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SOMMAIRE

Le sujet principal de cette thèse porte sur l’étude de l’estimation de la variance

d’une statistique basée sur des données d’enquête imputées via le bootstrap (ou

la méthode de Cyrano). L’application d’une méthode bootstrap conçue pour des

données d’enquête complètes (en absence de non-réponse) en présence de valeurs

imputées et faire comme si celles-ci étaient de vraies observations peut conduire

à une sous-estimation de la variance. Dans ce contexte, Shao et Sitter (1996) ont

introduit une procédure bootstrap dans laquelle la variable étudiée et l’indicateur

de réponse sont rééchantillonnés ensemble et les non-répondants bootstrap sont

imputés de la même manière qu’est traité l’échantillon original. L’estimation

bootstrap de la variance obtenue est valide lorsque la fraction de sondage est

faible. Dans le chapitre 1, nous commençons par faire une revue des méthodes

bootstrap existantes pour les données d’enquête (complètes et imputées) et les

présentons dans un cadre unifié pour la première fois dans la littérature. Dans

le chapitre 2, nous introduisons une nouvelle procédure bootstrap pour estimer

la variance sous l’approche du modèle de non-réponse lorsque le mécanisme de

non-réponse uniforme est présumé. En utilisant seulement les informations sur le

taux de réponse, contrairement à Shao et Sitter (1996) qui nécessite l’indicateur

de réponse individuelle, l’indicateur de réponse bootstrap est généré pour chaque

échantillon bootstrap menant à un estimateur bootstrap de la variance valide

même pour les fractions de sondage non-négligeables. Dans le chapitre 3, nous

étudions les approches bootstrap par pseudo-population et nous considérons une

classe plus générale de mécanismes de non-réponse. Nous développons deux procé-

dures bootstrap par pseudo-population pour estimer la variance d’un estimateur

imputé par rapport à l’approche du modèle de non-réponse et à celle du modèle
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d’imputation. Ces procédures sont également valides même pour des fractions de

sondage non-négligeables.

Mots-clés: bootstrap, poids bootstrap, estimation doublement robuste, im-

putation, modèle d’imputation, non-réponse partielle, modèle de non-résponse,

bootstrap par pseudo-population, estimation de la variance.
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SUMMARY

The aim of this thesis is to study the bootstrap variance estimators of a statis-

tic based on imputed survey data. Applying a bootstrap method designed for

complete survey data (full response) in the presence of imputed values and treat-

ing them as true observations may lead to underestimation of the variance. In

this context, Shao and Sitter (1996) introduced a bootstrap procedure in which

the variable under study and the response status are bootstrapped together and

bootstrap non-respondents are imputed using the imputation method applied on

the original sample. The resulting bootstrap variance estimator is valid when

the sampling fraction is small. In Chapter 1, we begin by doing a survey of

the existing bootstrap methods for (complete and imputed) survey data and, for

the first time in the literature, present them in a unified framework. In Chap-

ter 2, we introduce a new bootstrap procedure to estimate the variance under

the non-response model approach when the uniform non-response mechanism is

assumed. Using only information about the response rate, unlike Shao and Sit-

ter (1996) which requires the individual response status, the bootstrap response

status is generated for each selected bootstrap sample leading to a valid boot-

strap variance estimator even for non-negligible sampling fractions. In Chapter 3,

we investigate pseudo-population bootstrap approaches and we consider a more

general class of non-response mechanisms. We develop two pseudo-population

bootstrap procedures to estimate the variance of an imputed estimator with re-

spect to the non-response model and the imputation model approaches. These

procedures are also valid even for non-negligible sampling fractions.
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Keywords: Bootstrap, Bootstrap weights approach, Doubly robust estima-

tion, Imputation, Imputation model approach, Item non-response, Non-response

model approach, Pseudo-population bootstrap approach, Variance estimation.
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INTRODUCTION

Official statistical agencies have long collected data of interest to governments to

inform the development of public policy through surveys. Aggregate indicators

were usually sought to describe the overall situation. Research in social and health

sciences has demonstrated the need for more focussed surveys, as well as the need

for information at various levels, such as families, neighborhoods, schools, etc.

While statistical agencies understood this need many years ago by providing such

complex surveys, confidentiality issues were such that only aggregated data were

available to researchers outside the statistical agencies. Unfortunately, they need

access to the micro-level data to assess the role of persons, or families, or schools

on various social issues through adequate sophisticated modeling.

To fulfill this long-felt need, Research Data Centers were opened by statistical

agencies, such as the Census Bureau, the National Center for Health Statistics,

and Statistics Canada among others. In these centers, academic researchers be-

come, in the case of Statistics Canada, “deemed employees” of the organization

thereby allowing them access to detailed micro-level data while preserving con-

fidentiality. The files provided to the researchers have a matrix form. Each row

corresponds to an ultimate unit in the survey with columns corresponding to the

different variables under study, plus other columns for survey weights. While

the availability of complex survey data sets to social and health researchers will

not cause them much difficulty to compute point estimates of various quanti-

ties, often through Horvitz-Thompson-type estimators, variance estimation for

estimators other than the mean or total is more complicated.

The quality and the volume of literature published about variance estimation

bear witness to the theoretical and practical interests that this issue produces.
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All existing methods have been obtained so far through a linearization method or

one of the resampling methods: the balanced repeated replication, the jackknife

and the bootstrap methods.

The linearization method is available when the parameter of interest can be

written as a differentiable function of totals. The variance estimate is based on

a Taylor series expansion of the estimator. To apply this method, a separate

formula is required for each nonlinear statistic. This is not very convenient nor

easy to apply for researchers who are not familiar with the mathematical tools. In

addition, the linearization method cannot be implemented when the parameter

of interest is not a differentiable function of totals, such as the median. It is

to overcome these difficulties that researchers have given a lot of attention to

resampling methods.

In this thesis, we concentrate on the bootstrap. The bootstrap method was

first proposed by Efron (1979) in the context of classical statistics, where data are

independently and identically distributed (i.i.d.) from an unknown distribution.

This method consists of first estimating the unknown distribution by the empir-

ical distribution function and then generating the i.i.d. bootstrap samples from

the estimated distribution. This is equivalent to taking simple random samples

with replacement from the original sample. The bootstrap variance estimator

can then be approximated by the Monte Carlo variance of the bootstrap statis-

tics computed on the resulting bootstrap samples. However, in a sampling design

context, the data are usually not i.i.d. Therefore, to have a valid variance estima-

tor, the bootstrap procedure must be modified to reflect the variability under the

survey design. This thesis is a compilation of three independent research papers

about bootstrap methods for survey data in different contexts. Each of these

papers is presented in a single chapter. In Chapter 1 of this thesis, all important

existing bootstrap methods for survey data are studied in a survey of the field.

Afterwards, in Chapters 2 and 3, some new bootstrap procedures are proposed

for imputed survey data when the problem of item non-response arises.

Chapter 1 is based on the paper Mashreghi, Haziza, and Léger (2014b) entitled

A survey of bootstrap methods in finite population sampling. There we discuss
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the existing bootstrap methods where, for the first time in the literature, these

procedures are unified. This contribution will greatly help researchers compare

the existing bootstrap methods and assess their advantages and disadvantages.

We classified the bootstrap methods for complete (full response) survey data

into three main groups: the pseudo-population bootstrap, the direct bootstrap

and the bootstrap weights methods.

In the pseudo-population bootstrap methods, a pseudo-population is created

by repeating the elements of the original sample and bootstrap samples are se-

lected from the original sampling scheme; see Gross (1980), Booth et al. (1994)

and Chauvet (2007), among others. In fact, the nature of this group is similar

to the case of classical statistics where the unknown distribution function is first

estimated by the empirical distribution function and then an i.i.d. bootstrap sam-

ple is generated from the estimated distribution function. Here, the unknown is

the population that is first estimated by constructing a pseudo-population. This

pseudo-population is built by repeating the observations in the original sample us-

ing the original sampling design. Then, again using the original sampling design,

the bootstrap sample is drawn from the resulting pseudo-population.

In the direct bootstrap group, bootstrap samples are obtained through i.i.d.

resampling from the observations or vectors of observations from the original

sample or a rescaled version of it; see Rao and Wu (1988), McCarthy and Snowden

(1985) and Sitter (1992b). Such a with replacement sampling design is of course

usually different from the original sampling design. However, to have a correct

bootstrap estimator which will reflect the variability under the sampling design,

some modifications have to be done either on the data set or the way bootstrap

samples are taken.

In the third group, the bootstrap weights methods, a set of bootstrap survey

weights are generated and applied to the original sample instead of generating

bootstrap samples; see Rao et al. (1992) and Beaumont and Patak (2012), for

instance. These bootstrap weights are the result of making adjustments on the

original survey weights. In most cases, these adjustments are made so that the
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first two bootstrap moments match the sample moments of the distribution of

the estimator in the case of the population total.

These methods are very easy for users of public data files prepared by agencies

such as Statistics Canada. Very often, these users are not familiar with complex

statistical methods. With these methods, using the resulting bootstrap weights

with the original data set to compute many bootstrap estimators easily leads to

a bootstrap variance estimator.

Unfortunately, life is rarely that simple and one of the important practical

problems in statistical surveys is the presence of non-respondents in most data

files. There are two types of non-response: complete non-response and item non-

response. Complete non-response is not too difficult to handle and is usually dealt

with by reweighting the respondents. But item non-response produces empty cells

in the data files which is not easy to deal with particularly for researchers who

are not familiar with complex statistical concepts. Item non-response is usually

compensated using single imputation which fills the holes in the data set. A

well-known fact is that treating the imputed values as if they were observed

values may lead to serious underestimation of the variance of point estimators

since bootstrap methods for complete survey data only account for the sampling

variability in the observations, and not the added variability due to item non-

response and imputation. These underestimations can be significant as we will

illustrate in a study based on a real-life example in Section 2.7 that I have done

as a MITACS trainee at Statistics Canada. Therefore, the bootstrap procedures

have to be modified by taking into account the non-respondents and imputation

method.

Working with item non-response, two inferential approaches can be used in

order to assess the properties of point and variance estimators: the non-response

model approach that requires explicit assumptions on the unknown non-response

mechanism and the imputation model approach that requires the specification

of a model describing the distribution of the variable under study in need of

imputation. In Chapter 1, a broad study is also done on the existing bootstrap

methods for this context. The most famous method is the one proposed by Shao
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and Sitter (1996). In this method, they utilize any direct bootstrap method to

draw a bootstrap sample from the set of pairs made of the imputed data and

the corresponding response status, followed by reimputation of the bootstrap

sample of non-respondents using the same imputation method that was used on

the original data. The estimator is computed based on the imputed bootstrap

data and the process is repeated a large number of times, leading to a bootstrap

variance estimate.

However, two problems may arise in the application of the Shao and Sitter

(1996) method. The first one is the requirement of the presence of an imputation

flag for each item under study. These indicators are usually not present in the files

of research data centres. Therefore, the Shao and Sitter (1996) method is often

unapplicable in practice, at least by researchers in research data centres. The

second one is that their variance estimate is consistent only when the sampling

fraction, the ratio of the sample size to the population size, is negligible. This

result is proven in our second paper in Chapter 2 through a detailed analysis

of their method using the reverse framework of Fay (1991) and Shao and Steel

(1999). An example in Section 2.7 shows that this condition does not always hold

in practice which in turn implies that the Shao and Sitter (1996) method may

not work sometimes, even if the response status was available.

In Chapter 2, which is based on the paper Mashreghi, Léger, and Haziza (2014)

entitled Bootstrap methods for imputed data from regression, ratio and hot deck

imputation, published in The Canadian Journal of Statistics, the two drawbacks of

the Shao and Sitter (1996) method are addressed by introducing a new bootstrap

method, called the independent bootstrap method. Our theory is applicable to

stratified simple random sample without replacement with uniform non-response

in each stratum. Using the estimated response rate of the item under study in

each stratum rather than the response status for each sample unit, our proposed

bootstrap variance estimator is asymptotically consistent under the non-response

model approach when the parameter of interest can be written as a function of

means. The procedure is applied independently across strata. It consists of first

selecting a bootstrap sample of observations using one of the direct bootstrap
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methods. Then, independently, bootstrap response indicators are regenerated

mimicking the initial non-response mechanism. Unlike the Shao and Sitter (1996)

method, the bootstrap sample of observations and the bootstrap response status

are generated independently. This is why this method is called the independent

bootstrap method. Since the sampling mechanism used in most direct bootstrap

methods differs from simple (or stratified) random sampling, they all involve a

constant which contains the sampling fraction and guarantees that when they are

applied to the estimator of the total, they consistently estimate the variance of the

estimator. These constants do not take into account the non-response mechanism

and the method of imputation, so they need to be modified in the independent

bootstrap, whereas Shao and Sitter (1996) use the original constants.

In Chapter 3, which is based on the paper Mashreghi, Haziza, and Léger

(2014a) entitled Pseudo-population bootstrap methods for imputed survey data,

two different bootstrap methods under the pseudo-population bootstrap approach

are presented in order to estimate the variance of an imputed estimator under

the non-response model and the imputation model approaches. In this paper, the

class of doubly robust linear regression imputation is considered. These imputa-

tion methods, which are built using both the non-response and the imputation

models, lead to doubly robust imputed estimators. That is, it remains asymptoti-

cally unbiased and consistent for the true parameter if either model (non-response

or imputation) is true; e.g., Haziza and Rao (2006) and Kim and Haziza (2014).

Assuming the data are Missing At Random (MAR) (Rubin, 1976), the pro-

posed pseudo-population bootstrap procedures are valid even for large sampling

fractions unlike the Shao and Sitter (1996) procedure. The first bootstrap method

is the non-response model approach that requires assumptions about the non-

response mechanism and leads to an approximately unbiased variance estimator

with respect to the non-response model approach. The second one is the im-

putation model approach that requires assumption about the distribution of the

variable being imputed and leads to an approximately unbiased variance estima-

tor with respect to the imputation model approach. In addition, combining the

first two procedures, a doubly robust bootstrap variance estimator results. That
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is, the resulting bootstrap variance estimator is approximately unbiased for the

true variance if one model or the other is correctly specified.

It should be noted that the first paper was written after the other two papers

which is why the methods of Chapters 2 and 3 are surveyed in Chapter 1.





Chapter 1

A SURVEY OF BOOTSTRAP METHODS IN

FINITE POPULATION SAMPLING

1.1. Introduction

Statistical agencies, such as the Census Bureau and Statistics Canada, pro-

vide researchers with access to detailed micro-level data while preserving con-

fidentiality. Each table of data contains ultimate sample units in its rows and

the different variables under study in its columns, plus other columns for survey

weights. Parameters of interest can be easily estimated based on these values.

However, a crucial step is to use the data to estimate some accuracy measures

of a given statistic, such as the variance, something which is not always easy to

obtain through analytical methods. For this purpose, many statistical agencies

apply bootstrap resampling methods. Data files prepared by these agencies con-

tain also a large number of columns for bootstrap survey weights. Each column

of bootstrap survey weights with sample units is used to compute the bootstrap

version of the given statistic. The Monte Carlo variance estimator of the result-

ing bootstrap statistics is used to estimate the variance under study. Since the

bootstrap methods are readily applicable for many estimators, these methods are

attractive from a practical point of view.

The bootstrap was first introduced by Efron (1979) in the context of clas-

sical statistics where data are independently and identically distributed (i.i.d.)

from an unknown distribution. Since survey data are not necessarily i.i.d., many
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bootstrap resampling methods have been proposed in the context of survey sam-

pling over the past thirty years. These methods are obtained after making some

modifications on the classical i.i.d. bootstrap in order to adapt it for survey data.

A full study of the various bootstrap methods in the context of survey sam-

pling has never been done in the literature. In this paper, we classify the methods

in different groups according to their features and we present them in a unified

way that shows the similarities and the differences among the methods in a given

group. This comprehensive survey should be useful to researchers who need to use

or better understand existing bootstrap methods in survey sampling. It provides

sufficient details to help researchers apply the methods or develop new ones.

We classify the bootstrap methods for complete (full response) survey data

in three groups. The first one is the class of the pseudo-population bootstrap

methods in which a pseudo-population is first created by repeating the units of

the original sample and bootstrap samples are then selected from the resulting

pseudo-population, e.g. Gross (1980), Booth et al. (1994) and Chauvet (2007).

The second one, called the direct bootstrap methods, consists of directly selecting

bootstrap samples from the original sample or a rescaled version of it, e.g. Rao and

Wu (1988) and Sitter (1992b). In the third group, called the bootstrap weights

methods, an appropriate adjustment is made on the original survey weights to

obtain a new set of weights called the bootstrap weights, e.g. Rao et al. (1992)

and Beaumont and Patak (2012). Users of public data files prepared by agencies

such as Statistics Canada, who are usually not familiar with complex statistical

methods, can easily use the generated bootstrap weights. They only need to

replace the original weights by the resulting bootstrap weights in the estimator

of the parameter of interest to define the bootstrap statistics.

The paper is organized as follows. Basic concepts concerning sampling de-

signs, parameter estimation, and estimation of its variance that will be used in

the sequel are introduced in Section 1.2. The jackknife and the balanced repeated

replication, which are resampling methods introduced before the bootstrap, are

briefly discussed in Section 1.3. After introducing the i.i.d. bootstrap in Sec-

tion 1.4, a detailed presentation of the three classes of bootstrap methods is the
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topic of Section 1.5. Note that the preceding methods are designed for finite

population parameters where the population under study is treated as fixed. The

bootstrap methods introduced in Section 1.6 are applicable when the study vari-

ables in the finite population are seen as a realization of a statistical model and

the goal is to estimate the variance of the estimator of the parameter of that

statistical model.

In practice, we often must be able to deal with imputed data which are used to

compensate item non-response. Treating imputed data as true observations may

lead to an underestimation of the variance. Therefore, some bootstrap methods

that account for the added variability due to item non-response and imputation

have been proposed and are studied in Section 1.7.

1.2. Preliminaries

Let U be a finite population consisting of N distinct units. Let y1, . . . , yJ be

J study variables and yi = (y1i, . . . , yJi)⊤ denote the vector of study variables

associated with the i-th unit, i = 1, . . . , N. We are interested in estimating a

finite population parameter, denoted by θ, which is a function of the N values,

y1, . . . ,yN . A simple but important parameter, in the case where J = 1, is

the population total of a study variable y defined as θ ≡ t = ∑
i∈U yi. Many

parameters encountered in practice can be expressed as a function of population

totals:

θ = g(t1, . . . , tJ) with tj =
∑
i∈U

yji for j = 1, . . . , J. (1.2.1)

Special cases of (1.2.1) include the ratio of two population totals, θ = t1/t2, and

the finite population distribution function

FN(z) = 1
N

∑
i∈U

I(yi < z), (1.2.2)

where I(A) is the indicator function of the event A taking the value 1 when A

occurs and 0 otherwise, and z is a real number. Note that FN(z) represents the

proportion of units in the population with a y-value smaller than z. A parameter

closely related to the distribution function is the finite population median, which
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is the value separating the higher half of data from the lower half. More formally,

the population median m is defined as

m = F−1
N (0.5),

where F−1
N (·), the inverse function of FN(·), is defined as

F−1
N (b) = inf {yi| FN(yi) ≥ b; i ∈ U} (1.2.3)

with 0 ≤ b ≤ 1.

A sample s ⊆ U of (expected) size n, is randomly selected according to a given

sampling design p(s) with first-order inclusion probabilities πi = Prob(i ∈ s).

Common sampling designs include simple random sampling without replacement

and stratified simple random sampling, which are both fixed size sampling de-

signs. Fixed size sampling designs are those for which the sample size is fixed

prior to sampling. While simple random sampling without replacement is seldom

used in practice, stratified simple random sampling is widely applied, especially in

business surveys. Under this design, the population U is first divided into L non-

overlapping strata U1, . . . , UL with Nh units in the h-th stratum, h = 1, . . . , L.

Then, a sample sh of size nh is selected from Uh according to simple random

sampling without replacement, independently across strata. The first-order in-

clusion probability of unit i in stratum h is nh/Nh, h = 1, . . . , L. Except in the

case of proportional allocation, stratified simple random sampling is an exam-

ple of an unequal probability sampling design as units in different strata have

different inclusion probabilities. Another unequal probability sampling design is

Poisson sampling, which consists of performing N independent Bernoulli trials

with probability πi for unit i and selecting a unit in the sample when the trial is

a “success”. Unlike simple random sampling without replacement and stratified

simple random sampling, Poisson sampling is a random size sampling design.

Estimators of finite population parameters are constructed on the basis of

the sample values and, possibly, auxiliary information, which is a set of variables

collected for the sample units and for which the corresponding total in the pop-

ulation is known. We start by examining the case of a population total t and
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consider a general linear estimator of the form

t̂ =
∑
i∈s

wi(s)yi, (1.2.4)

where wi(s) is a survey weight associated with the i-th unit. The Horvitz-

Thompson estimator t̂HT (Horvitz and Thompson, 1952), is an important special

case of (1.2.4) with

wi(s) = wi = π−1
i . (1.2.5)

Suppose that a l-vector of auxiliary variables xi = (x1i, . . . , xli)⊤ is available for

all the sample units and that the vector of population totals, tx = ∑
i∈U xi, is

known. Another linear estimator of t is the so-called Generalized REGression

(GREG) estimator, t̂G, given by (1.2.4) with

wi(s) = π−1
i

{
1 + (tx − t̂xHT )⊤T̂

−1
c−1
i xi

}
, (1.2.6)

where t̂xHT = ∑
i∈s π

−1
i xi, T̂ = ∑

i∈s π
−1
i xic

−1
i x⊤

i and ci is a known positive

constant attached to unit i. Note that the GREG estimator can also be viewed

as a function of estimated totals since it can be expressed as

t̂G = t̂HT +
(
tx − t̂xHT

)⊤
β̂, (1.2.7)

where

β̂ =
(∑
i∈s

π−1
i xic

−1
i x⊤

i

)−1∑
i∈s

π−1
i xic

−1
i yi.

We now turn to the case of parameters that can be expressed as functions of

totals, θ = g(t1, . . . , tJ). In this case, we use the plug-in principle that consists

of replacing each unknown population total by its corresponding estimator; see

Cassel et al. (1976). This leads to the so-called plug-in estimator

θ̂ = g(t̂1, . . . , t̂J),

where t̂j = ∑
i∈swi(s)yji is a linear estimator of tj; e.g., the Horvitz-Thompson

estimator, for j = 1, . . . , J . For example, the ratio of two totals θ = t1/t2 may be

estimated by θ̂ = t̂1HT/t̂2HT .

Similarly, an estimator of the distribution function (1.2.2) is given by

F̃n(z) = 1∑
i∈swi(s)

∑
i∈s

wi(s)I(yi < z)
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noting that the population size N in the definition of FN(t) can be expressed as

N = ∑
i∈U 1. It follows that an estimator of the population median, m, is given

by

m̂ = F̃−1
n (0.5),

where F̃−1
n (·), the inverse function of F̃n(·), is defined as in (1.2.3).

The above discussion suggests that an estimator of a finite population pa-

rameter θ can be viewed as a function of the sample units in s and the survey

weights; i.e., θ̂ = θ̂ (s;w1(s), . . . , wn(s)). This will prove useful when studying the

bootstrap weights methods described in Section 1.5.3.

In this paper, the properties of estimators (e.g., bias and variance) are studied

with respect to the design-based approach. In this approach, the population U is

held fixed and the properties of estimators are evaluated with respect to repeated

sampling.

The expectation and the variance with respect to the design-based approach

are defined as

Ep
(
θ̂
)

=
∑
s⊂U

θ̂(s)p(s) and Vp
(
θ̂
)

= Ep

{[
θ̂ − Ep

(
θ̂
)]2}

,

where the subscript p denotes the sampling design. An estimator is design-

unbiased if Ep
(
θ̂
)

= θ. While the Horvitz-Thompson estimator, t̂HT , is design-

unbiased for t, the GREG estimator, t̂G, is only asymptotically design-unbiased

for t; see, e.g., Isaki and Fuller (1982).

We now turn to the variance of point estimators and variance estimation. We

start by examining the case of the Horvitz-Thompson estimator. The design-

variance of t̂HT is given by

Vp
(
t̂HT

)
=
∑
i∈U

∑
j∈U

∆ijyiyj, (1.2.8)

where

∆ij = πij − πiπj
πiπj

with πij = Prob(i ∈ s & j ∈ s) denoting the second-order inclusion probability

of units i and j in the sample. The variance (1.2.8) can be estimated unbiasedly
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by

V̂
(
t̂HT

)
=
∑
i∈s

∑
j∈s

∆ij

πij
yiyj. (1.2.9)

That is, Ep
{
V̂
(
t̂HT

)}
= Vp

(
t̂HT

)
. For example, under simple random sampling

without replacement, (1.2.9) reduces to the textbook variance estimator of t̂HT :

V̂
(
t̂HT

)
= N2(1 − f)s

2

n
, (1.2.10)

where f = n/N is the sampling fraction and

s2 = 1
n− 1

∑
i∈s

(yi − ȳ)2

with ȳ = n−1∑
i∈s yi. For Poisson sampling, noting that πij = πiπj for i ̸= j,

(1.2.9) reduces to

V̂
(
t̂HT

)
=
∑
i∈s

1 − πi
π2
i

y2
i . (1.2.11)

In contrast, the variance of the GREG estimator is virtually untractable, the

latter being a complex function of estimated totals. The same is true for param-

eters that are expressed as functions of totals such as the ratio of two population

totals. To overcome this difficulty, we settle for an approximate expression of the

design-variance, which is obtained through a first-order Taylor expansion. Sup-

pose that θ̂ is expressed as a function of estimated totals, θ̂ = g(t̂1HT , . . . , t̂JHT ),

where g(·) is a differentiable function. Under mild regularity conditions, a first-

order Taylor expansion of θ̂ leads to

θ̂ − θ =
∑
i∈s

π−1
i zi −

∑
i∈U

zi +Op

(
n−1

)
, (1.2.12)

where

zi =
J∑
j=1

yji
∂g(t̂1HT , . . . , t̂JHT )

∂t̂jHT

∣∣∣∣∣∣
t̂1HT =t1,...,t̂JHT =tJ

(1.2.13)

is the so-called linearized variable. For instance, in the case of a ratio, θ = t1/t2,

the linearized variable is zi = (y1i − θy2i)/t2. Ignoring the higher-order terms

in (1.2.12), the design-variance of θ̂ can be approximated by (1.2.8), where yi is

replaced with zi. That is, the approximate variance of θ̂ is given by

AVp
(
θ̂
)

=
∑
i∈U

∑
j∈U

∆ijzizj. (1.2.14)
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As mentioned above, the GREG estimator, t̂G, can also be viewed as a function

of estimated totals. In this case, the linearized variable (1.2.13) reduces to

zi = yi − x⊤
i βU (1.2.15)

with

βU =
(∑
i∈U

xic
−1
i x⊤

i

)−1 ∑
i∈U

xic
−1
i yi.

The approximate variance of t̂G is thus given by (1.2.14) with zi given by (1.2.15).

The approximate variance (1.2.14) is unknown as the linearized variable z depends

on unknown quantities. To estimate (1.2.14), we start by estimating z by ẑ.

For example, in the case of an estimated ratio, θ̂ = t̂1HT/t̂2HT , we have ẑi =

(y1i − θ̂y2i)/t̂2HT . An estimator of the approximate variance is obtained from

(1.2.9) by replacing yi with ẑi, which leads to

V̂
(
θ̂
)

=
∑
i∈s

∑
j∈s

∆ij

πij
ẑiẑj. (1.2.16)

Under mild regularity conditions (e.g., Deville, 1999), the variance estimator

(1.2.16) is asymptotically unbiased for the approximate variance (1.2.14). Both

variance estimators (1.2.9) and (1.2.16) depend on the second-order inclusion

probabilities πij, which may be difficult to obtain for some unequal probability

sampling designs. Moreover, the variance estimator (1.2.16) obtained through a

first-order Taylor expansion requires separate derivations for different functions

of estimated totals in order to obtain ẑ. In this context, resampling methods

may prove useful. Commonly used resampling methods include the jackknife, the

balanced repeated replication and the bootstrap.

1.3. Some resampling methods in survey sampling

In this section, we briefly discuss the jackknife and the balanced repeated

replication methods. The bootstrap will be discussed in detail in Sections 1.4-

1.7.

Balanced repeated replication (BRR) was first introduced in McCarthy (1969)

for the specialized case of stratified simple random sampling with replacement,
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where two units are selected independently in each stratum. A set of R half-

samples is formed by deleting one unit from the sample in each stratum in a

balanced fashion: consider an R× L selection matrix S with Srh = ±1, where L

is the number of strata, indicating whether the first (+) or the second (−) sample

unit in the h-th stratum is in the r-th half sample. In order to be balanced, S

must satisfy two conditions: S1 = 0 and S⊤S = LI where 1 = (1, . . . , 1)⊤

and I is the L × L identity matrix. A minimal set of balanced half samples

may be constructed from an R × R Hadamard matrix (Wolter, 2007), where

L+ 1 ≤ R ≤ L+ 4 by choosing L columns excluding the column of +1’s. Let θ̂r
be the estimator of θ computed on the r-th half sample after doubling the survey

weights of the resampled units. A BRR variance estimator of θ̂ is

V̂BRR = 1
R

R∑
r=1

(
θ̂r − θ̂(·)

)2
, (1.3.1)

where θ̂(·) = R−1∑R
r=1 θ̂r. Several variations of V̂BRR are also available. For in-

stance, θ̂(·) can be replaced by θ̂ in (1.3.1). The BRR variance estimator (1.3.1)

reduces to the usual variance estimator in the case of a population total. The

asymptotic consistency of the BRR variance estimators, as L → ∞, was estab-

lished by Krewski and Rao (1981) when θ is a function of totals and by Shao and

Wu (1992) for quantiles.

The BRR method can be applied to the case of stratified multistage designs

with two primary selected units per stratum by treating each cluster as a unit.

The case of more than two primary sampling units was studied by Gurney and

Jewett (1975). They extended the BRR method to the case of nh = p primary

sampling units, for h = 1, . . . , L, where p is a prime number, but the number of

replications R is much larger than that in the case of two primary sampling units.

In practice, the case of equal nh is not common. To construct balanced half

samples for unequal nh, Gupta and Nigam (1987) and Wu (1991) used mixed-level

orthogonal arrays to select one primary sampling unit per stratum, which implies

that the resulting variance estimator is inconsistent. A correct variance estima-

tor can be obtained by adjusting the original weights (Wu, 1991), depending on

whether the associated units are selected in the half-sample or not. Alternative
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methods for constructing BRR can be found in Sitter (1993). Note that con-

structing the balanced samples is not an easy task, especially when the number

of units per stratum is large. To overcome this difficulty, Rao and Shao (1996,

1999) suggest to randomly divide the first stage sampling units into two groups of

size mh = ⌊nh/2⌋ (⌊·⌋ denotes the greatest integer smaller than) and nh−mh, re-

spectively, and construct the balanced half samples as in the case of two primary

selected units. However, the survey weights need to be modified when computing

θ̂r. If the first stage sampling is done with replacement, according to whether the

units are selected in the half samples or not, the survey weights are rescaled by

1 + ε

√
nh −mh

mh

or 1 − ε

√
mh

nh −mh

with any fixed ε ∈ (0, 1); see Rao and Shao (1999). The resulting BRR variance

estimator is given by

V̂BRR(ε) = 1
ε2R

R∑
r=1

(
θ̂r − θ̂

)2
,

which reduces to the usual variance estimator in the linear case.

In classical statistics, the jackknife method was first proposed by Quenouille

(1956) in order to reduce the bias of point estimators. Later, in an i.i.d. set-

up, Tukey (1958) suggested that the jackknife method could also be used to

produce variance estimates. The first application of jackknife variance estimation

in the context of finite population sampling can be found in Durbin (1959). Jones

(1974) extended the method to handle stratified sampling. The jackknife variance

estimator can be applied to estimate the variance of a function of totals θ̂. In

the case of stratified simple random sample with replacement, this estimator

is computed based on the jackknife estimator of θ obtained by recalculating the

estimator after deleting one unit from the original sample and rescaling the survey

weights of the remaining units.

V̂J =
L∑
h=1

nh − 1
nh

nh∑
i=1

(
θ̂hi − θ̂h(·)

)2
, (1.3.2)

where θ̂hi is the jackknife estimator computed after deleting the i-th unit from

stratum h and rescaling the survey weights of the stratum h by the factor nh/(nh−

1), and θ̂h(·) = n−1
h

∑nh
i=1 θ̂hi. There are other variations of (1.3.2) in the literature,
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for example, θ̂h(·) can be replaced by θ̂. Note that when the sampling is done

without replacement within strata, the finite population correction factor 1 − fh

must be inserted in (1.3.2) in order to account for the effect of sampling without

replacement, i.e.

V̂J =
L∑
h=1

(1 − fh)(nh − 1)
nh

nh∑
i=1

(
θ̂hi − θ̂h(·)

)2
.

Properties of these resampling methods have been studied by Krewski and Rao

(1981), Rao and Wu (1985), Wolter (2007), Kovar et al. (1988), Rao et al. (1992)

and Shao and Tu (1995), among others.

The jackknife method can be easily extended to the case of stratified multi-

stage sampling design by considering sample clusters as sample units and comput-

ing θ̂hi after omitting the data from the i-th sampled cluster in the h-th stratum.

When the number of clusters within strata is large, Kott (1998, 2001) studied

a delete-a-group jackknife method that was first suggested by Rust (1985). Un-

der this method, the first-stage sampling units are first ordered in an appropriate

manner; see Kott (1998, 2001) for more details. Then, a set of systematic samples

are formed from the partitioned sample. This way, the number of needed repli-

cations is kept manageable, which is important from a practical point of view.

However, the survey weights need to be modified to account for the grouping.

Campbell and Little (1980) proposed a generalized jackknife variance esti-

mator for unequal probability sampling without replacement design. Berger and

Skinner (2005) established its consistency for a single stage design under a set of

regularity conditions. The generalized jackknife variance estimator is

V̂J =
∑
i∈s

∑
j∈s

∆ij

πij
e(i)e(j), (1.3.3)

where

e(i) = (1 − πi)
(
θ̂ − θ̂(i)

)
,

and θ̂(i) is the jackknife estimator computed after removing the i-th unit. The

estimator (1.3.3) has the same form as the linearized variance estimator (1.2.16)

but the linearized variable ẑi is replaced by the numerical residual e(i). The

factor (1 − πi) can be viewed as the finite population correction for unequal
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probability sampling designs. When the second order inclusion probabilities πij
are not available, Berger (2007) suggested an approximation of (1.3.3) based on

Hájek’s approximation of the πij’s; see Hájek (1964). For two-stage sampling

designs, a generalized jackknife variance estimator was developed by Escobar and

Berger (2013). Their methods consists of deleting clusters and observations within

clusters. As a result, the resulting variance estimator accounts for the variability

in all stages and is consistent even if the sampling fraction is not negligible.

When θ is not a function of totals such as the sample quantiles, the delete

one jackknife fails to provide a consistent variance estimator; see Miller (1974)

for a review on the application of the jackknife variance estimator. To overcome

this difficulty, Shao and Wu (1989) considered a more general jackknife method,

called delete-d jackknife. The number of deleted observations d depends on the

“smoothness” of the point estimator. In particular, for the sample quantiles, the

delete-d jackknife variance estimator with d satisfying n1/2d−1 → 0 and n−d → ∞

is consistent and asymptotically unbiased in the case of i.i.d. observations.

1.4. Bootstrap for independently and identically dis-

tributed data

The bootstrap method was first proposed by Efron (1979) in classical sta-

tistics, where data are i.i.d. from a distribution F . We start by presenting the

bootstrap method in this context as it is important to understand how to gener-

alize it to more complex problems.

Let Y1, · · · , Yn denote the i.i.d. data set from the unknown F and let θ be

a given parameter which is estimated by θ̂ based on Y1, · · · , Yn. The bootstrap

estimates the variance of θ̂, V
(
θ̂
)
, by first estimating the unknown F by the

sample distribution function

F̂n(z) = 1
n

n∑
i=1

I(Yi ≤ z),

where z is a real number. Then, we obtain the bootstrap variance by V ∗ =

V ∗(θ̂∗|Y1, · · · , Yn), where θ̂∗ is the bootstrap analogue of θ̂ computed on Y ∗
1 , · · · , Y ∗

n ,

an i.i.d. sample from F̂n, called a bootstrap sample, and V ∗(·|Y1, · · · , Yn) denotes
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the conditional variance given Y1, · · · , Yn. However, this bootstrap variance esti-

mator is usually not a closed form function of Y1, · · · , Yn. In practice, we use a

Monte Carlo approximation of V ∗. The bootstrap algorithm can be depicted as

follows:

(1) Generate Y ∗
1 , · · · , Y ∗

n
i.i.d.∼ F̂n, which is equivalent to drawing a simple

random sample {Y ∗
1 , · · · , Y ∗

n } with replacement from {Y1, · · · , Yn}. Let

θ̂∗ be the bootstrap statistic computed on the resulting bootstrap sample.

(2) Repeat Step 1 a large number of times, B, to get θ̂∗
1, · · · , θ̂∗

B.

(3) Estimate V
(
θ̂
)

with

V̂ ∗
B = 1

B − 1

B∑
b=1

(
θ̂∗
b − θ̂∗

(·)

)2
,

where θ̂∗
(·) = B−1∑B

b=1 θ̂
∗
b .

Conditional on the original sample, when the number of bootstrap sample B goes

to infinity, the law of large numbers implies that V̂ ∗
B converges almost surely to

V ∗, which is a function of the original sample.

A straightforward extension of the bootstrap to survey problems is to apply

the above i.i.d. bootstrap algorithm to draw s∗, a simple random sample with

replacement (SRSWR) of size n, from the original sample s. For θ̂ = t̂HT , the

bootstrap variance estimator reduces to

V ∗ = N2
(
n− 1
n

)
s2

n
. (1.4.1)

Even in the case of simple random sampling without replacement, the bootstrap

method leads to a biased estimator of the variance as (1.4.1) fails to account for

the finite population correction, 1 − f ; see expression (1.2.10). As a result, the

bootstrap variance estimator V ∗ does not reduce to zero in the case of a census,

s = U, which is somehow embarrassing; see Lahiri (2003). Of course, in this simple

situation, a bias-adjusted variance is easily obtained as (1 − f)[n/(n − 1)]V ∗ is

consistent and unbiased for the true variance. However, for more complex survey

designs, the variance estimator (1.4.1) is biased and adjusting for the bias may be

a complex task unlike in the case of simple random sampling without replacement.



24

Successful application of the bootstrap in a finite population setting requires

appropriate modifications. One approach consists of modifying the bootstrap

procedure by taking into account the survey design. Instead of estimating the

unknown distribution F and selecting i.i.d. samples from the estimated distri-

bution F̂n, it estimates the unknown finite population U and takes bootstrap

samples according to the sampling design. These methods will be presented in

Section 1.5.1. Alternatively, modifications will be applied to the data so that

bootstrap i.i.d. sampling from the modified data will reflect the variability found

under the sampling design. These methods will be presented in Section 1.5.2. In

addition, in Section 1.5.3, some bootstrap weights methods will be presented in

which modifications are made on the survey weights rather than on the original

data set. Note that most of the proposed methods are designed to capture the

standard variance estimator of the population total estimator given by (1.2.9).

1.5. Design-based bootstrap methods for complete sur-

vey data

In this section, we study the bootstrap methods proposed so far for complete

survey data. These methods can be classified into three main groups. In the

first, a pseudo-population is first created by repeating the elements of the origi-

nal sample, and bootstrap samples are then selected from the resulting pseudo-

population mimicking the original sampling scheme (called pseudo-population

bootstrap methods). The second one consists of selecting bootstrap samples from

the original or a rescaled sample applying a with replacement sampling design

that might be different from the original sampling design (called direct bootstrap

methods). In the third group (called bootstrap weights methods), instead of gen-

erating a bootstrap sample by working on the original data set, as in the two

first groups, a set of bootstrap survey weights is generated by making rescaling

adjustments on the original survey weights. The resulting bootstrap weights with

the original data set are used to compute bootstrap estimators.

It is important to note that most of these methods are constructed so that the

resulting bootstrap expectation and variance in the case of the Horvitz-Thompson
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estimator of the total asymptotically coincide with the estimate t̂HT , and the usual

variance estimator presented in (1.2.9), respectively.

1.5.1. Pseudo-population bootstrap methods

As seen in Section 1.4, in classical statistics the unknown is the distribution F .

To perform the bootstrap procedure, F is first estimated by the empirical distri-

bution function, and then the resampling method proceeds. Working with survey

data, the unknown is the population U from which the sample was drawn. There-

fore, under the pseudo-population bootstrap (PPB) approach, U is estimated by

creating a pseudo-population via repeating the original sample using principles

from the original sampling design. Then, the bootstrap sample is drawn from the

resulting pseudo-population using the original sampling design. By obeying the

original scheme to draw the bootstrap sample from the pseudo-population, the

finite population correction factors, e.g., the 1 − f in the case of simple random

sample without replacement (SRSWOR), are naturally captured by the bootstrap

variance estimator. This important property has persuaded many researchers to

widely study this approach.

The pseudo-population bootstrap methods for simple random sample without

replacement (or stratified simple random sample) and that for unequal probabil-

ity sampling designs are presented in the two following sections.

Pseudo-population bootstrap methods for simple random sampling without re-

placement

In this section, we discuss the proposed pseudo-population methods for the

case of simple random sample without replacement: Booth et al. (1994) and Chao

and Lo (1994) on the one hand, and Bickel and Freedman (1984), Chao and Lo

(1985) and Sitter (1992a), on the other hand. To clarify the application of these

bootstrap methods, we illustrate how a pseudo-population is constructed through

a simple example. Assume that N = 1000 and a simple random sample s of size

n = 100 is taken without replacement from U . A pseudo-population of size N
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can be created by repeating the sample s, N/n = 10 times. This method was first

proposed by Gross (1980). However, in reality, N/n is rarely an integer. In this

case, a well-known method to build a pseudo-population of size N was proposed

by Booth et al. (1994). In this method, they create a pseudo-population, U∗, by

first repeating each unit of the original sample s, k = ⌊N/n⌋ times. Then, U∗ is

completed by taking a simple random sample of size N −nk without replacement

from s. For example, assuming that N = 1000 and n = 150, to construct U∗, each

unit in s is first repeated k = ⌊1000/150⌋ = 6 times. Then, U∗ is completed by

taking a simple random sample of size N − nk = 100 without replacement. Note

that if N/n is an integer, the pseudo-population U∗ created under the method of

Booth et al. (1994) is exactly the same as that under the method of Gross (1980).

To construct the pseudo-population, all other pseudo-population methods

work similarly to the Booth et al. (1994) method, but different designs are used

to complete the pseudo-population. The following algorithm presents a general

scheme of all existing methods in order to create the pseudo-population and to

select the bootstrap sample. Elements in bold in the algorithm need to be spec-

ified for each method.

SRSWOR PPB Algorithm:

(1) Repeat each unit in the original sample s, k times to create, U f , the fixed

part of the pseudo-population.

(2) Draw U c∗ from s to complete the pseudo-population, U∗. Therefore, U∗ =

U f ∪ U c∗.

(3) Take a simple random sample, s∗, of size n′ without replacement from U∗.

(4) Compute the bootstrap statistic, θ̂∗, on the bootstrap sample s∗.

In Table 1.1, the number of repetitions k, the design to obtain U c∗ and the

bootstrap sample size n′ are presented for all procedures.

Note that when N/n is not an integer, for the methods of Booth et al. (1994)

and Chao and Lo (1994), the size of the pseudo-population is fixed at N , the

original population size, but its (conditional) mean varies with each pseudo-

population. On the other hand, for the methods of Bickel and Freedman (1984),
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Table 1.1. Existing complete data PPB methods for the case of SRSWOR

Existing methods k U c∗ n′

Booth et al. (1994)

⌊N/n⌋

SRSWOR from s

n

of size N − nk

Chao and Lo (1994)
SRSWR from s

of size N − nk

Bickel and Freedman (1984) †


∅, with qbf

a,

s, with 1 − qbf .

Chao and Lo (1985) Same as † with qcl
b

Sitter (1992a)
⌊
N
n

(
1 − 1−f

n

)⌋
Same as † with qs

c n− I(Uc∗ = ∅)
aqbf =

(
1 − N−nk

n

) (
1 − N−nk

N−1

)
bqcl = G(N)−G(n(k+1))

G(nk)−G(n(k+1)) and G(t) =
(

1 − n
t

)
t(n−1)
(t−1)n

cqs =
1−f

n(n−1) −a2

a1−a2
with a1 = nk−n+1

n(n−1)(nk−1) and a2 = k
n[n(k+1)−1]

Chao and Lo (1985) and Sitter (1992a), there is a randomization between two

different pseudo-populations made up of either k or k + 1 copies of the sample

s so that in either case, the (conditional) mean of the pseudo-population is the

mean of the sample.

In the SRSWOR PPB Algorithm, there are two random components in the

bootstrap procedure: the sampling mechanism applied to complete the pseudo-

population and the one to choose the bootstrap sample, indexed by u∗ and p∗,

respectively. Considering both elements of randomness, the total bootstrap vari-

ance is

V ∗
(
θ̂∗
)

= Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
+ Vu∗

[
Ep∗

(
θ̂∗|U∗

)]
= V ∗

1

(
θ̂∗
)

+ V ∗
2

(
θ̂∗
)
, (1.5.1)

the first term representing the average, over the different pseudo-populations, of

the sampling variability of the bootstrap estimator θ̂∗, whereas the second is the

variability, over the different pseudo-populations, of the sampling mean of θ̂∗. As

discussed above, in the case of the estimator of the mean, θ̂∗ = ȳ∗ = n′−1∑
i∈s∗ y∗

i ,
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for the methods of Bickel and Freedman (1984), Chao and Lo (1985) and Sitter

(1992a), Ep∗
(
θ̂∗|U∗

)
= ȳ and so the second term in (1.5.1) is 0.

But this is not the case for the methods of Booth et al. (1994) and Chao and

Lo (1994). When the goal is to estimate the sampling variance of the estimator,

Vp
(
θ̂
)
, with these latter two bootstrap methods, two approaches are possible.

The first one is to compute the total bootstrap variance of (1.5.1). The second

one is to recognize that we are interested in estimating the sampling variance

of the estimator and therefore the extra variability resulting from completing

the pseudo-population so that it has the same size as the original population is

viewed as a parasitic variance. Hence the (bootstrap) estimate of variance should

be the first term in (1.5.1). We now look at these two possible bootstrap variance

estimates in more detail.

So, the first bootstrap estimate of variance would be V ∗
(
θ̂∗
)
, the total vari-

ance with respect to both random elements induced by creating U c∗ and selecting

s∗. This is what classical statisticians would naturally do. One might wonder

about the extra randomness induced by the completion of the pseudo-population

through U c∗, but there is an equivalent in classical statistics. Suppose that one

estimates the unknown distribution F by F̂ κ
n , a kernel distribution function es-

timate which gives a continuous estimate as opposed to the discrete empirical

distribution function. For instance, if one uses a N(0, σ2
κ) kernel, resampling

from F̂ κ
n is equivalent to adding independent N(0, σ2

κ) variables to each original

observation, putting the resulting random variables in a hat and picking at ran-

dom with replacement a sample of size n, generating new normal variables before

picking each new bootstrap sample. Clearly, in this case a bootstrap estimate

of variance would be based on the total variance with respect to both random

elements. Returning to the survey sampling context, to make a Monte Carlo

approximation to compute the total variance V ∗
(
θ̂∗
)
, the following steps must

be added to the SRSWOR PPB Algorithm.

5. Repeat Steps 2 to 4 a large number of times, B, to get θ̂∗
1, . . . , θ̂

∗
B.
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6. Estimate the variance of θ̂ by V ∗
(
θ̂∗
)

or by

V̂ ∗
B = 1

B − 1

B∑
b=1

(
θ̂∗
b − θ̂∗

(·)

)2
,

where θ̂∗
(·) = B−1∑B

b=1 θ̂
∗
b .

In the case of the population total, this bootstrap variance estimator for the

method of Booth et al. (1994) is

V ∗
(
t̂∗HT

)
=Eu∗

[
Vp∗

(
t̂∗HT |U∗

)]
+ Vu∗

[
Ep∗

(
t̂∗HT |U∗

)]
=
[
n− 1
n− f

− 1 − f ⌊N/n⌋
N − 1

(
1 − N − n ⌊N/n⌋

n

)]
N2(1 − f)s

2

n

+N (1 − f ⌊N/n⌋)
(

1 − N − n ⌊N/n⌋
n

)
s2,

(1.5.2)

where t̂∗HT = (N/n)∑i∈s∗ y∗
i is the bootstrap Horvitz-Thompson estimator of total

computed on s∗. It is straightforward to see that the first term of the bootstrap

variance estimator in (1.5.2) is asymptotically unbiased to estimate Vp
(
t̂HT

)
, i.e.

Ep
{
Eu∗

[
Vp∗

(
t̂∗HT |U∗

)]}
− Vp

(
t̂HT

)
= O

(
n−1

)
Vp
(
t̂HT

)
. (1.5.3)

Moreover, the ratio of the expectation of each component to Vp
(
t̂HT

)
is

Ep
{
Eu∗

[
Vp∗

(
t̂∗HT |U∗

)]}
Vp
(
t̂HT

) = O(1) and
Ep
{
Vu∗

[
Ep∗

(
t̂∗HT |U∗

)]}
Vp
(
t̂HT

) = O(f).

As a result, the second term in (1.5.2) produces a bias and implies an overestima-

tion of the variance. This bias can be ignored only when the sampling fraction f

is negligible. Note that in the case of a negligible f , even the classical i.i.d. boot-

strap method works well asymptotically, so there would be no need to consider

more sophisticated resampling procedures.

It should be noted that Booth et al. (1994) were interested in constructing a

confidence interval for a function of means and obtained asymptotic results for

the distribution of the estimator, which is what is needed to study the confidence

intervals. Even though they do provide an algorithm for the expected value of the

bootstrap estimator, they are silent on estimating the variance of an estimator.

In particular, we cannot infer from the paper whether they had in mind this first

approach to estimate the variance or the second one which we now describe.
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Survey samplers are much more interested in variance estimation than in con-

fidence intervals, if only because of the emphasis on coefficient of variation as

a measure of precision for estimators. Given that the interest is in estimating

the sampling variability associated with simple random sampling, the extra vari-

ability associated with completing the pseudo-population is viewed as a parasitic

variance. Hence the bootstrap estimate of variance is Eu∗
[
Vp∗

(
t̂∗HT |U∗

)]
. Inci-

dentally, this is the point of view taken by Chauvet (2007). The following steps

have to be added to the SRSWOR PPB Algorithm in order to get a Monte Carlo

approximation of this bootstrap variance estimator.

5. Repeat Steps 3 and 4 a large number of times, B, to get θ̂∗
1, . . . , θ̂

∗
B. Let

V̂ ∗
B = 1

B − 1

B∑
b=1

(
θ̂∗
b − θ̂∗

(·)

)2
,

where θ̂∗
(·) = B−1∑B

b=1 θ̂
∗
b .

6. Repeat Steps 2 to 5 a large number of times, D, to get V̂ ∗
1B, . . . , V̂

∗
DB.

7. Estimate the variance of θ̂ by Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
or by

V̂ ∗ = 1
D

D∑
d=1

V ∗
dB.

In the case of the population total, this bootstrap variance estimator for the

method of Booth et al. (1994) becomes

Eu∗
[
Vp∗

(
t̂∗HT |U∗

)]
=
[
n− 1
n− f

− 1 − f ⌊N/n⌋
N − 1

(
1 − N − n ⌊N/n⌋

n

)]
N2(1 − f)s

2

n
,

which is asymptotically unbiased to estimate Vp
(
t̂HT

)
as it was shown in (1.5.3).

Like Booth et al. (1994), Chao and Lo (1994) attempt to create a pseudo-

population of size N , the same as the original population size. However, Chao

and Lo (1994) take a simple random sample with replacement to complete the

pseudo-population. They construct their method through first principles, using

ideas from the method of moments and maximum likelihood to show that in

the case where N/n is an integer, the only natural thing to do is to repeat the

original sample k times. When N/n is not an integer, they complete the pseudo-

population with a simple random sample with replacement from the original sam-

ple, but while they argued why it should be completed by observations found in
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the sample, they do not argue why it should be by simple random sampling with

replacement.

As with Booth et al. (1994), a bootstrap variance estimator could be obtained

either using the total bootstrap variance or by taking only the first term of (1.5.1).

In the case of the population total, we have

Eu∗
[
Vp∗

(
t̂∗HT |U∗

)]
=
[
n− 1
n− f

− 1 − f ⌊N/n⌋
N − 1

(
1 − 1

n

)]
N2(1 − f)s

2

n

and

Vu∗
[
Ep∗

(
t̂∗HT |U∗

)]
= N (1 − f ⌊N/n⌋)

(
1 − 1

n

)
s2.

Since the first term is asymptotically unbiased for Vp
(
t̂HT

)
and the second term

cannot be ignored in the case of a non-negligible f , the first approach in which the

bootstrap variance estimator is Eu∗
[
Vp∗

(
t̂∗HT |U∗

)]
+Vu∗

[
Ep∗

(
t̂∗HT |U∗

)]
may lead

to an overestimation of the variance Vp
(
t̂HT

)
. However, the second approach

seems to be appropriate. It means that we should only consider the variabil-

ity induced by selecting the bootstrap sample leading to the bootstrap variance

estimator Eu∗
[
Vp∗

(
t̂∗HT |U∗

)]
.

We now return to the three other bootstrap procedures of Bickel and Freed-

man (1984), Chao and Lo (1985) and Sitter (1992a). As it was shown in Ta-

ble 1.1, each bootstrap method uses a different randomization method to select

the pseudo-population. In Bickel and Freedman (1984) and Chao and Lo (1985),

the pseudo-population is constructed by randomly repeating the original sample

k = ⌊N/n⌋ or ⌊N/n⌋ + 1 times. In Sitter (1992a) the number of repetitions k

and the bootstrap sample size are different from those in the other methods. In

this method, the randomization is done between two pairs of the number of rep-

etitions k and the bootstrap sample size, i.e. between (k, n − 1) and (k + 1, n)

where k = ⌊(N/n) [1 − (1 − f)/n]⌋.

These three methods are designed to estimate the variance of a function of

means. Writing the estimator t̂HT of the population total as t̂HT = Nȳ, where N

is the known population size, the bootstrap statistic is t̂∗HT = Nȳ∗ and for these

three methods, the second term of the bootstrap variance in (1.5.1) is zero,

Vu∗
[
Ep∗

(
t̂∗HT |U∗

)]
= Vu∗ (Nȳ) = 0.
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Note that if the bootstrap statistic is defined using the usual Horvitz-Thompson

estimator on a sample of size n′ drawn from a pseudo-population of size N ′,

i.e. t̂∗HT = (N ′/n)∑i∈s∗ y∗
i = N ′ȳ∗, this result does not hold anymore. If this

definition is used, Vu∗
[
Ep∗

(
t̂∗HT |U∗

)]
= O (n2) which is not negligible.

In Table 1.2, the ratio of the expectation of V ∗
(
t̂∗HT

)
= V ∗

1

(
t̂∗HT

)
to Vp

(
t̂HT

)
is presented for the last three methods.

Table 1.2. The ratio of V ∗ (t∗HT ) = V ∗
1

(
t̂∗HT

)
to Vp

(
t̂HT

)
in the case of SRSWOR

Existing methods Ep
{
Eu∗

[
Vp∗

(
t̂∗HT |U∗

)]}
/Vp

(
t̂HT

)
Bickel and Freedman (1984) (n− 1)/(n− f)

Chao and Lo (1985)
[
qcl
(
k−1
nk−1

)
+ (1 − qcl)

(
k

n(k+1)−1

)]
n−1
1−f

a

Sitter (1992a) 1

ak = ⌊N/n⌋, qcl = G(N)−G(n(k+1))
G(nk)−G(n(k+1)) and G(t) =

(
1 − n

t

)
t(n−1)
(t−1)n

There is quite a bit of confusion in the literature regarding the method of

Bickel and Freedman (1984), especially the probability qbf of using ⌊N/n⌋ copies

of the sample as the pseudo-population. Sitter (1992a) and Lahiri (2003) and

others refer to McCarthy and Snowden (1985) who give an example where ap-

parently qbf < 0, which would make the procedure infeasible. But it is clear

that the probability qbf presented in Table 1.1 is always positive. The confusion

comes from the fact that McCarthy and Snowden (1985) gave the example for

the probability suggested in Bickel and Freedman (1983), which is an unpub-

lished manuscript, rather than from Bickel and Freedman (1984). According to

McCarthy and Snowden (1985), the suggested probability in Bickel and Freedman

(1983) is

q′
bf = (1 − f)/(n− 1) − b2

b1 − b2
,

where b1 = k−1
nk−1 and b2 = k

n(k+1)−1 with k = ⌊N/n⌋. Using this probability to

estimate Vp (ȳ) leads to Eu∗ [Vp∗ (ȳ∗|U∗)] = (1−f)s2/n, which is the usual variance

estimator of the sample mean, and Vu∗ [Ep∗ (ȳ∗|U∗)] = 0. However, the probability



33

q′
bf can be negative in some cases as discussed in McCarthy and Snowden (1985),

which is probably why the probability qbf changed between the two versions. On

the other hand, using probability qbf leads to a biased estimator of variance as

seen in Table 1.2.

To illustrate the accuracy of the five pseudo-population methods in estimating

the variance of t̂HT , the ratio of the expectation of both terms of the bootstrap

variance estimator, Ep
{
V ∗

1

(
t̂∗HT

)}
and Ep

{
V ∗

2

(
t̂∗HT

)}
, to Vp

(
t̂HT

)
, which only

depend on the population (N) and sample (n) sizes, are presented in Table 1.3.

Four different scenarios made up of two population sizesN1 = 100 andN2 = 10000

with two sampling fractions f1 = 6% and f2 = 60% are considered.

Table 1.3. The ratio of the expectation of both components of the

bootstrap variance estimator to Vp
(
t̂HT

)
assuming N1 = 100, N2 =

10000, f1=6% and f2=60%.

Ep
{
V ∗

1

(
t̂∗HT

)}
/Vp

(
t̂HT

)
Ep
{
V ∗

2

(
t̂∗HT

)}
/Vp

(
t̂HT

)
PPB methods for SRSWOR f1=6% f2=60% f1=6% f2=60%

N1 N2 N1 N2 N1 N2 N1 N2

Booth et al. (1994) 0.842 0.998 0.992 1.0 0.001 0.001 0.2 0.2

Chao and Lo (1994) 0.841 0.998 0.989 1.0 0.002 0.003 0.59 0.6

Bickel and Freedman (1984) 0.842 0.998 0.993 1.0 0 0 0 0

Chao and Lo (1985) 0.842 0.998 0.993 1.0 0 0 0 0

Sitter (1992a) 1 1 1 1 0 0 0 0

In all methods, except Sitter (1992a) where Ep
{
V ∗

1

(
t̂∗HT

)}
/Vp

(
t̂HT

)
is ex-

actly 1, this ratio is close to 1 confirming that the first term of bootstrap variance

estimator is a good estimator of the variance Vp
(
t̂HT

)
. Only in the case of

N1 = 100 with f1 = 6% are the ratios about 0.84. This is because the sample size

in this scenario, n = 6, is very small and the results are much better when the

sample size increases. In the case of n = 6, we can not improve the results even

when the second term of bootstrap variance estimator is added to the first term.
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In the case of Sitter (1992a), this ratio is exactly 1 because the probability qs of

Table 1.1 is constructed so that the bootstrap variance estimator is identical to

the usual variance estimator in the case of the population mean (or total). The

contribution of V ∗
2

(
t̂∗HT

)
to the total variance is significant in Booth et al. (1994)

and Chao and Lo (1994) when the sampling fraction is large (f2 = 60%), as sug-

gested by the theory above, while it is zero for the other methods as discussed

earlier. We note that completing the pseudo-population using without replace-

ment sampling as in Booth et al. (1994) leads to a much smaller bias than the

with replacement sampling of Chao and Lo (1994). In both methods, the sum

of the first and the second term of the bootstrap variance estimator implies an

overestimation of the variance.

All methods for the case of simple random sample without replacement can be

easily extended to stratified simple random sample without replacement by apply-

ing a resampling method independently within strata. In addition, the method

of Sitter (1992a) was extended to more complicated sampling designs, such as

two-stage cluster sampling and the Rao-Hartley-Cochran method for probability

proportional to size sampling (Rao et al., 1962). These extensions give the usual

variance estimates in the linear case. Later, in a similar manner, Saigo (2010)

extended the Sitter (1992a) method for stratified three-stage sampling.

Chao and Lo (1994) also investigated the case of unequal probability sam-

pling design. Again, they take the point of view of maximizing the likelihood of

obtaining the original sample from the pseudo-population. Clearly, putting val-

ues in the pseudo-population which are not part of the original sample will lead

to some samples with values different from the original sample. Therefore, the

pseudo-population must only contain values from the original sample in order to

maximize the likelihood that the bootstrap sample will be identical to the original

sample. The case of two-stage sampling is also studied through an example.

Pseudo-population bootstrap methods for unequal probability sampling



35

We now study two procedures designed for unequal (single-stage) probabil-

ity sampling designs (UEQPS). The methods of Chauvet (2007) and Holmberg

(1998) try to follow the original sampling design as was the case with simple ran-

dom sample without replacement. Letting πi be the inclusion probability for the

i-th unit in s, Chauvet (2007) for the case of Poisson sampling design and Holm-

berg (1998) for inclusion probability proportional to size sampling designs apply

the following general algorithm to create the pseudo-population and to draw the

bootstrap sample. The element in bold will be specified for each method.

UEQPS PPB Algorithm:

(1) Repeat the pair (yi, πi),
⌊
π−1
i

⌋
times for all i in s to create, U f , the fixed

part of the pseudo-population.

(2) To complete the pseudo-population, U∗, draw U c∗ from {(yi, πi)}i∈s using

Poisson sampling with inclusion probability π−1
i −

⌊
π−1
i

⌋
for the i-th pair.

Therefore, U∗ = U f ∪ U c∗ = {(y̌i, π̌i)}i∈U∗ .

(3) Take the bootstrap sample s∗ from U∗ using the same sampling design

that led to s, but with inclusion probability π′
i for the i-th unit in U∗, as

defined in the sequel.

We see that the way of constructing the pseudo-population is the same for

both methods. However, to draw the bootstrap sample, the original sampling

mechanism used to draw s from U is applied, but with inclusion probability

π′
i. Note that π′

i may be different from the original inclusion probability. The

sampling design and the inclusion probability π′
i in Step 3 are presented in the

following for both methods.

Chauvet (2007) estimates the variance of the population total Vp
(
t̂HT

)
for

Poisson sampling design. To obtain the bootstrap variance estimator of Chauvet,

Poisson sampling with the original inclusion probabilities π′
i = π̌i in Step 3 of the

UEQPS PPB Algorithm is used and the following steps are added to complete

the resampling procedure.

4. Compute the bootstrap statistic, θ̂∗, on the bootstrap sample s∗.
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5. Repeat Steps 3 and 4 a large number of times, B, to get θ̂∗
1, . . . , θ̂

∗
B. Let

V̂ ∗
B = 1

B − 1

B∑
b=1

(
θ̂∗
b − θ̂∗

(·)

)2
,

where θ̂∗
(·) = B−1∑B

b=1 θ̂
∗
b .

6. Repeat Steps 2 to 5 a large number of times, D, to get V̂ ∗
1B, . . . , V̂

∗
DB.

7. Estimate the variance of θ̂ by Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
or by

V̂ ∗ = 1
D

D∑
d=1

V ∗
dB.

We see that Chauvet (2007) follows the same approach as with the second in-

terpretation that we gave to Booth et al. (1994). Chauvet showed that under

Poisson sampling, the bootstrap variance estimator, Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
, reduces

to the usual variance estimator of (1.2.11) in the case of the total estimator, as

proven below.

Eu∗
[
Vp∗

(
t̂∗HT |U∗

)]
= Eu∗

[
Vp∗

(∑
i∈s∗

π
′−1
i y∗

i |U∗
)]

= Eu∗

(∑
i∈U∗

1 − π̌i
π̌i

y̌2
i

)

=
∑
i∈s

⌊
π−1
i

⌋ 1 − πi
πi

y2
i + Eu∗

( ∑
i∈Uc∗

1 − π̌i
π̌i

y̌2
i

)

=
∑
i∈s

⌊
π−1
i

⌋ 1 − πi
πi

y2
i +

∑
i∈s

(
π−1
i −

⌊
π−1
i

⌋) 1 − πi
πi

y2
i

=
∑
i∈s

1 − πi
π2
i

y2
i .

Note that the resulting pseudo-population may not have the same size as the

original population size, N . But, letting M̌i be the number of times unit i appears

in U∗, we have EpEu∗
(∑

i∈s M̌i

)
= N .

If instead of using the random sample size Poisson design one uses the fixed

size rejective sampling (or conditional Poisson sampling), Chauvet (2007) sug-

gests using the same algorithm as before replacing Poisson sampling by rejective

sampling to construct the pseudo-population and to generate the bootstrap sam-

ple. To show that the bootstrap estimate of variance works well in this case, he

uses the Hájek approximation for the second order inclusion probability to derive
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an approximation to the variance of the Horvitz-Thompson estimator of the total

and shows that Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
is asymptotically unbiased for Vp

(
t̂HT

)
. The

Hájek approximation will be good for rejective sampling as it is a high-entropy de-

sign. We conjecture that the method of Chauvet (2007) will perform well for any

sampling design belonging to the class of high entropy sampling designs, which

includes the Rao-Sampford method (Rao, 1965; Sampford, 1967) and randomized

proportional-to-size systematic sampling as special cases.

Note that applying the proposed method to rejective sampling where∑i∈U πi =

n, it is possible that the sum of the inclusion probabilities on U∗ is not an integer,

so the condition of exact fixed size may not be satisfied. When the original inclu-

sion probabilities are proportional to size, the inclusion probabilities to select the

bootstrap sample have to be recalculated on each resulting pseudo-population in

the same way that the original inclusion probabilities were computed on U .

Chauvet (2007) also extended his pseudo-population procedure to the case of

multistage sampling design.

Holmberg (1998) proposed his bootstrap method for inclusion probability pro-

portional to size sampling designs, so the first order inclusion probability used

in Step 3 of the UEQPS PPB Algorithm is π′
i = nπ̌i/

∑
j∈U∗ π̌j. Unlike Chauvet

(2007), according to the theory done in Holmberg (1998), the total bootstrap

variance estimator in (1.5.1) is captured under this method as in the second in-

terpretation of Booth et al. (1994). Holmberg (1998) applied this procedure to

Pareto sampling (Rosén, 1997), a special case of inclusion probability propor-

tional to size sampling, which produces the smallest asymptotic variance for the

population total estimator. He studied both terms in (1.5.1) for the case of the

population total.

However, to compute the Monte Carlo variance estimator, he ignores the

variability induced by creating the pseudo-population. In the case of Pareto

sampling, the following steps must be added to the UEQPS PPB Algorithm

to obtain his suggested Monte Carlo approximation of the bootstrap variance

estimator.

4. Compute the bootstrap statistic, θ̂∗, on the bootstrap sample s∗.
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5. Repeat Steps 3 and 4 a large number of times, B, to get θ̂∗
1, . . . , θ̂

∗
B.

6. Estimate Vp
(
θ̂
)

with

V̂ ∗ = n

n− 1
V̂ ∗
B = n

n− 1
1

B − 1

B∑
b=1

(
θ̂∗
b − θ̂∗

(·)

)2
,

where θ̂∗
(·) = B−1∑B

b=1 θ̂
∗
b .

As a result, since Uc∗ in Step 2 does not change, the pseudo-population is

created once from which a large number of bootstrap samples are taken, so the

second term in (1.5.1) is estimated by zero. It seems Holmberg believes that once

the created pseudo-population is a good representative of the population, there

is no need to create a new pseudo-population in each bootstrap iteration.

1.5.2. Direct bootstrap methods

The bootstrap methods in this category are based on the idea that the boot-

strap samples can be directly drawn from the original data set as in Efron (1979)

without requiring the creation of a pseudo-population and mimicking the original

sampling design. However, some modifications have to be made in order to obtain

correct bootstrap estimators which will reflect the appropriate sampling variabil-

ity of the original sampling design. Some methods modify the observations while

others concatenate independent smaller simple random samples without replace-

ment. First, we focus on the procedures handling the case of simple random

sampling without replacement.

The rescaling bootstrap (RSB) method proposed by Rao and Wu (1988) is

one of the well-known bootstrap methods. In this procedure, a rescaling of the

original data set is made before drawing the bootstrap sample leading to a valid

estimator of the variance of θ̂ = g(t̂1HT , . . . , t̂JHT ), a function of population totals

such as a ratio, a correlation coefficient or the generalized regression estimator.

Let n′ be the bootstrap sample size and y′
i = ȳ+C(yi− ȳ) be the rescaled y-value

for unit i, where

C =
√
n′(1 − f)
n− 1

. (1.5.4)

The bootstrap sample, s∗ = {y∗
i }n

′
i=1, of size n′, is then taken with replacement

from s′ = {y′
i}ni=1 the set of rescaled data. Afterwards, the bootstrap statistic θ̂∗ =
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g(t̂∗1HT , . . . , t̂∗JHT ), where t̂∗jHT = (N/n′)∑i∈s∗ y∗
ji for j = 1, . . . , J , is computed.

To illustrate how this bootstrap method performs for a function of totals, assume

that the parameter of interest is the population variance which is a function of

two totals:

θ = N−1 ∑
i∈U

y2
i −

(
N−1 ∑

i∈U
yi

)2

= N−1t1 −
(
N−1t2

)2
, (1.5.5)

with (y1i, y2i) = (y2
i , yi). Therefore, the rescaled values of y1i and y2i are given

by (y′
1i, y

′
2i) = (ȳ1 + C (y2

i − ȳ1) , ȳ2 + C(yi − ȳ2)), where ȳ1 = n−1∑
i∈s y

2
i and

ȳ2 = ȳ. The bootstrap sample is now drawn from {(y′
1i, y

′
2i)}ni=1.

It is worth noting that s∗ is drawn with replacement like in Efron (1979), but

from a rescaled data set and with a size that may be different from n.

As shown below, the rescaling factor C is chosen so that the variance under

resampling matches the usual variance estimator of the population total.

Vp∗
(
t̂∗HT

)
= Vp∗

(
N

n′

∑
i∈s∗

y∗
i

)

= N2

n′
1
n

∑
i∈s

y′
i − n−1∑

j∈s
y′
j

2

= N2C2

n′n

∑
i∈s

(yi − ȳ)2

= N2(1 − f)s
2

n
.

Rao and Wu (1988) showed that an improper choice of n′ could lead to negative

values of θ̂∗ even when θ̂ ≥ 0 and the parameter of interest is necessarily positive.

For example, when the parameter of interest is the population variance given

by (1.5.5), choosing n′ > (n − 1)/(1 − f) might lead to a negative value for θ̂∗.

However, in this case, choosing n′ ≤ (n− 1)/(1 − f), we have θ̂∗ ≥ 0.

When applying this method to estimate the variance of the GREG estimator

given by (1.2.7), the auxiliary variables x also need to be rescaled the same way

that the study variables are rescaled. The bootstrap samples are then selected

from the rescaled version of the set of pairs {(yi,xi)}i∈s. The resulting bootstrap
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variance estimator is asymptotically unbiased for the linearization variance esti-

mator given by (1.2.14). In addition, Kovar et al. (1988) applied the RSB method

to the case of quantiles.

In the following, a general algorithm for the direct bootstrap methods is pre-

sented. In Table 1.4, the different notations used in this algorithm in bold are

defined for each procedure. To put the various procedures in the same algorithm,

we define three quantities. We let C be the rescaling factor of the observations.

Also the method of Sitter (1992b), called the mirror-match bootstrap, involves

the concatenation of k′ simple random samples without replacement of size n′′.

For the methods involving a single i.i.d. sample of size n′, we will use n′′ = 1

and k′ = n′. In other words, setting n′′ = 1 in the algorithm described below is

equivalent to selecting the bootstrap samples with replacement.

SRSWOR Direct Algorithm:

(1) Let y′
i = ȳ + C(yi − ȳ), for i = 1, · · · , n. Define s′ = {y′

i}ni=1.

(2) Take a simple random sample of size n′′ without replacement from s′.

(3) Repeat Step 2, k′ times independently, concatenating all subsamples, to

get s∗ = {y∗
i }n

′
i=1, where n′ = k′n′′.

(4) Compute the bootstrap statistic, θ̂∗ = g(t̂∗1HT , . . . , t̂∗JHT ), where t̂∗jHT =

(N/n′)∑i∈s∗ y∗
ji for j = 1, . . . , J .

(5) Repeat Steps 2 to 4 a large number of times, B, to get θ̂∗
1, . . . , θ̂

∗
B.

(6) Estimate the variance of θ̂ by Vp∗
(
θ̂∗
)

or by V̂ ∗
B = (B−1)−1∑B

b=1

(
θ̂∗
b − θ̂∗

(·)

)2
,

where θ̂∗
(·) = B−1∑B

b=1 θ̂
∗
b .

Table 1.4 shows that the i.i.d. bootstrap of Efron (1979) overestimates the

variance because of failing to cover the without replacement correction factor.

McCarthy and Snowden (1985) do the same as Efron (1979), but they recom-

mended a new bootstrap sample size n′ = (n − 1)/(1 − f) to capture the finite

population correction factor which yields the customary variance estimator of t̂.

If the recommended resample size (n−1)/(1−f) is non-integer, the closest integer

to this value is considered as n′.
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Table 1.4. Existing complete data direct bootstrap methods

for the case of SRSWOR

Existing methods C n′′ k′ Ep[Vp∗(t̂∗HT )]
Vp(t̂HT )

Efron (1979) 1 1 n n−1
n(1−f)

McCarthy and Snowden (1985) 1 1 n−1
1−f

a 1

Rao and Wu (1988)
√

k′(1−f)
n−1 1 Arbitrary b 1

Sitter (1992b) 1 ≤ n
2−f

⌊
n(1−f ′′)
n′′(1−f)

⌋
+ Iq

c 1

aIt may be a non-integer. If so, n′ = ⌊(n− 1)/(1 − f) + 0.5⌋.
bMore conditions are required to have a positive θ̂∗ when θ̂ is necessarily positive.
cIq ∼ Bernoulli(q) with q = (⌊k⌋−1 − k−1)/(⌊k⌋−1 − ⌈k⌉−1), ⌈k⌉ = ⌊k⌋ + 1, k = n(1 − f ′′)/[n′′(1 − f)] and

f ′′ = n′′/n

As mentioned above, the method of Sitter (1992b) consists of taking a re-

sample without replacement, as in the original sampling scheme, but of size n′′

smaller than the original sample size and then repeating this resampling inde-

pendently k = n(1 − f ′′)/[n′′(1 − f)] times. The bootstrap sample is obtained by

accumulating all these resamples. The number of repetitions k is chosen in such

a way that the resulting bootstrap variance matches the usual variance estimate

of the population total in (1.2.9), Vp∗
(
t̂∗HT

)
= V̂

(
t̂HT

)
. Since k is usually not

an integer, a randomization between bracketing integers is available as shown in

Table 1.4. Sitter (1992b) showed that this procedure remains valid for the case

of a function of totals, but more study is required for more complex parameters

such as a population quantile.

Sitter (1992b) also discussed an alternative choice of resample size with n′′ =

fn such that the resampling fraction f ′′ = n′′/n is the same as the original

sampling fraction f . However, this procedure is generally not feasible since both

n′′ and k are generally not integer values. In this case, two types of randomization

between bracketing integers were suggested. In the first one, the bootstrap sample

size n′′ = ⌊fn⌋ + Iq′ is first fixed, where Iq′ ∼ Bernoulli(q′) with q′ = fn− ⌊fn⌋.

Then, a randomization between the integer values of k is done, as presented in
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Table 1.4, so that E(f ′′) = f and Vp∗
(
t̂∗HT

)
= V̂

(
t̂HT

)
. Choosing n′′ by this way

may lead to k < 1. So, this randomization is not valid. In this case, another kind

of randomization made between (⌊fn⌋, ⌊k⌋) and (⌈fn⌉, ⌈k⌉) is presented, where

⌈·⌉ denotes the smallest integer greater than.

All proposed methods can be easily extended to the case of stratified simple

random sample without replacement by performing resampling independently

within each stratum. Rao and Wu (1988) extended their method not only to

stratified simple random sample with replacement, but also to two-stage cluster

sampling without replacement and the Rao-Hartley-Cochran method. Different

rescaling factors are used so that the resulting bootstrap variance estimators

match the textbook variance estimator of the point estimator; see also Sitter

(1992b) for an extension of the mirror-match method for these sampling designs.

Saigo (2010) extended the Rao and Wu (1988) and Sitter (1992b) methods to

stratified three-stage sampling. Drawing the bootstrap samples is of course per-

formed in three stages independently across strata and the rescaling factors used

at each stage for the rescaling bootstrap method as well as the number of replica-

tions needed at each stage in the mirror-match bootstrap are explicitly presented.

1.5.3. Bootstrap weights methods

As discussed in Section 1.2, an estimator of θ can be viewed as a function of

the observations and the survey weights. Rao et al. (1992) developed the idea of

creating bootstrap survey weights rather than drawing the bootstrap sample of

observations to compute the bootstrap statistic. In the case of the sample mean,

they noted that the bootstrap sample mean ȳ∗ of the RSB method of Rao and

Wu (1988), the mean of the bootstrap observations y∗
i , is a weighted mean of

the rescaled observations y′
i where the weights are the number of times that y′

i

is in the bootstrap sample. But since y′
i is itself a weighted mean of the original

observations yi, ȳ∗ is therefore a weighted mean of the original observations yi.

To better understand this statement, let

I∗
ji =

 1, if y∗
j = y′

i = ȳ + C(yi − ȳ),

0, otherwise,
j = 1, . . . , n′; i = 1, . . . , n.



43

As a result, ∑j∈s∗ I∗
ji represents the number of times unit i in s is selected in the

bootstrap sample under the RSB method. In the case of a population mean, the

bootstrap estimator in Rao and Wu (1988) is n′−1∑
j∈s∗ y∗

i . In the case of simple

random sampling without replacement and applying the definition of I∗
ji, we have

1
n′

∑
j∈s∗

y∗
j = 1

n′

∑
j∈s∗

∑
i∈s

I∗
jiy

′
i

= 1
n′

∑
j∈s∗

∑
i∈s

I∗
ji[ȳ + C(yi − ȳ)]

= ȳ + C

n′

∑
i∈s

yi
∑
j∈s∗

I∗
ji − Cȳ

= 1
N

∑
i∈s

[
1 + C

(
n
∑
j∈s∗ I∗

ji

n′ − 1
)]

wiyi,

where wi is the weight of the observation, in this case N/n. Therefore, rather than

selecting bootstrap observations, Rao et al. (1992) suggested to keep the original

observations and create bootstrap weights. This method is attractive for users of

public data files prepared by statistical agencies such as Statistics Canada. These

agencies provide data sets consisting of columns with the original observations, a

column with the original survey weights and B columns of bootstrap weights. As

a result, the agencies do not need to provide certain details about the sampling

design which may reveal enough information that could jeopardize confidentiality.

Bootstrap weights are of the general form

w∗
i = a∗

iwi, (1.5.6)

where a∗
i is computed based on the bootstrap sample. In Rao et al. (1992), the

suggested bootstrap adjustments for the case of simple random sampling without

replacement are

a∗
i = 1 +

√
n′(1 − f)
n− 1

(
nm∗

i

n′ − 1
)
,

where m∗
i is the number of times that the i-th element is appearing in the

bootstrap sample of size n′ selected with replacement from the original sam-

ple (∑i∈sm
∗
i = n′). Therefore, according to the definition of the random variable∑

j∈s∗ I∗
ji in the Rao and Wu (1988) method and that of m∗

i , it is clear that the

number of times unit i in s is selected in the bootstrap sample has the same
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distribution in both Rao and Wu (1988) and Rao et al. (1992), i.e. m∗
i
D= ∑

j∈s∗ I∗
ji

where D= indicates equality in distribution. Consequently, we have

a∗
i
D= 1 + C

(
n
∑
j∈s∗ I∗

ji

n′ − 1
)
.

That is, both methods are equivalent for a function of means (or totals). Note

that even if the i-th element is not selected, m∗
i = 0, the associated bootstrap

survey weight is nonzero. This is because the rescaled observations y′
i are centered

at ȳ which involves all observations. If wi > 0 for all i ∈ s and n′ is chosen to be

less than or equal to (n− 1)/(1 − f), then the bootstrap weights are all positive.

Rao et al. (1992) presented a similar method for the case of stratified multi-

stage cluster sampling with replacement. An extension of this method for strati-

fied three-stage sampling is considered in Saigo (2010).

Letting m∗
i be the number of times that the i-th element is appearing in

a bootstrap sample selected according to a particular resampling design of size

n′, Table 1.5 displays the way of computing a∗
i in (1.5.6) for different bootstrap

weights methods in the case of simple random sample without replacement: Rao

et al. (1992), Chipperfield and Preston (2007), Beaumont and Patak (2012) and

Antal and Tillé (2011a, 2014).

As shown in Table 1.5, the method of Chipperfield and Preston (2007) intro-

duced a new set of bootstrap weights rescaled on the basis of the number of times

that the original units are selected in a simple random sample of size n′ = ⌊n/2⌋

drawn without replacement from s. So, unlike the method of Rao et al. (1992),

bootstrap samples are drawn without replacement. As a result, m∗
i = 0 or 1.

Chipperfield and Preston (2007) applied their method and the Rao et al. (1992)

method to estimate the variance of GREG estimators. The bootstrap statistics

are computed using the following GREG bootstrap weights:

w∗
i = a∗

iπ
−1
i

{
1 + (tx − t̂∗x)⊤T̂

∗−1
c−1
i xi

}
,

where t̂∗x = ∑
i∈s a

∗
iπ

−1
i xi and T̂

∗ = ∑
i∈s a

∗
iπ

−1
i xic

−1
i x⊤

i . Note that replacing a∗
i

by 1 in the expression of w∗
i leads to the usual GREG weights given by (1.2.6).

Both bootstrap variance estimators are asymptotically unbiased to estimate the

linear approximation of the variance of total presented in (1.2.14). Based on
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Table 1.5. Existing complete data bootstrap weights methods for SRSWOR

Existing methods Resampling n′ a∗
i

Rao et al. (1992) SRSWR Any a 1 +
√

n′(1−f)
n−1

(
nm∗

i

n′ − 1
)

Chipperfield and Preston (2007) SRSWOR ⌊n/2⌋ 1 +
√

⌊n/2⌋(1−f)
n−⌊n/2⌋

(
nm∗

i

⌊n/2⌋ − 1
)

Beaumont and Patak (2012) – –

Generate from a distribution

with E∗(a∗) = 1 and

V ∗(a∗ − 1)(a∗ − 1)⊤ = Σ b

Antal and Tillé (2011a)
SRSWOR &

n m∗
i

one-one

Antal and Tillé (2014)
Bernoulli &

n m∗
i

one-one

aMore conditions are required to have positive bootstrap weights.
ba∗ = (a∗

1, . . . , a
∗
n) and Σ = (∆ijπiπj/πij) where ∆ijπiπj/πij = −(1 − f)/(n− 1) if i ̸= j and 1 − f if i = j.

empirical results, they showed that the Chipperfield and Preston (2007) method

can be significantly more efficient than the bootstrap weights method of Rao

et al. (1992) in terms of variance; see Preston and Chipperfield (2002). As the

sample size n increases, Preston and Chipperfield (2002) showed empirically that

the difference between both methods vanishes.

A closer look at the Rao et al. (1992) method for the case of SRSWOR re-

veals that the distribution of m∗
i is a Multinomial(n′, 1

n
, . . . , 1

n
), which implies

that E∗(a∗
i ) = 1 and E∗(a∗

i − 1)(a∗
j − 1) = ∆ijπiπj/πij with ∆ijπiπj/πij = 1 − f if

i = j, and −(1 − f)/(n− 1) otherwise. Therefore, the bootstrap adjustments a∗
i

are constructed so that the bootstrap expectation and the bootstrap variance esti-

mator in the case of population total respectively capture the Horvitz-Thompson

estimator of total t̂HT and the usual variance estimator V̂
(
t̂HT

)
in (1.2.9). Beau-

mont and Patak (2012) indicate that if any appropriate distribution is used to
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generate a∗
i so that

E∗(a∗
i ) = 1 and E∗(a∗

i − 1)(a∗
j − 1) = πij − πiπj

πij
= ∆ijπiπj

πij
, (1.5.7)

the first two moments are captured. This type of bootstrap method belongs to

the class of the generalized bootstrap method (e.g., Lo (1991), Mason and Newton

(1992) and Barbe and Bertail (1995)) which was first presented by Bertail and

Combris (1997) in survey sampling with unequal probability sampling. Bertail

and Combris (1997) suggested generating the vector a∗ = 1 + Σ1/2ã∗ where

a∗ = (a∗
1, . . . , a

∗
n), Σ is a n× n matrix containing ∆ijπiπj/πij in its i-th row and

j-th column and ã∗ is a n-vector of independent random variables with mean of

0 and variance of 1 for all its elements. A simple choice is to generate ã∗
i from

the standard normal distribution. So, the vector a∗ follows a multivariate normal

distribution N (1,Σ).

In the case of Poisson sampling, the pseudo-population bootstrap method

of Chauvet (2007) (see Section 1.5.1) can be implemented using a bootstrap

weights method; see Beaumont and Patak (2012). That is, the creation of a

pseudo-population is not required. Rather, bootstrap weights are directly gen-

erated from some appropriate distributions so that (1.5.7) holds. They sug-

gested generating m∗
i ∼ Binomial(w̃i, πi), where w̃i =

⌊
π−1
i

⌋
+ Ibpi and Ibpi ∼

Bernoulli
(
π−1
i −

⌊
π−1
i

⌋)
, and they define a∗

i = m∗
i . The resulting bootstrap es-

timator of the population total from this method and that from Chauvet (2007)

have the same distribution (see also Ranalli and Mecatti (2012) for π−1
i integer,

for all i ∈ s). Applying the method of Chauvet (2007), we have

θ̂∗ =
∑
i∈s∗

π
′−1
i y∗

i

=
∑
i∈U∗

I(i ∈ s∗)π̌−1
i y̌i

=
∑
i∈s

m
′∗
i wiyi,

where m′∗
i is the number of times that the i-th unit of s is selected in the bootstrap

sample from the pseudo-population U∗. Since sample unit i is repeated
⌊
π−1
i

⌋
+

I(i ∈ Uc∗) times in U∗ and I(i ∈ Uc∗)
D= Ibpi , it is easy to see that m′∗

i
D= m∗

i which

confirms that both methods are equivalent in the case of the population total.
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In the case of the GREG estimator of total, assuming ci = λ⊤xi in (1.2.6)

with λ a vector of known constants so that ci > 0, the GREG survey weights

become

wi(s) = π−1
i x⊤

i c
−1
i T̂

−1
tx. (1.5.8)

In this case, to compute the corresponding bootstrap statistic, Beaumont and

Patak (2012) suggest using their proposed bootstrap adjustments a∗
i , obtained on

the basis of the original sampling design, and defining GREG bootstrap weights

similar to (1.5.8) by

w∗
i = a∗

iπ
−1
i x⊤

i c
−1
i T̂

∗−1
tx, (1.5.9)

where T̂
∗ = ∑

i∈s a
∗
iπ

−1
i xic

−1
i x⊤

i . The bootstrap estimator of total is then com-

puted by t̂∗ = ∑
i∈sw

∗
i yi. They showed that the resulting bootstrap variance

estimator is approximately equal to the usual variance estimator presented in

(1.2.16). An alternative consists of replacing tx in (1.5.9) by t̂xHT .

In general, some bootstrap adjustments may be negative. To avoid negative

bootstrap adjustments a∗
i , they suggested using the following bootstrap adjust-

ments

ǎ∗
i = a∗

i + τ − 1
τ

,

where τ ≥ 1 is a small number but large enough so that the scaled bootstrap

adjustments are non-negative. Note that E∗(ǎ∗
i ) = 1 and E∗(ǎ∗

i − 1)(ǎ∗
j − 1) =

τ−2E∗(a∗
i − 1)(a∗

j − 1). Therefore, to have a valid bootstrap estimator for the

variance, the resulting bootstrap variance estimator obtained after applying the

new bootstrap adjustment ǎ∗
i must be multiplied by τ 2. So, this value must be

provided to an ultimate user.

The methods of Antal and Tillé (2011a, 2014) are a different kind of boot-

strap weights methods in which a new family of sampling designs, called one-one

designs, are applied. Unlike the methods introduced so far, they were interested

in building integer bootstrap adjustments a∗
i so that

Ep∗(a∗
i ) = 1 and Vp∗ (a∗

i ) = 1 − πi.

In fact, they only attempt to capture the diagonal of the matrix Σ = (∆ijπiπj/πij),

1−πi, and not the entire matrix in the case of the population total. Therefore, the
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suggested bootstrap variance estimator is usually not equal to the usual estimator

in (1.2.9) when θ = t.

To better understand their method, we first briefly present one-one designs

which are only used to construct one part of bootstrap samples. A sample s̃

drawn from s under a one-one design has the following properties.

Ep̃ (m̃i) = Vp̃ (m̃i) = 1 and
∑
i∈s

m̃i = n,

where m̃i is the number of times that unit i in s is selected in s̃ and the subscript

p̃ denotes the one-one sampling design. Therefore, both the expectation and the

variance of m̃i are 1. That is why these designs are called one-one. In addition,

the resulting sample size is the same as the original sample size n. Antal and Tillé

(2011a) first proposed a one-one design. They used a mixture of simple random

sample with replacement and simple random sample with over replacement as

proposed by Antal and Tillé (2011b). Another one-one sampling design, called

repeated half-sample, is presented in Antal and Tillé (2014) which was previously

used by Saigo et al. (2001) in the context of imputed survey data. Under repeated

half-sampling, if the original sample size n is even, a simple random sample of size

n/2 without replacement is first selected and then, it is repeated a second time

to form the resample of size n. If n is odd, a resample of size n can be obtained

in two different ways. The first one consists of choosing a simple random sample

of size (n− 1)/2 without replacement and repeating this sample twice, so we end

up with n − 1 units. An additional unit is obtained by selecting one at random

from the n − 1 units already resampled. In the second way, we choose a simple

random sample of size (n+ 1)/2 without replacement and repeat each unit twice,

leading to a sample of size n + 1. One of these units is discarded at random.

Finally, we select the resulting resample of method 1 with probability 1/4 and

that of method 2 with probability 3/4. This design is used by Antal and Tillé

(2014) to complete the bootstrap samples in the proposed procedures.

In the case of simple random sampling without replacement, Antal and Tillé

(2011a) use a mixture of simple random sampling without replacement and one-

one designs in the proposed resampling procedure. We will not present this
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complex method here. Instead we will present Antal and Tillé (2014) where

they applied a Poisson sampling design and completed it with a repeated half-

sampling design, which is a one-one design. Note that the bootstrap sample is

not chosen using the original design, which is simple random sampling without

replacement. The following algorithm shows all steps in Antal and Tillé (2014)

needed to construct the bootstrap weights in the case of simple random sampling

without replacement.

(1) Take a sample, s∗
1, from s under Poisson sampling with πi = n/N for all

i ∈ s, which is equivalent to generating I∗
1 , . . . , I

∗
n
i.i.d.∼ Bernoulli(n/N)

with I∗
i indicating if the i-th unit of s is selected in s∗

1 or not. Define

n′
1 = ∑

i∈s I
∗
i .

(2) To complete the bootstrap sample:

• If n′
2 = n− n′

1 ≥ 2, select a repeated half-sample, s∗
2, from the non-

selected units in s∗
1 (i.e. from s \ s∗

1). Define m̃∗
i the number of times

that the i-th unit of s is selected in s∗
2. Let s∗ = s∗

1 ∪ s∗
2. Therefore,

m∗
i = I∗

i + (1 − I∗
i )m̃∗

i for all i ∈ s.

• If n′
2 = n − n′

1 = 1, so only one unit was not selected in s∗
1, e.g.

yk. First, generate m∗
k = 0, 1 or 2 with probability 1/4, 1/2 and 1/4,

respectively. Then, randomly select one unit from s∗
1, e.g. yl. Define

m∗
i =


I∗
i , if i ̸= k, l,

m∗
k, if i = k,

2 −m∗
k, if i = l.

Finally, define a∗
i = m∗

i that is the number of times that unit i of s is appearing

in the final bootstrap sample.

In both papers, the case of Poisson sampling is also studied. In both meth-

ods, s∗
1 is taken from s under Poisson sampling with the original inclusion prob-

ability πi. However, s∗
2 is drawn differently in each paper. In Antal and Tillé

(2011a), a Poisson distribution with parameter equal to 1 is generated for the

non-selected units in s∗
1, s \ s∗

1, to form s∗
2 while in Antal and Tillé (2014), inde-

pendent Bernoulli trials with probability 1/2 is first generated for units in s\ s∗
1.
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Then, the selected units are repeated twice to build s∗
2. In these cases, a∗

i is also

the number of times that unit i of s shows up in s∗
1 ∪ s∗

2.

Similar methods are also proposed in both papers for unequal probability

sampling without replacement.

In the case of two-phase sampling, Kim et al. (2006) applied bootstrap weights

methods for estimating the variance of the double-expansion estimator and the

reweighted expansion estimator of the population total.

For the case of multi-stage stratified designs where sampling fractions are

large and simple random sample without replacement is used at each stage, a

Bernoulli-type bootstrap method was proposed by Funaoka et al. (2006). Under

this method, Bernoulli trials are applied in each stage of resampling procedure.

Finally, the bootstrap adjustment for each ultimate unit is the number of times

that this unit is selected in the final bootstrap sample.

1.6. Bootstrap methods for model parameters

Until now, we have focused on design-based bootstrap methods for finite pop-

ulation parameters. In practice, analysts are often interested in generalizing the

conclusions to a universe larger than the finite population under study. For ex-

ample, one may be interested in studying people’s perception of discrimination

in their experiences with health care services as a function of characteristics such

as race, sex and age. Here, the analyst is not interested in the finite population

U currently under study but rather in the process relating these variables. The

interest lies in estimating model parameters, also called analytic parameters (e.g.,

regression coefficients) rather than finite population parameters. An important

distinction between finite population parameters and model parameters is that

the former may be estimated perfectly provided that a census is conducted and

that non-sampling errors such as non-response, measurement errors and coverage

errors are absent. In contrast, even with a perfect census, it is not possible to

estimate a model parameter perfectly since one faces an infinite population.

In analytic studies, the selected sample can be viewed as the result of a two-

stage process: (i) first, the finite population U of sizeN is generated according to a
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statistical model, called the superpopulation model. That is, the finite population

of size N can be viewed as a realization of the superpopulation model. (ii) Then,

from the population generated in (i), a sample s is selected according to a given

sampling design p(s). Estimators of model parameters are constructed using the

sample observations. This begs the question: how to estimate the variance of

estimators of model parameters? From the above, it is clear that the variance

involves two sources of variability: the first due to the superpopulation model

that has generated the finite population U and the second due to the selection

of the sample s from U . Application of the bootstrap in this context has been

considered in Beaumont and Charest (2012), Wang and Thompson (2012) and

Kovacevic et al. (2006). In the sequel, we focus on the method of Beaumont and

Charest (2012).

For simplicity, we consider the problem of estimating the regression coefficient

β in a linear regression model

m : yi = x⊤
i β + εi,

where xi is a l-vector of predictors and β is a l-vector of unknown parameters.

We assume that Em(εi) = 0, Em(εiεj) = 0 if i ̸= j and Vm(εi) = σ2. Had a census

been conducted, an estimator of β would be given by

βU =
(∑
i∈U

xix
⊤
i

)−1 ∑
i∈U

xiyi. (1.6.1)

The estimator (1.6.1) is often called a census regression coefficient. Since the

y-values are only observed for i ∈ s, it is not possible to compute (1.6.1). An

estimator of βU based on the sample units is given by

β̂ =
(∑
i∈s

wixix
⊤
i

)−1∑
i∈s

wixiyi.

To derive the variance of β̂, we first express its total error as

β̂ − β =
(
β̂ − βU

)
+ (βU − β) .

It follows that the total variance of β̂ is given by

Vmp
(
β̂ − β

)
= EmVp

(
β̂
)

+ Vm (βU) ,
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which involves both the model variability and the sampling variability of β. Under

mild regularity conditions, the term Vp
(
β̂
)

is of order O(n−1), whereas the term

Vm (βU) is of order O(N−1); e.g., see Binder (2011). Therefore, the contribution

of the term Vm (βU) to the total variance is negligible if the sampling fraction f is

negligible. In this case, the term Vm (βU) can be omitted and the total variance

reduces to

Vmp
(
β̂
)

≈ EmVp
(
β̂
)
. (1.6.2)

In order to estimate EmVp
(
β̂
)
, it suffices to obtain a consistent estimator of

Vp
(
β̂
)
, which represents the sampling variance of a function of totals. To that

end, any bootstrap method presented in Section 5, which estimates the sampling

variability, can be applied.

We now turn to the case of non-negligible f . First, using a first-order Taylor

expansion, we obtain

Vmp
(
β̂ − β

)
≃
{
Emp

(
T̂
)}−1

Vmp

(∑
i∈s

wixiei

){
Emp

(
T̂
)}−1

=
{
Emp

(
T̂
)}−1

EmVp

(∑
i∈s

wixiei

){
Emp

(
T̂
)}−1

+
{
Emp

(
T̂
)}−1 ∑

i∈U
xix

⊤
i Em

(
e2
i

) {
Emp

(
T̂
)}−1

,

(1.6.3)

where T̂ = ∑
i∈swixix

⊤
i and ei = yi − x⊤

i β̂. In the case of non-negligible f ,

the last term on the right hand-side of (1.6.3) is no longer negligible and must

be accounted for. A consistent linearization variance estimator of Vmp(β̂) is thus

given by

V̂
(
β̂
)

= T̂
−1
V̂

(∑
i∈s

wixiei

)
T̂

−1 + T̂
−1
{∑
i∈s

wixix
⊤
i e

2
i

}
T̂

−1
. (1.6.4)

This begs the question: how to apply the bootstrap method in order to capture

both terms in (1.6.3)? It is clear that applying the bootstrap methods described in

Section 1.5 may lead to an appreciable underestimation of the total variance as the

model variability Vm (βU) is ignored. To overcome this problem, Beaumont and

Charest (2012) proposed a bootstrap weights method that accounts for both the

sampling and the model variabilities when the sampling design is non informative.

Note that a sampling design is non-informative if the distribution of the study
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variables in the sample is the same as the distribution of these variables in the

population, after accounting for x. Suppose that the sampling variance in (1.6.3)

is to be estimated through a bootstrap weights method such as the method of Rao

et al. (1992). Let w∗
i = a∗

iwi be the bootstrap weight defined as in Section 1.5.3

and which addresses the sampling variability. To account for the model variability

Beaumont and Charest (2012) suggest making an additional adjustment on the

w∗
i . The resulting bootstrap weights are of the form w∗∗

i = ψ∗
iw

∗
i = ψ∗

i a
∗
iwi, with

a∗
i being defined in Section 1.5.3 and ψ∗

i denoting a random bootstrap adjustment

for unit i, whose role is to account for the model variability.

The bootstrap adjustments ψ∗
i are generated independently with expectation

equal to 1 and variance equal to

Vo∗(ψ∗
i ) = σ2

ψi = wi
Ep∗(w∗2

i )
, (1.6.5)

where the subscript o∗ denotes the distribution of ψ∗
i in the bootstrap samples.

To better understand the rationale behind the method of Beaumont and Charest

(2012), we first express the bootstrap version of β̂ as

β̂
∗

=
(∑
i∈s

w∗∗
i xix

⊤
i

)−1∑
i∈s

w∗∗
i xiyi.

Using a first-order Taylor expansion, we obtain

Vp∗o∗
(
β̂

∗)
≃ T̂

−1
Vp∗o∗

(∑
i∈s

w∗∗
i xiei

)
T̂

−1
, (1.6.6)

where

Vp∗o∗

(∑
i∈s

w∗∗
i xiei

)
= Vp∗

(∑
i∈s

w∗
ixiei

)
+ Ep∗

(∑
i∈s

σ2
ψiw

∗2
i xix

⊤
i e

2
i

)
.

From (1.6.5), it becomes clear that the total bootstrap variance estimator (1.6.6)

is asymptotically equivalent to the linearization variance estimator (1.6.4).

To generate ψ∗
i , Beaumont and Charest (2012) suggest using the distribution:

Prob(ψ∗
i = 1 − σψi) = 1/2 and Prob(ψ∗

i = 1 + σψi) = 1/2. This ensures that

ψ∗
i is always non-negative provided that σψi ≤ 1. Note that, in order to com-

pute σψi, Ep∗(w∗2
i ) in (1.6.5) can be easily approximated through a Monte Carlo

approximation by taking the mean of the B generated w∗2
i .
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It is worthwhile to mention that if all the weights wi are large (implying a small

f), σ2
ψi is expected to be small, in which case the contribution of ψ∗

i is expected to

be small and, as a result, may be ignored. This conclusion is consistent with the

result in (1.6.2) that the model variability can be ignored if the sampling fraction

is small.

1.7. Bootstrap for missing survey data

Virtually all the surveys must face the problem of missing observations due

to various reasons. Survey statisticians distinguish unit non-response (when no

information is collected on a sample unit) from item non-response (when the

absence of information is limited to some variables only). Unit non-response

occurs, for example, when the sampled unit is not at home or refuses to participate

in the survey, while item non-response occurs when the sample unit refuses to

respond to sensitive items, may not know the answer to some items, or because

of edit failures. In this section, we focus on item non-response, which is typically

treated by some forms of imputation. In the last two decades, the problem of

variance estimation in the presence of imputed data has been widely studied in

the literature; see, e.g., Haziza (2009) for a review. It is well known that treating

the imputed values as if they were observed values leads to underestimation of

the true variance, leading to invalid inferences. In this section, after presenting

some useful concepts, some bootstrap methods for imputed survey data will be

presented.

1.7.1. Some useful concepts

Let ri be the response indicator associated with unit i such that ri = 1 if unit

i responds to item y and ri = 0, otherwise. Let

yIi = riyi + (1 − ri)ỹi,

where ỹi denotes the imputed value used to replace the missing yi. Let θ be a

finite population parameter, θ̂ be the complete data estimator of θ and θ̂I be the

imputed estimator obtained after imputation. The imputed estimator θ̂I can be

computed the same way as the complete data estimator θ̂ using yI-values instead
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of the y-values. For example, in the case of a total t, an imputed estimator is

t̂I =
∑
i∈s

wiy
I
i .

In practice, various imputation methods are used. We distinguish between two

classes of imputation methods: the deterministic methods, which are those that

yield the same imputed values if the imputation process is repeated, and the

random methods that may yield different imputed values if the imputation is

repeated. A random method can be viewed as a deterministic method with

an added random noise. Most imputation methods encountered in practice are

motivated by the general model

m : yi = f(xi; β) + εi, (1.7.1)

where f(·) is a given function, x is a vector of auxiliary variables recorded for all

the sample units (respondents and non-respondents) and β is a vector of unknown

parameters. The errors εi satisfy

Em(εi) = 0, Vm(εi) = σ2ci and covm(εi, εj) = 0, ∀i ̸= j,

where σ2 is an unknown parameter and ci = v(xi) is a known function. For

example, deterministic linear regression imputation is motivated by (1.7.1) with

f(xi; β) = x⊤
i β and ci = λ⊤xi for a vector of specified constants λ. In this case,

the imputed value ỹi is given by

ỹi = x⊤
i β̂r, (1.7.2)

where

β̂r =
(∑
i∈s

wirixici
−1x⊤

i

)−1∑
i∈s

wirixici
−1yi

is the weighted least square estimator of β based on the responding units. Mean

imputation, whereby the missing values are replaced by the mean of the respon-

dents, ȳr = ∑
i∈swiriyi/

∑
i∈swiri, is a special case of (1.7.2) with xi = ci = 1 for

all i.

A frequently used random method is random hot-deck imputation, which

consists of imputing a missing value by the value of a respondent selected at
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random from the set of responding units. More specifically, the imputed values

under random hot-deck imputation are

ỹi = ȳr + ε̃i, (1.7.3)

where ε̃i takes a value in {e1, . . . , enr} such that Prob(ε̃i = ej) = rjwj/
∑
l∈s rlwl

with ej = yj − ȳr and nr denoting the number of respondents to item y.

In this section, we assume that the data are Missing At Random (MAR);

(Rubin, 1976). The data are MAR if the probability of response to item y is

independent of the error term in (1.7.1) after accounting for the vector of auxiliary

variables x.

There exist two theoretical frameworks for variance estimation: the customary

two-phase framework and the reverse framework. In the two-phase framework,

non-response is viewed as a second phase of selection. In the reverse framework,

the order of sampling and response is reversed. First, the population is randomly

divided into a population of respondents and a population of non-respondents

according to the non-response mechanism. Then, a random sample is selected

from the population (containing respondents and non-respondents) according to

the sampling design. Unlike the two-phase framework, the reverse framework

requires the additional assumption that the non-response mechanism does not

depend on which sample is selected. The reverse framework is particularly useful

in the context of bootstrap variance estimation in the presence of imputed data,

as we argue in the next section.

1.7.2. Bootstrap methods for negligible sampling fraction

In this section, we focus on the case of negligible f . In this context, Shao and

Sitter (1996) proposed a bootstrap method for handling imputed data. The ra-

tionale behind their method is to first select, using any complete data bootstrap

method, a bootstrap sample of pairs of original or rescaled imputed data and

their corresponding original response status. The bootstrap data with a missing

status are then reimputed using the same imputation method that was used in

the original sample. To illustrate the Shao-Sitter method, we consider the case

of simple random sampling without replacement with the RSB method of Rao
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and Wu (1988) and mean imputation to compensate for the missing values. The

algorithm proceeds as follows:

Shao-Sitter Algorithm:

(1) Let n′ be the bootstrap sample size and y′
i = ȳI + C(yIi − ȳI), for all i in

s, where ȳI = n−1∑
i∈s y

I
i and

C =
√
n′(1 − f)
n− 1

.

(2) Draw a bootstrap sample of pairs s∗ = {(y∗
i , r

∗
i )}n

′
i=1 of size n′ with re-

placement from {(y′
i, ri)}ni=1.

(3) Reimpute the missing values in the bootstrap sample s∗ using the respon-

dents in this sample, i.e. define y∗I
i as follows

y∗I
i =

 y∗
i , if r∗

i = 1,

ȳ∗
r , if r∗

i = 0,
where ȳ∗

r =
∑
i∈s∗ r∗

i y
∗
i∑

i∈s∗ r∗
i

, for i ∈ s∗.

Let θ̂∗I be the bootstrap statistic based on the observed and imputed

bootstrap data.

(4) Repeat Steps 2 and 3 a large number of times, B, to get θ̂∗I
1 , · · · , θ̂∗I

B .

(5) Estimate V
(
θ̂I
)

with Vp∗
(
θ̂∗I
)

or its Monte Carlo approximation V̂ ∗
B =

(B − 1)−1∑B
b=1

(
θ̂∗I
b − θ̂∗I

(·)

)2
, where θ̂∗I

(·) = B−1∑B
b=1 θ̂

∗I
b .

Note that, for imputation methods using auxiliary information (e.g., regres-

sion imputation), the vector of auxiliary variables xi also accompany the pairs

(yi, ri) in the bootstrap sample and need to be rescaled as is done for yi.

In the case of the population total, the bootstrap total estimator is t̂∗I =

(N/n′)∑n′

i=1 y
∗I
i = Nȳ∗

r . Using a first order Taylor linearization, when the non-

response mechanism is uniform, i.e. the response probability pi = Prob(ri = 1) =
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p0 for all i ∈ s, the bootstrap variance estimator Vp∗
(
t̂∗I
)

is approximated by

Vp∗
(
t̂∗I
)

≈ Vp∗

{
N

p̂0n′

n∑
i=1

(
m∗
i − n′

n

)
(y′
i − ȳr)

}

= N2

p̂2
0

C2

n′n

∑
i∈s

ri(yi − ȳr)2

= N2
(

1 − f

p̂0

)
nr − 1
p̂0(n− 1)

s2
r

n
,

(1.7.4)

where m∗
i is the number of times that the i-th unit in s is selected in the bootstrap

sample, p̂0 = nr/n, the response rate, is the estimator of p0 and s2
r = (nr −

1)−1∑
i∈s ri(yi − ȳr)2.

At this point, one may be wondering what quantity (1.7.4) is really estimating.

To answer this question, one has to rely on the reverse framework for variance

estimation mentioned above. The reverse framework, proposed by Fay (1991)

and Shao and Steel (1999), can be used to express the variance of θ̂I as the sum

of two terms in the case of deterministic imputation. Under this framework, the

population is first randomly divided into a population of respondents and a pop-

ulation of non-respondents according to the non-response mechanism. Then, a

sample (containing respondents and non-respondents) is selected from the popu-

lation according to the sampling design p(s). In this case, the total variance of

θ̂I under deterministic imputation is given by

V NR
RV

(
θ̂I
)

= EVp
(
θ̂I |y, r

)
+ V Ep

(
θ̂I |y, r

)
, (1.7.5)

where r = (r1, . . . , rN)⊤ is the vector of response indicators and y = (y1, . . . , yN)⊤.

Under mild regularity conditions, the contribution of the second component to

the total variance in (1.7.5), V Ep
(
θ̂I |y, r

)
/V NR

(
θ̂I
)
, is of order O(f), which

is negligible when the sampling fraction, f , is negligible. Therefore, when f is

negligible, this component can be omitted from the calculations and it remains

to estimate the first component EVp
(
θ̂I |y, r

)
. To that end, it suffices to esti-

mate Vp
(
θ̂I |y, r

)
in an (approximately) unbiased fashion. Suppose that we are

interested in estimating a population total t. Noting that the imputed estimator

t̂I can be expressed as a function of totals, estimating Vp
(
t̂I |y, r

)
reduces to the

classical problem of estimating the sampling variance of a function of totals. To
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that end any complete data variance estimation methods can be used, including

Taylor expansion procedures and resampling methods. The bootstrap variance

estimator (1.7.4) is an estimator of Vp
(
t̂I |y, r

)
as the Shao-Sitter method sim-

ulates the effect of sampling conditionally on the vector of response indicators

r and since the bootstrap method reflects the sampling variability. This can

be explained by the fact that non-response is not generated in each bootstrap

sample before the imputation process is performed; see Mashreghi, Léger, and

Haziza (2014). As a result, the bootstrap variance estimator (1.7.4) can be used

if the sampling fraction f is negligible. Also, it is worth noting that (1.7.4) is ap-

proximately unbiased for Vp
(
t̂I |y, r

)
regardless of the validity of the underlying

imputation model. The problem of bootstrap variance estimation in the case of

quantiles is discussed in Shao and Chen (1998). The method of Shao-Sitter may

lead to a biased estimator in the case of very small stratum sizes. To overcome

the problem, Saigo et al. (2001) proposed a modification of the method of Shao

and Sitter (1996). Instead of using any complete data bootstrap method like Shao

and Sitter (1996), they proposed a new sampling design, called the repeated half-

sample bootstrap, which is actually identical to that of Antal and Tillé (2014);

see Section 1.5.3.

1.7.3. Bootstrap methods for non-negligible sampling fraction

When the sampling fraction is appreciable, the Shao-Sitter method may lead

to a significant underestimation of the variance as the term V Ep
(
θ̂I |y, r

)
in

(1.7.5) is not accounted for. To overcome this problem Mashreghi, Léger, and

Haziza (2014) proposed a method called the independent bootstrap in the special

case of stratified simple random sample without replacement with uniform non-

response in each stratum. Their method consists of selecting bootstrap samples

according to a direct bootstrap method (see Section 5.2) and then regenerating

non-response within each bootstrap sample, mimicking the initial non-response

mechanism, i.e., independent Bernoulli trials with the observed response rate.

Afterwards, the non-respondents in the bootstrap sample are reimputed using

the same imputation method that was used on the original data. Since direct



60

bootstrap methods involve some constants, e.g., C and k′ in Table 1.4, Mashreghi,

Léger, and Haziza (2014) showed how to modify these constants to obtain an

approximately unbiased estimator of the total variance. The modified constants

explicitly depend on the response rate as well as the imputation method. For

example, in the case of mean imputation with uniform non-response mechanism,

the rescaling factor in the method of Rao and Wu (1988) presented in (1.5.4) has

to be replaced by

CI =
√
n′[1 − (nr/N)]

nr − 1
.

Comparing CI with C in (1.5.4), we see that to compute CI , n in C is replaced

by nr, i.e. the number of respondents is used instead of the sample size as the

information contained in the sample only comes from the observed values. In

this case, the following algorithm leads to the creation of samples of bootstrap

imputed data:

(1) Let n′ be the bootstrap sample size and y′
i = ȳI +CI(yIi − ȳI), for all i in

s.

(2) Draw a bootstrap sample {y∗
i }n

′
i=1 of size n′ with replacement from {y′

i}ni=1.

(3) Generate the bootstrap sample of response indicators, {r∗
i }n

′
i=1

i.i.d.∼ Bernoulli(p̂0).

Let s∗ = {(y∗
i , r

∗
i )}n

′
i=1.

(4) Identify the missing and observed bootstrap data using the regenerated

r∗
i and reimpute the bootstrap missing values using the bootstrap respon-

dents. Let θ̂∗I be the bootstrap statistic based on the bootstrap imputed

data.

Unlike the Shao-Sitter algorithm presented in the previous section, the previous

algorithm includes an additional step in order to generate non-response within

each bootstrap sample.

In order to handle more complex sampling designs and/or more general non-

response mechanism, Mashreghi, Haziza, and Léger (2014a) developed pseudo-

population bootstrap methods that lead to approximately unbiased variance esti-

mator in the case of non-negligible sampling fractions. The key idea is to recognize

that the set of respondents to a specific item can be viewed as a random sample
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obtained by a Poisson sampling design using the (unknown) response probabili-

ties as the inclusion probabilities. Therefore, a pseudo-population can be created

in two distinct steps: in the first, one applies the pseudo-population bootstrap

method appropriate for Poisson sampling (see Section 1.5.1), which leads to a

“pseudo-sample”. Then, from the pseudo-sample, the pseudo-population is cre-

ated using a complete data pseudo-population bootstrap method depending on

the original sampling mechanism; e.g., the method of Booth et al. (1994) for the

case of simple random sampling without replacement. Bootstrap samples are then

selected from the pseudo-population by applying the original sampling design and

non-respondents are regenerated in each bootstrap sample using the Bernoulli

distribution with the original estimated response probabilities. Imputation within

each bootstrap sample is performed according to the same imputation method

that was used in the original sample. Finally the bootstrap statistic is computed

on the reimputed data. Mashreghi, Haziza, and Léger (2014a) showed that their

method leads to an approximately unbiased estimator of the total variance.





Chapter 2

BOOTSTRAP METHODS FOR IMPUTED

DATA FROM REGRESSION, RATIO AND

HOT DECK IMPUTATION

Résumé

La non-réponse partielle en échantillonnage est habituellement traitée par imputa-

tion. Une méthode bootstrap traitant les valeurs imputées comme si elles avaient

été observées conduit généralement à des estimations de la variance qui sont trop

petites. Shao et Sitter (1996) ont introduit une méthode bootstrap menant à des

estimateurs convergents de la variance lorsque la fraction de sondage est faible.

Dans le contexte d’un plan stratifié aléatoire simple, nous introduisons le boot-

strap indépendant qui est valide même si la fraction de sondage est grande. Elle

consiste à modifier une méthode de bootstrap applicable aux enquêtes, à générer

indépendamment le statut de la réponse de chaque unité, et à imputer les non-

répondants dans l’échantillon bootstrap. Une attention particulière est portée à

l’approche des poids bootstrap de Rao, Wu et Yue (1992).

Abstract

Item non-response in sample surveys is usually addressed by imputation. A

bootstrap method that treats the imputed values as if they were observed gen-

erally leads to variance estimates that are too small. Shao and Sitter (1996)

introduced a bootstrap method in this context, which leads to consistent vari-

ance estimators when the sampling fraction is small. In the context of stratified

simple random sampling, we introduce the independent bootstrap which is valid
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even when the sampling fraction is large. It consists of modifying a bootstrap

method for sample surveys, of independently generating the response status of

each unit, and of imputing the non-respondents in the bootstrap sample. We pay

special attention to the bootstrap survey weights approach of Rao et al. (1992).

Key words and phrases: bootstrap, non-response, imputation and boot-

strap weights.

2.1. Introduction

Statistical agencies, such as the Census Bureau, the National Center for Health

Statistics, and Statistics Canada among others, provide access to detailed micro-

level data through their research data centres allowing researchers in social and

health sciences to advance research in their fields. The files provided to the re-

searchers are usually rectangular, each row corresponding to an ultimate unit

in the survey and columns corresponding to the different variables under study,

plus other columns for survey weights. To estimate the variance of estimators,

columns of bootstrap survey weights are often added following the method of

Rao et al. (1992). Non-response is an important practical problem in statistical

surveys. Unit non-response is usually dealt with through reweighting of the re-

spondents, whereas item non-response is generally addressed by imputation. It

should be noted that bootstrap weights only account for the sampling variabil-

ity in the observations (including unit non-response adjustments), but not the

added variability due to item non-response and imputation, leading to under-

estimation of the variance. And the underestimation of this method which we

call the naive bootstrap can be substantial as will be illustrated in our real-life

example in Section 2.7. Shao and Sitter (1996) introduced a bootstrap method

to deal with imputed data. It consists of using any (complete) data bootstrap

method to select a bootstrap sample of imputed data while keeping their corre-

sponding original response status, and then to reimpute the bootstrap data with

a missing status using the same imputation method that was used on the original

data. The estimator is computed on the imputed bootstrap data, leading to a

bootstrap estimate of variance.
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This bootstrap method requires the presence of a missing value indicator

variable for each item under study, variables which are usually not present in the

files in research data centres making the Shao-Sitter unapplicable in practice; as

of this writing, no file in the Canadian network of research data centres contains

missing value flags. While they claim that their method works well without

any restriction on the sampling design or on the imputation method, a detailed

analysis of their method through the reverse framework of Fay (1991) and Shao

and Steel (1999) shows that their variance estimate is consistent only when the

sampling fraction f is negligible. The example in Section 2.7 will show that

this condition does not always hold in practice, even if missing data status was

available.

In this paper we introduce the independent bootstrap method to overcome the

two drawbacks of the Shao-Sitter method. It leads to an asymptotically consistent

bootstrap estimator of the variance of an estimator defined as a function of means

under stratified simple random sample without replacement even for a large over-

all sampling fraction. The theory applies to the case of uniform non-response in

each stratum and the method only requires information about the response rate of

the item under study in each stratum rather than the detailed information about

response status for each sample unit. The procedure is applied independently

in each stratum and consists of first regenerating bootstrap response indicators

mimicking the initial non-response mechanism, i.e., independent Bernoulli trials

with the observed response rate. Then, independently, bootstrap observations

are regenerated using one of the bootstrap methods. We call it the independent

bootstrap method because the sample of observations and the response status

are generated independently whereas in the Shao-Sitter method it is as if these

two components were treated as a pair and were generated jointly. While the

Shao-Sitter method simply uses one of the bootstrap methods designed for com-

plete data without any modification, for the independent bootstrap, we need to

modify them. Since the sampling mechanism used in most bootstrap methods

differs from simple (or stratified) random sampling, they all involve some kind
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of a constant which guarantees that when they are applied to the mean (or to-

tal) estimator, they consistently estimate the variance of the estimator, if only

to account for the sampling fraction. For instance, in the case of the rescaling

bootstrap method of Rao and Wu (1988), the constant is the rescaling factor. But

in the presence of item non-response not only the sampling fraction but also the

non-response mechanism and the method of imputation both influence the vari-

ance of the estimators. So unlike in the Shao-Sitter method, the constant of the

bootstrap method used is modified in the independent bootstrap. Afterwards, we

reimpute the non-respondents in the bootstrap sample using the same imputation

technique that was used on the original data. Note that the modified constants

explicitly depend on the response rate as well as the imputation method.

This article is organized as follows. After introducing some notation in Sec-

tion 2.2, we study the properties of the Shao-Sitter bootstrap method through

the reverse framework in Section 2.3. Then we introduce the new independent

bootstrap procedure for imputed data and present the modified constants for the

different combination of bootstrap and imputation methods in Section 2.4. The

case of bootstrap weights receives special attention as it is the method of choice

of the data sets in many research data centres. A modification of the original

Shao-Sitter method is possible provided that the response status of each obser-

vation is available and is introduced in Section 2.5. To compare the different

methods, Section 2.6 presents a simulation study which supports the theory. To

illustrate some of the practical difficulties in the estimation of the variance of

imputed estimators, Section 2.7 presents some results of a case study from the

Research and Development in Canadian Industry survey conducted at Statistics

Canada. The Appendix A concludes with some theoretical justifications for the

results.

2.2. Preliminaries

Throughout this article, we consider a stratified simple random sampling de-

sign where the population U consists of L non-overlapping strata with Nh units
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in the h-th stratum, h = 1, · · · , L. In stratum h, a sample sh of size nh is se-

lected from Uh according to simple random sampling without replacement. The

selection is independent across strata. We denote the full sample by s = ∪L
h=1sh.

Associated with the i-th unit in stratum h is a characteristic yhi and a t-vector1

of auxiliary variables xhi. The sampling fraction in the h-th stratum is defined by

fh = nh/Nh, and the overall sampling fraction is f = n/N , where n = ∑L
h=1 nh

and N = ∑L
h=1 Nh.

To illustrate the concepts, we consider the case of a population mean, θ =

Ȳ = ∑L
h=1

∑
i∈Uh

yhi/N . Having a complete data set (i.e., full response), a design-

unbiased estimator of Ȳ is the Horvitz-Thompson estimator

θ̂ = ȳ =
L∑
h=1

Whȳh,

where Wh = Nh/N and ȳh = ∑
i∈sh

whiyhi/Nh is the sample mean in the h-th

stratum with whi = Nh/nh denoting the survey weight associated with the (hi)-

th unit.

We now turn to the case of missing y-values. We assume that the vector x is

observed for all sample units (respondents and non-respondents). Let rhi be the

response indicator associated with the (hi)-th unit. Let yIhi = yhi if rhi = 1, and

yIhi = ỹhi if rhi = 0, where ỹhi denotes the imputed value used to replace missing

yhi. An imputed estimator of Ȳ based on observed and imputed data is

θ̂I = ȳI =
L∑
h=1

Wh ȳ
I
h,

where ȳIh = ∑
i∈sh

whi y
I
hi/Nh. In this paper, we consider the case of deterministic

ratio and linear regression imputations as well as random hot-deck imputation.

Deterministic ratio imputation within stratum consists of imputing the miss-

ing value yhi by

ỹhi = R̂hxhi, (2.2.1)

1In this chapter, t represents the size of the auxiliary variables rather than a total.
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where xhi is an auxiliary variable (in this case we assume that the vector of

auxiliary variables xhi is one-dimensional) and

R̂h =

∑
i∈sh

whi rhiyhi

/∑
i∈sh

whi rhixhi

 .

For the linear regression imputation method within stratum, we assume that a

vector of auxiliary variables of the form x̃′
hi = (1,x′

hi) is available and a missing

value yhi is imputed using a regression model as follows:

ỹhi = x̃′
hi β̃hr, (2.2.2)

where

β̃hr =

∑
i∈sh

whi rhix̃hix̃′
hi

−1∑
i∈sh

whi rhix̃hiyhi

 .
Mean imputation (MI), which consists of imputing by using the mean of the

respondents, is a special case of (2.2.1) and (2.2.2) obtained by setting xhi = 1

and x̃hi = 1 for all (hi), respectively.

The most common random imputation method used in practice is random

hot-deck imputation (RHDI). It consists of selecting a respondent (donor) at

random from the set of respondents with probability proportional to the sampling

weight, and then using the donor’s item value to “fill in" for the missing value of

a non-respondent (recipient). In this paper, we consider the case of RHDI within

stratum for which RHDI is performed independently within each stratum. That

is, if rhi = 0, then

ỹhi = yhj with Prob(ỹhi = yhj) = whj rhj∑
l∈sh

whl rhl
.

Note that in the case of stratified simple random sampling, as is the case here,

this is equivalent to replacing the non-respondents by a simple random sample

with replacement from the respondents.

2.3. The Shao-Sitter Method for Missing Data

To the best of our knowledge, it seems that the only existing bootstrap method

for imputed data was proposed by Shao and Sitter (1996). It assumes that the

data set carries the original response status for each individual variable and each
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unit in the sample. To evaluate the variance of point estimators, we use the

reverse framework, studied by Fay (1991) and Shao and Steel (1999), where the

population is first randomly divided into a population of respondents and a popu-

lation of non-respondents according to the non-response mechanism and a sample

is selected from the population (containing respondents and non-respondents) ac-

cording to the sampling design. The total variance of θ̂I , based on deterministic

and random imputation methods, can be respectively written as

V (θ̂I) = EqVp(θ̂I |r) + VqEp(θ̂I |r) = V1 + V2 (2.3.1)

and

V (θ̂I) = EqVpEI(θ̂I |s, r) + VqEpEI(θ̂I |s, r) + EqEpVI(θ̂I |s, r) = Ṽ1 + Ṽ2 + Ṽ3,

(2.3.2)

where r is the vector of response indicators, and the subscripts p, q, and I refer to

the randomness induced by the sampling, non-response, and random imputation

mechanisms, respectively. Throughout, we assume that the non-response mech-

anism is uniform, where the response probability is constant for all units in each

stratum, a special case of uniform non-response within imputation classes. Under

mild regularity conditions, the components V1, Ṽ1 and Ṽ3 in (2.3.1) and (2.3.2)

are of order O(1/n), whereas the components V2 and Ṽ2 are of order O(1/N).

As a result, the contribution of the second component to the total variance in

both (2.3.1) and (2.3.2), V2/V (θ̂I) and Ṽ2/V (θ̂I), is negligible when the overall

sampling fraction, f , is negligible. Note that the individual sampling fractions fh
are not required to be negligible.

The Shao-Sitter method consists of taking a “paired bootstrap” sample in the

h-th stratum from the pairs {(yIhi, rhi)}
nh
i=1 using any complete bootstrap method

applicable to simple random sampling. Non-respondents in the bootstrap sam-

ple are reimputed using the same method that was used in the original sample.

The process is repeated independently in each stratum. To better understand

the rationale behind the Shao-Sitter method, consider a deterministic imputa-

tion method. Suppose that we want to estimate the first term of the variance

decomposition of (2.3.1), i.e., EqVp(θ̂I |r). If we use an estimator V̂p(θ̂I |r) that
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accounts for the (sampling) variability of the imputed estimator θ̂I conditional

on the observed response indicators r, we will have a valid estimator for the first

term of (2.3.1). This is exactly what the Shao-Sitter method does: the response

indicators are fixed (respondents and non-respondents in the original sample re-

main respectively respondents and non-respondents in the bootstrap sample) and

in this paired bootstrap, the only variability reflected in the bootstrap mechanism

is the sampling variability. It therefore ignores the second term in the variance

decomposition (2.3.1). Denoting the Shao-Sitter variance estimator of θ̂I = ȳI by

V ∗
Sh.S., we show in the Appendix A that

EpEq(V̂ ∗
Sh.S.) ≈ V1 = V (θ̂I) − V2.

If f is negligible, then V ∗
Sh.S. provides a valid estimator of V (θ̂I) as the contribution

of V2 to the total variance is negligible.

We now consider the case of RHDI. In this case, the Shao-Sitter method in-

volves two sources of randomness, one reflecting the sampling variability, and

one reflecting the donor variability. Complete bootstrap methods usually in-

clude some kind of rescaling to account for the without replacement sampling of

the original sample. But this rescaling also affects the bootstrap distribution of

donors. Consequently, if the sampling fraction is important the joint bootstrap

distribution of sampling and donor imputation conditional on the response status

will lead to a poor approximation of the joint distribution of sampling and donor

imputation in the original sample. As a result, the Shao-Sitter procedure will

not consistently estimate the sum of the first and third terms in (2.3.2) while

completely ignoring the second one. For simplicity, let L = 1. In the Appendix

A, we show that

EpEqEI(V ∗
Sh.S.) ≈ Ṽ1 + λf Ṽ3 = V (θ̂I) − [Ṽ2 + (1 − λf )Ṽ3], (2.3.3)

where λf = (1 − f) for the bootstrap rescaling method (BRS) of Rao and Wu

(1988) and the bootstrap weights approach (BW) of Rao et al. (1992) with C =

[n′/(n − 1)][1 − f ] where n′ is the bootstrap sample size. Thus, the variance in
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(2.3.2) can be written as

V (θ̂I) = [Ṽ1 + λf Ṽ3] + [Ṽ2 + (1 − λf )Ṽ3]. (2.3.4)

Comparing (2.3.3) with (2.3.4), it becomes clear that the Shao-Sitter method

consistently estimates V (θ̂I) only when f is small.

2.4. The Independent Bootstrap Method

In general, there are two difficulties with the Shao-Sitter method: the need

to have the response status for each unit in s and the underestimation of V (θ̂I)

for large f . The independent bootstrap will overcome these difficulties. Let

p0h be the true response probability in the h-th stratum which we estimate by

p̂0h = nhr/nh, where nhr is the number of respondents in the h-th stratum. Recall

that we assume uniform non-response within stratum and that the response rate

p̂0h in each stratum is available.

2.4.1. Independent Bootstrap Method

In Section 2.3, we argued that the Shao-Sitter method can be seen as a paired

bootstrap method. The independent bootstrap consists of choosing a sample and,

independently, of generating the response status for each unit in this sample. The

first problem of the Shao-Sitter method is solved by generating the response sta-

tus in the bootstrap samples independently from its selection using the estimated

original non-response model, i.e., independent Bernoulli random variable with

probability p̂0h. The second problem is taken care by modifying the constant

of the complete data bootstrap method being used to get a consistent variance

estimator in the case where the statistic is a smooth function of means. Once

the bootstrap sample and response status are independently generated, the non-

respondents in the bootstrap data are reimputed using the original imputation

method. Finally, the bootstrap statistic, θ̂∗I , is computed on the sample of reim-

puted data and the bootstrap estimator of V (θ̂I) is V ∗(θ̂∗I) = E∗[θ̂∗I −E∗(θ̂∗I)]2.

To illustrate the proposed method, we consider the case θ = Ȳ under mean

imputation and apply the independent bootstrap method with the bootstrap

rescaling method (BRS) of Rao and Wu (1988):
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(1) Let zhi = ȳIh +
√
CI
h (yIhi − ȳIh), for i = 1, · · · , nh, where CI

h = n′
h

nhr−1 [1 −

p̂0hfh] and n′
h is the bootstrap sample size in the h-th stratum.

(2) Generate the bootstrap sample of response indicators,

{r∗
hi}

n′
h
i=1

i.i.d.∼ Bernoulli(p̂0h).

(3) Independently draw a simple random sample of size n′
h, s∗

h = {z∗
hi}

n′
h
i=1, with

replacement from {zhi}nh
i=1. Afterward, using mean imputation, reimpute

the missing values in s∗
h, and let

z∗I
hi =

 z∗
hi, if r∗

hi = 1,

z̄∗
hr, if r∗

hi = 0,

where z̄∗
hr = ∑n′

h
i=1 r

∗
hiz

∗
hi/

∑n′
h
i=1 r

∗
hi for i = 1, · · · , n′

h.

(4) Repeat Steps 2 and 3 independently across the strata to get {z∗I
11 , · · · , z∗I

Ln′
L
}.

(5) The bootstrap estimator of the mean is defined as θ̂∗I = ∑L
h=1 Wh z̄

∗I
h ,

where z̄∗I
h = ∑n′

h
i=1 z

∗I
hi /n

′
h and we use them to estimate V (θ̂I).

Comparing the complete data rescaling factor Ch = [n′
h/(nh−1)][1−fh] (Rao

and Wu, 1988) with the modified factor CI
h = [n′

h/(nhr − 1)][1 − p̂0hfh], we note

that since p̂0hfh = nhr/Nh then CI
h is similar to Ch but using the size of the

respondents in the sample rather than the sample size.

We show in the Appendix A that the bootstrap variance of θ̂∗I under the

proposed procedure is approximately equal to the usual consistent estimator of

V (θ̂I) obtained from a first-order Taylor expansion and so

EpEq[V ∗(θ̂∗I)] ≈ V (θ̂I) or EpEqEI [V ∗(θ̂∗I)] ≈ V (θ̂I),

in the case of deterministic or random imputation, respectively.

2.4.2. Modified Constants for the BRS and BMM Methods

Applying the independent bootstrap method with a complete data bootstrap

procedure requires some modifications of its constants. In this section, we present

the modified constants for the BRS and the mirror match bootstrap method

(BMM) of Sitter (1992b) when using the independent bootstrap method to guar-

antee a valid variance estimator in the case of the mean. These constants depend
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on the original imputation method, the response rate, and the auxiliary variables,

when appropriate.

For simplicity of notation, the subscript h will be suppressed in the sequel.

Suppose ratio imputation (RI) based on x is used. We define

ρI =
sxyI

sx syI

, CV (x) = sx
x̄
, CV (yI) =

syI

ȳI
and RI = CV (x)

CV (yI)
,

where s2
x and x̄ are the sample variance and mean of the auxiliary variable, respec-

tively, computed on the original sample s, and sxyI = ∑
i∈s(xi−x̄)(yIi −ȳI)/(n−1).

For linear regression imputation (LRI), let CC2
I = s′

xyI s−1
xx sxyI/s2

yI with

sxx = 1
n− 1

∑
i∈s

(xi − x̄)(xi − x̄)′ and sxyI = 1
n− 1

∑
i∈s

(xi − x̄)(yIi − ȳI)

denote the square correlation coefficient between the yIi ’s and xi’s on the imputed

sample where x̄ = ∑
i∈s xi/n.

The following table shows the original and modified constants to be used in

the BRS or BMM methods for complete and imputed data sets, respectively.

Table 2.1. Rescaling factors for complete data (C. D.) and for

imputed data using the independent bootstrap

CI in BRS (C for complete case) kI in BMM (k for complete case)

C. D. n′

n−1 [1 − f ] n
n′′

[
1−f ′

1−f

]

MI n′

nr−1 [1 − p̂0f ] nr

n′′

[
1−p̂0f ′

1−p̂0f

]

RI n′

nr−1

[
1 − p̂0f+p̂0(1−p̂0)(1−f)R2

I

1+(1−p̂0)RI(RI−2ρI)

]
nr

n′′

[
1−p̂0f ′+(1−p̂0)RI{RI−2ρI}

1−p̂0f+(1−p̂0)RI [{1−(1−f)p̂0}RI−2ρI ]

]

LRI n′

nr−1

[
1 − p̂0f − p̂0(1−p̂0)CC2

I

1+(1−p̂0)CC2
I

]
nr

n′′

[
1−p̂0f ′+(1−p̂0)CC2

I

1−p̂0f+(1−p̂0){1−p̂0(1+f)}CC2
I

]

RHDI n′p̂0
nr−1

[
(1−p̂0f)+p̂0(1−p̂0)

{1− 1
n

(1−p̂0)}{1+p̂0(1−p̂0)}

]
n
n′′

[{1−f ′+p̂−1
0 (1−p̂2

0)}{1− 1
n

(1−p̂0)}
1−f+p̂−1

0 (1−p̂2
0)

]
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All the modified constants depend on the response rate, p̂0 = nr/n. It is

straightforward to see that these constants converge to that of complete data

when p̂0 tends toward 1.

2.4.3. Bootstrap Weights Approach

We now present the bootstrap weights approach to the independent bootstrap

for imputed data. As with complete data, the approach involves the same constant

as with the BRS method. So the constants CI
h for the BRS presented in Table 2.1

can be used. Let us see how to implement the method in practice. We let

B∗
h = [b∗

hij] be the nh × n′
h selection matrix with b∗

hij = 1 if yhi is selected in the

j-th trial, and b∗
hij = 0 otherwise, for i = 1, · · · , nh and j = 1, · · · , n′

h. We also

let m∗
hi be the sum of the i-th row of B∗

h indicating the number of times the hi-th

unit is selected in the bootstrap sample. After drawing the matrix B∗
h, response

indicators are regenerated according to {r∗
hj}

n′
h
j=1

i.i.d.∼ Bernoulli(p̂0h). Define the

nh ×n′
h respondents matrix B∗

hr = [b∗
hrij] by b∗

hrij = r∗
hjb

∗
hij. Let R∗

hi be the sum of

the i-th row of B∗
hr, representing the number of times the (hi)-th unit is selected

in the bootstrap sample of respondents, and let R∗
h = ∑nh

i=1 R
∗
hi be the size of the

bootstrap sample of respondents. Let

a∗
hi = 1 +

√
CI
h

(
nhm

∗
hi

n′
h

− 1
)

and c∗
hi = 1 +

√
CI
h

(
nhR

∗
hi

R∗
h

− 1
)
.

To define the bootstrap weights, we let uh = x̄h +
√
CI
h (xh − x̄h),

k∗ = (k∗
1, · · · , k∗

nh
)′ =

 1
Nh

∑
i∈sh

[a∗
hi − c∗

hi]whi x′
hi

 (u′
hB

′∗
hrB

∗
hruh)

−1 u′
hB

′∗
hrB

∗
hr,

and define 1h to be a nh vector of 1. The bootstrap estimator of θ̂I is θ̂∗I =∑L
h=1 Wh

[∑
i∈sh

w∗
hiy

I
hi/Nh

]
, where w∗

hi is presented in the following table.

To determine w∗
hi under random hot-deck imputation, we need to consider

an additional random step in the bootstrap procedure to identify the donors

among the respondents in the bootstrap sample. To apply RHDI and to draw

the bootstrap sample of donors, a simple random sample of size n′
h −R∗

h is taken

with replacement from the set of the index positions of the bootstrap sample of

respondents in the original sample, in which the index position i, corresponding
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Table 2.2. Bootstrap weights for the independent bootstrap

w∗
hi in BW

MI c∗
hiwhi

RI
[(∑

i∈sh
a∗
hiwhi xhi

)/(∑
i∈sh

c∗
hiwhi xhi

)]
c∗
hiwhi

LRI
[
c∗
hi + 1′

hk∗ +
√
CI
h (nk∗

i − 1′
hk∗)

]
whi

to the (hi)-th unit in the original sample sh is repeated R∗
hi times, the number of

times this observation appears in the bootstrap sample of respondents. Define by

D∗
hi the number of times the index position i shows up in the selected bootstrap

sample of donors, for i = 1, · · · , nh, i.e., the number of times the (hi)-th unit in

sh is selected in the bootstrap sample of donors. The bootstrap weights are given

by

w∗
hi =

[
1 +

√
CI
h

(
nh(R∗

hi +D∗
hi)

n′
h

− 1
)]

whi.

Note that R∗
hi + D∗

hi represents the number of times the (hi)-th unit appears in

the bootstrap sample of observed and reimputed data.

Not only are these bootstrap weights methods easy to use in practice, but they

also estimate the variance of θ̂I consistently even when the sampling fraction is

not negligible.

As mentioned earlier, the data sets in research data centers often include boot-

strap weights which are appropriate only for complete data. We now show how

these complete data bootstrap weights can be transformed in order to compute

independent bootstrap weights appropriate for missing data in the case of the

mean, ratio and random hot-deck imputation methods. Three elements are al-

ways needed to compute the independent weights: CI
h, m∗

hi and R∗
hi. For RDHI,

D∗
hi is also needed. Table 2.1 contains CI

h which must be selected according to the

imputation method used. Since the complete data bootstrap weights are given by

w∗
hi =

[
1 +

√
Ch

(
nhm

∗
hi

n′
h

− 1
)]
whi they can easily be transformed to obtain m∗

hi,

i.e.,

m∗
hi = n′

h

nh

[
1 + 1√

Ch

(
1 − w∗

hi

whi

)]
.
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It is straightforward to check that

R∗
hi ∼ Bin(m∗

hi; p̂0h) and D∗
hi ∼ Multinomial (n′

h −R∗
h; 1/R∗

h, · · · , 1/R∗
h) .

Therefore, if one generates these two quantities, all that is needed to compute

the independent bootstrap weights will be available.

In the Appendix A, we show that applying the independent bootstrap with

BRS or BW leads to identical estimators when the parameter of interest is a

function of means.

2.5. A Modified Shao-Sitter Method for Non-negligible

Sampling Fraction

Assuming that the response status is available in the data file, an interest-

ing question is whether the Shao-Sitter method, i.e., a paired bootstrap, can be

modified to work even in the case of a large sampling fraction f .

The original Shao-Sitter method uses the complete data bootstrap methods

whose constants only account for sampling variability and not the variability

due to non-response and imputation. As will be shown in Equation (2.A.3) of

the appendix A, the second term V2 in the decomposition of the variance of θ̂I ,

an estimator based on deterministic imputation, is a multiple of the first one,

so that the variance is a multiple of the first term V1. Since the Shao-Sitter

method provides an estimate of the first term only, by modifying the constants

of the complete data bootstrap methods, it will be possible to estimate the total

variance, even for large f . For simplicity, we consider the case L = 1.

Consider for instance mean imputation. Using a first-order Taylor expansion,

the variance of θ̂I = ȳI under MI can be approximated by

V (θ̂I) = V1 + V2

≈ 1 − f

p0f

1
N2

∑
i∈U

(yi − Ȳ )2 + 1 − p0

p0

1
N2

∑
i∈U

(yi − Ȳ )2

= αMIV1,

(2.5.1)

where αMI = (1 − p0f)/(1 − f). Note that αMI ≈ 1 if f is negligible. Now, an

estimate of V1, such as the Shao-Sitter estimator, can be used to estimate the



77

total variance by multiplying it by an estimator of αMI . For instance, let

α̂MI = 1 − p̂0f

1 − f

and let V̂ ∗
Sh.S. be the Shao-Sitter estimator of V (θ̂I). Then α̂MI V̂ ∗

Sh.S. is a consistent

estimate of the variance, even for large f . Alternatively, let C ′MI be a modified

constant for the BRS (or BW) defined by C ′MI = α̂MIC where C is the complete

data constant. Then applying the paired bootstrap (i.e., the Shao-Sitter method)

using this constant and the same reimputation method on the bootstrap non-

respondents will lead to a consistent variance estimator. Similar adjustments can

be made for other deterministic imputation methods.

As discussed in Section 2.3 in the case of RHDI, the variance of the imputed

estimator V (θ̂I) is the sum of three terms Ṽ1, Ṽ2, and Ṽ3, and the Shao-Sitter

method (with the usual complete data bootstrap constants) estimates Ṽ1 + λf Ṽ3,

where Ṽ1 and Ṽ2 are defined as V1 and V2 in (2.5.1) and

Ṽ3 = 1 − p0

nN

∑
i∈U

(yi − Ȳ )2.

It is straightforward to see that

V (θ̂I) ≈
[

{1 + p0 (1 − p0)} − p0f

{1 + p0 (1 − p0)} (1 − f)

]
[Ṽ1 + λf Ṽ3] = αRHDI [Ṽ1 + λf Ṽ3].

(2.5.2)

Therefore, multiplying the Shao-Sitter variance estimator by α̂RHDI , where α̂RHDI

is as in (2.5.2) with p0 replaced by p̂0, leads to a valid estimator for V (θ̂I). Again

replacing the constant C in the BRS (BW) method by α̂RHDIC and applying the

Shao-Sitter method results in a consistent variance estimator.

2.6. Simulation Study

To compare the performance of the proposed methods with the existing meth-

ods, we performed a simulation study. A description of this simulation experiment

is presented in Section 2.6.1. A discussion of the results follows in Section 2.6.2.
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2.6.1. Description of the Simulation Study

Given that the behaviour of an estimator in survey sampling critically depends

on the sample size and the sampling fraction, we have designed our simulation

experiment in a factorial way with two levels for the sample size (n1 = 100

and n2 = 400) and two levels for the sampling fraction (f1 = 5% and f2 =

50%). Combining the two levels of the two factors in a factorial way leads to four

population sizes N , i.e., 200, 800, 2 000, and 8 000. Rather than generating four

separate populations, we generated a single population of size 8 000 consisting

of a single stratum (i.e., L = 1) and we considered the first 200, 800 or 2 000

units from that population when such populations were needed depending on the

combination of sample size and sampling fraction. An auxiliary variable x was

first generated from a gamma distribution with scale and shape parameters equal

to 3 and 7 (with mean of 21), respectively. Given the x-values, the characteristic

of interest y was generated according to the model yi = 0.1 xi+εi, i = 1, · · · , 8000,

where εi follows a standard normal distribution. The correlation between x and y

is 0.77. For each simulation, the goal is to estimate the variance and compute 95%

confidence intervals for the population mean estimator using ratio imputation and

for the estimator of the population median using RHDI.

The bootstrap weights point of view was considered in all of the following

bootstrap methods: the independent bootstrap, the modified Shao-Sitter estima-

tor presented in Section 2.5, the original Shao-Sitter method and finally the naive

method, where the imputed data are treated as true observations. In addition,

in the case of the population mean estimator with ratio imputation, we com-

puted the variance estimators using the linearization method. Note that since

the population median is not a function of totals, this method is not applicable.

For the two parameters, we also computed 95% bootstrap percentile confidence

intervals (see Efron and Tibshirani, 1993) as well as normal-based confidence in-

tervals using the bootstrap estimate of variance for all bootstrap methods (with

the exception of the linearization method).

Along with the factors sample size and sampling fraction, we have crossed

them with the factor response rate of the uniform non-response mechanism, with
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two levels: fr1 = 60% and fr2 = 80%, leading to a total of eight scenarios. In each

scenario, we drew S = 2000 random samples from the corresponding population.

To apply any bootstrap method, we drew B = 1000 bootstrap samples from each

sample with bootstrap sample size n′ = n − 3, as suggested by Rao and Wu

(1988).

We computed the following quantities in each scenario. Suppose that θ̂Ij is the

estimator of the parameter of interest (mean or median) calculated on the j-th

sample, j = 1, · · · , S. The Monte Carlo variance estimator of θ̂I is

VMC(θ̂I) = 1
S − 1

S∑
j=1

(
θ̂Ij − θ̂I(·)

)2
, where θ̂I(·) = 1

S

S∑
j=1

θ̂Ij ,

which is used as a consistent estimator of V (θ̂I). Fixing a method to estimate

V (θ̂I), the Monte Carlo average and the Monte Carlo variance of the variance

estimator of θ̂I denoted by V̂ is respectively

EMC(V̂ ) = 1
S

S∑
j=1

V̂j and VMC(V̂ ) = 1
S − 1

S∑
j=1

(
V̂j − EMC(V̂ )

)2
,

where V̂j is the variance estimator on the j-th sample. As a measure of bias of a

variance estimator V̂ , we use the Monte Carlo percent relative bias (RB) defined

by

RBMC(V̂ ) = 100 × EMC(V̂ ) − VMC(θ̂I)
VMC(θ̂I)

.

Another measure used in the next section is the Monte Carlo percent relative

efficiency (RE) which is

REMC(V̂ ) = 100 × MSEMC(V ∗
Sh.S.)

MSEMC(V̂ )
,

where MSEMC(V̂ ) = VMC(V̂ )+
[
EMC(V̂ ) − VMC(θ̂I)

]2
. A value greater than 100

means that V̂ is more precise than the Shao-Sitter method. We also report the

coverage probability of the 95% confidence intervals which were computed. Note

that at the 5% level, the coverage probability is statistically different from the

nominal level if it falls outside the interval [94.04, 95.96]. In the next section, we

use these measures to compare the performance of different methods to estimate

the variance.
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2.6.2. Simulation Results

The Monte Carlo RB and RE of the variance estimators and the coverage

probability of the two 95% confidence intervals are shown in Tables 2.3-2.6. In

the case of the Shao-Sitter method, since its RE is by definition 100, we present its

MSEMC(V ∗
Sh.S.) instead. Tables 2.3 and 2.4 contain the results for the population

mean estimator with ratio imputation for the non-respondents while Tables 2.5

and 2.6 are for the population median estimator with RHDI imputation since

it preserves the distribution of observations unlike a deterministic imputation

method.

Table 2.3. RE (in parenthesis) and RB of the variance estimators

for the population mean and ratio imputation using 2000 samples of

size n1 = 100 and n2 = 400. The italic numbers of line * are

MSEMC(V ∗
Sh.S.) × 107.

f1=5% f2=50%

fr1 = 60% fr2 = 80% fr1 = 60% fr2 = 80%

n1 n2 n1 n2 n1 n2 n1 n2

Independent -0.32 -0.84 -3.18 0.67 -8.67 -2.26 -3.10 -1.82

(103.51) (108.47) (102.79) (99.56) (288.73) (570.94) (154.80) (270.80)

Mod. Sh.-S. -0.96 -0.82 -3.57 0.48 -9.22 -2.25 -3.43 -1.86

(98.60) (100.71) (100.63) (99.02) (265.62) (574.90) (148.84) (263.10)

Linearization -1.46 -1.16 -3.94 0.36 -9.76 -2.48 -3.58 -1.88

(94.96) (119.96) (99.38) (119.39) (238.90) (689.45) (137.34) (352.87)

Shao-Sitter -2.07 -1.93 -4.03 -0.0034 -25.48 -19.69 -11.64 -10.28

* (307.67 ) (6.19 ) (192.58 ) (3.68 ) (373.15 ) (10.08 ) (75.30 ) (2.11 )

Naive -36.44 -35.37 -20.34 -16.46 -51.64 -47.95 -26.91 -25.59

(21.35) (8.06) (43.79) (25.72) (28.66) (18.56) (35.34) (21.92)

We begin with the case of the mean estimator and a negligible sampling

fraction of f1 = 5%. The naive method, which is what is used whenever someone
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Table 2.4. Coverage probability of the 95% bilateral percentile boot-

strap and normal confidence intervals based on a standard error com-

puted from the corresponding bootstrap method (the latter coverage

probability in parenthesis) for the population mean with ratio imputa-

tion using 2000 samples of size n1 = 100 and n2 = 400.

f1=5% f2=50%

fr1 = 60% fr2 = 80% fr1 = 60% fr2 = 80%

n1 n2 n1 n2 n1 n2 n1 n2

Independent 94.50 94.00 94.25 94.50 94.10 94.75 94.25 94.60

(94.60) (94.05) (94.35) (94.70) (94.25) (94.65) (94.40) (94.85)

Mod. Sh.-S. 94.55 94.20 94.20 94.70 93.75 95.05 94.00 94.70

(94.80) (93.90) (94.05) (94.50) (93.85) (95.35) (93.85) (95.10)

Shao-Sitter 94.35 93.95 94.15 94.70 90.70 91.85 92.85 93.75

(94.65) (93.85) (94.05) (94.50) (90.60) (91.95) (92.90) (93.70)

Naive 87.95 87.20 91.45 92.75 81.05 84.85 90.10 91.35

(88.40) (87.65) (91.40) (92.70) (81.45) (85.05) (90.15) (91.25)

uses the bootstrap weights included in a dataset of a research data centre along

with imputed data, treating them as if they were true observations, has very large

negative biases leading to very poor efficiency and is the worst method, as was

expected. All other methods have small relative biases and all relative efficiencies

are around 100 meaning that they all have the same level of efficiency. For the

non-negligible sampling fraction f2 = 50%, we can see the good performance of

the independent, modified Shao-Sitter, and linearization methods in terms of bias

and efficiency. The high relative bias of the Shao-Sitter method and its inefficiency

compared with the first three methods confirms its poor performance for a large

sampling fraction. The two confidence intervals for the independent bootstrap

are not significantly different from 95% except for the small sampling fraction,

smaller response rate and larger sample size where the coverage probability is

slightly outside the interval [94.05, 95.96]; most of the confidence intervals for the

other bootstrap methods are significantly different in this case. The confidence

intervals for the modified Shao-Sitter method are mostly not different from 95%,
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but more of them are different than with the independent method. For the Shao-

Sitter some intervals are significantly different for a 5% sampling fraction, but all

intervals with a 50% sampling fraction are different, especially those with a 60%

response rate where the coverage probability is in the 90-92% range. The bad

behavior of the naive method in terms of bias and efficiency translates itself in

very bad coverage (between 81% and 93%).

Table 2.5. RE (in parenthesis) and RB of the variance estimators for

the population median and RHDI using 2000 samples of size n1 = 100

and n2 = 400. The italic numbers of line * are MSEMC(V ∗
Sh.S.) × 105.

f1=5% f2=50%

fr1 = 60% fr2 = 80% fr1 = 60% fr2 = 80%

n1 n2 n1 n2 n1 n2 n1 n2

Independent 22.08 13.38 20.13 10.82 11.87 8.77 2.72 10.89

(69.36) (71.02) (83.60) (80.56) (57.65) (89.45) (73.96) (69.97)

Mod. Sh.-S. 18.41 11.22 18.45 9.31 8.30 6.85 1.44 9.20

(94.26) (89.65) (97.29) (93.09) (81.32) (119.97) (91.98) (87.03)

Shao–Sitter 14.90 6.50 16.96 6.19 -25.66 -28.90 -19.01 -16.52

* (157.49 ) (4.16 ) (62.49 ) (1.84 ) (47.73 ) (2.81 ) (16.41 ) (0.653 )

Naive -39.004 -45.31 -15.97 -24.33 -60.23 -63.57 -41.38 -41.03

(108.02) (53.66) (137.88) (89.41) (46.17) (35.60) (59.74) (47.74)

In the case of the median and a negligible sampling fraction of f1 = 5%,

all methods are biased with the naive method being negatively biased (between

−16% and −45%), as expected, while the other methods are positively biased.

The independent method has a larger bias than the modified Shao-Sitter method,

followed by the Shao-Sitter method with biases among the three methods between

6% and 22%. As is often the case with variance estimators, when their mean is

smaller, their variance is also smaller. Consequently, the Shao-Sitter method has

the best relative efficiency except for small sample size where the naive method,
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Table 2.6. Coverage probability of the 95% bilateral percentile boot-

strap and normal confidence intervals based on a standard error com-

puted from the corresponding bootstrap method (the latter coverage

probability in parenthesis) for the population median with RHDI using

2000 samples of size n1 = 100 and n2 = 400.

f1=5% f2=50%

fr1 = 60% fr2 = 80% fr1 = 60% fr2 = 80%

n1 n2 n1 n2 n1 n2 n1 n2

Independent 95.80 95.80 95.15 95.45 94.90 94.65 95.00 94.85

(94.60) (94.60) (94.60) (94.45) (94.10) (93.30) (91.80) (94.65)

Mod. Sh.-S. 97.30 97.00 96.55 96.25 97.80 97.60 96.80 97.15

(95.80) (95.00) (94.85) (94.35) (95.35) (93.90) (92.90) (94.90)

Shao–Sitter 97.10 96.70 96.40 95.90 92.95 93.65 94.15 94.45

(95.05) (94.40) (94.45) (94.30) (88.10) (89.00) (88.15) (92.65)

Naive 83.15 81.80 89.40 88.90 73.45 73.10 84.60 85.45

(83.30) (83.55) (89.25) (89.90) (69.90) (76.85) (80.20) (86.60)

which leads to small variance estimates (because of its large negative bias), has

the largest relative efficiency; more on that method when we discuss the confi-

dence intervals. For the larger sampling fraction of 50%, the relative bias of all

methods decreases leading to very large negative bias for the naive method (the

best being −41%), and relatively large negative bias for the Shao-Sitter method

(between −17% and −29%). The other two methods have smaller bias, but it

is positive (the worst being 12%), resulting in worse relative efficiency than the

Shao-Sitter method, as previously discussed. It should be noted that even with

100% response, the bootstrap estimate of the variance of the median can be quite

biased, see e.g., Sitter (1992b). In fact for our four scenarios, in results that we do

not include in our tables, the bias for complete response with samples of size 100

oscillates between −7% and 17% depending on the sampling fraction, whereas it

still oscillates between 3% and 12% for samples of size 400.

Estimation of the variance is important, but often the ultimate goal is a confi-

dence interval and the estimation of the variance is sometimes just a step towards



84

the construction of a normal-based confidence interval. If the bootstrap is used,

then it is possible to compute percentile intervals rather than compute a vari-

ance estimator to use with normal quantiles. While the independent bootstrap

method did not perform as well as the Shao-Sitter method in terms of the relative

efficiency of its variance estimator, the coverage probability of its bootstrap per-

centile intervals are never significantly different from the claimed level of 95%. In

two cases with large sampling fraction, its normal-based intervals are significantly

different with coverage probabilities of 91.8% and 93.3%. In the same two cases,

the normal-based intervals using the modified Shao-Sitter variance estimate are

also different from the claimed level, but all other cases are good. On the other

hand, all bootstrap percentile intervals using this method have larger coverage

between 96.25% and 97.80%. In cases where the sampling fraction is small, the

original Shao-Sitter method has good coverage for its normal-based intervals and

some overcoverage for three of its four bootstrap percentile intervals. But for

large sampling fraction (50%), all of its normal-based intervals undercover (be-

tween 88.10% and 92.65%) while the bootstrap percentile intervals are better

with two not significantly different from 95%. Finally, as expected, all intervals

from the naive method drastically undercover with coverage probabilities between

73.10% and 89.90%.

2.7. Application: Research and Development in Cana-

dian Industry Survey for 2008

In this section, we present results obtained using data from the Research

and Development in Canadian Industry (RDCI) survey conducted at Statistics

Canada. The RCDI is used to analyze the relationship between the size of the firm

and the proportion of expenditures spent on research and development (R&D).

A stratified simple random sample without replacement design was selected from

the Canadian Business Register. All must-take enterprises formed one stratum.

The remaining strata were defined at the NAICS5 (North American Industry

Classification System 5-digit) level. Then the smallest enterprises making no
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more than 5% of the total SIZE (the sum of extramural payments or contracting-

out – EXTOT – and the total intramural spending – TIE – variables) were put

in take-none strata within each NAICS5, to reduce the response burden on the

smallest enterprises. The remaining enterprises in each stratum were divided into

three substrata: a take-all stratum, which would consist of the largest enterprises

that were clearly larger than the remainder, and two take-some strata with the

medium-size enterprises put into a substratum with a higher sampling fraction

than the one containing the smallest take-some enterprises.

To apply the bootstrap methods, we dropped the take-none and the fully

observed take-all strata since both types of strata do not contribute to the variance

of point estimators. In addition, to avoid small numbers of respondents within

strata, strata were collapsed with other strata belonging to the same NAICS

group to have at least 3 respondents per stratum. At the end, the number of

strata was equal to 122 and the population and sample sizes were 13,289 and

1,562, respectively. As the variable of interest, we chose Expenditures in Canada

planned for 2009 for R&D.

In this study, we were interested in estimating several population parameters:

the mean, the first quartile (Q1), the median and the third quartile (Q3). To

replace the missing values when estimating the mean, we used mean and random

hot-deck imputation. For the median and the quartiles, we only considered hot-

deck imputation. We estimated the variance of the resulting imputed estimators

using several bootstrap procedures: the independent bootstrap of Section 2.4,

the Shao-Sitter method of Section 2.3 and the naive procedure of Section 2.6. In

the case of the population mean with mean imputation, we also computed the

linearization variance estimator given by V̂ (ȳI) = V̂1 + V̂2, where the two terms

are computed by appropriately modifying formulas (2.A.4) and (2.A.5).

The first column of Table 2.7 shows the different variance estimates for the

mean estimator under mean imputation. Note that the linearization variance

estimates V̂1 and V̂2 were respectively equal to 1,581.47 and 6,055.63 for a total

variance estimate of 7,637.10. It is interesting to note that, in our example, the

second term was considerably larger than the first term even though the overall
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Table 2.7. Bootstrap Variance Estimates of the Mean under

Mean and Random Hot Deck Imputation

Mean Imputation RHDI

Without the Without the

Bootstrap Method All Strata Near Take-all All Strata Near Take-all

Independent 7,264.15 2,057.59 10,065.99 2,409.84

Shao-Sitter 1,552.17 1,477.64 1,697.68 1,587.53

Naive 421.26 381.13 765.81 716.86

Linearization 7,637.10 1,802.48 11,899.66 2,302.09

sampling fraction at 12% is not particularly large. This can be explained by

the presence of take-all or near take-all strata, with relatively large non-response

which do not contribute to the first term V̂1 (or contribute little in near take-

all strata), but can contribute largely to V̂2, especially if the stratum is large.

Moreover, in this type of economic study, some units will be particularly large.

Figure 2.1 shows the sampling fraction and the response rate in each of the 122

strata. The overall response rate is 58%, but we see that many strata have low

response rates, including some with a large sampling fraction. We distinguish

between three sets of strata. The strata identified by a square are take-all strata

of size between 4 and 10 with non-response. Such strata do not contribute to the

first term of variance as there is no sampling, but they do contribute to the second

term because of the non-response. For these strata, there is no contribution to the

variance estimate of the Shao-Sitter or naive methods. In the case of the Shao-

Sitter estimator based on the bootstrap weights estimator, since the sampling

fraction fh is 1, then the rescaling constant Ch of the BRS method is 0 so that

the bootstrap weights are always w∗
hi = whi for all bootstrap samples leading to

no variability. The strata identified by a triangle are the only six full-response

strata. These strata only contribute to the first term of variance since there is no

non-response variation in this case and so all variance estimators are similar.

The stratum identified by a star is a near take-all stratum in that although

all 237 units were contacted, only 235 were reached and 153 responded to that
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Figure 2.1. Sampling fraction and response rates of the 122 strata
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question. Since fh is near 1, Ch is near 0 and there is very little variability in the

bootstrap weights so that the Shao-Sitter variance estimator for that stratum is

small, as is the naive estimator. Moreover, the stratum was planned to be take-

all because of the importance of its units and so it is not surprising that some

of its values are large. Hence, because of the large within-stratum variance, its

relatively large size, and a relatively small response rate, the contribution of this

stratum to the overall variance is very important. The second column of Table 2.7

shows the variance of the mean estimator under mean imputation once we remove

the near take-all stratum. We see that the independent bootstrap and linearized

estimators are relatively close whereas the Shao-Sitter is somewhat smaller, but

the difference is much less important than it is when all strata are included. In

this case, the Shao-Sitter estimator is about 20% of the independent bootstrap

or linearized variance estimators. Finally, it is worth reminding the reader that

the naive variance estimator is what would be obtained if we used the bootstrap
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weights method with the weights computed to reflect the sampling uncertainty,

precisely the weights that would be provided to users. The underestimation of

the variance is tremendous as it reflects only 6% of the independent bootstrap

estimate with all strata or 19% without the near take-all stratum.

Figure 2.2. CV of the three estimators in terms of the sampling fraction

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

Mean Imputation

CV(yLin.)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

● CV(ySh.S.)
CV(yIndep.)

fh ≤ 40

40 <  fh ≤ 80

fh > 80

To better understand the effect of the sampling fraction on the estimation of

the variance within each stratum, Figure 2.2 shows the coefficient of variation

(CV) of within stratum point estimates Ȳh obtained using the linearized variance

estimator on the x-axis and the corresponding CV of the Shao-Sitter (circles) or

the independent (squares) bootstrap methods on the y-axis for all strata. The

first thing to notice is that most squares are close to the line, but usually slightly

higher, resulting in a variance estimate for the independent bootstrap which is

slightly larger than the linearized one once the near take-all is removed (the in-

dependent bootstrap variance estimate in that stratum is less than the linearized

variance estimate reversing the trend when all strata are considered). We used
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color to identify the corresponding sampling fraction in the stratum: green cor-

responds to small sampling fractions (fh ≤ .4), red moderate fh (between .4 and

.8) and blue large fh (greater than .8). Notice that while the sampling fraction

does not really change the CV of the independent bootstrap, it has a large effect

on the Shao-Sitter method with points being further away from the line as the

sampling fraction increases.

Columns 3 and 4 of Table 2.7 present the corresponding results for estimating

the mean under random hot-deck imputation. The results are qualitatively similar

to the mean imputation case. In this case, the linearization variance estimator

also accounts for the imputation variance due to the random selection of donors:

V̂ (ȳI) = Ṽ1 + Ṽ2 + Ṽ3.

In our example, the linearization variance estimates Ṽ1, Ṽ2, and Ṽ3 were re-

spectively equal to 1,581.5, 6,055.6 and 4,262.6 for a total variance estimate of

11,899.7. The second and third terms are much more important than the first

one, again mostly because of the near take-all stratum. If we remove it, the cor-

responding terms are 1,493.8, 308.7 and 499,6 for a total of 2,302.1, agreeing with

the theory developed earlier whereby the third term is not negligible, unlike the

second one.

We now turn to the estimation of quartiles under random hot-deck imputation

where Table 2.8 presents the different bootstrap variance estimates. While the

naive variance estimate is clearly smaller than the other two, it is worth noting

that the Shao-Sitter estimates are slightly higher than those obtained under the

independent bootstrap procedure in the case of the median and the third quartile.

In this case we don’t have a linearization variance estimate to compare to. More

research is needed to better understand variance estimation under imputation for

quartile estimation. However, we saw that the independent method was closer

to the target (linearization method) in the case of the mean and based on the

simulation results, we would trust the results of the independent method.
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Table 2.8. Bootstrap variance estimators for the quartiles under

random hot-deck imputation

Bootstrap Method Q1 Median Q3

Independent 116.4 435.8 3575.5

Shao-Sitter 101.8 553.5 3657.5

Naive 63.7 224.0 2164.8

2.8. Conclusion

Item non-response is an important practical problem in survey sampling.

Through the reverse framework, we have shown that the Shao-Sitter bootstrap

method only estimates the first term in the variance of an imputed estimator

leading to a biased estimator of variance whenever the sampling fraction is large.

Under the assumption of uniform non-response within stratum, we introduce the

independent bootstrap which consists of choosing a bootstrap sample according

a survey sampling bootstrap method and independently generating response in-

dicators from Bernoulli random variables with the estimated response rate as

the success probability. The survey sampling bootstrap methods generally in-

volve some type of constants and these constants need to be modified to obtain

a consistent estimator of the variance of an imputed estimator, regardless of the

sampling fraction. The modifications depend on the bootstrap method, the re-

sponse rate, and the imputation method. We have illustrated the method for the

BRS and bootstrap weights approaches combined with mean, ratio, regression,

and hot-deck imputation. The simulation and the application show the strengths

of the method and also illustrate how poorly the naive approach – which consists

of using the ordinary bootstrap weights provided by statistical agencies, as if we

had complete data – can perform.

In this paper we are making the strong assumption (from a practical stand-

point) of uniform non-response within stratum. In the case where the probability

of response pi depends on the unit rather than uniformly being equal to p0, it is

no longer possible to find a constant C for the bootstrap method that will lead

to a consistent estimator of the variance of the imputed estimator. In Section
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2.5, we showed that the second variance term of the reverse framework approach,

V2, is a multiple of the first one, V1, in the case of uniform non-response so that

the total variance is a multiple of V1. Given that the bootstrap methods used in

survey sampling, such as the BRS and bootstrap weights, essentially attempt to

estimate the first term V1, we have been able to consistently estimate the vari-

ance by choosing the appropriate constant C in the method. If non-response is

no longer uniform, this is not possible anymore. For instance, looking back to

Equation (2.5.1) corresponding to mean imputation, it is relatively easy to see

that the first term in the variance is a multiple of ∑ pi(yi − Ȳp)2 whereas the

second term is a multiple of ∑ pi(1 − pi)(yi − Ȳp)2 where Ȳp = ∑
i∈U piyi/

∑
i∈U pi.

Note that the Shao-Sitter approach will continue to succeed in estimating the

first term V1 and will do well provided that the sampling fraction is small. Some

limited simulations not reported here show that if the violation to uniform non-

response is not too large, the independent bootstrap will do reasonably well, but

if the hypothesis clearly does not hold, it will not do well. Research on the case

of non-uniform non-response, based on pseudo-population bootstrap methods in-

stead of the BRS and bootstrap weights methods, is ongoing and will be reported

elsewhere.

2.9. Appendix A

We begin by showing the claims we made for the Shao-Sitter and the in-

dependent bootstrap variance estimators to estimate the variance of the mean

estimator based on an imputed data set. We assume that N ≈ N − 1, n ≈ n− 1

and nr ≈ nr − 1. In the following, let L = 1.

To illustrate that the independent bootstrap method consistently estimates

the variance of an imputed estimator of the population mean via a deterministic

method, we develop the theory in detail for linear regression imputation method

using the BRS method. For ratio imputation, a similar argument can be used.

We will show that the independent bootstrap variance estimator is approximately

equal to the estimator obtained using a first-order linearization method in the case

of the population mean.
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In the case of linear regression imputation, we applied the first-order Demnati

and Rao (2004) linearization method and the same arguments used in Kim and

Rao (2009) to find a linearization variance estimation of ȳI , but instead of using

the population-model approach where a model for the distribution of yi is used

without specifying the distribution of ri, we used another approach in which yi

is treated as fixed and the uniform non-response mechanism for ri is assumed.

Therefore, assuming (X̄ − X̄r)′s−1
XX goes to zero, where X̄ = ∑

i∈U xi/N , and

X̄r = (∑i∈U rixi)/ (∑i∈U ri), we obtain the following approximations:

V1 = EqVp
(
ȳI |r

)
≈ (1 − f)

[
1 − (1 − p0)CC2

] s2
U

np0
, (2.A.1)

and

V2 = VqEp
(
ȳI |r

)
≈ N − 1

N
f(1 − p0)

[
1 − CC2

] s2
U

np0
, (2.A.2)

where CC2 = s′
XY s

−1
XXsXY /s

2
U , s2

U = ∑
i∈U(yi − Ȳ )2/(N − 1), sXX = ∑

i∈U(xi −

X̄)(xi − X̄)′/(N − 1) and sXY = ∑
i∈U(xi − X̄)(yi − Ȳ )/(N − 1). As a result,

according to (2.A.1) and (2.A.2), the total variance of the imputed estimator

under the reverse framework is given by

V (ȳI) = EqVp
(
ȳI |r

)
+ VqEp

(
ȳI |r

)
≈

[
1 − p0f − (1 − p0) CC2

] s2
U

np0
= αLRIV1,

(2.A.3)

where αLRI = (1 − p0f − (1 − p0) CC2)/((1 − f) [1 − (1 − p0)CC2]). To esti-

mate V (ȳI), it suffices to estimate the two components in (2.A.1) and (2.A.2).

Asymptotically consistent estimators of V1 and of V2 are respectively given by

ÊqVp
(
ȳI |r

)
≈ (1 − f)

[
1 − (1 − p̂0)CC2

r

] s2
ry

nr
, (2.A.4)

and

V̂qEp
(
ȳI |r

)
≈ f(1 − p̂0)[1 − CC2

r ]
s2
ry

nr
, (2.A.5)

where CC2
r = s′

rxy s
−1
rxx srxy/s

2
ry, s2

ry = ∑
i∈s ri(yi−ȳr)2/(nr−1), srxx = ∑

i∈s ri(xi−

x̄r)(xi−x̄r)′/(nr−1) and srxy = ∑
i∈s ri(xi−x̄r)(yi−ȳr)/(nr−1), ȳr = ∑

i∈s riyi/nr

and x̄r = ∑
i∈s rixi/nr. As a result, the asymptotically unbiased estimator of

V (ȳI) is

V̂ (ȳI) =
[
1 − p̂0f − (1 − p̂0) CC2

r

] s2
ry

nr
. (2.A.6)
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This estimator is based on the sample of respondents, so the response status is

required for all units. However, assuming

s−1
rxxsxx ≈ 1, (2.A.7)

it is straightforward to see that

CC2
r ≈ p̂0CC

2
I

1 − (1 − p̂0)CC2
I

and s2
ry ≈ 1

p̂0

[
1 − (1 − p̂0)CC2

I

]
s2
yI .

where CC2
I = s′

xyI s−1
xx sxyI/s2

yI . Consequently, the estimator in (2.A.6) can be

rewritten as follows:

V̂ (ȳI) =
[
(1 − p̂0f) − p̂0 (1 − p̂0)

1 − (1 − p̂0)CC2
I

] [
1 − (1 − p̂0)CC2

I

] s2
yI

p̂0nr
, (2.A.8)

which is computable on the imputed data set without requiring the response

status.

Now we move on to the Shao-Sitter bootstrap variance estimator. We show

that it only estimates the first component of the variance, EqVp
(
ȳI |r

)
. Suppose

that s∗ = {(z∗
i , ũ∗

i , r
∗
i )}n

′
i=1 is the bootstrap sample drawn with replacement from

the sample of rescaled data and response status, {(zi, ũi, ri)}ni=1, where ũ′
i =

(1,u′
i) and u′

i = x̄′ +
√
C(xi − x̄)′. The bootstrap sample of non-respondents

is reimputed using linear regression imputation. Therefore, the bootstrap data

after reimputation are

z∗I
i =

 z∗
i , if r∗

i = 1,

ũ∗′
i β̃

∗
r, if r∗

i = 0,
for i = 1, · · · , n′,

where

β̃
∗
r =

 n′∑
i=1

r∗
i ũ∗

i ũ∗′

i

−1 n′∑
i=1

r∗
i ũ∗

i z
∗
i

 .
The bootstrap statistic based on the imputed data is θ̂∗I = ∑n′

i=1 z
∗I
i /n

′. Assuming

(ū − ūr)′s−1
ruu tends to 0, where ū = ∑n

i=1 ui/n, ūr = ∑n
i=1 riui/nr and sruu =∑n

i=1 ri (ui − ūr) (ui − ūr)′ /(nr −1), that m∗
i is the number of times the i-th unit

in the sample of rescaled data is selected in the bootstrap sample and using a

first-order linearization, we have

θ̂∗I − ȳI ≈
n∑
i=1

(
m∗
i − n′

n

){
ri

n′nr/n
(zi − z̄r) +

(
ui
n′ − ri

n′nr/n
(ui − ūr)

)′

β̂r

}
,
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where z̄r = ∑n
i=1 rizi/nr and β̂r = s−1

rxxsrxy. To compute the bootstrap variance

estimator, we have only one source of randomness: the sampling mechanism

indexed by p∗. Using the linearized variable, we have

V ∗
Sh.S.

(
θ̂∗I
)

≈ Vp∗

 1
n′

n′∑
i=1

{
n

nr
r∗
i (z∗

i − z̄r) + u∗′

i β̂r − n

nr
r∗
i (u∗

i − ūr)′ β̂r

}
= C (nr − 1)

n′nrp̂0

[
s2
ry + p̂2

0
n− 1
nr − 1

β̂
′
rsxx β̂r − s′

rxyβ̂r

]
.

Replacing the rescaling factor by C = [n′/(n − 1)][1 − f ] and assuming (2.A.7),

we obtain

V ∗
Sh.S.

(
θ̂∗I
)

≈ (1 − f)
[
1 − (1 − p̂0) CC2

r

] s2
ry

nr
, (2.A.9)

which is equal to the asymptotically unbiased estimator of the first component of

the variance, ÊqVp
(
ȳI |r

)
, presented in (2.A.4). Therefore, as we claimed, in the

case of non-negligible sampling fraction, the Shao-Sitter method underestimates

the total variance of θ̂I .

We now move to the independent bootstrap variance estimator and show

that it is a consistent estimator for V (ȳI). Suppose that the bootstrap sam-

ple, s∗ = {(z∗
i , ũ∗

i )}n
′
i=1 is drawn with replacement from {(zi, ũi)}ni=1, the rescaled

sample with CI presented in Table 2.1. Then, using the response rate, we in-

dependently regenerate the response indicators, {r∗
i }n

′
i=1. The bootstrap statistic

based on the reimputed bootstrap data set using linear regression imputation is

θ̂∗I = ∑n′

i=1 z
∗I
i /n

′ which has the same form as the Shao-Sitter bootstrap statistic,

but the regenerated response status is used. In this bootstrap procedure, there

exist two sources of randomness: the sampling and the non-response mechanisms

indexed by p∗ and q∗, respectively. We study the independent bootstrap variance

estimator, V ∗(θ̂∗I), under the two-phase framework which implies

V ∗(θ̂∗I) = Ep∗Vq∗
(
θ̂∗I |s∗

)
+ Vp∗Eq∗

(
θ̂∗I |s∗

)
. (2.A.10)
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To compute Vq∗
(
θ̂∗I |s∗

)
and Eq∗

(
θ̂∗I |s∗

)
, we apply a first-order Demnati-Rao

linearization as follows:

Vq∗
(
θ̂∗I |s∗

)
≈ Vq∗

 1
n′p̂0

n′∑
i=1

r∗
i

(
z∗
i − z̄∗ − (u∗

i − ū∗)′ β̂
∗)

= 1 − p̂0

n′2p̂0

n′∑
i=1

(
z∗
i − z̄∗ + (ū∗ − u∗

i )
′ β̂

∗)2
,

and

Eq∗
(
θ̂∗I |s∗

)
≈ z̄∗, (2.A.11)

where z̄∗ = ∑n′

i=1 z
∗
i /n

′, ū∗ = ∑n′

i=1 u∗
i /n

′, and

β̂
∗

=

 n′∑
i=1

(u∗
i − ū∗) (u∗

i − ū∗)′

−1  n′∑
i=1

(u∗
i − ū∗) (z∗

i − z̄∗)

 .
Using a first-order Taylor linearization, we have

Ep∗Vq∗(θ̂∗I |s∗) ≈ Ep∗

1 − p̂0

n′2p̂0

n′∑
i=1

(
z∗
i − z̄∗ − (u∗

i − ū∗)′ β̂
∗)2


≈ 1 − p̂0

n′np̂0

n∑
i=1

(
zi − z̄ − (ui − ū)′ s−1

xxsxyI

)2

= CI(n− 1)
n′

1 − p̂0

p̂0

[
1 − CC2

I

] s2
yI

n
.

(2.A.12)

To compute the second term, the result in (2.A.11) implies that

Vp∗Eq∗[θ̂∗I |s∗] ≈ 1
n′n

n∑
i=1

(zi − z̄)2 = CI(n− 1)
n′

s2
yI

n
. (2.A.13)

As a result, the bootstrap variance estimator presented in (2.A.10) is obtained

by combining the results in (2.A.12) and (2.A.13):

V ∗(θ̂∗I) = CI(n− 1)
n′p̂0

[
1 − (1 − p̂0)CC2

I

] s2
yI

n
.

Using the proposed rescaling factor for linear regression imputation, this estimator

equals the consistent estimator of the variance of θ̂I based on the imputed data

set presented in (2.A.8).

We now look at the claims regarding the bootstrap estimators under random

hot-deck imputation and begin with a linearization of the variance. Under RHDI,

a missing value is imputed by selecting completely at random from the set of
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respondents with probability 1/nr for each unit. Therefore, an estimator of the

population mean estimator based on imputed data is

ȳI = 1
N

∑
i∈s

wi [riyi + (1 − ri) ỹi].

Under the reverse framework, the total variance of ȳI is given by

V (ȳI) = EqVpEI
(
ȳI |s, r

)
+ VqEpEI

(
ȳI |s, r

)
+EqEpVI

(
ȳI |s, r

)
= Ṽ1 + Ṽ2 + Ṽ3.

(2.A.14)

The fact that EI(ȳI) = ȳr, which is the estimator of Ȳ under mean imputation,

implies that EqVpEI
(
ȳI |s, r

)
+VqEpEI

(
ȳI |s, r

)
can be approximated by (2.A.3)

and estimated by (2.A.6) assuming x̃ = 1. Consequently, we only need to estimate

the third component,

EqEpVI
(
ȳI |s, r

)
= EqEp

(
1
N2

∑
i∈s

w2
i (1 − ri) VI(ỹi)

∣∣∣∣∣ r
)

= 1 − p0

n
EqEp

(
nr − 1
nr

s2
ry

∣∣∣∣ r) ≈ 1 − p0

nN

∑
i∈U

(
yi − Ȳ

)2
.

It is easy to check that an asymptotically unbiased estimator for this term can

be given by

ÊqEpVI
(
ȳI |s, r

)
= p̂0 (1 − p̂0)

s2
ry

nr
.

As a result, the total variance of ȳI in (2.A.14) is approximated by

V (θ̂I) = 1 − p0f + p0 (1 − p0)
nNp0

∑
i∈U

(yi − Ȳ )2.

Assuming λf = 1 − f , we can easily see that

V (θ̂I) =
[

{1 + p0 (1 − p0)} − p0f

{1 + p0 (1 − p0)} (1 − f)

]
[Ṽ1 + λf Ṽ3] = αRHDI [Ṽ1 + λf Ṽ3].

The asymptotically unbiased estimator of V (θ̂I) can be given by

V̂ (θ̂I) = [1 − p̂0f + p̂0 (1 − p̂0)]
s2
ry

nr
.

We note that this estimator is obtained using the sample of respondents, so the

response status is required for all units.
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We now study the Shao-Sitter bootstrap variance estimator under RHDI. In

this case, the bootstrap statistic after reimputation is defined by

θ̂∗I = 1
n′

n′∑
i=1

[r∗
i z

∗
i + (1 − r∗

i ) z̃∗
i ] .

where z̃∗
i is selected completely at random from the bootstrap sample of respon-

dents with probability 1/R∗, where R∗ = ∑n′

i=1 r
∗
i . The variance of θ̂∗I is given

by

V ∗
Sh.S.(θ̂∗I) = Ep∗VI∗

(
θ̂∗I |s∗

)
+ Vp∗EI∗

(
θ̂∗I |s∗

)
,

where index I∗ indicates the random imputation mechanism in the bootstrap pro-

cedure. Using a first-order Taylor linearization, the first component of V ∗
Sh.S.(θ̂∗I)

is approximated as follows:

Ep∗VI∗
(
θ̂∗I |s∗

)
= Ep∗

 1
n′2

n′∑
i=1

(1 − r∗
i ) VI∗(z̃∗

i )


= Ep∗

 1
n′2

n′∑
i=1

(1 − r∗
i )

1∑n′
i=1 r

∗
i

n′∑
i=1

r∗
i (z∗

i − z̄∗
r )2


≈ 1

n′2
(n′/n) ∑n

i=1(1 − ri)
(n′/n) ∑n

i=1 ri

n′

n

n∑
i=1

ri(zi − z̄r)2

= C (n− 1)
n′ p̂0 (1 − p̂0)

s2
ry

nr
.

Using the fact that EI∗
(
θ̂∗I |s∗

)
= z̄∗

r = ∑n′

i=1 r
∗
i z

∗
i /R

∗ which is the bootstrap

statistic using mean imputation, the approximation in (2.A.9) in the case of

x̃ = 1 can be used to compute the second component. As a result, we have

Vp∗EI∗
(
θ̂∗I |s∗

)
= C (n− 1)

n′

s2
ry

nr
.

Finally, applying the complete data rescaling factor, C = [n′/(n− 1)][1 − f ], the

Shao-Sitter variance estimator is

V ∗
Sh.S.(θ̂∗I) ≈ C (n− 1)

n′ p̂0 (1 − p̂0)
s2
ry

nr
+ C (n− 1)

n′

s2
ry

nr

= (1 − f) p̂0 (1 − p̂0)
s2
ry

nr
+ (1 − f)

s2
ry

nr
,

which is an asymptotically unbiased estimator for Ṽ1 + λf Ṽ3, or for V (θ̂I) when

f is negligible.
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Consider the independent bootstrap under RHDI. The bootstrap statistic after

reimputing the non-respondents in the bootstrap sample is defined similarly to

the case of the Shao-Sitter method, but with the response status regenerated

according to the binomial distribution. This bootstrap procedure implies that

V ∗(θ̂∗I) = Vp∗Eq∗EI∗
(
θ̂∗I |r∗, s∗

)
+Ep∗Vq∗EI∗

(
θ̂∗I |r∗, s∗

)
+Ep∗Eq∗VI∗

(
θ̂∗I |r∗, s∗

)
.

Because EI∗
(
θ̂∗I |s∗

)
= z̄∗

r , the first two components can be simply obtained

using (2.A.12) and (2.A.13) in the case of x̃ = 1.

Vp∗Eq∗EI∗
(
θ̂∗I |r∗, s∗

)
+ Ep∗Vq∗EI∗

(
θ̂∗I |r∗, s∗

)
= CI

n′np̂0

n∑
i=1

(
yIi − ȳI

)2
.

(2.A.15)

Using a first-order Demnati-Rao linearization and a first-order Taylor lineariza-

tion, the third term is approximated by

Ep∗Eq∗VI∗
(
θ̂∗I |r∗, s∗

)
= Ep∗Eq∗

∑n′

i=1(1 − r∗
i )

n′2 ∑n′
i=1 r

∗
i

n′∑
i=1

r∗
i

(
z∗
i −

∑n′

i=1 r
∗
i z

∗
i∑n′

i=1 r
∗
i

)2

≈ Ep∗

1 − p̂0

n′2

n′∑
i=1

z∗
i − 1

n′

n′∑
i=1

z∗
i

2


≈ CI (1 − p̂0)
n′n

∑
i∈s

(
yIi − ȳI

)2
.

(2.A.16)

As a result, (2.A.15) and (2.A.16) imply that

V ∗(θ̂∗I) ≈ CI

n′nr
[1 + p̂0 (1 − p̂0)]

∑
i∈s

(
yIi − ȳI

)2

= p̂0

nr(nr − 1)
(1 − p̂0f) + p̂0 (1 − p̂0)

1 − 1
n

(1 − p̂0)
∑
i∈s

(
yIi − ȳI

)2
.

(2.A.17)

It remains to show that this estimator is asymptotically consistent for V (θ̂I).

Under random hot-deck imputation, we have that

EI

[∑
i∈s

(yIi − ȳI)2
]

= EI

(∑
i∈s

yI2
i

)
− nEI

(
ȳI2
)

= n

nr

∑
i∈s

riy
2
i − n

[
1
nnr

(
1 − nr

n

) ∑
i∈s

ri (yi − ȳr)2 + ȳ2
r

]

≈ nr − 1
p̂0

[
1 − 1

n
(1 − p̂0)

]
s2
ry,



99

which can be directly used to show that

EI
[
V ∗(θ̂∗I)

]
≈ [(1 − p̂0f) + p̂0 (1 − p̂0)]

s2
ry

nr
.

Consequently, the bootstrap variance estimator is asymptotically consistent. Note

that the independent bootstrap variance estimator in (2.A.17) is computed on the

sample of imputed data without requiring the response indicators.

We conclude by showing the equivalence of the independent bootstrap sta-

tistics of the BRS and BW methods for a function of means, as is the case for

BRS and BW statistics for complete survey data. We do this in the case of

RHDI imputation; simpler arguments can be used for a deterministic imputation

method.

Under the BRS approach, we define

I∗
ij =

 1, if zi = z∗
j ,

0, otherwise.
(2.A.18)

According to this definition ∑n′

j=1 I
∗
ij and ∑n′

j=1 I
∗
ijr

∗
j are the numbers of times that

unit i in s is selected in the bootstrap sample s∗ and in the bootstrap sample of

respondents, respectively. From this sampling procedure and the one presented

in Section 2.4.3, it is straightforward to see that

m∗
i
D=

n′∑
j=1

I∗
ij and R∗

i
D=

n′∑
j=1

I∗
ijr

∗
j ,

where D= indicates equality in distribution.

Using random hot-deck imputation method in the bootstrap procedure, we

obtain

θ̂∗I = 1
n′

n′∑
j=1

[r∗
jz

∗
j + (1 − r∗

j ) z̃∗
j ] = 1

n′

n′∑
j=1

r∗
j z

∗
j + (1 − r∗

j )
n′∑
l=1

Ĩ∗
jlr

∗
l z

∗
l

 ,
where

Ĩ∗
jl =

 1, if z̃∗
j = z∗

l with r∗
l = 1,

0, otherwise,

which indicates which unit in the bootstrap sample of respondents is selected for

imputing the missing data z∗
j . This definition and that in (2.A.18) imply that
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θ̂∗I = 1
n′

n′∑
l=1

r∗
l

1 +
n′∑
j=1

(1 − r∗
j )Ĩ∗

jl

 z∗
l

= 1
n′

n′∑
l=1

r∗
l

1 +
n′∑
j=1

(1 − r∗
j )Ĩ∗

jl

 ∑
i∈s

I∗
ilzi

= 1
n′

∑
i∈s


n′∑
l=1

I∗
ilr

∗
l +

n′∑
l=1

I∗
ilr

∗
l

 n′∑
j=1

(1 − r∗
j )Ĩ∗

jl

 zi

D= 1
n′

∑
i∈s

{R∗
i +D∗

i } zi

= 1
N

∑
i∈s

[
1 +

√
CI

(
n(R∗

i +D∗
i )

n′ − 1
)]

wi y
I
i .

As a result, the bootstrap statistics via the two different approaches have the

same distribution.
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Chapter 3

PSEUDO-POPULATION BOOTSTRAP

METHODS FOR IMPUTED SURVEY DATA

Abstract

Item non-response in surveys is usually dealt with through single imputation.

It is well known that treating the imputed values as if they were observed values

may lead to serious underestimation of the variance of point estimators. Two ap-

proaches are used for studying the properties of point and variance estimators: the

non-response model approach that requires assumptions about the non-response

mechanism and the imputation model approach that requires assumption about

the distribution of the variable being imputed. In this paper, we propose three

pseudo-population bootstrap schemes: the first two lead to an approximately

unbiased variance estimator with respect to the non-response model approach

and the imputation model approach, respectively. The third scheme leads to a

doubly robust bootstrap variance estimator. That is, the latter is approximately

unbiased for the true variance if one model or the other is correctly specified.

The proposed bootstrap procedures can be used even for large sampling fraction.

Results from a simulation study suggest that the resulting variance estimators

perform well in terms of relative bias.

Key words and phrases: Bootstrap; Imputation, Imputation model ap-

proach, Non-response model approach, Pseudo-population approach, Variance

estimation.
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3.1. Introduction

Item non-response in surveys is usually dealt with through single imputation.

That is, a missing value is replaced by a single artificial value, which is constructed

on the basis of auxiliary information recorded for both respondents and non-

respondents. Variance estimation in the presence of imputed data has been widely

treated in the literature; e.g., Särndal (1992), Rao and Shao (1992), Rao (1996),

Shao and Sitter (1996), Shao and Steel (1999), Haziza (2009) and Kim and Rao

(2009), among others. It is well known that treating the imputed values as if they

were observed values may lead to serious underestimation of the variance of the

point estimators, leading to confidence intervals that are too narrow.

In the absence of non-response, bootstrap procedures can be classified into

two main groups. In the first, bootstrap samples are selected from the original

sample; e.g., Rao and Wu (1988), Sitter (1992b) and Rao et al. (1992), among

others. Rao and Wu (1988) applied a scale adjustment directly to the survey data

values so as to recover the usual variance formulae. Rao et al. (1992) presented

a modification of the method of Rao and Wu (1988), where the scale adjustment

is applied to the survey weights rather than to the data values. The second

group of procedures consists of creating a pseudo-population from the original

sample. Bootstrap samples are then selected from the pseudo-population using

the same sampling design utilized to select the original samples; see Gross (1980),

Bickel and Freedman (1984), Booth et al. (1994), Chauvet (2007) and Wang and

Thompson (2012), among others. Most bootstrap procedures can be implemented

by randomly generating bootstrap weights so that the first two (or more) design

moments of the sampling error are tracked by the corresponding bootstrap mo-

ments; see Antal and Tillé (2011a) and Beaumont and Patak (2012).

Shao and Sitter (1996) introduced a bootstrap method to deal with imputed

data. It consists of using any (complete) data bootstrap method to select a boot-

strap sample of imputed data while keeping their corresponding original response

status, and then to re-impute the bootstrap data with a missing status using

the same imputation method that was used on the original data. The Shao-

Sitter bootstrap variance estimator is consistent for the true variance provided
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that the sampling fraction is negligible; see also Davison and Sardy (2007). More

recently, Mashreghi et al. (2014) considered a bootstrap procedure that works for

non-negligible sampling fractions in the case of stratified simple random sample

without replacement and uniform non-response within strata.

In order to assess the properties of point and variance estimators and to de-

rive variance estimators, two inferential approaches are used: (i) the non-response

model (NRM) approach that requires explicit assumptions about the unknown

non-response mechanism and (ii) the imputation model (IM) approach that re-

quires the specification of a model describing the distribution of the variable under

study being imputed. In this paper, we consider the class of linear regression im-

putation, which includes mean and ratio imputation as special cases. We focus

on doubly robust regression imputation, which makes explicit use of both the

non-response model and the imputation model. The resulting imputed estimator

is doubly robust. That is, it remains asymptotically unbiased and consistent for

the true parameter if either model (non-response or imputation) is true. This

type of procedures offers some protection against misspecification of one model

or the other; e.g., Haziza and Rao (2006) and Kim and Haziza (2014).

Assuming that the data are MAR (Rubin, 1976), we develop pseudo-population

bootstrap procedures that can be used even for large sampling fractions unlike

the Shao-Sitter procedure. We present three bootstrap schemes: the first (called

NRM Scheme) leads to an asymptotically unbiased bootstrap variance estimator

with respect to the NRM approach. The IM Scheme leads to an asymptotically

unbiased bootstrap variance estimator with respect to the IM approach. Finally,

the third Scheme (called DR Scheme), which is a combination of the first two,

leads to a doubly robust bootstrap variance estimator. That is, the latter is

asymptotically unbiased for the true variance if either the non-response or im-

putation model is correctly specified. In this paper, we focus on simple random

sampling without replacement and Poisson sampling. The extension to stratified

simple random sampling is relatively straightforward as sampling is performed

independently within each stratum. We show that our methods lead to valid



104

estimators for simple random sampling without replacement and Poisson sam-

pling. In the literature, complete data pseudo-population methods have been

proposed (Chauvet, 2007) for high entropy sampling designs that includes the

Rao-Sampford procedure (Rao, 1965; Sampford, 1967) and the Chao procedure

(Chao, 1982) as special cases (Berger, 1998); see also Wang and Thompson (2012)

for unequal probability sampling designs. Our bootstrap procedures can be nat-

urally extended to handle these sampling design although we do not provide a

formal proof in this paper.

In the case of complete data, bootstrap pseudo-population approaches rely

on the sampling design and on the (observed) values in the sample to create the

pseudo-population from which bootstrap samples will be selected. In presence

of item non-response, a further random mechanism is present which breaks the

sample into respondents and non-respondents, the values of the latter group being

unobserved of course. The challenge in designing bootstrap pseudo-population

approaches in presence of item non-response is to use models, specified up to

unknown constants, to compensate for the unobserved values in the sample. In the

NRM Scheme, we use a postulated model for the non-response random mechanism

based on auxiliary variables while in the IM Scheme, we use a model linking the

variable under study to auxiliary variables.

We begin with the NRM Scheme. The key idea here is to recognize that the

set of respondents to a specific item can be viewed as a random sample obtained

by a Poisson sampling design using the (unknown) response probabilities as the

inclusion probabilities. In the NRM Scheme, we therefore begin by considering

the sample as a “population” from which a Poisson sample was taken leading to

the sample of respondents and then we apply a pseudo-population approach ap-

propriate for Poisson sampling to create a “pseudo-population” which we will call

a pseudo-sample. The pseudo-sample will have properties similar to what should

be expected from a sample without item non-response. Then we simply use a

complete data approach to create the pseudo-population for the vector made up

of the variable under study and the auxiliary variables from which bootstrap sam-

ples will be taken and the response status generated. More specifically, we create
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the pseudo-population in two distinct steps: we first apply the complete data

bootstrap method of Chauvet (2007) for Poisson sampling to obtain a pseudo-

sample for the vector of the variable under study and the auxiliary variables.

Then, from the pseudo-sample, we create a pseudo-population of vectors accord-

ing to a complete data pseudo-population bootstrap procedure. For example, if

the original sample was selected according to simple random sampling without

replacement, the method of Booth et al. (1994) may be used whereas we use

Chauvet (2007) if it was Poisson sampling. Bootstrap samples are then selected

from the pseudo-population by applying the original sampling design and gen-

erating non-response in each bootstrap sample using Poisson sampling with the

estimated inclusion probabilities as the inclusion probabilities. Imputation within

each bootstrap sample is performed according to the same imputation method

that was used in the original sample.

For the IM Scheme, the model linking the variable under study to the auxiliary

variables will be estimated from the respondents in the sample and the empirical

distribution function of its standardized residuals can be used to generate errors

to be added to predicted values to represent the distribution of the population

of the variable under study. But since we do not have the values of the auxiliary

variables for the elements of the population outside the sample, we cannot create

a pseudo-population directly from the model. Hence, as in the NRM Scheme,

we begin by creating a pseudo-population of vectors made up of the auxiliary

variables and the response status from the values in the sample. And using the

estimated model, we create a pseudo-population of the variable under study and

its response status, by adding bootstrap errors from the standardized residuals

to the predicted values. Bootstrap samples of pairs of the variable under study

and its response status are taken from the pseudo-population according to the

original sampling design. The missing data in bootstrap samples are imputed

using the original imputation method. Finally, the DR Scheme combines both

NRM Scheme and IM Scheme to lead to a doubly robust bootstrap variance

estimator.



106

This article is organized as follows. After introducing some notation in Section

3.2, we briefly describe the complete data pseudo-population bootstrap proce-

dures of Booth et al. (1994) and that of Chauvet (2007) in Section 3.3. In Section

3.4, we present a bootstrap procedure that leads to an asymptotically unbiased

estimator of the true variance with respect to the NRM approach while a valid

bootstrap procedure under the IM approach is presented in Section 3.5. A dou-

bly robust bootstrap procedure is discussed in Section 3.6. Finally, the results

of a simulation study, assessing the performance of several bootstrap variance

estimators in terms of bias, are presented in Section 3.7.

3.2. Preliminaries

Let U be a population of size N . We are interested in estimating the popu-

lation total, t = ∑
i∈U yi, of a study variable y. A sample s, of (expected) size n,

is selected from U according to a given sampling design p(s). We assume that

the sampling design is non-informative. A complete data estimator of t is the

expansion estimator

t̂ =
∑
i∈s

wiyi, (3.2.1)

where wi = π−1
i denotes the survey weight associated with the ith unit and

πi denotes its inclusion probability. The estimator t̂ is design-unbiased (or p-

unbiased) for t; i.e., Ep(t̂) = t, where the subscript p denotes the sampling design.

We now turn to the case of missing y-values. Let ri be the response indicator

associated with unit i such that ri = 1 if unit i is a respondent to item y and

ri = 0, otherwise. Let yIi = yi if ri = 1, and yIi = ỹi if ri = 0, where ỹi denotes

the imputed value used to replace missing yi. An imputed estimator of t based

on observed and imputed data is

t̂I =
∑
i∈s

wiy
I
i . (3.2.2)

To replace the missing y-values, we consider linear regression imputation based on

a vector of auxiliary variables, x, recorded for all the sample units (respondents

and non-respondents). Linear regression imputation is motivated by the following
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imputation model:

m : yi = x⊤
i β + εi, (3.2.3)

where β is a vector of unknown parameters and the errors εi satisfy

Em(εi) = 0, Vm(εi) = σ2ci and covm(εi, εj) = 0, ∀i ̸= j,

where σ2 is an unknown parameter. We assume that ci = λ⊤xi, where λ is a

vector of known constants.

Let pi = Prob(ri = 1) be the response probability for unit i. We assume

that units respond independently of one another. Further, we assume that the

response probability to item y can be parametrically modeled:

pi = Prob(ri = 1) = m(xi; γ) (3.2.4)

for some known function m(xi; ·), where γ is a vector of unknown parameters.

Model (3.2.4) is called a non-response model. Throughout this article, we assume

that the data are missing at random (MAR) (Rubin, 1976). That is, we assume

that the probability that y is missing does not depend on y as long as we account

for x. Formally, we have

Prob(ri = 1|x, y) = Prob(ri = 1|x).

The estimated response probability for unit i is p̂i = m(xi; γ̂), where γ̂ is an

estimator of γ (e.g., the maximum likelihood estimator).

In the case of linear regression imputation, missing yi is replaced by the im-

puted value

ỹi = x⊤
i β̂r, (3.2.5)

where

β̂r =
{∑
i∈s

wiri

(
1 − p̂i
p̂i

)
xix

⊤
i

ci

}−1∑
i∈s

wiri

(
1 − p̂i
p̂i

)
xiyi
ci

(3.2.6)

is the weighted least square estimator of β using wip̂−1
i (1 − p̂i)c−1

i as the weight

for unit i. If the non-response model contains only the intercept, then p̂i = p̂0,

the overall response rate, and (3.2.5) reduces to the customary deterministic

regression imputation. The imputed estimator (3.2.2) that uses the imputed

values (3.2.5) is doubly robust in the sense that it remains consistent for t if
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either the imputation model (3.2.3) or the non-response model (3.2.4) is correctly

specified; e.g., Haziza and Rao (2006) and Kim and Haziza (2014).

In order to derive variance estimators for (3.2.2), we consider two approaches:

the NRM approach and the IM approach. In the NRM approach, inference is

made with respect to the joint distribution induced by the sampling design and

the assumed non-response model given by (3.2.4). In the IM approach, inference

is made with respect to the joint distribution induced by the imputation model

(3.2.3), the sampling design, and the non-response mechanism. In the latter ap-

proach, explicit assumptions about the non-response mechanism are not required

except for the MAR assumption.

To express the variance of (3.2.2), we use the standard decomposition of the

total error, t̂I − t:

t̂I − t =
(
t̂− t

)
+
(
t̂I − t̂

)
, (3.2.7)

where t̂ in the above expression is the complete data estimator (3.2.1). The first

term on the right hand side of (3.2.7) is the sampling error, whereas the second

term represents the non-response error.

Using decomposition (3.2.7), the variance of (3.2.2) with respect to the NRM

approach can be expressed as

V NRM ≃ Epq
(
t̂I − t

)2
= Vp

(
t̂
)

+ EpEq

{(
t̂I − t̂

)2
| s
}

= V NRM
1 + V NRM

2 ,

(3.2.8)

where the subscript q denotes the non-response mechanism. The term V NRM
1 in

(3.2.8) is the sampling variance of the complete data estimator t̂, whereas the

term V NRM
2 represents the non-response variance.

To express the variance of (3.2.2) with respect to the IM approach, we use,

once again, decomposition (3.2.7):

V IM ≃ Empq
(
t̂I − t

)2

= EmVp
(
t̂
)

+ EpqEm

{(
t̂I − t̂

)2
| s, sR

}
+ 2EpqEm

{(
t̂− t

) (
t̂I − t̂

)
| s, sR

}
= V IM

1 + V IM
2 + V IM

3 ;
(3.2.9)
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e.g., Särndal (1992). From (3.2.9), the variance of (3.2.2) is the sum of three

terms: the anticipated sampling variance, V IM
1 , of the complete data estimator

t̂, the non-response variance, V IM
2 , and a mixed component, V IM

3 .

3.3. Complete data pseudo-population bootstrap meth-

ods

In the case of simple random sampling without replacement, Gross (1980)

proposed the without replacement bootstrap method in which, assuming that

k = πi
−1 = N/n is an integer, a pseudo-population is first created by replicating

each element in the original sample, s, k times. A bootstrap sample is then drawn

from the created pseudo-population according to the sampling design utilized for

selecting the original sample. However, in practice, k is rarely an integer. In the

case of simple random sampling without replacement, Booth et al. (1994) pro-

posed duplicating each unit in the original sample k = ⌊πi−1⌋ = ⌊N/n⌋ times (⌊·⌋

denotes the greatest integer smaller than), and completing the pseudo-population

by taking a simple random sample without replacement of size N − nk from s.

Chauvet (2007) extended the method of Booth et al. (1994) to the class of high

entropy sampling designs, which includes Poisson sampling as a special case. In

the case of Poisson sampling, the pseudo-population is created by first replicating

the ith unit ki = ⌊πi−1⌋ times, for all i in s. Then, the pseudo-population is com-

pleted by taking a Poisson sample from s with inclusion probability πi−1 −⌊πi−1⌋

for unit i. Bootstrap samples are then selected from the pseudo-population ac-

cording to the original sampling design with the original inclusion probabilities.

A general pseudo-population bootstrap algorithm can be described as follows:

(1) A pseudo-population U∗
p is constructed by duplicating unit i in the original

sample, s, ki = ⌊πi−1⌋ times and adding a further sample from s according

to the original sampling design with inclusion probability πi
−1 − ⌊πi−1⌋

for unit i.

(2) A bootstrap sample, s∗, is selected from U∗
p mimicking the original sam-

pling design using the original inclusion probabilities. Define the boot-

strap statistic t̂∗ = ∑
i∈s∗ w∗

i y
∗
i , where w∗

i = π∗−1
i and π∗

i denote the survey
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weight and the original inclusion probability associated with the ith unit

in s∗, respectively.

(3) Repeat Step 2 a large number of times, B (say), to get t̂∗1, . . . , t̂∗B. Compute

V̂ ∗
B = 1

B − 1

B∑
b=1

(
t̂∗b − t̂∗(·)

)2
,

where t̂∗(·) = ∑B
b=1 t̂

∗
b/B.

(4) Repeat Steps 1–3 a large number of times, C (say), to get V̂ ∗
1B, . . . , V̂

∗
CB.

(5) A bootstrap variance estimator of Vp(t̂) is Eu∗
{
Vp∗

(
t̂∗ | U∗

p

)
| s
}
, where

the subscripts u∗ and p∗ indicates the sampling mechanisms in Step 1 and

Step 2, respectively. In practice, we use its Monte Carlo approximation

1
C

C∑
c=1

V̂ ∗
cB,

Booth et al. (1994) and Chauvet (2007) showed that the above scheme leads

to an asymptotically unbiased bootstrap variance estimator for simple random

sampling without replacement and Poisson sampling, respectively.

3.4. Bootstrap method with respect to NRM approach

Under the NRM approach, there are two random mechanisms: the selection

of the sample according to the sampling design and the non-response mechanism,

which we assume known up to some constants that we can estimate from the

respondents. To construct the pseudo-population, we use the fact that the set of

respondents to item y can be viewed as a sample that would have been selected by

a Poisson sampling design with (unknown) inclusion probabilities pi. In practice,

the pi’s being unknown, the estimated response probabilities p̂i are used in the

bootstrap procedures. The pseudo-population is created in two distinct steps:

first, a pseudo-sample s∗
p of size n∗

p is created from the set of respondents sR
by applying the method of Chauvet (2007) for Poisson sampling. Then, the

pseudo-population U∗
p is constructed from s∗

p according to the method of Booth

et al. (1994) if the original sample was selected under simple random sampling

without replacement, or according to the method of Chauvet (2007) in the case of

Poisson sampling. Bootstrap samples s∗ are selected from the pseudo-population
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U∗
p according to the original sampling design. Note that U∗

p will be made of

vectors (yi,xi, πi, p̂i).

Afterwards, non-response is generated in s∗ according to Poisson sampling

with the estimated original response probabilities p̂i as the inclusion probabilities.

The resulting bootstrap set of respondents is denoted by s∗
R. Missing values (i.e.,

units belonging in s∗\s∗
R) are filled in using the same imputation method that was

utilized in the original sample. Finally, the bootstrap imputed estimator t̂∗I is

computed from the imputed bootstrap data set. A bootstrap variance estimator

of V NRM is

V NRM∗ = Es∗u∗

(
Ep∗q∗

[{
t̂∗I − Ep∗q∗

(
t̂∗I | sR, U∗

p

)}2
| sR, U∗

p

]
| sR

)
, (3.4.1)

where the subscripts s∗, u∗, p∗ indicate, respectively, the sampling mechanisms

for generating s∗
p and U∗

p and for selecting s∗, whereas the subscript q∗ indicates

the mechanism used to generate s∗
R.

The NRM Scheme can be described as follows:

NRM Scheme:

(1) For each i ∈ sR, make k2i =
⌊
p̂−1
i

⌋
copies of (yi,xi, πi, p̂i) to construct a

partial pseudo-sample s∗
1. Use Poisson sampling with inclusion probabili-

ties p̂−1
i −

⌊
p̂−1
i

⌋
for i ∈ sR to draw a further pseudo-sample s∗

2 of vectors

(yi,xi, πi, p̂i) from sR. Combine s∗
1 and s∗

2 to create the pseudo-sample s∗
p

of size n∗
p = ∑

i∈sR
[k2i + Ii(s∗

2)] , where I(·) denotes the usual indicator

function.

(2) If the original sample was selected according to simple random sampling,

first, make k∗
1 =

⌊
N/n∗

p

⌋
copies of the vectors in s∗

p to build a partial

pseudo-population U∗
1 . Then, draw a simple random sample of vectors,

U∗
2 , of size N −n∗

pk
∗
1 from s∗

p. In the case of Poisson sampling, the pseudo-

population is created by duplicating unit i in the pseudo-sample, s∗
p, k∗

1i =⌊
π∗−1
i

⌋
times to build U∗

1 and taking a sample, U∗
2 , from s∗

p according to

Poisson sampling with the inclusion probability π∗−1
i −

⌊
π∗−1
i

⌋
for unit i.

In both cases, the pseudo-population, U∗
p , is obtained by combining U∗

1

and U∗
2 .
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(3) The bootstrap sample s∗ = {(y∗
i ,x

∗
i , π

∗
i , p

∗
i )}ni=1 is drawn from U∗

p using

the original sampling design.

(4) Generate the bootstrap sample of response indicators, {r∗
i }ni=1, using the

original estimated response probabilities, i.e., r∗
i ∼ Bernoulli(p∗

i ) for all

i ∈ s∗. Afterwards, impute the bootstrap missing values in s∗ \ s∗
R so that

the vector of imputed values is

y∗I
i =

 y∗
i , if r∗

i = 1,

x∗⊤
i β̂

∗
r, if r∗

i = 0,

where

β̂
∗
r =

{∑
i∈s∗

w∗
i r

∗
i

(
1 − p̂∗

i

p̂∗
i

)
x∗
ix

∗⊤
i

c∗
i

}−1 ∑
i∈s∗

w∗
i r

∗
i

(
1 − p̂∗

i

p̂∗
i

)
x∗
i y

∗
i

c∗
i

with p̂∗
i denoting the estimated response probability for unit i in s∗ (re-

computed from the bootstrap values), w∗
i = π∗−1

i and c∗
i = λ⊤x∗

i . The

bootstrap estimator of t is defined as

t̂∗I =
∑
i∈s∗

w∗
i y

∗I
i .

(5) Repeat Steps 3 and 4 a large number of times, B, to get t̂∗I1 , . . . , t̂
∗I
B .

Compute

V̂ NRM∗
B = 1

B − 1

B∑
b=1

(
t̂∗Ib − t̂∗I(·)

)2
,

where t̂∗I(·) = ∑B
b=1 t̂

∗I
b /B.

(6) Repeat Steps 1–5 a large number of times, C, to get V̂ NRM∗
1B , . . . , V̂ NRM∗

CB .

(7) A bootstrap variance estimator of V NRM is (3.4.1). In practice, we use

its Monte Carlo approximation

V̂ NRM∗ = 1
C

C∑
c=1

V̂ NRM∗
cB .

Figure 3.1 describes how V̂ NRM∗
B is obtained via Steps 1 to 5 of the above

algorithm. The complete algorithm requires repeating these steps C times. We

will discuss the choice of B and C in section 3.7. We will argue that C = 1 is

often sufficient.

In the Appendix B, we show that V NRM∗ in (3.4.1) is asymptotically unbiased

for the true variance, V NRM under the NRM scheme when the original sample is
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Figure 3.1. One cycle of the pseudo-population bootstrap pattern

under the NRM approach.

selected according to simple random sampling without replacement and Poisson

sampling. That is,

Epq
(
V NRM∗

)
≃ V NRM . (3.4.2)

3.5. Bootstrap method with respect to IM approach

Under the IM approach, there are three random mechanisms: the selection of

the sample according to the sampling design, a non-response mechanism which

is totally unknown to us, and a known model (up to unknown constants that

can be estimated from the respondents) generating the variable under study.

Given that the non-response mechanism is unknown, the only hope to get an

unbiased estimator of the variance of the estimator of t is to keep the response

indicators from the sample fixed and to use them, along with an estimate of the

model generating y to construct the pseudo-population. Define the standardized

centered residual for unit i, ẽi, as

ẽi = ei√
ci

− 1
nR

∑
j∈sR

ej√
cj
,

where ei = yi − ỹi with ỹi given by (3.2.5) and nR = ∑
i∈s ri denotes the number

of respondents.
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A pseudo-population Ũ∗
x;r of size Ñ of auxiliary variables, of inclusion prob-

abilities, and of response indicators is first created from sx;r = {(xi, πi, ri)}ni=1.

In the case of simple random sampling without replacement, we have Ñ = N.

For Poisson sampling, we have EpEũ∗(Ñ) = N, where the subscript ũ∗ denotes

the sampling mechanism used for creating Ũ∗
x;r. Unlike in the case of the NRM

approach, this pseudo-population is built in a single step by applying a complete

data pseudo-population method on the sample sx;r. Then, an i.i.d. sample of

size Ñ , U∗
ε = {ε∗

i }Ñi=1, is selected from the set of standardized residuals {ẽi}i∈sR
.

Finally, the bootstrap pseudo-population Ũ∗
p of vectors {(y∗

i ,x
∗
i , π

∗
i , r

∗
i )}

Ñ
i=1 is ob-

tained using the predicted values in equation (3.2.5), the auxiliary variables x∗ in

Ũ∗
x;r and the selected bootstrap errors U∗

ε ; that is, the y-values in Ũ∗
p are generated

according to y∗
i = x∗⊤

i β̂r +
√
c∗
i ε

∗
i , where c∗

i = λ⊤x∗
i , i = 1, . . . , Ñ . The boot-

strap sample s̃∗ is drawn from Ũ∗
p according to the original sampling design. The

bootstrap set of respondents, s̃∗
R, is immediately identified through the response

indicators r∗
i obtained from the original response indicators when constructing

Ũ∗
x;r. A bootstrap variance estimator of V IM is

V IM∗ = Eũ∗

[
Em∗p∗

{(
t̂∗I − t∗

)2
| sR, sx;r, Ũ

∗
x;r

}
| sR, sx;r

]
, (3.5.1)

where the subscripts m∗ and p∗ denote the bootstrap imputation model and the

sampling mechanism used for selecting s̃∗, respectively.

The IM Scheme can be described as follows:

IM Scheme:

(1) First, make ki = ⌊πi−1⌋ copies of unit i in sx;r = {(xi, πi, ri)}ni=1, for all i,

to build a partial pseudo-population Ũ∗
1 . Then, draw a random sample,

Ũ∗
2 , from sx;r according to the original sampling design with inclusion

probability πi
−1 − ⌊πi−1⌋ for unit i. The pseudo-population, Ũ∗

x;r of size

Ñ , is obtained by combining Ũ∗
1 and Ũ∗

2 .

(2) Draw an i.i.d. sample of size Ñ , U∗
ε = {ε∗

i }
Ñ
i=1, from the sample of cen-

tered standardized residuals {ẽi}i∈sR
. Combining Ũ∗

x;r and U∗
ε , define the



115

bootstrap pseudo-population Ũ∗
p = {(y∗

i ,x
∗
i , π

∗
i , r

∗
i )}

Ñ
i=1, where

y∗
i = x∗⊤

i β̂r +
√
c∗
i ε

∗
i

and c∗
i = λ⊤x∗

i for i = 1, . . . , Ñ .

(3) The bootstrap sample s̃∗ = {(y∗
i ,x

∗
i , π

∗
i , r

∗
i )}ni=1 is drawn from Ũ∗

p using

the original sampling design. The set of respondents s̃∗
R is defined as those

units in the bootstrap sample for which the response indicators r∗
i is 1.

Then impute the bootstrap missing values in s̃∗ \ s̃∗
R so that the vector of

imputed values is

y∗I
i =

 y∗
i , if r∗

i = 1,

x∗⊤
i β̂

∗
r, if r∗

i = 0,

where

β̂
∗
r =

{∑
i∈s̃∗

w∗
i r

∗
i

(
1 − p̂∗

i

p̂∗
i

)
x∗
ix

∗⊤
i

c∗
i

}−1 ∑
i∈s̃∗

w∗
i r

∗
i

(
1 − p̂∗

i

p̂∗
i

)
x∗
i y

∗
i

c∗
i

with p̂∗
i denoting the estimated response probability for i ∈ s̃∗ and w∗

i =

π∗−1
i . The bootstrap statistics are defined as

t̂∗I =
∑
i∈s̃∗

w∗
i y

∗I
i and t∗ =

∑
i∈Ũ∗

p

y∗
i .

(4) Repeat Steps 2 and 3 a large number of times, B, to get
(
t̂∗I1 − t∗1

)2
, . . . ,

(
t̂∗IB − t∗B

)2
.

Compute

V̂ IM∗
B = 1

B

B∑
b=1

(
t̂∗Ib − t∗b

)2
.

(5) Repeat Steps 1–4 a large number of times, C, to get V̂ IM∗
1B , . . . , V̂ IM∗

CB .

(6) A bootstrap variance estimator of V IM is (3.5.1). In practice, we use its

Monte Carlo approximation

V̂ IM∗ = 1
C

C∑
c=1

V̂ IM∗
cB .

Figure 3.2 illustrates how the IM Scheme works when C = 1. The complete

algorithm requires repeating the steps presented in this figure, C times.
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Figure 3.2. One cycle of the pseudo-population bootstrap pattern

under the IM approach.

We show in the Appendix B that V IM∗ in (3.5.1) is asymptotically unbiased

for V IM under the IM Scheme when the original sample is selected according to

simple random sampling without replacement and Poisson sampling. That is,

Empq
(
V IM∗

)
≃ V IM .

3.6. Doubly robust bootstrap method

In this section, we present a doubly robust bootstrap variance estimator which

remains asymptotically unbiased for the true variance if either the non-response

model or the imputation model is correctly specified. From (3.4.2), the variance

estimator V NRM∗ is asymptotically unbiased for V NRM if the non-response model

is correctly specified. We now express the bias of V NRM∗ with respect to the IM
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approach:

BIM = Empq
(
V NRM∗

)
− Empq

(
t̂I − t

)2
. (3.6.1)

By combining the IM and NRM Schemes, we first estimate Empq
(
V NRM∗

)
in (3.6.1) through a double bootstrap procedure. The outer bootstrap will be

done under the IM Scheme so as to provide a bootstrap sample with responses

which are consistent with the generating model and response indicators which

remain fixed so that they satisfy the (unknown) non-response mechanism, as was

done in Section 3.5. This will lead to a bootstrap sample s̃∗, which includes

the set of bootstrap respondents s̃∗
R. Using this bootstrap sample generated from

the estimated IM model, an inner bootstrap loop based on the NRM Scheme of

Section 3.4 is applied on the outer bootstrap sample. From the inner loop, we

get an estimator V NRM∗ whereas from the outer loop, we get an estimator of its

mean under the imputation model, that is

EIM∗
(
V NRM∗

)
= Eũ∗

{
Em∗p∗

(
V NRM∗ | sR, sx;r, Ũ

∗
x;r

)
| sR, sx;r

}
. (3.6.2)

Note that in the outer loop, the set of respondents sR comes from the original

sample and satisfies the true generating non-response mechanism, so that the re-

sulting bootstrap estimator is valid even when the non-response model postulated

in computing V NRM∗ is misspecified. In the Appendix B, we show that

Empq
{
EIM∗

(
V NRM∗

)}
≃ Empq

(
V NRM∗

)
.

The algorithm for obtaining a Monte Carlo approximation of EIM∗
(
V NRM∗

)
can

be described as follows.

(1) Do Steps 1–3 in the IM Scheme to obtain the bootstrap sample of re-

spondents s̃∗
R. But note that the estimated response probabilities p̂i

must be added to the pseudo-population so that the pseudo-population

is Ũ∗
p = {(y∗

i ,x
∗
i , π

∗
i , r

∗
i , p

∗
i )}

Ñ
i=1. The bootstrap sample of respondents s̃∗

R

is determined by the response indicators r∗
i only; the estimated response

probabilities will be used in the next step only.

(2) Apply the NRM Scheme to the bootstrap sample of respondents s̃∗
R by

assuming C = C2 and B = B2 to get V̂ NRM∗.
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(3) Repeat Steps 1 and 2 a large number of times, B1, to get
(
V̂ NRM∗

)
1
, . . . ,

(
V̂ NRM∗

)
B1

.

Let

ÊIM∗
B1

(
V̂ NRM∗

)
= 1
B1

B1∑
b1=1

(
V̂ NRM∗

)
b1
.

(4) Repeat Steps 1–3 a large number of times, C1, to get

ÊIM∗
1B1

(
V̂ NRM∗

)
, . . . , ÊIM∗

C1B1

(
V̂ NRM∗

)
.

(5) An estimator of Empq
(
V NRM∗

)
is (3.6.2). In practice, we use its Monte

Carlo approximation

ÊIM∗
(
V̂ NRM∗

)
= 1
C1

C1∑
c1=1

ÊIM∗
c1B1

(
V̂ NRM∗

)
.

Figure 3.3 displays this algorithm for C1 = 1 and C2 = 1.

Figure 3.3. The bootstrap procedure pattern to estimate

Empq
(
V NRM∗

)
assuming C1 = C2 = 1.

For the second term on the right hand side of (3.6.1), we simply use V IM∗

given by (3.5.1). A bias-adjusted bootstrap variance estimator is defined as

V DR∗ = V NRM∗ −BIM∗

= V NRM∗ − Eũ∗
{
Em∗p∗

(
V NRM∗ | sR, sx;r, Ũ

∗
x;r

)
| sR, sx;r

}
+ V IM∗.

(3.6.3)

Clearly, the variance estimator V DR∗ is asymptotically unbiased for the true vari-

ance provided that the imputation model (3.2.3) holds. We also have Epq
(
V NRM∗

)
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≃ Epq
(
t̂I − t

)2
which implies that the adjusted bias BIM is approximately equal

to zero if the non-response model is correctly specified regardless of the validity

of the imputation model. As a result, our bias-adjusted variance estimator V DR∗

is doubly robust.

3.7. Simulation Study

To assess the performance of the proposed methods, we performed a limited

simulation study. We generated a population of size N = 2000 with three vari-

ables: a study variable y and two auxiliary variables x1 and x2. The x1-values

were generated from a gamma distribution with shape and scale parameters set

to 2 and 1, respectively, whereas the x2-values were generated from a gamma dis-

tribution with shape and scale parameters set to 2 and 0.5, respectively. Given x1

and x2, the y-values were generated according to the following linear regression

model

yi = 0.1 + 2x1i − 3x2i + εi, i = 1, . . . , 2000, (3.7.1)

where εi follows a normal distribution with mean 0 and standard deviation 2.7,

which led to a coefficient of determination of this regression model approximately

equal to 0.66. Note that since the distribution of x1 and that of x2 are asymmetric,

the distribution of the resulting study variable y is also asymmetric.

From the population, we drew K = 2000 samples, s, of size n, according to

simple random sampling without replacement. The sample size n was set to 120

and 800 which corresponds to a sampling fraction, f = n/N , equal to 6% and

40%, respectively.

In each sample, non-response for the variable under study y for unit i was

generated from a Bernoulli distribution with parameter pi, where pi follows a

logistic regression model:

logit(pi) = 0.2 + 0.4x1i − 0.3x2i. (3.7.2)

The parameters were chosen so that the overall response rate was approximately

equal to 65%. In practice, it is not rare to observe non-response rate between

30% and 50%.
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To replace the missing values, we used linear regression imputation given by

(3.2.5) based on different working models. We considered three distinct scenarios:

Scenario 1: Both the imputation and the non-response model are correctly

specified.

Scenario 2: Only the non-response model is correctly specified.

Scenario 3: Only the imputation model is correctly specified.

The different scenarios as well as the corresponding working models are shown in

Table 3.1.

Table 3.1. Working models used for imputation

Scenario Non-response working Outcome regression working

model model

1 logit (pi) = γ0 + γ1x1i + γ2x2i yi = β0 + β1x1i + β2x2i

2 logit (pi) = γ0 + γ1x1i + γ2x2i yi = β0 + β1x1i

3 logit (pi) = γ0 + γ1x1i yi = β0 + β1x1i + β2x2i

In each sample consisting of observed and imputed data, we computed the

imputed estimator t̂I given by (3.2.2). Also, in each sample, we computed the

following bootstrap variance estimators in order to estimate the variance of t̂I :

(i) V̂ NRM∗
B based on C = 1 pseudo-population and B = 10000 bootstrap

samples;

(ii) V̂ IM∗
B based on C = 1 pseudo-population and B = 10000 bootstrap sam-

ples;

(iii) V̂ DR∗
B based on C1 = 1 and C2 = 1 pseudo-population, B1 = 100 bootstrap

samples and B2 = 1000 bootstrap iterations;

As a measure of bias of a variance estimator V̂ , we computed the Monte Carlo

percent relative bias (RB)

RBMC(V̂ ) = 100 ×
(
EMC(V̂ ) − VMC(t̂I)

VMC(t̂I)

)
,

where

EMC(V̂ ) = 1
K

K∑
k=1

V̂k and VMC(t̂I) = 1
K ′ − 1

K′∑
k=1

{
t̂Ik − EMC(t̂I)

}2
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with t̂Ik and V̂k denoting the estimators t̂I and V̂ in the kth sample, respectively,

and EMC(t̂I) = (K ′)−1∑K′

k=1 t̂
I
k. The Monte Carlo variance of t̂I , VMC(t̂I), was

obtained through K ′ = 25000 independent runs. In Table 3.3, the latter corre-

sponds to either V NRM or V IM . The Monte Carlo variance V NRM was obtained

by fixing the population and simulating the effect of sampling and non-response,

whereas V IM was obtained by generating a new population at each iteration and

then simulating the effect of sampling and non-response.

For the first two variance estimators, we used C = 1, while we used C1 =

C2 = 1 for the third one corresponding to creating a single pseudo-population.

This choice is justified by the fact that different choices of the pair (C,B) seem to

make little difference. We ran preliminary simulations to assess the performance

of V̂ NRM∗
B and V̂ IM∗

B with four choices of (C,B) such that C × B = 10000. We

selected K = 2000 simple random samples without replacement of size n = 800,

which corresponds to a sampling fraction of 40%. Based on the K ′ = 25000

independent runs, the Monte Carlo variance VMC under the NRM approach was

79637.71 and that under the IM approach was 81725.91. Table 3.2 shows the

Monte Carlo average of V̂ NRM∗
B and V̂ IM∗

B as well as their stability for differ-

ent choices of (C,B). Both V̂ NRM∗
B and V̂ IM∗

B exhibited very similar behaviour

in terms of both average and stability regardless of the choice of (C,B). It is

worth noting that for the IM Scheme, a sample of size 800 out of a population of

size 2000 will induce the maximum variability from pseudo-population to pseudo-

population since the sample of size n = 800 will be repeated twice and a simple

random sample without replacement of size (n/2) = 400 from it is needed to com-

plete the pseudo-population. Hence, since a sample size of 800 is the worst case

for a population of size 2000 in terms of variability from one pseudo-population

to the other one, then if varying the number of pseudo-populations for a fixed

amount of computing effort (i.e., the product C ×B) does not really change the

results much in this case, it suggests that going beyond one pseudo-population

(i.e., C = 1) is probably not needed.

In order to reduce the processing time, we used B2 = 1000 instead of 10000

in the case of the doubly robust variance estimator, V̂ DR∗
B .
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Table 3.2. Monte Carlo expectation and variance of V̂ NRM∗ and

V̂ IM∗ based on C pseudo-populations and B bootstrap samples

based on 2000 iterations in the case of f = 40%

EMC(V̂ NRM∗) VMC(V̂ NRM∗) EMC(V̂ IM∗) VMC(V̂ IM∗)

(C,B) = (1, 10000) 80117.24 23367509 80244.62 17500868

(C,B) = (10, 1000) 80133.35 20551672 80290.77 17368245

(C,B) = (20, 500) 79870.77 20661606 80107.54 17143604

(C,B) = (100, 100) 79985.16 21549946 80205.43 17605525

Table 3.3 shows the relative bias of three bootstrap variance estimators. The

three bootstrap estimators exhibited small bias in Scenario 1. In this case, V NRM

and V IM were approximately equal; see expression (3.B.3). In Scenario 2, the

estimator V̂ NRM∗
B showed good performance with an absolute relative bias less

than 3%, which was expected as the non-response model was correctly specified.

On the other hand, the estimator V̂ IM∗
B was biased, especially for f = 40%. This

results is not surprising as V̂ IM∗
B is approximately unbiased for V IM provided that

the imputation model holds, which was not the case in Scenario 2. The doubly

robust estimator V̂ DR∗
B showed small bias in Scenario 2. Finally, in Scenario

3, for which the imputation model was correctly specified, we note that V̂ IM∗
B

performed well with an absolute relative bias less than 3.5%. As expected, the

estimator V̂ NRM∗
B was biased as the non-response model was misspecified. Once

again, the doubly robust estimator V̂ DR∗
B showed small relative bias.

3.8. Discussion

In this paper, we considered the class of deterministic regression imputation

procedures. While this type of procedure leads to asymptotically unbiased es-

timators of simple parameters such as population totals or means, it may lead

to considerably biased estimators of more complex parameters such as quantiles,

as deterministic regression imputation tends to distort the distribution of the

variable being imputed. To overcome this problem, we may use a doubly robust
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Table 3.3. Monte Carlo percent relative bias of several bootstrap

variance estimators based on 2000 iterations

f = 6% f = 40%

V NRM V IM V NRM V IM

Scenario 1

V̂ NRM∗
B -0.73 -0.39 0.70 -1.86

V̂ IM∗
B -0.31 0.02 0.81 -1.76

V̂ DR∗
B -0.30 0.03 0.81 -1.76

Scenario 2

V̂ NRM∗
B -0.47 -2.81 0.93 -0.14

V̂ IM∗
B 3.60 1.16 12.56 11.35

V̂ DR∗
B 0.29 -2.06 0.95 -0.12

Scenario 3

V̂ NRM∗
B -4.93 -7.80 -2.31 -3.25

V̂ IM∗
B -0.25 -3.27 1.54 0.57

V̂ DR∗
B 0.15 -2.87 1.72 0.74

version of random regression imputation, which can be viewed as the determinis-

tic imputation (3.2.5) plus a random noise ε̃i is added; see Haziza and Rao (2006).

That is, missing yi is replaced by the imputed value ỹi

ỹi = x⊤
i β̂r +

√
ciε̃i,

where β̂r is given by (3.2.6). The residuals ε̃i are selected independently and with

replacement from the set, {ũj}j∈sR
, of standardized centered residuals observed

from the responding units, with probabilities

pr (ε̃i = ũj) =
wj p̂

−1
j (1 − p̂j)∑

l∈swlrlp
−1
l (1 − p̂l)

,

where ũj = uj − ūr with uj = c
−1/2
j

(
yj − x⊤

j β̂r

)
and ūr = ∑

i∈swirip̂
−1
i (1 −

p̂i)ui/
∑
l∈swlrlp̂

−1
l (1 − p̂l). The properties of our bootstrap procedures in the

context of quantile estimation is currently under investigation.
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Finally, throughout the paper, we assumed the linear regression model (3.2.6).

Our results can be extended to a more general model of the form

yi = m(xi; β) + εi

for a known function m(·). This topic requires further research.

3.9. Appendix B

In order to establish our results, we assume in the sequel that the response

probabilities are known, (N − 1)−1N ≃ 1 and (n − 1)−1n ≃ 1. In addition,

we assume that no survey weight is disproportionately large and no response

probability is disproportionately small; i.e.,

max
i

{wi} = O
(
N

n

)
and max

i

{
1
pi

}
= O

(
n

nR

)
.

Linearization variance estimators

In this section, we give expressions of the approximate variance of t̂I under

both simple random sampling without replacement and Poisson sampling.

We start by the NRM approach for which the total variance of t̂I is given by

(3.2.8). For simple random sampling without replacement, the first term on the

right hand side of (3.2.8) is

V NRM
1srs = N2

(
1 − f

n

)
S2
U ,

where S2
U = (N−1)−1∑

i∈U(yi−Ȳ )2 with Ȳ = N−1∑
i∈U yi. For Poisson sampling,

we have

V NRM
1Pois =

∑
i∈U

1 − πi
πi

y2
i .

The second term on the right hand side of (3.2.8) is the non-response variance and

does not depend on the sampling design. Using a first-order Taylor expansion, it

can be approximated by

V NRM
2 ≃

∑
i∈U

wi

(
1 − pi
pi

)(
yi − x⊤

i βp

)2
, (3.B.1)
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where

βp =
{∑
i∈U

(1 − pi)
xix

⊤
i

ci

}−1 ∑
i∈U

(1 − pi)
xiyi
ci

.

Therefore, the total variance of t̂I with respect to the NRM approach can be

approximated by V NRM
1srs +V NRM

2 for simple random sampling without replacement

and by V NRM
1Pois + V NRM

2 for Poisson sampling.

We now turn to the IM approach for which the variance of t̂I is given by

(3.2.9). For simple random sampling without replacement, the first component

of (3.2.9) is

V IM
1srs = N2

(
1 − f

n

)(
1
N

∑
i∈U

ciσ
2 + β⊤Sxxβ

)
, (3.B.2)

where Sxx = (N − 1)−1∑
i∈U (xi − x̄U) (xi − x̄U)⊤ and x̄U = N−1∑

i∈U xi. For

Poisson sampling, we have

V IM
1Pois = σ2 ∑

i∈U

1 − πi
πi

ci + β⊤
(∑
i∈U

1 − πi
πi

xix
⊤
i

)
β.

The second and third terms on the right hand side of (3.2.9) do not depend on

the sampling design. They are given by

V IM
2 = σ2 ∑

i∈U
wi(1 − pi)ci

+ σ2Epq

∑
j∈s

wj(1 − rj)x⊤
j

 T̂
−1
r K̂rT̂

−1
r

∑
j∈s

wj(1 − rj)xj




and

V IM
3 = 2σ2Epq

∑
j∈s

wj(1 − rj)x⊤
j

 T̂
−1
r L̂r

− 2σ2 ∑
i∈U

(wi − 1)(1 − pi)ci,

where

T̂ r =
∑
i∈s

wiri

(
1 − pi
pi

)
xix

⊤
i

ci
, K̂r =

∑
i∈s

w2
i ri

(
1 − pi
pi

)2
xix

⊤
i

ci
,

and

L̂r =
∑
i∈s

wi(wi − 1)ri
(

1 − pi
pi

)
xi.

Therefore, the total variance of t̂I with respect to the IM approach can be approx-

imated by V IM
1srs + V IM

2 + V IM
3 for simple random sampling without replacement

and by V IM
1Pois + V IM

2 + V IM
3 for Poisson sampling.
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If both the non-response and imputation models are correctly specified, it can

be shown that
Em

(
V NRM

)
− V IM

V IM
= O

(
N−1

)
. (3.B.3)

In this case, the variance (3.2.9) with respect to the IM reduces to

V IM ≃ EmVp
(
t̂
)

+ σ2 ∑
i∈U

wi

(
1 − pi
pi

)
ci

which implies that

Em
(
V NRM

)
− V IM ≃

∑
i∈U

wi

(
1 − pi
pi

){
Em

(
yi − x⊤

i βp

)2
− σ2ci

}
.

Expression (3.B.3) follows from the fact that Em
(
yi − x⊤

i βp

)2
= σ2ci +O(N−1)

and V IM = O (N2nR
−1) .

Bootstrap variance estimator with respect to NRM approach

In this section, we show that the bootstrap variance estimator V NRM∗ given by

(3.4.1) is approximately unbiased for V NRM with respect to the NRM approach.

It can be expressed as

V NRM∗ = Es∗u∗
{
Vp∗Eq∗

(
t̂I∗ | sR, U∗

p , s
∗
)

| sR
}

+ Es∗u∗
{
Ep∗Vq∗

(
t̂I∗ | sR, U∗

p , s
∗
)

| sR
}

= V NRM∗
1 + V NRM∗

2 .

(3.B.4)

Using a first-order Taylor expansion, the first and the second terms on the right

hand side of (3.B.4) are respectively

V NRM∗
1srs = Es∗u∗

{
N2

(
1 − f

n

)
S2
U∗

p
| sR

}
+O

(
N2

n2
R

)

≃ N2
(

1 − f

n

)
∑
i∈s riy

2
i /pi∑

i∈s ri/pi
−
(∑

i∈s riyi/pi∑
i∈s ri/pi

)2


and

V NRM∗
2srs = Es∗u∗

∑
i∈U∗

p

w∗
i

(
1 − p∗

i

p∗
i

)(
y∗
i − x∗⊤

i T ∗−1
p t∗

p

)2
| sR

+O

(
N2

n2
R

)

≃ N∑
i∈s ri/pi

∑
i∈s

wi
ri
pi

(
1 − pi
pi

)(
yi − x⊤

i β̂r

)2
,
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for simple random sampling without replacement, where

S2
U∗

p
= (N − 1)−1 ∑

i∈U∗
p

(
y∗
i − Ȳ ∗

p

)2

with Ȳ ∗
p = N−1∑

i∈U∗
p
y∗
i and

T ∗
p =

∑
i∈U∗

p

(1 − p∗
i )

x∗
ix

∗⊤
i

c∗
i

and t∗
p =

∑
i∈U∗

p

(1 − p∗
i )

x∗
i y

∗
i

c∗
i

.

For Poisson sampling, a first-order Taylor expansion leads to

V NRM∗
1Pois = Es∗u∗

∑
i∈U∗

p

1 − πi
πi

y∗2
i | sR

+O

(
N2

n2
R

)

≃
∑
i∈s

wi
ri
pi

1 − πi
πi

y2
i ,

and

V NRM∗
2Pois = Es∗u∗

∑
i∈U∗

p

w∗
i

(
1 − p∗

i

p∗
i

)(
y∗
i − x∗⊤

i T ∗−1
p t∗

p

)2
| sR

+O

(
N2

n2
R

)

≃
∑
i∈s

w2
i

ri
pi

(
1 − pi
pi

)(
yi − x⊤

i β̂r

)2
.

In addition, it is easily seen that

Epq
(
V NRM∗

1srs

)
+Epq

(
V NRM∗

2srs

)
≃ N2

(
1 − f

n

)
S2
U+

∑
i∈U

wi

(
1 − pi
pi

) (
yi − x⊤

i βp

)2

and

Epq
(
V NRM∗

1Pois

)
+ Epq

(
V NRM∗

2Pois

)
≃
∑
i∈U

1 − πi
πi

y2
i +

∑
i∈U

wi

(
1 − pi
pi

) (
yi − x⊤

i βp

)2
.

Therefore, for both simple random sampling without replacement and Poisson

sampling, we have

Epq
(
V NRM∗

)
≃ V NRM .

Bootstrap variance estimator with respect to IM approach

In order to express the bootstrap variance estimator V IM∗, we use the follow-

ing decomposition of the total bootstrap error, t̂I∗ − t∗:

t̂I∗ − t∗ =
(
t̂∗ − t∗

)
+
(
t̂I∗ − t̂∗

)
,
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where t̂∗ = ∑
i∈s̃∗ w∗

i y
∗
i is the bootstrap estimator of t̂. It follows that

V IM∗ = Eũ∗
{
Em∗Vp∗

(
t̂∗ | sR, sx;r, Ũ

∗
x;r, U

∗
ε

)
| sR, sx;r

}
+ Eũ∗

[
Ep∗Em∗

{(
t̂∗I − t̂∗

)2
| sR, sx;r, Ũ

∗
x;r, s̃

∗
}

| sR, sx;r

]
+ 2Eũ∗

[
Ep∗Em∗

{(
t̂∗ − t∗

) (
t̂∗I − t̂∗

)
| sR, sx;r, Ũ

∗
x;r, s̃

∗
}

| sR, sx;r
]

= V IM∗
1 + V IM∗

2 + V IM∗
3 .

(3.B.5)

In the second step of the IM Scheme, an i.i.d. sample of size Ñ , {ε∗
i }Ñi=1, is

taken from the standardized centered residuals {ẽi}i∈sR
. We have Em∗(ε∗

i ) =

n−1
R

∑
i∈sR

ẽi = 0 and

Vm∗(ε∗
i ) = 1

nR

∑
i∈sR

ẽ2
i

= 1
nR

∑
i∈sR


 yi√

ci
− 1
nR

∑
j∈sR

yj√
cj

−

 xi√
ci

− 1
nR

∑
j∈sR

xj√
cj

⊤

β̂r


2

= σ̃2.

It follows that Em∗(y∗
i ) = x∗⊤

i β̂r and Vm∗(y∗
i ) = c∗

iVm∗(ε∗
i ) = c∗

i σ̃
2 for i = 1, . . . , Ñ .

If the original sample, s, is selected according to simple random sampling without

replacement, we have

V IM∗
1srs = Eũ∗

N2
(

1 − f

n

)
1

N − 1
Em∗


∑
i∈Ũ∗

p

y∗2
i − 1

N

∑
i∈Ũ∗

p

y∗
i


2 | sR, sx;r



= Eũ∗

N2
(

1 − f

n

) 1
N

∑
i∈Ũ∗

x;r

c∗
i σ̃

2

+β̂
⊤
r

 1
N − 1

∑
i∈Ũ∗

x;r

(
x∗
i − x̄∗

p

) (
x∗
i − x̄∗

p

)⊤

 β̂r

 | sR, sx;r


≃ N2

(
1 − f

n

)(
σ̃2

N

∑
i∈s

wici + β̂
⊤
r sxxβ̂r

)
,

noting that s̃∗ is also selected according to simple random sampling without

replacement and Ñ = N, where x̄∗
p = N−1∑

i∈Ũ∗
x;r

x∗
i and

sxx = (n− 1)−1∑
i∈s

(xi − x̄) (xi − x̄)⊤
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with x̄ = n−1∑
i∈s xi. For Poisson sampling, we have

V IM∗
1Pois = Eũ∗

Em∗

∑
i∈Ũ∗

p

1 − π∗
i

π∗
i

y∗2
i

 | sR, sx;r


= Eũ∗


∑
i∈Ũ∗

x;r

1 − π∗
i

π∗
i

c∗
i σ̃

2 + β̂
⊤
r

 ∑
i∈Ũ∗

x;r

1 − π∗
i

π∗
i

x∗
ix

∗⊤
i

 β̂r | sR, sx;r


= σ̃2∑

i∈s
wi

1 − πi
πi

ci + β̂
⊤
r

(∑
i∈s

wi
1 − πi
πi

xix
⊤
i

)
β̂r,

The second and third terms on the right hand side of (3.B.5) are identical for both

sampling designs. Using a first-order Taylor expansion, they can be approximated

by

V IM∗
2 = Eũ∗

σ̃2 ∑
i∈Ũ∗

x;r

w∗
i (1 − r∗

i )c∗
i

+Ep∗

σ̃2

∑
j∈s̃∗

w∗
j (1 − r∗

j )x∗⊤
j

 T̂
∗−1
r K̂

∗
rT̂

∗−1
r

∑
j∈s̃∗

w∗
j (1 − r∗

j )x∗
j


 | sR, sx;r


≃ Eũ∗

σ̃2 ∑
i∈Ũ∗

x;r

w∗
i (1 − r∗

i )c∗
i

+ σ̃2


∑

j∈Ũ∗
x;r

(1 − r∗
j )x∗⊤

j

 T̃
∗−1
r K̃

∗
rT̃

∗−1
r


∑

j∈Ũ∗
x;r

(1 − r∗
j )x∗

j




≃ σ̃2∑
i∈s

w2
i (1 − ri)ci + σ̃2

∑
j∈s

wj(1 − rj)x⊤
j

 T̂
−1
r K̂rT̂

−1
r

∑
j∈s

wj(1 − rj)xj

 ,
and

V IM∗
3 = 2Eũ∗

σ̃2Ep∗

∑
j∈s̃∗

w∗
j (1 − r∗

j )x∗⊤
j

 T̂
∗−1
r L̂

∗
r

−
∑
i∈s̃∗

w∗
i (w∗

i − 1)(1 − r∗
i )c∗

i

]
| sR, sx;r

)

≃ 2σ̃2Eũ∗



∑

j∈Ũ∗
x;r

(1 − r∗
j )x∗⊤

j

 T̃
∗−1
r L̃

∗
r −

∑
i∈Ũ∗

x;r

(w∗
i − 1)(1 − r∗

i )c∗
i | sR, sx;r


≃ 2σ̃2

∑
j∈s

wj(1 − rj)x⊤
j

 T̂
−1
r L̂r − 2σ̃2∑

i∈s
wi(wi − 1)(1 − ri)ci,
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where

T̂
∗
r =

∑
i∈s̃∗

w∗
i r

∗
i

(
1 − p∗

i

p∗
i

)
x∗
ix

∗⊤
i

c∗
i

, T̃
∗
r =

∑
i∈Ũ∗

x;r

r∗
i

(
1 − p∗

i

p∗
i

)
x∗
ix

∗⊤
i

c∗
i

,

K̂
∗
r =

∑
i∈s̃∗

w∗2
i r

∗
i

(
1 − p∗

i

p∗
i

)2
x∗
ix

∗⊤
i

c∗
i

, K̃
∗
r =

∑
i∈Ũ∗

x;r

w∗
i r

∗
i

(
1 − p∗

i

p∗
i

)2
x∗
ix

∗⊤
i

c∗
i

,

L̂
∗
r =

∑
i∈s̃∗

w∗
i (w∗

i − 1)r∗
i

(
1 − p∗

i

p∗
i

)
x∗
i and L̃

∗
r =

∑
i∈Ũ∗

x;r

(w∗
i − 1)r∗

i

(
1 − p∗

i

p∗
i

)
x∗
i .

To show that V IM∗ is approximately unbiased for V IM , we need to check that

Empq(V IM∗) ≃ V IM . Noting that

Em

(
β̂

⊤
r sxxβ̂r

)
= β⊤sxxβ + σ2∑

i∈s
riw

2
i

(
1 − pi
pi

)2
x⊤
i T̂

−1
r sxxT̂

−1
r xi

ci

= β⊤sxxβ +O

(
σ2

nR

)
,

(3.B.6)

and

Em
(
σ̃2
)

= 1
nR

∑
i∈sR

 ei√
ci

− 1
nR

∑
j∈sR

ej√
cj

2

= σ2 − σ2

nR

1 −
∑
i∈s

w2
i

(
1 − pi
pi

)2
x⊤
i T̂

−1
r ssrx̃x̃T̂

−1
r xi

ci

+2
∑
i∈sR

wi

(
1 − pi
pi

) xi√
ci

− 1
nR

∑
j∈sR

xj√
cj

⊤

T̂
−1
r

xi√
ci


= σ2 +O

(
σ2

nR

)
,

(3.B.7)

the first component of the bootstrap variance estimator, V IM∗
1srs , is unbiased for

(3.B.2) in the case of simple random sampling without replacement; i.e.

Empq(V IM∗
1srs ) ≃ N2

(
1 − f

n

)
Ep

(
σ2

N

∑
i∈s

wici + β⊤sxxβ

)

= N2
(

1 − f

n

)(
σ2

N

∑
i∈U

ci + β⊤Sxxβ

)
,

where

ssrx̃x̃ =
∑
i∈sR

ri

 xi√
ci

− 1
nR

∑
j∈sR

xj√
cj

 xi√
ci

− 1
nR

∑
j∈sR

xj√
cj

⊤

.
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For Poisson sampling, the unbiasedness of V IM∗
1Pois follows from results similar to

(3.B.6) and (3.B.7).

Empq(V IM∗
1Pois) ≃ Ep

{
σ2∑

i∈s
wi

1 − πi
πi

ci + β⊤
(∑
i∈s

wi
1 − πi
πi

xix
⊤
i

)
β

}

= σ2 ∑
i∈U

1 − πi
πi

ci + β⊤
(∑
i∈U

1 − πi
πi

xix
⊤
i

)
β.

Using a first-order Taylor expansion and (3.B.7), we obtain

Empq(V IM∗
2 ) ≃ Epq

[
σ2∑

i∈s
w2
i (1 − ri)ci

+σ2

∑
j∈s

wj(1 − rj)x⊤
j

 T̂
−1
r K̂rT̂

−1
r

∑
j∈s

wj(1 − rj)xj




= σ2 ∑
i∈U

wi(1 − pi)ci + σ2Epq

∑
j∈s

wj(1 − rj)x⊤
j

 T̂
−1
r K̂rT̂

−1
r

∑
j∈s

wj(1 − rj)xj


 ,

and

Empq(V IM∗
3 ) ≃ 2σ2Epq

∑
j∈s

wj(1 − rj)x⊤
j

 T̂
−1
r L̂r

− 2σ2 ∑
i∈U

(wi − 1)(1 − pi)ci.

It follows that V IM∗ is approximately unbiased for V IM .

Doubly robust bootstrap variance estimator

In this section, we show that the suggested bootstrap estimator EIM∗
(
V NRM∗

)
is asymptotically unbiased for Empq

(
V NRM∗

)
. Using the results obtained for the
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NRM Scheme, we first derive an expression of Empq
(
V NRM∗

)
:

Empq
(
V NRM∗

)
≃ Epq

{
N2

(
1 − f

n

)[
σ2∑
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for simple random sampling without replacement and
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for Poisson sampling.
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Now, for simple random sampling without replacement, applying a first-order

Taylor expansion, we obtain
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i∈Ũ∗

x;r
r∗
i c

∗
i /p

∗
i∑

i∈Ũ∗
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Finally, applying again a first-order Taylor expansion, the proposed bootstrap

estimator is
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For Poisson sampling, we use similar arguments and obtain
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To prove the unbiasedness of the bootstrap estimator for Empq
{
Esu(V NRM∗)

}
,

we have to show that

Empq
{
EIM∗ (

V NRM∗
)}

≃ Empq
(
V NRM∗

)
,

which can be done for both sampling designs using (3.B.7) and arguments similar

to those that were used to obtain (3.B.6).



APPENDIX C

We assume that the parameter of interest θ can be written as a smooth func-

tion of totals, θ = g(t1, . . . , tJ) with tj = ∑
i∈U yji for j = 1, . . . , J . Let θ̂ =

g(t̂1HT , . . . , t̂JHT ) be an estimator of θ, where t̂jHT is the Horvitz-Thompson es-

timator of tj, for j = 1, . . . , J . The method of Demnati and Rao (2004) can

be applied to linearize the non-linear statistic θ̂ = g(t̂1HT , . . . , t̂JHT ). The basic

idea behind the Demnati-Rao approach is to express θ̂ = g(t̂1HT , . . . , t̂JHT ) as a

function of the design weights wi(s) = wiIi(s), where Ii(s) is the sample selection

indicator for the i-th unit in U , instead of the customary approach that consists

of regarding θ̂ as a function of the estimated totals, t̂1HT , . . . , t̂JHT . Under this

method, we have

θ̂ − θ ≈
∑
i∈U

∂g(t̂1HT , . . . , t̂JHT )
∂wi(s)

∣∣∣∣∣
w(s)=1

(wi(s) − 1),

where w(s) = (w1(s), . . . , wN(s)).

In Chapter 2, to study the variance estimators under different imputation

methods, the reverse framework was applied. To approximate the second term

of the variance in (2.3.1), VqEp(θ̂I |r), the following theorem, which is an ex-

tension of the Demnati-Rao method, was applied. This theorem introduces an

approximation for the estimator which is a function of totals on the population

of respondents. This leads to an asymptotically unbiased approximation for the

parameter under study under the non–response mechanism.

Theorem C.1 We suppose that θr = g(t1r, · · · , tJr) = g(tr), where tjr =∑
i∈U riyij, is the estimator of θ based on the population of respondents. Let
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θp = g(t1p, · · · , tJp) = g(tp) where tjp = ∑
i∈U piyij and pi is the probability of

response for i-th unit. A first-order approximation of θr is

θr − θp ≈
∑
i∈U

∂g(tr)
∂ri

∣∣∣∣∣
r=p

(ri − pi). (C.1)

Proof. Let r = (r1, · · · , rN) and p = (p1, · · · , pN). Using the chain rule, we

obtain
∂g(tr)
∂ri

=
(
∂g(tr)
∂tr

)⊤

· ∂tr
∂ri

,

where

∂g(tr)
∂tr
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, · · · , ∂g(tr)
∂tJr
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∂ri
, · · · , ∂tJr
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)⊤

= (y1i, · · · , yJi)′.

Using the above statements and the fact that r = p if and only if tr = tp, we

have
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The proof is completed by using the above equality and a first–order Taylor

expansion

g(t1r, · · · , tJr) = g(t1p, · · · , tJp) +
J∑
j=1

∂g(tr)
∂tjr

∣∣∣∣∣
tr=tp

(tjr − tjp) +R,

where R is the remainder term.

�



CONCLUSION

Estimating the variance of a parameter of interest while dealing with imputed

survey data is an important subject in survey methodology. The resampling

bootstrap procedures presented in this thesis address the problems with the ex-

isting bootstrap method in this context proposed by Shao and Sitter (1996).

These problems have been extensively discussed within the thesis, here we briefly

mention again the specific achievements of this thesis.

In Chapter 1, we have studied all existing bootstrap methods for complete as

well as imputed survey data. We classified the bootstrap methods for complete

survey data into three groups: the pseudo-population bootstrap, the direct boot-

strap and the bootstrap weights methods. We unified and compared the methods

in each category to better see the strengths and weaknesses of these methods.

This contribution is very helpful for researchers who would like to use bootstrap

methods for survey data as well as develop new ones.

In the context of imputed data, the existing bootstrap method of Shao and

Sitter (1996) requires the response status of each item under study and leads to

a valid variance estimation only when the sampling fraction is negligible.

In Chapter 2, we proposed bootstrap methods for imputed data from regres-

sion, ratio and hot deck imputation. We assumed that the data came from strat-

ified simple random sampling without replacement with uniform non-response in

each stratum. To perform these methods, only the response rate within each

stratum is needed. The resulting bootstrap variance estimators are asymptoti-

cally unbiased under the non-response model approach even for a large sampling

fraction.
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To work with more complex sampling designs and non-response mechanisms,

we introduced bootstrap procedures for imputed data under the pseudo-population

bootstrap approach in Chapter 3. These methods are designed to estimate the

variance under the non-response model and under the imputation model ap-

proaches leading to a valid estimator even in the case of a non-negligible sampling

fraction.

In this thesis, we developed different ideas, but there are many more avenues

that remain unexplored. Studying the complete data bootstrap methods in Chap-

ter 1 brings out the fact that there is not a considerable difference between the

pseudo-population bootstrap methods. Comparing these methods leads us to de-

velop a pseudo-population method in which an appropriate random mechanism

is applied to create a pseudo-population with the same size as the original finite

population. Such a random mechanism should have the property that the mean

of the selected sample to complete the pseudo-population is asymptotically unbi-

ased for the sample mean. This property leads to a negligible variability induced

by creating the pseudo-population in the bootstrap statistics. In addition, an

extension to a bootstrap weights method is very helpful in practice.

The independent bootstrap methods proposed in Chapter 2 are based on the

assumption of uniform non-response mechanism. Under these methods, the con-

stants of the direct bootstrap methods are modified depending on the response

rate, the estimator of the response probability in the case of uniform non-response,

and the imputation method. Studying the asymptotic behavior of the indepen-

dent bootstrap methods for the case of the population quantiles assuming the

uniform non-response mechanism has not been done yet and is very worthwhile

doing. In this case, since deterministic imputation does not preserve the distribu-

tion of the variable being imputed, a random imputation method, such as random

hot deck imputation, is used.

To the best of our knowledge, in the case of unequal response probabilities,

it is not obvious how the constants of the direct bootstrap methods have to be

modified even in the case of the population total. A pseudo-population bootstrap

approach seems to be more appropriate in these cases.
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The proposed pseudo-population bootstrap methods in Chapter 3 are built

assuming the doubly robust deterministic regression imputation for the case of

the population total (or mean). In reality, developing such methods suggests

the possibility of applying a pseudo-population bootstrap method for the case

of a population quantile which is not possible under the Kim and Haziza (2014)

method. In this case, we believe that doubly robust random regression imputa-

tion should be used to compensate item non-response. A series of simulations

is ongoing to check the behavior of the pseudo-population methods while apply-

ing the doubly robust random regression imputation method for the case of the

population median.

Moreover, the nature of the pseudo-population bootstrap methods suggests

that these methods work well in the case of more complex sampling designs.

Developing the theory behind this claim is not an easy task and can be a great

subject for further research.
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