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SOMMAIRE

Le but de ce mémoire de maîtrise est de décrire les propriétés de la loi double
Pareto-lognormale, de montrer comment on peut introduire des variables explica-
tives dans le modèle et de présenter son large potentiel d’applications dans le
domaine de la science actuarielle et de la finance.

Tout d’abord, nous donnons la définition de la loi double Pareto-lognormale
et présentons certaines de ses propriétés basées sur les travaux de Reed et Jor-
gensen (2004). Les paramètres peuvent être estimés en utilisant la méthode des
moments ou le maximum de vraisemblance. Ensuite, nous ajoutons une variable
explicative à notre modèle. La procédure d’estimation des paramètres de ce mo-
dèle est également discutée. Troisièmement, des applications numériques de notre
modèle sont illustrées et quelques tests statistiques utiles sont effectués.

Mots-clés : Loi normale-Laplace, loi double Pareto-lognormale, estimation du
maximum de vraisemblance, transformation de Box-Cox, variables explicatives,
test d’ajustement.
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SUMMARY

The purpose of this Master’s thesis is to describe the double Pareto-lognormal
distribution, show how the model can be extended by introducing explanatory
variables in the model and present its large potential of applications in actuarial
science and finance.

First, we give the definition of the double Pareto-lognormal distribution and
present some of its properties based on the work of Reed and Jorgensen (2004).
The parameters could be estimated by using the method of moments or maximum
likelihood. Next, we add an explanatory variable to our model. The procedure of
estimation for this model is also discussed. Finally, some numerical applications
of our model are illustrated and some useful statistical tests are conducted.

Keywords: Normal-Laplace distribution, double Pareto-lognormal distribution,
maximum likelihood estimation, Box-Cox transformation, explanatory variables,
goodness-of-fit test.
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INTRODUCTION

The presence of extreme values in a sample is well-documented in many fields
such as in insurance, finance, hydrology and geography, etc. The Gaussian model
(normal distribution) might be relevant for the centre of a distribution, but not
for the extreme values. Thus, the statistical analysis of extremes was developed
for fitting parametric models to samples with extreme events and it is also key to
many risk management problems related to insurance, reinsurance and finance.
There are two standard parametric distributions in the field of extreme value
analysis: one is the generalized extreme value distribution which is designed for
a sample of extreme outcomes, and the other one is the generalized Pareto dis-
tribution which plays an important role in modeling a sample of excesses over a
high threshold (see Reiss and Thomas, 2007).

Reed and Jorgensen (2004) introduce a new distribution named the double
Pareto-lognormal distribution which exhibits Paretian (power law) behavior in
both tails. This distribution has proved to be very useful in modeling the size
distributions of various phenomena possibly with extreme events in a wide range
of areas such as economics, finance and casualty and property insurance.

In this thesis, we intend to show how the double Pareto-lognormal distribu-
tion is derived and discuss its properties based on Reed and Jorgensen’s work; we
will then try to extend the model by including explanatory variables and show
its potential applications in insurance and finance with examples.

This thesis consists of five chapters.

In Chapter 1, we derive the normal-Laplace distribution based on the defini-
tion of Reed (2004) and present its properties. Then the double Pareto-lognormal
distribution can be defined as an exponentiated normal-Laplace distributed ran-
dom variable; its properties such as its moment generating function, cumulative
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distribution function and hazard rate, are also studied.

Chapter 2 discusses the parametric estimation of the double Pareto-lognormal
distribution. The method of moments and maximum likelihood will be employed
to estimate the parameters.

We will show how to include explanatory variables into our model in Chap-
ter 3; a transformation will also be used to deal with this explanatory variable.
Moreover, we will discuss the procedure to estimate the parameters in our new
model with covariates.

In Chapter 4, we apply the double Pareto-lognormal distribution to real fi-
nancial and insurance data. The first application is to fit the original double
Pareto-lognormal distribution to stock price returns; the second one is modeling
the Danish fire loss claims with the extended model including an explanatory
variable. The chi-square test will be conducted in order to test the goodness-of-
fit of our model.

Finally, some conclusions are drawn in Chapter 5.



Chapter 1

THE DOUBLE PARETO-LOGNORMAL
DISTRIBUTION

The double Pareto-lognormal (dPlN) distribution is defined as an exponenti-
ated normal-Laplace random variable and provides a useful parametric form for
modelling size distributions. In this chapter, the normal-Laplace (NL) distribu-
tion which results from convolving independent normally distributed and Laplace
distributed components, will be defined and its properties such as its cumulative
distribution function, its tail behaviour and its moments will also be presented.
Then the density function of the dPlN will be derived from that of the NL distri-
bution, and some of its properties will also be discussed. However, we begin with
presenting some important statistical tools.

1.1. Moment generating function and cumulants

Several statistical tools are indispensable to our analysis; in this section, we
will introduce three such useful statistical concepts: the moment generating func-
tion, the characteristic function and the cumulants of a distribution.
Definition 1.1.1. The moment generating function MX(t) of a continuous ran-
dom variable X with density f(x) is defined by

MX(t) = E(etX) =
∞∫

−∞
etxf(x)dx

for all real values of t for which the integral converges absolutely.
Note that MX(0) always exists and is equal to 1.
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For a positive integer k, the kth raw moment E(Xk) may be found by evaluating
the kth derivative of MX(t) at 0,

M
(k)
X (t) = dk

dtk
MX(t)

= dk

dtk
E(etX)

= E

[
dk(etX)

dtk

]

= E(XketX),

which yields
M

(k)
X (0) = E(Xk) denoted by μ′

k. (1.1.1)

The following example shows how to calculate the moment generating function
of the normal distribution.
Example 1. We first compute the moment generating function of a standard
normal random variable Z ∼ N(0, 1) with probability density function (pdf) given
by

f(z) = 1√
2π

e−x2/2.

Then

MZ(t) = E(etZ)

= 1√
2π

∞∫
−∞

etze−z2/2dz

= et2/2 1√
2π

∞∫
−∞

e−(z−t)2/2dz

= et2/2.

Note that X = μ + σZ will have a normal distribution with mean μ and vari-
ance σ2 whenever Z follows a standard normal distribution. Hence, the moment
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generating function of X is given by

MX(t) = E(etX)

= E(et(μ+σZ))

= eμtE(etσZ)

= eμtMZ(σt)

= eμte(σt)2/2

= exp(μt + σ2t2/2).

Theorem 1.1.1. The moment generating function (mgf) of the sum of indepen-
dent random variables equals the product of the individual moment generating
functions.

PROOF. Let X1, X2, ..., Xn be independent random variables with moment gen-
erating functions MX1(t), MX2(t), ..., MXn(t). Then the mgf of X1 + X2 + ... + Xn

is given by

MX1+X2+...+Xn(t) = E[et(X1+X2+...+Xn)]

= E(etX1etX2 ...etXn)

= E(etX1)E(etX2)...E(etXn)

= MX1(t)MX2(t)...MXn(t)

�

Definition 1.1.2. (Klugman et al. 2008) The characteristic function of a random
variable X is

φX(t) = E(eitX) = E(cos tX + i sin tX), −∞ < t < ∞
where i =

√−1.
We introduce the characteristic function because it exists for all distributions,

while the moment generating function does not always exist. It is useful to note
the relation between these two functions, φX(t) = MX(it), if MX(t) exists.

The cumulant generating function KX(t) is defined as the log of the mgf
MX(t), provided it exists.
Definition 1.1.3. (Groparu-Cojocaru, 2007) The nth cumulant of a random vari-
able X, denoted κn, is defined as the coefficient of the Taylor’s series expansion
of the cumulant generating function KX(t) about the origin

KX(t) = log MX(t) =
∑

n

κntn/n!. (1.1.2)
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Obviously, κn can be found directly by the nth derivative of KX(t) at 0, i.e.
κn = K

(n)
X (0).

Proposition 1.1.1. Let X be a random variable, and let us assume that its mgf
MX(t) exists in a neighborhood of 0, then κ1 = E(X) and κ2 = V ar(X).

PROOF.

κ1 = d

dt
log MX(t)

∣∣∣∣∣
t=0

= M ′
X(t)

MX(t)

∣∣∣∣∣
t=0

= M ′
X(0), as MX(0) = 1.

Therefore, κ1 = E(X).

V ar(X) = E(X2) − E(X)2 = M ′′
X(0) − M ′

X(0)2.

Then, by using MX(0) = 1 we have

κ2 = d2

dt2 log MX(t)
∣∣∣∣∣
t=0

= M ′′
X(t)MX(t) − M ′

X(t)2

MX(t)2

∣∣∣∣∣
t=0

= M ′′
X(0) − M ′

X(0)2.

So, κ2 = V ar(X). �

Kendall and Stuart (1987) showed that the nth cumulant can also be calculated
by the first n raw moments. The first five cumulants in terms of raw moments
are
κ1 = μ′

1,

κ2 = μ′
2 − μ

′2
1 ,

κ3 = μ′
3 − 3μ′

2μ
′
1 + 2μ

′3
1 ,

κ4 = μ′
4 − 4μ′

3μ
′
1 − 3μ

′2
2 + 12μ′

2μ
′2
1 − 6μ

′4
1 ,

κ5 = μ′
5 − 5μ′

4μ
′
1 − 10μ′

3μ
′
2 + 20μ′

3μ
′2
1 + 30μ

′2
2 μ′

1 − 60μ′
2μ

′3
1 + 24μ

′5
1 ,

where μ′
n denotes the nth raw moments. We may use this method to find sample

cumulants by using sample raw moments.
The cumulants provide an alternative to the moments of the distribution.

In some cases, for example for the normal-Laplace distribution, cumulants may
be much easier to compute than the moments. We may also use cumulants in-
stead of moments to estimate parameters; this will be discussed in future sections.

Definition 1.1.4. (Infinitely divisible distribution) The distribution of a real-
valued random variable X is infinitely divisible if for every n ∈ N+, there exists
a sequence of independent, identically distributed variables (X1, X2, ..., Xn) such
that X1 + X2 + ... + Xn has the same distribution as X.
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1.2. The Normal-Laplace distribution

Since most of the results concerning the double Pareto-lognormal distribution
are derived using the normal-Laplace distribution, we begin by presenting results
for this distribution. In this section, the normal-Laplace distribution is derived
from the definition of Reed (2004), and its properties are presented.

1.2.1. Genesis and definitions

Reed (2004) showed that the normal-Laplace distribution (NL) can be defined
as the convolution of a normal (N) distribution and an asymmetric Laplace (L)
distribution, i.e. Y ∼ NL(μ, σ2, α, β) can be represented as

Y
d= Z + W (1.2.1)

where Z and W are independent random variables with Z ∼ N(μ, σ2) and W

following an asymmetric Laplace distribution with probability density function
(pdf)

fW (w) =

⎧⎪⎨
⎪⎩

αβ
α+β

eβw, for w ≤ 0
αβ

α+β
e−αw, for w > 0.

(1.2.2)

where α > 0 and β > 0.
The cumulative distribution function (cdf) of W can be easily shown to be

FW (w) =

⎧⎪⎨
⎪⎩

α
α+β

eβw, for w ≤ 0
1 − β

α+β
e−αw, for w > 0.

(1.2.3)

Note that if α = β, W follows a symmetric Laplace distribution with pdf

fW (w) =

⎧⎪⎨
⎪⎩

α
2 eαw, for w ≤ 0
α
2 e−αw, for w > 0.

Its cdf will be

FW (w) =

⎧⎪⎨
⎪⎩

1
2eαw, for w ≤ 0
1 − 1

2e−αw, for w > 0.

Definition 1.2.1. The (convolved or folded) sum of two independent random
variables U = X + Y has the probability density f(u) given by the convolution
integrals

f(u) =
∫ +∞

−∞
fX(x)fY (u − x) dx =

∫ +∞

−∞
fY (y)fX(u − y) dy, (1.2.4)

where X and Y have the probability density functions fX(x) and fY (y) respec-
tively.
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The probability density function of Z is
fZ(z) = 1

σ
√

2π
e− 1

2( z−μ
σ )2

. (1.2.5)

We may derive the pdf of the normal-Laplace distribution from (1.2.2) and (1.2.5)
by using the convolution integral (1.2.4), that is,

g(y) =
∫ +∞

−∞
fZ(z)fW (y − z) dz. (1.2.6)

Furthermore, since fW (w) takes two different forms according to the value of w

(see 1.2.2), the pdf of the normal-Laplace f(y) can be obtained by

g(y) = g1(y) + g2(y) (1.2.7)

where g1(y) and g2(y) are defined as

g1(y) =
∫ +∞

y

1
σ

√
2π

e− 1
2( z−μ

σ )2 αβ

α + β
eβ(y−z) dz, if y ≤ z (1.2.8)

and

g2(y) =
∫ y

−∞
1

σ
√

2π
e− 1

2( z−μ
σ )2 αβ

α + β
e−α(y−z) dz, if y > z (1.2.9)

The calculation of each part of g(y) could be relatively complicated. Reed (2004)
managed to express it in terms of normal distribution related functions.

Let us first evaluate the term g1(y). By multiplying and dividing the pdf of a
standard normal distribution, we may write (1.2.8) as

g1(y) = αβ

α + β

∫ +∞

y

1
σ

1√
2π

e− 1
2( z−μ

σ )2

eβ(y−z) dz

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫+∞

y
1
σ

1√
2π

e− 1
2( z−μ

σ )2

eβ(y−z) dz

1√
2π

e− 1
2( y−μ

σ )2

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫+∞

y
1
σ

1√
2π

e− 1
2( z−μ

σ )2+β(y−z) dz

1√
2π

e− 1
2( y−μ

σ )2 .

Multiply the denominator and numerator of the right-hand side by e− (μ−βσ2)2

2σ2 ,
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then we obtain

g1(y) = αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫+∞

y
1
σ

1√
2π

e− 1
2( z−μ

σ )2−βze− (μ−βσ2)2

2σ2 dz

1√
2π

e− 1
2( y−μ

σ )2−βye− (μ−βσ2)2
2σ2

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫+∞

y
1
σ

1√
2π

e− z2−2z(μ−βσ2)+(μ−βσ2)2

2σ2 dz

1√
2π

e− y2−2y(μ−βσ2)+(μ−βσ2)2
2σ2

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫+∞

y
1
σ

1√
2π

e
− 1

2

[
z−(μ−βσ2)

σ

]2

dz

1√
2π

e
− 1

2

[
y−(μ−βσ2)

σ

]2 . (1.2.10)

Let φ(x) denote the pdf of the standard normal distribution X ∼ N(0, 1)

φ(x) = 1√
2π

e− 1
2 x2

.

Then
φ
(

x − μ

σ

)
= 1√

2π
e− 1

2(x−μ
σ )2

,

and

φ

[
x − (μ − βσ2)

σ

]
= 1√

2π
e

− 1
2

[
x−(μ−βσ2)

σ

]2

.

In addition, let Φ
(

x−μ
σ

)
denote the cdf of the normal distribution X ∼ N(μ, σ2),

therefore the cdf of the normal distribution X ∼ N(μ − βσ2, σ2) can be denoted
by Φ

[
x−(μ−βσ2)

σ

]
, i.e.

Φ
[

x − (μ − βσ2)
σ

]
=
∫ x

−∞
1
σ

1√
2π

e
− 1

2

[
t−(μ−βσ2)

σ

]2

dt.

Thus, we may rewrite (1.2.10) as

g1(y) = αβ

α + β
φ
(

y − μ

σ

) 1 − Φ
[

y−(μ−βσ2)
σ

]
φ
[

y−(μ−βσ2)
σ

] . (1.2.11)
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The second term g2(y) (1.2.9) can be found in a similar way, we have

g2(y) =
∫ y

−∞
1

σ
√

2π
e− 1

2( z−μ
σ )2 αβ

α + β
e−α(y−z) dz

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫ y

−∞
1
σ

1√
2π

e− 1
2( z−μ

σ )2

e−α(y−z) dz

1√
2π

e− 1
2( y−μ

σ )2

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫ y

−∞
1
σ

1√
2π

e− 1
2( z−μ

σ )2−α(y−z) dz

1√
2π

e− 1
2( y−μ

σ )2 .

Multiplying the denominator and numerator of the right-hand side by e− (μ+ασ2)2

2σ2 ,
we obtain

g2(y) = αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫ y

−∞
1
σ

1√
2π

e− 1
2( z−μ

σ )2+αze− (μ+ασ2)2

2σ2 dz

1√
2π

e− 1
2( y−μ

σ )2+αye− (μ+ασ2)2
2σ2

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫ y

−∞
1
σ

1√
2π

e− z2−2z(μ+ασ2)+(μ+ασ2)2

2σ2 dz

1√
2π

e− y2−2y(μ+ασ2)+(μ+ασ2)2
2σ2

.

Let z = −t, then we have dz = −dt.

g2(y) = αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫−y

+∞ − 1
σ

1√
2π

e− (−t)2+2t(μ+ασ2)+(μ+ασ2)2

2σ2 dt

1√
2π

e− y2−2y(μ+ασ2)+(μ+ασ2)2
2σ2

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫+∞

−y
1
σ

1√
2π

e
− 1

2

[
t+(μ+ασ2)

σ

]2

dt

1√
2π

e
− 1

2

[
y−(μ+ασ2)

σ

]2

= αβ

α + β

1√
2π

e− 1
2( y−μ

σ )2
∫+∞

−y
1
σ

1√
2π

e
− 1

2

[
t+(μ+ασ2)

σ

]2

dt

1√
2π

e
− 1

2

[
(μ+ασ2)−y

σ

]2 . (1.2.12)

We may also express (1.2.12) in terms of the cdf and the pdf of a standard normal
distribution,

g2(y) = αβ

α + β
φ
(

y − μ

σ

) 1 − Φ
[

(μ+ασ2)−y
σ

]
φ
[

(μ+ασ2)−y
σ

] . (1.2.13)
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From (1.2.7), the pdf of a normal-Laplace random variable can be obtained by
adding the terms (1.2.11) and (1.2.13)

g(y) = αβ

α + β
φ
(

y − μ

σ

)⎧⎨
⎩

1 − Φ
[

(μ+ασ2)−y
σ

]
φ
[

(μ+ασ2)−y
σ

] +
1 − Φ

[
y−(μ−βσ2)

σ

]
φ
[

y−(μ−βσ2)
σ

]
⎫⎬
⎭ . (1.2.14)

Moreover, we shall write Y ∼ NL(α, β, μ, σ2) to indicate that Y follows a NL
distribution.

Reed (2004) proposes to express (1.2.14) by using the Mills ratio R(z), which
is defined by

R(z) = Φc(z)
φ(z) = 1 − Φ(z)

φ(z) ,

where Φc is the complementary cumulative distribution function of the standard
normal random variable. The complementary cumulative distribution function is
also called the survival function and denoted by S(z).

Recall that the Mills ratio is also related to the hazard rate h(z) which is
defined as

h(z) = f(z)
S(z) ,

so that
R(z) = 1

h(z) .

A convenient way to express (1.2.14) in terms of R(z) is

g(y) = αβ

α + β
φ
(

y − μ

σ

)
[R(ασ − (y − μ)/σ) + R(βσ + (y − μ)/σ)]. (1.2.15)

Alternatively, since an asymmetric Laplace distribution can be represented
as a difference between two independent exponential distributions (Kotz et al.,
2001), the normal-Laplace distribution can also be derived based on the following
decomposition

Y
d= μ + σZ + E1/α − E2/β, (1.2.16)

where Z denotes a standard normal random variable, independent of two indepen-
dent standard exponential random variables, E1 and E2, with probability density
function f(x) = e−x, x > 0.

This definition is useful to calculate the moment generating function of the
NL distribution or to simulate NL random variables.
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1.2.2. Properties

Reed (2004) proved some important properties of the general NL(α, β, μ, σ2)
distribution. However, some of them were not shown in detail. We will prove
them here.

(1) Cumulative distribution function
As the normal-Laplace random variable Y results from the convolution of

independent normally distributed Z and Laplace distributed W , i.e. Y = Z +W ,
its cdf can be found in the following way:
Assume that for a particular value of z, the conditional probability of Y ≤ y

given Z = z can be written as

Pr(Y ≤ y|Z = z) = Pr(W ≤ y − z) = FW (y − z).

Integrating over z, we have

Pr(Y ≤ y) =
∫ +∞

−∞
Pr(Y ≤ y|Z = z)fZ(z)dz.

Thus, substituting from the previous step, the cdf of Y can be calculated with

GY (y) =
∫ +∞

−∞
FW (y − z)fZ(z)dz. (1.2.17)

Considering the cdf (1.2.3) of the asymmetric Laplace distribution, the cdf of
the NL distribution is calculated in two parts, y ≤ z and y > z:

GY (y) = G1(y) + G2(y),

where

G1(y) =
∫ +∞

y

α

α + β
eβ(y−z) 1

σ
√

2π
e− 1

2( z−μ
σ )2

dz, if y ≤ z (1.2.18)

and

G2(y) =
∫ y

−∞

(
1 − β

α + β
e−α(y−z)

)
1

σ
√

2π
e− 1

2( z−μ
σ )2

dz, if y > z. (1.2.19)

We notice that G1(y) = β−1g1(y), from (1.2.11) we obtain directly

G1(y) = α

α + β
φ
(

y − μ

σ

) 1 − Φ
[

y−(μ−βσ2)
σ

]
φ
[

y−(μ−βσ2)
σ

] .
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If we write it under the Mills ratio form, we get

G1(y) = α

α + β
φ
(

y − μ

σ

)
R(βσ + (y − μ)/σ). (1.2.20)

Let us now deal with the second part F2(w); the first term could be written
as the cdf of a normal distribution, that is,

G2(y) =
∫ y

−∞
1

σ
√

2π
e− 1

2( z−μ
σ )2

− β

α + β
e−α(y−z) 1

σ
√

2π
e− 1

2( z−μ
σ )2

dz

= Φ
(

y − μ

σ

)
− β

α + β

∫ y

−∞
e−α(y−z) 1

σ
√

2π
e− 1

2( z−μ
σ )2

dz

= Φ
(

y − μ

σ

)
− α−1g2(y).

The second term of the above expression can be simplified by using (1.2.12),
so we obtain

G2(y) = Φ
(

y − μ

σ

)
− β

α + β
φ
(

y − μ

σ

) 1 − Φ
[

(μ+ασ2)−y
σ

]
φ
[

(μ+ασ2)−y
σ

] ,

and we can also write

G2(y) = Φ
(

y − μ

σ

)
− β

α + β
φ
(

y − μ

σ

)
R(ασ − (y − μ)/σ). (1.2.21)

Combining the two parts (1.2.20 and 1.2.21) of GY (y), we obtain the cdf of
the normal-Laplace distribution

GY (y) = Φ
(

y − μ

σ

)
− φ

(
y − μ

σ

)
βR(ασ − (y − μ)/σ) − αR(βσ + (y − μ)/σ)

α + β
.

(1.2.22)

(2) Two special limiting cases
As α → ∞, the distribution exhibits a fatter tail than the normal distribution

only in the lower tail and the pdf is

g(y) = βφ
(

y − μ

σ

)
R(βσ + (y − μ)/σ).

As β → ∞, the distribution has a fatter tail than the normal only in the
upper tail. The pdf becomes

g(y) = αφ
(

y − μ

σ

)
R(ασ − (y − μ)/σ).

For example, when β → ∞, from (1.2.16) the asymmetric Laplace distribution
becomes an exponential distribution with parameter α, so Y

d= μ + σZ + E1/α
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which explains why Y has a fatter tail than the normal distribution.
(3) Moment generating function (mgf)

From the representation (1.2.1) we may derive the mgf of NL(α, β, μ, σ2) as
the product of the mgfs of its normal and Laplace components.
The mgf of Z ∼ N(μ, σ2) is given by

MZ(t) = exp(μt + σ2t2/2). (1.2.23)

Furthermore, from (1.2.2) the mgf of an asymmetric Laplace distribution can be
calculated as

MW (t) = E(etw)

= αβ

α + β

∫ ∞

0
etwe−αw dw + αβ

α + β

∫ 0

−∞
etweβw dw

= αβ

α + β

∫ ∞

0
etw−αw dw + αβ

α + β

∫ 0

−∞
etw+βw dw

= αβ

α + β

∫ ∞

0
etw−αw dw + αβ

α + β

etw+βw

t + β

∣∣∣∣∣
0

−∞

= αβ

α + β

∫ ∞

0
e(t−α)w dw + αβ

(α + β)(β + t) .

Let w = −s, then we have dw = −ds. Thus,

MW (t) = αβ

α + β

∫ −∞

0
−e−(t−α)s ds + αβ

(α + β)(β + t)

= αβ

α + β

∫ 0

−∞
e(α−t)s ds + αβ

(α + β)(β + t)

= αβ

α + β

e(α−t)s

α − t

∣∣∣∣∣
0

−∞
+ αβ

(α + β)(β + t)

= αβ

(α + β)(α − t) + αβ

(α + β)(β + t)

= αβ

(α − t)(β + t) , (1.2.24)

where −β < t < α.
By theorem 1.1.1, the mgf of the normal-Laplace distribution is obtained as

the product of (1.2.23) and (1.2.24),

MY (t) = αβ exp(μt + σ2t2/2)
(α − t)(β + t) , −β < t < α. (1.2.25)

(4) Mean, variance and cumulants
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From the mgf, we can derive the mean and the variance of the NL distribution
by evaluating the first two cumulants κ1 and κ2. First, the cumulant generation
function of Y is equal to

KY (t) = log MY (t) = log α+log β+μt+σ2t2/2−log(α−t)−log(β+t), −β < t < α.

Then,
d

dt
log MY (t) = μ + σ2t + 1/(α − t) − 1/(β + t).

By proposition 1.1.1,

E(Y ) = κ1 = d

dt
log MY (t)

∣∣∣∣∣
t=0

= μ + 1/α − 1/β.

Similarly, we have
d2

dt2 log MY (t) = σ2 + 1/(α − t)2 + 1/(β + t)2.

The variance of Y can be expressed as

V ar(Y ) = κ2 = d2

dt2 log MY (t)
∣∣∣∣∣
t=0

= σ2 + 1/α2 + 1/β2.

In order to find higher order cumulants, let us rewrite

log MY (t) = μt + σ2t2/2 − log(1 − t/α) − log(1 + t/β), −β < t < α;

By using the Taylor’s series expansion of

− log(1 − t/α) =
∞∑

n=1
(n − 1)!tn/αnn!

and
− log(1 + t/β) =

∞∑
n=1

(−1)n(n − 1)!tn/βnn!,

we obtain the higher order cumulants of the NL distribution for n > 2,

κn = (n − 1)!(α−n + (−1)nβ−n), n > 2. (1.2.26)

Particularly, the third and fourth order cumulants are

κ3 = 2/α3 − 2/β3 and κ4 = 6/α4 + 6/β4.

(5) Closure under a linear transformation
Reed (2007) defined the generalized normal-Laplace (GNL) distribution as

the distribution of a random variable with characteristic function

φ(t) =
[

αβ exp(μit − σ2t2/2)
(α − it)(β + is)

]ρ

,
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where α, β, ρ and σ are positive parameters and −∞ < μ < ∞.
He showed that the normal-Laplace distribution is a special case of the gener-

alized normal-Laplace, GNL(α, β, μ, σ2, ρ), distribution with ρ = 1, and that the
family of GNL distributions is closed under linear transformations. Therefore,
the NL distribution also satisfies this property. Precisely, if Y ∼ NL(α, β, μ, σ2)
and a > 0 and b is any constant, according to the moment generating function of
the NL distribution (1.2.25), the mgf of aY + b can be written as,

MaY +b(t) = E[e(aY +b)t] = ebtMY (at) = ebt αβeμat+σ2a2t2/2

(α − at)(β + at) .

Dividing the terms α − at and β + at in denominator and α and β in numerator
by a, we obtain,

MaY +b(t) = (α/a)(β/a)e(μa+b)t+σ2a2t2/2

(α/a − t)(β/a + t) .

Therefore,
aY + b ∼ NL(α/a, β/a, aμ + b, a2σ2).

For a < 0, in order to make sure that the first two parameters are positive, we
need to rewrite,

MaY +b(t) = (−α/a)(−β/a)e(μa+b)t+σ2a2t2/2

(t − α/a)(−β/a − t) = (−α/a)(−β/a)e(μa+b)t+σ2a2t2/2

(−β/a − t)(−α/a + t) .

So,
aY + b ∼ NL(−β/a, −α/a, aμ + b, a2σ2).

(6) The NL distribution is infinitely divisible
Reed and Jorgensen (2004) rewrite the mgf of Y as

MY (t) =
⎡
⎣exp(μ

n
t + σ2

2n
t2)
(

α

α − t

)1/n
(

β

β + t

)1/n
⎤
⎦

n

for any integer n > 0; note that the term in square brackets is the mgf of a ran-
dom variable formed as Z + G1 − G2, where Z, G1 and G2 are independent and
Z ∼ N

(
μ
n
, σ2

n

)
and G1 and G2 have gamma distributions Γ(1/n, α) and Γ(1/n, β)

respectively. As Y can be expressed as an independent sum of n GNL random
variables for arbitrary integer n, Y is infinitely divisible.

(7) The symmetric NL distribution
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If we set α = β, from (1.2.15), we have

g(μ + x) = α

2 φ
(

x

σ

)
[R(ασ − x/σ) + R(ασ + x/σ)]

= α

2 φ
(

−x

σ

)
[R(ασ + x/σ) + R(ασ − x/σ)] = g(μ − x).

Therefore, the pdf of the NL distribution is symmetric about the line x = μ. The
pdf and cdf of the symmetric NL distribution become respectively

g(y) = α

2 φ
(

y − μ

σ

)
[R(ασ − (y − μ)/σ) + R(ασ + (y − μ)/σ)]

and

G(y) = Φ
(

y − μ

σ

)
− φ

(
y − μ

σ

)
R(ασ − (y − μ)/σ) − R(ασ + (y − μ)/σ)

2 .

1.3. The double Pareto-lognormal distribution

Since the double Pareto-lognormal (dPlN) distribution is related to the normal-
Laplace distribution, we will derive the probability density function of the dPlN
distribution from the NL distributionin in this section. Moreover, some of its
properties will also be presented.

1.3.1. Definition of the double Pareto-lognormal distribution

The double Pareto-lognormal distribution is related to the normal-Laplace
distribution in the same way as the lognormal is related to the normal, i.e. a
random variable X follows the double Pareto-lognormal distribution if log X ∼
NL(α, β, μ, σ2). Therefore, the pdf of X can be obtained from the pdf of the
normal-Laplace distribution (1.2.7),

f(x) =
∣∣∣∣∣∂ log x

∂x

∣∣∣∣∣ g(log x) = 1
x

g(log x) = 1
x

g1(log x) + 1
x

g2(log x), x ≥ 0. (1.3.1)
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From g1(y), the first component of f(x) can be derived as follows

1
x

g1(log x) = αβ

α + β

1
x

1√
2π

e− 1
2( log x−μ

σ )2
∫+∞

log x
1
σ

1√
2π

e
− 1

2

[
z−(μ−βσ2)

σ

]2

dz

1√
2π

e
− 1

2

[
log x−(μ−βσ2)

σ

]2

= αβ

α + β

1
x

e− 1
2( log x−μ

σ )2 1 − Φ
[

log x−(μ−βσ2)
σ

]

e
− 1

2

[
log x−(μ−βσ2)

σ

]2

= αβ

α + β

1
x

e
1
2

[
log x−(μ−βσ2)

σ

]2
− 1

2( log x−μ
σ )2

Φc

[
log x − (μ − βσ2)

σ

]

= αβ

α + β

1
x

eβ log x−βμ+ 1
2 β2σ2Φc

(
log x − μ + βσ2

σ

)

= αβ

α + β
xβ−1e−βμ+ 1

2 β2σ2Φc

(
log x − μ + βσ2

σ

)
. (1.3.2)

Similarly, from g2(y),

1
x

g2(log x) = αβ

α + β

1
x

1√
2π

e− 1
2( log x−μ

σ )2
∫+∞

− log x
1
σ

1√
2π

e
− 1

2

[
t+(μ+ασ2)

σ

]2

dt

1√
2π

e
− 1

2

[
(μ+ασ2)−log x

σ

]2

Let t = −z, then we have dt = −dz.

= αβ

α + β

1
x

1√
2π

e− 1
2( log x−μ

σ )2
∫−∞

log x − 1
σ

1√
2π

e
− 1

2

[
−z+(μ+ασ2)

σ

]2

dz

1√
2π

e
− 1

2

[
(μ+ασ2)−log x

σ

]2

= αβ

α + β

1
x

1√
2π

e− 1
2( log x−μ

σ )2
∫ log x

−∞
1
σ

1√
2π

e
− 1

2

[
z−(μ+ασ2)

σ

]2

dz

1√
2π

e
− 1

2

[
(μ+ασ2)−log x

σ

]2

= αβ

α + β

1
x

e− 1
2( log x−μ

σ )2 Φ
[

log x−(μ+ασ2)
σ

]

e
− 1

2

[
(μ+ασ2)−log x

σ

]2

= αβ

α + β

1
x

e
1
2

[
μ−log x+ασ2)

σ

]2
− 1

2( log x−μ
σ )2

Φ
[

log x − (μ + ασ2)
σ

]

= αβ

α + β

1
x

e
2(μ−log x)ασ2+α2σ4

2σ2 Φ
[

log x − (μ + ασ2)
σ

]

= αβ

α + β

1
x

e−α log x+αμ+ 1
2 α2σ2Φ

(
log x − μ − ασ2

σ

)
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= αβ

α + β
x−α−1eαμ+ 1

2 α2σ2Φ
(

log x − μ − ασ2

σ

)
. (1.3.3)

By adding the two components (1.3.2) and (1.3.3) of (1.3.1), we obtain

f(x) = αβ

α + β

[
x−α−1eαμ+ 1

2 α2σ2Φ
(

log x − μ − ασ2

σ

)
+

xβ−1e−βμ+ 1
2 β2σ2Φc

(
log x − μ + βσ2

σ

)]
.

(1.3.4)

Reed and Jorgensen (2004) gave a convenient way to express the previous pdf, as
follows:

f(x) = αβ

α + β

[
x−α−1A(α, μ, σ)Φ

(
log x − μ − ασ2

σ

)
+

xβ−1A(−β, μ, σ)Φc

(
log x − μ + βσ2

σ

)]
,

(1.3.5)

where
A(θ, μ, σ) = exp(θμ + θ2σ2/2).

This distribution is defined as the double Pareto-lognormal distribution which
is written as

X ∼ dP lN(α, β, μ, σ2)

to indicate that a random variable X follows this distribution with the four
parameters α, β, μ and σ2, where α, β, σ2>0 and μ ∈ R. From (1.2.16) a
dP lN(α, β, μ, σ2) random variable can be represented as

X = eY d= eμ+σZ eE1/α

eE2/β
. (1.3.6)

We may find the distribution of a random variable of the form V = eE/θ,
where E is a standard exponential variable,

fV (v) = θ

v
fE(θ log v) = θ

v
e−θ log v = θv−θ−1.

Clearly V follows a Pareto distribution, hence (1.3.6) can be rewritten as

X
d= UV1/V2, (1.3.7)

where U, V1 and V2 are independent, with U lognormal, i.e. log U ∼ N(μ, σ2),
and with V1 and V2 following Pareto distributions with parameters α and β re-
spectively, with pdf

f(v) = θv−θ−1, v > 1
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where θ = α or θ = β respectively.
Alternatively, Reed and Jorgensen (2004) write

X
d= UQ,

where Q is the ratio of the above Pareto random variables, so that Q has pdf (see
Reed and Jorgensen 2004)

fQ(q) =

⎧⎪⎨
⎪⎩

αβ
α+β

qβ−1, for 0 < q ≤ 1
αβ

α+β
q−α−1, for q > 1.

(1.3.8)

The distribution with pdf (1.3.8) is called a double Pareto distribution. Therefore
the reason why the distribution of X is named double Pareto-lognormal distribu-
tion is that a such distribution results from the product of independent double
Pareto and lognormal components.

To generate pseudo-random variables from the dP lN(α, β, μ, σ2) distribution,
one can exponentiate the pseudo-random variables generated from NL(α, β, μ, σ2)
using (1.2.16).

1.3.2. Properties

Based on the work of Reed and Jorgensen (2004), the double Pareto-lognormal
distribution has the following properties.

(1) Cumulative distribution function
The cdf of X ∼ dP lN(α, β, μ, σ2) can be written as FX(x) = GY (log x) or

FX(x) = G1(log x) + G2(log x), where the cdf of the NL distribution GY is given
by (1.2.22) and

G1(log x) =
∫ +∞

log x

α

α + β
eβ(log x−z) 1

σ
√

2π
e− 1

2( z−μ
σ )2

dz, if log x ≤ z (1.3.9)

and

G2(log x) =
∫ log x

−∞

(
1 − β

α + β
e−α(log x−z)

)
1

σ
√

2π
e− 1

2( z−μ
σ )2

dz, if log x > z.

(1.3.10)
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The calculation of G1(log x) is similar to g1(log x) in section (1.3.1); after moving
the constant from the integral, we can easily obtain

G1(log x) = α

α + β

1√
2π

e− 1
2( log x−μ

σ )2
∫+∞

log x
1
σ

1√
2π

e
− 1

2

[
z−(μ−βσ2)

σ

]2

dz

1√
2π

e
− 1

2

[
log x−(μ−βσ2)

σ

]2

= α

α + β
xβe−βμ+ 1

2 β2σ2Φc

(
log x − μ + βσ2

σ

)
. (1.3.11)

The first term of G2(log x) will be the cdf a log-normal distribution and the second
term can be easily found in the same way as g2(log x), that is

G2(log x) = Φ
(

log x − μ

σ

)
− β

α + β

1√
2π

e− 1
2( log x−μ

σ )2
∫+∞

− log x
1
σ

1√
2π

e
− 1

2

[
t+(μ+ασ2)

σ

]2

dt

1√
2π

e
− 1

2

[
(μ+ασ2)−log x

σ

]2

= Φ
(

log x − μ

σ

)
− β

α + β
x−αeαμ+ 1

2 α2σ2Φ
(

log x − μ − ασ2

σ

)
.

(1.3.12)

Then the cdf of X ∼ dP lN(α, β, μ, σ2) can be expressed by combining G1(log x)
and G2(log x),

FX(x) = Φ
(

log x − μ

σ

)
− 1

α + β

[
βx−αA(α, μ, σ)Φ

(
log x − μ − ασ2

σ

)
+

αxβA(−β, μ, σ)Φc

(
log x − μ + βσ2

σ

)]
,

(1.3.13)

where
A(θ, μ, σ) = exp(θμ + θ2σ2/2).

(2) The limiting forms when α → ∞ or β → ∞
As α → ∞, the pdf of the dPlN distribution has the limiting form

f1(x) = βxβ−1A(−β, μ, σ)Φc

(
log x − μ + βσ2

σ

)
. (1.3.14)

As β → ∞, the pdf becomes

f2(x) = αx−α−1A(α, μ, σ)Φ
(

log x − μ − ασ2

σ

)
. (1.3.15)

Colombi (1990) considered this distribution, which he called the Pareto-lognormal,
as a model for income distributions.
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Clearly the dP lN(α, β, μ, σ2) pdf (1.3.5) can be represented as a mixture of
the above pdfs

f(x) = α

α + β
f1(x) + β

α + β
f2(x).

(3) Power-law tail behaviour
The dP lN(α, β, μ, σ2) distribution exhibits power-law in both tails.

If x → ∞, f(x) ∼ αA(α, μ, σ)x−α−1, and if x → 0, f(x) ∼ βA(−β, μ, σ)xβ−1.

The cdf FX(x) and the survival function SX(x) = 1 − FX(x) also exhibit
power-law tail behaviour:

If x → ∞, SX(x) ∼ αA(α, μ, σ)x−α, and if x → 0, FX(x) ∼ βA(−β, μ, σ)xβ.

However, the limiting case f1(x) exhibits only lower-tail power-law behaviour:
as x → 0, f1(x) ∼ βA(−β, μ, σ)xβ−1; the pdf f2(x) exhibits only upper-tail power-
law behaviour: as x → ∞, f2(x) ∼ αA(α, μ, σ)x−α−1.

(4) Hazard rate.
Also known as the force of mortality, it is denoted hX(x) and defined as the

ratio of the density fX(x) and the survival function SX(x). That is,

hX(x) = fX(x)
SX(x)

=
αβ

α+β

[
x−α−1A(α, μ, σ)Φ

(
log x−μ−ασ2

σ

)
+ xβ−1A(−β, μ, σ)Φc

(
log x−μ+βσ2

σ

)]
1 − FX(x) ,

(1.3.16)

where FX(x) is expressed as (1.3.13).
According to the power-law tail behaviour of the dPlN distribution, as x → ∞,

hX(x) ∼ αA(α, μ, σ)x−α−1

αA(α, μ, σ)x−α
= 1

x
.

Then as x → ∞, hX(x) → 0.

(5) Mean, variance and moments.
Recall that if Y = log X follows a NL distribution, then X = eY follows a

dPlN distribution. The kth raw moment of the dPlN distribution can be easily
obtained by (1.2.25) the moment generating function of the NL distribution.

μ′
k = E(Xk) = E[(eY )k] = MY (k) = αβ exp(μk + σ2k2/2)

(α − k)(β + k) . (1.3.17)
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Note that μ′
k exists only for k < α. Since the kth raw moment does not always

exist, the moment generating function of the dPlN distribution does not exist. If
k = 1, the mean (for α > 1) can be expressed as

E(X) = αβ exp(μ + σ2/2)
(α − 1)(β + 1) , (1.3.18)

while the variance (for α > 2) is

V ar(X) = E(X2) − E(X)2 = αβe2μ+2σ2

(α − 2)(β + 2) − α2β2e2μ+σ2

(α − 1)2(β + 1)2

= αβe2μ+σ2

(α − 1)2(β + 1)2

[
(α − 1)2(β + 1)2eσ2

(α − 2)(β + 2) − αβ

]
, (1.3.19)

and the coefficient of variation (for α > 2) is

CV =

√
V ar(X)
E(X) =

(αβ)1/2eμ+σ2/2

(α−1)(β+1)

[
(α−1)2(β+1)2eσ2

(α−2)(β+2) − αβ
]1/2

αβeμ+σ2/2

(α−1)(β+1)

=
[

(α − 1)2(β + 1)2eσ2

αβ(α − 2)(β + 2) − 1
]1/2

. (1.3.20)

The coefficient of variation is independent of μ, increases with σ2 and decreases
with α and β.

(6) Closure under power-law transformation
The dPlN family of distributions is closed under the power-law transformation,

i.e. if X ∼ dP lN(α, β, μ, σ2), then for constants c > 0, d ∈ R, cXd will also follow
a dPlN distribution. To prove this fact, we only need to show that log(cXd)
follows a normal-Laplace distribution. First of all,

log(cXd) = log c + d log X.

Since log c ∈ R, we must have c > 0. Its moment generating function can be
expressed as,

Mlog c+d log X(t) = E[e(log c+d log x)t] = et log cMlog X(dt).

We know that Y = log X ∼ NL(α, β, μ, σ2). Then, from the mgf of the NL
distribution (1.2.25),

Mlog c+d log X(t) = et log cMY (dt) = et log c αβeμdt+σ2d2t2/2

(α − dt)(β + dt) ,
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then dividing both of the numerator and the denominator by d2, if d > 0, we
have

Mlog(cXd)(t) = (α/d)(β/d)e(μd+log c)t+σ2d2t2/2

(α/d − t)(β/d + t) .

So,
log(cXd) ∼ NL(α/d, β/d, dμ + log c, d2σ2).

Clearly,
cXd ∼ dP lN(α/d, β/d, dμ + log c, d2σ2). (1.3.21)

If d < 0, in order to make sure that the first two parameters are positive, we need
to rewrite the moment generating function of log(cXd) as,

Mlog(cXd)(t) = (−α/d)(−β/d)e(μd+log c)t+σ2d2t2/2

(−α/d + t)(−β/d − t) = (−α/d)(−β/d)e(μd+log c)t+σ2d2t2/2

(−β/d − t)(−α/d + t) .

Thus,
log(cXd) ∼ NL(−β/d, −α/d, dμ + log c, d2σ2).

We obtain
cXd ∼ dP lN(−β/d, −α/d, dμ + log c, d2σ2). (1.3.22)

(7) Application in finance
Let ij denote the daily stock price return and i denote compound daily return
over the n-day period, we have

1 + i =
n∏

j=1
(1 + ij)1/n.

Then the logarithmic stock price return can be expressed as

log(1 + i) = 1
n

n∑
j=1

log(1 + ij).

If 1 + ij ∼ dP lN(α, β, μj, σ2
j ) and 1 + ij are independent random variables with

common α and β, then

log(1 + ij) ∼ NL(α, β, μj, σ2
j ).

As mentioned in section 1.2.2, we have

log(1 + ij) ∼ GNL(α, β, μj, σ2
j , 1).

Since the sum of n independent GNL(α, β, μj, σ2
j , ρ) random variables also follows

a GNL distribution (see Groparu-Cojocaru and Doray, 2013) as

GNL(α, β,
n∑

j=1
μj/n,

n∑
j=1

σ2
j /n, nρ).
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We write the sum of the logarithmic daily returns as
n∑

j=1
log(1 + ij) ∼ GNL(α, β,

n∑
j=1

μj/n,
n∑

j=1
σ2

j /n, n).

The GNL distribution is closed under linear transformation (Reed, 2007), i.e. if
W ∼ GNL(α, β, μ, σ2, ρ) then for constants a, b > 0, a+bW ∼ GNL(α/b, β/b, bμ+
a/ρ, b2σ2, ρ).
Thus, we obtain

log(1 + i) = 1
n

n∑
j=1

log(1 + ij) ∼ GNL(nα, nβ,
n∑

j=1
μj/n2,

n∑
j=1

σ2
j /n3, n).



Chapter 2

ESTIMATION OF PARAMETERS

In this chapter, we propose two methods to estimate the parameters of the
double Pareto-lognormal distribution. One is the method of moments which is
relatively easy to implement but tends to give poor results. The other method is
the maximum likelihood estimation which is more difficult to use but has superior
statistical properties and is considerably more flexible.

2.1. Method of moments

For this method, we assume that all n observations are independent and from
the same parametric distribution. In particular, let the cumulative distribution
function be given by

F (x|θ), θT = (θ1, θ2, ..., θp),

where θT is the transpose of θ. That is, θ is a column vector containing the
p parameters to be estimated. Furthermore, let μ′

k(θ) = E(Xk) be the kth raw
moment, and let us assume the kth moment exists. For a sample of n independent
observations from this random variable, let μ̂′

k = 1
n

n∑
j=1

xk
j be the empirical estimate

of the kth moment.
Definition 2.1.1. (Klugman et al. 2008) Suppose μk(θ) exists, a method-of-
moments estimate of θ is any solution of the p equations

μ′
k(θ) = μ̂′

k, k = 1, 2, ..., p.

The motivation for this estimator is that it produces a model that has the
same first p raw moments as the data (as represented by the empirical distribu-
tion). The traditional definition of the method of moments uses positive integers
for the moments. Arbitrary negative or fractional moments could also be used.
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In the case of the double Pareto-lognormal distribution, in order to calculate
the estimates of the four parameters α̂, β̂, μ̂ and σ̂2, we need to solve the equations
using the first four raw moments given by (1.3.17):

μ′
1 = αβ exp(μ + σ2/2)

(α − 1)(β + 1) ,

μ′
2 = αβ exp(2μ + 2σ2)

(α − 2)(β + 2) ,

μ′
3 = αβ exp(3μ + 9σ2/2)

(α − 3)(β + 3) ,

μ′
4 = αβ exp(4μ + 8σ2)

(α − 4)(β + 4) .

Unfortunately, we cannot find the method of moments estimates of the four pa-
rameters analytically. If the given data are assumed to be from the dPlN dis-
tribution, one could, in principle, obtain these estimators numerically. However,
if the raw moments of order α or greater do not exist, for example, if α ≤ 4 or
α = 1, 2, 3, then the direct use of the dPlN moments may result in poor estimates.
Therefore having first log-transformed the data and using the normal-Laplace dis-
tribution to find the method of moments estimates is recommended.

We can use the sample cumulants instead of the sample raw moments to com-
pute the method of moments estimates, because these two methods will result in
the same estimators. In the case of the log-transformed data following a symmet-
ric normal-Laplace distribution (α = β), we need to calculate the estimates of
three parameters α̂=β̂, μ̂ and σ̂2, therefore the sample cumulants κ1, κ2 and κ4

will be set equal to their theoretical counterparts. Note that the third cumulant
is equal to zero in this case.
If X follows a symmetric normal-Laplace distribution, consider the following equa-
tions:

κ1 = E(X) = μ (2.1.1)

κ2 = V ar(X) = σ2 + 2α−2 (2.1.2)

κ4 = 12α−4. (2.1.3)

Using the first equation, we obtain

μ = κ1.
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From equation (2.1.3) and the fact that α > 0, we have

α =
(12

κ4

)1/4
.

Replace α in equation (2.1.2) by the previous expression

κ2 = σ2 +
(12

κ4

)−1/2
,

then
σ2 = κ2 −

(12
κ4

)−1/2
.

Thus, the estimates of the three parameters are

α̂ =
(12

κ4

)1/4

μ̂ = κ1

and
σ̂2 = κ2 −

√
κ4

12 ,

where κ1, κ2 and κ4 are sample cumulants obtained from the log-transformed
data.

For the general case, the log-transformed data following a normal-Laplace
distribution with four parameters to estimate, the first four sample cumulants
must be set equal to their theoretical counterparts, that is to say,

κ1 = μ + α−1 − β−1 (2.1.4)

κ2 = σ2 + α−2 + β−2 (2.1.5)

κ3 = 2α−3 − 2β−3 (2.1.6)

κ4 = 6α−4 + 6β−4. (2.1.7)

In order to find α̂ and β̂, one only needs to solve the equations (2.1.6) and (2.1.7).
Then μ̂ and σ̂2 can be obtained from the first two equations, as

μ̂ = κ1 − α̂−1 + β̂−1 and σ̂2 = κ2 − α̂−2 − β̂−2.

There is no analytical solution for method of moments estimates in this case
and numerical methods must be used. Reed and Jorgensen (2004) recommended
the use of the method of moments only to get starting values in the iterative
procedure for finding maximum likelihood estimates. The method of maximum
likelihood will be introduced in the next section.
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2.2. Method of maximum likelihood

Estimation by the method of moments is often easy to do, but these estimators
tend to perform poorly mainly because they use few features of the data, rather
than the entire set of observations. It is important to use as much information as
possible when the population has a heavy right tail.

There are a variety of estimators based on individual data points. All of
them are implemented by setting an objective function and then determining the
parameter values that optimize that function. The only one used here is the
maximum likelihood estimator.

To define our maximum likelihood estimator, let the data set consist of n

events A1, ..., An, where Ai is whatever was observed for the ith observation.
Further assume that the event Ai results from observing the random variable
Xi. The random variables X1, ...Xn are assumed identically independently dis-
tributed. And their distribution depends on the same parameter vector θ.

Definition 2.2.1. (Klugman et al. 2008) The likelihood function is

L(θ) =
n∏

i=1
Pr(Xi ∈ Ai|θ)

and the maximum likelihood estimate of θ is the vector that maximizes the likeli-
hood function.

However it is often easier to maximize the logarithm of the likelihood function,
the log-likelihood function denoted as l(θ) = log L(θ).

When there is no truncation and no censoring, and the value of each obser-
vation is recorded, the likelihood function and the log-likelihood function can be
written as:

L(θ) =
n∏

i=1
fXi

(xi|θ), l(θ) =
n∑

i=1
log fXi

(xi|θ).

There is no guarantee that the function has a maximum at eligible parameter
values. Often, it is not possible to analytically maximize the likelihood function
(by setting partial derivatives equal to zero). Numerical approaches are usually
needed.
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Given independent and identically distributed observations assumed to be
from the dP lN(α, β, μ, σ2), one could either fit the dPlN to data x1, x2, ..., xn

or fit the NL to y1 = log x1, ..., yn = log xn. The maximum likelihood estimates
(MLEs) are the same in both cases. If we use the dPlN pdf, the likelihood function
is

L =
n∏

i=1

αβ

α + β

[
x−α−1

i eαμ+ 1
2 α2σ2Φ

(
log xi − μ − ασ2

σ

)
+

xβ−1
i e−βμ+ 1

2 β2σ2Φc

(
log xi − μ + βσ2

σ

)]
.

So the log-likelihood function is of the form

l = n log αβ − n log(α + β) +
n∑

i=1
log
[
x−α−1

i eαμ+ 1
2 α2σ2Φ

(
log xi − μ − ασ2

σ

)
+

xβ−1
i e−βμ+ 1

2 β2σ2Φc

(
log xi − μ + βσ2

σ

)]
.

(2.2.1)

The partial derivative with respect to certain parameters requires the derivative
of the cumulative distribution function of the normal distribution. The result-
ing equation cannot be solved analytically. However the above function can be
maximized numerically using the method of moments estimates as initial values.

More generally, when the log-transformed data is fitted to a normal-Laplace
distribution, the likelihood function is

L =
n∏

i=1

αβ

α + β
φ
(

yi − μ

σ

)
[R(ασ − (yi − μ)/σ) + R(βσ + (yi − μ)/σ)],

which yields

l = n log α + n log β − n log(α + β) +
n∑

i=1
log φ

(
yi − μ

σ

)

+
n∑

i=1
log[R(ασ − (yi − μ)/σ) + R(βσ + (yi − μ)/σ)].

(2.2.2)

This is also a complicated function, one may maximize it numerically by using the
method of moments estimates (e.g. with the first four NL cumulants) as starting
values.

In general, it is not easy to determine the variance of complicated estimators
such as the maximum likelihood estimator. However, it is possible to approximate
the variance of the maximum likelihood estimator using the observed information
matrix.
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Theorem 2.2.1. (Klugman et al. 2008) Assume that the pdf f(x; θ) satisfies the
following conditions for θ in an interval containing the true value:

(i) log f(x; θ) is three times differentiable with respect to θ.

(ii)
∫ ∂

∂θ
f(x; θ)dx = 0. This implies that the derivative may be taken outside the

integral and so we are just differentiating the constant 1.

(iii)
∫ ∂2

∂θ2 f(x; θ)dx = 0. This is the same concept as for the second derivative.

(iv) −∞ <
∫

f(x; θ) ∂2

∂θ2 log f(x; θ)dx < 0. This establishes that the indicated
integral exists and that the location where the derivative is zero is a maximum.

(v) There exists a function H(x) such that
∫

H(x)f(x; θ)dx < ∞ with | ∂3

∂θ3 log f(x; θ)| <

H(x). This makes sure that the population is not overrepresented with regard to
extreme values.

Then the following results holds:

(a) As n → ∞, the probability that the likelihood equation [L′(θ) = 0] has a
solution goes to 1.

(b) As n → ∞, the distribution of the maximum likelihood estimator θ̂n converges
to a normal distribution with mean θ and variance satisfying I(θ)V ar(θ̂n) → 1,
where

I(θ) = −nE

[
∂2

∂θ2 log f(x; θ)
]

= −n
∫

f(x; θ) ∂2

∂θ2 log f(x; θ)dx

= nE

⎡
⎣( ∂

∂θ
log f(x; θ)

)2
⎤
⎦ = n

∫
f(x; θ)

(
∂

∂θ
log f(x; θ)

)2

dx.

Therefore [I(θ)]−1 is a useful approximation for V ar(θ̂n). The quantity I(θ)
is called Fisher’s information. Note that the results stated above assume that the
sample consists of independent and identically distributed random observations.
A more general version of the result uses the logarithm of the likelihood function,

I(θ) = −nE

[
∂2

∂θ2 l(θ)
]

= E

⎡
⎣( ∂

∂θ
l(θ)
)2
⎤
⎦ .
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If there is more than one parameter, the only change is that the vector of
maximum likelihood estimates now has an asymptotic multivariate normal dis-
tribution. The covariance matrix of this distribution is obtained from the inverse
of the matrix with (r, s)th element,

I(θ)rs = −E

[
∂2

∂θs∂θr

l(θ)
]

= −nE

[
∂2

∂θs∂θr

log f(X; θ)
]

= E

[
∂

∂θr

l(θ) ∂

∂θs

l(θ)
]

= nE

[
∂

∂θr

log f(X; θ) ∂

∂θs

log f(X; θ)
]

.

The first expression on each line is always correct. The second expression
assumes that the likelihood is the product of n identical densities. This matrix is
called the information matrix. To obtain this matrix, it is necessary to take both
derivatives and expected values. This is not always easy to do (for example, in the
case of the dPlN distribution). A way to avoid this problem is to replace the pdf
by its empirical version. A sample-based version of the Fisher information would
be to plug in the observed values rather than calculating the expected value. So
the information matrix can be approximated by

I(θ)rs = −
[

∂2

∂θs∂θr

l(θ)
]

,

which is called observed information. In practice, since the true value of θ is not
known, this matrix is evaluated at the maximum likelihood estimate θ̂n to give
I(θ̂n).



Chapter 3

DOUBLE PARETO-LOGNORMAL
DISTRIBUTION WITH COVARIATES

In extreme value analysis for environmental variables, the statistics of ex-
tremes, especially those distributions with heavy upper tails, may be very useful.
Additionally, the incorporation of covariates into the analysis makes the resultant
models both more accurate and physically more realistic.

In the property and casualty insurance industry, the distribution of loss claims
related to extreme environmental events, e.g. a cyclone or a flood, tend to be
heavy-tailed. However, the distribution of the underlying geophysical phenome-
non may not necessarily be heavy-tailed (Reiss and Thomas 2007).

In this chapter, we will fit the distribution of a loss random variable associated
with extreme events by the double Pareto-lognormal distribution with an under-
lying covariate, which may require a transformation to use. We assume that the
covariate does not necessarily exhibit a heavy tail behaviour or a linear relation
with the loss random variable. The technique of maximum likelihood will also be
adopted to estimate parameters.

3.1. The model

Consider a random variable Y with observed data y1, ..., yn (e.g. loss caused
by fires, hurricanes or floods) assumed to follow the double Pareto-lognormal
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distribution with density function f(y), such that

f(y) = αβ

α + β

[
y−α−1A(α, μ, σ)Φ

(
log y − μ − ασ2

σ

)
+

yβ−1A(−β, μ, σ)Φc

(
log y − μ + βσ2

σ

)]

where
A(θ, μ, σ) = exp(θμ + θ2σ2/2).

Suppose that a covariate X is also available, say with observed data x1, ..., xn (e.g.
floor space, wind speed or precipitation). Since we know that the distribution of
the underlying geophysical phenomenon may be heavy-tailed, we suggest using
the Box-Cox transformation to transform the covariate in order to simplify the
model. Given a value of covariates, say x, the transformed data can be written
as

x(λ) =

⎧⎪⎨
⎪⎩

xλ−1
λ

, if λ 	= 0
log x, if λ = 0.

Then the conditional distribution f(y|x) (or f(y|x(λ))) remains a dPlN distri-
bution, but now with parameters that possibly depend on x (or x(λ)). We also
assume that there is no linear relation between Y and X.

To reduce the number of parameters, we assume that only μ is a function of
x. The conditional distribution of Y given x can be written as

f(y|x) = αβ

α + β

[
y−α−1A(α, μ(x), σ)Φ

(
log y − μ(x) − ασ2

σ

)
+

yβ−1A(−β, μ(x), σ)Φc

(
log y − μ(x) + βσ2

σ

)]
,

(3.1.1)

where
μ(x) = a + bx(λ) and A(θ, μ(x), σ) = eθμ(x)+θ2σ2/2.

Therefore, we have to deal with the unknown parameters λ, α, β, σ, a and b. The
transformation parameter λ could be predetermined by using the method intro-
duced in Appendix A. The estimation of other parameters may be carried out by
means of maximum likelihood estimates.

As mentioned in chapter 1, Reed (2004) defined the normal-Laplace dis-
tribution (NL) as the convolution of a normal distribution N(μ, σ2) and an
asymmetric Laplace distribution L(α, β). Therefore, the normal-Laplace variable
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W ∼ NL(μ, σ2, α, β) can be represented as

W
d= N(μ, σ2) + L(α, β).

With a covariate x and one parameter μ, depending on x, W can be redefined as

(W |X = x) d= N(μ(x), σ2) + L(α, β).

Since the double Pareto-lognormal distribution can be considered as an “expo-
nentiated normal-Laplace distribution”, i.e. Y = eW ∼ dP lN(μ, σ2, α, β), the
estimates of the parameters could be obtained by using the normal-Laplace dis-
tribution with log-transformed data log Y . Hence the conditional density function
of W given x will be a normal-Laplace density function with μ as a linear function
of a and b,

g(w|x) = αβ

α + β
φ

(
y − μ(x)

σ

)
[R(ασ − (w − μ(x))/σ) + R(βσ + (w − μ(x))/σ)],

(3.1.2)
where

μ(x) = a + bx(λ).

3.2. Estimation

Consider a data set y1, ..., yn (e.g. loss caused by fires, hurricanes or floods)
and covariates x1, ..., xn (e.g. floor space, wind speed or precipitation); we try to
fit the above model to our data. This involves a maximization of six unknown
parameters, λ, α, β, σ, a and b. We propose the following steps to estimate these
parameters:

•Step 1. Fit the double Pareto-lognormal distribution to the data y1, ..., yn,
using first the method of moments estimates of α, β, σ and μ. If there is no real
solution to the equations established by (1.3.17), use the log-transformed data
log y1, ..., log yn in order to estimate the parameters with higher order cumulants
of the normal-Laplace distribution.

•Step 2. Use the method of moments estimates as starting values for the
maximum likelihood estimation procedure based on the log-likelihood function
(2.2.2). A chi-square test may be applied to check the goodness of fit of the dis-
tribution. Note that we do not take account into covariates at this point.
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•Step 3. Estimate the parameter λ by using the covariate data x = x1, ..., xn.
The estimation of λ is detailed in Appendix A.

•Step 4. Assuming that only the parameter μ depends on the covariate x, the
log-likelihood function of the dPlN distribution is

l = n log αβ − n log(α + β) +
n∑

i=1
log
[
y−α−1

i A(α, μ(x), σ)Φ
(

log yi − μ(x) − ασ2

σ

)
+

yβ−1
i A(−β, μ(x), σ)Φc

(
log yi − μ(x) + βσ2

σ

)]

(3.2.1)

where
μ(x) = a + bx(λ0) and A(θ, μ(x), σ) = eθμ(x)+θ2σ2/2.

If one uses log-transformed data w1 = log y1, ..., wn = log yn, the log-likelihood
function is

l = n log α + n log β − n log(α + β) +
n∑

i=1
log φ

(
wi − μ(x)

σ

)

+
n∑

i=1
log[R(ασ − (wi − μ(x))/σ) + R(βσ + (wi − μ(x))/σ)],

(3.2.2)

where μ(x) = a + bx(λ0).
Both log-likelihood equations have to be maximized numerically. We may use
maximum likelihood estimates of α, β and σ obtained in step 2 as starting values.
The selection of starting values of a and b could be arbitrary, for example, we
could try a = −1 and b = 1 at first. Note that a likelihood ratio test may be used
to determine whether adding a covariate to our model is necessary.

In the next chapter, we will illustrate some potential applications of our model
in finance and property and casualty insurance industry.



Chapter 4

NUMERICAL ILLUSTRATIONS

In this chapter, the potential application of the double Pareto-lognormal dis-
tribution in finance and in property and casualty insurance will be discussed.
First, stock price returns will be fitted to the dPlN model. Then, we fit the
Danish fire loss data to the dPlN distribution with the floor space as a covariate.
Some useful statistical tests will also be conducted in order to analyse how well
the model fits the data.

4.1. Application of the model in finance

The logarithmic returns of a stock price r(t) are defined as

r(t) = log(Pt+1) − log(Pt) = log(Pt+1/Pt), (4.1.1)

where Pt is the price of a stock at time t. Empirical evidence (see Rydberg, 2000)
shows that logarithmic returns tend to follow a distribution with a fatter tail than
that of a normal distribution. Therefore the normal-Laplace distribution may be
a good alternative to analyse logarithmic returns. Alternatively, the stock price
returns, Pt+1/Pt could be fitted to the double Pareto-lognormal model.

4.1.1. Description of the data set

Our data set corresponds to daily adjusted closing prices of Bank of Montreal
(BMO) ordinary stock from 4 January 2010 to 1 June 2012 (Finance.yahoo.com,
2013). The adjusted closing price is employed to examine historical returns be-
cause it gives an accurate representation of the firm’s equity value beyond the
simple market price. It accounts for all corporate actions such as stock splits,
dividends or distributions and rights offerings. Let Y denote the random variable
of daily stock price returns of BMO, Pt+1/Pt, and log Y denote the daily loga-
rithmic returns for the BMO stock price. In order to insure that the stock price
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returns are computed at equally-spaced moments in time, the Monday returns
are not taken into account.

daily price returns for BMO
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Figure 4.1. Histogram of daily stock price returns.

Daily logrithmic returns for BMO stock price
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Figure 4.2. Histogram of daily logarithmic returns.

First a histogram is sketched to visualize Y , the stock price returns (482 ob-
servations). Figure 4.1 shows that stock price returns may follow an asymmetric
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distribution and this distribution does not seem to be too heavy-tailed. Figure
4.2 gives an histogram of daily logarithmic returns; one can notice that its form
is similar to that of daily price returns.

Table 4.1 provides some descriptive statistics produced with R. The coefficient
of skewness indicates that the distribution is left-skewed. We also observe the
kurtosis is smaller than that of the normal distribution. The 5 lowest observations
are 0.9288, 0.9354, 0.9422, 0.9456 and 0.9491.

Table 4.1. Statistical summary for daily price returns for BMO.

Mean Std Dev Skewness Kurtosis 25th 50th 75th 95th

0.99989 0.03097 -0.48954 2.66232 0.99235 1.00028 1.00878 1.02186

4.1.2. Fit of stock price returns

One may first fit the daily price returns to the dPlN distribution directly
by using the method of moments to estimate the four parameters. Setting the
first four raw moments equal to their theoretical counterparts gives the following
equations:

αβ exp(μ + σ2/2)
(α − 1)(β + 1) = 0.99989

αβ exp(2μ + 2σ2)
(α − 2)(β + 2) = 1.00000

αβ exp(3μ + 9σ2/2)
(α − 3)(β + 3) = 1.00035

αβ exp(4μ + 8σ2)
(α − 4)(β + 4) = 1.00092

As no real solutions could be found with the NSolve function in MATHEMAT-
ICA, we fitted the normal-Laplace distribution to the log-transformed data, i.e.
the daily logarithmic returns. We set the four sample cumulants κ1, κ2, κ4 and
κ5 of the logarithmic returns (2.1.4, 2.1.5, and 1.2.26) equal to their theoretical
counterparts in order to find MMEs of the four parameters, that is,

μ + α−1 − β−1 = −0.00023

σ2 + α−2 + β−2 = 0.00023

6α4 + 6β4 = 1.56106 × 10−7
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24α−5 − 24β−5 = −4.53149 × 10−9

Using the NSolve function of MATHEMATICA, we found the method of mo-
ments estimates presented in Table 4.2. Note that no real solutions could be
obtained with κ3 and κ4. These estimates were used as starting values for finding

Table 4.2. NL (using MME) fitted to the daily logarithmic returns.

MME α β μ σ

Estimators 114.2750 83.9290 0.0029 0.0037

the maximum likelihood estimates (MLEs). After maximizing the log-likelihood
function (2.2.2) in R (Geyer, 2003), we obtain the MLEs listed in Table 4.3. We

Table 4.3. NL (using MLE) fitted to the daily logarithmic returns.

MLE Log-likelihood α β μ σ

Estimators -1360.555 117.2474 90.8765 0.0023 0.0056

Standard Errors N/A 13.65076 7.69729 0.00114 0.00137

also computed an approximation to the asymptotic variance-covariance matrix of
the parameter estimates numerically by the observed Fisher information. This
matrix is defined as⎛

⎜⎜⎜⎜⎜⎝

V ar(α̂) Cov(α̂, β̂) Cov(α̂, μ̂) Cov(α̂, σ̂)
Cov(β̂, α̂) V ar(β̂) Cov(β̂, μ̂) Cov(β̂, σ̂)
Cov(μ̂, α̂) Cov(μ̂, β̂) V ar(μ̂) Cov(μ̂, σ̂)
Cov(σ̂, α̂) Cov(σ̂, β̂) Cov(σ̂, μ̂) V ar(σ̂)

⎞
⎟⎟⎟⎟⎟⎠ ,

where α̂, β̂, μ̂ and σ̂ are the maximum likelihood estimates.

We obtain the following matrix using R⎛
⎜⎜⎜⎜⎜⎝

186.3432347 12.31974781 0.00999598 0.01154041
12.31974781 59.248246677 −0.004202135 0.004770564
0.00999598 −0.004202135 0.0000013025 0.0000002627
0.01154041 0.004770564 0.0000002627 0.0000018859

⎞
⎟⎟⎟⎟⎟⎠ .
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Figure 4.3 suggests that the normal-Laplace distribution fits the logarithmic
returns data well. Visually, the fitted pdf (the red line) is a left-skewed distribu-
tion which is similar to the form of the empirical pdf (histogram). To test the
goodness-of-fit of our model, a chi-square test will be conducted.

NL fitted to the daily logarithmic returns for BMO stock
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Figure 4.3. Normal-Laplace distribution fitted to daily logarith-
mic returns.

The chi-square test provides us a measure of how close the model distribution
function is to the empirical distribution function; the following hypotheses will
be tested:
H0: The daily logarithmic returns come from the normal-Laplace model.
H1: The data do not come from such a model.
The chi-square test begins with the selection of k − 1 arbitrary values, −∞ =
c0 < c1 < ... < ck = ∞. Let Ei = n(G(ci) − G(ci−1)) be the number of expected
observations in the interval, where n is the sample size and G is the cdf of the
fitted NL distribution (1.2.22). Let Oi = n(Fn(ci) − Fn(ci−1)) be the number of
observations in the interval, where Fn is the empirical cdf. The test statistic is
then

χ2 =
k∑

i=1

(Ei − Oi)2

Ei
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The critical value for this test comes from the chi-square distribution with degrees
of freedom equal to the number of classes k minus 1 minus the number of estimated
parameters. The null hypothesis H0 is not rejected if the test statistic is smaller
than the critical value.
We set boundaries at -0.05, -0.03, -0.02, -0.01, -0.005, 0, 0.005, 0.01, 0.02, 0.03,
0.05 and infinity. The results are presented in Table 4.4. The test statistic

Table 4.4. Chi-square test.

i Interval from ci−1 to ci Observed Oi Expected Ei

1 (-∞, -0.05] 5 2.68354

2 (-0.05, -0.03] 9 13.83799

3 (-0.03, -0.02] 27 24.47228

4 (-0.02, -0.01] 59 60.44447

5 (-0.01, -0.005] 55 55.62738

6 (-0.005, 0] 80 74.66608

7 (0, 0.005] 79 80.64882

8 (0.005, 0.01] 60 66.81625

9 (0.01, 0.02] 77 70.10146

10 (0.02, 0.03] 21 22.57411

11 (0.03, 0.05] 9 9.15687

12 (0.05, ∞) 1 0.97075

χ2 is then 5.8960. With seven degrees of freedom (12 rows minus 1 minus 4
estimated parameters), the critical value for the test at the 0.05 significance level
is 14.0671. Since the test statistic is smaller than the critical value, the normal-
Laplace distribution is a good fit to the logarithmic returns data, thus the original
stock price returns for BMO can be fitted with the double-Pareto lognormal
model. Note that in assessing whether a given distribution is suited to a data set,
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other statistical hypothesis tests such as Kolmogorov-Smirnov test and Anderson-
Darling test, can also be used.

4.2. Application of the model in property and casualty

insurance

In the property and casualty insurance industry, an insurer must compensate
the loss after the payment of an appropriate premium. Actuaries are first of all
interested in estimating this net premium which is the mean of the total claim
amount for an individual or a portfolio of risks. The double Pareto-lognormal
distribution should be useful in modelling the distribution of loss claims of var-
ious phenomena, which exhibit a large potential risk, such as floods, fires and
hurricanes.

This chapter will discuss the application of the dPlN distribution with an
underlying covariate. First we will describe our data set, and then fit the dPlN
model to the data; the covariate will be examined and employed to explain the
parameter μ of the model. The method of moments and maximum likelihood
method can be used to estimate the parameters; some statistical tests will be
applied to detect the goodness-of-fit of the model.

4.2.1. Description of the data set

Our data set (Ramlau-Hansen, 1988) consists of 793 fire insurance claims of a
Danish insurance company in 1981 (mesured in Danish krone) and the floor space
(measured in square meters) associated to the corresponding claim. Let Y de-
note the random variable of the loss claim amount, and X denote the floor space
covariate. First we will use some graphic tools, such as a histogram, to visualize
our data set. Note that the observations of Y are already sorted in increasing
order.

Figure 4.4 illustrates the histograms by regrouping the loss claim amount Y

greater than 100000 in several classes. One can observe a very long tail on the
right side of the graphic. If we log-transform the data (say W = log Y ), the
magnitude of the data values is reduced significantly. The resulting histogram
(Figure 4.5) does not resemble a normal distribution, and shows an asymmetric
shape.



45

Danish fire loss claims

claims

D
en

si
ty

0 500000 1000000 2000000 3000000

0e
+0

0
1e
−0

6
2e
−0

6
3e
−0

6
4e
−0

6
5e
−0

6

Figure 4.4. Histogram of Danish fire loss claims greater than 100000.
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Figure 4.5. Histogram of log-transformed Danish fire loss claims.
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Table 4.5 provides descriptive statistics produced with R; one may observe
extreme values from the 99th percentile, and the 5 highest observations are
5228877.54, 598389.35, 688498.22, 777477.01 and 3408712.49. Figure 4.6 shows

Table 4.5. Statistical summary for Danish fire loss claims.

Mean Std Dev 25th 50th 75th 95th 99th

22232.31 135568.13 1143.14 2676.09 9200.43 69553.66 326847.09

the empirical density of the floor space.
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Figure 4.6. Histogram of floor space.

Consider a simple linear regression model, log yi = β0 + β1xi + εi, where
log yi and xi are observations of the log-transformed random variable log Y and
covariate x respectively, β0 and β1 are unknown constants, and the residual error
is εi. We may examine whether there is a linear relation between the dependent
variable Y and the explanatory variable x.
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Figure 4.7. Scatter plot: log-transformed fire losses vs floor space.
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Figure 4.7 gives a scatter plot of log-transformed fire losses against floor space,
and a regression line is added in order to visualize the fitted simple linear regres-
sion model. One can observe that a few points are situated on the regression line.

Before accepting a linear regression model it is important to evaluate its suit-
ability at explaining the data. One of the many ways to do this is to visually
examine the residuals. If the model is appropriate, then the residual errors should
be random and normally distributed.

According to the histogram of residuals (Figure 4.8), we observe a right-tailed
distribution, which suggests that the residuals are not normally distributed. We
can also assess normality of residuals with a Q-Q plot. Recall that if the residuals
are normally distributed, the points in the normal Q-Q (quantile-quantile) plot
will approximately lie on a straight line. From a standard Q-Q plot (Figure 4.9),
we notice that there is a strong deviation from a straight line in the upper and
lower tails, which implies that the residual errors are not normally distributed.
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Figure 4.9. Normal Q-Q plot of residuals.
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Therefore, we can conclude that the simple linear regression model with nor-
mal errors is not appropriate for the log-transformed data log Y with a covariate
x.

4.2.2. Application of the model with a covariate

4.2.2.1. Fit of the fire losses

We will try to fit the double Pareto-lognormal distribution to the fire loss
claims and consider the floor space as an explanatory variable of one parameter
of the fitted distribution. Note that we also fit the fire loss claim variable Y

to the lognormal distribution and the inverse Gaussian distribution, but both
models are not appropriate (see Appendix B). We will now fit Y to the dPlN
distribution directly; the method of moment estimate (MME) will be applied to
find the four parameters by setting the first four raw moments equal to their
theoretical counterparts. We may try to solve the following equations with the
NSolve function of MATHEMATICA:

μ′
1 = 22232.31

μ′
2 = 18849817544

μ′
3 = 5.197414 × 1016

μ′
4 = 1.714522 × 1023

Unfortunately, we cannot find numerical solutions with these equations. Recall
that the kth raw moment exists only for k < α. It is possible that the estimate
of α is smaller than 4, so that no real solution can be found. In this case, we
have to get the random variable Y log-transformed, then fit W = log Y with the
normal-Laplace distribution. We could set four sample cumulants κ1, κ2, κ4 and
κ5 of W (2.1.4, 2.1.5, 2.1.7 and 1.2.26) equal to their theoretical counterparts in
order to find MMEs of the four parameters, that is,

μ + α−1 − β−1 = 8.19761

σ2 + α−2 + β−2 = 2.52576

6α−4 + 6β−4 = 3.99545

24α−5 − 24β−5 = −5.72187

Using MATHEMATICA, after eliminating all negative values, we could find
the following method of moments estimates of the four parameters as presented
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in Table 4.6. Note that we replace κ3 by κ5 because no real solution is obtained
with the third cumulant.

Table 4.6. NL (using MME) fitted to the log-transformed data.

MME α β μ σ

Estimators 1.48286 1.21486 8.34638 1.18043

We may use the MMEs as starting values for finding the maximum likelihood
estimates (MLEs); after maximizing the log-likelihood function (2.2.2) in R, we
obtain the MLEs listed in Table 4.7. Figure 4.10 allows us to visualize whether

Table 4.7. NL (using MLE) fitted to the log-transformed data.

MLE Log-likelihood α β μ σ

Estimators -1448.182 0.68739 10.86952 6.83502 0.81916

the normal-Laplace distribution fits the log-transformed data well or not. Graph-
ically, the fitted pdf (the red line) is a right-skewed distribution without a heavy
tail, which resembles the form of the empirical pdf (histogram).
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NL fitted to the log−transformed fire loss claims
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Figure 4.10. Normal-Laplace fitted to log-transformed Danish
fire loss claims.

We will employ a chi-square test to check the goodness-of-fit of our model.
The following hypotheses will be tested:
H0: The data log Y come from the normal-Laplace distribution.
H1: The data log Y do not come from such model.

We establish boundaries at 5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10, 11, 12, 13, 15 and
infinity. The results appear in Table 4.8.

The χ2 test statistic is equal to 15.6690. With nine degrees of freedom (14
rows minus 1 minus 4 estimated parameters) the critical value for the test at the
0.05 significance level is 16.919. We conclude that the normal-Laplace distribution
provides an acceptable fit to the log-transformed data, thus the original fire loss
data can be fitted with the double-Pareto lognormal model.

4.2.2.2. Inclusion of an explanatory variable

The parameter μ will now be assumed to be a linear function of a and b,
μ = a + b log x (see Appendix A); if we use log-transformed data log Y , the log-
likelihood function with the form (3.2.2) must be maximized numerically. We
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Table 4.8. Chi-square test.

i Interval from ci−1 to ci Observed Oi Expected Ei

1 (-∞, 5] 2 2.3648

2 (5, 6] 32 33.0786

3 (6, 6.5] 54 55.0917

4 (6.5, 7] 91 91.2996

5 (7, 7.5] 134 116.2391

6 (7.5, 8] 103 118.3228

7 (8, 8.5] 84 101.5856

8 (8.5, 9] 79 78.1865

9 (9, 10] 108 97.6030

10 (10, 11] 63 49.3253

11 (11, 12] 23 24.8073

12 (12, 13] 13 12.4753

13 (13, 15] 6 9.4287

14 (15, ∞) 1 3.1916

may use maximum likelihood estimates of α, β and σ obtained in Table 4.7 as
starting values for the numerical procedure. We use -1 and 1 for the starting
values of a and b respectively. We obtain MLEs for the five parameters presented
in Table 4.9 and the log-likelihood function is maximized at -1442.099.

One may ask an interesting question: Is it necessary to include a covariate
to our double Pareto-lognormal model? As a matter of fact, we only need to
test whether the parameter b can be set equal to zero. A likelihood ratio test
could help us make this decision. Such a test will be conducted as follows; the
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Table 4.9. NL (using MLE) fitted to the log-transformed data
with a covariate.

MLE Log-likelihood α β a b σ

Estimators -1442.099 0.69706 9.20529 7.60455 -0.08160 0.81785

hypotheses are:
H0: The data Y come from the dPlN model (without a covariate) with b = 0.
H1: The data Y came from the dPlN model (with a covariate) with b 	= 0.
The test statistic is

T = 2(loglikelihood for alternative model − loglikelihood for null model).

The null hypothesis is rejected if T is greater than the critical value, which comes
from a chi-square distribution with degrees of freedom equal to the number of
free parameters in the model under the alternative hypothesis less the number of
free parameters in the model under the null hypothesis.

From Table 4.9, the maximized log-likelihood for the alternative model with
b̂ = −0.08160 is -1442.099, while the maximized log-likelihood for the null model
is -1448.182 (see Table 4.7). The test statistic is T = 2(−1442.099 + 1448.182) =
12.166. The difference between the number of free parameters of the model under
H1 and the model under H0 is one. For a chi-square distribution with one degree of
freedom, the critical value is 3.8415. Because 12.166 > 3.8415, the null hypothesis
is rejected. The probability that a chi-square random variable with one degree of
freedom exceeds 12.166 is nearly 0. This indicates strong support to reject the
null hypothesis in favor of the dPlN model with a covariate. Note that the dPlN
model already provides a good fit to the Danish fire loss data, however, our model
can be improved by including the floor space as a covariate.



Chapter 5

CONCLUSION

In this thesis, we review two new related distributions introduced by Reed
(2004): the normal-Laplace (NL) distribution and the double Pareto-lognormal
(dPlN) distribution and explore the possibility to extend the model with covari-
ates.

We show how to derive the NL distribution from the convolution of a nor-
mal distribution and a Laplace distribution, and review its properties studied in
the paper of Reed (2004). Based on the fact that the double Pareto-lognormal
distribution is related to the normal-Laplace distribution in the same way as the
lognormal is related to the normal distribution, we illustrate how the density
function of the dPlN distribution can be found by transforming a NL distributed
random variable. Several properties proposed by Reed and Jorgensen (2004) are
also reviewed and some of them are demonstrated in this thesis.

Besides, we use the methods of moments and maximum likelihood to estimate
the parameters of the double Pareto-lognormal distribution. To make the model
physically more realistic, we try to include an explanatory variable into our model
to create a better model. The Box-Cox power transformation can be employed to
utilize the explanatory variable data set. We also show how to estimate the pa-
rameters of the new model, relying on the original dPlN by maximum likelihood
estimation.

We give two examples to show the large potential of applications of the dou-
ble Pareto-lognormal distribution and our extended model to real financial and
insurance data sets. In the first example, we fit the dPlN distribution to daily
stock price returns for Bank of Montreal (BMO) on the New York Stock Exchange
(NYSE), and the goodness-of-fit of our model is confirmed by a chi-square test.



55

In the second example, we model Danish fire losses with the dPlN distribution
and consider the floor space as an explanatory variable of the parameter μ in the
dPlN distribution. A likelihood ratio test is conducted to justify the fact that the
model with a covariate gives a better fit than without it.

As mentioned in the work of Reed and Jorgensen (2004), the usefulness of
the double Pareto-lognormal distribution is shown for modeling incomes, particle
sizes, settlement sizes, oil-fields and stock price returns, etc. By incorporating
explanatory variables into the analysis, the dPlN distribution could be employed
to satisfactorily model rare events with potential underlying covariates, such as
flood with precipitation, hurricane with wind speed, fire loss claims with floor
space or even stock price returns with volume of trade. These other applications
of the model would be interesting to explore in further research.
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Appendix A

THE BOX-COX TRANSFORMATION

A.1. Definition

Many standard statistical procedures make the assumptions that the vari-
ables (or their error terms, more technically) are normally distributed, and the
variance of the variables remains constant over the observed range of some other
variables, i.e. homoscedasticity or homogeneity of variance. In situations where
these assumptions are seriously violated, most researchers may try to design a
new model that has important aspects of the original model and satisfies all the
assumptions, for example, by applying a proper transformation to the data or
filtering out some suspect data points which may be considered outlying.

In our model, we consider data transformations as appropriate tools that can
serve many functions in the quantitative analysis of data, including improving
normality of a distribution and equalizing variances to meet assumptions. There
are as many potential types of data transformations as there are mathematical
functions. Some of the more commonly-used traditional transformations include:
adding constants, square root, converting to logarithmic scales, inverting and
reflecting, etc. Note that all these potential transformations are members of
a class of transformation called power transformation. Tukey (1957) is often
credited with presenting the initial idea that transformations can be thought of
as a class or family of similar mathematical functions. He introduced a family of
power transformations from y to y(λ), for y > 0, such that the transformed values
are a monotonic function of the original values over some admissible range and
indexed by λ:

y(λ) =

⎧⎪⎨
⎪⎩

yλ, if λ 	= 0
log y, if λ = 0.

(A.1.1)
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This idea was modified by Box and Cox (1964) to take account of the discontinuity
at λ = 0,

y(λ) = yλ − 1
λ

, if λ 	= 0,

and at the point λ = 0, we can write

y(λ) = eλ log y − 1
λ

=
(1 + λ log y + 1

2λ2 log(y)2 + 1
6λ3 log(y)3 + ...) − 1

λ

= log y + 1
2λ log(y)2 + 1

6λ2 log(y)3 + ... = log y, if λ = 0.

Definition A.1.1. The Box-Cox transformation (Box and Cox 1964) can be de-
fined as :

y(λ) =

⎧⎪⎨
⎪⎩

yλ−1
λ

, if λ 	= 0
log y, if λ = 0.

(A.1.2)

where y > 0 and the transformation parameter λ can take any real values.
The function y(λ) defined in (A.1.2) is continuous at λ = 0.

Table A.1. Some traditional transformations in Box-Cox transformation

λ chosen Name of the transformation

λ = 2 Square transformation

λ = 1 No transformation needed

λ = 0.5 Square root transformation

λ = 0.33 Cube root transformation

λ = 0 Natural log transformation

λ = −0.5 Inverse square root transformation

λ = −1 Reciprocal (inverse) transformation

λ = −2 Inverse square transformation

This transformation represents a family of power transformations that incor-
porates and extends the traditional options (Osborne, 2010) to help researchers
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easily find the optimal normalizing transformation for a particular variable, elim-
inating the need to randomly try different transformations to determine the best
option (see Table A.1). Precisely, we may enumerate some of the transformations,

λ = 0.5, y(0.5) = 2(√y − 1);
λ = 1, y(1) = y − 1;
λ = 2, y(2) = y2−1

2 ;
λ = −0.5, y(−0.5) = 2(1 − 1√

y
);

λ = −1, y(−1) = 1 − 1
y
;

λ = −2, y(−2) = 1
2 − 1

2y2 .

Box and Cox (1964) originally envisioned this transformation as a solution for
simultaneously correcting normality, linearity and homoscedasticity. While this
transformation often improves all of these aspects of a distribution or analysis,
Sakia (1992) argued that it does not always accomplish these challenging goals.

A.2. Estimation of λ

Suppose that we observe an n × 1 vector of observations y = y1, ..., yn, and
that the appropriate linear model for the problem is specified by

E[y(λ)] = Xδ, (A.2.1)

where y(λ) = (y(λ)
1 , ..., y(λ)

n ) is the vector of transformed data, X is an observed
design matrix, and δ a vector of unknown parameters associated with the trans-
formed observations.

We assume that for some unknown λ, the transformed observations y
(λ)
i (i =

1, ..., n) are independently and normally distributed with constant variance υ2,
and with expectations (A.2.1). The probability density function for the vector
y(λ) can be written as

f(y(λ)) =
exp(− 1

2υ2 (y(λ) − Xδ)′(y(λ) − Xδ))
(2πυ2)n

2
.

The pdf for the untransformed observations y is obtained by multiplying the
normal density by the Jacobian of the transformation J(λ, y), which is also the
likelihood in relation to the original observations, that is

L(δ, υ2, λ) = f(y|δ, υ2, λ) =
exp(− 1

2υ2 (y(λ) − Xδ)′(y(λ) − Xδ))
(2πυ2)n

2
J(λ, y), (A.2.2)
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where

J(λ, y) =
n∏

i=1

∣∣∣∣∣dy
(λ)
i

dyi

∣∣∣∣∣ =
n∏

i=1
yλ−1

i .

From (A.2.2), the log-likelihood can be derived as

l(δ, υ2, λ) = −n

2 log 2π − n

2 log υ2 − 1
2υ2 (y(λ) − Xδ)′(y(λ) − Xδ) + log J(λ, y).

(A.2.3)
By partial derivation, the maximum likelihood estimate of υ2 can be easily found

dl

dυ
= (y(λ) − Xδ)′(y(λ) − Xδ)/υ3 − n/υ = 0

Thus, for given λ, the estimate of υ2 is denoted

υ̂2(λ) = (y(λ) − Xδ)′(y(λ) − Xδ)/n = S(λ)/n (A.2.4)

where S(λ) is the residual sum of squares in the analysis of variance of y(λ).
Substituting υ̂2(λ) into the likelihood equation, we only need to maximize the
log-likelihood, except for a constant,

l(λ) = −1
2n log υ̂2(λ) + (λ − 1)

n∑
i=1

log yi. (A.2.5)

Then we can plot the maximized log-likelihood lmax(λ) against λ for a trial series
of values of λ. From this plot the maximizing value of λ̂ may be read off and we
can obtain an approximate 100(1 − α) per cent confident region as well. Note
that all these could be done by the MASS package in R.

A.3. Numerical example

In this section, we will use the Box-Cox transformation just introduced to try
to normalize the floor space covariate in section 4.2.1.

The transformation parameter λ will be obtained by maximum likelihood
estimation. Using the function boxcox in the package MASS of R, Figure A.1
illustrates a plot of maximized log-likelihood (with likelihood function (A.2.3))
against a series of values of λ ranging from -1 to 1. From this graphic, one
can observe that the maximizing value λ̂ may be close to zero. Precisely, with
λ̂ = 0.0505, the log-likelihood (i. e. log L(x|δ, υ2, λ)) is maximized at -3155.917.
But the value 0 is also within the 95 per cent confidence region, thus we suggest
taking λ̂ = 0. According to definition A.1.1, the value 0 is equivalent to getting
the data log-transformed, i.e. x(λ) = log x. This is the transformation we will use
in Chapter 4 for the floor space, i.e. we will assume that μ(x) = a + b log x.
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Appendix B

FIT LOGNORMAL AND INVERSE
GAUSSIAN TO THE FIRE LOSS CLAIMS

B.1. Fit lognormal distribution

We will now fit lognormal distribution to the fire loss claim variable Y . Note
that the density function of a lognormal distribution with parameters μ ∈ R and
σ > 0 is

f(y) = 1
yσ

√
2π

exp
[−(log y − μ)2

2σ2

]
, y > 0.

If y1, ...yn are independent and identically distributed and assumed to follow the
lognormal distribution with the density function f(y), the likelihood function is

L =
(

1
σ

√
2π

)n n∏
i=1

(yi)−1 exp
[−∑n

i=1(log yi − μ)2

2σ2

]
,

the log-likelihood function is thus

l = −n log(σ
√

2π) −
n∑

i=1
yi −

∑n
i=1(log yi − μ)2

2σ2 . (B.1.1)

First, we apply the method of moment estimate in order to find the two param-
eters by setting the first two raw moments equal to their theoretical counterparts.
We may solve the following equations

μ′
1 = exp(μ + σ2/2) = 22232.31,

μ′
2 = exp(2μ + 2σ2) = 18872993734.

We find the following method of moments estimates of the two parameters as
presented in Table B.1.
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Table B.1. Log-normal (using MME) fitted to the Danish fire loss data.

MME μ σ

Estimators 8.18811 1.90851

We may use the MMEs as starting values for finding the maximum likelihood
estimates; after maximizing the log-likelihood function (B.1.1) in R, we obtain
the MLEs listed in Table B.2.

Table B.2. Log-normal (using MLE) fitted to the Danish fire loss data.

MLE Log-likelihood μ σ

Estimators 7993.298 8.19761 1.58927

Then, we will employ a chi-square test to check the goodness-of-fit of the log-
normal model. The following hypotheses will be tested:
H0: The data Y come from the lognormal distribution.
H1: The data Y do not come from such model.

To make the test comparable with the log-transformed data, we establish
boundaries at e5, e6, e6.5, e7, e7.5, e8, e8.5, e9, e10, e11, e12, e13, e15 and infinity.
The results appear in Table B.3.

The χ2 test statistic is equal to 243.4494. With eleven degrees of freedom
(14 rows minus 1 minus 2 estimated parameters) the critical value for the test at
the 0.05 significance level is 19.675. We conclude that the null hypothesis must
be rejected, thus the original fire loss data cannot be fitted with the lognormal
model.
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Table B.3. Chi-square test.

i Interval from ci−1 to ci Observed Oi Expected Ei

1 (0, e5] 2 17.5333

2 (e5, e6] 32 48.5762

3 (e6, e6.5] 54 47.0691

4 (e6.5,e7] 91 65.6880

5 (e7, e7.5] 134 83.1001

6 (e7.5, e8] 103 95.2980

7 (e8, e8.5] 84 99.0679

8 (e8.5, e9] 79 93.3576

9 (e9, e10] 108 141.5071

10 (e10, e11] 63 70.9364

11 (e11,e12] 23 24.2320

12 (e12, e13] 13 5.6379

13 (e13, e15] 6 0.9891

14 (e15, ∞) 1 0.0074

B.2. Fit inverse Gaussian distribution

We will now fit the fire loss claim variable Y to the inverse Gaussian distribu-
tion. The density function of a log-normal distribution with positive parameters
μ and θ is

f(y) =
(

θ

2πy3

)1/2

exp
[
−θ(y − μ)2

2μ2y

]
, 0 < y < ∞.
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If y1, ...yn are independent and identically distributed and assumed to follow the
inverse Gaussian distribution, the likelihood function is

L =
(

θ

2π

)n/2 n∏
i=1

1
y

3/2
i

exp
(

− θ

2μ2

n∑
i=1

yi + nθ

μ
− θ

2

n∑
i=1

1
yi

)
,

and the log-likelihood function is

l = n

2 log
(

θ

2π

)
− 3

2

n∑
i=1

log yi − θ

2μ2

n∑
i=1

yi + nθ

μ
− θ

2

n∑
i=1

1
yi

. (B.2.1)

The method of moment estimate will be applied to find the two parameters
by setting the mean and the variance equal to their theoretical counterparts. We
may solve the following equations

μ′
1 = μ = 22232.31,

V ar(Y ) = μ3/θ = 18378718062.

We find the following method of moments estimates of the two parameters as
presented in Table B.4.

Table B.4. Inverse Gaussian (using MME) fitted to the Danish
fire loss data.

MME μ θ

Estimators 22232.31 597.9139

We may use the MMEs as starting values for finding the maximum likelihood
estimates; after maximizing the log-likelihood function (B.2.1) in R, we obtain
the MLEs listed in Table B.5.

Table B.5. Inverse Gaussian (using MLE) fitted to the Danish
fire loss data.

MLE Log-likelihood μ θ

Estimators 7951.285 22232.31 1561.589

We also employ a chi-square test to assess the goodness-of-fit of our model.
The following hypotheses will be tested:
H0: The data Y come from the inverse Gaussian distribution.
H1: The data Y do not come from such model.
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As the previous section, we establish boundaries at e5, e6, e6.5, e7, e7.5, e8,
e8.5, e9, e10, e11, e12, e13, e15 and infinity. The results appear in Table B.6.

The χ2 test statistic is equal to 172.5658. With eleven degrees of freedom
(14 rows minus 1 minus 2 estimated parameters) the critical value for the test
at the 0.05 significance level is 19.675. The chi-square test suggests that the null
hypothesis should be rejected, therefore the fire loss data cannot be fitted with
the inverse Gaussian distribution.

Table B.6. Chi-square test.

i Interval from ci−1 to ci Observed Oi Expected Ei

1 (0, e5] 2 1.0034

2 (e5, e6] 32 40.7748

3 (e6, e6.5] 54 64.8796

4 (e6.5,e7] 91 91.1422

5 (e7, e7.5] 134 101.8204

6 (e7.5, e8] 103 98.7364

7 (e8, e8.5] 84 87.7436

8 (e8.5, e9] 79 73.8593

9 (e9, e10] 108 107.7482

10 (e10, e11] 63 65.6022

11 (e11,e12] 23 36.6221

12 (e12, e13] 13 17.1942

13 (e13, e15] 6 5.8670

14 (e15, ∞) 1 0.0065



Appendix C

CODE R AND MATHEMATICA

C.1. Code R

C.1.1. Application to daily logarithmic returns for BMO stock

library(e1071)
library(Matrix)
library(car)
library(stats)
library(MASS)
library(graphics)
pr<-read.table("C:/***/BMO.txt",header=T)
y<-pr$PriceReturn
logy<-log(y);
logy<-logy[order(logy, decreasing = FALSE)];

#Graphic#
hist(y,probability=TRUE,xlab="stock price returns",main="daily price
returns for BMO",breaks=40)

hist(logy,probability=TRUE,xlab="logarithmic returns",main="Daily
logrithmic returns for BMO stock price",breaks=40)

#Statistical summary#
library(pastecs)
stat.desc(y)
quantile(y, c(0.0005,.25,.5, .75, .95,.99))
skewness(y)
kurtosis(y)
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#MLE normal-Laplace#
NL.lik1<-function(theta,y){
alpha<-theta[1]
beta<-theta[2]
mu<-theta[3]
sigma<-theta[4]
R1<-pnorm(-y, mean = -(mu+alpha*sigma^2), sd = sigma, lower.tail =
FALSE, log.p = FALSE)/dnorm(alpha*sigma-(y-mu)/sigma, mean = 0,
sd = 1, log = FALSE)
R2<-pnorm(y, mean = mu-beta*sigma^2, sd = sigma, lower.tail = FALSE,
log.p = FALSE)/dnorm(beta*sigma+(y-mu)/sigma, mean = 0, sd = 1,
log = FALSE)
n<-NROW(y)
logl<-n*log(alpha)+n*log(beta)-n*log(alpha+beta)+sum(log(dnorm
((y-mu)/sigma, mean = 0, sd = 1, log = FALSE)))+sum(log(R1+R2))
return(-logl)
}
optim(c(114.275,83.929,0.0029339,0.00372454),NL.lik1,y=logre,
method="BFGS")

#Observed asymptotic variance-covariance matrix#
p<-optim(c(114.275,83.929,0.0029339,0.00372454),NL.lik1,y=logre,
hessian=TRUE,method="BFGS")
VCV<-solve(p$hessian)
VCV

#Graphic#
hist(logy,probability="TRUE",xlab="logarithmic returns",main="NL
fitted to the daily logarithmic returns for BMO stock",breaks=40)
lines(logy, 117.2474*90.87647/(117.2474+90.87647)*dnorm((logy-
0.002253559)/ 0.005646578, mean = 0, sd = 1, log = FALSE)*
(pnorm(-logy, mean = -(0.002253559+117.2474 *0.005646578^2),
sd = 0.005646578, lower.tail = FALSE, log.p = FALSE)/dnorm
(117.2474*0.005646578 -(logy-0.002253559)/ 0.005646578, mean = 0,
sd = 1, log = FALSE)+ pnorm(logy, mean = 0.002253559-
90.87647*0.005646578^2, sd = 0.005646578, lower.tail = FALSE,
log.p = FALSE)/dnorm(90.87647*0.005646578+(logy-0.002253559)
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/0.005646578, mean = 0, sd = 1, log = FALSE)),ylab="probability",
col="red")

#Chi-square test NL#
F<-function(y){
a<-117.2474 #alpha
b<-90.87647 #beta
s<-5.646578e-03 #sigma
m<-2.253559e-03 #mu
pnorm(y,mean=m,sd=s,log=FALSE)-1/(a+b)*dnorm((y-m)/s, mean = 0,
sd = 1, log = FALSE)*(b*pnorm(-y, mean = -(m+a*s^2), sd = s,
lower.tail = FALSE, log.p = FALSE)/dnorm(a*s-(y-m)/s, mean = 0,
sd = 1, log = FALSE)-a*pnorm(y, mean = m-b*s^2, sd = s, lower.tail
= FALSE, log.p = FALSE)/dnorm(b*s+(y-m)/s, mean = 0, sd = 1,

log = FALSE))}
nl.cut<-cut(logy,breaks=c(-1,-0.05,-0.03,-0.02,-0.01,-0.005,
0,0.005,0.01,0.02,0.03,0.05,1))
table(nl.cut)
(F(-0.05))*482
(F(-0.03)-F(-0.05))*482
(F(-0.02)-F(-0.03))*482
(F(-0.01)-F(-0.02))*482
(F(-0.005)-F(-0.01))*482
(F(0)-F(-0.005))*482
(F(0.005)-F(0))*482
(F(0.01)-F(0.005))*482
(F(0.02)-F(.01))*482
(F(0.03)-F(.02))*482
(F(0.05)-F(0.03))*482
(1-F(0.05))*482

f.ex<-c(2.683535,13.83799, 24.47228, 60.44447, 55.62738, 74.66608,
80.64882, 66.81625, 70.10146, 22.57411, 9.156865, 0.9707547)
f.os<-vector()
for(i in 1:12) f.os[i]<- table(nl.cut)[[i]] #empirical frequencies
X2<-sum(((f.os-f.ex)^2)/f.ex)
print(X2)
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C.1.2. Application to Danish fire insurance data

library(Matrix)
library(car)
library(stats)
library(MASS)
library(graphics)
clsp<-read.table("C:/***/claimdk.txt",header=T)

#X denotes the floor space, Y denotes the fire loss claims#
x<-clsp$space
y<-clsp$claims
logy<-log(y)
logx<-log(x)

#Statistical summary for Danish fire loss claims#
library(pastecs)
stat.desc(y)
quantile(y, c(.25,.5, .75, .95,.99))

#Graphics#
claims<-subset(y,y>100000)
hist(claims,probability=TRUE,main="Danish fire loss claims",
breaks=30)

hist(log(y),probability=TRUE,main="Log-transformed Danish fire
loss claims")

hist(x,probability=TRUE,main="Floor space")

plot(x, logy, xlab="Floor space x",ylab="Log-transformed fire loss
claims",main="Linear regression of logy on x")
abline(lm(logy~x),col="red")

fit<-lm(logy~x)
hist(residuals(fit),main="Histogram of residuals",xlab="residuals",
probability=TRUE,breaks=100)
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qqPlot(residuals(fit), ylab="residuals",xlab="Normal quantiles",
main="Normal Q-Q Plot")

#MLE normal-Laplace#
NL.lik1<-function(theta,y){
alpha<-theta[1]
beta<-theta[2]
mu<-theta[3]
sigma<-theta[4]
R1<-pnorm(-y, mean = -(mu+alpha*sigma^2), sd = sigma, lower.tail =
FALSE, log.p = FALSE)/dnorm(alpha*sigma-(y-mu)/sigma, mean = 0,
sd = 1, log = FALSE)
R2<-pnorm(y, mean = mu-beta*sigma^2, sd = sigma, lower.tail = FALSE,
log.p = FALSE)/dnorm(beta*sigma+(y-mu)/sigma, mean = 0, sd = 1,
log = FALSE)
n<-NROW(y)
logl<-n*log(alpha)+n*log(beta)-n*log(alpha+beta)+sum(log(dnorm((y-mu)
/sigma, mean = 0, sd = 1, log = FALSE)))+sum(log(R1+R2))
return(-logl)
}
optim(c(1.48286,1.21486,8.34638,1.18043),NL.lik1,y=log(y),
method="BFGS")

#Graphic#
hist(logy,probability="TRUE",main="NL fitted to the log-transformed
fire loss claims")
lines(logy,0.6873861*10.8695179/(0.6873861 +10.8695179)*dnorm
((logy-6.8350194)/0.8191595, mean = 0, sd = 1, log = FALSE)*
(pnorm(-logy, mean = -(6.8350194+0.6873861 *0.8191595^2), sd =
0.8191595, lower.tail = FALSE, log.p = FALSE)/dnorm(0.6873861*
0.8191595-(logy-6.8350194)/0.8191595, mean = 0, sd = 1,

log = FALSE)+ pnorm(logy, mean = 6.8350194-10.8695179*0.8191595^2,
sd = 0.8191595, lower.tail = FALSE,log.p = FALSE)/dnorm(10.8695179*
0.8191595+(logy-6.8350194)/0.8191595,mean = 0, sd = 1, log = FALSE)),
main="Fire Loss Insurance Claims",ylab="probability",col="red")

#Chi-square test NL#
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clsp<-read.table("C:/***/claimdk.txt",header=T)
y<-clsp$claims
logy<-log(y)
F<-function(y) {pnorm(y,mean=6.8350194,
sd=0.8191595,log=FALSE)-1/(0.6873861+10.8695179)*dnorm
((y-6.8350194)/0.8191595, mean = 0, sd = 1,log = FALSE)*(10.8695179*
pnorm(-y, mean = -(6.8350194+0.6873861*0.8191595^2),sd = 0.8191595,
lower.tail = FALSE, log.p = FALSE)/dnorm(0.6873861*0.8191595-
(y-6.8350194)/0.8191595, mean = 0, sd = 1,
log = FALSE)-0.6873861*pnorm(y, mean = 6.8350194-10.8695179*
0.8191595^2, sd = 0.8191595, lower.tail = FALSE, log.p = FALSE)/
dnorm(10.8695179*0.8191595+(y-6.8350194)/0.8191595, mean = 0,
sd = 1, log = FALSE))}

nl.cut<-cut(logy,breaks=c(0,5,6,6.5,7,7.5,8,8.5,9,10,11,12,13,15,16))
table(nl.cut)
(F(5)-F(0))*793
(F(6)-F(5))*793
(F(6.5)-F(6))*793
(F(7)-F(6.5))*793
(F(7.5)-F(7))*793
(F(8)-F(7.5))*793
(F(8.5)-F(8))*793
(F(9)-F(8.5))*793
(F(10)-F(9))*793
(F(11)-F(10))*793
(F(12)-F(11))*793
(F(13)-F(12))*793
(F(15)-F(13))*793
(1-F(15))*793

f.ex<-c(2.364764,33.0786,55.09176,91.29956,116.2391,118.3228,
101.5856,78.1865,97.60304,49.32528,24.80734,12.47534,9.428688,3.191648)
f.os<-vector()
for(i in 1:14) f.os[i]<- table(nl.cut)[[i]] ## empirical frequencies
X2<-sum(((f.os-f.ex)^2)/f.ex)
print(X2)
ddl<-14-4-1
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#Estimation of lambda#
library(MASS)
bc<-boxcox(x~1, lambda = seq(-1, 1, 0.1))
which.max(bc$y)
lambda <- bc$x[which.max(bc$y)]
lambda

#MLE normal-Laplace WITH A COVARIATE#
NL.lik2<-function(theta,y){
alpha<-theta[1]
beta<-theta[2]
a<-theta[3]
b<-theta[4]
sigma<-theta[5]
R1<-pnorm(-y, mean = -(a+b*logx+alpha*sigma^2), sd = sigma,
lower.tail = FALSE, log.p = FALSE)/dnorm(alpha*sigma-(y-(a+b*logx))/
sigma, mean = 0, sd = 1, log = FALSE)
R2<-pnorm(y, mean = (a+b*logx)-beta*sigma^2, sd = sigma,
lower.tail = FALSE, log.p = FALSE)/dnorm(beta*sigma+(y-(a+b*logx))/
sigma, mean = 0, sd = 1, log = FALSE)
n<-NROW(y)
logl<-n*log(alpha)+n*log(beta)-n*log(alpha+beta)+sum(log
(dnorm((y-(a+b*logx))/sigma, mean = 0, sd = 1, log = FALSE)))+
sum(log(R1+R2))
return(-logl)
}
optim(c(0.6873861,10.8695179 ,-1,1,0.8191595),NL.lik2,y=log(y),
method="BFGS")

#MME and MLE log-normal#
y<-clsp$claims
cl<-y
mean(cl)
var(cl)+(mean(cl))^2
sqrt(log((var(cl)+mean(cl)^2)/(mean(cl))^2))
log(mean(cl))-log((var(cl)+(mean(cl))^2)/(mean(cl))^2)/2
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LN.lik<-function(theta,y){
sig<-theta[1]
mu<-theta[2]
n<-NROW(y)
logl<-(-n)*log(sig*sqrt(2*pi))-sum(log(y))-(1/(2*(sig)^2))*
sum((log(y)-mu)^2)
return(-logl)
}
optim(c(1.908506,8.188105),LN.lik,y=cl,method="BFGS")

#Chi-square test log-normal#
cl<-cl[order(re, decreasing = FALSE)];
cl
F<-function(y){
sig<-1.589271
mu<-8.197611
pnorm((log(y)-mu)/sig, mean = 0, sd = 1, log=FALSE)}
lines(cl,F(cl),col="red")
plot(ecdf(cl))
LN.cut<-cut(cl,breaks=c(0,exp(5),exp(6),exp(6.5),exp(7),exp(7.5),
exp(8),exp(8.5),exp(9),exp(10),exp(11),exp(12),exp(13),exp(15),
exp(16)))
table(LN.cut)
(F(exp(5))-F(0))*793
(F(exp(6))-F(exp(5)))*793
(F(exp(6.5))-F(exp(6)))*793
(F(exp(7))-F(exp(6.5)))*793
(F(exp(7.5))-F(exp(7)))*793
(F(exp(8))-F(exp(7.5)))*793
(F(exp(8.5))-F(exp(8)))*793
(F(exp(9))-F(exp(8.5)))*793
(F(exp(10))-F(exp(9)))*793
(F(exp(11))-F(exp(10)))*793
(F(exp(12))-F(exp(11)))*793
(F(exp(13))-F(exp(12)))*793
(F(exp(15))-F(exp(13)))*793
(1-F(exp(15)))*793
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f.ex<-c( 17.53326,48.57619,47.06909,65.68795,83.10008,95.29799,
99.06794,93.35762,141.5071,70.93641,24.23195,5.637924,0.9890527,
0.007403846)
f.os<-vector()
for(i in 1:14) f.os[i]<- table(LN.cut)[[i]] ## empirical frequencies
X2<-sum(((f.os-f.ex)^2)/f.ex)
print(X2)

#MME and MLE inverse Gaussian#
mean(cl)
var(cl)
(mean(cl))^3/var(cl)
IG.lik<-function(theta,y){
th<-theta[1]
mu<-theta[2]
n<-NROW(y)
logl<-n/2*log(th/2/pi)-3/2*sum(log(y))-th/2/mu^2*sum(y)+n*th/mu
-th/2*sum(1/y)
return(-logl)
}
optim(c(597.9139,22232.31),IG.lik,y=cl,method="BFGS")

#Chi-square test inverse Gaussian#
cl<-cl[order(re, decreasing = FALSE)];
cl
G<-function(y){
th<-1561.589
mu<-22232.310
pnorm(sqrt(th/y)*(y/mu-1), mean = 0, sd = 1, log= FALSE)+
exp(2*th/mu)*pnorm(-sqrt(th/y)*(y/mu+1), mean = 0, sd = 1,
log = FALSE)}
lines(cl,G(cl),col="red")
plot(ecdf(cl))
IG.cut<-cut(cl,breaks=c(0,exp(5),exp(6),exp(6.5),exp(7),exp(7.5),
exp(8),exp(8.5),exp(9),exp(10),exp(11),exp(12),exp(13),exp(15),
exp(16)))
table(IG.cut)
(G(exp(5))-G(0))*793
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(G(exp(6))-G(exp(5)))*793
(G(exp(6.5))-G(exp(6)))*793
(G(exp(7))-G(exp(6.5)))*793
(G(exp(7.5))-G(exp(7)))*793
(G(exp(8))-G(exp(7.5)))*793
(G(exp(8.5))-G(exp(8)))*793
(G(exp(9))-G(exp(8.5)))*793
(G(exp(10))-G(exp(9)))*793
(G(exp(11))-G(exp(10)))*793
(G(exp(12))-G(exp(11)))*793
(G(exp(13))-G(exp(12)))*793
(G(exp(15))-G(exp(13)))*793
(1-G(exp(15)))*793
g.ex<-c(1.003353,40.77476,64.87964,91.14224,101.8204,98.73644,
87.74361, 73.8593,107.7482, 65.60215,36.62212, 17.19424,5.866949,
0.00654503)
g.os<-vector()
for(i in 1:14) g.os[i]<- table(IG.cut)[[i]] ## empirical frequencies
X2<-sum(((g.os-g.ex)^2)/g.ex)
print(X2)

C.2. Code MATHEMATICA for obtaining MME

(*MME for daily logarithmic returns for BMO*)
(*logx denotes the daily logarithmic returns*)
(*a<-alpha, b<-beta, m<-mu and s<-sigma*)
NSolve[{m + 1/a - 1/b == Mean[logx],

s^2 + 1/a^2 + 1/b^2 == Moment[logx, 2] - (Mean[logx])^2,
6/a^4 + 6/b^4 == Cumulant[logx, 4],
24/a^5 - 24/b^5 == Cumulant[logx, 5]}, {a, b, s, m}, Reals]

(*MME for log-transformed Danish fire loss claims data*)
(*logx denotes the log-transformed data*)
NSolve[{m + 1/a - 1/b == Mean[logx],

s^2 + 1/a^2 + 1/b^2 == Moment[logx, 2] - (Mean[logx])^2,
6/a^4 + 6/b^4 == Cumulant[logx, 4],
24/a^5 - 24/b^5 == Cumulant[logx, 5]}, {a, b, s, m}, Reals]


