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RÉSUMÉ

Dans le contexte de la caractérisation des tissus mammaires, on peut se demander

ce que l’examen d’un attribut en échographie quantitative (« quantitative ultrasound » -

QUS) d’un milieu diffusant (tel un tissu biologique mou) pendant la propagation d’une onde de

cisaillement ajoute à son pouvoir discriminant. Ce travail présente une étude du comportement

variable temporel de trois paramètres statistiques (l’intensité moyenne, le paramètre de structure

et le paramètre de regroupement des diffuseurs) d’un modèle général pour l’enveloppe écho de

l’onde ultrasonore rétrodiffusée (c.-à-d., la K-distribution homodyne) sous la propagation des

ondes de cisaillement.

Des ondes de cisaillement transitoires ont été générés en utilisant la mèthode d’ imagerie de

cisaillement supersonique ( «supersonic shear imaging » - SSI) dans trois fantômes in-vitro ma-

croscopiquement homogènes imitant le sein avec des propriétés mécaniques différentes, et deux

fantômes ex-vivo hétérogénes avec tumeurs de souris incluses dans un milieu environnant d’agar-

gélatine. Une comparaison de l’étendue des trois paramètres de la K-distribution homodyne avec

et sans propagation d’ondes de cisaillement a montré que les paramètres étaient significativement

(p < 0,001) affectès par la propagation d’ondes de cisaillement dans les expériences in-vitro et

ex-vivo. Les résultats ont également démontré que la plage dynamique des paramétres statis-

tiques au cours de la propagation des ondes de cisaillement peut aider à discriminer (avec p <

0,001) les trois fantômes homogènes in-vitro les uns des autres, ainsi que les tumeurs de souris

de leur milieu environnant dans les fantômes hétérogénes ex-vivo. De plus, un modéle de régres-

sion linéaire a été appliqué pour corréler la plage de l’intensité moyenne sous la propagation des

ondes de cisaillement avec l’amplitude maximale de déplacement du « speckle » ultrasonore. La

régression linéaire obtenue a été significative : fantômes in vitro : R2 = 0.98, p < 0,001 ; tumeurs

ex-vivo : R2 = 0,56, p = 0,013 ; milieu environnant ex-vivo : R2 = 0,59, p = 0,009. En revanche,

la régression linéaire n’a pas été aussi significative entre l’intensité moyenne sans propagation

d’ondes de cisaillement et les propriétés mécaniques du milieu : fantômes in vitro : R2 = 0,07,

p = 0,328, tumeurs ex-vivo : R2 = 0,55, p = 0,022 ; milieu environnant ex-vivo : R2 = 0,45, p =

0,047.

Cette nouvelle approche peut fournir des informations supplémentaires à l’échographie quan-

titative statistique traditionnellement réalisée dans un cadre statique (c.-à-d., sans propagation

d’ondes de cisaillement), par exemple, dans le contexte de l’imagerie ultrasonore en vue de la
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classification du cancer du sein.

Mots clés: échographie quantitative, K-distribution homodyne, propagation d’ondes de

cisaillement.



ABSTRACT

In the context of breast tissue characterization, one may wonder what the consideration of a

quantitative ultrasound (QUS) feature of a scattering medium (such as a soft biological tissue) un-

der propagation of a shear wave adds to its discriminant power. This work presents a study of the

time varying behavior of three statistical parameters (the mean intensity, the structure parameter

and the clustering parameter of scatterers) of a general model for the ultrasound backscattering

echo envelope (i.e., the homodyned K-distribution) under shear wave propagation.

Transient shear waves were generated using the supersonic shear imaging (SSI) method in

three in-vitro macroscopically homogenous breast mimicking phantoms with different mechani-

cal properties, and two ex-vivo heterogeneous phantoms with mice tumors included in an agar-

gelatin surrounding medium. A comparison of the range of the three homodyned K-distribution

parameters with and without shear wave propagation showed that the parameters were signifi-

cantly (p < 0.001) affected by shear wave propagation in the in-vitro and ex-vivo experiments.

The results also demonstrated that the dynamic range of the statistical parameters during shear

wave propagation may help discriminate (with p < 0.001) the three in-vitro homogenous phan-

toms from each other, and also the mice tumors from their surrounding medium in the ex-vivo

heterogeneous phantoms. Furthermore, a linear regression model was applied to relate the range

of the mean intensity under shear wave propagation with the maximum displacement amplitude

of speckle. The linear regression was found to be significant : in-vitro phantoms : R2 = 0.98, p

< 0.001 ; ex-vivo tumors : R2 = 0.56, p = 0.013 ; ex-vivo surrounding medium : R2 = 0.59, p =

0.009. In contrast, the linear regression was not as significant between the mean intensity without

shear wave propagation and mechanical properties of the medium : in-vitro phantoms : R2 = 0.07,

p = 0.328, ex-vivo tumors : R2 =0.55, p = 0.022 ; ex-vivo surrounding medium : R2 = 0.45, p =

0.047.

This novel approach may provide additional information to statistical QUS traditionally per-

formed in a static framework (i.e., without shear wave propagation), for instance, in the context

of ultrasound imaging for breast cancer classification.

Keywords : Quantitative ultrasound, homodyned K-distribution, shear wave propaga-

tion.
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CHAPITRE 1

INTRODUCTION

Early screening and detection of small lesions and efficient follow-up are key issues for the

optimal treatment of women afflicted by breast cancer. Needle biopsy is the gold standard for

breast cancer diagnosis ; however, this is an invasive method. Furthermore, a lot of irrelevant

biopsies are performed each year. Therefore, medical imaging methods have been used to reduce

the number of non-necessary biopsies. These methods are categorized with the following three

modalities : X-ray mammography, magnetic resonance imaging (MRI) and ultrasound echogra-

phy. Mammography reduces breast cancer mortality, but the image contrast is reduced in young

women because of the high breast parenchyma density. Moreover, it cannot determine the nature

of lesions. The highest resolution among the three mentioned modalities belongs to MRI, but

the application of MRI is limited due to its high cost and time consuming acquisition procedure.

Ultrasound imaging with no radiation has been known as a complete non-invasive method in

breast cancer diagnosis. It is widely available and relatively cheap but has a lower resolution and

is operator dependent. The preoperative assessment of breast cancer most often requires to com-

bine mammography, MRI and ultrasound imaging because of their respective limitations, which

increases the health care costs and time of diagnosis. It is thus clear that new developments in me-

dical imaging analysis techniques are required to detect breast tumors and determine the nature

of lesions ; i.e., to differentiate between malignant and benign tumors. The purpose of this study

is to propose a new approach in ultrasound image processing to provide additional information

with potential application in breast lesion detection and classification.

Quantitative methods such as quantitative ultrasound (QUS) and dynamic elastography have

been developed to improve the accuracy of ultrasound imaging. Significant differences have been

observed in the microstructure of breast pathological tissues. Quantitative ultrasound provides

information about the microstructure of tissues, such as cell organization, which may help distin-

guish between a pathological tissue and a healthy tissue. Different statistical QUS distributions

have been proposed to model the ultrasound echo envelope. The homodyned K-distribution is

a general statistical distribution with physically interpretable parameters. From another point of

view, a stiffer tissue may be an early warning in breast cancer diagnosis. Therefore, elastography

methods have been used to estimate tissue viscoelasticity in order to categorize pathological and
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normal tissues. Ultrasound dynamic elastography assesses the mechanical properties of tissue

through shear wave propagation and detection of the tissue displacement. More sophisticated

QUS and dynamic elastography methods are needed to improve breast cancer diagnosis.

Different types of information are obtained from QUS and dynamic elastography. This pro-

ject proposes a novel approach in QUS to understand the behavior of ultrasound scatterers under

shear wave propagation. The main objective is to assess the time evolution of statistical QUS

parameters under shear wave propagation in order to obtain additional information for tissue

characterization. In this study, five hypotheses are evaluated to achieve the main objective. It is

first hypothesized that the homodyned K-distribution parameters estimated from ultrasound echo

envelope data are affected by shear wave propagation. The second hypothesis states that the dif-

ference between the maximal and minimal values of the homodyned K-distribution parameters

during shear wave propagation can be used to differentiate between different tissue mimicking

phantoms. The third hypothesis is related to the correlation between the maximal displacement

amplitude of the medium in the phantoms or the reciprocal of the Young’s modulus with the

range of the parameters of the homodyned K-distribution during shear wave propagation in the

in-vitro experiments. The fourth hypothesis, which is evaluated with ex-vivo experiments on mice

tumors, demonstrates that the difference between the maximal and minimal values of the homo-

dyned K-distribution parameters during shear wave propagation can help to distinguish the mice

tumors from their surrounding medium. Finally, correlations between the maximal displacement

amplitude of the medium in the mice tumors with the range of the parameters of the homodyned

K-distribution during shear wave propagation are examined in the last hypothesis.

The main body of this thesis is separated into five chapters. Following the introduction, the

second chapter presents a literature review and background. This chapter contains an overview

of non-invasive clinical methods used in breast cancer diagnosis. Then, ultrasound imaging and

its main challenges in breast cancer diagnosis are explained. The rationale for QUS and elasti-

city imaging are also presented. A review on ultrasound echo envelopes and elasticity imaging

methods is presented. The third chapter presents the methodology used in this research study. It

starts with the hypotheses of the current study and a general overview of the experiments corres-

ponding to each hypothesis. Next, it continues with experimental procedures in the in-vitro and

ex-vivo experiments. The data analysis to estimate the homodyned K-distribution parameters du-

ring shear wave propagation is presented as well. Chapter four presents the results obtained from

the post processing of the experimental data. The results are classified into five sections regar-
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ding mentioned hypotheses. The feasibility of considering QUS under shear wave propagation as

a new approach in ultrasound imaging is evaluated. The last chapter presents a discussion and a

conclusion. In this chapter, the results are explained with more details and the limitations of the

study are presented. Finally, future works are discussed as a perspective of this study. The appen-

dix section includes two published conference papers that include preliminary results related to

this study.



CHAPITRE 2

LITERATURE REVIEW AND BACKGROUND

2.1 Significance of the study : Breast cancer statistics and clinical diagnostic me-

thods

According to the National Cancer Institute of Canada, breast cancer is the most common

cancer among Canadian women. In 2012, an estimated 22,700 women were diagnosed and 5,100

died of breast cancer in Canada. Statistically, an average of 14 women die of breast cancer every

day. Early diagnosis and detection of smaller tumors are key issues in optimal treatment (10).

Clinical breast exam (CBE) is a medical examination performed by trained professionals for

early diagnosis of breast cancer (23). The CBE-detected suspicious breast lesions can be further

examined using different breast screening methods such as mammography. Needle biopsy is

used to take tissue samples for pathological examination, in order to assess the malignancy. The

clinical methods for breast cancer diagnosis are reviewed in the following sections.

2.1.1 Non-invasive imaging modalities

The non-invasive diagnostic methods for breast cancer, which are used by clinicians are ca-

tegorized into three groups : X-ray mammography, magnetic resonance imaging (MRI) and ul-

trasound imaging.

2.1.1.1 Mammography

Mammography is recommended for annual screening of women beginning at age 40 (24),

(5). Mammography has reduced breast cancer mortality (61), especially in women over the age

of 50 by 25-30% (54), however, it is less effective for young women (18). The image contrast

in this method is low for high density breasts and needs an additional mammography view or

ultrasound (31), which increases the cost of health care (70). Moreover, some studies have shown

that the results of mammography screening depend on the menstrual cycle of women (69) and

their hormonal status (35). This method is unable to distinguish between benign and malignant

tumors (27), (49).
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2.1.1.2 MRI

The American Cancer Society suggests women with approximately a 20% or greater life-

time risk of breast cancer to have MRI screening (53). MRI has higher sensitivity compared to

mammography and it is recommended for high risk young women after having mammography

(68) , (36) , (32). On the other hand, the specificity of this method in the evaluation of breast

lesions is still not very high, about 72% (48). It is also time consuming and uncomfortable due to

intravenous injection of gadolinium. Furthermore, it is an expensive technique (25). Moreover,

MR elastography (MRE) was proposed to estimate viscoelastic shear properties of tissues (47).

Clinical applications of MRE to breast lesions showed that this imaging method could increase

the specificity of the current MRI technique by visualization of mechanical properties of breast

tissues (58), but with the disadvantage of a longer acquisition time.

2.1.1.3 Ultrasound imaging

Ultrasound imaging is an inexpensive and more comfortable modality, which is completely

non-invasive with no radiation. Thus, it can be used as a complementary test to mammography

(6), (4). It is also able to differentiate between cysts (fluid) and solid masses (37). However, the

specificity of the combination of mammography and ultrasound is relatively low, which means

that the number of false positives can exceed the true positives (19). Other limitations of ultra-

sound echography are its low resolution and operator dependency.

2.1.1.4 Synthesis

Several studies have compared the three mentioned imaging methods for breast cancer de-

tection. The results show that most often it is required to combine mammography, MRI and

ultrasound to improve the accuracy of medical imaging (18), which increases health care costs.

Moreover, a large number of irrelevant biopsies are conducted each year because of the low spe-

cificity of current diagnostic imaging methods (39). Therefore, new improvements in clinical

imaging modalities are required for precise detection of breast tumors, to determine the nature of

lesions (i.e., to differentiate between malignant and benign tumors) and to reduce the number of

irrelevant biopsies.
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2.1.2 BI-RADS classification

According to pathological studies, there are different types of breast lesions. Breast lesions

are categorized into benign (non-cancerous) and malignant (cancerous) types. In addition to

breast lesion detection, the imaging modalities aim to classify breast lesions into benign or mali-

gnant. Breast imaging-reporting and data system (BI-RADS) has been developed by the Ameri-

can College of Radiology. The BI-RADS score provides a standardized classification to demons-

trate the probability of breast malignancy. As the score increases from 0 to 6, the probability of

cancer increases. Table 2.I shows BI-RADS categories and the interpretation for each score. No

biopsy is recommended in the case of BI-RADS 0-3, while BI-RADS 4-5 leads patients to take

a biopsy (59).

TABLE 2.I – BI-RADS categories.

BI-RADS score Definition

0 need additional imaging evaluation

1 negative

2 benign finding

3 probably benign

4 suspicious abnormality

5 highly suggestive of malignancy

6 known biopsy-proven malignancy

Ultrasonographic characteristics of benign and malignant breast lesions have been used to

determine BI-RADS scores (37). Table 2.II shows some of the ultrasonographic features used for

breast lesion classification.
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TABLE 2.II – Ultrasonographic characteristics for breast lesion classification.

Ultrasonographic characteristics Benign Malignant

Shape round, oval irregular

Margin circumscribed indistinct

Lesion boundary abrupt interface echogenic halo

Echogenicity hyperechoic, homogeneous hypoechoic, inhomogeneous

Acoustics features no posterior acoustic features shadowing

As an example, Figures 2.1 and 2.2 show two ultrasound images from a fibroadenomas (be-

nign) and a carcinoma (malignant), which are two common breast lesion types among women.

Considering Table 2.II, the images can be differentiated. However, the qualitative criteria are not

certain and the benign and malignant images can be similar (60).

FIGURE 2.1 – The B-mode image of a benign breast lesion (fibroadenoma) (60).
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FIGURE 2.2 – The B-mode image of a malignant breast lesion (carcinoma) (60).

2.1.3 The role of needle biopsy and ultrasound data analysis in breast cancer diag-

nosis

The gold standard method in breast cancer detection is needle biopsy. As mentioned before,

the number of irrelevant biopsies indicates the importance of improving the clinical imaging mo-

dalities. In breast ultrasound imaging, low resolution images and operator dependency of the ul-

trasound echography increase the complexity of breast lesion classification. All these challenges

emphasize the need for developing more sophisticated methods in data analysis to provide quan-

titative criteria for breast lesion classification. In the following sections, two different approaches

are introduced for quantitative breast lesion classification after a brief overview on the physics of

ultrasound.

2.2 Principles of ultrasound imaging

Ultrasound is an acoustic wave with frequencies ranging from 20 kHz up to several GHz,

which is greater than the range of human hearing. As a medical imaging modality, ultrasound

can propagate through the human body to produce an image of different organs and tissues.

Different interactions of ultrasound waves with tissues include reflection, refraction, scattering,

and absorption (8).

The reflection of ultrasound wave takes place at the boundary of two tissues with different

acoustic impedances. In general, a fraction of an incident wave is transmitted to the second me-
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dium and a fraction is reflected back to the first medium. The schematic of ultrasound interaction

with a simple plane boundary between two tissues with different acoustic impedance is presented

in Figure 2.3.

��i� ��r�

��t�

Tissue 1 

Tissue 2 

Incident 
wave 

Reflected 
 wave 

Transmitted 
 wave 

FIGURE 2.3 – Specular reflection and refraction of an incident ultrasound wave occurs

at tissue boundaries with different acoustic impedances (8).

Ultrasound refraction happens when the incident beam is not perpendicular to the boundary.

In this case, the direction of the transmitted ultrasound wave is changed. The refraction angle, θt,

follows the Snell’s law equation :
sin(θi)

sin(θt)
=

c2
c1
, (2.1)

where θi is the incident angle, c1 and c2 are the speed of sound in the first and second media,

respectively, and θr is the reflection angle.

The ultrasound wave may scatter in many directions when reaching a boundary with a smaller

dimension than the wave length (λ ). The behavior of the ultrasound wave at boundaries depends

on their characteristics. Figure 2.4 shows different types of ultrasound wave interactions at boun-

daries (8).
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Specular (smooth) 
reflection 

Boundary interactions Tissue interactions: 
Acoustic scattering 

Non-specular 
(diffuse) reflection 

Small object reflectors 
with size ≤ λ 

FIGURE 2.4 – Ultrasound interactions with boundaries and particles (8).

The loss of acoustic energy during the ultrasound wave propagation in the tissue is called

attenuation. Scattering and tissue absorption are the two main sources of attenuation. The atte-

nuation increases with the frequency and also increases exponentially with the penetration depth.

The ultrasound image is created by transmitting the acoustic wave into the medium and col-

lecting the reflected echoes. Three different modes have been used to display the ultrasound echo,

namely A-mode, B-mode and M-mode. The A-mode shows the amplitude of the reflected wave

as a function of time. This mode is currently used for ophthalmology. The B-mode image is

composed of brightness-modulated dots, which are constituted from the A-mode images. The

gray scales in the two dimensional B-mode images are interpreted as the echo signal amplitude.

Finally, the M-mode images are obtained from a technique, which makes a movie from the mo-

ving organs by combining the B-mode images. The M-mode is not commonly used after the

developments of Doppler imaging.

2.3 Quantitative methods in ultrasound tissue characterization

As reviewed in previous sections, ultrasound imaging is inexpensive and has no radiation. It

is also a fast screening method, but the main restriction of ultrasound is its low resolution and

operator dependency. Quantitative ultrasound and dynamic elastography are two different ap-

proaches used for establishing quantitative criteria to distinguish the pathological tissues, which

are discussed in the following sections.
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2.3.1 Quantitative ultrasound

Quantitative ultrasound (QUS) was introduced a few decades ago (9) ,(33). The hypothesis

underlying statistical QUS is that the spatial organization of the cell nuclei and their scattering

properties can be detected by the statistical parameters (46). A significant difference in the micro

structure of breast pathological tissues has been documented in the literature (45). Figure 2.5

shows the optical photo micrographs of breast tissues in mice. Based on these observations, the

difference in diameter or acoustic concentration of cells and nuclei (playing the role of scatterers)

can lead to the classification of pathological breast tissues (45).

(a) (b) 

FIGURE 2.5 – Light microscopy comparisons of breast lesions in mice. (a) fibroadone-

mas (benign), (b) carcinomas (malignant) (45)

.

2.3.1.1 Distribution models for ultrasound echo envelope

In ultrasound imaging, there are different models, which were proposed for the first-order

statistics of the echo envelope of a B-mode image. An ideal statistical distribution model for

tissue characterization fits very well with experimental data. Additionally, the parameters used

for tissue classification should have a physical meaning.

Among different models that were used in tissue characterization, the main models with phy-

sically interpretable parameters are presented in Figure 2.6. In these models, α is interpreted as

the scatterer clustering parameter (17) or the effective density of the scatterers (57). The effective

density is defined as the number of random scatterers per resolution cell (N) multiplied by a co-

efficient called homogeneity (α0). The coherent signal component is another parameter, which is
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shown by ε . For the case of a macroscopically homogenous medium with no periodic scatterers,

the parameter ε vanishes.

Rayleigh 

Rice 

 

 

K 
0��

0��

00 ���� �	��	

Nakagami 

��	

Approximation 

  Homodyned K 
00 ���� �	

FIGURE 2.6 – The most applicable distribution models for ultrasound echo envelope in

biomedical applications.

According to Figure 2.6, the Rayleigh distribution, introduced in 1880, is the most specific

case (50) in ultrasound echo envelope models with the assumption of high effective density of

random scatterers (67). The Rice distribution is another model, which is also applicable for high

density of scatterers. On the other hand, it considers the presence of coherent signal component

(ε ≥ 0) (12).

The homodyned K-distribution is a general model in ultrasound echo envelope modeling and

amounts to the K-distribution in the absence of the coherent signal component (28), (29). Com-

pared to the Rayleigh model, the K-distribution fits better with the envelope of the backscatter

radio-frequency (RF) data from breast tissues (57), (40).

The estimation of the homodyned K-distribution parameters is challenging and rarely used

in the literature on QUS (26). In order to simplify the analytical procedure, the Nakagami distri-

bution, as an estimation of the homodyned K-distribution, was used by Shankar in tissue charac-

terization (55). This model was first introduced by Nakagami in the field of wave propagation in
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1943 (42). The Nakagami model has been widely used in tissue characterization as well as breast

tissue classification due to its simplicity and its potential to encompass different scattering condi-

tions (56), (65), (16). Moreover, it is shown that a Nakagami parametric imaging could combine

with the B-mode image to provide a better visualization of the structure of the tissues (64), (15).

The above studies mainly concerned the discrimination of benign breast lesions from mali-

gnant with no attention to BI-RADS classification. A recent study showed the potential of the

homodyned K-distribution in breast lesion classification in order to avoid biopsy, while not mis-

sing malignant tumors (63).

2.3.1.2 Homodyned K-distribution

In the context of random walks and non-Gaussian scattering modeling, the homodyned K-

distribution was proposed. For ultrasound imaging application, the homodyned K-distribution

model presents three parameters that have physical meanings.

Assume A is the amplitude of an ultrasound backscattering signal, ε ≥ 0 is the coherent signal

component, σ2 > 0 is related to the diffuse signal power and α > 0 is the effective density of

the scatterers, the two-dimensional homodyned K-distribution is demonstrated as the following

equation :

P(A | ε,σ2,α) = A
∫ ∞

0
u J0(uε) J0(uA)

(
1+

u2σ2

2

)−α

du, (2.2)

where, J0 is the Bessel function of the first kind of order 0.

In this work, the homodyned K-distribution was used to estimate the ultrasound echo enve-

lope from breast tissue mimicking phantoms.

2.3.2 Elasticity imaging

For centuries, physicians have utilized palpation as an important diagnostic tool. The ubiqui-

tous presence of a stiffer tissue associated with pathology often represents an early warning sign

of breast cancer. The mechanical parameters, which are characterized by palpation are determi-

ned by Young’s modulus (E) or shear modulus (G) (22).

Elastography is a method to determine the mechanical properties of materials. During the

past 20 years, different elastography techniques have been adopted to estimate tissue elasticity in

order to categorize pathological and normal tissues (47).
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In static elastography, the tissue is deformed by applying pressure (stress) and measuring the

deformation (strain). The Young’s modulus can be retrieved by the following ratio :

E =
σ
ε
, (2.3)

where σ is the applied stress and ε is the measured strain. Figure 2.7 shows the physical concept

of static elastography. The hard inclusion represents the malignant tumor while the soft inclusion

represents a benign lesion in a surrounding tissue. By applying the pressure, the soft inclusion

is deformed more than the hard one. On the other hand, the Young’s modulus of the patholo-

gical tissue is statistically higher in comparison to the normal tissue. Two-dimensional map of

the Young’s modulus (elasticity) is called elastogram, which is presented with a color-bar. This

method is limited due to its operator dependency and the non-uniformity of the pressure applied

(47).

sotf hard 
sotf hard 

(a) (b) 

FIGURE 2.7 – The principle of static elastography. (a) The heterogeneous medium with

two inclusions (one inclusion is softer and another is harder compared to the surrounding

medium) is shown before applying the stress. (b) After applying the stress, the soft and

hard inclusions have different responses.

To avoid the limitations of static elastography, ultrasound dynamic elastography was introdu-

ced (52). In this method, shear waves are propagated in the medium using an internal or external

excitation and the medium displacement is detected with ultrasound imaging. As seen in Figure

2.8, when the excitation is applied, each particle moves in the Y direction while shear wave
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propagates in the X direction.

Consider ρ as the density of the medium, the shear modulus is related to the plane shear wave

velocity (cs) by the following equation (22) :

G = ρc2s . (2.4)

In the case of biological tissues, which are mostly incompressible, the shear modulus be-

comes :

G → E/3. (2.5)

X 

Y 

Direction of shear wave propagation  

FIGURE 2.8 – Shear wave propagation in the medium. The black square represents a

particle of the medium. The particle motion is perpendicular to the direction of wave

propagation.

The addition of an elasticity modulus to ultrasound echography may improve the ability of

this method for breast cancer diagnosis and lesions classification (7).

Figure 2.9 shows an overview of the methods used in elasticity measurement. As it is indica-

ted, to estimate the mechanical properties, a tissue is deformed with a static or dynamic excitation

that can be applied by an external or internal source. The next step is to image the tissue response

with a mechanical, optical, MRI or ultrasound imaging technique. Finally, the mechanical pro-

perties can be estimated qualitatively and quantitatively. It is important to note that in the current

work, the estimated parameters are the homodyned K-distribution parameters during the shear

wave propagation. Therefore, the highlighted parts in Figure 2.9 demonstrate the experimental

procedure used in this study to generate a shear wave inside the medium and collect the data to

estimate the statistical and mechanical parameters during shear wave propagation.
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FIGURE 2.9 – Different techniques in elastography for measuring the mechanical pro-

perties of the biological tissue (the diagram is adopted from (38)).The highlights de-

monstrate the method of the current dissertation to estimate the statistical and mechani-

cal properties of the phantoms.

In this dissertation, the tissue mimicking phantoms were excited with supersonic shear ima-

ging as an internal excitation method to produce shear waves. The phantom responses were ima-

ged with a fast imaging technique (plane wave imaging). These two methods are discussed in

the following parts. Finally, the method to estimate the displacement map is explained in the last

section.

2.3.2.1 Supersonic shear imaging

Supersonic shear imaging (SSI) is a recent technique in ultrasound dynamic elastography

that visualizes elasticity of soft tissues. In this method, shear waves are produced by acoustic

radiation force. The radiation force is a highly focused ultrasound beam that can remotely vibrate

tissue and produce shear wave propagation. The physics of SSI is similar to the phenomenon that

happens with a supersonic aircraft. A Mach cone is produced by different pushing beams at

different depths. There is a time delay between the bursts. The Mach cone and the direction of

shear wave propagation are in Figure 2.10.
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Shear wave 

FIGURE 2.10 – Producing the plane shear wave with SSI method.

2.3.2.2 Plane wave imaging and migration method

Plane wave imaging (PWI) is a recent technique in ultrasound imaging that provides ultra-fast

imaging with a high frame rate. In this method, by a single transmit a full image can be acquired.

A point ultrasound scatterer acts as a spherical wave emitter when the plane wave interacts with

it (Figure 2.11). Therefore, a spherical wave travels upwards and a hyperbolic curve is produced

from echoes received by each transducer element (Figure 2.12).
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FIGURE 2.11 – A scatterer acts as a second source in the plane wave imaging method

(20).

To have a high quality B-mode image, the diffracted hyperbola should migrate back to their

apexes (migration process). Different migration algorithms were used in this field. In this work,

the migration algorithm used is called frequency-wave number (f-k) method (20). The choice of

this method is due to its benefits such as fast computation and high contrast to noise ratio. It

is important to mention that no compression was applied on the reconstructed B-mode images

when the Hilbert transform was used to convert the RF signals to the B-mode images.
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FIGURE 2.12 – a. RF migration lines as parabolic curves in the time domain from two

point scatterers are shown. b. The migrated image after applying the migration process

and the reconstruction are presented. The position of the point scatterers were recovered

(20).

2.3.2.3 Displacement map

A one-dimensional normalized cross-correlation algorithm was applied on the RF data to

estimate the displacement map (41). Technically, a graphical processor unit (GPU) can be used

to faster computation speeds compared to a single processor unit (CPU).



CHAPITRE 3

METHODOLOGY

The materials and methods used in the current project are described in this chapter. First of

all, the hypotheses are presented. To evaluate these hypotheses, in-vitro and ex-vivo experiments

were considered. The experimental procedure for making the phantoms and collecting the radio

frequency (RF) data are explained in the following section. The data analysis to estimate the

parameters of the homodyned K-distribution during shear wave propagation are presented in the

next step.

3.1 Static QUS and dynamic QUS

Based on the literature, statistical QUS parameters are estimated from ultrasound images of

biological tissues without shear wave propagation (13). However, it is shown that by compressing

breast tissue, the estimation of statistical QUS parameters can improve the tissue classification

(34). The estimated QUS parameters reveal information about size, density, structure and acous-

tical properties of the scatterers and the of ambient medium. The purpose of this work is to

study the dynamic behavior of statistical parameters of an ultrasound echo envelope model by

performing QUS analysis under shear wave propagation. The main question of this study is as

follows :

Can the dynamic behavior of the statistical echo envelope parameters provide extra informa-

tion on the microstructural analysis of the scatterers revealed by QUS ?

In this dissertation, static QUS is defined as QUS without shear wave propagation, and dy-

namic QUS as QUS during shear wave propagation (Figure 3.1). In static QUS, the estimated

parameters may be reported as the median (or the mean value in the case of many images) of

the statistical parameters in a sequence of images (14). In dynamic QUS, we propose studying

the range (max-min) of the estimated parameters during shear wave propagation. Note that in the

case of static QUS, the range of the statistical parameters is expected to be near zero as no shear

wave is propagating. Also, since the shear wave is rapidly attenuated with the SSI method, the

median value of the estimated parameters in the case of dynamic QUS would be redundant with

the median value in static QUS.
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Dynamic QUS 

 QUS Shear wave 
propagation 

FIGURE 3.1 – Definition of dynamic QUS.

3.2 Hypotheses and overview of the experiments

Five hypotheses are studied in this research by means of two sets of experiments (in-vitro and

ex-vivo). Figure 3.2 shows an overview of the experiments to investigate the hypotheses of the

project. In-vitro experiments were used to evaluate hypotheses 1 to 3 and ex-vivo experiments

were used to examine the last two hypotheses.
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Hypothesis 1:  
 
Hypothesis 2:  
 
Hypothesis 3:  
 
 
 
Hypothesis 4: 
 
Hypothesis 5: 
 
 

In-vitro  phantoms 
A, B, C 

(Macroscopically homogenous 
agar gelatin phantoms   

with increasing 
 order of elasticity ) 

Ex-vivo phantoms 
I , II 

(Heterogeneous agar gelatin 
phantoms with a mouse tumor, 

type MC38 , included) 

FIGURE 3.2 – Overview of the experiments corresponding to the hypotheses.

3.2.1 In-vitro experiments

Any variation in sound speed produces acoustic scattering. To avoid the complexity of scat-

tering effects of the ultrasound beam from the mimicked breast lesion boundaries during shear

wave propagation in heterogeneous media, macroscopically homogenous phantoms were studied

for the first three hypotheses (in-vitro measurements).

Hypothesis 1 : The parameters of the homodyned K-distribution from ultrasound echo en-

velope data are affected by shear wave propagation.

Hypothesis 2 : The range (max-min) of the parameters of the homodyned K-distribution

during shear wave propagation can be used to discriminate different tissue mimicking phantoms.

Hypothesis 3 : The maximal displacement amplitude of the medium and the reciprocal

of the Young’s modulus are correlated with the range of the parameters of the homodyned K-

distribution during shear wave propagation.
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3.2.2 Ex-vivo experiments

Having shown the effect of shear wave propagation on the statistical parameters of the ul-

trasound echo envelope with the in-vitro experiments, the next step was to explore the effect

of shear wave propagation on the mice tumors and to discriminate the mice tumors from their

surrounding medium with dynamic QUS. Here, two agar gelatin phantoms were used. A mouse

tumor was placed inside the agar gelatin phantom as an inclusion to mimic pathological breast

tissues. The discrimination ability of dynamic QUS to differentiate between the tumors and their

surrounding media were evaluated. The two final hypotheses are presented as follows :

Hypothesis 4 : Dynamic QUS can help in distinguishing the mice tumors from their surroun-

ding medium.

Hypothesis 5 : The maximal displacement amplitude of the mice tumors is correlated with

the range of the parameters of the homodyned K-distribution during shear wave propagation.

3.3 Phantom fabrication

A brief overview of the fabrication process for the homogenous (in-vitro) and the heteroge-

neous (ex-vivo) phantoms is presented in this section. A wide range of elasticities are reported

for breast tissues. Table 3.I shows the range of Young’s modulus of breast lesions in four studies

published in the past decade. The reported values vary according to the types of breast lesions

included in the studies and the measuring techniques used.

TABLE 3.I – Ranges of Young’s modulus of breast lesions corresponding to four studies.

Reference Range of the Young’s modulus E (k Pa)

Samani et al. 2007 (51) 3.24±0.61 to 42.52±12.47

Tanter et al. 2008 (62) 62.50±24.75 to 140.00±56.57

Chang et al. 2011 (11) 46.1±42.9 to 153.3±58.1

Umemto et al. 2014 (66) 2.60±0.59 to 16.08±9.06

Agar gelatin phantoms with different proportions of agar and gelatin were used to mimic

the mechanical properties of breast lesions (21). To build the agar gelatin phantoms, water at 80

degree Celsius was mixed with gelatin (Sigma Chemical, number G-2500 type A from porcine



24

skin, Saint-Louis, MO, USA) and agar powder (Sigma Chemical, number A-6924, Saint-Louis,

MO, USA) as the ultrasound scatterers. The gelatin played the role of a matrix containing the

scatterers.

The proportions of the agar and gelatin for the three homogenous phantoms and their corres-

ponding Young’s modulus are listed in Table 3.II. As one can see, the elasticity of the phantoms

are increasing from phantom A toC and these elasticities are within the range of Young’s modulus

of various breast lesions that are reported in (51).

TABLE 3.II – Macroscopically homogenous agar gelatin phantoms and their correspon-

ding Young’s modulus.

Name of the phantom A B C

Proportion of agar-gelatin 2%−3% 2%−4% 3%−3%

E (k Pa) 17.52 21.76 44.05

For the ex-vivo phantoms, a mouse tumor (from MC38 cells) was used as an inclusion inside

the agar gelatin phantoms. The MC38 cells are mice colon cancer cells. To obtain MC38 tumors,

wild type synergistic C57Bl/6 mice were injected subcutaneously with 1 million MC38 cells in

100 micro liter of phosphate buffered solution (PBS) and the tumors were harvested on the day

25 after euthanasia (3). Here the surrounding material for the heterogeneous phantoms was 3%

agar and 3% gelatin (Figure 3.3).
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FIGURE 3.3 – Heterogeneous phantom fabrication with the mouse tumor.

3.4 Experimental procedure

Shear waves were generated in the phantoms with the SSI method. The plane wave imaging

technique was used to acquire the RF data during shear wave propagation. The experimental

set-up of the experiments is described in the following subsections.

3.4.1 In-vitro measurements

Figure 3.4 shows a schematic diagram of the experimental set-up. A Verasonics system (Ve-

rasonics Inc, Redmond, WA, USA) was used to generate the acoustic radiation force as a remote

source of shear waves. The ultrasound probe (Philips Healthcare, Andover, MA (L7-4)) with a 5

MHz central frequency was an array including 128 transducer elements. The probe width was 38

mm. Considering the speed of sound at room temperature in water based agar gelatin phantoms,

the wavelength of ultrasound was around 0.33 mm. The probe had two modes : one to transmit

and one to image. In the transmitting mode, a sequence of three pushes at the depths of 25, 30

and 35 mm from the surface of the phantoms, with a time delay from each other, produced a cone

beam and the shear wave propagated in the medium. The pushing time was 125 μs. The ultra



26

fast imaging (plane wave imaging) method was used as the imaging mode with a high frame rate

of 4000 frames per second. The depth of imaging was 64 mm. Each acquisition was repeated 5

times. The RF signals were stored on a work station.

Verasonics 

Ultrasound 
probe 

Computer Agar-gel 
phantom 

FIGURE 3.4 – Schematic diagram of the experimental set-up.

Moreover, the elasticity of the homogenous phantoms were measured by the Aixplorer sys-

tem (Supersonic Imagine, France). Figure 3.5 shows the device that provided the elasticity map,

the B-mode images, and the estimates of the Young’s modulus.
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FIGURE 3.5 – Aixplorer system.

3.4.2 Ex-vivo measurements

The ex-vivo set-up was similar to Figure 3.4 with a heterogeneous phantom instead (an agar

gelatin phantom with a mouse tumor as inclusion). The radiation force was applied at the center

of the phantom, while the tumor was placed on one side of the phantom.

3.5 Data processing

The data was obtained and processed with and without shear wave propagation. The next step

was the RF data analysis during shear wave propagation. Data analysis in both sets of experiments

(in-vitro and ex-vivo) was quite similar.

Data post processing of the in-vitro and ex-vivo experiments is explained in this section.

The region of interest (ROI) for both sets of experiments is defined and the analysis procedure is

explained. The estimator of the homodyned K-distribution is presented.
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3.5.1 The choice of the ROI

To estimate the parameters of the homodyned K-distribution with and without shear wave

propagation, a specific region (ROI) on the B-mode images was defined. The choice of the ROI

for the in-vitro and ex-vivo experiments is discussed in the following subsections.

3.5.1.1 In-vitro ROI

The ROI for the in-vitro experiments was a square with a width and length of 10 mm. Figure

3.6 shows the position of the ROI, which is 5 mm far from the first focal spot of the applied

radiation force. The rationale behind the choice of the ROI is to have a region far enough from the

pushing beam to avoid noisy curves of the statistical parameters during shear wave propagation

and without being too far to avoid a poor signal quality due to shear wave attenuation. The depth

of the ROI was chosen around the depth of the first focal spot. The size of the ROI is justified by

considering the typical size of the mouse tumors in the ex-vivo experiments. It is consistent with

the recommended minimal ROI size of three times the wavelength (26).

5 mm 

10 mm 

10 mm 

25 mm 

Focal 
spots 

ROI 

64 mm 

FIGURE 3.6 – ROI in in-vitro experiments.

3.5.1.2 Ex-vivo ROI

For the ex-vivo experiments, the goal was to study the effect of shear wave propagation inside

the tumor and to discriminate the tumors from their surrounding medium. Therefore, two ROIs
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were defined with the same size and the same distance from the pushing beams, one for the tumor

and the other one for the surrounding medium on the other side of the pushing beams. The ROIs

were chosen as follows : 1) the ROI enclosed by the manually segmented contours of the mice

tumors ; 2) the ROI in the surrounding medium, symmetric to the tumor ROI with respect to the

vertical axis along the focal spots of the pushing beam (Figure 3.7).

Focal 
spots Shear 

 wave ROI for 
mouse 
tumor 

ROI for 
surrounding 

medium 

25 
 mm 

64 mm 

FIGURE 3.7 – ROI in ex-vivo experiments.

3.5.1.3 In-vitro data processing

Figure 3.8 shows the in-vitro data processing diagram. The f-k migration algorithm was

applied on the experimental RF data (20). To reconstruct the B-mode images, the Hilbert trans-

form (30) was used to process RF data without any logarithmic compression. The parameters

of the homodyned K-distribution were estimated over the ROI (14). The displacement map of

the medium during shear wave propagation was also extracted from the RF data, using the GPU

implementation of the cross-correlation algorithm (41).
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FIGURE 3.8 – In-vitro data processing diagram.

3.5.1.4 Ex-vivo data processing

Figure 3.9 presents the ex-vivo data processing diagram. In this part, the last two hypotheses

were examined. To compare the behavior of the parameters of the homodyned K-distribution

under shear wave propagation inside and outside the tumor, two regions were defined in each

heterogeneous phantom as explained above. To visualize the tumor on the B-mode images, log

compression was used after applying the Hilbert transform of the RF lines. The homodyned K-

distribution estimator was applied on the B-mode images without log compression.
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FIGURE 3.9 – Ex-vivo data processing diagram.

3.5.2 Homodyned K-distribution estimator

The α parameter and the κ parameter of the homodyned K-distribution are invariant to the

mean intensity (14). In this work, the three parameters that were studied with and without shear

wave propagation are presented in Table 3.III.

TABLE 3.III – Three estimated parameters of the homodyned K-distribution.

Parameter Physical interpretation

α scatterer clustering parameter

κ = ε2

2σ2α structure parameter

μ = ε2+2σ2α mean intensity (total signal power)
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The parameters of the homodyned K-distribution were estimated based on the mean intensity

and and two log-moments with the method developed in (14).



CHAPITRE 4

RESULTS

In this chapter, the results from the in-vitro and ex-vivo experiments are presented. The ex-

perimental data processing to achieve the time evolution of the homodyned K-distribution para-

meters during shear wave propagation with the SSI method is presented. The preliminary results

that are presented in appendices I and II, i.e. the two published proceedings, are summarized

briefly in the first section. The remaining part of this chapter presents the results of the two sets

of experiments (in-vitro and ex-vivo) corresponding to the five hypotheses.

4.1 Preliminary results found in appendices

Our first observations in dynamic QUS were in-vitro experiments with agar gelatin phan-

toms. Plane shear waves were generated by an external vibrator and a rigid plate. The K-distribution

was considered as ultrasound echo envelope statistical model. The K-distribution corresponds to

the special case of the homodyned K-distribution in the absence of a coherent signal component.

The preliminary results showed that the shear wave propagation could be tracked by the time

evolution of the reciprocal of the α parameter of the K-distribution. The parameter 1/α had

a similar pattern as the displacement map at the central point of the homogenous agar gelatin

phantoms (see appendix I). To avoid the case α = ∞, which is meaningless, the reciprocal of the

parameter α was proposed in (17), (13).

The second step was to consider a heterogeneous medium and to assess if dynamic QUS

could provide extra information to differentiate between an inclusion and its surrounding me-

dium (see appendix II). An agar gelatin phantom with two agar gelatin inclusions with different

mechanical properties was fabricated. The parameter 1/α was estimated for the surrounding me-

dium and both inclusions, with and without shear wave propagation. The results showed that the

static value of 1/α could barely distinguish one of the inclusions from the surrounding medium ;

however, the dynamic range of the 1/α parameter succeeded in this task for both inclusions.

These preliminary results were a motivation to consider dynamic QUS features in the context of

tissue characterization.



34

4.2 In-vitro results

Following the phantom fabrication method presented in the previous chapter, three homo-

genous phantoms (A, B, C) were made. A shear wave was propagated from the center of the

phantoms using the SSI method. The displacement map was estimated with the normalized cross-

correlation method. Figure 4.1 shows the maximum spatial displacement map of the medium in

phantom B. The cone-shaped shear wave front can be seen in this figure.

(mm)  

FIGURE 4.1 – Maximum displacement map of the medium in phantom B.

In the following sections, the results corresponding to each hypothesis are presented.

4.2.1 Hypothesis 1

Hypothesis 1 : The parameters of the homodyned K-distribution from ultrasound

echo envelope data are affected by shear wave propagation.

According to the first hypothesis, shear wave propagation affects the homodyned K-distribution

parameters estimated from ultrasound echo envelope data. The parameters of the homodyned K-
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distribution were estimated in the chosen ROI with the data processing method described in

chapter 3.

Figure 4.2 shows the point wise displacement of the central point in the ROI for phantom B.

Since the radiation pressure push impulse was applied at the 6th frame, the first five frames were

considered as being in the static mode. The shear wave propagation occurred from the 7th frame

to the 100th frame. As expected with the SSI method, the displacement was attenuated rapidly

over time.

Shear wave propagation 

Static frames  

FIGURE 4.2 – Point wise displacement at the central point of the ROI of phantom B.

The effect of the shear wave propagation on the homodyned K-distribution parameters can

be seen in Figures 4.3, 4.4 and 4.5. As one can see, the largest change in the homodyned K-

parameters occurred at the same frame as one of the two main glitches in the displacement curve

of Figure 4.2, which corresponds to the time of the push impulse. Figure 4.3 shows the time evo-

lution of the α parameter during shear wave propagation. As mentioned before, the α parameter

is interpreted as a scatterer clustering parameter. To evaluate the hypotheses, the parameter α was

chosen instead of 1/α (as seen in preliminary results), because the case α = ∞ did not occur and

it was easier to see the evolution of α than 1/α in the present results.
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FIGURE 4.3 – Time evolution of the α parameter over the ROI of phantom B.

Figure 4.4 presents the dynamic behavior of the structure parameter (the κ parameter). The

mean intensity of the ultrasound echo envelope (the μ parameter) during shear wave propagation

is presented in Figure 4.5.
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FIGURE 4.4 – Time evolution of the κ parameter over the ROI of phantom B.
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FIGURE 4.5 – Time evolution of the μ parameter over the ROI of phantom B.
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For quantitative analysis, the range of the parameters of the homodyned K-distribution during

shear wave propagation were considered. The range of a parameter a is defined as the difference

between the maximal and minimal values of the parameter over the sequence of temporal images :

Range(a) = Max(a)- Min(a).

Note that the goal of this hypothesis was to show that the shear wave propagation affects

significantly the homodyned K-distribution parameters. In order to verify this hypothesis, the

ranges of the statistical parameters under shear wave propagation were compared with the ranges

of the same parameters without shear wave propagation. This comparison was only assessed for

hypothesis 1 and should not be confused with comparisons between dynamic and static QUS that

were assessed for the remaining hypotheses. In the latter case, as explained in section 3.1, the

range of the parameters is used in the context of dynamic QUS, whereas the median (or mean

value) is considered in the context of static QUS. For the in-vitro experiments, the static range

of each statistical parameter was estimated by considering the first five frames, and the dynamic

range was calculated from the 7th frame to the 100th. Considering five acquisitions over a given

phantom, the mean and standard deviation of each parameter were estimated. Table 4.I presents

the static and dynamic ranges of the homodyned K-distribution parameters. The indexes s and d

represent static and dynamic values, respectively. As one can see, the ranges of the parameters

under shear wave propagation were substantially larger than the ranges of the same parameters

without shear wave propagation, except for the parameter κ in the case of phantom C.

TABLE 4.I – Static and dynamic ranges of the parameters of the homodyned K-

distribution for the three homogenous phantoms.

A B C

Range(αs) 0.77±0.25 0.05±0.02 0.12±0.09

Range(κs) 0.02±0.003 0.003±0.001 0.00±0.00

Range(μs) 0.95±0.31 0.42±0.10 0.41±0.11

Range(αd) 8.34±2.03 0.69±0.06 0.56±0.01

Range(κd) 0.12±0.02 0.05±0.004 0.00±0.00

Range(μd) 18.31±0.74 6.09±0.26 2.65±0.16

Table 4.II presents the results of two-way ANOVA tests to evaluate the effect of the shear
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wave propagation on the parameters of the homodyned K-distribution. The results show that there

is a statistically significant difference between the static and dynamic ranges of the homodyned

K-distribution parameters except for the κ parameter of phantom C. Here, a two-way ANOVA

test was applied with two factors : 1) static versus dynamic range of homodyned K-distribution

parameters ; and 2) labels of phantoms (A, B, C). Note that the κ parameter for phantom C was

zero for all frames except at the 6th frame, as presented in Table 4.I. This may be related to

the stiffness of the phantom. Phantom C has the largest stiffness and the smallest displacement

amplitude among the three in-vitro phantoms. As observed, the κ parameter of phantom C was

not affected by a small displacement amplitude. Based on these results, hypothesis 1 was overall

verified.

TABLE 4.II – Two-way ANOVA tests to compare static and dynamic ranges of each pa-

rameter of the homodyned K-distribution for phantoms A, B and C. (* : The κ parameter

for phantom C was zero in all frames except during the push impulse.)

Two−way ANOVA (p < 0.001) A B C Overall

Range(αd) vs. Range(αs) yes yes yes yes

Range(κd) vs. Range(κs) yes yes no* yes

Range(μd) vs. Range(μs) yes yes yes yes

The coefficient of variation (CV ) is defined as the ratio of the standard deviation to the mean

value of a series of variables. Table 4.III shows the coefficients of variation of static and dynamic

ranges of homodyned K-distribution parameters over five acquisitions. Note that "NA" means

not applicable in the case of κ , since its mean and standard deviation are equal to zero.
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TABLE 4.III – Coefficients of variation (CV ) of static and dynamic ranges of homodyned

K-distribution parameters for phantoms A, B and C.

A B C

CV (Range(αs)) 0.32 0.40 0.75

CV (Range(κs)) 0.15 0.33 NA

CV (Range(μs)) 0.30 0.24 0.27

CV (Range(αd)) 0.24 0.084 0.014

CV (Range(κd)) 0.15 0.083 NA

CV (Range(μd)) 0.041 0.042 0.062

4.2.2 Hypothesis 2

Hypothesis 2 : The range of the parameters of the homodyned K-distribution during

shear wave propagation can be used to discriminate different

tissue mimicking phantoms.

The second hypothesis is related to the ability of static and dynamic QUS to differentiate

between the tissue mimicking phantoms. As discussed in section 3.1, to estimate the statistical

parameters in the context of static QUS, the median of the homodyned K-distribution parameters

in static mode were computed for each acquisition. These parameters are expected to depend on

the microstructure properties of the medium. For dynamic QUS, the ranges of the homodyned

K-distribution parameters were computed and are expected to be related mainly to mechanical

properties of the medium. Their mean and standard deviation were obtained by considering five

acquisitions (Table 4.IV). As one can see, overall, the various parameters are different for the

three phantoms, taking into account their mean values and standard deviations.



41

TABLE 4.IV – Static values and dynamic ranges of the homodyned K-distribution para-

meters for phantoms A, B and C.

A B C

αs 12.91±0.12 4.63±0.10 18.11±0.10

κs 0.29±0.003 0.33±0.006 0.00±0.00

μs 133.61±0.44 104.75±0.64 131.00±0.15

Range(αd) 8.34±2.03 0.69±0.06 0.56±0.01

Range(κd) 0.12±0.02 0.05±0.004 0.00±0.00

Range(μd) 18.31±0.74 6.09±0.26 2.65±0.16

Table 4.V presents the results of two-way ANOVA tests to examine the ability of the static va-

lues and dynamic ranges of the three parameters of the homodyned K-distribution to distinguish

between each pair of phantoms. Note that the dynamic ranges of the α parameter of phantoms B

and C did not overlap (Table 4.IV). However, these two phantoms were not distinguished using

the two-way ANOVA test when the ANOVA test was applied on the three phantoms together.

Indeed, the dynamic range of the α parameter of phantom A was one order of magnitude greater

than for the other two phantoms. When we removed phantom A from the ANOVA test, phantoms

B and C were distinguished by the dynamic range of the α parameter.
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TABLE 4.V – Two-way ANOVA test results to evaluate the discrimination ability of the

static values and dynamic ranges of the homodyned K-distribution parameters. (* : Note

that here, two-way ANOVA tests were performed on the three phantoms, while the range

of the α parameter could distinguish between phantoms B from C when phantom A is

not considered.)
Two−way ANOVA (p < 0.001) AB AC BC

αs yes yes yes

κs yes yes yes

μs yes yes yes

Range(αd) yes yes no* (p=0.968)

Range(κd) yes yes yes

Range(μd) yes yes yes

Table 4.VI shows the coefficients of variation of static values and dynamic ranges of homo-

dyned K-distribution parameters over five acquisitions. Note that "NA" means not applicable in

the case of κ , since its mean and standard deviation vanish.

TABLE 4.VI – Coefficients of variation of static values and dynamic ranges of homody-

ned K-distribution parameters for phantoms A, B and C.

A B C

CV (αs) 0.0093 0.022 0.0054

CV (κs) 0.0085 0.017 NA

CV (μs) 0.0033 0.0061 0.0012

CV (Range(αd)) 0.24 0.084 0.014

CV (Range(κd)) 0.15 0.083 NA

CV (Range(μd)) 0.041 0.042 0.062
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4.2.3 Hypothesis 3

Hypothesis 3 : The maximal displacement amplitude of the medium and

the reciprocal of the Young’s modulus are correlated with the range of the parameters of

the homodyned K-distribution during shear wave propagation.

The third hypothesis is based on a linear regression between the range of the homodyned

K-distribution parameters during shear wave propagation and the mechanical properties of the

medium. Table 4.VII, recalls from Table 4.IV the dynamic range of the parameters of the ho-

modyned K-distribution, and presents the Young’s modulus (E) and the maximal displacement

amplitude at the central point of the defined ROI for the three phantoms. Note that based on

the Young’s modulus values E, phantoms A, B and C are in order of increasing stiffness (i.e.,

increasing values of E) and henceforth, in order of decreasing maximal displacement amplitude.

TABLE 4.VII – The dynamic range of the homodyned K-distribution parameters,

Young’s modulus and the maximal displacement amplitude of each phantom.

A B C

Range(αd) 8.34±2.03 0.69±0.06 0.56±0.01

Range(κd) 0.12±0.02 0.05±0.004 0.00±0.00

Range(μd) 18.31±0.74 6.09±0.26 2.65±0.16

E(kPa) 17.52 21.76 44.05

Maximum displacement 4.0 1.7 0.6

amplitude (μm) ±3.84e-004 ±0.001 ±9.9835e-005

A regression test based on the values in Table 4.VII was performed considering a linear

regression, Y = aX + b, between the static values or the dynamic range of the homodyned K-

distribution parameters, X , and the maximal displacement amplitude or the 1/E parameter, Y .

The 1/E parameter was chosen instead of E because we expected that a smaller displacement

amplitude (and a smaller range of the homodyned K-distribution parameters) would correspond

to a larger value of the Young’s modulus (i.e., a greater stiffness). The R2 coefficients of determi-
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nation, the parameters a and b, and the p values are presented in Tables 4.VIII (linear regression

with maximum amplitude displacement) and 4.IX (linear regression with 1/E).

As seen from these tables, the R2 coefficients of determination between the dynamic range of

homodyned K-distribution parameters and the maximum displacement amplitude were greater

than 0.84 (with p < 0.001). The maximum R2 coefficient of determination was obtained for the

case of the dynamic range of the μ parameter and the maximum displacement amplitude with a

value of 0.98 and p < 0.001. On the other hand, the linear regression between the static values of

the homodyned K-distribution parameters and the maximum displacement amplitude were relati-

vely low (Table 4.VIII). Dynamic QUS parameters were correlated with the 1/E parameter with

a maximum R2 value of 0.87 obtained for the κ parameter (with p < 0.001). The R2 coefficient

of determination between the dynamic range of the μ parameter and 1/E was 0.76 (with p <

0.001). For the static QUS parameters, the α and μ parameters were not correlated with 1/E, but

the static κ parameter was correlated with 1/E with an R2 coefficient of determination of 0.82

(with p < 0.001).

TABLE 4.VIII – The R2 coefficient of determination, a and b parameters and the p

values from the linear regression tests of the static values or the dynamic ranges of the

homodyned K-distribution parameters and the maximal displacement amplitudes for the

in-vitro phantoms.

(αs) (κs) (μs)

R2 = 0.04 R2 = 0.46 R2 = 0.07

a = 0.027,b = 0.000 a = 0.008,b = 0.067 a = 0.015,b = 0.000

p = 0.474 p = 0.005 p = 0.328

Range(αd) Range(κd) Range(μd)

R2 = 0.84 R2 = 0.96 R2 = 0.98

a = 0.010,b = 0.003 a = 0.006,b = 0.281 a = 0.002,b = 0.002

p < 0.001 p < 0.001 p < 0.001
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TABLE 4.IX – The R2 coefficient of determination, a and b parameters and the p va-

lues from the linear regression tests of the static values and the dynamic ranges of the

homodyned K-distribution parameters and the parameter 1/E for the in-vitro phantoms.

(αs) (κs) (μs)

R2 = 0.31 R2 = 0.82 R2 = 0.15

a = 0.059,b = 0.001 a = 0.024,b = 0.088 a = 15.022,b = 0.195

p = 0.474 p < 0.001 p = 0.160

Range(αd) Range(κd) Range(μd)

R2 = 0.53 R2 = 0.87 R2 = 0.76

a = 0.033,b = 0.003 a = 0.027,b = 0.263 a = 0.0254,b = 0.002

p = 0.002 p < 0.001 p < 0.001

4.3 Ex-vivo results

This section presents the results of the ex-vivo phantoms with a mouse tumor as an inclusion.

For the heterogeneous phantoms, TI and TII , SI and SII indicate the first and second tumors and

the corresponding surrounding media, respectively.

Figure 4.6 shows a B-mode image of phantom II. To define the tumor region, its contours

were manually segmented in the B-mode images. The segmentation of the tumor region was

helped by its known position from the experimental set up and the shadow effect below the tumor

due to ultrasound attenuation. To specify the surrounding medium, the determined tumor region

was reflected with respect to the vertical axis along the focal spots (Figure 4.7). Therefore, the

surrounding medium and the tumor areas had the same size and the same distance from the focal

spots of the radiation force. Figures 4.8 and 4.9 show the point wise displacement map inside the

two tumors. In the ex-vivo experiments, the shear wave was propagated from the second frame to

the 100th frame. The static frames were considered as the last five frames where the displacement

amplitude was approximately zero (Figure 4.8).
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FIGURE 4.6 – The B-mode image of phantom II and the segmented tumor region.
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FIGURE 4.7 – The mask of the segmented tumor and its reflected region as the corres-

ponding surrounding medium in phantom II.

Figures 4.10 to 4.15 show the time evolution of the homodyned K-distribution parameters

estimated on the segmented tumors. As one can see, the largest change in the parameters occurred

at the same frame as one of the glitches in the displacement amplitude curve. The shear wave
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propagation was considered as occurring in the subsequent frames.
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FIGURE 4.8 – Point wise displacement of the central point of tumor TI during shear

wave propagation.

0 0.05 0.1 0.15 0.2 0.25
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02
Point wise displacement

Time (Sec)

D
is

pl
ac

em
en

t  
(m

m
)

FIGURE 4.9 – Point wise displacement of the central point of tumor TII during shear

wave propagation.
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FIGURE 4.10 – Time evolution of the α parameter of the homodyned K-distribution of

tumor TI .
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FIGURE 4.11 – Time evolution of the α parameter of the homodyned K-distribution of

tumor TII .
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FIGURE 4.12 – Time evolution of the κ parameter of the homodyned K-distribution of

tumor TI .
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FIGURE 4.13 – Time evolution of the κ parameter of the homodyned K-distribution of

tumor TII .
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FIGURE 4.14 – Time evolution of the μ parameter of the homodyned K-distribution of

tumor TI .
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FIGURE 4.15 – Time evolution of the μ parameter of the homodyned K-distribution of

tumor TII .
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4.3.1 Hypothesis 4

Hypothesis 4 : Dynamic QUS can help in distinguishing the mice tumors from their

surrounding medium.

The goal of this section was to study the ability of dynamic QUS to differentiate between

tumors and their surrounding medium. Table 4.X presents the static values and the dynamic

ranges of the homodyned K-distribution parameters for the two tumors and their surrounding

medium. As one can see, overall, the various parameters are different for the tumors and their

surrounding media, taking into account their mean values and standard deviations.

TABLE 4.X – The static values and the dynamic ranges of the homodyned K-distribution

parameters for the two tumors and their surrounding medium.

TI SI TII SII

αs 0.67 ± 0.007 21.95±0.316 0.94± 0.007 9.30±0.12

κs 0.17±0.002 0.00 ±0.00 0.20±0.003 0.42± 0.005

μs 42.00±0.57 130.19±0.15 40.17±0.18 99.84±0.34

Range(αd) 0.04±0.004 6.60±0.06 0.04±0.00005 3.31±0.86

Range(κd) 0.01 ± 0.001 0.00 ± 0.00 0.02±0.0003 0.07 ±0.014

Range(μd) 2.94± 0.13 7.20±0.18 1.24±0.19 3.26± 0.18

Table 4.XI presents the results of two-way ANOVA tests to assess the ability of the static

values and dynamic ranges of the three parameters of the homodyned K-distribution to differen-

tiate between the tumors and their surrounding media. Based on these results, hypothesis 4 is

confirmed.
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TABLE 4.XI – The results of two-way ANOVA test to evaluate the ability of the static

value and dynamic range of the homodyned K-distribution parameters to differentiate

tumors from their surrounding medium.

Two−way ANOVA (p < 0.001) TI −SI TII −SII

αs yes yes

κs yes yes

μs yes yes

Range(αd) yes yes

Range(κd) yes yes

Range(μd) yes yes

Table 4.XII presents, as extra information, the results of two-way ANOVA tests to see if

there were significant differences in the various parameters between the two tumors, and also

between the two surrounding media. The results show that half of the parameters distinguish the

two tumors, whereas all parameters differentiate the two surrounding media.

TABLE 4.XII – The results of two-way ANOVA test to see if there were significant

differences in the various parameters between the two tumors, and also between the two

surrounding media.

Two−way ANOVA TI −TII SI −SII

αs no, p = 0.828 yes, p < 0.001

κs yes, p < 0.001 yes, p < 0.001

μs yes, p = 0.003 yes, p < 0.001

Range(αd) no, p = 1.000 yes, p < 0.001

Range(κd) no, p = 0.578 yes, p < 0.001

Range(μd) yes, p = 0.003 yes, p < 0.001
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4.3.2 Hypothesis 5

Hypothesis 5 : The maximal displacement amplitude of the mice tumors is correlated

with the range of the parameters of the homodyned K-distribution

during shear wave propagation.

The last hypothesis is based on a linear regression between the range of the homodyned K-

distribution parameters during shear wave propagation and the maximal displacement amplitude

of the medium in the tumors. Note that hypothesis 3 was assessed with the three in-vitro phan-

toms, whereas hypothesis 5 was assessed in the context of the ex-vivo experiments. Moreover,

in the context of the ex-vivo experiments, the Young’s modulus measurements were unfortuna-

tely not available, so that only the maximal displacement amplitude was used in the analysis.

A regression test was performed considering a linear regression, Y = aX +b, between the static

values or the dynamic range of the homodyned K-distribution parameters, X , and the maximal

displacement amplitude Y for the mice tumors and their surrounding medium, respectively. The

R2 coefficients of determination, the parameters a and b and the p values for the tumors and their

surrounding medium are presented in Tables 4.XIII and 4.XIV, respectively.

According to Tables 4.XIII and 4.XIV, the dynamic range of the μ parameter yielded a

greater R2 coefficient of determination in comparison to the other parameters, for both of the

tumors and their surrounding medium with an R2 = 0.56 (with p = 0.013) and R2 = 0.59 (with

p = 0.009), respectively. The maximum R2 coefficient of determination between the maximum

displacement amplitude and the static values of the homodyned K-distribution parameters was

observed for the μ parameter of the tumors and their surrounding medium with an R2 = 0.55

(with p = 0.022) and R2 = 0.45 (with p = 0.047) , respectively.
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TABLE 4.XIII – The R2 coefficients of determination, a and b parameters and the p

values of the linear regression tests of the static values and the dynamic ranges of the

homodyned K-distribution parameters and the maximal displacement amplitudes of the

tumors of the ex-vivo phantoms.

(αs) (κs) (μs)

R2 = 0.48 R2 = 0.48 R2 = 0.55

a = 0.796,b = 0.734 a = 1.339,b = 6.135 a = 4.134,b = 0.106

p = 0.038 p = 0.038 p = 0.022

Range(αd) Range(κd) Range(μd)

R2 = 0.002 R2 = 0.32 R2 = 0.56

a = 0.112,b = 2.219 a = 0.766,b = 33.270 a = 0.046,b = 0.120

p = 0.088 p = 0.088 p = 0.013

TABLE 4.XIV – The R2 coefficients of determination, a and b parameters and the p

values of the linear regression tests of the static values and the dynamic ranges of the

homodyned K-distribution parameters and the maximal displacement amplitudes of the

surrounding medium of the ex-vivo phantoms.

(αs) (κs) (μs)

R2 = 0.43 R2 = 0.44 R2 = 0.45

a = 0.066,b = 0.014 a = 0.242,b = 0.430 a = 0.534,b = 0.006

p = 0.056 p = 0.050 p = 0.047

Range(αd) Range(κd) Range(μd)

R2 = 0.51 R2 = 0.54 R2 = 0.59

a = 0.140,b = 0.063 a = − 0.612,b = 9.546 a = 0.113,b = 0.049

p = 0.021 p = 0.016 p = 0.009



CHAPITRE 5

DISCUSSION AND CONCLUSION

5.1 Discussion of the results

The aim of this study is to propose a new method in QUS by considering the range of the

homodyned K-distribution parameters during shear wave propagation, in order to obtain additio-

nal information to improve the discrimination ability of QUS. The results corresponding to each

hypothesis are discussed in the following section.

5.1.1 Hypothesis 1

Hypothesis 1 : The parameters of the homodyned K-distribution from ultrasound

echo envelope data are affected by shear wave propagation.

Does shear wave propagation have an effect on the homodyned K-distribution parameters ?

It was the first question of this research study. To answer this question, the time evolution

of the homodyned K-distribution parameters during shear wave propagation was investigated via

the in-vitro experiments. Quantitative analysis was performed by comparing the static and dy-

namic ranges of the homodyned K-distribution parameters. Two-way ANOVA analysis revealed

significant differences between the two types of range, except for the κ parameter in phantom C.

The structure parameter κ of phantom C was zero in all the frames except at the time of

the push. Therefore, the static and dynamic ranges of the κ parameter were zero and were not

distinguishable from each other. This may be attributed to the stiffness of the phantom. Indeed,

phantom C was stiffer than the other two phantoms, and thus a small displacement field was

generated in it. Thus, the κ parameter, which is related to the structure parameter of the scattering

medium, may not be affected by small displacements in stiff phantoms, such as phantom C,

during shear wave propagation. Another issue is that the relative bias and standard deviation of

the estimated κ parameter are increased by enlarging the value of the α parameter (α > 10) (14).

Thus, for large values of α , the estimated κ parameter may be less reliable. Now, the estimated



56

value of the α parameter for phantom C in the static case was around 18. This implies that the

estimation of the κ parameter was less reliable in the case of phantom C, and hence its estimated

value was less sensitive to a small displacement amplitude. In Table 4.III, coefficients of variation

of static and dynamic ranges of homodyned K-distribution parameters were presented. These

values were larger for static ranges of parameters (0.15 to 0.75) than for dynamic ranges of the

same parameters (0.014 to 0.24). Note however, that static ranges of parameters were considered

in this study only to demonstrate hypothesis 1. Indeed, in static QUS, one considers the mean

or median values of parameters over various frames in a B-mode sequence, rather than their

ranges. As one can see from Table 4.VI, the CVs of median values of the considered statistical

parameters over 5 frames were at most 0.022. Thus, median values of these parameters are likely

to be more reliable than their ranges in static QUS. Overall, the results showed a significant

difference between the static and dynamic range of the homodyned K-distribution parameters for

the phantoms with p < 0.001.

5.1.2 Hypothesis 2

Hypothesis 2 : The range of the parameters of the homodyned K-distribution during

shear wave propagation can be used to discriminate different

tissue mimicking phantoms.

The second hypothesis was related to the ability of dynamic QUS to discriminate between

tissue mimicking phantoms. The static values of the homodyned K-distribution parameters were

compared with the dynamic range of these parameters. From two-way ANOVA analysis was per-

formed on the static values and the dynamic range of the homodyned K-distribution parameters

obtained from the three in-vitro phantoms. This analysis revealed that the dynamic range of the

parameters could distinguish between the three phantoms, except for phantoms B and C in the

case of the α parameter.

The dynamic range of the α parameter did not discriminate between phantoms B and C. This

may be due to the fact that the two-way ANOVA test was applied on the three phantoms together.

Indeed, it is seen in Table 4.IV that the values of the α parameter for phantoms B and C are

one order of magnitude smaller than that for phantom A. Thus, the values of the α parameter
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for phantoms B and C are not significantly different, when that of phantom A is considered.

To prove this point, a one-way ANOVA test was performed on the dynamic range of α for only

phantoms B andC. This test showed that the dynamic range of the α parameter could discriminate

between the two phantoms with p < 0.001. Note that in a specific application, one may not need

to discriminate all the tissues from each other. As an example, if phantom A represents a benign

tumor and the two other phantoms are mimicking malignant tumors, then the goal would be to

differentiate A from B and C, rather than distinguishing B from C.

The two-way ANOVA tests also showed that the median values of the statistical parameters

could distinguish between the three phantoms. But note that static QUS is expected to reveal

information about the microstructure of tissues (number of scatterers, their spatial organization

and their acoustical properties), whereas dynamic QUS would be related to mechanical properties

of tissues. See section 5.1.3 for additional results on this matter.

The results in this section showed that, depending on the application, dynamic QUS can help

tissue discrimination.

5.1.3 Hypothesis 3

Hypothesis 3 : The maximal displacement amplitude of the medium and

the reciprocal of the Young’s modulus are correlated with the range of the parameters of

the homodyned K-distribution during shear wave propagation.

Relations between mechanical properties of the scattering medium and statistical parame-

ters of the homodyned K-distribution were investigated as formulated with the third hypothesis.

A linear regression test was performed between the static values or the dynamic range of the

homodyned K-distribution parameters and the maximum displacement amplitude or the 1/E pa-

rameter. We postulated that by increasing phantom stiffness, and hence decreasing the maximum

displacement amplitude of the medium, statistical parameters would be less affected by shear

wave propagation, resulting in a smaller range.

According to Tables 4.VIII and 4.IX, overall, dynamic QUS in comparison with static QUS

is more correlated with the mechanical properties for the three phantoms. Again, static QUS is

expected to be related to the microstructure of the medium, rather than its mechanical properties.
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The R2 coefficients of determination of the linear regressions between the dynamic range of

the homodyned K-distribution parameters and the maximal displacement amplitudes were larger

than that of the linear regressions with 1/E. Finally, one can see that the best linear regression

occurred for the case of the dynamic range of the μ parameter and the maximum displacement

amplitude with an R2 coefficient of determination of 0.98 and p < 0.001.

In conclusion, dynamic QUS parameters were correlated with the maximum displacement

amplitude and the 1/E parameter for all the in-vitro phantoms, whereas such a correlation was

substantially smaller for the static QUS parameters.

5.1.4 Hypothesis 4

Hypothesis 4 : Dynamic QUS can help in distinguishing the mice tumors from their

surrounding medium.

The next step was to use the dynamic QUS to distinguish the mice tumors from their sur-

rounding medium. Analysis of the ex-vivo results showed that the estimated homodyned K-

distribution parameters within the tumor were affected by shear wave propagation. Two-way

ANOVA test showed that static and dynamic QUS could distinguish the tumors from their sur-

rounding medium, but based on different types of information.

5.1.5 Hypothesis 5

Hypothesis 5 : The maximal displacement amplitude of the mice tumors is correlated

with the range of the parameters of the homodyned K-distribution

during shear wave propagation.

Finally, the last hypothesis concerned correlations between dynamic or static QUS parame-

ters and mechanical properties of the mice tumors or their surrounding agar gelatin medium.

According to Tables 4.XIII, dynamic QUS in comparison with static QUS was not always more

correlated with the maximal displacement amplitude for the tumors. Nevertheless, the maximal
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R2 coefficient of determination occurred for the dynamic range of the μ parameter with a value

of 0.56 and p = 0.013. Moreover, Table 4.XIV indicates that dynamic QUS in comparison with

static QUS was more correlated with the mechanical properties for the surrounding agar gelatin

material. The maximum R2 coefficient of determination occurred for the dynamic range of the μ

parameter with a value of 0.59 and p = 0.009.

Considering the in-vitro and ex-vivo results, the dynamic range of the μ parameter was

the most significantly correlated with the maximal displacement amplitude during shear wave

propagation.

5.2 Limitations of the study

In this study, the number of phantoms and mice tumors was small. In order to have a better

statistical analysis, the sample size of phantoms and mice tumors should be increased.

According to Table 3.I, a wide range of elasticities of breast lesions were reported in previous

studies. Thus, in the in-vitro experiments, one might consider a wider range of Young’s modulus

for the agar gelatin medium.

In this study, the mice tumors were malignant with same type of cancer cells. A further

research topic would be to assess the ability of dynamic QUS to discriminate benign from ma-

lignant tumors. Moreover, the surrounding medium in the ex-vivo experiments were fabricated

with agar gelatin and were stiffer than the mice tumors. However, malignant tumors are usually

stiffer than surrounding breast tissues (62). Therefore, to have more realistic experiments, it

would be instructive to consider a softer surrounding medium in the ex-vivo experiments.

The pushing time in the SSI method for the shear wave generation is limited. This is due to

the fact that the radiation force is a highly focused beam and by increasing the pushing time, the

temperature of the medium is increased. The pushing time cannot be increased more than a speci-

fic threshold to prevent damages in mechanical properties of the phantoms due to the temperature

rise and a potential damage to the phantom. Thus, the maximal displacement amplitude is limited

and the effect of the shear wave on the homodyned K-distribution parameters may not be signi-

ficant in stiff phantoms that have smaller displacement amplitude during shear wave propagation

compared to the soft ones. In fact, according to the results of the in-vitro experiments, the range

of the κ parameter was 0 in the case of the stiffest phantom, which suggests that this parameter

might not be affected by small displacements within stiff medium during shear wave propaga-
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tion. On the other hand, it would be interesting to assess if such a behavior of the κ parameter

could be used as a marker of stiffness of the medium, in the context of a specific application.

Finally, the manual segmentation for defining the region of interest in the ex-vivo experi-

ments could be replaced by automatic or semi-automatic algorithms, such as can be found in

(44). This could help control the reproducibility of segmentations of tumors contours.

5.3 Clinical impact

In this study, shear waves were remotely generated by a linear array transducer using the SSI

method. Plane wave imaging with a high frame rate allowed rapid acquisition of the images. The

computational time for the estimation of the homodyned K-distribution parameters was equal

to 6.8 ms per image (14). Therefore, the proposed method to estimate the dynamic behavior

of the homodyned K-distribution parameters might be suitable for in-situ clinical applications,

granted that a segmentation algorithmwould be used to delineate the tumors contours. In dynamic

elastography, there is no need to segment the tumors. However, a cross-correlation algorithm is

needed to compute the displacement map, and without GPU implementation, such an algorithm

is more time consuming (few minutes) (41). Thus, the computational time is not so different in

dynamic QUS and dynamic elastography.

Note that the goal is not to replace dynamic elastography with dynamic QUS, but to add

extra information to current methods that are already amenable to clinical applications. Related

to this matter, one would need to assess the improvement on precision, sensitivity and specificity

brought by dynamic QUS to the current dynamic elastography and QUS methods. One should

also study reproducibility of dynamic QUS based on variations of the tumors segmentations.

5.4 Future studies

In order to prove the concept of dynamic QUS, we presented the experimental results obtai-

ned from the in-vitro and ex-vivo experiments. For future work, the number of phantoms may be

increased. We suggest to consider a surrounding medium softer than the tumors for the ex-vivo

experiments. Moreover, using an automatic segmentation algorithm instead of manual segmen-

tation for ex-vivo experiments is recommended.

It is interesting to analytically investigate the scatterers behavior during shear wave propa-

gation. This may be performed through the homodyned K-distribution. The first step may be
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to assess the behavior of the α parameter during the shear wave propagation. The α parameter

may be interpreted as the effective density of the scatterers (43) that is defined by the following

equation :

α = α0 ∗N, (5.1)

where α0 is a measure of homogeneity of the scattering medium and N is the number of scatterers

per resolution cell (43). The parameter N can be assumed constant during plane shear wave pro-

pagation, as the number of scatterers is supposedly the same in a specific ROI. Therefore, based

on the interpretation suggested in (43), studying the dynamic behavior of the α0 parameter during

shear wave propagation may be one approach to investigate the effective density of scatterers.

Moreover, the linear regression between mechanical properties and the static value or the

dynamic range of the κ parameter suggests that the microstructure of the phantoms may vary

during shear wave propagation. In particular, an analytical study of the κ parameter needs to be

performed to understand how shear wave propagation affects the microstructure of the medium.

The results obtained from the in-vitro and ex-vivo experiments showed a significant linear re-

gression between the range of the mean intensity under shear wave propagation and the maximal

displacement amplitude. This suggests to analytically study the behavior of the mean intensity of

the echo envelope during shear wave propagation.

5.5 Summary and conclusion

Supersonic shear imaging (SSI) method was used to produce shear wave inside 3 in-vitro

and 2 ex-vivo phantoms and the RF data was acquired with the plane wave imaging technique.

The results obtained from these in-vitro and ex-vivo experiments showed that the parameters of

the homodyned K-distribution as a general model of the ultrasound backscattering echo envelope

were affected by shear wave propagation due to the changes in the microstructure of the media.

Dynamic QUS was overall as powerful as static QUS to distinguish between the three in-vitro

phantoms with different structural and mechanical properties and the mice tumors from their

surrounding medium with p < 0.001. The correlation between the mechanical properties and the

dynamic QUS parameters was investigated by a linear regression model. The results showed a

significant linear regression between the range of the mean intensity under shear wave propaga-

tion and maximum displacement amplitude (in-vitro phantoms : R2 coefficient of determination
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= 0.98, p < 0.001 ; ex-vivo tumors : R2 = 0.56, p = 0.013 ; ex-vivo surrounding medium : R2

= 0.59, p = 0.009.). In the case of static QUS, the R2 coefficient of determination of the linear

regression between the mean intensity and mechanical properties of the medium was not signi-

ficant (in-vitro phantoms : R2 = 0.07, p = 0.328, ex-vivo tumors : R2 =0.55, p = 0.022 ; ex-vivo

surrounding medium : R2 = 0.45, p = 0.047).

On a long term basis, this work aimed at assessing if statistical QUS parameters under shear

wave propagation (dynamic QUS) could increase the discriminant power of ultrasound imaging

techniques used for breast tissue characterization and differentiation of benign and malignant

tumors. The current study showed the feasibility of tissue classification using dynamic QUS, re-

lated to tissue mechanical properties and the changes in their microstructure under shear wave

propagation. The preliminary results presented in the appendices showed an example where dy-

namic QUS was able to distinguish an inclusion from its surrounding medium, while static QUS

was not able to do so. Considering the presented results, dynamic QUS may be considered as a

new approach to provide additional information to static QUS with potential application in breast

lesion classification.
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Annexe I

Shear wave propagation modulates quantitative ultrasound K-distribution echo

envelope model statistics in homogeneous viscoelastic phantoms (2)

I.1 Abstract

In the context of tissue characterization, one may wonder what does the consideration of a

quantitative ultrasound (QUS) feature of a medium under the propagation of a shear wave (SW)

add to its discriminant power. This study presents the time-varying behavior of the K-distribution

beta parameter - the reciprocal of the effective density of scatterers - under SW propagation and

its relation with the viscoelasticity of the medium. Transient plane SW at 300 Hz central fre-

quency was transmitted to three agar-gelatin phantoms at different concentrations. The ampli-

tude of the B-mode backscatter echoes acquired with an 8 MHz probe was modeled with the

K-distribution. The normalized range of beta (i.e., its range normalized by its mean value as

the SW propagates) was determined by considering the B-mode images during SW propagation.

Also, the storage (G′) and loss (G′′) moduli of each phantom were measured on samples with the

RheoSpectris hyper-frequency instrument (Rheolution, Montreal, Canada). The time-evolution

of the beta parameter and displacements (using cross-correlation) within tissue-mimicking phan-

toms under SW vibration suggest that the beta parameter can be used to track SW propagation.

In-vitro results showed that the normalized range of beta is related to the viscoelasticity of phan-

toms. By increasing G′ and G′′, the normalized range of beta decreased. Thus, the consideration

of the behavior of beta under SW propagation modifies the effective density of scatterers with

respect to static conditions (i.e., without SW). This is new observation and a new step towards

understanding statistical QUS behavior.

I.2 Introduction

Breast tissue characterization based on quantitative ultrasound (QUS) has been introduced

a few decades ago [1,2]. Optical photomicrographs of breast tissues of mice showed significant

differences in microstructure for pathological tissues [3]. Based on that observation, the conside-

ration of differences in diameter or acoustic concentration of cells and nuclei (playing the role of
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scatterers) could be used to classify pathological breast tissues [3,4]. Moreover, various models

such as the Nakagami or the K-distribution have been proposed to describe the distribution of the

ultrasound echo envelope from tissues [5,6]. The homodyned K-distribution is the most general

distribution model for ultrasound echo envelopes for which its parameters have a physical inter-

pretation that is compatible with the limit case of a vanishing diffuse signal power, as opposed

to other models. Also, it is known that in the case of no coherent component, the homodyned

K-distribution amounts to the K-distribution [7]. Recently, Liao et al. showed that by combi-

ning a strain-compounding technique and the Nakagami model, the specificity of breast tissue

classification could be improved [8].

From a mechanical point of view, during 20 years of research in elastography, various me-

thods have been used to estimate tissue viscoelasticity in order to categorize pathological from

normal tissues [9]. Elastography methods are characterized as static and dynamic methods. In

static elastography, the deformation is detected by applying a force on the tissue. This method

has its own limitations due to its operator dependency and the effect of pre-compression force.

Therefore, dynamic elastography was proposed as a quantitative method to improve the accuracy

of existing approaches. Dynamic elastography based on shear wave propagation was introduced

by Sarvazyan et al. [10]. With this method, the shear wave propagates through the medium and

the tissue displacement is detected with ultrasound imaging. With proper assumption, the shear

wave speed can be related to the elasticity modulus of the medium.

Recently, some studies suggested estimating statistical parameters to determine hardening

of porcine lens and rat liver fibrosis [11,12]. By considering these studies, this paper proposes

a novel approach in QUS to understand the behavior of ultrasound scatterers under shear wave

propagation. The goal is to show the feasibility of combining QUS imaging and dynamic elas-

tography to give new information on tissue properties, with the aim of diagnosing pathological

states.

I.3 Theoretical model

I.3.1 Parameter estimation

In the context of ultrasonic tissue characterization, various models have been proposed for the

statistical analysis of the ultrasound echo envelope. The homodyned K-distribution is presently

the most general model with a consistent physical meaning for modeling the first-order statistics
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of the amplitude of the echo envelope. In the absence of a coherent component, the homodyned

K-distribution is referred as the K-distribution [7]. The probability density function (pdf) of the

K-distribution is expressed as :

PK(A |σ2,α) =
4Aα

(2σ2)(α+1)/2Γ(α)
Kα−1

(√ 2
σ2 A

)
, (I.1)

where its two parameters 2σ2 and α are positive real numbers and correspond to the effective

cross section and effective density of the scatterers, respectively, A is the amplitude, Kp denotes

the modified Bessel function of the second kind of order p and Γ is the Euler Gamma function.

Another issue which should be considered in the model fitting is the choice of estimators for

a specific distribution. For the K-distribution model, it is known that the X-statistics is a better

estimator for K-distributed data among other known estimators [13]. That statistics is defined as :

X =
〈I log I〉
〈I〉 −〈log I〉. (I.2)

Here, I is the intensity of the backscatter echo envelope (i.e., the square of its amplitude A) and

the symbol 〈·〉 denotes the average over a sample of a random variable. Then, one sets

α =
1

X −1
. (I.3)

In the case where X ≤ 1, α becomes meaningless. To avoid this problem, the parameter β (the

reciprocal of the parameter α) was proposed [14] and β is assumed to be zero whenever X ≤ 1

[15].

I.3.2 Shear wave propagation

Consider a plane shear wave which is polarized in the y direction and propagates in the x

direction in a homogeneous, linear viscoelastic and incompressible medium. The complex sta-

tionary displacement (U) is :

Uy(x) =U0ei(k′+ik′′)xeiφ , (I.4)

where U0 is the absolute value of the wave amplitude, φ is an arbitrary phase, and k′ and k′′

represent the real and the imaginary part of the complex wave number. Also, the complex shear
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modulus (G∗) is related to the complex wave number as :

G∗ = G′+ iG′′ = ρ
2π fsw

(k′+ ik′′)2
, (I.5)

where ρ and fsw are the density of the medium and the frequency of shear wave, respectively. G′

is the storage modulus which corresponds to the elastic part and G′′ is the loss modulus which is

related to the viscous behavior of the medium [16].

I.4 Method

Three cubic agar-gelatin viscoelastic phantoms were made. The concentration of agar and

gelatin and the shear moduli of each phantom is given in Table 1. A rigid plate was placed in

contact with the vibrator (model 4810, Bruel & Kjaer) which applied a plane transient shear wave

at 300 Hz central frequency into the phantom. A clinical ultrasound array transducer (L14-5/38,

Ultrasonix) of a Sonix RP scanner (Ultrasonix Medical Corporation, Burnaby, BC, Canada) was

used for ultrasound imaging and recording of radio-frequency (RF) data. The central frequency

of the probe and the sampling frequency were 8 MHz and 40 MHz, respectively. The acquisition

depth was 80 mm and the focal depth was 40 mm for each phantom. The storage (G′) and loss

(G′′) moduli of phantom samples were measured with the RheoSpectris hyper-frequency instru-

ment (Rheolution, Montreal, Canada) by transmitting transient shear waves into the samples and

measuring displacements using a high sensitive laser sensor [17].

I.5 Results

Assuming no periodic scatterers in the agar-gelatin phantoms, the K-distribution was used

to model the ultrasound echo envelope of backscatter echoes. Figure I.1 shows the histogram of

reconstructed B-mode images (i.e., from acquired RF data) for one of the agar-gelatin phantoms.

The histogram fits very well with the pdf of the estimated K-distribution. The parameters of the

pdf were estimated with the X-statistics. Considering vertical windows with the same size (1/3

of the whole B-mode image for each window), one can track the propagation of the shear wave

within the phantom (Figure I.2). Moreover, Figure I.3 shows the time evolution of the parameter

β under shear wave propagation, as well as the displacement of the central point of agar-gelatin

phantom which is calculated by a cross-correlation algorithm.
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FIGURE I.1 – Histogram of the echo envelope and the estimated K-distribution pdf for
the agar 1% - gelatin 3% phantom.

FIGURE I.2 – Time evolution of the beta parameter under shear wave propagation in
three different vertical windows (i.e., depth) of equal size.

Table I.I shows the mean value, as well as the normalized range of the parameter β during

shear wave propagation. The corresponding viscoelasticity moduli of each phantom are also pre-

sented. Displacements of the central point of agar-gelatin phantoms are 4.97, 3.51 and 2.24 μm

for concentrations of 5%−3%, 1%−6% and 1%−3% agar-gelatin, respectively.
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FIGURE I.3 – Variation of the beta parameter with corresponding displacement of the
central point of the agar 1% - gelatin 3% phantom.

I.6 Discussion

On a long term basis, this work aims assessing QUS features under shear wave propagation

for breast tissue characterization. Mechanical properties of breast tissue mimicking phantoms

were chosen to mimic a wide range of pathological breast tissues [18].

Compared with standard QUS methods applied on static images, the results showed the pos-

sibility of extracting new information from the time evolution of statistical parameters during

shear wave propagation. The variation of the parameter β had a similar pattern as the displace-

ment map. Therefore, it motivated us to verify a possible relation between mechanical properties

of phantoms and the time evolution of statistical parameters, reflecting the structure of medium.

According to Table I.I, a trend could be seen between the normalized range of the parameter β

and the viscoelasticity of agar-gelatin phantoms. As the parameter β reveals information about

the homogeneity of the medium, the evolution of that parameter under shear wave propagation

could be interpreted by considering the change in the scatterers’ spatial organization. Moreo-

ver, the mean value of the parameter β was not related to the viscoelasticity of the phantoms.

Therefore, the time evolution of the parameter β could give more information than its average

value.
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TABLE I.I – Behavior of the statistical parameter β = 1/α of the K-distribution and
mechanical properties ( storage and loss moduli G′ and G′′) of agar-gelatin phantoms.

Proportion of G′ and G′′ Mean value Normalized
agar-gelatin (KPa) of β = 1/α range of β = 1/α

5%-3% 22, 2.2 0.6131 0.0090

1%-6% 10, 0.744 0.7013 0.0126

1%-3% 1.6, 0.506 0.5852 0.0179

We also considered the average value of 2σ2α , the intensity (the square of the amplitude)

computed over the whole region of interest , which can be interpreted as the total signal power,

and its time evolution during shear wave propagation. Its mean value over the sequence and its

normalized range are reported in Table I.II.

According to that table, the dynamic behavior (the normalized range) of the total signal power

could not be related to the viscoelasticity of the phantoms.

We conclude that from these observations, the parameter β is a relevant parameter to consi-

der. This approach still needs a theoretical model to interpret the time evolution of the statistical

parameters and the effect of physical parameters. Considering heterogeneous media, periodic

scatterers corresponding to collagen fibers in breast tissues and the parameters of the homodyned

K-distribution as the general distribution model for ultrasound envelope backscatter are future

steps in this work.

I.7 Conclusion

Reported in-vitro results showed that the normalized range of the parameter β is related to the

viscoelasticity of phantoms. An increase in G′ and G′′ reduced the normalized range of β , which

is related to changes in the effective density of scatterers. Thus, the consideration of the behavior

of β range under SW propagation gives new information not addressed, to our knowledge, in the

literature on QUS imaging. This original study provides new directions to improve soft tissue

characterization with ultrasound.
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TABLE I.II – Behavior of the statistical parameter 2σ2α of the K-distribution and me-
chanical properties of agar-gelatin phantoms.

Proportion of G′ and G′′ Mean value Normalized
agar-gelatin (KPa) of 2σ2α range of 2σ2α

5%-3% 22, 2.2 1.96×104 0.0035

1%-6% 10, 0.744 0.61×104 0.0063

1%-3% 1.6, 0.506 1.29×104 0.0038
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Annexe II

Dynamic quantitative ultrasound imaging of mimicked breast lesions during shear

wave propagation to emphasize differences in tissue statistical backscatter

properties (1)

II.1 abstract

The main motivation was to increase the accuracy of the breast tissue characterization by

combining quantitative ultrasound (QUS) with ultrasound (US) dynamic elastography. An agar-

gelatin breast mimicking phantom with two inclusions containing the same density of agar (US

scatterers) but different proportions of gelatin corresponding to different mechanical properties

was made. Transient plane shear waves (SW) at 200 Hz were transmitted through the phantom

while the displacement of scatterers was imaged at 5 MHz with an ultrafast imaging technique.

From segmented inclusions, the reciprocal (βparameter) of the effective density of scatterers of

a general distribution model of the echo envelope and its normalized range (normalized by the

mean of β during SW propagation) were estimated for each inclusion. The results showed that

the relative difference of β magnitudes between the surrounding medium and both inclusions A

and B were 65.4% (A) and 6.4% (B), respectively, whereas differences (in %) of the β normalized

range (under SW propagation) were 35.3% (A) and 35.1% (B), respectively. The static value β

could barely distinguish inclusion B from the surrounding ; however, the dynamic range of β

succeeded in that task for both inclusions. Thus, dynamic QUS might add information to QUS

performed traditionally in a static framework.

II.2 Introduction

According to the National Cancer Institute of Canada, breast cancer is the most common can-

cer among Canadian women. In 2012, an estimated 22,700 women were diagnosed and around

5,100 died of breast cancer in Canada. Statistically, an average of 14 women die of breast cancer

every day [1]. Early diagnosis is the key issue in optimal treatment [2].The non-invasive diagnos-

tic methods for breast cancer that are used by clinicians are categorized in three groups : X-ray

mammography, magnetic resonance imaging (MRI) and ultrasound echography. X-ray mam-
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mography is recommended as an annual breast evaluation to women 40 years of age or older.

However, the performance of the mammography is poor on women with dense breast and this

imaging modality is unable to determine benign breast lesions from malignant ones. In order to

provide a complement to mammography, it is suggested to add ultrasound echography [3]. In

fact, the main goal of the breast ultrasound examination is to reduce the large number of irre-

levant biopsies required to confirm malignancy, and to detect lesions that could be missed by

mammography [4]. In the field of ultrasound screening, the variable interpretation of radiologi-

cal images requires a well-trained and skilled radiologist. Thus, developing quantitative criteria

is relevant in that context. Microscopic images have shown the different structures of breast cells

in pathological tissues [5]. The rationale behind statistical quantitative ultrasound (QUS) is that

the spatial organization of the cell nuclei and their scattering properties leave a signature on the

statistical parameters [6]. A variety of statistical distribution models of ultrasound echo enve-

lope (i.e., grayscale of the uncompressed B-mode image) have been used in the field of tissue

characterization [7]. Furthermore, multiple approaches in the field of QUS have been applied

on breast pathological tissues and could show a significant difference between lesion types [8,

9]. However, the specificity of these statistical methods applied to breast lesion classification as

benign or malignant ones is still low. From a mechanical point of view, the early warning sign

of breast cancer for the clinician is the stiffness of the tumor, which can be detected by palpa-

tion. Various methods in ultrasound elastography imaging have been proposed to estimate the

viscoelasticity of tissues to distinguish pathological from normal tissues. In ultrasound dynamic

elastography, a shear wave propagates through the medium and the displacement (or velocity) is

imaged using ultrasound [10]. Considering the equation of wave propagation, one can estimate

the elastic and viscous moduli with this approach [11]. However, this method cannot directly

detect any information about the spatial organization of cells, which is not the objective of elas-

tography. Recently, a study showed that combining the strain-compounding technique and statis-

tical parameter estimation could reduce the false negative rate in diagnosing breast cancers [12].

Moreover, some researchers suggested estimating statistical parameters (Nakagami shape para-

meter) to determine hardening of porcine lens (Young modulus) and also to grade rat liver fibrosis

[13, 14]. These studies motivated us to propose a novel approach by considering the behavior of

statistical parameters under shear wave propagation, which may provide additional information

to standard QUS. In this paper, we show the feasibility of combining the statistical QUS with

shear wave propagation in order to have a better classification between two inclusions and their
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surrounding medium in a mimicking viscoelastic breast phantom. An example of in-vitro expe-

riment revealed that considering a general model of ultrasound echo envelope and the dynamic

range of a statistical parameter (the β parameter of the K-distribution) could make a distinction

between an inclusion and its surrounding medium, whereas the static value of that parameter was

not capable to differentiate between the inclusion and the surrounding medium. Thus, we suggest

that this new approach can improve the specificity of ultrasound imaging by providing additional

information, which may yield a more efficient diagnosis of breast cancer.

II.3 Method

II.3.1 Envelope Statistics Model

In the context of QUS, it was shown that the homodyned K-distribution is a general distribu-

tion model of ultrasound echo envelope with a physical interpretation of its parameters [15]. In

the absence of a coherent signal component, the general model is referred to as the K-distribution.

Therefore, we assume here that in the case of random scatterers, the K-distribution is a general

distribution model of the echo envelope of radio frequency (RF) data. The probability density

function (PDF) of the K-distribution is described as [15] :

PK(A |σ2,α) =
4Aα

(2σ2)(α+1)/2Γ(α)
Kα−1

(√ 2
σ2 A

)
, (II.1)

Here, Kp is the modified Bessel function of the second kind, of order p, A is the amplitude of

the ultrasound echoes, and Γ is the Euler Gamma function. The shape and the scale parameters

of the K-distribution can be defined as :

α = Nα0 = effective density (shape parameter)

2 σ2 = effective cross section (scale parameter)

where N is the number of scatterers within a resolution cell and α0 is a parameter describing

the homogeneity of the cross-section [14]. For the K-distributed model, it was shown that the

X-statistic is a better estimator among other known estimators and is defined as [16] :

X =
〈I log I〉
〈I〉 −〈log I〉. (II.2)

Here, <I> represents the mean value of the intensity I of the ultrasound echoes. Then, one

sets :
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α =
1

X −1
. (II.3)

The parameter β = 1/ α was proposed in [17] in the context of the homodyned K-distribution

and can be used to avoid having a meaningless value of α whenever X ≤ 1. Namely, the parameter

β is assumed to be zero whenever X ≤ 1.

II.3.2 Experiment

Figure II.1 shows the schematic diagram of the experimental set-up. A cubic box was filled

with agar-gelatin material (2% agar and 3% gelatin). Breast lesions were mimicked by two hard

cylindrical inclusions with 1 cm diameter, which were made by different agar and gelatin per-

centages (inclusion A : 4% agar with 6% gelatin and inclusion B : 4% agar with 4% gelatin).

Transient plane shear waves were transmitted by a function generator (model 33250 A, Agilent,

Palo Alto, CA, USA) and supplied by a vibrator (model 4810, Bruel&Kjaer, Naerum, Denmark).

A rigid plate was placed in contact with the vibrator, which applied shear waves at 200 Hz fre-

quency into the phantom. A Verasonics V-1 (Verasonics, Redmond, WA, USA) scanner was used

for plane wave ultrasound imaging and to record the radio frequency (RF) data. The ultrasound

probe was an array transducer ATL (L7-4) with 128 elements, 38 mm width at 5 MHz central

frequency.

II.4 Results

Ultrafast imaging was conducted by using the migration process to build B-mode images

from the recorded RF data at a very high frame rate [18]. By applying the normalized cross cor-

relation algorithm, the displacement map could be obtained during the shear wave propagation.

The evolution of the displacement map along the wave propagation path could show the boun-

dary of an inclusion, because the inclusion presented a shear wave speed that was different from

that in the surrounding medium. Based on this property, we superimposed the B-mode image and

the displacement map to visualize the inclusions, which allowed segmenting its elliptical shape.

Based on these segmentations, the histograms of the B-mode amplitude were calculated for the

surrounding medium and both inclusions. The region of interest for the surrounding medium was

selected on the left of the inclusions (Figure II.1), where the shear wave was not disturbed by its
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FIGURE II.1 – Schematic diagram of the phantomwith two agar-gelatin hard inclusions :
A rigid plate vibrates along Y axis and plane shear waves were propagated in the X
direction.

interaction with the interface of the mimicking lesions. The PDFs of the K-distribution were es-

timated using the X-statistics estimator. The model fitting for the three media is shown in Figure

II.2.

TABLE II.I – The β parameter of the K-distribution over the three considered media in

static mode.
Surrounding medium Inclusion A Inclusion B

2% agar- 3% gelatin 4% agar- 6% gelatin 4% agar- 4% gelatin

0.1100 0.0381 0.1175

RF data were recorded in static and dynamic SW modes. The values of the β parameter of

the K-distribution in the static case are seen in Table II.I. During shear wave propagation, the

β parameter varied over time and depicted a temporal motion similar to the tissue displacement

map. The range of β in SW mode was normalized by its mean value during the wave propa-

gation (Table II.II). In this case, both inclusions A and B presented contrast with respect to the

surrounding medium.
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FIGURE II.2 – Histograms of the ultrasound echo envelopes (line) and the estimated
PDFs of the K-distribution (points) for the three considered media (surrounding me-
dium : black, inclusion A : blue and inclusion B : red.

TABLE II.II – Normalized range of the β parameter of the K-distribution over the three

considered media in the dynamic mode.

Surrounding medium Inclusion A Inclusion B

2% agar- 3% gelatin 4% agar- 6% gelatin 4% agar- 4% gelatin

0.5326 0.8233 0.3457

II.5 Discussion

The current study suggests looking at the behavior of the statistical parameters under shear

wave propagation for the purpose of tissue characterization. Previous reportedin-vitro results

from homogeneous agar-gelatin phantoms under transient shear wave propagation showed the

time evolution of the β parameter of the K-distribution, which also presented a similar pattern

as the displacement map [19]. For heterogeneous phantoms, we were motivated to see if the dy-

namic behavior of the β parameter of the echo envelope could give more information than its

value in a static context. The above results seem to confirm this trend. First of all, the ultrasound

echo envelope of random agar scatterers in gelatin was in good agreement with the K-distribution

model fitting. Indeed, Figure II.2 shows the estimated PDF of the K-distribution for surrounding
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agar gelatin and two hard inclusions, which were mimicking breast tumors. The same concentra-

tion of agar scatterers was chosen for the two inclusions. From its physical interpretation, the β

parameter of the K-distribution is not only related to the density of the scatterers but also related

to the medium (through the parameter α0). Therefore, it was expected to obtain distinct values of

the parameter for the two inclusions with different concentrations of gelatin in the static mode.

According to Table II.I, the relative difference of β values between the surrounding medium and

inclusions A and B were 65.4% and 6.4%, respectively, so that inclusion B was barely distingui-

shed from the ambient medium. As a new step in tissue characterization, we were interested in

the dynamic behavior of the β parameter under shear wave propagation. To have similar initial

conditions, the distances of both inclusions from the rigid plate were the same. Table II.II pre-

sents the normalized range of the β parameter during shear wave propagation for the surrounding

medium and the two inclusions. In the dynamic case, the relative difference between inclusions

A, B and the surrounding medium were 35.3% and 35.1%, so that each inclusion was distingui-

shed from the ambient medium. Moreover, the two inclusions could be distinguished with the

normalized range of β (with relative difference of 58%)

II.6 Conclusion

Increasing the efficiency of ultrasound imaging remains a challenge in breast cancer diagno-

sis. Different statistical models and methods in the field of QUS have been proposed to develop

quantitative tissue classification. This study provided an incentive for considering the dynamic

behavior of statistical parameters of the ultrasound echo envelope under shear wave propagation

to increase the power of standard QUS. Considering a breast mimicking phantom with two hard

inclusions, we showed experimentally that the dynamic range of the statistical parameter β of the

K-distribution could distinguish both inclusions from the surrounding medium, whereas the sta-

tic values of this parameter could barely distinguish one of these inclusions from the surrounding

medium.
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