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RÉSUMÉ 
 

Le traitement chirurgical des anévrismes de l'aorte abdominale est de plus en 

plus  remplacé  par  la  réparation  endovasculaire  de  l’anévrisme  (« endovascular 

aneurysm repair », EVAR) en utilisant des endoprothèses (« stent-grafts », SGs). 

Cependant, l'efficacité de cette approche moins invasive est compromise par 

l'incidence de l'écoulement persistant dans l'anévrisme, appelé endofuites menant à 

une rupture d'anévrisme si elle n'est pas détectée. Par conséquent, une surveillance 

de longue durée par tomodensitométrie sur une base annuelle est nécessaire ce qui 

augmente le coût de la procédure EVAR, exposant le patient à un rayonnement 

ionisants et un agent de contraste néphrotoxique. 
 

Le mécanisme de rupture d'anévrisme secondaire à l'endofuite est lié à une 

pression du sac de l'anévrisme proche de la pression systémique. Il existe une 

relation entre la contraction ou l'expansion du sac et la pressurisation du sac. La 

pressurisation résiduelle de l'anévrisme aortique abdominale va induire une 

pulsation et une circulation sanguine à l'intérieur du sac empêchant ainsi la 

thrombose du sac et la guérison de l'anévrisme. 
 

L'élastographie      vasculaire      non-invasive      (« non-invasive      vascular 

elastography »,  NIVE)  utilisant  le  « Lagrangian  Speckle  Model  Estimator » 

(LSME) peut devenir une technique d'imagerie complémentaire pour le suivi des 

anévrismes après réparation endovasculaire. NIVE a la capacité de fournir des 

informations   importantes   sur   l'organisation   d'un   thrombus   dans   le   sac   de 

l'anévrisme et sur la détection des endofuites. 
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La caractérisation de l'organisation d'un thrombus n'a pas été possible dans 

une étude NIVE précédente. Une limitation de cette étude était l'absence d'examen 

tomodensitométrique comme étalon-or pour le diagnostic d'endofuites. Nous avons 

cherché à appliquer et optimiser la technique NIVE pour le suivi des anévrismes de 

l'aorte abdominale (AAA) après EVAR avec endoprothèse dans un modèle canin 

dans le but de détecter et caractériser les endofuites et l'organisation du thrombus. 
 

Des SGs ont été implantés dans un groupe de 18 chiens avec un anévrisme 

créé dans l'aorte abdominale. Des endofuites de type I ont été créés dans 4 

anévrismes, de type II dans 13 anévrismes tandis qu’un anévrisme n’avait aucune 

endofuite. L'échographie Doppler (« Doppler ultrasound », DUS) et les examens 

NIVE ont été réalisés avant puis à 1 semaine, 1 mois, 3 mois et 6 mois après 

l’EVAR. Une angiographie, une tomodensitométrie et des coupes macroscopiques 

ont été réalisées au moment du sacrifice. Les valeurs de contrainte ont été calculées 

en utilisant l`algorithme LSME. Les régions d'endofuite, de thrombus frais (non 

organisé) et de thrombus solide (organisé) ont été identifiées et segmentées en 

comparant les résultats de la tomodensitométrie et de l’étude macroscopique. Les 

valeurs de contrainte dans les zones avec endofuite, thrombus frais et organisé ont 

été comparées. 
 

Les valeurs de contrainte étaient significativement différentes entre les zones 

d'endofuites, les zones de thrombus frais ou organisé et entre les zones de thrombus 

frais et organisé. Toutes les endofuites ont été clairement caractérisées par les 

examens d'élastographie. Aucune corrélation n'a été trouvée entre les valeurs de 
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contrainte et le type d'endofuite, la pression de sac, la taille des endofuites et la 

taille de l'anévrisme. 
 
 
 
 
 
 
 

Mots-clés : Aorte, anévrisme de l’aorte abdominal, réparation endovasculaire de 

l’anévrisme, élastographie non-invasive vasculaire, ultrasonographie, 

tomodensitométrie, endofuite, thrombus. 
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ABSTRACT 
 

 

Surgical treatment of abdominal aortic aneurysms is increasingly being 

replaced by EVAR using SGs. However, the efficacy of this less invasive approach 

is jeopardized by the incidence of persistent flow within the aneurysm, called 

endoleaks leading to aneurysm rupture if not properly detected. Hence, a life-long 

surveillance by computed tomography (CT) angiography on an annual basis is 

increasing the cost of EVAR, exposing the patient to ionizing radiation and 

nephrotoxic contrast agent. 
 

The mechanism of aneurysm rupture secondary to endoleak is related to a 

pressurization  of  the  aneurysm  sac  close  to  the  systemic  pressure.  There  is  a 

relation between sac shrinkage or expansion and sac pressurization. The residual 

pressurization of AAA will induce sac pulsatility and blood circulation in the sac 

thus preventing sac thrombosis and aneurysm healing. 
 

NIVE using the LSME may become a complementary follow-up imaging 

technique for EVAR. NIVE has the capability of providing important information 

on the thrombus organization within the aneurysm sac and on the detection of 

endoleaks. 
 

The characterization of the thrombus organization was not possible in a 

previous NIVE study. A limitation was the absence of CT examinations as gold 

standard  for  endoleak  diagnosis.  In  the  current  study,  we  aimed  to  apply  and 
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optimize NIVE of AAA after EVAR with SG in a canine model to detect endoleaks 

and characterize thrombus organization. 
 

SGs were implanted in a group of 18 dogs with an aneurysm created in the 

abdominal aorta. Type I endoleak was created in 4 aneurysms, type II in 13 

aneurysms and no endoleak in 1 aneurysm. DUS and NIVE examinations were 

performed at baseline, 1-week, 1-month, 3-month and 6-month follow-up after 

EVAR. Angiography, CT-scan and macroscopic tissue slides were performed at 

sacrifice. Strain values were computed using the LSME. Areas of endoleak, solid 

thrombus (organized) and fresh thrombus (non-organized) were identified and 

segmented by comparing the results of CT scan and macroscopic tissue slides. 

Strain values in areas with endoleak, organized and fresh thrombi were compared. 
 

Strain values were significantly different between endoleak and 

organized  or  fresh  thrombus  areas  and  between  organized  and  fresh  thrombus 

areas. All endoleaks were clearly characterized on elastography examinations. No 

correlation was found between strain values and type of endoleak, sac pressure, 

endoleak size and aneurysm size. 
 
 
 
 

Keywords : Aorta, abdominal aortic aneurysm, endovascular repair, non-invasive 

vascular elastography, ultrasound, computed tomography, endoleak, thrombus. 
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CHAPTER I 
 

Abdominal Aortic Aneurysm, a chronic degenerative 

disorder 
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1. Abdominal Aortic Aneurysm (AAA), a chronic degenerative 

disorder 
 

1.1 Background 
 

The abnormal dilation involving the vascular wall three layers: the 

intima, the media and the adventitia defines an aneurysm. The word itself 

derives  from  the  Greek  word  “aneurusma”  that  has  the  meaning  of 

widening. A perivascular pulsatile hematoma secondary to a vessel injury is 

not limited by the three layers and is called false aneurysm [1]. Aneurysms 

can be designed as fusiform or “saccular” depending on whether the entire 

circumference of the aorta is affected or a part of it respectively [1]. The 

normal diameter of the abdominal aorta measures between 15 and 24 mm 

depending on the age, sex and bodyweight. It is considered an AAA when 

exceeding the 30 mm diameter and preventive treatment is needed when 

reaching 50 mm in diameter [2, 3]. 
 
 
 
 

This chapter will focus on understanding the clinical and pathological 

aspects of the abdominal aortic aneurysm. Other issues related to the AAA 

will be described and further explanation of the project will be presented. 
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1.2 Anatomy and Physiology 
 

The arterial system is classified based on the specific vascular territories 

it supplies and it is divided in three classifications (figure 1.1): 
 

- The large vessels as the aorta and iliac arteries characterized with an 

elasticity that helps in maintaining the diastolic blood pressure. 
 

- The medium-sized vessels that distribute blood to capillary beds as 

visceral branches, brachial arteries, superficial femoral and muscular 

arteries. 
 

- The small arterioles that play a role in blood pressure regulation, 

vascular tone modulation and oxygen and nutrients delivery to the 

different body tissues [4]. 
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Figure 1.1 Cardia  vascular system  (CVS) [5] 
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The tunica intima, tunica media and tunica adventitia constitute the three 

layers of the arterial wall (figure 1.2): 
 

- The internal layer of the artery is the tunica intima consisting of a 

single layer of mesenchymal endothelial cells with basement 

membrane and internal elastic lamina. The media and intima are 

attached with supportive connective tissues. Thin in healthy 

individuals,   it   becomes   stiffer   and   thicker   with   age,   due   to 

pathological changes. This leads to significant alterations in the 

mechanical properties of the arterial wall. 
 

- The tunica media, the middle layer of the artery, is considered the 

thickest layer of the arterial wall. It plays a role in modulating the 

arterial vascular tone and blood pressure because of the actin and 

myocin filaments contained in the smooth muscle cells. The media is 

separated from the intima and adventitia by the internal elastic lamina 

and the external elastic lamina, respectively. Mechanically, the media 

is considered to be the most important layer in a healthy artery. 
 

- The tunica adventitia, the outer layer of the artery, consists mainly of 

cells that produce collagen and elastin such as fibroblasts and 

fibrocytes, and fibrous tissues. It is surrounded by loose connective 

tissues, lymphatics and the vasa vasorum, which is its own nutrient 



8 
 
 
 
 
 
 
 

supply. Under high blood pressure, when the collagen fibers reach 

their straightened lengths, the adventitia becomes stiffer to prevent 

the rupture and the overstretching of the artery [4, 6]. 
 
 
 
 
 
 
 

 
 

Figure 1.2 The three layers forming the arterial wall: The tunica intima, tunica media and 

tunica adventitia [7] 
 
 
 
 

The aorta is the largest artery of the human body starting at the left 

ventricle of the heart (figure 1.3): 
 

- The first part rising up from the heart is called the ascending aorta; it 

supplies the heart with blood through the coronary arteries. 
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- It curves than through the aortic arch and supplies the head, arm and 

neck. 
 

- The part going through the chest is called the descending aorta. It 

supplies blood to the chest and some ribs. 
 

- The abdominal aorta starts at the diaphragm and bifurcates into the 

paired common iliac arteries [8]. 
 
 
 
 

 
 

Figure 1.3 The aorta is divided in 4 sections: The ascending aorta, the aortic arch, the 

descending aorta and the abdominal aorta [9] 
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1.2.1 Abdominal Aorta 
 

The abdominal aorta starts when the descending aorta passes over the 

twelfth thoracic vertebra (lower portion) and under the aortic hiatus of the 

diaphragm. It ends by bifurcating into the right and left common iliac 

arteries on top of the lower third of the fourth lumbar vertebra and left to 

the midline. The bifurcation is located using the intercrestal line, which 

locates an abdomen transverse plane at the fourth lumbar level. The lower 

portion of the abdominal aorta is located behind the peritoneum of the 

posterior abdominal wall (figure 1.4). To the left and right of the abdominal 

aorta is situated the sigmoid mesocolon and the oblique line of origin of the 

mesentery  of  the  small  intestine,  respectively.  The  aorta  is  embedded, 

behind the posterior body wall peritoneum, in the extra peritoneal areolar 

connective tissue. Under and to the left and right of the common iliac 

arteries stands the left and right common iliac veins, respectively. Behind 

them the sympathetic trunks go down into the pelvis [10, 11]. 
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Figure 1.4 Posterior abdominal wall after removal of the peritoneum [12] 
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1.2.2 Abdominal arteries and pelvic arteries 
 

The collateral arteries arising from the abdominal aorta divide to sub- 

branches in order to supply the abdomen and the pelvis (figure 1.5). These 

branches can be divided into five groups depending on their function: 

1- The  first  group  supplies  the  kidneys,  diaphragm,  adrenal  glands, 

posterior abdominal wall, gonads and spinal cord. It includes the right 

and left renal arteries, the right and left inferior phrenic arteries, the 

right and left middle adrenal arteries, the right and left lumbar arteries, 

the right and left testicular arteries and the median sacral artery. 

2- The second group made of the celiac trunk, that gives rise to the left 

gastric  artery,  the  splenic  artery  and  the  common  hepatic  artery, 

supplies  the  liver,  gallbladder,  pancreas,  spleen,  stomach  and 

duodenum. 

3- The third group made of the superior mesenteric artery supplies the 

small intestine and part of the large intestine. 

4- The fourth group made of the inferior mesenteric artery supplies the 

other part of the large intestine. 

5- The fifth group supplies the pelvis through an indirect trunk arising 

from the common iliac artery: the internal iliac artery [13]. 
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Figure 1.5 Abdominal arteries and pelvic arteries [14] 
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1.3 Pathophysiology of Abdominal Aortic Aneurysm 
 

The arterial blood pressure imposed on the aorta is high and remains 

for a life time. This is why any weakness in the wall can lead to dilatation 

and the formation of an aneurysm, which can promote rupture and sudden 

death [15]. 
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Figure 1.6 Abdominal Aortic Aneurysm pathogenesis [15] 
 
1.3.1 Elastin and Collagen 

 
Many factors involved in wall weakening and load increasing interact 

together leading to an aneurysm formation. Figure 1.6 represents well the 

sequence and reasons behind the formation of abdominal aortic aneurysms. 

Elastin and collagen are considered to be the aortic wall’s most important 
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proteins that form fibers that help make up connective tissues in the body. 

The elastin is responsible of the elastic property that allows it to stretch 

during cardiac contraction and relax along with the cardiac relaxation. On 

the  other  hand,  the  collagen  is  the  opposite  of  the  elastin  and  it  is 

considered to be 20 times stronger. In case of an extension that exceeds its 

original length, damage may occur. We can say that collagen acts as a 

safety net when the elastin exceeds its stretching limit [16-22]. 
 
 
 
1.3.1.1   Elastin 

 
One of the reasons that aneurysms occur more frequently in the 

abdominal is that the elastin is less present than other parts of the aorta such 

as the thoracic aorta. The elastin content is lower in the aortic wall of 

patients with aneurysms when compared to normal abdominal aorta 

affecting mechanical properties that depend on the concentration of the 

elastin [23-28]. 
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Figure 1.7 The architecture of the healthy human artery showing the elastin and collagen 

fibrils [29] 
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1.3.1.2   Collagen 
 

Different from elastin, collagen is synthesized throughout life. The 

most important deficiency linked to aneurysms is collagen type III 

deficiency. It has been associated with intra-cerebral aneurysms and Ehlers- 

Danlos syndrome type IV, the latter including abdominal aortic aneurysms 

as one of its manifestations. An increase in collagen has been reported in 

abdominal aortic aneurysm walls. In order for the rupture to occur, the 

destruction of the medial collagen is required through enzymes [19, 20, 30- 

33]. 
 

 
 
 
 

1.3.2 Smoking 
 

Abdominal aortic aneurysm has been associated to smoking since the 
 

1960s [34]. A large study conducted in 1991 has found no relation between 

the number of cigarettes smoked and the risk of AAA. It has also been 

shown that hand-rolled cigarette smokers have higher risk than others [35]. 

In his study, Teun et al. has shown in 1999 that the effect of smoking on the 

risk of aneurysms is higher than its risk on coronary disease and peripheral 

vascular disease. Smokers are 7 times more likely to have an AAA than 

non-smokers.  As  for  the  ex-smokers,  they  are  3  times  more  likely  to 



19 
 
 
 
 
 
 
 

develop an AAA when compared to non-smokers. Even when people quit 

smoking, the risk remains [35, 36]. 
 
 
 
1.3.3 Other factors increasing the pressure on the aortic wall 

 
Many factors are involved in increasing the load on the aortic wall, 

making its dilatation, when added to other factors, easier. Hypertension is 

considered the most important. It increases the prevalence and the risk of 

rupture of an aortic wall [37-39]. It remains unclear whether arterial 

hypertension by itself is a major cause of AAA or whether it has to be 

combined with a pre-existing weakness of the aortic wall [40, 41]. 

Another important factor is the location of the abdominal aorta. It is the 

biggest artery in the body connected directly to the heart, which is the 

location with highest pressure. So the pulse pressure is high as the pulse 

wave passes through the abdominal aorta to reach the iliac bifurcation [42]. 

Genetic factors may also play a role with inherited defects affecting the 

function of elastin or collagen [43-48]. Inflammation may also cause the 

destruction and weakening of the aortic media. Inflammatory aneurysms 

are found in 4 to 10 per cent of the cases undergoing surgical treatment [49- 

51]. 
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1.4 Epidemiology 
 

AAA is considered as the 13th  leading cause of death in the United 

States of America and responsible of the death of 0.8 per cent of the entire 

deaths in the country [52]. 
 

1.4.1 Age and Sex 
 

The prevalence of AAA in men is higher than in women [53]: In 

England and Wales 1.36 per cent of men versus 0.45 of women die due to 

an abdominal aortic aneurysm [54]. In 2005, 4907 men versus 1991 women 

died in England because of AAA [55]. Also AAA is found more frequently 

at old people versus young people [53, 56-59]. As shown in figure 1.8, the 

prevalence increases quickly from 1 per cent when reaching the age of 60 

years till it reaches its maximum at the age of 80 years. The mortality rate 

starts between the age of 40 and 70 years [58]. 
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Figure 1.8 Prevalence of AAA depending on age and sex from Sweden and Kansas City [53, 
 

57, 60] 
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1.5    Abdominal Aortic Aneurysm 
 
1.5.1 Rupture 

 
The size of the aneurysm and the growth rate are considered to be the 

most important factors for the assessment of the aneurysm rupture risk [61- 

64]. When the aortic diameter exceeds 30 mm, it is defined as an abdominal 

aortic aneurysm [65]. Most of the AAA ruptures occur before the patient 

reaches the surgical room [66]. This is why AAA has a high mortality rate 

of 65 to 85% of the patients [67]. When the diameter exceeds 5.5 cm, the 

patient should normally undergo surgery. This is why it hasn’t been found a 

lot of data concerning the risk rupture of large abdominal aortic aneurysms. 

It has been shown that the rupture rate of AAAs with a diameter between 4 

and 5.5 cm is between 0.7 and 1% / year [68]. When comparing the rupture 

rate between women and men, it has been found that women have a higher 

rupture rate for small AAAs and equivalent rupture rate for large AAAs (≥ 

5.5 cm) [69, 70]. AAA rupture risk increases with larger diameters. A 

prospective cohort study performed in 47 Veterans Affairs medical centers 

on 198 patients revealed a 1-year incidence of rupture of 9.4% for AAA at 

5.5 to 5.9 cm, 10.2% for AAA of 6.0 to 6.9 cm (19.1% for the subgroup of 
 

6.5-6.9 cm), and 32.5% for AAA of 7.0 cm or more [71]. On the other hand 

many studies have shown that size is not the only significant determinant of 
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rupture. Expansion and rupture may occur regardless of the diameter of the 
 

AAA [61, 72]. 
 
 
 
 

1.5.2 Imaging techniques for assessing AAAs 
 

Ultrasound is the first line examination to detect an aneurysm and 

assess its maximal diameter. Computed tomography is a second line 

examination providing reproducible measurements of maximal diameters 

and information on AAA extension. The choice between these two 

techniques depends on the indication and the accessibility of the region for 

ultrasound, which is often impaired in the abdomen. Obesity is a frequent 

factor making an ultrasound assessment of the abdominal aorta difficult [1]. 
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Figure 1.9 A CT scan examination showing an AAA with a contained rupture [73]. 
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1.5.2.1 Surveillance 
 

Once diagnosed, AAA of less than 55  mm in men or 50 mm in 

women are typically monitored every 6 months by ultrasound for changes 

in its maximal diameter [74, 75]. 
 
 
 
 
 
 

 
 

Figure 1.10 Ultrasound gray scale mode of an AAA [76]. 
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1.5.2.2   Screening and diagnosis 
 

AAA, if not discovered as an incidental findings in an abdominal 

scan for other indications often presents itself for the first time when it 

ruptures and thus have a high mortality [1]. In several countries including 

UK, USA and Canada, screening programs have been established to reduce 

AAA related mortality [77, 78]. 
 

 
 

1.5.3 Intervention 
 

A CT scan is usually the technique of choice to identify patients with 

an indication for a surgical intervention (figure 1.9), based on diameters of 

55 mm (men) or 50 mm (women). CT scan helps in determining the exact 

size of the aneurysm, localizing the aortic branches, identifying any 

calcification or inflammation and determine whether the patient can be 

eligible for open or endovascular repair (figure 1.11). 
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Figure 1.11 CT scan identifying the AAA lumen, wall, calcification, thrombus [79]. 
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1.5.3.1 Open surgical repair 
 

The indication for open surgical repair is based on the physician 

assessment of the patient surgical risk. Many factors that can increase the 

risk of this intervention may eliminate this option such as previous history 

of cardiac atherosclerotic disease (myocardial infraction and angina 

pectoris), stroke, diabetes and age. During the surgical operation, the 

aneurysm is repaired by interposing a graft through an incision at the 

abdomen level (figure 1.12). The mortality rate for this procedure has been 

recently estimated to be 4.1% - 6% [2, 80]. 
 

 
 

 
 

Figure 1.12 Open surgical repair [81]. 
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1.5.3.2 Endovascular aneurysm repair 
 

EVAR is less invasive and does not require any abdominal incision or 

exposure of the abdominal aorta. It involves the deployment of a stent graft 

(SG) inside the aneurysm to exclude the aneurysm sac from the blood 

circulation (figure 1.13) [82]. EVAR has been presented as an alternative to 

open surgical repair with a lower rate of post-operation mortality [2, 80]. 

The main limitation of EVAR is the durability of aneurysm exclusion and 

the occurrence of endoleaks (explained in Chapter 2). These limitations 

required long-term post placement surveillance (CT scan life-long follow 

up), diagnostic studies and possible secondary procedures, which increase 

the cost of EVAR by 50% [83-85]. 
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Figure 1.13 EVAR where a SG is placed inside the aneurysm without exposure of the 

abdominal aorta [86]. 
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1.5.3.3 Comparison between open surgical repair and EVAR 

 

EVAR has been introduced mainly to replace open surgical repair for 

the patients at higher surgical risk due to age, body weight and cardiac 

condition. As mentioned above, the post-operative mortality rate is lower 

than the open surgical repair but when it comes to the long term mortality 

rate, it has been found to be the same especially because of the occurrence 

of delayed rupture associated with endoleaks and the high rate of  deaths 

non related to aneurysm disease [87]. 

When comparing EVAR with open surgical repair, we find less 

surgical complications for EVAR and higher rate of long term success for 

surgery [2, 88-95]. The cost of an EVAR is about 20,000$ versus 18,000$ 

for  an  open  surgery  (Year  of  2010)  [96].  But  if  we  add  the  cost  of 

secondary interventions for endoleaks (12% to 44% of the cases) and cost 

related to imaging follow-up, the cost of EVAR increases by 44% (a big 

part of the increase is due to the CT scan cost) [83, 96-98]. Even with the 

presence of higher cost and need for life long follow-up, patients still prefer 

EVAR because it is non-invasive and because of its short term success [99, 

100]. This is why it has become the leading treatment for AAA disease in 
 

USA [3]. 
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1.5.3.4 Thrombus formation in AAA 

 

Thrombi  are  frequently  observed  in  the  peripheral  portion  of  the 

AAA in areas of flow stagnation and of low shear stress condition [101]. It 

is essentially formed of platelets and erythrocytes and divided into 3 layers: 

luminal,  medial  and  abluminal.  The  rigidity  differs  between  one  and 

another depending on the literature. Some authors find the abluminal more 

rigid since it is better organized and older than the others. Other authors 

mention the rigidity of the luminal region because of the presence of 

collagen [102, 103]. The thrombus can play an important role in the 

reduction of aortic wall stress which reduces the risk of rupture [104, 105], 

however major thrombus growth can also lead to the rupture by increasing 

the pressure on the wall [65, 106]. 

After endovascular repair (EVAR), complete sac thrombosis is 

expected due to coagulation since there is no or minimal residual flow in 

the aneurysm sac around the SG. If there is no residual flow or pressure, 

this new thrombus will mature with time and become organized. 

Magnetic resonance imaging (MRI) can provide quantitative analysis 

of AAA healing when it comes to the size of the thrombus inside the 

aneurysm sac, it is also capable of differentiating between organized and 

unorganized thrombi [107]. MRI follow-up after EVAR has shown the 

presence  of  unorganized  thrombus  more  than  organized  one  inside  the 
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aneurysm [107]. But MRI presents limited accessibility, higher cost than 

ultrasound, and metal artifact when using stainless-steel SG [108]. This is 

certainly  an  opportunity  for  the  NIVE-LSME  method  proposed  in  this 

thesis. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER II 

Endoleak 
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2. Endoleak 

 

Many types of failure occur after endovascular repair such as 

progressive expansion (“endotension”), infection and graft rupture, but the 

most common complication, observed in 10% to 36% of EVAR cases, is an 

endoleak. It is clinically defined as a residual aneurysm sac opacification 

seen  on  arteriography  or  CT  scan  after  SG  implantation  caused  by 

persisting blood flow in the aneurysm sac after EVAR [98, 109-111]. 

The presence of endoleaks can lead to rupture especially when 

associated with an expansion of the aneurysm by more than 5% [112-116]. 

Data of the EUROSTAR trial have shown that the risk of rupture and 

second interventions is higher for patients with type I or type III endoleak 

than with type II endoleak (explained in section 2.1). At the same time, the 

enlargement of the aneurysm following EVAR is lower for type II endoleak 

when compared to other endoleaks [117]. Other reports have shown 

shrinking in size of the aneurysm in the presence of an endoleak, which 

makes it hard to base the diagnosis based on the aneurysm size [118, 119]. 
 

 
 

2.1 Endoleak types 
 

Endoleaks are classified into 5 types depending on their origin or 

their duration of existence (figure 2.1) [120]: 



36 
 
 
 
 
 
 
 
 
• Type I: It is defined as a blood flow between the proximal neck (type 

Ia) or the distal neck (type Ib) and the SG. This type of endoleak is 

considered dangerous because of its association with a pressurization of 

the  aneurysm  sac  at  systemic  level,  and  requires  detection  and 

immediate surgical intervention or SG extension to close the gap. It is 

found for less than 10% of the cases [121-124]. Type I endoleak is 

usually related to an inaccurate SG sizing or progression of aortic 

degeneration in the landing zones (proximal aortic neck or common 

iliac). It can also be associated with SG migration caused by aneurysm 

sac shrinkage or inaccurate proximal SG fixation [125-129]. 
 

 
 

• Type II: This type of endoleak comes from collateral artery reverse flow 

(lumbar or inferior mesenteric arteries). It is the most common type of 

endoleak found in half of patients after EVAR [1]. Five percent of all 

cases are diagnosed with this type of endoleak [1, 123]. Treatment is 

typically deferred since it can thrombose by itself after a short period. 

The typical treatment is embolization when the CT scan shows an 

increase in the aneurysm’s diameter of more than 5 mm [121, 122, 130- 

138]. 
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• Type III: A gap, due to a fabric defect in the SG implanted inside the 

abdominal aortic aneurysm, leads to the third type of endoleak. An 

immediate surgical intervention closing the gap is indicated. 
 

 
 

• Type IV: It is due to graft porosity and usually resolves itself with 

deposition of fibrin in the fabric. A design feature of the graft fabric 

may cause this type of endoleak. Usually this kind of endoleak occurs 

during the first 30 days following EVAR [124]. 
 

 
 

• Type V: It is an endotension observed in the aneurysm sac causing an 

increase of the aneurysm diameter without any evidence of endoleak on 

CT scan [124, 139]. The reasons behind this endotension are currently 

unknown, but an undetectable endoleak using conventional imaging 

techniques   could  be  one  of   those  reasons   [124,  140].   Another 

explanation is the occurrence of sac pressurization through thrombus 

[124, 131, 140]. Immediate surgical intervention is required [131]. 



38 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.1 Visualization of the 4 types of endoleak. Type I: Blood flow coming from the 

proximal distal neck; Type II: Collateral flow coming from the collateral arteries; Type III: A 

gap in the SG leading to a blood flow inside the aneurysm sac; Type IV: graft porosity. 
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2.2 Imaging detection techniques 
 

Different imaging modalities have been used for post-EVAR 

surveillance and diagnosis, but not all of them give accurate results and are 

capable of detecting all kinds of endoleaks with the same accuracy. 
 

 
 

2.2.1 CT scan 
 

Considered  the  gold  standard  for  endoleak  detection,  CT  scan 

provides accurate measures of aneurysm dimensions [141]. It is based on 

the rotation of the X-ray tube around the body to produce a 2D image 

through back projection filtration. The appearance of the tissue depends on 

its attenuation coefficient. CT is capable of producing 3D images by 

combining different 2D images [1]. By using a contrast agent capable of 

absorbing the X-ray emitted by the X-ray tube, endoleaks can be detected 

(figure 2.2). This technique, however, may lead to side effects related to 

exposure to ionizing radiation and, especially in people with renal 

insufficiency to contrast injection [141, 142]. Of special importance is the 

carcinogenic risk by frequent post-EVAR follow-up scans (each 6 months 

the first year and each year for the rest of his life) [143-145]. Efforts have 

been made to reduce the exposure dose and the frequency of exams, or even 

to replace it [146-148]. Despite its high overall sensitivity (86-93%), CT 

scan is not very sensitive to detect slow flow endoleaks, which are better 
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visualized by a dual phase acquisition (arterial and delayed venous phase) 

[149]. 
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Figure 2.2 Axial CT scan image of an 80 years old female showing a type I endoleak [150]. 
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2.2.2 Ultrasound 

 

Ultrasound is a non-invasive and inexpensive imaging technique 

available in most clinics and hospitals. It can produce 2D images as well as 

3D images depending on the movement of the operator handling the 

transducer [151]. Doppler ultrasound (DUS) is used to detect and quantify 

blood flow [152], whereas B-mode ultrasound is used to image structures. 

Both approaches are based on radio frequency (RF) waves sent into the 

region of interest of the body. A part of these waves are reflected, other are 

attenuated and the rest are scattered by small cellular structures. Part of the 

scattered and reflected waves reach the transducer that intermittently plays 

the role of a receptor. The emission time interval and the speed of RF 

waves determine the depth of the tissue to be imaged (depth = speed x 

time/2).  Because  of  the  attenuation,  a  gain  is  normally  applied  to 

compensate for it. Correlation-based techniques are used to process RF 

echoes in DUS, whereas envelope detection allows producing B-mode 

images. 

Ultrasound is a good alternative to CT-scanner for post-EVAR 

surveillance because it is quick, easy, non-invasive and not expensive. It 

also provides accurate diameter measurements even if it is not as 

reproducible as  CT imaging  [153-156]. However,  DUS  may not  detect 
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endoleaks in 23 to 32% of cases [149, 157]. It has shown better sensitivity 

to detect type I (88%) than type II (50%) endoleaks [158]. 

Several authors have proposed contrast-enhanced ultrasound (CEUS) 

to improve sensitivity [130, 131, 139, 159]. When comparing CEUS with 

CT, it reavealed good sensitivity but lower specificity. In addition, there is 

no ultrasound contrast agent that has been approved for non-cardiac use in 

the United States [143]. It is also time-consuming and expensive, which 

impairs its clinical utility [141]. 



44 
 

 
 
 
 
 
 
 
 

 
 
Figure 2.3 Doppler ultrasound acquisition showing a blood flow outside the SG and inside the 

aneurysm sac (endoleak) [160]. 
 
 
 

2.2.3 Angiography 
 

Angiography, also known as fluoroscopy, is a widely used technique 

in hospitals. The technique uses cine X-ray image acquisitions during the 

first pass of a contrast agent. After crossing the body, these X-rays are 

detected and then processed to produce a real time image based on 

attenuation  (bones  have  high  attenuation  versus  tissues  that  have  low 
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attenuation).  For  AAA  characterization,  the  contrast  agent  is  usually 

injected directly into the abdominal aorta and selectively through collateral 

arteries (inferior mesenteric, internal iliac and ilio-lumbar arteries through a 

catheter inserted in the femoral artery to detect and classify the endoleak 

and visualize the flow of blood inside the SG) [1]. Angiography is rarely 

used  for  endoleak  detection  but  is  performed  before  embolization  to 

identify the source of endoleak to target the culprit vessel(s) [120, 121, 161- 

163]. 
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Figure 2.4 Angiography acquisition of a 80 years old female showing a type I endoleak on the 

left side (indicated with a white arrow) [150]. 
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2.2.4 Magnetic resonance imaging 

 

Magnetic resonance imaging (MRI) is capable of giving high 

resolution images and differentiates between soft and hard tissues [164]. A 

major advantage is the absence of ionizing radiation unlike fluoroscopy and 

CT. It is based on a magnetic field that is powerful enough (1.5 or 3 tesla 

are common) to align protons in hydrogen atoms found in water molecules 

of the human body. A radiofrequency pulse is applied to induce resonant 

behavior of protons. The subsequent proton relaxation emits very small 

amounts of energy, which are used to generate images with a tissue- 

dependent contrast. Importantly, proton relaxation properties closely reflect 

tissue composition. Different factors such as field gradients, radiofrequency 

fields and acquisition timings affect the image quality and contrast [1]. 

A contrast agent can be added to alter the magnetic properties of 

blood and tissues and allows MRI to detect endoleaks [164]. The 

performance and quality of the technique is dependent on the type of SG 

used because of artifacts caused by its metallic composition (stainless steel 

SGs are not MRI compatible while nitinol SG are compatible). When the 

SG is compatible, the sensitivity is similar to CT for AAA size 

measurements. Regarding endoleaks, initial reports have shown a lower 

sensitivity of MRI when compared to CT angiography but recent reports 

have shown a better sensitivity of MRI when combined with high relaxivity 
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or blood pool contrast agents [165-168]. Finally, MRI is of limited use for 

patients with severe claustrophobia and contra-indicated in the presence of 

certain metallic implants, such as pacemakers or certain types of cardiac 

valves [108, 169-174]. 
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Figure 2.5 Contrast enhanced MRI image showing a type II endoleak (white arrow) [173]. 
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CHAPTER III 
 

Quasi-static elastography with the Lagrangian 

speckle model estimator (QSE-LSME) 
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3. Elastography 
 

Palpation has been the first diagnostic method used by physicians for 

millennia. It is used to determine the rigidity of the tissue and locate the 

region of the disease. The same principle has been used in elastography 

where the mechanical property is measured by analyzing the response of 

the tissue toward a force applied to it. Often the example of the stone and 

sponge is used to better explain the theory of elastography: the sponge has a 

larger deformation than the stone because it is softer (figure 3.1). The same 

concept applies for hard inclusion detection in the human body [175]. 
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Figure  3.1  Two  different  tissues:  Soft  and  hard  giving  different  reactions  toward  a 

compression force [176]. 
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Different elastography imaging approaches have been developed: 

Quasi-static  elastography,  harmonic  elastography  and  transient 

elastography (figure 3.2). The three approaches are based on the same 

principles that include the perturbation of the tissue using a quasi-static 

pressure, harmonic or transient mechanical source, the measurement of the 

response  or  the  displacement,  and  finally  the  deduction  of  the 

biomechanical properties of the tissue [177]. In this thesis, we will be 

focusing on the quasi-static elastography method to measure the strain of 

different components inside the aneurysm sac after endovascular repair 

(EVAR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 Three elastography imaging approaches: (a) Quasi-static elastography where the 

mechanical source is either from outside or inside the organ of interest (e.g., from inside in the 
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case of the pulsation of an artery), (b) harmonic elastography, and (c) transient elastography 

 

[177]. 
 
3.1 Quasi-static elastography 

 
Elastography aims to image the rigidity of a tissue, expressed as the 

Young’s modulus in Pascal (Pa) or a strain in percent when the applied 

stress is unknown. In the ideal case of a linear elastic material, the Young’s 

modulus is equivalent to the applied stress divided by the strain or 

deformation (figure 3.3): 

E (Young’s modulus) = ⁄
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Figure  3.3  A  stress/strain  curve  of  a  linear  elastic  material.  Beyond  a  certain  level  of 

deformation, the material reaches an elastic limit and breaks [178]. 
 

In quasi-static elastography, images of the tissue deformation are 

obtained at a given stress and others at an additional incremental applied 

stress [179, 180]. For pulsating organs (e.g., an artery), pair of images are 

taken at different phases of the cardiac cycle. Assuming affine deformation 

between applied stresses, elastography images expressed in percent of 

deformation are obtained. A modulus elastogram (i.e., an image of the 
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Young’s modulus) can be obtained by using an inverse problem, often 

based on finite element modeling [181]. 
 
 
 
 

3.2 Lagrangian speckle model estimator (LSME) 
 

The Lagrangian Speckle Model Estimator (LSME), a 2-D model 

estimator that allows the computation of a 2-D strain tensor [182, 183], has 

been used to compute elastograms and estimate the 4 components of the 2D 

displacement matrix. Elastograms of strain and shear deformations can be 

computed [182, 184, 185]. In a blood vessel, the motion normally occurs 

radially while the ultrasound beam is projected axially. This is why there is 

a need for a 2-D estimator as the LSME. 
 

- The following tissue motion model best explains the approach: Since 

vessel motion is radial, we can conclude that it is parallel to the beam at 

900 and 2700 for a cross-sectional or longitudinal view of the artery. The 
 

reaction of a vessel wall to a blood pressure pulsation is compression in 

systole and dilation in diastole. A radial strain is induced and can be 

measured. In order to measure the displacement in a specified zone, it is 

divided into small regions of interest (ROI) presented by Wmn. To 

approximate tissue motion, the LSME uses a Taylor-series expansion 
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where θi is a function of time, [Tr] is the translation vector and [LT] the 

linear geometrical transformation of coordinates: 

		 	= 		 	+ 		 	 		 		 (1)
 

	 	
	
	
	

In Eq. 1, p(x,y,t) and q(x,y,t) represent the new position of a point in the 

image and so the components of the displacement vector are: 

		 	= 		 	= 		 	+ ∆ 		

	

and:                         ∆ = 																														 																																				 (2)

 
 
 

From Eq. 2, the strain tensor (ε) is defined as: 

εij(t) = 	 	 (3)

 

 

 
 

where, εxx and εyy represent the lateral and axial strains, and εxy = εyy are 

the shear strain. The elastograms reported in this study are εyy [185]. It 

corresponds to the deformation along the ultrasound beam. 
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- The  LSME  is  implemented  using  optical  flow:  The  speckle  pattern 

reproduces the tissue motion with its complex kinematics because of the 

vascular tissue heterogeneity. Due to this observation, changes in the 

amplitude and phase of the backscattered ultrasound wavelets are 

observed. The speckle is represented as a continuum of a material 

property.  The  Lagrangian  coordinate  system  or  material  coordinate 

system describes the speckle kinematics as: 
 
 
 
 
 

= ▼I . 	+ = + + = Ix + Iy + 
 
 

(4) 
 

 
 
 
 

In Eq. 4, I(x(t),y(t)) is the speckle pattern and dI/dt is the total derivative 

expressing the speckle pattern rate of change of a point (x,y) when it is 

moving to (x + δx, y + δy) in the [t, t + δt] time interval. On the 

opposite,     /      gives the rate of change of  I(x(t), y(t)) at a fixed 

observation point (x,y) [186]. 
 

Between two consecutives images for a short time interval 

(i.e., for an affine deformation), the partial derivative I(x(t),y(t)) 

can be written: 
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I(x(t),y(t)) = Ix [m1 + m2x + m3y] + Iy[m4 + m5 + m6y] 
 

+ (I(x(t + δt), y(t + δt)) – I(x(t), y(t))). (5) 
 
 
 
 
 

In order to implement the optical flow-based implementation of 

the LSME, we assume that I(x(t), y(t)) = 0 inside the ROI (Mw), which 

allow us to write the discrete from of Eq. 5 as (p × q represent the size 

of the MWs): 
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Section II 
 

Abdominal aortic aneurysm follow-up after 

endovascular repair in a canine model with non- 

invasive vascular elastography 
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CHAPTER IV 
 

Abdominal aortic aneurysm follow-up after 

endovascular repair in a canine model with non- 

invasive vascular elastography 
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4.      Aortic aneurysm in a canine model 

 
 

Animal models for AAA creation (figure 4.0), should mimic pathological 

features of AAA in humans. Canine or porcine models have been used 

mostly to test the endovascular exclusion techniques because of the 

similarity in shape, size and dimension with the human’s AAA [187]. 
 

In  our project a canine model has been  chosen  since  endoleak  can  be 

created for a long period of time and are more persistent than the porcine 

model and thus more suitable for our follow up imaging protocol [188]. 

The absence of significant growth during follow-up facilitates animal 

handling   for   imaging.   An   approval   from   the   institutional   Animal 

Committee in accordance with guidelines of the Canadian Council on 

Animal Care is required. AAAs, type I and type II endoleaks were created 

following the protocol previously published by Lerouge et al. [188]. 
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Figure 4.0 Representation of the AAA reconstruction [188] 
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4.1 Abdominal    Aortic    Aneurysm    follow-up    after 

Endovascular  Repair  in  a   canine  model  with  Non- 

Invasive Vascular Elastography 

 
 
 
4.1.1 Introduction to Manuscript 

 
The goal of this master’s thesis research project is to apply and optimize 

Non-Invasive Vascular Elastography (NIVE) of abdominal aortic aneurysm 

(AAA)  after  Endovascular  Aneurysm  Repair  (EVAR)  with  Stent-Graft 

(SG) in a canine model to detect endoleaks and characterize thrombus 

organization. In order to do so, we conducted a correlation study between 

abdominal aortic aneurysm strain, Doppler ultrasound, CT and macroscopic 

examination. CT was chosen to be the gold standard for endoleak detection, 

whereas macroscopic tissue slides were the gold standard for thrombus 

differentiation (Organized and fresh thrombus). The accuracy of NIVE in 

detecting endoleak and differentiate the thrombus was assessed, leading to 

a comparison in strain values between type I and type II endoleak. 
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The effect of blood pressure on the strain results was studied by correlating 

the strain measurements and the aneurysm sac pressure. Furthermore a 

correlation between the sac measurements and strain results was evaluated 

to investigate the effect of size on the strain. 
 

A comparison between DUS and NIVE was evaluated by taking CT and 

macroscopic cuts as reference. 
 

NIVE could provide valuable information on the biomechanical aspects of 

the thrombus inside the aneurysm sac and the healing progression. It can 

also detect the presence of endoleaks as detected by CT scan. 
 
 
 
 

4.1.2 Role of authors 
 
The following is the order of authors for this submitted article and 

corresponding affiliations: 
 

 
 
 

Elie Salloum1,3,4,5; Antony Bertrand-Grenier1,3,4,5, MSc; Sophie Lerouge2,6, 

PhD; Claude Kauffman3,5,, PhD; Hélène Héon1,3,DVM, MSc; Eric 

Therasse1,2,3, MD; Marie Hélène Roy Cardinal3,4, PhD; Guy Cloutier1,3,4, 

PhD; Gilles Soulez1,2,3,4,, MD, MSc 
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1. Department of Radiology, Radio-Oncology and Nuclear Medicine, and 

Institute of Biomedical Engineering,    Université de    Montréal, 

Montreal, Quebec, Canada 
 

2. Department   of   Radiology,   Centre   hospitalier   de   l’Université   de 
 

Montréal (CHUM), Montreal, Quebec, Canada 
 

3. Centre  de  recherche  de  l’Université  de  Montréal     (CRCHUM), 
 

Montreal, Quebec, Canada 
 

4. Laboratory  of   Biorheology  and  Medical   Ultrasonics   (LBUM), 

Université de Montréal’s Hospital Research Centre (CRCHUM), 

Montreal, Quebec, Canada 
 

5. Clinical Image Processing Laboratory (LCTI), Univertité de Montréal’s 
 

Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada 
 

6. École de technologie supérieure, Montreal, Quebec, Canada 
 

 
 
 
 

The role of all authors of the submitted article is detailed below. 
 

 
 
 
 

Elie Salloum: First author of this project. Performed: Imaging acquisition 

protocol modifications, data collection, US-NIVE data collection, 

Ultrasound   imaging   interpretation   and   segmentation,   preparation   of 
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macroscopic tissue slides, preparation of necropsy, optimization of the ORS 

plugin software, literature review, presentation of the project at multiple 

conferences in 2013 ( International Tissue Elasticity Conference (Lingfield, 

UK), Radiological Society of North America (Chicago, IL); writer of 

manuscript submitted to Radiology Journal on the first of September 2014. 
 

Antony Bertrand-Grenier: Performed data collection, preparation of 

macroscopic tissue slides, literature review; correction of the manuscript for 

submission. 
 
 
 
 

Sophie  Lerouge:  Supervision  of  the  histology  and  macroscopic  slides; 
 

correction of the manuscript for submission. 
 

 
 
 
 

Claude Kauffman: Performed optimization and development of the CT 
 

scan platform; correction of the manuscript for submission. 
 

 
 
 
 

Hélène Héon: Performed follow up of the dogs before and after 

implantation; correction of the manuscript for submission. 



72 
 
 
 
 
 
 
 
 
Eric Therasse: Clinical context, stent graft and endoleak clinical 

parameters; correction of the manuscript for submission. 
 
 
 
 

Marie Hélène Roy Cardinal: Performed optimizations to the platform, 

contributed to troubleshooting of technical issues for calculation of 

elastograms; correction of the manuscript for submission. 
 
 
 
 

Guy Cloutier: Co-director and supervisor of my studies and this research 

project; correction of the manuscript for submission. 
 
 
 
 

Gilles Soulez: Director and supervisor of my studies and this research 

project; supervised the Ultrasound, CT scan acquisitions, performed 

angiography, review of segmentation and correlation of imaging tests; 

correction of manuscript. 
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4.1.3 Thesis format of Submitted Manuscript 

 
In section 4.2, the manuscript submitted to X for publication is presented. 

The list of references following the conclusion of this manuscript is the 

same as what was submitted, and the article’s reference numbers have been 

kept in round brackets and italicized “(1)” throughout the manuscript. In 

addition,   for   efficient   navigation   and   homogeneity   of   this   thesis, 

appropriate reference numbers in square brackets “[1]”, with links to the 

reference section of this thesis, have been maintained. 
 
 
 
 

4.2    Manuscript submitted to Radiology Journal 
 
The manuscript starts on the following page. 
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Abbreviated Title page 
 

 

Manuscript title: 
 
 
Abdominal aortic aneurysm follow-up after endovascular repair in a canine model with 

non-invasive vascular elastography 

Manuscript Type: 
 
 
Original Research 

 
Advances in Knowledge: 

 
 

1-  Ultrasound Non-Invasive Vascular Elastography (NIVE) has the potential of 

being a complementary follow-up imaging technique to detect endoleaks after 

EVAR and to characterize the thrombus organization based on its mechanical 

property 

2-  NIVE was capable of characterizing the endoleak and thrombus organization 

inside the aneurysm sac and thus possibly detect an endotension after EVAR 

3-  Strain measurements are independent from the systemic pressure and the 

pressure inside the aneurysm sac, as well as from the size of the endoleak and 

the thrombus. 
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Implications for patient care: 

 
 
NIVE is feasible and has the potential to characterize thrombus organization inside 

the aneurysm. No hardware modification is needed and can be a useful adjunct 

during Doppler examination after EVAR. It could reduce the need for CT angiography, 

the cost and the exposition to ionizing radiation and contrast agents for the follow up 

of AAA after EVAR. 

 
 
 

Summary Statement: 
 
 
NIVE technique could detect aneurysmal elasticity tissue properties not seen on B- 

mode and color Doppler and reduce the need for CT angiography, for the follow up of 

AAA after EVAR 
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PURPOSE 

 
 

To assess the ability of non-invasive vascular elastography (NIVE) to 

characterize endoleaks and thrombus organization in a canine model of abdominal 

aortic aneurysm (AAA) after endovascular aneurysm repair (EVAR) with stent-graft 

(SGs). 

METHODS AND MATERIALS 
 
 

SGs were implanted in a group of 18 dogs with an aneurysm created in the 

abdominal  aorta.  Type  I  endoleak  was  created  in  4  aneurysms,  type  II  in  13 

aneurysms and no endoleak in 1 aneurysm. Doppler ultrasound (DUS) and NIVE 

examinations were performed at baseline, 1-week, 1-month, 3-month and 6-month 

follow-up. Angiography, CT-scan and macroscopic tissue slides were performed at 

sacrifice.  Strain  values  were  computed  using  the  Lagrangian  Speckle  Model 

Estimator (LSME). Areas of endoleak, solid organized thrombus and fresh thrombus 

were identified and segmented by comparing the results of CT scan and macroscopic 

tissue slides. Strain values in areas with endoleak, organized and fresh thrombi were 

compared. 

RESULTS 
 
 

Maximal axial strains over consecutive heart cycles in endoleak, organized and 

fresh thrombus areas were respectively 0.78 ± 0.22, 0.23 ± 0.02, 0.10 ± 0.04 %. 
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Strain values were significantly different between endoleak and organized or fresh 

thrombus areas (p = 5,136E-09) and between organized and fresh thrombus areas (p 

= 0.00063). All endoleaks were clearly depicted on elastography examinations. No 

correlation was found between strain values and type of endoleak, sac pressure, 

endoleak size and aneurysm size. 

CONCLUSION 
 
 

NIVE can characterize endoleak and thrombus organization regardless of the 

size, pressure and the type of endoleak. 
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Introduction 

 
 

Endovascular aneurysm repair (EVAR) using stent grafts (SGs) is a promising 

alternative to surgery with lower peri-operative mortality and morbidity rates (2.1 – 4 

% versus 5.7 – 7 %), and shorter hospitalization time [2, 3, 96, 189] (1-4). The main 

limitation of this method is, however, the durability of the aneurysm exclusion and the 

occurrence of endoleaks requiring regular follow-up imaging [190] (5). For EVAR 

surveillance, different modalities such as computed tomography (CT) scanning, 

Doppler  ultrasound  (DUS),  and  magnetic  resonance  imaging  (MRI)  have  been 

adopted [159] (6). CT-scan is considered the gold standard for follow-up after EVAR 

but leads to cost increase and exposition to ionizing radiation and contrast agents 

[141] (7). Approximately 65% of follow-up costs have been attributed to CT scanning 

[85] (8). An effort was made for DUS to replace CT scan (or MRI) but the main 

concern is the lower sensitivity and specificity of the former method to detect 

endoleaks (failure in 23 to 32% of cases) [149, 158, 191-194] (9-14). 

The Lagrangian Speckle Model Estimator (LSME) is becoming established to 

non-invasively map vascular tissue deformations with a standard array transducer 

[195-198] (15-18). This technique, labeled non-invasive vascular elastography (NIVE), 

was first developed to characterize carotid atherosclerotic lesions. Then, a study 

conducted by Fromageau et al. reported preliminary data using the LSME in a type I 
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endoleak canine aneurysm model [199] (19). In the latter study, it was possible to 

characterize the axial strain of the aneurysm wall and differentiate the venous patch 

used to create the model from the native artery, and detect endoleaks as areas of 

strain  decorrelation  (equivalent  to  aliasing  on  Doppler  ultrasound).  However,  this 

study was limited by the small sample size, the absence of CT examinations as gold 

standard for endoleak diagnosis, and the absence of correlation with thrombus 

organization. 

Strain  measurement with NIVE  has  thus the  potential of  being a 

complementary follow-up imaging technique for EVAR to detect endoleaks and to 

characterize the thrombus organization based on its mechanical property. The 

objectives   of   the   present   study   were:   1)   to   correlate   NIVE   elastographic 

measurements with CT-scan, DUS, angiography, sac pressure measurements and 

histomorphometric data from macroscopic tissue slides; 2) to define elastographic 

patterns associated with type I and II endoleaks, and 3) to characterize the endoleak 

properties and organization of the thrombus based on strain measurements. 
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Methods 

 
 

A. Aneurysm Creation in a Canine Model 
 

 
In order to test NIVE for the detection of endoleaks and the characterization of 

thrombi within the covered aneurysm sac, aortic aneurysms were created in 18 

mongrel dogs between September 2011 and November 2013. The surgical 

construction of aneurysms was done with preservation of the collateral vessel patency 

(collateral flow) or ligation of all collateral vessels arising from the sac (absence of 

collateral flow). A SG was implanted after a recovery period of 8 weeks (3 dogs: TFLE 

- Zenith Flex® AAA Endovascular Graft, 15 dogs: ZFLE - Zenith Flex® AAA 

Endovascular Graft (Cook Medical, Bloomington, IN). The animals were planned to be 

divided into 3 groups: 5 dogs with type I endoleaks (short landing zone) with collateral 

flow, 7 dogs with type II endoleaks (adequate landing zone) with collateral flow, and 6 

dogs with neither endoleak nor collateral flow (adequate landing zone and collateral 

arteries ligated). All protocols were approved by the Animal Care Committee in 

accordance with the guidelines of the Canadian Council of Animal Care. At the end of 

the study, each dog was sacrificed and a necropsy was performed. The aneurysms 

were collected and fixed in buffered formalin. 
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B. Imaging Protocols 
 

DUS and elastography examinations were performed at baseline, 1-week, 1-month, 
 
3-month and 6-month follow-up. Angiography, CT-scan and macroscopic tissue cuts 

were also performed at sacrifice. All acquisitions were conducted under general 

anesthesia and by the same 20-year experienced technologist supervised by a 22- 

year experienced vascular radiologist. Before sacrifice, after dissection of the 

abdomen, the sac and aortic pressure were measured by introducing a Spiral needle 

(22G x 3 ´´) inside the aneurysm sac and the aorta, and connecting it to a pressure 
 
 
sensor. Between baseline and sacrifice, measurements of the aneurysm’s length, 

maximum and minimum diameters of the aneurysm, areas of the SG and aneurysm 

were taken during DUS acquisitions in order to correlate them with strain parameters, 

and to study the size evolution in the presence and absence of endoleak. 

 
 
 

B.1. Doppler Ultrasound Acquisitions 
 

All DUS examinations were performed using an Aixplorer scanner (Supersonic 

Imagine, Aix en Provence, France) equipped with a 256 elements (SuperLinear™ 

SL15-4) 7.5 MHz linear array transducer (pulse repetition frequency = 1.95 KHz, scale 

= 10 cm/s, sound speed = 1540 m/s). The high definition frame rate (HD/FR) was set 

to middle, the wall filter to low and the smoothing to 0. Ultrasound sequences were 
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acquired on longitudinal and three axial planes (proximal, mid and distal parts of the 

aneurysm). 

B.2  Radio Frequency (RF) Acquisitions 
 

Ultrasound RF data were acquired using a Sonix Touch scanner (Ultrasonix Corp., 

Vancouver, Canada) equipped with a 128-element L14-5/38 10 MHz linear array 

transducer. This probe had a 60% bandwidth at a frame rate of 25 Hz, RF data were 

sampled at 40 MHz, and acquisitions were performed over approximately 5 sec for 

each plane. Systemic pressures and pulse rates were measured at the beginning, 

middle and end of RF acquisitions (LifeWindow™ 6000V), as these variables 

potentially affect strain measures. The acquisitions were acquired on the same planes 

as DUS. 

 
 
 

B.3  Angiography 
 

Digital subtraction angiography (Koordinat 3D, Siemens Medical, Forcheim, 

Germany) was performed at baseline, before and during implantation of the SG, and 

at sacrifice by the same interventional radiologist. A pigtail catheter (4 or 5 French) 

was inserted in the abdominal aorta at the level of renal arteries. Acquisitions were 

performed during injection of 20 ml at 10 ml/s of iodine contrast agent (Iopamidol 

Isovue 200, Bracco Imaging Canada, Anjou, Quebec, Canada,  during implantation 

and Conray 60, Mallinckrodt Canada, Pointe-Claire, Quebec, Canada, during 
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sacrifice) to detect type Ia and II endoleaks. A second injection was performed after 

pulling the catheter at the distal portion of the aorta in order to detect type Ib 

endoleaks. 

 
 
 

B.4  CT-Scan 
 

At sacrifice, a contrast-enhanced CT-scan (Somatom 64, Siemens Medical, 

Erlangen, Germany) was acquired before and after contrast injection (69 ml of 

lohexol, Omnipaque 300 mg, GE healthcare, Mississauga, Ontario, Canada, iodine 

concentration at 4 ml/s) in arterial and venous phases to detect and classify the 

endoleak using recognized criteria [200] (20). All CT angiograms were acquired on a 

64 multi-detector scanner, with a retrospective gating, a tube voltage of 120 KV, a 

collimation of 0.6 mm and a pitch of 0.2. The reconstruction of 70% of the cardiac 

cycle was typically used for analysis. A bolus tracking method was utilized to start the 

arterial phase, whereas the venous phase was acquired 10 seconds after the end of 

the arterial phase. 

 
 
 

B.5  Macroscopic Tissue Slides 
 

After sacrifice, the aorta was perfused by 10% buffered formalin at 150 mmHg for 1 

hour before being harvested and fixed in formalin for 24h. For correlation with CT 

scans and US, axial macroscopic sections including the intact tissue/SG interface 
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were prepared every 3 mm using an Exakt cutting system (Exakt GmbH, Norderstedt, 

Germany). 

 
 
 

B.6 Segmentation and Post-processing 
 

Based on the cranio caudal level of axial acquisitions, maximum diameter of the 

aneurysm and SG orientation inside the aneurysm, a registration between CT-scan, 

DUS, macroscopic cuts and RF ultrasound images was performed after sacrifice. The 

CT-scan was taken as reference to define the endoleak area. The areas of organized 

and fresh thrombi were delimited on macroscopic tissue slides after matching all the 

information coming from the 3 techniques (DSA, CT scanner, B-mode and color 

Doppler DUS) (see Figure 4.1). A fresh thrombus was defined on macroscopic cuts 

as areas of loose thrombus with black brown coloration, which corresponds to fibrin 

blood clot containing phantoms of red blood cells and no visible fibrous organization 

according to histology (Figure 4.2). Organized thrombus presented a dense and 

yellowish appearance indicative of fibrous organization. 

Once identified, manual segmentations of the endoleak area, organized and fresh 

portions of thrombi were performed in all imaging modalities, except for RF ultrasound 

acquisitions. An application developed by our team for carotid artery segmentation 

[201] (21) was adapted for the segmentation of regions of interest (endoleak, 

organized and fresh thrombi) on RF acquisitions. All segmentations were performed 
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by the same technologist and verified by the same radiologist. The LSME-NIVE 

method was applied to compute time-varying curves of axial strain averaged over 

segmented areas for 3 or more consecutive cardiac cycles (Figure 4.3) [202] (22). 

Figure 4 explains the protocol adopted for the segmentation in each imaging modality. 

 
 
 

C. Strain Parameters 
 

Five NIVE strain parameters were investigated: the maximum and minimum axial 

strains (Max/MinAxStrain), maximum cumulated axial strain (MaxCumAxStrain), and 

maximum and minimum strain rates (Max/MinStrainRate). MaxAxStrain and 

MinAxStrain represent the mean value, over acquired cardiac cycles, of positive and 

negative peaks of the time varying instantaneous axial strain curve, respectively (see 

Figure 4.3a). The maximum positive axial strain corresponds to the peak dilatation, 

whereas the minimum negative axial strain represents the peak compression of the 

tissue. MaxCumAxialStrain is the average, over acquired cardiac cycles, of maximum 

positive values of the cumulated axial strain curve, corresponding to peak dilatation 

(see Figure 4.3b). The last 2 parameters, defined as the speed of deformation during 

a cardiac cycle, were computed from the time derivative of the instantaneous filtered 

axial  strain  curve,  as  previously  defined  [202]  (22).  MaxStrainRate  is  the  time 

averaged positive peaks of the strain rate curve, whereas MinStrainRate represents 

the mean of negative peaks. 
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D. Statistical Analysis 
 

Statistical tests were performed using SigmaStat (version 3.11, Systat Software Inc. 

San Jose, CA). Outcome comparisons of NIVE parameters (e.g., MaxAxStrain, 

MinAxStrain,  etc  …)  between  endoleak, organized  thrombus  and fresh  thrombus 

strain groups were analyzed using the Kruskal-Wallis method. All 2x2 multiple 

comparisons were estimated using Wilcoxon rank sum test, where statistical 

significance was adjusted using a Bonferroni correction. For each group (endoleak, 

organized and fresh thrombi), comparisons were performed between types I and II 

strain results using Wilcoxon rank sum test. 

For the correlation between strain and aneurysm sac pressure and systemic 

pressure measurements, as well between the aneurysm size (maximal diameter and 

area) at sacrifice, Pearson correlation tests were performed. Statistical significance 

was set at p < 0.05. 
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Results 
 
 

A. Technical feasibility and accuracy of NIVE for endoleak and thrombus 

characterization 

 
Eighteen mongrel dogs were studied after implantation of a SG. No 

complications occurred during the study. Four dogs had a type I endoleak, 13 dogs 

had a type II endoleak, and 1 dog had no endoleak and thus a perfect seal of the 

aneurysm sac. One type I converted in a type II endoleak probably due to an 

inadequate undersizing of the SG. Five EVARs aiming for a complete sealing 

eventually presented type II endoleaks, probably because of the presence of lumbar 

arteries that were not accessible for ligation. In total, all 18 dogs had solid thrombus in 

the sac; 6 of these dogs also had fresh thrombus. 

Strain measurements were successfully processed in all areas of interest 

defined after the process of segmentation and intermodal registration. As introduced 

earlier, 5 NIVE strain parameters were investigated: Max/MinAxStrain, 

MaxCumAxialStrain, and Max/MinStrainRate  [202] (22). All 5 parameters showed 

statistically  significant  differences  (p  ˂		0.001)  when  comparing  results  in  areas
 

corresponding  to  an  endoleak  versus  a  solid  or  a  fresh  thrombus.  Only  the 

MaxAxStrain  and  MinStrainRate  parameters  showed  significant  differences  (p  ˂

	



89 
	
	
	
	
	
	
	
	
0.001) between solid and fresh thrombi (Table 4.1). Figure 4.5 is reporting those 

differences for the case of the parameter MaxAxStrain. 

B. Comparison between type I and type II endoleaks 
 
 

We further compared strain parameters for the three categories of aneurysmal 

sac tissue properties (i.e., endoleak, fresh and organized thrombus) for AAA 

presenting type I and type II endoleaks. As summarized in Table 4.2, all 5 strain 

parameters showed no statistically significant differences between the two endoleak 

groups. 

C. Correlation between strain, sac pressure and systemic pressure 

measurements 

 
Table 4.3 summarizes geometric and mean sac pressure measurements for 

each dog. The mean sac pressure in AAA with type I and II endoleaks were 

respectively estimated at 67.5 ± 20.6 and 51.9 ± 19.8 mmHg (p = 0.2). Because 

MaxAxStrain   and   MeanStrainRate   could   discriminate   aneurysmal   sac   tissue 

properties (see Section A), those measures were correlated with mean pressure 

values within the sac and systemic pressure as well. None of these parameters 

presented a significant correlation (p > 0.05); as an example we present in Figure 4.6 

correlations for MaxAxStrain. 
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D. Correlation between strain measurements and aneurysm size 
 

Geometric measures in Table 4.3 were correlated with strain parameters. No 

significant correlations were found (p > 0.05). Figures 4.7 and 4.8 show the absence 

of  correlations  between  MaxAxStrain  and  the  maximum  aneurysm  and  endoleak 

areas respectively. 

 
 
 

Discussion 
 
 

With this preclinical model, we could confirm the feasibility of NIVE for the 

characterization of endoleaks and thrombus organization after EVAR. The LSME 

algorithm  estimated  the  strain  transmitted  by  the  cardiac  pulsation  inside  the 

aneurysm sac. No external compression or radiation force was needed. 

The results showed that the endoleak area, organized and fresh thrombi 

characteristics  display  different  values  on  NIVE.  Thus,  this  technique  could  be 

capable of detecting the presence of an endoleak in addition of being able 

characterizing the thrombus region. In this setting, NIVE could be a tool to monitor the 

healing process inside the aneurysm sac after EVAR [203] (23). The high strains 

obtained within the endoleak area are due to the highly heterogeneous content inside 

the region segmented; it indeed consists of a slow blood flow inducing some RF 

signal decorrelation mixed with immature soft thrombus promoting high deformations 

[199] (19). On the other hand, the organized thrombus is a solid homogeneous tissue. 
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This stiffer tissue expresses lower strain values and rates of deformation when 

submitted to blood pulsation. The fresh thrombus, a region of immature structuring 

displayed strain values lower than the solid thrombus and higher than the endoleak 

results. Reported strain results may be used to identify specific aneurysm regions and 

possibly follow its healing with time [102, 204, 205] (24-26). Indeed, the 

characterization of the thrombus organization has been presented as a new concept 

of  follow-up  using  MRI  [206,  207]  (27,  28).  It  was  shown  that  the  thrombus 

organization and identification of the different components inside the aneurysm sac 

could be used for the detection of endotension [206] (27). But MRI presents limited 

accessibility, higher cost than ultrasound, and metal artifact when using stainless- 

steel SG [108] (29). This is certainly an opportunity for the NIVE-LSME method. 

Differences in strain values could be expected when comparing aneurysms 

with type I and II endoleaks. Indeed, those endoleaks generally have different sac 

pressure regiments, as type I are typically at systemic pressure whereas retrograde 

flow in type II endoleak have lower pressure values [208-210] (30-32). Nevertheless, 

in our study no statistically significant difference was observed between measured 

sac pressures for type I and II endoleaks. This explains why there was no statistically 

significant difference between any strain parameters for the two types of endoleak. 

Another unexpected observation is the independence of strain results with the 

sac pressure. There was no correlation between the pressure measured inside the 
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aneurysm sac and strain values for the endoleak, organized and fresh thrombus 

areas. This may be explained by the fact that the strain is measured between two 

consecutive RF images at different pressures [195] (15). It is thus mainly influenced 

by the systolic and diastolic amplitude range, and less by the mean pressure. As most 

biological tissues display non-linear stress-strain relationships, the mean pressure is, 

at a lesser extent, a potential cofounding factor that should be considered. Note that 

we could not measure the pulse pressure amplitude within aneurysm sacs with 

available pressure sensors. 

It is logical to observe larger endoleak areas in larger aneurysms [211] (33). However, 

the leak size had no impact on strain measurements, which is an intrinsic property of 

the tissue under examination. 

This study was aiming to validate the NIVE technique and report typical strain 

values for the 3 AAA components (endoleaks, organized and fresh thrombi). This 

technique still requires approximately 5 minutes of post processing and elastograms 

are not displayed in real time. Thus, the operator was not able to have a visual 

feedback of strain values during image acquisitions. In this setting, it was not possible 

to compare directly the diagnostic accuracy of elastography with DUS or CT scanner. 

Furthermore, to enable detection of endoleaks or thrombus characteristics, diagnostic 

thresholds would need to be defined. This will be under investigation in a phase II 

clinical study [212] (34). In a clinical workflow, we believe NIVE acquisition could be 
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easily acquired at the end of a complete B-mode and color Doppler examination to 

characterize thrombus organization and possibly detect slow flow endoleaks and 

endotension that cannot be seen on Doppler examination [149, 158, 191] (9,13,14). 

 
 
 

Conclusion 
 
 

The results showed that different values of NIVE parameters were displayed in 

endoleak and thrombus with different grade of thrombus organization inside the 

aneurysm sac and thus possibly detect an endotension. Even though, NIVE could not 

differentiate type I and II endoleaks. This new technique could be a good addition to 

the radiology arsenal for detecting aneurysmal tissue properties not seen on B-mode 

and color Doppler. It could reduce the need for CT angiography for the follow up of 

AAA after EVAR. 
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 Endoleak Organized Fresh P Value * 

(%) 
(Mean ± SD) (Mean ± SD) 

(%) (%)
E Vs. OT 

 

E Vs. FT OT Vs. FT

MaxAxStrain 

MinAxStrain 

MaxCumAxStrain 

MaxStrainRate 

MinStrainRate 

0,78 ± 0.22 0,10 ± 0,04 0,23 ± 0,02 
 

-0,44 ± 0,30 -0,17 ± 0,06 -0,17 ± 0,05 
 

0,85 ± 0,56 0,16 ± 0,10 0,20 ± 0,08 
 

5,61 ± 3,75 1,16 ± 0,60 1,66 ± 0,69 
 

-6,00 ± 3,71 -1,10 ± 0,53 -1,76 ± 0,81 

˂ 0.001
 

0.004 

˂0.001
 

˂0.001
 

˂0.001 

˂	0.001
 

0.023 
 

0.002 
 

0.006 
 

0.006 

˂ 0.001
 

0.818 
 

0.316 
 

0.11 
 

0.033 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1. NIVE strain parameters in segmented regions 
 
 

(Mean ± SD) 
Thrombus Thrombus 

 
 
 
 
 
 
 
 
 
 
 
 

Note:  Max/MinAxStrain  =  maximum  and  minimum  axial  strains;  MaxCumAxStrain  = 
maximum cumulated axial strain; Max/MinStrainRate = maximum and minimum strain 
rates; E = Endoleak; OT = Organized Thrombus; FT = Fresh Thrombus; * = Wilcoxon 
rank sum test 
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Table 4.2. Comparison as a function of endoleak type (aneurysms with type I vs. 
type II endoleak) 

 

Type I (average ± SD) 
Type II (average ± 

SD) 

 

P value 

 
 

MaxAxStrain 

Endoleak 
O.T 
F.T 

0,87 ± 0,34 
0,10 ± 0,03 

0,25 

0,74 ± 0,21 
0,10 ± 0,04 
0,23 ± 0,02 

P = 0.39 
P = 0.93 

N/A 
 
 
 

MinAxStrain 

Endoleak 
O.T 
F.T 

-0,68 ± 0,32 
-0,19638 ± 0,07 

-0,16 

-0,47 ± 0,40 
-0,17 ± 0,06 
-0,17 ± 0,05 

P = 0.41 
P = 0.49 

N/A 
 
 

MaxCumAxStr 
ain 

Endoleak 
O.T 
F.T 

0,96 ± 0,54 
0,19 ± 0,09 

0,30 

0,83 ± 0,56 
0,15 ± 0,09 
0,19 ± 0,08 

P = 0.72 
P = 0.46 

N/A 
 
 
 

MaxStrainRate 

Endoleak 
O.T 
F.T 

6,55 ± 3,74 
1,10 ± 0,21 

1,35 

5,55 ± 3,77 
1,18 ± 0,69 
1,72 ± 0,75 

P = 0.68 
P = 0.95 

N/A 
 
 

MinStrainRate 
Endoleak 

O.T 
F.T 

-8,77 ± 5,17 
-1,23 ± 0,42 

-1,40 

-5,38 ± 3,10 
-1,06 ± 0,57 
-1,82 ± 0,89 

P = 0.14 
P = 0.59 

N/A 
 
 
Table 2: Comparison of strain values in endoleak, organized thrombus and fresh thrombus 
regions as a function of endoleak type (aneurysms with Type I vs type II endoleak). No 
statistical significant difference was found for any of the parameters 
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Table 4.3. Aneurysm and endoleak size measurements 
 
 
 
 

Dog  
Type of 

endoleak 

Area of 
the 
leak 
(Min- 
Max) 
CT 

(mm2) 

 

Area of 
the 

aneurysm 
(Min-Max) 

CT 
(mm2) 

 
Diameter 

of the 
aneurysm 

CT 
(mm) 

Diameter 
variation 
between 

sacrifice/1 
week post 

US 
% 

 
 
Mean sac 
pressure 
(mmHg) 

 

1 IB 124 - 59 153 – 487 26.7 - 11.9 + 8.6% 88 
 

2 II 14 - 20 104 – 284 20.9 - 11.2 - 4.7% 49 
 

3 II 7 - 18 102 – 348 23.9 - 10.9 - 13.1% 55 
 

4 II 1 – 5 113 – 322 21.7 - 12.6 - 16.4% 45 
 

5 II 5 - 79 121 – 274 21.1 - 12.9 - 1.57% 33 
 

6 II 4 - 11 105 – 274 20.4 - 11.2 - 7.7% 70 
 

7 II 5 - 36 132 – 303 20.8 - 11 - 3.19% 70 
 

8 II 1 – 9 131 – 456 27.2 - 12.2 - 8.4% 89 
 

9 II Fail 106 – 246 19.7 - 10.2 - 2.07% 67 
 

10 II 9 - 48 147 – 345 23.4 - 11 - 22.9% 54 
 

11 II 1 - 10 129 – 265 20.0 - 11.2 - 7.3% 45 
 

12 II 4 - 74 169 – 290 20.8 - 10.4 - 4.6% 54 
 

13 IB 4 – 4 105 – 246 20.9 - 11.8 + 13.2% 60 
 

14 IB 5 - 85 143 – 371 23.7 - 10.7 + 6.42% 80 
 

15 0 - 102 – 235 19.2 - 10.5 - 5.5% NA 
 

16 IA 1 - 13 101 – 228 18.6 - 10.3 - 9.13% 42 
 

17 II 4 - 5 63 – 228 16.1 - 8.4 - 2.58% 24 
 

18 II 3 - 8 142 – 433 25.5 - 12.5 - 19.03% 23 
 

Note: Type of endoleak according to the Society of Vacular Surgery Classification (0= no 
endoelak).  (ref). The % of difference in aneurysm diameter is measured between sacrifice 
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and 1 week after implantation of the SG on DUS. A (+) sign indicates that the diameter has 
increased whether a (-) sign indicates a shrinkage in the aneurysm diameter. The dog 
number 15 had no endoleak detected through CT scan, DUS and macroscopic tissue slides 
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Figure Captions 
 
Figure 4.1. The macroscopic tissue slide is first analyzed to detect the presence of an 

endoleak through a defect/gap in the aneurysm sac. If the presence of the defect 

correlates with CT scan contrast enhancement in the same region, presence of an 

endoleak is confirmed. The rest of the tissue in the aneurysmal sac is characterized 

as organized or fresh thrombus according to its appearance on macroscopic cuts. 

Note: C+ means contrast on CT scanner. 

 
Figure 4.2. Example of macroscopic tissue slide (a) with endoleak (1), fresh 

thrombus (2) and organized thrombus (3). Corresponding histology with Movat 

staining (b) and immunostaining of alpha smooth muscle actin (αSMA, in brown)) (c 

and d). The brown region corresponds to the dense fibrous connective tissues 

(organized thrombus). The blue region corresponds to the fresh thrombus (c and d) 

which confirms the areas of fresh thrombus (loose thrombus with black brown 

coloration and absence of fibrous organization) and organized thrombus (dense 

fibrous organization with a yellowish appearance) on the macroscopic tissue slides 

 
Figure 4.3a. LSME was applied to compute time varying strain curves for 3 or more 

consecutive cardiac cycles. This figure shows the instantaneous axial strain curve on 

90 frames (7 cycles). MaxAxStrain and MinAxStrain represent the mean value, over 
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acquired cardiac cycles, of positive and negative peaks of the time varying 

instantaneous axial strain curve, respectively. 

 
Figure 4.3b. A cumulated axial strain curve over the same 90 frames (7 cycles). 

MaxCumAxialStrain  is  the  average,  over  acquired  cardiac  cycles,  of  maximum 

positive values of the cumulated axial strain curve, corresponding to peak dilatation. 

 
Figure 4.4a. CT scan image of dog 1 (A Stena Labrador female, 6 years old and 

weights 30.5 Kg) taken before sacrifice and showing a large type I endoleak at the 

proximal neck. CT scan is used as a reference for endoleak segmentation and 

registration on elastogram. 

 
Figure 4.4b. Transverse acquisition of Doppler Ultrasound at the same level than CT 

 
scan (Figure 4.4a). 

 
 
Figure 4.4c. A macroscopic tissue slide at the same level shown in figure 4.4a and 

 
4.4b. The endoleak area is well visible (dashed arrow). A small area of fresh 

thrombus seen as a soft black brown area is depicted (white arrow). The organized 

thrombus is seen at the upper portion (thin arrow with an oval head) of the 

macroscopic cut. These 3 regions of interest located on the macroscopic tissue slide 

are segmented and registered on the elastogram for computation of strain 

parameters. 
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Figure 4.4d. Cumulated axial strain elastogram of the entire aneurysm sac at the 

same level that Figure 4.4,a,b,c The region of accumulation of very high and low 

strain values on the middle left of the elastogram (white arrow) corresponds to the 

region of endoleak. 

 
Figure 4.4e. Cumulated axial strain elastogram of the endoleak region of the same 

dog 1 at the same level segmented based on the CT scan and macroscopic results 

showed in figure 4.4a and 4.4c. 

 
Figure 4.4f. Cumulated axial strain elastogram of the fresh thrombus region of the 

same dog 1 at the same level segmented based on the macroscopic results showed 

in figure 4.3c. 

 
Figure 4.4g. Cumulated axial strain elastogram of the organized thrombus region of 

the same dog 1 at the same level segmented based on the macroscopic results 

showed in figure 4.3c. 

 
Figure 4.5. Mean and SD Maximum Axial Strain values for the three regions of 

interest. A statistical significant difference was found when comparing the endoleak, 

organized and fresh thrombi. 

 
Figure 4.6. No correlation has been found between the pressure measured inside the 

aneurysm sac and the maximum axial strain parameter results. 
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Figure 4.7. No correlation has been found between the aneurysm area measured on 

 
CT scan and the maximum axial strain parameter results. 

 
 
Figure 4.8. No correlation has been found between the endoleak area measured on 

 
CT scan and the maximum axial strain parameter results. 
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Figure 4.1. The macroscopic tissue slide is first analyzed to detect the presence of an endoleak through a 
defect/gap in the aneurysm sac. If the presence of the defect correlates with CT scan contrast enhancement in the 
same region, presence of an endoleak is confirmed. The rest of the tissue in the aneurysmal sac is characterized 

as organized or fresh thrombus according to its appearance on macroscopic cuts. 
 

Note: C+ means contrast on CT scanner 
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Figure 4.2.  Example of macroscopic tissue slide (a) with endoleak (1), fresh thrombus (2) and organized thrombus 
(3). Corresponding histology with Movat staining (b) and immunostaining of alpha smooth muscle actin (αSMA, in 
brown)) (c and d). The brown region corresponds to the dense fibrous connective tissues (organized thrombus). 
The blue region corresponds to the fresh thrombus (c and d) which confirms the areas of fresh thrombus (loose 

thrombus with black brown coloration and absence of fibrous organization) and organized thrombus (dense fibrous 
organization with a yellowish appearance) on the macroscopic tissue slides. 
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Figure 4.3a. LSME was applied to compute time varying strain curves for 3 or more consecutive cardiac cycles. 
This figure shows the instantaneous axial strain curve on 90 frames (7 cycles). MaxAxStrain and MinAxStrain 

represent the mean value, over acquired cardiac cycles, of positive and negative peaks of the time varying 
instantaneous axial strain curve, respectively. 
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Figure 4.3b. A cumulated axial strain curve over the same 90 frames (7 cycles). MaxCumAxialStrain is the 

average, over acquired cardiac cycles, of maximum positive values of the cumulated axial strain curve, 
corresponding to peak dilatation. 
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Figure 4.4a.: CT scan image of dog 1 (A Stena Labrador female, 6 years old and weights 30.5 Kg) taken before 
sacrifice and showing a large type I endoleak at the proximal neck. CT scan is used as a reference for endoleak 

segmentation and registration on elastogram. 
 

23x25mm (300 x 300 DPI) 
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Figure 4.4b. Transverse acquisition of Doppler Ultrasound at the same level than CT scan (Figure 4a). 
 

26x25mm (300 x 300 DPI) 



109 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.4c. A macroscopic tissue slide at the same level shown in figure 4a and 4b. The endoleak area is well 
visible (dashed arrow). A small area of fresh thrombus seen as a soft black brown area is depicted (white arrow). 
The organized thrombus is seen at the upper portion (thin arrow with an oval head) of the macroscopic cut. These 
3 regions of interest located on the macroscopic tissue slide are segmented and registered on the elastogram for 

computation of strain parameters. 
 

24x25mm (300 x 300 DPI) 
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Figure 4.4d. Cumulated axial strain elastogram of the entire aneurysm sac at the same level that Figure 4,a,b,c 
The region of accumulation of very high and low strain values on the middle left of the elastogram (white 

arrow) corresponds to the region of endoleak. 
 

28x27mm (300 x 300 DPI) 
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Figure 4.4e. Cumulated axial strain elastogram of the endoleak region of the same dog 1 at the same level 
segmented based on the CT scan and macroscopic results showed in figure 4a and 4c. 

 
28x27mm (300 x 300 DPI) 
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Figure 4.4f. Cumulated axial strain elastogram of the fresh thrombus region of the same dog 1 at the same level 
segmented based on the macroscopic results showed in figure 3c. 

 
28x27mm (300 x 300 DPI) 
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Figure 4.4g. Cumulated axial strain elastogram of the organized thrombus region of the same dog 1 at the same 
level segmented based on the macroscopic results showed in figure 3c. 

 
28x27mm (300 x 300 DPI) 
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Figure 4.5. Mean and SD Maximum Axial Strain values for the three regions of interest. A statistical significant 
difference was found when comparing the endoleak, organized and fresh thrombi. 
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Figure 4.6. No correlation has been found between the pressure measured inside the aneurysm sac and the 
maximum axial strain parameter results. 
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Figure 4.7. No correlation has been found between the aneurysm area measured on CT scan and the maximum 
axial strain parameter results. 
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Figure 4.8. No correlation has been found between the endoleak area measured on CT scan and the maximum 
axial strain parameter results. 
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4.3 Further discussion and future perspectives 
 

A further discussion on the methodology, results and future work is 

provided in this postscript. 
 
 
 
 

4.3.1 Study Methodology 
 

The first applications of ultrasound elastography were developed for 

breast cancer (figure 4.9) to complement conventional B-mode ultrasound 

[213]. A tumor region is usually harder than healthy tissues, which allows 

elastography to detect the elasticity difference. As another non-vascular 

application, renal elasticity has presented another success by providing the 

possibility of detecting early state kidney transplant rejection [214] or liver 

elastography to grade liver fibrosis [101]. 
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Figure 4.9. Quasi-static compression elastography examination of a breast carcinoma. The 

color indicates the relative stiffness (red to blue) [215]. 

 
 
 

Vascular elastography using IVUS (intravascular ultrasound) has 

shown the ability to distinguish between fiber, fibro fatty and fatty plaques 

in coronary and carotid arteries [216-220]. A small US emitter is attached to 

the top of a catheter, introduced either through femoral or brachial arterial 

approach to reach the coronary or carotid arteries. This technique permits to 

the  physician  to  see  the  lumen  and  wall  of  the  artery  and  evaluate 
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accurately the plaque characteristics with B-mode ultrasound. Ultrasound 

waves are emitted towards the artery and the reflection of these sound 

waves can be translated to images [221]. IVUS is more expensive than 

angiography and is used to evaluate SG apposition in the landing zone 

during EVAR [222-224]. 

IVUS combined with elastographic examination (endovascular 

elastography or EVE) was first reported in 1998 by Chris L. de Korte et al. 

[116]. Its clinical applications are still limited because it is expensive and 

invasive and it is mainly used for research purpose in coronary arteries. 

Quasi-static elastography was subsequently adapted to non-invasive 

acquisitions with an extracorporeal probe; it was labeled non-invasive 

vascular elastography (NIVE). NIVE was originally proposed for 

characterizing the mechanical properties of the carotid artery wall [225]. 

The  force  causing  the  deformation  in  NIVE  is  applied  by  the  blood 

pulsation radially, where the ultrasound beam propagates axially. The main 

advantage of NIVE when compared to shear wave elastography (SWE, 

Supersonic Imagine) or acoustic radiation force impulse (ARFI, Siemens) is 

the penetration depth. NIVE is capable of reaching higher penetration depth 

since it is based on the RF data and the blood pulsation. On the other hand, 

SSI and ARFI are less reliable at depths greater than 6 cm (figure 4.10) 

[117].   This   is   an   important   advantage   for   any   elastography   study 
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concerning the abdominal aortic region, which is usually deeper than 10 

 

cm. 
 

. 
 

 
 

Figure 4.10. The resolution and penetration of some imaging modalities [117]. 
 
 
 
 

In the current project, we used a version of NIVE that had been 

optimized and implemented in a post processing and visualization platform 

(Visual, Object Research System ORS, Montreal, Canada) [201]. The RF 

raw data acquired during the dog examinations were loaded to the platform, 

where a B-mode image was reconstructed allowing image segmentation 

and registration between elastograms to obtain images of different vascular 

components (lumen, thrombus, aneurysm wall and stent-graft). 
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The segmentation was performed only on one frame and an algorithm 

developed by our team propagated the segmentation on the subsequent 

frames acquired during the cine loop acquisition [201, 202]. The time 

needed to obtain the elastography results for an acquisition of 90 frames 

was  approximately  5  minutes.  The  different  strain  parameters  were 

exported in an Excel sheet for analyzing and investigating. 
 

When it comes to the acquisition of the RF data, the total time needed 

for acquiring 90 frames was approximately 5 seconds. This is why a further 

development of the platform toward a real time NIVE is needed to provide 

real time feed-back to allow the detection by the operator of areas with 

higher  strain  values  that  can  be  associated  with  endoleaks  or  fresh 

thrombus. In the future, DUS and NIVE should be combined in the same 

examination to improve the sensitivity for endoleak detection and give new 

information on thrombus organization. It could reduce the need for long 

term CT scan follow-up. 
 
 
 
 

4.3.2 Limitations 
 

We have faced different limitations in our study: 
 

- Some of the dogs had a fast breathing rate during the acquisition, 

which caused motion artifacts, altering segmentation propagation. 
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- A difficulty of segmentation of couple of subjects because of the poor 

quality of the B-mode image. 
 
 
 
 

4.3.3 Future work 
 

We recently started the clinical phase of the study, where 3 groups of 
 

15 patients will be selected based on clinical and CT-angiography criteria. 

Group 1 will include patients without endoleak and AAA volume decrease 

of more than 20% following EVAR, group 2 patients will consist in AAA 

without endoleak and no more than 10% sac volume variation, and group 3 

will include patients with endoleak or endotension and more than 20% sac 

volume increase. Ultrasound B-mode RF acquisitions will be acquired. We 

will compare strain values of the different AAA components in the three 

groups. Thresholds on strain parameters will be tested to detect endoleaks. 

Then strain values will be correlated with diameter, volume and stretch 

index variation between baseline and contemporary CT scans. 
 

A second prospective study to validate strain elasticity thresholds for 

endoleak detection and characterization of thrombus organization over time 

will take place. The goal of this second clinical feasibility study is to collect 

longitudinal strain and elasticity measurements in the early post EVAR 

period (before one-year). We will include 15 patients with AAA scheduled 



127 
 
 
 
 
 
 
 
 
for EVAR. These patients will have a baseline CT and baseline QSE-LSME 

examination. Doppler ultrasound with QSE-LSME examinations will then 

be performed at 3 and 12 months. The variation of strain values over time 

frames will be analyzed and correlated with volume progression and 

endoleak occurrence on CT scans. 
 
 
 
 

4.3.4 Final Conclusion 
 

Ultrasound  Non-Invasive  Vascular  Elastrography  is  a  technique 

which is feasible in a preclinical model of EVAR with endoleak, and has 

potential  to  detect  endoleak  and  characterize  thrombus  organization. 

Further developments are needed to enable real-time elastograms optimized 

for AAA follow-up after EVAR. It could play an important role when 

combined to other ultrasound techniques such as Doppler ultrasound 

examinations.  This provides important data for  translating  experimental 

data to clinical practice. 
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