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Résumé 
L’encéphalopathie hépatique (EH) est un syndrome neuropsychiatrique découlant des 

complications de l'insuffisance hépatique. Les patients souffrant d'une insuffisance hépatique 

chronique (IHC) présentent fréquemment une EH minimale (EHM) caractérisée par des dysfonctions 

cognitives subtiles qui affectent leur qualité de vie. L'insuffisance hépatique entraîne une 

hyperammoniémie, le facteur central dans la pathogenèse de l'EH. Pourtant, les taux d'ammoniaque 

sérique ne sont pas corrélés avec la sévérité de l'EH lors d'une IHC, suggérant que d'autres facteurs y 

contribuent. L'œdème cérébral est une caractéristique neuropathologique décrite chez les patients 

souffrant d'une EHM et plusieurs facteurs dont le stress oxydatif, les altérations du métabolisme 

énergétique et l'augmentation de la glutamine cérébrale pourraient contribuer à la pathogenèse de 

l'œdème cérébral lors d'une EHM induite par une IHC. Les mécanismes sous-jacents exacts ainsi que 

les relations entre ces facteurs et l'ammoniaque ne sont pas connus. Présentement, le seul traitement 

efficace de l'IHC est la transplantation hépatique, une option thérapeutique très limitée. 

Le but de cette thèse est de contribuer à l'avancement des connaissances sur les mécanismes 

sous-jacents liés au rôle du stress oxydatif, de la glutamine et du lactate dans la pathogenèse de 

l'œdème cérébral lors d'une EHM induite par une IHC afin d'envisager de nouvelles options 

thérapeutiques. Les objectifs précis étaient: 1. Déterminer le rôle de l’ammoniaque dans la 

pathogenèse de l'œdème cérébral lors d'une EHM induite par une IHC. 2. Investiguer le rôle du stress 

oxydatif, en décrivant sa présence au niveau systémique et au niveau cérébral dans la pathogenèse de 

l'œdème cérébral lors d'une EHM induite par une IHC. 3. Déterminer la relation entre l’ammoniaque 

et le stress oxydatif dans la pathogenèse de l'œdème cérébral. 4. Établir le rôle du lactate et de la 

glutamine dans la pathogenèse de l'œdème cérébral et leur relation avec l’ammoniaque. Pour 

atteindre ces objectifs, 2 modèles animaux d'EHM obtenus par microchirurgie chez le rat ont été 

utilisés: 1) la ligature de voie biliaire, un modèle d'IHC et 2) l'anastomose porto-cave, un modèle 

d'hyperammoniémie induite par la dérivation portosystémique.  

Nos résultats démontrent que l'ammoniaque et le stress oxydatif indépendamment n'induisent 
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pas l'œdème cérébral lors d'une EHM. Pourtant, lorsque les 2 facteurs agissent ensemble ils 

présentent un effet synergique qui entraîne le développement de l'œdème cérébral, le stress oxydatif 

étant une première insulte, qui est suivie par l'hyperammoniémie comme deuxième insulte. En plus, 

le stress oxydatif a été mis en évidence seulement au niveau systémique, et non au niveau central 

dans notre modèle d'IHC en association avec l'œdème cérébral, suggérant que le stress oxydatif 

systémique est une conséquence de la dysfonction hépatique et que l'hyperammoniémie n’induit pas 

le stress oxydatif ni systémique ni central. 

Nous avons démontré qu’une augmentation du lactate cérébral est une conséquence directe de 

l'hyperammoniémie et joue un rôle important dans la pathogenèse de l'œdème cérébral lors d'une 

EHM induite par une IHC, tandis qu’une augmentation de la glutamine au niveau cérébral n'est pas 

un facteur clé. 

La compréhension de ces mécanismes a entraîné la proposition de 3 nouvelles stratégies 

thérapeutiques potentielles pour l'EHM. Elles ciblent la diminution de l'ammoniaque sérique, la 

réduction du stress oxydatif et l'inhibition de la synthèse du lactate. 

 

Mots-clés: encéphalopathie hépatique, hyperammoniémie, œdème cérébral, stress oxydatif, espèces 

réactives d’oxygène, ligature de la voie biliaire, anastomose portocave, AST-120, allopurinol, diéthyl 

maléate, résonance magnétique nucléaire, lactate, glutamine, dichloroacétate. 
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Abstract 
Hepatic encephalopathy (HE) is a metabolic neuropsychiatric syndrome which occurs as a 

complication of liver failure/disease. Patients with chronic liver disease (CLD) present often with 

minimal HE (MHE) characterized by subtle cognitive dysfunction which impairs their quality of life. 

Impaired liver function leads to hyperammonemia which is a central factor in the pathogenesis of HE. 

However, ammonia alone is poorly correlated with the severity of HE during CLD, strongly 

suggesting other factors may contribute. Brain edema is a neuropathological feature described in 

MHE patients and several factors such as oxidative stress, energy metabolism alterations and an 

increase in glutamine may to contribute to the pathogenesis of brain edema during HE related to 

CLD. However the exact underlying mechanisms and the relationships between these factors and 

ammonia are poorly understood. To date, the only effective treatment of CLD remains liver 

transplantation, a limited therapeutic option. 

 The aim of this thesis is to advance the knowledge into the mechanisms underlying the role of 

oxidative stress, glutamine and lactate in the pathogenesis of brain edema during MHE associated 

with CLD in order to uncover new therapeutic options. The study objectives were: 1. Determine the 

role of ammonia in the pathogenesis of brain edema in chronic liver disease. 2. Investigate the role of 

oxidative stress, depicting between its presence systemically and centrally, in the pathogenesis of 

brain edema in chronic liver disease. 3. Determine the relationship of ammonia and oxidative stress 

in the pathogenesis of brain edema. 4. Define the roles of lactate and glutamine in the pathogenesis 

of brain edema and their relationship with ammonia. To achieve these objectives, we used 2 

microsurgical rat models: 1) bile-duct ligation, a cirrhosis model and 2) portacaval anastomosis, a 

hyperammonemia model following portal-systemic shunting. 

Our findings demonstrate that ammonia and systemic oxidative stress independently do not 

induce brain edema in MHE related to CLD. However, when both factors are present, they exert a 

synergistic effect leading to the development of brain edema with oxidative stress presenting as a 

“first hit”, followed by hyperammonemia as a “second hit”. Moreover, solely systemic and not 

central oxidative stress was observed in our CLD rat model in relation to brain edema implying that 
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systemic oxidative stress is a consequence of liver dysfunction and that central oxidative stress is not 

a direct effect of hyperammonemia in the setting of CLD. Moreover, we revealed that increased 

cerebral lactate is a direct consequence of hyperammonemia and also plays an important role in the 

pathogenesis of brain edema, while increased cerebral glutamine does not.  

The understanding of these mechanisms led to the proposal of three different strategies as 

potential HE therapies. These are directed towards lowering ammonia, reducing oxidative stress and 

inhibiting lactate synthesis. 

 

Keywords: hepatic encephalopathy, hyperammonemia, brain edema, oxidative stress, reactive 

oxygen species, bile-duct ligation, portacaval anastomosis, AST-120, allopurinol, diethyl maleate, 

nuclear magnetic resonance, lactate, glutamine, dichloroacetate  
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1.1 Hepatic encephalopathy 

1.1.1 Definition and epidemiology 

 Hepatic encephalopathy (HE) is a metabolic neuropsychiatric syndrome manifesting by a wide 

spectrum of symptoms, ranging from mild cognition and attention deficits to coma and death. It 

represents a major complication of acute liver failure (ALF) as well as of chronic liver disease 

(CLD). HE is classified in 3 categories depending on the type of liver injury: type A results 

following ALF, type B is induced by portal-systemic bypass and type C is associated with CLD. The 

latter is further classified by the severity of symptoms in minimal and overt HE (Ferenci et al., 

2002). 

 ALF is a rare condition, affecting around 2000 patients annually in the USA with a stable 

annual incidence and a mean survival rate of 45%, varying between 10- 65% depending on the cause 

(Lee, 2012). ALF is defined as a rapid and severe deterioration of a previously healthy liver leading 

to HE along with jaundice and coagulopathy (Hoofnagle et al., 1995). Close to 55% are a result of 

drug intoxication (acetaminophen occurring in 46% of cases), with the remaining cases caused by 

autoimmune hepatitis, acute viral hepatitis (A and B) and 15% unknown. HE induced by ALF, 

classified as type A HE, is characterized by a rapid, severe deterioration of mental, brain edema and 

an increase in intracranial pressure (ICP). Brain stem herniation, instigated through intracranial 

hypertension, is a frequent cause of death in these patients (Bernal et al., 2007; Bhatia et al., 2006; 

Jalan et al., 2004a). 

CLD is defined as a progressive liver function deterioration occurring as a consequence 

of a persistent hepatic insult such as chronic hepatitis B and C, alcoholic hepatitis or non-alcoholic 

steatohepatitis (Rosen, 2011; Sanyal et al., 2010; Wang and Beydoun, 2007). The prevalence of 

these conditions is on the rise and is estimated that 3 million Canadians suffer from liver disease 

(Canadian Liver Foundation, 2013). In time, over a period of 10-20 years, under the aggression of 

the hepatic insult, normal liver architecture is replaced by fibrosis and regeneration nodules. This 

status is defined as cirrhosis which represents the fifth cause of death in Canada (Statistics Canada, 

2010). Cirrhosis leads to numerous complications such as portal hypertension, impaired protein 
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synthesis, multi-organ dysfunction with  50-70% of patients presenting with HE (type C)  (Bajaj, 

2010). HE in this setting is the result of multiple pathogenic processes: decreased hepatic 

detoxification and synthetic capacity, formation of portal-systemic shunts (consequence of portal 

hypertension) and increased production and release of toxins by the ailing liver. These conditions are 

favored by numerous precipitating factors such as: infections, dehydration, renal failure, aggravation 

of the hepatic disease by a novel superimposed hepatic insult, the development of hepatocellular 

carcinoma, gastrointestinal bleeding, constipation or insertion of a transjugular intrahepatic 

portosystemic shunt (TIPS) (Munoz, 2008).These conditions lead to a variable clinical picture, 

classified into minimal and overt HE (figure 1). 

 The third type of HE is type B which results from portal-systemic shunting (bypass) without the 

presence of an underlying parenchymal liver disease, a rare condition. However, animal models, 

such as animals subjected to a portacaval anastomosis, are frequently used to study the effects of 

gut-derived toxic metabolites by-passing the liver on brain function (Butterworth et al., 2009). 

 

 
Figure 1. Classification of the subtypes of hepatic encephalopathy type C as described in the text. 
HE, hepatic encephalopathy. 
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1.1.1.1 Minimal HE 

 Minimal HE (MHE), the mildest form of HE, is characterized by neuropsychological and 

neuropsychiatric changes in the absence of any clinically evident symptoms. The symptoms consist 

in attention and cognition deficits and psychomotor performance impairments detectable only by 

neuropsychological and neurophysiological testing (tests such as the psychometric hepatic 

encephalopathy score, the repeatable battery for the assessment of neuropsychological status, the 

critical flicker frequency, the inhibitory control test or the EncephalApp, (Bajaj et al., 2013; 

Córdoba, 2011)). Most tests are time-consuming and not routinely performed during clinical 

examinations, therefore MHE remains widely underdiagnosed. In spite of the lack of obvious 

symptoms, MHE strongly impacts the quality of life of the patients, leading to impairments of 

operating heavy machinery and to an increased risk of having vehicle accidents (Amodio, 2009; 

Montgomery and Bajaj, 2011). Moreover, MHE patients have a 4-fold increased risk of developing 

overt HE (Hartmann et al., 2000) as well as a higher probability of leading to persisting neurological 

complications following liver transplant (Chavarria and Cordoba, 2013). 

 

1.1.1.2 Overt HE 

 Overt HE is the clinically detectable form of HE. The highly variable and nonspecific 

symptomatology has been classified into 4 grades known as the West Haven Criteria (Conn et al., 

1977) (table I). Grade 0 represents MHE. Grade I is characterized by sleep-wake rhythm alterations, 

shortened attention span, lack of awareness; grade II manifests as lethargy, apathy, overt personality 

changes and disorientation; grade III is defined by somnolence, stupor and severe confusion and 

grade IV represents the coma stage. 

 Symptoms may occur in surges (termed episodic HE) or be continuously present (persistent 

HE). The former is characterized by brief episodes, while the latter by continuous presence of overt 

HE symptoms. 
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Table I. West Haven criteria for the grading of hepatic encephalopathy. Modified after Bajaj, 2010 
with the publisher's permission. 
 

Grade Consciousness Intellect and behaviour Neurological findings 

0 Normal Normal Normal examination; impaired 

psychomotor testing 

1 Mild lack of 

awareness 

Shortened attention span; impaired 

addition or subtraction 

Mild asterixis or tremor 

2 Lethargic Disoriented; inappropriate behaviour Obvious asterixis; slurred speech 

3 Somnolent but 

arousable 

Gross disorientation; bizarre 

behaviour 

Muscular rigidity and clonus; 

hyper-reflexia 

4 Coma Coma Decerebrate posturing 

 

 

1.2 Brain edema in liver disease 

1.2.1 Brain edema 

 Brain edema is the result of water accumulation in the brain and may be a consequence of 

astrocyte or neuronal swelling, but also of an accumulation of water in the extracellular space. The 

maintenance of a constant volume is critical for cerebral cell homeostasis. Brain edema can occur as 

a result of either a disruption of the blood-brain barrier (BBB, vasogenic brain edema) or following 

metabolic alterations which lead to an accumulation of osmolytes within cells followed by the entry 

of water (cytotoxic brain edema). Brain edema can have a direct effect on cerebral function through 

physical stress (in addition brain edema can lead to an increase in intracranial pressure (ICP) as the 

brain lies within a non-compliant skull). Also, changes in cell water may affect signaling cascades, 

modify the intracellular and cell-to-cell communication or disturb the architecture of the cell or 
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intracellular compartments (Pasantes-Morales and Cruz-Rangel, 2010). 

 Vasogenic edema involves the breakdown of the BBB. It is induced following conditions such 

as traumatic brain injury or neoplasms, where the BBB is physically disrupted, or following 

inflammatory and infectious cerebral diseases, where the BBB opens following the agression of 

inflammatory factors. The BBB is composed of endothelial cells connected by tight junctions, 

resting on a basal lamina and connected with astrocytes and pericytes (figure 2), structures which, 

together with neurons, form the neurovascular unit (Hawkins and Davis, 2005). The BBB regulates 

the passage of molecules from the blood into brain, specifically allowing some through specific 

channels and transporters. The endothelial cells line the cerebral capillaries and their particularity 

compared to non-cerebral endothelial cells resides in the abundance of tight junctions proteins 

(Kniesel and Wolburg, 2000) which restrain the paracellular space (Abbott, 2000) not allowing 

macromolecules to pass. Pericytes contribute to the stability of the cerebral capillaries (von Tell et 

al., 2006). Astrocytes are the most abundant cell of the human brain with important roles as a 

metabolic support for neurons and endothelial cells. Therefore, alterations of the BBB's tight 

junctions, affecting BBB integrity, allows the free passage of macromolecules (such as circulating 

proteins) into the cerebral extracellular space thus pulling more water into the brain and causing 

vasogenic edema (figure 3). The alterations of the BBB are evidenced by two methods. The first one 

is the direct visualization of the BBB breakdown by electronic microscopy (Kato et al., 1992). The 

second one consists in infusing intravenously substances that do not normally pass through the BBB, 

but will pass if a BBB breakdown is present. These substances are detected in cerebral tissue by 

spectrophotometry, fluorescence, Western Blot or radioactivity measurement. Small molecules such 

as sodium fluorescein or [14C]-γ-aminobutyric acid may detect small breakdowns, while big 

molecules such as Evans Blue or immunoglobulin G detect large ruptures of the BBB. 
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Figure 2. Structure of the BBB. Explanations are provided in the text. After Takeshita and Ransohoff, 
2012 with the publisher's permission. 

 
Numerous cerebral metabolic reactions produce osmotic molecules; in the normal brain they are 

rapidly cleared by enzymatic metabolism or excretion into the blood. However, numerous 

pathologies such as cerebral ischemia, infections or diabetic ketoacidosis (Donkin and Vink, 2010; 

Levin, 2008; Papadopoulos et al., 2000) induce an increase in osmolyte production or impaired 

clearance, leading to their accumulation into the brain. This hypertonicity will induce an increased 

water entry into the brain in order to restore the osmotic equilibrium (figure 3) thus inducing 

cytotoxic brain edema.  

Different ion and water transporters located on the BBB contribute to the development of brain 

edema. One example is the family of bi-directional transmembrane water channels aquaporin (AQP). 

Of those, particulary AQP4 is highly expressed on the astrocytic end-feet (Amiry-Moghaddam et al., 

2004) and plays an important role in the development of brain edema in traumatic brain injury, 

tumors and cerebrovascular disease (Badaut et al., 2011; Donkin and Vink, 2010; Nico and Ribatti, 

2011). Other examples of transporters implicated in inducing brain edema are the NKCC, the      

Na+-K+-2Cl- co-transporter which maintains an inwardly-directed net ion flux, therefore inducing 
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brain edema by increasing cell volume (Kahle et al., 2009); the nonselective cation channel (NCCa-

ATP), which is regulated by sulphonylurea receptor 1, a nonselective cation channel expressed in all 

cells of the neurovascular unit only in central nervous system injuries, including cerebral ischemia 

and traumatic brain injury (Simard et al., 2012). 

 
Figure 3. Vasogenic and cytotoxic brain edema. Left panel: vasogenic brain edema appears as a 
consequence of a physical breakdown of the BBB that allows plasma macromolecules (proteins) and 
other compounds to cross the BBB and accumulate in the extracellular space followed by an entry of 
water in attempt to re-establish the osmotic equilibrium and consequently results in brain edema; right 
panel: cytotoxic brain edema is the result of cellular metabolic alterations that cause an intracellular 
accumulation of osmotic molecules such as ions and amino acids, followed by an entry of water in 
order to re-establish the osmotic equilibrium. After Bosoi and Rose, 2013 with the publisher's 
permission. 
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1.2.1.1. Intracranial hypertension in ALF and not CLD 

 Intracranial volume consists of 10% of cerebral tissue, 10% of blood and 80% cerebrospinal 

fluid (Rengachary and Ellenbogen, 2005). Cerebral water accumulation leads to increased 

intracranial volume. Since the skull is not compliant an increase in brain volume will lead to an 

increase in ICP which in turn may trigger brain stem herniation and death (a frequent cause of death 

in ALF). However intracranial hypertension rarely occurs in CLD. It is believed the degree of brain 

edema in CLD is "low-grade", not sufficient enough to cause an increase in ICP ((Häussinger et al., 

2000), figure 4). 

 

 
Figure 4. Relationship between brain volume and intracranial pressure (ICP): in chronic liver disease 
(CLD) a certain increase in brain volume does not lead to an increase in ICP; in acute liver failure 
(ALF) the water accumulation exceeds the brain volume capacity and leads to an increase in ICP. 

 
 Several other explanations for why an increase in ICP is found in ALF and not CLD exist. An 

increase in cerebral blood flow (CBF) will lead to an increase in brain volume. In ALF an increase in 
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CBF is observed (Jalan et al., 2004b; Larsen et al., 1996; Strauss et al., 1997; Wendon et al., 1994), 

while in CLD it decreases (Almdal et al., 1989; Burra et al., 2004; Dam et al., 1998; Iversen et al., 

2009; Iwasa et al., 2000; Trzepacz et al., 1994). Second, since CLD develops over years of hepatic 

insults, cirrhotic patients are much older than ALF patients, with a median age of 56 years at 

diagnosis (Fleming et al., 2012) compared to a mean of 38 years in ALF (Ostapowicz et al., 2002). 

In the aging CLD population, the physiological aging atrophy of the brain, characterized by a steady 

volume loss, is present (Garcia-Martinez et al., 2011). A smaller brain volume in these patients 

grants more ‘‘space’’ for expansion in the eventuality of swelling. Therefore, a higher increase in 

brain volume constituents (compared to ALF) is needed in order for intracranial hypertension to 

develop in CLD. 

 

1.2.2 Vasogenic versus cytotoxic brain edema in liver disease 

 Brain edema in liver disease has been widely described. It has been evidenced in HE induced by 

ALF (Jiang et al., 2009a; Rose et al., 2007) and CLD (Davies et al., 2009; Wright et al., 2007) in 

different animal models, as well as HE in patients with ALF (Bhatia et al., 2006; Gupta et al., 2010) 

and cirrhosis (Lodi et al., 2004). Brain edema has also been described in MHE patients, considered 

to have "low-grade" brain edema since they do not present an increase in ICP (Córdoba et al., 2001; 

Häussinger, 2006; Häussinger et al., 2000; Kale et al., 2006; Shah et al., 2008; Sugimoto et al., 

2008). 

 Brain edema induced by BBB breakdown (vasogenic edema) has been reported in different 

animal models of ALF and CLD, but the conclusions are inconsistent. Toxin-induced ALF following 

galactosamine or azoxymethane administration leads to cerebral extravasation of plasmatic Evans 

Blue and [14C] alpha-aminoisobutyric acid (Cauli et al., 2011; Dixit and Chang, 1990; Horowitz et 

al., 1983; Yamamoto and Nguyen, 2006). This effect is probably due to altered tight junctions as 

modifications of their composing proteins such as occludin, claudin-5, zonula occludens 1 and 2 

were demonstrated (Chen et al., 2009; Lv et al., 2010; Sawara et al., 2009; Shimojima et al., 2008). 

However, other reports in the same models performed in other animal species demonstrated a lack of 
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extravasation of horseradish peroxidase (Traber et al., 1987) and observed a microscopically intact 

BBB (Alexander et al., 2000; Potvin et al., 1984; Wright et al., 2007). The use of different animal 

species, various HE models and diverse brain edema evaluation techniques may explain this 

discrepancy and therefore further investigations looking into BBB integrity in liver failure/disease 

are warranted. 

 On the other hand, cytotoxic evidences of brain edema are well described. Alterations in 

numerous metabolites, such as lactate and glutamine, are well known to play a role in inducing brain 

edema (Chavarria et al., 2010; Zwingmann et al., 2004). Moreover, these alterations have been 

proven both in vitro and in ALF and CLD animal models, but also in patients due to the development 

of non-invasive advanced magnetic resonance imaging techniques (for review see (McPhail et al., 

2012)). 

 The neuropathology of HE involves swelling of the astrocytes, while neurons are resistant to the 

accumulation of water. Electron microscopy studies showed the cell most affected by swelling to be 

the astrocyte (Kato et al., 1992; Traber et al., 1987; Wright et al., 2007), while only one study 

demonstrated neuronal swelling (Kristiansen et al., 2010). In CLD, astrocytes present a characteristic 

morphology, named Alzheimer type II astrocytes: they are large, swollen and present enlarged 

swollen nuclei and cytoplasm, margination of chromatin, mitochondrial and rough endoplasmic 

reticulum proliferation and accumulation of glycogen (Norenberg, 1977; Wright et al., 2007). Given 

the metabolic support role of astrocytes for neurons, the accumulation of osmotic metabolites is 

more likely to occur in astrocytes than in neurons. Moreover, differences in mechanisms of volume 

regulation such as osmotic gradients and membrane channels ionic fluxes (Kelly and Rose, 2010; 

Olson and Li, 2000) between neurons and astrocytes explain why astrocytes are more prone to 

swelling (Pasantes-Morales and Cruz-Rangel, 2010). In regard to this, Nase et al. demonstrated that 

hypo-osmotic stress in normal mice induces an increased water entry only in astrocytes, not in 

neurons (Nase et al., 2008). 
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1.3. Pathogenesis of hepatic encephalopathy and brain edema 

1.3.1 Ammonia 

Genetic, environmental factors and type of liver disease may all impact the clinical 

manifestations of HE. However, ammonia has been long considered the main pathogenic factor 

involved in HE, since high ammonia concentrations lead to neurotoxicity (Felipo and Butterworth, 

2002). Ammonia is produced in large quantities by the gastrointestinal system and efficiently 

removed by the hepatic urea cycle. 

 

1.3.1.1 Ammonia chemistry and metabolism 

 Ammonia exists either as a gaseous weak base (NH3), or as an ion (NH4
+), forms which are in 

equilibrium depending on the pH accordingly to the Henderson-Hasselbach equation: 

log10[NH3 /NH4
+] = pH – pKa, where pKa is the acid dissociation constant. 

At the physiological pH, 98% of ammonia is in its ionic form and 2% is gaseous. Both ammonia 

forms can cross any membranes, NH3 by freely diffusing through the phospholipid layer of cells. 

NH4
+ however, has similar ionic properties with the K+ ion, therefore it crosses membranes using K+ 

channels and transporters, such as inward rectifying and voltage-gated K+ channels or Na+/K+ and 

H+/K+ ATP-ase (Moser, 1987) and Na+/K+/Cl- cotransporters (Aickin et al., 1982; Kelly et al., 2009). 

In addition, ammonia can also be transported through membranes by specific ammonia transporters, 

the nonerythroid Rhesus (Rh) glycoprotein B (RhBG) and C (RhCG) (for review see (Bakouh et al., 

2006)), as well as by the aquaporin-8 channel (Saparov et al., 2007). Through these chemical 

properties, ammonia has a direct effect on the cell pH, membrane potential and cellular metabolism 

(Bosoi and Rose, 2009). 

 NH4
+ is a substrate as well as a product of numerous metabolic reactions. The primary source of 

ammonia in the body is the gut either by enterocytes where glutamine is deaminated to glutamate by 

the phosphate-activated glutaminase (GA) or by intestinal bacteria through urealysis and protein 
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deamination. Further, ammonia is absorbed into the portal system and is filtered through the liver, 

which represents the main ammonia removing organ due to the presence of the urea cycle which 

maintains circulating concentrations of ammonia within 35-65 μM. 

 Other organs important in maintaining the homeostasis of ammonia are the muscle, the kidney 

and the brain. The muscle has a high protein and amino-acid turnover, therefore it contains numerous 

enzymes that metabolize ammonia. The most important is glutamine synthetase (GS) which 

incorporates ammonia into glutamate to form glutamine. The kidney contains both GA and GS, 

however its main role in ammonia metabolism is NH4
+ excretion in order to maintain the urinary pH, 

as well elimination of liver-derived urea. 

 Ammonia metabolism in the brain has some particularities. GS is found exclusively in 

astrocytes (Martinez-Hernandez et al., 1977), while GA is primarily found in the neurons, forming 

the glutamate–glutamine metabolic cycle between astrocytes and neurons. This cycle is important in 

recycling the glutamate released from neurons in the synaptic cleft, thus preventing neuronal 

excitotoxicity (Cooper, 2001). Astrocytes take up the glutamate by excitatory amino acid 

transporters (EAAT1 and EAAT2, (Gegelashvili et al., 2007; Rothstein et al., 1994)), and then 

converted it to glutamine through GS. Then, the non-neuroactive glutamine is released into the 

extracellular space through glutamine transporters (N and ASC-system transporter SN-1, SN-2 and 

ASCT2 (Chaudhry et al., 1999; Cubelos et al., 2005; Dolińska et al., 2004)), from where is uptaken 

by neurons (sodium-coupled amino acid transporter, SAT/ATA (Varoqui et al., 2000)), and 

transformed to glutamate by GA. 

 

1.3.1.2 Ammonia metabolism during liver failure 

 During ALF or CLD, several mechanisms lead to an increase in circulating ammonia which 

may reach up to 1.5 mM in ALF (Jiang et al., 2009a; Rose et al., 2007), and presents around a 2-3-

fold increase in CLD, up to 150-200 µM (Montoliu et al., 2011; Ong et al., 2003). First, cirrhotic 

patients present a switch of normal gut flora to ammoniagenic bacteria, therefore leading to an 
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increase in intestinal ammonia production (Romero-Gómez et al., 2009). Moreover, intestinal GA 

increases (Jover-Cobos et al., 2014; Romero-Gómez et al., 2004). Secondly, hepatic fibrosis induces 

portal hypertension and formation of portal-systemic shunts, therefore the portal blood bypasses the 

liver and its ammonia content fails to be detoxified by the liver. Thirdly, due to hepatocyte necrosis 

urea production is impaired and the ammonia contained by the portal blood reaching the liver is 

released into the hepatic veins and into the systemic circulation. 

 As a consequence of hyperammonemia, an increase of ammonia is seen in every organ and 

compensatory mechanisms are developed. The muscle presents an elevation of ammonia uptake 

(Bessman and Bessman, 1955) as well as an increase in GS activity (Desjardins et al., 1999; Jover-

Cobos et al., 2014), leading to excess glutamine formation (Chatauret et al., 2006). These 

mechanisms however, do not suffice in order to obtain an efficient whole-body ammonia removal; in 

addition glutamine can be converted back to ammonia and glutamate by GA (Wright et al., 2011). 

On the other hand, the kidney does not excrete more ammonia during hyperammonemia (Tyor et al., 

1960), instead it becomes an ammonia producer through increased GA activity (Dejong et al., 1993; 

Olde Damink et al., 2003). 

 

1.3.1.3 Cerebral metabolism and neurotoxicity of hyperammonemia 

 During hyperammonemia, ammonia crosses the BBB (both as an ion and as a gas) and 

increased cerebral ammonia exerts numerous toxic effects by affecting membrane potential, calcium 

signaling, cellular pH, metabolism as well as mRNA and protein expression (Bosoi and Rose, 2009). 

Inflammation, oxidative/nitrosative stress, energy metabolism alterations will ensue leading to 

impairment of neurotransmitter systems, cerebral blood flow, astrocyte morphology, mitochondrial 

function and other ((Bosoi and Rose, 2009), figure 5). 

High ammonia concentrations have been shown to be toxic to other organs, including the liver, 

the skeletal muscle, the respiratory and gastrointestinal tracts (Jia et al., 2014; Qiu et al., 2013; Seo et 

al., 2011; Wise et al., 2013). However, ammonia's neurotoxicity remains particularly dangerous due 
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to underlying mechanisms that remain incompletely understood. A possible explanation for the brain 

being so sensitive to ammonia might be the fact that it is a huge energy consumer (20% of the body's 

energy for an organ representing 2% of the body weight). Ammonia has been shown to trigger direct 

alterations to the TCA cycle, by inhibiting enzyme α-ketoglutarate dehydrogenase (Lai and Cooper, 

1986). At the same time, ammonia increases the glycolysis flux, by stimulating phosphofructokinase 

activity (Lowry and Passonneau, 1966). In spite of these alterations, ATP levels remain unchanged 

during ammonia intoxication and ALF (Fitzpatrick et al., 1988; Mans et al., 1994). 

 

 

Figure 5. Neurotoxic effects of ammonia. After Bosoi and Rose, 2009 with the publisher's permission. 

 

 In the brain, exclusively in the astrocytes, ammonia is metabolized to glutamine by GS. This 
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reaction leads to an excess of glutamine, considered an osmotic molecule important in the 

development of brain edema (astrocytic swelling, (Brusilow and Traystman, 1986)). Intracellular 

accumulation of glutamine will lead to a decrease in glutamate and other osmolytes such as taurine 

and myo-inositol and to disturbances of other amino acids such as aspartate and alanine (Heins and 

Zwingmann, 2010; Zwingmann, 2007; Zwingmann et al., 2003). 

 In ALF, high arterial ammonia concentrations are correlated with increased ICP and cerebral 

herniation (Clemmesen et al., 1999). However, a correlation between ammonia levels and severity of 

HE in CLD is weak (He et al., 2011; Kundra et al., 2005; Nicolao et al., 2003; Ong et al., 2003; 

Weissenborn et al., 2007; Wilkinson et al., 2011) therefore suggesting pathogenic factors other than 

ammonia are involved in the pathogenesis of brain edema and HE in CLD. 

 

1.3.1.4 Impairment of neurotransmitter systems induced by ammonia 

 Whether neurotransmitter disturbances play a causal or causative role in the pathogenesis of HE 

is still debated. However, neurotransmitter disturbances are important cerebral dysfunctions seen in 

HE that explain the clinical manifestations characterizing the syndrome. Neurotransmitter 

metabolism is strongly related to cerebral ammonia levels; therefore neurotransmitter disturbances 

are an important chapter in ammonia neurotoxicity. Moreover, differential regulation in different 

brain regions of neurotransmitters and their receptors may explain the heterogenous symptoms seen 

in different HE patients. 

Glutamate 

Glutamate is the main excitatory neurotransmitter in the brain. As explained above, glutamate is 

directly linked to the metabolism of ammonia through the enzyme GS. As a consequence cerebral 

glutamate levels decrease during HE, as it is consumed in order to detoxify ammonia into glutamine. 

In spite of that, synthesis of glutamate and its synaptic release are both increased (Palomero-

Gallagher and Zilles, 2013). Glutamate acts on three different ionotropic receptors: α-amino-3-

hydro-methyl-4-isoxasole-propionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA). 
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These receptors play an important role in synaptic plasticity and long-term potentiation, processes 

related to learning and memory. HE animal models and human autopsy studies determined AMPA 

and kainate receptors to have a differential response, as they are either up- or down-regulated in 

different brain areas (as reviewed by (Palomero-Gallagher and Zilles, 2013)). Therefore, their role 

remains unknown. On the other hand, NMDA receptors are known to be excessively activated by the 

extracellular glutamate during acute hyperammonemic conditions leading to activation of the 

glutamate – nitric oxide – cyclic guanosine monophosphate pathway and thus to coma and death in 

cerebellum and cortex of hyperammonemic rats (as reviewed by (Montoliu et al., 2010)). Altered 

glutamate neurotransmission may explain the learning and memory problems observed in HE 

patients.   

γ-aminobutyric acid 

γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian brain. In 

HE, an increased "GABAergic tone" is present, which is induced by an increase in cerebral GABA, 

increased expression of GABA receptors, increased concentration of endogenous benzodiazepine-

like compounds known to activate GABA receptors and by ammonia activation of GABA receptors 

(Cauli et al., 2009a). The GABAA receptor is particulary of interest because, aside being a binding 

site for GABA, different subunits present different allosteric binding sites for benzodiazepines or 

neurosteroids. Cerebral endogenous benzodiazepines and neurosteroids are increased during liver 

disease (Ahboucha and Butterworth, 2005). Their action on the GABAA receptor potentiates the 

inhibitory effect of GABA contributing to the increased "GABAergic tone", characterized by 

sedative and anxiolytic effects.  

Acetylcholine  

Acetylcholine is a neurotransmitter with functions in the peripheral nervous system (as main 

muscle activator), in the autonomic nervous system and in the central nervous system where it 

modulates plasticity, arousal and reward. Moreover, acetylcholine suppresses the inhibition of 

GABA. In cirrhotic patients and rats, cerebral acetylcholine levels are reduced as a consequence of 

an increase in acetylcholinesterase, the enzyme responsible for metabolizing acetylcholine (García-
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Ayllón et al., 2008). This decrease results in a reduced GABA inhibition, thus contributing to the 

increase in the “GABAergic tone” seen in HE. 

Histamine and serotonin  

These two monoamines are neurotransmitters important in the regulation of sleep and 

circadian rhythm. They interact with each other: serotonin stimulates histamine release (Laitinen et 

al., 1995) and histamine inhibits serotonin release through H3 receptors (Schlicker et al., 1988). 

Increased cerebral histamine levels have been found both in vivo and post mortem in patients with 

HE, along with an increase in extracellular serotonin levels in several rat models of HE and a 

decrease in histamine H3 receptors (as reviewed by (Palomero-Gallagher and Zilles, 2013)). The 

increase in histamine is related indirectly to hyperammonemia by an increase in cerebral neutral 

aminoacid transport through the BBB determined by increased glutamine (Cascino et al., 1982). 

Serotonin levels are correlated with the degree of portacaval shunting and to ammonia levels in a rat 

model of HE (Lozeva et al., 2004). These changes in histamine and serotonin lead to the sleep-wake 

rhythm alterations and somnolence seen in HE patients. 

 

1.3.2 Oxidative stress 

 Oxidative stress (OS) is defined as an imbalance between the production and detoxification of 

free radicals leading to an increase in reactive oxygen species (ROS), such as hydrogen peroxide 

(H2O2), hydroxyl radical (.OH), superoxide ion (O2
.-) and peroxynitrite (ONOO-). ROS play an 

important role in cell signaling (Valko et al., 2007). They are constantly produced during oxygen 

metabolism by oxidant enzymes, such as NADPH-, xanthine-, monoamine-, and aldehyde-oxidase or 

nitric oxide synthetase and rapidly metabolized by ubiquitary antioxidant enzymes such as 

superoxide dismutase (SOD) and catalase (CAT), or ROS neutralizing molecules, such as 

glutathione and albumin. 

 ROS are highly reactive due to the presence of unpaired valence shell electrons. In excess, they 

react with cellular molecules such as proteins, lipids and nucleic acids. This leads to functional 
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alterations of enzymes, transporters and receptors (Stadtman and Levine, 2000), alterations in 

membrane permeability (Poon et al., 2004) and abnormal gene translation and protein synthesis. 

Since they are highly reactive, ROS do not cross the BBB, instead they might contribute to increased 

BBB permeability by modifying transporters located at this level (as detailed in chapter 2.1), by 

modifying membrane lipids or activating different signaling pathways (Pun et al., 2009). 

 Since systemic OS is present in liver disease and ammonia toxicity has been shown to induce 

ROS in the brain, a thorough investigation in relation to HE is warranted. 

1.3.2.1 Systemic oxidative stress and liver disease 

OS in liver disease represents a systemic phenomenon not only in the stage of cirrhosis, but 

long before, since the stage of hepatitis, whether the etiology is viral, alcoholic or autoimmune 

(Ikegami et al., 2014; Kaffe et al., 2015; Wang et al., 2012). OS is known to be induced directly by 

the hepatitis C virus or by alcohol (Koike, 2014; Wang et al., 2012). However, the systemical 

persistence of OS in these patients is associated with the progression to liver fibrosis, cirrhosis and 

development of hepatocellular carcinoma (Choi et al., 2014). 

During liver disease, both a decrease in antioxidants and an increase in systemic oxidants are 

observed. The liver is responsible for synthetizing the major antioxidants glutathione and albumin. 

Glutathione (GSH) represents the main intracellular antioxidant and although it is produced by every 

cell, the liver synthetizes it in large quantities. During CLD, GSH synthesis significantly decreases 

due to hepatocyte necrosis which leads to a decrease in glutamate-cysteine ligase and glutathione 

synthetase, enzymes in the GSH synthesis pathway (Yang et al., 2009). Another important 

antioxidant produced by the liver is albumin, the most abundant plasmatic protein which possesses 

multiple cysteine and methionine residues (Roche et al., 2008). Liver disease results in decreased 

protein synthesis and a significant reduction in albumin levels (Chen et al., 1997). 

 Xanthine oxidase (XO) is an oxidant enzyme highly expressed in the liver. Following 

hepatocyte necrosis, XO is released into the systemic circulation where it oxidizes hypoxanthine and 

xanthine to uric acid, releasing H2O2. XO is increased in plasma of cirrhotic patients (Battelli et al., 
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2001). Moreover, XO inhibition with allopurinol has been previously demonstrated to reduce 

systemic OS in stable cirrhotic patients (Spahr et al., 2007). The increase in XO, along with the 

decrease in antioxidants leads to increased systemic ROS during CLD (Chen et al., 1997; Ljubuncic 

et al., 2000). 

 

1.3.2.2 Cerebral oxidative stress and hepatic encephalopathy 

 Cerebral OS in HE is considered to be the result of ammonia neurotoxicity (Häussinger and 

Görg, 2010; Norenberg et al., 2004), but whether it may also be triggered by systemic OS remains to 

be determined. 

 One of the toxic effects of ammonia in the brain is induction of OS. In vitro, high ammonia 

concentrations (> 5mM) lead to the generation of ROS in astrocyte cultures (Görg et al., 2008; 

Jayakumar et al., 2006; Mehrotra and Trigun, 2012; Murthy et al., 2001). In vivo, acute ammonia 

intoxication (intraperitoneal administration of ammonium acetate to naïve rats at a high 

concentration of 12 mmol/kg; sacrificed after 11 minutes) leads to an increase in cerebral ROS due 

to increased xanthine-, monoamine-, and aldehyde-oxidase accompanied by decreased activities of 

SOD, CAT and GP (Kosenko et al., 2003). In ALF rats following hepatic devascularisation, high 

hyperammonemia and brain ammonia are accompanied by the development of brain edema and 

severe HE (coma stage); systemic and central OS are associated features (Jiang et al., 2009a). 

 These evidences suggest a direct relationship of ammonia and cerebral OS in the pathogenesis 

of HE related to ALF, however such a relationship and its underlying mechanisms in CLD and MHE 

remains undefined. Moreover, the relationship between systemic ROS and ammonia also remains 

unknown. 

 

1.3.3 Lactate 

 Lactic acid is a carboxylic acid which, in solution, donates a proton from its carboxyl group, 
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forming the lactate ion. It is produced in every cell from pyruvate via a reversible reaction catalyzed 

by the enzyme lactate dehydrogenase (LDH), which involves the oxidation of NADH to NAD+. 

1.3.3.1 Lactate metabolism 

 Glucose-derived pyruvate (via glycolysis) is a substrate of the tricarboxylic acid (TCA) cycle, 

the metabolic hub of the cell and final common pathway for the aerobic oxidation of fuel molecules. 

The conversion of pyruvate to lactate during anaerobic situations (such as exercise or hypoxia) is 

needed in order to regenerate NAD+ which allows the glycolytic pathway to function (figure 6). 

Muscle-derived lactate is metabolized in the liver via gluconeogenesis which will return to fuel other 

organs, including the muscle, completing the Cori cycle ((Woll and Record, 1979), figure7). 

Imbalances between lactate production and removal lead to lactic acidosis, a serious condition 

characterized by a low plasmatic pH which may impair all systems leading to severe respiratory, 

cardiovascular and neurological symptoms. 

 

Figure 6. The reversible reaction from lactate to pyruvate catalyzed by lactate dehydrogenase. 
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Figure 7. The Cori cycle. Explanations are given in the text. 

 In the brain, glucose is traditionally considered the only fuel molecule; however, new evidence 

demonstrates that lactate is a preferred oxidative energy substrate over glucose by neurons (as 

reviewed by (Pellerin and Magistretti, 2012)). This theory is known as the “astrocyte-neuron lactate 

shuttle” (ANLS) and it states that lactate is primary produced by astrocytes, released extracellularly 

and taken up by neurons where it is used a fuel for the TCA cycle (Pellerin et al., 2007; Schurr, 

2006). 

 The ANLS is supported by the different localizations of specific transporter and enzyme 

isoforms involved in lactate metabolism of astrocytes and neurons. As astrocytes are part of BBB, 

they come in close contact with the cerebral capillaries and therefore are the first “brain” cells to take 

up blood-derived glucose. Astrocytes play a metabolic supportive role for neurons as they produce 

and release molecules required by neurons. Different isoforms of LDH enzymes and lactate 

transporters have different isoforms in astrocytes and neurons: astrocytes express LDH5 and 

monocarboxylate transporters MCT1 and MCT4, while neurons LDH 1 and MCT2 with a higher 

affinity for lactate than the astrocytic isoforms. This suggests astrocytes are better equipped to 

produce and release lactate, while neurons to take up and metabolize lactate in back into pyruvate to 

fuel the TCA cycle (for review see (Pellerin and Magistretti, 2012)). 
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1.3.3.2 Lactate and liver failure 

 Increased plasmatic lactate is present in animal models of ALF (Chatauret et al., 2003; Rose et 

al., 2007) and is considered a prognostic marker in patients with ALF (Bernal et al., 2002). In CLD, 

hyperlactatemia correlates with the severity of cirrhosis (Jeppesen et al., 2013) and is associated with 

mortality (Tas et al., 2012; Zauner et al., 2000). The role of systemic lactate in MHE has not been 

evaluated. 

 Several factors contribute to hyperlactatemia during CLD: (i) impaired Cori cycle consequent to 

hepatic necrosis (Levraut et al., 1998; Woll and Record, 1979), (ii) increased lactate release from 

necrotic hepatocytes (Clemmesen et al., 1999); and (iii) increased extra-hepatic lactate production 

following multi-organ dysfunction (Bernal et al., 2002). 

 

1.3.3.3 Lactate and hepatic encephalopathy 

 In ALF patients, increased cerebral lactate is correlated to severe HE (brain edema, intracranial 

hypertension and coma) (Tofteng et al., 2002) or rats (Chatauret et al., 2002; Zwingmann et al., 

2003). Ammonia-lowering therapies such as hypothermia, ornithine phenylacetate and the albumin 

hepatic dialysis system (MARS, Molecular Adsorbent Recirculating System) have shown to reduce 

cerebral lactate along with brain edema and the development of severe HE in ALF (Chatauret et al., 

2002; Rose et al., 2007; Sen et al., 2006). 

 Contrary to ALF, the role of lactate in HE and CLD is poorly known. A 1.37-fold increase in 

cerebrospinal fluid lactate has been described in patients with end-stage liver disease and 

overt/severe HE (grades 3 and 4) (Yao et al., 1987). However the role of cerebral lactate in the 

pathogenesis of brain edema and MHE is unknown. Moreover, it still remains unclear whether 

lactate is a cause or a consequence of HE (Rose, 2012). 
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1.3.4 Glutamine 

 Glutamine is one of the 20 amino acids encoded by the standard genetic code. Also, glutamine 

is the most abundant plasmatic amino acid (Brosnan, 2003). Its metabolism is strongly related to 

NH4
+ since it is formed from glutamate and ammonia by the enzyme GS (present in the brain, the 

liver and the muscle) and degraded by the enzyme GA back to glutamate and ammonia (present in 

the brain, the intestine, the kidney and the liver), as explained above (chapter 3.1.2). Along with 

glutamate,  N-acetylaspartate, creatine and myo-inositol, glutamine is one of the major cerebral 

osmolytes, accounting for approximatively 10-15% of the cerebral osmolar pool (Pasantes-Morales 

and Cruz-Rangel, 2010) (table II) 

Table II. Rat and human brain organic osmolyte content (mM). Modified after Pasantes-Morales 
and Cruz-Rangel, 2010 with the publisher's permission. 
 
 

Osmolyte Rat brain Human brain 

Glutamate 10–15.4 7.5–9.5 

N-Acetylaspartate 7.5–10 8.8–8.9 

Creatine/P-Creatine 6.6–9.7 7.4–8.4 

Myo-inositol 3.3–5.8 6.5–9.0 

Glutamine 3.4–5.1 5.0–5.9 

 

1.3.4.1 Glutamine metabolism during hyperammonemia 

 Glutamine represents the end-product of ammonia detoxification during CLD and 

hyperammonemia. Therefore, an increase in both plasmatic and cerebral glutamine is observed in 

animal models as well as ALF patients (Chatauret et al., 2002; McConnell et al., 1995; Zwingmann 

et al., 2003), but also in animal models and CLD patients (Fries et al., 2014; Hourani et al., 1971; 

Laubenberger et al., 1997; Lavoie et al., 1987), including patients with MHE (Singhal et al., 2010; 
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Taylor-Robinson et al., 1999). 

 ALF following liver devascularisation in the rat induces a significant increase of expression and 

activity of GS in the muscle and a decrease in the cortex, whereas glutamine levels remain increased 

in both organs (Chatauret et al., 2006). Hyperammonemia induced by portacaval shunt in the rat 

shows the same pattern: GS is reduced in the brain (cortex and cerebellum) and increased in the 

muscle (Desjardins et al., 1999). Moreover, an increase in GA activity both in the muscle and in the 

brain is described in cirrhotic rats (Jover-Cobos et al., 2014). This means that, during 

hyperammonemia, the muscle becomes an important organ in ammonia detoxification into 

glutamine; however glutamine metabolism through GA leads to the production of ammonia (the 

reverse reaction). Meanwhile in the brain in spite of the compensatory reduction in GS glutamine 

levels remain high (Cordoba et al., 1996). This effect is the result of trying to balance the neurotoxic 

effects of ammonia and those of glutamine which will be detailed below. 

 

1.3.4.2 Glutamine neurotoxicity 

 Glutamine is harmful to the brain as it is an osmolyte considered important in the development 

of brain edema but also by direct neurotoxic effects.  

 Firstly, glutamine is considered an osmolyte important in the development of brain edema 

(Brusilow and Traystman, 1986). Several studies demonstrated a correlation of glutamine with 

severity of HE (Hourani et al., 1971; Laubenberger et al., 1997). Moreover, pre-treatment of cultured 

astrocytes with the irreversible GS inhibitor, methionine sulfoximine (MSO), results in an 

attenuation of the increase in glutamine and also of swelling (Norenberg and Bender, 1994). Similar 

results have been observed in vivo following ammonia-infusion in portacaval shunted rats pre-treated 

with MSO (Master et al., 1999; Willard-Mack et al., 1996). Although this evidence supports an 

important role of glutamine in the development of brain edema, ammonia-lowering treatments, 

which significantly attenuate brain edema in animal models of ALF, do not induce a decrease of 

cerebral glutamine levels (Ytrebø et al., 2009; Zwingmann et al., 2004). Normally, the increase in 
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glutamine is followed by a decrease in other cerebral osmolytes such as myo-inositol and taurine 

(Cordoba et al., 1996). However, this mechanism is not able to fully rebalance the osmotic 

equilibrium during severe HE related to ALF (Zwingmann, 2007). 

 Secondly, glutamine has been shown to accumulate in mitochondria, impairing its function by 

mechanisms involving OS. The mechanism by which glutamine exerts its toxic effects in astrocytes 

was proposed as the “Trojan horse” hypothesis by Dr. Albrecht and Dr. Norenberg. They state that 

mitochondrial metabolization of glutamine to ammonia and glutamate by GA facilitates the 

glutamine transport in excess from the cytoplasm to mitochondria (as the Trojan horse) serving as a 

carrier of ammonia (Albrecht and Norenberg, 2006). Although this hypothesis remains highly 

disputed, some evidences link glutamine to OS and swelling. In vitro, glutamine induces the 

mitochondrial transition pore, resulting in a sudden increase in permeability of the mitochondrial 

membrane to osmolar molecules less than 1500 Da followed by swelling of cultured astrocytes 

(Pichili et al., 2007; Ziemińska et al., 2000). Moreover, MSO treatment reduces ROS formation in 

ammonia-treated astrocytes suggesting a direct role of glutamine in inducing OS (Murthy et al., 

2001). The role of these mechanisms in vivo remains to be determined in the future. 

 

1.4. Models of hepatic encephalopathy 

1.4.1 In vivo models 

 HE animal models are classified corresponding to the classification of HE into types A, B and C 

((Ferenci et al., 2002), detailed in chapter 1.1). 

 Several species are used to induce similar manifestations as those seen in humans. Large 

animals such as pigs have the advantages of obtaining high quantities of samples, providing 

repetitive sampling and using human compatible therapeutic strategies such as hepatic dialysis 

devices. Small animals such as mice or rats are largely used because of the availability of 

information (atlases, literature, specific antibodies or transgenic models) and of the low cost 
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(Butterworth et al., 2009). 

 

1.4.1.1 Chronic hepatic encephalopathy models (types B and C) 

 Different models available for the study of type B and C HE are discussed below. 

Type B hepatic encephalopathy models 

 Portal-systemic shunt (or anastomosis, PCA, figure 8) allows gut-derived toxins such as 

ammonia to bypass the liver, to enter the systemic circulation and affect the brain. This model 

permits the study of hyperammonemia alone, without factors released by an ailing liver. PCA rats 

survive long term and present with normal liver function markers and behavior alterations 

(Butterworth et al., 2009). 

 

 

 
Figure 8. Portacaval anastomosis (PCA). 

 

Type C hepatic encephalopathy models 

 The ideal animal model of type C HE should present all features of cirrhosis: liver function and 

histopathology alterations, jaundice, portal hypertension, portal-systemic shunting. The two most 
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frequent etiologies of cirrhosis are alcoholic and viral, however it is difficult to induce liver disease 

by administering these factors to animals. Nevertheless, manifestations and complications of 

cirrhosis arise independent of the etiology (Anand, 1999) and several toxin-induced and bile duct 

ligation (secondary biliary cirrhosis) are well characterized animal models. 

 Hepatic toxins are used to induce CLD in animal models. They act through several mechanisms 

but have a poor reproducibility as a major disadvantage. The most frequent used toxins are: 

 

 Carbon tetrachloride is a toxin inducing hepatic necrosis through mechanisms which involve 

OS. Administered daily to naïve rats until the development of ascites (between 8 and 19 weeks), 

it reproduces the features of cirrhosis and increased ammonia levels (Miquel et al., 2010). 

However the difficulty of daily dose adjustment to body weight, the long duration of the model 

and a wide variability limit the utilization of this model (Butterworth et al., 2009); 

 Thioacetamide is a thioamide used as a source of sulfide ion in chemistry. Administered for a 

period of 20 weeks in rats, it increases circulating liver function markers and it alters behavioral 

tests along with elevation of ammonia blood levels (Kawai et al., 2012); 

 Bile duct ligation (BDL, figure 9) in the rat or mouse also reproduces the features of cirrhosis. 

Moreover, the animals develop MHE: hyperammonemia, inflammation, OS, behavior alterations and 

edema are present (Jover et al., 2006). This model becomes an overt HE model following 

administration of different pathogenic factors such as ammonia or LPS (lipopolysaccharide, a 

bacterial toxin which induces inflammation) (Jover et al., 2006; Wright et al., 2007). 
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Figure 9. Bile-duct ligation (BDL). 

 

 At this moment, no experimental animal reproduces perfectly the HE pathology seen in humans. 

However, available models help understand the pathogenic mechanisms of HE, studying the relation 

between different factors and testing new therapeutic options. 

 

1.4.1.2 Acute hepatic encephalopathy models (type A) 

 ALF is not the focus of this thesis. However, some of the mechanisms we investigated have 

been previously described in different ALF animal models. Therefore a short description of these 

models merits to be mentioned. Two main types of models are available for the study of HE during 

ALF: anhepatic and toxic models. Since several organs are affected by ALF, several parameters 

including temperature and glycaemia must be monitored and corrected because they may affect the 

time course of the model (Vaquero et al., 2005). 

 

Anhepatic models 

 This category excludes the liver from circulation through surgery. The hepatic devascularization 

implies the derivation of the portal blood flow into the systemic circulation (portacaval anastomosis, 
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PCA) along with a ligation of the hepatic artery. For the hepatectomy model, the liver is completely 

removed. Those two models lead to cerebral edema followed by increased ICP (Potvin et al., 1984; 

Rose et al., 2000; Ytrebø et al., 2009). The hepatic devascularization model is characterized by 

ammonia levels similar as those present in humans with ALF (Kundra et al., 2005). Also, other 

factors such as inflammation or OS are present (Jiang et al., 2009a, 2009b). 

Toxic models 

 Several hepato-toxins are used to induce ALF in animals similar to those used to induce CLD 

but at a much higher dose. As with CLD model, the poor reproducibility remains a major 

disadvantage. The most frequent toxins are: 

 Galactosamine is a hexosamine which induces hepatic necrosis by directly altering the 

hepatocyte metabolism. In the rat, galactosamine induces the apparition of brain edema as well 

as a breakdown of the BBB (Dixit and Chang, 1990); 

 Acetaminophen is toxin responsible for 30-50% of ALF cases. Acetaminophen is metabolized 

by the liver through glucuronidation (45-55%), sulfation (20–30%) or N-hydroxylation and 

dehydration, followed by GSH conjugation (less than 15%). In excess, these mechanisms are 

overcome and the hepatic cytochrome P450 enzyme system metabolizes it, forming NAPQI (N-

acetyl-p-benzoquinone imine), compound which irreversibly inactivates glutathione (Moyer et 

al., 2011) leading to hepatic necrosis. In the rat, acetaminophen induces hepatic necrosis and 

cerebral edema, however, the model is rarely used due to a large variability of hepatic toxicity 

(Newsome et al., 2010); 

 Thioacetamide in higher doses than those used to induce CLD, administered once, induces 

hepatic necrosis and brain edema in the rat (A. R. Jayakumar et al., 2014; Zimmermann et al., 

1989); 

 Azoxymethane`s mechanism of action is not fully understood, however it induces hepatic 

necrosis, hyperammonemia and cerebral edema (Bélanger et al., 2006; Chastre et al., 2012). 

This model has the best reproducibility among toxic models (Bélanger et al., 2006). 
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1.4.2 In vitro models 

 In vitro studies have multiple advantages: reproducibility, excellent control on the evaluated 

factors and low cost. Moreover, cell cultures allow the study of individual cerebral cells (astrocyte, 

neuron, microglia, endothelial cell) but also the interactions between cells by co-cultures. The effect 

of individual pathogenic factors or of their combinations may also be evaluated. For example, 

ammonia administration induces OS, cell swelling and energy metabolism alterations (Atanassov et 

al., 1995; Görg et al., 2008; Norenberg et al., 2005). A study on neuron-astrocyte co-cultures showed 

that the latter protects the first against ammonia's neurotoxic effects (Rao et al., 2005). Lactate 

administered to cultured astrocytes induces morphological changes and inflammation (Andersson et 

al., 2009, 2005). Inhibition of GS with its irreversible inhibitor MSO, results in attenuation of the 

increase in ammonia-induced glutamine and swelling in pre-treated cultured astrocytes (Norenberg 

and Bender, 1994). 

 The main disadvantage of in vitro models is the difficulty of reproducing the multitude of 

alterations seen during liver failure. Also, sometimes concentrations much higher than those seen in 

vivo are needed to induce a similar effect: often, the ammonia concentrations used in vitro reach 

5 mM (see above studies), compared to a max of 1.5 mM seen in ALF models with severe HE. 

 

1.5. Treatments of hepatic encephalopathy 

 Several therapeutic strategies are used for the treatment of HE, however all have shown 

inconclusive results, adverse effects or inconsistent beneficial reports. Moreover, all the up-to-date 

available treatments focus on ammonia: either decreasing its production or on increasing its removal 

(Rose, 2012). Today, lactulose, a nonabsorbable disaccharide, remains the primary treatment for HE. 

Liver transplantation is considered the only curative treatment of HE, however increasing number of 

cases demonstrating persisting neurological complications occurring after liver transplantation are 
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being reported (Chavarria and Cordoba, 2013). The poor neurological outcome following liver 

transplantation is believed to a result of a history of HE pre-liver transplantation. Therefore, HE 

treatment remains an unmet clinical need. The most frequent used therapies or those tested in animal 

models with a great potential in humans will be discussed below. 

1.5.1 Protein restriction 

 Protein restriction used to be commonly advised to cirrhotic patients in order to prevent a rise in 

gut-derived blood ammonia. This is no longer recommended since cirrhotic patients already have a 

poor nutritional status and restricting proteins is more harmful than a normal protein diet (1.2–1.5 g 

protein/kg/day) (Bémeur et al., 2010). Malnutrition affects between 25 and 80% of cirrhotic patients 

and is associated with an increased prevalence of HE and poor prognosis. 

1.5.2 Nonabsorbable disaccharides (lactulose) 

 Lactulose represents the first-line therapy for HE patients. It is a synthetic disaccharide 

composed of the monosaccharides fructose and galactose. It acts within the colon, where it is 

metabolized by colonic bacteria into acetic and lactic acid. Therefore, the intraluminal pH becomes 

acidic leading to the replacement of ammoniagenic with nonammoniagenic flora. Lactulose also 

decreases the absorption of ammonia through a cathartic effect, clearing it from the gut before it is 

systemically absorbed, resulting in increased fecal nitrogen excretion. In 2004, a Cochrane review on 

22 clinical trials concluded that there was not enough convincing evidence of nonabsorbable 

disaccharides in the treatment of HE (Als-Nielsen et al., 2004a). However, since the Cochrane 

review, 2 large studies compared lactulose to placebo in cirrhotic patients and demonstrated that 

lactulose reduces circulating ammonia (Sharma, 2012) and improves cognitive function and quality 

of life in patients with cirrhosis and MHE (Prasad et al., 2007). Poor adherence to treatment and side 

effects such as abdominal cramping, bloating, nausea, vomiting, flatulence, abdominal distension 

and impairment of intestinal absorption, limit the use of lactulose in the treatment of HE. 
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1.5.3 Antibiotics 

 Oral antibiotics inhibit the ammoniagenic colonic bacteria, thus decreasing intestinal ammonia 

production. Traditionally, neomycin, metronidazole, and vancomycin were successfully used to 

lower blood ammonia in patients (Conn et al., 1977; Morgan et al., 1982; Tarao et al., 1990). 

However, their use was limited due to adverse effects secondary to their systemic absorption. 

Rifaximin is a recently approved antibiotic for the treatment of HE. It reduces the risk of recurrence 

of overt HE in patients with end-stage liver disease (Bass et al., 2010) and efficiently lowers 

ammonia (Mas et al., 2003). Rifaximin has the advantage of a poor systemic absorption (<0.4%) and 

has a broad spectrum of antibacterial activity, therefore has fewer adverse effects and a greater 

adherence to treatment. The only negative point of rifaximin remains the high cost. 

1.5.4 Probiotics 

 Cirrhosis is characterized by changes in the gut microbiome resulting in a switch from normal 

flora (Lachnospiraceae, Ruminococcaceae and Clostridiales) to ammoniagenic bacteria 

(Enterobacteriaceae and Streptococcaceae) (Bajaj, 2014). Moreover, bacterial translocation occurs, 

process through bacteria and/or bacterial products (lipopolysaccharides, bacterial DNA, etc.) pass 

from the gut to mesenteric lymph nodes, ascites or into the hepato-splanchnic as well as systemic 

circulation.These changes are related to the severity of cirrhosis (Bajaj et al., 2014).  

Probiotics are a mixture of live microorganisms used to replace the ammoniagenic with 

nonammoniagenic colonic flora. This leads to a decrease in ammonia, but also in endotoxins, which 

are harmful products for the liver. Although the exact underlying mecanisms are poorly explained, 

probiotics are beneficial in the treatment of cirrhosis as demonstrated by two studies where an 

improvement of cirrhosis (evaluated by the Child-Pugh score) was observed (Lata et al., 2007; Liu et 

al., 2004). Probiotics decrease ammonia (Malaguarnera et al., 2007), reduce circulating endotoxins 

(Bajaj et al., 2014), and are effective in preventing HE when administered long-term in cirrhotic 

patients (Lunia et al., 2014). In spite of these benefic effects, the mechanism of action of probiotics 

remains poorly understood.  
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Probiotics are well-tolerated, with no harmuful effects yet demonstrated and excellent patient 

adherence; however, their efficacy in altering clinically relevant outcomes remains inconclusive 

(McGee et al., 2011). Moreover, another recent study showed no difference between probiotics and 

lactulose in the secondary prophylaxis of HE in patients with cirrhosis (Agrawal et al., 2012). 

Concerns regarding variations of the live microorganisms and a lack of standardization among 

probiotics manufacturers, as well as establishing optimal doses and treatment duration remain issues 

requiring additional research. 

1.5.5 Sodium benzoate and sodium phenylacetate/phenylbutyrate 

 These two substances have been used to treat hyperammonemia in children born with urea cycle 

disorders. Sodium benzoate conjugates with the amino acid glycine, inhibiting the metabolism of the 

latter which leads to generation of ammonia. Sodium benzoate has been shown to reduce ammonia in 

cirrhotic patients (Sushma et al., 1992). However, sodium benzoate can inhibit the production of 

urea, inducing hyperammonemia, therefore its efficacy increases when urea cycle is impaired 

(Maswoswe and Tremblay, 1989). 

Sodium phenylbutyrate is oxidized into phenylacetate which conjugates with glutamine to form 

phenylacetylglutamine, which is excreted in the urine. Since cirrhotic patients often present with 

water retention and renal impairment, administration of sodium may contribute to their clinical 

deterioration. Therefore, sodium phenylbutyrate was replaced with glycerol phenylbutyrate (GPB), 

which showed similar safety and tolerability (McGuire et al., 2010). A recent study showed GPB to 

efficiently reduce HE episodes and ammonia levels in cirrhotic patients with previous HE episodes 

(Rockey et al., 2013). The effectiveness of sodium benzoate and sodium/glycerol 

phenylbutyrate/phenylacetate in the context of liver disease require further evaluation. 

1.5.6 Benzodiazepine-like antagonists 

Since cerebral endogenous benzodiazepines potentiate the inhibitory effect of GABA and 

contribute to the increased "GABAergic tone", their inhibition may have a beneficial effect in the 

treatment of HE. Flumazenil is a GABAA receptor antagonist, which reverses the effects of 
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endogenous benzodiazepines by competitive inhibition. In a Cochrane meta-analysis of thirteen trials 

including 805 cirrhotic patients, flumazenil had a beneficial effect in half of the patients on short-

term improvement of HE, with no significant effect on recovery or survival (Als-Nielsen et al., 

2004b). It has a short half-life and requires multiple doses and careful patient monitoring to prevent 

recurrence of overdose symptoms. Therefore, it remains the drug of choice in selected patients such 

as those where HE was triggered by the use of exogenous benzodiazepines or in patients with HE 

grade III – IV who do not respond to standard therapeutic measures (Romero-Gómez, 2010). 

1.5.7 Branched-chain amino acids 

 Branched-chain amino acids (BCAA, valine, leucine, and isoleucine) are amino acids with an 

aliphatic side-chains branch. They have been reported to be decreased during CLD (Holecek, 2013). 

They may be involved in ammonia detoxification by forming glutamate through the enzyme 

branched-chain aminotransferase and then forming glutamine through GS. BCAA treatment has been 

shown to decrease ammonia levels in cirrhotic patients (Marchesini et al., 1990). Moreover, they 

help maintain the muscle mass by stimulating protein synthesis in the liver and attenuating the 

degradation of muscle protein. However, a study showed that BCAA treatment in patients with 

cirrhosis resulted in an increase of blood ammonia levels (Dam et al., 2011) most probably due to 

degradation of glutamine by GA which results in ammonia production. Although BCAA treatment is 

regarded as safe, noncompliance with long-term treatment has been reported due to its poor 

palatability and solubility, requiring consumption of large quantities of water. The efficacy of BCAA 

treatment remains therefore questionable. 

1.5.8 L-ornithine L-aspartate 

 L-ornithine–L-aspartate (LOLA) are two amino acids that are substrates of the urea cycle, so 

they were first believed to lower blood ammonia by stimulating ureagenesis in the residual 

hepatocytes. However, LOLA has also been shown to stimulate GS in the muscle in PCA rats and 

form glutamine (Rose et al., 1998). The possibility of glutamine degradation back to ammonia 

questions the efficacy of this drug and explains why studies have demonstrated contradictory effects 
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on ammonia levels and clinical outcomes (Acharya et al., 2009a; Jiang et al., 2009c; Kircheis et al., 

1997). Although it has a good tolerability and few side-effects, LOLA is currently not available for 

clinical use in North America. 

1.5.9 L-ornithine phenylacetate 

 L-ornithine phenylacetate (OP) is a combination strategy. L-ornithine contributes to increasing 

glutamate in the muscle (by transamination of ornithine to glutamate) and increasing glutamine 

production through GS. The glutamine resulted from this reactions will be conjugated with 

phenylacetate and excreted by the kidneys instead of being reconverted to glutamate and ammonia. 

This product showed promising results in liver-devascularized pigs and BDL rats (Davies et al., 

2009; Ytrebø et al., 2009). As a consequence, ongoing clinical trials are evaluating the safety and 

tolerability of OP treatment. 

1.5.10 Liver transplantation 

 Liver transplantation (LT) remains the only curative treatment option for HE due to CLD. 

However, the limited number of organs and the difficulty of timing this intervention, restrain its 

benefit. Historically, HE has always been considered to be a reversible metabolic disorder and has 

therefore been expected to completely resolve following LT. However, even following a LT, 

persisting neurological complications remain a common problem affecting as many as 47% (8-47%) 

of liver transplant recipients (Amodio et al., 2007; Atluri et al., 2010; Mechtcheriakov et al., 2004; 

Sotil et al., 2009). Although these studies show an important role of pretransplant HE in persisting 

neurological symtpoms after LT, numerous other factors must be considered. First, an advanced age 

of the patient and the presence of comorbidities at time of transplantation may slow post LT 

recovery. A patient with multiple episodes of HE before LT or severe HE at the time of LT is more 

likely to have concomitant multiple complications such as renal failure at the time of LT, therefore a 

slower or poorer recovery after. These conditions present at time of LT may get aggravated during 

the surgery, which differs for each patient in terms of duration, degree of hypotension due to 

extracorporeal circulation or anesthesia effects. Moreover, after LT all patients have to take 
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immunosupressants, also known to have neurological side-effects including sleep troubles, 

confusion, weakness, depression, seizures and neuropathy. Depicting between the roles of each of 

these factors in persisting neurological complications after LT is challenging but merits to be 

thoroughly investigated. Consequently, these enduring neurological complications following LT 

(that are not defined as HE since the diseased liver has been replaced with a healthy liver) continue 

to weigh severely on the patients’ quality of life, and lead to longer stays in the hospital, thus causing 

further financial burden on the health care system (Bajaj et al., 2011). 

 To resume, HE is common in clinical practice and the routinely administered treatment consists 

of lactulose, which is beneficial in the majority of patients. Patients with refractory or recurrent HE 

despite optimal lactulose treatment or those unable to tolerate it may benefit from rifaximin; however 

the expensive cost limits its use. LT is also a limited treatment option, by the number of available 

organs, moreover neurological symptoms seem to persist in a certain percentage of cases. Promising 

new molecules such as probiotics, OP or glycerol phenylbutyrate are still under investigation. In this 

context, treatment for HE associated to CLD remains an unmet clinical need and new therapeutic 

strategies targeting other factors than ammonia are worth to be investigated. 

 

1.6. Hypothesis and objectives 

 HE is a metabolic neuropsychiatric syndrome which occurs as a complication of liver 

failure/disease. Patients with CLD present often with MHE characterized by subtle cognitive 

dysfunction leading to a decreased quality of life and impairment in daily activities. To date, the only 

effective treatment of CLD remains liver transplantation, a limited therapeutic option. The precise 

prevalence of MHE in CLD patients remains unknown, however a proper treatment would allow 

them to be functional and increase their quality of life. Brain edema is a feature often described in 

these patients.  

Ammonia is known as an important factor the pathogenesis of the syndrome. Several evidences 

suggest a relationship of ammonia and oxidative stress as well as an important role of lactate and 
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inconsistent results regarding the role of glutamine in the pathogenesis of severe encephalopathy 

(intracranial hypertension) related to acute liver failure. In CLD, brain edema is a feature often 

described; however, the implications and the relationships between ammonia, oxidative stress, 

lactate and glutamine in CLD and MHE remain poorly unknown. 

 The main aim of this project is to advance the knowledge into understanding the mechanisms 

underlying the role of oxidative stress, lactate and glutamine in the pathogenesis of brain edema 

during minimal hepatic encephalopathy associated with chronic liver disease in order to undercover 

new therapeutic options. To address the roles of the mentioned factors, we assessed two different rat 

models: 1) bile-duct ligation (BDL), a hepatic encephalopathy model induced by secondary biliary 

cirrhosis; and 2) portacaval anastomosis (PCA), a hepatic encephalopathy model induced following a 

surgical portacaval shunt. 

 The specific objectives followed within this project were: 

1. Determine the role of ammonia in the pathogenesis of brain edema in chronic liver disease. 

2. Investigate the role of oxidative stress, depicting between its presence systemically and 

centrally, in the pathogenesis of brain edema in chronic liver disease.  

3. Determine the relationship of ammonia and oxidative stress in the pathogenesis of brain 

edema.  

4. Define the roles of lactate and glutamine in the pathogenesis of brain edema and their 

relationship with ammonia. 
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First paper: AST-120 (spherical carbon adsorbent) lowers ammonia levels 

and attenuates brain edema in bile duct–ligated rats 
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Aim of first publication 

This paper aims to define the role of ammonia and its relationship with oxidative stress in the 

pathogenesis of brain edema in CLD. To attain this objective, BDL rats were treated with AST-120 

(spherical carbon adsorbent), an oral adsorbent of engineered activated carbon microspheres with 

surface areas exceeding 1600m2/g working as a sink for neuro- and hepato–toxins generated in the 

gut. The capacity of AST-120 to adsorb ammonia in vitro and to lower blood ammonia, OS and 

brain edema was evaluated. This treatment paradigm is also an excellent model to study the 

relationship between ammonia and OS in blood and in the brain. 
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Abstract 

The pathogenesis of hepatic encephalopathy (HE) is multifactorial involving gut-derived toxins such 

as ammonia, which has demonstrated to induce oxidative stress. Therefore a primary HE treatment 

target is reducing ammonia production in the gastrointestinal tract. AST-120, an oral adsorbent of 

engineered activated carbon microspheres with surface areas exceeding 1600 m2/g, acts as a sink for 

neuro- and hepato–toxins present in the gut. We evaluated the capacity of AST-120 to adsorb 

ammonia in vitro and to lower blood ammonia, oxidative stress and brain edema in cirrhotic rats. 

Cirrhosis was induced in rats by bile-duct ligation (BDL) for 6 weeks. AST-120 was administered by 

gavage preventively for 6 weeks (0.1, 1 and 4 g/kg/day). In addition, AST-120 was evaluated as a 

short-term treatment for 2 weeks and 3 days (1 g/kg/day) and as a sink to adsorb intravenously 

infused ammonium acetate. In vitro, AST-120 efficiently adsorbed ammonia. Ammonia levels 

significantly decreased in a dose-dependent manner for all AST-120 treated BDL rats (non-treated: 

177.3 ± 30.8 μM; AST-120, 0.1 g/kg/day: 121.9 ± 13.8 μM; AST-120, 1 g/kg/day: 80.9 ± 30.0 μM; 

AST-120, 4 g/kg/day: 48.8 ± 19.6 μM) and significantly correlated with doses of AST-120 (r=-

0.6603). Brain water content and locomotor activity normalized following AST-120 treatments, 

while arterial ROS levels remained unchanged. Furthermore, AST-120 significantly attenuated an 

increase in arterial ammonia following ammonium acetate administration (iv). Conclusions: AST-

120 treatment decreased arterial ammonia levels, normalized brain water content and locomotor 

activity but did not demonstrate an effect on systemic oxidative stress. Also, AST-120 acts as an 

ammonia sink, efficiently removing blood-derived ammonia. Additional studies are warranted to 

evaluate the effects of AST-120 on HE in patients with advanced liver disease. 
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Introduction 

 Hepatic encephalopathy (HE) is a neuropsychiatric metabolic syndrome, a major complication 

of both acute and chronic liver disease. HE is characterized by cognitive, psychiatric and motor 

dysfunctions and can rapidly progress to hepatic coma and death. The prevalence of hepatic diseases 

is estimated at 5.5 million cases in US and as much as 80% of these patients will develop minimal 

HE (1). The pathogenesis of HE is multifactorial involving gut-derived toxins, the most important 

one being ammonia. During liver failure, gut-derived ammonia is not metabolized by the liver 

leading to hyperammonemia and consequently to neurotoxic ammonia levels in the brain (2,3). 

Ammonia neurotoxicity has been associated with a number of pathophysiological, biochemical and 

molecular changes in the brain, which consequentially lead to cerebral dysfunction (4). One 

important pathological change related to ammonia is represented by astrocyte swelling which leads 

to brain edema (5). Brain edema, a common finding in patients with acute liver failure (6) is also 

observed in patients with cirrhosis (7-9), as well as in animal models of chronic liver failure (10).  

 The correlation between ammonia and severity of HE in chronic liver failure remains however 

controversial (11-14) and other factors are believed to act synergistically with ammonia to induce 

brain edema (15). Recently it has been demonstrated that acute, high ammonia concentrations induce 

oxidative stress both in vitro (16) and in vivo (17), suggesting an important role for oxidative stress 

in the pathogenesis of HE (18). Systemic oxidative stress occurs during cirrhosis and represents a 

systemic phenomenon (19) however its relationship to HE or brain edema is unresolved. Reactive 

oxygen species (ROS) are believed to be produced at the intestinal level in relation to bacterial 

translocation and increased intestinal permeability (20), but also in the liver in relation to gut-derived 

toxins (21). ROS are known to be involved in blood-brain barrier dysfunction (22) which could 

enhance the neuropathological effects of ammonia. One of these effects could be brain edema since 

in vitro, astrocyte swelling is related to ammonia-induced oxidative stress (23). 

Reducing ammonia levels remains a primary treatment strategy in patients with HE and gut-

derived ammonia represents an obvious treatment target. AST-120 consists of engineered activated 

carbon microspheres (0.2 - 0.4 mm in diameter) with high non-specific adsorptive surface area 
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(>1600 m2/g). It is not adsorbed or degraded in the gastrointestinal tract and provides sustained 

binding surface for low molecular weight compounds (<10 kDa) present in the bowel (24). AST-120 

has proven to lower plasma ammonia levels in portacaval-shunted dogs (25) and attenuate oxidative 

stress in uremic rats (26). Also, preliminary studies in humans have showed neurocognitive 

improvements in patients with low-grade HE following AST-120 treatment (27). 

The aim of this study was to evaluate the capacity of AST-120 to lower arterial ammonia (gut- 

and blood-derived) and oxidative stress and to investigate its effect on brain edema and locomotor 

activity in rats with cirrhosis induced by bile-duct ligation.  
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Materials and methods 

In vitro adsorption of ammonia by AST-120 

 To determine the in vitro capacity of AST-120 to adsorb ammonia, 50 ml of two 

different ammonium chloride solutions (100 µM and 1 mM, pH = 5.5) were incubated at room 

temperature with 2 g of AST-120 for 1, 3 and 6 hours. Ammonia chloride solutions were incubated 

without AST-120 as controls. Samples were collected at each time point and ammonia concentration 

was measured. Results were expressed as percent of ammonia recovered in the solution after AST-

120 adsorption. 

 

Animal model 

 Secondary biliary cirrhosis was induced in male Sprague-Dawley rats (250 g) (Charles 

River, St. Constant, QC) following 6 weeks of bile-duct ligation (BDL). Prior to the double ligation 

and resection, formalin (1 µl/mg) was injected intracholedochal in order to prevent the dilatation of 

the ligated bile ducts (28). Control rats underwent a SHAM operation in which the bile duct was 

isolated without formalin injection, ligation or resection. 

 

AST-120 treatment 

 AST-120 (Ocera Therapeutics, San Diego, CA) was administered by gavage every 

12 hours, for a period of 6 weeks, beginning day 1 after surgery. SHAM and BDL rats (n=6/group) 

received AST-120 dissolved in methylcellulose (Sigma, St. Louis, MO) (10 ml/kg/gavage) at a dose 

of 0.1, 1 and 4 g/kg/day. Control SHAM and BDL rats (n=6/group) received equivalent volumes of 

methylcellulose. Animals were sacrificed after 6 weeks. In the second part of the study the effect of 

AST-120 administered as short-term treatment was evaluated. 1 g/kg/day of AST-120 was 

administered for 2 weeks (starting 4 weeks after surgery) and 3 days (starting day 39 after surgery) in 

both SHAM and BDL rats. 
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To determine the capacity of AST-120 to adsorb ammonia from the periphery (blood), non-

treated and AST-120 treated BDL rats (1 g/kg/day for 2 weeks) were infused intravenously with 

ammonium acetate (55 μmol/kg/min) for 3 hours (29). Under isoflurane anesthesia, 22G catheters 

(Smiths Medical, United Kingdom) were placed in the aorta and vena cava and connected by PE60 

tubing (Solomon Scientific, Plymouth Meeting, PA) to an infusion pump (CMA 100, Sweden). Rats 

were allowed to recover 30 min before starting the venous infusions. Aortic blood samples were 

collected at baseline and hourly to assess ammonia levels. Rats were sacrificed after 3 hours or at 

precoma stage (loss of righting reflex), if this occurred before 3 hours. All experiments were 

conducted following the Guidelines of Canadian Council on Animal Care and were approved by the 

Animal Protection Committee of CHUM Research Center. 

Daily food/protein intake was monitored in BDL and SHAM-operated rats both non-treated and 

treated with AST-120 (1 g/kg/day) for 2 weeks; one week before starting the treatment and during 

the 2 weeks treatment. Mean daily food/protein intake/100 g body weight was calculated and 

expressed as % compared to non-treated SHAM-operated controls.  

 

Plasma liver function markers 

 Plasmatic aspartate and alanine aminotransferase (AST; ALT), bilirubin, alkaline 

phosphatase (AP), γ-glutamyl transpeptidase (GGT) and albumin were measured using routine 

biochemistry techniques. Liver pathology was assessed as described in the supplemental 

information. 

 

Ammonia 

 Ammonia levels were measured in arterial plasma using a commercial kit (Sigma, St. 

Louis, MO). Ammonia levels were assessed based on the reaction with α-ketoglutarate and reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) in presence of L-glutamate dehydrogenase. 

Oxidation rate of NADPH was recorded by the absorbance decrease at 340 nm. Ammonia 
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concentration was calculated according to the manufacturer’s protocol. 

 

Reactive oxygen species (ROS) 

 ROS were assessed using the oxidation reaction of dichlorofluorescein diacetate 

(DCFDA; Invitrogen, Carlsbad, CA) to dichlorofluorescein (DCF) (30). 100 µM DCFDA was 

incubated 30 min in dark with hydroxylamine hydrochloride (40 mM) and hydrolysed to non-

fluorescent DCF. DCF was incubated with arterial plasma and oxidation rate was recorded by 

changes in fluorescence over a 10 min period with a spectrofluorometer (BioTek, Winooski, VT) at 

485 nm excitation and 520 nm emission wavelengths. 

 

Brain water content 

 Brain water content was measured using the sensitive densitometry technique, as 

previously described (31). Briefly, after the animal was sacrificed frontal cortex was freshly 

dissected at 4°C and cut into 2 mm3 pieces. Tissue pieces were placed in density gradient columns 

and equilibrium point was recorded after 2 min. Columns were made with different kerosene and 

bromobenzene mixtures and precalibrated with K2SO4 solutions of known densities. 8 samples 

measurements were averaged in each rat. Water content was calculated based on tissue density, 

according to the formula described by Marmarou et al. 

 

Locomotor activity 

 Locomotor activity was assessed using an infrared beam computerized auto-track system 

(Columbus Instruments, Columbus, OH) (32). SHAM-operated controls, non-treated BDL and BDL 

treated with AST-120 (1 g/kg/day for 2 weeks) were individually placed in plexiglas cages 

(29 x 22 x 22 cm) for 6 h before beginning to record activity. Cumulative distance travelled during 

the night (active) and day (inactive) period was recorded for 24 h and expressed as night/day ratio. 
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Statistical analysis 

 Data are expressed as mean ± standard error of the mean (SEM). Significance of 

difference was tested with Student t-test and ANOVA followed by Newman-Keuls post-test; 

correlation was calculated with Spearman test using GraphPad Prism 4 (La Jolla, CA). Probability 

values p<0.05 were considered to be statistically significant.  
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Results 

In vitro adsorption of ammonia by AST-120 

 AST-120 significantly adsorbed ammonia at a pH similar to the physiological pH of the 

human gastrointestinal tract (33). The adsorption of ammonia by AST-120 is rapid, ~ 60% occurring 

during the first incubation hour, for both 100 µM and 1 mM solutions. After 6 h of incubation, 2 g of 

AST-120 removed 93.5% (93.5 µM) and 77.2% (772.3 µM) of 100 µM and 1 mM ammonia 

solutions respectively (fig. 1).  

 

 

Figure 1. Ammonia recovered (%) in a volume of 50 ml of two different ammonium chloride solutions 
(100 µM and 1 mM) after 1, 3 and 6 hours of incubation in vitro with 2 g of AST-120 
( ──■── = ammonium chloride [100 µM] incubated with 2 g of AST-120 ;  ──▲── = ammonium 
chloride [1 mM] incubated with 2 g of AST-120; - -■- - = ammonium chloride [100 µM]; - -▲- -
 = ammonium chloride [1 mM]) 
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In vivo effect of AST-120 on body weight and protein intake 

 BDL rats gained significantly less weight than their respective SHAM-operated controls 

during the 6 week course of the model. No significant difference was found between all four groups 

of SHAM-operated rats or between all 4 groups of BDL rats (non-treated and AST-120 treated) 

(fig. 2A). As no significant differences were found between the 3 groups of AST-120 treated 

SHAM-operated rats, the data was pooled and presented as mean values in order to simplify the 

figures. 

 The amount of protein ingested was not significantly different between BDL and 

SHAM-operated rats before starting the treatment and neither group was affected by AST-120 (fig. 

2B). 

 

Figure 2. A) Weight curves of bile-duct ligated (BDL) and SHAM-operated rats under treatment with 
AST-120 0.1, 1 and 4 g/kg/day for 6 weeks. As no significant differences were found between the 3 
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groups of AST-120 treated SHAM-operated rats, only the mean value for these groups is presented in 
order to simplify the figure (□ = SHAM; ■ = treated SHAM; ∆ = non-treated BDL; ▲ = AST-120, 
0.1 g/kg/day treated BDL; ▲ = AST-120, 1 g/kg/day treated BDL; ▲ = AST-120, 4 g/kg/day treated 
BDL). B) Daily protein intake/ 100 g body weight in bile-duct ligated (BDL) and SHAM-operated rats 
under treatment with AST-120 1 g/kg/day for 2 weeks (starting 4 weeks after surgery). Data are 
expressed as percent change relative to SHAM-operated controls one week before starting the 
treatment (week 3-4) and during the treatment period (weeks 4-6). 
 

Liver biochemistry 

 At time of sacrifice, all BDL rats (non-treated and AST-120 treated) presented clinical 

signs of cirrhosis: jaundice, ascites and enlarged, nodular, discolored liver. Levels of plasma AST, 

ALT, bilirubin, AP and GGT were significantly increased in BDL groups compared to their 

corresponding SHAM-operated controls. In addition, albumin levels were significantly lower in all 

BDL rats compared to SHAM-operated controls (table I). Histopathological examination of liver 

sections revealed enlarged portal spaces with cholangiolar proliferation and hepatic necrosis in all 

BDL groups (suppl. fig. 1). AST-120 treatment did not significantly improve liver function markers 

or histopathological changes. 

 

Table I. Liver biochemistry markers in bile-duct ligated and SHAM-operated rats under treatment with 
AST-120 0.1, 1 and 4 g/kg/day for 6 weeks. Data are expressed as mean ± SEM. BDL, bile-duct 
ligation; AST, aspartate aminotransferase; ALT, alanine aminotransferase; AP, alkaline phosphatase; 
GGT, γ-glutamyl transpeptidase. *** p<0.001, significantly different from non-treated SHAM-operated 
controls. † p<0.05, ††† p<0.001, significantly different from corresponding treated SHAM-operated 
controls group. $ p<0.05, significantly different from non-treated BDL. 
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Supplemental figure 1. Liver histopathology following treatment with AST-120, 0.1, 1 and 4 g/kg/day 
for 6 weeks in bile-duct ligated (BDL) and SHAM-operated rats. Representative liver sections of: A) 
non-treated SHAM operated controls and B) AST-120 treated SHAM-operated controls show normal 
liver architecture. Liver sections from: C) non-treated BDL rats and AST-120 D) 0.1, E) 1 and F) 
4 g/kg/day show typical morphology of biliary cirrhosis: cholangiolar proliferation, hepatocyte loss, 
enlargement of portal spaces. No differences were noted between non-treated and treated BDL rats 
groups. 
 
Ammonia 

Arterial ammonia significantly increased in non-treated BDL rats (177.3 ± 30.8 μM vs SHAM: 

66.5 ± 18.2 μM, p < 0.01). All doses of AST-120 significantly decreased ammonia in BDL rats to 

similar levels found in respective SHAM-operated controls: 0.1 g/kg/day: 121.9 ± 13.8 μM vs 

81.1 ± 8.9 μM, p > 0.05; 1 g/kg/day: 80.9 ± 30.0 μM vs 72.2 ± 6.3 μM, p > 0.05; 4 g/kg/day: 

48.8 ± 19.6 μM vs 53.8 ± 16.8 μM, p > 0.05. Furthermore, ammonia levels were significantly lower 

in treated BDL compared to non-treated BDL rats (fig. 3A). Ammonia levels significantly correlated 
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with dose of AST-120 (Spearman r = -0.6603; p = 0.0006) (fig. 3B). 

 

Figure 3. A) Arterial ammonia concentrations following treatment with AST-120, 0.1, 1 and 
4 g/kg/day for 6 weeks in bile-duct ligated (BDL) and SHAM-operated rats. As no significant 
differences were found between the 3 groups of AST-120 treated SHAM-operated rats, only the mean 
value for these groups is presented in order to simplify the figure. Data are expressed as mean ± SEM. 
** p<0.01, significantly different from non-treated SHAM-operated controls; $ p<0.05, $$ p<0.01, 
$$$ p<0.001, significantly different from non-treated BDL. B) Correlation between ammonia levels and 
AST-120 dose (Spearman r = -0.6603; p = 0.0006, ■ = SHAM, ▲ = BDL). 
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ROS 

 Arterial ROS levels significantly increased in non-treated BDL compared to SHAM-

operated rats (p<0.01). Following AST-120 treatment, ROS levels remained significantly higher 

compared to respective SHAM-operated controls and no significant change was observed between 

non-treated and AST-120 treated BDL rats (fig.  4). 

 

 

Figure 4. Arterial ROS concentrations following treatment with AST-120, 0.1, 1 and 4 g/kg/day for 6 
weeks in bile-duct ligated (BDL) and SHAM-operated rats. As no significant differences were found 
between the 3 groups of AST-120 treated SHAM-operated rats, only the mean value for these groups is 
presented in order to simplify the figure. Data are expressed as mean ± SEM. ** p<0.01, significantly 
different from non-treated SHAM-operated controls; †† p<0.01, significantly different from 
corresponding treated SHAM-operated controls group. 
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Brain edema 

 Brain water content in frontal cortex was found to be significantly increased in non-

treated BDL rats (79.39 ± 0.22 % vs non-treated SHAM: 78.60 ± 0.19 %, p<0.05) and in 

0.1 g/kg/day AST-120 treated BDL rats (79.53 ± 0.30 % vs respectively treated SHAM: 

78.76 ± 0.15 %, p<0.05). AST-120, at 1 and 4 g/kg/day, lowered brain water content in the frontal 

cortex to values similar to their respective SHAM-operated controls, although no difference was 

observed when compared to non-treated BDL (fig. 5A). 

 Brain water content significantly increased in non-treated BDL rats in cerebellum 

(78.89 ± 0.16 % vs non-treated SHAM: 77.96 ± 0.16 %, p<0.01) and brain stem (69.50 ± 0.25 % vs 

non-treated SHAM: 68.78 ± 0.41 %, p<0.01). All doses of AST-120 lowered brain water content in 

cerebellum and brain stem to values similar to their respective SHAM-operated controls. In 

cerebellum, no difference was found between AST-120 at 0.1 g/kg/day treated BDL rats vs non-

treated BDL rats, while AST-120, at 1 and 4 g/kg/day, presented a significant reduction vs non-

treated BDL (p<0.05). In brain stem, no difference was observed between AST-120 treated and non-

treated BDL rats (fig. 5B and C). 
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Figure 5. A) Frontal cortex B) cerebellum and C) brain stem water content following treatment with 
AST-120, 0.1, 1 and 4 g/kg/day for 6 weeks in bile-duct ligated (BDL) and SHAM-operated rats. As no 
significant differences were found between the 3 groups of AST-120 treated SHAM-operated rats, only 
the mean value for these groups is presented in order to simplify the figure. Data are expressed as 
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mean ± SEM. * p<0.05, ** p<0.01, significantly different from non-treated SHAM-operated controls; 
† p<0.05, significantly different from corresponding treated SHAM-operated controls group; $ p<0.05, 
significantly different from non-treated BDL. 
 

Effect of AST-120 administered as short-term treatment 

 Since AST-120 administered preventively for 6 weeks lowered arterial ammonia levels 

and normalized brain water content, we investigated the effect of AST-120 when administered as 

short-term treatment. 1 g/kg/day of AST-120 was investigated as the treatment dose, since it was the 

lowest dosage which reduced both ammonia and brain edema following 6 weeks of treatment. 

AST-120 (1 g/kg/day) administered for 2 weeks (week 4-6) and 3 days (days 39-42) 

significantly reduced arterial ammonia levels compared to non-treated BDL rats (non-treated BDL: 

267% vs. AST-120 treated BDL: 108% (2 weeks) and 105% (3 days) relative to respective sham-

operated controls). Brain water content decreased in all 3 regions (frontal cortex, cerebellum and 

brain stem) to similar levels as SHAM-operated controls (fig. 6A). 

 

Locomotor activity 

 Locomotor activity in BDL rats was reduced compared to SHAM-operated controls but 

normalized following AST-120 treatment (1 g/kg/day for 2 weeks) (fig. 6B). 
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Figure 6. A) Arterial ammonia and frontal cortex, cerebellum and brain stem water content percent 
change following treatment with AST-120, 1 g/kg/day for 2 weeks and 3 days in bile-duct ligated 
(BDL) and SHAM-operated rats. Data are expressed as percent change relative to SHAM-operated 
controls. * p<0.05, ** p<0.01, significantly different from non-treated SHAM-operated controls; 
$ p<0.05, significantly different from non-treated BDL; $$ p<0.01, significantly different from non-
treated BDL (- - - Ammonia; ── Frontal cortex water content; …… Cerebellum water content; 
▬▬ Brain stem water content). B) Locomotor activity following treatment with AST-120, 1 g/kg/day 
for 2 weeks in bile-duct ligated (BDL) and SHAM-operated rats. Data are expressed as night/day ratio 
of cumulative distance travelled recorded over 12 hours active period (night) and 12 hours inactive 
period (day). 
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Adsorption of blood ammonia by AST-120 

In order to determine AST-120’s capability to remove ammonia from the blood, both non-

treated and AST-120 treated BDL rats were infused (i.v) with ammonium acetate. In non-treated 

BDL rats, ammonium acetate infusions (55µmol/kg/min) lead to rapid increase in blood ammonia 

and consequently a fast deterioration in neurological status (80% progressed to precoma during the 3 

hour observation period). Whereas AST-120 significantly attenuated an increase in blood ammonia 

and furthermore, only 14% of AST-120 treated BDL rats progressed to precoma (fig. 7). 

 

 

Figure 7. Time course of arterial ammonia concentrations following ammonium acetate intravenous 
infusions in non-treated and AST-120, 1 g/kg/day for 2 weeks treated bile-duct ligated (BDL) rats. 
Data are expressed as mean ± SEM. $ p<0.05, significantly different from non-treated BDL. (── non-
treated BDL rats; - - - AST-120 treated BDL rats). 
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Discussion 

Results of the present study demonstrate that AST-120 treatment (both as a preventive and 

short-term therapy) lowers arterial ammonia levels, attenuates brain edema and improves locomotor 

activity. No significant effect on circulating ROS was noted. These results demonstrate the important 

role of ammonia in the pathogenesis of brain edema. Furthermore, it suggests systemic oxidative 

stress independently does not lead to brain edema and is not induced by hyperammonemia. We also 

demonstrate that AST-120 has the capability of lowering ammonia by adsorbing both gut- and 

blood-derived ammonia.  

Prior to testing AST-120 in vivo, we tested its capacity to adsorb ammonia in vitro. AST-120 

significantly adsorbed ammonia from of 100 µM and 1 mM solutions, which represent the range 

reported in humans with HE (11), as well as in animal models of HE (28). In vitro, ammonia 

adsorption occurred rapidly and efficiently, providing a good rationale to test AST-120 as an 

ammonia-lowering treatment in vivo. 

The different treatment periods were chosen accordingly to different pathological aspects in the 

time course of HE. In cirrhotic patients a preventive treatment would be useful for reducing the onset 

of minimal HE or the number of episodes of overt HE, while short-term treatment would be useful in 

treating episodes of HE (see nomenclature of HE (34)). In BDL rats, 4 weeks after surgery, blood 

ammonia levels are increased, but brain edema is not present (35); brain edema is observed only 5 

weeks after BDL (10). We began AST-120 treatment: 1) immediately after surgery (for 6 weeks) to 

investigate the preventive effect of a long-term treatment on ammonia and brain edema; 2) 4 weeks 

after surgery (2 weeks treatment) to investigate the capacity of lowering ammonia levels before the 

apparition of brain edema; and 3) 39 days after surgery (3 days treatment) to investigate the short-

term treatment capacity to lower ammonia and normalize brain water. Our data suggests AST-120 

can be used to prevent an increase in blood ammonia as well treat hyperammonemia. 

In BDL rats, AST-120 treatment was well tolerated; no adverse effects were observed; weight 

curves and daily protein intake were not altered. AST-120 treatment had no effect on liver necrosis 

and cholestasis markers, however ammonia levels significantly decreased in a dose-response manner. 
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Ammonia, as a gas (NH3) and ion (NH4
+), can easily diffuse and be transported across plasma 

membranes (4). To better understand the mechanism of action of AST-120 we investigated its 

capability to remove blood-derived ammonia and found AST-120 significantly prevented an increase 

in blood ammonia following intravenous ammonium acetate infusion (i.v). This suggests that: 1) 

ammonia diffuses not only from the gut to the portal system, but also from systemic circulation to 

the gut and 2) AST-120 in the gut acts as an ammonia sink, significantly clearing blood-derived 

ammonia. 

To date, only acute, high ammonia concentrations have been proven to induce oxidative stress 

both in vitro (5 mM applied to the astrocytes in culture (16)) and in vivo (12 mmol/kg administered 

intraperitoneally in rat (17)). Interestingly, in the current study, lowering ammonia levels did not 

lead to a reduction in ROS, suggesting oxidative stress persists in the absence of hyperammonemia. 

Previous studies demonstrated that AST-120 attenuated oxidative stress in rats with chronic 

kidney disease, by adsorbing uremic intestinal toxins (26). The current data suggest systemic 

oxidative stress in BDL rats is not directly related to gut-derived toxins such as ammonia and is 

likely related to a result of the primary liver injury (36).  

Reduction of ammonia levels following AST-120 treatment leads to a normalization of brain 

water content. This data sustains the important role of ammonia in the pathogenesis of brain edema 

in chronic liver failure but does not exclude that oxidative stress could exacerbate ammonia effect on 

HE (18). The fact that AST-120 at 0.1 g/kg/day decreased water content only in cerebellum and 

brain stem and not in frontal cortex, despite of a significant decrease in ammonia levels sustains 

previous findings that white matter is more amenable to therapy than grey matter (37). 

The protective effect of AST-120 on brain edema is the result of ammonia adsorption. This 

study confirms ammonia remains an important factor in the pathogenesis of HE, however the 

relation between ammonia, oxidative stress and brain edema in chronic liver failure requires further 

investigation. 

Traditional HE treatments such as non-absorbable disaccharides and protein restriction are 
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limited due to the high frequency of adverse reactions (38). New treatments are required and gut-

targeted ammonia therapies are warranted. The main mechanisms for eradicating ammonia include 

sterilizing the gut (antibiotic therapy), acidifying and flushing the gut (lactulose/lactilol), or 

selectively binding local toxins (AST-120). Thus far, some promising new therapies are being 

advanced in the clinic: OCR-002 (ornithine-phenylacetate) reduces systemic ammonia levels and 

brain edema in cirrhotic rats (10) and rifaximin (non-absorbable antibiotic) maintains remission and 

reduces risk of hospitalisation from HE (39). In the current study, AST-120 significantly lowered 

ammonia and protected against the development of brain edema in rats with chronic liver failure. In 

this context, further studies in humans are warranted to evaluate utility of AST-120 as a gut 

ammonia sequestering agent and its potential benefit in the management of HE. 
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Second paper: Systemic oxidative stress is implicated in the pathogenesis of 

brain edema in rats with chronic liver failure 
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Aim of second publication 

The previous paper demonstrated that lowering arterial ammonia levels following AST-120 

treatment attenuates brain edema and improves locomotor activity without having a significant effect 

on systemic OS. This suggests systemic OS independently does not lead to brain edema and is not 

induced by hyperammonemia.  

As a continuation, we aimed to specifically define the role of oxidative stress in the 

pathogenesis of brain edema, its relationship with ammonia as well as the effect of antioxidant 

treatment. To attain this objective, PCA and BDL rats were used to assess ammonia, OS markers 

both systemically and centrally as well as brain edema. Allopurinol (xanthine oxidase inhibitor) was 

administered in BDL rats in order to evaluate the impact of systemic OS on the development of brain 

edema. 

. 
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Abstract  

Background & aims: Chronic liver failure leads to hyperammonemia, a central component in 

the pathogenesis of hepatic encephalopathy (HE), however a correlation between blood ammonia 

levels and HE severity remains controversial. It is believed oxidative stress plays a role in 

modulating the effects of hyperammonemia. This study aimed to determine the relationship between 

chronic hyperammonemia, oxidative stress and brain edema (BE) in two rat models of HE: 

portacaval anastomosis (PCA) and bile-duct ligation (BDL). Methods: Ammonia and reactive 

oxygen species (ROS) levels, BE, oxidant and antioxidant enzyme activities as well as lipid 

peroxidation were assessed both systemically and centrally in these 2 different animal models. Then, 

effect of allopurinol (xanthine oxidase inhibitor, 100 mg/kg for 10 days) on ROS and BE and 

temporal resolution of ammonia, ROS and BE were evaluated only in BDL rats. Results: Similar 

arterial and cerebrospinal fluid ammonia levels were found in PCA and BDL rats, both significantly 

higher compared to their respective SHAM-operated controls (p<0.05). BE was detected in BDL rats 

(p<0.05) but not in PCA rats. Evidence of oxidative stress was found systemically but not centrally 

in BDL rats: increased levels of ROS, increased activity of xanthine oxidase (oxidant enzyme), 

enhanced oxidative modifications on lipids and proteins as well as decreased antioxidant defence. In 

PCA rats, a preserved oxidant/antioxidant balance was demonstrated. Treatment with allopurinol in 

BDL rats attenuated both ROS and BE suggesting systemic oxidative stress is implicated in the 

pathogenesis of BE. Analysis of ROS and ammonia temporal resolution in plasma of BDL rats 

suggests systemic oxidative stress might be an important “first hit”, which followed by increases in 

ammonia, leads to BE in chronic liver failure. In conclusion, chronic hyperammonemia and 

oxidative stress in combination lead to the onset of BE in rats with chronic liver failure. 

Key Words: hepatic encephalopathy, hyperammonemia, bile-duct ligation, portacaval 

anastomosis, allopurinol
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Introduction 

Hepatic encephalopathy (HE) is a metabolic neuropsychiatric syndrome, a major 

complication of liver disease. Minimal hepatic encephalopathy (mHE), the mildest form of 

HE, is present in up to 80% of patients with chronic liver failure (CLF) [1]. Patients with mHE 

have no recognizable clinical symptoms of HE but show mild cognitive and psychomotor 

dysfunctions diagnosed with sensitive neuropsychological and neurophysiological tests [2–4]. 

mHE negatively impacts on the patients’ quality of life and places these patients at a higher (4 

fold) risk of developing severe HE [1,2,5]. Newly advanced highly sensitive imaging 

techniques have demonstrated brain edema is a major pathological feature present in patients 

with CLF and mHE [6–8]. Although these studies established a link between brain edema and 

alterations in cognitive function, the relationship between brain edema and the pathogenic 

factors of HE is still poorly described. 

 

Ammonia is considered the most important factor in the pathogenesis of HE given that 

hyperammonemia consequently leads to toxic levels of ammonia in the brain [9,10]. 

Nevertheless whether a correlation exists between hyperammonemia and HE severity in CLF 

still remains controversial [11–15]. A recent study demonstrated ammonia administrated 

intravenously to healthy volunteers did not cause any significant neuropsychological 

impairment [16], supporting the premise that other pathogenic factors, besides ammonia, are 

involved in the pathogenesis of brain edema and HE in CLF. 

 

Oxidative stress is believed to play a role in the pathogenesis of HE since acute doses of 

ammonia lead to the induction of oxidative stress [17]. For example, cultured astrocytes 

acutely exposed to 5 mM ammonia, show an increase in reactive oxygen species (ROS) and 

cell swelling, which are both prevented following antioxidant treatments [18,19]. To date, the 

only in vivo evidence of ammonia-induced oxidative stress in the brain has been reported in 
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animal models of acute ammonia intoxication [20–22], however the link between chronic 

hyperammonemia, oxidative stress (central and systemic) and brain edema in CLF remains 

undefined. 

 

The aim of the present study was to determine the relationship between blood and brain 

ammonia and oxidative stress in the pathogenesis of brain edema associated with CLF. In 

order to clearly understand these relationships, two well characterized rat models of chronic 

hyperammonemia and mHE [23] were used: 1. portacaval anastomosis (PCA) – a HE type B 

model and 2. bile-duct ligation (BDL) – a type C HE model. The fact that brain edema is 

present in BDL rats [24] and not in PCA rats [25] sets up an excellent experimental paradigm 

to study the pathogenesis of brain edema in the context of chronic hyperammonemia. 
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Materials and methods 

Animal models 

Four groups of male Sprague-Dawley rats (250-275 g, n=6/group) (Charles River, St-

Constant, QC) were included in the first part of this study. Group 1: Type B model of HE: rats 

with end-to-side portacaval anastomosis (PCA) [26]. Group 2: SHAM-operated control rats 

(PCA-SHAM). Groups 1 and 2 were sacrificed 4 weeks after surgery. Group 3: Type C model 

of HE: rats with secondary billiary cirrhosis induced by bile-duct ligation (BDL) [24]. Group 

4: SHAM-operated control rats (BDL-SHAM). Groups 3 and 4 were studied 6 weeks after the 

intervention. For the second part of the study, separate groups of BDL-SHAM and BDL rats 

either: 1) received allopurinol (Cayman chemical company, Ann Arbor, MI) (100 mg/kg 

intraperitoneally for 10 days, starting 32 days after the intervention [27]); or 2) were studied at 

earlier time points (2 and 4 weeks after intervention). Locomotor activity was assessed in 

SHAM-operated controls, non-treated and allopurinol treated BDL rats using an infrared beam 

computerized auto-track system (Columbus Instruments, Columbus, OH) [24]. Rats were 

individually placed in plexiglass cages (29 x 22 x 22 cm) for 6 h before beginning to record 

activity to accommodate to the environment. Cumulative distance travelled was recorded for 

12 h during the night (active period). 

Experiments were conducted following the Guidelines of Canadian Council on Animal 

Care and were approved by the Animal Protection Committee of CHUM Research Center. 

 

Cerebrospinal fluid sampling 

Cerebrospinal fluid (CSF) was collected from cisterna magna. The rats were anesthetised 

with isoflurane and the skull was immobilized in a stereotaxic apparatus. An incision was 

made on the back of the head and the occipital bone was exposed. A dental burr was used to 

drill a hole on the sagittal midline rostral to the interparietal-occipital bone suture. A PE-10 
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tubing catheter was inserted into the cisterna magna through the dura mater. CSF was 

collected and immediately frozen in deeply cooled isopentane. Immediately following this 

procedure, arterial plasma and brain samples were collected and instantly frozen at -80°C. 

 

Liver biochemistry 

Plasma aspartate and alanine aminotransferase, bilirubin, alkaline phosphatase, 

γ-glutamyl transpeptidase and albumin were measured using routine biochemistry techniques. 

 

Ammonia 

Ammonia levels were measured in plasma and CSF using a commercial kit (Sigma, St- 

Louis, MO) according to the manufacturer’s protocol. 

 

Brain water content 

Brain water content was measured using the sensitive densitometry technique. Frontal 

cortex was freshly dissected at 4 °C and cut into 2 mm3 pieces. Tissue pieces were placed in 

density gradient columns and equilibrium point was recorded after 2 min. Columns were made 

with different kerosene and bromobenzene mixtures and precalibrated with K2SO4 solutions of 

known densities. At least 8 samples were measured in each rat. Water content was calculated 

based on tissue density, according to the formula described by Marmarou et al. [28]. 

 

Reactive oxygen species 

ROS were quantified as previously described [24] following the oxidation of 

dichlorofluorescein diacetate (DCFDA; Invitrogen, Carlsbad, CA) to dichlorofluorescein 
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(DCF). 100 µM DCFDA was incubated 30 min in the dark with hydroxylamine hydrochloride 

(40 mM) and hydrolysed to non-fluorescent DCF. DCF was incubated with plasma and CSF 

samples and oxidation rate was recorded by changes in fluorescence over a 10 min period with 

a spectrofluorometer (BioTek, Winooski, VT) at 485 nm excitation and 520 nm emission 

wavelengths. 

Hydrogen peroxide (H2O2): AmplexRed (10-acetyl-3,7-dihidroxyphenoxazine) reacts 

with H2O2 and releases resorufin, a fluorescent oxidation product. Plasma samples were 

incubated with a mixture of 50 µM Amplex Red (Invitrogen) and 0.1 U/ml horseradish 

peroxidase (HRP, Sigma) in 50 mM sodium phosphate buffer pH 7.4 for 30 min in dark. 

Fluorescence was read at 530 nm excitation and 590 nm emission wavelengths. H2O2 levels 

were calculated based on a standard curve of known H2O2 concentrations. 

 

Tissue preparation 

Frontal cortex was dissected and homogenized in lysis buffer (50 mM Tris pH 7.5, 

1 mM EDTA, 1/500 cold Protease Inhibitor Cocktail (Roche, Indianapolis, IN). Homogenates 

were centrifuged at 30,000 g for 40 min at 4oC. The supernatant was used as the brain 

cytosolic fraction and the precipitate was resuspended in lysis buffer and used as the brain 

membrane fraction. Protein content was determined according to the method of Lowry et al. 

[29]. 

 

Oxidants and antioxidants 

Xanthine oxidase (XO), amine oxidase (semicarbazide-sensitive amine oxidase (SSAO), 

brain monoamine oxidase (MAO)) and catalase (CAT) activities were determined by 

measuring produced or consumed H2O2, which reacts with Amplex Red and produces 

fluorescent resorufin, as described below. 
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XO: Plasma and brain samples were incubated with a mixture of 50 µM Amplex Red, 

0.2 U/ml HRP and 25 µM xanthine in 100 mM Tris pH 7.5 for 45 min in the dark. Following 

xanthine oxidation H2O2 is produced, which reacts with Amplex Red and produces fluorescent 

resorufin. A control for each sample was performed without adding xanthine to the reaction 

mix to correct for background H2O2. XO activity was calculated based on a standard curve of 

known XO concentrations. 

SSAO and MAO: To determine activity of SSAO, plasma samples were incubated with a 

mixture of 200 µM Amplex Red, 1 U/ml HRP and 2 mM benzylamine in 100 mM Tris pH 7.5 

for 30 min in dark. To determine activity of MAO, brain membrane fractions were incubated 

with a mixture of 200 µM Amplex Red, 1 U/ml HRP and 2 mM benzylamine (MAO-B) or 

tyramine (MAO-A and MAO-B) in 100 mM Tris pH 7.5 for 30 min in dark. Oxidation of 

benzylamine and tyramine leads to H2O2 production, which further reacts with Amplex Red 

and forms fluorescent resorufin. A control for each sample was performed without adding 

benzylamine, respectively tyramine to the reaction mix to correct for background H2O2. 1 µU 

of SSAO/MAO was calculated as the quantity of enzyme that produced 1 µM of resorufin 

based on a resorufin standard curve. 

CAT: Samples were incubated with 40 µM H2O2 for 30 min in the dark. Then, a mixture 

of 50 µM Amplex Red and 0.2 U/ml HRP in 100 mM Tris pH 7.5 was added and incubated 

for 30 min in the dark. CAT activity was determined by measuring the non-consumed H2O2 

based on the reaction with Amplex Red. A control for each sample was performed by 

incubating samples with buffer instead of H2O2 to correct for background H2O2. CAT activity 

was calculated based on a standard curve of known CAT concentrations. 

Superoxide dismutase (SOD) activity was assessed using a commercial kit (Biovision, 

Mountain View, CA), according to the manufacturer’s protocol.  

Glutathione reductase (GR) activity was assessed as previously described [30], based on 

the reduction of oxidized glutathione (GSSG) to glutathione (GSH). Samples were added to a 



80 

 

 

mixture of 100 mM phosphate buffer pH 7.5 and 1 mM GSSG. Reaction was started by 

addition of 0.1 mM nicotinamide adenine dinucleotide phosphate (NADPH). The oxidation 

rate of NADPH was followed at 340 nm for 5 min. Controls were performed to correct for 

non-specific NADPH oxidation. 1 mU of GR was calculated as the quantity of enzyme that 

reduced 1 mM of GSSG per minute, reaction which induced the oxidation of 1 mM of 

NADPH. 

Glutathione peroxidase (GP) activity was determined based on the reduction of GSH to 

GSSG followed by the recycling of GSSG back to GSH [31]. Samples were added to a 

mixture of 100 mM phosphate buffer pH 7.5, 0.2 U/ml GR, 2.1 mM GSH and 0.25 mM 

NADPH. Reaction was started by adding 0.3 mM tert-butyl hydroxyperoxide and NADPH 

oxidation rate was followed at 340 nm for 5 min. 1 mU of GP was calculated as the quantity of 

enzyme that oxidized 2 mM of GSH per minute, reaction followed by the reduction of 1 mM 

of GSSG accompanied by the oxidation of 1 mM of NADPH. 

Reduced glutathione/oxidized glutathione ratio (GSH/GSSG): GSH and GSSG were 

measured by a commercial kit (Oxford Biomedical Research, Rochester Hills, MI), according 

to the manufacturer’s protocol and expressed as % vs SHAM. 

 

Oxidative stress effects on lipids 

Lipid peroxidation was assessed by measuring TBARS, such as malondialdehyde 

(MDA), which are end-products of cell membrane lipid peroxidation and are considered 

reliable markers of oxidative stress. They were determined by the measurement of chromogen 

obtained from the reaction of TBARS with 2-thiobarbituric acid using TBARS assay kit 

(Cayman Chemical Company) in plasma samples. Lipid peroxidation in brain tissue was 

assessed using Bioxytech LPO-586 assay kit (Oxis International, Foster City, CA) according 

to the manufacturer’s protocol. In both kits, MDA was used as a standard and therefore 

calculated as µM of MDA. 
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Blood-brain barrier extravasation 

Evans Blue and sodium fluorescein (NaF) were used to assess blood-brain barrier (BBB) 

extravasation according to Kaya et al. [32]. PCA and PCA-SHAM as well as BDL and BDL-

SHAM were anesthetised with isoflurane and injected with 2% Evans Blue (4 ml/kg) and 

10% NaF (1 ml/kg) in the caudal vein [33]. 30 min after, rats were perfused with saline, the 

brain was removed and left frontal cortex was dissected on ice. Tissues were homogenized in 

phosphate buffered saline (PBS, 13.7 mM NaCl, 0.27 mM KCl, 1 mM Na2HPO4, 0.2 mM 

KH2PO4) and then mixed 1:1 with 60% trichloroacetic acid. Samples were vortexed, cooled on 

ice for 30 min and centrifuged at 10,000 g for 5 min. Evans Blue extravasation in frontal 

cortex was determined spectrophotometrically (610 nm) and expressed in ng/mg tissue. NaF 

extravasation was determined fluorometrically (at 485 nm excitation and 528 nm emission 

wavelenghts). In order to validate the technique, a toxic dose of mannitol was used to open the 

BBB (positive control, [34]): naïve rats were injected within 5 min with 25% mannitol 

(5 ml/kg) in the left carotid artery. 5 min after, Evans Blue and NaF were injected over 5 min 

(5 ml/kg) and measured as described above. 

 

Statistical analysis 

Data are expressed as mean±standard error of the mean (SEM). Significance of difference 

was tested with ANOVA followed by Newman-Keuls post-test using GraphPad Prism4 (La 

Jolla, CA). Probability values p<0.05 were considered to be statistically significant. 
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Results 

Liver biochemistry 

As expected, at time of sacrifice, BDL rats presented clinical signs of cirrhosis: jaundice, 

ascites, and enlarged, nodular, discoloured liver. These signs were absent in PCA rats, which 

only developed liver atrophy (decreased liver/body weight). Plasma levels of AST, ALT, 

bilirubin, AP and GGT levels were significantly increased in BDL rats compared to BDL-

SHAM. Albumin levels were significantly lower in BDL rats compared to BDL-SHAM. Liver 

markers remained unchanged in PCA vs PCA-SHAM (table I). 

Table I. Liver/body weight and biochemistry markers .PCA, portacaval anastomosis; BDL, bile-
duct ligation; AST, aspartate aminotransferase; ALT, alanine aminotransferase; AP, alkaline 
phosphatase; GGT, γ-glutamyl transpeptidase; n.d., not detected, below the detection limit of the 
method. Data are expressed as mean±SEM. **p<0.01, ***p<0.001, significantly different from 
SHAM. #p<0.05, ###p<0.001, significantly different from PCA. 
 

 PCA-SHAM PCA BDL-SHAM BDL 

Liver/body 

weight (%) 
3.84 ± 0.06 2.59 ± 0.09*** 4.25 ± 0.39 6.43 ± 0.24***### 

AST (U/l) 68 ± 5 84 ± 3 65 ± 4 355 ± 76 ***### 

ALT (U/l) 46 ± 2 53 ± 3 44 ± 4 72 ± 8**# 

Bilirubin 

(µmol/dl) 
7.6 ± 0.8 6.8 ± 0.4 7.1 ± 1.1 156.0 ± 17.7***### 

AP (U/l) 310 ± 30 360 ± 53 257 ± 22 493 ± 101 

GGT (U/l) 2.3 ± 0.9 3.5 ± 0.7 3.2 ± 0.8 54.5 ± 10.1***### 

Albumin 

(g/l) 
22.7 ± 0.8 21.8 ± 0.5 22.0 ± 0.8 n.d. 
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Ammonia 

Arterial ammonia (fig. 1A) significantly increased in both PCA (164.0±19.0 µM vs PCA-

SHAM: 68.7±16.5 µM, p<0.001) and BDL rats (119.7±15.2 µM vs BDL-SHAM: 

41.0±8.3 µM, p<0.01). Consequently, CSF ammonia levels (fig. 1B) also increased in PCA 

(106.4±16.9 µM vs PCA-SHAM: 45.1±11.9 µM, p<0.05) and BDL rats (128.4±36.7 µM vs 

BDL-SHAM: 23.3±6.1 µM, p<0.05). No significant difference was found in either plasma or 

CSF ammonia levels between PCA and BDL rats. 

 

Brain edema 

Brain water content in frontal cortex was found to be significantly increased in BDL rats 

(79.46±0.28 % vs BDL-SHAM: 78.35±0.17 %, p<0.05) and not in PCA rats vs PCA-SHAM 

(fig. 1C). 

 

Reactive oxygen species 

Arterial ROS levels significantly increased in BDL compared to BDL-SHAM rats 

(p<0.001). No significant difference in plasma ROS levels was found between PCA and PCA-

SHAM rats or in CSF ROS levels of the two experimental groups compared to their respective 

SHAM-operated controls (table II). Supporting these results, arterial H2O2 displayed a similar 

pattern as ROS levels with a 2.4 fold increase in BDL rats compared to SHAM-operated 

controls (p<0.001) and no change between PCA rats and PCA-SHAM (table II). CSF H2O2 

was not detected in either BDL or PCA rats along with their respective controls. 
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Figure 1: A) Arterial ammonia, B) cerebrospinal fluid (CSF) ammonia, C) frontal cortex brain 
water in rats with portacaval anastomosis (PCA) and bile-duct ligation (BDL) compared to 
respective SHAM-operated controls. Data are expressed as mean±SEM. *p<0.05, **p<0.01, 
***p<0.001, significantly different from SHAM. 
  



85 

 

 

 
Oxidants 

Plasma XO activity significantly increased in BDL rats whereas there was no significant 

difference found in plasma in PCA rats or in the frontal cortex in both BDL and PCA groups 

compared to their respective SHAM-operated controls (table II). Plasma SSAO as well as 

brain MAO-A and MAO-B did not show any significant difference in either of the 2 

experimental models compared to their respective SHAM-operated controls (table II). 

 

Antioxidants 

Plasma CAT activity significantly decreased by 40% in BDL compared to BDL-SHAM 

rats. There was no significant difference in plasma CAT between PCA and PCA-SHAM rats. 

In the frontal cortex no significant difference was found in both BDL and PCA groups 

compared to their respective SHAM-operated controls. SOD activity, in both plasma and 

frontal cortex, showed no significant difference in either of the experimental groups compared 

to their respective SHAM-operated controls. GR activity significantly increased in plasma of 

BDL rats (4.5 fold vs BDL-SHAM, p<0.001) and in brains of both PCA (2.6 fold vs PCA-

SHAM, p<0.001) and BDL rats (2 fold vs BDL-SHAM, p<0.001). No significant changes 

were observed in plasma of PCA vs PCA-SHAM rats. There were no changes in GP activity 

between the two experimental groups and their respective SHAM-operated controls in both 

plasma and frontal cortex. Total GSH significantly decreased by 44 % (p<0.001) in plasma in 

BDL rats, whereas GSH/GSSG ratio decreased 2.3 fold (p<0.05) compared to BDL-SHAM 

rats. No significant difference was demonstrated in plasma between PCA rats and their 

SHAM-operated controls. In the frontal cortex, no significant difference was found in both 

BDL and PCA groups compared to their respective SHAM-operated controls. All antioxidants 

activities are listed in table II. 
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Table II. Reactive oxygen species, oxidant and antioxidant enzyme activities in plasma and 
frontal cortex of rats with portacaval anastomosis (PCA) and bile-duct ligation (BDL) compared 
to respective SHAM-operated controls. ROS, reactive oxygen species; H2O2, hydrogen peroxide; 
XO, xanthine oxidase; SSAO, semicarbazide-sensitive amine oxidase; CAT, catalase; SOD, 
superoxide dismutase; GR, glutathione reductase; GP, glutathione peroxidase; GSH/GSSG, 
reduced glutathione to oxidized glutathione ratio; MAO-A, monoamine oxidase A; MAO-B, 
monoamine oxidase B; n.d., not detected, below the detection limit of the method. Data are 
expressed as mean±SEM. *p<0.05, **p<0.01, *** p<0.001, significantly different from SHAM. 
 
PLASMA     

 PCA-SHAM  PCA BDL-SHAM BDL 

REACTIVE OXYGEN 

SPECIES         

ROS (RFU) 0.33 ± 0.11 0.25 ± 0.12 0.15 ± 0.04 5.49 ± 1.93*** 

H2O2 (µM) 2.27 ± 0.59 1.42 ± 0.61 3.35 ± 0.53 8.02 ± 1.20*** 

OXIDANTS         

XO (mU/ml) 4.93 ± 0.14 9.45 ± 0.64 6.46 ± 0.75 30.47 ± 5.04*** 

SSAO (µU/ml) 162.1 ± 11.7 143.2 ± 15.2 178.4 ± 15.4 209.5 ± 35.4 

ANTIOXIDANTS         

CAT (U/ml) 249.3 ± 28.2 196.8 ± 32.2 323.4 ± 56.2 126.5 ± 19.7** 

SOD (fold change) 0.99 ± 0.15 1.12 ± 0.07 1.00 ± 0.12 1.07 ± 0.05 

GR (mU/ml) 12.45 ± 1.47 16.07 ± 1.42 9.23 ± 1.02 42.20 ± 8.94*** 

GP (mU/ml) 69.73 ± 1.96 76.56 ± 5.08 47.42 ± 3.97 57.27 ± 2.66 

total GSH (mM) 1.18 ± 0.04 1.15 ± 0.05 1.37 ± 0.04 0.77 ± 0.09*** 

GSH/GSSG (% vs 

SHAM) 100.00 ± 13.18 168.90 ± 30.96 100.00 ± 8.97 43.68 ± 16.88* 
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BRAIN      

  PCA-SHAM PCA BDL-SHAM BDL 

REACTIVE OXYGEN 

SPECIES         

ROS (RFU) 15.03 ± 6.91 34.03 ± 8.86 38.89 ± 12.67 25.97 ± 8.21 

H2O2 (µM) n.d. n.d. n.d. n.d. 

OXIDANTS         

XO (mU/100 μg protein) 18.44 ± 3.18 26.68 ± 2.65 17.16 ± 1.12 17.54 ± 2.86 

MAO-A (µU/100 μg 

protein) 10.02 ± 0.63 8.25 ± 1.35 11.71 ± 0.59 10.10 ± 0.55 

MAO-B (µU/100 μg 

protein) 2.52 ± 0.91 3.93 ± 0.92 5.27 ± 0.41 5.75 ± 0.62 

ANTIOXIDANTS        

CAT (U/100 μg protein) 23.41 ± 6.79 13.20 ± 2.10 20.75 ± 2.77 18.20 ± 2.20 

SOD (fold change) 1.00 ± 0.13 1.01 ± 0.08 1.00 ± 0.17 1.23 ± 0.10 

GR (mU/100 μg protein) 0.33 ± 0.02 0.88 ± 0.08*** 0.39 ± 0.03 0.79 ± 0.03*** 

GP (mU/100 μg protein) 3.24 ± 0.08 3.70 ± 0.35 3.71 ± 0.18 3.16 ± 0.55 

total GSH (mM) 0.42 ± 0.01 0.34 ± 0.04 0.37 ± 0.07 0.25 ± 0.05 

GSH/GSSG (% vs 

SHAM) 100.00 ± 43.81 106.10 ± 36.25 100.00 ± 24.85 207.20 ± 77.73 

 

Oxidative stress effects on lipids and proteins  

Plasma levels of TBARS significantly increased in BDL rats compared to BDL-SHAM 

(9.87±0.62 µM vs BDL-SHAM: 41.91±7.40 µM, p<0.001). No significant difference in levels 

of TBARS  were observed in plasma of PCA rats or in the frontal cortex of either 
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experimental group compared to their respective SHAM-operated controls (fig. 2A, B).  

 

 

Figure 2. Oxidative stress effects on lipids in rats with portacaval anastomosis (PCA) and bile-
duct ligation (BDL) compared to respective SHAM-operated controls: A) Arterial, B) frontal 
cortex malondialdehyde (MDA). Data are expressed as mean±SEM. ***p<0.001, significantly 
different from SHAM. 
 

BBB extravasation 

Evans Blue and NaF were measured in the frontal cortex in order to evaluate BBB 

extravasation. Evans Blue (961 Da) binds to albumin in plasma, forming a macromolecule, 

which, present in brain tissue denotes a large rupture of the BBB. The presence of NaF (376 

Da) in brain tissue points to damages reflecting paracellular diffusion of small size molecules. 

No trace of Evans Blue or NaF extravasation was found in neither BDL nor PCA rats (fig. 3). 
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Figure. 3. Blood-brain barrier permeability to A) Evans Blue and B) sodium fluorescein in 
frontal cortex of rats with portacaval anastomosis (PCA) and bile-duct ligation (BDL) compared 
to respective SHAM-operated controls. Mannitol injected naïve rats were used as positive 
controls in order to validate the technique. n.d., not detected. 
 
Effect of allopurinol in BDL rats 

In order to delineate the effect of systemic oxidative stress on brain edema, BDL rats 

were treated with allopurinol (xanthine oxidase inhibitor). Following allopurinol treatment in 

BDL rats, both arterial ROS and brain edema decreased to levels similar to those seen in BDL-

SHAM rats (fig. 4A, B). Allopurinol treatment did not improve liver function, as no changes 

were found between levels of AST, ALT, bilirubin, AP and GGT in allopurinol-treated versus 

non-treated BDL rats (fig. 4C). Locomotor activity (total distance travelled by BDL rats) was 
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reduced compared to SHAM-operated controls and ameliorated following allopurinol 

(fig. 4D). 

 

 

Figure 4. A) Arterial reactive oxygen species (ROS), B) frontal cortex brain water, C) liver 
biochemistry markers (AST, aspartate aminotransferase; ALT, alanine aminotransferase; AP, 
alkaline phosphatase; GGT, γ-glutamyl transpeptidase), D) distance travelled over a period of 12 
h during the night in bile-duct ligation (BDL) and allopurinol-treated bile-duct ligation 
(BDL+ALLO) rats compared to respective SHAM-operated controls. Data are expressed as 
mean±SEM. *p<0.01, ***p<0.001, significantly different from SHAM; †p<0.05, significantly 
different from non-treated BDL. 
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Temporal resolution of ammonia, oxidative stress and brain edema in BDL rats 

Following 2 weeks of BDL, an increase in plasma oxidative stress is observed with no 

appearance of hyperammonemia, increased brain ammonia or brain edema. Following 4 weeks 

of BDL, in addition to an increased systemic oxidative stress an increase in plasma and brain 

ammonia is demonstrated but still no evidence of brain edema. Brain edema appears at 

6 weeks, along with a further increase in plasma and brain ammonia compared to 4 weeks but 

with similar levels of systemic oxidative stress (fig. 5). Furthermore, another oxidative stress 

marker, TBARS, demonstrated significant increase in plasma of BDL rats vs SHAM-operated 

controls at 2 (1.19 fold, p<0.05), 4 (1.49 fold, p<0.05) and 6 (4.23 fold, p<0.001) weeks 

respectively. No increase in ROS levels in the brain (fig 5) or levels of TBARS in CSF (data 

not shown) were found in BDL rats. 
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Figure 5: Temporal resolution of ammonia, reactive oxygen species (ROS) and brain edema in 
rats with bile-duct ligation (BDL) compared to respective SHAM-operated controls. The 
timepoint 0 represents the mean value for the 3 groups of respective SHAM-operated controls. 
Data are expressed as mean±SEM. *p<0.05, ***p<0.001, significantly different from SHAM 
and BDL 2 weeks; †p<0.05, ††p<0.01, significantly different from BDL 4 weeks (…■… plasma 
ammonia and ROS temporal resolution; - ▲ - cerebrospinal fluid (CSF) ammonia and ROS 
temporal resolution). 



93 

 

 

Discussion 

Results of the present study reveal that chronic hyperammonemia, which consequently 

leads to an increase in brain ammonia, independently does not induce oxidative stress (neither 

centrally nor systemically) or provoke brain edema. However, in combination, ammonia and 

systemic oxidative stress stimulate an increase in brain water. This conclusion was drawn from 

our results since brain edema is solely found in BDL rats and not in PCA rats even with 

similar levels of ammonia (arterial and CSF) observed in both animal models. The role of 

systemic (not central) oxidative stress in the pathogenesis of brain edema was confirmed when 

brain water normalized along with attenuation of systemic oxidative stress following treatment 

with allopurinol (inhibitor of the oxidant enzyme XO). These results depict ammonia and 

systemic oxidative stress act together in the pathogenesis of brain edema in CLF. 

 

It has previously been demonstrated ammonia neurotoxicity leads to oxidative stress and 

subsequently brain edema (astrocyte swelling) [17]. However it must be noted that these 

studies involved acute ammonia intoxication models (in vitro and in vivo). First, cultured 

astrocytes acutely exposed to ammonia (1, 5 and 10 mM) showed an increase in ROS levels 

[18] and cell swelling [19]. Moreover, naïve rats injected with an acute dose of ammonia 

(12 mmol/kg injected intraperitoneally) [20] as well as rats with acute liver failure [21,22] 

displayed severe HE along with increased oxidative stress in brain. In our study, chronic 

hyperammonemia and CSF ammonia levels present in PCA rats (125-250 µM; lower than 

brain ammonia concentrations found in animal models of acute liver failure: 1-5 mM [22,35]) 

does not stimulate severe HE or oxidative stress in brain (or in circulation). Interestingly, a 

recent human study demonstrated oxidative stress markers in post mortem brain (cortical) 

tissue of cirrhotic patients that died with severe HE (grade 4) [36]. All in all, this suggests the 

degree and/or the acuteness of the onset of hyperammonemia is important for the induction of 

oxidative stress and that oxidative stress brain is associated with severe HE.  
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Only BDL rats (not PCA rats) demonstrated an increase in systemic oxidative stress. One 

obvious difference between the two animal models is liver function. BDL rats displayed with 

an increase in liver markers in comparison to PCA rats and their respective SHAM-operated 

controls. Accordingly to the Vienna consensus on classification of HE [37], PCA rats present 

type B HE (portosystemic shunting associated with hepatic atrophy and no significant intrinsic 

hepatocellular disease) while BDL rats present type C HE (associated with liver cirrhosis). In 

BDL rats, an increase in ROS and H2O2 blood levels was demonstrated along with an increase 

in XO activity and a decrease in antioxidant defense (decreased CAT activity and total GSH 

and GSH/GSSG ratio along with an increase in GR activity). A marker of oxidative stress 

TBARS,  was also observed to be increased in blood of BDL rats. Moreover, plasma albumin 

levels, protein considered an important antioxidant [38], were decreased in BDL rats below 

the detection limit of our method. In PCA rats, a preserved oxidant/antioxidant balance was 

demonstrated with no changes in oxidant and antioxidant enzymes activities. Our results 

suggest systemic oxidative stress is a result of primary liver injury; a common finding 

observed in different types of liver disease such as non-alcoholic fatty liver disease, alcoholic 

liver disease and viral hepatitis [39–41], as well as cirrhosis [42–44]. 

 

In our study no signs of central oxidative stress were observed in BDL rats implying that 

systemic oxidative stress does not lead to oxidative stress in the brain. Systemic ROS could 

have an effect on the brain by acting directly on the luminal side of the BBB and causing BBB 

breakdown [45]; however Wright et al. [46] demonstrated the anatomical integrity of the BBB 

is intact in BDL rats. This was also confirmed by our group where no brain extravasation of 

Evans Blue and sodium fluorescein in BDL rats was observed. Nevertheless, systemic 

oxidative stress may induce post-translational modifications of proteins implicated in the 

BBB, leading to changes in signal transduction pathways across the BBB and 
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hyperpermeability. These aspects remain to be explored. 

 

Furthermore, it is believed oxidative stress is closely associated with inflammation. It has 

been demonstrated proinflammatory cytokines are increased in plasma of cirrhotic patients 

with mHE as opposed to cirrhotic patients without HE [47,48]. Moreover, brain edema arises 

in endotoxemic BDL rats [46]. However the relationship and dependency between ROS and 

inflammation during cirrhosis as well as their effects on BBB permeability remain undefined.  

 

XO released from the ailing liver is a major source of ROS [49]. Since an increase in XO 

activity was found in BDL rats, allopurinol, a XO inhibitor, was investigated as an antioxidant 

(oxidant inhibitor) treatment. Allopurinol, (a structural isomer of the XO substrates 

hypoxanthine and xanthine), is oxidized by XO to a more active metabolite, oxypurinol, which 

acts by irreversibly binding to the enzyme’s active site [50]. Allopurinol has been previously 

demonstrated to reduce serum oxidative stress in stable cirrhotic patients [51]. In the present 

study, allopurinol-treated BDL rats displayed attenuated oxidative stress and brain edema. 

This protective effect was not due to an improvement in liver function since no change in 

hepatic function markers compared to non-treated BDL rats was found. Allopurinol treatment 

also resulted in an amelioration but not normalization of locomotor activity, suggesting other 

factors in addition to brain edema may contribute to neurological dysfunction. Our results 

sustain that XO plays an important role in oxidative stress production during liver disease and 

therefore we propose that an antioxidant treatment directed towards inhibiting sources of ROS 

may be more beneficial in HE treatment than one directed towards improving antioxidant 

defence, including ROS scavengers. 

 

Overall, the relationship between ammonia, systemic oxidative stress and brain edema is 
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a complex one: in BDL rats hyperammonemia and oxidative stress lead to brain edema, while 

in PCA rats hyperammonemia alone does not lead to brain edema. Moreover, brain edema in 

BDL rats is attenuated following a reduction in systemic oxidative stress but also by lowering 

arterial levels of ammonia following AST-120 treatment as we previously demonstrated [24]. 

Moreover, in patients with CLF, serum 3-nitrotyrosine (an oxidative stress marker) was found 

to be related to mHE, but did not correlate with concentrations of blood ammonia [43]. 

Together, these studies strongly suggest a synergistic role between ammonia and oxidative 

stress in the pathogenesis of brain edema in BDL rats. 

 

To further understand the relationship between blood ammonia and oxidative stress in the 

development of brain edema, we measured the pathogenetic factors along with brain water 

content at 2, 4 and 6 weeks following BDL. At 2 weeks, a significant increase in systemic 

ROS was observed without any signs of hyperammonemia or brain edema. At 4 weeks, both 

hyperammonemia and oxidative stress were present but no significant change in brain water 

content was observed. At 6 weeks, brain edema appeared and was associated with a significant 

further increase in ammonia levels compared to those seen at 4 weeks, and oxidative stress. 

Therefore the apparition of brain edema at 6 weeks is preceded by increased systemic 

oxidative stress (from week 2 to week 6) combined with a gradual chronic increase in 

ammonia (significantly increased at week 4 and significantly increased further at week 6). We 

propose systemic oxidative stress may be an important “first hit” followed by 

hyperammonemia as a “second hit” in the development of brain edema. Whether a certain 

threshold concentration of ammonia (≈ 120 µM) or a degree of chronic hyperammonemia is 

necessary for the development of brain edema remains to be investigated. 

 

We conclude that chronic hyperammonemia and systemic (not central) oxidative stress 

independently do not lead to brain edema, however when both factors are present brain edema 
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ensues. Our findings support the multifactorial pathogenesis of brain edema in HE and suggest 

systemic oxidative stress might be an important “first hit”, acting synergistically with 

ammonia to induce brain edema in chronic liver failure. 
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Third paper: Induction of systemic oxidative stress leads to brain 

edema in portacaval shunted rats 
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Aim of third publication 

The previous two papers suggested a synergistic effect between ammonia and systemic 

oxidative stress leads to the development of brain edema in MHE during CLD. 

The aim of the third paper was to confirm this synergistic effect using a different 

approach. Hyperammonemic PCA rats were treated with the glutathione inhibitor DEM in 

order to induce oxidative stress. The ability of DEM to induce systemic OS as well as its effect 

on brain water content was evaluated. 
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Abstract  

Background: The pathogenesis of hepatic encephalopathy (HE) is multifactorial and 

often associated with the development of brain edema. In addition to ammonia playing a 

central role, systemic oxidative stress is believed to aggravate the neuropsychological effects 

of ammonia in patients with chronic liver disease (CLD). The aim of this study was to i) 

induce systemic oxidative stress in hyperammonemic portacaval anastomosed (PCA) rats by 

inhibiting the antioxidant glutathione using diethyl maleate (DEM), and ii) investigate whether 

a synergistic relationship between ammonia and oxidative stress contributes to the 

pathogenesis of brain edema in CLD. Methods: 4-week PCA and sham-operated rats received 

DEM (0.4-4 mg/kg/day) for the last 10 days before sacrifice when oxidative stress markers 

(reactive oxygen species (ROS) and malondialdehyde (MDA)) were assessed in blood and 

frontal cortex. Brain water content was measured using a specific gravimetric technique. 

Results: DEM induced an increase in ROS and MDA in the blood, but not in the brain, of the 

PCA rats, compared to non-treated PCA rats. This was accompanied with an increase in brain 

water content (PCA+DEM: 78.45±0.13% vs PCA: 77.38±0.11%, p< 0.001). Higher doses of 

DEM induced systemic oxidative stress in sham-operated controls, but brain edema didn’t 

develop. Conclusions: DEM provoked systemic, not central, oxidative stress in PCA rats, 

resulting in the development of brain edema. Independently, hyperammonemia and systemic 

oxidative stress do not precipitate brain edema; therefore, our findings sustain that a 

synergistic effect between hyperammonemia and systemic oxidative stress is responsible for 

the development of brain edema in HE. 

    

Key Words: hepatic encephalopathy, oxidative stress, brain edema, portacaval shunt, 

diethyl maleate 
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Introduction 

Hepatic encephalopathy (HE) is a debilitating condition affecting close to 30-84% of 

patients with chronic liver disease (CLD). This neuropsychiatric disorder is characterized by 

cognitive, psychiatric and motor disturbances and is primarily divided into overt (confusion, 

disorientation, ataxia and coma) and covert (reduced psychomotor speed, increased reaction 

time, sensory abnormalities, poor concentration) (1). Contrary to overt HE, the diagnosis of 

covert HE is not clinically evident and requires sensitive psychometric and neurophysiological 

testing (2). The burden of covert HE is multidimensional, affecting the patient’s quality of life 

(ability to work and drive a car) and economically draining on health care systems (3). More 

importantly, covert HE places patients at a higher risk of developing overt HE with increased 

mortality (4).  

The neuropathology of HE in CLD reveals morphological changes in astrocytes, 

including cell swelling, which consequently leads to brain edema (5). This feature is 

commonly observed in both patients and rats with cirrhosis suffering from covert HE (6–11), 

however HE also exists in the absence of brain edema (12–14). Brain edema has demonstrated 

to correlate with the severity of the disease (15–17), and has shown to improve following liver 

transplantation (6). 

Liver failure induces hyperammonemia, which consequently leads to neurotoxic levels of 

ammonia, a principle factor long considered to be implicated in the pathogenesis of HE. 

However, a correlation between levels of blood ammonia and severity of HE in CLD remains 

controversial (18–22), suggesting other pathogenic factors are involved. Recently, it has been 

postulated that systemic oxidative stress can exacerbate the neurological effects of ammonia 

and play an important role in the pathogenesis of HE in CLD (23,24). Oxidative stress, a 

systemic phenomenon correlated with severity of liver disease (25,26), is an important 

condition present in patients with cirrhosis, and occurs due to an imbalance between the 

activities of pro-oxidants and antioxidants, leading to a surplus in reactive oxygen species 
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(ROS). Pro-oxidants constitutively generate ROS, which are important for proper cell 

signalling and function whereas antioxidants are responsible for regulating the levels of ROS 

and thus maintain a healthy equilibrium. Disturbance in pro-oxidant/antioxidant harmony has 

been demonstrated in the setting of liver disease. Xanthine oxidase, a liver derived pro-oxidant 

enzyme which produces ROS following oxidation of hypoxanthine to xanthine and to uric 

acid, has been found to be increased in circulation in both patients with CLD and cirrhotic rats 

(27,28). In addition , we recently demonstrated that by inhibiting xanthine oxidase with 

allopurinol, circulating levels of ROS were attenuated, brain edema was prevented, and HE 

was improved (28). Furthermore, glutathione (GSH), an important antioxidant synthesized by 

the liver, has been found to be decreased in cirrhosis (28–30).  

Contrary to cirrhotic rats, rats with portacaval anastomosis (PCA) develop 

hyperammonemia in the absence of intrinsic hepatocellular disease (31) and neither brain 

edema nor any evidence of oxidative stress has been observed (28,32). The aim of this study 

was to induce systemic oxidative stress in PCA rats and investigate whether a synergistic 

relationship between ammonia and oxidative stress is key in the pathogenesis of brain edema 

in CLD. In order to induce oxidative stress, PCA rats were treated with dimethyl maleate 

(DEM), an irreversible GSH inhibitor (33).  
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Materials and methods 

Animal model and experimental protocol 

Adult male Sprague-Dawley rats weighing 200-225 g were anesthetised with isoflurane, 

and an end-to-side PCA was performed (28). Starting at day 18 after surgery, both PCA and 

sham-operated controls were administered DEM once daily (4, 3, 2, 1 or 0.4 mg/kg diluted in 

1ml/kg saline; intraperitoneally) until day 28 when they were sacrificed. Vehicle-treated sham 

and PCA rats received equivalent volumes of saline. Experiments were conducted following 

the Guidelines of Canadian Council on Animal Care and were approved by the Animal 

Protection Committee of CRCHUM. 

 

Markers of oxidative stress  

Circulating ROS were evaluated following the oxidation of dichlorofluorescein diacetate 

(DCFDA; Invitrogen, Carlsbad, CA) to dichlorofluorescein (DCF) as previously described 

(28). Plasmatic and/or frontal cortex lipid peroxidation was estimated by measuring the levels 

of malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) formation. MDA levels were 

measured using TBARS Assay Kit (Cayman Chemical Company, Ann Arbor, MI), according 

to the manufacturer’s protocol.  

Total GSH was measured in the plasma and frontal cortex tissue, based on the sulfhydryl 

group oxidation by DTNB (5,5’-dithiobis-2-nitrobenzoic acid), which forms a yellow product 

(5-thio-2-nitrobenzoic acid, TNB) that is measured spectrophotometrically. Oxidized 

glutathione was previously reduced to GSH by glutathione reductase. Plasma and brain 

samples were extracted in 5 volumes of sulphosalicylic acid 5%, then homogenized and 

centrifuged 10 minutes at 13000g. 10 µl of the supernatant was incubated for 5 min with 150 

µl sodium phosphate-buffer 95 mM containing EDTA 0.95 mM, glutathione reductase 0.115 

U/ml and DTNB 0.031 mg/ml. The reaction was started by adding 50 µl reduced nicotinamide 
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adenine dinucleotide phosphate (NADPH) 0.038 mg/ml, the oxidation of which was followed 

at 412 nm for 32 minutes. Total GSH concentration was calculated based on a standard curve 

with known concentrations of GSH.  

For HNE assessment, frontal cortex was homogenized in lysis buffer (50 mM Tris pH 

7.5, 1 mM EDTA, 1/500 cold protease inhibitor cocktail). Homogenates were centrifuged 40 

min at 13,000 g at 4°C. The supernatant was taken and protein content was determined 

according to the method of Lowry et al. (34). Samples containing 75 µg of cortex proteins 

were separated by 8 % sodium dodecyl sulfate-polyacrylamide gels electrophoresis (SDS-

PAGE), and then transferred to polyvinylidene difluoride membranes. Membranes were 

blocked with 5% skim milk in TBS-T buffer (1 mM Tris pH=7.5, 10 mM NaCl and 0.5% 

Tween 20) for 1 h at room temperature and followed by 1 h incubation with rabbit polyclonal 

anti-HNE antibody (Calbiochem, Darmstadt Germany) at a dilution of 1:1000. Membranes 

were washed 3 times in TBS-T buffer for 5 min and then incubated for 1 h at room 

temperature, with the corresponding secondary antibody labelled with horseradish peroxidase 

(Perkin-Elmer, Waltham, USA) at a dilution of 1:10000 and washed 3 times in TBS-T buffer 

for 5 min. Immunoreactivity was detected with chemiluminescence reagent and probed on X-

ray film. A monoclonal antibody to β-actin (Sigma, St- Louis, MO) was used at a dilution of 

1:200000 as a control of protein loading. 

 

Brain water content 

Brain water content was measured using the sensitive densitometry technique. Frontal 

cortex was freshly dissected at 4°C and cut into 2mm3 pieces. Tissue pieces were placed in 

density gradient columns and equilibrium point was recorded after 2 min. Columns were made 

with different kerosene and bromobenzene mixtures and precalibrated with K2SO4 solutions of 

known densities. At least 8 samples were measured in each rat. Water content was calculated 

based on tissue density, according to the formula described by Marmarou et al. (35). 
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Liver biochemistry 

 Liver necrosis markers aspartate and alanine aminotransferase were measured using 

routine clinical biochemistry techniques. 

 

Ammonia 

Plasmatic ammonia levels were measured using a commercial kit (Sigma, St- Louis, MO) 

according to the manufacturer’s protocol. The kit is based on the reaction of ammonia with α-

ketoglutarate and reduced nicotinamide adenine dinucleotidephosphate in the presence of L-

glutamate dehydrogenase. Oxidation rate of reduced nicotinamide adenine dinucleotide 

phosphate was recorded by the absorbance decrease at 340 nm. Ammonia concentration was 

calculated according to the manufacturer’s protocol. 

 

Statistical analysis 

 Data are expressed as mean±standard error of the mean (SEM). Significance of 

difference was tested with ANOVA, followed by Newman-Keuls post-test using GraphPad 

Prism4 (La Jolla, CA). Probability values p<0.05 were considered to be statistically 

significant.  
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Results 

DEM treatment 

 It has previously been demonstrated that a single injection of DEM at doses up to 

4 mg/kg administered to naïve rats was non-toxic and did not lead to mortality (33). In our 

study, since oxidative stress is a chronic feature observed throughout the time course of 

cirrhosis (28), we aimed to induce long-term oxidative stress in PCA rats by injecting DEM 

daily for 10 days at different doses (4, 3, 2, 1 or 0.4 mg/kg). DEM at doses 4 and 3 mg/kg lead 

to 100% mortality in PCA rats before the end of the 10-day treatment (4 mg/kg resulted in 

death after 1-2 days of treatment, and 3 mg/kg resulted in death following 7-9 days of 

treatment), whereas DEM at doses 2, 1 and 0.4 mg/kg did not lead to mortality in PCA rats. 

No mortality occurred in sham-operated controls treated with DEM at doses 4, 3, 2, 1 and 

0.4 mg/kg for the duration of the 10-day treatment.  

 

DEM induces systemic oxidative stress in PCA rats 

 The efficacy of DEM treatment in inducing systemic ROS was assessed by 

measuring various markers of oxidative stress. A significant increase in plasma ROS was 

observed in PCA rats vs. sham-operated controls following DEM treatment at doses 2 and 

1 mg/kg, but not at 0.4 mg/kg (fig. 1A). Continuing with the dose 1 mg/kg, DEM treatment led 

to a significant decrease in total GSH in PCA rats, but not in sham-operated controls compared 

to respective non-treated controls (fig. 1B). MDA, a reliable marker of oxidative stress 

resulting from lipid peroxidation, was found to be significantly increased in DEM-treated PCA 

rats compared to sham-operated controls (fig. 1C). 
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Figure 1. A) Circulating reactive oxygen species (ROS) in rats with portacaval anastomosis 
(PCA) and sham-operated controls treated and not treated with diethyl maleate (DEM) at a dose 
of 2, 1 or 0.4 mg/kg/day for 10 days.; B) plasmatic glutathione (GSH) and C) malondialdehyde 
(MDA) in rats with portacaval anastomosis (PCA) and sham-operated controls treated and not 
treated with diethyl maleate (DEM) at a dose of 1 mg/kg/day for 10 days.). Data are expressed as 
mean±SEM. *p<0.05, **p<0.01, significantly different from all other groups. 
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DEM induces brain edema in PCA rats 

 DEM treatment to PCA rats lead to a significant increase in brain water content in 

frontal cortex compared to non-treated PCA rats (PCA+DEM: 78.06±0.09% vs. non-treated 

PCA: 77.53±0.12%, p<0.05) and compared to sham-operated controls (77.54±0.11%, p<0.05) 

(fig. 2). 

 

 

Figure 2. Frontal cortex water content in rats with portacaval anastomosis (PCA) and sham-
operated controls treated and not treated with diethyl maleate (DEM) at a dose of 1 mg/kg/day 
for 10 days. Data are expressed as mean±SEM. *p<0.05, significantly different from all other 
groups. 
 

DEM does not induce cerebral oxidative stress in PCA rats 

 DEM treatment did not lead to a significant increase in oxidative stress markers 

(total GSH, MDA and HNE) in either the frontal cortex of PCA nor sham-operated controls 

(fig. 3A, B, C).  
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Figure 3. A) Cerebral glutathione (GSH); B) malondialdehyde (MDA) and C) 4-hydroxy-2- 
nonenal (HNE; representative immunoblotting images for each group along with densitometric 
quantification are shown) in rats with portacaval anastomosis (PCA) and sham-operated controls 
treated and not treated with diethyl maleate (DEM) at a dose of 1 mg/kg/day for 10 days. Data 
are expressed as mean±SEM. 
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DEM does not affect ammonia levels and liver function 

 DEM treatment did not induce hyperammonemia in sham-operated controls, nor 

influence the blood ammonia levels in PCA rats. In addition, DEM treatment did not increase 

the levels of AST or ALT in both PCA and sham-operated controls (table I). 

 

Table I. Hepatic function markers aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) and ammonia levels in in rats with portacaval anastomosis (PCA) and 
sham-operated controls treated and not treated with diethyl maleate (DEM) at a dose of 1 
mg/kg/day for 10 days. Data are expressed as mean±SEM. ***p<0.001, significantly versus 
sham-operated rats. 
 

 SHAM PCA SHAM+DEM PCA+DEM 

AST (U/l) 73.00 ± 5.02 85.50 ± 3.01 66.00 ± 1.03 80.00 ± 6.69 

ALT (U/l) 45.60 ± 3.26 48.20 ± 2.43 41.00 ± 5.00 49.75 ± 6.39 

Ammonia (µM) 44.04 ± 8.81 189.01 ± 17.84*** 64.07 ± 9.56 152.10 ± 27.15*** 

 

Systemic oxidative stress independently does not lead to brain edema 

 Contrary to doses 0.4, 1, 2 and 3 mg/kg, DEM at dose 4 mg/kg provoked a 

significant increase in plasma ROS in sham-operated controls, which is similar to the increase 

in levels of ROS as those seen in PCA rats treated with DEM at a dose of 1 mg/kg. However, 

the former was not accompanied with the apparition of brain edema, as was observed in the 

DEM-treated PCA rats (fig. 4). 
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Figure 4. Circulating reactive oxygen species (ROS) and frontal cortex water in rats with 
portacaval anastomosis (PCA) treated and not treated with diethyl maleate (DEM) at a dose of 1 
mg/kg/day for 10 days and sham-operated controls treated with diethyl maleate (DEM) at a dose 
of 4 mg/kg/day for 10 days. Data are expressed as percent change compared to non-treated sham-
operated controls. ROS percent change is represented on the left axis and traced with a full line, 
while brain edema is represented on the right axis and traced with a dotted line. *p<0.05, 
significantly versus non treated PCA rats. 
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Discussion  

 DEM treatment significantly resulted in a reduction in circulating levels of GSH 

in hyperammonemic PCA rats, which in turn led to the induction of systemic, but not central, 

oxidative stress, and triggered the apparition of brain edema. DEM-induced systemic oxidative 

stress, in the absence of hyperammonemia, was not accompanied with presence of brain 

edema sustaining that both hyperammonemia and systemic oxidative stress are synergistically 

implicated in the pathogenesis of brain edema in CLD. 

 The aim of this study was to induce oxidative stress in hyperammonemic PCA rats 

by targeting and diminishing the antioxidant GSH, a tripeptide formed of glutamate, cysteine 

and glycine, whose cysteine residue acts as an electron donor. By scavenging ROS, GSH is 

converted into oxidized glutathione and reduced back to GSH by glutathione reductase. GSH, 

primarily produced by the liver, has been found to be increased in early stages of cirrhosis (36) 

but is evidently diminished during late stages of liver disease (28–30). However, in PCA rats, 

where the liver function is preserved, GSH levels are not affected (28). To target the inhibition 

of GSH, we used DEM, a direct GSH inhibitor that acts by irreversibly conjugating the 

cysteine’s sulfhydryl group. It has been previously demonstrated that a single dose of DEM 

(600 mg/kg) administered to naïve rats induces a transient (12 h) decrease in hepatic and 

cerebral GSH (37). In order to simulate a chronic condition of oxidative stress (as observed 

during cirrhosis), daily injections of smaller doses of DEM were administered. Ten-day 

treatment of DEM, as low as 1 mg/kg, significantly diminished GSH levels in PCA rats. This 

resulted in the induction of oxidative stress in plasma, reflected with an increase in ROS and 

MDA. This same dose of DEM did not lead to similar results in sham-operated treated rats. 

Instead, a higher dose of DEM (4 mg/kg) was needed to attain a similar significant increase in 

ROS. This suggests that PCA rats demonstrate a higher susceptibility to a DEM-induced 

oxidative stress insult compared to sham-operated controls. The mechanisms underlying this 

susceptibility are unresolved, but the effect of chronic moderate elevated levels of ammonia in 

PCA rats may render the brain sensitive to insults. The mechanisms underlying increased brain 
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sensitivity following chronic ammonia exposure merits to be further investigated. 

 Ammonia has long been considered to play a major role in the pathogenesis of 

brain edema and HE; however, its weak relationship with severity of HE suggests that other 

factors are involved. Our results suggest that systemic oxidative stress is a key factor, in 

addition to ammonia that precipitates brain edema, since i) hyperammonemic PCA rats do not 

develop brain edema and ii) DEM-induced oxidative stress in sham-operated rats, which do 

not present hyperammonemia, does not lead to brain edema. This implies that neither 

oxidative stress nor ammonia independently induces brain edema. PCA in the rat represents a 

type B HE model resulting from portal-systemic shunting in the absence of parenchymal liver 

disease.  

Therefore, in the absence of liver-derived factors like inflammation and oxidative stress, 

brain edema does not develop as previously demonstrated (12,13,28). Since DEM-induced 

oxidative stress in hyperammonemic PCA rats lead to the development of brain edema, this 

implies that a synergistic effect between ammonia and oxidative stress is required to cause an 

increase in brain water.  

 These observations support our previous studies demonstrating that a synergistic 

effect between systemic oxidative stress and ammonia is imperative in the development of 

brain edema in CLD (9,28). Furthermore, the clinical implications of this important synergy is 

sustained by a study from Montoliu et al., who elegantly demonstrated in cirrhotic patients 

with similar degrees of hypermamonemia, that the detection of 3-nitrotyrosine in plasma 

distinguished covert HE cirrhotic patients from those without HE (38). During liver disease, 

oxidative stress represents a systemic phenomenon (39) however the pathophysiological 

significance of whether oxidative stress vs ammonia is the “first” or “second” remains to be 

defined.  

 Swelling of the brain in DEM-treated PCA rats occurred in the absence of any 

indications of oxidative stress. It has been demonstrated that ammonia levels > 1mM lead to 
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the generation of ROS in cultured astrocytes and cell swelling (40,41). Similarly, in vivo, acute 

ammonia toxicity also leads to oxidative stress in the brain by increasing ROS production and 

diminishing antioxidant enzymes activities (42,43). Nevertheless, ammonia concentrations < 

500 µM have been shown not to induce oxidative stress in both astrocyte cultures and brain 

slices (44,45). Furthermore, in both PCA rats and cirrhotic rats with brain ammonia levels < 

250 µM, no signs of oxidative stress in the brain have been identified (28). However, signs of 

nitrosative stress have been demonstrated in the brains of PCA rats (46) which suggests 

nitrosative and oxidative stress may be implicated in different stages of HE and/or disease. 

Furthermore, there is strong evidence demonstrating that oxidative stress in the brain is 

associated with severe (overt) HE. Both acute ammonia intoxication and acute liver leading to 

severe HE and coma in rats (46–48), as well as cirrhotic patients who died with severe HE 

(grades III or IV) (49), markers of oxidative stress were detected in the brain. Overall, this 

suggests that the appearance of oxidative stress in the brain may be a vital stimulating factor in 

the pathogenesis of severe, overt HE. 

 The blood-brain barrier (BBB) is a structural barrier which impedes the influx of 

neurotoxic compounds from blood to brain. It has been previously demonstrated that 

circulating ROS can induce BBB oxidative damage and lead to tight junction protein 

modifications, resulting in BBB breakdown, as observed in stroke or sepsis (50). However, in 

different animal models of covert HE, the BBB has been proven to be anatomically intact 

(11,28). This implies, in the setting of CLD, that ROS may not be causing structural 

breakdown to the BBB, but rather, through oxidative modifications of proteins and lipids, may 

stimulate changes in BBB signalling and permeability. These pathophysiological mechanisms 

merit to be investigated in relation systemic oxidative stress and the development of brain 

edema in HE. 

 In the present study, we assessed oxidative stress and brain edema in the frontal 

cortex; an important region for cognitive function. However, the heterogeneity of the brain 

does not insinuate all areas of the brain react similarly. In fact, the cerebellum has 
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demonstrated to have an enhanced susceptibility to oxidative stress in hyperammonemic rats 

(47). Therefore we do not exclude the possibility that other cerebral regions are affected. 

 During end stage liver disease, multiple factors other than ammonia and oxidative 

stress may also be contributing to the pathogenesis of brain edema. Inflammation is an 

important factor, demonstrated to play an important role in inducing brain edema (51) and 

known to play an important role in the cognitive and motor alterations in PCA rats (13,52). 

Although inflammation is believed to be tightly associated with oxidative stress, their 

relationship remains unresolved. Other factors such as alterations of energy metabolism, 

osmotic changes triggered by increases in glutamate, glutamine, lactate or expression in water 

or ion channels have also been demonstrated to play a role in brain edema during liver disease, 

as reviewed by Bosoi and Rose (5). Neither DEM-treated or untreated PCA rats demonstrated 

any affects in liver function, which excludes the roles of the above-mentioned factors, which 

have been found to be induced from the ailing liver during disease (53). 

 In conclusion, our study confirms that chronic hyperammonemia and systemic 

(not central) oxidative stress independently do not lead to the development of brain edema; 

however, when both factors are present, they act synergistically to induce an increase in brain 

water. The presence of brain edema in covert HE may be a predisposing factor leading to a 

higher risk of triggering oxidative stress in the brain and developing overt HE. These results 

support that in addition to targeting ammonia producing/removing pathways, antioxidants or 

pro-oxidant inhibitors should be considered for the treatment of HE. 
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Aim of fourth publication 

This paper aims to define the roles of lactate and glutamine and their relationship with 

ammonia in the pathogenesis of brain edema in CLD. To attain this objective, nuclear 

magnetic resonance spectroscopy was used to determine the de novo synthesis of lactate and 

glutamine from 13C-labelled glucose in BDL rats. AST-120 and DCA were used as research 

tools to lower ammonia and lactate respectively. Their effects on blood ammonia, cerebral 

lactate and glutamine and brain edema were investigated along with the relationship between 

ammonia, lactate and glutamine. Furthermore, changes in other cerebral osmolytes implicated 

in the pathogenesis of brain edema in CLD were evaluated. 
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Abstract:  

Background & Aims: The pathogenesis of brain edema in patients with chronic liver 

disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study 

evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol 

and taurine, in the development of brain edema in a rat model of cirrhosis.  

Methods: Six-week bile-duct ligated (BDL) rats were injected with 13C-glucose and de 

novo synthesis of lactate, and glutamine in the brain was quantified using 13C nuclear 

magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were 

measured using 1H NMR or high performance liquid chromatography. To further define the 

interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 

(engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis 

inhibitor). 

Results: Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and 

glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated 

controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, 

was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with 

either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two 

treatments did not lead to similar reductions in brain glutamine.   

Conclusions: Increased brain lactate, and not glutamine, is a primary player in the 

pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response 

may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new 

potential target for the treatment of HE.
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Introduction 

Hepatic encephalopathy (HE) is a neuropsychiatric disorder, a major complication of both 

acute liver failure and chronic liver disease (CLD). Brain edema is a neuropathological feature 

of HE that contributes to intracranial hypertension (a fatal complication of acute liver failure, 

(Clemmesen et al., 1999)); but is also associated with minimal HE (MHE) and CLD 

(Häussinger, 2006; Lodi et al., 2004; Shah et al., 2008; Sugimoto et al., 2008). Characterized 

by impairment in concentration, attention, memory, vigilance, reaction time and behavior, 

MHE is detected using sensitive neuropsychometric and neurophysiological tests (Córdoba, 

2011). As much as 80% of patients with end-stage liver disease are affected by MHE, which 

severely impacts on the patients’ capability to drive a car, to continue working, and their 

ability to function daily, overall affecting their health-related quality of life (Stewart and 

Smith, 2007). 

Brain edema is an accumulation of water within the cerebral tissue (intracellular and/or 

extracellular). It occurs as a result of an increase in osmolarity and/or compromised volume 

regulatory responses. Impairment in the efflux of brain organic osmolytes, such as polyols 

(myo-inositol) and amino acids (taurine, glutamate, glutamine), fails to compensate for the 

increased osmolarity and, therefore, an increase in brain water content prevails (McManus et 

al., 1995).  

Ammonia is considered a major pathogenic factor in the development of HE (Felipo and 

Butterworth, 2002). The brain solely relies on the amidation of glutamate catalyzed by the 

enzyme glutamine synthetase (GS) to detoxify ammonia. However, because the ailing liver is 

incapable of efficiently clearing it, the increase in blood ammonia leads to neurotoxic levels of 

ammonia. Therefore, during hyperammonemia, elevated brain ammonia leads to an increase in 

brain glutamine (Pasantes-Morales and Cruz-Rangel, 2010), a pathway believed to be 

involved in the development of brain edema and HE.  

Lactate is another pathogenic factor demonstrated to be implicated in HE [11]. Lactate is 
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a product of anaerobic glycolysis, but also a metabolite used by neurons as an energetic 

substrate (Pellerin and Magistretti, 2012). An increase in cerebral lactate, due to increased 

glycolytic activity and/or energy failure, can osmotically induce an increase in water influx in 

the brain, and thus lead to brain edema, as demonstrated in numerous neuropathies, including 

cerebral ischemia (Helbok et al., 2011). However, the role of lactate in the pathogenesis of 

brain edema in HE due to CLD remains undetermined.       

The present study aims to explore the pathophysiological mechanisms implicated in brain 

edema in cirrhotic rats with MHE, with an emphasis on the role of lactate and glutamine and 

brain osmolytes, including myo-inositol and taurine. The 6-week bile-duct ligated (BDL) rat is 

a well-characterized animal model of liver fibrosis and necrosis (Bataller et al., 2005), which 

develops both brain edema and MHE (Bosoi et al., 2011; Davies et al., 2009). In this model, 

we investigated the metabolic fluxes of 13C-labelled glucose, and focused on de novo synthesis 

of lactate and glutamine using nuclear magnetic resonance (NMR) spectroscopy, an excellent 

technique to quantify cellular metabolic fluxes (fig. 1A). As 13C represents only 1.1% of 

natural carbon, sample enrichment following injection of 13C-labelled glucose permits the 

evaluation of glucose metabolic fluxes through the glycolytic pathway and the tricarboxylic 

acid (TCA) cycle (Zwingmann, 2007). In order to evaluate the interplay between lactate, 

glutamine and organic osmolytes, BDL rats were treated with AST-120 (oral ammonia 

adsorbent engineered activated carbon microspheres) and dichloroacetate (DCA), a lactate 

synthesis inhibitor. 
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Materials and methods 

Animal models 

Male Sprague-Dawley rats (250-275 g) (Charles River, St-Constant, QC) were randomly 

selected to either bile-duct ligation (BDL) or SHAM operation, and studied 6 weeks following 

surgery (Bosoi et al., 2011); for cerebral ammonia measurement, cerebrospinal fluid was 

collected from the cisterna magna, as previously described (Bosoi et al., 2012). All the 

experiments were performed following the Guidelines of the Canadian Council on Animal 

Care, and were approved by the Animal Protection Committee of the CRCHUM. 

 

Nuclear magnetic resonance 

Administration of [U-13C]-Glucose: 6 weeks after surgery BDL and SHAM rats 

received [U-13C]-glucose (500 mg/kg, intraperitoneally; Cambridge Isotope Laboratories, 

Andover, MA) and were sacrificed exactly 30 minutes later by decapitation. Arterial blood 

glucose levels were monitored 3 days before sacrifice; however, no glycaemia differences 

were found between SHAM and BDL operated rats. Therefore, there was no need to correct 

glucose levels. [U-13C]-glucose is transformed through glycolysis in[U-13C]-pyruvate. This 

can either enter the TCA cycle or form [U-13C]-lactate through lactate dehydrogenase. Upon 

entering the TCA cycle, glucose-derived pyruvate is metabolized either by pyruvate 

dehydrogenase (PDH), the key enzyme for mitochondrial energy found in both astrocytes and 

neurons, or by pyruvate carboxylase (PC), an important anaplerotic enzyme that replenishes 

TCA cycle intermediates, found exclusively in astrocytes. The [U-13C]-pyruvate formed from 

[U-13C]-glucose metabolised through PDH results in [1,2-13C]-acetyl-CoA, and further via α-

ketoglutarate to [4,5-13C]-labelled glutamate and glutamine, whereas [U-13C]-pyruvate 

metabolised through PC results in [1,2,3-13C]-oxaloacetate and [2,3-13C]-labelled metabolites. 

These reactions allowed for the quantification of fluxes through these pathways (Zwingmann, 

2007) (fig.1A). 
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NMR spectroscopy (Zwingmann et al., 2004): Immediately after sacrifice, the brains 

were snap frozen in liquid nitrogen and stored at -80°C until measurements were performed. 

Water-soluble metabolites were extracted with 7% perchloric acid. The lyophilized water-

soluble samples were dissolved in D2O, centrifuged, and adjusted to pH 7.2. NMR spectra 

were recorded on a DRX-600 Bruker spectrometer. 1H-NMR spectra were recorded with a 5-

mm H,C,N-inverse-triple-resonance probe, flip angle 40, repetition time 15 s, spectral width 

7,183 Hz. 13C-NMR spectra were recorded with a 5-mm 1H/13C dual probe, repetition time 

2.5 s, flip angle 27, composite pulse decoupling with WALTZ-16, spectral width 47,619 Hz. 

Total brain glutamine, glutamate, myo-inositol and taurine were determined on1H-NMR 

spectra, while 13C-labelled lactate and glutamine were determined on 13C-NMR spectra. 

 

Therapeutic interventions 

AST-120: AST-120 (Ocera Therapeutics, San Diego, CA), engineered carbon 

microspheres, were administered by gavage (1 g/kg/day; concentration 1g/10 ml of 2% 

methylcellulose) every 12 hours, for a period of 6 weeks, beginning day 1 after surgery in both 

SHAM and BDL rats (Bosoi et al., 2011). As controls, another group of SHAM and BDL rats 

were treated with equivalent volumes of methylcellulose. 

Dichloroacetate: Dichloroactate (DCA; Sigma-Aldrich), a lactate synthesis inhibitor, 

was administered by intraperitoneal injection at a dose of 25 mg/kg/day (concentration of 

25 mg/ml saline) for 7 days (starting day 35 after surgery) in both SHAM and BDL rats. This 

PDH kinase inhibitor results in a dephosphorylation of PDH and hence increases its activity. 

As a result, the flux of pyruvate into the TCA cycle increases, consequently decreasing lactate 

synthesis by shifting lactate dehydrogenase activity from lactate to pyruvate production 

(Stacpoole et al., 1998).  

At 6 weeks, brain tissue was collected to measure lactate, glutamine and brain edema as 

described below.  
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Ammonia measurement 

Ammonia was assessed in cerebrospinal fluid using a commercial kit (Sigma-Aldrich). 

The kit is based on the reaction of ammonia with α-ketoglutarate and reduced nicotinamide 

adenine dinucleotidephosphate in the presence of L-glutamate dehydrogenase. Oxidation rate 

of reduced nicotinamide adenine dinucleotide phosphate was recorded by the absorbance 

decrease at 340 nm. Ammonia concentration was calculated according to the manufacturer’s 

protocol. 

 

Lactate measurement 

The frontal cortex was dissected and homogenized in lysis buffer (50 mM Tris pH 7.5, 

1 mM EDTA, 1/500 cold Protease Inhibitor Cocktail (Roche, Indianapolis, IN)). Lactate levels 

were assessed following its oxidation by lactate oxidase to pyruvate and hydrogen peroxide, 

which reacts with AmplexRed (10-acetyl-3,7-dihidroxyphenoxazine) and releases resorufin, a 

fluorescent oxidation product. Fluorescence was read at 530 nm excitation and 590 nm 

emission wavelengths, and lactate levels were calculated based on a standard curve of known 

lactate concentrations. 

 

Glutamine measurement 

Brain frontal cortex samples were analyzed using the Agilent 1100 Chemstation reverse-

phase HPLC system (Agilent Technologies, Germany) with fluorescence detection as 

previously described (Bélanger et al., 2006). Glutamine concentration was calculated by peak 

area analysis with an automated integrator (Agilent Technologies, Germany), based on 

standard curves and internal standards. 
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Brain water content 

Frontal cortex brain water content was measured using the sensitive densitometry 

technique described by Marmarou et al., as previously reported by our group (Bosoi et al., 

2011; Marmarou et al., 1982). 

 

Statistical analysis 

Data are expressed as mean±standard error of the mean (SEM). Significance of difference 

was tested with Student t test or ANOVA, followed by Newman-Keuls post-test; correlation 

was calculated with Spearman test using GraphPad Prism4 (La Jolla, CA). Probability values 

p<0.05 were considered to be statistically significant. 
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Results 

Cerebral lactate and glutamine in BDL rats 

Six week BDL rats demonstrated a significant increase in brain lactate (254.6±11.1 

μM/μg protein vs. SHAM: 111.7±7.1 μM/μg protein, p<0.001), and brain glutamine 

(8.42±12.77 μmol/g tissue vs. SHAM: 4.42 ±3.38 μmol/ g tissue, p<0.01).  

 

De novo synthesis of cerebral lactate and glutamine from 13C-labelled glucose in BDL rats 

Following 13C-labelled glucose administration, de novo synthesis of lactate and glutamine 

significantly increased 1.6- and 2.2-fold in BDL vs. SHAM-operated control rats (fig. 1B,C). 

Determination of the position of the 13C-labelled carbon in de novo synthetized glutamine 

showed that the flux through PDH (2.3-fold increase) and PC (1.8-fold increase) was higher in 

BDL vs SHAM rats (fig. 1C).  
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Figure 1: 13C nuclear magnetic resonance spectroscopy. (A) Schematic representation of 13C-
labelled metabolites formation from [U-13C]-glucose. Glucose is metabolized via glycolysis into 
pyruvate which either produces lactate through lactate dehydrogenase (LDH) or enters the TCA 
cycle. Upon entering the TCA cycle, pyruvate is metabolized via pyruvate dehydrogenase 
(PDH), found in both astrocytes and neurons, or via pyruvate carboxylase (PC), found 
exclusively in the astrocytes. The [U-13C]-pyruvate formed from [U-13C]-glucose through PDH 
results in [1,2-13C]-acetyl-CoA, and further via α-ketoglutarate to [4,5-13C] labelled glutamate 
and glutamine; through PC it results in [1,2,3-13C]-oxaloacetate and [2,3-13C] labelled 
metabolites. Glutamate is produced from the TCA intermediate α-ketoglutarate via α-
ketoglutarate dehydrogenase and via amidation by glutamine synthetase (GS) can form 
glutamine. LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; PC, pyruvate 
carboxylase; TCA cycle, tricarboxylic acid cycle; GS, glutamine synthetase. B) Representative 
13C nuclear magnetic resonance spectra in rats with bile-duct ligation (BDL) compared to 
SHAM-operated controls. C) Cerebral de novo synthesis from 13C-glucose of lactate and 
glutamine in rats with bile-duct ligation (BDL) compared to SHAM-operated controls. Light 
grey: [4,5-13C]-glutamine formed through PDH; dark grey: [2,3-13C]-glutamine formed through 
PC. Data are expressed as mean±SEM. **p<0.01, ***p<0.001, significantly different from 
SHAM. 
 

Brain osmolytes in BDL rats 

1H is naturally present in tissues and through its detection, numerous molecules can thus 

be simultaneously quantified by 1H NMR spectroscopy. The cerebral osmolyte pool, obtained 

by adding all measured osmolytes, was 1.3-fold higher in BDL vs. SHAM-operated control 

rats (table I). In BDL rats, a significant increase in brain glutamine (128%; p<0.01 vs. SHAM) 

and glutamate (26%; p<0.01 vs. SHAM) was accompanied by a significant decrease in myo-

inositol (23%; p<0.001 vs. SHAM). Brain taurine remained unchanged. 
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Table I. 1H-NMR concentration of brain osmolytes in rats with bile-duct ligation (BDL) 
compared to respective SHAM-operated controls. Data are expressed as mean±SEM. 
**p<0.01, ***p<0.001, significantly different from SHAM. 

 

 BDL-SHAM BDL 

Glutamine (µmol/g ww)   4.67 ± 0.28     10.67 ± 0.98** 

Glutamate (µmol/g ww) 11.55 ± 0.48     14.56 ± 0.99** 

Myo-inositol (µmol/g ww)   4.31 ± 0.14         3.34 ± 0.14*** 

Taurine (µmol/g ww)   4.71 ± 0.43   5.48 ± 1.73 

Total 25.20 ± 1.33 34.00 ± 2.95 

 

 

Effect on cerebral lactate and glutamine following ammonia reduction 

Administration of AST-120, engineered activated carbon microspheres with a high 

nonspecific adsorptive surface area acting within the gut, lead to a significant decrease in 

ammonia in the brain (cerebrospinal fluid) (fig. 2A) and to an attenuation in brain edema (fig. 

2B). Moreover, AST-120-treated BDL rats resulted in a significant reduction in brain lactate 

versus non-treated BDL rats. However, lactate remained significantly high in AST-120 treated 

BDL rats compared to SHAM-operated controls (p<0.001) (fig. 2C). Contrary to lactate, the 

lowering of ammonia by AST-120 did not reduce brain glutamine levels (fig. 2D). 
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Figure 2. Effect of AST-120 (spherical carbon adsorbent): (A) cerebrospinal fluid 
ammonia; (B) frontal cortex brain water content; (C) frontal cortex lactate and (D) frontal 
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cortex glutamine levels in bile-duct ligation (BDL) rats compared to treated and non-treated 
SHAM-operated controls and non-treated BDL rats. Data are expressed as mean±SEM. 
*p<0.05, **p<0.01, ***p<0.001, significantly different from SHAM; ††p<0.01, †††p<0.001, 
significantly different from non-treated BDL. 

 

Effect on brain edema following lactate reduction 

In order to identify the precise role of lactate in the pathogenesis of brain edema, BDL 

rats were treated with DCA, a lactate synthesis inhibitor. The DCA treatment normalized brain 

lactate levels (fig. 3A) and reduced brain water content in BDL rats (p<0.05) (fig. 3B). 

Cerebral glutamine decreased following DCA treatment to levels that were not significantly 

different versus either non-treated BDL rats or SHAM-operated controls (fig. 3C). To verify if 

these modifications are not due to a direct effect of DCA on ammonia levels, those were 

assessed and were found to be similar in non-treated and DCA-treated BDL rats (fig.4D). In 

addition, DCA treatment did not have a beneficial effect on the liver function as no change in 

liver enzymes (aspartate aminotransferase, AST and alanine aminotransferase, ALT) was 

found between non-treated and DCA-treated BDL rats (AST: DCA-treated: 301.3±141.7 U/l 

vs. non-treated:364.4±64.7 U/l, p>0.05; ALT: DCA-treated: 65.2±11.8 U/l vs. non-

treated:73.4±7.1 U/l, p>0.05).  
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Figure 3. Effect of dichloroacetate (DCA) (lactate synthesis inhibitor): (A) frontal cortex water 
content; (B) frontal cortex lactate; (C) frontal cortex glutamine and D) cerebrospinal fluid 
ammonia levels in bile-duct ligation (BDL) rats compared to treated and non-treated SHAM-
operated controls and non-treated BDL rats. Data are expressed as mean±SEM. *p<0.05, 
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**p<0.01, ***p<0.001, significantly different from SHAM; †p<0.05,†††p<0.001, significantly 
different from non-treated BDL. 
 

Cerebral lactate temporal resolution 

To thoroughly understand the relationship between ammonia, lactate and glutamine, we 

monitored the changes of these three pathogenic factors at weeks 2, 4 and 6, and characterized 

their temporal resolution in relation to the appearance of brain edema. No differences were 

found between SHAM-operated controls sacrificed at 2, 4 and 6 weeks. After 2 weeks of 

BDL, neither brain lactate, brain ammonia or brain water content was significantly elevated. 

However, brain glutamine levels were significantly higher compared to SHAM-operated 

controls. After 4 weeks of BDL, along with no evidence of brain edema, a significant increase 

in brain lactate and ammonia was observed (vs. 2 weeks), with a similar increase in the levels 

of glutamine as at 2 weeks. Six weeks following BDL, brain edema appeared, along with a 

significant further increase in brain lactate and ammonia, compared to 4 weeks. No further 

increase in glutamine levels was demonstrated in comparison to weeks 2 and 4 (fig. 4A). 

Using the data obtained at 2, 4 and 6 weeks after BDL and SHAM-operated controls, a 

significant correlation was calculated between cerebrospinal fluid ammonia and lactate (r = 

0.5447, p<0.05; fig.4B). Ammonia levels did not significantly correlate with cerebral 

glutamine (r = -0.1255, fig.4C). 
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Figure 4. Correlations between lactate, glutamine, ammonia and brain edema. (A) Temporal 
resolution of lactate, glutamine, ammonia and brain edema over 6 weeks in rats with bile-duct 
ligation (BDL) compared to respective SHAM-operated controls. The time point 0 represents the 
value for SHAM-operated controls sacrificed 6 weeks after surgery. (B) Correlation between 
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changes in cerebrospinal fluid ammonia and brain lactate in BDL rats following 2, 4 and 6 weeks 
after the intervention. (C) Correlation between changes in cerebrospinal ammonia and cerebral 
glutamine in BDL rats following 2, 4 and 6 weeks after the intervention. Data are expressed as 
mean±SEM. *p<0.05, ***p<0.001, significantly different from SHAM; †p<0.05, †††p<0.001, 
significantly different from BDL 2 weeks; #p<0.05, ###p<0.001, significantly different from 
BDL 4 weeks. 
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Discussion 

Results of the present study reveal for the first time in the setting of CLD that increased 

cerebral lactate, and not increased glutamine, is a key factor in the pathogenesis of brain 

edema. NMR spectroscopy revealed an increase in both lactate and glutamine de novo 

synthesis in the brain from 13C-glucose in cirrhotic rats with brain edema and MHE. The 

importance of lactate in the development of brain edema was established following the 

treatment with AST-120. These orally administered carbon microspheres, in addition to 

attenuating hyperammonemia and normalizing brain water content in BDL rats, also decreased 

lactate levels in the brain. To confirm the crucial role of lactate, following the reduction of 

brain lactate levels in BDL rats treated with DCA (lactate synthesis inhibitor), the cerebral 

content of water was attenuated. Furthermore, following the same treatment regimens, no 

change in brain glutamine levels was found, suggesting glutamine does not contribute to an 

increase in cerebral water in cirrhotic rats. Taken together, these findings underscore the 

importance of lactate over glutamine in the development of brain edema in CLD.  

There is substantial evidence that links increased cerebral lactate to severe HE. In patients 

with fulminant hepatic failure, it has been shown that increases in extracellular lactate 

correlate with rises in intracranial pressure (Tofteng et al., 2002). These findings have been 

supported in rats with acute liver failure, whereby using 13C-NMR spectroscopy, it was found 

that an increase de novo synthesis of lactate from glucose correlated with severe HE 

(Chatauret et al., 2002; Zwingmann et al., 2003), and that the progression from pre-coma to 

coma stage is associated with the development of brain edema and a marked increase in 

cerebral lactate (Chavarria et al., 2010). Moreover in acute liver failure, therapeutic 

interventions, such as mild hypothermia and albumin dialysis, have shown to reduce cerebral 

lactate along with brain edema and the development of severe HE (coma and intracranial 

hypertension) (Chatauret et al., 2002; Rose et al., 2007; Sen et al., 2006). Furthermore, in the 

setting of CLD, a 1.37-fold increase in lactate in the cerebrospinal fluid has been found in 

patients with end-stage liver disease and overt/severe HE (grades 3 and 4) (Yao et al., 1987). 
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Chronic hyperammonemic rats (induced following 4-week portacaval anastomosis) injected 

with a toxic dose of ammonia precipitates severe HE (coma), which is accompanied with brain 

edema and an increase in brain lactate (Hindfelt et al., 1977; Therrien et al., 1991). However, 

notwithstanding concrete evidence associating elevated concentrations of brain lactate and 

severe HE (intracranial hypertension, coma), the role of lactate in the pathogenesis of MHE 

remains elusive.  

MHE is a clinically important entity that affects up to 80% of patients with end-stage 

liver disease, placing them at a 4-times higher risk of developing overt HE (Hartmann et al., 

2000). For this, our study describes, for the first time, the implications of lactate in the 

pathogenesis of brain edema and cirrhosis-induced MHE. Our results demonstrate that 

increased cerebral lactate due to de novo synthesis from glucose plays a vital role in the 

development of brain edema in cirrhotic rats. Interestingly, the overall increase in 13C-labelled 

de novo synthesis of lactate in BDL rats with brain edema and MHE is 1.7-fold, compared to 

the 4.0-fold increase observed in acute liver failure rats with brain edema and severe HE 

(coma) (Zwingmann et al., 2003). Moreover, brain edema is attenuated following DCA 

treatment.  

These results, together with previous data arising from rats with acute liver failure, may 

suggest brain lactate not only plays a significant role in the development of brain edema, but 

might also correlate with the severity of HE. It has been proposed in the setting of CLD, where 

intracranial hypertension is rarely observed, that the degree of brain edema is of “low-grade” 

(Häussinger, 2006). This implies a strong relationship between lactate levels, degree of brain 

edema and severity of HE.    

Liver failure leads to a significant reduction in the capacity to detoxify ammonia and, as a 

result, the developing hyperammonemia causes a rise in brain ammonia levels. Ammonia 

toxicity has been demonstrated to lead to an increase in lactate by inhibiting enzyme α-

ketoglutarate dehydrogenase in the TCA cycle (Lai and Cooper, 1986). This in turn stimulates 
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glutamate dehydrogenase, an alternative pathway to remove ammonia through the amidation 

of α-ketoglutarate to glutamate and subsequently to glutamine. Our results demonstrate an 

increase in glucose-derived glutamine in BDL rats, supporting stimulation of this pathway. In 

addition, we observed an increase in glucose-derived lactate, and an increase in glycolysis 

flux, possibly a result of ammonia-stimulated phosphofructokinase activity (Lowry and 

Passonneau, 1966). However, in spite of these TCA cycle alterations (inhibition of α-

ketoglutarate dehydrogenase), ATP levels were maintained (Fitzpatrick et al., 1988; Mans et 

al., 1994). Therefore, ammonia-induced increase in brain lactate is a not a result of energy 

failure (activated anaerobic metabolism); rather, the increase in lactate synthesis may occur as 

a compensatory mechanism to maintain ATP levels.  

It is well documented that the shuttling of lactate between astrocytes and neurons plays an 

important role in brain physiology. Astrocyte-derived lactate is used by surrounding neurons 

as an energy substrate, coupling cerebral glucose metabolism to neuronal activity (Pellerin and 

Magistretti, 2012). Hence, dysregulation of the astrocyte-neuron lactate shuttle due to changes 

in lactate metabolism results in altered lactate homeostasis and leads to brain edema and 

cerebral dysfunction. Indeed, affecting lactate homeostasis in the brain can lead to differential 

lactate compartmentalization and changes in osmolarity. It has previously been shown that 

exposure of astrocytes (cell type shown to selectively exhibit swelling in HE) to 

pathophysiologically relevant concentrations of lactate can lead to significant swelling (Staub 

et al., 1990). Furthermore, increased lactate production not only leads to osmotic stress, but 

also generates more water per ATP formed than oxidative phosphorylation (Preuss, 2012). 

This supports our results that, in the brains of BDL rats, an increase in lactate synthesis is a 

pivotal factor in the development of brain edema.   

In an effort to remove ammonia from the brain, the brain depends on the enzyme 

glutamine synthetase (GS), which is specifically found in astrocytes (Martinez-Hernandez et 

al., 1977). Using NMR and administering 13C-labelled glucose, the de novo synthesis of 

metabolites from glucose can be quantified by evaluating the position of 13C. This helps 
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distinguish if glutamine is synthetized from 13C-labelled glucose via PDH (oxidative pathway 

found in both neurons and astrocytes) or via PC (anaplerotic pathway found exclusively in 

astrocytes) (Zwingmann, 2007). In BDL rats, an increase in de novo synthesis of glutamine via 

both PDH and PC was demonstrated, which suggests that both oxidative and anaplerotic 

pathways were upregulated. This provides evidence that neuronal glucose-derived glutamate is 

synaptically released (excitatory neurotransmission), and is subsequently captured by 

astrocytes and expended to detoxify ammonia through GS. 

During conditions of hyperammonemia, intracellular glutamine trapping (accumulation) 

is believed to contribute to astrocyte hypertonicity, astrocyte swelling and brain edema 

(Brusilow and Traystman, 1986). It has been previously shown that exposing primary cultured 

astrocytes to ammonia results in cell swelling, an outcome that is abolished following the 

inhibition of GS with methionine-sulfoximine (MSO) (Norenberg and Bender, 1994). 

Moreover, in ammonia-infused portacaval shunted rats, pre-treatment with MSO leads to an 

attenuation of cerebral glutamine levels and ameliorated brain edema (Master et al., 1999). 

However, in addition to its osmotic influence, glutamine is believed to be toxic and has 

demonstrated to impair mitochondrial function through opening of the mitochondrial transition 

pore, thus causing astrocyte swelling (Albrecht et al., 2010). In the present study, we found 

glutamine levels to be persistently high following brain edema resolution with treatments 

AST-120 and DCA. This suggests glutamine accumulation is not an important pathogenetic 

factor in the development of brain edema in HE. Interestingly, this observation has also been 

described in animal models of acute liver failure, in which high cerebral glutamine levels 

persisted following ammonia-lowering treatments and resolution of ICP, brain edema and HE 

(Chatauret et al., 2002; Zwingmann et al., 2004). Moreover, 4-week hyperammonemic 

portacaval-shunted rats, with an increase in brain glutamine, do not develop brain edema 

(Bosoi et al., 2012). Therefore, taken together, there is strong, accumulating evidence dictating 

that increased cerebral glutamine does not play a vital role in the development of brain edema 

in liver failure. 
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Myo-inositol and taurine, considered to be major organic osmolytes, play an important 

role in cell volume regulation. They are released into the extracellular space, compensating for 

intracellular hypertonicity, thus preventing cell swelling and the development of brain edema 

(Heins and Zwingmann, 2010). In hyperammonemic portacaval shunted rats, it is stated that 

the reason brain edema does not develop, even in the presence of increased brain glutamine, is 

a result of a substantial compensatory decrease in myo-inositol, taurine and glutamate 

(Cordoba et al., 1996). Interestingly, also in portacaval shunted rats, lack of brain edema is 

accompanied with no increase in brain lactate (Therrien et al., 1991). In the present study, 6-

week BDL rats developed brain edema, along with increases in both brain glutamine and 

lactate. A decrease in brain myo-inositol, but no significant change in taurine, was observed. 

As a result, higher osmolarity was calculated in BDL rats compared to SHAM-operated 

controls. This suggests that impaired brain osmoregulation, possibly the result of exhaustive 

release of osmoregulators, cannot compensate for the increase in both brain glutamine and 

lactate. This osmolyte profile has been similarly observed in rats with acute liver failure, 

where the sum of all brain osmolytes (including glutamine) exceeded the decrease in myo-

inositol and taurine at coma stage (in the presence of brain edema).  

To further understand the relation and interplay between lactate, glutamine and ammonia 

in the development of brain edema, we studied the temporal resolution of these factors in 6-

week cirrhotic rats. Two weeks following BDL, brain edema was not present. A surge in 

cerebral glutamine was observed with no significant elevation in ammonia or lactate. At 4 

weeks, with brain edema still not present, a significant increase in ammonia and lactate was 

detected with no further increase in glutamine observed. At 6 weeks, the appearance of brain 

edema was associated with an additional rise in ammonia and lactate levels, but no further rise 

in glutamine levels. Taken all together, a significant correlation was found between brain 

ammonia and lactate, but not between brain ammonia and glutamine. The sudden rise in 

glutamine at 2 weeks, followed by no significant additional increase at weeks 4 and 6 may be 

the result of saturation or inhibition of GS activity (Cooper et al., 1985; Desjardins et al., 
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1999; Kanamori et al., 1996; Schliess et al., 2002a). A reduction in GS activity is not due to 

glutamate being a limiting factor, since increases in brain glutamate were found in BDL vs. 

SHAM-operated rats (Table I). Our results sustain that increased brain lactate (and not brain 

glutamine) is a consequence of hyperammonemia-induced increased brain ammonia which 

leads to brain edema. In the context of HE, increased glutamine levels are commonly observed 

even when brain edema is not present, as observed in portacaval-shunted rats (Cordoba et al., 

1996). However, in other neurological diseases such as cerebral ischemia, increased brain 

lactate levels have been associated with the development of brain edema, while brain 

glutamine levels were decreased (Kamiya et al., 1993; Nonaka et al., 1998; van der Zijden et 

al., 2008). Although our study was performed in frontal cortex, it is possible other cerebral 

regions may be affected dissimilarly. For example, it was demonstrated in cerebellum of rats 

with acute liver failure that brain edema precedes an increase in lactate (Cauli et al., 2011). 

Different regions within the brain in relation to lactate levels and water content remain to be 

investigated. 

In conclusion, the present study demonstrates for the first time that an increase in brain 

lactate, and not brain glutamine, is a pivotal factor involved in the pathogenesis of brain 

edema in end-stage liver disease. In addition, the results of the present study also suggest that 

impaired compensatory osmoregulatory mechanisms may be a contributing factor in the 

development of brain edema in CLD. Currently, lowering ammonia levels represents the 

primary treatment strategy in patients with HE and CLD (Rose, 2012). The present results 

demonstrate AST-120 is an efficient ammonia-lowering strategy as has been previously 

demonstrated (Bosoi et al., 2011). However, in addition, the results of the present study also 

reveal DCA as a potential treatment of HE. This lactate synthesis inhibitor has previously 

demonstrated a long-term safety profile in patients with congenital lactic acidosis 

(Abdelmalak et al., 2013) and beneficial effects with no adverse reactions in other diseases 

such as cancer (Strum et al., 2013) and chronic obstructive pulmonary disease (Calvert et al., 

2008). Therefore, DCA can rapidly provide a promising therapeutic approach for the 
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management of patients with end-stage liver disease. 
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3.1 Role of ammonia in the pathogenesis of brain edema in MHE 

during CLD 

Ammonia and HE  

 Ammonia has been long considered the main pathogenic factor involved in the 

pathogenesis of HE. Since the liver represents the main ammonia detoxifying organ, a 

decrease in liver function results in increased circulating ammonia levels. Increased ammonia 

has been documented in both ALF and CLD along with neurological dysfunction 

characterized by an increased ICP (in ALF) leading to coma and death, with varying 

symptoms defining grade of HE based on the West Haven criteria (tableI – page 4) in CLD 

(Bernal et al., 2007; Clemmesen et al., 1999; Ong et al., 2003; Quero et al., 1996). 

Interestingly, in these studies blood ammonia levels are around 200 μM in both ALF and 

CLD. Furthermore, healthy individuals receiving a continuous ammonium acetate infusion for 

4h reached a plateau of ~ 200 μM of blood ammonia after 1h, peaking at 225 μM after 4h. 

This concentration of ammonia did not affect their performance of neuropsychological tests 

(Wilkinson et al., 2011). These evidences confirm that ammonia levels are poorly correlated 

with severity of HE and that other pathogenic factors are involved in the onset of HE. 

 Since ammonia can easily cross membranes, blood-derived ammonia enters into 

the brain and exerts several neurotoxic effects: the direct effects of ammonia on pH, 

membrane potential and metabolic reactions lead to a cascade of events including energy 

metabolism alterations, glutamine increase, OS induction and others not evaluated in the 

present thesis. These effects were demonstrated in vitro and in animal models of ALF where 

ammonia concentrations are high (1-5 mM, much higher than those seen in CLD patients). 

However the consequences of lower ammonia in CLD (150-250 μM, 2-3-fold higher vs 

normal (Ong et al., 2003)) remain elusive.  
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Ammonia and brain edema 

 In our study, moderate hyperammonemia (125–250  μM) in PCA rats without 

extensive liver failure, does not lead to brain edema (Bosoi et al., 2012). However, it has been 

shown in the same model that by increasing blood ammonia to 1 mM (using iv infusion of 

ammonia), brain edema and severe HE develop (Cordoba et al., 1996). Whereas in BDL rats 

with hyperammonemia, brain edema, and hepatic dysfunction, lowering arterial ammonia 

levels with AST-120 (from 180 to 81 μM)  leads to attenuation of brain edema and 

improvement of locomotor activity (Bosoi et al., 2011). In this model, the temporal resolution 

of ammonia following BDL surgery is the following: after 2 weeks there is no significant 

change in blood ammonia vs SHAM-operated controls; 4 weeks there is a significant increase 

and after 6 weeks there is a further significant rise (vs 4 weeks) (Bosoi et al., 2012). Brain 

edema appears at 6 weeks and not at 4 weeks however it has been reported at 5 weeks (Davies 

et al., 2009). In the 4-6 weeks interval, the further increase in ammonia along with the 

concomitant increase in other liver disease related factors contribute to the development of 

brain edema.  

 We used AST-120 as a tool to reduce ammonia and evaluate the effect of brain 

edema in 3 different settings. First, AST-120 was administered for 6 weeks, starting at day 1, 

(when hyperammonemia was not present) and therefore ammonia levels did not significantly 

rise throughout the 6-week model. Second, AST-120 treatment was administered for 2 weeks, 

starting 4 weeks after surgery, at a moment where ammonia levels were high but brain edema 

not yet present. Third, a 3 day treatment started at 39 days, a time point where both 

hyperammonemia and brain edema were present. Following all 3 treatment regimens, 

ammonia was reduced and the apparition of brain edema was prevented. These results sustain 

the importance of ammonia in inducing brain edema and also demonstrate the efficacy of 

AST-120 both as a long and short-term treatment (Bosoi et al., 2011). 
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 Conclusion 
 All these evidences indicate ammonia independently does not induce brain edema 

however it plays an important role in the pathogenesis of brain edema in MHE during CLD. 

As explained above, the level of ammonia is important, but the period needed to attain high 

ammonia levels, may allow defense mechanisms to develop differently, therefore differences 

between animal models exists. This is most probably due to a synergistic action with other 

factors ensued as a consequence of liver disease. Moreover, the nature and severity of HE 

depends on the degree and acuteness of hyperammonemia. 

 

3.2 Role of lactate in the pathogenesis of brain edema in MHE 

during CLD 

Lactate and HE 

 Lactate is produced from pyruvate by LDH. Although this reaction was believed 

to occur mostly during hypoxic conditions, new data suggest that lactate is a preferred 

metabolic fuel by the brain over glucose under normoxic conditions. Elevated systemic lactate 

is a prognostic marker of ALF (Bernal et al., 2002) and cerebral lactate is consistently found 

increased in ALF patients but also in animal models of acute hyperammonemia or ALF 

(Fitzpatrick et al., 1989; Rose et al., 2007; Tofteng et al., 2002; Yao et al., 1987). 

 Increased cerebral lactate is related to the development of brain edema and ICP as 

manifestations of severe HE in ALF patients (Tofteng et al., 2002) and in ALF animals 

(Chatauret et al., 2002; Chavarria et al., 2010; Zwingmann et al., 2003). In patients with 

cirrhosis, only one study has shown an increase in brain (cerebrospinal fluid) lactate, in 

patients with HE grade 3-4 (Yao et al., 1987). Brain edema was not evaluated in this study. 

 Our study is the first to describe an increase in cerebral lactate in an animal model 

of MHE. Moreover, we demonstrated that increased cerebral lactate is central in the 
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development of brain edema in CLD as by directly inhibiting lactate synthesis with DCA, 

brain edema is prevented. In ALF rats with coma, lactate levels are increased to ~20-fold vs 

SHAM-operated controls (Zwingmann et al., 2003). In our CLD model of MHE, lactate levels 

were ~3-fold increased vs SHAM-operated controls (Bosoi et al., 2014), therefore suggesting a 

strong relationship between lactate levels, degree of brain edema and severity of HE. 

 

Lactate and ammonia 

 In ALF patients, a causal link between hyperammonemia and the elevation of 

cerebral lactate was suggested (Bjerring et al., 2010, 2008). Here, we demonstrated this cause-

effect relationship is also valid in CLD (Bosoi et al., 2014). Ammonia rises progressively 

throughout the 6 weeks of the BDL model and cerebral lactate follows a similar pattern. 

Moreover, cerebral lactate levels respond promptly and reduce following AST-120 treatment 

(Bosoi et al., 2014). It is important to note that when lactate synthesis was inhibited following 

DCA treatment, no effect on ammonia levels was observed, suggesting the ammonia-lactate 

relationship is unidirectional and increased brain lactate is a consequence of ammonia 

neurotoxicity. 

 

Cerebral lactate metabolism in MHE  

 Lactate does cross the BBB through the lactate transporter MCT1 on endothelial 

cells (Dalsgaard et al., 2004; Gerhart et al., 1997; Oldendorf, 1973; Smith et al., 2003). 

However, in BDL rats circulating lactate is not increased vs SHAM-operated controls (data 

not published), therefore cerebral lactate is BDL rats not a consequence of hyperlactatemia. In 

addition, using nuclear magnetic resonance, we demonstrated that increased cerebral lactate is 

the result of local cerebral production (Bosoi et al., 2014). 

 According to the ANLS hypothesis, lactate is primary produced by astrocytes, 

released extracellularly and taken up by neurons where it is used a fuel for the TCA cycle 
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(Pellerin et al., 2007; Schurr, 2006). According to this hypothesis, glucose taken up by 

astrocytes from the systemic circulation is metabolized to lactate by the LDH5 enzyme and 

released extracellularly by MCT1 and MCT4. From here, lactate is taken up by neuronal 

MCT2 and metabolized back to pyruvate by LDH1 in order to fuel the TCA cycle.  

 There is scarce evidence about any alterations of the ANLS in HE or 

hyperammonemia. Only one study evaluated LDH activity in ALF pigs treated with albumin 

dialysis (MARS). LDH activity increased in ALF pigs along with cerebral ammonia and 

lactate; following MARS treatment a decrease in extracellular ammonia and lactate (using 

cerebral microdialysis) was observed, however LDH activity remained high (as observed in 

non-treated ALF) compared to sham-operated controls (Rose et al., 2007). This implies a 

decrease of lactate from the extracellular space may be due to increased neuronal utilization of 

lactate facilitated following ammonia reduction. Modifications of LDH and MCT isoforms in 

different settings of hyperammonemia and HE merit to be investigated. 

 

 Lactate and brain edema  

 Brain edema during HE is defined by astrocyte swelling. Lactate is known to 

induce astrocyte swelling in vitro (Staub et al., 1990). In addition, lactate plays a major role in 

the development of brain edema in ALF (Chavarria et al., 2010). In our study, the inhibition of 

lactate synthesis in CLD rats prevented the apparition of brain edema (Bosoi et al., 2014). 

However, the underlying mechanisms by which lactate induces brain edema or cell swelling 

remain unknown. It has been speculated that alterations in lactate homeostasis (and/or altered 

ANLS) can lead to lactate-induced osmotic changes and hence cell swelling (Preuss, 2012). 

 

Conclusion  

 These evidences demonstrate that increased cerebral lactate is a direct effect of 

hyperammonemia and that cerebral lactate plays an important role in the pathogenesis of 
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brain edema in MHE during CLD. 

  

3.3 Role of glutamine in the pathogenesis of brain edema in MHE 

during CLD 

Glutamine and HE  

 Glutamine is an important ammonia detoxification product following its 

incorporation to glutamate by the enzyme GS found in the brain exclusively in astrocytes. 

Therefore, an increase in cerebral glutamine is present during hyperammonemia (Chatauret et 

al., 2002; Fries et al., 2014; Hourani et al., 1971; McConnell et al., 1995). 

 

Glutamine and brain edema 

 Glutamine is an osmotic molecule and its cerebral accumulation leads to an 

increase in cerebral water (Brusilow and Traystman, 1986). It is believed that increased 

astrocytic GS and hence an accumulation of intracellular glutamine leads to development of 

astrocyte swelling and brain edema. However, the evidences of glutamine playing a role in 

brain edema development are contradictory. The following studies support glutamine plays an 

important role in the onset of brain edema. Administration of the GS inhibitor MSO attenuates 

the increase in glutamine as well as the swelling both in cultured astrocytes and PCA rats 

treated with ammonia (Master et al., 1999; Norenberg and Bender, 1994; Willard-Mack et al., 

1996). Also, few studies demonstrated a positive correlation of glutamine with severity of HE 

(Hourani et al., 1971; Laubenberger et al., 1997). Evidences suggesting glutamine does not 

have a role in the development of brain edema are: in ALF rats following liver 

devascularization, cerebral glutamine levels do not vary between precoma and coma stages in 

spite of an increase in brain water content (Chavarria et al., 2010; Zwingmann et al., 2003). 

Moreover, different ALF treatments such as hypothermia, albumin dialysis or L-ornithine 
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phenylacetate lead to a significant attenuation of brain edema but not to a decrease of cerebral 

glutamine levels (Sen et al., 2006; Ytrebø et al., 2009; Zwingmann et al., 2004). Moreover, 

PCA rats present increased glutamine levels, but no brain edema (Master et al., 1999). In BDL 

rats the MSO treatment results in persisting high glutamine levels, however brain edema was 

not evaluated in this study, therefore the effect of MSO remains elusive (Fries et al., 2014). 

 The results of the present thesis add to the data questioning the correlation of 

glutamine with brain edema and HE severity. In our study lowering ammonia or lactate levels 

did not normalize brain glutamine levels, in spite of attenuating brain edema (Bosoi et al., 

2014), implying that cerebral glutamine does not play a vital role in the development of brain 

edema in CLD. 

 

Cerebral osmolytes and brain edema 

 A cell where a pathological process leads to an increase in osmolytes is capable of 

compensating this increase by eliminating others, therefore maintaining an osmotic 

equilibrium and preventing swelling. In vitro, in ammonia exposed astrocytes the increase in 

glutamine is followed by a decrease in other osmolytes such as myo-inositol and taurine 

(Zwingmann, 2007). It is believed that in hyperammonemic PCA rats brain edema does not 

develop due to a decrease in myo-inositol, taurine and glutamate which compensates the 

increase in glutamine, re-balancing the osmotic equilibrium as reflected by a constant sum of 

all osmolytes compared to controls (Cordoba et al., 1996). In PCA rats, osmolyte levels were 

maintained in tissue and in CSF, suggesting osmolytes are released not only from astrocytes 

but also from the brain. In ALF, brain edema ensues because these mechanisms are 

overwhelmed and the sum of all brain osmolytes significantly increases at coma stage in the 

presence of brain edema compared to controls (Zwingmann et al., 2004). We describe a 

similar effect in rats with CLD where increases in brain glutamine and lactate were not 

compensated by decrease in brain myo-inositol, thus resulting in a higher osmolarity and 

consequently brain edema (Bosoi et al., 2014). This mechanism does not suffice to fully 
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maintain the osmotic equilibrium (table I). 

Table I. Variation of cerebral organic osmolytes and their sum in relation to brain edema in rats 
with chronic hyperammonemia induced by portacaval anastomosis (PCA), acute liver failure 
following liver devascularization (ALF) and cirrhosis induced by bile-duct ligation (BDL). 

Metabolite PCA rats 

(Cordoba et al., 

1996) 

ALF rats (coma 

stage, 

Zwingmann et 

al., 2004) 

BDL rats 

(Bosoi et al., 

2014) 

Glutamine ↑ ↑ ↑ 

Glutamate ↓ ↓ ↑ 

Taurine ↓ ↓ = 

Myo-inositol ↓ ↓ = 

Sum = ↑ ↑ 

Brain edema - + + 

 

Conclusion 

 Increased cerebral glutamine does not play an important role in the pathogenesis 

of brain edema in MHE during CLD. Moreover, the compensatory release of other cerebral 

osmolytes fails to maintain osmotic equilibrium. 
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3.4 Role of oxidative stress in the pathogenesis of brain edema in 

MHE during CLD 

 OS during CLD has been stated as a systemic phenomenon (Chen et al., 1997; 

Ljubuncic et al., 2000) which results as an imbalance between an increase in liver-disease 

related oxidant mechanisms (XO) and a decrease in hepatic antioxidant production (GSH and 

albumin). 

 

Cerebral OS and ammonia 

 Numerous studies have demonstrated an important role of OS in the pathogenesis 

of brain edema in HE. Ammonia (>500 µM) induces OS and swelling in cultured astrocytes, 

however lower concentrations (100-200 µM) do not (Görg et al., 2008; Murthy et al., 2001). 

This increase in ROS leading to astrocyte swelling is reduced following antioxidant treatments 

(Jayakumar et al., 2006), suggesting that ammonia-induced astrocyte swelling is linked to the 

generation of ROS. In vivo, acute ammonia intoxication (intraperitoneal injection of 

12 mmol/kg of ammonium acetate in naïve rats) induces central OS by decreasing antioxidant 

defense (Kosenko et al., 2003). In ALF rats both systemic and central OS are present along 

with high ammonia levels (reaching up to 1 mM, Jiang et al., 2009a; Sathyasaikumar et al., 

2007). In CLD, cerebral OS markers were found in brains of patients that died with severe HE 

(grade 3 and 4, (Görg et al., 2010)). Interestingly, in this study the mean blood ammonia 

concentration before death was 150 μM, suggesting that cerebral OS might be a consequence 

of another factor related to liver failure rather than a result of hyperammonemia. In our study, 

only a significant increase in the activity of glutathione reductase was found in brains of both 

hyperammonemic and cirrhotic rats (Bosoi et al., 2012). Since all the other markers were not 

changed, this increase may suggest subtle OS modifications which are well controlled, 

preserving an oxidant-antioxidant balance. We concluded that, in MHE due to CLD, cerebral 

OS is not present. The above observations indicate that cerebral OS is strongly related to 
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severe HE and coma. One possible explanation is that in severe HE due to ALF ammonia 

levels rise higher and faster versus CLD (to values higher than 1 mM versus 200 µM), 

therefore cerebral OS develops as a direct effect of hyperammonemia. 

 

Systemic OS and ammonia  

We assessed OS markers both systemically and centrally. Moreover, in order to fully 

understand the origins and effects of OS, we studied all aspects of OS. We assessed ROS per 

se as well as antioxidant defense mechanisms, but also oxidant triggers related to liver and 

cirrhosis as well as the effects of OS on proteins and lipids. We used PCA and BDL rats, 2 

MHE animal models where ammonia reaches on average 200 μM. 

 In PCA rats, no evidence of systemic OS was found in association with the 

absence of central OS. However, in cirrhotic BDL rats, systemic OS was evidenced in the 

absence of central OS. ROS increased within 2 weeks following BDL and remained constantly 

high, while ammonia levels increased progressively throughout the time-line of the model. In 

addition, treating BDL rats with the XO inhibitor allopurinol decreased circulating ROS 

without affecting ammonia levels (Bosoi et al., 2012). Moreover, following ammonia 

reduction with AST-120, circulating ROS did not decrease (Bosoi et al., 2011). This sustains 

there is no direct relationship between systemic OS and hyperammonemia, the former being a 

consequence of hepatic necrosis and the consequent release of oxidant enzymes such as XO.  

  

Systemic OS and brain edema 

 OS independently did not lead to brain edema as demonstrated following AST-

120 treatment in BDL rats which lowered ammonia and attenuated brain edema, but did not 

alter ROS (Bosoi et al., 2011). The role of systemic OS was confirmed following allopurinol 

treatment in BDL rats which attenuated ROS and brain edema, but ameliorated only partially 

the locomotor activity, suggesting remaining factors contribute to neurological dysfunction 
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(Bosoi et al., 2012).  

Since, ROS levels are increased throughout the 6 weeks of the BDL time line, we 

proposed systemic OS to be an important “first hit” which sensitizes the brain. 

Hyperammonemia develops 4 weeks after surgery and acts as a “second hit” therefore leading 

to the development of brain edema (Bosoi et al., 2012). 

 

 

Synergistic effect of systemic OS and ammonia in the pathogenesis of brain edema 

 The facts that i) hyperammonemic PCA rats do not develop brain edema; ii) 

ammonia and OS are associated with brain edema in BDL rats; iii) following AST-120 

treatment in BDL rats, OS independently did not induced brain edema, and iv) following 

allopurinol treatment in BDL rats, ammonia independently did not induced brain edema 

strongly suggest a synergistic relationship between ammonia and OS in the pathogenesis of 

brain edema in MHE during CLD. The synergistic relationship was confirmed following OS 

induction in PCA rats. After a chronic (10 days) treatment with DEM, only systemic, not 

central markers of OS were increased and consequently, brain edema was present (Bosoi et al., 

2013). In SHAM-operated rats, a 4 times higher dose of DEM was needed in order to 

overcome the antioxidant defense and induce the same amount of ROS as in PCA rats. 

Following OS induction by DEM treatment, brain edema developed only in PCA rats and not 

SHAM-operated controls, proving that hyperammonemia renders the brain more susceptible to 

oxidative stress. The underlying mechanisms remain to be explored.  

This synergistic effect explains the poor correlation of ammonia with MHE, as sustained 

by a study in cirrhotic patients which investigated the role of systemic OS in the development 

of MHE (Montoliu et al., 2011). It was performed in two different Spanish centers on 212 

subjects either controls, cirrhotics without MHE and cirrhotics with MHE. The study 

established the plasmatic OS marker 3-nitrotyrosine as being able to dissociate cirrhotic 
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patients with MHE from those without MHE, in spite of similar ammonia levels (152±9 in the 

MHE vs 139±7 μM in the non-MHE cohort). Plasmatic 3-nitrotyrosine was 8.6 fold increased 

in patients with MHE (figure 1). Although this study did not evaluate brain edema, its 

association with MHE was already proven by numerous studies (Córdoba et al., 2001; 

Häussinger, 2006; Häussinger et al., 2000; Kale et al., 2006; Shah et al., 2008; Sugimoto et al., 

2008), strongly suggesting a role of systemic OS in the pathogenesis of brain edema in CLD 

patients with MHE. 

 
Figure 1. Individual data of serum 3-nitro-tyrosine concentrations for each patient and control. 
a) Data for patients from the Hospital Clinico; d) Data for the Hospital Arnau de Vilanova. These 
tables show the mean values and statistical analysis. Values significantly different from controls: 
*p < 0.05; ***p < 0.001. Values significantly different between patients with or without MHE: 
bP < 0.001. After Montoliu et al., 2011 with the publisher's permission. 

 

Conclusion 

 The above evidence establishes that ammonia and OS independently do not lead 

to brain edema during MHE due to CLD, however together they have a synergistic effect. We 

can state that the degree and/or the acuteness of the onset of hyperammonemia is important 

for the induction of OS and that an oxidatively stressed brain is associated with severe HE 

(figure 2). 



172 

 

 

 

 

Figure 2. A synergistic effect between ammonia and systemic oxidative stress is proposed in the 
pathogenesis of brain edema in hepatic encephalopathy. Ammonia concentrations <500 μM in 
the brain do not induce cerebral oxidative stress, and lead to minimal hepatic encephalopathy. 
Ammonia concentrations ≥500 μM provoke oxidative stress in the brain, causing severe hepatic 
encephalopathy. After Bosoi and Rose, 2013 with the publisher's permission. 
 

Multifactorial pathogenesis of brain edema during HE due to CLD 

 In conclusion, brain edema in HE has a multifactorial pathogenesis. Other factors 

aside ammonia have been shown to contribute to its pathogenesis. Inflammation is an 

important factor, demonstrated to play an important role in inducing brain edema and to act 

synergistically with ammonia (Wright et al., 2007). Inflammation is strongly associated with 
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OS, but this relationship remains poorly described. This thesis establishes that during CLD 

induces numerous other factors such as alterations of lactate metabolism, or systemic OS 

released as a consequence of liver failure also play a role in the pathogenesis brain edema; on 

the other hand osmotic changes triggered by increases in glutamine are not important as 

reviewed by Bosoi and Rose (Bosoi and Rose, 2013). 

 

3.5 Role of the BBB in the pathogenesis of brain edema in MHE 

during CLD 

  The BBB is a highly selective structure whose role is to control the flux of 

molecules between the systemic circulation and the brain. Endothelial cells connected by tight 

junctions, resting on a basal lamina, as well as astrocytes and pericytes contribute to providing 

neurons with the demanded molecules. 

 

BBB breakdown in MHE following CLD 

 We believe that the BBB plays an important role in protecting the brain from systemic 

ROS. ROS are known as key mediators of BBB breakdown, by inducing oxidative damage, 

modifying tight junctions and activating matrix metalloproteinases (Pun et al., 2009). However, 

we demonstrated there is no breakdown of the BBB since no brain extravasation of Evans blue 

and sodium fluorescein in BDL rats was observed (Bosoi et al., 2012). This fact is sustained by 

Wright et al., who also demonstrated the anatomical integrity of the BBB using electron 

microscopy (Wright et al., 2007). Moreover, we measured tight junctions expression in BDL rats 

and found no difference vs SHAM-operated controls (Huynh et al., 2011). 

 

 

BBB permeability in MHE following CLD 
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 An intact BBB allows the passage of molecules transcellularly and not 

paracellularly. Many transporters and channels exist along the BBB which regulate cellular 

ionic homeostasis and volume control and therefore disturbances in this well-regulated water 

homeostasis leads to deleterious effects on brain function. Since ROS's main role is as 

signaling molecules, the hypothesis arises that ROS by activating different pathways induce 

posttranslational modifications of such transporters or channels, thus leading to BBB 

hyperpermeability. 

For example, the function of water channels AQP4 is coupled with K+channels (Nagelhus 

et al., 1999; Rao et al., 2011). As mentioned in chapter 3.1.1, the latter can transport ammonia 

(NH4
+), therefore together these mechanisms could contribute to brain edema. An increase in 

expression of AQP4 in the brain, in association with brain edema, has been demonstrated in 

both ALF mice (Eefsen et al., 2010) and cirrhotic BDL rats (Wright et al., 2010). However, 

the last study reported inconsistent results in other animal models since brain edema was not 

related with an increase in brain AQP4 in galactosamine treated or chronic hyperammonemic 

rats (induced by hyperammonemic diet) (Wright et al., 2010). Further investigations on the 

role of AQP4 in brain edema related to MHE are needed. 

Another transporter at the BBB is NKCC, a Na+-K+-2Cl- co-transporter, a protein 

positively regulated by a number of kinases such as OSR1; oxidative stress response1 which is 

upregulated during OS conditions (Anselmo et al., 2006). Our group found an increase in 

NKCC1 mRNA in relation to brain edema in BDL rats (Huynh et al., 2011). The sulfonylurea 

receptor 1 regulated NCCa-ATP channel is implicated in oncotic cell swelling and oncotic 

(necrotic) cell death. Only one study investigated the role of this channel in HE and found an 

increase in sulfonylurea receptor 1 in rats with ALF (Jayakumar et al., 2014). A definitive role 

of NKCC, NCCa-ATP and other similar transporters in BBB permeability related to HE remains 

to be investigated. 

  A temporal resolution of BBB permeability during the time course of the BDL 
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model may also differently affect the development of brain edema. A decreased blood-to-brain 

transfer constant of [14C]α-aminoisobutyric acid and [14C]dextran was evidenced in several 

brain regions in BDL rats 5 days after surgery (Wahler et al., 1993). This parameter reflects a 

decrease in membrane fluidity which may be translated into a nonspecific decrease in BBB 

permeability.  

 

Conclusion 

 The BBB remains anatomically intact in MHE during CLD, therefore the origin of 

brain edema is of cytotoxic rather than of vasogenic origin. An increase in transcellular 

permeability by the action of blood-derived OS on different channels and transporters remains 

an interesting pathway to investigate.  

 

3.6 Role of brain edema in MHE during CLD 

Brain edema and MHE  

 Brain edema is a constant finding in animal models or patients with HE due to 

CLD. However, the role of brain edema in the clinical picture of MHE, whether it represents a 

neuropathological feature of HE or a cause of HE, remains a controversial topic. Brain edema 

may inflict differential effects (physical stress as well as metabolic alterations leading to 

dysregulated astrocyte-neuronal communication) on cerebral function and since MHE patients 

have a 4-fold increased risk of developing overt HE (Hartmann et al., 2000), brain edema may 

be predisposing to this risk. Moreover, it may also represent a pathogenic factor of HE.  

 

 

Evidence proving brain edema is associated to neurological dysfunction in HE during MHE  
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 Numerous studies indicate a strong association between brain edema and HE. 

Several studies in cirrhotic patients have showed a positive correlation between brain edema 

(evaluated by different magnetic resonance techniques) and scoring in neuropsychological 

tests (Kumar et al., 2008; Sugimoto et al., 2008). Following liver transplantation in patients 

with MHE, a decrease in brain edema was associated with an improvement in cognitive 

function (Rovira et al., 2007). This association is sustained by the results of this thesis. In our 

studies, both ammonia lowering (AST-120) and antioxidant (allopurinol) treatments in BDL 

rats attenuate the development of brain edema, along with amelioration of neurological status 

confirmed by improvement of locomotor activity (Bosoi et al., 2012, 2011). Interestingly, 

following both treatments, locomotor activity did not normalize, but improved partially, thus 

strengthening the synergistic effect of ammonia and oxidative stress in the pathogenesis of 

MHE. 

  In ALF, brain edema determines an increase in brain volume and ICP, leading to 

brain stem herniation which represents an important cause of death. Contrary, in CLD and 

MHE brain edema is present without leading to an increase in ICP. However whether brain 

edema itself has a direct metabolic contribution to the severe deterioration of neurological 

function remains unknown.  

 

Evidence questioning that brain edema is associated to neurological dysfunction in HE during 

MHE  

 This controversy is based on different studies that demonstrated various effects of 

brain edema in HE. First, brain edema is present in BDL (type C HE), not in PCA (type B 

HE), rats, although both are recognized as valid MHE animal models. Increased ammonia in 

PCA rats leading to HE is a proof of its neurotoxicity. The fact that PCA rats present normal 

liver function values, while BDL not suggests that several factors induced by liver failure are 

implicated in the pathogenesis of brain edema and that HE exists even in the absence of the 
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latter. These facts suggest HE should be classified rather by the type of neurological 

dysfunction and associated symptomatology, rather by the type of liver dysfunction. 

 However, a few other well-designed studies question the association between 

brain edema and HE. Three weeks after the BDL intervention, rats present without brain 

edema, but with impaired behaviour tests performance (Jover et al., 2006). Whether brain 

edema is a consequence of these impairments or its appearance later in the model course 

induces further impairments remains unknown. In the study by Wright and colleagues 

challenged both BDL (4 week after surgery, before development of brain edema) and sham-

operated controls with LPS. Both groups developed brain edema; however, only BDL rats 

presented alterations of neurological status (Wright et al., 2007). Here, this fact indicates brain 

edema may act along with other factors in inducing overt HE. Another study demonstrated 

that treating brain edema in the cortex and brain stem of ALF rats with mannitol treatment did 

not improve motor tract function (Oria et al., 2010). However, in this study, the authors only 

evaluated brain water in the cortex and brain stem; therefore, it is possible that the regions 

implicated in the modulation of the motor tract function (red nucleus, substantia nigra, basal 

ganglia) were not edematous and therefore would not respond to mannitol treatment. Another 

study demonstrated the persistence of brain edema for 5 days following clinical resolution of 

overt HE in cirrhotic patients (Poveda et al., 2010). Whether these patients regressed from 

overt to MHE remains unknown, however this could explain the persistence of brain edema. 

 

Implication of different cerebral regions  

 Brain edema was assessed in this study in the frontal cortex, an important region 

for cognitive function, therefore a region of interest for HE. The brain is a heterogeneous 

organ, composed of many regions and areas with different tasks and furthermore not all areas 

of the brain react similarly. The AST-120 study evidenced that white matter is more amenable 

to therapy than gray matter (Bosoi et al., 2011), an observation previously demonstrated in 
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pigs with ALF (Sen et al., 2006). Numerous imaging studies observed differential swelling of 

various brain regions in patients with different HE grades (Qi et al., 2013; Shah et al., 2008; 

Sugimoto et al., 2008). These studies conclude that grey matter water content is much less 

altered in HE as compared to white matter and, with increasing grade of HE, brain edema 

affects also the gray matter. Also, some grey matter containing regions such as the basal 

ganglia, the putamen or the globus pallidus exhibit significant changes in water content in HE 

patients compared to other regions. This difference in becoming edematous between white and 

grey matter may be explained by the different regulation of neurotransmitters in different 

cerebral regions. As detailed in chapter 3.1.4, neurotransmitter changes differ widely in HE 

among cerebral regions. Of the above mentioned neurotransmitters, acetylcholine seems to 

have an important effect on white matter, as its metabolism is more intense in white matter 

regions than the metabolism of other neurotransmitters such as glutamate or GABA (Hassel et 

al., 2008). Moreover, the striatum, a region containing high quantities of white matter known 

to be affected in HE (Rose et al., 1999a), also contains high concentrations of acetylcholine. 

Exactly how the cholinergic system affects HE in white matter remains to be investigated. 

 

Implication of different types of astrocytes 

 Possibly different astrocyte types found in grey/white matter contribute to these 

differential findings in water content and amenability to treatment. Protoplasmic astrocytes 

were  mainly described in gray matter, with rich branched processes, each surrounding a large 

number of synapses (~20,000–120,000 in rodents and ~270,000–2 million in humans) 

(Bignami and Dahl, 1974). In white matter, astrocytes are significantly larger than 

protoplasmic astrocytes, with equally spaced cell bodies and unbranched straight processes 

orientated in the direction of axon bundles; they were named fibrous astrocytes (Oberheim et 

al., 2009). Moreover, protoplasmic and fibrous astrocytes differential pathological 

implications were described in Parkinson’s disease (Song et al., 2009) and cerebral ischemia 
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(Lukaszevicz et al., 2002) and the evidence presented in the above paragraph suggest this is 

also valid for HE. Therefore, this differential implication of cerebral regions might explain the 

multitude of symptoms present in HE patients. 

 

Importance of imaging studies in defining the role of brain edema in MHE 

 Evidencing brain edema in MHE patients has been possible with the development of new 

magnetic resonance imaging (MRI) techniques, which became an important tool in the 

diagnosing and monitoring the syndrome (McPhail et al., 2012). These techniques evolved from 

detecting structural into evidencing functional changes, however at present they remain mostly a 

research tool due to their high cost. 

 MRI techniques can assess not only the quantity of water in the brain, but also its 

movement through cellular barriers (the diffusion weighted imaging technique) or distinguish 

between bound and free water (the magnetization transfer ratio technique). The first technique 

demonstrated differences in regional (frontal/parietal white matter) water movement between 

patients with MHE and patients with cirrhosis without neurosychometric impairment. These 

changes predicted the progression to future overt HE (Sugimoto et al., 2008). Moreover, this 

technique established that brain edema in HE is of cytotoxic origin and water accumulation 

affects the intracellular compartment of the brain (Chavarria et al., 2010). The second technique 

estimates brain water content better than a simple MRI and evidenced brain edema in cirrhotic 

patients (Rovira et al., 2001). 

 Functional MRI (fMRI) assesses function of different cerebral regions by measuring local 

blood flow and the amount of reduced deoxyhaemoglobin during resting states or preset tasks, 

therefore correlating brain blood utilization and with cognitive impairment. This technique 

demonstrated aberrant brain activity in different cerebral regions in patients with MHE, 

especially the occipital lobe, the left frontal lobe and the left cerebellum posterior lobe (Chen et 

al., 2012; Qi et al., 2012). Moreover, fMRI was able to evidence fatigue, a common symptom in 
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cirrhotic patients, by evidencing reduced functional brain connectivity in cerebral areas related to 

fatigue (basal ganglia, putamen, frontal gyrus) in primary biliary cirrhosis patients (Mosher et al., 

2014). 

Magnetic resonance spectroscopy permits the analysis of metabolites and metabolic 

processes. The most utilized nuclei is 1H, which is naturally found in tissues and helps quantify 

choline, creatine, N-acetyl aspartate, glutamine, glutamate, myoinositol and taurine. Artificially 

synthetized nuclei, injected in the body help track different metabolic pathways. One such nuclei 

is 13C, which incorporated in glucose identifies metabolic pathways such as glycolysis or the 

TCA cycle (Zwingmann, 2007). In the present thesis, this technique helped identify an important 

role of lactate synthesis and reject a role for glutamine in the pathogenesis of brain edema in HE 

(Bosoi et al., 2014). 

Positron emission tomography (PET) also allows the quantification of metabolic 

processes, using intravenously administered tracers of natural substances or analogs such as 15O-

water, 15O-oxygen or 13N-ammonia. This technique brought new insights into the study of 

cerebral oxygen uptake and blood flow which were found to be reduced cirrhotic patients with 

clinically overt HE but not in cirrhotic patients with MHE or no HE compared to healthy subjects 

or into cerebral ammonia metabolism which was shown to be enhanced due to increased blood 

ammonia in cirrhotic patients (as reviewed by (Keiding and Pavese, 2013)). 

 

Conclusion 

 In conclusion, brain edema, if present, leads to neurological dysfunction in MHE 

due to CLD. Since HE is described also in the absence of brain edema (as in 

hyperammonemic PCA rats), different types of MHE may be described. More sensitive tests 

for learning and memory, attention, anxiety, motor and sensory function need to be developed 

both for humans and animal models in order to depict different types of MHE. Also, magnetic 

resonance studies may help link the modifications of cerebral metabolism to clinical symptoms 
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and different MHE types. 

 

3.7 Potential emerging therapies for MHE during CLD 

 The mechanisms explained above led to the emergence of new potential therapies 

for MHE during CLD.  

 

3.7.1 AST-120 

 AST-120 consists of engineered activated carbon microspheres (0.2-0.4 mm in 

diameter) with high nonspecific adsorptive surface area (>1600 m2/g) for low-molecular-

weight compounds (<10 kDa) present in the bowel (Shen 2009). Therefore it specifically 

targets gut-derived ammonia. It lowered plasma ammonia levels in dogs with PCA (Hiraishi, 

1987) and attenuated systemic OS in uremic rats (Owada et al., 2010). Also, preliminary 

studies in humans have shown neurocognitive improvements in patients with low-grade HE 

after AST-120 treatment (Pockros et al., 2009). 

 AST-120 treatment efficiently removed ammonia in vitro and in vivo. Moreover, 

in vivo it was given as prevention but also as short-term therapy and it adsorbed not only gut-

derived but also blood-derived ammonia. The latter is an interesting finding in that it proves 

ammonia diffuses not only from the gut to the portal system, but also from systemic 

circulation to the gut following its concentration gradient; in addition it strengthens AST-120 

as a gut ammonia sink, capable of clearing blood-derived ammonia. In our rat model, AST-

120 was well tolerated and no adverse effects were observed; as sustained by unaltered weight 

curves and daily protein intake measurements. Moreover, the protective effect on brain edema 

was not a result of liver function amelioration (Bosoi et al., 2011). AST-120 may be 

considered a gut ammonia sink which significantly lowers ammonia thus protecting against 
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the development of brain edema.  

 Following the results presented in this thesis, AST-120 was evaluated in a multi-

center, randomized, double-blind, placebo-controlled phase II clinical trial in the management 

of MHE during CLD (Mulllen et al., presented at ISHEN 2010). Although this study 

concluded that AST-120 was safe and well tolerated and efficiently reduced ammonia in MHE 

patients with elevated ammonia levels, the reduction in ammonia did not correlate with a 

clinical benefit. The repeatable battery for the assessment of neuropsychological status 

(RBANS) was used to evaluate MHE. These results remain debated because a learning effect 

of the required tasks for the test was observed in all study groups; therefore a correct 

assessment for MHE was not possible. Further studies in humans may prove AST-120 as a gut 

ammonia-sequestering agent and with potential benefit in the management of MHE during 

CLD. 

 

3.7.2 Allopurinol 

 Allopurinol is a structural isomer of the XO substrates hypoxanthine and xanthine. 

It is oxidized by XO to a more active metabolite, oxypurinol, which acts by irreversibly 

binding to the active site of the enzyme (Smith et al., 2009). Since XO is a major source of 

ROS in cirrhosis (Battelli et al., 2001) and an increase in the activity of this enzyme was found 

in BDL rats, its inhibition seemed a reasonable antioxidant therapeutic target. 

 Allopurinol treatment in BDL rats indeed attenuated OS and brain edema. This 

protective effect was not due to an improvement in liver function or hyperammonemia (Bosoi 

et al., 2012). Therefore, an antioxidant treatment targeting a specific pro-oxidant such as XO 

may be more beneficial in HE than a treatment directed toward improving antioxidant defense 

or ROS scavengers. Moreover, allopurinol is already used in patients with gout at an 
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affordable price. However, the use of allopurinol has been associated with asymptomatic 

elevations of serum transaminase and alkaline phosphatase levels reversible once treatment is 

stopped. Isolated cases of hypersensitivity reaction to allopurinol have also been reported. 

These manifest by high fever, eosinophilia, exfoliative dermatitis and fulminant hepatic failure 

usually having a fatal outcome (Yaylacı et al., 2012). Therefore, therapy with allopurinol 

should be administered cautiously in patients with hepatic impairment. 

 

3.7.3 Dichloroacetate 

 The PDH kinase phosphorylates and inhibits PDH activity, thus resulting in 

decreased entry of pyruvate in the TCA cycle and increased shift of pyruvate to lactate. DCA 

is a PDH kinase inhibitor, therefore PDH is dephosphorylated and presents an increased 

activity. As a consequence, the flux of pyruvate into the TCA cycle increases, LDH activity 

shifts from lactate to pyruvate production and the synthesis of lactate decreases (Stacpoole et 

al., 1998, figure 3). DCA has been previously used and proven beneficial in other diseases 

such as congenital lactic acidosis, cancer and chronic obstructive pulmonary disease 

(Abdelmalak et al., 2013; Calvert et al., 2008; Strum et al., 2013). In these patients, DCA 

maintained normal lactate levels without side effects. 
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Figure 3. Mechanism of action of dichloroacetate. Explanations are given in the text. DCA, 
dichloroacetate; PDH, pyruvate dehydrogenase; TCA cycle, tricarboxylic acid cycle; LDH, 
lactate dehydrogenase. 

 
 In the present study, DCA reduced brain water content in BDL rats as a 

consequence of brain lactate levels normalization. This effect was not due to a decrease in 

cerebral glutamine levels or amelioration of ammonia levels or liver function (Bosoi et al., 

2014). DCA may prove itself as a new therapeutic approach for the management of patients 

with end-stage liver disease. 

 

 

Research in the field of treating HE has made major avances in the last 10 years. Some 

new products/therapeutic strategies are presently in clinical trials for the treatment of HE, 

therefore they are important in the current context and will be discussed below.  
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3.7.4 Probiotics 

Although the use of probiotics raised some concerns regarding variations of the live 

microorganisms, lack of standardization or optimal dosage, VSL#3 has shown some 

promising results. This formulation is a mix of 8 bacterial species (four Lactobacillus, three 

Bifidobacterium and one Streptococcus species) and contains the highest available 

concentration of probiotic bacteria. Two recent publications demonstrated a beneficial effect 

in cirrhotic patients and HE. In the first, after a treatment period of 6 months in cirrhotic 

patients, VSL#3 reduced the risk of hospitalization for HE along with the severity of cirrhosis 

as evaluated by the Child-Pugh score (Dhiman et al., 2014). The second study, proved VSL#3 

as efficient as lactulose in improving MHE after 2 months of treatment (Pratap Mouli et al., 

2014).  Moreover, the mechanism of action of VSL#3 has been studied in cirrhotic mice, 

where it was shown to reduce cerebral and systemic inflammation, therefore improving 

behaviour tests, while not having significant effects on gut microbiota or liver function 

(D’Mello et al., 2014). As they lack harmful or side effects, probiotics represent an important 

player in the future therapy of HE.  

 

3.7.5 Ornithine Phenylacetate 

As mentioned in the introduction, Ornithine Phenylacetate (OP) attenuated the increase in 

arterial and cerebral ammonia, thus preventing the apparition of ICP in pigs with ALF (Ytrebø 

et al., 2009). Moreover, it also proved beneficial effects in BDL rats with MHE, where it 

improved arterial ammonia, its cerebral metabolism and normalized brain water (Davies et al., 

2009). As a result, an ongoing clinical trial is investigating the ability of OP to reduce 

hyperammonemia and speed recovery from HE episodes in cirrhotic patients 

(ClinicalTrials.gov number: NCT01966419). 
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3.7.6 Glycerol phenylbutyrate 

Glycerol phenylbutyrate represents a pathway to remove ammonia incorporated into 

glutamine by forming phenylacetyl glutamine which is excreted urinary, as explained in 

chapter 1.5.5. GPB is already approved for treatment of urea cycle disorders and inherited 

disorders manifested by hyperammonemia. In cirrhotic patients, glycerol phenylbutyrate 

significantly lowered plasma ammonia and reduced HE events, but adverse effects were 

present in similar proportion in glycerol phenylbutyrate (79%) and placebo groups (76%) 

(Rockey et al., 2013). Its potential as a therapeutic option remains to be established by future 

studies.  
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Chapter 4: Conclusion and future directions 
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4.1 Conclusions 

 The results presented in this thesis demonstrate for the first time that in cirrhotic 

rats with MHE: 

 Hyperammonemia independently does not lead to brain edema. 

 Systemic oxidative stress is a consequence of liver disease, not a result of 

hyperammonemia. 

 Systemic oxidative stress independently does not lead to brain edema. 

 Systemic oxidative stress represents an important “first hit “which acts synergistically 

with hyperammonemia as a “second hit “leading to the development of brain edema. 

 Cerebral oxidative stress is not associated with brain edema. 

 AST-120 significantly lowers arterial ammonia levels and protects against the 

development of brain edema. 

 Allopurinol attenuates both systemic oxidative stress and brain edema, therefore an 

antioxidant directed towards the inhibition of oxidative stress sources specific to cirrhosis 

may be a new treatment option in HE. 

 Hyperammonemia renders the brain more susceptible to oxidative stress. 

 Increased cerebral lactate, not glutamine contributes to the pathogenesis of brain edema, 

therefore inhibiting lactate synthesis represents a potential therapeutic target in HE. 

 These conclusions respond to the aim of the project. An important role of 

systemic oxidative stress, as well as its synergistic effect with ammonia in the pathogenesis of 

brain edema during MHE was demonstrated. A key role of lactate in the pathogenesis of brain 

edema during MHE associated with CLD. These mechanisms led to the proposal of three 

different treatments as potential therapeutic options. Further studies will determine the validity 
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of the therapies. 

HE is a heterogenous syndrome, with a multifactorial pathogenesis. Aside factors known 

to contribute to the syndrome, such as ammonia, inflammation, neurosteroids, this thesis 

establishes that alterations of lactate metabolism and systemic OS released as a consequence 

of liver failure acting synergistically with ammonia also play a role in the pathogenesis brain 

edema in MHE during CLD. Along with already used treatment options targeting different 

pathogenic aspects of HE, the one proposed herein merit to be further investigated.  

The conclusions are resumed in fig. 1 below. 

 

 

Figure 1: Pathogenesis of brain edema in minimal hepatic encephalopathy (MHE) during 
chronic liver disease (CLD). Roles and interrelations between ammonia (systemic and cerebral), 
systemic and cerebral oxidative stress, cerebral glutamine and cerebral lactate in the 
pathogenesis of brain edema in MHE during CLD. Effects of therapeutic strategies aimed to 
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decrease ammonia levels (AST-120), to reduce oxidative stress (allopurinol) or to inhibit lactate 
synthesis (DCA, dichloroacetate). Grey dashed lines = factors are not related; black dashed line 
= the relationship remains unclear; black continuous line = the relationship is proven; blue 
continuous line = a synergistic effect was proven. 

 

4.2 Future directions 

4.2.1 The mechanism of systemic ROS leading to brain edema 

 ROS have an important role in cell signaling (Devasagayam et al., 2004). 

Circulating ROS may signal cerebral endothelial cells and as a consequence induce 

posttranslational modifications of either protein implicated in the BBB or transport pathways 

through the BBB, leading to hyperpermeability. Such examples are the AQP, NKCC and 

NCCa-ATP, which were discussed in chapter 3.5. Therefore, only subtle changes in BBB 

permeability might be involved in the pathogenesis of brain edema in MHE. All the above 

aspects remain speculative and further studies directed on the role of ROS on endothelial cells 

may clarify them. 

 

4.2.2 The link between systemic oxidative stress and increased cerebral lactate 

in the pathogenesis of brain edema 

 This thesis demonstrated that two factors are individually implicated in the 

pathogenesis of brain edema in MHE following CLD: systemic OS and cerebral lactate. 

Therefore the question is; are these factors interrelated? 

 In HE, increased in cerebral lactate is considered as impairment in cellular energy 

metabolism rather than an obvious sign of energy failure (Zwingmann, 2007). Numerous 

studies suggest a direct relation between OS and energy failure in the brain: in diseases like 

stroke, Parkinson's or Alzheimer's OS is linked to mitochondrial dysfunction and energy 
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failure (Jenner, 2003; Mamelak, 2007; Saeed et al., 2007). In spite of these evidences, there is 

only one paper linking OS and lactate metabolism in vitro. This shows a decreased rate of 

lactate production by cultured astrocytes exposed to hydrogen peroxide (Liddell et al., 2009), 

which is rather the contrary of increased cerebral lactate during hyperammonemia and CLD. 

Further studies will depict if OS has an effect on lactate metabolism in HE. 

 

4.2.3 Describing different types of HE 

 As explained above, HE is classified by the type of liver function which induces it 

(Ferenci et al., 2002). Patients present with a variety of symptoms which define the grade of 

HE depending on their severity (the West Haven criteria – table I – page 4). These symptoms 

reflect the impairment of specific cortical functions such as learning and memory, attention, 

anxiety, sleep patterns, motor and sensory function. Therefore, a classification of HE by the 

type/types of dysfunction would probably better reflect the region/regions affected as well as 

the triggering factor, thus leading to the appropriate therapeutic strategy for each individual.  

The insertion of a TIPS for the treatment of portal hypertension induces HE in about 40% 

of patients (Casadaban et al., 2014). As these patients make frequent hospital visits, they are 

an important population to clinically examine HE and its’ pathogenesis. For example, TIPS 

patients were an important part in the study that validated the EncephalApp, a smartphone 

based test for the diagnosis of MHE, as a reliable test (Bajaj et al., 2014). More tests on 

pathogenic factors implicated in the pathogenesis of HE such as those described in this thesis, 

in relation to TIPS-induced HE in a cirrhotic population, may contribute to translating our 

findings into clinical practice. 

 However, establishing exactly which functions are impaired in each patient is difficult. 

For animal models, several behavioral tests are available, but most of those involve physical 

tasks which are challenging for an animal not physically fit (nutritional impairments and an 
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extra weight due to ascites). The tests included in the currently used batteries for clinical trials 

in patients often asses several functions at the same time, which are difficult to be scored 

separately. Therefore, a consensus on specific tests for HE in both patients and animal models 

are warranted in order to establish a classification of HE based on neurological dysfunction. 
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