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Résumé 
 
Nous avons récemment démontré que les espèces réactives oxygénées induisent une 

augmentation de l’expression des protéines Giα dans les cellules du muscle lisse vasculaire 

(CMLV) provenant d’aortes de rats spontanément hypertendus (SHR, de l’anglais spontaneously 

hypertensive rats). La présente étude a pour but d’étudier les effets du peroxyde d’hydrogène 

(H2O2), un oxydant qui induit le stress oxydatif, sur l’expression de Giα et sur l’activité de 

l’adénylate cyclase, et d’explorer les voies de signalisation sous-jacentes responsables de cette 

réponse.  

Nos résultats montrent que H2O2 induit une augmentation de l’expression des protéines Giα-2 et 

Giα-3 de manière dose- et temps-dépendante avec une augmentation maximale de 40-50% à 

100 µM après 1 heure, sans affecter l’expression de Gsα. L’expression des protéines Giα a été 

maintenue au niveau normal en presence de AG 1478, AG1295, PD98059 et la wortmannine, des 

inhibiteurs d’EGF-R (de l’anglais epidermal growth factor receptor), PDGFR-β (de l’anglais 

platelet-derived growth factor receptor β), de la voie de signalisation ras-ERK1/2 (de l’anglais 

extracellular regulated kinase1/2), et de la voie de la PI3Kinase-AKT (de l’anglais phosphatidyl 

inositol-3 kinase), respectivement. En outre, le traitement des CMLV avec H2O2 a induit une 

augmentation du degré de phosphorylation d’EGF-R, PDGF-R, ERK1/2 et AKT; et cette 

expression a été maintenue au niveau témoin par leurs inhibiteurs respectifs. Les inhibiteurs 

d’EGF-R et PDGF-R ont aussi induit une diminution du degré de phosphorylation de ERK1/2, et 

AKT/PKB. En outre, la transfection des cellules avec le siRNA (de l’anglais, small interfering 

ribonucleic acid) de EGF-R et PDGFR-β  a atténué la surexpression des protéines Giα-2 et Giα-3 

induite par le traitement au H2O2. 

 La surexpression des protéines Giα induite par H2O2 a été corrélée avec une augmentation de la 

fonction de la protéine Giα. L’inhibition de l’activité de l’adénylate cyclase par de faibles 

concentrations de GTPγS après stimulation par la forskoline a augmenté de 20% dans les cellules 

traitées au H2O2. En outre, le traitement des CMLV au H2O2 a aussi accru l’inhibition de 

l’activité de l’adénylate cyclase par les hormones inhibitrices telles que l’angiotensine II, 

oxotrémorine et C-ANP4-23. D’autre part, la stimulation de l’adénylate cyclase induite par 

GTPγS, glucagon, isoprotérénol, forskoline, et le fluorure de sodium (NaF) a été atténuée de 

façon significative dans les cellules traitées au H2O2. Ces résultats suggèrent que H2O2 induit la 
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surexpression des protéines Giα-2 and Giα-3 via la transactivation des récepteurs des facteurs de 

croissance EGF-R, PDGFR-β et l’activation des voies de signalisation ras-ERK1/2 et PI3K-AKT  

 

Mot-cles: Protéines Giα, peroxyde d’hydrogène, stress oxydant, récepteurs des facteurs de 

croissance, MAP kinases, adénylate cyclase, hypertension 
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Abstract 
 

We recently have shown that reactive oxygen species contribute to the enhanced expression of 

Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats 

(SHR). The present study was undertaken to examine if H2O2, an oxidant that induces oxidative 

stress could also enhance the expression of Giα proteins and associated adenylyl cyclase 

signalling in aortic VSMC and to further explore the underlying signaling pathways responsible 

for this response. Treatment of cells with H2O2 increased the expression of Giα-2 and Giα-3 

proteins but not that of Gsα proteins in a concentration- and time-dependent manner. A maximal 

increase of 40-50% was observed at 100µM and 1h. The enhanced expression of Giα proteins 

was restored to control levels by AG 1478, AG1295, PD98059 and wortmannin, inhibitors of 

epidermal growth factor receptor (EGF-R), platelet-derived growth factor receptor (PDGFR-β), 

the mitogen-activated protein kinase (MEK1/2), and PI3 kinase respectively. In addition, 

treatment of VSMC with H2O2 also increased the phosphorylation of EGF-R, PDGF-R, ERK1/2 

and AKT and this increased phosphorylation was attenuated to control levels by the respective 

inhibitors, whereas the inhibitors of EGF-R and PDGE-R also attenuated the enhanced 

phosphorylation of ERK1/2 and AKT to control levels. Transfection of cells with EGF-R and   

PDGFR-β siRNA followed by H2O2 treatment restored the H2O2-induced enhanced expression of 

Giα-2 and Giα-3 proteins to control levels. The increased expression of Giα proteins by H2O2 

was reflected in the increased Gi functions. The inhibition of forskolin (FSK)-stimulated AC 

activity by low concentration of GTPγS (receptor- independent Gi functions) was increased by 

about 20% by H2O2 treatment. Moreover, treatment of cells with H2O2 also resulted in an 

increased Ang II-, C-ANP4-23, and oxotremorine-mediated inhibition of AC (receptor-dependent 

functions of Gi). On the other hand, Gsα-mediated stimulation of AC by GTPγS, glucagon, 

isoproterenol, FSK, and NaF was significantly decreased in H2O2-treated cells. These results 

suggest that H2O2 increases the expression of Giα-2 and Giα-3 proteins in VSMC through the 

transactivation of EGF-R, PDGFR-β and associated ERK1/2 and PI3K signalling pathways. 

 

Keywords: Giα proteins, hydrogen peroxide, adenylyl cyclase, oxidative stress, MAP kinase, 

growth factor receptors, hypertension. 
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1.1 The Adenylyl cyclase signal transduction system 

The hormone-sensitive adenylyl cyclase system is comprised of three types of plasma 

membrane-associated components:  proteins-coupled receptors for a variety of hormones and 

neurotransmitters; heterotrimeric G proteins; and a catalytic entity (Schramm & Selinger, 1984). 

The first component of the Adenylyl cyclase system interacts with ligands to convert 

extracellular signals into intracellular reactions. The nature of the  extracellular message may 

include extracellular signal molecules, such as low-molecular weight messenger proteins, or 

sensory signals (Krauss, 2003). Adenylyl cyclase systems in mammalian cells are activated by 

prostaglandins, and a variety of peptides hormones (Rodbell, Lin, & Salomon, 1974). It has been 

shown that adrenocorticotropic hormones, glucagon (Pohl, Krans, Kozyreff, Birnbaumer, & 

Rodbell, 1971), and epinephrine (Schramm, Feinstein, Naim, Lang, & Lasser, 1972) bind 

reversibly to specific sites in target cell plasma membranes containing adenylyl cyclase systems 

responding to these hormones (Schramm & Selinger, 1984). Cells can only respond to an 

extracellular message if they express receptors that specifically recognize and bind that particular 

messenger molecule. A given cell contains receptors for many different ligands, so the response 

to one particular ligand may depends on the level of affinity of the other ligands with the cell’s 

signal transduction machinery (Voet, Voet, & Pratt, 2008).  

 

1.1.1 Signalling via transmembrane receptors 

Transmembrane receptors are proteins that span the phospholipid bilayer of the cell membrane. 

These receptors include G protein coupled receptors (GPCRs), receptor protein-tyrosine kinases 

(RTKs), and ligand-gated channels (Karp, 2008). The signalling molecule binds on the 

extracellular side of the receptor, which is thereby activated. Transmission of the signal implies 

specific communication with effectors proteins, and conformational change of receptors. In this 

process, enzymatic activities can be triggered and/or the activated receptor interacts with 

downstream signalling proteins. Each protein in the signalling cascade acts by altering the 

conformation of the downstream protein, an event that activates or inhibits that protein. An 

intracellular chain is set in motion, whose outcome is to trigger a defined biochemical response 

of the target cell (Krauss, 2003).  
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1.1.1.1 G protein-coupled receptors as mechanism of signal transduction 

GPCRs form the largest single family of transmembrane receptors that comprise the adenylyl 

cyclase signal transduction system. GPCRs transduce extracellular stimuli into intracellular 

signal through interaction of their intracellular domains with heterotrimeric G protein (Wheatley, 

et al., 2007). The first GPCR to be structurally characterized at the atomic level was rhodopsin, a 

light-sensing protein in the retina. The mammalian genome is estimated to contain more than 

1000 different GPCRs. The importance of these receptors is also evident in the fact that more 

than 50% of therapeutic drugs target specific GPCRs. The GPCRs include the glucagon receptor, 

the β-adrenergic receptor (to which epinephrine binds), and other proteins that bind peptide 

hormones, odorants, and biogenic amines (Voet, et al., 2008). 

A characteristic structural feature of GPCRs is the presence of 7 transmembrane helices. The 

transmembrane helices of GPCRs are generally uniform in size: 20 to 27 residues which span the 

lipid bilayer. However, their N and C-terminal segments and the loops connecting their 

transmembrane helices vary in length (Krauss, 2003). There are three loops present on the 

outside of the cell, which together form a ligand biding site. There are also three loops present on 

the cytoplasmic side of the plasma membrane that provide biding sites for intracellular signalling 

proteins. GPCRs and other cell-surface receptors function much like allosteric proteins such as 

hemoglobin by alternating between the active and inactive conformation. The inactive 

conformation is stabilized by non-covalent interactions between the transmembrane α helices. 

Ligand biding disturbs these interactions, thus causing the receptor to assume an active 

conformation which is translated by a rotation or movement of the transmembrane α helices 

relative to each other and a change in the conformation of the cytoplasmic loops. This in turn 

leads to an increase in the affinity of the receptor for a G protein present on the cytoplasmic 

surface of the plasma membrane, and a conformational change in the α subunit of the G protein 

with subsequent release of guanosine diphosphate ( GDP) followed by the binding of guanosine-

5’-triphosphate (GTP) (Karp, 2008). One characteristic of GPCRs is that they adapt to long-term 

stimuli by reducing their response to them, a process named desensitization. In the case of the β-

adrenergic receptor, continuous exposure to epinephrine leads to the phosphorylation of one or 

more of the receptor’s Ser residues. The phosphorylation decreases the GPCRs affinity for 

epinephrine, which leads to reduced levels of epinephrine and dephosphorylation of the receptor, 

thereby restoring the cell’s epinephrine sensitivity (Voet, et al., 2008). 



4 
 

  

1.1.2 Structure of guanine nucleotide binding proteins 

Heterotrimeric G proteins were discovered, purified and characterized by Martin Rodbell, and 

Alfred Gilman and colleagues. The discovery confirmed the hypothesis of Rodell and his 

colleagues that a regulatory element is interposed between hormone receptors that control 

adenylyl cyclase activity and the enzyme itself. These proteins are referred to as G proteins 

because they bind guanine nucleotides, either GDP or GTP (Fleming, Wisler, & Watanabe, 

1992). Heterotrimeric G proteins as their name implies, consist of α, β, and γ subunits. At least 

20 different genes for α-subunits, 5 for β-subunits, and 12 for γ-subunits are known in mammals. 

The diversity of the heterotrimeric G proteins is mainly a function of their α-subunits. The α 

subunit confers functional specificity upon a G protein it binds, and also facilitates 

discrimination between different receptor and effectors molecules (Zolk, Kouchi, Schnabel, & 

Bohm, 2000). Most animal cells express at least 10 of the 20 α-subunit gene products. The large 

α-subunit of 39-46 kDa designated as Gα contains the nucleotide biding site and it forms contact 

with one side of the β-subunit and carries the GTPase activity. The whole assembly is anchored 

to the membrane by hydrophobic interactions, one at the N-terminal of the α-subunit and the 

other at the C-terminal of the γ-subunit. The β-subunit is tightly associated with the γ-subunit 

with such high affinity that they only dissociate under denaturing conditions, and together they 

behave as a single entity, the βγ-subunit (Gomperts, Tatham, & Kramer, 2002). 
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Figure 1. The adenylyl cycase signalling system.The binding of hormone to a stimulatory receptor Rs induces the 

binding of heterotrimeric G protein Gs, which in turn stimulates the Gsα subunit to exchange its bound GDP for 

GTP. The Gsα·GTP complex then dissociates from Gβγ and, until it catalyzes the hydrolysis of its bound GTP to 

GDP, stimulates adenylyl cyclase (AC) to convert ATP to cAMP. The binding of hormone to the inhibitory receptor 

Ri triggers the inhibition of adenylyl cyclase by Giα·GTP. R2C2 represents protein kinase A (PKA) whose catalytic 

subunit C, when activated by the dissociation of the regulatory dimer R2·cAMP4, activates various cellular proteins 

by catalyzing their phosphorylation. Source: From Voet. D, Voet.j.G., and pratt, C.W.(2008). Fundamental of 

Biochemistry: Life at the Molecular Level. 2nd edition. Jonh wiley & Son, inc 
 

1.1.2.1 Classification of Heterotrimeric G proteins 

There are four classes of heterotrimeric G protein, including Gs, Gi, Gq and G12/13 (Table 1). 

This classification is based on the comparison of amino acid sequences of the Gα subunits. 

Molecular cloning has revealed four different forms of Gsα (Gsα-1,Gsα-2, Gsα-3, Gsα-4) 

resulting from the differential splicing of one gene and three distinct forms of Giα, Giα-1 Giα-2, 

and Giα-3 encoded by three distinct genes (Bray, et al., 1986). A characteristic of the α-subunits 

of Gs is that they are inhibited by cholera toxin. Giα is distinguished by the ability of pertussis 

toxin to inactivate the protein by transfer of an ADP-ribose moiety from NAD to the α-subunit of 

the Giα protein. Giα also has been shown to inhibit adenylyl cyclase and directly couple cell 

membrane receptors to ion channels (Seamon & Daly, 1982). 



6 
 

  

Table 1 : classification of heterotrimeric G protein according to subunits 

Subunit Tissue Examples of Receptors Effector protein, 

function 

Gs     

 αs ubiquitous  β-adrenergic receptors, 

glucagon receptors 

↑ adenylyl cyclase 

↑ type L Ca2+ channels 

 αolf nasal epithelium olfactory receptor ↑ adenylyl cyclase 

Gi     

 αi-1, αi-2, αi-3 Mostly 

ubiquitous,  

αi-1 absent in 

the vasculature

α2-adrenergic receptor 

AT1 receptor 

ETB receptor 

 

↓ adenylyl cyclase 

↑ type T*Ca2+ channels 

↑ K+ channels 

Gq     

 αq ubiquitous α1-adrenergic receptor 

AT1 receptor 

Endotheline receptor 

↑ phospholipase Cβ 

 α11, α14, α15, α16 

G12    

 

 

 α12, α13 ubiquitous   

Sources :  Krauss, G. (2008). Biochemistry of signal transduction and regulation. (4e ed.). Weinheim; Chichester: 
Wiley-VCH . 

  *Lader, A. S., Xiao, Y. F., Ishikawa, Y., Cui, Y., Vatner, D. E., Vatner, S. F., et al. (1998). Cardiac Gsalpha 
overexpression enhances L-type calcium channels through an adenylyl cyclase independent pathway. Proc Natl Acad Sci U S A, 
95(16), 9669-9674. 
 

  

Gαq is a 42 kDa protein that exhibit slow rate of GDP-GTP exchange and GTP hydrolysis in 

comparison to other Gα-subunits. Gαq activates PLCβ, but is refractory to ADP-ribosylation by 

cholera toxin or pertussis toxin. Go (G “other”) was first discovered as a 39 kDa  pertussis toxin 

substrate in addition to Gi in the brain. Go is very similar to Gi, binds GTP, and has been shown 

to regulate muscarinic receptors for agonists in the brain (Fleming, et al., 1992). 
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1.1.2.2 Activation of guanine nucleotide proteins 

In its unactivated state, a G protein maintains its heterotrimeric state and its Gα subunit binds 

GDP. The G protein is turned on by the interaction with an activated receptor (GPCRs) which 

induces the Gα subunit to exchange its bound GDP for GTP, followed by a dissociation of Gα-

Gβγ complex (Fleming, et al., 1992). Subsequently, the Gα subunit dissociates from the Gβγ and 

binds to an effector such as adenylyl cyclase, activating the effector. The Gβγ dimer also binds to 

effectors such as ions channels, activate phospholipase Cβ, (PLCβ), and phospholipase A. 

Following hydrolysis of GTP, the Gα subunit will dissociate from the effector and reassociate 

with the Gβγ subunit to reform the inactive heterotrimeric G protein (Karp, 2008). The enzyme 

adenylyl cyclase is the catalytic unit of the hormone-sensitive adenylyl cyclase system (Voet, et 

al., 2008). 

 

1.1.3 The enzyme adenylyl cyclase and its regulation 

Many hormones and drugs interact with plasma membrane receptors to bring about the 

appropriate cellular response by generation of second messengers. The first such messenger to be 

identified was adenosine-3’,5’ cyclic monophosphate (cAMP), discovered by Sutherland and 

Rall in the late 1950s (Sutherland & Rall, 1958). Cellular functions are responsive to changes in 

concentrations of cAMP and thus to changes in the activities of adenylyl cyclases, the enzyme 

that catalyze the synthesis of cAMP from ATP (Voet, et al., 2008). 

 

1.1.3.1 Structural organisation of adenylyl cyclases 

Mammalian adenylyl cyclases are expressed in all tissues, but at very low levels, approximately 

0.01-0.001% of membrane protein. Molecular cloning has permitted the identification of several 

novel isoforns of mammalian adenylyl cyclase. Ten different isoforms of adenylyl cylase have 

been identified, which differ in their primary sequence, tissue distribution and regulation 

(Taussig & Gilman, 1995). All of the isoforms of adenylyl cyclase are activated by the α-subunit 

of Gs, and by the diterpene forskolin. Certain isoforms (Type I, III) are also activated by Ca2+-

calmodulin, while some (Type I, V, VI) are inhibited by the α-subunit of the three Gi proteins, 

and Ca2+ (type V and VI). Type I and II adenylyl cyclase also appear to have independent sites 

for interaction with the βγ-subunits of G protein. The type I enzyme is strongly inhibited, while 
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type II, and IV adenylyl cyclase are activated provided Gsα is also present (Sunahara, Dessauer, 

& Gilman, 1996). 

N

C1b

C2b

M1 M2

ATP cAMP + PPi

2Mg2+

Gsα, PKC, Gβγ

Giα

Ca2+,

Ca2+ ·CaM,
PKA 

C2a C1a

Figure 2: Diagram of a typical mammalian adenylyl cyclase.  

The M1 and M2 domains each contain six transmembrane helices. C1a and C2a form the enzyme’s pseudosymetric 

catalytic core. The domains with which various regulatory proteins are known to interact are indicated. 

Abreviations: PKA, protein kinase A; PKC, protein kinase C; CaM, calmodulin. Source: From Voet. D, Voet.j.G., 

and pratt, C.W.(2006). Fundamental of Biochemistry: Life at the Molecular Level.2nd edition. Jonh wiley & Son, 

inc. 

 

Adenylyl cyclases are large transmembrane proteins that consist of two bundles of six 

transmembrane segments. These 120 kD membrane-bound protein each consist of a small N-

terminal domain, along with two repeats of a unit consisting of a transmembrane domain (M) 

followed by two consecutive cytoplasmic domains (C). The interaction between the C1 and C2 

domains is essential for catalysis. The C1a and C2a domains associate to form the enzyme’s 

catalytic core, whereas C1b as well as C1a and C2a bind regulatory molecules (Figure 2).The two 

catalytic domains of the enzyme and their interactions provide a binding site for ATP that 

activates adenylyl cyclase to transform ATP to cAMP. Forskolin and Gsα bind to C2a to activate 
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adenylyl cyclase, and Giα binds to C1a to inhibit the enzyme. Other regulators of adenylyl 

cyclase activity include Ca2+, calmodulin, protein kinase A (PKA), and protein kinase C (PKC) 

(Voet, et al., 2008). 

 

1.1.3.2 Regulation of adenylyl cyclase activity 

The identification of several isoforms of adenylyl cyclase, along with the discovery of distinct, 

type-specific modes of regulation allow for the classification of regulatory patterns. 

 

1.1.3.2.1 Regulation by G protein subunits 

Regulation of adenylyl cyclase by Gsα was the basis for the discovery of G protein. A ligand 

activated GPCR triggers the exchange of Gsα-GDP for GTP. GTP-bound Gsα subsequently 

undergoes conformational changes that facilitate dissociation from the βγ-subunit of G protein. 

Such dissociation allows the α-subunit to interact with adenylyl cyclase. Hydrolysis of Gsα-

bound GTP to GDP terminates activation of adenylyl cyclase by Gsα-GTP after several seconds, 

then Gsα-GDP  reassociates with βγ-subunits (Taussig, Tang, Hepler, & Gilman, 1994). The 

binding of G proteins to the receptors exposes the enzyme binding sites for ATP, which then 

catalyzes the transformation of ATP into cAMP. G protein βγ subunits inhibit type I adenylyl 

cyclase, and the effect of βγ is exerted directly on the enzyme. The concentrations of βγ subunits 

required to inhibit adenylyl cyclase are significantly higher than the concentration of Gsα 

required to activate the enzyme. The source of βγ subunits is presumed to be from Gi or Go since 

only low concentrations of βγ subunits can be achieved by activation of Gsα, while substantially 

higher concentrations can be obtained by activation of Gi or Go. Furthermore, inhibition of type 

I adenylyl cyclase activity by Giα is absent when the Gsα-stimulated activity is examined 

(Taussig & Gilman, 1995). The first evidences that Giα proteins could in fact inhibit adenylyl 

cyclases came from studies of a cell transfected with cDNAs encoding constitutively activated 

(GTPase deficient) mutants of various Gα subunits. Expression of activated Gsα-1,Gsα-2, Gsα-3 

impaired accumulation of cAMP stimulated by either Gsα or forskolin (Sunahara, et al., 1996). 
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1.1.3.2.2 Regulation by phosphorylation 

Adenylyl cyclase catalyzes the synthesis of cAMP from ATP. Cyclic AMP binds to regulatory 

subunits of the cAMP-dependent protein kinase A (PKA), thereby activating the kinase to 

phosphorylate specific Ser or Thr residues on target proteins in the cytosol, and nucleus (Voet, et 

al., 2008). Potential regulation of adenyly cyclase by protein kinase C has been explored. Studies 

have shown that phosphorylation of the enzyme by protein kinase C enhances the activity of 

Type II, VII, and V (type VI is inhibited) adenylyl cyclase. This is a consequence of the 

activation of GPCRs through Gq, followed by activation of PLCβ and generation of diacyl 

glycerol (DAG) (Gomperts, et al., 2002). 

 

1.1.3.2.3 Regulation by Calcium and Forskolin 

Calcium is an important regulator of adenylyl cyclases. Changes in intracellular Ca2+ 

concentration also affect the concentration of cAMP. In association with calmodulin, Ca2+ 

increases the activity of type I, III and VIII adenylyl cyclases. Intracellular concentrations of 

cAMP rise when transfected cells expressing isoforms of the enzyme are exposed to agonists that 

elevate intracellular Ca2+ (Taussig & Gilman, 1995). Another activator of adenylyl cyclase is 

forskolin, a diterpene isolated from the roots of Coleus forskohlii. Forskolin directly activates 

adenylyl cyclase, bypassing all upstream influences including receptors and GTP binding 

proteins. Forskolin also potentiates Gsα-mediated activation of adenylyl cyclase (Gomperts, et 

al., 2002). 

 

1.2 The Adenylyl cyclase system in cardiovascular diseases 

The Adenylyl cyclase/cAMP signal transduction system is one of the biochemical mechanisms 

that regulate arterial tone and reactivity. Hypertensive hormones such as epinephrine, 

isoproterenol increase cAMP formation in rat aorta through their stimulatory effect on adenylyl 

cyclase (Asano, Masuzawa, & Matsuda, 1988). Studies have shown that changes in cardiac 

contractility and myocardial metabolism that occur in heart diseases involved alteration of the 

membrane-bound adenylyl cyclase system (Baumann, et al., 1981). In heart failure and 

hypertension, several signal transduction defects leading to adenylyl cyclase desensitization have 

been demonstrated, such as β-adrenoceptor downregulation, increase of Giα proteins expression, 

and uncoupling of β-adrenergic receptors by an increase of receptor kinase activity (Castellano & 
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Bohm, 1997). Studies have provided evidence that the increase of Giα and desensitization of 

adenylyl cyclase are common features of cardiac hypertrophy in polygenic, monogenic, and 

acquired types of hypertension (Michel, Brodde, & Insel, 1993) 

 

1.2.1 Blood Pressure 

The hydrostatic force that blood exerts against the wall of a vessel and that propels blood is 

called blood pressure. Blood pressure is much greater in arteries than in veins and is highest in 

arteries when the heart contracts during ventricular systole (Campbell & Reece, 2005). The 

maximum pressure exerted in the arteries when blood is ejected into them during systole 

averages 120 mmHg in humans. The minimum pressure within the arteries when blood is 

drained off into the remainders of the vessels during diastole averages 80 mm Hg. In human, 

blood pressure is determined partly by cardiac output and partly by peripheral resistance. 

Contraction of smooth muscles in the walls of the arterioles constricts the tiny vessels, increases 

peripheral resistance, and therefore increases blood pressure upstream in the arteries. When the 

smooth muscles relax, the arterioles dilate, blood flow through the arterioles increases, and the 

pressure in the arteries falls (Guyton & Hall, 2006). Nerve impulses and hormones control 

arterioles wall muscles. Stress, both physical and emotional, can raise blood pressure by 

triggering nervous and hormonal responses that will constrict blood vessels. Cardiac output is 

adjusted in concert with changes in peripheral resistance. This coordination of regulatory 

mechanisms maintains adequate blood flow as the demand on the circulatory system changes 

(Sherwood, Klandorf, & Yancey, 2005). 

 

1.2.2. Mechanisms of blood pressure regulation 

Development and maintenance of a level of arterial blood pressure adequate to perfuse the 

tissues is required for the survival of all mammals. Rapid alterations of arterial blood pressure 

are stabilized by neural reflex and hormonal mechanisms. The nervous system detects changes in 

arterial pressure and provides both rapid stabilization and long term control of blood pressure by 

adjusting level of sympathetic tone (Cowley, 1992). The short and long-term regulation of 

arterial blood pressure is achieved by the interaction of the baroreceptors reflexes, the renin-

angiotensin system and the sympathetic nervous system (Reid, 1992). 
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1.2.2.1. The Renin-Angiotensin system in the regulation of blood pressure 

The renin-angiotensin system plays an important role in the regulation of renal sodium and water 

excretion, and thus in maintaining body sodium and fluid balance. All components of the renin-

angiotensin system are present in the kidney. Renin is secreted by the juxtaglomerular cells in the 

form of prorenin after proteolytic removal of 43-amino acid residue at the N-terminus of 

prorenin. The active form of renin contains 339-343 amino acid residues, with a mass of 37 kDa. 

Renin provides a pathway for the secretion of Angiotensin I which is rapidly converted into 

Angiotensin II (Ang II) by angiotensin converting enzyme (ACE). Ang II, a peptide hormone, is 

the primary product of the renin-angiotensin system. The main effects of Ang II are control of 

cardiovascular, renal and adrenal functions (Carey, 2007). The kidneys secrete the hormone 

rennin in response to reduced sodium chloride, extracellular fluid volume, and arterial pressure. 

Renin then activates angiotensinogen, a plasma protein produced by the liver, into angiotensin I, 

which is converted into AngII. Ang II stimulates the adrenal cortex to secrete aldosterone, which 

stimulates sodium reabsorption by the kidneys. The increased sodium reabsorption by the distal 

portion of the tubule induces water retention, which helps restore the plasma volume, thus being 

important in the long-term control of blood pressure (Sherwood, et al., 2005). 

 

1.2.3 Hypertension 

Hypertension is a cardiovascular condition characterized by sustained high blood pressure. A 

mean arterial blood pressure greater than 110 mm Hg under resting condition is considered to be 

hypertensive; at that level, the diastolic blood pressure is greater than 90 mm Hg and the systolic 

greater than 135 to 140 mm (Guyton & Hall, 2000). Hypertension is generally classified as either 

primary (essential), or secondary hypertension. Essential hypertension or hypertension of 

unknown causes, accounts for more than 90% of cases of hypertension. Many factors have been 

implicated in the genesis of essential hypertension: overproduction of sodium-retaining 

hormones and vasoconstriction, long-term high sodium intake, sedentary lifestyle, and 

inappropriate renin secretion.  

It is estimated that 43 million people in the United States have hypertension or are taking 

hypertensive medication, which represents 24% of the adult population (Carretero & Oparil, 

2000). According to the Canadian hypertension society, hypertension is a substantial health 

concern in Canada, affecting over five millions people (Canadian Hypertension Society, 2009). 
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The incidence of hypertension increases with age. Its prevalence is approximately 50% in the 

population aged 60 to 69 years, and increases to 70% in those older than 70 years (Suri & 

Qureshi, 2006) Several studies have reported the impact of a variety of factors including age, 

race, gender, and body mass index on hypertension. Hypertension is a major risk factor for 

myocardial infarction, stroke, congestive heart failure, and renal diseases (Mulvany, 1991). 

Despite major research efforts, it remains uncertain what triggers hypertension in the general 

population. In most cases, genetic as well as environmental factors are responsible for the 

pathogenesis of hypertension (Lifton, Gharavi, & Geller, 2001). Studies have shown that 

mutations of a family of protein kinases genes WNK1, and WNK4 (With-no-Lysine Ks) cause 

Gordon’s syndrome, a rare Mendelian form of hypertension by increasing renal sodium retention 

(Huang, Kuo, & Toto, 2008). During hypertension, small arteries undergo functional and 

structural changes, resulting in reduced lumen size and increase peripheral resistance (Lehoux & 

Tedgui, 1998). 

 

1.2.3.1 Physiology of hypertension on vascular smooth muscle cells 

During hypertension, the vascular wall is constantly subjected to mechanical forces in the form 

of stretch or tensile stress due to blood pressure, and shear stress due to blood flow. Shear stress 

is principally sensed by endothelial cells located at the interface between the blood and the vessel 

wall. Functional changes in either shear stress or stretch result in vascular remodelling. The 

processes involved in vascular remodelling include cellular hypertrophy and hyperplasia, as well 

as enhanced protein synthesis or extracellular matrix protein reorganization (Lehoux & Tedgui, 

1998). The primary hemodynamic characteristic of essential hypertension is increased peripheral 

vascular resistance which is associated with structural and functional alterations of the 

vasculature (Korner, Bobik, Angus, Adams, & Friberg, 1989). The structural changes include 

reduced vessel lumen diameter and media thickening. At the cellular level, there are hyperplasia, 

hypertrophy, and elongation of VSMC resulting in a smaller lumen and outer diameter 

(Korsgaard, Aalkjaer, Heagerty, Izzard, & Mulvany, 1993; Mulvany, Baandrup, & Gundersen, 

1985). Many factors regulate VSMC function, including vasoactive peptides, such as Ang II and 

endothelin-1 (ET-1) that stimulate vasoconstriction and growth, and vasorelaxing factors, such as 

nitric oxide, prostacyclin, and C-type natriuretic peptide that induce vasodilation (Rubanyi, 

1991). Vascular smooth muscle cells (VSMC) are central to these events. VSMCs detect 
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mechanicals stimuli resulting from pulsatile stretch and transduce them into intracellular signals 

leading to modulation of gene expression and cellular functions such as proliferation, apoptosis, 

migration, and remodelling (Haga, Li, & Chien, 2007).  

Using neonatal rat aortic VSMCs, Wilson and colleagues have shown that cyclical mechanical 

strain induces the production of platelet-derived growth factor (PDGF) αα and ββ, and that the 

strain-induced growth of VSMC was dependent on the autocrine action of PDGF (Wilson, Mai, 

Sudhir, Weiss, & Ives, 1993). Stretching of VSMCs induces a rapid phosphorylation of PDGF 

receptor α independent of its ligand (PDGF) activation (Hu, Bock, Wick, & Xu, 1998). Stretch 

also induces the phosphorylation of epidermal growth factor receptor (EGFR) and its recruitment 

of adaptor proteins Shc and Grb2 (growth factor receptor-bound2), which in turn activate 

extracellular regulated kinases (ERK1/2) (Iwasaki, Eguchi, Ueno, Marumo, & Hirata, 2000). 

Several stretch-induced protein kinase molecules have been identified in VSMCs, including, 

Phosphoinositide-3 kinases (PI3Ks), protein kinase C, nuclear factor kappa-light-chain-enhancer 

of activated B cells (NFkB), Rho family GTPases, and mitogen activated protein kinase 

(MAPKs). Stretching of VSMCs induces PI3K and PKB/AKT activation which can be inhibited 

by pre-treatment of VSMCs with N-acetylcysteine, a scavenger of reactive oxygen species 

(ROS) suggesting the role of ROS in the mechanotransduction of VSMCs (Zhou, et al., 2003). 

 

1.2.3.2 Alteration of G proteins expression in hypertension 

Heterotrimeric guanine nucleotide proteins have been shown to be implicated in various 

pathological conditions including hypertension, diabetes, and heart failures. Alteration of Giα 

proteins levels and adenylyl cyclase activity have been reported in cardiovascular tissus from 

spontaneously hypertensive rats (SHR) and various model of hypertension including 

deoxycorticosterone acetate (DOCA)-salt hypertensive rats (Marcil, de Champlain, & Anand-

Srivastava, 1998). An increased expression of Giα-1, and Giα-2 protein and mRNA in hearts and 

aortas from SHR, as well as in hearts from DOCA-salt hypertensive rats with established 

hypertension has been demonstrated (Marcil, et al., 1998). The enhanced expression of Giα 

protein was shown to occur before the onset of hypertension in SHR and DOCA-salt suggesting 

the implication of increased expression of Giα protein in hypertension (Marcil, Thibault, & 

Anand-Srivastava, 1997). Our laboratory has shown that overexpression of Giα-2 and Giα-3 

proteins precedes the development of hypertension, and that inactivation of the enhanced Giα 



15 
 

  

proteins expression by pertussis toxin attenuates the development of high blood pressure in SHR 

(Li & Anand-Srivastava, 2002).  Furthermore, we have reported that volume overload cardiac 

hypertrophy exhibits decreased expression of Gsα and not of Giα in hearts of Sprague-Dawley 

rats (Di Fusco, Hashim, & Anand-Srivastava, 2000). TsuTsui et al. have reported impaired levels 

of endothelial Giα proteins in atherosclerotic coronary arteries (Tsutsui, et al., 1994). Reduced 

function of Gsα in β adrenoreceptor-adenylyl cyclase system of femoral arteries isolated from 

SHR has also been reported (Asano, Masuzawa, Matsuda, & Asano, 1988). 

 

1.2.3.3 Alteration of adenylyl cyclase/cAMP activity in hypertension 

The elevation of blood pressure in essential hypertension is due to an increase in the peripheral 

resistance of vessels. The increase of the peripheral resistance is attributed to structural changes 

in the vessels, abnormalities in Ca2+ movement, and aberration in cyclic nucleotides metabolism 

(Anand-Srivastava, 1996). It has been shown that the adenylyl cyclase/cAMP system is one the 

biochemical mechanism participating in the regulation of arterial tone (Triner, Vulliemoz, 

Verosky, Habif, & Nahas, 1972). Decreased cAMP level in cardiovascular tissues have been 

implicated in the pathogenesis of hypertension (Ramanathan & Shibata, 1974). The adenylyl 

cyclase/cAMP system is involved in both the control of heart contractility, and vascular smooth 

muscle tone (Bar, 1974). Reduced adenylyl cyclase activity in response to β-adrenergic 

stimulation has been demonstrated in mesenteric vasculature (Amer, Gomoll, Perhach, Ferguson, 

& McKinney, 1974), aorta and myocardium of spontaneously SHR (Anand-Srivastava, 1988). 

Bohm and colleagues have reported the positive inotropic effect of cAMP-phosphodiesterase 

inhibitor pimobendan in failing human myocardium, and the role played by other factors such as 

increased Ca2+ sensitivity of myofilaments in the increase in force of contraction (Bohm, et al., 

1991). In addition to the effect of PKA on myosin light chain kinase (MLCK), G12/13 proteins 

also play a key role in the regulation of vascular tone (Siehler, 2009). Activation of G12/13 by 

ligands such as Ang II, and endothelin activates the guanine nucleotide exchange protein pp115-

RhoGEF, which in turn catalyzes the exchange of bound GDP for GTP on the small GTPase 

RhoA. Downstream target of RhoA-GTP include ROCK, which mediates cell contraction 

through the inhibition of myosin light chain phosphatase (MLCP) (Sward, et al., 2003). 
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1.3 Oxidative stress, redox signalling and cardiovascular diseases 

Oxidative stress is caused by the overproduction of reactive oxygen species (ROS). An 

imbalance between oxidants and antioxidants in favour of the oxidants leads to oxidative stress. 

Oxidants are produced as normal products of aerobic metabolism, but can also be formed at 

higher rates under pathological conditions. Antioxidants include enzymatic and non-enzymatic 

molecules capable of inhibiting the oxidation of other proteins or molecules thereby maintaining 

them in their reduced state (Baynes, 1991). Antioxidants include enzymes such as catalase, 

superoxide dismutase (SOD), glutathione peroxidase, and molecules such as tocopherols 

(Vitamine E), glutathione, ascorbic acid (Vitamine C), and flavonoids (Ames, Shigenaga, & 

Hagen, 1993). Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules 

due to the presence of unpaired valence shell electrons. Reduction-oxidation (redox) reactions 

that generate ROS are important chemical processes that regulate signal transduction 

(Thannickal & Fanburg, 2000). 

 

1.3.1 Sources and chemistry of reactive oxygen species 

ROS include both free radicals, which have oxygen or nitrogen-based unpaired electrons, and 

other species such as hydrogen peroxide (H2O2) that act as oxidants. A primary form of reactive 

oxygen species (ROS) is superoxide anion (O2
-) but biological systems produce other species 

including hydroxyl anion (HO-), peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). In the 

vasculature, ·O2
- anion is produced by a one electron reduction of oxygen using Nicotinamide 

adenine dinucleotide phosphate (NAD(P)H) as an electron donor (Taniyama & Griendling, 

2003). Superoxide has an unpaired electron, which conferts high reactivity and renders the 

molecule unstable. Hydrogen peroxide is mainly produced from dismutation of ·O2
-. This 

reaction can be spontaneous or catalyzed by SOD, of which there are three isoforms, CuZnSOD, 

MnSOD, and extracellular SOD (EC-SOD) (Fridovich, 1997).  

The SOD-catalyzed dismutation is favoured when the concentration of O2
- is low and the 

concentration of SOD high. Unlike ·O2
-, H2O2 is not a free radical and is a much more stable 

molecule. It is lipid soluble, crosses cell membrane, and has a longer half-life than ·O2
- (Han, 

Antunes, Canali, Rettori, & Cadenas, 2003). In biological system, H2O2 is scavenged by catalase 

and glutathione peroxidase to produce H2O molecules (Schafer & Buettner, 2001). Hydrogen 

peroxide can also generate the highly reactive hydroxyl radical HO- in the presence of metal 
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containing-molecules such as Fe2+ (Fridovich, 1997). When ·O2
- is produced in excess, a 

significant amount of ·O2
- reacts with oxide nitrate (NO) to produce ONOO-. In the vasculature, 

·O2
-, H2O2, ONOO-, NO, and HO- are produced to varying degrees. Their production is regulated 

by anti-oxidant enzymes such as catalase, SOD, thioredoxin, glutathione (Thannickal & Fanburg, 

2000). 
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Figure 3. Generation of ·O2
- and H2O2 from NAD(P)H oxidase. Many enzyme systems, including NAD(P)H 

oxidase, xanthine oxidase, and uncoupled nitric oxide synthase (NOS) have the potential to generate reactive oxygen 

species. NAD(P)H oxidase is a multisubunit enzyme, comprising gp91phox( or its homologues, Nox1 and Nox4), 

p22phox, p47phox, p67phox, and p40phox. Abreviations: SOD, superoxide dismutase; GSH, glutathione ; GSH-PX, 

glutathione peroxydase ; GSSG, glutathione disulfide ; H2O2, hydrogen peroxide ; Mox-1, mitogen oxydase 1 ; 

NAD(P)+, nicotinamide-adenine-dinucleotide ; NAD(P)H, nicotinamide-adenine-dinucleotide-phosphate ; NAD(P)H 

oxidase, nicotinamide-adenine-dinucleotide-phosphate oxidase ; NO-, nitric oxide ; O2-, superoxide radical ; OH-

, hydroxyl radical ; ONOO-, peroxynitrite ; Rac, small G protein. Source. Tamara, M.P., Touyz, R.M. Redox 

signaling in hypertesion. (2006). Cardiovascular research.71 :247-258. 

  

Under normal conditions, the rate of ROS production is balanced by the rate of elimination. 

Oxidative stress is the result of the imbalance between the production of ROS and the cellular 



18 
 

  

anti-oxidant capability of biological system. In biological system, ROS have enzymatic sources 

and non enzymatic sources multiple sources (Touyz & Schiffrin, 2004). 

 

1.3.1.1 Enzymatic sources of reactive oxygen species 

Cellular production of ROS occurs from both enzymatic and nonenzymatic sources. Any 

electron-transferring protein or enzymatic system can result in the formation of ROS as by-

products of electron transfer reactions. The generation of ROS in the mitochondria accounts for 

1-2% O2
-, of total production under reducing conditions (Thannickal & Fanburg, 2000). In the 

vasculature, several enzyme systems contribute to ROS formation, including the NAD(P)H 

oxidases, xanthine oxidase, endothelial NO synthases, enzymes of the mitochondrial respiratory 

chain, lipoxygenases, cytochrome P450 monoxygenases, and cyclooxygenases (Clempus & 

Griendling, 2006). Mitochondria generate ROS as byproducts during ATP production via 

electron transfer through cytochrome c oxidases. NAD(P)H oxidase is one of the major sources 

of ROS in the vasculature. Xanthine oxidoreductase catalyzes the oxidation of hypoxanthine into 

xanthine in the process of purine metabolism. Xanthine oxidoreductase exists in two 

interconvertible forms, either as xanthine dehydrogenase or xanthine oxidase. The former 

reduces NAD+, whereas the latter reduces molecular oxygen leading to the production of ·O2
- 

and H2O2 (Touyz, 2004). 

Nitric oxide synthase (NOS) generates ·O2
- in addition to NO. Members of NOS are encoded by 

different genes. There are three isoforms including endothelia NOS (eNOSor NOS3), neuronal 

NOS (nNOS or NOS1) and inducible NOS (iNOS, or NOS1) (Gilkeson, et al., 1997). NOS uses 

L-arginine as a substrate to synthesize NO in a tetrahydrobiopterin (H4B)-dependent manner. If 

the concentration of L-arginine or H4B is low, or if H4B is oxidized, eNOS becomes uncoupled 

and generates significant amounts of ·O2
-  (Stuehr, Pou, & Rosen, 2001). eNOS uncoupling has 

been demonstrated in atherosclerosis, diabetes, and hypertension, all of which are associated 

with activation of the renin-angiotensin system and production of O2
- from eNOS (Taniyama & 

Griendling, 2003).  

 

1.3.1.2 Non enzymatic sources of reactive oxygen species 

Autooxidation of small molecules such as dopamine, epinephrine, flavins and hydroquinones can 

be an important source of intracellular ROS production. In most cases, the direct product of such 
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autooxidation reactions is O2
- (Freeman & Crapo, 1982). Peroxisomes are an important source of 

total cellular H2O2 production. They contain a number of H2O2-generating enzymes including 

glycolate oxidase, acid oxidase, urate oxidase, and fatty acyl-CoA oxidase (Thannickal & 

Fanburg, 2000). The cellular production of ROS may trigger the production of more ROS via a 

radical chain reaction. The reaction between ROS and polyunsaturated fatty acids within cell 

membrane may result in a fatty acid peroxyl radical (R-COO-) that will react with adjacent fatty 

acid side chains and initiate production of more lipid radicals (Zalba, et al., 2001). Arachidonic 

acid metabolism involving lipoxygenase and cyclooxygenase-dependent pathway leading to 

leukotriene synthesis has been reported to generate ROS. Lipoxygenase activity also has been 

implicated in redox-regulated signalling by Ang II, and EGF (Thannickal & Fanburg, 2000). 

 

1.3.2 The NADPH oxidases 

The NADPH oxidases are enzymes that catalyze the production of superoxide from oxygen and 

NADPH. They are present in vascular tissue and phagocytic cells such as neutrophils, 

macrophages, and eosinophils (Griendling, Sorescu, & Ushio-Fukai, 2000). 

 

1.3.2.1 Structure and expression profile of vascular NADPH oxidases 

The vascular NAD(P)H oxidase is a multimeric protein complex responsible for the formation of 

·O2
-. In vascular smooth muscle cells (VSMC), O2

- and H2O2 production are mainly intracellular 

(Griendling, Minieri, Ollerenshaw, & Alexander, 1994).The vascular NAD(P)H consists of four 

major subunits: a cytochrome b558, comprising of two cell membrane-associated gp91phox (or 

gp91phox (nox2) homologues, nox1 and nox4) and p22phox, and two cytosolic components, 

p47phox and p67phox. A low molecular weight G protein rac participates in subunits assembly 

and activation of the enzyme (Griendling, Sorescu, Lassegue, & Ushio-Fukai, 2000). The rac 

proteins are kept inactive by binding to a guanine nucleotide dissociation inhibitor, which 

prevents the exchange of guanine nucleotides from the rac proteins. An essential component of 

the NAD(P)H oxidase is gp91phox to which are bound the electrons carrying components of 

oxidase such as flavine adenine dinucleotide, and a pair of hemes molecules. P47phox is the 

protein that carries the cytosolic proteins to the membrane proteins to assemble the active 

oxidase. p67phox contains two Src homology 3(SH3) domains, one in the middle of the protein, 

and one near the carboxyl terminus. The SH3 domains interact with p22phox to activate the 
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enzyme. p22phox is located in the membrane, along with gp91phox and has a tail in the cytosol. 

When p22phox is phosphorylated, it binds to p47phox, an interaction that is critical in the 

activation of the enzyme (Brandes & Kreuzer, 2005). The distribution of catalytic subunits of 

NAD(P)H oxidase in VSMC is tissue and species-specific. Aortic smooth muscle cells express 

Nox1 and Nox4 in rodents, and also Nox5 in humans. In contrast, VSMC from human resistance 

arteries contain Nox2 and Nox4, but no Nox1 (Clempus & Griendling, 2006). Vascular 

NAD(P)H oxidase is a constitutive enzyme, but it is regulated by Ang II, platelet derived growth 

factors (PDGF), thrombin, and tumor growth factor-α (Zalba, et al., 2001). 

 

1.3.3 Oxidative stress in hypertension 

The impact of ROS in vascular functions and the development of hypertension has been studied 

extensively. It has been shown that·O2
-  inactivates endothelium-derived NO, one of the most 

important vasodilator, thereby promoting vasoconstriction (Zicha, Dobesova, & Kunes, 2001). In 

order to counteract the hypertensive effect of ROS, several studies have used exogenous 

administration of antioxidants to reduce blood pressure in animal model (Boshtam, Rafiei, 

Sadeghi, & Sarraf-Zadegan, 2002), and in human hypertension (Boshtam, et al., 2002; Duffy, et 

al., 2001). Nevertheless, the results of such studies are not conclusive and the relationship 

between oxidative stress and hypertension is continuously being investigated. 

 

1.3.3.1 Oxidative stress in genetic models of hypertension 

Recent work by Suzuki and associates (1995) provided evidence regarding the role of ROS in the 

pathophysiology of hypertension. They demonstrated that O2
- is increased in venules and 

arterioles of SHR, and the administration of heparin-binding SOD, which is localized within the 

vessel wall normalised the blood pressure of SHR (Suzuki, Swei, Zweifach, & Schmid-

Schonbein, 1995). Genetic models of hypertension, such as SHR and stroke-prone SHR exhibit 

enhanced NAD(P)H oxidase-mediated ·O2
-  generation in resistance arteries, aorta, and kidneys. 

These processes are associated with increase expression of NAD(P)H oxidase subunits 

particularly p22phox, and p47phox (Touyz & Schiffrin, 2004). We have shown an increase 

expression of NAD(P)H oxidase subunits Nox4, and p47phox in VSMC from SHR (Saha, Li, & 

Anand-Srivastava, 2008). Furthermore, Fukui et al demonstrated that chronic infusion of Ang II 

in normotensive rats upregulates vascular p22phox mRNA and increases NADPH oxidase-
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derived superoxide. Both the hypertension and the increase in p22phox mRNA were prevented 

by pretreatment with SOD (Fukui, Lassegue, Kai, Alexander, & Griendling, 1995). Diminished 

NO bioavailability as a consequence of enhanced vascular ·O2
- generation also contribute to 

oxidative stress in SHR and stroke-prone SHR. Treatment of rats with antioxidant vitamins, 

NADPH inhibitors, AT1 blockers, BH4, and SOD mimetics attenuate to varying degree the 

development of hypertension in SHR and stroke-prone SHR (Sharma, Hodis, Mack, Sevanian, & 

Kramsch, 1996).Vascular oxidative stress has also been demonstrated in DOCA-salt rats. An 

enhanced ·O2
- production present in the aorta of these rats is associated with an increased 

NAD(P)H oxidase activity due to the increased vascular Ang II release as a consequence of 

nephrectomy (Zalba, et al., 2001). NO is an important endogenous antihypertensive factor that 

plays a role in sodium excretion and the regulation of blood pressure. A dysfunction of NOS in 

tissues has been observed in Dahl salt-sensitive rats. In addition, genetic deletion of eNOS has 

been proven to lead to hypertension in mice. NOS inhibitor L-nitro-arginine methyl ester (L-

NAME) leads to a decrease in blood flow, the retention of sodium, and the development of 

hypertension in rats (Nakanishi, Mattson, & Cowley, 1995). 

 

1.3.3.2 Oxidative stress in human hypertension 

Clinical studies have shown the occurrence of increased ROS production in humans with 

essential hypertension. The level of ROS scavengers, such as vitamine E, glutathione, and SOD, 

have been reported to be decreased in hypertensive patients (Sagar, Kallo, Kaul, Ganguly, & 

Sharma, 1992). Berry et al have shown that NAD(P)H oxidase is the source of basal·O2
-  

production in human internal arteries and saphenous veins, and that Ang II increases ·O2
-  in 

human arteries. This effect is mediated by NADPH oxidase and inhibited by the AT1 receptor 

antagonist losartan (Berry, et al., 2000). Activation of the renin-angiotensin system has been 

proposed as a major mediator of NAD(P)H oxidase activation and ROS production in human 

hypertension. Some of the therapeutic blood pressure-lowering effects of AT1 receptors blockers 

and ACE inhibitors have been attributed to inhibition of NADPH oxidase activity (Touyz & 

Schiffrin, 2004). Several reports have shown the role of Ang II in NADPH subunits expression 

and activation (Touyz, et al., 2003).  
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1.3.4 Vasoactive peptides as inducers of oxidative stress 

Vasoactive peptides such as Ang II and endothelin-1 mediate part of their responses through 

ROS generation (Griendling & Ushio-Fukai, 2000; Li, Watts, et al., 2003). In conditions 

associated with vascular damage such as hypertension, these peptides increase ROS production 

by activating NADPH oxidase (Touyz, Yao, Viel, Amiri, & Schiffrin, 2004). 

 

1.3.4.1 Oxidative stress and angiotensin II 

Ang II, a key component of the renin-angiotensin system regulates blood pressure, plasma 

volume via aldosterone-regulated sodium excretion, sympathetic nervous activity, and also plays 

a role in vascular remodelling in hypertension (Touyz & Schiffrin, 2000). In mammalian cells, 

Ang II mediates its effects via at least two plasma membrane receptors, AT1 and AT2. These 

receptors belong to the 7-transmembrane, GPCR family (Horiuchi, Akishita, & Dzau, 1999). 

Ang II, also regulates a variety of physiological functions including cell growth, and apoptosis 

(Paul & Ganten, 1992). Ang II stimulates many signalling pathways leading to cell contraction 

and cellular hypertrophy. In VSMCs, Ang II induces cellular hypertrophy by acting via G protein 

coupled AT1 receptors (Berk, Vekshtein, Gordon, & Tsuda, 1989; Geisterfer, Peach, & Owens, 

1988). In endothelial and VSMc, Ang II increases the production of ·O2
- via the activation of 

membrane-associated NAD(P)H oxidase. The ·O2
- production upon Ang II stimulation is rapidly 

converted to H2O2 by SOD (Munzel, Hink, Heitzer, & Meinertz, 1999).  

Griendling et al have demonstrated that Ang II-induced cellular hypertrophy is mediated by 

intracellularly produced H2O2. The reduction of NAD(P)H oxidase activity by transfection of 

antisense p22phox inhibits both H2O2 production and hypertrophy. In addition, infusion of Ang 

II in rats upregulated vascular p22phox mRNA and increased NAD(P)H oxidase-derived ·O2
- 

(Griendling, et al., 1994). It has been reported that Ang II treatment of A10 VSMC increases the 

production of ·O2
- and the expression of Nox4 and p47phox proteins of NADPH oxidase (Saha, Li, 

& Anand-Srivastava, 2008). Furthermore, the Ang II-induced phosphorylation of ERK1/2 is due 

to enhanced oxidative stress, since treatment of A10 VSMC with Diphenyleneiodonium (DPI) an 

inhibitor of NAD(P)H oxidase attenuates the Ang II-induced phosphorylation of ERK1/2 (Li, 

Lappas, & Anand-Srivastava, 2007). 
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1.3.4.2 Oxidative stress and endothelin-1 

Endothelin-1 (ET-1) is a 21-amino-acid polypeptide produced by vascular endothelial cells. ET-1 

has been implicated in the pathophysiology of many cardiovascular diseases including 

hypertension, atherosclerosis and hypercholesterolemia (Barton, et al., 1998). In addition to its 

vasoactive effects, ET-1 also induce cell proliferation, tissue remodelling and cell survival in 

VSMCs and endothelials cells (Salani, et al., 2000; Ziche, Morbidelli, Donnini, & Ledda, 1995). 

ET-1 has been shown to exert its biological effects through binding to specific G protein-coupled 

membrane receptors ETA, and ETB subtypes (Pollock, 2005). It has been shown that ET-1 

activates NAD(P)H oxidase and induces ·O2
-  production in cultured endothelial and smooth 

muscle cells (Callera, Tostes, Yogi, Montezano, & Touyz, 2006). Although Ang II is a major 

stimulus of vascular production of O2
- in high-angiotensin hypertension, studies have 

demonstrated that ET-1 plays a major role in increasing vascular ·O2
-  in low-renin hypertension, 

such as DOCA-salt model, an effect that is partially mediated by the ETA receptor/NAD(P)H 

oxidase pathway (Li, Fink, et al., 2003). 

 

1.4 Oxidative stress and signalling 

Reactive oxygen species can trigger the activation of several signalling pathways that influence 

cytotoxicity, cell proliferation, and apoptosis. ROS are responsible for the phosphorylation of a 

variety of proteins kinases and transcription factors (Wang, Martindale, Liu, & Holbrook, 1998). 

 

1.4.1 Receptor tyrosine kinase as mechanism of signal transduction 

Protein-tyrosine phosphorylation is a mechanism of signal transduction that appeared with the 

evolution of multicellular organisms. Over 90 differents protein-tyrosine kinases are encoded by 

the human genome. These kinases are involved in the regulation of growth, cell migration and 

differentiation, inflammation, and apoptosis. Protein-tyrosine kinases are divided in two groups: 

Receptor protein-tyrosine kinases (RTKs) which are integral membrane proteins with an 

extracellular ligand binding domain, and non-receptor or cytoplasmic protein tyrosine kinases 

(Karp, 2008). Insulin and many other growth factors such as EGF and PDGF do not act via 

GPCRs and cAMP dependent pathways. Instead, these hormones and growth factors bind to 

RTKs, whose C-terminal domains have tyrosine kinase activity. RTKs contain a single 

transmembrane segment and are monomers in the unliganded state. Ligand binding causes two 
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monomeric receptors to form a dimer, a process called dimerization. The insulin receptor is 

unusual in that it is a dimer in the unliganded state; therefore ligand biding does not induce 

conformational change in the receptor. When a RTK dimerizes, the cytoplasmic tyrosine kinase 

cross-phosphorylate each other on specific tyrosine residues. This autophosphorylation activates 

the tyrosine kinase so it can phosphorylate other substrates (Voet, et al., 2008). 

 

1.4.2 Signalling pathways activated by Reactive oxygen species 

ROS are involved in the regulation of many signal transduction pathways. They influence 

cellular processes associated with growth and inflammation. Exogenous H2O2 affects the 

function of various proteins, including protein kinases, protein phosphatases, transcription 

factors, phospholipases, ion channels, and G proteins (Rhee, Bae, Lee, & Kwon, 2000). ROS 

activates mitogen-activated protein (MAP) kinases, ERK1/2, p38MAP kinase, c-jun N-terminal 

kinase (cJNK) (Touyz & Schiffrin, 2004). Non-receptor tyrosine kinases such as c-Src, Pyk2, 

janus kinase (JAK2) are regulated by ROS. Reactive oxygen species modulate intracellular free 

Ca2+ concentration, an important determinant of vascular contraction and dilation. H2O2 

increases Ca2+ in VSMC and endothelial cells. These effects are attributed to redox-dependent 

inositol triphosphate-induced Ca2+ mobilization which increases Ca2+ influx and decreases Ca2+-

ATPase activation (Lounsbury, Hu, & Ziegelstein, 2000). Exogenous H2O2 induces tyrosine 

phosphorylation and activation of PDGFR and EGFR, probably due to ROS-mediated inhibition 

of tyrosine phosphatases. Protein tyrosine phosphatases (PTP) are susceptible to oxidation and 

inactivation by ROS (figure 4) (Touyz & Schiffrin, 2004). Sue Goo Rhee et al, have shown that 

Growth factors-induced H2O2 production requires the activation of phosphatidyl inositide 3-

kinase (PtdIns 3-kinase) which subsequently provide phosphatidylinositol-3,4,5-triphosphate that 

recruits and activates a guanine nucleotide exchange factor of Rac, which is required for the 

activation of NADPH oxidase (Rhee, Chang, Bae, Lee, & Kang, 2003). 
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Figure 4. Redox-dependent signaling pathways by ROS in VSMC. Intracellular ROS activates redox-sensitive 

MAP kinases, tyrosine kinases, ions channels, and MMPs. Tyrosine phosphatases are negatively regulated by ROS, 

which further increases the activity of tyrosine kinase and MAP kinase. ROS also influence gene expression by 

activating transcription factors. Activation of these redox-sensitive pathways results in cellular responses including 

altered vascular tone, increased VSMC growth, inflammation, and increase deposition of extracellular matrix 

protein, leading to vascular remodelling, and hypertension. Abreviations: ROS, reactive oxygen species; AngII, 

angiotensin II; SOD, superoxide dismutase; MMP, matrix metalloproteinase; MAPK, mitogen activated protein 

kinase; +, stimulatory effect; -, inhibitory effect. Sources. Touyz M.R., (2005). Intracellular mechanisms involved in 

vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Experimental Physiology.90:449-

455. Touyz, R.M., Schiffrin, E.L. Reactive oxygen species in vascular biology: implications in 

hypertension.(2004).122:339-352. 

 

1.4.3 Reactive oxygen species and Mitogen activated proteins kinases 

Mitogen-activated protein kinases (MAPK) are serine/threonine kinases whose phosphorylation 

mediates nuclear transduction of extracellular signals leading to activation of transcription 

factors, and enhance gene expression. The mammalian MAPKs are grouped into six major 
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subfamilies, among which three are best characterized: the extracellular-regulated kinase1/2 

(ERK1/2) also known as p44-kDa MAPK and p42-kDa MAPK respectively, the c-jun N-

terminal protein kinase (c-JNK), and the p38 MAPK. This classification is based on the presence 

of  different amino acids in their phosphorylation motif, Glu for ERK1/2, Pro for c-JNK, and Gly 

for p38 MAPK (Touyz & Berry, 2002). 

 

1.4.3.1 The extracellular-regulated kinase (ERK) pathway 

The extracellular-regulated kinase (ERK) signaling pathway was the first MAP kinase cascade to 

be characterized. The ERK pathway is involved in cell growth, proliferation and survival. There 

are several ERKs, the best characterized are: the 44-kDa MAPK (ERK1), the 42-kDa MAPK 

(ERK2), and the 63k-Da MAPK (ERK3).The 42-kDa MAPK was the first mammalian MAPK to 

be identified as a 42-kDa protein that increases its phosphorylation upon stimulation by 

mitogens, hence the name. It was later found that other stimuli such as growth factors, cytokines, 

and ligands for G protein linked receptors also activate p42MAPK (Torres, 2003). In the heart, 

ERK1 is the most highly expressed ERK. Induction of MAPK activation involves 

phosphorylation by a MAPK also known as MEK. MEKs (MEK1/2) are regulated by other MEK 

kinases, including Raf-1, and Mos. MEK1 and MEK2 function as upstream MAPKK and the Raf 

proteins as MAPKKK (figure4). MEKs activate MAPKs by dual phosphorylation on a tyrosine 

and threonine residue lying within the phosphorylation motif (TyrXThr) in the activation loop 

(Ruwhof & van der Laarse, 2000).  

The ERK pathway can be stimulated upon G protein coupled receptor activation by hormones 

such as ET-1, Ang II, and through receptors protein-tyrosine kinases activation by growth 

factors. The ERK pathway can also be stimulated by non receptor protein tyrosine kinase such as 

c-Src (Chang & Karin, 2001). The ERK phosphorylation cascade is initiated by the binding of a 

hormone such as Ang II to AT-1 receptors, which induces Shc-Grb2-Sos formation (tyrosine 

phosphoryaltion of Src homology domain), and activation of Raf. The activation of Raf may 

involve PLC and PKC, which is independent of tyrosine kinase and Ras (Kolch, et al., 1993). 
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Figure 5. MAP kinase signal transduction pathway. The phosphorylation of various mitogen activated protein (MAP) kinase, 

ERK, JNK, and p38 leads to activation of specific transcriptions factors. Abreviations: ERK1/2, extracellular regulated kinase 

1/2: ERK1/2; JNK1/2/3, c-jun-N-terminal kinase 1/2/ 3 ; MAP3K5, mitogen-activated protein kinase kinase kinase 5 ; MAPK, 

mitogen-activated protein kinase ; MAPKK, mitogen-activated protein kinase kinase ; MAPKKK, mitogen-ativated protein 

kinase kinase kinase ; MEK1/2, MAP/extracellular-signal regulated kinase 1/2 ; MEKK, MAP/extracellular-signal regulated 

kinase kinases; ASK, apoptosis signal regulated kinase;Ras, rat sarcoma; MEF, myocyte enhance factor; ATF-2, activating 

transcription factor 2.Sources. Pandya. N., Santani. D, and Jain,N. (2005). Role of mitogen-activated protein (MAP) kinases in 

cardiovascular diseases. Cardiovasc Drug Rev, 23(3), 247-254. Hommes, D.W.,Peppenlenbosch,M. P.,and Deventer., 

S.J.H.(2003). Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Signal 

transduction,52 :144-151. 

 

Once phosphorylated, ERKs translocate to the nucleus to phosphorylate transcriptions factors, 

and thereby regulate gene expression of cell-cycle related protein. In VSMC, another 

downstream target of ERK is the serine/threonine kinase pp90rsk, which phosphorylates the S6 

ribosomal protein and induces protein synthesis (Touyz & Berry, 2002). Other downstream 

targets of ERKs include cyclooxygenase-2, microtubule associated protein, Ca2+ channels, and 

the Na+/H+ exchanger (Robinson & Cobb, 1997). 
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1.4.3.2 The p38MAP kinase pathway 

There are four p38MAPKs encoded by four different genes: p38MAPKα, p38MAPKβ, 

p38MAPKγ, and p38MAPKδ. The p38MAPKs were first defined in a screen for drugs inhibiting 

tumor necrosis factor α-mediated inflammatory responses (Lee, et al., 1994). The p38MAPKs 

play an important role in inflammatory responses, apoptosis, and inhibition of cell growth. The 

p38MAPK are activated by dual specific kinases, MKK3, MKK4, and MKK6 (figure 5), which 

selectively phosphorylate particular isoforms, with MKK3 acting on the alpha and gamma 

isoforms. P38MAPKs are activated by other stimuli such as hormones, ligands for GPCR, and 

stresses such as heat shock and osmotic shock (Johnson & Lapadat, 2002). Downregulation of 

p38 activation is achieved by specific phosphatases capable to dephosphorylate activated p38 

MAP kinases. The downstream targets of p38 are either other kinases or transcription factors 

such as ATF-2 and MEF2 (Hommes, Peppelenbosch, & van Deventer, 2003). The p38MAPK 

pathway has been implicated in many pathological conditions including cardiac ischemia, 

cardiac hypertrophy, ischemia/reperfusion injury, and arterial remodelling in hypertension. 

Furthermore, p38MAPK is an essential component of the redox-sensitive signaling pathways in 

Ang II-activated VSMC (Touyz & Berry, 2002). 

 

1.4.3.3 The c-Jun N-terminal protein kinase (JNK) pathway 

The JNKs and p38MAPK pathways were initially identified as stress-activated protein kinases 

(SAPKs), since they were activated by environmental stress. It is now clear that they belong to 

two different pathways due to differences in their phosphorylation motif, in their upstream 

activators, and their downstream targets (Sugden & Clerk, 1998). The c-jun N terminal kinases 

were named after c-jun, a DNA binding protein which is an important regulator of gene 

expression. The JNKs bind and phosphorylate c-jun, thus increasing its transcriptional activity. 

The JNKs are encoded by three genes yielding three isoforms: JNK1α, JNK2β, and JNK3γ. All 

isoforms have a molecular weight of approximately 46 or 54 kDa. The upstream activators of 

JNKs are not well-defined in heart tissues. MEK4 and MEK7 appear to activate JNKs, and 

MEKK5 is likely an upstream activator of MEK4 in the JNK pathway at least in vitro (Wang, et 

al., 1997). Initiation of the JNK pathway may be triggered by Rac and cdc42, members of the 

Rho family of small G proteins (Minden, Lin, Claret, Abo, & Karin, 1995). The JNK pathway 
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plays a role in mechanical stress-induced hypertrophy via phosphorylation of transcription 

factors c-jun, and ATF2. JNKs also play a role in apoptosis (Ruwhof & van der Laarse, 2000) 

 

1.4.4 The phosphoinositide 3-kinase signalling pathways 

The Phosphoinositide-3 kinases (PI3Ks) are lipid kinases involved in the regulation of cell 

growth, proliferation, apoptosis, and cytoskeletal remodeling. The PI3Ks are characterized by 

their ability to phosphorylate the 3’-OH position of the inositol ring of inositol phospholipids 

producing phosphatidylinositol-3-phosphate (PtdIns(3)P), phosphatidylinositol-3,4-bisphosphate 

(PtdIns(3,4)P2),  and phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3). There are several 

isoforms of PI3Ks in mammalian cells with distinct substrate and forms of regulation. The class I 

PI3Ks are heterodimers comprised of a p110 catalytic subunit and a regulatory/adaptor subunit 

(p85) (Gomperts, et al., 2002). This class is further divided into subclass IA, which is activated 

by receptors with protein tyrosine kinase activity, and the subclass IB, which is activated by 

receptors coupled with G proteins. Class I PI3Ks have been the focus of PI3K studies since they 

are generally coupled to extracellular stimuli. The predominant substrate for Class I PI3K is 

PtdIns(4,5)P2, and hence the primary product of their action is PtdIns (3,4,5)P3.  

Class II PI3Ks are large (170-210 kDa) proteins that have a catalytic domain that is 45-50% 

similar to that of class I PI3Ks, however, they lack a regulatory subunit to function, and comprise 

three different isoforms (α, β, and γ) that diverge in the N terminus and present different domains 

within the C terminus (Cantrell, 2001). Class II PI3K is involved in membrane trafficking and 

receptor internalization and can be activated in response to RTKs, and cytokine receptors 

(Engelman, Luo, & Cantley, 2006). Class III PI3Ks are represented by the human homologues of 

the yeast gene product VPS34 (vacuolar protein sorting human), they only phosphoryalte PtdIns 

to produce PtdIns(3)P, and are thought to regulate vesicle transport (Cantrell, 2001). 

 

1.4.4.1 Activation mechanisms of the phosphoinositide 3-kinase 

Receptor protein tyrosine kinases and non-receptor tyrosine kinases such as c-Src activate the 

Class IA PI3K through interaction with the SH2 domain of the p85 regulatory subunits, which 

leads to allosteric activation of the catalytic subunit. PI3K activation leads to PtdIns (3,4,5)P3 

production, which regulates the activity of  series of protein kinases including the Ser/Thr-

specific kinase AKT/PKB, PLCγ, and protein kinase C (Gomperts, et al., 2002).       
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PtdIns(3,4,5)P3 ,and PtdIns(3,4)P2 bind to the PH domain of PKB, recruiting the kinase to the 

plasma membrane. PKB/AKT is phosphoryalted on the Thr308 in the kinase activation loop and 

on the Ser473 in a hydrophobic region of the C-terminus (Cantrell, 2001). Once phophorylated, 

PKB mediates the activation and inhibition of several targets resulting in cell survival, growth, 

and proliferation. The PI3K pathway is activated by insulin thereby mediates glucose transport, 

lipid metabolism, and glycogen synthesis. Furthermore, PKB has an inhibitory effect on 

apoptosis and programmed cell death. PI3K can be activated by guanine-nucleotide-binding 

proteins. Signals originating from transmembrane receptors can be transmitted from Ras protein 

to PI3K. Gβγ dimmers directly activate the PI3Kβ and γ subtypes (Gomperts, et al., 2002).  

 

1.4.5 MAPK and PI3K activation by reactive oxygen species 

Viedt and colleagues demonstrated that intracellular ROS are critical for AngII-induced 

activation of p38MAPK, JNK and ERK5 in VSMC, whereas phosphorylation of ERK1/2 appears 

to be redox insensitive. Furthermore, treatment of VSMC with the free radical scavenger NAC or 

the inhibitor of NADPH oxidase DPI (diphenyl iodonium chloride) antagonized the stimulatory 

effects of Ang II on JNK and p38 MAPK but not ERK1/2 activity (Viedt, et al., 2000). 

Phosphorylation of growth factor receptors is an important step in MAPK activation by Ang II. 

Activation of growth factors also triggers ROS generation (Bae, et al., 1997). Touyz et al. have 

shown that Ang II stimulates production of ROS in part through transactivation of IGF-R and 

EGF-R. Inhibition of RTKs and reduced ROS bioavailability decreased Ang II-induced 

phosphorylation of p38MAPK and ERK5, but not of ERK1/2 (Touyz, et al., 2003). The role of 

oxidative stress in ERK1/2 phosphorylation in A10 VSMC has also been reported. The enhanced 

phosphorylation of ERK1/2 was attenuated to control level by antioxidant suggesting the role of 

ROS in the enhanced ERK1/2 phosphorylation (Li, et al., 2007). Exogenous H2O2 stimulates 

AKT/PKB phosphorylation in VSMC suggesting that AKT/PKB phosphorylation is redox-

sensitive (Crossthwaite, Hasan, & Williams, 2002). Ushio-Fukai and colleagues demonstrated 

that Ang II-induced PKB phosphorylation is significantly inhibited by both the NAD(P)H 

oxidase inhibitor DPI and by overexpression of catalase, suggesting the role of ROS as potential 

signal transducers linking the AT1 receptor to the PKB pathway in VSMC (Ushio-Fukai, et al., 

1999). 
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1.4.6 Mechanism of activation of growth factor receptors 

Cell surface receptors integrate extracellular signals such as hormones, neuropeptides, growth 

factors, thus regulating signal transduction pathways and cellular responses. 
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 Figure 6. Signal transduction of GPCR and receptor tyrosine kinase. Ligand binding to growth factor receptors 

(EGF-R, PDGF-R) stimulates autophosphorylation of the receptors which then bind SH2 domains of the adaptor 

protein Grb2. Grb2 is complexed to the guanine nucleotide factor Son-of-sevenless(Sos), which then stimulates the 

exchange of RasGDP into RasGTP. Ras then activates the ERK cascade through Raf and MEK. 

Autophosphorylation of growth factor receptors activates PI3K which phosphorylates PKB/AKT. Extracellular 

ligand binding to GPCRs leads to activation of trimeric G-protein and subunits dissociation which. Gα, and Gβγ 

subunits elicit intracellular signals trough protein-protein interactions. The binding of insulin to the extracellular αα 

subunits triggers the phosphorylation of insulin receptor substrate 1, which activates PKB through p110, and p85. 

Abbreviations: Sos, son-of-sevenless;c-Src, cellular Sarcoma; Grb2, growth factor receptor-bound 2; DAG, diacyl 

glycerol; PIP2, phosphatidylinositol-3,4-bisphosphate; PLCγ, phospholipase Cγ; IRS-1, insulin receptor substrate 1; 

PKC, protein kinase C; PKB, protein kinase B. Sources. Wetzker. R., Bohmer, F.D. Transactivation joins multiple 

tracks to the ERK/MAPK cascade (2003). Molecular Cell Biology,4:651-657. Hunyady.L., Catt.K.J.  Pleiotropic 

AT1 Receptor Signaling pathways Mediating physiological and Pathogenic Actions of Angiotensin II. Molecular 

Endocrinology (2006). 20(5):953-970. 
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Many growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor 

(EGF), and fibroblast growth factor (FGF) bind to receptors with tyrosine kinase activity in order 

to regulate cellular growth (Karp, 2008). 

 

1.4.6.1 Activation of epidermal growth factor receptors  

The EGF-Rs are members of the RTKs superfamily of receptors that possess intrinsic protein 

tyrosine kinase activity. The EGF-Rs are 170 kD glycoproteins that span the membrane via one 

α-helical segment of 23 amino acids connecting a large glycosylated extracellular ligand binding 

domain and an intracellular tyrosine kinase domain (Goldkorn, et al., 1998). The EGF-Rs were 

the first RTK to be characterized by molecular cloning, and the first proteins tyrosine kinase 

receptors to be shown to dimerize after ligand binding. The EGF-R family consists of four 

RTKs, EGFR(ErbB1), HER2(ErbB2), HER3(ErbB3), and HER4(ErbB3) (Prenzel, Fischer, 

Streit, Hart, & Ullrich, 2001). While EGFR has many ligands such as EGF, and TGFα, a ligand 

for ErbB3 and ErbB4 are the various isoforms of the neurogulin. All EGFR family are 

characterized by a structure consisting of an extracellular binding domain, a single hydrophobic 

transmembrane region, and the intracellular part containing the tyrosine kinase domain (Ullrich 

& Schlessinger, 1990).  

Ligand-induced receptor dimerization and subsequent autophosphorylation of tyrosine residues 

creates docking site for adaptor proteins or enzymes with SH2 (Src homology 2 domain) or PTB 

(phosphotyrosine binding) domains. Adaptors such as Shc, Grb2-Sos (growth factor receptor-

bound protein 2 – son of sevenless) bind to activated EGFR in order to induce the activation of 

the MAP kinases (Jones & Dumont, 1999). Activation of  EGFR also triggers the 

phosphorylation of PLC which hydrolyzes phosphatidyl inositol-4,5-biphosphate (PIP2) into 

inositol-(1,4,5)-triphosphate(IP3) and diacyl glycerol (DAG) with subsequent generation of 

calcium (Prenzel, et al., 2001). EGFR-induced activation of PI3K is relatively weak compared to 

other RTKs since EGFR has no binding site for the SH2-domain of PI3K (Soltoff, Carraway, 

Prigent, Gullick, & Cantley, 1994). The adaptor protein Gab1 mediates the activation of PI3K by 

the EGFR and a report by Rodrigues and colleagues demonstrate a positive feedback loop in 

EGFR signaling through Gab1 and PI3K (Rodrigues, Falasca, Zhang, Ong, & Schlessinger, 

2000). 
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1.4.6.2 Activation of platelet-derived growth factor receptor  

Platelet-derived growth factor receptors (PDGFR) are membrane protein-tyrosine kinases that 

play an important role in the regulation of cell growth and differentiation. PDGFRs consist of 

two polypeptide subunits, α and β both of which have tyrosine kinase activity (Bioukar, 

Marricco, Zuo, & Larose, 1999). Cultured VSMC from SHR express both α and β isoforms of 

PDGFR, however, in VSMC from normotensive rats (WKY), PDGFRαα is almost completely 

suppressed (Inui, Kitami, Tani, Kondo, & Inagami, 1994). Millete et al. have shown that in rat 

VSMC, PDGFββ could transactivate EGF receptor to form a heterodimer between PDGFR and 

EGFR, which contribute to ERK1/2 activation (Millette, et al., 2005). PDGF binds to PDGFR 

which results in the autophosphorylation of specific tyrosine residues, creating docking sites for 

SH2 domains-containing proteins. These include c-Src, PI3K, PLCγ, small GTP binding protein 

Ras, and adaptor protein such as Shc, and Grb2. The specific binding of these proteins initiate 

signaling pathway leading to cell growth, and proliferation (Chen, Zhou, Zhang, & Lou, 2007). 

 

1.4.7 Activation of growth factor receptors by reactive oxygen species 

Reactive oxygen species are involved in the phosphorylation of tyrosine residues of the EGFR. 

Ushio-Fukai and colleagues have shown that in aortic VSMC, EGFR phosphorylation by Ang II 

at specific tyrosine residues requires ROS and that c-Src contributes to the redox sensitivity of 

this response. Thus, EGFR transactivation is an important ROS-mediated biochemical pathway 

activated by Ang II in VSMC (Ushio-Fukai, et al., 2001). Furthermore, redox sensitivity of 

EGFR phosphorylation is confirmed by the finding that exogenous H2O2 increases EGFR 

phosphorylation in VSMCs (Ushio-Fukai, et al., 1999). Bae Soo Yun and colleagues also found 

that addition of catalase to A431 human epidermoid carcinoma cells inhibited EGF-induced 

autophosphorylation of EGFR (Bae, et al., 1997). H2O2-induced tyrosine phosphoryaltion of the 

EGFR receptors involves inhibition of tyrosine phosphatases. Knebel et al demonstrated that 

H2O2 could inhibit the dephosphorylation of the EGF receptor through the inhibition of tyrosine 

phosphatases (Knebel, Rahmsdorf, Ullrich, & Herrlich, 1996). The interaction of growth factors 

with their receptors also induces a transient increase in the intracellular concentration of H2O2 in 

human heptocellular liver carcinoma cells (HepG2cells). Bae Soo Yun and colleagues reported 

that the binding of PI3K to PDGFRβ is necessary for the PDGF-induced H2O2 production (Bae, 

et al., 2000). Saito et al reported that H2O2 stimulates Tyr1021 phosphorylation of the PDGFRβ 
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receptor in VSMCs and that this phosphorylation requires the activation of two protein kinases, 

PKCδ and c-Src, but not the intrinsic kinase activity of the PDGFRβ receptor, which suggests the 

implication of both c-Src and PKC in H2O2-induced phosphorylation of PDGFRβ (Saito, et al., 

2002). Previous work from Eguchi and colleagues has shown the implication of metalloproteases 

in PDGFRβ or EGF receptor transactivation by H2O2 in VSMC. A matrix metalloprotease 

(MMP)-2/9 inhibitor inhibits both Ang II-induced EGFR transactivation and H2O2-induced 

EGFR with subsequent blockage of VSMC growth and migration (Eguchi, Dempsey, Frank, 

Motley, & Inagami, 2001). 

 

1.5 Transactivation of growth factor receptors 

Transactivation of RTKs is a general process of GPCRs signalling. Depending on a specific 

receptor and cell type, GPCRs use several strategies for the activation of downstreams signalling 

pathways including PI3K and MAPK. Most of these involved crosstalk between GPCRs and 

RTKs. In some cases The GPCR itself forms part of the signalling complex, for instance the 

formation of complexes between the AT1 receptor and Jak2, and also between β2 adrenergic 

receptor, β-arrestin and c-Src (Luttrell, Daaka, & Lefkowitz, 1999). Studies have demonstrated 

that Ang II-stimulated transactivation of EGF-R in VSMC requires c-Src (Ushio-Fukai, et al., 

2001). Linseman and colleagues have reported that Ang II-induced transactivation of PDGFR-β 

involved complex formation with Shc, Grb2, as well as c-Src in cultured VSMC (Linseman, 

Benjamin, & Jones, 1995). In fact recent works with various GPCRs including AT1 suggest that 

GPCRs-induced MAPK activation requires Shc-Grb2·Sos complex formation and subsequent 

activation of tyrosine kinases such as proline-rich tyrosine kinase 2 (PYK2) (Lev, et al., 1995), 

EGF-R (Daub, Weiss, Wallasch, & Ullrich, 1996), PDGFR-β (Linseman, et al., 1995), and c-Src 

(Wan, Kurosaki, & Huang, 1996). 
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1.6 Objectives 

The interrelation between oxidative stress and hypertension has received much attention in the 

past years. Several experimental and clinical studies have linked an enhanced production of ROS 

to diseases of the cardiovascular system such as hypertension and atherosclerosis (Kojda & 

Harrison, 1999; Taniyama & Griendling, 2003). Enhanced oxidative stress occurs in human 

hypertension (Sagar, et al., 1992), and animal models including SHR, renovascular hypertension 

(Lerman, et al., 2001), and DOCA salt model (Callera, et al., 2006). Treatments that decrease 

ROS production and/or enhance antioxidant defence mechanisms also prevent vascular injury 

and reduce blood pressure in hypertensive patients. 

Our laboratory has established the link between hypertension and the enhanced expression of 

Giα proteins and associated adenylyl cyclase (AC) signalling (Marcil, et al., 1998). We also have 

reported the role of oxidative stress in Ang II-mediated enhanced expression of Giα proteins in 

A10 VSMC (Li, et al., 2007). However, the signal transduction pathways responsible for ROS-

induced Giα proteins expression have never been clearly elucidated. Since treatment of VSMC 

with Ang II enhances intracellular H2O2 generation via NADPH oxidase activation (Zafari, et al., 

1998), H2O2 was used to induce oxidative stress in aortic VSMC. We examined the effect of 

H2O2, an experimental mimicker of oxidative stress on Giα protein expression and adenylyl 

cyclase signalling in aortic VSMC. Cells were treated with pharmacological inhibitors of MAPK 

and PI3K pathways. To further confirm the effect of pharmacological inhibitors of EGFR and 

PDGFR-β on the expression of these receptors, the EGFR and PDGFR-β were silenced with 

siRNA targeting the intracellular tyrosine kinase domain of these growth factor receptors. The 

effect of both the inhibitor treatment, and gene knockout on Giα proteins expression was 

assessed with Western blotting using specific antibodies. We hypothesized that H2O2 enhances 

Giα proteins expression through the activation of growth factors receptors EGFR and PDGFR-β 

with subsequent phosphorylation of downstream signalling pathways including ERK1/2, and 

PI3K. 
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                                                          Article submitted to Free Radical Biology and Medicine 

Abstract 

We have recently shown that the enhanced expression of Giα proteins in vascular smooth muscle 

cells (VSMC) from spontaneously hypertensive rats was attributed to the enhanced oxidative 

stress. We undertook the present study to examine if hydrogen peroxide (H2O2), that induces 

oxidative stress could also enhance the expression of Gi�proteins in aortic VSMC and to further 

explore the underlying mechanisms responsible for this response. Treatment of VSMC with 

H2O2 increased the expression of Giα proteins and not of Gs� protein in a concentration- and 

time-dependent manner. The maximal increase (~ 40-50%) was observed at 100 µM and 1h and 

was restored to control levels by AG1295, AG1478, PD98059 and wortmannin, inhibitors of 

epidermal and platelet-derived growth factor receptors (EGFR, PDGFR), the mitogen activated 

protein kinase (MEK1/2), and phosphatidylinositol-3 kinase (PI3K) respectively. In addition, 

H2O2 also increased the phosphorylation of EGFR, PDGFR, ERK1/2 and AKT which was also 

attenuated to control levels by the respective inhibitors, whereas the inhibitors of EGFR and 

PDGFR also attenuated the enhanced phosphorylation of ERK1/2 and AKT to control levels. 

Furthermore, transfection of cells with siRNA of EGFR and PDGFR attenuated the H2O2-

induced enhanced expression of Giα proteins to control levels. The increased expression of Giα 

proteins by H2O2 was reflected in enhanced inhibition of AC activity and decreased Gsα-mediated 

stimulations of AC. These results suggest that H2O2 increases the expression and functions of 

Giα proteins in VSMC through the transactivation of EGFR, PDGFR and ERK1/2 and PI3K 

signaling pathways. 

 

Key Words: H2O2, Gi� proteins, adenylyl cyclase, growth factor receptors, si RNA, ERK1/2, 

PI3Kinase, VSMC 
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INTRODUCTION 

Guanine nucleotide proteins, known as G proteins are a family of GTP-binding proteins 

that play a critical role in the regulation of a variety of signal transduction systems, including the 

adenylyl cyclase/cAMP system (Tang & Gilman, 1991). The adenylyl cyclase (AC) system is 

composed of three components: a receptor, a catalytic subunit, and a guanine nucleotide 

regulatory protein that transmits the signal from the hormone-occupied receptor to the catalytic 

subunit (Schramm & Selinger, 1984).Well characterized members of G protein family include 

Gs, Gi, Gq, and Go. Gs and Gi are involved in the stimulation and inhibition of hormone-

sensitive AC respectively (Itoh, et al., 1988). The G proteins are heterotrimeric, consisting of α, 

β, and γ subunits (Gα, Gβ, and Gγ). The α-subunit binds and hydrolyses GTP and confers 

specificity in the receptor and effector interactions (Gilman, 1987). Molecular cloning has 

revealed four different forms of Gsα, resulting from differential splicing of one gene, and three 

distinct forms of Giα, Giα-1, Giα-2, and Giα-3 encoded by three distinct genes (Bray, et al., 

1986; Gilman, 1987). 

Alterations in Giα proteins and associated AC signaling have been implicated in various 

pathological conditions, such as hypertension (Li & Anand-Srivastava, 2002), diabetes (Li, 

Descorbeth, & Anand-Srivastava, 2008) and heart failure (Di Fusco, et al., 2000). We previously 

have reported an increased expression of Giα-2, and Giα-3 proteins and mRNA in hearts and 

aortas from spontaneously hypertensive rats (SHR) (Anand-Srivastava, 1992), 1K1C (Bohm, et 

al., 1993), Nomega-nitro-L-arginine methyl ester (L-NAME) (Hashim & Anand-Srivastava, 

2004), and deoxycorticosterone acetate (DOCA)-salt hypertensive rats (Anand-Srivastava, de 

Champlain, & Thibault, 1993) with established hypertension. The enhanced expression of Giα 

proteins was shown to be attributed to the enhanced levels of vasoactive peptides including 

angiotensin II ( Ang II) because the treatment of hypertensive rats with losartan, and captopril, 

an angiotensin converting enzyme (ACE) inhibitor or AT1 receptor antagonist, was shown to 

restore the enhanced expression of Gi proteins to control levels (Pandey & Anand-Srivastava, 

1996). The enhanced expression of Giα proteins occured before the onset of hypertension in 

SHR and DOCA-salt (Hashim & Anand-Srivastava, 2004; Marcil, et al., 1997) suggesting the 

implication of increased levels of Giα protein in the pathogenesis of hypertension. We have 

earlier reported that VSMC from SHR also exhibit the increased expression of Giα proteins 

which was attributed to the enhanced oxidative stress (Lappas, Daou, & Anand-Srivastava, 
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2005). In addition, a role of oxidative stress in Ang II-induced enhanced expression of Giα 

proteins in A10 VSMC has also been demonstrated (Li, et al., 2007). Ang II has also been 

reported to increase the levels of H2O2, another reactive oxygen species (ROS) inducing 

oxidative stress (Zafari, et al., 1998). 

The present study was undertaken to investigate if the increased oxidative stress induced 

by H2O2, could also increase the expression of Giα proteins and associated adenylyl cyclase 

signaling in aortic VSMC and to further explore the underlying signaling mechanisms 

responsible for this response. 

 

 We showed for the first time that treatment of aortic VSMC with H2O2 increased the 

expression of Gi� proteins through the transactivation of growth factor receptors and MAP 

kinase/PI3Kinase signaling. 
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MATERIALS AND METHODS 

3-Isobutyl-1-methylxanthine, glucagon, oxotremorine, isoproterenol, forskolin (FSK), 

guanosine 5’-[3-thio] triphosphate (GTPγS), and guanosine triphosphate (GTP) were purchased 

from Sigma-Aldrich Chemical (St-Louis, MO, USA). Adenosine triphosphate isotope [α-
32P]ATP was purchased from PerkinElmer (Boston, MA, USA). PDGFβ-R inhibitor AG1295, 

EGFR inhibitor AG1478, and MEK1 inhibitor PD98059, were purchased from Calbiochem 

(Gibbstown, NJ, USA). EGFR siRNA(r), PDGFR-β siRNA(m), siRNA transfection medium, 

and control siRNA were purchased from Santa Cruz Biotechnology,Inc (Santa Cruz, CA,USA). 

Lipofectamine 2000 was purchased from Life Technology (CA, USA). Antibodies against Giα-2 

(L5), Giα-3 (C-10), ERK1/2 (C-14), p-ERK1/2 (phosphospecific-tyrosine204), p-AKT 

(phosphospecific-serine 473), AKT (473), p-PDGFR (phosphospecific-tyrosine857), PDGFR 

(958), p-EGFR (phosphospecific-tyrosine1173), EGFR (1005) were from Santa-Cruz 

Biotechnologies (Santa Cruz, CA, USA). All other chemicals used in the experiments were 

purchased from Sigma-Aldrich. 

  

Cell culture and incubation. 

Vascular smooth muscle cells from thoracic aorta of Sprague-Dawley rats (200-225 g) (6-

8 weeks old), were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (with glucose 

(5.5mM), L-glutamine and sodium bicarbonate) containing antibiotics and 10% heat-inactivated 

fetal bovine serum (FBS), and incubated at 37˚C in 95% air and 5% CO2 as previously described 

(Hashim, Li, & Anand-Srivastava, 2006b). Confluent cells were starved by incubation for 24h in 

DMEM without FBS at 37˚C. To study the effect of pharmacological inhibitors on Giα 

expression, the cells were incubated in the absence or presence of PD98059 (10µM), wortmannin 

(0.1µM), AG1478 (5µM), AG1295 (5µM) before treatment with H2O2 (100µM) for 1h. The cells 

were scraped into ice-cold homogenization buffer containing 10 mM Tris-HCl buffer, and 1mM 

EDTA (pH 7.5). The homogenate was centrifuged at 1,000 g for 10 min. The supernatant was 

used for immunoblotting, and the pellet was resuspended in 10 mM Tris-HCl buffer containing 

1mM EDTA (pH 7.5) and used for adenylyl cyclase assay. 
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 Adenylyl cyclase activity determination: 

Adenylyl cyclase activity was determined by measuring [α-32P] cAMP formation from 

[α-32P]ATP as previously described (Li, et al., 2008). The assay medium contained 50 mmol/l of 

glycylglycine (pH 7.5), 0.5 mmol/l MgATP, [α-32P]ATP (1.5 x 106 cpm), 5 mmol/l MgCl2 (in 

excess of the ATP concentration), 100 mmol/l NaCl, 0.5 mmol/l cAMP, 1 mmol/l IBMX, 0.1 

mmol/l EGTA, 10µmol/l GTPγS, and an ATP-regenerating system consisting of 2 mmol/l 

creatine phosphate, 0.1 mg of creatine kinase/ml and 0.1 mg of myokinase/ml in a final volume 

of 200µl. Incubation was initiated by the addition of the membrane preparation (20-30µg) to the 

reaction mixture, which had been thermally equilibrated for 2 min at 37˚C. The reactions were 

conducted in triplicate, and were terminated by the addition of 0.6 ml of 120 mM Zinc acetate. 

cAMP, was purified by coprecipitation of other nucleotides with ZnCO3, an addition of 0.5 ml of 

144 mM Na2CO3, and subsequent chromatography by the double column system as previously 

described (Hashim, Li, Nagakura, Takeo, & Anand-Srivastava, 2004). 

 

Transfection of small interfering RNA. 

Vascular smooth muscle cells from thoracic aorta of Sprague-Dawley rats (200-225 g) (6-

8 weeks old), were cultured in DMEM containing antibiotics and 10% FBS. Forty-eight hours 

before transfection, cells were trypsinized and cultured in DMEM supplemented with 10% FBS 

without antibiotics. Confluents cells were starved for five hours in siRNA transfection medium. 

Cells were transfected with 90 nM siRNA and 4µg/ml of lipofectamine per 60mm cell dishes. 

After 48 hours of transfections, the cells were lysed for immunoblotting. 

 

Immunoblotting. 

Immunoblotting of G proteins (Gsα, Giα-2, and Giα-3), AKT, ERK1/2, PDGFβ-R, and 

EGFR was performed using specific antibodies as previously described (Lappas, et al., 2005). 

After sodium dodecyl sulphate-polyacrylamide gel electrophoresis, the separated proteins were 

electrophoretically transferred to a nitrocellulose membrane (Bio-Rad, Canada) with a semi-dry 

transblot apparatus (Bio-Rad) at 15V for 45 minutes. Upon transfer, the membranes were stained 

with Rouge Ponceau to confirm the presence of migrated proteins. The membranes were then 

blocked for 1h at room temperature in phosphate-buffer saline (PBS) containing 5% dehydrated 

milk and 0.2% Tween 20, and incubated with antibodies against Giα-2 (L5), Giα-3 (C-10), p-
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ERK1/2 (phosphospecific-tyrosine204), p-AKT (phosphospecific-serine473), p-EGFR 

(phosphospecific-tyrosine1173), and p-PDGFR (phosphospecific-tyrosine857) overnight at 4˚C. 

The antibody-antigen complexes were detected by incubating the membranes with secondary 

antibodies conjugated with horseradish peroxidase at room temperature for 1 h. The blots were 

visualized with enhanced-chemiluminescence (ECL) Western blotting detection reagents from 

Santa Cruz. Quantitative analysis of the proteins was performed by densitometric scanning of the 

autoradiographs using an enhanced laser densitometer (LKB Ultroscan XL, Pharmacia, Canada) 

and gel-scan XL evaluation software (version 2.1) from Pharmacia. The scanning was one 

dimensional and scanned the entire area of protein bands in the blot. 

 

 Statistical analysis. Results are expressed as means ± standard error (±SE) and were analyzed 

by one-way ANOVA followed by Newman-Keul test. Results were considered statistically 

significant at a value of P < 0.05 
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RESULTS 

Effect of hydrogen peroxide on Giα-2, Giα-3, and Gsα proteins expression in aortic 

vascular smooth muscle cells  

We previously have shown that oxidative stress contributes to the enhanced expression of 

Giα proteins in VSMC from SHR (Lappas, et al., 2005). To further establish the relationship 

between oxidative stress and Giα proteins levels, we examined the effect of various 

concentrations of H2O2 (50µM to 250µM) on the levels of Giα-2 and Giα-3 proteins. Results 

shown in Figure 1A&B indicate that treatment of VSMCs with H2O2 for 1h increased the levels 

of both Giα-2 and Giα-3 proteins in a concentration dependent manner. The maximal increase of 

about 75% in Giα-2 and 60% in Giα-3 was observed at 100 µM. In addition, the increase in the 

expression of Giα-2 and Giα-3 proteins by H2O2 (100 µM) was also time-dependent. As shown 

in Figure 1C&D, the levels of Giα-2 and Giα-3 were enhanced as early as 30 min then reached a 

maximum at about 180% of control at 1 to 2h, and levelled off after 3h, however, the levels of 

Gsα were not affected by H2O2 treatment (Figure 1E). 

Effect of actinomycin D on H2O2-induced enhanced expression of Giα-2 and Giα-3 proteins 

in aortic vascular smooth muscle cells  

 

To investigate whether H2O2-induced enhanced levels of Giα-2 and Giα-3 proteins were 

due to increased RNA synthesis, the effect of actinomycin D, an inhibitor of RNA synthesis was 

examined on H2O2-induced enhanced expression of Giα-2 and Giα-3 proteins. Results shown in 

Figure 2 indicate that actinomycin D attenuated the H2O2-induced enhanced level of Giα-2 and 

Giα-3 proteins to control levels. 

 

Effect of H2O2 on Gi functions in aortic vascular smooth muscle cells 

To investigate if the H2O2-induced enhanced expression of Giα is also reflected in Giα 

functions, the effect of H2O2 on receptor- dependent and - independent functions of Giα proteins 

was examined. The receptor-independent function of Giα was investigated by studying the effect 

of low concentrations of GTPγS (10-12 to 10-7M) on FSK-stimulated AC activity. As illustrated 

in Figure3A, GTPγS inhibited FSK-stimulated adenylyl cyclase activity in a concentration 

dependent manner in both control and H2O2-treated cells; however, the inhibition was greater by 

about 25% in H2O2-treated cells. 
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The receptor-dependent function of Giα proteins was also examined by studying the effects of 

H2O2 treatment on angiotensin II-, C-ANP4-23-, and oxotremorine-mediated inhibition of AC 

activity in aortic VSMC. The results in Figure 3B, indicate that Ang II, C-ANP4-23 and 

oxotremorine, inhibited AC activity by about 25 to 30% in control cells. However, these 

inhibitions were significantly augmented (~ 55%) by H2O2 treatment. 

 

Effect of H2O2 on Gs-mediated stimulation of adenylyl cyclase activity in aortic vascular smooth 

muscle cells 

The interaction of Giα and Gsα with adenylyl cyclase (AC) activity has been well 

established (Cerione, et al., 1985). Since H2O2 enhanced Giα protein expression without altering 

the levels of Gsα, we investigated whether increased level of Giα induced by H2O2 could affect 

Gsα-mediated stimulation of AC. To test this, the effects of isoproterenol, a β-adrenergic agonist, 

glucagon, sodium fluoride (NaF), and forskolin (FSK) on AC activity was examined. Figure 4B, 

illustrates that isoproterenol and glucagon stimulated adenylyl cyclase activity in both control 

cells and H2O2-treated cells to various degrees. However, the extent of stimulation was 

significantly decreased (~ 40 %) in H2O2-treated cell compared to control cells. In addition, FSK 

and NaF- stimulated AC activities were also attenuated by about 34% by H2O2 treatment. 

 

Role of extracellular-regulated kinase (ERK1/2) in H2O2-induced enhanced expression of 

Giα-2 and Giα-3 proteins in aortic vascular smooth muscle cells  

The involvement of ERK1/2 in the enhanced expression of Giα proteins in VSMCs from 

SHR has been demonstrated (Lappas, et al., 2005). To investigate whether ERK1/2 is also 

implicated in H2O2-induced enhanced expression of Giα in VSMCs, the effect of an inhibitor of 

ERK phosphorylation, PD98050 (10µM) was examined. Results shown in Figure 5A, indicate 

that the increased expression of Giα-2 and Gi�-3 proteins in H2O2-treated cells were restored to 

control levels by PD98059 treatment. However, PD98059 did not have any effect on the levels of 

Giα proteins in control cells. 
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Role of phosphoinositide-3-kinase (PI3K) in H2O2-induced enhanced expression of Giα 

proteins in aortic vascular smooth muscle cells  

Since the involvement of the PI3K signalling in enhanced expression of Gi� proteins in 

VSMC from SHR has been reported (Ge & Anand-Srivastava, 1998), it was of interest to 

examine the contribution of PI3K in H2O2-induced enhanced expression of Giα proteins in aortic 

VSMC. For this, the effect of wortmannin (0.1µM), an inhibitor of PI3K on the expression of 

Gi� proteins was investigated in control and H2O2-treated cells and the results are shown in 

Figure 5B. H2O2 increased the levels of Giα-2 and Giα-3 by about 80% and 60% respectively, 

which were restored to control levels by wortmannin. However, the levels of Giα proteins in 

control cells were unchanged by wortmannin treatment. 

 

Effect of H2O2 on ERK1/2 phosphorylation in aortic vascular smooth muscle cells  

Fig. 6A shows the effect of H2O2 on ERK1/2 phosphorylation in VSMC. Treatment of 

cells with H2O2 increased the phosphorylation of Tyr204 on ERK1/2 by about 90% compared to 

control cells which was attenuated towards control level by PD98059. In addition, PD98059 also 

inhibited the ERK1/2 phosphorylation in control cells by about 50%. 

 

Effect of H2O2 on the phosphorylation AKT in aortic vascular smooth muscle cells  

Since H2O2-induced enhanced expression of Giα-2 and Giα-3 proteins was abolished by 

PI3K inhibitor wortmannin, it was of interest to examine whether treatment of aortic VSMC with 

H2O2 would increase the phosphorylation of AKT. To test this, the effect of H2O2 on AKT 

phosphorylation was investigated VSMC. As shown in Fig.6B, H2O2 increased the 

phosphorylation of phosphospecific-serine473 on AKT by about 60% compared to control cells 

and this increased phosphorylation was attenuated to control levels by wortmannin.  

 

Effect of growth factors receptor inhibitors on H2O2-induced enhanced expression of Giα 

proteins in aortic vascular smooth muscle cells  

Since H2O2 has  been shown to transactivate growth factor receptors such as EGF-R and 

PDGFR-β in A10 VSMC (Descorbeth & Anand-Srivastava, 2009), it may be possible that the 

H2O2-induced enhanced expression of Giα-2 and Giα-3 could also be due to the enhanced activity of 

both EGF-R and PDGFR-β. To investigate this, the effect of AG1478, an inhibitor of EGF-R and 
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AG1295, an inhibitor of PDGFR-β on H2O2-induced enhanced expression of Giα-2 and Giα-3 

proteins in aortic VSMC was examined. The results shown in Figure 7, indicate that the  

increased expression of Giα-2 and Giα-3 proteins (~50% ) in H2O2-treated cells compared to 

control cells was restored to control levels by AG1478 (7A) and AG1295(7B) . However, these 

inhibitors did not have any significant effect on the levels of Giα-2 and Giα-3 proteins in control 

cells. 

 

Effect of H2O2 on the phosphorylation of growth factor receptors in aortic vascular smooth 

muscle cells  

To investigate whether H2O2 could also transactivate growth factor receptors in aortic 

vascular smooth muscle cells, the phosphorylation of EGF-R and PDGFR-β in response to H2O2 

was examined and the results are shown in Figure 8. Treatment of aortic VSMCs with H2O2 

increased the phosphorylation of Tyr1173 on EGF-R and Tyr857 on PDGFR-β by about 40% as 

compared to control cells. However, the increased phosphorylation of EGF-R and PDGFR-β 

induced by H2O2 was attenuated to control levels by AG1478 and AG1295 respectively. 

 

Effect of siRNA of growth factor receptors (EGF-R, PDGF-R) on H2O2-induced enhanced 

expression of Giα proteins in aortic vascular smooth muscle cells  

To further confirm the implication of EGF-R and PDGFR-β in H2O2-induced enhanced 

expression of Gi� proteins, the effect of siRNA of EGF-R and PDGFR-β on the expression of 

Gi� proteins was investigated in control and H2O2-treated cells. Results shown in Figure 9, 

indicate that the increased expression of Giα-2 (A, C) and Giα-3 (B, D) proteins (by about 60% and 

50% respectively) in H2O2-treated cells compared to control cells, was attenuated to control 

levels by EGFR and PDGFR-β siRNA. However, cells transfected with lipofectamine alone, 

scrambled siRNA, siRNA of EGF-R or PDGFR-β did not affect the expression of Giα-2 and 

Giα-3 proteins in control cells. 

 

Effect of siRNA of growth factor receptors (EGF-R, PDGF-R) on H2O2-induced increased 

phosphorylation of growth factor receptors in aortic vascular smooth muscle cells  

To investigate if the attenuation of H2O2-induced enhanced expression of Gi� proteins 

by siRNA of EGF-R and PDGF-R in VSMC was attributed to the decreased activation of these 
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growth factor receptors, the effect of siRNA on the phosphorylation of EGF-R and PDGF-R was 

examined and the results are shown in Figure 10. H2O2 increased the phosphorylation of 

Tyr1173on EGF-R and Tyr857on PDGF-R by approximately 200% (10A) and 250% (10C) 

respectively as compared to control cells which was significantly attenuated by EGF-R siRNA 

and PDGFR-β siRNA by 150 % and 125 %. In addition, the levels of total EGF-R (10B) and 

PDGF-R (10D) were also significantly decreased by 65% and 80% respectively in cells 

transfected with EGF-R siRNA and PDGFR-β siRNA. These data suggest that siRNA of EGF-R 

and PDGFR-β specifically inhibits the activation of EGFR and PDGFR-β induced by H2O2 

which may contribute to the attenuation of the enhanced expression of Gi� proteins.  

 

Implication of growth factor receptors in H2O2-induced enhanced activation of ERK1/2 

and AKT signaling in aortic vascular smooth muscle cells  

To investigate the implication of growth factor receptors in H2O2-induced enhanced 

activation of ERK1/2 and AKT, the effect of EGF-R and PDGF-R inhibitors, AG1478 and 

AG1295 on the phosphorylation of ERK1/2 and AKT was examined in control H2O2-treated 

cells. As illustrated in Figure 11, H2O2 increased the phosphorylation of p-ERK1/2 (11A) and 

AKT (11B) by about 60% and 50% which was restored to control levels by AG1478 and 

AG1295, whereas the level of p-ERK1/2 and pAKT remained unchanged in control cells. 
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DISCUSSION 

We earlier reported that the enhanced expression of Gi� proteins in VSMCs from SHR 

was attributed to the increased oxidative stress and increased MAP kinase activity (Lappas, et al., 

2005). However, in the present study, we demonstrate that H2O2, a mimicker of oxidative stress 

could also increase the levels of Giα proteins in aortic VSMC through the transactivation of 

growth factors receptors. 

Although the role of oxidative stress in Ang II-mediated cell signaling has been well 

established (Touyz, et al., 2004), evidence for a direct role of oxidative stress and associated 

signaling in the increased expression of Giα proteins and associated adenylyl cyclase has been 

lacking. We report that H2O2 increases the expression of Giα proteins in a time- and 

concentration- dependent manner, however, a slight decrease in the expression of Giα-2, and 

Giα-3 proteins that was observed beyond 150 µM H2O2 and at 3 and 4h of treatment may not be 

due to apoptosis, because the total cell count determined by hemocytometer was not different 

between control and H2O2-treated cells. Furthermore, the H2O2-evoked enhanced expression of 

Giα-2, and Giα-3 in aortic VSMC may be at the transcriptional level because actinomycin D, an 

inhibitor of RNA synthesis, inhibited the H2O2-induced enhanced expression of Giα-2, and Giα-3 

proteins in these cells. 

The enhanced expression of Giα-2 and Giα-3 by H2O2 treatment was also reflected in 

increased Giα functions as demonstrated by the enhanced inhibition of adenylyl cyclase by 

inhibitory hormones and FSK-stimulated adenylyl cyclase activity by GTPγS in H2O2-treated 

cells as compared to control cells. In this regard, the relationship between increased expressions 

of Giα proteins and enhanced Giα function has previously been reported (Anand-Srivastava, 

1992). In addition, the decreased responsiveness of AC to isoproterenol and glucagon stimulation 

in H2O2-pretreated cells may also be attributed to increased levels of Giα proteins and not to the 

decreased levels of Gsα proteins because H2O2 treatment did not alter the expression of Gsα 

proteins. In this regard, a relationship between Giα and Gsα proteins has been well established 

[24-26]. An increased expression of Gi proteins and resultant decreased stimulation of adenylyl 

cyclase by stimulatory hormones (Marcil & Anand-Srivastava, 2001) and decreased levels of Gi 

proteins and augmented stimulation of adenylyl cyclase by stimulatory hormones has been 

shown by several studies (Bassil & Anand-Srivastava, 2006; Bassil, Li, & Anand-Srivastava, 

2008)  
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Our results showing that blockade of PDGFR-β and EGF-R by specific inhibitors or by 

silencing of PDGFR-β and EGF-R using siRNA, restored the H2O2-induced enhanced expression 

of Giα-2 and Giα-3 proteins to control levels without affecting the expression of Giα proteins in 

control cells, suggest the implication of growth factor receptors in H2O2–induced enhanced 

expression of Giα proteins. It appears that H2O2 enhances the levels of Giα-2 and Giα-3 proteins 

through the transactivation of PDGFR and EGF-R, because H2O2, enhanced the phosphorylation 

and not the levels of PDGFR-β and EGF-R in VSMC. This notion is further supported by our 

results showing that siRNA of PDGFR and EGFR that decreased the levels of these receptors in 

control cells had no effect on the levels of Gi� proteins. In addition, the fact that siRNA of 

PDGFR-β and EGF-R decreased the H2O2-induced enhanced phosphorylation of these receptors 

further suggests the role of transactivation of growth factor receptor in enhanced expression of 

Giα proteins induced by H2O2. Taken together, it may be suggested that the transactivation of 

growth factor receptors by H2O2 contributes to the enhanced expression of Giα proteins in 

VSMC. Furthermore, the implication of EGF-R in Ang II-induced enhanced expression of Giα 

proteins and proliferation in A10 VSMC has recently been shown (Gomez Sandoval, Levesque, 

& Anand-Srivastava, 2009).  

The role of MAPK and PI3K in protein synthesis has been well established (Hashim, et al., 

2006b; Wang, et al., 2008). We previously showed the implication of ERK1/2 in the enhanced 

expression of Giα-2 and Giα-3 protein in VSMC from SHR (Lappas, et al., 2005). In addition, 

Ang II has also been shown to enhance the expression of Giα proteins through ERK1/2 signaling 

pathways in A10 VSMC (Li, et al., 2007). However, in the present study, we demonstrate that 

the phosphorylation of ERK1/2 and AKT by H2O2 in aortic VSMC may be responsible for the 

H2O2- induced enhanced expression of Giα proteins because PD98059 and wortmannin, the 

inhibitors of MAP kinase and PI3kinase, respectively restored the H2O2-induced enhanced level 

of Giα-2, and Giα-3 proteins to control levels. Furthermore, our results showing that the 

inhibitors of PDGFR-β and EGF-R attenuated the H2O2-induced enhanced phosphorylation of 

ERK1/2 to control levels suggest a role for PDGFR-β and EGF-R in the enhanced activity of 

ERK1/2 induced by H2O2 in VSMC. In this regard, H2O2 has been shown to increase the tyrosine 

phosphorylation of tyrosine kinase receptors in the absence of growth factors in VSMC and to 

induce the activation of downstream pathways such as MAPK and phosphatidylinositol-3 kinase 

(PI3K/protein kinase B/AKT) (Mehdi, Azar, & Srivastava, 2007). Furthermore, a role of receptor 
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tyrosine kinase transactivation in redox-dependent MAP kinase signaling by Ang II has also 

been shown in VSMC (Touyz, et al., 2003). Thus taken together, it may be suggested that the 

phosphorylation of PDGF-R and EGF-R by H2O2 activates downstream signaling pathways 

ERK1/2 and PI3K which in turn may be responsible for the increased expression of Giα-2 and 

Giα-3 proteins in aortic VSMC. The precise mechanism by which H2O2 transactivates growth 

factor receptor-protein tyrosine kinases (PTKs) is still not clear. However, ROS-mediated 

inhibition of tyrosine phosphatases (Denu & Tanner, 1998) that can shift the equilibrium of the 

phosphorylation-dephosphorylation cycle resulting in a net increase of tyrosine phosphorylation 

of R-PTKs and non receptor PTKs (Rhee, et al., 2000), may be a possible mechanism by which 

H2O2 induces transactivation of growth factor receptors. 

 In summary, we provide the first direct evidence that H2O2 that causes oxidative stress 

transactivates PDGFR-β and EGFR which through the activation of downstream signaling 

pathways including ERK1/2, and PI3K contribute to the enhanced expression of Giα-2 and Giα-3 

proteins and inhibition of AC activity in VSMC. It may be suggested that the increased 

expression of Gi� proteins and resultant decreased levels of cAMP induced by oxidative stress 

may be one of the factors responsible for the vascular remodelling and thereby vascular 

complications observed in various pathological states including hypertension, and atherosclerosis 

 

 

 

 Source of fundings: This study was supported by a grant from the Canadian Institutes of Health 

Research (CIHR) (MOP-53074) 

 

 

ACKNOWLEDGMENTS 

This study was supported by a grant from Canadian Institutes of Health Research [MOP 53074]. 
 
 
ABBREVIATIONS: H2O2, Hydrogen peroxide; Mitogen activated protein kinases (MAPK), 
Extracellular regulated kinase (ERK), Phosphatidyl inositide 3 kinase (PI3K), Epidermal growth 
factor receptors (EGFR), platelet-derived growth factor receptors (PDGFR); AC, Adenylyl 



52 
 

  

cyclase; VSMC, vascular smooth muscle cells; GTP, Guanosine triphosphate; Giα, inhibitory G 
protein; FSK, forskolin 
 

 

 

 

REFERENCES 

[1] Tang, W. J.; Gilman, A. G. Type-specific regulation of adenylyl cyclase by G protein 

beta gamma subunits. Science 254:1500-1503; 1991. 

[2] Schramm, M.; Selinger, Z. Message transmission: receptor controlled adenylate cyclase 

system. Science 225:1350-1356; 1984. 

[3] Itoh, H.; Toyama, R.; Kozasa, T.; Tsukamoto, T.; Matsuoka, M.; Kaziro, Y. Presence of 

three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human 

genomic DNAs. J Biol Chem 263:6656-6664; 1988. 

[4] Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 

56:615-649; 1987. 

[5] Bray, P.; Carter, A.; Simons, C.; Guo, V.; Puckett, C.; Kamholz, J.; Spiegel, A.; 

Nirenberg, M. Human cDNA clones for four species of G alpha s signal transduction protein. 

Proc Natl Acad Sci U S A 83:8893-8897; 1986. 

[6] Li, Y.; Anand-Srivastava, M. B. Inactivation of enhanced expression of G(i) proteins by 

pertussis toxin attenuates the development of high blood pressure in spontaneously hypertensive 

rats. Circ Res 91:247-254; 2002. 

[7] Li, Y.; Descorbeth, M.; Anand-Srivastava, M. B. Role of oxidative stress in high glucose-

induced decreased expression of Gialpha proteins and adenylyl cyclase signaling in vascular 

smooth muscle cells. Am J Physiol Heart Circ Physiol 294:H2845-2854; 2008. 



53 
 

  

[8] Di Fusco, F.; Hashim, S.; Anand-Srivastava, M. B. Volume overload cardiac hypertrophy 

exhibits decreased expression of g(s)alpha and not of g(i)alpha in heart. Am J Physiol Cell 

Physiol 279:C990-998; 2000. 

[9] Anand-Srivastava, M. B. Enhanced expression of inhibitory guanine nucleotide 

regulatory protein in spontaneously hypertensive rats. Relationship to adenylate cyclase 

inhibition. Biochem J 288 ( Pt 1):79-85; 1992. 

[10] Bohm, M.; Gierschik, P.; Knorr, A.; Schmidt, U.; Weismann, K.; Erdmann, E. Cardiac 

adenylyl cyclase, beta-adrenergic receptors, and G proteins in salt-sensitive hypertension. 

Hypertension 22:715-727; 1993. 

[11] Hashim, S.; Anand-Srivastava, M. B. Losartan-induced attenuation of blood pressure in 

L-NAME hypertensive rats is associated with reversal of the enhanced expression of Gi alpha 

proteins. J Hypertens 22:181-190; 2004. 

[12] Anand-Srivastava, M. B.; de Champlain, J.; Thibault, C. DOCA-salt hypertensive rat 

hearts exhibit altered expression of G-proteins. Am J Hypertens 6:72-75; 1993. 

[13] Pandey, S. K.; Anand-Srivastava, M. B. Modulation of G-protein expression by the 

angiotensin converting enzyme inhibitor captopril in hearts from spontaneously hypertensive 

rats. Relationship with adenylyl cyclase. Am J Hypertens 9:833-837; 1996. 

[14] Marcil, J.; Thibault, C.; Anand-Srivastava, M. B. Enhanced expression of Gi-protein 

precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell 

Cardiol 29:1009-1022; 1997. 

[15] Lappas, G.; Daou, G. B.; Anand-Srivastava, M. B. Oxidative stress contributes to the 

enhanced expression of Gialpha proteins and adenylyl cyclase signaling in vascular smooth 

muscle cells from spontaneously hypertensive rats. J Hypertens 23:2251-2261; 2005. 



54 
 

  

[16] Li, Y.; Lappas, G.; Anand-Srivastava, M. B. Role of oxidative stress in angiotensin II-

induced enhanced expression of Gi(alpha) proteins and adenylyl cyclase signaling in A10 

vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 292:H1922-1930; 2007. 

[17] Zafari, A. M.; Ushio-Fukai, M.; Akers, M.; Yin, Q.; Shah, A.; Harrison, D. G.; Taylor, 

W. R.; Griendling, K. K. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-

induced vascular hypertrophy. Hypertension 32:488-495; 1998. 

[18] Hashim, S.; Li, Y.; Anand-Srivastava, M. B. Small cytoplasmic domain peptides of 

natriuretic peptide receptor-C attenuate cell proliferation through Gialpha protein/MAP 

kinase/PI3-kinase/AKT pathways. Am J Physiol Heart Circ Physiol 291:H3144-3153; 2006. 

[19] Hashim, S.; Li, Y.; Nagakura, A.; Takeo, S.; Anand-Srivastava, M. B. Modulation of G-

protein expression and adenylyl cyclase signaling by high glucose in vascular smooth muscle. 

Cardiovasc Res 63:709-718; 2004. 

[20] Cerione, R. A.; Staniszewski, C.; Caron, M. G.; Lefkowitz, R. J.; Codina, J.; Birnbaumer, 

L. A role for Ni in the hormonal stimulation of adenylate cyclase. Nature 318:293-295; 1985. 

[21] Ge, C.; Anand-Srivastava, M. B. Involvement of phosphatidylinositol 3-kinase and 

mitogen-activated protein kinase pathways in AII-mediated enhanced expression of Gi proteins 

in vascular smooth muscle cells. Biochem Biophys Res Commun 251:570-575; 1998. 

[22] Descorbeth, M.; Anand-Srivastava, M. B. Role of growth factor receptor transactivation 

in high glucose-induced increased levels of Gq/11alpha and signaling in vascular smooth muscle 

cells. J Mol Cell Cardiol; 2009. 

[23] Touyz, R. M.; Yao, G.; Viel, E.; Amiri, F.; Schiffrin, E. L. Angiotensin II and endothelin-

1 regulate MAP kinases through different redox-dependent mechanisms in human vascular 

smooth muscle cells. J Hypertens 22:1141-1149; 2004. 



55 
 

  

[24] Marcil, J.; Anand-Srivastava, M. B. Lymphocytes from spontaneously hypertensive rats 

exhibit enhanced adenylyl cyclase-Gi protein signaling. Cardiovasc Res 49:234-243; 2001. 

[25] Bassil, M.; Anand-Srivastava, M. B. Nitric oxide modulates Gi-protein expression and 

adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic Biol Med 41:1162-1173; 

2006. 

[26] Bassil, M.; Li, Y.; Anand-Srivastava, M. B. Peroxynitrite inhibits the expression of 

G(i)alpha protein and adenylyl cyclase signaling in vascular smooth muscle cells. Am J Physiol 

Heart Circ Physiol 294:H775-784; 2008. 

[27] Gomez Sandoval, Y. H.; Levesque, L. O.; Anand-Srivastava, M. B. Contribution of 

epidermal growth factor receptor transactivation in angiotensin II-induced enhanced expression 

of Gi protein and proliferation in A10 vascular smooth muscle cells. Can J Physiol Pharmacol 

87:1037-1045; 2009. 

[28] Wang, Y.; Yan, T.; Wang, Q.; Wang, W.; Xu, J.; Wu, X.; Ji, H. PKC-dependent 

extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on 

AngiotensinII-induced proliferation of vascular smooth muscle cells. Biochem Biophys Res 

Commun 375:151-155; 2008. 

[29] Mehdi, M. Z.; Azar, Z. M.; Srivastava, A. K. Role of receptor and nonreceptor protein 

tyrosine kinases in H2O2-induced PKB and ERK1/2 signaling. Cell Biochem Biophys 47:1-10; 

2007. 

[30] Touyz, R. M.; Cruzado, M.; Tabet, F.; Yao, G.; Salomon, S.; Schiffrin, E. L. Redox-

dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor 

tyrosine kinase transactivation. Can J Physiol Pharmacol 81:159-167; 2003. 



56 
 

  

[31] Denu, J. M.; Tanner, K. G. Specific and reversible inactivation of protein tyrosine 

phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications 

for redox regulation. Biochemistry 37:5633-5642; 1998. 

[32] Rhee, S. G.; Bae, Y. S.; Lee, S. R.; Kwon, J. Hydrogen peroxide: a key messenger that 

modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000:pe1; 2000. 

 
 

  

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

  

 

 

 

 

 

 

 

 

 

 



1 
 

 



57 
 

0 50 100 150 200 250

75

100

125

150

175

200

**
*

H2O2(μM)

G
i α

-2
/D

yn
ei

n
(a

rb
ri

tr
ar

y 
un

its
,%

)

* *

0 50 100 150 200 250

100

125

150

175

200

* *

**

H2O2(μM)

G
i α

-3
/D

yn
ei

n
(a

rb
itr

ar
y 

un
its

, %
)

**

40 kDa

74 kDaDynein Dynein

Giα-3
Giα-2 41kDa

74kDa

0 min 30 min 1 h 2h 3h 4h
80

100

120

140

160

180

200

220

* *
** **

Time of treatment

G
i α

-2
/D

yn
ei

n
(a

rb
itr

ar
y 

U
ni

ts
 in

 %
)

*

0 min30 min 1 h 2h 3h 4h
80

100

120

140

160

180

200

220

* **
*

Time of treatment

G
i α

-3
/D

yn
ei

n
(a

rb
itr

ar
y 

un
its

 %
)

***

C

A

Giα-2

Dynein

40 kDa

74 kDa

Giα-3

Dynein

41 kDa

74 kDa

B

D

 
 
 
 
 
 
 



58 
 

  

 
 
 

                                       

                   
 
 
 
Figure 1. Effect of various concentrations of H2O2 on the levels of Giα-2 and Giα-3 proteins in aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats. 
VSMCs were incubated in the absence (0µM) or presence of H2O2 (50 to 250µM) (A, B) for different time periods (30 min to 4h) (C, D) as described in Materials and Methods. 
Cell lysates were prepared and subjected to Western blotting using specific antibodies against Giα-2, Giα-3, and Gsα. Dynein was used as a loading control. Proteins were 
quantified by densitometric scanning and plotted as a percentage of CTL taken as 100%. Data are means ± SE of 3 separate experiments. *P < 0.01, vs 0 µM, *P < 0.01 vs 0 min,**P 
< 0.05 vs 100µM, **P < 0.05 vs 1h 
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Figure 2. Effect of actinomycin D on H2O2-induced enhanced expression of Giα-2 and Giα-3 proteins in aortic VSMC. Aortic 
VSMCs were pretreated without or with actinomycin D (5µM) for 24 hours, and were further incubated in the absence (white bars) or 
presence (black bars) of 100µM of H2O2 for 1h. Cell lysates were prepared and subjected to Western blotting using specific antibodies 
against Giα-2 and Giα-3 as described in Materials and Methods. Dynein was used as a loading control. Proteins were quantified by 
densitometric scanning and plotted as a percentage of CTL taken as 100%. Values are means SE of 3 separate experiments.*P < 0.05 vs
CTL, #P < 0.01 vs H2O2
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Figure 3. (A) Effect of H2O2 on GTPγS-mediated inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity in aortic vascular smooth muscle cells. Aortic VSMC 
were incubated in the absence or presence of 100µM H2O2 for 1h and half. Membranes were prepared as described in Materials and Methods. Adenylyl cyclase activity was 
determined in these membranes in the presence of 100µM FSK alone, taken as 100%, and in the presence of various concentrations of GTPγS (10-12 to 10-7M). Basal enzyme 
activity values in the absence of GTPγS in control or H2O2-treated cells were 102 ±2.1 pmol cAMP/mg protein min-1 and 68 ±1.5 pmol cAMP/mg protein min-1.(B) Effect of 
hydrogen peroxide (H2O2) on hormonal inhibition of adenylyl cyclase activity in aortic vascular smooth muscle cells (VSMC). Aortic VSMC were treated without (white 
bars) or with H2O2 (100µM) for 1h and half. Adenylyl cyclase activity was determined in the presence of 10µMGTPγS alone, taken as 100% or in combination with 10µM 
Angiotensin II (Ang II), 0.1µM C-ANP4-23, or 50µM oxotremorine. Basal enzyme activity values in the absence of GTPγS in control or H2O2-treated cells were 21 ±0.45 pmol 
cAMP/mg protein min-1 and 10 ±0.25 pmol cAMP/mg protein min-1 respectively. Values are means ± SE of 3 separate experiments. *P < 0.05, #P < 0.001,**P < 0.05  vs CTL 
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Figure 4. Effect of hydrogen peroxide on agonist-mediated stimulation of adenylyl cyclase in aortic vascular smooth muscle cells (VSMC). 
Aortic VSMC were treated without (white bars) or with H2O2 (100µM) for 1h and half. Membranes were prepared as described in Materials and 
Methods. Adenylyl cyclase activity was determined in the presence of 10µMGTP alone, taken as 100% or in combination with 50µM 
isoproterenol (Iso) or 1µM glucagon, in the absence or presence of 10mM sodium fluoride (NaF) or 50µM Forskolin (FSK). Basal adenylyl
cyclase activity values in the absence of GTP in control or H2O2-treated cells were 24.6 ±0.18 pmol cAMP/mg protein min-1 and 16 ±0.71 pmol
cAMP/mg protein min-1 respectivey.Values are means ± SE of 3 separate experiments. *P < 0.05, #P < 0.01 vs CTL

Figure 4 
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Figure 5. Effect of ERK1/2 (5A, 5B) and AKT (PKB) (5C, 5D) inhibitors on H2O2-induced enhanced expression of Giα-2 and Giα-3 proteins in aortic 
vascular smooth muscle cells. Cells were pretreated without or with PD98050 (10µM) or wortmannin (0.1µM) for 1h, then stimulated with 100µM of H2O2 for 
1h. Cell lysates were prepared and subjected to Western blotting using specific antibodies against Giα-2 and Giα-3 as described in Materials and Methods. Dynein 
was used as a loading control. Proteins were quantified by densitometric scanning and plotted as a percentage of CTL taken as 100%. Values are means ± SE of 8 
separate experiments.*P < 0.01, vs CTL, ##P < 0.001, #P < 0.05 vs H2O2 
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Figure 6. Effect of H2O2 on ERK1/2 and AKT phosphorylation in aortic vascular smooth muscle cells (VSMCs). Confluent cells were incubated 
in the absence or presence of PD98059 (10µM) or wortmannin (0.1µM) for 1h, then challenged with 100µM of H2O2 for 1h then challenged with 100µM 
of H2O2 for 1h. Cell lysates were prepared and subjected to Western blotting using phospho-specific-Tyr204 ERK or phosphospecific-serine473 AKT 
antibodies (top), and also analyzed for total ERK and total AKT (bottom) as described in Material and Methods. Proteins were quantified by 
densitometric scanning and plotted as a percentage of CTL taken as 100%. Values are means ± SE of 3 to 6 separate experiments. *P < 0.01, **P < 0.05 
vs CTL, ##P < 0.01 vs H2O2
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Figure 7. Implication of EGFR, and PDGFR-β inhibitors on the expression of Giα-2 and Giα-3 proteins. Aortic vascular smooth muscle cells (VSMC) were 
treated with either AG1478 (5µM) or AG1295 (5µM) for 1h, and then treated with 100µM H2O2 for 1h. Cell lysates were prepared and subjected to Western 
blotting using specific antibodies against Gi Giα-2 and Giα-3 as described in Materials and Methods. Dynein was used as a loading control. Proteins were 
quantified by densitometric scanning and plotted as a percentage of CTL taken as 100%.Values are means ± SE of 4 separate experiments.*P < 0.05 vs CTL, #P < 
0.01 vs H2O2.*P < 0.05 vs CTL, #P < 0.01 vs H2O2 
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Figure 8. Effect of H2O2 on the phosphorylation of EGF-R and PDGFR-β in aortic vascular smooth muscle cells (VSMCs). 
Confluents aortic VSMCs were incubated in the absence or presence of AG1478 (5µM), or AG1295 (5µM) for 1h, then challenged with 
100µM of H2O2 for 1h. Cell lysates were prepared and subjected to Western blotting using phosphospecific-tyrosine1173 EGF-R (8A) and 
phosphospecific tyrosine857 PDGFR-β (8B), and also analysed for total EGF-R, and PDGFR-β. Proteins were quantified by densitometric
scanning and plotted as a percentage of CTL taken as 100%. Values are means SE of 4 separate experiments. *P < 0.05, **P < 0.01 vs
CTL, #P <0.01 vs H2O2
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Figure 9. Effect of EGFR, and PDGFR-β silencing on the expression of Giα-2, and Giα-3 proteins. Aortic vascular smooth muscle cells (VSMC) were 
silenced with either EGFR (A, B) or PDGFR-β (C, D) siRNA for 48h, and then treated with 100µM H2O2 for 1h. Cell lysates were prepared and subjected to 
Western blotting using specific antibodies against Giα-2 and Giα-3 as described in Materials and Methods. Dynein was used as a loading control. Proteins were 
quantified by densitometric scanning and plotted as a percentage of CTL taken as 100%. Values are means ± SE of 4 separate experiments. *P < 0.05 vs CTL, #P < 
0.01 vs H2O2 
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Figure 10. Effect of hydrogen peroxide on the phosphorylation of EGF-R and PDGFR-β in aortic vascular smooth muscle cells (VSMC). 
Confluent VSMCs were treated with control siRNA (scrambled), or silenced with EGFR siRNA or PDGFR-β siRNA for 48h, and then stimulated 
with 100µM H2O2 for 1h. Cell lysates were prepared and subjected to Western blotting using phosphospecific-tyrosine1173 EGF-R (A) or phosphospecific 
tyrosine857 PDGFR-β (C) and also analyzed for total EGF-R (B) and total PDGFR-β (D) as described in Material and Methods. Proteins were quantified 
by densitometric scanning and plotted as a percentage of CTL taken as 100%. Values are means ± SE of 4 separate experiments.*P < 0.01, **P < 
0.001 vs CTL #P < 0.05 vs H2O2 
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Figure 11. Effect of growth factor receptors inhibitors on the phosphorylation of ERK1/2 and AKT in aortic VSMC treated with 
H2O2. Confluent aortic VSMC were incubated in the presence of 5µM of AG1478 or 5µM of AG1295 for 1h, and then stimulated with 
100µM H2O2 for 1h. Cell lysates were prepared and subjected to Western blotting using phospho-specific-Tyrosine204 ERK1/2 or 
phosphospecific-serine473 AKT antibodies (top) and also analyzed for total ERK1/2 and AKT (bottom) as described in Material and 
Methods. Proteins were quantified by densitometric scanning and plotted as a percentage of CTL taken as 100%. Values are means SE of 
3 separate experiments.*P < 0.05 vs CTL, #P < 0.001 vs H2O2
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General discussion 

Heterotrimeric guanine nucleotide proteins play a critical role in the regulation of a variety of 

signal transduction systems. Several studies have reported the impact of G proteins 

overexpression, mutations, and defects in the pathophysiology of many diseases (Farfel, Bourne, 

& Iiri, 1999). An enhanced Giα protein expression coupled with decreased adenylyl cyclase 

activity in myocardial membranes from hearts with dilated cardiomyopathy has been reported 

(Bohm, et al., 1990). Mutation of the gene encoding the β3 subunit of heterotrimeric Gs protein 

has been shown in patients with essential hypertension (Siffert, et al., 1998). Eschenhagen et al 

have reported an increase of the levels of Giα-2 mRNA in patients with congestive heart failure 

(Eschenhagen, et al., 1992). Our laboratory has reported the implication of Giα proteins and 

associated adenylyl cyclase signalling in various pathological conditions, such as hypertension 

(Li & Anand-Srivastava, 2002), heart failure, and diabetes (Hashim, Li, & Anand-Srivastava, 

2006a). We demonstrated that the inactivation of the enhanced expression of Giα proteins by 

pertussis toxin attenuates the development of high blood pressure in SHR (Li & Anand-

Srivastava, 2002). The increased expression of Giα-2, and Giα-3 proteins and mRNA in hearts 

and aortas from SHR (Anand-Srivastava, 1992), 1K1C (Bohm, et al., 1993), L-NAME (Hashim 

& Anand-Srivastava, 2004), and DOCA-salt hypertensive rats with established hypertension has 

also been reported (Anand-Srivastava, et al., 1993). Furthermore, we have reported an 

overexpression of Giα proteins before the onset of DOCA-salt-induced hypertension (Marcil, et 

al., 1998). 

The Adenylyl cyclase/cAMP system is implicated in the control of heart contractility and 

vascular smooth muscle tone (Katz, Tada, & Kirchberger, 1975). Levels of cAMP are regulated 

by Giα and Gsα proteins. The Giα proteins are involved in the regulation of adenylyl cyclase 

inhibition (Itoh, et al., 1988). Alteration in Giα proteins expression, Adenylyl cyclase activity 

and cAMP levels have been reported in cardiovascular tissues from genetic models of SHR and 

experimentally induced models of hypertensive rats (Anand-Srivastava, Picard, & Thibault, 

1991; Di Fusco & Anand-Srivastava, 2000; Marcil, et al., 1997). The Adenylyl cyclase/cAMP 

pathway is thought to be important in the initiation of cardiac hypertrophy because several 

vasoactive peptides such as Ang II and Endothelin that increase Giα protein can also trigger 

hypertrophic responses in cultured myocytes (Zolk, et al., 2000). In various model of 

hypertension including the genetic SHR (Saha, Li, Lappas, & Anand-Srivastava, 2008), the 
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glucose-induced model as well as the angiotensin II-induced model of hypertension, we have 

demonstrated an increase in the production of superoxide anion in VSMC (Li, et al., 2008). The 

implication of oxidative stress in the enhanced expression of Giα-2 and Giα-3 proteins in VSMC 

from SHR also has been reported (Lappas, et al., 2005). We also have demonstrated the link 

between enhanced production of reactive oxygen species and diseases of the cardiovascular 

system including hypertension and diabetes (Li, et al., 2008). 

Although the role of oxidative stress in Ang II-mediated enhanced expression of Giα proteins 

and the indirect implication of signal transduction pathway including the MAPK have been 

reported, the specific signalling mechanisms by which reactive oxygen species enhance Giα 

proteins has not been elucidated. We have studied the implication of several signalling pathways 

including the ERK1/2, p38MAPK, C-Jun-N terminal protein kinase, PI3K and growth factors 

receptors in the H2O2-induced enhanced expression of Giα-2 and Giα-3 proteins and associated 

Adenylyl cyclase (AC) in VSMC. To correlate the Giα protein expression with Giα functions, we 

examined the stimulatory effects of isoproterenol, FSK, NaF, and glucagon as well as the 

inhibitory effects of Ang II, oxotremorine, and C-ANP4-23 on AC activity. Aortic VSMC were 

treated with H2O2, in order to induce oxidative stress. Our first results showing that H2O2 induces 

the overexpression of Giα-2 and Giα-3 proteins not that of Gsα, in a concentration and time 

dependent-manner are in agreement with previously reported findings illustrating the role of 

oxidative stress in Ang II-induced enhanced expression of Giα-2 and Giα-3 proteins in A10 

VSMC (Li, et al., 2007). To investigate whether H2O2 exerts its effects on Giα proteins at a 

transcriptional level, we studied the effect of Actinomycin D, an inhibitor of RNA synthesis. The 

H2O2-induced increased expression of Giα-2 and Giα-3 proteins was decreased to control level 

by Actinomycin D. 

To examine whether the augmentation of Giα-2 and Giα-3 levels by H2O2 treatment is also 

reflected in Giα functions, we studied the effect of H2O2 pretreatment on AC activity. The AC 

activity is dually regulated by stimulatory and inhibitory receptors as wells as G proteins 

including Gsα and Giα (Bohm, et al., 1993). The relationship between increased expressions of 

Giα proteins and enhanced Giα functions has previously been reported (Anand-Srivastava, 

1992).  In SHR, a reduction of cardiac AC activity has been reported to occur (Robberecht, et al., 

1981). In aortic VSMC pretreated with H2O2, the stimulatory response of glucacon and 

isoproterenol was significantly decreased by roughly 90% compared to control cells. 
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Furthermore, FSK, and NaF stimulated AC activity by a receptor independent mechanism by 

about 100 % (fold) in control cells compared to H2O2-treated cells. Since Giα-2 and Giα-3 levels 

were significantly increased in H2O2-treated smooth muscle cells than in control cells, the 

decreased responsiveness of AC to isoproterenol and glucagon in H2O2-pretreated cells can also 

be attributed to increased levels of Giα proteins. The decreased stimulation of AC by FSK and 

NaF in H2O2-pretreated VSMC is in agreement with earlier studies on A10 VSMC (Li, Hashim, 

& Anand-Srivastava, 2005) and SHR (Ge, Garcia, & Anand-Srivastava, 2006) and may be due to 

overexpression of Giα proteins or defective AC subunit or both. Since the levels of Gsα were not 

altered by H2O2 treatment of aortic VSMC, the decreased stimulation of AC by isoproterenol and 

glucagon is not due to Gsα, rather to the upregulation of Giα proteins. The overexpression of 

Giα-2 and Giα-3 proteins in H2O2-pretreated cells was further demonstrated by the greater 

inhibition of FSK-stimulated AC with low concentrations of GTPγS (an index of Giα function). 

GTPγS inhibited FSK-stimulated AC activity in a concentration dependent manner with a greater 

inhibition of about 25% in H2O2-treated cells. Moreover, the fact that the Ang II, C-ANP4-23, and 

oxotremorine-mediated inhibition of AC was significantly increased in H2O2-treated cells, 

compared with untreated control cells, may be explained by the increased expression of Giα-2 

and Giα-3 proteins. We previously have established a correlation between the phosphorylation of 

MAPK and Gq/G11, and Giα proteins expression in aortic VSMC (Descorbeth & Anand-

Srivastava, 2010; Li, et al., 2007). The identification of signaling pathways responsible for the 

H2O2-induced expression of Giα proteins is critical for understanding mechanisms that regulate 

vascular smooth muscle cell function, hence vascular pathological processes involved in 

hypertension. 

Mitogen-activated protein kinases (MAPK) act as transducer of extracellular signalling via 

tyrosine-kinases growth factors and G-protein-linked receptors to elements regulating 

transcription (Sivaraman, Wang, Nuovo, & Malbon, 1997). The role of MAPK in cell growth, 

proliferation, and apoptosis has been demonstrated by several investigators (Zhang & Liu, 2002). 

However, we demonstrate for the first time a direct correlation between oxidative stress, ERK1/2 

signalling pathway and Giα proteins expression. We report that the inhibition of ERK1/2 

phosphorylation by PD98059 restores the H2O2-induced enhanced level of Giα-2, and Giα-3 

proteins to control levels suggesting a role of ERK1/2 signalling pathway in the increased 

expression of Giα proteins. Previous studies from our lab have shown the implication of ERK1/2 
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signaling pathway in the enhanced expression of Giα proteins in VSMC from SHR (Lappas, et 

al., 2005). Moreover, the current study also reports the role of oxidative stress in the 

phosphorylation of ERK1/2 in aortic VSMC. The H2O2-induced enhanced phosphorylation of 

ERK1/2 was attenuated to control level by PD98059. However, Viedt and colleagues have 

reported that intracellular ROS are critical for AngII-induced activation of p38MAPK, JNK and 

ERK5 in VSMC, whereas phosphorylation of ERK1/2 appears to be redox insensitive (Viedt, et 

al., 2000). Touyz and collaborators also have shown that inhibition of ROS with antioxidants 

decreased Ang II-induced phosphorylation of p38MAPK, JNK and ERK5, but not that of 

ERK1/2 in VSMC (Touyz, et al., 2003). In contrast to these findings, Frank et al. have 

demonstrated that antioxidants diphenyleneiodonium (DPI) and N-acetyl cysteine (NAC) inhibit 

ERK1/2 activation produced by Ang II in VSMC and that exogenous H2O2 stimulate protein 

tyrosine phosphorylation of ERK1/2 (Frank, et al., 2000). Other investigators have reported the 

involvement of ROS in ERK1/2 phosphorylation in cardiac fibroblasts (Sano, et al., 2001) and 

cardiac myocytes (Nishida, et al., 2000). We also have reported that the enhanced expression of 

ERK1/2 phosphorylation in both A10 VSMC and VSMC from SHR is attenuated to control 

levels by antioxidant DPI, and NAC, suggesting the role of ROS in enhanced ERK1/2 

phosphorylation (Lappas, et al., 2005; Li, et al., 2007). The reasons for the discrepancies 

between published results are still unclear. It is however, important to note that, the discrepancies 

lie in the activation of ERK1/2 pathway by ROS generated by Ang II, rather than exogenous 

ROS. In fact there is a consensus among published results that exogenous O2
-·and H2O2 are 

potent activator of ERK1/2, p38 MAPK, JNK, and ERK5 (Droge, 2002; Thannickal & Fanburg, 

2000).There are multiple pathways leading to ERK1/2 phosphorylation by Ang II, which differ 

between cell types. Previous reports have revealed that Ang II activates ERK via either c-Src or 

EGFR in cardiac fibroblasts (Murasawa, et al., 1998). Other reports suggest that Ang II-mediated 

ROS activation of ERK1/2 phosphorylation involves a tyrosine kinase-dependent, PKC-

dependent (Zou, et al., 1996), or PI3K and MEK-dependent pathways in VSMC (Aikawa, et al., 

1997). The MAP kinases effects of endogenous ROS seem to be ligand or cell-type specific. 

However, on the basis of the present results and previous findings, it is most likely that ROS 

induce ERK activation by a tyrosine kinase, MEK-dependent pathway in VSMC.  

We also examined the implication of p38 MAPK and c-Jun N-terminal protein kinase on Giα 

proteins expression in VSMC. Although exogenous H2O2 induced the phosphorylation of both 



73 
 

  

p38 MAPK and JNK, the activation of these pathways does not seem to be involved in Giα-2 and 

Giα-3 proteins expression. Pretreatment of aortic VSMC with SB 203580 and dicoumarol, which 

are pharmacological inhibitors of p38 MAPK and JNK respectively, did not alter the expression 

of Giα-2 and Giα-3 proteins. One possible explanation for the differences in the stimulation of 

Giα proteins expression between ERK1/2 and p38 MAPK, JNK pathways lie in the physiological 

processes they induce. ERK1/2 is a major growth-signaling kinase, whereas JNK and p38 

MAPK influence cell survival, apoptosis, inflammation, and differentiation (Pearson, et al., 

2001). Activation of p38 MAPK and JNK would result in the phosphorylation of specific 

transcriptions factors responsible for cell death, and inflammation such as c-jun and ATF-2. On 

the other hand, activation of ERK1/2 signalling pathway leads to the phosphorylation of 

transcription factors involve in cell growth, and differentiation such as c-myc, c-fos and Elk1 

(Zhang & Liu, 2002). 

 The PI3Ks are activated in response to growth factors and other agents, including vasoactive 

peptides, and have been reported to regulate cell adhesion and motility, cell differentiation, cell 

growth and apoptosis (Gomperts, et al., 2002). We have reported the implication of PI3K 

signalling in high glucose-induced enhanced expression of Gq/G11α and PLCβ in aortic VSMC 

(Descorbeth & Anand-Srivastava, 2010). Pretreatment of Aortic VSMC with wortmannin 

attenuated the H2O2-induced enhanced level of Giα-2, and Giα-3 proteins to control levels, 

which suggest the implication of PI3-K signaling in the enhanced expression of Giα proteins.  

PKB/AKT is considered to be a marker for PI3K activation since PKB/AKT activation is thought 

to occur via the binding of PtdIns (3,4,5)P3 to the pH domain of PKB/AKT, thereby causing a 

proportion of AKT to translocate to the plasma membrane where it undergoes conformational 

changes and is subsequently phosphorylated on Ser473 by PtdIns(3,4,5)P3-dependent kinase (Qin 

& Chock, 2003). In our studies, exogenous H2O2 was shown to increase the phosphorylation of 

Ser473 on PKB/AKT. The phosphorylation was blocked by wortmannin, implicating PI3K as an 

upstream mediator of H2O2 response. Consistent with our findings, a direct activation of PI3Ks 

by H2O2 in VSMC has been reported (Ushio-Fukai, et al., 1999). The underlying mechanisms 

responsible for PKB/AKT activation in response to H2O2 in VSMC have not been fully 

elucidated. One possible explanation is that H2O2 might simply triggers membrane translocation 

of PI3K and enables it to access it substrate (PtdIns(3,4)P2, thereby enhancing it catalytic 

efficiency to PtdIns (3,4,5)P3 production. Other reports have suggested the role of EGF-R, 
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PDGF-Rβ, as well as src family of protein tyrosine kinases such as c-Src and fyn in the 

activation of PI3K signalling pathway (Abe, Okuda, Huang, Yoshizumi, & Berk, 2000; Jin, et 

al., 2000). Phosphorylation of growth factors receptors is an important step in both MAPK, and 

PI3K activation. We tested the hypothesis that H2O2-induced activation of ERK1/2 and PI3K is 

mediated via growth factors receptors transactivation in VSMCs. The H2O2-induced 

phosphorylation of p-ERK1/2 and p-AKT were restored to control levels by EGF-R and PDGF-

Rβ inhibitors AG1478 and AG1295 respectively. These results are in accordance with our 

previous findings illustrating that high glucose-induced enhanced phosphorylation of ERK1/2 

and AKT is restored to control levels by growth factors inhibitors, AG1478 and AG1295 

(Descorbeth & Anand-Srivastava, 2009). Our findings suggest the implication of EGF-R and 

PDGFR-β transactivation in H2O2-induced enhanced activation of ERK1/2 and AKT. Kim et al. 

have shown that EGF induces vasoconstriction through the PI3K mediated MAPK pathway in 

DOCA-salt hypertensive rats (Kim, et al., 2006). Other investigators have demonstrated the role 

of PDGFR-β in the activation of ERK1/2 and AKT. The inhibition of PDGF-Rβ tyrosine 

phosphorylation by melittin a bioactive component of bee venom toxin also inhibits downstream 

intracellular signal transduction pathways such as ERK1/2 and AKT/PKB in rat aortic VSMC 

further confirming the involvement of growth factors receptors in ERK1/2 and AKT 

phosphorylation (Son, et al., 2007).  

Migration and proliferation of VSMCs is critical in the pathogenesis of vascular diseases, and the 

activation of growth factor receptors including EGF-R and PDGF-R play a major role in vascular 

remodelling (Touyz, 2005). We have reported the contribution of EGF receptor transactivation in 

Ang II-induced enhanced expression of Giα proteins and proliferation in A10 VSMC (Gomez 

Sandoval, et al., 2009). Vasoactive peptides such as Ang II and endothelin mediate their 

physiological effects through the activation of growth factors receptors EGF-R, PDGF-R and 

IGF-R in a variety of cell types (Itoh, Mukoyama, Pratt, Gibbons, & Dzau, 1993). Aortic VSMC 

exposed to H2O2 exhibit an enhanced phosphorylation level of EGF-R and PDGFR-β and the 

inhibition of these receptors by AG1478 and AG1295 respectively, attenuated the enhanced 

expression of Giα-2 and Giα-3 proteins to control levels. Furthermore, the suppression of EGF-R 

and PDGFR-β expression with siRNA decreased the H2O2-induced enhanced 

phosphosphorylation of EGF-R and PDGFR-β with subsequent decrease of Giα proteins 

expression. In summary, hydrogen peroxide increases the expression of Giα-2 and Giα-3 proteins 
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via the phosphorylation of growth factor receptors EGF-R, and PDGFR-β, which in turn activate 

downstream signalling pathways including ERK1/2, and PI3K. The induction of the above 

pathways may trigger transcription of genes responsible for Giα proteins synthesis. Several 

reports have established the link between the activation of growth factors receptors and 

hypertension. Sarzani et al. showed that hypertension induces high expression of PDGF-Rα and 

β in the aorta of DOCA-salt hypertensive rats (Sarzani, Arnaldi, & Chobanian, 1991). Other 

evidence shows that in stroke-prone SHR, treatment with ACE inhibitor reduced aortic PDGF-R-

β phosphorylation and ERK1/2 activity (Kim, Zhan, et al., 2000). Kagiyama et al. also have 

demonstrated that the inhibition of EGF-R with specific antisense oligonucleotides decreases 

blood pressure and prevents cardiac hypertrophy in Ang II-induced hypertension (Kagiyama, et 

al., 2002). These findings show the implication of growth factors receptors in vascular diseases. 

Moreover, the role of hydrogen peroxide in the activation of growth factor receptors has been 

reported. Exogenous H2O2 induces tyrosine phosphorylation and activation of PDGFR-β and 

EGF-R in VSMC (Droge, 2002). The precise mechanisms by which H2O2 induces the 

phosphorylation of growth factors receptors have been studied extensively. 

Hydrogen peroxide targets proteins containing reactive cysteine (Cys) residues. The pKa of the 

sulfhydryl group (Cys-SH) of most Cys residues is approximately 8.5, because unaltered Cys-SH 

groups are crucial for the catalytic and structural functions of many proteins (Kim, Yoon, Kwon, 

Lee, & Rhee, 2000). Since the Cys-SH group is less readily oxidized by H2O2 than the cysteine 

thiolate anion (Cys-S-), few proteins are vulnerable to oxidation by H2O2 in cells. However, 

some protein cysteine residues have low pKa values and exist as Cys-S- at neutral pH due to 

nearby positively charged amino acid residues that are available for interaction with the 

negatively charged Cys-S- (Rhee, et al., 2003). Proteins with low pKa cysteine residues include 

protein tyrosine phosphatases (PTP). All PTP contain cysteine residues (pKa, 4.7 to 5.4) in the 

catalytic domain (Denu & Tanner, 1998). Exogenous H2O2 induces tyrosine phosphorylation and 

activation of PDGFR-β and EGFR, probably due to ROS-mediated inhibition of tyrosine 

phosphatases. Protein tyrosine phosphatases (PTP) are susceptible to oxidation and inactivation 

by H2O2 (Rhee, et al., 2003). PTPs exist in two forms, an active state with a reduced cysteine or 

an inactive state with an oxidized cysteine. The reversible oxidation of the cysteine residues to 

sulfenic acid by H2O2 renders PTPs inactive (Brigelius-Flohe, Banning, Kny, & Bol, 2004). The 

inhibition of PTPs by H2O2 results in increase tyrosine phosphorylation of protein tyrosine 
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kinase and non-receptor tyrosine kinase which promote the activation of downstream signalling 

cascade including MAPK and PI3K. Recent reports have indicated that other mechanisms may 

be involved in the activation of EGF-R and PDGF-R by H2O2. Eguchi et al. have shown that 

metalloprotease-dependent HB-EGF cleavage is required for EGF-R activation by H2O2 in 

VSMC (Eguchi, et al., 2001), and Chen et al. demonstrated the role of c- Src in H2O2-stimulated 

EGF-R activation in endothelial cells (Chen, Vita, Berk, & Keaney, 2001). Our laboratory also 

has reported the implication of c-Src in high glucose-induced EGF-R and PDGF-R 

transactivation that contributes to the increased expression of Gq/11α and PLCβ proteins in 

VSMC (Descorbeth & Anand-Srivastava, 2009). The mechanisms involved in the activation of 

c-Src by H2O2 are still unclear. Furthermore, it remains unclear whether the transactivation of 

growth factors receptors by H2O2 alone is sufficient to induce the enhanced expression of Giα-2 

and Giα-3 proteins in aortic VSMC. Growth factor receptors have been proposed to interact with 

GPCR during growth factor stimulation, and subsequently activating c-Src family kinases. It has 

been reported that GPCR can associate with PDGF-R to form a functional signalling complex in 

human embryo kidney cells (Pyne, Waters, Moughal, Sambi, & Pyne, 2003). In addition, the 

inhibition of Giα protein by pertussis toxin partially suppress both the PDGFR-β-induced ROS 

production, and the downstream ERK1/2, JNK, and AKT activation in the lens epithelial cells 

(Chen, et al., 2007). Taken together, it may be possible that the H2O2-induced enhanced 

expression of Giα-2 and Giα-3 proteins requires the concerted activation of upstream membrane-

associated components of growth factors receptors including c-Src, GPCR as well as PI3K and 

ERK1/2 signalling. 

 

General conclusion 

We have provided the first evidence demonstrating that H2O2 increases the levels of Giα proteins 

without affecting the levels of Gsα in VSMC. Our studies demonstrate the role of oxidative 

stress in the enhanced expression of Giα-2 and Giα-3 proteins and associated adenylyl cyclase 

signalling. The increase expression of Giα proteins was reflected in enhanced Giα and decreased 

Gsα-mediated functions. The activation of PDGFR-β and EGFR by H2O2 triggers the activation 

of downstream signalling pathways including ERK1/2, and PI3K which may be responsible for 

enhanced expression of Giα-2 and Giα-3 proteins. The increased expression of Giα proteins 

results in the inhibition of adenylyl cyclase activity. 
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Figure 7. Proposed mechanism: Mechanism responsible for the enhanced expression of Giα 
proteins by H2O2 in aortic vascular smooth muscle cells. 

 

Future work 

Our study elucidates some of the signalling mechanisms involved in the overexpression of Giα 

proteins by hydrogen peroxide. We demonstrate that the phosphorylation of growth factors 

receptors EGFR and PDGFR-β is critical to the H2O2-induced overexpression of Giα proteins. It 

will be of interest to also investigate the involvement of other kinases or signalling molecules 

such as c-Src, and metalloproteases in the activation of growth factors receptors by H2O2. The 

implication of both c-Src and metalloproteases in EGF-R activation has been reported (Chen, et 

al., 2001; Eguchi, et al., 2001). Vascular remodelling during hypertension includes cellular 
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hypertrophy and hyperplasia, as well as enhanced protein synthesis (Lehoux & Tedgui, 1998). A 

direct role of oxidative stress in hypertension could be explored by studying the effect of H2O2 

on the proliferation and hypertrophy of aortic VSMC by detection of tritiated thymidine H3 

uptake. In vivo studies could further establish the correlation between increased Giα proteins 

expression, oxidative stress, and hypertension. Studies have shown that H2O2 increases Ca2+ in 

VSMC and endothelial cells (Lounsbury, et al., 2000). It has also been shown that oxidative 

stress increases intracellular Ca2+ which can regulate the phosphorylation and dephosphorylation 

of proteins and modulate signal transduction pathways (Ermak & Davies, 2002). It will be of 

interest to examine the role of Ca2+ in the H2O2-induce enhanced expression of Giα proteins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

  

Bibliography 
Abe, J., Okuda, M., Huang, Q., Yoshizumi, M., & Berk, B. C. (2000). Reactive oxygen species 

activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem, 275(3), 1739-1748.  
Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., et al. (1997). Oxidative 

stress activates extracellular signal-regulated kinases through Src and Ras in cultured 
cardiac myocytes of neonatal rats. J Clin Invest, 100(7), 1813-1821.  

Amer, M. S., Gomoll, A. W., Perhach, J. L., Jr., Ferguson, H. C., & McKinney, G. R. (1974). 
Aberrations of cyclic nucleotide metabolism in the hearts and vessels of hypertensive 
rats. Proc Natl Acad Sci U S A, 71(12), 4930-4934.  

Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the 
degenerative diseases of aging. Proc Natl Acad Sci U S A, 90(17), 7915-7922.  

Anand-Srivastava, M. B. (1988). Altered responsiveness of adenylate cyclase to adenosine and 
other agents in the myocardial sarcolemma and aorta of spontaneously-hypertensive rats. 
Biochem Pharmacol, 37(15), 3017-3022.  

Anand-Srivastava, M. B. (1992). Enhanced expression of inhibitory guanine nucleotide 
regulatory protein in spontaneously hypertensive rats. Relationship to adenylate cyclase 
inhibition. Biochem J, 288 ( Pt 1), 79-85.  

Anand-Srivastava, M. B. (1996). G-proteins and adenylyl cyclase signalling in hypertension. Mol 
Cell Biochem, 157(1-2), 163-170.  

Anand-Srivastava, M. B., de Champlain, J., & Thibault, C. (1993). DOCA-salt hypertensive rat 
hearts exhibit altered expression of G-proteins. Am J Hypertens, 6(1), 72-75. 

Anand-Srivastava, M. B., Picard, S., & Thibault, C. (1991). Altered expression of inhibitory 
guanine nucleotide regulatory proteins (Gi alpha) in spontaneously hypertensive rats. Am 
J Hypertens, 4(10 Pt 1), 840-843.  

Asano, M., Masuzawa, K., & Matsuda, T. (1988). Evidence for reduced beta-adrenoceptor 
coupling to adenylate cyclase in femoral arteries from spontaneously hypertensive rats. 
Br J Pharmacol, 94(1), 73-86.  

Asano, M., Masuzawa, K., Matsuda, T., & Asano, T. (1988). Reduced function of the 
stimulatory GTP-binding protein in beta adrenoceptor-adenylate cyclase system of 
femoral arteries isolated from spontaneously hypertensive rats. J Pharmacol Exp Ther, 
246(2), 709-718.  

Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B., et al. (1997). 
Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF 
receptor-mediated tyrosine phosphorylation. J Biol Chem, 272(1), 217-221.  

Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C., Kazlauskas, A., et al. (2000). Platelet-
derived growth factor-induced H(2)O(2) production requires the activation of 
phosphatidylinositol 3-kinase. J Biol Chem, 275(14), 10527-10531.  

Bar, H. P. (1974). Cyclic nucleotides and smooth muscle. Adv Cyclic Nucleotide Res, 4(0), 195-
237.  

Barton, M., d'Uscio, L. V., Shaw, S., Meyer, P., Moreau, P., & Luscher, T. F. (1998). ET(A) 
receptor blockade prevents increased tissue endothelin-1, vascular hypertrophy, and 
endothelial dysfunction in salt-sensitive hypertension. Hypertension, 31(1 Pt 2), 499-504.  

Bassil, M., & Anand-Srivastava, M. B. (2006). Nitric oxide modulates Gi-protein expression and 
adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic Biol Med, 41(7), 
1162-1173.  



80 
 

  

Bassil, M., Li, Y., & Anand-Srivastava, M. B. (2008). Peroxynitrite inhibits the expression of 
G(i)alpha protein and adenylyl cyclase signaling in vascular smooth muscle cells. Am J 
Physiol Heart Circ Physiol, 294(2), H775-784.  

Baumann, G., Felix, S. B., Schrader, J., Heidecke, C. D., Riess, G., Erhardt, W. D., et al. (1981). 
Cardiac contractile and metabolic effects mediated via the myocardial H2-receptor 
adenylate cyclase system. Characterization of two new specific H2-receptor agonists, 
impromidine and dimaprit, in the guinea pig and human myocardium. Res Exp Med 
(Berl), 179(1), 81-98.  

Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. 
Diabetes, 40(4), 405-412.  

Berk, B. C., Vekshtein, V., Gordon, H. M., & Tsuda, T. (1989). Angiotensin II-stimulated 
protein synthesis in cultured vascular smooth muscle cells. Hypertension, 13(4), 305-314.  

Berry, C., Hamilton, C. A., Brosnan, M. J., Magill, F. G., Berg, G. A., McMurray, J. J., et al. 
(2000). Investigation into the sources of superoxide in human blood vessels: angiotensin 
II increases superoxide production in human internal mammary arteries. Circulation, 
101(18), 2206-2212.  

Bioukar, E. B., Marricco, N. C., Zuo, D., & Larose, L. (1999). Serine phosphorylation of the 
ligand-activated beta-platelet-derived growth factor receptor by casein kinase I-gamma2 
inhibits the receptor's autophosphorylating activity. J Biol Chem, 274(30), 21457-21463.  

Bohm, M., Gierschik, P., Jakobs, K. H., Pieske, B., Schnabel, P., Ungerer, M., et al. (1990). 
Increase of Gi alpha in human hearts with dilated but not ischemic cardiomyopathy. 
Circulation, 82(4), 1249-1265.  

Bohm, M., Gierschik, P., Knorr, A., Schmidt, U., Weismann, K., & Erdmann, E. (1993). Cardiac 
adenylyl cyclase, beta-adrenergic receptors, and G proteins in salt-sensitive hypertension. 
Hypertension, 22(5), 715-727.  

Bohm, M., Morano, I., Pieske, B., Ruegg, J. C., Wankerl, M., Zimmermann, R., et al. (1991). 
Contribution of cAMP-phosphodiesterase inhibition and sensitization of the contractile 
proteins for calcium to the inotropic effect of pimobendan in the failing human 
myocardium. Circ Res, 68(3), 689-701.  

Boshtam, M., Rafiei, M., Sadeghi, K., & Sarraf-Zadegan, N. (2002). Vitamin E can reduce blood 
pressure in mild hypertensives. Int J Vitam Nutr Res, 72(5), 309-314.  

Brandes, R. P., & Kreuzer, J. (2005). Vascular NADPH oxidases: molecular mechanisms of 
activation. Cardiovasc Res, 65(1), 16-27.  

Bray, P., Carter, A., Simons, C., Guo, V., Puckett, C., Kamholz, J., et al. (1986). Human cDNA 
clones for four species of G alpha s signal transduction protein. Proc Natl Acad Sci U S 
A, 83(23), 8893-8897.  

Brigelius-Flohe, R., Banning, A., Kny, M., & Bol, G. F. (2004). Redox events in interleukin-1 
signaling. Arch Biochem Biophys, 423(1), 66-73.  

Callera, G. E., Tostes, R. C., Yogi, A., Montezano, A. C., & Touyz, R. M. (2006). Endothelin-1-
induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-
independent mechanisms. Clin Sci (Lond), 110(2), 243-253.  

Campbell, N. A., & Reece, J. B. (2005). Biology. (7the éd.). San Francisco: Pearson, Benjamin 
Cummings. 

Cantrell, D. A. (2001). Phosphoinositide 3-kinase signalling pathways. J Cell Sci, 114(Pt 8), 
1439-1445.  

Carey, R. M. (2007). Hypertension and hormone mechanisms. Totowa, N.J.: Humana Press. 



81 
 

  

Carretero, O. A., & Oparil, S. (2000). Essential hypertension. Part I: definition and etiology. 
Circulation, 101(3), 329-335.  

Castellano, M., & Bohm, M. (1997). The cardiac beta-adrenoceptor-mediated signaling pathway 
and its alterations in hypertensive heart disease. Hypertension, 29(3), 715-722.  

Cerione, R. A., Staniszewski, C., Caron, M. G., Lefkowitz, R. J., Codina, J., & Birnbaumer, L. 
(1985). A role for Ni in the hormonal stimulation of adenylate cyclase. Nature, 
318(6043), 293-295.  

Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 
410(6824), 37-40. doi:10.1038/35065000 

35065000 [pii] 
Chen, K., Vita, J. A., Berk, B. C., & Keaney, J. F., Jr. (2001). c-Jun N-terminal kinase activation 

by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth 
factor receptor transactivation. J Biol Chem, 276(19), 16045-16050. 
doi:10.1074/jbc.M011766200 

Chen, K. C., Zhou, Y., Zhang, W., & Lou, M. F. (2007). Control of PDGF-induced reactive 
oxygen species (ROS) generation and signal transduction in human lens epithelial cells. 
Mol Vis, 13, 374-387.  

Clempus, R. E., & Griendling, K. K. (2006). Reactive oxygen species signaling in vascular 
smooth muscle cells. Cardiovasc Res, 71(2), 216-225.  

Cowley, A. W., Jr. (1992). Long-term control of arterial blood pressure. Physiol Rev, 72(1), 231-
300.  

Crossthwaite, A. J., Hasan, S., & Williams, R. J. (2002). Hydrogen peroxide-mediated 
phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on 
Ca(2+) and PI3-kinase. J Neurochem, 80(1), 24-35.  

Daub, H., Weiss, F. U., Wallasch, C., & Ullrich, A. (1996). Role of transactivation of the EGF 
receptor in signalling by G-protein-coupled receptors. Nature, 379(6565), 557-560. 
doi:10.1038/379557a0 

Denu, J. M., & Tanner, K. G. (1998). Specific and reversible inactivation of protein tyrosine 
phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and 
implications for redox regulation. Biochemistry, 37(16), 5633-5642. 

Descorbeth, M., & Anand-Srivastava, M. B. (2009). Role of growth factor receptor 
transactivation in high glucose-induced increased levels of Gq/11alpha and signaling in 
vascular smooth muscle cells. J Mol Cell Cardiol. doi:S0022-2828(09) 

Descorbeth, M., & Anand-Srivastava, M. B. (2010). Role of growth factor receptor 
transactivation in high glucose-induced increased levels of Gq/11alpha and signaling in 
vascular smooth muscle cells. J Mol Cell Cardiol, 49(2), 221-233.  

Di Fusco, F., & Anand-Srivastava, M. B. (2000). Enhanced expression of Gi proteins in non-
hypertrophic hearts from rats with hypertension-induced by L-NAME treatment. J 
Hypertens, 18(8), 1081-1090.  

Di Fusco, F., Hashim, S., & Anand-Srivastava, M. B. (2000). Volume overload cardiac 
hypertrophy exhibits decreased expression of g(s)alpha and not of g(i)alpha in heart. Am 
J Physiol Cell Physiol, 279(4), C990-998.  

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev, 82(1), 
47-95.  



82 
 

  

Duffy, S. J., Gokce, N., Holbrook, M., Hunter, L. M., Biegelsen, E. S., Huang, A., et al. (2001). 
Effect of ascorbic acid treatment on conduit vessel endothelial dysfunction in patients 
with hypertension. Am J Physiol Heart Circ Physiol, 280(2), H528-534.  

Eguchi, S., Dempsey, P. J., Frank, G. D., Motley, E. D., & Inagami, T. (2001). Activation of 
MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent 
EGF receptor activation is required for activation of ERK and p38 MAPK but not for 
JNK. J Biol Chem, 276(11), 7957-7962. doi:10.1074/jbc.M008570200 

M008570200 [pii] 
Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-

kinases as regulators of growth and metabolism. Nat Rev Genet, 7(8), 606-619. 
doi:nrg1879 [pii] 

10.1038/nrg1879 
Ermak, G., & Davies, K. J. (2002). Calcium and oxidative stress: from cell signaling to cell 

death. Mol Immunol, 38(10), 713-721. doi:S0161589001001080 [pii] 
Eschenhagen, T., Mende, U., Nose, M., Schmitz, W., Scholz, H., Haverich, A., et al. (1992). 

Increased messenger RNA level of the inhibitory G protein alpha subunit Gi alpha-2 in 
human end-stage heart failure. Circ Res, 70(4), 688-696.  

Farfel, Z., Bourne, H. R., & Iiri, T. (1999). The expanding spectrum of G protein diseases. N 
Engl J Med, 340(13), 1012-1020.  

Fleming, J. W., Wisler, P. L., & Watanabe, A. M. (1992). Signal transduction by G proteins in 
cardiac tissues. Circulation, 85(2), 420-433.  

Frank, G. D., Eguchi, S., Yamakawa, T., Tanaka, S., Inagami, T., & Motley, E. D. (2000). 
Involvement of reactive oxygen species in the activation of tyrosine kinase and 
extracellular signal-regulated kinase by angiotensin II. Endocrinology, 141(9), 3120-
3126.  

Freeman, B. A., & Crapo, J. D. (1982). Biology of disease: free radicals and tissue injury. Lab 
Invest, 47(5), 412-426.  

Fridovich, I. (1997). Superoxide anion radical (O2-.), superoxide dismutases, and related matters. 
J Biol Chem, 272(30), 18515-18517.  

Fukui, T., Lassegue, B., Kai, H., Alexander, R. W., & Griendling, K. K. (1995). Cytochrome b-
558 alpha-subunit cloning and expression in rat aortic smooth muscle cells. Biochim 
Biophys Acta, 1231(3), 215-219.  

Ge, C., & Anand-Srivastava, M. B. (1998). Involvement of phosphatidylinositol 3-kinase and 
mitogen-activated protein kinase pathways in AII-mediated enhanced expression of Gi 
proteins in vascular smooth muscle cells. Biochem Biophys Res Commun, 251(2), 570-
575. doi:S0006-291X(98)99505-5 [pii] 

10.1006/bbrc.1998.9505 
Ge, C., Garcia, R., & Anand-Srivastava, M. B. (2006). Enhanced expression of Gialpha protein 

and adenylyl cyclase signaling in aortas from 1 kidney 1 clip hypertensive rats. Can J 
Physiol Pharmacol, 84(7), 739-746. doi:y05-123 [pii] 

10.1139/y05-123 
Geisterfer, A. A., Peach, M. J., & Owens, G. K. (1988). Angiotensin II induces hypertrophy, not 

hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res, 62(4), 749-756.  
Gilkeson, G. S., Mudgett, J. S., Seldin, M. F., Ruiz, P., Alexander, A. A., Misukonis, M. A., et 

al. (1997). Clinical and serologic manifestations of autoimmune disease in MRL-lpr/lpr 
mice lacking nitric oxide synthase type 2. J Exp Med, 186(3), 365-373.  



83 
 

  

Gilman, A. G. (1987). G proteins: transducers of receptor-generated signals. Annu Rev Biochem, 
56, 615-649. doi:10.1146/annurev.bi.56.070187.003151 

Goldkorn, T., Balaban, N., Matsukuma, K., Chea, V., Gould, R., Last, J., et al. (1998). EGF-
Receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am J Respir 
Cell Mol Biol, 19(5), 786-798.  

Gomez Sandoval, Y. H., Levesque, L. O., & Anand-Srivastava, M. B. (2009). Contribution of 
epidermal growth factor receptor transactivation in angiotensin II-induced enhanced 
expression of Gi protein and proliferation in A10 vascular smooth muscle cells. Can J 
Physiol Pharmacol, 87(12), 1037-1045.  

Gomperts, B. D., Tatham, P. E. R., & Kramer, I. M. (2002). Signal transduction. San Diego, 
Calif.: Academic Press. 

Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., & Alexander, R. W. (1994). Angiotensin II 
stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. 
Circ Res, 74(6), 1141-1148.  

Griendling, K. K., Sorescu, D., Lassegue, B., & Ushio-Fukai, M. (2000). Modulation of protein 
kinase activity and gene expression by reactive oxygen species and their role in vascular 
physiology and pathophysiology. Arterioscler Thromb Vasc Biol, 20(10), 2175-2183.  

Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: role in 
cardiovascular biology and disease. Circ Res, 86(5), 494-501.  

Griendling, K. K., & Ushio-Fukai, M. (2000). Reactive oxygen species as mediators of 
angiotensin II signaling. Regul Pept, 91(1-3), 21-27. doi:S0167011500001361 [pii] 

Guyton, A. C., & Hall, J. E. (2000). Textbook of medical physiology. (10the éd.). Philadelphia ; 
Toronto: W.B. Saunders. 

Guyton, A. C., & Hall, J. E. (2006). Textbook of medical physiology. (11the éd.). Philadelphia: 
Elsevier Saunders. 

Haga, J. H., Li, Y. S., & Chien, S. (2007). Molecular basis of the effects of mechanical stretch on 
vascular smooth muscle cells. J Biomech, 40(5), 947-960.  

Han, D., Antunes, F., Canali, R., Rettori, D., & Cadenas, E. (2003). Voltage-dependent anion 
channels control the release of the superoxide anion from mitochondria to cytosol. J Biol 
Chem, 278(8), 5557-5563.  

Hashim, S., & Anand-Srivastava, M. B. (2004). Losartan-induced attenuation of blood pressure 
in L-NAME hypertensive rats is associated with reversal of the enhanced expression of 
Gi alpha proteins. J Hypertens, 22(1), 181-190.  

Hashim, S., Li, Y., & Anand-Srivastava, M. B. (2006a). G protein-linked cell signaling and 
cardiovascular functions in diabetes/hyperglycemia. Cell Biochem Biophys, 44(1), 51-64.  

Hashim, S., Li, Y., & Anand-Srivastava, M. B. (2006b). Small cytoplasmic domain peptides of 
natriuretic peptide receptor-C attenuate cell proliferation through Gialpha protein/MAP 
kinase/PI3-kinase/AKT pathways. Am J Physiol Heart Circ Physiol, 291(6), H3144-
3153.  

Hashim, S., Li, Y., Nagakura, A., Takeo, S., & Anand-Srivastava, M. B. (2004). Modulation of 
G-protein expression and adenylyl cyclase signaling by high glucose in vascular smooth 
muscle. Cardiovasc Res, 63(4), 709-718.  

Hommes, D. W., Peppelenbosch, M. P., & van Deventer, S. J. (2003). Mitogen activated protein 
(MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut, 
52(1), 144-151.  



84 
 

  

Horiuchi, M., Akishita, M., & Dzau, V. J. (1999). Recent progress in angiotensin II type 2 
receptor research in the cardiovascular system. Hypertension, 33(2), 613-621.  

Hu, Y., Bock, G., Wick, G., & Xu, Q. (1998). Activation of PDGF receptor alpha in vascular 
smooth muscle cells by mechanical stress. FASEB J, 12(12), 1135-1142.  

Huang, C. L., Kuo, E., & Toto, R. D. (2008). WNK kinases and essential hypertension. Curr 
Opin Nephrol Hypertens, 17(2), 133-137.  

Inui, H., Kitami, Y., Tani, M., Kondo, T., & Inagami, T. (1994). Differences in signal 
transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in 
vascular smooth muscle cells. PDGF-BB is a potent mitogen, but PDGF-AA promotes 
only protein synthesis without activation of DNA synthesis. J Biol Chem, 269(48), 
30546-30552.  

Itoh, H., Mukoyama, M., Pratt, R. E., Gibbons, G. H., & Dzau, V. J. (1993). Multiple autocrine 
growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J 
Clin Invest, 91(5), 2268-2274. 

Itoh, H., Toyama, R., Kozasa, T., Tsukamoto, T., Matsuoka, M., & Kaziro, Y. (1988). Presence 
of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs 
and human genomic DNAs. J Biol Chem, 263(14), 6656-6664.  

Iwasaki, H., Eguchi, S., Ueno, H., Marumo, F., & Hirata, Y. (2000). Mechanical stretch 
stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. 
Am J Physiol Heart Circ Physiol, 278(2), H521-529.  

Jin, N., Hatton, N. D., Harrington, M. A., Xia, X., Larsen, S. H., & Rhoades, R. A. (2000). 
H(2)O(2)-induced egr-1, fra-1, and c-jun gene expression is mediated by tyrosine kinase 
in aortic smooth muscle cells. Free Radic Biol Med, 29(8), 736-746.  

Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by 
ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911-1912.  

Jones, N., & Dumont, D. J. (1999). Recruitment of Dok-R to the EGF receptor through its PTB 
domain is required for attenuation of Erk MAP kinase activation. Curr Biol, 9(18), 1057-
1060. doi:S0960-9822(99)80458-8 [pii] 

Kagiyama, S., Eguchi, S., Frank, G. D., Inagami, T., Zhang, Y. C., & Phillips, M. I. (2002). 
Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by 
epidermal growth factor receptor antisense. Circulation, 106(8), 909-912.  

Karp, G. (2008). Cell and molecular biology : concepts and experiments. (5the éd.). Chichester: 
John Wiley. 

Katz, A. M., Tada, M., & Kirchberger, M. A. (1975). Control of calcium transport in the 
myocardium by the cyclic AMP-Protein kinase system. Adv Cyclic Nucleotide Res, 5, 
453-472.  

Kim, J., Lee, C. K., Park, H. J., Kim, H. J., So, H. H., Lee, K. S., et al. (2006). Epidermal growth 
factor induces vasoconstriction through the phosphatidylinositol 3-kinase-mediated 
mitogen-activated protein kinase pathway in hypertensive rats. J Pharmacol Sci, 101(2), 
135-143.  

Kim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R., & Rhee, S. G. (2000). Identification of 
proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide 
at neutral pH. Anal Biochem, 283(2), 214-221.  

Kim, S., Zhan, Y., Izumi, Y., Yasumoto, H., Yano, M., & Iwao, H. (2000). In vivo activation of 
rat aortic platelet-derived growth factor and epidermal growth factor receptors by 
angiotensin II and hypertension. Arterioscler Thromb Vasc Biol, 20(12), 2539-2545.  



85 
 

  

Knebel, A., Rahmsdorf, H. J., Ullrich, A., & Herrlich, P. (1996). Dephosphorylation of receptor 
tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO 
J, 15(19), 5314-5325.  

Kojda, G., & Harrison, D. (1999). Interactions between NO and reactive oxygen species: 
pathophysiological importance in atherosclerosis, hypertension, diabetes and heart 
failure. Cardiovasc Res, 43(3), 562-571.  

Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., et al. (1993). 
Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature, 364(6434), 
249-252.  

Korner, P. I., Bobik, A., Angus, J. A., Adams, M. A., & Friberg, P. (1989). Resistance control in 
hypertension. J Hypertens Suppl, 7(4), S125-134; discussion S135.  

Korsgaard, N., Aalkjaer, C., Heagerty, A. M., Izzard, A. S., & Mulvany, M. J. (1993). Histology 
of subcutaneous small arteries from patients with essential hypertension. Hypertension, 
22(4), 523-526.  

Krauss, G. (2003). Biochemistry of signal transduction and regulation. (3rde éd.). Weinheim: 
Wiley-VCH. 

Lappas, G., Daou, G. B., & Anand-Srivastava, M. B. (2005). Oxidative stress contributes to the 
enhanced expression of Gialpha proteins and adenylyl cyclase signaling in vascular 
smooth muscle cells from spontaneously hypertensive rats. J Hypertens, 23(12), 2251-
2261.  

Lee, J. C., Laydon, J. T., McDonnell, P. C., Gallagher, T. F., Kumar, S., Green, D., et al. (1994). 
A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. 
Nature, 372(6508), 739-746.  

Lehoux, S., & Tedgui, A. (1998). Signal transduction of mechanical stresses in the vascular wall. 
Hypertension, 32(2), 338-345.  

Lerman, L. O., Nath, K. A., Rodriguez-Porcel, M., Krier, J. D., Schwartz, R. S., Napoli, C., et al. 
(2001). Increased oxidative stress in experimental renovascular hypertension. 
Hypertension, 37(2 Part 2), 541-546.  

Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J. M., et al. (1995). Protein 
tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP 
kinase functions. Nature, 376(6543), 737-745.  

Li, L., Fink, G. D., Watts, S. W., Northcott, C. A., Galligan, J. J., Pagano, P. J., et al. (2003). 
Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway 
in low-renin hypertension. Circulation, 107(7), 1053-1058.  

Li, L., Watts, S. W., Banes, A. K., Galligan, J. J., Fink, G. D., & Chen, A. F. (2003). NADPH 
oxidase-derived superoxide augments endothelin-1-induced venoconstriction in 
mineralocorticoid hypertension. Hypertension, 42(3), 316-321.  

Li, Y., & Anand-Srivastava, M. B. (2002). Inactivation of enhanced expression of G(i) proteins 
by pertussis toxin attenuates the development of high blood pressure in spontaneously 
hypertensive rats. Circ Res, 91(3), 247-254.  

Li, Y., Descorbeth, M., & Anand-Srivastava, M. B. (2008). Role of oxidative stress in high 
glucose-induced decreased expression of Gialpha proteins and adenylyl cyclase signaling 
in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 294(6), H2845-2854.  

Li, Y., Hashim, S., & Anand-Srivastava, M. B. (2005). Angiotensin II-evoked enhanced 
expression of RGS2 attenuates Gi-mediated adenylyl cyclase signaling in A10 cells. 
Cardiovasc Res, 66(3), 503-511.  



86 
 

  

Li, Y., Lappas, G., & Anand-Srivastava, M. B. (2007). Role of oxidative stress in angiotensin II-
induced enhanced expression of Gi(alpha) proteins and adenylyl cyclase signaling in A10 
vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 292(4), H1922-1930.  

Lifton, R. P., Gharavi, A. G., & Geller, D. S. (2001). Molecular mechanisms of human 
hypertension. Cell, 104(4), 545-556.  

Linseman, D. A., Benjamin, C. W., & Jones, D. A. (1995). Convergence of angiotensin II and 
platelet-derived growth factor receptor signaling cascades in vascular smooth muscle 
cells. J Biol Chem, 270(21), 12563-12568.  

Lounsbury, K. M., Hu, Q., & Ziegelstein, R. C. (2000). Calcium signaling and oxidant stress in 
the vasculature. Free Radic Biol Med, 28(9), 1362-1369.  

Luttrell, L. M., Daaka, Y., & Lefkowitz, R. J. (1999). Regulation of tyrosine kinase cascades by 
G-protein-coupled receptors. Curr Opin Cell Biol, 11(2), 177-183.  

Marcil, J., & Anand-Srivastava, M. B. (2001). Lymphocytes from spontaneously hypertensive 
rats exhibit enhanced adenylyl cyclase-Gi protein signaling. Cardiovasc Res, 49(1), 234-
243.  

Marcil, J., de Champlain, J., & Anand-Srivastava, M. B. (1998). Overexpression of Gi-proteins 
precedes the development of DOCA-salt-induced hypertension: relationship with 
adenylyl cyclase. Cardiovasc Res, 39(2), 492-505. 

Marcil, J., Thibault, C., & Anand-Srivastava, M. B. (1997). Enhanced expression of Gi-protein 
precedes the development of blood pressure in spontaneously hypertensive rats. J Mol 
Cell Cardiol, 29(3), 1009-1022.  

Mehdi, M. Z., Azar, Z. M., & Srivastava, A. K. (2007). Role of receptor and nonreceptor protein 
tyrosine kinases in H2O2-induced PKB and ERK1/2 signaling. Cell Biochem Biophys, 
47(1), 1-10.  

Michel, M. C., Brodde, O. E., & Insel, P. A. (1993). Are cardiac G-proteins altered in rat models 
of hypertension? J Hypertens, 11(4), 355-363.  

Millette, E., Rauch, B. H., Defawe, O., Kenagy, R. D., Daum, G., & Clowes, A. W. (2005). 
Platelet-derived growth factor-BB-induced human smooth muscle cell proliferation 
depends on basic FGF release and FGFR-1 activation. Circ Res, 96(2), 172-179.  

Minden, A., Lin, A., Claret, F. X., Abo, A., & Karin, M. (1995). Selective activation of the JNK 
signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and 
Cdc42Hs. Cell, 81(7), 1147-1157.  

Mulvany, M. J. (1991). Are vascular abnormalities a primary cause or secondary consequence of 
hypertension? Hypertension, 18(3 Suppl), I52-57.  

Mulvany, M. J., Baandrup, U., & Gundersen, H. J. (1985). Evidence for hyperplasia in 
mesenteric resistance vessels of spontaneously hypertensive rats using a three-
dimensional disector. Circ Res, 57(5), 794-800.  

Munzel, T., Hink, U., Heitzer, T., & Meinertz, T. (1999). Role for NADPH/NADH oxidase in 
the modulation of vascular tone. Ann N Y Acad Sci, 874, 386-400.  

Murasawa, S., Mori, Y., Nozawa, Y., Gotoh, N., Shibuya, M., Masaki, H., et al. (1998). 
Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase 
activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal 
growth factor receptor. Circ Res, 82(12), 1338-1348.  

Nakanishi, K., Mattson, D. L., & Cowley, A. W., Jr. (1995). Role of renal medullary blood flow 
in the development of L-NAME hypertension in rats. Am J Physiol, 268(2 Pt 2), R317-
323.  



87 
 

  

Nishida, M., Maruyama, Y., Tanaka, R., Kontani, K., Nagao, T., & Kurose, H. (2000). G alpha(i) 
and G alpha(o) are target proteins of reactive oxygen species. Nature, 408(6811), 492-
495.  

Pandey, S. K., & Anand-Srivastava, M. B. (1996). Modulation of G-protein expression by the 
angiotensin converting enzyme inhibitor captopril in hearts from spontaneously 
hypertensive rats. Relationship with adenylyl cyclase. Am J Hypertens, 9(8), 833-837.  

Paul, M., & Ganten, D. (1992). The molecular basis of cardiovascular hypertrophy: the role of 
the renin-angiotensin system. J Cardiovasc Pharmacol, 19 Suppl 5, S51-58.  

Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. 
(2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological 
functions. Endocr Rev, 22(2), 153-183.  

Pohl, S. L., Krans, H. M., Kozyreff, V., Birnbaumer, L., & Rodbell, M. (1971). The glucagon-
sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role 
of membrane lipids. J Biol Chem, 246(14), 4447-4454.  

Pollock, D. M. (2005). Endothelin, angiotensin, and oxidative stress in hypertension. 
Hypertension, 45(4), 477-480.  

Prenzel, N., Fischer, O. M., Streit, S., Hart, S., & Ullrich, A. (2001). The epidermal growth 
factor receptor family as a central element for cellular signal transduction and 
diversification. Endocr Relat Cancer, 8(1), 11-31.  

Pyne, N. J., Waters, C., Moughal, N. A., Sambi, B. S., & Pyne, S. (2003). Receptor tyrosine 
kinase-GPCR signal complexes. Biochem Soc Trans, 31(Pt 6), 1220-1225. doi:10.1042/ 

Qin, S., & Chock, P. B. (2003). Implication of phosphatidylinositol 3-kinase membrane 
recruitment in hydrogen peroxide-induced activation of PI3K and Akt. Biochemistry, 
42(10), 2995-3003.  

Ramanathan, S., & Shibata, S. (1974). Cyclic amp blood vessels of spontnaeously hypertensive 
rat. Blood Vessels, 11(5-6), 312-318.  

Reid, I. A. (1992). Interactions between ANG II, sympathetic nervous system, and baroreceptor 
reflexes in regulation of blood pressure. Am J Physiol, 262(6 Pt 1), E763-778.  

Rhee, S. G., Bae, Y. S., Lee, S. R., & Kwon, J. (2000). Hydrogen peroxide: a key messenger that 
modulates protein phosphorylation through cysteine oxidation. Sci STKE, 2000(53), 

Rhee, S. G., Chang, T. S., Bae, Y. S., Lee, S. R., & Kang, S. W. (2003). Cellular regulation by 
hydrogen peroxide. J Am Soc Nephrol, 14(8 Suppl 3), S211-215.  

Robberecht, P., Winand, J., Chatelain, P., Poloczek, P., Camus, J. C., De Neef, P., et al. (1981). 
Comparison of beta-adrenergic receptors and the adenylate cyclase system with 
muscarinic receptors and guanylate cyclase activities in the heart of spontaneously 
hypertensive rats. Biochem Pharmacol, 30(4), 385-387. 

Robinson, M. J., & Cobb, M. H. (1997). Mitogen-activated protein kinase pathways. Curr Opin 
Cell Biol, 9(2), 180-186.  

Rodbell, M., Lin, M. C., & Salomon, Y. (1974). Evidence for interdependent action of glucagon 
and nucleotides on the hepatic adenylate cyclase system. J Biol Chem, 249(1), 59-65.  

Rodrigues, G. A., Falasca, M., Zhang, Z., Ong, S. H., & Schlessinger, J. (2000). A novel positive 
feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase 
in epidermal growth factor receptor signaling. Mol Cell Biol, 20(4), 1448-1459.  

Rubanyi, G. M. (1991). Endothelium-derived relaxing and contracting factors. J Cell Biochem, 
46(1), 27-36.  



88 
 

  

Ruwhof, C., & van der Laarse, A. (2000). Mechanical stress-induced cardiac hypertrophy: 
mechanisms and signal transduction pathways. Cardiovasc Res, 47(1), 23-37. 

Sagar, S., Kallo, I. J., Kaul, N., Ganguly, N. K., & Sharma, B. K. (1992). Oxygen free radicals in 
essential hypertension. Mol Cell Biochem, 111(1-2), 103-108.  

Saha, S., Li, Y., & Anand-Srivastava, M. B. (2008). Reduced levels of cyclic AMP contribute to 
the enhanced oxidative stress in vascular smooth muscle cells from spontaneously 
hypertensive rats. Can J Physiol Pharmacol, 86(4), 190-198.  

Saha, S., Li, Y., Lappas, G., & Anand-Srivastava, M. B. (2008). Activation of natriuretic peptide 
receptor-C attenuates the enhanced oxidative stress in vascular smooth muscle cells from 
spontaneously hypertensive rats: implication of Gialpha protein. J Mol Cell Cardiol, 
44(2), 336-344.  

Saito, S., Frank, G. D., Mifune, M., Ohba, M., Utsunomiya, H., Motley, E. D., et al. (2002). 
Ligand-independent trans-activation of the platelet-derived growth factor receptor by 
reactive oxygen species requires protein kinase C-delta and c-Src. J Biol Chem, 277(47), 
44695-44700.  

Salani, D., Taraboletti, G., Rosano, L., Di Castro, V., Borsotti, P., Giavazzi, R., et al. (2000). 
Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and 
stimulates neovascularization in vivo. Am J Pathol, 157(5), 1703-1711.  

Sano, M., Fukuda, K., Sato, T., Kawaguchi, H., Suematsu, M., Matsuda, S., et al. (2001). ERK 
and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-
mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res, 89(8), 661-
669.  

Sarzani, R., Arnaldi, G., & Chobanian, A. V. (1991). Hypertension-induced changes of platelet-
derived growth factor receptor expression in rat aorta and heart. Hypertension, 17(6 Pt 2), 
888-895.  

Schafer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the 
redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med, 30(11), 
1191-1212.  

Schramm, M., Feinstein, H., Naim, E., Lang, E., & Lasser, M. (1972). Epinephrine binding to the 
catecholamine receptor and activation of the adenylate cyclase in erythrocyte membranes 
(hormone receptor- -adrenergic receptor-cyclic AMP-turkey). Proc Natl Acad Sci U S A, 
69(2), 523-527.  

Schramm, M., & Selinger, Z. (1984). Message transmission: receptor controlled adenylate 
cyclase system. Science, 225(4668), 1350-1356.  

Seamon, K. B., & Daly, J. W. (1982). Guanosine 5'-(beta, gamma-imido)triphosphate inhibition 
of forskolin-activated adenylate cyclase is mediated by the putative inhibitory guanine 
nucleotide regulatory protein. J Biol Chem, 257(19), 11591-11596.  

Sharma, R. C., Hodis, H. N., Mack, W. J., Sevanian, A., & Kramsch, D. M. (1996). Probucol 
suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence. Am J 
Hypertens, 9(6), 577-590.  

Sherwood, L., Klandorf, H., & Yancey, P. H. (2005). Animal physiology : from genes to 
organisms. Australia ;: Thomson & Brooks/Cole. 

Siehler, S. (2009). Regulation of RhoGEF proteins by G12/13-coupled receptors. Br J 
Pharmacol, 158(1), 41-49.  



89 
 

  

Siffert, W., Rosskopf, D., Siffert, G., Busch, S., Moritz, A., Erbel, R., et al. (1998). Association 
of a human G-protein beta3 subunit variant with hypertension. Nat Genet, 18(1), 45-48. 
doi:10.1038/ng0198-45 

Sivaraman, V. S., Wang, H., Nuovo, G. J., & Malbon, C. C. (1997). Hyperexpression of 
mitogen-activated protein kinase in human breast cancer. J Clin Invest, 99(7), 1478-1483. 
doi:10.1172/JCI119309 

Soltoff, S. P., Carraway, K. L., 3rd, Prigent, S. A., Gullick, W. G., & Cantley, L. C. (1994). 
ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth 
factor. Mol Cell Biol, 14(6), 3550-3558.  

Son, D. J., Kang, J., Kim, T. J., Song, H. S., Sung, K. J., Yun do, Y., et al. (2007). Melittin, a 
major bioactive component of bee venom toxin, inhibits PDGF receptor beta-tyrosine 
phosphorylation and downstream intracellular signal transduction in rat aortic vascular 
smooth muscle cells. J Toxicol Environ Health A, 70(15-16), 1350-1355.  

Stuehr, D., Pou, S., & Rosen, G. M. (2001). Oxygen reduction by nitric-oxide synthases. J Biol 
Chem, 276(18), 14533-14536.  

Sugden, P. H., & Clerk, A. (1998). "Stress-responsive" mitogen-activated protein kinases (c-Jun 
N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ 
Res, 83(4), 345-352.  

Sunahara, R. K., Dessauer, C. W., & Gilman, A. G. (1996). Complexity and diversity of 
mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol, 36, 461-480.  

Suri, M. F., & Qureshi, A. I. (2006). Prehypertension as a risk factor for cardiovascular diseases. 
J Cardiovasc Nurs, 21(6), 478-482; quiz 483-474.  

Sutherland, E. W., & Rall, T. W. (1958). Fractionation and characterization of a cyclic adenine 
ribonucleotide formed by tissue particles. J Biol Chem, 232(2), 1077-1091.  

Suzuki, H., Swei, A., Zweifach, B. W., & Schmid-Schonbein, G. W. (1995). In vivo evidence for 
microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine 
microfluorography. Hypertension, 25(5), 1083-1089.  

Sward, K., Mita, M., Wilson, D. P., Deng, J. T., Susnjar, M., & Walsh, M. P. (2003). The role of 
RhoA and Rho-associated kinase in vascular smooth muscle contraction. Curr Hypertens 
Rep, 5(1), 66-72.  

Tang, W. J., & Gilman, A. G. (1991). Type-specific regulation of adenylyl cyclase by G protein 
beta gamma subunits. Science, 254(5037), 1500-1503.  

Taniyama, Y., & Griendling, K. K. (2003). Reactive oxygen species in the vasculature: 
molecular and cellular mechanisms. Hypertension, 42(6), 1075-1081.  

Taussig, R., & Gilman, A. G. (1995). Mammalian membrane-bound adenylyl cyclases. J Biol 
Chem, 270(1), 1-4.  

Taussig, R., Tang, W. J., Hepler, J. R., & Gilman, A. G. (1994). Distinct patterns of bidirectional 
regulation of mammalian adenylyl cyclases. J Biol Chem, 269(8), 6093-6100.  

Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. Am J 
Physiol Lung Cell Mol Physiol, 279(6), L1005-1028.  

Torres, M. (2003). Mitogen-activated protein kinase pathways in redox signaling. Front Biosci, 
8, d369-391.  

Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in 
hypertension: what is the clinical significance? Hypertension, 44(3), 248-252.  

Touyz, R. M. (2005). Intracellular mechanisms involved in vascular remodelling of resistance 
arteries in hypertension: role of angiotensin II. Exp Physiol, 90(4), 449-455.  



90 
 

  

Touyz, R. M., & Berry, C. (2002). Recent advances in angiotensin II signaling. Braz J Med Biol 
Res, 35(9), 1001-1015.  

Touyz, R. M., Cruzado, M., Tabet, F., Yao, G., Salomon, S., & Schiffrin, E. L. (2003). Redox-
dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of 
receptor tyrosine kinase transactivation. Can J Physiol Pharmacol, 81(2), 159-167.  

Touyz, R. M., & Schiffrin, E. L. (2000). Signal transduction mechanisms mediating the 
physiological and pathophysiological actions of angiotensin II in vascular smooth muscle 
cells. Pharmacol Rev, 52(4), 639-672.  

Touyz, R. M., & Schiffrin, E. L. (2004). Reactive oxygen species in vascular biology: 
implications in hypertension. Histochem Cell Biol, 122(4), 339-352. doi:10.1007/s00418-
004-0696-7 

Touyz, R. M., Yao, G., Viel, E., Amiri, F., & Schiffrin, E. L. (2004). Angiotensin II and 
endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in 
human vascular smooth muscle cells. J Hypertens, 22(6), 1141-1149.  

Triner, L., Vulliemoz, Y., Verosky, M., Habif, D. V., & Nahas, G. G. (1972). Adenyl cyclase-
phosphodiesterase system in arterial smooth muscle. Life Sci I, 11(17), 817-824.  

Tsutsui, M., Shimokawa, H., Tanaka, S., Kuwaoka, I., Hase, K., Nogami, N., et al. (1994). 
Endothelial Gi protein in human coronary arteries. Eur Heart J, 15(9), 1261-1266.  

Ullrich, A., & Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase 
activity. Cell, 61(2), 203-212.  

Ushio-Fukai, M., Alexander, R. W., Akers, M., Yin, Q., Fujio, Y., Walsh, K., et al. (1999). 
Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II 
in vascular smooth muscle cells. J Biol Chem, 274(32), 22699-22704.  

Ushio-Fukai, M., Griendling, K. K., Becker, P. L., Hilenski, L., Halleran, S., & Alexander, R. W. 
(2001). Epidermal growth factor receptor transactivation by angiotensin II requires 
reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 
21(4), 489-495.  

Viedt, C., Soto, U., Krieger-Brauer, H. I., Fei, J., Elsing, C., Kubler, W., et al. (2000). 
Differential activation of mitogen-activated protein kinases in smooth muscle cells by 
angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler 
Thromb Vasc Biol, 20(4), 940-948.  

Voet, D., Voet, J. G., & Pratt, C. W. (2008). Fundamentals of biochemistry : life at the molecular 
level. (3rde éd.). Hoboken, NJ: Wiley. 

Wan, Y., Kurosaki, T., & Huang, X. Y. (1996). Tyrosine kinases in activation of the MAP kinase 
cascade by G-protein-coupled receptors. Nature, 380(6574), 541-544.  

Wang, X., Martindale, J. L., Liu, Y., & Holbrook, N. J. (1998). The cellular response to 
oxidative stress: influences of mitogen-activated protein kinase signalling pathways on 
cell survival. Biochem J, 333 ( Pt 2), 291-300.  

Wang, X. S., Diener, K., Manthey, C. L., Wang, S., Rosenzweig, B., Bray, J., et al. (1997). 
Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J 
Biol Chem, 272(38), 23668-23674.  

Wang, Y., Yan, T., Wang, Q., Wang, W., Xu, J., Wu, X., et al. (2008). PKC-dependent 
extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on 
AngiotensinII-induced proliferation of vascular smooth muscle cells. Biochem Biophys 
Res Commun, 375(1), 151-155.  



91 
 

  

Wheatley, M., Simms, J., Hawtin, S. R., Wesley, V. J., Wootten, D., Conner, M., et al. (2007). 
Extracellular loops and ligand binding to a subfamily of Family A G-protein-coupled 
receptors. Biochem Soc Trans, 35(Pt 4), 717-720. doi:BST0350717  

Wilson, E., Mai, Q., Sudhir, K., Weiss, R. H., & Ives, H. E. (1993). Mechanical strain induces 
growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol, 
123(3), 741-747.  

Zafari, A. M., Ushio-Fukai, M., Akers, M., Yin, Q., Shah, A., Harrison, D. G., et al. (1998). Role 
of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular 
hypertrophy. Hypertension, 32(3), 488-495.  

Zalba, G., San Jose, G., Moreno, M. U., Fortuno, M. A., Fortuno, A., Beaumont, F. J., et al. 
(2001). Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. 
Hypertension, 38(6), 1395-1399.  

Zhang, W., & Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in 
mammalian cells. Cell Res, 12(1), 9-18. doi:10.1038/sj.cr.7290105 

Zhou, R. H., Lee, T. S., Tsou, T. C., Rannou, F., Li, Y. S., Chien, S., et al. (2003). Stent 
implantation activates Akt in the vessel wall: role of mechanical stretch in vascular 
smooth muscle cells. Arterioscler Thromb Vasc Biol, 23(11), 2015-2020.  

Zicha, J., Dobesova, Z., & Kunes, J. (2001). Relative deficiency of nitric oxide-dependent 
vasodilation in salt-hypertensive Dahl rats: the possible role of superoxide anions. J 
Hypertens, 19(2), 247-254.  

Ziche, M., Morbidelli, L., Donnini, S., & Ledda, F. (1995). ETB receptors promote proliferation 
and migration of endothelial cells. J Cardiovasc Pharmacol, 26 Suppl 3, S284-286.  

Zolk, O., Kouchi, I., Schnabel, P., & Bohm, M. (2000). Heterotrimeric G proteins in heart 
disease. Can J Physiol Pharmacol, 78(3), 187-198.  

Zou, Y., Komuro, I., Yamazaki, T., Aikawa, R., Kudoh, S., Shiojima, I., et al. (1996). Protein 
kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced 
activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac 
myocytes. J Biol Chem, 271(52), 33592-33597.  

 
 


