretreated in the 

absence (0) or presence of 10µM PP-3 or 10µM PP-2 for 30 minutes, followed by 

stimulation with ET-1 (100nM) (panel B).  Nuclear protein was isolated from cell lysates 

and immunoblotted by Egr-1 antibody as shown in the top panels of each section. Blots 

were analyzed for total nuclear protein by GAPDH (middle panels of each section). Bottom 

panels (bar diagrams) represent average data quantified by densitometric scanning of 

immunoblots showing in the middle panel. Values are the means ± SE of three independent 

experiments and are expressed as fold increase of protein expression where basal 

expression observed (no stimulation) is defined as 1. P<0.05 was considered as statistically 

significance versus no stimulation (0), or versus ET-1 stimulation alone in panel B. * 

indicates that P<0.05; ** indicates that P<0.001 and *** indicates that P<0.0001. 

Figure 5: ET 1-induced ERK 1/2, JNK and p38 MAPK phosphorylation, as well as 

Egr-1 expression is downregulated in SYF MEF but not in SRC +/+ MEF.  Confluent, 

serum-starved SRC +/+ and SYF MEF were treated with 100 nM ET-1 for indicated time 

points. The cells were lysed and lysates were subjected to immunoblotting using phospho-
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specific Thr 202/Tyr 204-ERK and total ERK antibodies (panel A), phospho-specific-

Thr183/Tyr185-JNK and total JNK antibodies (panel B) and phospho-specific-

Thr180/Tyr182-p38 MAPK and total p38 MAPK antibodies (panel C).  To detect Egr-1, 

nuclear protein was isolated from cell lysates and immunoblotted with Egr-1 antibody and 

GAPDH (panel D).  Immunoblots were also probed with total Src antibody to measure for 

levels of Src in SYF and Src +/+ MEF (panel E).  Values are the means ± SE of three 

independent experiments and are expressed as fold increase of protein expression where 

basal expression observed (no stimulation) is defined as 1. P<0.05 was considered as 

statistically significance versus no stimulation (0).  * indicates that P<0.05; ** indicates 

that P<0.001 and *** indicates that P<0.0001. 
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3.10 Supplementary Figures 
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3.11 Supplementary Figure Legends 

S1. Pharmacological blockade of c-Src abolishes ET-1 and Ang II-induced ERK1/2 

phosphorylation in SD VSMCs. Serum-starved quiescent SD VSMC were pretreated in 

the absence (0) or presence of 10µM PP-3 or the indicated concentration of PP-2 for 30 

minutes, followed by stimulation with ET-1 (100nM) (panel A) or Ang II (100nM) (panel 

B) for 5 min. Cell lysates were immunoblotted with phospho-specific-Thr202/Tyr204-

ERK1/2 antibodies. Blots were also analyzed for total ERK.  Bar diagrams in each panel 

represent average data quantified by densitometric scanning of immunoblots shown in the 

same panel. Values are the means ± SE of three independent experiments and are expressed 

as a fold increase in phosphorylation, where basal phosphorylation observed (no 

stimulation) is defined as 1.  P<0.05 was considered as statistically significance versus ET-

1 stimulation alone in panel A or versus Ang II alone in panel B. * indicates that P<0.05; ** 

indicates that P<0.001 and *** indicates that P<0.0001. 

S2.  Pharmacological blockade of c-Src attenuates ET-1 and Ang II-induced JNK 

phosphorylation in SD VSMCs. Serum-starved quiescent SD VSMC were pretreated in 

the absence (0) or presence of 10µM PP-3 or the indicated concentration of PP-2 for 30 

minutes, followed by stimulation with ET-1 (100nM) (panel A) or Ang II (100nM) (panel 

B) for 5 min. Cell lysates were immunoblotted with phospho-specific-Thr183/Tyr185-JNK 

antibodies. Blots were also analyzed for total JNK.  Bar diagrams in each panel represent 

average data quantified by densitometric scanning of immunoblots shown in the same 

panel. Values are the means ± SE of three independent experiments and are expressed as a 

fold increase in phosphorylation, where basal phosphorylation observed (no stimulation) is 

defined as 1.  P<0.05 was considered as statistically significance versus ET-1 stimulation 

alone in panel A or versus Ang II alone in panel B. * indicates that P<0.05; ** indicates 

that P<0.001 and *** indicates that P<0.0001. 

S3.  Pharmacological blockade of c-Src attenuates ET-1 and Ang II-induced p38 

MAPK phosphorylation in SD VSMCs. Serum-starved quiescent SD VSMC were 

pretreated in the absence (0) or presence of 10µM PP-3 or the indicated concentration of 
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PP-2 for 30 minutes, followed by stimulation with ET-1 (100nM) (panel A) or Ang II 

(100nM) (panel B) for 5 min. Cell lysates were immunoblotted with phospho-specific-

Thr180/Tyr182-p38 MAPK antibodies. Blots were also analyzed for total p38 MAPK.  Bar 

diagrams in each panel represent average data quantified by densitometric scanning of 

immunoblots shown in the same panel. Values are the means ± SE of three independent 

experiments and are expressed as a fold increase in phosphorylation, where basal 

phosphorylation observed (no stimulation) is defined as 1.  P<0.05 was considered as 

statistically significance versus ET-1 stimulation alone in panel A or versus Ang II alone in 

panel B. * indicates that P<0.05; ** indicates that P<0.001 and *** indicates that P<0.0001. 

S4.  Pharmacological blockade of c-Src attenuates ET-1-induced Egr-1 protein 

expression in SD VSMCs. Serum-starved quiescent SD VSMC were treated without (0) or 

with 100nM ET-1 for the indicated time periods (section A) or were pretreated in the 

absence (0) or presence of 10µM PP-3 or 10µM PP-2 for 30 minutes, followed by 

stimulation with ET-1 (100nM) (panel B).  Nuclear protein was isolated from cell lysates 

and immunoblotted by Egr-1 antibody as shown in the top panels of each section. Blots 

were analyzed for total nuclear protein by GAPDH (middle panels of each section). Bottom 

panels (bar diagrams) represent average data quantified by densitometric scanning of 

immunoblots showing in the middle panel. Values are the means ± SE of three independent 

experiments and are expressed as fold increase of protein expression where basal 

expression observed (no stimulation) is defined as 1. P<0.05 was considered as statistically 

significance versus no stimulation (0), or versus ET-1 stimulation alone in panel B. * 

indicates that P<0.05; ** indicates that P<0.001 and *** indicates that P<0.0001. 
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Ang II is a powerful vasoconstricting octapeptide cleaved from angiotensin I 

(Ang I) by angiotensin converting enzyme (ACE), and is an integral part of the renin-

angiotensin-system (RAS) 456.  The principal physiological function of Ang II is the acute 

regulation of vascular tone to regulate blood pressure.  ET-1 is one of the most potent 

vasoconstrictor peptides in circulation, responsible for regulating vascular tone and blood 

pressure through various mechanisms, such as salt and water homeostasis, as well as 

affecting the sympathetic nervous system 54-56. It is produced mainly by the cardiovascular 

system, primarily by endothelial cells in the vasculature 457, but is also produced by the 

heart, kidney, posterior pituitary and central nervous system 458.  Under normal 

physiological conditions Ang II and ET-1 normalize blood pressure through the regulation 

of salt and/or water homeostasis, sympathetic nervous system modulation, as well as 

VSMC contraction and relaxation 53-56.  Increased levels of both ET-1 and Ang II, present 

in certain pathophysiological states, such as essential hypertension, obesity, or advanced 

stages of diabetes, have been suggested to contribute to the pathogenesis of CVDs, by 

activating signaling events intimately linked to migration and proliferation of VSMC 53, 57-

59.  Ang II and ET-1 both exert their biological actions through their own respective GPCR 

receptor subtypes, described earlier.  

Kinases, such as those activated by Ang II and ET-1, are amongst the highest 

represented known functions in the human genome 459.  Genome sequencing has revealed 

more than 520 protein kinases and approximately 130 protein phosphatases, which 

counteract kinase action 460.  Protein kinases can generally be separated into 2 groups, 

consisting of the tyrosine kinases, which once activated, phosphorylate substrates on 

tyrosine residues (e.g. IGF-1R, PYK2) or serine/threonine kinases, which phosphorylate 

substrates on serine and/or threonine residues (e.g. ERK1/2, PKB).  Tyrosine kinases play a 

vital role in regulating multiple intracellular signaling pathways, responsible for cellular 

metabolism, survival, growth and programmed cell death 382, 422, 461-463.  Tyrosine kinase 

activity is very well regulated in normal physiological states, yet these kinases are often 

found in altered or mutated states in pathological conditions involving uncontrolled tissue 

or cell growth, such as cancers and cardiovascular diseases, due to their regulation of 
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growth promoting pathways 460, 464, 465.  This group of tyrosine kinases can further be 

separated into two groups consisting of R-PTK and NR-PTK.  The usual mechanism of 

action consists of the R-PTK being activated through ligand binding, causing its 

dimerisation (if not already present as a dimer), which leads to the activation of its kinase 

activity, and subsequent autophosphorylation in tyrosine residues.  These phosphorylated 

tyrosine residues serve as docking sites for other anchoring proteins and/or NR-PTK, which 

help propagate the downstream signaling of the ligand 466, activating signaling cascades 

such as the PI3K/PKB and MAPK pathways.  As mentioned in earlier chapters, ligand-

independent activation, or transactivation, of R- and NR-PTK has been implicated in 

transducing the downstream effects of GPCR, leading to the stimulation of the PI3-K/PKB 

and MAPK cascades, which are involved in mediating the migratory, proliferative, and 

hypertrophic responses of ET-1 and Ang II 50, 64, 417, 462, 467.  

The results presented in this thesis demonstrate a requirement of IGF-1R in ET-1-

induced PKB phosphorylation in VSMC 64.  In these studies, AG-1024, a specific inhibitor of 

IGF-1R PTK, attenuated ET-1-induced PKB phosphorylation in a dose-dependent manner.  

ET-1 treatment also induced the phosphorylation of key tyrosine residues in the auto-

phosphorylation sites of the IGF-1R, which was blocked by AG-1024.  We have also 

provided evidence to suggest an involvement of c-Src in ET-1-induced tyrosine 

phosphorylation of IGF-1R.  We found that pre-treatment of VSMC with PP-2, a specific 

inhibitor of the Src family of PTK, significantly reduced ET-1-induced phosphorylation of 

IGF-1R.  Interestingly, this treatment also inhibited ET-1-induced PKB phosphorylation in 

VSMC.  ET-1-induced phosphorylation of IGF-1R has also been demonstrated in prostate 

cancer cell lines 468.  Similar to our observations in VSMC, c-Src activation was required to 

induce ET-1-induced PKB phosphorylation in these cell lines 468.  It thus appears that c-Src 

serves an upstream role in Ang II and ET-1-induced, ligand-independent phosphorylation of 

IGF-1R.  It should be noted that c-Src is able to increase the tyrosine phosphorylation of the 

autophosphorylation sites on the IGF-1R β subunit 469. 

Furthermore, both protein and DNA synthesis enhanced by Ang II and ET-1 were also 

attenuated by pharmacological blockade of IGF-1R by AG-1024, suggesting an important 
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role of IGF-1R in mediating PKB phosphorylation, as well as hypertrophic and proliferative 

responses induced by ET-1 in A10 VSMC 470. 

There is also some evidence indicating that transactivation of EGFR mediates the 

responses of IGF-1R in some cell types, suggesting the existence of a cross-talk between 

IGF-R and EGFR transactivation 471.  Moreover, the studies showing that dominant 

negative or antisense oligonucleotide (ASO) of IGF-1R are able to attenuate neointima 

formation in an injured carotid artery rat model 403 and reduce Ang II type 1 receptor 

(AT1R) expression and function in spontaneously hypertensive rats (SHR) 402 supports a 

potential pathogenic role of upregulated IGF-1R signalling in vascular disease. 

In addition to the PKB pathway, ET-1 and Ang II-induced GPCR stimulation leads 

to the activation of the mitogen-activated protein kinase (MAPK) family, including ERK 

1/2, JNK and p38 MAPK.  While both ET-1 and Ang II seem to activate PKB through a c-

Src-dependent mechanism, with a role of c-Src as a mediator of Ang II signaling 64, 472, 473, 

its role in ET-1-induced signaling events remains controversial 474, with recent reports 

suggesting that Ang II activates MAPK signaling through a c-Src-dependent mechanism, 

whereas ET-1 activates MAPK signaling through a c-Src-independent mechanism 418. 

The results presented in this thesis are aimed at defining a role of this NR-PTK in 

ET-1-induced MAPK signaling.  In these studies, PP-2 was found to reduce both ET-1 and 

Ang II-induced ERK 1/2, JNK and p38 MAPK phosphorylation in A10 VSMC, as well as 

in primary cultures of Sprague Dawley rat thoracic aorta.  These results are supported by 

studies showing that ET-1-induced ERK 1/2 phosphorylation is suppressed by co-

incubation with PP-2, identifying c-Src as an upstream regulator of MAPK activation in 

aortic rings 475.   

To further confirm our hypothesis that c-Src is an important modulator of ET-1-

induced MAPK signaling, we utilized mouse embryonic fibroblast harvested from mouse 

embryos which have a functional null mutation in both alleles of the Src family PTK 

coding for c-Src, Yes and Fyn (SYF), the three main members of the Src PTK family 476.  

ET-1-induced phosphorylation of all three MAPKs studied was attenuated in SYF cells, yet 

remained normal in mouse embryonic fibroblasts expressing normal c-Src.  We have also 
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demonstrated that inhibition of c-Src, by pharmacological or genetic approaches, blunted 

the expression of ET-1-induced Egr-1, a transcription factor implicated in multiple 

cardiovascular pathological processes, including the pathogenesis of atherosclerotic lesions 

and neointimal thickening after vascular injury.  Therefore, the work presented in this 

thesis, and that of others 475, provides solid evidence and supports the notion that c-Src is an 

important regulator of vasoactive peptide-induced hypertrophic and proliferative signaling 

pathways.  However, the specific participation of a precise R- or NR-PTK in mediating 

vasoactive peptide-induced responses may be dependent on the cell type and the expression 

levels of the R- and NR-PTKs in those cells. As a result, it may be possible that c-Src-

dependent and -independent pathways contribute to both ET-1 and Ang II-induced 

signaling, which may vary from cell type to cell type, and may be a possible reason for the 

discrepancy between our work and that of others. 

While the precise events that trigger the transactivation of R-/NR-PTK in response 

to vasoactive peptides are not clear, several mechanisms have been suggested.  Studies 

have shown that inhibitors of matrix metalloproteinases (MMP), such as GM6001 and 

doxycyclin, attenuated ET-1 and Ang II-induced EGFR transactivation 438, 439.  MMPs act 

mainly by disrupting the link between growth factors and their transmembrane precursors, 

as is the case for heparin-bound-EGF (HB-EGF), allowing EGF to bind to EGFR, and 

leading to tyrosine kinase activation and stimulation of hypertrophic and growth promoting 

signaling cascades 440. 

Another proposed mechanism of R-PTK transactivation by vasoactive peptides is 

through their capacity to induce the generation of reactive oxygen species (ROS).  ROS are 

formed as intermediates in redox reactions, leading from molecular oxygen (O2) to water 

(H2O).  These small, quickly-diffusible and highly-reactive molecules are classified into 

superoxide anion   (.O2
-), hydroxyl radical (.OH) and hydrogen peroxide (H2O2) 

477.  A 

major intracellular source of ROS is the mitochondria, which converts 1-2% of consumed 

O2 to .O2
- 478.  A univalent reduction of O2 leads to .O2

-, which is relatively unstable and 

short-lived because of its unpaired electron. 
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 NAD(P)H oxidase is among the primary enzymes responsible for the generation of 
.O2

- 446, and is composed of many subunits, including p22phox, p47phox, gp91phox, the 

GTPase Rac and the recently-identified Nox1 and Nox4 446, 479-481.  NAD(P)H oxidase 

catalyzes .O2
- production by the one electron reduction of O2, where NAD(P)H is the 

electron donor.  In addition to NAD(P)H oxidases, O2
- can also be generated by 

xanthine/xanthine oxidase, lipooxygenase, and cyclooxygenase 482, 483 (Figure 11). 
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Figure 11: Key steps in the production of reactive oxygen species (ROS) by 
vasoactive peptides.  NAD(P)H oxidase catalyzes superoxide anion (.O2

-) production by 
the 1 electron reduction of O2, where NAD(P)H is the electron donor.  In addition to 
NAD(P)H oxidases, O2

- can also be generated by xanthine/xanthine oxidase, 
lipooxygenase, and cyclooxygenase. .O2

- undergoes dismutation either spontaneously or 
by a reaction catalyzed by superoxide dismutase (SOD) to produce H2O2. Normally, it is 
scavenged by catalase and glutathione peroxidase to produce H2O.  In the presence of 
metal-containing molecules such as Fe2+, H2O2 can also be reduced to generate the 
extremely-active hydroxyl radical (.OH) that causes damage to cell components. 
(Adapted from Vardatsikos et al., Antioxid Redox Signal., 2009, 11(5):1165-90.) 

Glutathione peroxidase 
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 Under physiological conditions, .O2
- undergoes dismutation either spontaneously or 

by a reaction catalyzed by superoxide dismutase (SOD) to produce H2O2 (Figure 11).  

Dismutation of .O2
- by SOD is favored at low concentrations of .O2

- and at high 

concentrations of SOD, which occurs under physiological conditions.  H2O2 is much more 

stable than .O2
-, can cross cell membranes and has a longer half-life. Normally, it is 

scavenged by catalase and glutathione peroxidase to produce H2O 484 (Figure 11).  In the 

presence of metal-containing molecules such as Fe2+, H2O2 can also be reduced to generate 

the extremely-active hydroxyl radical (.OH) that causes damage to cell components 485 

(Figure 11).  In the glutathione peroxidase reaction, glutathione (GSH) is oxidized to 

glutathione disulfide (GSSG), which can be converted back to GSH by glutathione 

reductase in a NAD(P)H-consuming process.  Several forms of SOD are known: copper-

zinc SOD (Cu/Zn-SOD), mitochondrial or manganese SOD (Mn-SOD), extracellular SOD 

type C (EC SOD C) and iron-containing SOD (Fe-SOD) 486, 487.  Normally, the rate of ROS 

production is balanced by the rate of their elimination.  However, in pathological 

conditions, a disequilibrium between ROS generation and elimination results in increased 

ROS bioavailability, leading to oxidative stress 488.  Under these conditions, .O2
- can react 

with nitric oxide (NO) to produce peroxynitrite ONOO- 489, which is reduced to form its 

conjugate acid, peroxynitrous acid (ONOOH), a reactive and unstable oxidizing species.  

NO is also implicated in the production of nitrite (NO2
-), which can be oxidized to produce 

nitrogen dioxide (NO2), a nitrogen intermediate, which along with an .OH group forms 

nitrate (NO3
-).  ONOO- and its metabolites are capable of tyrosine nitration in multiple 

proteins, evoking changes in their conformation, structure and catalytic activity 490. 

Ang II has also been shown to induce ROS generation in multiple cell types, 

including cardiomyocytes, endothelial cells and VSMC 444-446, which appears to play a 

direct role in Ang II-induced vascular hypertrophy through the activation of hypertrophic 

signaling pathways 447, 448. ET-1 has been also shown to activate NAD(P)H oxidase, 

resulting in ROS generation in endothelial cells 441, and increased H2O2 levels via ETA 

receptor binding in pulmonary smooth muscle cells 442.  This increase in ROS generation 
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has been linked with the ET-1-induced activation of ERK1/2, JNK, p38 MAPK, PKB and 

PYK2 203, 443.    ET-1-induced ROS generation in VSMC was suppressed by N-

Acetylcysteine (NAc), a ROS scavenger, and diphenyleneiodonium (DPI), an inhibitor of 

NAD(P)H oxidase 203.  DPI and NAc pre-treatment of VSMC also inhibited ET-1-induced 

ERK1/2, PKB, and PYK2 phosphorylation, demonstrating that ROS are critical mediators 

of ET-1-induced signaling events linked to growth-promoting proliferative and 

hypertrophic pathways in VSMCs.  Observations that both ROS e.g. H2O2, and vasoactive 

peptides, induce the tyrosine phosphorylation of IGF-1R and EGFR, and pharmacological 

blockade or genetic ablation of the R- and/or NR-PTK activity resulted in the attenuation of 

ET-1 and Ang II-induced ERK1/2 and PKB phosphorylation have suggested that ROS may 

serve as intermediates to enhance the tyrosine phosphorylation of R- and NR-PTKs 64, 415, 

421, 423, 449.  Further support for a role of ROS in modulating R/NR-PTK function has been 

provided by reports where Ang II was shown to enhance the expression of IGF-1R through 

ROS-dependant mechanism in VSMC 491. 

ROS may directly target growth factor receptors such as IGF-1R, platelet-derived 

growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) 483, which 

can induce intracellular ROS generation 492.  Receptor tyrosine kinases have been 

implicated in Ang II signaling by Ang II type 1 receptor (AT1R)-mediated transactivation 
493. This transactivation may involve Ang II-mediated NAD(P)H-dependent ROS 

formation, followed by MAPK activation.  Furthermore, transactivation of IGF-1R and 

EGFR via Ang II has been shown to activate p38 MAPK, ERK5 and ERK 1/2 in VSMCs 
396.  Recent studies have also suggested that growth factors, such as IGF-1, signal through 

ROS-dependent transactivation of EGFR 471, and a role of NAD(P)H oxidase 4 (NOX4) in 

IGF-induced production has been demonstrated in VSMC 494.  ROS/RNS are capable of 

activating NR-PTKs, such as Src and Janus Kinase (JAK), which have been shown to play 

a role in H2O2-induced activation of p21Ras 495, as well as several transcription factors, 

such as NF-κB and activator protein-1, a transcription complex consisting of dimers of Fos-

Jun or Jun-Jun proteins 496, leading to cell growth and differentiation by activation of the 
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PI3-K-Akt/PKB signaling pathway.  Ang II-mediated MAPK and apoptosis signaling-

regulated kinase 1 (ASK1) activation may also be involved 341.   

  In addition to its effects on receptor and non-receptor PTKs, growth factor or 

vasoactive peptide-induced ROS can potentially oxidize and inactivate multiple protein 

tyrosine phosphatases (PTPases), such as PTP-1B 450and SH-2 domain-containing tyrosine 

phosphatase-2 (SHP-2) 451, in vitro, as well as in vivo 451.  PTPases catalyze the rapid 

dephosphorylation and inactivation of multiple R-/NR-PTK, including IR and the IGF-1R 

β-subunit, and their substrates 497, 498, leading to a downregulation of proliferative and 

hypertrophic signaling.  PTPase inhibition can cause a shift in the phosphorylation-

dephosphorylation cycle, leading to a net increase of tyrosine phosphorylation of R- and/or 

NR-PTK421, 422, which may contribute to the activation of the ERK1/2 and PKB signaling 

cascades.  For example, it has been reported that PTEN, which catalyzes PIP3 

dephosphorylation, becomes inactivated by oxidation of Cys 124 in its catalytic domain 

subsequent to treatment with H2O2 or ROS-generating peptides 452-455, leading to an 

increase of PIP3 levels and a subsequent increase in PKB activation.  PTPases can respond 

to oxidative stresses from the environment, as well as to intracellular ROS, generated in 

response to physiological activation of growth factor receptors 451. 

In summary, vasoactive peptides have a profound effect on ROS production and R-

/NR-PTK activation through PTPase regulation, yet vasoactive peptides also affect and 

regulate the synthesis of growth factors themselves, which further compound vasoactive 

peptide-induced proliferative effects.  For example, Ang II has been shown to increase the 

levels of IGF-1 mRNA and protein in heart and VSMC 398, 399.  Conversely, IGF-1 was also 

found to up-regulate the expression of AT1R in VSMCs 400, suggesting the existence of a 

potential cross-talk between Ang II and IGF-1 system.  This notion is further supported by 

the studies showing that IGF-1R antisense-induced reduction in IGF-1R was associated 

with an inhibition of Ang II-induced vascular responses in SHR and WKY rats 401, 402.  In 

addition, native unmodified LDL has been found to increase IGF-1 mRNA, whereas 

oxidatively-modified LDL (oxy-LDL) decreases IGF-1 mRNA and protein expression in a 

dose-dependent fashion 499.  IGF-1 also stimulates ROS-mediated transactivation of EGFR 
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via Src activation, leading to ERK-1/2 phosphorylation, which plays a critical role in 

VSMC proliferation 471.  Antioxidant treatment can inhibit IGF-1-induced EGFR 

transactivation by lowering H2O2 production 471. In VSMCs, H2O2 can enhance IGF-1R and 

Src-PTK-dependent PKB activation 500. 

 Taken together, the results presented in this body of work identify c-Src as a clear 

mediator of vasoactive peptide-induced IGF-1R, leading to increases in PKB and MAPK 

signaling, as well as Egr-1 transcription factor regulation (Figure 12).  To our knowledge, 

the results reported here are the first to identify an involvement of IGF-1R in transducing 

the downstream effects of ET-1 and Ang II in activating PKB in VSMC. They are also the 

first to explore the role of c-Src in ET-1-induced Egr-1 expression in VSMC, providing a 

possible link between vasoactive peptide-induced signaling events and the hypertrophic and 

proliferative responses they induce in pathophysiological states. 
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Chapter 5 

Conclusion 
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Overall, the studies presented in this thesis demonstrate that receptor and non-

receptor protein tyrosine kinase transactivation by ET-1 and Ang II are crucial in 

propagating downstream signaling responses induced by these vasoactive peptides.  

Although EGFR transactivation has been studied in detail with regards to vasoactive 

peptide-induced signaling, the transactivation of other receptor and/or non-receptor tyrosine 

kinases is only recently coming to light as an important mechanism implicated in ET-1 and 

Ang II-induced migratory, hypertrophic and proliferative signaling, leading to the 

deleterious effects of hypertensive states. 

We have provided evidence demonstrating that both ET-1 and Ang II can induce the 

phosphorylation and subsequent activation of IGF-1R and c-Src PTK.  We have also 

demonstrated that IGF-1R and c-Src are required for ET-1 and Ang II-induced PKB 

phosphorylation.  Our studies have placed c-Src upstream of both PKB and IGF-1R in this 

signaling mechanism.  In addition, we have provided proof that IGF-1R and c-Src are key 

mediators of ET-1 and Ang II-induced proliferation and hypertrophy of VSMC, a key 

phenomenon in the development of vascular pathologies such as atherosclerosis and 

restenosis.  Furthermore, we have provided data demonstrating that MAPK activation by 

ET-1 and ANG II is not differentially regulated, and that c-Src is implicated in the 

activation of ERK 1/2, JNK and p38 MAPK induced by both vasoactive peptides.  Our 

results also highlight for the first time the role of c-Src in the modulation of the Egr-1 

transcription factor by ET-1 in VSMC, a mechanism which has been linked to the 

hypertrophic actions of ET-1 (Figure 12).   

Despite the work presented here and those of others, the precise mechanism of 

vasoactive peptide-induced R-/NR-PTK transactivation still remains unclear; however, 

evidence points towards the implication of signal intermediates, such as matrix 

metalloproteinase and the generation of ROS, in inducing the activation and subsequent 

phosphorylation of R-/NR-PTK, through either ligand-dependent or –independent 

mechanisms.  Examples of this are the inhibition of protein tyrosine phosphatases by ROS, 

allowing for EGFR or IGF-1R phosphorylation, or the cleavage of heparin from EGF to 
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allow for EGF-induced EGFR activation.  Notwithstanding the lack of a clear explanation 

as to how R-/NR-PTK transactivation occurs, evidence is accumulating to indicate that 

activation of R-/NR-PTK play a critical role in triggering the vasoactive peptide-induced 

signaling that mediates the hypertrophic, proliferative and migratory responses in VSMC.  

Further research using pharmacological or genetic approaches will likely help to decipher 

the exact mechanisms by which R-/NR-PTK transactivation occurs, leading to potential 

developments in therapeutic tools to help restore dysregulated signaling events associated 

with vascular disorders. 
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Reference List 

Figure 12: Schematic model summarizing the mechanism by which ET-1 and Ang II 
induce downstream activation and modulation of PKB, ERK1/2, JNK, p38mapk and 
Egr-1, leading to subsequent hypertrophic and proliferative events in VSMCs. ET-1 
and/or Ang II receptor activation is known to generate reactive oxygen species (ROS) through 
NAD(P)H oxidase system.  ROS are able to inhibit protein tyrosine phosphatases (PTPase) 
through the oxidation of cystein residues in their catalytic domain.  Inhibition of PTPases 
favors an increase in the tyrosine phosphorylation of NR-PTK, such as c-Src, and R-PTKs, 
such as IGF-1R, resulting in the ligand-independent activation of IGF-1R, triggering the PI3-
K/PKB and MAPK signaling cascades.  Activation of PKB, ERK1/2, JNK and p38 MAPK 
leads to modulation of many downstream effectors, including transcription factors such as 
Egr-1, contributing to hypertrophy, proliferation and migration of VSMCs. 
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