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Abstract

This paper introduces a framework for analysis of cross-sectional dependence in the idiosyncratic

volatilities of assets using high frequency data. We first consider the estimation of standard measures

of dependence in the idiosyncratic volatilities such as covariances and correlations. Next, we study an

idiosyncratic volatility factor model, in which we decompose the co-movements in idiosyncratic volatilities

into two parts: those related to factors such as the market volatility, and the residual co-movements.

When using high frequency data, naive estimators of all of the above measures are biased due to the

estimation errors in idiosyncratic volatility. We provide bias-corrected estimators and establish their

asymptotic properties. We apply our estimators to high-frequency data on 27 individual stocks from

nine different sectors, and document strong cross-sectional dependence in their idiosyncratic volatilities.

We also find that on average 74% of this dependence can be explained by the market volatility.
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Montréal, QC, H3C 3J7, Canada. E-mail address: ilze.kalnina@umontreal.ca. Kalnina’s research was supported by In-
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1 Introduction

Volatility of returns of an asset or a portfolio is a key ingredient of traditional empirical asset pricing

models. That asset returns have strong cross-sectional correlations is a well documented empirical fact.

These correlations arise due to the common risk factors such as the market factor. Due to these return

factors, the total stock volatilities are also correlated in the cross-section.

It is then natural to investigate whether the volatilities of the factor-adjusted returns, otherwise known

as the Idiosyncratic Volatilities (IVs), also have substantial co-movements. Recent papers by Herskovic,

Kelly, Lustig, and Nieuwerburgh (2014) and Duarte, Kamara, Siegel, and Sun (2014) present evidence

of considerable cross-sectional co-movements in large low-frequncy panels of IVs of daily stock returns.

Moreover, they argue that the common co-movements in IVs arise due to a priced risk factor.

We provide a flexible framework for studying cross-sectional dependencies in the IVs using high-frequency

data. Our framework incorporates important stylized facts about asset returns and their volatilities. Our

estimators provide a solution to the bias problems caused by the pre-estimation of volatilities. We also

provide valid inference methods.

First, we study behavior of standard measures of cross-sectional dependence in IVs using high-frequency

data. We show that the naive estimators of these measures are biased, and provide bias-corrected estimators.

We then obtain the relevant asymptotic distributions, which allow us to perform statistical tests.

Second, we study an idiosyncratic volatility factor model (IV-FM). The IV-FM decomposes the cross-

sectional dependence in IVs into two components. The first component is the cross-sectional dependence

due to popular factors. The IV factors can include the volatility of the return factors, non-linear transforms

of the spot covariance matrices such as correlations, as well as the average variance factor of Chen and

Petkova (2012). The second component in the IV-FM is residual dependence in IVs not explained by the

IV factors. Again, the standard estimators of this decomposition are biased due to the latency in volatility.

We provide bias-corrected estimators, and derive their asymptotic distributions. We build a test for whether

the IV-FM can fully account for the dependence between the IVs. Our test could be useful, for example,

in assessing the relevance of some classical assumptions made in conditionally heteroscedastic factor models

for returns (Engle, Ng, and Rothschild (1993), among others). In particular, a common assumption in this

literature restricts the asset’s total volatilities to be some linear combination of the volatility of the return

factors, which precludes additional factors affecting the IV.1 We investigate the finite sample properties of

the methods in a Monte Carlo experiment, and find they have reasonable size and power.

We apply our estimators to high-frequency data on 27 individual US stocks from nine different sectors.

We study idiosyncratic volatilities with respect to two models, CAPM and the three-factor Fama-French

model. In both cases, the average correlation between the idiosyncratic volatilities is above 0.55. Moreover,

the average correlation between the IVs is on average the same among those pairs of stocks, which have close

to zero correlations between their idiosyncratic returns. In other words, the dependencies in IVs cannot be

explained by a missing return factor. This is in line with the recent findings of Herskovic, Kelly, Lustig, and

1This condition arises when one assumes the latent factors are uncorrelated.
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Nieuwerburgh (2014) who use daily and monthly return data. We then consider the idiosyncratic volatility

factor model with market volatility as the factor. We find that on average, the systemic component of IV

that arises due to IV exposure to market volatility, accounts for 74% of the cross-sectional dependence in

the IVs. We find that in 110 out of 351 pairs of stocks analyzed, this idiosyncratic volatility factor model

fully accounts for the cross-sectional dependence in IVs, so that their non-systemic components are no longer

significantly correlated.

The importance of accounting for estimation errors in volatilities has been demonstrated in other contexts.

Recently, Aı̈t-Sahalia, Fan, and Li (2013) show that failure to account for the latency of volatility drives the

leverage effect puzzle.2 An important aspect of our methods is that we fully account for the latency of IV.

We now describe the theoretical framework and the strategy for constructing our estimators and tests.

We define the IV with respect to a continuous-time factor model for returns with observable factors. This

framework was originally studied in Mykland and Zhang (2006) in the case of one factor and in the absence

of jumps. It was extended to multiple factors and jumps in Aı̈t-Sahalia, Kalnina, and Xiu (2014). We

measure the dependence between two IV processes as their quadratic covariation (or quadratic covariation-

based correlation). In the case of co-movements in returns, standard estimators of quadratic covariation are

unbiased (see ? and Barndorff-Nielsen and Shephard (2004)). However, since we study co-movements in

latent IVs and not in observable returns, naive estimators are biased, see, e.g., Wang and Mykland (2014)

and Vetter (2012) for related results. We then go further and consider an IV factor model (IV-FM), which

decomposes the total IV into a systemic (or common) IV and the non-systemic IV. The IV-FM allows us

to quantify what portion of the cross-sectional dependence in IVs is driven by the IV factors. We show

that the IV dependence measures (and their ratios, scaled versions, or other functions) can be identified and

estimated in a unified way. In particular, all of them can be written as smooth known functions of multiple

quantities, each representing the quadratic covariation between possibly non-linear transforms of the spot

covariance matrix of the vector of observable processes. Our main statistical contribution (Theorem 1) is

derivation of the joint asymptotic distribution for the bias-corrected estimators of these quantities. By the

delta method, we obtain the asymptotic distributions of all quantities of interest. The resulting asymptotic

distributions allow us to conduct various statistical tests; for example, to test whether the IV factor model

can fully explain the cross-sectional dependence in the IVs.

Our paper is related to several strands of the literature. Our inference theory extends the results on

estimation of the integrated one-dimensional (total) volatility of volatility (Vetter (2012), Aı̈t-Sahalia and

Jacod (2014)). The (total) leverage effect is also a quantity, for which the naive nonparametric estimators

are inconsistent due to the measurement errors in volatilities, see Wang and Mykland (2014), Kalnina and

Xiu (2014), Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013) and Aı̈t-Sahalia, Fan, and Li (2013) for

one-dimensional results. Due to the decomposition of total returns into systemic and idiosyncratic part,

our estimators involve aggregation of non-linear functionals of the return volatility matrix, hence our bias-

correction terms are related to the general theory developed in Jacod and Rosenbaum (2012) and Jacod and

2See Wang and Mykland (2014), Kalnina and Xiu (2014), and Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013) for related
results on the leverage effect.
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Rosenbaum (2013). The decomposition of total volatility into systemic and idiosyncratic volatilities is also

considered in Mykland and Zhang (2006) and Aı̈t-Sahalia, Kalnina, and Xiu (2014), but their theoretical

results only consider univariate idiosyncratic volatility. Barigozzi, Brownlees, Gallo, and Veredas (2014) and

Luciani and Veredas (2012) model large panels of total stock volatilities using high frequency data.

The remainder of the paper is organized as follows. Section 2 introduces the model and describes quan-

tities of interest. Section 3 describes the identification and estimation of these quantities of interest. Section

4 presents the asymptotic properties of our estimators. Section 5 investigates their finite sample properties.

Section 6 uses high-frequency stock return data to study the cross-sectional dependence in IVs using our

framework. Section 7 concludes. The Appendix contains the proofs.

2 Model and Quantities of Interest

We first describe a general factor model for the returns, in which the idiosyncratic volatility is defined. We

then introduce the idiosyncratic volatility factor model (IV-FM).

Suppose we have (log) prices on dS assets such as stocks and on dF factors. We stack them into the

d-dimensional process Yt = (S1,t, . . . , SdS ,t, F1,t, . . . , FdF ,t)
> where d = dS + dF . We assume Yt follows an

Itô semimartingale,

Yt = Y0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt,

where W is a d′-dimensional Brownian motion (d′ ≥ d), σs is a d × d′ stochastic volatility process, and Jt

denotes a finite variation jump process. We assume also that the spot variance process ct = σtσ
>
t of Yt is a

continuous Itô semimartingale,3

ct = c0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdWs, (1)

see Section 4 for the full list of assumptions.

We assume a standard continuous-time factor model for the (log) prices of the assets:

Definition (Factor Model for Prices). For for all 0 ≤ t ≤ T and j = 1, . . . , dS,4

dY cj,t = β>j,tdF
c
t + dZcj,t with

[Zcj , F
c]t = 0, (2)

We do not need the factors Ft to be the same across assets to identify the model, but without loss of

generality, we keep this structure because it is standard in empirical finance. In the empirical application,

3Note that assuming that Y and c are driven by the same d′-dimensional Brownian motion W is without loss of generality
provided that d′ is large enough, see, e.g., equation (8.12) of Aı̈t-Sahalia and Jacod (2014).

4If X and Y are two vector-valued Itô semimartingales, their quadratic covariation over the time span [0, T ] is defined

[X,Y ]T = p− lim
M→∞

M−1∑
j=0

(Xtj+1 −Xtj )(Ytj+1 − Ytj )>,

for any sequence t0 < t1 < . . . < tM = T with sup
j
{tj+1 − tj} → 0 as M → ∞, where p-lim stands for the probability limit.

Barndorff-Nielsen and Shephard (2004) discuss its estimation when both X and Y are observed.
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we use two sets of factors: the market portfolio and the three Fama-French factors. The process Zj,t is the

idiosyncratic component of the price of the jth stock with respect to the factors. We use the superscript c to

emphasize that the above factor model only involves the continuous martingale parts of the two observable

processes Yj,t and Ft. The jump parts of these processes are left unrestricted. For j = 1, . . . , dS , βj,t is a

RdF -valued process which represents the continuous beta.5 The k-th component of βj,t captures the time-

varying sensitivity of the continuous part of the return on stock j to the continuous part of the return on

the k-th factor. We set βt = (β1,t, . . . , βdS ,t)
> and Zt = (Z1,t, . . . , ZdS ,t)

>. This framework was originally

studied in Mykland and Zhang (2006) in the case of one factor and in the absence of jumps. It was extended

to multiple factors and jumps in Aı̈t-Sahalia, Kalnina, and Xiu (2014). See also Li, Todorov, and Tauchen

(2013), ?, and Reiß, Todorov, and Tauchen (2015). Our framework can be potentially extended to use

principal components instead of observable factors as in ?.

Idiosyncratic Volatility of stock j is the spot volatility of the residual process Zj , and we denote it by

cZj . It can be written as

cZj,t = cY j,t − (cFj,t)
>(cFF,t)

−1cFj,t, (3)

for j = 1, . . . , dS , where cFF,t denotes the spot covariance of the factors F , which is the lower dF × dF

sub-matrix of ct, and cFj,t denotes the covariance of the factors and the jth stock, which are the last dF

elements of the jth column of ct.

We take the following quadratic-covariation based quantity as the natural measure of dependence between

the IV shocks of stocks i and j,

ρZi,Zj =
[cZi, cZj ]T√

[cZi, cZi]T
√

[cZj , cZj ]T
. (4)

Alternatively, one can consider the raw quadratic covariation [cZi, cZj ]T . We use it later as the basis for

testing the presence of dependence in IVs.

To assess the importance of factors in driving the IV dependence, we introduce the Idiosyncratic Volatility

Factor model. The IV factors can include the volatility of the return factors, non-linear transforms of the

spot covariance matrices such as correlations, as well as the average variance factor of Chen and Petkova

(2012).

Definition (Idiosyncratic Volatility Factor Model, IV-FM). For all 0 ≤ t ≤ T and j = 1, . . . , dS, the

idiosyncratic volatility cZj follows,

dcZj,t = b>Zjdqt + dcNSZj,t with (5)

[cNSZj , q]t = 0. (6)

where qt is the vector of IV factors, which a sub-vector of vech(ct), and where cNSZj,t is the non-systemic

idiosyncratic volatility.

We refer to bZj as the idiosyncratic volatility beta (IV beta). It is time-invariant. The residual component

5 Interestingly it is possible to define a discontinuous beta, see Bollerslev and Todorov (2010) and Li, Todorov, and Tauchen
(2014).

5



cNSZj,t denotes jth asset’s non-systematic idiosyncratic volatility (NS-IV henceforth). In the IV-FM, both the

regressand and the regressor are latent, and the components of the IV-FM, cZj,t, qt and cNSZj,t, are continuous

Itô semimartingales.

To measure the residual cross-sectional dependence between two IVs after accounting for the effect of the

IV factors, we use a quadratic-covariation based correlation measure between NS-IVs,

ρNSZi,Zj =
[cNSZi , c

NS
Zj ]T√

[cNSZi , c
NS
Zi ]T

√
[cNSZj , c

NS
Zj ]T

. (7)

When testing for the presence of residual correlation between NS-IVs, we use the quadratic covariation

[cNSZi , c
NS
Zj ]T without normalization.

We want to capture how well the IV factors explain the time variation of jth IV. For this purpose, we

use the quadratic-covariation based analog of the coefficient of determination. For j = 1, . . . , dS ,

R2,IV -FM
Zj =

b>Zj [q, q]T bZj

[cZj , cZj ]T
. (8)

It is interesting to compare the correlation measure between IVs in equation (4) with the correlation

between the non-systemic parts of IVs in (7). We consider their difference,

ρZi,Zj − ρNSZi,Zj , (9)

to see how much of the dependence between IVs can be attributed to the IV factors. In practice, if we

compare assets that are known to have positive covolatilities (typically, stocks have that property), another

useful measure of the systemic part in the overall covariation between IVs is the following quantity,

QIV -FM
Zi,Zj =

b>Zi[q, q]T bZj
[cZi, cZj ]T

. (10)

This measure is bounded by 1 if the covariations between NS-IVs are nonnegative and smaller than the

covariations between IVs, which is what we find for every pair in our empirical application with high-

frequency observations on stock returns.

The next section outlines identification and estimation of the above key quantities. It also presents the

asymptotic distributions, which can be used to conduct statistical tests. We conduct three tests. First, we

test whether the total cross-correlation in IVs is nonzero for a given pair of assets, which corresponds to

the hypothesis [cZi, cZj ]T = 0. Second, we test whether the IV factors contribute to the cross-correlation in

IVs by considering the null hypothesis [cZj , q]T = 0. Third, we test the hypothesis of whether IV-FM can

explain all the cross-sectional IV dependence, i.e., [cNSZi , c
NS
Zj ]T = 0.

It is interesting to compare our framework with the following null hypothesis studied in Li, Todorov, and

Tauchen (2013), H0 : cZj,t = aZj + b>Zjqt, 0 ≤ t ≤ T. This H0 implies that the IV is a deterministic function

of the factors, which does not allow for a non-systemic error term. In particular, this null hypothesis implies

R2,IV -FM
Zj = 1.
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3 Estimation

We now discuss the estimation of our main quantities of interest introduced in Section 2,

[cZi, cZj ]T , ρZi,Zj , [cNSZj , c
NS
Zj ]T , ρ

NS
Zi,Zj , Q

IV -FM
Zi,Zj , and R2,IV -FM

Zi , (11)

for i, j = 1, . . . , dS . We first show that each of them can be written as ϕ ([H1(c), G1(c)]T , . . . , [Hκ(c), Gκ(c)]T )

where ϕ as well as Hr and Gr, for r = 1, . . . , κ, are known real-valued functions. Each element in this

expression is of the form [H(c), G(c)]T , i.e., it is a quadratic covariation between functions of ct. We then

show how to estimate [H(c), G(c)]T .

First, consider the quadratic covariation between ith and jth IV, [cZi, cZj ]T . It can be written as

[H(c), G(c)]T if we choose H(ct) = cZi,t and G(ct) = cZj,t. By (3), both cZi,t and cZj,t are smooth functions

of ct. Next, consider the correlation ρZi,Zj defined in (4). By the argument above, its numerator and each

of the two components in the denominator can be written as [H(c), G(c)]T for different functions H and G.

Therefore, ρZi,Zj is itself a known smooth function of three objects of the form [H(c), G(c)]T .

To show that the remaining quantities in (11) can also be expressed in terms of objects of the form

[H(c), G(c)]T , note that the IV-FM implies

bZj = ([q, q]T )
−1

[q, cZj ]T and [cNSZi , c
NS
Zj ]T = [cZi, cZj ]T − b>Zi[q, q]T bZj ,

for i, j = 1, . . . , dS . Since cZi,t, cZj,t and every element in qt are real-valued functions of ct, the above

equalities imply that all quantities of interest in (11) can be written as real-valued, known smooth functions

of a finite number of quantities of the form [H(c), G(c)]T .

To estimate [H(c), G(c)]T , suppose we have discrete observations on Yt over an interval [0, T ]. Denote

by ∆n the distance between observations. Note that we can estimate the spot covariance matrix ct at time

(i− 1)∆n with a local truncated realized volatility estimator (Mancini (2001)),

ĉi∆n
=

1

kn∆n

kn−1∑
j=0

(∆n
i+jY )(∆n

i+jY )>1{‖∆n
i+jY ‖≤χ∆$

n }, (12)

where ∆n
i Y = Yi∆n

− Y(i−1)∆n
and where kn is the number of observations in a local window.6

We propose two estimators for the general quantity [H(c), G(c)]T . The first is based on the analog of the

definition of quadratic covariation between two Itô processes,

̂[H(c), G(c)]
AN

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

((
H(ĉ(i+kn)∆n

)−H(ĉi∆n
)
)(
G(ĉ(i+kn)∆n

)−G(ĉi∆n
)
)

− 2

kn

d∑
g,h,a,b=1

(∂ghH∂abG)(ĉi∆n)
(
ĉga,i∆n ĉgb,i∆n + ĉgb,i∆n ĉha,i∆n

))
, (13)

where the factor 3/2 and last term correct for the biases arising due to the estimation of volatility ct. The

increments used in the above expression are computed over overlapping blocks, which results in a smaller

asymptotic variance compared to the version using non-overlapping blocks.

6It is also possible to define kernel-based estimators as in Kristensen (2010).
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Our second estimator is based on the following equality, which follows by the Itô lemma,

[H(c), G(c)]T =

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(ct)c

gh,ab
t dt, (14)

where cgh,abt denotes the covariation between the volatility processes cgh,t and cab,t. The quantity is thus a

non-linear functional of the spot covariance and spot volatility of volatility matrices. Our second estimator

is based on this “linearized” expression,

̂[H(c), G(c)]
LIN

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂ghH∂abG)(ĉi∆n)
(

(ĉgh,(i+kn)∆n
−ĉgh,i∆n)(ĉab,(i+kn)∆n

−ĉab,i∆n)

− 2

kn
(ĉga,i∆n

ĉgb,i∆n
+ ĉgb,i∆n

ĉha,i∆n
)
)
. (15)

Consistency for a similar estimator has been established by Jacod and Rosenbaum (2012).7 We go beyond

their result by deriving the asymptotic distribution and proposing a consistent estimator of its asymptotic

variance.

Note that the same additive bias-correcting term,

− 3

k2
n

[T/∆n]−2kn+1∑
i=1

(
d∑

g,h,a,b=1

(∂ghH∂abG)(ĉi∆n
)
(
ĉga,i∆n

ĉgb,i∆n
+ ĉgb,i∆n

ĉha,i∆n

))
, (16)

is used for the two estimators. This term is (up to a scale factor) an estimator of the asymptotic covariance

between the sampling errors embedded in estimators of
∫ T

0
H(ct)dt and

∫ T
0
G(ct)dt defined in Jacod and

Rosenbaum (2013).

The two estimators are identical when H and G are linear, for example, when estimating the covariation

between two volatility processes. In the univariate case d = k = 1, our estimator coincides with the volatility

of volatility estimator of Vetter (2012), which was extended to allow for jumps in Jacod and Rosenbaum

(2012). Our contribution is the extension of this theory to the multivariate k > 1 and/or d > 1 case with

nonlinear functionals.

4 Asymptotic Properties

We start by outlining the full list of assumptions for our asymptotic results. We then state the asymptotic

distribution for the general functionals introduced in the previous section, and develop estimators for the

asymptotic variance. Finally, we outline three statistical tests of interest that follow from our theoretical

results.

7Jacod and Rosenbaum (2012) derive the probability limit of the following estimator:

3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂2
gh,abH)(ĉi∆n )

(
(ĉ(i+kn)∆n − ĉi∆n )(ĉ(i+kn)∆n − ĉi∆n )−

2

kn
(ĉga,i∆n ĉgb,i∆n + ĉgb,i∆n ĉha,i∆n )

)
.
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4.1 Assumptions

Recall that the d-dimensional process Yt represents the (log) prices of stocks and factors.

Assumption 1. Suppose Y is an Itô semimartingale on a filtered space (Ω,F , (Ft)t≥0,P),

Yt = Y0 +

∫ t

0

bsds+

∫ t

0

σsdWs+

∫ t

0

∫
E

δ(s, z)µ(ds, dz),

where W is a d′-dimensional Brownian motion (d′ ≥ d) and µ is a Poisson random measure on R+ × E,

with E an auxiliary Polish space with intensity measure ν(dt, dz) = dt ⊗ λ(dz) for some σ-finite measure

λ on E. The process bt is Rd-valued optional, σt is Rd × Rd′-valued, and δ = δ(w, t, z) is a predictable

Rd -valued function on Ω × R+ × E. Moreover, ‖δ(w, t ∧ τm(w), z)‖ ∧ 1 ≤ Γm(z), for all (w,t,z), where

(τm) is a localizing sequence of stopping times and, for some r ∈ [0, 1], the function Γm on E satisfies∫
E

Γm(z)rλ(dz) <∞. The spot volatility matrix of Y is then defined as ct = σtσ
>
t . We assume that ct is a

continuous Itô semimartingale,8

ct = c0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdWs. (17)

With the above notation, the elements of the spot volatility of volatility matrix and spot covariation of

the continuous martingale parts of X and c are defined as follows,

cgh,abt =

d′∑
m=1

σ̃gh,mt σ̃ab,mt , c′g,abt =

d′∑
m=1

σgmt σ̃ab,mt . (18)

The process σ̃t is restricted as follows:

Assumption 2. σ̃t is a continuous Itô semimartingale with its characteristics satisfying the same require-

ments as that of ct.

Assumption 1 is very general and nests most of the multivariate continuous-time models used in economics

and finance. It allows for potential stochastic volatility and jumps in prices. Assumption 2 is required to

obtain the asymptotic distribution of estimators of the quadratic covariation between functionals of the spot

covariance matrix ct. It is not needed to prove consistency. This restriction also appears in Vetter (2012),

Kalnina and Xiu (2014) and Wang and Mykland (2014).

4.2 Asymptotic Distribution

We have seen in Section 3 that all quantities of interest in (11) are functions of multiple objects of the form

[H(c), G(c)]T . Therefore, if we can obtain a multivariate asymptotic distribution for a vector with elements

of the form [H(c), G(c)]T , the asymptotic distributions for all our estimators follow by the delta method.

Presenting this asymptotic distribution is the purpose of the current section.

We first specify the smoothness restrictions on the functions H and G. For this purpose, we denote by

G(p) the set of real-valued functions H that satisfy the following polynomial growth condition. For p ≥ 3,

G(p) = {H : H is three-times continuously differentiable and for some K > 0,

8Note that σ̃s = (σ̃gh,m
s ) is (d×d×d′)-dimensional and σ̃sdWs is (d×d)-dimensional with (σ̃sdWs)gh =

∑d′

m=1 σ̃
gh,m
s dWm

s .
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‖∂jH(x)‖ ≤ K(1 + ‖x‖)p−j , j = 0, 1, 2, 3}.

The same assumption is used in other contexts by Jacod and Rosenbaum (2012), Jacod and Rosenbaum

(2013), and Li, Todorov, and Tauchen (2013).

Let H1, G1, . . . ,Hκ, Gκ be some arbitrary elements of G(p). We are interested in the asymptotic behav-

ior of vectors
(

̂[H1(c), G1(c)]
AN

T , . . . , ̂[Hκ(c), Gκ(c)]
AN

T

)>
and

(
̂[H1(c), G1(c)]

LIN

T , . . . , ̂[Hκ(c), Gκ(c)]
LIN

T

)>
.

The following theorem summarizes the joint asymptotic behavior of the estimators.

Theorem 1. Let ̂[Hr(c), Gr(c)]T be either ̂[Hr(c), Gr(c)]
AN

T or ̂[Hr(c), Gr(c)]
LIN

T defined in (13) and (15),

respectively. Suppose Assumption 1 and Assumption 2 hold. Fix kn = θ∆
−1/2
n and set (8p− 1)/4(4p− r) ≤

$ < 1
2 . Then, as ∆n −→ 0,

∆−1/4
n


̂[H1(c), G1(c)]T − [H1(c), G1(c)]T

...

̂[Hκ(c), Gκ(c)]T − [Hκ(c), Gκ(c)]T

 L−s−→MN(0,ΣT ), (19)

where ΣT =
(

Σr,sT

)
1≤r,s≤q

denotes the asymptotic covariance between the estimators ̂[Hr(c), Gr(c)]T and

̂[Hs(c), Gs(c)]T . The elements of the matrix ΣT are

Σr,sT = Σ
r,s,(1)
T + Σ

r,s,(2)
T + Σ

r,s,(3)
T ,

Σ
r,s,(1)
T =

6

θ3

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(cs)

)[
Ct(gh, jk)Ct(ab, lm)

+ Ct(ab, jk)Ct(gh, lm)
]
dt,

Σ
r,s,(2)
T =

151θ

140

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(ct)

)[
cgh,jkt cab,lmt + cab,jkt cgh,lmt

]
dt,

Σ
r,s,(3)
T =

3

2θ

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(ct)

)[
Ct(gh, jk)cab,lmt + Ct(ab, lm)cgh,jkt

+ Ct(gh, lm)cab,jkt + Ct(ab, jk)cgh,lmt

]
dt,

with

Ct(gh, jk) = cgj,tchk,t + cgk,tchj,t.

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and Eagleson (1978)

and Jacod and Protter (2012)). The limit is mixed gaussian and the precision of the estimators depends on

the paths of the spot covariance and the volatility of volatility process. The rate of convergence ∆
−1/4
n has

been shown to be the optimal for volatility of volatility estimation (under the assumption of no volatility

jumps).

The asymptotic variance of the estimators depends on the tuning parameter θ whose choice may be

crucial for the reliability of the inference. We document the sensitivity of the inference theory to the choice

of the parameter θ in a Monte Carlo experiment (see Section 5).
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4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element Σr,sT of the asymptotic covariance matrix in Theorem 1,

we introduce the following quantities:

Ω̂
r,s,(1)
T = ∆n

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(ĉ

n
i )
)[
Ĉi∆n(gh, jk)Ĉi∆n(ab, lm)

+ Ĉi∆n
(ab, jk)Ĉi∆n

(gh, lm)
]
,

Ω̂
r,s,(2)
T =

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(ĉ

n
i )
)[1

2
γ̂n,ghi γ̂n,jki γ̂n,abi+2kn

γ̂n,lmi+2kn
+

1

2
γ̂n,abi γ̂n,lmi γ̂n,ghi+2kn

γ̂n,jki+2kn
+

1

2
γ̂n,abi γ̂n,jki γ̂n,ghi+2kn

γ̂n,lmi+2kn
+

1

2
γ̂n,ghi γ̂n,lmi γ̂n,abi+2kn

γ̂n,jki+2kn

]
,

Ω̂
r,s,(3)
T =

3

2kn

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(ĉ

n
i )
)
×

[
Ĉi∆n

(gh, jk)γ̂n,abi γ̂n,lmi + Ĉi∆n
(ab, lm)γ̂n,ghi γ̂n,jki + Ĉi∆n

(gh, lm)γ̂n,abi γ̂n,jki + (Ĉi∆n
(ab, jk)γ̂n,ghi γ̂n,lmi

]
,

with γ̂n,jki = ĉn,jki+kn
− ĉn,jki and Ĉi∆n

(gh, jk) = (ĉgj,i∆n
ĉhk,i∆n

+ ĉgk,i∆n
ĉhj,i∆n

).

The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold, then, as ∆n −→ 0

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T .

The estimated matrix Σ̂T is symmetric but is not guaranteed to be positive semi-definite. By Theorem 1,

Σ̂T is positive semi-definite in large samples. The form of the asymptotic variance is relatively complicated.

Estimating it using subsampling or bootstrap techniques is an interesting research question that is beyond

the scope of this paper.

Remark 1: Using results in Jacod and Rosenbaum (2012), it can be shown that the first convergence in

Theorem 2 holds at a rate of ∆
−1/2
n while the last convergence rate is ∆

−1/4
n by a straightforward extension

of Theorem 1. Our estimator of Σ
r,s,(2)
T can be shown to have a rate of convergence ∆

−1/4
n .

Remark 2: In the one-dimensional case (d = 1), much simpler estimators of Σ
r,s,(2)
T can be constructed

using the quantities γ̂n,jki γ̂n,lmi γ̂n,ghi+kn
γ̂n,xyi+kn

or γ̂n,jki γ̂n,lmi γ̂n,ghi γ̂n,xyi as in Vetter (2012). However, in the

multidimensional case, the latter quantities do not identify separately the quantity ct
jk,lmct

gh,xy since the

combination ct
jk,lmct

gh,xy + ct
jk,ghct

lm,xy + ct
jk,xyct

gh,lm shows up in a non-trivial way in the limit of the

estimator.

Corollary 3. For 1 ≤ r ≤ κ, let ̂[Hr(c), Gr(c)]T be either ̂[Hr(c), Gr(c)]
AN

T or ̂[Hr(c), Gr(c)]
LIN

T defined in

11



(15) and (13), respectively. Suppose the assumptions of theorem 1 hold, then we have:

∆−1/4
n Σ̂

−1/2
T


̂[H1(c), G1(c)]T − [H1(c), G1(c)]T

...

̂[Hκ(c), Gκ(c)]T − [Hκ(c), Gκ(c)]T

 L−→ N(0, Iκ), (20)

In the above, we use the notation L to denote the convergence in distribution and Iκ the identity matrix

of order κ. Corollary 3 states the standardized asymptotic distribution, which follows directly from the

properties of stable-in-law convergence. Similarly, by the delta method, standardized asymptotic distribution

can also be derived for the estimators of the quantities in (11). These standardized distributions allow

the construction of confidence intervals for all the latent quantities of the form [Hr(c), Gr(c)]T and, more

generally, functions of these quantities.

4.4 Testing procedure

We now describe the three statistical tests that we are interested in. The test of absence of dependence

between the IV of the returns on asset i and j can be formulated as:

H1
0 : [cZi, cZj ]T = 0 vs H1

1 : [cZi, cZj ]T 6= 0.

The null hypothesis H1
0 is rejected whenever,

∆−1/4
n

∣∣∣ ̂[cZi, cZj ]T

∣∣∣√
ÂV AR

(
cZi, cZj

) > Zα.

The test of absence of dependence between the IV of stock j and all IV factors q takes the following form:

H2
0 : [cZj , q]T = 0 vs H2

1 : [cZj , q]T 6= 0.

Denoting by dq the number of IV factors, we reject the above null hypothesis H2
0 when,

∆−1/4
n

(
̂[cZj , q]T

)> (
ÂV AR

(
cZj , q

))−1 ̂[cZj , q]T > X
2
dq,1−α.

The test of absence of dependence between the NS-IVs can be stated as:

H3
0 : [cNSZi , c

NS
Zj ]T = 0 vs H3

1 : [cNSZi , c
NS
Zj ]T 6= 0,

with the null rejected if

∆−1/4
n

∣∣∣ ̂[cNSZi , c
NS
Zj ]

T

∣∣∣√
ÂV AR

(
cNSZi , c

NS
Zj

) > Zα.

Our inference theory also allows to test more general hypotheses, which are joint across any subset

of the panel. In the above statements, ̂[H(c), G(c)]T can be either ̂[H(c), G(c)]
AN

T or ̂[H(c), G(c)]
LIN

T ,

ÂV AR
(
H(c), G(c)

)
is an estimate of the asymptotic variance of ̂[H(c), G(c)]T , Zα stands for the (1 − α)

quantile of the N(0, 1), and X 2
dq,1−α stands for (1 − α) quantile of the X 2

dq
distribution. For the first two

12



tests, the expression for the true asymptotic variance is obtained using Theorem 1 and its estimation follows

from Theorem 2. The asymptotic variance of the third test is obtained by an application of the delta method

to the convergence result in Theorem 1. The expression of the AVAR for the third test involves some of the

latent quantities defined in (11), which can be estimated using either AN- or LIN-type estimators. There-

fore in general, we have two tests for each null hypothesis, corresponding to the two type of estimators for

[H(c), G(c)]T . Under (2) and the assumptions of Theorem 1, Corollary 3 implies that the asymptotic size

of the two types of tests for the null hypotheses H1
0 and H2

0 is α, and their power approaches 1. The same

properties apply for the tests of the null hypotheses H3
0 as long as (2) and our IV-FM representation (5)

hold.

Theoretically, it is possible to test for absence of dependence in the IVs at the spot level. In this case

the null hypothesis is H ′10 : [cZi, cZj ]t = 0 for all 0 ≤ t ≤ T , which is, in theory, stronger than our H ′10 . In

particular, Theorem 1 can be used to set up Kolmogorov-Smirnov type of tests for H ′10 in the same spirit

as Vetter (2012). However, we do not pursue this direction in the current paper for two reasons. First,

the testing procedure would be more involved. Second, empirical evidence suggests nonnegative dependence

between IVs, which means that in practice, it is not too restrictive to assume [cZi, cZj ]t ≥ 0 ∀t, under which

H1
0 and H ′10 are equivalent.

5 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The data generating

process (DGP) is similar to that of LTT and is constructed as follows. Denote by Y1 and Y2 log-prices of

two individual stocks, and by X the log-price of the market portfolio. Recall that the superscript c indicates

the continuous part of a process. We assume

dXt = dXc
t + dJ3,t, dXc

t =
√
cX,tdWt,

and, for j = 1, 2,

dYj,t = βtdX
c
t + dỸ cj,t + dJj,t, dỸ cj,t =

√
cZj,tdW̃j,t.

In the above, cX is the spot volatility of the market portfolio, W̃1, and W̃2 are Brownian motions with

Corr(dW̃1,t, dW̃2,t) = 0.4, and W is an independent Brownian motion; J1, J2, and J3 are independent

compound Poisson processes with intensity equal to 2 jumps per year and jump size distribution N(0,0.022).

The beta process is time-varying and is specified as βt = 0.5 + 0.1 sin(100t).

We next specify the volatility processes. As our building blocks, we first generate four processes f1, . . . , f4

as mutually independent Cox Ingersoll Ross processes,

df1,t = 5(0.09− f1,t)dt+ 0.35
√
f1,t

(
− 0.8dWt +

√
1− 0.82dB1,t

)
,

dfj,t = 5(0.09− fj,t)dt+ 0.35
√
f1,tdBj,t , for j = 2, 3, 4,

where B1, . . . , B4 and independent standard Brownian Motions, which are also independent from the Brown-
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ian Motions of the return Factor Model.9 We use the first process f1 as the market volatility, i.e., cX,t = f1,t.

We use the other three processes f2, f3, and f4 to construct three different specifications for the IV processes

cZ1,t and cZ2,t, see Table 1 for details. The common Brownian Motion Wt in the market portfolio price pro-

cess Xt and its volatility process cX,t = f1,t generates a leverage effect for the market portfolio. The value

of the leverage effect is -0.8, which is standard in the literature, see Kalnina and Xiu (2014), Aı̈t-Sahalia,

Fan, and Li (2013) and Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013).

cZ1,t cZ2,t

Model 1 0.1 + 1.5f2,t 0.1 + 1.5f3,t

Model 2 0.1 + 0.6cX,t + 0.4f2,t 0.1 + 0.5cX,t + 0.5f3,t

Model 3 0.1 + 0.45cX,t + f2,t + 0.4f4,t 0.1 + 0.35cX,t + 0.3f3,t + 0.6f4,t

Table 1: Different specifications for the Idiosyncratic Volatility processes cZ1,tand cZ2,t.

We set the time span T equal 1260 or 2520 days, which correspond approximately to 5 and 10 business

years. These values are close to those typically used in the nonparametric leverage effect estimation literature

(see Aı̈t-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2014)), which is related to the problem of volatility

of volatility estimation. Each day consists of 6.5 trading hours. We consider two different values for the

sampling frequency, ∆n = 1 minute and ∆n = 5 minutes. We follow LTT and set the truncation threshold

un in day t at 3σ̂t∆
0.49
n , where σ̂t is the squared root of the annualized bipower variation of Barndorff-Nielsen

and Shephard (2004). We use 10 000 Monte Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators under Model 3. The considered esti-

mators include:

• the IV beta of the first stock
(
bZ1

)
,

• the correlation between the first idiosyncratic volatility and the market volatility
(
ρZ1

)
,

• the contribution of the non-systematic idiosyncratic volatility to the variation in the idiosyncratic

volatility in the case of the first stock
(
1−R2,IV -FM

Z1

)
,

• the correlation between the idiosyncratic volatilities
(
ρZ1,Z2

)
,

• the correlation between non-systematic idiosyncratic volatilities
(
ρNSZ1,Z2

)
,

• the contribution of the NS-IV to the dependence between IVs
(
1−QIV -FM

Z1,Z2

)
.

The interpretation of simulation results is much simpler when the quantities of interest do not change across

simulations. To achieve that, we generate once and keep fixed the paths of the processes (fj,t)1≤j≤4 and

replicate several times the other parts of the DGP. In Table 2, we report the bias and the interquartile

range (IQR) of the two type of estimators for each quantity using 5 minutes data sampled over 10 years.

We choose four different values for the width of the subsamples, which corresponds to θ = 1.5, 2, 2.5 and

3 (recall that the number of observations in a window is kn = θ/
√

∆n). It seems that larger values of the

9The Feller property is satisfied implying the positiveness of the processes (fj,t)1≤j≤4.

14



parameters produce better results. Next, we investigate how these results change when we increase the

sampling frequency. In Table 3, we report the results with ∆n = 1 minute in the same setting. We note

a reduction of the bias and IQR at all levels of significance. However, the magnitude of the decrease of

the IQR is very small. Finally, we conduct the same experiment using data sampled at one minute over 5

years. Despite using more than twice as many observations than in the first experiment, the precision is not

as good. In other words, increasing the time span is more effective for precision gain than increasing the

sampling frequency. This result is typical for ∆
1/4
n -convergent estimators, see, e.g., Kalnina and Xiu (2014).

AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias

b̂Z1 -0.047 -0.025 -0.011 -0.003 -0.006 0.001 0.009 0.015
ρ̂Z1 -0.182 -0.127 -0.096 -0.078 -0.186 -0.136 -0.105 -0.085

1− R̂2,IV -FM
Z1 0.176 0.130 0.103 0.085 0.181 0.140 0.112 0.092

ρ̂Z1,Z2 -0.288 -0.212 -0.163 -0.133 -0.249 -0.190 -0.146 -0.120
ρ̂NSZ1,Z2 -0.189 -0.113 -0.064 -0.034 -0.150 -0.091 -0.047 -0.021

1− Q̂IV -FM
Z1,Z2 0.139 0.102 0.086 0.077 0.129 0.104 0.092 0.082

IQR

b̂Z1 0.222 0.166 0.138 0.121 0.226 0.168 0.139 0.122
ρ̂Z1 0.244 0.200 0.173 0.149 0.218 0.183 0.157 0.139

1− R̂2,IV -FM
Z1 0.210 0.188 0.172 0.152 0.181 0.166 0.152 0.140

ρ̂Z1,Z2 0.404 0.325 0.263 0.223 0.338 0.283 0.237 0.205
ρ̂NSZ1,Z2 0.456 0.384 0.315 0.272 0.388 0.337 0.285 0.250

1− Q̂IV -FM
Z1,Z2 0.345 0.306 0.257 0.216 0.327 0.276 0.233 0.195

Table 2: Finite sample properties of our estimators using 10 years of data sampled at 5 minutes. The true
values are bZ1 = 0.450, ρZ1 = 0.585, 1 − RIV -FM

Z1 = 0.658, ρZ1,Z2 = 0.523, ρNSZ1,Z2 = 0.424, 1 − QIV -FM
Z1,Z2 =

0.618.

Next, we study the size and power of the three statistical tests as outlined in Section 4.4. We use

Model 1 to study the size properties of the first two tests: the test of the absence of dependence between

the IVs (H1
0 : [cZ1, cZ2]T = 0), and the absence of dependence between the IV of the first stock and the

market volatility (H2
0 : [cZ1, cX ]T = 0). We use Model 2 to study the size properties of the third test

(H3
0 : [cNSZ1 , c

NS
Z2 ]T = 0). Finally, we use Model 3 to study power properties of all three tests.

The upper panel Tables 5, 6, and 7 reports the size results while the lower panels shows the results for

the power. We present the results for the two sampling frequencies (∆n = 1 minute and ∆n = 5 minutes)

and the two type of tests (AN and LIN). We observe that the size of three tests are reasonably close to

their nominal levels. The rejection probabilities under the alternatives are rather high, except when the data

is sampled at 5 minutes frequency and the nominal level at 1%.10 We note that the tests based on LIN

estimators have better testing power compared to those that build on AN estimators. Increasing the window

length induces some size distortions but is very effective for power gain. Consistent with the asymptotic

theory, the size of the three tests are closer to the nominal levels and the power is higher at the one minute

sampling frequency. Clearly, the test of absence of dependence between IV and the market volatility has the

10We set the nominal level at 5% in the empirical application.
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AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias

b̂Z1 -0.022 -0.012 -0.003 0.004 -0.003 -0.000 0.006 0.012
ρ̂Z1 -0.105 -0.085 -0.066 -0.050 -0.110 -0.089 -0.069 -0.052

1− R̂IV -FM
Z1 0.107 0.091 0.073 0.056 0.113 0.095 0.075 0.058

ρ̂Z1,Z2 -0.147 -0.104 -0.073 -0.048 -0.133 -0.097 -0.067 -0.042
ρ̂NSZ1,Z2 -0.135 -0.086 -0.058 -0.039 -0.119 -0.078 -0.052 -0.032

1− Q̂IV -FM
Z1,Z2 0.071 0.045 0.035 0.029 0.067 0.047 0.038 0.032

IQR

b̂Z1 0.156 0.112 0.088 0.075 0.157 0.112 0.088 0.075
ρ̂Z1 0.200 0.146 0.114 0.094 0.189 0.139 0.110 0.091

1− R̂IV -FM
Z1 0.201 0.146 0.118 0.100 0.184 0.138 0.113 0.096

ρ̂Z1,Z2 0.340 0.238 0.184 0.150 0.309 0.226 0.177 0.145
ρ̂NSZ1,Z2 0.417 0.291 0.228 0.184 0.378 0.274 0.217 0.177

1− Q̂IV -FM
Z1,Z2 0.355 0.266 0.201 0.158 0.339 0.251 0.191 0.151

Table 3: Finite sample properties of our estimators using 10 years of data sampled at 1 minute. The true
values are bZ1 = 0.450, ρZ1 = 0.580, 1−R2,IV -FM

Z1 = 0.664, ρZ1,Z2 = 0.514, ρNSZ1,Z2 = 0.408, 1−QIV -FM
Z1,Z2 =

0.606.

AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias

b̂Z1 -0.019 -0.011 -0.007 0.000 -0.001 -0.001 0.002 0.008
ρ̂Z1 -0.117 -0.091 -0.074 -0.062 -0.120 -0.094 -0.076 -0.063

1− R̂2,IV -FM
Z1 0.115 0.096 0.081 0.069 0.119 0.100 0.084 0.071

ρ̂Z1,Z2 -0.168 -0.101 -0.064 -0.038 -0.149 -0.092 -0.057 -0.033
ρ̂NSZ1,Z2 -0.141 -0.079 -0.035 -0.007 -0.127 -0.067 -0.029 -0.001

1− Q̂IV -FM
Z1,Z2 0.121 0.094 0.086 0.087 0.113 0.095 0.088 0.087

IQR

b̂Z1 0.215 0.159 0.128 0.110 0.216 0.158 0.129 0.110
ρ̂Z1 0.263 0.196 0.160 0.135 0.252 0.189 0.155 0.131

1− R̂2,IV -FM
Z1 0.282 0.204 0.168 0.144 0.260 0.194 0.161 0.139

ρ̂Z1,Z2 0.472 0.337 0.263 0.213 0.436 0.319 0.252 0.206
ρ̂NSZ1,Z2 0.541 0.412 0.324 0.266 0.510 0.391 0.311 0.256

1− Q̂IV -FM
Z1,Z2 0.357 0.313 0.247 0.198 0.356 0.297 0.238 0.189

Table 4: Finite sample properties of our estimators using 5 years of data sampled at 1 minute. The true values
are bZ1 = 0.450, ρZ1 = 0.591, 1−R2,IV -FM

Z1 = 0.650, ρZ1,Z2 = 0.517, ρNSZ1,Z2 = 0.417, 1−QIV -FM
Z1,Z2 = 0.613.
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best power, followed by the test of absence of dependence between the two IVs. This ranking is compatible

with the notion that the finite sample properties of the tests deteriorate with the degree of latency embedded

in each null hypothesis.

∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of the test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1
α = 20% 19.5 21.0 19.4 20.4 19.4 20.7 20.2 19.6 19.7 19.9 19.8 20.1
α = 10% 9.7 10.6 10.6 12.6 9.7 10.3 10.2 9.7 10.0 10.2 9.8 10.2
α = 5% 4.7 5.1 4.5 5.3 4.8 5.6 5.3 5.3 5.2 5.3 4.9 5.1
α = 1% 0.9 1.1 0.9 1.2 0.9 1.1 1.1 1.1 1.2 1.1 1.0 1.0

Panel B : Power Analysis-Model 3
α = 20% 33.5 45.7 50.4 63.1 67.8 78.1 48.5 56.2 77.7 82.3 94.1 95.8
α = 10% 20.5 31.5 35.7 48.3 53.3 65.8 33.9 41.0 65.6 71.6 88.0 91.2
α = 5% 11.9 21.0 23.9 35.76 40.6 53.4 22.3 29.5 52.8 59.8 79.6 84.4
α = 1% 3.3 6.9 8.7 15.6 18.4 28.6 8.9 12.4 28.6 34.5 57.4 64.1

Table 5: Size and Power of the test of absence of dependence between idiosyncratic volatilities for T =
10 years.

∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1
α = 20% 22.6 20.1 20.0 21.0 19.8 21.5 21.6 20.6 21.6 21.5 21.1 21.5
α = 10% 12.1 10.2 10.0 10.6 9.8 11.0 11.0 10.4 10.3 10.4 10.4 10.4
α = 5% 6.2 5.0 4.5 5.2 4.6 5.4 5.5 5.4 5.2 5.1 5.2 5.3
α = 1% 1.5 1.0 0.8 1.0 0.9 1.2 1.1 1.1 1.0 0.9 0.8 1.0

Panel B : Power Analysis-Model 3
α = 20% 73.1 80.7 91.4 93.9 97.4 98.3 95.8 97.2 99.7 99.8 100 100
α = 10% 60.0 69.0 84.0 88.3 94.6 96.1 91.1 93.3 99.2 99.4 100 100
α = 5% 47.7 57.2 75.0 81.0 89.6 92.6 84.9 88.2 98.2 98.6 100 100
α = 1% 24.1 32.3 52.2 60.1 73.7 78.9 67.7 72.0 93.0 94.5 99.2 99.4

Table 6: Size and Power of the test of absence of dependence between the idiosyncratic volatility and the
market volatility for T = 10 years.
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∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 2
α = 20% 19.9 23 20.4 23.7 20.2 23.2 19.7 20.5 20.3 21.7 20.0 22.3
α = 10% 10.0 10.1 12.1 10.8 9.9 12.6 10.1 10.3 10.6 11.3 10.1 11.4
α = 5% 5.0 6.3 5.1 6.3 5.1 6.7 5.5 5.5 5.3 5.9 5.2 6.0
α = 1% 1.1 1.5 0.8 1.6 1.1 1.4 1.1 1.2 1.3 1.3 1.3 1.5

Panel B : Power Analysis-Model 3
α = 20% 25.1 32.1 29.0 36.5 42.8 51.7 31.0 35 50.0 54.6 68.0 72.3
α = 10% 13.7 19.2 16.8 23.0 28.1 36.9 19.0 22.2 35.0 39.4 53.4 58.3
α = 5% 7.4 11.3 9.3 14.2 18.3 25.2 11.0 13.7 23.9 28.0 40.0 44.9
α = 1% 1.6 3.1 2.3 3.9 6.0 9.5 2.9 4.0 9.3 11.6 18.8 22.2

Table 7: Size and Power of the test of absence of dependence between NS-IVs for T = 10 years.

6 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IV using high frequency data. We find

that stocks’ idiosyncratic volatilities co-move strongly with the market volatility. Also, we find that market

volatility is often the main source of the dependence observed in the IVs. This is a quite surprising finding.

It is of course well known that the total volatility of stocks moves with the market volatility. However, we

stress that we find that the strong effect is still present when considering the idiosyncratic volatilities.

We use full record transaction prices from NYSE TAQ database for 27 stocks over the time period

2003-2012. After removing the non-trading days, our sample contains 2517 days. The selected stocks have

been part of S&P 500 index throughout our sample. Our 27 stocks contain three liquid stocks in each of

the nine sectors of the index (Consumer Discretionary, Consumer Staples, Energy, Financial, Health Care,

Industrial, Materials, Technology, and Utilities). For each day, we consider data from the regular exchange

opening hours from time stamped between 9:30 a.m. until 4 p.m. We clean the data following the procedure

suggested by ?, remove the overnight returns and then sample at 5 minutes. This sparse sampling has been

widely used in the literature because the effect of the microstructure noise and potential asynchronicity of

the data is less important at this frequency, see also ?.

The parameter choices for the estimators are as follows. Guided by our Monte Carlo results, we set the

length of window to be approximately one week for the estimators in Section 3 (this corresponds to θ = 2.5

where kn = θ∆
−1/2
n is the number of observations in a window). The truncation threshold for all estimators

is set as in the Monte Carlo study (3σ̂t∆
0.49
n where σ̂2

t is the bipower variation).

We consider two sets of factors in the factor model for returns: the S&P500 market index and the three

Fama-French factors (FF3 henceforth). All factors are sampled at 5 minutes over 2003-2012.11

Figures 1 and 2 contain plots of the time series of the estimated 1 − R2
Y j of the return regressions, i.e.,

the estimated monthly contribution of the idiosyncratic volatility to the total volatility, for each stock in the

11The high-frequency data on the Fama-French factors were obtained from Aı̈t-Sahalia, Kalnina, and Xiu (2014).
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two models (CAPM and FF3).12 In Table 8, we report the average of these monthly statistics over the full

sample. As we can see in Table 8, the idiosyncratic returns have a relatively high contribution to the total

variation of the returns in the two models. The minimum value (across all the stocks) for 1−R2
Y j is 61.5%

for the one-factor model and 53.5% in the FF3 model. Figures 1 and 2 show that the time series of all stocks

follow approximately the same trend with a considerable drop in the contribution around the crisis year 2008,

which shows that the systemic risk became relatively more important during this period. Overall our results

suggest that IV contributes to more than a half of the total variation for each stock. Therefore, studying

the source of variation in IVs is potentially useful. We proceed to investigate the dynamic properties of the

panel of idiosyncratic volatilities.

We first investigate the (total) dependence in the idiosyncratic volatilities. We have 351 pairs of stocks

available in the panel. For each pair of stocks, we compute the correlation between the IVs, ρZi,Zj . The

upper and lower panels of Table 13 display the correlations estimated using the LIN-type estimators in the

CAPM and FF3 as the factor model for prices.13 The values in parenthesis correspond to the p-values of the

test of dependence in the IVs (see Section 4.4 for an expression of the test statistic). The reader should be

careful when interpreting these p-values because they are not adjusted for multiple testing. Clearly, there

is evidence for strong dependence between the IVs. Indeed, the absolute values of the t-statistics are bigger

than 1.96 for 350 pairs over 351. Only the dependence between the IV of the Goldman Sachs (GS) and IBM

gives rise to the absolute value of the t-statistic smaller than 1.96. Using the Bonferroni correction, the p-

value of the test of absence of dependence in all pairs is less than 0.0001. The estimated correlation is positive

for each pair of stocks. We also observe substantial heterogeneity in the correlation with a maximum value

of 94.4% (Exxon Mobil (XOM) and Chevron Corp (CVX)) and a minimum value of 24.8% (Duke Energy

(DUK) and Avery Dennison Corporation (AVY)). Table 9 is a summary of the results of Table 13; it shows

the number of pairs with the estimated correlation greater than a set of thresholds. For example, it shows

that the correlation is greater than 50% for more than two thirds of the pairs (265). Interestingly, the results

of the test are unchanged for the FF3 model, and the estimated correlations are very close to those obtained

in the CAPM. This result is not surprising given the relatively small difference between the values of R2
Y j

in the two models.

We next ask the question of whether potential missing factors in the factor model for returns might

be responsible for the strong dependence in IVs. Omitted factors in the factor model for returns induce

correlation between the estimated idiosyncratic returns, Corr(Zi, Zj).
14 We report in Table 12 the estimated

12For the jth stock, our analog of the coefficient of determination in the return factor model for this stock is R2
Y j =

1 −
∫ T
0 cZj,tdt∫ T
0 cY j,tdt

. We estimate R2
Y j using the general method of Jacod and Rosenbaum (2013). The resulting estimator of R2

Y j

requires a choice of a block size for the spot volatility estimation; we choose two hours in practice (the number of observations
in a block, say ln, has to satisfy l2n∆n → 0 and l3n∆n →∞, so it is of smaller order than the number of observations kn in our
estimators of Section 3).

13This choice is motivated by our simulation results where LIN type of estimators and tests appear to have better finite
sample properties than AN type estimators.

14 Our measure of correlation between the idiosyncratic returns Zi and Zj is

Corr(Zi, Zj) =

∫ T
0 cZij,tdt√∫ T

0 cZi,tdt
√∫ T

0 cZj,tdt
, i, j = 1, . . . , dS , (21)

where cZij,t is the spot covariation between the idiosyncratic returns Zi and Zj . Similarly to R2
Y j , we estimate Corr(Zi, Zj)
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correlations Corr(Zi, Zj). Table 10 presents a summary of how estimates of Corr(Zi, Zj) in Table 12 are

related to the estimates of correlation in IVs, ρZi,Zj , in Table 13. In particular, different rows in Table

10 display average values of ρZi,Zj among those pairs, for which Corr(Zi, Zj) is below some threshold.

For example, the last-but-one row in Table 10 indicates that there are 56 pairs of stocks with estimated

Corr(Zi, Zj) < 0.01, and among those stocks, the average correlation between IVs, ρZi,Zj , is estimated to be

0.579. This estimate ρZi,Zj is virtually the same among pairs of stocks with high Corr(Zi, Zj). Therefore,

we know that among 56 pairs of stocks, a missing return factor cannot explain dependence in IVs. Moreover,

these results suggest that missing return factor cannot explain dependence in IVs for all considered stocks.

These results are in line with recent findings of Herskovic, Kelly, Lustig, and Nieuwerburgh (2014) with daily

and monthly returns.

To understand the source of the strong dependence in the IVs, we consider the Idiosyncratic Volatility

Factor Model (IV-FM) of Section 2. We use the market volatility as the single IV factor. We start by

considering individual stocks separately. In Table 11, we report the estimates of the idiosyncratic volatility

beta (̂bZi), the correlation between the idiosyncratic volatility and the market volatility (ρ̂Zi), and the

contribution of each non-systemic IV (NS-IV) to the aggregate variation in IV (1−R2,IV -FM
Zi ). The absolute

values of the t-statistics based on the covariation between IV and the market volatility are bigger than

1.96 for each stock. For every stock, the estimated IV beta and the correlation ρ̂Zi are positive, suggesting

that the idiosyncratic volatility co-moves with the market volatility. For 16 stocks out of 27, the NS-IV

contributes to more than 50% of the variation in their IV, with the average being 56%.

Next, we turn to the implications of the IV-FM for the cross-section. In Table 14 we report, for each pair

of stocks, the correlation between the NS-IVs, ρNSZi,Zj . The values are much smaller than the correlations

between the total IVs (ρZi,Zj) in Table 13. Next, Table 15 reports, for each pair of stocks, the contribution

of the dependence in the NS-IVs to the total dependence in the IVs (1 − QIV -FM
Zi,Zj ). Overall, the fraction

of dependence explained by the market volatility is very large. As it is apparent in the tables, there are

only two pairs, for which the contribution of the NS-IVs is greater that 50%. Therefore, market volatility

seems to be the main source of the dependence. Its average contribution of the systemic IVs to the total

dependence in the idiosyncratic volatilities is 73.8% in the CAPM and 73.5% in the FF3 model.

Given the large fraction of the cross-sectional dependence in IVs that is explained by the market volatility,

it is interesting to investigate if our IV-FM can fully explain the IV dependence across stocks. For this

purpose, we conduct inference on dependence in the NS-IVs. Table 14 displays the estimated correlation

between the NS-IVs. The residual correlations are smaller than the total IV correlations. There are only 26

pairs of stocks with this correlation higher than 50% in the CAPM model and 27 pairs in the FF3 model.

Interestingly, they all remain positive. The t-statistics based on covariation between NS-IVs are larger than

1.96 for 241 pairs in the CAPM and 244 pairs in the FF3 model (see the values in parenthesis of both Tables

14 and 13). From Table 11, each stock has at least eight other stocks with whom it produces a t-statistic

bigger than 1.96. Using the Bonferroni correction, the p-value of the test of absence of dependence in all pairs

is less than 0.0001. We conclude that despite the market volatility explaining most of the cross-sectional

using the method of Jacod and Rosenbaum (2013).
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dependence in IVs, it does not explain all of it. Additional IV factors may help to explain all the dependence

in the idiosyncratic volatilities.

Sector Stock Ticker CAPM FF3 Model
Financial American Express Co. AXP 65.2 56.5

Goldman Sachs Group GS 65.5 56.9
JPMorgan Chase & Co. JPM 63.0 54.8

Energy Chevron Corp. CVX 64.2 55.8
Schlumberger Ltd. SLB 74.0 64.3
Exxon Mobil Corp. XOM 61.5 53.5

Consumer Staples Coca Cola Company KO 75.2 65.4
Procter & Gamble PG 74.8 65.1
Wal-Mart Stores WMT 73.7 64.0

Industrials Caterpillar Inc. CAT 63.2 54.8
3M Company MMM 63.4 55.0

United Technologies UTX 63.8 55.5
Technology Cisco Systems CSCO 65.5 56.9

International Bus. Machines IBM 63.3 55.2
Intel Corp. INTC 63.0 54.8

Health Care Johnson & Johnson JNJ 75.6 65.7
Merck & Co. MRK 78.6 68.5

Pfizer Inc. PFE 75.9 66.1
Consumer Discretionary Home Depot HD 69.1 60.1

McDonald’s Corp. MCD 75.8 65.9
Nike NKE 74.5 64.7

Utilities Air Products & Chemicals Inc APD 66.8 58.0
Allegheny Technologies Inc ATI 71.3 61.8

Avery Dennison Corp AVY 70.7 61.5
Material Duke Energy DUK 80.9 70.3

CenterPoint Energy CNP 82.8 72.0
Exelon Corp. EXC 80.8 70.2

Table 8: Average of the monthly contribution of the IV of stocks to their total volatility (1-R2
Y j) over the

period 2003:2012 in percentages. The first column provides information on the sectors, the second the names
of the companies and the third their tickers. The fourth and and fifth columns show 1-R2

Y j for the CAPM
and FF3 return model.
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ρ̂Zi,Zj CAPM FF3 Model
> 0.9 2 2
> 0.8 13 13
> 0.7 60 58
> 0.6 158 163
> 0.5 265 265
> 0.4 323 323
> 0.3 350 350
> 0.2 350 350
> 0.1 350 350
6= 0 350 350

Table 9: Number of pairs of stocks with significant dependence between their IVs and the estimated cor-
relation greater than the threshold given in the first column. The second column shows the results for the
CAPM model. The results for the FF3 model are reported in the third column.

CAPM FF3 Model

|Ĉorr(Zi, Zj)| Pairs Avg |Ĉorr(Zi, Zj)| Avg ρ̂Zi,Zj Pairs Avg |Ĉorr(Zi, Zj)| Avg ρ̂Zi,Zj
< 0.6 351 0.043 0.585 351 0.043 0.586
< 0.4 350 0.042 0.584 350 0.042 0.585
< 0.3 348 0.040 0.583 348 0.041 0.584
< 0.2 343 0.037 0.583 343 0.038 0.584
< 0.1 323 0.031 0.580 323 0.031 0.581
< 0.075 303 0.028 0.579 304 0.028 0.581
< 0.05 265 0.023 0.570 266 0.023 0.571
< 0.025 152 0.013 0.568 152 0.013 0.566
< 0.01 56 0.005 0.579 56 0.005 0.574
< 0.005 29 0.003 0.580 27 0.003 0.580

Table 10: We report the number of pairs of stocks with the absolute value of the correlation between their
idiosyncratic returns smaller than the threshold given in the first column, the average of the absolute value
of the idiosyncratic returns correlation for those pairs as well as the average of the IVs correlation for the
same pairs. The results are presented both for the CAPM and the FF3 models.
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CAPM FF3 Model

Stock b̂z ρ̂z 1− R̂2,IV -FM
Z (%) p-val # b̂z ρ̂z 1− R̂2,IV -FM

Z (%) p-val #
AXP 1.600 0.685 53.1 0.010 13 1.584 0.684 53.2 0.011 13
GS 2.313 0.498 75.2 0.024 13 2.341 0.505 74.5 0.018 13

JPM 1.899 0.540 70.9 0.004 8 1.894 0.538 71.0 0.004 9
CVX 0.611 0.714 49.0 0.008 20 0.603 0.715 48.9 0.008 20
SLB 1.064 0.723 47.8 0.005 16 1.043 0.718 48.4 0.005 15
XOM 0.576 0.762 42.0 0.004 21 0.575 0.760 42.2 0.004 19
KO 0.327 0.753 43.2 0.013 13 0.328 0.753 43.3 0.012 14
PG 0.427 0.784 38.5 0.002 18 0.424 0.784 38.5 0.002 19

WMT 0.445 0.752 43.5 0.007 22 0.444 0.753 43.3 0.007 22
CAT 0.589 0.649 57.9 0.002 13 0.590 0.648 58.0 0.003 14

MMM 0.389 0.733 46.3 0.000 16 0.386 0.729 46.9 0.000 15
UTX 0.501 0.717 48.6 0.004 17 0.501 0.716 48.7 0.004 17
CSCO 0.571 0.667 55.5 0.002 20 0.562 0.664 55.9 0.002 21
IBM 0.339 0.650 57.7 0.015 9 0.343 0.657 56.8 0.011 9

INTC 0.454 0.669 55.3 0.003 23 0.451 0.663 56.0 0.003 22
JNJ 0.404 0.822 32.4 0.007 22 0.401 0.819 32.9 0.007 21

MRK 0.535 0.558 68.9 0.001 24 0.534 0.557 68.9 0.001 24
PFE 0.434 0.584 65.9 0.002 22 0.425 0.583 66.0 0.001 22
HD 0.500 0.652 57.5 0.005 19 0.499 0.652 57.5 0.004 16

MCD 0.516 0.628 60.5 0.002 15 0.518 0.630 60.3 0.002 15
NKE 0.528 0.664 55.9 0.000 25 0.526 0.664 55.9 0.000 24
APD 0.535 0.724 47.6 0.001 24 0.527 0.716 48.8 0.001 24
ATI 1.698 0.576 66.8 0.001 20 1.726 0.584 65.9 0.001 19
AVY 0.315 0.429 81.6 0.001 15 0.312 0.427 81.7 0.001 14
DUK 0.415 0.461 78.7 0.002 19 0.415 0.466 78.3 0.002 20
CNP 0.740 0.540 70.8 0.001 20 0.737 0.541 70.7 0.001 20
EXC 0.927 0.776 39.8 0.001 21 0.926 0.774 40.1 0.001 21

Table 11: Estimates of the IV beta (̂bz), the correlation between the IV and the market volatility (ρ̂z) and

the contribution of the NS-IV to the variation in the IV (1 − R̂2,IV -FM
z ). We use the market volatility as

the IV factor. P-val is the p-value of the test of the absence of dependence between the IV and the market
volatility for a given individual stock. In the column with the heading #, we report the number of stocks
with their NS-IV having a relatively large covariation with the NS-IV of the stock listed in the first column
(in particular, when the t-statistic based on the covariation between the NS-IVs is larger than 1.96 in the
absolute value).
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7 Conclusion

This paper provides tools for the analysis of cross-sectional dependencies in idiosyncratic volatilities using

high frequency data. First, using a factor model in prices, we develop inference theory for covariances and

correlations between the idiosyncratic volatilities. Next, we study an idiosyncratic volatility factor model,

in which we decompose the co-movements in idiosyncratic volatilities into two parts: those related to factors

such as the market volatility, and the residual co-movements. We provide the asymptotic theory for the

estimators in the decomposition.

Empirically, we find that our IV Factor Model with market volatility as the only factor explains a large

part of the cross-sectional dependence in IVs. However, it is not able to explain all of it. It therefore opens

the room for the construction of additional IV factors based on economic theory, for example, along the lines

of the heterogeneous agents model of Herskovic, Kelly, Lustig, and Nieuwerburgh (2014).
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Figure 1: Monthly contribution of the idiosyncratic volatility to the total volatility (1-R̂2
Y j) over the period

2003:2012. The dotted blue line plots this measure calculated in CAPM model. The solid red line plots the
same measure obtained in the FF3 model. We use the ticker of the stocks to label the graphs.
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Figure 2: Monthly contribution of the idiosyncratic volatility to the total volatility (1-R̂2
Y j) over the period

2003:2012. The dotted blue line plots this measure calculated in CAPM model. The solid red line plots the
same measure obtained in the FF3 model. We use the ticker of the stocks to label the graphs.
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AXP GS JPM CVX SLB XOM KO PG WMT CAT MMM UTX CSCO IBM INTC JNJ MRK PFE HD MCD NKE APD ATI AVY DUK CNP EXC
AXP 0.146 0.189 -0.032 -0.018 -0.038 -0.003 -0.009 0.028 0.039 0.016 0.023 0.011 0.016 0.013 -0.009 -0.003 0.002 0.052 0.021 0.029 0.007 0.017 0.022 -0.023 -0.003 -0.013
GS 0.148 0.230 -0.022 -0.001 -0.025 -0.016 -0.009 0.013 0.040 0.025 0.007 0.019 0.016 0.017 -0.025 -0.011 -0.006 0.040 0.013 0.020 0.014 0.043 0.018 -0.018 -0.003 -0.027

JPM 0.190 0.230 -0.049 -0.031 -0.044 -0.012 -0.013 0.015 0.006 -0.003 -0.009 -0.002 0.007 0.007 -0.012 -0.008 0.003 0.040 0.020 0.008 -0.007 0.014 0.002 -0.011 -0.015 -0.032
CVX -0.032 -0.022 -0.052 0.324 0.515 0.008 -0.003 -0.031 0.025 0.016 0.014 -0.007 -0.002 -0.014 0.004 -0.001 -0.004 -0.047 -0.005 -0.001 0.066 0.088 0.011 0.045 0.048 0.053
SLB -0.017 -0.002 -0.031 0.327 0.293 -0.030 -0.041 -0.044 0.055 0.011 0.011 -0.012 -0.019 -0.011 -0.025 -0.023 -0.027 -0.037 -0.014 0.000 0.055 0.108 0.013 0.008 0.021 0.021
XOM -0.038 -0.024 -0.045 0.514 0.295 0.017 0.018 -0.025 0.019 0.013 0.010 -0.003 -0.002 -0.017 0.012 -0.003 0.004 -0.042 0.001 -0.013 0.051 0.074 -0.002 0.040 0.036 0.048
KO -0.004 -0.015 -0.010 0.007 -0.030 0.016 0.167 0.075 0.001 0.058 0.060 0.025 0.059 0.019 0.119 0.084 0.081 0.023 0.066 0.042 0.023 -0.023 0.036 0.070 0.048 0.076
PG -0.012 -0.010 -0.014 -0.004 -0.042 0.016 0.170 0.080 -0.005 0.056 0.063 0.021 0.053 0.007 0.151 0.095 0.080 0.040 0.077 0.044 0.027 -0.038 0.031 0.076 0.044 0.068

WMT 0.028 0.012 0.015 -0.031 -0.045 -0.027 0.078 0.079 0.017 0.037 0.035 0.037 0.050 0.034 0.057 0.032 0.045 0.191 0.081 0.086 0.028 0.000 0.035 0.032 0.011 0.019
CAT 0.040 0.040 0.007 0.024 0.054 0.018 0.002 -0.006 0.018 0.102 0.114 0.041 0.030 0.039 -0.012 -0.013 -0.006 0.041 0.038 0.053 0.099 0.107 0.087 0.005 0.022 0.014

MMM 0.016 0.026 -0.004 0.016 0.011 0.012 0.057 0.056 0.035 0.100 0.139 0.028 0.068 0.038 0.054 0.037 0.037 0.044 0.059 0.047 0.115 0.055 0.097 0.043 0.047 0.053
UTX 0.024 0.006 -0.009 0.015 0.010 0.011 0.061 0.061 0.034 0.113 0.139 0.042 0.062 0.027 0.048 0.037 0.027 0.036 0.061 0.067 0.089 0.043 0.091 0.040 0.034 0.044

CSCO 0.011 0.020 -0.003 -0.010 -0.011 -0.004 0.026 0.019 0.038 0.041 0.028 0.043 0.103 0.182 0.020 0.018 0.021 0.036 0.037 0.029 0.024 0.021 0.032 0.010 0.003 0.006
IBM 0.017 0.017 0.007 -0.004 -0.021 -0.003 0.061 0.050 0.048 0.032 0.069 0.060 0.102 0.101 0.046 0.030 0.038 0.041 0.058 0.047 0.033 0.008 0.036 0.016 0.014 0.022

INTC 0.015 0.017 0.007 -0.014 -0.012 -0.017 0.018 0.009 0.034 0.039 0.037 0.028 0.182 0.102 0.009 0.019 0.022 0.046 0.030 0.038 0.025 0.028 0.030 -0.007 -0.008 -0.005
JNJ -0.011 -0.027 -0.014 0.003 -0.027 0.010 0.119 0.149 0.055 -0.012 0.054 0.048 0.020 0.046 0.008 0.170 0.166 0.017 0.056 0.029 0.019 -0.030 0.014 0.066 0.047 0.065

MRK -0.004 -0.011 -0.009 -0.002 -0.023 -0.004 0.084 0.094 0.032 -0.012 0.036 0.037 0.019 0.030 0.019 0.169 0.203 0.018 0.046 0.026 0.022 -0.014 0.021 0.055 0.041 0.060
PFE -0.000 -0.008 0.002 -0.003 -0.028 0.003 0.082 0.078 0.045 -0.007 0.035 0.028 0.021 0.039 0.023 0.166 0.203 0.025 0.038 0.022 0.014 -0.020 0.016 0.056 0.046 0.050
HD 0.051 0.040 0.041 -0.045 -0.038 -0.041 0.025 0.041 0.192 0.041 0.045 0.035 0.035 0.041 0.046 0.017 0.016 0.025 0.094 0.107 0.030 0.017 0.049 0.021 0.008 0.007

MCD 0.019 0.014 0.020 -0.006 -0.015 0.000 0.066 0.074 0.081 0.038 0.058 0.059 0.037 0.055 0.031 0.055 0.046 0.036 0.093 0.082 0.044 0.010 0.043 0.037 0.024 0.029
NKE 0.032 0.022 0.008 -0.000 -0.000 -0.011 0.043 0.045 0.087 0.052 0.047 0.067 0.030 0.045 0.039 0.029 0.026 0.022 0.107 0.083 0.064 0.035 0.071 0.023 0.030 0.031
APD 0.008 0.017 -0.008 0.066 0.054 0.051 0.023 0.026 0.028 0.098 0.116 0.089 0.024 0.033 0.027 0.018 0.020 0.014 0.030 0.044 0.065 0.144 0.162 0.041 0.049 0.051
ATI 0.019 0.043 0.014 0.090 0.110 0.075 -0.023 -0.036 -0.000 0.107 0.055 0.043 0.022 0.009 0.027 -0.030 -0.015 -0.020 0.016 0.011 0.034 0.144 0.086 0.008 0.028 0.013
AVY 0.022 0.020 0.003 0.009 0.012 -0.003 0.037 0.031 0.034 0.088 0.097 0.091 0.032 0.036 0.030 0.014 0.021 0.016 0.048 0.042 0.071 0.163 0.086 0.043 0.056 0.046
DUK -0.024 -0.020 -0.013 0.044 0.008 0.038 0.070 0.077 0.033 0.007 0.042 0.040 0.010 0.016 -0.007 0.066 0.054 0.055 0.020 0.036 0.023 0.042 0.008 0.042 0.231 0.306
CNP -0.002 -0.005 -0.016 0.049 0.021 0.036 0.048 0.044 0.011 0.022 0.047 0.035 0.003 0.015 -0.007 0.048 0.042 0.047 0.009 0.024 0.029 0.050 0.028 0.055 0.230 0.243
EXC -0.013 -0.030 -0.037 0.054 0.021 0.048 0.075 0.070 0.020 0.014 0.054 0.044 0.006 0.022 -0.004 0.067 0.059 0.050 0.007 0.031 0.032 0.053 0.012 0.046 0.306 0.242

Table 12: The correlation between stocks idiosyncratic returns over 2003-2012, Corr(Zi, Zj).
The top panel reports the results for the CAPM, the bottom panel presents the same results for the FF3 model.
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AXP GS JPM CVX SLB XOM KO PG WMT CAT MMM UTX CSCO IBM INTC JNJ MRK PFE HD MCD NKE APD ATI AVY DUK CNP EXC
AXP 0.600 0.536 0.798 0.652 0.802 0.651 0.769 0.785 0.527 0.557 0.647 0.568 0.602 0.674 0.699 0.541 0.577 0.660 0.759 0.545 0.607 0.463 0.332 0.419 0.533 0.690

(0.003) (0.000) (0.001) (0.013) (0.001) (0.020) (0.000) (0.001) (0.005) (0.012) (0.009) (0.010) (0.030) (0.000) (0.004) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.006) (0.003) (0.000) (0.000) (0.001)
GS 0.598 0.678 0.581 0.447 0.666 0.531 0.580 0.505 0.452 0.430 0.486 0.448 0.421 0.612 0.483 0.402 0.478 0.613 0.409 0.513 0.653 0.372 0.279 0.386 0.444 0.594

(0.002) (0.000) (0.007) (0.029) (0.006) (0.008) (0.008) (0.010) (0.014) (0.041) (0.007) (0.032) (0.098) (0.001) (0.013) (0.004) (0.008) (0.002) (0.020) (0.001) (0.001) (0.040) (0.006) (0.002) (0.004) (0.003)
JPM 0.532 0.679 0.529 0.498 0.590 0.552 0.547 0.490 0.477 0.421 0.690 0.506 0.679 0.577 0.535 0.433 0.414 0.454 0.459 0.561 0.609 0.446 0.317 0.351 0.436 0.562

(0.001) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.002) (0.008) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
CVX 0.793 0.587 0.524 0.779 0.944 0.739 0.877 0.831 0.572 0.653 0.756 0.643 0.646 0.701 0.792 0.551 0.549 0.694 0.759 0.622 0.673 0.538 0.388 0.472 0.592 0.757

(0.001) (0.007) (0.000) (0.005) (0.000) (0.015) (0.000) (0.001) (0.005) (0.002) (0.003) (0.005) (0.030) (0.001) (0.003) (0.000) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)
SLB 0.648 0.455 0.495 0.779 0.756 0.735 0.704 0.739 0.671 0.600 0.733 0.634 0.680 0.622 0.710 0.512 0.492 0.680 0.642 0.609 0.714 0.576 0.412 0.399 0.494 0.694

(0.016) (0.025) (0.002) (0.006) (0.007) (0.013) (0.004) (0.004) (0.000) (0.001) (0.005) (0.004) (0.012) (0.003) (0.005) (0.001) (0.003) (0.001) (0.004) (0.000) (0.000) (0.000) (0.000) (0.002) (0.002) (0.001)
XOM 0.800 0.675 0.592 0.944 0.753 0.725 0.904 0.852 0.597 0.727 0.758 0.723 0.658 0.725 0.806 0.587 0.632 0.678 0.786 0.669 0.709 0.572 0.427 0.500 0.639 0.812

(0.002) (0.006) (0.000) (0.000) (0.007) (0.019) (0.000) (0.001) (0.006) (0.001) (0.003) (0.003) (0.036) (0.001) (0.003) (0.000) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)
KO 0.651 0.539 0.558 0.743 0.737 0.726 0.712 0.694 0.662 0.625 0.813 0.584 0.681 0.664 0.753 0.576 0.460 0.650 0.566 0.621 0.671 0.444 0.421 0.477 0.552 0.683

(0.021) (0.008) (0.001) (0.016) (0.013) (0.020) (0.014) (0.014) (0.003) (0.003) (0.004) (0.014) (0.025) (0.003) (0.012) (0.001) (0.010) (0.003) (0.015) (0.001) (0.002) (0.012) (0.000) (0.001) (0.002) (0.005)
PG 0.761 0.586 0.540 0.874 0.700 0.904 0.712 0.849 0.587 0.728 0.760 0.709 0.670 0.709 0.814 0.577 0.615 0.692 0.794 0.684 0.706 0.568 0.399 0.502 0.644 0.791

(0.001) (0.007) (0.000) (0.000) (0.005) (0.000) (0.014) (0.000) (0.003) (0.000) (0.001) (0.001) (0.017) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
WMT 0.782 0.512 0.492 0.826 0.734 0.853 0.693 0.847 0.592 0.702 0.706 0.733 0.651 0.665 0.818 0.574 0.598 0.724 0.802 0.631 0.693 0.538 0.390 0.469 0.582 0.796

(0.001) (0.008) (0.001) (0.001) (0.005) (0.001) (0.016) (0.000) (0.004) (0.002) (0.002) (0.002) (0.018) (0.001) (0.004) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.002) (0.001) (0.001) (0.000) (0.000)
CAT 0.530 0.455 0.474 0.573 0.674 0.599 0.663 0.592 0.596 0.607 0.608 0.558 0.609 0.623 0.605 0.503 0.498 0.550 0.512 0.600 0.688 0.543 0.403 0.376 0.416 0.597

(0.008) (0.015) (0.002) (0.007) (0.001) (0.006) (0.003) (0.004) (0.006) (0.000) (0.001) (0.002) (0.002) (0.000) (0.006) (0.000) (0.001) (0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.001) (0.002) (0.002)
MMM 0.554 0.434 0.425 0.653 0.601 0.725 0.621 0.732 0.705 0.609 0.617 0.645 0.527 0.564 0.730 0.608 0.547 0.556 0.623 0.593 0.702 0.534 0.488 0.446 0.533 0.748

(0.013) (0.034) (0.009) (0.001) (0.001) (0.001) (0.003) (0.000) (0.002) (0.001) (0.000) (0.000) (0.027) (0.002) (0.002) (0.000) (0.001) (0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)
UTX 0.647 0.495 0.690 0.758 0.729 0.762 0.816 0.756 0.708 0.609 0.619 0.687 0.735 0.687 0.734 0.565 0.515 0.605 0.665 0.689 0.665 0.548 0.458 0.443 0.581 0.648

(0.010) (0.006) (0.000) (0.004) (0.006) (0.003) (0.004) (0.001) (0.002) (0.001) (0.000) (0.000) (0.006) (0.001) (0.001) (0.000) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
CSCO (0.012) (0.033) (0.000) (0.006) (0.005) (0.004) (0.015) (0.001) (0.003) (0.003) (0.000) (0.000) (0.002) (0.001) (0.006) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.002) (0.002) (0.001) (0.001)

0.565 0.455 0.509 0.640 0.629 0.718 0.587 0.706 0.731 0.563 0.644 0.689 0.699 0.670 0.679 0.506 0.546 0.598 0.613 0.638 0.652 0.567 0.335 0.406 0.502 0.685
IBM 0.606 0.429 0.682 0.647 0.681 0.664 0.686 0.669 0.656 0.613 0.537 0.742 0.710 0.673 0.643 0.477 0.465 0.529 0.596 0.598 0.594 0.543 0.341 0.364 0.450 0.618

(0.033) (0.095) (0.001) (0.034) (0.012) (0.036) (0.025) (0.016) (0.020) (0.003) (0.026) (0.004) (0.003) (0.002) (0.030) (0.004) (0.005) (0.011) (0.019) (0.000) (0.002) (0.001) (0.005) (0.010) (0.012) (0.008)
INTC 0.667 0.619 0.581 0.697 0.618 0.717 0.669 0.698 0.656 0.623 0.557 0.683 0.665 0.673 0.636 0.509 0.504 0.657 0.568 0.660 0.671 0.517 0.381 0.389 0.541 0.662

(0.001) (0.002) (0.000) (0.001) (0.004) (0.001) (0.003) (0.000) (0.001) (0.000) (0.002) (0.001) (0.001) (0.003) (0.002) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000)
JNJ 0.697 0.492 0.533 0.791 0.704 0.806 0.751 0.817 0.817 0.603 0.735 0.732 0.675 0.644 0.628 0.592 0.582 0.631 0.702 0.653 0.699 0.549 0.402 0.576 0.592 0.781

(0.004) (0.011) (0.001) (0.003) (0.007) (0.003) (0.013) (0.002) (0.005) (0.007) (0.002) (0.001) (0.008) (0.032) (0.003) (0.001) (0.002) (0.002) (0.001) (0.001) (0.002) (0.003) (0.001) (0.000) (0.001) (0.002)
MRK 0.538 0.402 0.431 0.552 0.511 0.588 0.575 0.577 0.574 0.505 0.611 0.565 0.510 0.482 0.505 0.595 0.548 0.521 0.544 0.479 0.587 0.402 0.347 0.369 0.447 0.652

(0.000) (0.004) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.003) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)
PFE 0.563 0.480 0.407 0.536 0.485 0.621 0.463 0.604 0.588 0.504 0.548 0.510 0.537 0.464 0.495 0.576 0.546 0.518 0.566 0.523 0.536 0.456 0.387 0.380 0.447 0.595

(0.001) (0.008) (0.000) (0.001) (0.004) (0.001) (0.010) (0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.006) (0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
HD 0.658 0.621 0.459 0.700 0.683 0.685 0.654 0.693 0.725 0.554 0.559 0.609 0.603 0.535 0.659 0.633 0.522 0.516 0.583 0.565 0.689 0.482 0.363 0.422 0.494 0.668

(0.000) (0.002) (0.003) (0.001) (0.001) (0.001) (0.003) (0.000) (0.000) (0.001) (0.003) (0.002) (0.001) (0.012) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)
MCD 0.759 0.417 0.460 0.757 0.639 0.791 0.567 0.792 0.805 0.517 0.628 0.668 0.612 0.601 0.558 0.706 0.545 0.552 0.587 0.549 0.587 0.532 0.320 0.439 0.524 0.682

(0.000) (0.016) (0.000) (0.000) (0.005) (0.000) (0.016) (0.000) (0.000) (0.004) (0.001) (0.000) (0.002) (0.021) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
NKE 0.550 0.521 0.570 0.623 0.608 0.673 0.626 0.685 0.634 0.601 0.599 0.692 0.643 0.606 0.655 0.655 0.483 0.526 0.572 0.553 0.694 0.537 0.432 0.390 0.537 0.687

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
APD 0.609 0.661 0.609 0.677 0.715 0.710 0.669 0.708 0.694 0.687 0.700 0.663 0.651 0.603 0.674 0.695 0.585 0.535 0.693 0.593 0.695 0.628 0.403 0.462 0.522 0.783

(0.003) (0.001) (0.000) (0.002) (0.000) (0.001) (0.002) (0.001) (0.001) (0.000) (0.000) (0.000) (0.001) (0.002) (0.000) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ATI 0.469 0.377 0.444 0.538 0.578 0.574 0.448 0.573 0.544 0.547 0.540 0.549 0.568 0.549 0.517 0.555 0.407 0.457 0.490 0.537 0.542 0.630 0.340 0.439 0.422 0.575

(0.007) (0.038) (0.000) (0.002) (0.001) (0.001) (0.013) (0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.003) (0.001) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000)
AVY 0.331 0.284 0.320 0.387 0.413 0.427 0.424 0.398 0.391 0.406 0.488 0.459 0.337 0.345 0.382 0.399 0.350 0.389 0.366 0.321 0.436 0.402 0.343 0.248 0.310 0.398

(0.004) (0.006) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.002) (0.005) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)
DUK 0.423 0.393 0.353 0.476 0.402 0.506 0.481 0.509 0.474 0.382 0.451 0.446 0.410 0.370 0.390 0.582 0.373 0.381 0.426 0.444 0.396 0.467 0.442 0.251 0.536 0.524

(0.000) (0.001) (0.000) (0.000) (0.002) (0.000) (0.001) (0.000) (0.001) (0.002) (0.001) (0.000) (0.002) (0.009) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000)
CNP 0.532 0.451 0.435 0.594 0.492 0.640 0.556 0.645 0.585 0.422 0.537 0.581 0.503 0.453 0.537 0.595 0.446 0.446 0.497 0.526 0.537 0.524 0.427 0.312 0.540 0.616

(0.000) (0.004) (0.000) (0.000) (0.003) (0.000) (0.002) (0.000) (0.000) (0.002) (0.000) (0.000) (0.002) (0.013) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
EXC 0.686 0.600 0.563 0.752 0.689 0.811 0.675 0.790 0.796 0.593 0.751 0.642 0.684 0.619 0.652 0.783 0.650 0.591 0.669 0.686 0.685 0.781 0.578 0.398 0.531 0.615

(0.001) (0.002) (0.000) (0.000) (0.001) (0.000) (0.006) (0.000) (0.000) (0.003) (0.001) (0.000) (0.001) (0.006) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 13: The correlation between the idiosyncratic volatilities, ρZi,Zj .
The results for CAPM are in the upper panel; the results for FF3 model are in the bottom panel.
The figures in the parenthesis are the p-values of the LIN test of the absence of dependence in the IVs.
We use the market volatility as IV factor. θ = 2.5, T = 10 years, and ∆n = 5mins.

29



AXP GS JPM CVX SLB XOM KO PG WMT CAT MMM UTX CSCO IBM INTC JNJ MRK PFE HD MCD NKE APD ATI AVY DUK CNP EXC
AXP 0.410 0.271 0.605 0.312 0.594 0.282 0.513 0.562 0.149 0.112 0.308 0.206 0.283 0.399 0.327 0.263 0.299 0.387 0.581 0.166 0.221 0.115 0.058 0.159 0.266 0.345

(0.028) (0.172) (0.022) (0.132) (0.004) (0.192) (0.012) (0.000) (0.192) (0.505) (0.188) (0.109) (0.228) (0.017) (0.001) (0.003) (0.000) (0.051) (0.001) (0.178) (0.086) (0.181) (0.325) (0.003) (0.017) (0.004)
GS 0.402 0.561 0.372 0.146 0.510 0.274 0.353 0.229 0.196 0.110 0.214 0.180 0.148 0.433 0.149 0.173 0.266 0.439 0.143 0.281 0.490 0.121 0.084 0.204 0.240 0.381

(0.028) (0.003) (0.045) (0.340) (0.008) (0.110) (0.078) (0.166) (0.256) (0.317) (0.106) (0.215) (0.633) (0.001) (0.290) (0.018) (0.008) (0.002) (0.397) (0.002) (0.000) (0.276) (0.063) (0.001) (0.021) (0.006)
JPM 0.266 0.560 0.244 0.186 0.328 0.263 0.237 0.152 0.198 0.044 0.516 0.234 0.513 0.346 0.191 0.188 0.145 0.159 0.183 0.323 0.376 0.196 0.113 0.136 0.204 0.270

(0.186) (0.003) (0.257) (0.181) (0.119) (0.093) (0.265) (0.434) (0.167) (0.744) (0.005) (0.131) (0.014) (0.041) (0.195) (0.035) (0.108) (0.312) (0.278) (0.030) (0.003) (0.017) (0.153) (0.046) (0.099) (0.064)
CVX 0.597 0.375 0.235 0.544 0.882 0.437 0.729 0.637 0.204 0.272 0.501 0.319 0.341 0.430 0.515 0.263 0.233 0.431 0.570 0.282 0.324 0.221 0.129 0.229 0.351 0.459

(0.025) (0.040) (0.277) (0.024) (0.000) (0.071) (0.001) (0.000) (0.179) (0.045) (0.082) (0.031) (0.263) (0.018) (0.000) (0.001) (0.002) (0.032) (0.005) (0.029) (0.025) (0.026) (0.078) (0.000) (0.005) (0.002)
SLB 0.309 0.153 0.184 0.546 0.460 0.420 0.321 0.430 0.384 0.150 0.446 0.296 0.401 0.270 0.294 0.189 0.125 0.399 0.350 0.250 0.400 0.284 0.163 0.107 0.178 0.306

(0.122) (0.306) (0.202) (0.022) (0.053) (0.012) (0.122) (0.014) (0.000) (0.172) (0.034) (0.036) (0.005) (0.050) (0.014) (0.072) (0.147) (0.006) (0.107) (0.011) (0.001) (0.005) (0.020) (0.110) (0.127) (0.009)
XOM 0.592 0.518 0.334 0.882 0.459 0.354 0.764 0.653 0.208 0.382 0.469 0.445 0.330 0.447 0.487 0.303 0.357 0.368 0.610 0.338 0.353 0.252 0.172 0.259 0.418 0.540

(0.004) (0.005) (0.109) (0.000) (0.049) (0.143) (0.000) (0.000) (0.160) (0.016) (0.079) (0.002) (0.288) (0.009) (0.000) (0.000) (0.000) (0.055) (0.000) (0.006) (0.014) (0.016) (0.014) (0.000) (0.000) (0.000)
KO 0.283 0.279 0.276 0.445 0.430 0.361 0.298 0.295 0.347 0.162 0.594 0.166 0.382 0.328 0.358 0.286 0.039 0.318 0.181 0.247 0.278 0.019 0.165 0.223 0.263 0.236

(0.196) (0.089) (0.086) (0.076) (0.012) (0.171) (0.146) (0.043) (0.020) (0.248) (0.015) (0.170) (0.018) (0.023) (0.012) (0.004) (0.545) (0.027) (0.347) (0.014) (0.017) (0.805) (0.026) (0.001) (0.020) (0.080)
PG 0.495 0.354 0.226 0.722 0.316 0.764 0.299 0.634 0.166 0.362 0.456 0.402 0.340 0.400 0.478 0.272 0.311 0.384 0.625 0.351 0.322 0.229 0.111 0.255 0.421 0.465

(0.012) (0.067) (0.287) (0.001) (0.152) (0.000) (0.153) (0.000) (0.202) (0.040) (0.043) (0.002) (0.208) (0.014) (0.002) (0.001) (0.000) (0.047) (0.000) (0.008) (0.037) (0.033) (0.111) (0.000) (0.000) (0.002)
WMT 0.555 0.231 0.157 0.626 0.422 0.657 0.292 0.628 0.207 0.337 0.362 0.472 0.324 0.331 0.533 0.283 0.297 0.468 0.642 0.267 0.326 0.195 0.113 0.209 0.318 0.511

(0.000) (0.160) (0.418) (0.001) (0.014) (0.000) (0.061) (0.000) (0.028) (0.037) (0.052) (0.000) (0.103) (0.013) (0.000) (0.000) (0.000) (0.007) (0.000) (0.011) (0.002) (0.005) (0.027) (0.000) (0.000) (0.000)
CAT 0.155 0.193 0.195 0.205 0.393 0.215 0.349 0.176 0.216 0.255 0.268 0.221 0.324 0.334 0.166 0.223 0.194 0.220 0.177 0.298 0.416 0.272 0.181 0.114 0.103 0.194

(0.233) (0.262) (0.175) (0.221) (0.000) (0.140) (0.020) (0.261) (0.046) (0.019) (0.033) (0.035) (0.005) (0.010) (0.157) (0.010) (0.010) (0.090) (0.103) (0.008) (0.001) (0.002) (0.005) (0.059) (0.197) (0.079)
MMM 0.111 0.112 0.057 0.275 0.163 0.384 0.161 0.378 0.347 0.262 0.193 0.308 0.098 0.147 0.330 0.353 0.217 0.152 0.307 0.210 0.366 0.202 0.282 0.178 0.240 0.418

(0.522) (0.339) (0.729) (0.047) (0.146) (0.024) (0.352) (0.031) (0.038) (0.024) (0.153) (0.036) (0.614) (0.181) (0.017) (0.000) (0.032) (0.152) (0.078) (0.052) (0.001) (0.028) (0.000) (0.003) (0.012) (0.004)
UTX 0.309 0.221 0.518 0.503 0.442 0.480 0.603 0.449 0.368 0.272 0.203 0.402 0.507 0.400 0.365 0.286 0.170 0.259 0.395 0.408 0.303 0.236 0.239 0.182 0.329 0.208

(0.208) (0.094) (0.005) (0.095) (0.035) (0.074) (0.014) (0.055) (0.047) (0.028) (0.155) (0.015) (0.022) (0.024) (0.004) (0.005) (0.017) (0.088) (0.088) (0.005) (0.028) (0.033) (0.002) (0.007) (0.024) (0.097)
CSCO 0.204 0.186 0.241 0.316 0.292 0.439 0.177 0.399 0.470 0.233 0.312 0.409 0.469 0.404 0.310 0.217 0.259 0.289 0.336 0.350 0.330 0.300 0.072 0.149 0.226 0.356

(0.110) (0.222) (0.147) (0.043) (0.044) (0.003) (0.232) (0.003) (0.000) (0.062) (0.037) (0.014) (0.001) (0.005) (0.001) (0.035) (0.000) (0.035) (0.005) (0.002) (0.007) (0.001) (0.285) (0.024) (0.011) (0.000)
IBM 0.284 0.149 0.517 0.337 0.399 0.336 0.386 0.329 0.326 0.325 0.112 0.516 0.486 0.422 0.250 0.181 0.138 0.181 0.318 0.293 0.235 0.271 0.090 0.094 0.154 0.236

(0.242) (0.634) (0.013) (0.267) (0.005) (0.281) (0.018) (0.245) (0.088) (0.006) (0.577) (0.012) (0.002) (0.016) (0.296) (0.078) (0.120) (0.318) (0.193) (0.009) (0.125) (0.007) (0.198) (0.269) (0.280) (0.140)
INTC 0.390 0.439 0.355 0.425 0.273 0.438 0.343 0.383 0.317 0.338 0.143 0.399 0.401 0.421 0.203 0.221 0.188 0.391 0.256 0.389 0.364 0.218 0.140 0.123 0.288 0.306

(0.018) (0.001) (0.038) (0.016) (0.039) (0.010) (0.015) (0.016) (0.016) (0.014) (0.294) (0.021) (0.006) (0.018) (0.042) (0.003) (0.007) (0.005) (0.074) (0.002) (0.003) (0.019) (0.053) (0.085) (0.006) (0.008)
JNJ 0.325 0.158 0.192 0.512 0.289 0.492 0.355 0.491 0.530 0.164 0.352 0.364 0.306 0.244 0.198 0.284 0.220 0.220 0.420 0.252 0.263 0.161 0.096 0.389 0.308 0.398

(0.000) (0.233) (0.187) (0.000) (0.029) (0.000) (0.018) (0.001) (0.000) (0.152) (0.012) (0.004) (0.005) (0.309) (0.031) (0.000) (0.000) (0.074) (0.000) (0.001) (0.008) (0.038) (0.045) (0.000) (0.003) (0.004)
MRK 0.259 0.168 0.187 0.263 0.191 0.304 0.284 0.271 0.282 0.227 0.361 0.286 0.225 0.184 0.218 0.290 0.331 0.250 0.300 0.175 0.319 0.119 0.144 0.151 0.208 0.419

(0.003) (0.007) (0.032) (0.000) (0.070) (0.000) (0.002) (0.001) (0.000) (0.012) (0.000) (0.004) (0.031) (0.075) (0.004) (0.000) (0.000) (0.011) (0.000) (0.006) (0.000) (0.029) (0.002) (0.000) (0.000) (0.000)
PFE 0.276 0.264 0.136 0.211 0.116 0.337 0.044 0.290 0.279 0.203 0.222 0.163 0.247 0.132 0.179 0.211 0.327 0.223 0.315 0.223 0.202 0.181 0.187 0.154 0.193 0.277

(0.000) (0.008) (0.125) (0.005) (0.201) (0.000) (0.507) (0.000) (0.000) (0.013) (0.026) (0.018) (0.000) (0.148) (0.010) (0.000) (0.000) (0.007) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
HD 0.383 0.446 0.170 0.441 0.408 0.385 0.327 0.386 0.470 0.228 0.162 0.269 0.299 0.186 0.399 0.227 0.252 0.220 0.294 0.233 0.414 0.172 0.121 0.180 0.222 0.337

(0.050) (0.001) (0.333) (0.025) (0.004) (0.044) (0.018) (0.040) (0.006) (0.099) (0.205) (0.077) (0.031) (0.390) (0.002) (0.050) (0.010) (0.004) (0.094) (0.031) (0.001) (0.053) (0.027) (0.005) (0.036) (0.009)
MCD 0.578 0.147 0.184 0.565 0.345 0.619 0.181 0.618 0.647 0.184 0.317 0.401 0.334 0.319 0.240 0.426 0.301 0.292 0.299 0.227 0.247 0.268 0.072 0.216 0.283 0.397

(0.001) (0.369) (0.280) (0.007) (0.105) (0.000) (0.358) (0.000) (0.000) (0.107) (0.077) (0.084) (0.008) (0.193) (0.089) (0.000) (0.000) (0.000) (0.085) (0.035) (0.034) (0.004) (0.250) (0.000) (0.003) (0.000)
NKE 0.175 0.288 0.338 0.283 0.253 0.345 0.255 0.354 0.272 0.300 0.224 0.414 0.361 0.301 0.383 0.258 0.181 0.228 0.244 0.232 0.414 0.254 0.219 0.127 0.283 0.365

(0.155) (0.001) (0.025) (0.026) (0.008) (0.011) (0.011) (0.007) (0.010) (0.017) (0.036) (0.004) (0.001) (0.008) (0.004) (0.000) (0.005) (0.000) (0.027) (0.030) (0.000) (0.001) (0.002) (0.007) (0.001) (0.000)
APD 0.234 0.498 0.380 0.337 0.414 0.366 0.284 0.339 0.338 0.419 0.374 0.310 0.337 0.252 0.381 0.272 0.321 0.208 0.428 0.261 0.421 0.373 0.148 0.210 0.225 0.509

(0.074) (0.000) (0.003) (0.030) (0.001) (0.008) (0.014) (0.032) (0.001) (0.001) (0.001) (0.028) (0.006) (0.106) (0.002) (0.007) (0.000) (0.001) (0.000) (0.026) (0.000) (0.000) (0.023) (0.001) (0.018) (0.000)
ATI 0.118 0.117 0.190 0.213 0.282 0.247 0.017 0.229 0.197 0.273 0.206 0.231 0.297 0.270 0.213 0.165 0.122 0.177 0.178 0.268 0.253 0.374 0.126 0.239 0.161 0.249

(0.192) (0.307) (0.018) (0.034) (0.006) (0.019) (0.983) (0.040) (0.011) (0.003) (0.040) (0.036) (0.002) (0.009) (0.021) (0.038) (0.029) (0.001) (0.044) (0.007) (0.001) (0.000) (0.086) (0.064) (0.145) (0.000)
AVY 0.058 0.088 0.118 0.129 0.168 0.174 0.171 0.113 0.116 0.187 0.285 0.242 0.078 0.095 0.146 0.095 0.149 0.190 0.127 0.073 0.224 0.153 0.127 0.062 0.103 0.114

(0.352) (0.059) (0.129) (0.094) (0.023) (0.012) (0.020) (0.148) (0.028) (0.005) (0.000) (0.002) (0.289) (0.183) (0.041) (0.049) (0.001) (0.000) (0.020) (0.275) (0.003) (0.017) (0.086) (0.232) (0.100) (0.043)
DUK 0.161 0.206 0.137 0.231 0.109 0.265 0.224 0.261 0.212 0.119 0.184 0.182 0.152 0.096 0.122 0.394 0.154 0.153 0.182 0.220 0.130 0.216 0.237 0.065 0.385 0.297

(0.003) (0.001) (0.057) (0.001) (0.103) (0.000) (0.001) (0.000) (0.000) (0.073) (0.004) (0.008) (0.030) (0.281) (0.111) (0.000) (0.000) (0.000) (0.006) (0.000) (0.008) (0.001) (0.081) (0.212) (0.018) (0.000)
CNP 0.263 0.244 0.203 0.352 0.177 0.418 0.268 0.422 0.321 0.111 0.248 0.330 0.228 0.154 0.282 0.314 0.207 0.190 0.226 0.284 0.283 0.232 0.163 0.107 0.387 0.371

(0.022) (0.019) (0.102) (0.008) (0.173) (0.000) (0.019) (0.001) (0.000) (0.157) (0.009) (0.039) (0.029) (0.285) (0.007) (0.002) (0.000) (0.000) (0.032) (0.005) (0.003) (0.013) (0.149) (0.126) (0.022) (0.000)
EXC 0.340 0.383 0.276 0.450 0.302 0.542 0.223 0.467 0.512 0.189 0.431 0.199 0.359 0.232 0.292 0.410 0.417 0.272 0.342 0.403 0.361 0.514 0.245 0.117 0.304 0.369

(0.005) (0.004) (0.056) (0.002) (0.009) (0.000) (0.141) (0.002) (0.000) (0.130) (0.006) (0.127) (0.000) (0.146) (0.021) (0.003) (0.000) (0.000) (0.008) (0.000) (0.000) (0.000) (0.000) (0.039) (0.000) (0.000)

Table 14: The correlation between the NS-IVs, ρNSZi,Zj .
The results for CAPM are in the upper panel; the results for the FF3 model are in the bottom panel.
The figures in the parenthesis are the p-values of the LIN test of the absence of dependence in the NS-IVs.
We use the market volatility as IV factor. θ = 2.5, T = 10 years, and ∆n = 5mins.
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AXP GS JPM CVX SLB XOM KO PG WMT CAT MMM UTX CSCO IBM INTC JNJ MRK PFE HD MCD NKE APD ATI AVY DUK CNP EXC
AXP 0.432 0.310 0.387 0.241 0.350 0.207 0.302 0.344 0.157 0.100 0.241 0.197 0.260 0.321 0.195 0.294 0.307 0.324 0.434 0.166 0.183 0.148 0.115 0.246 0.306 0.230

(0.028) (0.172) (0.022) (0.132) (0.004) (0.192) (0.012) (0.000) (0.192) (0.505) (0.188) (0.109) (0.228) (0.017) (0.001) (0.003) (0.000) (0.051) (0.001) (0.178) (0.086) (0.181) (0.325) (0.003) (0.017) (0.004)
GS 0.422 0.604 0.389 0.196 0.431 0.294 0.327 0.259 0.286 0.151 0.266 0.259 0.231 0.456 0.152 0.310 0.392 0.471 0.236 0.356 0.449 0.231 0.236 0.406 0.395 0.350

(0.028) (0.003) (0.045) (0.340) (0.008) (0.110) (0.078) (0.166) (0.256) (0.317) (0.106) (0.215) (0.633) (0.001) (0.290) (0.018) (0.008) (0.002) (0.397) (0.002) (0.000) (0.276) (0.063) (0.001) (0.021) (0.006)
JPM 0.307 0.600 0.272 0.217 0.303 0.263 0.226 0.172 0.266 0.061 0.439 0.289 0.483 0.375 0.171 0.304 0.239 0.224 0.262 0.362 0.358 0.303 0.270 0.290 0.331 0.255

(0.186) (0.003) (0.257) (0.181) (0.119) (0.093) (0.265) (0.434) (0.167) (0.744) (0.005) (0.131) (0.014) (0.041) (0.195) (0.035) (0.108) (0.312) (0.278) (0.030) (0.003) (0.017) (0.153) (0.046) (0.099) (0.064)
CVX 0.383 0.385 0.265 0.338 0.424 0.272 0.361 0.354 0.190 0.198 0.323 0.259 0.281 0.320 0.259 0.278 0.241 0.330 0.409 0.238 0.232 0.235 0.211 0.302 0.349 0.268

(0.025) (0.040) (0.277) (0.024) (0.000) (0.071) (0.001) (0.000) (0.179) (0.045) (0.082) (0.031) (0.263) (0.018) (0.000) (0.001) (0.002) (0.032) (0.005) (0.029) (0.025) (0.026) (0.078) (0.000) (0.005) (0.002)
SLB 0.242 0.202 0.219 0.341 0.272 0.260 0.195 0.265 0.301 0.117 0.293 0.241 0.309 0.223 0.163 0.212 0.142 0.307 0.293 0.212 0.267 0.278 0.247 0.164 0.210 0.192

(0.122) (0.306) (0.202) (0.022) (0.053) (0.012) (0.122) (0.014) (0.000) (0.172) (0.034) (0.036) (0.005) (0.050) (0.014) (0.072) (0.147) (0.006) (0.107) (0.011) (0.001) (0.005) (0.020) (0.110) (0.127) (0.009)
XOM 0.350 0.431 0.309 0.424 0.275 0.208 0.339 0.328 0.172 0.232 0.279 0.297 0.247 0.297 0.223 0.277 0.297 0.267 0.391 0.244 0.222 0.233 0.235 0.298 0.356 0.272

(0.004) (0.005) (0.109) (0.000) (0.049) (0.143) (0.000) (0.000) (0.160) (0.016) (0.079) (0.002) (0.288) (0.009) (0.000) (0.000) (0.000) (0.055) (0.000) (0.006) (0.014) (0.016) (0.014) (0.000) (0.000) (0.000)
KO 0.209 0.294 0.274 0.276 0.267 0.212 0.170 0.184 0.262 0.116 0.335 0.139 0.281 0.241 0.178 0.271 0.045 0.244 0.164 0.195 0.188 0.022 0.233 0.272 0.263 0.143

(0.196) (0.089) (0.086) (0.076) (0.012) (0.171) (0.146) (0.043) (0.020) (0.248) (0.015) (0.170) (0.018) (0.023) (0.012) (0.004) (0.545) (0.027) (0.347) (0.014) (0.017) (0.805) (0.026) (0.001) (0.020) (0.080)
PG 0.295 0.324 0.219 0.358 0.195 0.341 0.171 0.305 0.134 0.210 0.259 0.262 0.239 0.260 0.207 0.242 0.255 0.261 0.380 0.238 0.195 0.205 0.156 0.280 0.341 0.230

(0.012) (0.067) (0.287) (0.001) (0.152) (0.000) (0.153) (0.000) (0.202) (0.040) (0.043) (0.002) (0.208) (0.014) (0.002) (0.001) (0.000) (0.047) (0.000) (0.008) (0.037) (0.033) (0.111) (0.000) (0.000) (0.002)
WMT 0.341 0.257 0.177 0.349 0.263 0.329 0.183 0.303 0.176 0.215 0.236 0.316 0.249 0.244 0.245 0.270 0.266 0.323 0.411 0.209 0.214 0.195 0.172 0.261 0.302 0.267

(0.000) (0.160) (0.418) (0.001) (0.014) (0.000) (0.061) (0.000) (0.028) (0.037) (0.052) (0.000) (0.103) (0.013) (0.000) (0.000) (0.000) (0.007) (0.000) (0.011) (0.002) (0.005) (0.027) (0.000) (0.000) (0.000)
CAT 0.163 0.280 0.264 0.191 0.309 0.177 0.264 0.141 0.181 0.217 0.234 0.225 0.307 0.303 0.119 0.280 0.240 0.231 0.205 0.283 0.318 0.312 0.309 0.205 0.158 0.156

(0.233) (0.262) (0.175) (0.221) (0.000) (0.140) (0.020) (0.261) (0.046) (0.019) (0.033) (0.035) (0.005) (0.010) (0.157) (0.010) (0.010) (0.090) (0.103) (0.008) (0.001) (0.002) (0.005) (0.059) (0.197) (0.079)
MMM 0.100 0.152 0.077 0.202 0.130 0.235 0.117 0.219 0.222 0.224 0.148 0.242 0.096 0.132 0.175 0.328 0.219 0.141 0.261 0.180 0.244 0.210 0.355 0.242 0.258 0.240

(0.522) (0.339) (0.729) (0.047) (0.146) (0.024) (0.352) (0.031) (0.038) (0.024) (0.153) (0.036) (0.614) (0.181) (0.017) (0.000) (0.032) (0.152) (0.078) (0.052) (0.001) (0.028) (0.000) (0.003) (0.012) (0.004)
UTX 0.243 0.269 0.442 0.324 0.295 0.286 0.339 0.257 0.239 0.237 0.156 0.304 0.365 0.302 0.197 0.293 0.187 0.227 0.322 0.309 0.219 0.246 0.328 0.254 0.333 0.141

(0.208) (0.094) (0.005) (0.095) (0.035) (0.074) (0.014) (0.055) (0.047) (0.028) (0.155) (0.015) (0.022) (0.024) (0.004) (0.005) (0.017) (0.088) (0.088) (0.005) (0.028) (0.033) (0.002) (0.007) (0.024) (0.097)
CSCO 0.197 0.263 0.298 0.258 0.241 0.297 0.148 0.262 0.316 0.236 0.248 0.310 0.380 0.334 0.193 0.266 0.287 0.273 0.317 0.306 0.260 0.322 0.145 0.243 0.282 0.244

(0.110) (0.222) (0.147) (0.043) (0.044) (0.003) (0.232) (0.003) (0.000) (0.062) (0.037) (0.014) (0.001) (0.005) (0.001) (0.035) (0.000) (0.035) (0.005) (0.002) (0.007) (0.001) (0.285) (0.024) (0.011) (0.000)
IBM 0.258 0.226 0.482 0.274 0.307 0.248 0.279 0.230 0.246 0.305 0.108 0.366 0.386 0.354 0.168 0.239 0.183 0.198 0.315 0.279 0.207 0.310 0.182 0.175 0.219 0.183

(0.242) (0.634) (0.013) (0.267) (0.005) (0.281) (0.018) (0.245) (0.088) (0.006) (0.577) (0.012) (0.002) (0.016) (0.296) (0.078) (0.120) (0.318) (0.193) (0.009) (0.125) (0.007) (0.198) (0.269) (0.280) (0.140)
INTC 0.319 0.458 0.385 0.319 0.230 0.297 0.253 0.255 0.238 0.309 0.132 0.305 0.337 0.352 0.135 0.268 0.226 0.336 0.261 0.328 0.278 0.256 0.246 0.208 0.333 0.216

(0.018) (0.001) (0.038) (0.016) (0.039) (0.010) (0.015) (0.016) (0.016) (0.014) (0.294) (0.021) (0.006) (0.018) (0.042) (0.003) (0.007) (0.005) (0.074) (0.002) (0.003) (0.019) (0.053) (0.085) (0.006) (0.008)
JNJ 0.195 0.159 0.174 0.260 0.164 0.227 0.178 0.214 0.245 0.119 0.188 0.199 0.195 0.164 0.135 0.226 0.175 0.150 0.265 0.164 0.148 0.137 0.123 0.341 0.249 0.183

(0.000) (0.233) (0.187) (0.000) (0.029) (0.000) (0.018) (0.001) (0.000) (0.152) (0.012) (0.004) (0.005) (0.309) (0.031) (0.000) (0.000) (0.074) (0.000) (0.001) (0.008) (0.038) (0.045) (0.000) (0.003) (0.004)
MRK 0.291 0.299 0.304 0.277 0.216 0.279 0.270 0.242 0.269 0.284 0.336 0.294 0.274 0.240 0.268 0.232 0.406 0.302 0.356 0.227 0.312 0.201 0.311 0.302 0.326 0.336

(0.003) (0.007) (0.032) (0.000) (0.070) (0.000) (0.002) (0.001) (0.000) (0.012) (0.000) (0.004) (0.031) (0.075) (0.004) (0.000) (0.000) (0.011) (0.000) (0.006) (0.000) (0.029) (0.002) (0.000) (0.000) (0.000)
PFE 0.291 0.386 0.229 0.223 0.136 0.287 0.051 0.243 0.254 0.250 0.225 0.181 0.279 0.174 0.219 0.170 0.405 0.265 0.352 0.259 0.212 0.263 0.354 0.292 0.295 0.239

(0.000) (0.008) (0.125) (0.005) (0.201) (0.000) (0.507) (0.000) (0.000) (0.013) (0.026) (0.018) (0.000) (0.148) (0.010) (0.000) (0.000) (0.007) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
HD 0.322 0.470 0.236 0.334 0.315 0.277 0.249 0.262 0.323 0.237 0.151 0.234 0.281 0.199 0.343 0.156 0.304 0.263 0.298 0.234 0.314 0.221 0.228 0.287 0.287 0.242

(0.050) (0.001) (0.333) (0.025) (0.004) (0.044) (0.018) (0.040) (0.006) (0.099) (0.205) (0.077) (0.031) (0.390) (0.002) (0.050) (0.010) (0.004) (0.094) (0.031) (0.001) (0.053) (0.027) (0.005) (0.036) (0.009)
MCD 0.432 0.237 0.262 0.405 0.292 0.395 0.164 0.376 0.411 0.210 0.269 0.325 0.316 0.311 0.250 0.269 0.356 0.334 0.300 0.241 0.226 0.321 0.159 0.340 0.353 0.285

(0.001) (0.369) (0.280) (0.007) (0.105) (0.000) (0.358) (0.000) (0.000) (0.107) (0.077) (0.084) (0.008) (0.193) (0.089) (0.000) (0.000) (0.000) (0.085) (0.035) (0.034) (0.004) (0.250) (0.000) (0.003) (0.000)
NKE 0.174 0.356 0.373 0.238 0.216 0.249 0.201 0.240 0.211 0.284 0.192 0.312 0.314 0.280 0.327 0.169 0.233 0.264 0.242 0.243 0.307 0.289 0.341 0.215 0.332 0.251

(0.155) (0.001) (0.025) (0.026) (0.008) (0.011) (0.011) (0.007) (0.010) (0.017) (0.036) (0.004) (0.001) (0.008) (0.004) (0.000) (0.005) (0.000) (0.027) (0.030) (0.000) (0.001) (0.002) (0.007) (0.001) (0.000)
APD 0.196 0.453 0.368 0.244 0.281 0.234 0.195 0.207 0.224 0.324 0.255 0.228 0.270 0.220 0.295 0.157 0.318 0.220 0.327 0.239 0.316 0.335 0.228 0.278 0.251 0.283

(0.074) (0.000) (0.003) (0.030) (0.001) (0.008) (0.014) (0.032) (0.001) (0.001) (0.001) (0.028) (0.006) (0.106) (0.002) (0.007) (0.000) (0.001) (0.000) (0.026) (0.000) (0.000) (0.023) (0.001) (0.018) (0.000)
ATI 0.149 0.218 0.293 0.225 0.275 0.227 0.020 0.201 0.193 0.308 0.212 0.238 0.318 0.301 0.251 0.138 0.201 0.255 0.224 0.315 0.284 0.337 0.274 0.395 0.263 0.223

(0.192) (0.307) (0.018) (0.034) (0.006) (0.019) (0.983) (0.040) (0.011) (0.003) (0.040) (0.036) (0.002) (0.009) (0.021) (0.038) (0.029) (0.001) (0.044) (0.007) (0.001) (0.000) (0.086) (0.064) (0.145) (0.000)
AVY 0.116 0.241 0.281 0.211 0.256 0.240 0.241 0.159 0.177 0.318 0.362 0.333 0.157 0.187 0.258 0.123 0.320 0.359 0.238 0.160 0.348 0.240 0.273 0.201 0.252 0.163

(0.352) (0.059) (0.129) (0.094) (0.023) (0.012) (0.020) (0.148) (0.028) (0.005) (0.000) (0.002) (0.289) (0.183) (0.041) (0.049) (0.001) (0.000) (0.020) (0.275) (0.003) (0.017) (0.086) (0.232) (0.100) (0.043)
DUK 0.246 0.401 0.290 0.300 0.168 0.300 0.271 0.282 0.260 0.210 0.247 0.252 0.245 0.173 0.208 0.344 0.303 0.288 0.287 0.339 0.218 0.285 0.385 0.208 0.535 0.317

(0.003) (0.001) (0.057) (0.001) (0.103) (0.000) (0.001) (0.000) (0.000) (0.073) (0.004) (0.008) (0.030) (0.281) (0.111) (0.000) (0.000) (0.000) (0.006) (0.000) (0.008) (0.001) (0.081) (0.212) (0.018) (0.000)
CNP 0.304 0.393 0.330 0.348 0.211 0.357 0.267 0.342 0.304 0.169 0.266 0.333 0.285 0.216 0.331 0.255 0.324 0.292 0.290 0.352 0.331 0.260 0.260 0.259 0.533 0.320

(0.022) (0.019) (0.102) (0.008) (0.173) (0.000) (0.019) (0.001) (0.000) (0.157) (0.009) (0.039) (0.029) (0.285) (0.007) (0.002) (0.000) (0.000) (0.032) (0.005) (0.003) (0.013) (0.149) (0.126) (0.022) (0.000)
EXC 0.229 0.349 0.261 0.265 0.193 0.275 0.138 0.232 0.268 0.154 0.249 0.137 0.248 0.179 0.212 0.191 0.337 0.237 0.246 0.289 0.250 0.291 0.219 0.168 0.321 0.320

(0.005) (0.004) (0.056) (0.002) (0.009) (0.000) (0.141) (0.002) (0.000) (0.130) (0.006) (0.127) (0.000) (0.146) (0.021) (0.003) (0.000) (0.000) (0.008) (0.000) (0.000) (0.000) (0.000) (0.039) (0.000) (0.000)

Table 15: Contribution of the NS-IVs to the dependence in IVs, 1−QIV -FM
Zi,Zj .

The results for CAPM are in the upper panel; the results for FF3 model are in the bottom panel.
The figures in the parenthesis the p-values of the LIN test of the absence of dependence in the NS-IVs.
We use the market volatility as IV factor. θ = 2.5, T = 10 years, and ∆n = 5mins.
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B Proofs

Throughout, we denote by K a generic constant which may change from line to line. When it depends on a

parameter p we use the notation Kp instead. We assume by convention
∑a′

i=a = 0 when a > a′.

B.1 Proof of Theorem 1

This theorem is proved in three steps. For simplicity, in the first two steps, we focus on the estimation of

[H(c), G(c)]T with H,G ∈ G(p). The joint estimation is discussed in Step 3.

By a localization argument (See Lemma 4.4.9 of Jacod and Protter (2012)), there exists a λ-integrable

function J on E and a constant such that the stochastic processes in (17) and (18) satisfy

‖b‖, ‖b̃‖, ‖c‖, ‖c̃‖, J ≤ A, ‖δ(w, t, z)‖r ≤ J(z) (22)

Setting b′t = bt −
∫
δ(t, z)1{‖δ(t,z)‖≤1}λ(dz) and Y ′t =

∫ t
0
b
′

sds+
∫ t

0
σsdWs, we have

Yt = Y0 + Y ′t +
∑
s≤t

∆Ys.

The local estimator of the spot variance of the unobservable process Y ′ is given by,

ĉ′ni =
1

kn∆n

kn−1∑
u=0

(∆n
i+uY

′)(∆n
i+uY )′> = (ĉ′n,ghi )1≤g,h≤d. (23)

Note that no jumps truncation in needed in the definition of ĉ′ni since the process Y ′ is continuous. There-

fore, it is more convenient to work with ĉ′ni rather than ĉni (defined in (12)). Let ̂[H(c), G(c)]
LIN ′

T and

̂[H(c), G(c)]
AN ′

T be the unfeasible estimators obtained by replacing ĉni by ĉ
′n
i in the definition of ̂[H(c), G(c)]

LIN

T

and ̂[H(c), G(c)]
AN

T .

Step1: Dealing with price jumps

We prove that, as long as (8p− 1)/4(4p− r) ≤ $ < 1
2 , we have

∆−1/4
n

(
̂[H(c), G(c)]

LIN

T − ̂[H(c), G(c)]
LIN ′

T

)
P−→ 0 and ∆−1/4

n

(
̂[H(c), G(c)]

AN

T − ̂[H(c), G(c)]
AN ′

T

)
P−→ 0.

(24)

To show this result, let define the functions

R(x, y) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
ygh − xgh

)(
yab − xab

)
, S(x, y) =

(
H(y)−H(x)

)(
G(y)−G(x)

)
U(x) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
xgaxhb + xgbxha

)
,

for any Rd × Rd matrices x and y. The following decompositions hold,

̂[H(c), G(c)]
AN

T − ̂[H(c), G(c)]
AN ′

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
S(ĉni , ĉ

n
i+kn)− S(ĉ

′n
i , ĉ

′n
i+kn)

)
− 2

kn

(
U(ĉni )− U(ĉ

′n
i )
)]
,

̂[H(c), G(c)]
LIN

T − ̂[H(c), G(c)]
LIN ′

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
R(ĉni , ĉ

n
i+kn)−R(ĉ

′n
i , ĉ

′n
i+kn)

)
− 2

kn

(
U(ĉni )− U(ĉ

′n
i )
)]
.
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By (3.11) in Jacod and Rosenbaum (2012), there exists a sequence of real numbers an converging to zero

such that

E(‖ĉni − ĉ
′n
i ‖q) ≤ Kqan∆(2q−r)$+1−q

n , for any q > 0, (25)

Since H and G ∈ G(p), it is easy to see that the functions R and S are continuously differentiable and satisfy

‖∂J(x, y)‖ ≤ K(1 + ‖x‖+ ‖y‖)2p−1 for 1 ≤ g, h, a, b ≤ d and J ∈ {S,R}, (26)

‖∂U(x)‖ ≤ K(1 + ‖x‖)2p−1. (27)

where ∂J (resp ∂U ) is a vector that collects the first order partial derivatives of the function J (resp U)

with respect to all the elements of (x, y) (resp x). By Taylor expansion, Jensen inequality, (26) and (27), it

can be shown that, for J ∈ {S,R}

|J(ĉni , ĉ
n
i+kn)− J(ĉ

′n
i , ĉ

′n
i+kn)| ≤ K(1 + ‖ĉ

′n
i ‖2p−1 + ‖ĉ

′n
i+kn‖

2p−1)(‖ĉni − ĉ
′n
i ‖+ ‖ĉni+kn − ĉ

′n
i+kn‖) +K‖ĉni − ĉ

′n
i ‖2p

+K‖ĉni+kn − ĉ
′n
i+kn‖

2p, and

|U(ĉni )− U(ĉ
′n
i )| ≤ K(1 + ‖ĉ

′n
i ‖2p−1)(‖ĉni − ĉ

′n
i ‖) +K‖ĉni − ĉ

′n
i ‖2p.

By (3.20) in Jacod and Rosenbaum (2012), we have E(‖ĉ′ni ‖v) ≤ Kv, for any v ≥ 0. Hence by Hölder

inequality, for ε > 0 fixed,

E(‖ĉ′ni ‖2p−2‖ĉni − ĉ
′n
i ‖) ≤

(
E(‖ĉni − ĉ

′n
i ‖(1+ε))

)1/1+ε(
E(‖ĉ

′n
i ‖(2p−2)(1+ε)/ε)

)ε/1+ε

≤ Kp

(
E(‖ĉni − ĉ

′n
i ‖(1+ε))

)1/1+ε

≤ Kpan∆
(2− 1

1+ε )$+ 1
1+ε−1

n

Using the above result and (25), it easy to see that, for (24) to hold, the following conditions are sufficient:

(2− r

1 + ε
)$ +

1

1 + ε
− 1− 3

4
≥ 0, (4p− r)$ + 1− 2p− 3

4
≥ 0, and(2− r)$ +−3

4
≥ 0.

Using the fact that 0 < $ < 1
2 , and taking ε sufficiently close to zero, we can see that the required condition

for (24) to hold is, (8p− 1)/4(4p− r) ≤ $ < 1
2 , which completes the proof.

Step 2 : First approximation for the estimators

Taking advantage of Step 1, it is enough to derive the asymptotic distributions of ̂[H(c), G(c)]
LIN ′
T and

̂[H(c), G(c)]
AN ′
T . We show that the two estimators ̂[H(c), G(c)]

LIN ′

T and ̂[H(c), G(c)]
AN ′

T can be approximated

by some quantity with an error of approximation of order smaller than ∆
−1/4
n . To see this, we set

̂[H(c), G(c)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

((
∂ghH∂abG

)
(cni )

[
(ĉ

′n,gh
i+kn

− ĉ
′n,gh
i )(ĉ

′n,ab
i+kn

− ĉ
′n,ab
i )

− 2

kn
(ĉ

′n,ga
i ĉ

′n,hb
i + ĉ

′n,gb
i ĉ

′n,ha
i )

])
,

with cni = c(i−1)∆n
and the superscript A being a short for the word ”approximate”. For notational simplicity,

we do not index the above quantity by a prime although it depends on ĉ
′n
i instead ĉni . We aim to prove that

∆−1/4
n

(
̂[H(c), G(c)]

LIN ′

T − ̂[H(c), G(c)]
A

T

)
P−→ 0 and ∆−1/4

n

(
̂[H(c), G(c)]

AN ′

T − ̂[H(c), G(c)]
A

T

)
P−→ 0. (28)
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To prove (28), we introduce some new notations. Following Jacod and Rosenbaum (2012), we define

αni = (∆n
i Y
′)(∆n

i Y
′)> − cni ∆n, βni = ĉ

′n
i − cni , and γni = ĉ

′n
i+kn − ĉ

′n
i , (29)

which satisfy

βni =
1

kn∆n

kn−1∑
j=0

(αni+j + (cni+j − cni )∆n) and γni = βi+kn − βni + ∆n(cni+kn − c
n
i ). (30)

The following holds

̂[H(c), G(c)]
LIN ′

T − ̂[H(c), G(c)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

ψni (g, h, a, b),

̂[H(c), G(c)]
AN ′

T − ̂[H(c), G(c)]
A

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

(
χni −

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(cni )γn,ghi γn,abi

)
,

with

ψni (g, h, a, b) =
((
∂ghH∂abG

)
(ĉ

′n
i )−

(
∂ghH∂abG

)
(cni )

)
γn,ghi γn,abi ,

χni =
(
H(ĉ

′n
i+kn)−H(ĉ

′n
i )
)(
G(ĉ

′n
i+kn)−G(ĉ

′n
i )
)
.

By Taylor expansion, we have

(
∂ghS∂abG

)
(ĉ

′n
i )−

(
∂ghS∂abG

)
(cni ) =

d∑
x,y=1

(
∂2
xy,ghS∂abG+ ∂2

xy,abG∂ghS
)

(cni )βn,xyi

+
1

2

d∑
j,k,x,y=1

(
∂3
jk,xy,ghS∂abG+ ∂2

xy,ghS∂
2
jk,abG+ ∂3

jk,xy,abG∂ghS + ∂2
xy,abG∂

2
jk,ghS

)
(c̃ni )βn,xyi βn,jki

and

S(ĉ
′n
i+kn)− S(ĉ

′n
i ) =

∑
gh

∂ghS(cni )γn,ghi +
∑
j,k,g,h

∂2
jk,ghS(cni )γn,ghi βn,jki +

1

2

∑
x,y,g,h

∂2
xy,ghS(cni )γn,ghi γn,xyi

+
1

2

∑
x,y,j,k,g,h

∂3
xy,jk,ghS(CCn,Si )γn,ghi βn,xyi βn,jki +

1

6

∑
j,k,x,y,g,h

∂3
jk,xy,ghS(Cn,Si )γn,jki γn,ghi γn,xyi ,

for S ∈ {H,G}, c̃ni = λcni + (1 − λ)ĉ
′n
i , Cn,Si = λS ĉ

′n
i + (1 − λS)ĉ

′n
i+kn

, CCn,Si = µSc
n
i + (1 − µS)ĉ

′n
i for

λ, λH , µH , λG, µG ∈ [0, 1]. Rigourously c̃ni and λ depend on g, h, a, and b. To avoid too cumbersome notation

we do not emphasize this additional dependence while we do take it into account in our derivations.

We recall some well-known results. For any continuous Itô process Zt, we have

E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (31)

Set Fni = F(i−1)∆n
. By (4.10) in Jacod and Rosenbaum (2013) we have,

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q
n for all q ≥ 0 and E

(∣∣∣ kn−1∑
j=0

αni+j

∥∥∥q∣∣Fni ) ≤ Kq∆
q
nk

q/2
n whenever q ≥ 2. (32)

Combining (40), (38), (39) with Z = c and the Hölder inequality yields for q ≥ 2,

E
(∥∥∥βni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4, and E
(∥∥∥γni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4. (33)
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The bound in the first equation of (41) is more tighter than that in (4.11) of Jacod and Rosenbaum (2012)

due to the absence of volatility jumps. This tighter bound will be useful later on for deriving the CLT for

the approximate estimator (Step 3). By the boundedness of ct and the polynomial growth assumption, we

have ∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )βn,xyi βn,jki γn,ghi γn,abi

∣∣∣ ≤ K(1 + ‖c̃ni ‖)2(p−2)‖βni ‖2‖γni ‖2.

Recalling c̃ni = λcni + (1 − λ)ĉ
′n
i and using the convexity of the function x2(p−2), we can refine the last

inequality as follows:∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )βn,xyi βn,jki γn,ghi γn,abi

∣∣∣ ≤ K(1 + ‖βni ‖2(p−2)
)
‖βni ‖2‖γni ‖2. (34)

By Taylor expansion, the polynomial growth assumption and using similar idea as for (34), we have

χni −
∑
g,h,a,b

(∂ghH∂abG)(cni )γn,ghi γn,abi =
∑

g,h,a,b,j,k

(∂ghH∂
2
jk,xyG+ ∂ghG∂

2
jk,xyH)(cni )(γn,ghi +

1

2
βn,ghi )γn,abi γn,jki + ϕni

∑
g,h,a,b

(
∂ghH∂abG

)
(ĉ

′n
i )−

(
∂ghH∂abG

)
(cni ) =

∑
g,h,a,b,x,y

(∂ghH∂
2
ab,xyG+ ∂abG∂

2
gh,xyG)(cni )(βn,xyi )γn,ghi γn,abi + δni

with E(|ϕni |
∣∣Fni ) ≤ K∆n and E(|δni |

∣∣Fni ) ≤ K∆n which follow from applying Cauchy-Schwartz inequality

together with (41). Given that kn = θ(∆n)−1/2, a direct implication of the previous inequalities is

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

ϕni
P−→ 0 and

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

δni
P−→ 0.

Therefore, in order to prove the two claims in (28), it suffices to show

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(cni )γn,ghi γn,abi γn,jki

P−→ 0, (35)

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(cni )βn,ghi γn,abi γn,jki

P−→ 0. (36)

For any càdlàg bounded process Z, we set

ηt,s(Z) =

√
E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
,

ηni,j(Z) =

√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

In order to prove (35) and (36), we introduce the following lemmas.

Lemma 1. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, set ηt,s = ηt,s(Z), then we have:

∆nE
( [t/∆n]∑

i=1

ηi,kn

)
−→ 0, ∆nE

( [t/∆n]∑
i=1

ηi,2kn

)
−→ 0,

E
(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

( [t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved
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similarly to the first two.

Lemma 2. Let Z be a continuous Itô process with drift term bZt and spot variance process cZt , set ηt,s =

ηt,s(b
Z , cZ), then the following bounds can be established:

|E(Zt|F0)− tbZ0 | ≤ Ktη0,t

|E(ZjtZ
k
t − tc

Z,jk
0 |F0)| ≤ Kt3/2(

√
∆n + η0,t)

|E
(
(ZjtZ

k
t − tc

Z,jk
0 )(cZ,lmt − cZ,lm0 )|F0

)
| ≤ Kt2

|E(ZjtZ
k
t Z

l
tZ

m
t |F0)−∆2

n(cZ,jk0 cZ,lm0 + cZ,jl0 cZ,km0 + cZ,jm0 cZ,kl0 )| ≤ Kt5/2

|E(ZjtZ
k
t Z

l
t|F0)| ≤ Kt2

|E(

6∏
l=1

Zjlt |F0)− ∆3
n

6

∑
l<l′

∑
k<k′

∑
m<m′

c
Z,jljl′
0 c

Z,jkjk′
0 c

Z,jmjm′
0 | ≤ Kt7/2

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 3. Let ζni be a r-dimensional Fni measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤

Lq, let also ϕni be a real-valued Fni measurable process that fulfills E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq for q ≥ 2 and

1 ≤ j ≤ 2kn − 1, then we have

E

(∥∥∥ 2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥q∣∣∣∣∣Fni−1

)
≤ KqL

q(Lqk
q/2
n + L′qkqn).

Proof of Lemma 5

Set

ξni = ϕni−1ζ
n
i , ξ

′n
i = E(ξi|Fni−1) = E(ϕni−1ζ

n
i |Fni−1) = ϕni−1E(ζni |Fni−1), and ξ

′′n
i = ξni − ξ

′n
i .

Given that ‖E(ζni |Fni−1)‖ ≤ L′, we have ‖ξ′n
i ‖ ≤ L′|ϕni−1|. By the convexity of the function xq which holds

for q ≥ 2, we have,

‖
2kn−1∑
j=1

ξni+j‖q ≤ K
(
‖

2kn−1∑
j=1

ξ
′n
i+j‖q + ‖

2kn−1∑
j=1

ξ
′′n
i+j‖q

)
.

Therefore, on one hand we have

‖
2kn−1∑
j=1

ξ
′n
i+j‖q ≤ Kkq−1

n

2kn−1∑
j=1

‖ξ
′n
i+j‖q ≤ Kkq−1

n L′q
2kn−1∑
j=1

|ϕni+j−1|q,

which given that, E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq, satisfies:

E(‖
2kn−1∑
j=1

ξ
′n
i+j‖q|Fni−1) ≤ KL′qkq−1

n

2kn−1∑
j=1

E(|ϕni+j−1|q|Fni−1) ≤ KL′qkqnLq.

On the other hand, we have E(‖ξ′′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqL

q and E(ξ
′′n
i+j |Fni−1) = 0, where the

first inequality is a consequence of E(‖ξ′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqL

q which can be proved using

the Jensen inequality and the law of iterated expectation. Hence applying Lemma B.2 of Aı̈t-Sahalia and
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Jacod (2014) we have

E(‖
2kn−1∑
j=1

ξ
′′n
i+j‖q|Fni−1) ≤ KqL

qLqk
q/2
n .

To see the latter, we first prove that the required condition E(‖ξni ‖q|Fni−1) ≤ LqL
q) in the Lemma B.2 of

Aı̈t-Sahalia and Jacod (2014) can be replaced by E(‖ξni+j‖q|Fni−1) ≤ LqL
q) for 1 ≤ j ≤ 2kn − 1 without

altering the result.

Lemma 4. We have:∣∣∣E(γn,jki γn,lmi γn,ghi+2kn
γn,abi+2kn

|Fni )− 4

k2
n

(cn,gai cn,hbi + cn,gbi cn,hai )(cn,jli cn,kmi + cn,jmi cn,kli )

− 4∆n

3
(cn,jli cn,kmi + cn,jmi cn,kli )cn,gh,abi − 4∆n

3
(cn,gai cn,hbi − cn,gbi cn,hai )cn,jk,lmi

− 4(kn∆n)2

9
cn,gh,abi cn,jk,lmi

∣∣∣ ≤ K∆n(∆1/8
n + ηni,4kn).

Throughout, we use the expression ”successive conditioning” to refer to the following equalities,

x1y1 − x0y0 = x0(y1 − y0) + y0(x1 − x0) + (x1 − x0)(y1 − y0)

x1y1z1 − x0y0z0 = x0y0(z1 − z0) + x0z0(y1 − y0) + y0z0(x1 − x0) + x0(y0 − y1)(z0 − z1)

+ y0(x0 − x1)(z0 − z1) + z0(x0 − x1)(y0 − y1) + (x1 − x0)(y1 − y0)(z1 − z0)

which hold for any real numbers x0, y0, z0, x1, y1, z1.

Proof of Lemma 4

To prove Lemma 4, we first note that γn,jki γn,lmi is Fni+2kn
-measurable. Then, by the law of iterated expec-

tation we have

E
(
γn,jki γn,lmi γn,ghi+2kn

γn,abi+2kn
|Fni

)
= E

(
γn,jki γn,lmi E

(
γn,ghi+2kn

γn,abi+2kn
|Fni+2kn

)
|Fni

)
.

From equation (3.27) in Jacod and Rosenbaum (2012), we have

|E(γn,ghi+2kn
γn,abi+2kn

|Fni+2kn)− 2

kn
(cn,gai+2kn

cn,hbi+2kn
+ cn,gbi+2kn

cn,hai+2kn
)− 2kn∆n

3
cn,gh,abi+2kn

| ≤ K
√

∆n(∆1/8
n + ηni+2kn,2kn),

|E(γn,jki γn,lmi |Fni )− 2

kn
(cn,jli cn,kmi + cn,jmi cn,kli )− 2kn∆n

3
cn,jk,lmi | ≤ K

√
∆n(∆1/8

n + ηni,2kn).

I also holds that

|E
(
γn,jki γn,lmi

[
E(γn,ghi+2kn

γn,abi+2kn

∣∣∣Fni+2kn)− 2

kn
(cn,gai+2kn

cn,hbi+2kn
+ cn,gbi+2kn

cn,hai+2kn
)− 2kn∆n

3
cn,gh,abi+2kn

]∣∣∣∣∣Fni )|
≤
√

∆nE(|γn,jki ||γn,lmi |(∆1/8
n + ηni+2kn,2kn)|

∣∣∣Fni ) ≤ K
√

∆n∆1/8
n E(|γn,jki ||γn,lmi |

∣∣∣Fni )

+K
√

∆nE(|γn,jki ||γn,lmi |ηni+2kn,2kn |
∣∣∣Fni ) ≤ K∆n(∆1/8

n + ηni,4kn),

where the last inequality follows from Lemma 6. Using (39) successively with Z = c and Z = c (recall that

the latter holds under Assumption 2), together with the successive conditioning, we have

|E
(
γn,jki γn,lmi

[ 2

kn
(cn,gai+2kn

cn,hbi+2kn
+ cn,gbi+2kn

cn,hai+2kn
) +

2kn∆n

3
cn,gh,abi+2kn

− 2

kn
(cn,gai cn,hbi + cn,gbi cn,hai )
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− 2kn∆n

3
cn,gh,abi

]∣∣∣Fni )| ≤ K∆n∆1/4
n ,

|E
(
γn,jki γn,lmi

[ 2

kn
(cn,gai cn,hbi + cn,gbi cn,hai ) +

2kn∆n

3
cn,gh,abi

]
−
[ 2

kn
(cn,jli cn,kmi + cn,jmi cn,kli ) +

2kn∆n

3
cn,jk,lmi

]
×
[ 2

kn
(cn,gai cn,hbi + cn,gbi cn,hai ) +

2kn∆n

3
cn,gh,abi

]∣∣∣Fni )| ≤ K∆n(∆1/8
n + ηni,2kn).

The last inequality yields the result.

Lemma 5. Let ζni be a r-dimensional Fni measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤

Lq, let also ϕni be a real-valued Fni measurable process that fulfills E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq for q ≥ 2 and

1 ≤ j ≤ 2kn − 1, then we have

E

(∥∥∥ 2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥q∣∣∣∣∣Fni−1

)
≤ KqL

q(Lqk
q/2
n + L′qkqn).

We introduce some new notations. Following Jacod and Rosenbaum (2012), we define

αni = (∆n
i Y
′)(∆n

i Y
′)> − cni ∆n, βni = ĉ

′n
i − cni , and γni = ĉ

′n
i+kn − ĉ

′n
i , (37)

which satisfy

βni =
1

kn∆n

kn−1∑
j=0

(αni+j + (cni+j − cni )∆n) and γni = βi+kn − βni + ∆n(cni+kn − c
n
i ). (38)

We recall some well-known results. For any continuous Itô process Zt, we have

E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (39)

Set Fni = F(i−1)∆n
. By (4.10) in Jacod and Rosenbaum (2013) we have,

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q
n for all q ≥ 0 and E

(∣∣∣ kn−1∑
j=0

αni+j

∥∥∥q∣∣Fni ) ≤ Kq∆
q
nk

q/2
n whenever q ≥ 2. (40)

Combining (40), (38), (39) with Z = c and the Hölder inequality yields for q ≥ 2,

E
(∥∥∥βni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4, and E
(∥∥∥γni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4. (41)

For any càdlàg bounded process Z, we set

ηt,s(Z) =

√
E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
,

ηni,j(Z) =

√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

Lemma 6. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, set ηt,s = ηt,s(Z), then we have:

∆nE
( [t/∆n]∑

i=1

ηi,kn

)
−→ 0, ∆nE

( [t/∆n]∑
i=1

ηi,2kn

)
−→ 0,

E
(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

( [t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved
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similarly to the first two.

Lemma 7. Let Z be a continuous Itô process with drift term bZt and spot variance process cZt , set ηt,s =

ηt,s(b
Z , cZ), then the following bounds can be established:

|E(Zt|F0)− tbZ0 | ≤ Ktη0,t

|E(ZjtZ
k
t − tc

Z,jk
0 |F0)| ≤ Kt3/2(

√
∆n + η0,t)

|E
(
(ZjtZ

k
t − tc

Z,jk
0 )(cZ,lmt − cZ,lm0 )|F0

)
| ≤ Kt2

|E(ZjtZ
k
t Z

l
tZ

m
t |F0)−∆2

n(cZ,jk0 cZ,lm0 + cZ,jl0 cZ,km0 + cZ,jm0 cZ,kl0 )| ≤ Kt5/2

|E(ZjtZ
k
t Z

l
t|F0)| ≤ Kt2

|E(

6∏
l=1

Zjlt |F0)− ∆3
n

6

∑
l<l′

∑
k<k′

∑
m<m′

c
Z,jljl′
0 c

Z,jkjk′
0 c

Z,jmjm′
0 | ≤ Kt7/2

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 8. The following results hold:

|E(βn,jki βn,lmi βn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,kn), (42)

|E(βn,jki βn,lmi (cn,ghi+kn
− cn,ghi )|Fni )| ≤ K∆3/4

n (∆1/4
n + ηni,kn), (43)

|E(βn,jki (cn,lmi+kn
− cn,lmi )(cn,ghi+kn

− cn,ghi )|Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,kn), (44)

|E(βn,jki γn,lmi γn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn), (45)

|E(γn,jki γn,lmi γn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn). (46)

Proof of (42) in Lemma 8

We start by obtaining some useful bounds for some quantities of interest. First, using the second statement

in Lemma 7 applied to Z = Y ′, we have

|E(αn,jki |Fni )| ≤ K∆3/2
n (

√
∆n + ηni,1). (47)

Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and last

statements in Lemma 7 as well as (39) with Z = c, it can be shown that∣∣∣E(αn,jki αn,lmi |Fni )−∆2
n

(
cn,jli cn,kmi + cn,jmi cn,kli

)∣∣∣ ≤ K∆5/2
n . (48)

Next, by successive conditioning and using the bound in (39) for Z = c as well as (47) and (48) , we have

for 0 ≤ u ≤ kn − 1, ∣∣∣E(αn,jki+u

∣∣Fni )
∣∣∣ ≤ K∆3/2

n (
√

∆n + ηni,u), (49)

∣∣∣E(αn,jki+u α
n,lm
i+u |F

n
i )−∆2

n

(
cn,jli cn,kmi + cn,jmi cn,kli

)∣∣∣ ≤ K∆5/2
n , (50)

To show (42), we first observe that βn,jki βn,lmi βn,ghi can be decomposed as

βn,jki βn,lmi βn,ghi =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u +
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,v + ζn,ghi,u ζn,jki,v ζn,lmi,v

+ ζn,lmi,u ζn,ghi,v ζn,jki,v

]
+

1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[ζn,jki,u ζn,lmi,u ζn,ghi,v + ζn,ghi,u ζn,jki,u ζn,lmi,v + ζn,lmi,u ζn,ghi,u ζn,jki,v

]
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+
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,w + ζn,jki,u ζn,ghi,v ζn,lmi,w + ζn,lmi,u ζn,jki,v ζn,ghi,w + ζn,lmi,u ζn,ghi,v ζn,jki,w

+ ζn,ghi,u ζn,lmi,v ζn,jki,w + ζn,ghi,u ζn,jki,v ζn,lmi,w

]
,

with ζni,u = αni+u + (cni+u − cni )∆n, which satisfies E(‖ζni,u‖q|Fni ) ≤ K∆q
n for q ≥ 2.

Set

ξni (1) =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u , ξni (2) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,v ζn,ghi,v

ξni (3) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,u ζn,ghi,v and ξni (4) =
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

ζn,jki,u ζn,lmi,v ζn,ghi,w .

The following bounds can be established,

|E(ξni (1)|Fni )| ≤ K∆n, |E(ξni (2)|Fni )| ≤ K∆n, |E(ξni (3)|Fni )| ≤ K∆n and

|E(ξni (4)|Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn).

Proof of |E(ξni (1)|Fni )| ≤ K∆n

The result readily follows from an application of the Cauchy Schwartz inequality together with the bound

E(‖ζni+u‖q|Fni ) ≤ Kq∆
q
n for q ≥ 2.

Proof of |E(ξni (2)|Fni )| ≤ K∆n

Using the law of iterated expectation, we have, for u < v,

E(ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u E(ζn,lmi+v ζ

n,gh
i+v |F

n
i+u+1)

∣∣Fni ). (51)

By successive conditioning, (48) and the Cauchy-Schwartz inequality, we also have

|E(ζn,lmi,v ζn,ghi,v |F
n
i+u+1)−∆2

n(cn,lgi+u+1c
n,mh
i+u+1 + cn,lhi+u+1c

n,mg
i+u+1)−∆2

n(cn,ghi+u+1 − c
n,gh
i )(cn,lmi+u+1 − c

n,lm
i )| ≤ K∆5/2

n .

Given that E(|ζn,jki+u |q
∣∣Fni ) ≤ ∆q

n, the approximation error involved in replacing E(ζn,lmi+v ζ
n,gh
i+v |Fni+u+1) by

∆2
n(cn,lgi+u+1c

n,mh
i+u+1 + cn,lhi+u+1c

n,mg
i+u+1) + ∆2

n(cn,ghi+u+1 − c
n,gh
i )(cn,lmi+u+1 − c

n,lm
i ) in (51) is smaller than ∆

7/2
n .

From (3.9) in Jacod and Rosenbaum (2012) we have

|E(αn,jki+u (cn,lmi+u+1 − c
n,lm
i+u )|Fni )| ≤ K∆3/2

n (
√

∆n + ηni,kn). (52)

Since (cni+u − cni ) is Fni+u-measurable, we use the successive conditioning,the Cauchy-Schwartz inequality,

(47), (48) and the fifth statement in Lemma 7 applied to Z = c to obtain

|E(αn,ghi+u (cn,lmi+u − c
n,lm
i )(cn,jki+u − c

n,jk
i )|Fni )| ≤ K∆5/2

n

|E(αn,jki+u α
n,lm
i+u (cn,ghi+u − c

n,gh
i )|Fni )| ≤ K∆5/2

n (53)

|E
(
(cn,lmi+u − c

n,lm
i )(cn,jki+u − c

n,jk
i )(cn,ghi+u − c

n,gh
i )

)
|Fni )| ≤ K∆n

which can be proved using . The following inequalities can be established easily using (47), the successive

conditioning together with (39) for Z = c,∣∣∣E(αn,jki+u (cn,lgi+u+1c
n,mh
i+u+1 + cn,lhi+u+1c

n,mg
i+u+1)|Fni )

∣∣∣ ≤ K∆3/2
n

∣∣∣E((cn,jki+u − c
n,jk
i )

(
cn,lgi+u+1c

n,mh
i+u+1 + cn,lhi+u+1c

n,mg
i+u+1

)
|Fni

)∣∣∣ ≤ K∆1/2
n
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∣∣∣E(αn,jki+u (cn,ghi+u+1 − c
n,gh
i )(cn,lmi+u+1 − c

n,lm
i )|Fni )

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni,kn)

The last three inequalities together yield |E(ξni (2)|Fni )| ≤ K∆n.

Proof of |E(ξni (3)|Fni )| ≤ K∆n

First, note that, for u < v, we have

E(ζn,jki+u ζ
n,lm
i+u ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u ζ

n,lm
i+u E(ζn,ghi+v |F

n
i+u+1)

∣∣Fni ). (54)

By successive conditioning and (47) , we have

|E(αn,ghi+w |F
n
i+v+1)| ≤ K∆3/2

n (
√

∆n + ηi+v+1,w−v). (55)

Using the first statement of Lemma applied to Z = c, it can be shown that

|E
(
(cn,ghi+w − c

n,gh
i+v+1))|Fni

)
−∆n(w − v − 1)̃bn,ghi+v+1| ≤ K(w − v − 1)∆nηi+v+1,w−v ≤ K∆1/2

n ηi+v+1,w−v.

The last two inequalities together imply∣∣∣E(ζn,ghi+w |F
n
i+v+1

)
− (cn,ghi+v+1 − c

n,gh
i )∆n −∆2

n(w − v − 1)̃bn,ghi+v+1

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηi+v+1,w−v). (56)

Since E(|ζn,jki,u |q|Fni ) ≤ ∆q
n, the error induced by replacing E(ζn,ghi+v |Fni+u+1) by (cn,ghi+v+1− c

n,gh
i )∆n + ∆2

n(w−
v − 1)̃bn,ghi+v+1 in (54) is smaller that ∆

7/2
n .

Using Cauchy Schwartz inequality, successive conditioning, (53), (39) for Z = c and the boundedness of b̃t

and ct we obtain∣∣∣E(αn,jki+u α
n,lm
i+u (cn,jki+u+1 − c

n,gh
i )|Fni+u

)∣∣∣ ≤ K∆5/2
n∣∣∣E(αn,jki+u α

n,lm
i+u b̃

n,gh
i+u+1|F

n
i+u

)∣∣∣ ≤ K∆2
n∣∣∣E(αn,jki+u (cn,lmi+u − c

n,lm
i )(cn,ghi+u+1 − c

n,gh
i )|Fni

)∣∣∣ ≤ K∆1/4
n ∆3/2

n (
√

∆n + ηni,kn)∣∣∣E(αn,jki+u (cn,lmi+u − c
n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ ∆5/4
n∣∣∣E((cn,jki+u − c

n,gh
i )(cn,lmi+u − c

n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ K∆1/2
n∣∣∣E((cn,jki+u − c

n,jk
i )(cn,lmi+u − c

n,lm
i )(cn,ghi+u+1 − c

n,gh
i )|Fni

)∣∣∣ ≤ K∆n.

The above inequalities together yield |E(ξni (3)|Fni )| ≤ K∆n.

Proof of |E(ξni (4)
∣∣Fni )| ≤ K∆

3/4
n (∆

1/4
n + ηni,kn)

We first observe that ξni (4) can be rewritten as

ξni (4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w ,

where

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w =

[
αn,jki+u α

n,lm
i+v α

n,gh
i+w + αn,jki+u ∆nα

n,lm
i+v (cn,ghi+w − c

n,gh
i ) + αn,jki+u ∆n(cn,lmi+v − c

n,lm
i )αn,ghi+w

+ ∆2
nα

n,jk
i+u (cn,lmi+v − c

n,lm
i )(cn,ghi+w − c

n,gh
i ) + ∆n(cn,jki+u − c

n,jk
i )αn,lmi+v α

n,gh
i+w + ∆2

n(cn,jki+u − c
n,jk
i )αn,lmi+v (cn,ghi+w − c

n,gh
i )

+ ∆2
n(cn,jki+u − c

n,jk
i )(cn,lmi+v − c

n,lm
i )αn,ghi+w + ∆3

n(cn,jki+u − c
n,jk
i )(cn,lmi+v − c

n,lm
i )(cn,ghi+w − c

n,gh
i )

]
.
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Based on the above decomposition, we set

ξni (4) =

8∑
j=1

χ(j),

with χ(j) defined below. Our target is show that |E(χ(j)
∣∣Fni )| ≤ K∆

3/4
n (∆

1/4
n + ηni,kn), j = 1, . . . , 8.

To start, set

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u α
n,lm
i+v α

n,gh
i+w .

Upon changing the order of the summation, we have

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v α

n,gh
i+w .

Define also

χ′(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1).

Note that E(χ(1)|Fni ) = E(χ′(1)|Fni ).

It is easy to see that, by Lemma 5, we have for q ≥ 2,

E
(∥∥∥ v−1∑

u=0

αn,jki+u

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n .

The Cauchy-Schwartz inequality yields,

E

(∣∣∣ kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1)

∣∣∣∣∣∣∣∣Fni
)
≤ Kk2

n

[
E
(∣∣∣ v−1∑

u=0

αn,jki+u

∣∣∣4∣∣∣Fni )]1/4[E(∣∣∣αn,lmi+v

∣∣∣4∣∣∣Fni )]1/4
×
[
E
(∣∣∣E(αn,ghi+w |F

n
i+v+1)

∣∣∣2∣∣∣Fni )]1/2 ≤ K∆nk
2
n∆3/4

n ∆3/2
n (

√
∆n + ηni,kn),

where the last iteration is obtained using (55) as well as the inequality (a+ b)1/2 ≤ a1/2 + b1/2 which holds

for a and b positive real numbers and the third statement in Lemma 6.

It follows from this result that

|E
(
χ(1)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next set,

χ(2) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(cn,jki+u − c
n,jk
i )

)
αn,lmi+v α

n,gh
i+w ,

χ(3) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+v

)
∆n(cn,lmi+u − c

n,lm
i )αn,ghi+w ,

χ(4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(cn,jki+u − c
n,jk
i )

)
∆n(cn,lmi+u − c

n,lm
i )αn,ghi+w .

Given that, for q ≥ 2, we have,

E
(∥∥∥ v−1∑

u=0

∆n(cn,jki+u − c
n,jk
i )

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n and E(‖cn,jki+u − c

n,jk
i ‖q

∣∣Fni ) ≤ Kq∆
q/4
n ,
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one can follow essentially the same steps as for χ(1) to show that

|E(χ(2)
∣∣Fni )| ≤ K∆3/4

n (
√

∆n + ηni,kn) and |E(χ(j)
∣∣Fni )| ≤ K∆n(

√
∆n + ηni,kn) for j = 3, 4.

Define

χ(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆n(cn,ghi+w − c

n,gh
i )

χ′(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆nE

(
(cn,ghi+w − c

n,gh
i )

∣∣Fni+v+1)

χ(6) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(cn,jki+u − c
n,jk
i )

)
αn,lmi+v ∆n(cn,ghi+w − c

n,gh
i )

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(cn,lmi+v − c

n,lm
i )∆n(cn,ghi+w − c

n,gh
i ),

where we have E(χ(5)|Fni ) = E(χ′(5)|Fni ). Recalling (56), we further decompose χ′(5) as,

χ′(5) =

5∑
j=1

χ(5)[j],

with

χ′(5)[1] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

(
E
(
cn,ghi+w − c

n,gh
i |Fni+v+1

)
− (cn,ghi+v+1 − c

n,gh
i )∆n − b̃n,ghi+v+1∆2

n(w − v − 1)
)

χ′(5)[2] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆n(cn,ghi+v − c
n,gh
i )

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

χ′(5)[3] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(cn,ghi+v+1 − c

n,gh
i+v )αn,lmi+v

χ′(5)[4] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆2
n(w − v − 1)(̃bn,ghi+v+1 − b̃

n,gh
i+v )αn,lmi+v

χ′(5)[5] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v .

Using (56), (55), (52) and following the same strategy proof as for χ(1), it can be shown that

|E
(
χ′(5)[j]

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5.

which in turn implies

|E
(
χ(5)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5.

The term χ(6) can be handled similarly to χ(5), hence we conclude that

|E
(
χ(6)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next, we set

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(cn,lmi+v − c

n,lm
i )∆n(cn,ghi+w − c

n,gh
i )

)
.
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To handle this term, we define,

χ(7)[1] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(cn,lmi+v − c

n,lm
i )∆n(cn,ghi+v+1 − c

n,gh
i+v )

)

χ(7)[2] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(cn,lmi+v − c

n,lm
i )∆n(cn,ghi+v − c

n,gh
i )

)

χ(7)[3] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(cn,lmi+v − c

n,lm
i )∆2

n(w − v − 1)(̃bn,ghi+v+1 − b̃
n,gh
i+v )

)

χ(7)[4] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
∆n(cn,lmi+v − c

n,lm
i )

)
,

so that

χ(7) =

4∑
j=1

χ(7)[j].

Using arguments similar to that used to handle χ(1), it can be shown that,

|E(χ(7)[j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 3,

To handle the remaining term χ(7)[4], we set,

χ(7)[4][1] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (cn,lmi+u+1 − c
n,lm
i+u )(cn,ghi+u+1 − c

n,gh
i+u )

χ(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,ghi+u − c
n,gh
i )αn,jki+u (cn,lmi+u+1 − c

n,lm
i+u )

χ′(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,ghi+u − c
n,gh
i )E(αn,jki+u (cn,lmi+u+1 − c

n,lm
i+u )|Fni+u)

χ(7)[4][3] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,lmi+u − c
n,lm
i )αn,jki+u (cn,ghi+u+1 − c

n,gh
i+u )

χ(7)[4][4] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,lmi+u − c
n,lm
i )(cn,ghi+u − c

n,gh
i )αn,jki+u

χ(7)[4][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,lmi+u − c
n,lm
i )αn,jki+u (cn,ghi+v − c

n,gh
i+u+1)

χ′(7)[2][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,lmi+u − c
n,lm
i )αn,jki+u E((cn,ghi+v − c

n,gh
i+u+1|F

n
i+u)

χ(7)[4][6] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (cn,lmi+u+1 − c
n,lm
i+u )(cn,ghi+v − c

n,gh
i+u+1)

χ(7)[4][7] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,ghi+u − c
n,gh
i )αn,jki+u (cn,lmi+v − c

n,lm
i+u+1)

χ(7)[4][8] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (cn,ghi+u+1 − c
n,gh
i+u )(cn,lmi+v − c

n,lm
i+u+1)

χ(7)[4][9] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (cn,lmi+v − c
n,lm
i+u+1)(cn,ghi+v − c

n,gh
i+u+1),
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which satisfy,

χ(7)[4] =

9∑
j=1

χ(7)[4][j].

Using arguments similar to that used to handle χ(1), it can be shown that,

|E(χ(7)[4][j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 8,

which yields

|E(χ(7)
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn),

Now set,

χ(8) =
1

k3
n

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(cn,jki+u − c
n,jk
i )(cn,lmi+v − c

n,lm
i )(cn,ghi+w − c

n,gh
i ).

This term can be further decomposed in 6 (non overlapping) components. Then using the following bounds,

|E
(

(cn,jki+u − c
n,jk
i )(cn,lmi+v − c

n,lm
i+u )(cn,ghi+w − c

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(cn,jki+u − c
n,jk
i )(cn,lmi+v − c

n,lm
i+u )(cn,ghi+v − c

n,gh
i+u )

∣∣Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn)

|E
(

(cn,jki+u − c
n,jk
i )(cn,lmi+v − c

n,lm
i+u )(cn,ghi+u − c

n,gh
i )

∣∣Fni )| ≤ K∆n

|E
(

(cn,jki+u − c
n,jk
i )(cn,lmi+u − c

n,lm
i )(cn,ghi+w − c

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(cn,jki+u − c
n,jk
i )(cn,lmi+u − c

n,lm
i )(cn,ghi+v − c

n,gh
i+u )

∣∣Fni )| ≤ K∆n

|E
(

(cn,jki+u − c
n,jk
i )(cn,lmi+u − c

n,lm
i )(cn,ghi+u − c

n,gh
i )

∣∣Fni )| ≤ K∆n,

which follow from successive conditioning and existing bounds, we deduce that

|E(χ(8)
∣∣Fni )| ≤ K∆n,

This completes the proof.

Proof of (43) and (44) in Lemma 8

Observing that

βn,jki (cn,lmi+kn
− cn,lmi )(cn,ghi+kn

− cn,ghi ) =
1

kn∆n

kn−1∑
u=0

ζn,jki,u (cn,lmi+kn
− cn,lmi )(cn,ghi+kn

− cn,ghi ),

βn,jki βn,lmi (cn,ghi+kn
− cn,ghi ) =

1

k2
n∆2

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u (cn,ghi+kn
− cn,ghi ) +

1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,jki,u ζn,lmi,v (cn,ghi+kn
− cn,ghi )

+
1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,lmi,u ζn,jki,v (cn,ghi+kn
− cn,ghi ),

(43) and (44) can be proved using the same strategy proof as for (42).
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Proof of (45) and (46) in Lemma 8

Note that we have,

γn,jki γn,lmi βn,ghi = βn,ghi βn,jki+kn
βn,lmi+kn

+ βn,ghi βn,jki βn,lmi − βn,ghi βn,lmi βn,jki+kn
− βn,ghi βn,lmi βn,jki+kn

+ βn,ghi βn,jki+kn
(cn,lmi+kn

− cn,lmi )− βn,ghi βn,jki (cn,lmi+kn
− cn,lmi ) + βn,ghi βn,lmi+kn

(cn,jki+kn
− cn,jki )− βn,ghi βn,lmi (cn,jki+kn

− cn,jki )

+ βn,ghi (cn,jki+kn
− cn,jki )(cn,lmi+kn

− cn,lmi ),

and

γn,ghi γn,jki γn,lmi = βn,ghi+kn
βn,jki+kn

βn,lmi+kn
+ βn,ghi+kn

βn,jki βn,lmi − βn,ghi+kn
βn,lmi βn,jki+kn

− βn,ghi+kn
βn,lmi βn,jki+kn

+ βn,ghi+kn
βn,jki+kn

(cn,lmi+kn
− cn,lmi )− βn,ghi+kn

βn,jki (cn,lmi+kn
− cn,lmi ) + βn,ghi+kn

βn,lmi+kn
(cn,jki+kn

− cn,jki )− βn,ghi+kn
βn,lmi (cn,jki+kn

− cn,jki )

+ βn,ghi+kn
(cn,jki+kn

− cn,jki )(cn,lmi+kn
− cn,lmi )− βn,ghi βn,jki+kn

βn,lmi+kn
− βn,ghi βn,jki βn,lmi + βn,ghi βn,lmi βn,jki+kn

+ βn,ghi βn,lmi βn,jki+kn

− βn,ghi βn,jki+kn
(cn,lmi+kn

− cn,lmi ) + βn,ghi βn,jki (cn,lmi+kn
− cn,lmi )− βn,ghi βn,lmi+kn

(cn,jki+kn
− cn,jki ) + βn,ghi βn,lmi (cn,jki+kn

− cn,jki )

− βn,ghi (cn,jki+kn
− cn,jki )(cn,lmi+kn

− cn,lmi ) + βn,jki+kn
βn,lmi+kn

(cn,ghi+kn
− cn,ghi ) + βn,jki βn,lmi (cn,ghi+kn

− cn,ghi )

− βn,lmi βn,jki+kn
(cn,ghi+kn

− cn,ghi )− βn,lmi βn,jki+kn
(cn,ghi+kn

− cn,ghi ) + βn,jki+kn
(cn,lmi+kn

− cn,lmi )(cn,ghi+kn
− cn,ghi )

− βn,jki (cn,lmi+kn
− cn,lmi )(cn,ghi+kn

− cn,ghi ) + βn,lmi+kn
(cn,jki+kn

− cn,jki )(cn,ghi+kn
− cn,ghi )− βn,lmi (cn,jki+kn

− cn,jki )(cn,ghi+kn
− cn,ghi )

+ (cn,jki+kn
− cn,jki )(cn,lmi+kn

− cn,lmi )(cn,ghi+kn
− cn,ghi ).

From (38), it is easy to see that observe that βni is Fni+kn -measurable and satisfies ‖E(βni |Fni )‖ ≤ K∆
1/2
n .

Using the law of iterated expectation and existing bounds, it can be shown that

|E(βn,lmi βn,jki+kn
|Fni )| ≤ K∆3/4

n .

|E(βn,lmi βn,ghi βn,jki+kn
|Fni )| ≤ K∆n

|E(βn,lmi (cn,ghi+kn
− cn,ghi )βn,jki+kn

|Fni )| ≤ K∆n

|E(βn,lmi+kn
(cn,jki+kn

− cn,jki )|Fni )| ≤ K∆3/4
n

|E((cn,jki+kn
− cn,jki )(cn,lmi+kn

− cn,lmi )(cn,ghi+kn
− cn,ghi )|Fni )| ≤ K∆n. (57)

By Lemma 3.3 in Jacod and Rosenbaum (2012), we have

|E(βn,ghi+kn
βn,abi+kn

|Fni+kn)− 1

kn
(cn,gai+kn

cn,hbi+kn
+ cn,gbi+kn

cn,hai+kn
)− kn∆n

3
cn,gh,abi+kn

| ≤ K
√

∆n(∆1/8
n + ηni+kn,kn).

Hence, for ϕn,ghi ∈ {βn,ghi , cn,ghi+kn
−cn,ghi } which satisfies E(|ϕn,ghi |q

∣∣∣Fni ) ≤ K∆
q/4
n and E(ϕn,ghi |Fni ) ≤ K∆

1/2
n ,

it can be proved that

|E(ϕn,ghi βn,jki+kn
βn,lmi+kn

|Fni )− E
(
ϕn,ghi

[ 1

kn
(cn,jli+kn

cn,kmi+kn
+ cn,jmi+kn

cn,kli+kn
)− kn∆n

3
cn,jk,lmi+kn

]
|Fni

)
| ≤ K∆3/4

n (∆1/4
n + ηni,2kn).

Next by successive conditioning and making use of existing bounds one obtains,

|E(ϕn,ghi cn,jk,lmi+kn
)| ≤ K∆1/4

n (∆1/4
n + ηni,kn)

|E(ϕn,ghi cn,jli+kn
cn,kmi+kn

)| ≤ K∆1/2
n ,

which implies

|E(ϕn,ghi βn,jki+kn
βn,lmi+kn

|Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn). (58)

It is easy to see that (42), (57) and (58) and the inequality ηni,kn ≤ η
n
i,2kn

together yields (45) and (46).
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Step 3: Asymptotic Distribution of the approximate estimator

To start, we decompose the approximate estimator as

̂[H(c), G(c)]
(A)

T = ̂[H(c), G(c)]
(A1)

T − ̂[H(c), G(c)]
(A2)

T ,

with

̂[H(c), G(c)]
(A1)

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(cni−1)(ĉ

′n,gh
i+kn

− ĉ
′n,gh
i )(ĉ

′n,ab
i+kn

− ĉ
′n,ab
i ),

and

̂[H(c), G(c)]
(A2)

T =
3

k2
n

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(ĉ

′n
i )(ĉ

′n,ga
i ĉ

′n,hb
i + ĉ

′n,gb
i ĉ

′n,ha
i ).

In this section, we set for convenience, cni−1 = c(i−1)∆n
and Fi = F(i−1)∆n

. Given the polynomial growth

assumption satisfied by H and G and the fact that kn = θ(∆n)−1/2, by Theorem 2.2 in Jacod and Rosenbaum

(2012) we have

1√
∆n

(
̂[H(c), G(c)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
= Op(1),

which yields

1

∆
1/4
n

(
̂[H(c), G(c)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
P−→ 0.

To study the asymptotic behavior of ̂[H(c), G(c)]
(A1)

T , we follow Aı̈t-Sahalia and Jacod (2014) and define the

following multidimensional quantities

ζ(1)ni =
1

∆n
∆n
i Y
′(∆n

i Y
′)> − cni−1, ζ(2)ni = ∆n

i c,

ζ ′(u)ni = E(ζ(u)ni |Fni−1), ζ ′′(u)ni = ζ(u)ni − ζ ′(u)ni ,

with

ζr(u)ni =
(
ζr(u)n,ghi

)
1≤g,h≤d

.

We also define for m ∈ {0, . . . , 2kn − 1} and j, l ∈ Z,

ε(1)nm =

−1 if 0 ≤ m < kn

+1 if kn ≤ m < 2kn,

ε(2)nm =

2kn−1∑
q=m+1

ε(1)nq = (m+ 1) ∧ (2kn −m− 1),

znu,v =

1/∆n if u = v = 1

1 otherwise,
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γ(u, v;m)nj,l =
3

2k3
n

(l−m−1)∨(2kn−m−1)∑
q=0∨(j−m)

ε(u)nq ε(u)nq+m, Γ(u, v)nm = γ(u, v;m)n0,2kn ,

M(u, v;u′, v′)n = znu,vz
n
u′,v′

2kn−1∑
m=1

Γ(u, v)nmΓ(u′, v′)nm.

The following decompositions hold,

ĉ
′n
i = cni−1 +

1

kn

kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j , ĉ
′n
i+kn − ĉ

′n
i =

1

kn

2kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j ,

γn,ghi γn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j +

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

+

2kn−1∑
j=1

j−1∑
q=0

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

)
.

Changing the order of the summation in the last term, we obtain

γn,ghi γn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j +

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

+

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q

)
.

Therefore, we can further rewrite ̂[H(c), G(c)]
(A1)

T as

̂[H(c), G(c)]
(A1)

T = ̂[H(c), G(c)]
(A11)

T + ̂[H(c), G(c)]
(A12)

T + ̂[H(c), G(c)]
(A13)

T ,with

̂[H(c), G(c)]
(A1w)

T =

d∑
g,h,a,b=1

2∑
u,v=1

Â1w(H, gh, u;G, ab, v)nT , w = 1, 2, 3,

and,

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−1∑
j=0

(∂ghH∂abG)(cni−1)ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(cni−1)ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q ,

Â13(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(cni−1)ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q ,

where we clearly have Â13(H, gh, u;G, ab, v)nT = Â12(G, ab, v;H, gh, u)nT . Changing the order of the summa-

tions we have,

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=1

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(cni−1−j−m)×
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ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni .

Set

Ã11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

2kn−1∑
j=0

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Ã12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

(∂ghH∂abG)(cni−j−1−m)ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni ,

and

A11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

( 2kn−1∑
j=0

ε(u)nj ε(v)nj

)
(∂ghH∂abG)(cni−2kn)ζ(u)n,ghi ζ(v)n,abi ,

= Γ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(cni−2kn)ζ(u)n,ghi ζ(v)n,abi

A12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(cni−2kn)

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni ,

=

[T/∆n]∑
i=2kn

(∂ghH∂abG)(cni−2kn)ρgh(u, v)ni ζab(v)ni ,

with

ρgh(u, v)ni =

2kn−1∑
m=1

Γ(u, v)nmζgh(u)ni−m.

The following results hold:

1

∆
1/4
n

(
Â1w(H, gh, u;G, ab, v)nT − Ã1w(H, gh, u;G, ab, v)nT

)
P−→ 0 for all (H, gh, u,G, ab, v) and w = 1, 2.

(59)

1

∆
1/4
n

(
Ã1w(H, gh, u;G, ab, v)nT −A1w(H, gh, u;G, ab, v)nT

)
P−→ 0 for all (H, gh, u,G, ab, v) and w = 1, 2.

(60)

Proof of (59) for w = 1

The proof is similar to Step5 on page 548 of Aı̈t-Sahalia and Jacod (2014). Our proof deviates from the

latter reference by the fact that, in all the sums, the terms ζ(u)n,ghi ζ(v)n,abi are scaled by random variables

rather that constant real numbers. First observe that we can write,

Â11− Ã11 =
˜̂
A11(1) +

˜̂
A11(2) +

˜̂
A11(3) with

˜̂
A11(1) =

(2kn−1)∧[T/∆n]∑
i=1

(
3

2k3
n

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi

˜̂
A11(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi .
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˜̂
A11(3) =

[T/∆n]−2kn+1∑
i=2kn

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi .

It is easy to see that
˜̂
A12(3) = 0. Using (39) with Z = c and (40), it can be shown that

E(‖ζ(1)ni ‖q|Fni−1) ≤ Kq, E(‖ζ(2)ni ‖q|Fni−1) ≤ Kq∆
q/2
n . (61)

The polynomial growth assumption onH andG and the boundedness of ct imply that |(∂ghH∂abG)(cni−j−1)| ≤
K. Hence, the random quantities

(
3

2k3n

∑(2kn−1)∧(i−1)
j=0∨(i+2kn−1−[T/∆n])(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj

)
and

3
2k3n

∑(2kn−1)
j=0 (∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj are Fni−1− measurable and are bounded by γ̃nu,v defined as

γ̃nu,v =


K if (u, v) = (2, 2)

K/kn if (u, v) = (1, 2), (2, 1)

K/k2
n if (u, v) = (1, 1).

Similarly, the quantity,

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj −
(2kn−1)∑
j=0

(∂ghH∂abG)(cni−j−1)ε(u)nj ε(v)nj

)
,

is Fni−1− measurable and bounded by 2γ̃nu,v. Note also that, by (61) and the Cauchy Schwartz inequality,

we have,

E(|ζ(u)n,ghi ζ(v)n,abi |
∣∣Fni−1) ≤ E(‖ζ(u)ni ‖2|Fni−1)1/2E(‖ζ(v)ni ‖2|Fni−1)1/2 ≤


K∆n if (u, v) = (2, 2)

K∆
1/2
n if (u, v) = (1, 2), (2, 1)

K if (u, v) = (1, 1).

Making use of the above bounds and the fact that kn = θ∆
−1/2
n , we have E(|˜̂A11(1)|) ≤ K∆

1/2
n and

E(|˜̂A11(2)|) ≤ K∆
1/2
n for all (u, v). These two results together imply

˜̂
A11(1) = o(∆

−1/4
n ) and

˜̂
A11(2) =

o(∆
−1/4
n ) which yields the result.

Proof of (59) for w = 2

We proceed similarly to Step 6 on page (548) of Aı̈t-Sahalia and Jacod (2014). First, observe that we have

Â12− Ã12 =
˜̂
A12(1) +

˜̂
A12(2) with

˜̂
A12(1) =

(2kn−1)∧[T/∆n]∑
i=2

(
(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(cni−1−j−m)ε(u)nj ε(v)nj+m

)

ζgh(u)ni−m

)
ζab(v)ni

˜̂
A12(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

(
(i−1)∧(2kn−1)∑

m=1

( 3

2k3
n

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(cni−1−j−m)ε(u)nj ε(v)nj+m

)
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−
(2kn−m−1)∑

j=0

(∂ghH∂abG)(cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m

)
ζab(v)ni .

It is easy to see that the quantity,

κm,ni =
3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(cni−1−j−m)ε(u)nj ε(v)nj+m

)
is Fni−m−1 measurable and bounded by γ̃nu,v. Let,

κni =

(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m.

It follows that, κni is Fni−1-measurable. We have,

E(|κm,ni |z
∣∣F0) ≤ (γ̃nu,v)

z

|E(ζ(u)ni−m|Fi−m−1)| ≤

K
√

∆n if u = 1

K∆n if u = 2
, E(‖ζ(u)ni−m‖z|Fi−m−1) ≤

Kz if u = 1

Kz∆
z/2
n if u = 2

Using Lemma 5, we deduce that for z ≥ 2

E(|κni |z) ≤

Kz(γ̃
n
u,v)

zk
z/2
n if u = 1

Kz(γ̃
n
u,v)

z/k
z/2
n if u = 2

≤

Kz/k
−3z/2
n if v = 1

Kzk
−z/2
n if v = 2

Using the above result, and similarly to step 6 on page 548 of Aı̈t-Sahalia and Jacod (2014), we obtain that,

1

∆
1/4
n

˜̂
A12(1)

P⇒ 0. A similar argument yields 1

∆
1/4
n

˜̂
A12(2)

P⇒ 0 which completes the proof of (59) for w = 2.

Proof of (60) for w = 1

Define

Θ(u, v)
(c),i,n
0 =

3

2k3
n

2kn−1∑
j=0

(
(∂ghH∂abG)(cni−j−1)− (∂ghH∂abG)(cni−2kn)

)
ε(u)nj ε(v)nj

By Taylor expansion, the polynomial growth assumption on H and G and using (39) with Z = c we have∣∣∣E((∂ghH∂abG)(cni−j−1)− (∂ghH∂abG)(cni−2kn)
∣∣Fni−2kn

)∣∣∣ ≤ K(kn∆n) ≤ K
√

∆n for j = 0, . . . , 2kn − 1

E(|(∂ghH∂abG)(cni−j−1)− (∂ghH∂abG)(cni−2kn)|q|Fni−2kn)| ≤ K(kn∆n)q/2 ≤ K∆q/4
n for q ≥ 2

Next, observe that Θ(u, v)
(c),i,n
0 is Fni−1 -measurable and satisfies |Θ(u, v)

(c),i,n
0 | ≤ γ̃nu,v, |E

(
Θ(u, v)

(c),i,n
0 |Fni−2kn

)
| ≤

K∆
1/2
n γ̃nu,v and E

(
|Θ(u, v)

(c),i,n
0 |q

∣∣Fni−2kn

)
≤ Kq∆

q/4
n (γ̃nu,v)

q where the latter follows from the Hölder inequal-

ity. We aim to prove that,

Ê =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(c),i,n
0 ζ(u)n,ghi ζ(v)n,abi

]
,

51



goes to zero in probability for any H,G,g, h, a, b; u, v = 1, 2.15

To show this result, we first introduce the following quantities:

Ê(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(c),i,n
0 E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

]

Ê(2) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(c),i,n
0

(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]

with Ê = Ê(1) + Ê(2). By Cauchy Schwartz inequality, we have,

E(|ζ(u)n,ghi ζ(v)n,abi |q) ≤ (γ̂nu,v)
q/2,where γ̂nu,v =


K if (u, v) = (1, 1)

K∆n if (u, v) = (1, 2), (2, 1)

K∆2
n if (u, v) = (2, 2)

Since ζ(u)n,ghi ζ(v)n,abi is Fni -measurable, we use the martingale property of ζ(u)n,ghi ζ(v)n,abi −E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

to deduce

E(|Ê(2)|2) ≤ K∆−3/2
n (∆1/4

n γ̃nu,v)
2γ̂nu,v ≤ K∆n in all cases.

The latter inequality implies Ê(2)
P⇒ 0 for all (u, v). We are left to show that Ê(1)

P⇒ 0.

We recall some estimates under Assumption 2, see (B.83) in Aı̈t-Sahalia and Jacod (2014)

|E(ζ(1)n,ghi ζ(2)n,abi |Fni−1)| ≤ K∆n, (62)

|E(ζ(1)n,ghi ζ(1)n,abi |Fni−1)−
(
cn,gai−1 c

n,hb
i−1 + cn,gbi−1 c

n,ha
i−1

)
| ≤ K∆1/2

n , (63)

|E(ζ(2)n,ghi ζ(2)n,abi |Fni−1 − c
n,gh,ab
i−1 ∆n)| ≤ K∆3/2

n (
√

∆n + ηni ). (64)

Case (u, v) ∈ {(1, 2), (2, 1)}. By (62) we have

E(|Ê(1)|) ≤ K T

∆n

1

∆
1/4
n

(∆1/4
n γ̃nu,v∆n) ≤ K∆1/2

n so Ê(1)
P⇒ 0.

Case (u, v) ∈ {(1, 1), (2, 2)}. Set

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(c),i,n
0 V ni−2kn

]

Ê′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(c),i,n
0

(
V ni−1 − V ni−2kn

)]

Ê′′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(c),i,n
0

(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)]

where

V ni−1 =


cn,gai−1 c

n,hb
i−1 + cn,gbi−1 c

n,ha
i−1 if (u, v) = (2, 2)

cn,gh,abi−1 ∆n if (u, v) = (1, 1)

0 otherwise

15It turns out that given our restrictions on the functions H and G and the different estimates derived for multidimensional
processes, the most relevant arguments on which depend the convergence are u and v.
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Note that we have Ê(1) = Ê′(1) + Ê′′(1) + Ê′′′(1). Using (63) and (64), it can be shown that

E(|Ê′′′(1)|) ≤

K
1

∆
5/4
n

(∆
1/4
n γ̃nu,v)∆

1/2
n if (u, v) = (1, 1)

K 1

∆
5/4
n

(∆
1/4
n γ̃nu,v)∆

3/2
n if (u, v) = (2, 2)

≤ K∆1/2
n in all cases.

We make use of lemma B.8 in Aı̈t-Sahalia and Jacod (2014) to prove that Ê′(1)
P⇒ 0. To this end, we write

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

Θ(u, v)
(c),i−1+2kn,n
0 V(i−1)∆n

]
.

Noting that the summand in the last sum is Fni+2kn−2-measurable, then applying lemma B.8 in Aı̈t-Sahalia

and Jacod (2014) requires showing the following two results

1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

|E(Θ(u, v)
(c),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)|

]
P⇒ 0 and

2kn − 2

∆
1/2
n

[
[T/∆n]−2kn+1∑

i=1

E
(
|Θ(u, v)

(c),i−1+2kn,n
0 V(i−1)∆n

)|2
)]
⇒ 0.

The first point readily follows from the inequality

|E(Θ(u, v)
(c),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)| ≤

K∆
1/2
n γ̃nu,v if (u, v) = (1, 1)

K∆
1/2
n γ̃nu,v∆n if (u, v) = (2, 2)

≤ K∆3/2
n in all cases

while the second is a direct consequence of

E(|Θ(u, v)
(c),i−1+2kn,n
0 V(i−1)∆n

|2) ≤

K∆
1/2
n (γ̃nu,v)

2 if (u, v) = (1, 1)

K∆
1/2
n (γ̃nu,v)

2∆2
n if (u, v) = (2, 2)

≤ K∆5/2
n in all cases.

Finally to prove that Ê′′(1)
P

=⇒ 0, we exploit the fact that

E(|Θ(u, v)
(c),i,n
0

(
V(i−1)∆n

− V(i−2kn)∆n

)
|) ≤ E(|Θ(u, v)

(c),i,n
0 |2)1/2E(|V(i−1)∆n

− V(i−2kn)∆n
|2)1/2

≤

K∆
1/2
n γ̃nu,v if (u, v) = (1, 1)

K∆
1/4
n γ̃nu,v∆n∆

1/4
n if (u, v) = (2, 2)

which follows from an application of Cauchy-Schwartz inequality combined with existing estimates. Indeed

using successive conditioning one can prove that for (u, v) = (1, 1)and(2, 2) E(|V(i−1)∆n
− V(i−2kn)∆n

|2) ≤
∆

1/2
n under Assumption 2.

Proof of (60) for w = 2

The target is to show that

Ê(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

(
2kn−1∑
m=1

( 3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

)
×

ζ(u)n,ghi−m

)
ζ(v)n,abi

P
=⇒ 0.
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In order to achieve this goal we introduce some new notation, for any 0 ≤ m ≤ 2kn − 1

Θ(u, v)(c),i,n
m =

3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

ρ(u, v)(c),i,n,gh =

2kn−1∑
m=1

Θ(u, v)(c),i,n
m ζ(u)n,ghi−m.

It is easy to see that Θ(u, v)
(c),i,n
m is Fni−m−1 measurable and satisfies by Hölder inequality

|Θ(u, v)(c),i,n
m | ≤ γ̃nu,v and E

(
|Θ(u, v)(c),i,n

m |q
∣∣Fni−2kn

)
≤ Kq∆

q/4
n (γ̃nu,v)

q.

Using Lemma 5, we deduce that for q ≥ 2

E(|ρ(u, v)(c),i,n,gh|q) ≤

Kq(∆
1/4
n γ̃nu,v)

qk
q/2
n if u = 1

Kq(∆
1/4
n γ̃nu,v)

q/k
q/2
n if u = 2

≤

Kq/k
2q
n if v = 1

Kqk
q
n if v = 2

(65)

Set

Ê′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(c),i,n,ghE(ζ(v)n,abi |Fni−1),

Ê′′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(c),i,n,gh(ζ(v)n,abi − E(ζ(v)n,abi |Fni−1)).

The martingale increments property implies E(|Ê′′(2)|2) ≤ K∆
1/2
n in all the cases implying Ê′′(2)

P
=⇒ 0.

Next using the bounds on ρ(u, v)(c),i,n,gh and similarly to step 7 on page 549 of Aı̈t-Sahalia and Jacod (2014),

we obtain that Ê′(2)
P

=⇒ 0.

Return to the proof of Theorem 1

So far, we have proved that,

1

∆
1/4
n

(
̂[H(c), G(c)]

(A1)

T −
d∑

g,h,a,b=1

2∑
u,v=1

A11(H, gh, u;G, ab, v)nT +A12(H, gh, u;G, ab, v)nT

+A12(G, ab, v;H, gh, u)nT

)
P−→ 0.

We next show that,

1

∆
1/4
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(cni−2kn)ρgh(u, v)ni ζ
′

ab(v)ni
P

=⇒ 0, ∀ (u, v) (66)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−

∫ T

0

(∂ghH∂abG)(ct)c
gh,ab
t dt

)
P

=⇒ 0 when (u, v) = (2, 2) (67)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− 3

θ2

∫ T

0

(∂ghH∂abG)(ct)(c
ga
t c

hb
t + cgbt c

ha
t )dt

)
P

=⇒ 0 when (u, v) = (1, 1)

(68)

1

∆
1/4
n

A11(H, gh, u;G, ab, v)
P

=⇒ 0 when (u, v) = (1, 2), (2, 1) (69)
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which in turn will imply,

1

∆
1/4
n

(
̂[H(c), G(c)]

(A)

T − [H(c), G(c)]T −
3

2k3
n

d∑
g,h,a,b

2∑
u,v=1

[T/∆n]∑
i=2kn

[
(∂ghH∂abG)(cni−2kn)ρgh(u, v)ni ζ

′′

ab(v)ni (70)

+ (∂abH∂ghG)(cni−2kn)ρab(v, u)ni ζ
′′

gh(v)ni

])
P

=⇒ 0. (71)

(66) can be proved easily following steps similar to step 7 on page 549 of Aı̈t-Sahalia and Jacod (2014) and

using the bounds of ρ(u, v)n,ghi in (65) . To show (67),(68) and (69), we set

A11(H, gh, u;G, ab, v) = Γ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(ci−1)ζ(u)n,ghi ζ(v)n,abi .

Then it holds that,

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−A11(H, gh, u;G, ab, v)

)
P⇒ 0.

This result can be proved following similar steps as for (59) in case w = 1 by replacing Θ(u, v)
(c),i,n
0 by

Γ(u, v)n0 ((∂ghH∂abG)(ci−1) − (∂ghH∂abG)(ci−2kn)) which has the same bounds as the former. Next we

decompose A11 as

A11(H, gh, u;G, ab, v) = Γ(u, v)n0

[
[T/∆n]∑
i=2kn

(∂ghH∂abG)(ci−1)V ni−1

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(ci−1)
(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(ci−1)
(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]

Following the proof of (60) for w = 1 at this time replacing Θ(u, v)
(c),i,n
0 by Γ(u, v)n0 (∂ghH∂abG)(ci−1) which

satisfies only the condition |Γ(u, v)n0 (∂ghH∂abG)(ci−1)| ≤ γ̃nu,v we can see that the last two terms in the

above decomposition of vanish to zero at a rate slower that ∆
1/4
n thus we have

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− Γ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(ci−1)V ni−1

))
⇒ 0

As a consequence for (u, v) = (1, 2), (2, 1)

1

∆
1/4
n

A11(H, gh, u;G, ab, v)⇒ 0

The results follows from the following observation,

1

∆
1/4
n

(
Γ(u, v)n0

( d∑
g,h,a,b=1

[T/∆n]∑
i=2kn

(∂ghH∂abG)(ci−1)V ni−1(u, v)
)
− 3

θ2

∫ T

0

(∂ghH∂abG)(ct)(c
ga
t c

hb
t + cgbt c

ha
t )dt

)
⇒ 0,

for(u, v) = (2, 2)

1

∆
1/4
n

(
d∑

g,h,a,b=1

Γ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(ci−1)V ni−1(u, v)
)
− [H(c), G(c)]T

)
⇒ 0, for(u, v) = (1, 1)
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Set

ξ(H, gh, u;G, ab, v)ni =
1

∆
1/4
n

(∂ghH∂abG)(cni−2kn)ρgh(u, v)ni ζ
′′
ab(v)ni

Z(H, gh, u;G, ab, v)nt = ∆1/4
n

[t/∆n]∑
i=2kn

ξ(H, gh, u;G, ab, v)ni .

(70) implies

1

∆
1/4
n

(
̂[H(c), G(c)]

(A)

T − [H(c), G(c)]T

)
L
=

d∑
g,h,a,b=1

2∑
u,v=1

1

∆
1/4
n

(
Z(H, gh, u;G, ab, v)nT +Z(H, ab, v;G, gh, u)nT

)
.

(72)

Next, observe that to derive the asymptotic distribution of
(

̂[H1(c), G1(c)]
(A)

T , . . . , ̂[Hκ(c), Gκ(c)]
(A)

T

)
, it suf-

fices to study the joint asymptotic behavior of the family of processes 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT .

It is easy to see that the ξ(H, gh, u;G, ab, v)ni are martingale increments, relative to the discrete filtration

(Fni ). Therefore, by Theorem 2.2.15 of Jacod and Protter (2012), to obtain the joint asymptotic distri-

bution of 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT , it is enough to prove the following three properties, for all t > 0, all

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′) and all martingales N which are either bounded and orthogonal

to W , or equal to one component W j ,

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)n
t

:=

[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ξ(H
′, g′h′, u′;G′, a′b′, v′)ni |Fni−1)

P
=⇒ A

(
(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)

)
t

[t/∆n]∑
i=2kn

E(|ξ(H, gh, u;G, ab, v)ni |4|Fni−1)
P

=⇒ 0

B(N ;H, gh, u;G, ab, v)nt :=

[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ∆n
i N |Fni−1)

P
=⇒ 0.

Using the polynomial growth assumption on Hr and Gr, the second and the third results can be proved by

a natural extension to the multivariate case of (B.105) and (B.106) in Aı̈t-Sahalia and Jacod (2014).

Define

V a
′b′

ab (v, v′)t =


(caa

′

t cbb
′

t + cab
′

t cba
′

t ) if (v, v′) = (1, 1)

cab,a
′b′

t if (v, v′) = (2, 2)

0 otherwise,

and

V
g′h′

gh (u, u′)t =


(cgg

′

t chh
′

t + cgh
′

t chg
′

t ) if (u, u′) = (1, 1)

cgh,g
′h′

t if (u, u′) = (2, 2)

0 otherwise.

Once again using the polynomial growth assumption on Hr and Gr and following steps similar to the proof

of (B.104) in Aı̈t-Sahalia and Jacod (2014), one can show that

A
(

(H, gh, u;G, ab, v),(H ′, g′h′, u′;G′, a′b′, v′)
)
t

=

M(u, v;u′, v′)

∫ t

0

(∂ghH∂abG∂g′h′H∂a′b′G)(cs)V
a′b′

ab (v, v′)sV
g′h′

gh (u, u′)sds,
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with

M(u, v;u′, v′) =


3/θ3 if (u, v;u′, v′) = (1, 1; 1, 1)

3/4θ if (u, v;u′, v′) = (1, 2; 1, 2), (2, 1; 2, 1)

151θ/280 if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Therefore, we have

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)
T

=



3
β3

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(ct)(c

gg′

t chh
′

t + cgh
′

t chg
′

t )(caa
′

t cbb
′

t + cab
′

t cba
′

t )dt if (u, v;u′, v′) = (1, 1; 1, 1)

3
4β

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(ct)(c

gg′

t chh
′

t + cgh
′

t chg
′

t )cab,a
′b′

t dt if (u, v;u′, v′) = (1, 2; 1, 2)

3
4β

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(ct)(c

aa′

t cbb
′

t + cab
′

t cba
′

s )t
gh,g′h′

s dt if (u, v;u′, v′) = (2, 1; 2, 1)

151β
280

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(ct)c

ab,a′b′

s cgh,g
′h′

t dt if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Using (72), we deduce that the asymptotic covariance between ̂[Hr(c), Gr(c)]
(A)

T and ̂[Hs(c), Gs(c)]
(A)

T is given

by

d∑
g,h,a,b=1

d∑
g′,h′,a′,b′=1

2∑
u,v,u′,v′=1

(
A
(

(Hr, gh, u;Gr, ab, v), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, gh, u;Gr, ab, v), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

+A
(

(Hr, ab, v;Gr, gh, u), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, ab, v;Hr, gh, u), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

)
.

After some simple calculations, the above expression can be rewritten as

d∑
g,h,a,b=1

d∑
j,k,l,m=1

(
6

θ3

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(ct)

)[
(cgjt c

hk
t + cgkt c

hj
t )(calt c

bm
t + camt cblt )

+ (cajt c
bk
t + cakt c

bj
t )(cglt c

hm
t + cgmt chlt )

]
dt

+
151θ

140

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(ct)

)[
cgh,jkcab,lm + cab,jkcgh,lm

]
dt

+
3

2θ

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(ct)

)[
(cgjt c

hk
t + cgkt c

hj
t )cab,lmt + (calt c

bm
t + camt cblt )cgh,jkt

+ (cglt c
hm
s + cgmt chls )cab,jkt + (cajt c

bk
t + cakt c

bj
t )cgh,lmt

]
dt

)
,

which completes the proof.

B.2 Proof of Theorem 2

Using the polynomial growth assumption on Hr, Gr, Hs and Gs and Theorem 2.2 in Jacod and Rosenbaum

(2012), one can show that

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T .
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Next, making use of equation (3.27) in Jacod and Rosenbaum (2012), it can be shown that

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T .

Finally, to show that

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T ,

we first observe that as in Step 1, the approximation error induced by replacing ĉni by ĉ
′n
i is negligible.

For 1 ≤ g, h, a, b, j, k, l,m ≤ d and 1 ≤ r, s ≤ d, we define

Ŵn
T =

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂ghHs∂lmGs)(ĉ
n
i )γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn

ŵ(1)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(c
n
i )E(γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn
|Fni )

ŵ(2)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(c
n
i )(γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn
− E(γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn
|Fni ))

ŵ(3)ni =
(

(∂ghHr∂abGr∂jkHs∂lmGs)(ĉ
n
i )− (∂ghHr∂abGr∂jkHs∂lmGs)(c

n
i )
)
γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn

Ŵ (u)nt =

[T/∆n]−4kn+1∑
i=1

ŵi(u), u = 1, 2, 3.

Note that we have Ŵn
t = Ŵ (1)nt + Ŵ (2)nt + Ŵ (3)nt . By Taylor expansion and using repeatedly the bound-

edness of ct we have

|ŵ(3)ni | ≤ (1 + ‖βni ‖4(p−1))‖βni ‖‖γni ‖2‖γni+2kn‖
2,

which implies E(|ŵ(3)ni |) ≤ K∆
5/4
n and Ŵ (3)nt

P−→ 0. Using Cauchy-Schwartz inequality and the bound

E(‖γni ‖q|Fni ) ≤ K∆
q/4
n , we have E(|ŵ(2)ni |2) ≤ K∆2

n. Observing furthermore that ŵ(2)ni is Fi+4kn−measurable,

we use Lemma B.8 in Aı̈t-Sahalia and Jacod (2014) to show that Ŵ (2)nt
P−→ 0. Also, define

wni = (∂ghHr∂abGr∂jkHs∂lmGs)(c
n
i )
[ 4

k2
n∆n

(cn,gai cn,hbi + cn,gbi cn,hai )(cn,jli cn,kmi + cn,jmi cn,kli )

+
4

3
(cn,jli cn,kmi + cn,jmi cn,kli )cn,gh,abi +

4

3
(cn,gai cn,hbi + cn,gbi cn,hai )cn,jk,lmi +

4(k2
n∆n)

9
cn,gh,abi cn,jk,lmi

]
,

Wn
T = ∆n

[T/∆n]−4kn+1∑
i=1

wni .

The cadlag property of c and c and kn
√

∆n −→ θ and the Riemann integral argument imply Wn
T

P−→ WT

defined as

WT =

∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(ct)
[ 4

θ2
(cgat c

hb
t + cgbt c

ha
t )(cjlt c

km
t + cjmt cklt ) +

4

3
(cjlt c

km
t + cjmt cklt )cgh,abt

+
4

3
(cgat c

hb
i + cgbt c

ha
t )cjk,lmt +

4θ2

9
cgh,abt cjk,lmt

]
dt.

In addition, by Lemma 4 we have

E(|Ŵ (1)nT −Wn
T |) ≤ ∆nE

(
[T/∆n]−4kn+1∑

i=1

(∆1/8
n + ηi,4kn)

)
.
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Hence, by the third point of Lemma 6 we have Ŵn
T

P−→Wt from which it can be deduced that

9

4θ2

[
Ŵ (1)nT +

4

k2
n

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(ĉ
n
i )[Cni (jk, lm)Cni (gh, ab)]

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(ĉ
n
i )Cni (gh, ab)γn,jki γn,lmi

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(ĉ
n
i )Cni (jk, lm)γn,ghi γn,abi

]
P−→
∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(ct)c
gh,ab
t cjk,lmt dt.

The result follows from the above convergence, a symmetry argument and straightforward calculations.
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