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RÉSUMÉ ET MOTS CLÉS 

Les souvenirs sont encodés dans le cerveau grâce aux configurations uniques de vastes 

réseaux neuronaux. Chaque connexion dans ces circuits est apte à être modifiée. Ces 

changements durables s’opèrent au niveau des synapses grâce à une synthèse de protéines de 

novo et génèrent ce qu’on nomme des traces mnésiques. Plusieurs preuves indiquent que, 

dans certaines formes de plasticité synaptique à long terme, cette synthèse a lieu dans les 

dendrites près des synapses activées plutôt que dans le corps cellulaire. Cependant, les 

mécanismes qui régulent cette traduction de protéines demeurent encore nébuleux. La phase 

d’initiation de la traduction est une étape limitante et hautement régulée qui, selon plusieurs 

chercheurs, constitue la cible principale des mécanismes de régulation de la traduction dans la 

plasticité synaptique à long terme. Le présent projet de recherche infirme cette hypothèse 

dans une certaine forme de plasticité synaptique, la dépression à long terme dépendante des 

récepteurs métabotropiques du glutamate (mGluR-LTD). À l’aide d’enregistrements 

électrophysiologiques de neurones hippocampiques en culture couplés à des inhibiteurs 

pharmacologiques, nous montrons que la régulation de la traduction implique les étapes de 

l’élongation et de la terminaison et non celle de l’initiation. De plus, nous démontrons grâce à 

des stratégies de knockdown d’expression d’ARN que la protéine de liaison d’ARNm Staufen 

2 joue un rôle déterminant dans la mGluR-LTD induite en cultures. Dans leur ensemble, les 

résultats de la présente étude viennent appuyer un modèle de régulation de la traduction 

locale de protéines qui est indépendante de l’initiation. 

  

Mots clés : dépression à long terme dépendante des récepteurs métabotropiques du glutamate 

(mGluR-LTD), régulation de la traduction locale de protéines, protéines de liaison d’ARNm, 

répression de la traduction, Staufen 2 (Stau2). 
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ABSTRACT AND KEY WORDS 

Memories are encoded in the unique configurations of the vast neuronal networks of the brain. 

Each of these connections possesses the ability to be modified. Such long-lasting changes at 

the synapse often require the synthesis of new proteins that create what we call memory traces. 

Evidence suggests that the signal-induced activation of translation in some forms of synaptic 

plasticity occurs locally, at the activated synapses, rather than in the soma. However, the 

mechanisms regulating local and rapid de novo protein synthesis are poorly understood. The 

initiation step of translation is a highly regulated step and is believed to be the main target of 

control. The present research project challenges this view for a certain form of long-term 

synaptic plasticity, metabotropic glutamate receptor-dependent long-term depression (mGluR-

LTD). We show, using electrophysiological recordings of dissociated hippocampal neurons in 

cultures coupled to pharmacological inhibitors, that translation regulation depends on 

elongation and termination, rather than initiation. Moreover, by exploiting RNA knockdown 

strategies, we demonstrate that the RNA-binding protein Staufen 2 plays a crucial role in 

mGluR-LTD induced in cultures. Altogether, the findings of the present study support a model 

of translation regulation that is downstream of initiation. 

 
Key words: metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), 

local translation regulation, RNA-binding proteins (RBPs), translation repression, Staufen 2 

(Stau2). 
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CHAPTER I. INTRODUCTION 

1.1 HIPPOCAMPAL-DEPENDENT LEARNING AND MEMORY 

Although, today, the link between the hippocampus and memory is undisputed, 

neuroscientists were still searching for a clear hippocampal function until the mid-

twentieth century (Andersen et al 2006). This impressive bulging brain structure of the 

temporal lobe attracted interest from the very start of brain investigations. It was 

implicated in a variety of functions ranging from olfaction (Brodal 1947) to harboring 

“the central emotive process of cortical origin” (Papez 1937) until the seminal and 

detailed report on the amnesic patient H.M. (Scoville & Milner 1957) provided direct 

evidence for a mnemonic function. 

1.1.1 Role of hippocampus in learning and memory 

H.M., who died in 2008, had been suffering from intractable epilepsy resistant to 

antiepileptic drug treatment for many years before he underwent bilateral resections of 

the medial portions of the temporal lobe. His seizures were successfully relieved, but he 

was left with a profound memory loss. Following the operation, H.M. was unable to 

retain any information about recent events or episodes of his life, people he had met, 

places he had visited or objects he had encountered (anterograde amnesia). His memories 

dating from some time prior to the intervention were also impaired (retrograde amnesia), 

although memories from early life appeared to be intact. In contrast, his general intellect, 

perceptual ability, working memory and some forms of long-term memory were 

unscathed (Milner et al 1968, Scoville & Milner 1957). 

Since then numerous studies in both humans and animals have tried to elucidate 

how the hippocampus mediates memory processing. Learning and memory are extremely 

complex concepts involving a dynamic interplay between various brain regions that make 

different contributions to memory formation (Schacter & Tulving 1994, Squire 2004). To 

puzzle out the hippocampus’ role amidst the organization of memory systems in the brain 

is not a simple task (Kandel 2001). What does the hippocampus do? Does it perform 

tasks that other brain regions cannot accomplish? In which phase of memory processing 

is the hippocampus involved? The main processes include the encoding of the 
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information into memory, the consolidation process for stability over time and the 

retrieval and reactivation of the memory during recall (Morris 2006). To add a layer of 

difficulty in answering these questions, “memory traces” are encoded at different levels. 

They can be stored in synaptic weights as specific synapses modify their connection 

strength by undergoing biochemical modifications (Martin et al 2000), but such changes 

are embedded within a larger neural ensemble to which the memory has been allocated 

(Guzowski et al 1999, Hall et al 2001, Hebb 1949, Reijmers et al 2007, Sakaguchi & 

Hayashi 2012). 

Although much is yet to be understood, great strides have been made and some 

conclusions have been reached about the function of the hippocampus in humans: (1) 

Amongst the different types of memory (Bruner 1969, Ryle 1949, Winograd 1975), the 

hippocampus is involved in one particular type termed declarative memory that refers to 

the recollection of facts and events (Tulving 1983) and can be associative, abstract and 

context-dependent (Manns & Eichenbaum 2006). Located at the confluence of highly 

processed multimodal sensory inputs, the hippocampus can bind information from the 

neocortex to form memories that are representational and model the external world 

(Squire & Alvarez 1995). (2) Its involvement in the storage and recovery of memories 

diminishes, or in any case, changes with time as consolidation proceeds and memory 

traces are reorganized. However, whether the hippocampus is a temporary memory 

system (Squire 1992, Squire & Alvarez 1995) or is engaged to some extent in the 

retrieval and storage of certain remote memories is still a subject of debate (Moscovitch 

et al 2006, Sutherland & Lehmann 2011). (3) The hippocampal region and the adjacent 

cortex are not involved in working memory in addition to a wide range of implicit or non-

declarative tasks (e.g. motor skill memory) (Squire & Zola 1996). (4) The hippocampal 

region is not involved in non-mnemonic aspects of cognition (Craig 2006). 

1.1.2 Animal models of human amnesia 

Lastly, it is important to note that although there is great structural similarity and strong 

evolutionary conservation of circuitry of the hippocampus (in contrast to the diversity of 

the neocortex), there are some functional differences across the mammalian taxon 

(Manns & Eichenbaum 2006, Squire et al 2004). While it is unequivocally involved in 
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the initial acquisition and temporary storage of declarative memory, the rat hippocampus 

appears to be heavily involved in the formation of cognitive maps and their navigation 

through space compared to its human counterpart that is most engaged by episodic 

memory. Such differences could be accounted for by the different kinds of information 

the animal hippocampus is receiving in comparison to the humans. Just like the 

hippocampi of the two human hemispheres may be performing slightly different 

functions due to lateralization even though they are structurally symmetrical (Morris 

2006), the rat hippocampus provides an output that is appropriate to the animal, not to 

humans. As Manns and Eichenbaum (2006) illustrate it ever so well, “it is perhaps not 

surprising that an animal such as the rat, whose survival normally depends on nighttime 

foraging, would place a premium of remembering spatial locations of important items. It 

is also not surprising that the human hippocampus, spoiled by the wonderful elaborative 

ability of its complex neocortex, would more likely reflect the paradoxes of episodic 

memory, being abstract yet structured, detailed yet imperfect.” 

1.2 NEUROANATOMY OF THE HIPPOCAMPAL FORMATION 

1.2.1 Anatomical organization 

The hippocampal formation is a discernible C-shaped tridimensional structure of the 

medial temporal lobe found in both hemispheres. In monkeys and humans, it lies 

horizontally on the floor of the temporal horn of the fourth ventricle. In rats, the structure 

curves (more vertically oriented than in primates) from the medial aspects, or septal pole 

(dorsal hippocampal), to the bottom tip of the temporal lobe, or the temporal pole (ventral 

hippocampus) (Amaral & Lavenex 2006). The course the hippocampal formation follows 

is termed the septotemporal axis and much of its internal structure remains relatively the 

same throughout its length. Orthogonal (perpendicular) to this axis is the transverse plane 

that clearly reveals the cytoarchitectonically distinct adjoining structures that make up the 

hippocampal formation: the hippocampus proper, dentate gyrus, subicular complex 

(subiculum, presubiculum, parasubiculum) and entorhinal cortex (Amaral & Lavenex 

2006). The hippocampus proper is further subdivided into three subfields that bear the 

latin name cornu ammonis (CA) for Ammon’s Horn:  CA1, CA2 and CA3. The general 



	   4 

term hippocampus is often used to refer to the hippocampus proper and dentate gyrus and 

will be used as such in this text. Moreover, we will focus on the rodent hippocampus 

since it is the animal model used in this study. 

1.2.2 Cytoarchitectonic organization 

The highly ordered organization of cells and terminating projections is one of the 

hallmarks of the hippocampus that has made it a model of choice for the study of the 

neurobiology of memory. The hippocampus consists of only one densely packed layer of 

principal neurons – it is an allocortical1 region unlike the surrounding neocortex – that 

form two interlocking C’s, reversed relative to each other, one of pyramidal cells of the 

hippocampus proper, and the other of granule cells of the dentate gyrus. Fibers 

originating from different cortical regions (including the hippocampus itself) make 

synaptic contact with distinct dendritic segments of their target principal neuron (Förster 

et al 2006). Thus, afferent fibers terminate in sharply segregated hippocampal layers to 

form a laminated network.  

The principal neurons and zones of synaptic connections of the hippocampus proper 

are disposed in superimposed layers (Amaral & Lavenex 2006) (Fig. 1A): 

(1) the lacunosum-moleculare layer is the deepest layer containing projections from 

the entorhinal cortex (perforant path) and extra-hippocampal inputs; 

(2) the radiatum layer is the layer in which apical dendrites from the pyramidal cells 

extend and CA3-CA1 connections occur via the Schaffer collaterals from CA3 as 

well as associational connections2; 

(3) the pyramidal layer contains the cell bodies of pyramidal cells; 

(4) the oriens layer contains the basal dendrites of the pyramidal cells that make 

contact with some of the Schaffer collaterals  and associational fibers; 

(5) the alveus layer, on the other hand, contains the axons of the pyramidal cell. 

Much of these intrahippocampal projections travel along the transverse or oblique 

axis and exhibit a clear intrinsic connectivity (Andersen et al 1971) that we will discuss 

next. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Allocortical: a term applied to cortical regions having fewer than six layers. 
2 Associational connections are ipsilateral CA3-CA3 connections.	  
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Figure 1. Basic anatomy and connectivity of the hippocampus 

(A) Layers of the hippocampus proper. Alveus layer (a), oriens layer (o), pyramidal cell 

layer (p), radiatum layer (r), lacunosum-moleculare layer (lm). Figure adapted from 

Freund and Buzsaki (1996). (B) Diagram of the trisynaptic circuit of the hippocampus. 

Figure adapted from Neves et al (2008). See text for details.  
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1.2.3 The trisynaptic circuit 

The highly convergent-divergent internal connections of the hippocampus are more 

complex than the trisynaptic circuit, which was described early on (Ramón y Cajal 1911), 

might suggest. Although serial elements of the circuit lie within a transverse plane, 

axonal projections also diverge along the longitudinal axis (Amaral & Witter 1989). 

Moreover, it is now clear that it is rather a portion of the functional circuitry of the 

hippocampal formation than its major contributor (Amaral & Lavenex 2006). However, 

this unidirectional synaptic flow through the three important excitatory synapses depicted 

below remain of great significance for hippocampal research. 

 

Enthorinal cortex (EC) è Dentate gyrus (DG) � DG è CA3 � CA3 è CA1 

 

Synapse 1. The entorhinal cortex, via the perirhinal and parahippocampal cortices, 

receives a host of highly processed multimodal sensory inputs from various neocortical 

sources (Suzuki & Amaral 1994). This information is then relayed to the granule cells of 

the dentate gyrus via the perforant path. These entorhinal fibers perforate the subiculum 

before terminating into the outer molecular layer of the dentate gyrus (Fig. 1B). Of note, 

the entorhinal cortex also projects, to a lesser extent, to the hippocampus proper via the 

temporammonic pathway. 

Synapse 2. Granule cells give rise to axons called mossy fibers (Fig. 1B) with 

unusually large boutons that form en passant synapses onto the CA3 pyramidal cells. This 

innervation stops at the border of CA3 with CA2, which is the main feature 

distinguishing these two regions. No other hippocampal projections are known to 

innervate CA3 (apart from CA3-CA3 commissural3 and associational connections).  

Synapse 3.  The CA1 subfield represents the last stage of this intrahippocampal 

loop and is densely innervated by CA3 pyramidal axons, the Schaffer collaterals (Fig. 

1B). These fibers extend through both the stratum radiatum and stratum oriens layers. 

CA1 pyramidal cells send axons that travel parallel to the alveus in stratum oriens and 

mainly project back to the entorhinal cortex and subiculum (Amaral & Lavenex 2006). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Commissural connections refer to contralateral CA3-CA3 connections 
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Although pyramidal neurons largely outnumber any other cell type in the 

hippocampus, there is a great diversity of interneurons found in various layers of the 

hippocampus that play a crucial role in regulating and fine-tuning the activity of the 

network (Freund & Buzsaki 1996), ultimately modulating its output, thus adding to the 

complexity of the system. 

1.2.4 Field excitatory post-synaptic potentials 

A consequence of the laminar organization and connectivity of the hippocampus is the 

ability to generate large extracellular currents while stimulating Schaffer collaterals with 

an electrode in transverse slices. Such stimulation of parallel fibers causes the 

simultaneous synaptic activation of a population of cells and allows the observation of 

synaptic currents that would normally be too small to be detected in single unit 

recordings. When the recording electrode is placed parallel to the stimulating electrode, a 

negative change in potential occurs at the recording electrode relative to the reference 

electrode (ground) as positive depolarizing currents rush toward the current sink into the 

dendrites of activated cells. Synaptically generated current flows inside the cells and exit 

at the current source in the region of the soma where membrane area is greatest. A 

current loop is created and gives rise to field excitatory post-synaptic potentials (fEPSPs). 

With stronger stimulation, a population spike superimposed onto the rising phase of the 

fEPSP is observed and reflects the synchronous discharge of cells. The magnitude of the 

fEPSP is used as a measure of the efficacy of post-synaptic activation (Andersen et al 

2006). 

Hippocampal field potential studies were instrumental in further understanding 

synaptic function. 

1.3 LONG-TERM SYNAPTIC PLASTICITY 

The idea that changes in the strength of the synapse serve as elementary components of 

memory storage was first brought forward by Ramón y Cajal (1894). However, tangible 

evidence was only provided years later. The first direct evidence to support the notion 

that neural circuits are modified by learning came from studies of simple forms of 

learning in invertebrate systems, including the gill-withdrawal reflex of Aplysia 
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(reviewed in Mayford et al 2012). During this same period, Bliss and Lomo (1973) found 

in vivo synaptic responses in the dentate gyrus of the hippocampus to display plasticity in 

the rabbit following stimulation of the perforant path. Since then, long-term synaptic 

plasticity, and particularly long-term potentiation (LTP), has been the subject of intense 

study and found to be present at a large number of excitatory synapses in the brain. 

Moreover, not only can neurons undergo bidirectional changes, such that synapses can be 

potentiated or depressed, but they can also express multiple forms of LTP and long-term 

depression (LTD) that differ in their molecular mechanisms and time domains thus, 

conferring several computational advantages (Malenka & Bear 2004); hence the widely 

held belief that modulation of synaptic transmission constitutes the physical substrate of 

information storage in the brain (Martin et al 2000). Given the wide variety and flavors of 

synaptic plasticity found in different brain regions, the following section will describe 

forms of plasticity limited to one of the better characterized synapses in the hippocampus: 

the Schaffer collateral (SC) synapse, a monosynaptic connection between CA3 and CA1 

pyramidal neurons (CA3-CA1). 

1.3.1 Synaptic transmission at the Schaffer pathway 

Communication at chemical synapses involves the exocytotic release of the content of 

synaptic vesicles from the presynaptic terminal, diffusion across the synaptic cleft, and 

binding to postsynaptic receptors. At the SC CA3-CA1 synapse, synaptic transmission is 

excitatory and glutamate is released onto tiny protrusions called dendritic spines. 

Glutamate receptors located at this synapse are: α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionate receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs), 

kainate receptors and metabotropic glutamate receptors (mGluRs).  

 AMPARs are ligand-gated ionotropic receptors that respond rapidly to 

neurotransmitters released in the cleft. Their activation leads to large influx of sodium 

and smaller efflux of potassium, such that the postsynaptic membrane is depolarized and 

excitatory post-synaptic currents (EPSCs) are generated. AMPARs are composed of four 

subunits, which can be a homomeric or heteromeric mixture of GluA1 to GluA4 subunits. 

Most AMPARs contain at least one GluA2 subunit which renders them calcium-

impermeable while GluA2-lacking AMPARs are permeable to calcium (Luscher & 
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Malenka 2012). Hippocampal principal cells mainly express GluA1 and GluA2 

(Keinanen et al 1990). 

 NMDARs are also ligand-gated ionotropic receptors, but they are also voltage-

dependent since magnesium blocks them at resting membrane potential and 

depolarization is needed to drive the divalent cation from the channel (Nowak et al 1984). 

NMDARs, when opened, are permeable to the monovalent cations sodium and 

potassium, but, unlike most AMPARs, they have a high permeability to calcium (Jahr & 

Stevens 1987). They also have slower kinetics, longer open time and higher affinity for 

glutamate (Dingledine et al 1999). Of note, NMDARs can possess subunits that contain a 

binding site for glycine and D-serine. 

Kainate receptors are also ligand-gated ionotropic receptors that mediate fast 

excitatory neurotransmission. Although they contribute little to EPSCs, they supplement 

glutamate transmission by enhancing and extending the postsynaptic depolarization. They 

can also modulate transmission presynaptically (Pavel et al 2006). 

mGluRs are G-protein coupled receptors that, when bound to glutamate, trigger 

various signaling cascades. There are eight receptor subtypes categorized in three groups 

based on their pharmacological and functional properties: Group I (mGluR1, mGluR5), 

Group II (mGluR2, mGluR3) and Group III (mGluR4, mGluR6, mGluR7, mGluR8) 

(Shigemoto et al 1997). mGluRs are generally located peri-synaptically, thus they are 

thought to require strong synaptic activation and glutamate spillover for the receptors to 

be activated. Group I mGluRs have a somatodendritic distribution and their activation 

leads to increased excitability of the neuron via the modulation of potassium, calcium, 

and nonselective cations channels as well as increased intracellular calcium 

postsynaptically. In contrast, group III mGluRs found near the pre-synaptic terminal act 

to inhibit excitatory transmission at the SC CA3-CA1 synapse (Pavel et al 2006). On the 

postsynaptic pyramidal neuron, there are high levels of mGluR5 and lower levels of 

mGluR1, while mGluR7 is abundant presynaptically (Bliss et al 2006). 

EPSCs evoked at low-rates are mediated in great part by activation of AMPARs 

(Davies & Collingridge 1989). NMDARs contribute little to the postsynaptic response 

during basal synaptic activity but are critical for synaptic plasticity since they require the 

temporal coincidence of ligand release and depolarization for current to pass through. 
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1.3.2 NMDA receptor-dependent LTP 

NMDAR-dependent LTP (NMDAR-LTP) is the predominant form of synaptic plasticity 

in the brain (Bliss & Collingridge 1993). As explained above, the properties of NMDA 

receptors are such that the coincidence of glutamate release and post-synaptic 

depolarization is required to open the channel and cause maximal post-synaptic influx of 

Ca2+. Calcium entry is an absolutely necessary trigger for NMDAR-LTP (Lynch et al 

1983, Malenka et al 1992). Experimentally, activation of NMDARs is usually achieved 

by applying a high-frequency tetanic stimulation to the synapses or by directly 

depolarizing the postsynaptic neuron while applying a low-frequency synaptic 

stimulation (Citri & Malenka 2008). NMDAR-LTP exhibits a number of basic properties 

that relate to the properties of NMDARs. First, it is cooperative because a weak input, 

even if delivered at high frequency, does not induce LTP; a critical number of synapses 

must therefore be activated to reach threshold intensity. Second, it is associative because 

activity at one input can influence the ability of another active input to undergo plasticity. 

In other words, a weak input can be potentiated only if it coincides with a strong input. 

Finally, NMDAR-LTP is input specific since potentiation only occurs at synapses at 

which it is induced (Bliss et al 2006, Nicoll et al 1988). 

As with other forms of synaptic plasticity, NMDAR-LTP involves phases of 

induction and expression. Following the appropriate pattern of stimulation of the Schaffer 

collaterals to activate NMDARs, an initial strong potentiation of the response is observed 

which decays over a period of 10 minutes to a stable, but persistently increased level 

compared to baseline when synaptic transmission is probed with a low stimulation rate 

(every 30 seconds). This initial phase is referred to as short-term potentiation (STP) and 

involves different mechanisms than those recruited in the long-term phase. The long-term 

phase, which can last from hours (in vitro) to days (in vivo), is in turn believed to be 

divided in two phases, early-LTP (e-LTP) and late-LTP (l-LTP), according to their 

respective sensitivity to protein synthesis inhibitors (Frey et al 1993), although this model 

has evolved (Reymann & Frey 2007). Different protocols of stimulation can also be used 

to isolate the early phase from the late phase (Frey & Morris 1997). It is important to 

keep in mind that LTP is not a unitary phenomenon and involves different molecular 

mechanisms that overlap in time. The multi-stage model of LTP is widely accepted and 



	   11 

these processes do seem to influence each other, but whether they consist of separate, 

parallel phases of expression or occur in series is still under investigation (Johnstone & 

Clark 2011, Park et al 2013, Reymann & Frey 2007). 

1.3.2.1 From induction to expression 

The expression of LTP can be achieved in several ways. Modifications to either pre- or 

postsynaptic terminals can lead to an enhanced synaptic transmission. Presynaptically, an 

increase in release probability would cause more glutamate to be released in the cleft and 

a larger postsynaptic response would be the consequence. On the other hand, this same 

observation can be made if there is an increase in the postsynaptic sensitivity to 

glutamate. This can be accomplished either through the modification of the receptor itself 

to enhance AMPAR conductance or the insertion of additional AMPARs into the 

postsynaptic density. The idea of ‘unsilencing synapses’ has also been suggested as a 

postsynaptic mechanism in which synapses previously lacking AMPARs are converted to 

functional synapses following LTP induction (Kerchner & Nicoll 2008). Extensive work 

has been done to clearly determine the locus of expression of NMDAR-LTP at the SC 

CA3-CA1 synapse (Bliss & Collingridge 2013). Although the controversy seems to have 

been resolved due to a large body of evidence pointing in the direction of new 

recruitment of AMPARs to silent synapses or to synapses already possessing some 

functional AMPARs (Kerchner & Nicoll 2008, Lynch 2004, Nicoll & Roche 2013), the 

subject is still a matter of debate (Bliss et al 2014, Johnstone & Clark 2011). These 

mechanisms of expression, however, are not mutually exclusive; the existence of one 

does not preclude the existence of another, even if their relative contribution is unequal. 

Moreover, the locus of expression may change overtime as STP progresses into the 

different stages of LTP (Johnstone & Clark 2011). 

The induction of NMDAR-LTP is, by general consent, postsynaptic, but what are 

the biochemical cascades triggered by NMDAR activation that lead to the expression of 

LTP? Although there have been many proteins implicated in mediating LTP, it is 

generally agreed that calcium/calmodulin-dependent protein kinase II (CaMKII) activity 

is required for induction (Nicoll & Roche 2013). Calcium that entered through NMDARs 

binds to calmodulin, which then activates CaMKII. During this activation, CaMKII 
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undergoes autophosphorylation rendering it constitutively active and calcium 

independent. Calcium activated CaMKII translocates to the postsynaptic density where it 

can potentiate postsynaptic AMPA receptors in early phases of LTP. CaMKII enhances 

single channel conductance by phosphorylating specific sites on AMPAR subunits. 

Evidence also suggests that it is involved in the capture of AMPARs to the post-synaptic 

density, but its exact method of action remains unclear (Lisman et al 2012). Furthermore, 

the CaMKII/NMDAR complex is proposed to be a promising candidate for the 

maintenance of LTP and therefore the persistence of memory (Sanhueza & Lisman 

2013).  

Several other kinase cascades have also been found to be involved, some of them 

occurring in parallel. None of them seem to be obligatory since, depending on the 

conditions, LTP is not affected by inhibitors targeting their activity (Pavel et al 2006). 

Various factors are potentially at stake, but the induction protocol does appear to hold a 

determining role, which raises the possibility that there is more than one form of 

NMDAR-LTP at the SC CA3-CA1 synapse. Protein kinase A (PKA), protein kinase C 

(PKC), tyrosine kinases, the ERK/MAP kinase pathway (extracellular regulated 

kinases/mitogen associated protein kinases), phosphoinositide 3-kinase (PI3K), as well as 

the mammalian target of rapamycin (mTOR) and its downstream effectors, have all been 

implicated (Lynch 2004, Pavel et al 2006). Nitric oxide (NO) and brain-derived 

neurotrophic factor (BDNF) are just two substances amongst potential retrograde 

messengers to mediate the effects on presynaptic function (Regehr et al 2009). In the case 

of NO, calcium influx activates NO synthase (NOS) causing production of NO and 

diffusion from the postsynaptic to the presynaptic neuron to initiate presynaptic 

enhancement (Johnstone & Clark 2011). 

1.3.2.2 Maintenance of late phase of LTP 

We have seen that a plasticity-inducing event such as NMDAR-LTP activates distinct 

pathways that lead to post-translational modifications of pre-existing proteins and 

structural changes within the synapse. Specific alterations in protein synthesis are one of 

the consequences of the activation of such pathways and this is important for the 

induction of LTP. Protein synthesis is required for the persistence of synaptic change 
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during late phase LTP, whereas early phase LTP are unaffected by protein translation 

inhibitors (Frey et al 1988, Kelleher III et al 2004, Stanton & Sarvey 1984). When key 

signaling molecules and regulators of translation are disrupted, LTP is found to be 

abnormal in several of these instances (e.g. Alarcon et al 2004, Banko et al 2005, Costa-

Mattioli et al 2005, reviewed in Costa-Mattioli et al 2009). But these studies do not 

provide information about whether protein synthesis initially derives in part from pre-

existing mRNAs localized near the synapse and is independent of transcription or somatic 

translation or is general and somatic. In other words, where is protein translation 

occurring? Dendritic compartments are translationally competent since they contain all 

the necessary components of the protein synthesis apparatus (Tiedge & Brosius 1996). 

Moreover, some studies show that late phase LTP is maintained in synapses isolated from 

the soma by microsurgical cut (Vickers et al 2005) and destabilized microtubule networks 

(Vickers & Wyllie 2007). CaMKII protein levels are increased after tetanic stimulation 

(Ouyang et al 1999) and disrupting the dendritic localization of CaMKII mRNA 

transcript diminishes late-phase LTP (Miller et al 2002). Local application of protein 

synthesis inhibitors also impaired but did not completely block late phase LTP (Bradshaw 

et al 2003). While mRNA transcripts such as CaMKII, microtubule-associated protein 2 

(MAP2), Shank and β-actin have been visualized in dendrites (Holt & Schuman 2013) 

and BDNF appears to mediate local protein synthesis that contributes to NMDAR-LTP 

(Leal et al 2014), it is still not clear how much protein is synthesized in the soma versus 

dendrites during LTP. Mechanisms of mRNA transport and regulation of local protein 

synthesis will be discussed in greater detail in section 1.4. 

Following the induction of LTP, signaling pathways such as the ERK/MAPK and 

mTOR cascades upregulate the translation of ‘plasticity-related proteins’ (PRPs) (Costa-

Mattioli et al 2009). However, the changes that are occasioned by the coordinated 

synthesis of PRPs are not inherently stable – there must be mechanisms in place to 

maintain them for periods that can last up to several hours in vivo (Klann & Sweatt 2008). 

One protein that has attracted a lot of interest in the last years is an atypical PKC isoform, 

PKMζ, that becomes, following its rapid synthesis and phosphorylation by 

phosphoinositide-dependent kinase 1 (PDK1), persistently active. It is thought to play a 

role in AMPAR trafficking to maintain enhancement of synaptic strength (Sacktor 2012).  
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 Transcription can also become necessary in later phases to maintain the 

potentiation. A number of studies have shown the activation of specific patterns of gene 

expression following behavioral training (Guzowski 2002). Activity that induces LTP is 

linked to the nucleus by the activation of PKA, CaMKIV and MAPK and leads to the 

phosphorylation of the transcription factor CREB [cyclic adenosine monophosphate 

(cAMP) response element binding protein], which plays a central role in gating activity-

regulated gene expression and the immediate early genes (IEGs) c-Fos (FBJ 

osteosarcoma oncogene) and Zif268 (early growth response 1). Arc/Arg3.1 (activity 

regulated cytoskeletal-associated protein) production, whilst it can depend on CREB 

activity, is also modulated by the transcription factors MEF2, SRF/Elk1 (serum response 

factor) and Zeste-like factor (Bramham et al 2010). IEGs subserve various cellular 

functions that are compatible with the structural and functional modifications that 

underlie synaptic plasticity (Abraham & Williams 2003, Guzowski 2002, Lynch 2004), 

thus they are believed to play a critical role in memory formation. 

1.3.3 NMDA receptor-dependent LTD 

Potentiation or depression of synaptic transmission can occur as a consequence of 

NMDAR activation, so what determines the direction of change? The degree and timing 

of calcium entry appears to be the determining factor in recruiting the intracellular 

molecules for the appropriate change in polarity (Artola & Singer 1993, Bliss et al 2006, 

Franks & Sejnowski 2002, Lisman 1989). In contrast to the induction of LTP, NMDAR-

dependent LTD (NMDAR-LTD) is optimally induced by the repeated activation of the 

presynaptic neuron at low frequencies (Dudek & Bear 1992, Mulkey & Malenka 1992) to 

allow for a modest postsynaptic calcium entry (Malenka 1994). This suboptimal increase 

in calcium establishes a requirement for intracellular calcium store release, unlike during 

LTP induction (Nakano et al 2004). 

1.3.3.1 From induction to expression 

Mechanisms of expression in NMDAR-LTD appear to be largely postsynaptic with the 

removal of AMPARs from the synapse (Collingridge et al 2004), although there is 
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evidence that presynaptic alterations do occur and depend on several factors, notably the 

developmental stage (Collingridge et al 2010). 

 If LTP involves protein kinases, NMDAR-LTD activates protein phosphatases. 

The rise in postsynaptic calcium triggers the serine-threonine protein phosphatase 

cascade; calcium entering through NMDARs binds to calmodulin to activate calcineurin 

(protein phosphatase 2B, PP2B), which leads to the activation of protein phosphatase 1 

(PP1) via dephosphorylation of inhibitor-1. PP1 acts to dephosphorylate several targets 

such as serine sites on AMPAR subunits. However, CaMKII, a protein kinase critical for 

potentiation of the synapse, is also a downstream target of calmodulin. It has been 

proposed that the different calcium dynamics are critical in determining which signaling 

pathway is activated (Lisman 1989). 

NMDAR-LTD involves regulation of AMPAR subunit cycling between the 

synaptic membrane and the cytoplasm. Upon NMDAR-LTD induction, the N-

ethylmaleimide-sensitive factor (NSF) dissociates from GluA2-containing AMPARs and 

there is increased binding of the protein interacting with C-kinase 1 (PICK1) to the 

GluA2 subunit. This PICK1-GluA2 interaction is required for hippocampal NMDAR-

LTD (reviewed in Anggono & Huganir 2012). The neuronal calcium sensor protein 

hippocalcin (HPC) is a high-affinity Ca2+ sensor that promotes the exchange of NSF with 

the adaptor protein 2 (AP2) to destabilize AMPARs and initiate clathrin-mediated 

endocytosis of AMPARs. Another mechanism involves the scaffolding proteins 

AMPAR-binding protein–glutamate receptor interacting protein (GRIP-ABP). Like NSF, 

GRIP-ABP dissociates from AMPARs when PICK1 is activated (PICK1 changes 

conformation when bound to GluA2). NMDAR-LTD is also associated with 

phosphorylation by protein tyrosine kinases of tyr876 of GluA2, which may also aid the 

exchange of PICK1 for ABP–GRIP, although this is more associated with PKC 

phosphorylation of GluA2. Another target of PP1 is the multifunctional serine/threonine 

kinase glycogen synthase kinase-3β (GSK3β) and is required for NMDAR-LTD. 

Dephosphorylation of a serine residue leads to further activation of GSK3β (reviewed in 

Anggono & Huganir 2012, Bliss et al 2006, Collingridge et al 2010, Kemp & Bashir 

2001) (Fig. 2). 
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1.3.3.2 Maintenance of late phase NMDAR-LTD 

NMDAR-LTD is also accompanied by a protein synthesis-dependent phase that becomes 

evident 4 hours after low frequency stimulation in freely moving rats (Manahan-Vaughan 

et al 2000). Protein synthesis dependence was also found in organotypic slices as 

translation inhibitors caused a rapid recovery to baseline levels of transmission after 

induction of LTD (Kauderer & Kandel 2000). However, the same translation inhibitor did 

not affect NMDAR-LTD in acute slices (Huber et al 2000), but the plasticity was only 

monitored 60 minutes after induction. In contrast, a study in acute slices by Sajikumar 

and Frey (2003) shows a protein synthesis-dependent phases appearing 3-4 hours after 

induction, thus NMDAR-LTD does appear to involve protein synthesis for the 

maintenance of its late phase. 

 

 

Figure 2. Signaling pathways involved in NMDAR-LTD. 

Calcium enters through NMDA receptors (consisting of GluN1 and GluN2 subunits) 

causing the upregulation of PP1 and the release of calcium from intracellular stores. 

AMPA receptor (GluA1 and GluA2 subunits) anchoring is destabilized and receptors are 

internalized. Figure adapted from Collingridge et al (2010). 
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1.3.4 mGlu receptor-dependent LTD 

At least two different forms of LTD exist at the SC CA3-CA1 synapse. Depression can 

be elicited by the sole activation of metabotropic glutamate receptors (mGluRs) (Huber et 

al 2001, Palmer et al 1997), in contrast to the forms of plasticity we have discussed 

previously. NMDAR-LTD and mGluR-LTD are believe to be mechanistically 

independent since they do not occlude each other (Oliet et al 1997, Palmer et al 1997); in 

other words, when mGluR-LTD is saturated, NMDAR-LTD can achieve further 

depression. Interestingly, while evidence suggests that NMDAR-LTD reverses and erases 

LTP (also called depotentiation), mGluR-LTD is instead superimposed on LTP (Oliet et 

al 1997). Moreover, NMDAR-LTD appears to be more prominent in neonatal and 

juvenile rats, but a developmental shift favors mGluR-LTD in adults (Kemp et al 2000). 

mGluR-LTD can be induced synaptically or chemically. The application of a paired pulse 

low frequency stimulation (PP-LFS) to the presynaptic neuron generates an LTD that was 

found to be dependent upon the activation of group I mGluRs (mGluR1 and mGluR5) 

(Huber et al 2000). Chemical induction is often used in in vitro preparations. The group I 

mGluR agonist, dihydroxyphenylglycine (DHPG), is thought to elicit an LTD that relies 

preferentially on mGluR5 (Faas et al 2002). Although both induction protocols are 

thought to involve similar mechanisms because they occlude each other (Huber et al 

2001), some differences have been found (Gladding et al 2009b). While DHPG induced-

LTD is completely calcium independent (Fitzjohn et al 2001), synaptically induced-LTD 

at the SC CA3-CA1 synapse is sensitive to intracellular calcium chelators (Bolshakov & 

Siegelbaum 1994, Oliet et al 1997). In these two studies, the calcium influx was 

identified to occur via T-type and L-type voltage gate calcium channels. However, a more 

recent study provided evidence that calcium is not an absolute requirement for synaptic 

induction of mGluR-LTD (small adjustments were made to the conventional PP-LFS 

protocol) (Kasten et al 2012). 

1.3.4.1 From induction to expression 

Whether the locus of expression is both presynaptic and postsynaptic or uniquely 

postsynaptic in mGluR-LTD is not clear, but it is evident that internalization of surface 

ionotropic GluRs occurs in response to mGluR activation (Gladding et al 2009a, Huang 
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et al 2004, Snyder et al 2001, Waung et al 2008, Xiao et al 2001, Zhang et al 2008). 

There is however conflicting evidence showing a lack of decreased postsynaptic 

sensitivity to uncaged glutamate (Rammes et al 2003) and enhanced responses to 

ionophoretic application of AMPA, kainic acid and NMDA (Tan et al 2003) following 

DHPG application. A presynaptic mechanism of expression is supported by findings 

indicating lasting increase in paired-pulse ratio, a reduction in miniature excitatory 

postsynaptic currents (mEPSCs) frequency and a decrease in neurotransmitter release 

following induction (Gladding et al 2009b).  

Signaling pathways mediating mGluR-LTD are clearly distinct from those 

implicated in NMDAR-LTD. mGluRs function as G-protein-coupled receptors; receptor 

activity leads to G-protein activation promoting the exchange of GTP to GDP 

(guanosine-5'-triphosphate to guanosine diphosphate), which results in the modulation of 

protein-protein interactions and activation of second messenger cascades. Group I mGluR 

activation, is normally coupled to the activation of phospholipase C (PLC), the generation 

of diacylglycerol (DAG), inositol-1,4,5-trisphosphate (IP3) and the release of calcium 

from intracellular stores, but, although this pathway is upregulated during mGluR-LTD 

(Mao et al 2005), it is not necessary (Fitzjohn et al 2001, Gallagher et al 2004, Schnabel 

et al 1999). The mitogen-activated protein kinase (MAPK) signaling cascades are 

activated as all three MAPK subclasses are involved: p38 MAPK, Jun N-terminal kinase 

(JNK), and ERK (Gallagher et al 2004, Moult et al 2008, Schmit et al 2013). MAPK 

cascades typically involve the sequential activation of a small GTPase (Ras), a MAPK 

kinase kinase (Raf), and a MAPK kinase (MEK). P38 MAPK is activated via the GTPase 

Rap1 (repressor activator protein 1), a pathway that is coupled to the endocytotic 

machineries and AMPAR internalization. ERK is also activated in this way and leads to 

the downstream activation of ribosomal S6 kinase-1 (RSK1), a key regulator of activity-

dependent protein synthesis. Another important cascade coupled to translation regulation 

is the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin (PI3K-Akt-

mTOR) pathway thought to mediate cap-dependent translation during mGluR-LTD in 

parallel with the MEK-ERK pathway. The mTOR pathway is activated through the 

coupling of mGluR5 with the postsynaptic-density scaffolding protein Homer that 

recruits the small GTPase that binds PI3K, PI3K-enhancer (PIKE), forming an mGluR-
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Homer-PIKE complex. The formation of this complex turns on PI3K (Ronesi & Huber 

2008) (Fig. 3). Protein tyrosine phosphatases (PTPs) are also implicated (reviewed in 

Anwyl 2006, Bliss et al 2006, Collingridge et al 2010, Gladding et al 2009b). An 

additional pathway activated by group I mGluR signaling alters the activity of the 

elongation factor 2 kinase (eEF2K) (Park et al 2008, Taha et al 2013, Verpelli et al 2010). 

Increased phosphorylation of eEF2 by eEF2K causes the arrest of general translation, 

whilst protein synthesis of specific transcripts such as Arc/Arg3.1 and the microtubule 

associated protein 1B (MAP1B) is increased (Davidkova & Carroll 2007, Park et al 

2008). 

1.3.4.2 Maintenance of late phase mGluR-LTD 

mGluR-LTD exhibits a dependence on local protein synthesis within the first 10 minutes 

after induction (Huber et al 2000, Huber et al 2001, Park et al 2008, Waung et al 2008, 

Zhang et al 2008), unlike NMDAR-LTP/D. mGluR activation mediates the translation of 

“LTD proteins” such as striatal-enriched protein tyrosine phosphatase (STEP) (Zhang et 

al 2008), MAP1B (Davidkova & Carroll 2007), oligophrenin 1 (Ophn1) (Di Prisco et al 

2014) and Arc/Arg3.1 (Park et al 2008, Waung et al 2008), which are involved in 

AMPAR endocytosis in some way. Other proteins synthesized during mGluR-LTD are 

the fragile X mental retardation protein (FMRP) (Weiler et al 1997), the ribosomal 

protein S6 and the elongation factor 1A (EF1A) (Antion et al 2008), which are proteins 

that themselves regulate translation. 

 mGluR-LTD is generally thought to involve translation rather than transcription, 

but there is evidence of the requirement for transcription factors 2 or 3 hours after 

induction. The modulation of factors such as NF-κB (nuclear factor kappa-light-chain-

enhancer of activated B cells), ETS domain-containing protein and CREB is dependent 

on the ERK and PI3K pathways (Gladding et al 2009b). 

 Interestingly, when mGluR antagonists are applied after the induction, LTD is 

reversed, but is reestablished without any further induction when the drugs are washed 

out (Palmer et al 1997). It is therefore tempting to suggest that mGluR activation must be 

maintained for mGluR-LTD to persist. 
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1.4 LOCAL ACTIVITY-DEPENDENT PROTEIN SYNTHESIS 

A key mechanism for the persistence of synaptic changes at individual synapses is the 

requirement for local protein synthesis (Costa-Mattioli et al 2009, Pfeiffer & Huber 

2006). Just as stress and growth signals can change the rate of synthesis of specific 

transcripts and bulk mRNAs, neurotransmission can control translation by regulating its 

machinery (Gal-Ben-Ari et al 2012). 

Figure 3. Signaling pathways involved in translation regulation during mGluR-

LTD. 

PLC/calcium-calmodulin pathway (orange), the mTOR pathway (blue), and the ERK 

pathway (green). FMRP and Stau2 are both known RNA-binding proteins that normally 

repress translation, but upon mGluR activation, promote de-repression. Question marks 

indicate undetermined associations. Arrows indicate a positive consequence on 

downstream components; perpendicular lines indicate an inhibitory consequence. 
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Abbreviations: [Ca2+]i, calcium release from intracellular stores; CaM, calmodulin; ERK, 

extracellular signal–regulated kinase; FMRP, fragile X mental retardation protein; Gαq, 

Gβ, Gγ, heterotrimeric G proteins; InsP3, inositol-1,4,5-triphosphate; mGluR, 

metabotropic glutamate receptor; mTOR, mammalian target of rapamycin; PtdIns, 

phosphoinositides; PLC, phospholipase C; PP2A, protein phosphatase 2A; Raptor, 

regulatory-associated protein of mTOR. Figure adapted from Bhakar et al 2012. 

1.4.1 Translation regulation 

Translation occurs in three steps: initiation, elongation and termination. Synthesis of most 

proteins is driven by cap-dependent translation; in other words, translation initiation is 

most often the rate-limiting step and target for regulation (Costa-Mattioli et al 2009).  

For initiation, the ribosome must be recruited to the mRNA. This is achieved through 

the interaction of the eukaryotic initiation factor (eIF) 4F complex with the 5’-m7G-cap 

(Fig. 4A), which then recruits the 43S pre-initiation complex (PIC). PIC is comprised of 

the 40S ribosomal subunit, eIF1, eIF1A, eIF3 and ternary complex (Jackson et al 2010). 

The ternary complex, for its part, brings together eIF2, GTP and the specific initiator 

methionyl initiator transfer RNA (Met-tRNAiMet) to form (eIF2)–GTP–Met-tRNAiMet 

(Sonenberg & Hinnebusch 2009). PIC begins scanning the 5’-UTR for the AUG start 

codon (Fig. 4B). eIFs are released and the 60S subunit joins the 40S subunit to form the 

80S complex (Fig. 4C) (Sonenberg & Hinnebusch 2009). Elongation factors are recruited 

to regulate elongation. Upon recognition of the stop codon, termination factors promote 

the release of the polypeptide chain from the mRNA and ribosome.  

Inhibition of the formation of the ternary complex and the eIF4F complex are the two 

major ways of regulating translation initiation (Gkogkas et al 2010). Phosphorylation of 

eIF2α, a component of the ternary complex, prevents the functional reconstitution of the 

complex. On the other hand, eIF4F complex assembly requires the interaction of the cap-

binding protein eIF4E with eIF4G. This binding interaction is disrupted and translation 

initiation is inhibited in the presence of the eIF4E-binding protein (4E-BP). 

Phosphorylation of 4E-BP by mTOR relieves inhibition. eIF4E can itself be 

phosphorylated by MNKs, a small family of protein kinases, some of which are regulated 

by MAPK signaling (Shveygert et al 2010). 
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The control of the level of peptide chain elongation, on the other hand, is mediated 

by the eukaryotic elongation factor 2 (eEF2). eEF2 is a GTP-binding protein that 

mediates the translocation of peptidyl-tRNAs from the A-site to the P-site on the 

ribosome as amino acids are added to the peptide chain. Phosphorylation of eEF2 inhibits 

eEF2–ribosome binding and arrests elongation. While general translation is slowed, eEF2 

phosphorylation causes, by a mechanism that is unclear, the increased synthesis of 

specific transcripts (Bramham & Wells 2007). 

Remarkably, these pathways that regulate the translation machinery have been shown 

to be upregulated by both NMDA and mGluR signaling (Gal-Ben-Ari et al 2012). Do 

these signaling pathways mediate control of general translation or a subset of mRNAS 

(Costa-Mattioli et al 2009)? Considerable evidence suggests that the coordinated 

translation of selective subsets of mRNAs, or “regulons” (Keene 2007), occurs in 

response to different patterns of synaptic transmission inducing plasticity (Costa-Mattioli 

et al 2009). So how is the concerted synthesis of specific plasticity-induced proteins 

achieved? One attractive mechanism involves RNA-binding proteins. 
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Figure 4. Steps of translation initiation 

Figure adapted from Besse and Ephrussi (2008). 

1.4.2 mRNA localization 

For the local and rapid translation of specific proteins to occur on demand, mRNAs must 

first be transported to their final site of function. These subsets of transcripts are 

packaged into transport complexes called RNA granules. These higher-order assemblies 

contain important components of the translation machinery as well as RNA-binding 

proteins and their mRNA partners (Fritzsche et al 2013b, Sossin & DesGroseillers 2006) 

that render mRNAs translationally dormant (Besse & Ephrussi 2008). Synaptic activation 
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provokes their unmasking and release from their repressed state (Buxbaum et al 2014, 

Graber et al 2013). This dual function of mRNA localization and translation regulation 

confers several advantages (Martin & Ephrussi 2009). In addition to the ability to alter 

the synaptic input to one of its many dendrites without changing others, the neuron is 

provided with the opportunity to achieve this spatially restricted gene expression with a 

high temporal resolution.  

RNA-binding proteins selectively bind transcripts for transport, hence their 

consideration as key candidates for differential regulation of plasticity-induced protein 

translation. Indeed, evidence suggests that different dendritic trafficking pathways exist 

which could allow for independent localization and distinct regulation of mRNAs 

involved in different forms of synaptic plasticity (Doyle & Kiebler 2011, Lebeau et al 

2011, Mikl et al 2011). 

1.4.3 RNA-binding proteins 

Information about the destination of mRNA transcripts is encoded by cis-acting elements 

in the RNA most frequently found in the 3’ UTR, which are recognized by trans-acting 

RNA-binding proteins (RBPs) (Besse & Ephrussi 2008). RNA-binding proteins are not 

only incorporated into RNA granules but are also components of a variety of cytoplasmic 

RNA structures: translating polysomes, processing bodies (P bodies), stress granules, 

micro RNA particles (miRNPs) or the RNA interfering silencing complex, and RNA 

transport particles. Transport particles contain, similarly to RNA granules, mRNAs, 

RNA-binding proteins, adaptors that couple to the motor complex and motors, but they 

are devoid of ribosomes (Sossin & DesGroseillers 2006). Emerging evidence is 

suggesting that the composition and the pool of RNA granules are more heterogeneous 

then we previously thought (Bramham & Wells 2007, Fritzsche et al 2013b, Graber et al 

2013). Here, we describe a few RBPs that have been identified to play an important role 

in localization and translation regulation of mRNA transcripts during synaptic plasticity. 

1.4.1.1 CPEB1 

Cytoplasmic polyadenylation element (CPE) binding protein-1 (CPEB1) is found in the 

postsynaptic density and controls mRNA translation by regulating the length of the 
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poly(A) tail. It forms a dual activity complex through its association with various factors 

that can both activate and repress translation of its target mRNAs by adding or removing 

the poly(A) tail. CPEB1 at the 3’UTR anchors a complex of proteins that includes an 

eIF4F binding protein. When bound together, CPEB1 competes with eIF4G for eIF4E 

binding, thus represses initiation. CPEB1 phosphorylation induces polyadenation and 

translation of CaMKIIα through NMDA receptor signaling. Deficits in LTP and LTD 

have been observed in CPEB1 KO mice (Richter 2007). 

1.4.1.2 ZBP1 

The mRNA of β-actin contains a localization element in the 3’UTR called zipcode that is 

specifically recognized by zipcode-binding protein 1 (ZBP1) and is involved in its 

localization (Tiruchinapalli et al 2003) and translation repression (Hüttelmaier et al 

2005). Abolition of the function of the zipcode by mutation of the element itself, 

treatment with specific antisense oligonucleotides, or knockdown/out of ZBP1 protein 

leads to the mislocalization of β-actin mRNA and subsequent alterations of cell 

morphology, motility, and adhesion as well as failures in synaptic growth and 

deficiencies in dendritic spine number, maturation, and arborization (Eliscovich et al 

2013). Buxbaum et al (2014), by using single-molecule in situ hybridization approaches, 

showed that β-actin transcripts are in a masked state, unavailable to probes for binding, 

but upon depolarization, become unmasked. ZBP1 has also been found to bind and 

regulate at least 116 other mRNAs (Eliscovich et al 2013). 

1.4.1.3 FMRP 

The fragile X mental retardation protein (FMRP) has generated a lot of interest due to its 

pathophysiology. Fragile X syndrome results from the complete absence of this protein 

due to transcriptional silencing of the gene FMR1. Loss of FMRP is caused by a 

trinucleotide (CGG) repeat expansion that leads to hypermethylation and transcriptional 

silencing. It is a protein that is normally highly expressed in neurons, thus its absence 

causes moderate to severe intellectual disability and autistic features. FMRP is also 

expressed in other tissues of the body causing a wide spectrum of abnormalities.   
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FMRP possesses at least three RNA-binding domains. Two of these domains are 

hnRNP K-homology (KH) domains and a point mutation in the second one leads to a 

severe clinical presentation of the disease. FMRP is found in RNA granules and is 

therefore associated with mRNA transport, but it does not appear to be necessary, since, 

even in its absence, mRNA targets are correctly localized. It does however play a very 

important role in translation repression of “LTD proteins”. Indeed, mGluR-LTD is 

exaggerated and protein synthesis independent in the absence of FMRP, suggesting that 

the necessary proteins had already been translated before mGluR activation. In other 

words, without FMRP, translation of these transcripts is unchecked. Interestingly, mGluR 

signaling is still required for LTD to occur in this pathological state; otherwise, the 

opposite effect would be expected. However, translation regulation of “LTD proteins” is 

not only achieved through FMRP. An additional mechanism is most likely recruited, 

since inhibiting mGluR5 can rescue some of the phenotypes. Were mGluR5 stimulation 

completely uncoupled to protein synthesis regulation due to the loss of FMRP, this rescue 

would not occur (Bhakar et al 2012). 

1.4.1.4 Staufens 

The Staufen family consists of proteins that contain double-stranded RNA-binding 

domains. Mammals possess two Staufen homologs, Stau1 and Stau2. Both of these RBPs 

are involved in controlling localization, translation and stability of their mRNA targets. 

They are found both in transport particles (Kiebler et al 1999) and in RNA granules 

(Krichevsky & Kosik 2001). 

Stau1 and Stau2 share similar functions, but they are part of different complexes 

and differentially bind RNA (Duchaîne et al 2002, Monshausen et al 2001). Neurons 

lacking Stau2 displayed fewer, extended dendritic spines and this was associated with a 

reduction in the number of synapses (Goetze et al 2006). In addition, Stau2 is required for 

mGluR-LTD (Lebeau et al 2011). Similarly to Stau2 knockdown neurons, Stau1-deficient 

mice exhibit a decrease in dendritic protrusions, while those remaining shifted towards a 

more elongated shape. In contrast to Stau2, knockdown of Stau1 by small interfering 

RNAs (siRNAs) in hippocampal slice cultures impairs the late phase of the chemically 

induced NMDAR-LTP, but not mGluR-LTD (Lebeau et al 2008).  
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Both Staufens bind and transport mRNAs encoding proteins with known roles in 

synaptic plasticity. For example, Stau1 binds the CaMKIIα mRNA, while Stau2 links 

with the microtubule associated protein 1B (MAP1B), and β-actin mRNAs (Heraud-

Farlow & Kiebler 2014). Some of the proteins that interact with Stau2 in RNA granules 

include FMRP, ZBP1, helicase up-frameshift 1 (Upf1), the nuclear cap-binding protein 

80 (CBP80) and 7 ribosomal proteins associated with the large subunit. These provide 

strong evidence for translation repression during transport. Moreover, the EJC complex 

was absent in Stau2 granules suggesting translation has already undergone initiation 

(Fritzsche et al 2013b). In addition to their role in localization and translation regulation, 

Stau1 and Stau2 are implicated in mRNA degradation processes termed Staufen-mediated 

decay. The recruitment of Upf1 is crucial for this decay to occur (Heraud-Farlow & 

Kiebler 2014). 
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1.5 OBJECTIVES OF THIS MASTER’S THESIS 

To quote my co-supervisor, Wayne Sossin, during one of our journal clubs, “if we want 

to understand memories, we must understand the molecular traces [that underlie them].” 

The consequence of synaptic changes can be very similar, in other words, it is hard to 

differentiate NMDAR-LTD from mGluR-LTD solely from the “output” engendered (they 

both cause depression), but the mechanisms that are responsible for the expression can be 

thoroughly different (Malenka & Bear 2004). With this perspective in mind, memories 

should be defined by their molecular traces, not by the stimulus used or the length of time 

during which plasticity is maintained. Extensive evidence demonstrates that some forms 

of synaptic plasticity rely on local synthesis of specific proteins for their expression 

(Pfeiffer & Huber 2006). Thus, in protein synthesis dependent synaptic plasticity, a set of 

necessary mRNA transcripts must be transported near the synapse to be available for 

translation following a memory-encoding stimulus. However, we have yet to understand 

how distinct learning paradigms lead to the production of such distinct proteins and 

molecular traces. 

The goal of this thesis is therefore to better understand the translation control 

pathways and the molecular traces underlying one form of long-term synaptic plasticity, 

mGluR-LTD. We propose that one of the major mechanisms responsible for the 

specificity of proteins translated and their concerted increase in synthesis during mGluR-

LTD is of polyribosomes stalled at the elongation step by the RNA-binding protein 

Staufen 2. In order words, translation of proteins is initiated in the soma, but paused at the 

elongation step, thus proteins are partially completed until they are transported to the 

synapse where mGluR signaling triggers the reactivation of translation and proteins are 

quickly made available. Staufen 2 is known to target the appropriate mRNAs to dendritic 

compartments, while repressing translation of these transcripts during transport in 

complexes called RNA granules (Sossin & DesGroseillers 2006). It is also required for 

mGluR-LTD (Lebeau et al 2011). Recently, we demonstrated that polyribosomes are 

indeed stalled and undergo reactivation during mGluR activation (Graber et al 2013). But 

what we have yet to elucidate is how the stalling complex is formed and what upstream 

signaling pathways trigger its disassembly to allow for translation to resume.  
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To achieve this, we needed a model of mGluR-LTD at the single cell level that 

allowed us to manipulate and dissect the pathways of translation regulation both using 

molecular and pharmacological approaches. We therefore used dissociated hippocampal 

neurons in culture and whole-cell patch recording to demonstrate that we could reliably 

induce mGluR-LTD with a group I mGluR agonist consistently with the work of several 

groups. Next, we investigated whether translation during mGluR-LTD was regulated at 

the initiation or elongation step in this preparation using specific inhibitors of protein 

synthesis. Finally, we investigated the role of Staufen 2 in mGluR-LTD using lentiviral 

transduction methods to knock it down. 

Altogether, this thesis has shed light on a fundamental mechanism of translation 

control underlying the induction of mGluR-LTD. The concept of stalled polyribosomes is 

an innovative way of thinking about translation, since translation regulation is mostly 

believed to occur at the initiation step in neurons. This work provides a platform to 

further investigate the mechanisms implicated in a form of synaptic plasticity that is 

crucial for learning and memory. 
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CHAPTER 2. RESULTS 

2.1 CONTRIBUTION OF THE AUTHOR 

The first author, Sarah Hébert-Seropian, performed all electrophysiological experiments 

and their analysis. Tyson Graber provided the different lentivirus constructs and vectors. 

Julie Pépin made the cultured dissociated hippocampal neurons and transduced the 

neurons. Manuscript was written by Sarah Hebert-Seropian and revised by co-

supervisors, Jean-Claude Lacaille and Wayne Sossin. 
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2.2 ABSTRACT 

Some forms of synaptic plasticity require rapid, local activation of protein synthesis. It is 

widely believed that mRNAs are translationally repressed during transport to synaptic 

compartments, but the molecular mechanisms underlying this translational silencing, and 

its de-repression during plasticity, remain largely unknown. In many synaptic plasticity 

models, the initiation of translation is presumed to be the rate-limiting step and the main 

target of control. However, we recently showed, using field potential recording in acute 

hippocampal slices, that translational regulation in metabotropic glutamate receptor-

mediated long-term depression (mGluR-LTD) occurs downstream of initiation, likely via 

de-repression of stalled polyribosomes. Here, we use a cell culture model to study 

mGluR-LTD at the single synapse/cell level and further investigate these mechanisms. 

Using whole cell recording from hippocampal neurons in dissociated cell culture, we 

show that chemically induced mGluR-LTD is expressed as a decrease in the frequency of 

miniature excitatory postsynaptic currents (mEPSCs) and is impaired by the translation 

elongation blocker, emetine. In contrast, homoharringtonine, a translation initiation 

blocker, does not affect mGluR-LTD. Moreover, we found that Staufen 2, an RNA-

binding protein important for mRNA localization and translation regulation, plays an 

essential role in mGluR-LTD. Having established a cell culture model of mGluR-LTD, 

gene knockdown and rescue strategies may be used to determine the molecular 

mechanisms of translational control implicated in long-term synaptic plasticity. 
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2.3 INTRODUCTION 

The remarkable ability of neurons to modify the efficacy of specific synapses in an 

activity-dependent manner is thought to be the physical substrate of long-term memory 

and information storage (Martin et al 2000). A key mechanism for the persistence of 

synaptic changes at individual synapses is the requirement for local protein synthesis. 

Metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) is a form 

of plasticity that critically depends upon local and rapid translation (Huber et al 2000). In 

patients with Fragile X Syndrome, the most common form of inherited mental retardation 

and autism, translation dysregulation that results from the absence of an RNA-binding 

protein, FMRP, causes an abnormal mGluR-LTD (reviewed in Bhakar et al 2012). 

Understanding mechanisms of translation control in mGluR-LTD is therefore crucial for 

understanding deficits in neuronal function and their implication for disease.  

Hippocampal mGluR-LTD is induced by activation of group I metabotropic 

glutamate receptors (mGluRs) either by pharmacological or synaptic stimulation. Group I 

mGluR activation triggers signaling pathways that are coupled to the translation of 

specific mRNA transcripts (reviewed in Gladding et al 2009b). The mechanisms by 

which this signaling controls protein synthesis remain however elusive. Since translation 

initiation is very tightly regulated, it is commonly believed to be the rate-limiting step of 

translation (Herbert & Proud 2007). Indeed, some groups have suggested that cap-

dependent translation is the main target of control for de novo protein synthesis during 

mGluR-LTD (Banko et al 2006, Di Prisco et al 2014, Huber et al 2000). On the other 

hand, evidence establishing an important role for regulation at the elongation step 

challenges this view (Davidkova & Carroll 2007, Graber et al 2013, Park et al 2008). 

Recently, we demonstrated that, in a type of RNA transport complex, polyribosomes are 

stalled at the elongation step and are reactivated following group I mGluR stimulation 

(Graber et al 2013). 

Staufen1 (Stau1) and Staufen 2 (Stau2) are RNA-binding proteins (RBP) that 

have been implicated in the regulation of transcripts important for plasticity (Lebeau et al 

2008, Lebeau et al 2011). They hold dissociable roles in two opposing forms of plasticity. 
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While the lack of Stau1 impairs long-term potentiation and leaves mGluR-LTD intact, 

Stau2 is similarly required for mGluR-LTD, but not for LTP (Lebeau et al 2008, Lebeau 

et al 2011). Staufens are a major component of mRNA transport complexes called RNA 

granules that contain all the necessary machinery for translation (Sossin & DesGroseillers 

2006). Translation is widely believed to be repressed during transport (Besse & Ephrussi 

2008), thus RBPs could provide a mechanism of translation regulation during plasticity as 

proteins are synthesized on demand. But even as we start to better understand the 

molecular composition of RNA granules and mechanisms of mRNA targeting, it remains 

unclear how RNA-binding proteins achieve translation repression and signal-induced 

translational activation at the synapse. Since Stau2 is implicated in translational control of 

mRNAs important for mGluR-LTD, our goal is to understand the mechanism by which it 

is able to selectively bind mRNAs that are distinct from those targeted by Stau1 and form 

the stalling complex. 

In the present study, we set out to develop a culture model that will allow us to 

study mGluR-LTD electrophysiologically at the single cell level and manipulate the 

molecular pathways of RNA regulation using pharmacological and molecular biology 

approaches. With this culture model, we aim to understand the mechanisms underlying 

the stalling of polyribosomes and their reactivation during synaptic plasticity. 
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2.4 METHODS 

All experiments were approved by the Animal Ethics Committee at Université de 

Montréal and according to the guidelines of the Canadian Council on Animal Care. 

2.4.1 Dissociated hippocampal neurons 

Rat hippocampi were dissected from embryonic day 18 Sprague-Dawley embryos 

(Charles River Laboratories). Neurons were dissociated and cultured as previously 

described (Lebeau et al 2011). Neurons were plated at a density of approximately 750 

cells/mm2 on 12-mm diameter pre-coated coverslips (Mandell) and grown on 12-well 

plastic tissue culture plates. Cultures were fed at 4DIV and replaced with fresh 

Neurobasal medium (NBM, Life Tech) supplemented with B27, N2, Pen/Strep, L-

Glutamine once every 5-6 days. Experiments were performed at 18-25 DIV. 

 

2.4.2 Lentivirus-mediated delivery of short hairpin RNA  

To efficiently knockdown Staufen 2 in rat hippocampal neurons, lentiviruses were 

generated that express short hairpin RNA (shRNA) driven by a CMV promoter as 

previously described (Thomas et al 2009). A non-targeting, control shRNA sequence 

(AATTCTCCGAACGTGTCACGT), a sequence targeting all of the rat isoforms of 

Staufen 2 (ACTAGTGGACGCTTTATAGCC), or a sequence targeting rodent Upf1 

isoforms (AGCAGCTTGTGGTAAATATAC) was incorporated into a shRNA cassette 

and subsequently cloned into a vector downstream of an emGFP ORF 

(pcDNA6.2.emGFP). The entire emGFP.shRNA cassette was then PCR-amplified and 

sub-cloned into a lentiviral expression vector (pRRL.emGFP.shRNA). VSV G 

pseudotyped virus was packaged by transient transfection of HEK293T helper cells with 

Lipofectamine 2000 and pMD2.g, pRSV-Rev, and pMDLg/pRRE packaging plasmids 

together with the pRRL.emGFP.shRNA. Virus was collected over 48 hours, cell debris 

removed by microfiltration, and virus was concentrated by centrifugation, resuspended in 
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PBS, pH7.3 and stored at -80. Virus was titered in HEK293T cells and hippocampal 

neurons were transduced at 7DIV with a multiplicity of infection (MOI) of 10. 

Transduction efficiency was assessed in each experiment by expression of emGFP. 

Percent knockdown efficiency was obtained by dividing the mean knockdown expression 

in shStau2-transduced neurons by that in the shControl-transduced neurons. Standard 

errors for individual neurons were added to obtain the percent error (Graber & Sossin 

2014). 

 

2.4.3 Electrophysiology 

Coverslips with cultured hippocampal cells were placed in a recording chamber mounted 

on an inverted microscope equipped with epifluorescence (Nikon Eclipse Ti-S). Cultures 

were superfused at 1ml/min at room temperature in Tyrode’s solution consisting of the 

following (in mM): 140 NaCl, 4 KCl, 2 MgCl2, 10 glucose, 10 HEPES, 2 CaCl2, 0.1 

picrotoxin, 0.001 TTX, adjusted to pH 7.4 (with KOH) and 310 mOsm. Whole cell 

recordings were obtained from GFP-expressing neurons with patch pipettes (3-6 mΩ) 

filled with the following (in mM): 125 K-gluconate, 2.6 KCl, 1.3 NaCl, 10 HEPES, 0.1 

EGTA, 4 ATP-Mg, 0.3 GTP-Na, 14 phosphocreatine-Tris, adjusted to pH 7.2 and 285 

mOsm. Cells were voltage clamped at -60 mV holding potential. Recordings with a 

holding current of <100 pA and with series resistance <35 MΩ that remained stable 

(<25% change) throughout the experiment were kept for analysis. For all LTD 

experiments, the group I metabotropic glutamate receptor (mGluR) agonist (S)-DHPG 

(100 µM, 5 min, Abcam) was added to Tyrode’s solution. Emetine (40µM, Sigma) and 

HHT (20 µM, Sigma) were applied 10 min before, during, and 20 min after DHPG 

application. Recordings were made in the voltage-clamp mode using a Multiclamp 700A 

amplifier (Molecular Devices). Data acquisition was performed using the 1440A Digidata 

acquisition board and pClamp software (Molecular Devices). Data were digitized at 20 

kHz. Detection and measurements of mEPSCs, which were collected over two 5-min 

time windows, just before DHPG application and 30 min after application, using 

MiniAnalysis program (Synaptosoft) after filtering traces at 1 kHz. Detection threshold 

was set at 5 pA and all detected events were verified by visual inspection. Paired-t-tests 
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were used for statistical evaluation of DHPG effects (pre vs post-DHPG) on mEPSC 

frequency and amplitude, and cell input resistance using GraphPad Prism 6 software. 

Statistical significance was set at p < 0.05. 
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2.5 RESULTS 

2.5.1 mGluR-LTD in dissociated hippocampal  neurons 

Dissociated hippocampal cultures allow easy access to individual neurons for 

electrophysiology while also permitting both pharmacological and gene expression 

manipulations. It is therefore a very useful tool to study molecular mechanisms of 

plasticity at the single cell level. We firstly determined if we could reliably observe 

mGluR-LTD in cultured hippocampal neurons using voltage clamp recordings of 

miniature excitatory postsynaptic currents (mEPSCs). Application of the group I mGluR 

agonist DHPG (100 µM, 5 min) caused a significant depression in the frequency of 

mEPSCs (Fig. 1B, C). The frequency 30 min following treatment was significantly 

reduced to 84 ± 4% of baseline (n = 8, P = 0.04). No significant difference was observed 

in the amplitude of mEPSCs after DHPG application (Fig. 1B, C). The mean amplitude 

30 min post DHPG was 101 ± 3% of baseline (P = 0.75).  

In control experiments, untreated neurons (n = 4) showed no significant changes 

in mean frequency (100 ± 10% of baseline; P = 2.8) or amplitude (96 ± 4% of baseline; P 

= 0.48) of mEPSCs over the same time period. These data indicate that mGluR-LTD is 

present in hippocampal neuron cultures and is expressed as a decrease in mEPSC 

frequency. Having established a reliable paradigm to induce mGluR-LTD in our cultures 

that is consistent with previous findings (Snyder et al 2001), we next examined the 

molecular mechanisms that underlie this form of plasticity. 

2.5.2 mGluR-LTD is blocked by inhibitors of translation elongation but not of 

translation initiation 

We recently showed that mGluR-LTD at Schaffer collateral synapses is insensitive to 

homoharringtonine (HHT), an inhibitor of translation initiation or, more precisely, of the 

first round of elongation (Graber et al 2013). We also found that mGluR-LTD is 

prevented by emetine, an inhibitor of translation elongation (Graber et al 2013). Since 

these previous experiments measured changes in the synaptic transmission of a 
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population of cells using field potential recordings, we examined if mGluR-LTD was 

similarly independent of translation initiation at the single cell level using dissociated 

cultured neurons (Fig. 1B, C). Application of the elongation inhibitor emetine (40 µM) 

blocked the decrease in mEPSC frequency induced by DHPG, but similar application of 

the initiation inhibitor HHT (20 µM) did not. The mEPSC frequency was 105 ± 8% of 

baseline at 30 min following application of DHPG in the presence of emetine (n = 6, P = 

0.27), but was significantly decreased to 77 ± 10% of baseline after DHPG in the 

presence of HHT (n = 7, P = 0.04).  Amplitude of mEPSCs was not significantly changed 

by DHPG in these experiments. The mEPSC amplitude was 95 ± 5% of baseline at 30 

min post-DHPG in emetine (P = 0.28) and 105 % ± 5% of baseline post-DHPG in HHT 

(P = 0.47).  

These results showing a block of mGluR-LTD by the translation elongation 

inhibitor emetine indicate that such plasticity in cultured hippocampal neurons is 

dependent on de novo protein synthesis. Moreover, the lack of inhibition of mGluR-LTD 

by the translation initiation inhibitor HHT suggest that this synaptic plasticity is 

dependent on regulation of translation downstream of initiation, at the elongation step. 

Activation of group I mGluRs by DHPG causes a short-term increase in cell input 

resistance likely due to the inhibition of a leak potassium conductance (Mannaioni et al 

2001). To verify that the absence of mGluR-LTD in the presence of emetine was not due 

to a lack of effect of DHPG, we monitored cell input resistance during DHPG 

application. DHPG application caused a transient significant increase in cell input 

resistance that was similar in all treated conditions, including in the presence of emetine 

(132 ± 8 % of baseline for DHPG alone; 125 ± 5% of baseline for DHPG + Emetine; 140 

± 10 % of baseline for DHPG + HHT; Figure 1E, F). In the untreated condition, cell input 

resistance was unchanged at the same time period (103 ± 2 % of baseline; Figure 1E, F). 

Thus, in all experimental conditions, group I mGluRs were activated, indicating that the 

block of mGluR-LTD by emetine was not due to the lack of effect of DHPG.  

To verify that the lack of mGluR-LTD in presence of emetine was not due to 

other nonspecific variations in basal experimental conditions, we compared basal 

membrane and synaptic properties in the different treatment conditions. We did not find 

any significant difference in baseline mEPSC frequency or amplitude. Neither were series 
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resistance, holding current and input resistance different between untreated and treated 

groups (DHPG, DHPG + emetine, or DHPG + HHT) (Table 1). 

Overall, these results suggest that mGluR-LTD monitored at the single cell level 

using whole-cell patch clamp recordings in cultured hippocampal neurons is independent 

of translation initiation and dependent on translation elongation. 

2.5.3 Knockdown of the RNA-binding protein Staufen 2 prevents mGluR-LTD in 

cultured neurons 

Having established that mGluR-LTD in cultured neurons show similar hallmark 

properties to mGluR-LTD in acute slices, we next combined this chemical induction 

paradigm with molecular biological knockdown strategies to examine the mechanism of 

RNA regulation. Staufen 2 (Stau2) has been implicated in mGluR-LTD using knockdown 

strategies and field recordings in organotypic slices (Lebeau et al 2011). To investigate 

the role of Stau2 in mGluR-LTD at the single cell level, we utilized a lentivirus 

expressing short-hairpin (sh) RNA to knockdown Stau2 RNA and protein in our cultures 

of dissociated hippocampal neurons (shStau2) (Fig. 2B).  

First, we verified the knockdown efficacy of the lentivirus by 

immunocytochemistry. Three days after transduction, protein expression of Stau2 

assessed by immunocytochemistry in the soma of shStau2 neurons was reduced to 83.9 ± 

14.7%  (n = 9) of the protein expression detected in neurons transduced with a lentivirus 

expressing a control shRNA (shControl) (Graber & Sossin 2014). The efficacy of 

transduction and lentiviral expression was, on the other hand, estimated by the expression 

of green fluorescent protein (GFP). Therefore, Stau2 was effectively knocked down in 

neurons expressing GFP. 

Next, we studied the effects of Stau2 knockdown on mGluR-LTD at the single 

cell level in cultured neurons. As expected, neurons transduced with shControl showed 

normal mGluR-LTD expressed as decrease in mEPCS frequency, but no change in 

amplitude. In contrast, Stau2 knockdown precluded the depression in frequency. Thirty 

minutes following bath application of DHPG, mEPSC frequency in neurons transduced 

with shControl was decreased to 78 ± 4% of baseline (n = 9, P = 0.0019) (Fig. 2C, D). In 
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neurons transduced with shStau2, mEPSC frequency was similar to baseline levels (103 ± 

9% of baseline; n = 8, P = 0.35). Surprisingly, while shControl neurons did not show any 

change in the amplitude of mEPSCs after DHPG application, mEPSC amplitude was 

significantly decreased in shStau2-transduced neurons. Amplitude post-DHPG in 

shControl neurons was at 107 ± 5% of baseline (P = 0.18), whereas the amplitude in 

shStau2 neurons decreased to 91 ± 2% of baseline (P = 0.015). Our findings demonstrate 

that Stau2 is required for mGluR-LTD, which is expressed as a decrease in mEPSC 

frequency. 

To make certain the block of mGluR-LTD observed in neurons with Stau2 

knockdown is not due to experimental conditions or nonspecific changes in basal 

transmission as a result of the lentiviral transduction, we compared basal membrane and 

synaptic properties in the different experimental conditions. There were no significant 

difference in baseline mEPSC amplitude, series resistance or holding current between the 

shControl and shStau2 transduced neurons (Table 2). Thus, the knockdown of Stau2 most 

likely caused the impairment in mGluR-LTD. 

To verify shStau2 block was not due to a lack of, or an interference with, mGluR 

activation due to lentiviral expression, we monitored passive membrane properties during 

DHPG application. We observed transient changes in cell input resistance in all DHPG 

treated groups (123 ± 4 % of baseline for shControl; 136 ± 9% of baseline for shStau2; 

Figure 2E, F), effects that are consistent with group I mGluR activation. Thus, virus 

expression did not impede activation of group I mGluRs (Fig. 2E, F).  

Overall, these results indicate that the RNA-binding protein Staufen 2 is necessary 

to induce mGluR-LTD, and therefore plays a crucial role in the underlying mechanism. 
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2.6 DISCUSSION 

Our results show that the application of the group I mGluR agonist DHPG in dissociated 

hippocampal neuron cultures elicits a long-term depression of excitatory synaptic 

transmission that is observed as a decrease in mEPSC frequency with no change in 

mEPSC amplitude. mGluR-LTD in cultured neurons is prevented by emetine, an inhibitor 

of translation elongation, but not by homoharringtonine, an inhibitor of translation 

initiation. Moreover, our findings indicate that the RNA-binding protein Staufen 2 is 

required for mGluR-LTD in cultured neurons. Taken together, these results indicate that 

DHPG application in dissociated hippocampal neurons coupled with lentiviral expression 

to manipulate proteins involved in RNA regulation is an effective approach to investigate 

the mechanisms underlying translation regulation during long-term synaptic plasticity. 

Moreover, our results provide further support for a model of translational control in 

mGluR-LTD that occurs downstream of initiation, likely through the reactivation of 

polyribosomes stalled at the elongation or termination stage (Graber et al 2013). 

2.6.1 Expression mechanisms of mGluR-LTD 

Our data show that the application of DHPG to dissociated hippocampal neuron cultures 

elicits a persistent decrease in the frequency of mEPSCs, but no change in their 

amplitude. These results are in agreement with previous findings both in hippocampal 

cultures and in hippocampal slices (Fitzjohn et al 2001, Jakkamsetti et al 2013, Moult et 

al 2006, Niere et al 2012, Sanderson et al 2011, Snyder et al 2001, Verpelli et al 2011, 

Waung et al 2008).  

The site of expression of this depression in synaptic transmission is, on the other 

hand, not as clear. A change in mEPSC frequency but not in amplitude is classically 

believed to reflect a change in the probability of transmitter release (Pr) from the 

presynaptic neuron.  DHPG application has also been reported to cause an increase in 

paired-pulse facilitation (PPF) (Fitzjohn et al 2001, Moult et al 2006, Rouach & Nicoll 

2003) coupled with an increase in the coefficient of variation of EPSCs (Fitzjohn et al 

2001, Moult et al 2006) and a decrease in the success rate of EPSCs (Fitzjohn et al 2001), 
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consistent with a presynaptic locus of expression. However, there is strong evidence that 

AMPA receptors at the postsynaptic membrane are internalized following mGluR-LTD 

induction (Gladding et al 2009a, Huang et al 2004, Jakkamsetti et al 2013, Snyder et al 

2001, Waung et al 2008, Xiao et al 2001, Zhang et al 2008) and this activity-dependent 

endocytosis requires the postsynaptic synthesis of proteins (Snyder et al 2001) such as 

Arc/Arg1.3 (Waung et al 2008). In addition, mGluR-LTD induction pathways are clearly 

postsynaptic (Gladding et al 2009b). To reconcile these findings, the concept of ‘silent 

synapses’ has been proposed (Snyder et al 2001) and postulates that mGluR-LTD 

induction results in the internalization, in an all or none fashion, of postsynaptic AMPA 

receptors at certain synapses, rendering them functionally-silent. This postsynaptic model 

could explain all the electrophysiological findings discussed above, including PPF 

changes, if high probability synapses were to be selectively silenced (Fitzjohn et al 2001, 

Sanderson et al 2011).  

Conflicting evidence does exist however in regards to PPF during mGluR-LTD. 

Huang and Hsu (2006) reported that DHPG caused a transient change in PPF during the 

acute phase, but it did not persist. On the other hand, Nosyreva and Huber (2005) showed 

that the site of mGluR-LTD expression appears developmentally regulated since PPF was 

more pronounced in neonatal rats (8-15 days postnatal) compared to adolescents (21-35 

days postnatal). Nonetheless, changes in PPF (Moult et al 2006) as well as decreased 

transmitter release measured by fluorescence detection of vesicular zinc release (Qian & 

Noebels 2006) have been reported during mGluR-LTD across all age ranges. It is 

interesting to point out that the concentrations of DHPG used and its period of application 

vary considerably between these studies, although they are all able to induce synaptic 

depression at similar levels. In slices, the treatment protocol ranges from 50 µM for 5 

minutes (Huang & Hsu 2006) to 100 µM for 20 minutes (Moult et al 2006). It is possible 

then that synapses experiencing stronger mGluR activation recruit additional signaling 

pathways that could lead to a greater presynaptic contribution. 

Interestingly, although we found that Stau2 abolished mGluR-LTD as expressed 

by a decrease in mEPSC frequency, DHPG caused a significant decrease in amplitude in 

these transduced neurons. This has been reported in wild type neurons under some 

conditions in both cultures and acute slices (Xiao et al 2001). A decrease in amplitude, 
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but not in frequency can be interpreted as either a decrease in quantal size (less 

neurotransmitter in each vesicle) or a decrease in the sensitivity of the post-synaptic 

membrane to the neurotransmitter. We speculate that the lack of Stau2 prevents the 

induction of mechanisms underlying synapse silencing, hence the lack of change in 

frequency, while allowing Stau2-independent pathways to cause the internalization of 

some but not all AMPA receptors. These mechanisms would require further investigation. 

Thus, although the effects of DHPG are rather consistent, the mechanisms of 

expression of mGluR-LTD are still not clearly understood. They likely involve both pre- 

and postsynaptic sites of expression whose relative contributions differ depending on the 

developmental stage and experimental conditions during induction. More work is needed 

to understand which pathways are responsible for these different expression mechanisms. 

2.6.2 Translation regulation at the elongation step during mGluR-LTD 

Local protein synthesis is crucial for mGluR-LTD (Huber et al 2000). The upregulated 

translation, following induction, of specific transcripts such as MAP1B, STEP and 

Arc/Arg3.1 that are directly linked to AMPA receptor endocytosis has been documented 

(Gladding et al 2009b). However, the mechanisms that regulate activity-dependent 

translation and allow such specificity during long-term synaptic plasticity remain largely 

elusive. Our findings shed light on one of these mechanisms. 

RNA-binding proteins (RBPs) represent an attractive mechanism of translation 

regulation. They are proteins involved in correctly targeting mRNAs to their appropriate 

dendritic compartment (Besse & Ephrussi 2008). During transport, translation of these 

mRNAs is repressed, but this repression can be relieved upon plasticity inducing synaptic 

activity (Buxbaum et al 2014, Graber et al 2013). Thus, this dual function of localization 

and translation regulation of RBPs provides the neuron with a dynamic mechanism of 

translation control that can quickly respond to plasticity signals. Several RBPs exist that 

differentially bind mRNAs (Doyle & Kiebler 2011, Lebeau et al 2011) and these 

properties could very well give them the ability to define the translation “regulons” 

(Keene 2007), the set of mRNAs that are upregulated in a coordinated fashion during a 

specific form of plasticity. 
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Staufen 2 (Stau2) is an RBP that is both involved in the localization and 

translation regulation of transcripts (Krichevsky & Kosik 2001), notably the microtubule-

associated protein 1B (MAP1B), a protein involved in mGluR-mediated AMPA receptor 

endocytosis and whose synthesis is promoted during mGluR-LTD (Lebeau et al 2011). In 

the absence of Stau2, basal MAP1B levels are decreased in dendrites and the increase in 

synthesis seen following mGluR-LTD induction is blocked. Recently, we were able to 

visualize ribosome-bound nascent chains by immunofluorescence, a technique called 

ribopuromycilation (RPM) (Graber et al 2013). This staining technique revealed intense 

punctas, indicative of polyribosomes, that colocalized with Stau2 and FMRP, markers for 

RNA granules. RNA granules are large mRNA transport complexes that contain RBPs, 

ribosomes and other components of the translation machinery in contrast to 

ribonucleoprotein particles (RNPs) that do not possess ribosomes (Sossin & 

DesGroseillers 2006). When cultured hippocampal neurons were pre-incubated with an 

initiation inhibitor to allow active ribosomes to naturally run-off, almost all the RPM 

stained punctas remained. These results suggest that ribosomes loaded on transcripts in 

RNA granules are stalled and this stalling occurs downstream of the initiation step. Thus, 

proteins are partially translated before they reach their dendritic compartment and await 

the appropriate synaptic signal to complete their synthesis. FMRP is also implicated in 

reversibly stalling polyribosomes (Darnell et al 2011). Consistent with these results, we 

found that mGluR-LTD in primary cultures is impaired by an inhibitor of elongation, but 

not of initiation. Furthermore, we demonstrated that knockdown of Stau2 blocked 

mGluR-LTD. These data suggest that translation of transcripts regulated downstream of 

initiation is required for mGluR-LTD. 

Stalled polyribosomes are reactivated following mGluR activation and RNA 

granules disassemble, which are observed as a decrease in RPM puncta (Graber et al 

2013). The upstream pathways that lead to this reactivation have yet to be elucidated, but 

an interesting candidate is the eukaryotic elongation factor 2 kinase (eEF2K), whose 

activity is upregulated during mGluR-LTD, causing eEF2 to be phosphorylated (Park et 

al 2008, Verpelli et al 2010). In this context, eEF2 phosphorylation slows general 

translation but the translation rate of certain proteins like MAP1B (Davidkova & Carroll 

2007) and Arc/Arg1.3 (Park et al 2008) is actually increased. Further investigation is 
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needed to understand how phosphorylation of eEF2 could lead to the reactivation of 

stalled polyribosomes. 

2.6.3 Translation regulation at the initiation step during mGluR-LTD 

Multiple lines of evidence suggest that translational control during mGluR-LTD is cap-

dependent, and therefore also depends on regulation at the initiation step. A very recent 

study demonstrated that regulation of the ternary complex through the phosphorylation of 

the eukaryotic initiation factor 2 alpha (eIF2α) is important for mGluR-LTD (Di Prisco et 

al 2014). DHPG application caused an increase in eIF2α phosphorylation (Di Prisco et al 

2014, Trinh et al 2014) mediated through the RNA-activated protein kinase (PKR)-like 

ER kinase (PERK) (Trinh et al 2014). mGluR-LTD induced in slices from mice with 

deficient eIF2α phosphorylation was abolished (Di Prisco et al 2014). This result 

contrasts with a previous report that knocking out PERK, thus abolishing DHPG-induced 

increases in eIF2α phosphorylation, enhanced mGluR-LTD (Trinh et al 2014). One major 

difference between the PERK knockout and eIF2α knock-in mice in these two studies is 

that the eIF2α knock-in has a large basal effect on eIF2α while the PERK knockout does 

not. Possibly, it is the reduction in basal levels of eIF2α caused by the eIF2α kock-in that 

affects the neuron’s ability to induce mGluR-LTD rather than the lack of signal-induced 

increase in phosphorylation. 

Oligophrenin-1 (Ophn1) translation was increased in response to eIF2α 

phosphorylation, but not Arc/Arg1.3 (Di Prisco et al 2014), a protein regularly observed 

to be upregulated in mGluR-LTD (Huber & Lüscher 2010). It is possible that the eIF2α 

knock-in effects on basal eIF2α phosphorylation decreased Ophn1 basal levels to the 

point that mGluR-LTD is blocked. In addition, the Ophn1 increase in synthesis largely 

depends on the activation of mGluR1, rather than mGluR5 and is independent of FMRP 

regulation (Kasri et al 2011). DHPG-induced mGluR-LTD relies more heavily on 

sustained activation of mGluR5 and its downstream signaling (Huang & Hsu 2006, 

Palmer et al 1997) and FMRP is a major regulator of mGluR-LTD mRNA targets 

(Darnell et al 2011). Moreover, our findings suggest that the acute Ophn1 synthesis that 

would presumably occur through increased translation initiation is not required for 

mGluR-LTD. 



	   47 

 4E-binding proteins (4E-BPs) have also been shown to play a role in mGluR-

mediated translation regulation (Banko et al 2006). 4E-BPs compete with eIF4G for 

eIF4E binding. This binding interaction with eIF4E inhibits translation since the eIF4F 

complex cannot be formed, thus inhibits initiation. In 4E-BP knockout mice, mGluR-

LTD was enhanced. Other conditions such as the pre-incubation with initiation inhibitors 

(HHT or the cap analog m7GpppG) for at least an hour prior to induction shift mGluR-

LTD (Graber et al 2013, Huber et al 2000) towards a more stringent requirement for 

initiation regulation as certain factors may be depleted. 

While studies such as Banko et al (2006), Di Prisco et al (2014)’s provide 

evidence for upregulated translation initiation during mGluR-LTD, our findings suggest 

that these mechanisms are not important for this form of plasticity. Increased synthesis of 

Ophn1, but not Arc/Arg1.3, a protein shown in numerous reports to be crucial for 

mGluR-LTD (Jakkamsetti et al 2013, Niere et al 2012, Park et al 2008, Snyder et al 2001, 

Waung et al 2008), following eIF2α phosphorylation strongly implies that this is not a 

major pathway of translation regulation. On the other hand, enhanced mGluR-LTD in 4E-

BP knockout mice is merely an indication that increasing the rate of initiation can support 

mechanisms of expression in mGluR-LTD, but does not suggest that it is required. 

In conclusion, translation regulation of important mRNA targets during mGluR-

LTD occurs downstream of initiation. Uncovering the details of this mechanism is crucial 

to understanding how neurons achieve temporal and spatial control of local protein 

synthesis during long-term synaptic plasticity. Moreover, it will shed light on how 

dysregulated translation leads to neuronal dysfunction. Finally, our findings suggest that 

the mGluR-LTD model in cultured neurons is an adequate tool to investigate the 

mechanisms of stalling and reactivation of ribosomes by Staufen 2, a crucial mechanism 

of translation regulation in neurons during mGluR-LTD. 
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2.8 TABLES 

Table 1. Electrophysiological properties in neurons of each treatment group 

during baseline 

 
 Untreated DHPG Emetine + 

DHPG 
HHT + DHPG 

n 4 8 6 7 
DIV (days) 19.0 ± 0.6 20 ± 2 21 ± 2 18.6 ± 0.6 
Amp. (pA) 11 ± 1 8.8 ± 0.8 10.8 ± 0.9 9.3 ± 0.8 
Freq. (Hz) 2.7 ± 0.6 3 ± 2 5 ± 2 2.3 ± 0.6 

Rise time (ms) 1.5 ± 0.2 1.3 ± 0.1 1.0 ± 0.1 1.3 ± 0.1 
Decay timea (ms) 5.5 ± 0.4 5.9 ± 0.5 4.5 ± 0.3 4.4 ± 0.4 

Ihold (pA) -70 ± 40 -33 ± 4 -42 ± 7 -25 ± 4 
Rinput (mΩ) 210 ± 40 260 ± 30 270 ± 50 160 ± 20 

Rs (mΩ) 22 ± 3 23 ± 2  21 ± 3 18 ± 2 
Vr

b (mV) -54 ± 1 -54 ± 1 -56 ± 1 -61 ± 2 
 
DIV, days in vitro; Rs, series resistance; Vr, resting potential, Ihold, holding current; Rinput, input resistance 
aDecay time calculated from 10 to 67% of peak 
bNot corrected for junction potential 
 
 

Table 2. Electrophysiological properties in transduced neurons during baseline 

 
 shControl shStau2 

n 10 9 
DIV (days) 22.2 ± 0.7 21 ± 1 
Amp. (pA) 10.9 ± 0.8 13 ± 2 
Freq. (Hz) 2.4 ± 0.2 4.3 ± 0.7§ 

Rise time (ms) 0.87 ± 0.07 0.85 ± 0.08 
Decay timea (ms) 4.6 ± 0.5 4.2 ± 0.3 

Ihold (pA) -46 ± 10 -38 ± 7 
Rinput (mΩ) 170 ± 20 220 ± 20 

Rs (mΩ) 16 ± 1 15 ± 2 
Vr

b (mV) -57 ± 1 -57 ±1 
 
DIV, days in vitro; Rs, series resistance; Vr, resting potential, Ihold, holding current; Rinput, input resistance 
aDecay time calculated from 10 to 67% of peak 
bNot corrected for junction potential 
§Statistically different compared to the shControl group 
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2.9 FIGURES 

2.9.1 Figure 5
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2.9.2 Figure 6
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2.10 LEGENDS 

Figure 5. mGluR-LTD in cultured neurons and block by translation elongation inhibitor. 
(A) Diagram of timeline of drug application during the whole-cell recording experiments and 

time windows used for analysis of mEPSCs. (B) mEPSCs from representative cells at two 

time points (-5’ and 30’) in untreated neurons (top) or pre- and post-DHPG application in the 

treated groups (DHPG, Emetine + DHPG, HHT + DHPG). (C) Summary histograms of 

mEPSC frequency and amplitude for all cells. (D) Cumulative probability histograms of 

DHPG effects on mEPSC frequency and amplitude for the DHPG-treated cell depicted in (B) 

showing a significant change in the distribution of the instantaneous frequency of events (K-S 

test, P = 0.0031), but no change in the distribution of mEPSC amplitude (P = 0.70) post-

DHPG. (E) Time plot for all cells of cell input resistance measured from hyperpolarizing 

pulses and normalized to baseline (-5 to 0 minutes pre-DHPG application) showing in all 

groups a transient increase in cell input resistance induced by DHPG. (F) Summary histogram 

showing a significant increase in Rinput in cells exposed to DHPG compared to untreated cells 

at 5-10 min regardless of exposure to translation inhibitors. Untreated, n=4; DHPG, n = 8; 

Emetine + DHPG, n = 6; HHT + DHPG, n = 7. * p<0.05, **p<0.01 

 

Figure 6. Knockdown of the RNA binding protein Staufen 2 impairs mGluR-LTD. 
(A) Diagram of timeline of lentivirus transduction and whole-cell recording experiments. (B) 

Representative images of dissociated hippocampal neurons in cultures 21 DIV transduced with 

a lentiviral vector expressing a short hairpin RNA (shStau2) and emGFP. (C) mEPSCs from 

representative cells at two time points (-5’ and 30’) in untreated transduced neurons or pre- 

and post-DHPG in neurons transduced with a control shRNA sequence or shStau2.  (D) 

Summary histograms of mEPSC frequency and amplitude for all cells. (E) Time plot for all 

cells of cell input resistance measured from hyperpolarizing pulses and normalized to baseline 

(-5 to 0 minutes pre-DHPG application) showing in all groups a transient increase in cell input 

resistance induced by DHPG. (F) Summary histogram showing an increase in Rinput in cells 

exposed to DHPG compared to untreated cells at 5-10 min regardless of the lentiviral vector 

used. Untreated, n=2 (1 shScramble, 1 shStau2); shScramble, n = 9; shStau2, n = 8. *p<0.05, 

**p<0.01, **** p<0.0001. 
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CHAPTER III. GENERAL DISCUSSION 

3.1 REVIEW OF MAIN RESULTS 

The objectives of this thesis were as follow: 

1. To establish if we could reliably induce mGluR-LTD in cultures of dissociated 

hippocampal neurons with the group I mGluR agonist DHPG as previously reported. 

2. To demonstrate that mGluR-LTD is independent of the initiation step of translation in 

cultured hippocampal neurons. 

3. To determine if the RNA-binding protein Staufen 2 plays a crucial role in mGluR-LTD 

in cultured hippocampal neurons. 

The objectives aimed at better understanding the molecular memory trace of mGluR-LTD 

using a single cell culture model amenable to both pharmacological and RNA knockdown 

studies. 

 

With these objectives in mind, our results indicate that: 

1. Following the application of DHPG, mGluR-LTD is expressed as a decreased mEPSC 

frequency, but no change in mEPSC amplitude. 

2. Translation initiation is not necessary for mGluR-LTD. 

3. Staufen 2 is required for mGluR-LTD. 

These results strongly suggest that mGluR-LTD implicates a mechanism of translation 

regulation that is downstream of initiation. We propose this is achieved through the stalling of 

polyribosomes by the RNA-binding protein Staufen 2, which, upon the activation of mGluR 

signaling pathways, dissociates to relieve the translational repression and allow for local, rapid 

and coordinated synthesis of its targets (Fig. 7). 

3.2 MECHANISMS OF LOCAL TRANSLATION REGULATION 

The notion that learning and memory requires protein synthesis was proposed as early as 1948 

by Monné and evidence to support this claim was first published in the late 1950s (see Sutton 

& Schuman 2006). Today, the importance of protein synthesis for memory is widely 
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recognized and several studies have also demonstrated its necessity for the maintenance of 

forms of plasticity such as NMDAR-dependent late-LTP and mGluR-LTD (Kelleher III et al 

2004). What isn’t as clear is whether this synthesis needs to be local (i.e. near the synapse). 

 Indeed, what makes the study of mGluR-LTD so interesting is its clear reliance on 

local protein synthesis (Pfeiffer & Huber 2006). In contrast, while there is evidence for local 

protein synthesis during NMDAR-dependent late-LTP (Sutton & Schuman 2006), whether it 

is necessary is not apparent. To make the distinction even more conspicuous, protein synthesis 

inhibitors block mGluR-LTD within 10 minutes following induction (Huber et al 2000) 

whereas NMDA-dependent late-LTP, while initially impaired, is blocked after more than an 

hour (Kelleher III et al 2004). 

 Thus, our work to uncover the molecular mechanisms underlying mGluR-LTD will 

give further insight into how local translation is accomplished and why this may be important 

for learning and memory. 

3.2.1 Evidence for stalled polyribosomes 

Local protein synthesis occurs on demand in response to plasticity-inducing synaptic activity. 

Translation regulators must therefore be able to wield a temporal and spatial control of protein 

synthesis. A number of RNA-binding proteins (RBPs) that can perform this very task have 

been described (Besse & Ephrussi 2008). One RBP that has attracted a lot of interest in the last 

20 years for its direct relevance to Fragile X Syndrome (FXS), the most common cause of 

inherited autism, is FMRP. FXS is caused by the functional absence of FMRP due to a CGG 

triplet expansion repeat in the 5’ UTR of the FMR1 gene. FMRP is a negative regulator of 

translation (reviewed in Bhakar et al 2012, Darnell & Klann 2013), but the mechanism by 

which it represses translation has not been elucidated. FMRP is found in RNA granules of 

distinct composition (Fritzsche et al 2013a), but also in processing bodies and stress granules 

(Barbee et al 2006, Kim et al 2006), thus could play more than one role and have more than 

one mode of translation regulation, thereby making the understanding of its mechanism of 

action more challenging. 

 Nonetheless, several lines of evidence suggest that FMRP exerts a regulatory role after 

the initiation step. First, FMRP associates with polyribosome complexes (Ceman et al 2003, 
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Darnell et al 2011, Graber et al 2013, Khandjian et al 2004, Stefani et al 2004, Tamanini et al 

1996, Weiler et al 1997). Second, phosphorylated FMRP associates with apparently stalled 

polyribosomes, while dephosphorylated FMRP is associated with actively translating 

polyribosomes (Ceman et al 2003). Stefani et al (2004) questioned the results reported by 

Ceman et al (2003) because of their use of the metabolic poison sodium azide. Even so, the 

results of Darnell and coworkers (Stefani et al 2004) indicate that a sizeable number of 

polyribosomes complexed with FMRP were retained on mRNAs despite the application of 

puromycin, an amino-acyl tRNA analog, that disrupts actively translating ribosomes, 

prematurely ending translation.  

More convincingly, a brain polyribosome-programmed in vitro translation system 

quantitatively revealed that ribosome stalling occurs on FMRP target transcripts (Darnell et al 

2011). The authors induced run-off of actively translating ribosomes with the use of 

puromycin or hippuristanol. Puromycin covalently binds to the nascent peptide preventing the 

addition of more amino acid, thus causes early peptide termination. Hippuristanol is an 

initiation inhibitor, thus allows natural run-off of actively translating ribosomes while 

preventing any new polyribosome formation by blocking initiation. Following this treatment, 

FMRP was still present in the heavy sucrose gradients suggesting that the polyribosomes 

associated with FMRP are not active, but rather stalled, hence their insensitivity to the 

translation inhibitors. In the absence of FMRP or when FMRP was present but bore a 130N 

mutation, FMRP mRNA targets were distributed to lighter fractions than when FMRP was 

present and functional. Moreover, by combining high-throughput sequencing (HITS) and 

crosslinking-immunoprecipitation (CLIP), a technique that consists of coimmunoprecipitating 

FMRP cross-linked by UV light to its mRNA targets, FMRP was revealed to mostly bind 

mRNA in various regions of the coding sequence (Darnell et al 2011). This is consistent with 

FMRP binding to polysomes rather than blocking initiation. 

This combined evidence strongly suggests that FMRP is implicated in stalling ribosomes 

at the elongation step. However, it adds little to our understanding of the mechanism involved. 

Is FMRP directly responsible for the stalling? FMRP’s binding domains (KH domains and 

RGG box) are thought to only recognize RNA binding motifs such as the ‘kissing complexes’ 

and G-quadruplexes (Wang et al 2012), but Darnell and colleagues (2011) did not find a 

consensus sequence amongst the RNA targets – FMRP showed a rather broad binding pattern, 
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so how is specificity achieved? A possible explanation is that FMRP is a component of a 

larger complex, but it is the combination and interaction of different elements that is 

responsible for specifically recognizing and differentially sorting mRNA targets (Änkö & 

Neugebauer 2012). Indeed, FMRP are part of at least two types of RNA granules: Staufen 2 

(Stau2) and Barentsz (Btz)-containing granules (Fritzsche et al 2013a). Despite the existence 

of a few shared protein interactors (not necessarily direct protein-protein interactors) like 

FMRP, Stau2 and Btz RNA granules have different molecular compositions (e.g. translation 

factors and RBPs), evidence that RNA granules are heterogeneous structures. More 

importantly, there is mounting evidence that distinct RNA granules differentially bind mRNA 

transcripts (Heraud-Farlow et al 2013, Lebeau et al 2011, Mikl et al 2011). This raises the 

interesting possibility that discrete RNA granules regulate functionally related sets of RNAs 

(Hogan et al 2008, Keene 2007). 

3.2.2 Role of Staufen 2 in mGluR-LTD 

Stau2 is a member of a family of proteins that are implicated in RNA transport in neurons 

(Kohrmann et al 1999, Tang et al 2001), associate with ribosomes (Duchaine et al 2002, 

Marion et al 1999), and are linked with translation regulation (Krichevsky & Kosik 2001) and 

synaptic plasticity (Lebeau et al 2008, Lebeau et al 2011).  

In the present study, we have shown that Stau2 is crucial for mGluR-LTD and 

therefore is likely involved in the regulation mRNAs that are necessary for this form of 

plasticity. Consistent with this finding, Stau2 modulates the expression of a subset of mRNAs 

that encode synaptic proteins (Heraud-Farlow et al 2013). Furthermore, we have recently 

demonstrated that Stau2 and FMRP markers colocalized with stalled polyribosomes that were 

directly visualized in neurons using a novel technique (Graber et al 2013). These stalled 

polyribosomes visualized as intense punctas of fluorescence were decreased in number 

following the application of DHPG to induce mGluR-LTD. This suggests that rather than 

stimulating initiation and causing an increased loading of ribosomes onto mRNA transcripts, 

mGluR activation causes stalled polyribosomes to be reanimated, thus quickly dissociating as 

they complete the translation of proteins (Fig. 7).  
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 In agreement with these findings, we established in the present study that initiation is 

not important for mGluR-LTD in dissociated neuronal cultures. Therefore, ribosomes have 

already gone through initiation and proteins are partially completed before they are stalled. 

Only reactivation of elongation is then necessary. To support this data, initiation blockers do 

not impair the increase in MAP1B synthesis during mGluR-LTD (Graber et al 2013). MAP1B 

is an important protein linked to AMPAR endocytosis and known to be upregulated during 

mGluR-LTD (Davidkova & Carroll 2007). It is a target of both FMRP and Stau2 (Darnell et al 

2001, Lebeau et al 2011). In addition, characterization of Stau2 RNA granules revealed that 

this high-order structure lacks components of the exon junction complex (EJC), an indicator 

that the mRNAs they contain have already undergone translation initiation (Fritzsche et al 

2013a). 

3.2.3 FMRP and Staufen 2 – an indispensable partnership 

Stau2 and FMRP are both linked to translation regulation of mRNA targets important for 

mGluR-LTD and they have been found to genetically interact4 (Bolduc et al 2008). However, 

they do not appear to be redundant elements, but rather play different roles within the same 

RNA granule. While the absence of Stau2 causes mGluR-LTD to be impaired as we have 

shown here, lack of FMRP is characterized by exaggerated mGluR-LTD (Huber et al 2002). 

Interestingly, without FMRP, mGluR-LTD becomes quite clearly independent of new protein 

synthesis (Park et al 2008, Weiler et al 2004). These observations made in the absence of 

functional FMRP have been explained as a deficiency in translation repression causing 

excessive protein synthesis that does not depend on plasticity signaling events. Moreover, 

evidence suggests the excessive basal protein synthesis in Fmr1 KO mice is not due to 

hyperactive mGluR signaling, but it is rather the translation machinery that is hypersensitive to 

normal mGluR signaling (Osterweil et al 2010).  

In the absence of Stau2, mRNA targets important for mGluR-LTD are simply not 

transported to the synapse (Lebeau et al 2011). In contrast, FMRP appears to be a passive 

passenger of transport complexes, since in its absence mRNA localization is not affected 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Genetic interaction is the phenomenon observed when “mutations in two genes produce a phenotype that is 
surprising in light of each mutation's individual effects” - Mani R, St.Onge RP, Hartman JL, Giaever G, Roth FP. 
2008. Defining genetic interaction. Proceedings of the National Academy of Sciences 105: 3461-66 



	   62 

(Steward et al 1998). Therefore, we can envision that in the presence of Stau2 and absence of 

FMRP, Stau2 correctly localizes mRNAs, but it is unable to maintain the repression of 

translation at the synapse because the interaction with FMRP is needed. Conceivably, FMRP 

is required to stabilize the Stau2 mediated stalling complex. On the other hand, FMRP cannot 

sustain transport of necessary mRNAs without Stau2. 

3.3 FUTURE PERSPECTIVES 

What is the mechanism of stalling? Which protein-protein interactions are important to decide 

the fate of a select population of mRNAs? How do these mechanisms differ for translation 

regulation in NMDA-dependent late-LTP? These are just some of the interesting questions in 

need of answers. We hope to address these outstanding questions by making use of the 

mGluR-LTD induction protocol we described in dissociated hippocampal neuron cultures in 

combination with various tools of molecular biology. 

3.3.1 Mechanism of stalling elongation 

Although our knowledge of the molecular composition of RNA granules, such as Stau2-

containing granules, is gaining ground (Fritzsche et al 2013a, Heraud-Farlow et al 2013, Kanai 

et al 2004), we have little understanding of how Stau2 influences granule assembly and 

translation control. In addition to FMRP, Stau2 RNA granules contain Pura and DEAD box 

helicase 6 (DDX6), two translational repressors, as well as the nuclear proteins, nuclear 

polyadenylate binding protein 1 (PABPN1) and cap-binding protein 80 (CBP80) (Fritzsche et 

al 2013a). These findings provide further evidence that mRNAs in Stau2 granules are 

repressed. Moreover, they suggest that granule assembly begins in the nucleus (Heraud-

Farlow & Kiebler 2014).  

Another important constituent is the helicase up-frameshift 1 (Upf1), which is crucial 

to a process called non-sense mediated decay (NMD). The family of Staufens, Stau1 and 

Stau2 are themselves involved in the degradation of their mRNA targets via Staufen-mediated 

decay (SMD) and directly bind to Upf1 (Park & Maquat 2013). NMD and SMD elicit mRNA 

decay, a normal process important for cellular homeostasis in various tissues of the body. 

However, Staufens seem to engage to a greater extent in stabilizing rather than destabilizing 
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target mRNAs in neurons (Heraud-Farlow & Kiebler 2014). In fact, a recent study showed that 

higher Stau1 levels lead to an increased association with ribosomes onto certain mRNAs 

instead of SMD-driven mRNA degradation (Ricci et al 2014). Moreover, preliminary data 

obtained in our lab indicates that down-regulating Upf1 decreases the number of visualized 

stalled polyribosomes (Graber & Sossin 2014). Taken together, these data hint at a possible 

role for Upf1 in stabilizing the Stau-mediated stalling complex. 

 Thus, it would be interesting to determine if Upf1-Stau2 interactions are important for 

the formation of RNA granules activated during mGluR-LTD independently of SMD. A 

possible strategy would be to use neurons with knocked down Stau2, which we have 

characterized in the present study, and test the effects of overexpressing a mutated Stau2 that 

does not bind Upf1 using the lentiviral transduction approach. We could examine if, in the 

context of a disrupted Upf1-Stau2 interaction, but otherwise normal Stau2 function, 

dissociated hippocampal neurons can express mGluR-LTD induced with DHPG. This would 

further our understanding of mechanism underlying Stau2-mediated polyribosome stalling. 

3.3.2 Distinct pathways of local translation regulation 

Stau1 and Stau2 are paralogues that share a number of conserved features. However, they are 

found in distinct particles in dendrites of hippocampal neurons (Duchaine et al 2002). 

Moreover, they bind different sets of mRNAs, sharing but 30% of transcripts (Furic et al 

2008).  

Interestingly, down-regulation of Stau1 by small interfering (siRNAs) in organotypic 

hippocampal slices causes deficits in the late phase of LTP induced by forskolin treatment, but 

leaves the early form of LTP and mGluR-LTD intact (Lebeau et al 2008). On the other hand, 

knockdown of Stau2 in a similar fashion blocks mGluR-LTD without affecting forskolin-

induced LTP (Lebeau et al 2011). These findings are supportive of a model of translation 

control in which different RBPs such as Stau1 and Stau2 coordinate distinct ‘regulons’ or 

pools of mRNAs implicated in translation-dependent forms of synaptic plasticity. In 

agreement with this line of thought, knocking down Stau2 lowers the levels of its mRNA 

target Map1b, without perturbing CaMKIIα (Lebeau et al 2011), a target of Stau1 (Kanai et al 

2004, Kohrmann et al 1999). Considering the fact that NMDA-dependent late-LTP does not 
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rely on local protein synthesis in the same way that mGluR-LTD does, one might wonder if 

the mechanisms of repression mediated by Stau1 and Stau2 are similar. For one, initiation 

blockers impair NMDA-dependent late-LTP induced by theta burst stimulation (TBS) but not 

mGluR-LTD (Graber et al 2013). Whether this reflects the stalling of ribosomes at the 

initiation step for transcripts important for NMDA-dependent late-phase, or the requirement, 

in addition to local protein synthesis, for more general protein translation is not clear. 

Interestingly, a recent study found that Stau1 interacts mainly with the coding sequence (CDS) 

and 3’ UTR of transcripts with a higher CDS guanine-cytosine base pair content (Ricci et al 

2014). 

 A good starting point to understand the dissociable roles of Stau1 and Stau2 would be 

to discern which domains are important in defining their respective regulons. By replacing 

each of the RNA binding domains in Stau2 with the equivalent Stau1 region, we could 

generate Stau1/Stau2 protein chimeras. By evaluating the chimera’s ability to rescue mGluR-

LTD in neurons with down-regulated expression of Stau2, it could be possible to identify the 

Stau2 domains necessary for its role in mGluR-LTD. Next, we could insert this Stau2 domain 

in Stau1 in place of its equivalent binding domain and test whether this construct would be 

sufficient to rescue mGluR-LTD in Stau2 deficient neurons. This would help us gain 

knowledge of the critical domains that differentiate the Stau1 and Stau2 regulons. 

3.3.3 Functional roles of mGluR-LTD 

What is the relationship between mGluR-LTD in the hippocampus and behavior? Although 

many studies have investigated the role of LTP in behavior, much less is known about LTD. 

Protecting the network from saturating is an important role of LTD (Hu et al 2010) but some 

studies also suggest a role of hippocampal LTD in the processing of information (Collingridge 

et al 2010, Kemp & Manahan-Vaughan 2007).  

Rodents have an innate preference for exploring new objects, a measurable behavior 

useful to assess whether the animal recognizes the object or not. Object recognition (OR) is an 

episodic-like form of memory that appears to be processed by the hippocampus. Low 

frequency stimulation of Schaffer collaterals normally generates a short-term depression in the 

CA1 region of freely moving rats, but after exploration of a new spatial environment, this 
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depression is facilitated (Kemp & Manahan-Vaughan 2004). In addition, a long-term 

depression of synaptic transmission is elicited by spatial object recognition learning (Goh & 

Manahan-Vaughan 2013b). Indeed, exposure to OR training (a pair of new objects in a 

familiar environment) and testing (one object is replaced with a new one in the same location) 

decreased synaptic strength. Further investigation revealed that, rather than object novelty per 

se, it is the novelty of the object position that is responsible for this synaptic change since a 

depression similar to the one elicited during novelty exploration was observed when the same 

objects were moved to a novel configuration (Goh & Manahan-Vaughan 2013b).  

Second, interfering with NMDAR-LTD yields deficits in behavioral flexibility in both 

the Morris water maze and a delayed non-match to place T-maze task (Nicholls et al 2008). 

Transgenic mice with inhibited protein phosphatase 2A (PP2A) activity, which impairs 

NMDAR-mediated LTD, show no deficit in acquisition and memory in the Morris water 

maze, but are impaired in spatial reversal learning, which is the learning of a new platform 

location. Likewise, in the delayed non-match to place T-maze task, in which the animal needs 

to choose, after varying delays, the unvisited arm, the transgenic mice performed normally, 

but showed deficits when the location of the reward was modified. Finally, the administration 

of D-serine which potentiates NMDAR-LTD improved performances on spatial reversal tasks 

(Duffy et al 2007). 

Thus, current evidence seems to assign at least two roles to LTD. First, spatial learning 

itself “endogenously” induces LTD of synaptic transmission in CA1 hippocampus (Goh & 

Manahan-Vaughan 2013b); and, second, LTD weakens previously encoded memory traces 

when new information is learned, providing behavioral flexibility in tasks that engage the 

hippocampus (Nicholls et al 2008). 

Nevertheless, there are still gaps remaining in our understanding of the role of long-term 

depression in hippocampus-dependent behaviors. Despite our comprehension of NMDAR-

LTD and mGluR-LTD as two very different processes in vitro, how they respectively 

contribute to behavior has not been elucidated. In fact, the exploration of a novel environment 

engages both receptors to generate LTD (Goh & Manahan-Vaughan 2013a). It would be 

interesting to investigate further the role of local protein synthesis and the implication of 

Staufen 2 in this type of learning.  
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Figure 7. Model of translation regulation in mGluR-LTD. 

Transcripts important for mGluR-LTD such as MAP1B are initiated in the soma. Proteins are 

partially completed when ribosomes are paused at the elongation step and the RNA granule is 
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formed. Staufen-mediated repression/stalling is stabilized by FMRP and requires Upf1 

binding. Whether RNA granules pack more than one mRNA or mRNAs travel singly is a 

current area of investigation (Mikl et al 2011). During transport, translation is in a state of 

repression, which is maintained at the synapse. When group I mGluRs of hippocampal 

pyramidal cells are activated, signaling cascades cause the stalling complex to dissociate and 

polyribosomes become once again active to rapidly complete synthesis locally. The specific 

pathways responsible for de-repressing translation are yet to be elucidated. The proteins 

produced work together to internalize AMPA receptors and decrease synaptic transmission. 
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