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SOMMAIRE

Le contenu de cette thèse est divisé de la façon suivante. Après un premier
chapitre d’introduction, le Chapitre 2 est consacré à introduire aussi simplement
que possible certaines des théories qui seront utilisées dans les deux premiers
articles. Dans un premier temps, nous discuterons des points importants pour
la construction de l’intégrale stochastique par rapport aux semimartingales avec
paramètre spatial. Ensuite, nous décrirons les principaux résultats de la théorie
de l’évaluation en monde neutre au risque et, finalement, nous donnerons une
brève description d’une méthode d’optimisation connue sous le nom de dualité.

Les Chapitres 3 et 4 traitent de la modélisation de l’illiquidité et font l’objet de
deux articles. Le premier propose un modèle en temps continu pour la structure
et le comportement du carnet d’ordres limites. Le comportement du portefeuille
d’un investisseur utilisant des ordres de marché est déduit et des conditions per-
mettant d’éliminer les possibilités d’arbitrages sont données. Grâce à la formule
d’Itô généralisée il est aussi possible d’écrire la valeur du portefeuille comme une
équation différentielle stochastique. Un exemple complet de modèle de marché est
présenté de même qu’une méthode de calibrage.

Dans le deuxième article, écrit en collaboration avec Bruno Rémillard, nous
proposons un modèle similaire mais cette fois-ci en temps discret. La question
de tarification des produits dérivés est étudiée et des solutions pour le prix des
options européennes de vente et d’achat sont données sous forme explicite. Des
conditions spécifiques à ce modèle qui permettent d’éliminer l’arbitrage sont aussi
données. Grâce à la méthode duale, nous montrons qu’il est aussi possible d’écrire
le prix des options européennes comme un problème d’optimisation d’une espé-
rance sur en ensemble de mesures de probabilité.

Le Chapitre 5 contient le troisième article de la thèse et porte sur un sujet
différent. Dans cet article, aussi écrit en collaboration avec Bruno Rémillard, nous
proposons une méthode de prévision des séries temporelles basée sur les copules
multivariées. Afin de mieux comprendre le gain en performance que donne cette
méthode, nous étudions à l’aide d’expériences numériques l’effet de la force et
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la structure de dépendance sur les prévisions. Puisque les copules permettent
d’isoler la structure de dépendance et les distributions marginales, nous étudions
l’impact de différentes distributions marginales sur la performance des prévisions.
Finalement, nous étudions aussi l’effet des erreurs d’estimation sur la performance
des prévisions. Dans tous les cas, nous comparons la performance des prévisions en
utilisant des prévisions provenant d’une série bivariée et d’une série univariée, ce
qui permet d’illustrer l’avantage de cette méthode. Dans un intérêt plus pratique,
nous présentons une application complète sur des données financières.
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SUMMARY

This thesis is structured as follows. After a first chapter of introduction, Chap-
ter 2 exposes as simply as possible different notions that are going to be used in
the two first papers. First, we discuss the main steps required to build stochas-
tic integrals for semimartingales with space parameters. Secondly, we describe
the main results of risk neutral evaluation theory and, finally, we give a short
description of an optimization method known as duality.

Chapters 3 and 4 consider the problem of modelling illiquidity, which is co-
vered by two papers. The first one proposes a continuous time model for the
structure and the dynamic of the limit order book. The dynamic of a portfolio
for an investor using market orders is deduced and conditions to rule out arbi-
trage are given. With the help of Itô’s generalized formula, it is also possible to
write the value of the portfolio as a stochastic differential equation. A complete
example of market model along with a calibration method is also given.

In the second paper, written in collaboration with Bruno Rémillard, we pro-
pose a similar model with discrete time trading. We study the problem of de-
rivatives pricing and give explicit formulas for European option prices. Specific
conditions to rule out arbitrage are also provided. Using the dual optimization
method, we show that the price of European options can be written as the opti-
mization of an expectation over a set of probability measures.

Chapter 5 contained the third paper and studies a different topic. In this
paper, also written with Bruno Rémillard, we propose a forecasting method for
time series based on multivariate copulas. To provide a better understanding of
the proposed method, with the help of numerical experiments, we study the ef-
fect of the strength and the structure of the different dependencies on predictions
performance. Since copulas allow to isolate the dependence structure and mar-
ginal distributions, we study the impact of different marginal distributions on
predictions performance. Finally, we also study the effect of estimation errors on
the predictions. In all the cases, we compare the performance of predictions by
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using predictions based on a bivariate series and predictions based on a univa-
riate series, which allows to illustrate the advantage of the proposed method. For
practical matters, we provide a complete example of application on financial data.
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Chapitre 1

INTRODUCTION

La finance mathématique est un domaine de recherche qui couvre un large
spectre qui va de la recherche fondamentale jusqu’aux questions purement empi-
riques. Conséquemment, les chercheurs du domaine sont régulièrement en contact
avec une grande diversité de problèmes, ce qui favorise le mélange des genres et
pousse les chercheurs vers un certain niveau de polyvalence.

Les résultats de cette thèse reflètent bien cette réalité où deux sujets différents
sont présentés. Dans un premier temps, le sujet principal de la thèse porte sur
la modélisation de l’illiquidité 1 des actions dans le marché financier. Dans ce
contexte, les questions d’arbitrage ainsi que de tarification de produits dérivés
sont étudiées. L’approche est très générale et, bien que le développement de ces
résultats pourra éventuellement mener à des applications, il en reste que ces
travaux répondent des questions fondamentalement théoriques. En second lieu,
nous proposons une méthode pour la prévision de séries temporelles basée sur les
copules. Les résultats présentés sont justifiés par des méthodes numériques et ont
un potentiel d’application direct en finance et dans d’autres domaines.

Les plupart des résultats classiques en finance mathématique considèrent un
modèle de marché qui repose sur deux hypothèses : le marché est parfaitement
liquide et sans friction. Sous l’hypothèse de liquidité parfaite, un investisseur a la
possibilité d’acheter ou vendre autant d’actifs qu’il le désire au prix donné par le
marché, alors que l’hypothèse d’un marché sans friction fait en sorte qu’il n’y a
pas de coûts de transaction. Ces deux hypothèses rendent le mécanisme de tran-
sactions plus facile à représenter, ce qui a permis le développement d’une théorie
de l’évaluation connue sous le nom d’évaluation en monde neutre au risque et

1. Bien que illiquidité ne soit pas un mot français, nous l’employons parce qu’il évoque
clairement le concept d’un marché financier où les actifs ne sont pas parfaitement liquides. C’est
aussi la francisation du terme anglais illiquidity qui est couramment utilisé dans la litérature.
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cette théorie peut être appliquée dans un modèle de marché très général. Ce-
pendant, ces deux hypothèses restent des simplifications qui ne représentent pas
parfaitement la réalité.

Au milieu des années 90, afin de rendre les modèles de marché plus réalistes,
les chercheurs ont commencé à s’intéresser à la modélisation de l’illiquidité, ce
qui correspond à l’étude de modèles de marchés où les actifs ne sont pas parfai-
tement liquide. Sous l’hypothèse qu’un actif est illiquide, le prix d’un actif varie
en fonction de la quantité qui est achetée ou vendue.

Pour le marché des actions, ce phénomène s’observe dans le comportement
du carnet d’ordres limites. Un ordre limite est un ordre d’achat ou de vente
contenant le nombre d’actions à transiger ainsi que le prix par action. Ces ordres
limites sont notés dans le carnet d’ordres limites en attendant d’être exécutés
ou retirés. Par opposition, un ordre de marché est un ordre d’achat ou de vente
contenant seulement le nombre d’actions à transiger, le prix par action étant celui
disponible sur les marchés. Une façon de modéliser l’illiquidité du marché est donc
de bâtir un modèle permettant de représenter la structure et le comportement
du carnet d’ordres limites. Un des articles fondateurs pour la modélisation du
carnet d’ordres est celui de Cetin et al. (2004) où l’utilisation de semimartingales
avec paramètre spacial permet de représenter une courbe de prix qui dépend de
la taille des transactions. Avec cette version simplifiée du carnet d’ordres limites,
les auteurs arrivent à reconstruire les théorèmes fondamentaux de l’évaluation qui
sont au coeur de la théorie de l’évaluation en monde neutre au risque. Cependant,
ces résultats reposent sur le fait que l’investisseur, en utilisant des transactions
suffisamment lisses, peut transiger au prix marginal, ce qui revient d’une certaine
manière à transiger sur un actif parfaitement liquide. La qualité et l’originalité
des idées présentées a cependant inspiré plusieurs articles dont celui présenté au
chapitre 3.

Le premier article présenté dans cette thèse, inclus dans le chapitre 3, traite de
la modélisation du carnet d’ordres limites et est inspiré de l’article de Cetin et al.
(2004). La contribution principale de mon article est de construire un modèle gé-
néral permettant de mieux représenter la structure des prix dans le carnet d’ordres
limites et de modéliser l’impact des ordres de marché sur cette structure de prix.
L’idée étant que les ordres de marché vide le carnet d’ordres et poussent les prix
d’achat (resp. vente) vers le haut (resp. bas) alors que les nouvels ordres limites
ramènent les prix vers un état fondamental. Une conséquence importante du mo-
dèle est que l’investisseur ne peut pas éviter d’avoir un impact sur la structure
des prix. Il est aussi démontré que l’existence d’une certaine mesure équivalente
de probabilité est suffisante pour éliminer les possibilités d’arbitrages. Ce résultat
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Figure 1.1. Les flèches représentent les différentes dépendances modélisés.

peut-être relié au premier théorème fondamental de l’évaluation. Finalement, un
exemple complet de modèle de marché est donné de même qu’une méthode de
calibrage.

Ce premier article est aussi à la base du second, écrit en collaboration avec
Bruno Rémillard et qui est l’objet du Chapitre 4. La question de tarification
des produits dérivés est l’un des sujets les plus importants en finance mathéma-
tique et il est donc intéressant d’étudier l’effet de l’illiquidité pour ce problème.
Cependant, il est peu envisageable de résoudre le problème de tarification de
produits dérivés dans un modèle aussi général que celui présenté au Chapitre 3.
Nous proposons donc une version en temps discret d’un modèle similaire pour
lequel il nous est possible de calculer le prix des options européennes de vente et
d’achat. Les solutions étant données dans une forme explicite, il est possible de
comprendre l’effet des différents paramètres du modèle sur les prix. Puisque le
modèle binomial classique est un cas particulier de notre modèle, nous sommes
en mesure de comparer nos résultats avec ceux obtenus sous l’hypothèse de liqui-
dité parfaite et ainsi mieux comprendre l’effet de l’illiquidité lors de l’évaluation
de produits dérivés. Nous présentons aussi des conditions permettant d’éliminer
les possibilités d’arbitrage. Finalement, grâce à la méthode d’optimisation duale,
nous montrons qu’il est possible de réécrire le prix des options européennes comme
une optimisation d’une espérance sur un ensemble de mesures de probabilité.

Le dernier sujet qui est traité dans cette thèse, qui fait l’objet du Chapitre
5, contient les résultats d’un article écrit en collaboration avec Bruno Rémillard.
Dans cet article, nous proposons une méthode de prévision des séries temporelles
basée sur les copules multivariées. L’avantage de cette méthode est d’utiliser des
copules pour modéliser conjointement la dépendance temporelle de même que l’in-
terdépendance de séries temporelles multivariées. En modélisant la dépendance
temporelle et la l’interdépendance des séries, il est possible d’extraire plus d’in-
formations et donc d’améliorer la performance des prévisions comparativement à
des prévisions basées seulement sur la dépendance temporelle. Par exemple, pour
une série bivariée Xt = (X1,t, X2,t), sous les conditions que la série est station-
naire et Markovienne, l’utilisation de copules permet de modéliser la dépendance
du vecteur (X1,t−1, X2,t−1, X1,t, X2,t) pour t = 1, . . . Ces différentes dépendances
sont représentées par les flèches dans la Figure 1.1.
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En théorie, plus d’informations doit générer une plus grande précision dans
les prévisions. Cependant, en pratique, il reste à démontrer si cette augmenta-
tion de la précision est significative et dans quelles circonstances notre méthode
devrait être appliquée. Afin de répondre à ces questions, nous avons effectué plu-
sieurs expériences numériques permettant de comparer la performance des prévi-
sions basées sur une série multivariée avec la performance des prévisions basées
sur la version univariée de la méthode. Nos expériences ont permis d’identifier
quelles combinaisons des dépendances possibles étaient plus ou moins favorables
à l’utilisation de la méthode multivariée. Nous avons aussi démontré que certaines
structures de dépendance, notamment la copule de Clayton, faisaient en sorte que
l’avantage des prévisions basées sur la série bivariée était très faible, peu importe
la force des dépendances en jeu.

La grande force des copules est la possibilité d’isoler la structure de dépen-
dance et les distributions marginales. Pour cette raison, nous avons aussi testé
si l’effet des distributions marginales des séries avaient un impact sur la perfor-
mance des prévisions. Cependant, les prévisions pour des distributions ayant une
plus grande variance devraient naturellement être moins précises. Nous propo-
sons donc une nouvelle mesure de performance permettant d’éliminer l’effet des
distributions marginales et permettant de comparer la précision des prévisions.

Finalement, pour des considérations plus pratiques, nous avons testé l’effet
des erreurs d’estimation sur les paramètres des copules et nous présentons aussi
un exemple complet d’application sur des séries financières.



Chapitre 2

NOTIONS PRÉLIMINAIRES

Ce chapitre présente quelques notions qui seront utiles pour les deux prochains
chapitres. Dans un premier temps, nous présentons quelques éléments de la théorie
des semimartingales avec paramètre spatial. Cette théorie généralise l’intégrale
stochastique et la formule d’Itô, voir Protter (2004) ou Durrett (1996) pour la
théorie classique du calcul stochastique. En second lieu, nous présentons un rappel
sur la théorie de l’évaluation en monde neutre au risque. Cette théorie est une des
plus importante en mathématiques financières. Les articles formant les Chapitres
3 et 4 généralisent certains résultats de cette théorie pour un marché illiquide,
plus précisément la relation entre absence d’arbitrage et l’existence d’une certain
mesure de probabilité équivalente. Finalement, nous décrivons brièvement une
méthode d’optimisation, appelée méthode duale, qui sera utilisée au Chapitre 4.

1. Semimartingales avec paramètre spatial
Dans cette section nous présentons une brève introduction à la théorie des

semimartingales avec paramètre spatial. L’objectif est de donner rapidement au
lecteur une vision intuitive de cette théorie. Pour cette raison, les résultats sont
présentés sans preuves et le lecteur est référé au livre de Kunita (1990) pour tous
les détails.

Soit (Ω, {Ft}t≥0,P) un espace de probabilité filtré tel que F0 contient tous
les ensembles nuls de la filtration et Ft est continue à droite, i.e. Ft = ⋂

u>tFu.
Une semimartingale avec paramètre spatial est une famille de semimartingales
{F (x, t);x ∈ R} indexée par le paramètre x ∈ D ⊂ R. Soit X un processus
prévisible, notre objectif est de construire une intégrale de la forme∫ T

0
dF (Xt, dt). (1.1)

Cette intégrale permettra de définir la différentielle dF (Xt, t), qui est en fait une
généralisation de la formule d’Itô.



8

Avant d’aller plus loin, voyons quelle est la difficulté de ce problème. Par
exemple, soit M une martingale locale continue et ft(λ) un processus prévisible
pour chaque paramètre λ ∈ D où D ⊂ R. Supposons que

∫ T
0 fs(λ)2 〈M〉s < ∞

pour chaque λ. Alors, l’intégraleM(λ, t) :=
∫ t

0 fs(λ)dMs est une martingale locale
continue, bien définie sauf pour un ensemble de mesure nulle Nλ. Le problème
est que, vue comme une fonction de λ, M(·, t) est bien définie sauf sur l’ensemble⋃
λNλ. Cependant, comme D peut être non-dénombrable, cet ensemble n’est pas

nécessairement de mesure nulle. Pour résoudre ce problème, on suppose que le
processus t 7→M(·, t) est continu dans l’espace des fonctions m fois continuement
dérivables (Cm,δ(D), || · ||m,δ) où

||f ||m,δ = sup
x

|f(x)|
1 + |x| +

m∑
i=1

sup
x

∣∣∣∣∣ didxif(x)
∣∣∣∣∣+ sup

x,y

∣∣∣ dm
dxm

f(x)− dm

dym
f(y)

∣∣∣
|x− y|δ

où δ ∈ (0, 1). En conséquence, on peut montrer que le processus de variation
quadratique A(x, y, t) = 〈M(x, t),M(y, t)〉 est continu par rapport à la norme

||g||∼m,ε = sup
x,y

|g(x, y)|
(1 + |x|)(1 + |y|) +

∑
1≤α≤m

sup
x,y

∣∣∣∂αx∂αy f(x, y)
∣∣∣

+
∑

0≤α≤m
||g||∼m+ε,

où
||g||∼m+ε = sup

x,x′,y,y′

|g(x, y)− g(x′, y)− g(x, y′)− g(x′, y′)|
|x− y|ε|x′ − y′|ε

et ε < δ. C’est en utilisant cette continuité de la variation quadratique A(x, y, t)
qu’il est possible de définir l’intégrale 1.1 comme la limite d’intégrales de pro-
cessus simples. Comme pour l’intégrale stochastique classique, la convergence est
uniforme en probabilité.

On peut maintenant définir l’intégrale pour un processus simple. Soit {F (x, t);x ∈
D, t ∈ [0, T ]} une famille de semimartingales continues dans (Cm,δ(D), || · ||m,δ)
et X l un processus simple, i.e. il existe une partition ∆ = {0 = t0 < t1 < · · · <
tl = T} de l’intervalle [0, T ] telle que X l

t = X l
tk
pour tout t ∈ [tk, tk+1). On définit

l’intégrale pour le processus simple X l par

F (X l, t) =
∫ t

0
F (Xs, ds) =

l∑
k=0

{
F (X l

tk∧t,tk+1∧t)− F (X l
tk∧t,tk∧t)

}
.

Par la suite, on construit l’intégrale stochastique F (X, t) pour X un pro-
cessus prévisible de façon similaire à l’intégrale stochastique classique. On com-
mence par supposer que F (x, t) est une martingale continue de carré intégrable
et on montre que F (X l, t) est aussi une martingale continue de carré intégrable.
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On suppose ensuite que F (x, t) est une martingale locale continue et on re-
fait le même exercise en utilisant une suite croissante de temps d’arrêts {τn}
tels que F (x, τn ∧ t) est une martingale. Finalement, en supposant que X =
liml→∞X

l on peut montrer que 〈F (Xm, t)− F (Xn, t)〉 → 0 p.s. lorsque m,n →
∞. Puisque le variation quadratique définit une norme équivalente à la norme
L2, nous avons que F (X l, t) converge uniformément en probabilité vers F (X, t).
La limite 〈F (Xm, t)− F (Xn, t)〉 → 0 est obtenue grâce à la continuité par rap-
port à la norme mentionnée plus haut. Finalement, il est possible de construire
la formule d’Itô généralisée, voir l’Annexe B du Chapitre 3,

dF (Xt, t) = F (Xt, dt) + ∂F

∂x
(Xt, t)dXt + 1

2
∂F

∂x2 (Xt, t)d 〈X〉t +
〈
∂F

∂x
(Xt, dt), Xt

〉
.

2. Théorie de l’évaluation en monde neutre au risque
Une des théories la plus importante en finance mathématique est la théorie de

l’évaluation en monde neutre au risque, (Harrison and Kreps, 1979) et (Harrison
and Pliska, 1981). Cette théorie démontre bien le niveau de maturité qu’a atteind
la finance mathématique lorsque l’on se place sous les hypothèses d’un marché
parfaitement liquide et sans friction. Cette théorie s’applique à des modèles de
marché en temps continu ou discret très généraux dans lesquels les actifs financiers
peuvent être représentés par des semimartingales.

La théorie de l’évaluation en monde neutre au risque contient deux principaux
résultats. Ces derniers sont souvent appelés théorèmes fondamentaux de l’évalua-
tion. Le premier affirme que l’absence d’arbitrage dans un modèle de marché est
équivalente à l’existence d’une mesure de probabilité équivalente pour laquelle les
actifs actualisés sont des martingales. Sans ce résultat, pour chaque modèle de
marché, il faut démontrer que parmi toutes les stratégies d’investissments, aucune
ne donne une opportunité d’arbitrage. Ce résultat donne donc une méthode systé-
matique pour montrer que le marché ne contient pas d’arbitrage. Par exemple, si
l’on représente les actifs par des processus d’Itô, le théorème de Girsanov permet
de déterminer la mesure martingale en question, voir Shreve (2004).

Le second théorème fondamental dit que le marché est complet si et seulement
si il existe une unique mesure martingale équivalente. Cela signifie que tous les
droits contingents peuvent être répliqués, c’est-à-dire qu’il existe une stratégie
d’investissement telle que la valeur du portefeuille est la même que la valeur du
droit contingent.

En conséquence, on obtient que la valeur d’un droit contingent est l’espé-
rance sous la mesure neutre au risque des flux monétaires actualisés à l’échéance.
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On note que s’il existe plus d’une mesure martingale, alors la valeur du droit
contingent n’est pas unique.

Un bon exemple de la force de cette théorie est son application au modèle
de Black-Scholes, (Black and Scholes, 1973). Le modèle de Black-Scholes suppose
que la valeur de l’action est un mouvement Brownien géométrique

St = S0e

(
µ−σ

2
2

)
t+σWt

,

avec S0, µ, σ > 0, et que le taux d’intérêt instantané est constant. C’est-à-dire que
l’évolution d’une unité dans le marché monétaire est donnée par dBt = rBtdt,
avec r > 0. Dans l’article de Black and Scholes (1973), la solution du problème
de réplication et de tarification d’une option européenne passe par la résolution
d’une équation aux dérivées partielles où la condition terminale est la valeur de
l’option à l’échéance. En utilisant la théorie de l’évaluation en monde neutre au
risque, la solution du problème de tarification se résume à prendre l’espérance
de la valeur actualisée de l’option à l’échéance en utilisant la mesure neutre au
risque,

1
BT

EQ [C(ST )]

où la dérivée de Radon-Nykodim est donnée par dQ
dP

= e−ΘWT− 1
2 Θ2T et Θ =

(
µ−r
σ

)
.

Sous cette mesure, la valeur actualisée de l’action suit une distribution Log-
Normale. Dans le cas d’une option européenne, nous avons que C(s) = max(s−
K; 0) pour un certain K > 0. Il est donc très facile de calculer la valeur de l’op-
tion. Dans des cas plus généraux, puisque la valeur de l’option s’exprime comme
une espérance, il est possible d’obtenir des approximations numériques par la
méthode de simulation Monte Carlo, ce qui donne la possibilité d’avoir des ré-
sultats numériques pour des modèles où l’espérance ne peut pas être calculée
explicitement.

3. Dualité
Nous concluons ce chapitre avec une méthode d’optimisation connue sous le

nom de dualité, dualité Lagrangienne ou simplement méthode duale. Cette tech-
nique permet parfois de simplifier le problème d’optimisation puisque le problème
dual est toujours concave. De plus, dans certains cas, elle apporte une interpré-
tation différente de la solution. C’est d’ailleurs le cas pour notre problème de
tarification d’options européennes à la Section 5 du Chapitre 4. Dans ce qui
suit, nous allons présenter brièvement cette méthode et nous terminerons avec un
exemple. La présentation suit les idées du Chapitre 5 de Boyd and Vandenberghe
(2009).
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Supposons le problème d’optimisation avec contraintes suivant. Soit f0 : Rn →
R,

minimiser f0(x),
sous les contraintes fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p,
(3.1)

où le domaine D =
{⋂m

i=0 domfi(x)
}⋂{⋂p

j=0 domhj(x)
}

est non-vide. Notons
par p∗ la valeur optimale du problème d’optimisation. La fonction Lagrangienne
associée à ce problème est définie par

L(x, λ, ν) := f0(x) +
m∑
i=1

λifi(x) +
p∑
j=1

νjhj(x).

De sorte que la fonction duale, ou fonction Lagrangienne duale, est donnée par

g(λ, ν) := inf
x∈D

L(x, λ, ν).

Il est important de noter que pour λ ≥ 0 et ν ∈ Rp, g(λ, ν) ≤ p∗. En effet, soit
x̃ ∈ D, alors

L(x̃, λ, ν) = f0(x̃) +
m∑
i=1

λifi(x̃) +
p∑
j=1

νjhj(x̃) ≤ f0(x̃),

puisque fi(x̃) ≤ 0 pour i = 1, . . . ,m et hj(x̃) = 0 pour j = 1, . . . , p.
Comme on le voit, la fonction duale donne une borne inférieure pour p∗. Le

problème dual et donc de déterminer la plus grande borne, soit

d∗ = sup
λ≥0,ν∈Rp

g(λ, ν).

Comme il a été mentionné plus haut, la fonction duale est concave puisqu’elle est
l’infimum point par point d’une famille de fonctions concaves en (λ, ν). Lorsque
d∗ ≤ p∗ nous disons qu’il y a dualité faible et qu’il y a dualité forte lorsque d∗ = p∗.
Dans ce cas, le problème dual est équivalent au problème initial.

Une question importante est évidemment de déterminer si l’on a la dualité
forte. Voici une condition suffisante pour la dualité forte qui s’applique à notre
problème. Supposons que le problème 3.1 est convex et est de la forme suivante

minimiser f0(x),
sous les contraintes fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

avec fi(x) convexes pour tout i = 1, . . . ,m. S’il existe x0 dans l’intérieur de D tel
que fi(x0) < 0 pour tout i = 1, . . . ,m et Ax0 = b alors il y a dualité forte. Cette
dernière condition est la condition de Slater.
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Remarque 3.1. En fait, la condition exacte de Slater est que x0 appartient à
l’intérieur relatif de D, mais pour notre probème la formulation précédente est
suffisante.

Afin d’illustrer cette méthode, voici un exemple d’application sur un problème
d’optimisation linéaire.
Exemple 3.1. Soit le problème d’optimisation suivant.

minimiser cTx,

sous les contraintes x ≤ 0,
Ax = b.

La fonction Lagrangienne est donnée par

L(x, λ, ν) = −bTν + (c+ ATν − λ)Tx.

De sorte que la fonction duale est

g(λ, ν) = −bTν + inf
x

(
c+ ATν − λ

)T
x.

Puisque x ∈ R, nous avons que

g(λ, ν) =

 −bTν, si ATν − λ+ c = 0,
−∞, sinon.

Soit D∗ =
{
ν ∈ Rp;∃λ ≥ 0 tel que ATν − λ+ c = 0

}
, le problème dual est

supν∈D∗ −bTν. Si A est inversible, alors le problème dual est simplement
supλ≥0−bT

{
(AT )−1(λ− c)

}
.



Chapitre 3

GENERAL MODEL FOR LIMIT ORDER
BOOKS AND MARKET ORDERS

Résumé

Dans cet article nous construisons un modèle en temps continu
pour la structure et la dynamique du carnet d’ordres limites. L’as-
pect novateur de cet approche est d’utiliser des processus aléatoires
ayant des valeurs dans l’espace des fonctions continues pour modé-
liser directement le coût des transactions. Nous déduisons ensuite
le comportement du portefeuille d’un gros investisseur utilisant
des ordres de marchés. Le comportement de ce portefeuille tient
compte de l’effet sur les prix des ordres de marché qui vident le
carnet d’ordres de même que l’arrivée de nouvelles ordres limites.
Nous prouvons que l’existence d’une certaine mesure équivalente
de probabilité est une condition suffisante pour s’assurer que le
marché ne contient pas d’arbitrage. Nous présentons finalement
un exemple pratique de même qu’une méthode d’estimation pour
la structure et la dynamique du carnet d’ordres limites de même
que pour la vitesse d’arrivée des nouvelles ordres limites.

Abstract

In this paper we build a general model for the structure and the
dynamic of the limit order book in continuous time. The novelty of
our approach is to use random processes with value in the space of
continuous functions to model the cost of a transaction. By taking
the viewpoint of a large investor who trades using market orders,
we derive the dynamic for the value of his portfolio. This dynamic
takes into account the opposite forces of the market orders deple-
ting the limit order book and the arrival of new limit orders. We
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prove that the existence of some equivalent probability measure is
sufficient to rule out arbitrage. We also provide a practical example
with a complete method of estimation for the structure and the
dynamic of the order book as well as for the arrival of new limit
orders.

1. Introduction
Most of the major results in the mathematical finance literature are based on

the assumptions of frictionless and perfectly liquid markets. Obviously, these two
assumptions simplify the trading mechanism and market models can be made
more tractable. However, practitioners face transaction fees, delays before tran-
sactions are executed and that stock prices are influenced by the size of their
transactions. Those are all features which go against frictionless and perfectly
liquid market assumptions. Indeed, with the aim of representing more closely the
reality of financial markets, researchers tried to incorporate these features in their
models. Among others, it is of interest to include the impact that transactions
may have on prices, which is a characteristic of an illiquid market. Inside this new
paradigm, the classical problems have to be revisited and new ones appear.

One of the main topic in mathematical finance is the one of pricing derivatives
and in parallel the problem of hedging. Under the hypothesis of illiquidity, some
of the results we can find are : Frey and Patie (2002) and Liu and Yong (2005),
where they used an EDP close to the one developed by Black and Scholes (1973)
to price and hedge an European option, Cvitanić and Ma (1996) use forward-
backward stochastic differential equations, Rogers and Singh (2010) solve the
hedging problem using a Hamilton-Jacobi-Bellman equation and Roch (2011)
uses backward stochastic differential equations. New questions also arise, such
as the problem of the feedback effect. Some results on that question are : Frey
and Stremme (1997), Platen and Schweizer (1998) and Schönbucher and Wilmott
(2000) where illiquidity is modeled through an equilibrium solution. On a different
topic, Jarrow et al. (2010) use illiquidity to study price bubbles. Since trading
strategies have an impact on price, there is also the problem of how to optimally
liquidate a portfolio, some results on that topic are given by Obizhaeva and Wang
(2005) and Predoiu et al. (2011). Finally, on another level, Jarrow (1992) and
Jarrow (1994) build a general model for price impact in a discrete time setting
to study market manipulations and new arbitrage opportunities created by the
impact that an investor may have on prices.

Another topic of interest is the possibility to extend to theory of risk neutral
evaluation, see Harrison and Kreps (1979) and Harrison and Pliska (1981), in a
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model where price impact is considered. On this topic, the most complete results
can be found in Cetin et al. (2004) and Bank and Baum (2004), where they give
conditions for the absence of arbitrage and study the problem of pricing and
hedging contingent claims. More specifically, they both use semimartingales with
space parameters to build a general model for the supply curve of a stock. In
the case of Cetin et al. (2004), they show a complete version of the fundamental
theorems of asset pricing. However, their results are based on the possibility for
the large investor to trade without impact by using trading strategies that are
continuous and with finite variation.

Thereafter, many papers have been built on the model of Cetin et al. (2004)
and proposed modifications so that the impact on prices cannot be avoided. In
Cetin et al. (2006), they study the impact of illiquidity on a Black & Scholes
type of hedging for a discrete time model. By using discrete trading times, the
use of continuous trading strategies is impossible and impact on prices cannot
be avoided. Later, Cetin et al. (2010) study super-replication strategies in the
continuous time model of Cetin et al. (2004). They impose conditions on the
trading process so that it has infinite variation, and hence, has an impact on
prices. In Roch (2011) and Roch and Soner (2013), the impact is unavoidable by
defining an affected supply curve which comes from modeling the lasting effect of
market orders on the limit order book.

From the early work of Kyle (1985) and as explained in Roch and Soner
(2013), a good model for the limit order book should include three aspects :
depth, resilience and tightness. The depth is the size of the trade required to move
the stock price by a certain amount, resilience is the speed at which the prices
recover from a big transaction, and tightness is the cost of rapidly turning around
a position. Up to now, the models found in the literature are either specific cases
to insure the computability of solutions to specific problems, or do not correctly
represent all three aspects previously mentioned.

In this paper, we build a general model in continuous time for the limit or-
der book which incorporates depth, resilience and tightness. The approach is to
use random processes with values in the space of continuous functions to model
directly the cost (resp. profit) of transactions, instead of the usual approach of
modeling the price of the stock. By using state variables, we are also able to
represent the impact of market orders in a way that it is unavoidable.

One of our main results is to show that the existence of some equivalent pro-
bability measure rules out arbitrage. Since our model includes a perfectly liquid
and frictionless market as a specific case, our no-arbitrage theorem generalizes
the sufficiency part of the first fundamental theorem of asset pricing. On a more
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practical level, we also present an explicit example along with an estimation me-
thod.

The next section is dedicated to the description of the trading mechanism of
market orders and the general structure of the limit order book structure. We
define the mathematical model in Section 3 and give the value of the portfolio for
discrete time trading in Section 4. In Section 5, we derive the value of the portfolio
for continuous time trading and give our no-arbitrage result in Section 6. Finally,
we use the generalized Itô’s formula to describe the dynamic of the price processes
in Section 7. In Section 8, we build a complete example and provide an estimation
method based on observed values of the limit order book. The last two sections
give some possible extensions and concluding remarks.

2. Description of limit order book transactions
To create our market model we suppose two categories of investors. The first

category comprises small investors who send limit orders. These limit orders are
compiled in the order book and contain the prices at which the small investors
are willing to buy or sell and how many shares they want to trade. When two
orders agree, the broker execute the transactions and delete those orders from the
order book. See Table 3.1 for a snapshot of the order book for Amazon Inc.

Table 3.1. Five first orders of the limit order book for Amazon
Inc., 29 June 2012, at 13 :47.

Bid Ask
Price Size Price Size
227.53 100 227.64 100
227.47 200 227.65 100
227.45 100 227.67 300
227.44 200 227.69 400
227.43 100 227.72 100

We suppose that those small investors provide the liquidity and their actions
are responsible for the uncertainty in the price dynamic. The second category is
a single investor, which is sometimes referred to as the large investor, who trades
with market orders. Those market orders contain the amount of stocks that have
to be bought or sold and the transactions are executed immediately at the best
price available in the limit order book. For instance, based on the order book in
Table 3.1, an investor who sends a market order to buy 150 shares of Amazon will
pay $227.64 per share for the first 100 shares and $227.65 for the 50 remaining.
So, as we see, the perfect liquidity assumption is violated since the size of the
transaction has an impact on the price per share. Finally, as time moves forward,



17

new limit orders will refill the order book as well as new market orders will tend
to deplete it, thus creating the dynamic of the market that we aim to model.

The term large investor comes from the literature about price impact models
where the aim is to model the behavior of an investor whose trades are big enough
to have an impact on prices. Although we will refer to the large investor, in the
context of market orders, any size of trade has an impact, so we mainly use the
term large investor for differentiation.

Before moving on with the mathematical definition of the model, we would
like to highlight some of the features of the dynamics of the order book structure
that appear in the above description. Firstly, we see that we have two sets of prices
for the same stock, bid and ask prices, evolving simultaneously. Moreover, it is
possible for an investor, although unlikely profitable, to buy and sell at the same
time. Secondly, the large investor’s transactions have an impact on the prices.
For instance, if we refer to Table 3.1, if the large investor buys 100 shares, then
the price to buy another share will no longer be 227.64 but rather 227.65. This
phenomenon relates to the depth of the limit order book. In opposition to that,
small investors will keep sending new orders which will more or less quickly refill
the order book and bring the prices back toward their fundamental value. This
is the resilience. We also see that there is a dependence on the trajectory of the
transactions. For instance, if the large investor bought 1000 shares one minute
ago, the impact of his transaction will be greater than if he bought those 1000
shares one day ago, since in the later case new limit orders will have refilled the
order book.

3. Market Model
The first step in building our market model is to have a general represen-

tation of the ask part and bid part of the limit order book. Let (Ω, {Ft}t≥0,P)
be a filtered probability space which satisfies the usual assumptions (Protter,
2004). We define two processes with values in the space of continuous functions
C2,1([0,∞)× [0,∞)).

F a, F b : [0,∞)× Ω→ C2,1([0,∞)× [0,∞))
(t, ω) 7→ F a(t, ·, ·, ω), F b(t, ·, ·, ω).

(3.1)

To clarify the notation, for t ∈ [0,∞) and ω ∈ Ω fixed, (y, x) 7→ F a(t, y, x, ω) and
(y, x) 7→ F b(t, y, x, ω) are functions of (y, x) ∈ [0,∞)×[0,∞) that are respectively
twice continuously differentiable in y and continuously differentiable in x.
Remark 3.1. To simplify the notation we extend (y, x) 7→ F a(t, y, x, ω) and
(y, x) 7→ F b(t, y, x, ω) to [0,∞) × R by setting F a(t, y, x, ω) = F b(t, y, x, ω) = 0



18

with x < 0. With this extension, F a and F b are not necessarily continuously
differentiable respect to x at x = 0. However, it is sufficient to establish our
results that the right derivatives exist and are continuous at x = 0, which is given
by (3.1).

The processes F a and F b are respectively the structure of the ask and the bid
parts of the order book and, for all x ≥ 0, the value F a(t, y, x) (resp. F b(t, y, x))
gives the cost (resp. profit) for buying (resp. selling) x shares at time t. The
variable y gives the level of impact on the order book of the large investor’s past
transactions. Following remark 3.1, we also define F a(t, y, x) = F b(t, y, x) = 0 if
x ≤ 0, for any t ≥ 0 and any y ≥ 0, which assigns a cost (profit) of zero for a
transaction of negative size.
Example 3.1. Although it does not satisfy the differentiability conditions, we give
this example in order to provide a more concrete case for F a and F b. In Section
8, we present an example of differentiable functions that can fit on the discrete
structure of the order book given in Table 3.1.

Suppose that F a(0, 0, ·) and F b(0, 0, ·) represent the structure of the order book
in Table 3.1. Then

F a(0, 0, x) =


227.64x, x ∈ [0, 100);
22764 + 227.65(x− 100), x ∈ [100, 200);
68294 + 227.67(x− 200), x ∈ [200, 500).

F b(0, 0, x) =


227.53x, x ∈ [0, 100);
22753 + 227.47(x− 100), x ∈ [100, 300);
90994 + 227.67(x− 300), x ∈ [300, 400).

For instance, the cost of buying all the 300 shares available at the price $227.67
would be given by F a(0, 0, 500)−F a(0, 0, 200) and the profit from selling the first
50 shares would be F b(0, 0, 50). To allow for arbitrary large transactions these
functions could be extended to all x > 0.

Now, to have a structure which is coherent with the trading mechanism we
described in Section 2 we impose the following conditions :

(P1) : For x and y fixed, t 7→ F a(t, y, x), t 7→ F b(t, y, x) are continuous
semimartingales and for each t

E[F a(t, y, x)] <∞ and E[F b(t, y, x)] <∞.

(P2) : For all y1, y2 ≥ 0 and all t ≥ 0, F a(t, y1, x) ≥ F b(t, y2, x) > 0 and
F a(t, y1, x) = F b(t, y2, x) = 0 for all x ≤ 0.

(P3) : F a(t, y, x) is increasing in y and increasing and convex in x. F b(t, y, x)
is decreasing in y and increasing and concave in x.
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Property (P1) gives technical conditions mainly required for the continuous
model. Otherwise, it says that the structure of the order book incorporates all
the informations from the past and that the expected cash flow of a transaction
of size x > 0 is finite. Property (P2) simply states that at any time the ask
price is never smaller than the bid price, so that our model satisfies the tightness
condition. Property (P3) imposes a convex shape to the ask part and a concave
shape to the bid part. Financially speaking, it means that the price per share
increases as long as the size of the buy increases and profit per share decreases as
long as the size of the sale increases. See Figure 3.1 for an example of the general
shape of the cost (profit) of a transaction. The degree of convexity and concavity
are related to the depth of the limit order book. A higher degree of convexity (resp.
concavity) means less depth, since the price per share is more sensitive to the size
of the transaction. Moreover, we know that the impact always plays against the
investor, that is, the impact on ask price pushes the price upward whereas the
impact on bid price pull the price downward. For that reason, we impose that
F a(t, y, x) is increasing in y and F b(t, y, x) is decreasing in y. One consequence of
(P3) is that for all x1, x2 ≥ 0, F a(t, y, x1 + x2) ≥ F a(t, y, x1) + F a(t, y, x2) and
F b(t, y, x1 + x2) ≤ F b(t, y, x1) + F b(t, y, x2).

Figure 3.1. General shape of the cost (profit) of a transaction.
The higher line gives the cost of buying and the lower line gives the
profit from selling.

Before defining the trading process let’s recall the following mathematical
notions. The variation (or total variation) of a process X is defined as V[t1,t2](X) =
limn→∞

∑n
k=1 |Xtn

k
−Xtn

k−1
|, where {tn} is an increasing sequence of partitions of

[t1, t2] such that limn→∞maxk=1,...,n{|tnk − tnk−1|} = 0. One can also define

Xa
t =

∫ t

0
(dXs)+ = lim

n→∞

n∑
k=1

(
Xtn

k
−Xtn

k−1

)+
,

Xb
t =

∫ t

0
(dXs)− = lim

n→∞

n∑
k=1

(
Xtn

k
−Xtn

k−1

)−
,

where (x)+ = max{x, 0} and (x)− = −min{−x, 0}. The condition that V[0,t](X)
is finite for all t implies that

∫ t
0(dXs)+ and

∫ t
0(dXs)− are finite since

V[0,t](X) =
∫ t

0
(dXs)+ +

∫ t

0
(dXs)−.
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Definition 3.1. A trading strategy is a predictable process with finite variation,
{Xt}t≥0 such that X0 = 0. We define

Xa
t =

∫ t

0
(dXs)+ and Xb

t =
∫ t

0
(dXs)−

and set Xa
0 = Xb

0 = 0.
In the preceding definition, Xt is the number of shares in the portfolio at time

t. The values Xa
t and Xb

t are respectively the aggregate number of shares bought
and sold up to time t. We also have that Xt = Xa

t −Xb
t .

3.1. Level of impact

One of the main difficulty in modeling the dynamic between market orders
and limit orders is the lasting effect of the impact on the order book. As we
described in Section 2, after a transaction from the investor (market order), some
of the limit orders are removed and it takes a certain time before new limit orders
arrive to replace them. This aspect corresponds to the resilience. For instance,
suppose an investor buys 200 shares of Amazon and the limit order book is given
by Table 3.1. Immediately after this trade, the ask price is no longer 227.64$
but 227.67$. The small investors will want to take advantage of this higher price
and will submit new limit orders, so that the price gradually decreases toward its
fundamental value.

In Predoiu et al. (2011), they build a static model for the limit order book
by defining a measure µ such that µ {[0, x)} gives the number of limit orders
available between the prices [Sat , Sat + x) where Sat is the ask price at time t ≥ 0.
Then, they keep track of the impact of the past market orders by defining the
volume effect process

Et = Xa
t −

∫ t

0
h(Es)ds,

where h(0) = 0 and h is strictly increasing. The volume effect process takes into
account the total of shares bought, Xa

t , and h models the resilience of the limit
order book.

This idea can be generalized by two processes A, B which are state variables
giving respectively the level of impact for the ask part and the bid part of the
order book. Hence, the cost of buying x shares at time t is F a(t, At, x) and the
profit from selling x shares is F b(t, Bt, x). Accordingly to the structure we imposed
on F a and F b, the processes A and B should satisfy this simple condition.

(P4) The processes A and B, are non-negative predictable processes where,
for all t ≥ 0, At = 0 if and only if Xa

t = 0 and Bt = 0 if and only if Xb
t = 0.
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Example 3.2. We can define At = G(t,Xa
t ) and Bt = H(t,Xb

t ) where G(t, x) et
H(t, x) are continuous non-negative deterministic functions, increasing in x and
decreasing in t. We also suppose that, for all t ≥ 0, G(t, 0) = H(t, 0) = 0 and
G(t, x), H(t, x) > 0 if x > 0.

Let δ > 0, then H(t,Xa
t + δ) > H(t,Xa

t ) and G(t,Xb
t + δ) > G(t,Xb

t ), one
sees that the impact is more important if the total number of shares bought or
sold is higher. The fact that G and H are decreasing in time means that if the
large investor stop trading, then the impact will tend to decrease, which means
that new orders are refilling the order book. For instance, let k > 0 and suppose
that Xa

t+k = Xa
t , then H(t + k,Xa

t+k) < H(t,Xa
t ) (similarly for G). The use of

these state variables allow to model the lasting effect of the impact as well as the
arrival of new limit orders.

The next example comes from Predoiu et al. (2011).
Example 3.3. In this example, A and B are defined as stochastic differential
equations.

At = Xa
t −

∫ t

0
h(As)ds

and
Bt = Xb

t −
∫ t

0
h(Bs)ds

where g and h are non-negative functions with g(0) = h(0) = 0.

4. Discrete Time Portfolio
The focus of this paper is on defining a general price model based on the limit

order book structure. For that matter, the interest rate is not of a big importance
and it is set to zero. In Section 9 we discuss in more details how to include interest
rates.

In this context, the portfolio value will be the difference between the liqui-
dation value of the portfolio and the cash flow from the trades. The liquidation
value at time t is the profit (resp. cost) of closing the position Xt, while the cost of
the portfolio is the cash flow from rebalancing the position at each trading time.
Since there is no interest rate, this is equivalent to the self-financing portfolio
property.

To compute the portfolio value, we first need to determine the cash flow of the
portfolio. Since we are defining the discrete time version of the model, we suppose
that transactions are made at time t0 = 0 < t1 < · · · < tn = T with T > 0. So,
we restate our definition of trading strategies to satisfy the discrete time setting.
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Definition 4.1. Let t0 = 0 < t1 < · · · < tn = T be a partition of [0, T ]. A
trading strategy is a process {Xti}i=0,1,...,n such that X0 = 0 and Xti is Fti−1-
measurable for i = 1, . . . , n. We define Xa

ti
= ∑i

j=1

(
Xtj −Xtj−1

)+
and Xb

ti
=∑i

j=1

(
Xtj −Xtj−1

)−
for i = 1, ..., n and set Xa

0 = Xb
0 = 0.

The cash flow of the portfolio for a trading strategy X is given by
n∑
i=1

{
F a(ti, Ati , δXa

ti+1
)− F b(ti, Bti , δX

b
ti+1

)
}

(4.1)

where δXti = Xti −Xti−1 .
We define the liquidation value as the profit from liquidating the portfolio in

one transaction. Suppose the portfolio is liquidated at time T . Then, its liquida-
tion value is

F b(T,BT , XT )− F a(T,AT ,−XT ). (4.2)

One recalls that in (P1) we defined F a(t, y, x) = F b(t, y, x) = 0 for x ≤ 0.
Consequently, the value of the portfolio is given by the difference between the
liquidation value, Equation (4.2), and the sum of the cash flows for each transac-
tion, Equation (4.1), denoted by

VT (X) = F b(T,BT , XT )− F a(T,AT ,−XT )

−
n∑
i=1

{
F a(ti, Ati , δXa

ti+1
)− F b(ti, Bti , δX

b
ti+1

)
}
. (4.3)

Note that this is equivalent to the value of a self-financing portfolio if the
market contains a stock and a bank account where the interest rate is zero.

The next example shows that we can recover classical models from ours.
Example 4.1. Suppose that there is a bid/ask spread and the market is perfectly
liquid. Let {Sat }t≥0 and {Sbt}t≥0 be two non-negative processes with Sbt ≤ Sat . Set
F a(t, y, x) = Sat x and F b(t, y, x) = Sbtx for x ≥ 0 and F a(t, y, x) = F b(t, y, x) = 0
if x ≤ 0. Since the market is perfectly liquid we removed the dependence in y.

For any trading strategy X and any time T > 0 the value of the portfolio is

VT (X) = SbT (XT )+ − SaT (XT )− −
n∑
i=1

{
Sati−1

δXa
ti
− Sbti−1

δXb
ti

}
= Xa

T

(
SbT − SaT−1

)
1[0,∞)(XT )−Xb

T

(
SbT − SbT−1

)
1[0,∞)(XT )

+Xa
T

(
SaT − SaT−1

)
1(−∞,0](XT )−Xb

T

(
SaT − SbT−1

)
1(−∞,0](XT )

+
n−1∑
i=1

Xa
ti

(Sati − S
a
ti−1

)−
n−1∑
i=1

Xb
ti

(Sbti − S
b
ti−1

) (4.4)

which is the value of the portfolio under the assumptions of perfect liquidity and
with a bid/ask spread. If we suppose there is no bid/ask spread, that is Sat = Sbt =
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St for all t, then we have

VT (X) =
n∑
i=1

Xi(Sti − Sti−1)

which is the value of the portfolio in classical theory.
Remark 4.1. Another specific aspect of price impact models is that portfolio value
is an ambiguous concept. Jarrow (1992), Cetin et al. (2004) and Bank and Baum
(2004) also discuss this particularity. Once again, since transactions influence
the value of the stock, there are different values we can associate to the portfolio.
For instance, one can use the marked-to-market value. This is the value if one
considers that the portfolio is liquidated at the market price (there is no impact).
In this case, we would redefine the liquidation value (4.2) by

F b(T,BT , 1)XT1[0,∞)(XT ) + F a(T,AT , 1)XT1(−∞,0](XT ).

There is also the optimal value. We understand that liquidating the portfolio
in one-block transaction will create a big impact on price, which is unfavorable for
the investor. A better strategy should be to divide the liquidation of the portfolio
in many smaller transactions, which would create a smaller impact. However,
dividing the liquidation in smaller transactions also means that the liquidation is
carried over some period of time, adding uncertainty since the value of the stock
might change during the liquidation process. Consequently, the optimal value of
the portfolio is again ambiguous as it depends on the criteria to optimize. This
problem is related to the optimal execution problem ; see, e.g. Predoiu et al. (2011)
and Obizhaeva and Wang (2005). For our concern, we will use the liquidation
value of the portfolio which is the value when the portfolio is liquidated in one
transaction.

5. Portfolio Value In Continuous Time
Our continuous time model shares some of the features of those found in Bank

and Baum (2004) and Cetin et al. (2004) as it uses semimartingales with space
parameters. However, our construction differs from theirs since it is impossible
for the large investor to avoid the impact.

The liquidation of the portfolio is carried in one block transaction so that the
difference between the discrete time portfolio and the continuous time portfolio is
that we have to define the cash flow of the portfolio, Equation (4.1), for continuous
time trading strategies from Definition 3.1. Proposition A.1 in Appendix A.1
shows that if X is a continuous time trading strategy, then the cash flow of the
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portfolio is given by ∑
0<t≤T

{
F a(t, At−,∆Xa

t )− F b(t, Bt−,∆Xb
t )
}

(5.1)

+
∫ T

0
fa(t, At−)dXa,c

t −
∫ T

0
f b(t, Bt−)dXb,c

t ,

where fa(t, y) = limx↘0
Fa(t,y,x)

x
and f b(t, y) = limx↘0

F b(t,y,x)
x

. The superscript
c stands for the continuous part of a process. Here, fa(t, y) and f b(t, y) represent
the value per share for an infinitesimal transaction. This notation will be used for
the remaining of the paper.

Let X be a trading strategy satisfying Definition 3.1, then the value of the
portfolio is

VT (X) = F b(T,BT , XT )− F a(T,AT ,−XT )

−
∑

0<t≤T

{
F a(t, At−,∆Xa

t )− F b(t, Bt−,∆Xb
t )
}

−
(∫ T

0
fa(t, At)dXa,c

t −
∫ T

0
f b(t, Bt)dXb,c

t

)
.

Example 5.1. This example is based on the model in Predoiu et al. (2011). Only
the ask part is defined.

Let S be a non-negative continuous martingale. Let µ(s) be a continuous in-
creasing function with µ(0) = 0. Let t ≥ 0 and suppose there is no impact from
the large investor, the function µ(s) gives the number of limit orders available
in the set of prices [St, St + s) at time t. Let Xa

t be a continuous non-decreasing
process with Xa

0 = 0, giving the number of shares bought up to time t. We define
the state variable

At = Xa
t −

∫ t

0
h(As)ds.

where h is a non-negative function with h(0) = 0. For all x ≥ 0 we define

F a(t, y, x) = Stx+
∫ µ−1(x+y)

µ−1(y)
ξd (µ(ξ)− y) .

The cost of buying x > 0 shares at time t is F a(t, At, x) and the total cost of
buying Xa

T shares is

CT (X) =
∫ T

0
StdX

c,a
t +

∫ T

0
µ−1(At−)dXa,c

t +
∑

0<t≤T
F a(t, At−,∆Xa

t ). (5.2)

5.1. Cost of impact

One of the main goal of this paper is to build a general model where the impact
on price is unavoidable for the large investor. We define the cost of impact as the
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difference between the value of the portfolio with A ≡ B ≡ 0 and the value of
the portfolio as given in Equation (5.2). In the following, we show that the cost
of impact is zero if and only if the investor does not trade.

The cash flow from trading x shares at time t for the large investor if we don’t
consider the impact is F a(t, 0, x) − F b(t, 0, x). So that the cost of impact for a
trading strategy X is

IT (X) = F b(T, 0, XT )− F b(T,BT , XT )− (F a(T, 0,−XT )− F a(T,AT ,−XT ))

−
∑

0<t≤T
{F a(t, 0,∆Xa

t )− F a(t, At−,∆Xa
t )}

+
∑

0<t≤T

{
F b(t, 0,∆Xb

t )− F a(t, Bt−,∆Xb
t )
}

−
∫ T

0
{fa(t, 0)− fa(t, At)} dXa,c

t

+
∫ T

0

{
f b(t, 0)− f b(t, Bt)

}
dXb,c

t .

Remark 5.1. One of the consequence of (P2) and (P3) is that fa(t, y) and
f b(t, y) are positive. Let x2 > x1 > 0 and y ≥ 0, then we have that Fa(t,y,x1)

x1
>

F b(t,y,x1)
x1

≥ F b(t,y,x2)
x2

> 0.
With the last remark and (P4) we see that IT (X) ≥ 0 and IT (X) = 0 if and

only if X ≡ 0. So, one can see that the impact on price is unavoidable for the
large investor.

6. no-arbitrage theorem
In this section we show that the existence of some equivalent probability

measure is enough to rule out arbitrage in our framework. This result extends
what can be found in the seminal work of Harrison and Kreps (1979) and Harrison
and Pliska (1981) to market models under illiquidity assumptions. It also shows
that the sufficiency part of the result of Cetin et al. (2004) still holds in our
general framework where the impact of transactions cannot be avoided. The fact
that only the sufficiency part holds agrees with the results of Roch (2011) and
Roch and Soner (2013) where they restrict to a linear structure for the supply
curve.

For our part, our result requires that F a(t, 0, x) and F b(t, 0, x) are respecti-
vely supermartingale and submartingale under the equivalent measure, instead
of being martingales. To show that this generalisation is required, we build an
example where F a(t, 0, x) and F b(t, 0, x) are respectively supermartingale and
submartingale, where there is no arbitrage, but there is no equivalent martingale
measure.
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To prove our result about arbitrage we need to restrict the class of trading
strategies.
Definition 6.1. (Admissible trading strategies) We say that a trading strategy X
is admissible if E [F a(t, At, Xa

t )] <∞ and E
[
f b(t, 0)Xb

t

]
<∞ for all t ≥ 0.

We will use the following definition for arbitrage.
Definition 6.2. (Arbitrage) We say that a market admits arbitrage if there exists
an admissible trading strategy X such that

P (VT (X) ≥ 0) = 1 and P (VT (X) > 0) > 0.

for some T > 0.
In financial terms, an arbitrage is a strategy with no initial investment that

gives a positive probability to make a profit and a probability zero of losing money.
Remark 6.1. One notes that from our definition of a trading strategy (Definition
3.1), we exclude the possibility to invest explicitly in the bank account. The bank
account, as an investment opportunity, is only there to allow the construction of
a self-financing portfolio. As a result, the strategy which consists in investing a
positive amount of money in the bank account at t = 0 and withdrawing it at
t = T cannot be considered as an arbitrage opportunity.

The next theorem states that the existence of an equivalent martingale mea-
sure such that {F a(t, 0, x)}t≥0 and {F b(t, 0, x)}t≥0 are respectively supermartin-
gales and submartingales for all x ≥ 0, is sufficient to rule out arbitrage. This
result generalizes the sufficiency part of the fundamental theorem of asset pricing
for perfectly liquid assets.

To our knowledge, the only result giving an equivalence relation between the
absence of arbitrage and the existence of an equivalent measure for illiquid assets
is found in Cetin et al. (2004). However, the necessity part of the theorem relies
on the fact that the investor can avoid the effect of illiquidity by using trading
strategies which are continuous and with finite variation. So, from our Theorem
6.1, it seems that we lose the necessity part of the result when the impact cannot
be avoided. The fact that only the sufficiency part holds is also seen in Roch
and Soner (2013) and Roch (2011), but our theorem is not restricted to diffusion
processes and linear order book structures.
Theorem 6.1. (No Arbitrage) Suppose there exists a probability measure Q, equi-
valent to P, such that F a(t, 0, x) is a Q−supermartingale and F b(t, 0, x) is a
Q−submartingale for each x ≥ 0. Then, there is no arbitrage for admissible tra-
ding strategies.

The proof is in Appendix C.
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The interest of this result is to give a general method to rule out the existence
of arbitrage strategies, a required feature of a financial model. The idea behind
the theorem is the following : for an admissible trading strategy X = (Xa, Xb),
let HX = {ω ∈ Ω : VT (X,ω) ≥ 0} and GX = {ω ∈ Ω : VT (X,ω) = 0}. An
admissible strategy X is an arbitrage if P(HX) = 1 and P(GX) > 0. But our
theorem says that if Q(HX) = 1 then Q(GX) = 1. Since the two measures Q
and P are equivalent they agree on set of probability one. In the context of the
classical theory, i.e., F a(t, y, x) = F b(t, y, x) = xSt, where St is the price of the
stock at time t, then the existence of an equivalent measure Q such that St is
a martingale rules out the existence of arbitrage strategies. This is equivalent to
saying that for any transaction of size x, the process xSt is a martingale under
Q, which is a specific case of Theorem 6.1.

Starting from Example 5.1, it is easy to build an example where we know the
existence of an equivalent martingale measure. By letting St to be a geometric
Brownian motion, that is St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
where Wt is a standard

Brownian motion and µ and σ are positive constant. Then, we know that there
exists an equivalent martingale measure defined by the Radon-Nikodym derivative
dQ
dP = e−

µ
σ
Wt− 1

2
µ2

σ2 t.
To conclude this section we show that the restriction to the existence of an

equivalent martingale measure is not general enough to consider all the cases.
Example 6.1. Let F a and F b be defined as in (3.1) and satisfy properties (P1),
(P2) and (P3). Moreover, we suppose that the probability space is a singleton,
Ω = {ω}. In other words, F a and F b are deterministic. Finally, suppose that for
all x, y ≥ 0, F a(t, y, x) is strictly decreasing in t, F b(t, y, x) is strictly increasing
in t and F a(T, y, x) > F b(T, y, x).

Then, we have,

VT (X) = F b(T,BT , XT )− F a(T,AT ,−Xt)

−
∑

0<t≤T

{
F a(t, At−,∆Xa

t )− F b(t, Bt−,∆Xb
t )
}

−
(∫ T

0
fa(t, At)dXa,c

t −
∫ T

0
f b(t, Bt)dXb,c

t

)
≤ f b(T, 0)XT1[0,∞)(XT ) + fa(T, 0)XT1(−∞,0]

−
∑

0<t≤T

{
fa(t, 0)∆Xa

t − f b(t, 0)∆Xb
t

}

−
(∫ T

0
fa(t, 0)dXa,c

t −
∫ T

0
f b(t, 0)dXb,c

t

)

=
(
f b(T, 0)− fa(T, 0)

) (
Xa
T1[0,∞) +Xb

T1(−∞,0]
)
≤ 0. (6.1)
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As one sees, there is no arbitrage since the value of the portfolio is not greater
than zero. Moreover, F a(t, 0, x) is trivially a supermartingale, F b(t, 0, x) is a sub-
martingale, but there is no equivalent probability measure such that F a(t, 0, x) and
F b(t, 0, x) are martingales.

7. Semimartingales with space parameters
In the classical theory, under the general assumption that the price process is

a semimartingale, one can write the value of a portfolio as a stochastic integral
with the price process as integrator. It is then possible to directly define the price
process dynamic as a stochastic differential equation which allows for numerical
simulations. Suppose that {St}t≥0 is a semimartingale giving the price of the
stock and that {Xt}t≥0 is a predictable process giving the number of shares in
the portfolio. Then the value of the portfolio at time T is given by

∫ T
0 XtdSt.

To get a similar expression in our setting we can use the theory of semimar-
tingales with space parameters, (Kunita, 1990). This theory defines conditions
such that for a process {Ft}t∈[0,T ] with values in the space of continuous functions
and a continuous semimartingale {Xt}t∈[0,T ], the process t 7→ Ft(Xt) is a semi-
martingale. It also defines a generalisation of the Itô’s formula in order to define
the differential dFt(Xt).

To satisfy the conditions of the generalized Itô’s formula, we restrict our tra-
ding strategy X to be a continuous predictable process with finite variation, while
the processes A and B defining the level of impact to be continuous predictable
semimartingales. The assumption of continuity for A and B could also be seen
as a consequence of the continuity of the trading strategy X. Under this restric-
tion, it is possible to show that the processes t 7→ fa(t, At) and t 7→ f b(t, Bt) are
continuous semimartingales and to use these processes as integrators. Then, with
the generalized Itô’s formula, see Appendix B, we can use stochastic differential
equations to describe explicitly the dynamic of fa(t, At) and f b(t, Bt).

First we use the fact that fa(t, At) and f b(t, Bt) are semimartingales and use
the integration by parts formula to write the cash flow of the portfolio as∫ T

0
fa(t, At)dXa

t −
∫ T

0
f b(t, Bt)dXb

t (7.1)

= fa(T,AT )Xa
T − f b(T,BT )Xb

T −
(∫ T

0
Xa
t df

a(t, At)−
∫ T

0
Xb
t df

b(t, Bt)
)
.

Recall that X is continuous so that ∆Xa
t = ∆Xb

t = 0 for all t ≥ 0 a.s. Then, by
using the generalized Itô’s formula to write the dynamic of fa(t, At) and f b(t, Bt)
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one gets that (7.1) is equal to

fa(T,AT )Xa
T −

∫ T

0
Xa
t f

a(dt, At)−
∫ T

0
Xa
t

∂

∂y
fa(t, At)dAt

−f b(T,BT )Xb
T +

∫ T

0
Xb
t f

b(dt, Bt) +
∫ T

0
Xb
t

∂

∂y
f b(t, Bt)dBt (7.2)

To our knowledge, the theory for semimartingales with space parameters and
the generalized Itô’s formula has not been extended yet for processes with jumps.
It is beyond the scope of this paper to develop this theory here and we defer
this task for a future paper. But it is reasonable to think that the theory can be
adapted for the full generality of our model.

8. Complete example and calibration
Nowadays, it is possible to have data for the limit order book of different

stocks with all the informations about the limit orders that are submitted. In
order to bring the literature on limit order book models at a more practical level
it is desirable to have realistic models which can be estimated. In this section,
we present a complete example with an estimation method and suggest possible
extensions. We also use this example to apply formula (7.2) from the preceding
section.

Let Sat = Sa0e

(
µ−σ

2
2

)
t+σWt and Sbt = Sb0e

(
µ−σ

2
2

)
t+σWt be two geometric Brow-

nian motions where W is a standard Brownian motion where 0 < Sb0 ≤ Sa0 and
µ, σ are positive constants. We define

Ga(t, x) = Sat (−1 + (1 + x)α),

Gb(t, x) = Sbt (−1 + (1 + x)β)

where α > 1 and β ∈ (0, 1). The function Ga(t, x) (resp. Gb(t, x)) gives the cost
(resp. profit) of buying (resp selling) x shares at time t ≥ 0 when no transactions
occurred before t. The parameters α and β define the shape of the order book. By
taking α > 1 and β ∈ (0, 1) we get that the ask part of the order book is convex
and the bid part is concave. The processes Sat and Sbt represent the uncertainty
of the market and by taking 0 < Sb0 ≤ Sa0 we get that the bid/ask spread is
non-negative.

Next, we define the structure of the order book including the impact of past
transactions.

F a(t, y, x) = Ga(t, x+ y)−Ga(t, y),

F b(t, y, x) = Gb(t, x+ y)−Gb(t, y).
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From the definition of F a and F b, one sees that the effect of the impact, y, is to
move higher in the structure of the order book. Since Ga(t, x) is increasing and
convex, we have that Ga(t, x + y2) − Ga(t, y2) ≥ Ga(t, x + y1) − Ga(t, y1) for all
0 ≤ y1 ≤ y2 so that the cost of x shares increases when the impact increases. On
the other hand, since Gb(t, x) is increasing and concave, Gb(t, x+y2)−Gb(t, y2) ≤
Gb(t, x+ y1)−Gb(t, y1) for al 0 ≤ y1 ≤ y2, so that the profit from selling x shares
decreases when the impact increases.

For the state variables we take

At = Xa
t −

∫ t

0
g(As)ds,

Bt = Xb
t −

∫ t

0
h(Bs)ds.

where g and h are non-negative functions with g(0) = h(0) = 0. We see that At is
an increasing function of Xa

t , the number of share bought, and Bt is an increasing
function of Xb

t , the number shares sold. Also, if Xa
t1+δ = Xa

t1 for some δ > 0 and
t1 > 0, then one finds that dAt = −g(At)dt for all t ∈ (t1, t1 + δ). Since g is
non-negative, At is non-increasing on (t1, t1 + δ), that is the ask part of the limit
order book is recovering from the impact of the past market orders. The process
B displays a similar behaviour. Those state variables were taken from Predoiu
et al. (2011).

If we assume that X is continuous, we can apply equation (7.2) to get

STX
a
T (1 + AT )α−1 −

∫ T

0
Xa
t St(1 + At)α−1

(
µ− (α− 1)

1 + At
g(At)

)
dt

−
∫ T

0
Xa
t St(1 + At)α−1

{
σdWt −

(α− 1)
1 + At

dXa
t

}

−
[
STX

b
T (1 +BT )β−1 −

∫ T

0
Xb
tSt(1 +Bt)β−1

(
µ− (β − 1)

1 +Bt

h(Bt)
)
dt

−
∫ T

0
Xb
tSt(1 +Bt)β−1

(
σdWt −

(β − 1)
1 +Bt

dXb
t

)]
.

For practical considerations we propose a simple fitting method for this model.
It is based on observed values of the order book and we suppose that we observed
realizations of F a(t, 0, x) and F b(t, 0, x) for each observation time t. The processes
A andB are set to zero for the past observations since we suppose that our investor
did not trade during this period.

For the first step, we calibrate the structure of the order book independently
from the dynamic, that is we use the observed value of the limit order book at
t = 0 to determine the constants Sa0 , Sb0, α and β. Let {(xai , pai ); i = 1, . . . ,ma}
and {(xbi , pbi); i = 1, . . . ,mb} be the entries in the limit order book at time t = 0.
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The variables xai and (resp. xbi) are the number of shares offered (resp. asked)
for a price pai (resp. pbi). Then, the constants Sa0 , Sb0, α and β are determined by
solving

inf
0<Sb0<Sa0 ,α>1,β∈(0,1)


ma∑
i=1

(
F a(0, 0, xai )

xai
− P a

i

)2

+
mb∑
i=1

(
F b(0, 0, xbi)

xbi
− P b

i

)2
 .

where P a
i = 1

xa1+···+xai

∑i
j=1 x

a
i p
a
i and P b

i = 1
xb1+···+xbi

∑i
j=1 x

b
ip
b
i . For instance, if one

wants to calibrate the model on the limit order book of Amazon Inc. given in
Table 3.1 then (xa1, P a

1 ) = (100, 227.64), (xa2, P a
2 ) = (200, 227.645), (xa3, P a

3 ) =
(500, 227.66) and so on. A similar approach works for the bid part. Applying this
method leads to the following values : Sa0 = 227.58, α = 1.0002, Sb0 = 227.52 and
β = 0.99972. Since Amazon is a highly traded stock, the limit order book has a
lot of depth and it is not surprising that the convexity and concavity parameters
α and β are close to one.

The next step is to estimate the constants µ and σ. Let δt := F a(t, 0, 1) −

F b(t, 0, 1), then δt = δ0e

(
µ−σ

2
2

)
t+σWt . On sees that the process δt is the bid-ask

spread given by our model. Suppose that {δ̃i; i = 1, . . . n} are past observations of
the bid-ask spread with constant time interval ∆t > 0 between the observations.
Then, if we define ρi = δ̃i+1−δ̃i

δ̃i
for i = 1, . . . , n− 1 then one can set

µ = 1
∆t(n− 1)

n∑
i=2

ρi and σ =

√√√√ 1
∆t(n− 2)

n−1∑
i=1

(ρi − µ)2.

Remark 8.1. The goal of this example is to present a model which is simple
enough to be tractable but yet non-trivial. The same is applicable for our choice
of calibration method. In our case we chose to calibrate the structure of the limit
order book and the dynamic in two independent steps. One could choose to use
observed values of the limit order book at different time in order to calibrate the
structure as well as the dynamic of the order book simultaneously. In any case,
the precision of some aspect of the model will be favored over another. Also, the
choice of a geometric Brownian motion for the bid-ask spread is not the most
appropriate. A mean reverting process such as a CIR process could be a better
alternative.

Remains the question of determining h and g, which give the speed at which
the order book refills. To see this, suppose that for some t0 > 0, Xa

t = Xa
t0 > 0

for t > t0. Then, dAt = −g(At)dt, that is At is decreasing for t > t0 since At0 > 0
and g(x) > 0 if x > 0, (the same applies for B). To calibrate g and h we use that
g(x)dt (resp. h(x)dt) is the number of new shares submitted over the interval of
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time dt knowing x shares were removed from the ask part (resp. bid part) of the
limit order book.

To ease the description of our calibration method we only give the details for
the ask part, that is, the function g. The calibration of the bid part follows the
same methodology.

(1) Suppose that the observed values of the order book cover the time interval
[0, T ] and let t0 = 0 < t1 < · · · < tn = T be the observation times with
ti − ti−1 = ∆t for i = 1, . . . , n.

(2) At each time interval [ti, ti+1), we note {(xij, pij); j = 1, ...,mi} the new
limit orders submitted, where xij is the number of shares at price pij, and
we define P̃i = mink=1,...,mj pik to be the best ask price amongst the new
limit orders.

(3) Let nj = ∑j
k=1 xij, we define q̃ij = 1

nj

∑j
k=1 xik

pik
P̃i
, for j = 1, . . . ,mi. The

variable q̃ij is the relative price per share of buying all the shares in the
first j entries in the limit order book.

(4) Let sj = 1 + j∆s, for j = 0, . . . ,M for some positive constant ∆s. The set
of values {sj}j=0,...,M is going to be used as a discretization of the space of
relative price per share.

(5) For each i = 1, . . . , n, we compute the number of new shares available du-
ring the interval [ti, ti+1) at a relative price per share in [sj−1, sj) for j =
1, . . . ,m and we note this quantityNij. That is,Nij = ∑mi

k=1 xik1[sj−1,sj) (q̃ik).
(6) Let ηj be such that Fa(t,0,ηj)

ηjFa(t,0,1) = sj for j = 1, . . . ,M . Note that Fa(t,0,x)
Fa(t,0,1) is

independent of t.
(7) Finally, let N̄j = ∑n−1

i=0
Nij

(n−1)∆t
for j = 1, . . . ,m, then the function g should

be chosen such that the curve {(x, g(x)), x ≥ 0} approximates the set
{(ηj, N̄j); j = 1, . . . ,m}. A possible choice is to take g(x) as a polynomial
and to carry a least squared approximation.

9. Other applications and further extensions.
For the construction of our model we referred to a large investor and small

investors. However, the mechanism of trading we modeled applies to all investors
who trade using market orders, no matter the size of the transactions. For smaller
transactions, the impact and the effect of the limit order book structure would be
smaller and probably negligible in many cases. On the other hand, in the case of
high speed trading, it is possible that the cumulative impact of many small tran-
sactions would become non-negligible. For this situation, considering the structure
of the limit order book might help to develop better trading strategies.
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The model we presented can also include transaction fees. For instance, let
St, t ≥ 0 be a continuous non-negative semimartingale which represents the value
of a stock. Suppose one wants to apply proportional cost of transactions, then
we can define F a(t, y, x) = St(1 + y)x and F b(t, y, x) = St(1 − y)x for x ≥ 0
and zero otherwise. We set the state variables At = Bt = α for all t ≥ 0 with
α ∈ (0, 1). In this case, a transaction of size x > 0 incurs a cost (resp. profit) of
F a(t, α, x) = St(1 +α)x (resp. F b(t, α, x) = St(1−α)x). Using the same notation
as before, the value of the portfolio is given by

VT (X) = (XT )+(1− α)ST − (XT )−(1 + α)ST

−
(∫ T

0
(1 + α)StdXa

t −
∫ T

0
(1− α)StdXb

t

)
.

As mentioned at the beginning of Section 4, it is possible to include interest
rate in the model. Suppose that the instantaneous rate is given by a positive
predictable process {rt}t∈[0,T ]. Then, it is only a matter of applying the interest
rate to each transaction so that the cash flow of the portfolio becomes

∑
0<t≤T

e
∫ T
t
rsds

{
F a(t, At−,∆Xa

t )− F b(t, Bt−,∆Xb
t )
}

+
∫ T

0
fa(t, At−)e

∫ T
t
rsdsdXa,c

t −
∫ T

0
f b(t, Bt−)e

∫ T
t
rsdsdXb,c

t .

9.1. Options pricing

Another matter of importance is the question of options pricing. Here we want
to highlight some of the new problems that arise in our framework. The study of
these questions are set aside for a future work.

First, we suppose the large investor is long on an European call option with
maturity T > 0, strike K and there is physical delivery. In this situation, to
exercise the option, the large investor has to consider the value of liquidating the
stock. Hence, he exercises the option if and only if F b(T,BT , 1) > K. On the other
hand, he exercises a put option if and only if F a(T,AT , 1) < K. Surprisingly, if
the large investor is long on n > 0 call options, then the decision to exercise is on
a number of positions n∗ where

n∗ = arg max
m∈[0,n]

{
F b(T,BT ,m)

m
> K

}
.

Finally, if the large investor wants to hedge a short position on a call option, then,
the terminal value he has to hedge is {K − F a(T,AT , 1)}1[K,0)

(
F b(T,BT , 1)

)
.

That is, if the option is exercise, he has to cover the difference between the
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strike and the cost of buying one share of the stock. One should also consider
the possibility for the large investor to manipulate prices using the impact of his
transactions. This problem was considered in Jarrow (1992) and Jarrow (1994).

10. Conclusion
In this paper, we used the mechanism of market orders and the limit order

book structure to build a general model for price impact. The novelty of our ap-
proach was to use random functions to directly model the cost of transactions
instead of the value of the asset and the use of state variables to capture the non-
markovian property of the impact. It turns out that this approach generalizes
classical models in perfect liquidity and some models under illiquidity assump-
tion, the model of Cetin et al. (2004) for instance. By deriving the value of the
portfolio for continuous time trading we showed that the impact on prices can-
not be avoided. An important result is that the usual relationship between the
existence of some equivalent martingale probability measure and the absence of
arbitrage is not general enough in our setting and one as to consider supermar-
tingales and submartingales. By using the Itô’s formula for semimartingales with
space parameters, we also wrote the cost of the portfolio as a stochastic integral
respect to the value of the stock, alike the classical approach, which allows to use
stochastic differential equations and eventually for numerical simulations. Finally,
we provided a complete example with an estimation method for the limit order
book as well as the arriving of new limit orders.

A. Proofs
A.1. Cash flow for continuous time trading strategies.

The following proposition is the mathematical result which allows to define
the cost of the portfolio for continuous time trading strategies
Proposition A.1. Let T > 0 and {πn}n=1,2,... be a sequence of increasing par-
titions of [0, T ], i.e., πn = {0 = tn0 ≤ tn1 ≤ ... ≤ tnn = T} ⊂ πn+1, and
maxi=1,...,n{tni − tni−1} → 0. Let F (t, y, x), (y, x) ∈ [0,∞) × [0,∞) be a family
of continuous processes and suppose that F (t, ·, ·) is in C2,1([0,∞)× [0,∞)) and
that F (t, y, 0) ≡ 0. Let Y be a càdlàg process with finite variation and Z a càdlàg,
non-decreasing process with Z0 = 0. We suppose that ∆Zs = 0 if and only if
∆Ys = 0, where ∆Vs = Vs − Vs− for any process V . Then,

n∑
i=1

F (tni−1, Ytni−1
,∆Ztni )→

∫ T

0
f(t, Yt−, 0)dZc

t +
∑

0<t≤T
F (t, Yt−,∆Zt) a.s. (A.1)



35

where f(t, y, x) = limε↘0
F (t,y,x+ε)−F (t,y,x)

ε
.

Proof A.1. For any process V we define the set of discontinuity points D(V ) =
{t ∈ [0, T ]; ∆Vt > 0} where V0− = 0. Without loss of generality we can suppose
that there exists n∗ such that D(Z) ⊂ πn for all n ≥ n∗. From our hypothesis we
also have that D(Y ) ⊂ πn.

For all n ≥ n∗ suppose that v ∈ πn ⋂D(Z) and un = maxi=1,...,n {tni ∈ πn; tni < v},
so that un is the partition point preceding v. Then, we see that

lim
n→∞

F (un, Yun , Zv − Zun) = F (v−, Yv−,∆Zv). (A.2)

Since F is a continuous process we also have that F (v−, Yv−,∆Zv) = F (v, Yv−,∆Zv).
Equation (A.2) settle the case for discontinuity points.

To treat continuity points we define φn = πn
⋂D(Z)c, so that the sequence

of partitions φn does not contain the discontinuity points of Z. From the Mean
Value Theorem we have∑
tni ,t

n
i−1∈φn

F (tni−1, Ytni−1
, δZtni ) =

∑
tni ,t

n
i−1∈φn

f(tni−1, Ytni−1
, 0)δZtni (A.3)

+
∑

tni ,t
n
i−1∈φn

{
f(tni−1, Ytni−1

, ξni )− f(tni−1, Ytni−1
, 0)
}
δZtni

where, ξni ∈ [0, δZtni ). Recall that δZtni = Ztni − Ztni−1
. Let In be the sum in (A.3)

and denote Ȳ = supt∈[0,T ]{Yt} and ρn = maxi=1,...,n δZtni . Here we note that Ȳ is
almost surely finite, since Y is a finite variation process. Then we have

|In| ≤ sup
t∈[0,T ],Y ∈[0,Ȳ ),x∈[0,ρn)

|f(t, Y, x)− f(t, Y, 0)|ZT → 0

from the continuity of f and since ρn → 0. Now, since Zt defines a Lebesgue-
Stieltjes measure on [0, T ], we can define the integral using path-by-path conver-
gence, ∑

tni ,t
n
i−1∈φn

f(tni−1, Ytni−1
, 0)δZtni →

∫ T

0
f(t, Yt−, 0)dZc

t a.s.

Finally, we can get the result by adding the discontinuity points in the parti-
tion,

lim
n→∞

∑
tni ,t

n
i−1∈πn

F (tni−1, Ytni−1
, Ztni −Ztni−1

) =
∫ T

0
f(t, Yt−, 0)dZc

t+
∑

0<t≤T
F (t, Yt−1,∆Zt).

A.2. Proof of Theorem 6.1

The idea of the proof is to show that, for an admissible strategyX, EQ [VT (X)] ≤
0. Consequently, there is no arbitrage since Q {VT (X) ≥ 0} = 1 implies that
VT (X) ≡ 0.
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The proof is divided in two major steps. At first, we show the result for
the case where F a(t, 0, x) and F b(t, 0, x) are Q−martingales for all x ≥ 0. The
general case with F a(t, 0, x) and F b(t, 0, x) being respectively supermartingales
and submartingales under Q will follow from the Doob-Meyer decomposition.

Suppose that F a(t, 0, x) and F b(t, 0, x) are Q−martingales for all x ≥ 0, then
we have that fa(t, 0) and f b(t, 0) are also Q-martingales. To see this, one note that
for x ∈ (0, 1), Fa(t,0,x)

x
≤ F a(t, 0, 1) so that by the dominated convergence theo-

rem fa(t, 0) is a Q−martingale. Again, we can apply the dominated convergence
theorem to show that f b(t, 0) is a Q−martingale since F b(t,0,x)

x
≤ fa(t, 0).

By using the integration by parts for stochastic integrals (Protter, 2004) one
has ∫ T

0
fa(t, 0)dXa

t = fa(T, 0)Xa
T −

∫ T

0
Xa
t df

a(t, 0) (A.4)

and similarly for
∫ T

0 f b(t, 0)dXb
t . Since fa(t, 0) and f b(t, 0) are Q−martingales

then the processes
∫ t

0 X
a
s df

a(s, 0) and
∫ t

0 X
b
sdf

b(s, 0) are local martingales. Let
{αn}n=0,1,... and {βn}n=0,1,... be two sequences of stopping times which respecti-
vely reduce the local-martingales

∫ t
0 X

a
s df

a(s, 0) and
∫ t
0 X

b
sdf

b(s, 0). Then, by the
bounded convergence theorem we have

EQ
[∫ T

0
Xa
t df

a(t, 0)
]

= lim
n→∞

EQ
[∫ T∧αn

0
Xa
t df

a(t, 0)
]

= 0, (A.5)

EQ
[∫ T

0
Xb
t df

b(t, 0)
]

= lim
n→∞

EQ
[∫ T∧βn

0
Xb
t df

b(t, 0)
]

= 0. (A.6)

To justify the use of the bounded convergence theorem above, we see from equa-
tion (A.4) that

∫ T
0 Xa

t df
a(t, 0) ≤ fa(T, 0)Xa

T . Moreover, EQ[fa(T, 0)Xa
T ] < ∞

by the admissibility condition of Xa. Similarly, we have that
∫ T
0 Xb

t f
b(t, 0) ≤

f b(T, 0)Xb
T and that EQ[f b(T, 0)Xb

T ] <∞.
Now we have the following lower bound for the cash flow of the portfolio. Let

CT (X) =
∑

0<t≤T

{
F a(t, At−,∆Xa

t )− F b(t, Bt−,∆Xb
t )
}

+
∫ T

0
fa(t, At−)dXa,c

t −
∫ T

0
f b(t, Bt−)dXb,c

t ,

(A.7)

be the cash flow of the portfolio. One finds that

CT (X) ≥
∑

0<t≤T

{
fa(t, 0)∆Xa

t − f b(t, 0)∆Xb
t

}

+
∫ T

0
fa(t, 0)dXa,c

t −
∫ T

0
f b(t, 0)dXb,c

t
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=
∫ T

0
fa(t, 0)dXa

t −
∫ T

0
f b(t, 0)dXb

t

where the superscript c stands for the continuous part of a process. To obtain
the inequality one only has to recall property P3. First, we use that F a(t, y, x) is
increasing in y and F b(t, y, x) is decreasing in y. Then we use that F a(t, 0, x) ≥
fa(t, 0)x and F b(t, 0, x) ≤ f b(t, 0)x by the convexity and concavity properties.
Taking the expectation one finds

EQ [CT (X)] ≥ EQ
[∫ T

0
fa(t, 0)dXa

t −
∫ T

0
f b(t, 0)dXb

t

]

= EQ
[
fa(T, 0)Xa

T − f b(T, 0)Xb
T

]
. (A.8)

We get the last equality by applying the integration by parts formula and the
results in equations (A.5) and (A.6).

Finally, we can show that EQ [VT (X)] ≤ 0.

EQ[VT (X)] = EQ
[
F b(T,BT , XT )− F a(T,AT ,−XT )

]
− EQ [CT (X)]

≤ EQ
[
f b(T, 0)XT1[0,∞)(XT ) + fa(T, 0)XT1(−∞,0](XT )

]
−EQ [CT (X)]

≤ EQ
[
f b(T, 0)XT1[0,∞)(XT ) + fa(T, 0)XT1(−∞,0](XT )

]
−EQ

[
fa(T, 0)Xa

T − f b(T, 0)Xb
T

]
= EQ

[(
Xa
T1[0,∞)(XT ) +Xb

T1(−∞,0](XT )
) (
f b(T, 0)− fa(T, 0)

)]
≤ 0.

Which shows the result for the case where F a(t, 0, x) and F b(t, 0, x) are Q−martingales.
For the general result, we suppose that F a(t, 0, x) is a Q−supermartingale

and F b(t, 0, x) is a Q−submartingale. Consequently, we have that fa(t, 0) and
f b(t, 0) are respectively supermartingale and submartingale under Q. Using the
Doob-Meyer decomposition theorem (Protter, 2004) we can write

fa(t, 0) = Ma
t −Na

t

f b(t, 0) = M b
t +N b

t

where Ma and M b are martingales and Na and N b are increasing predictable
processes. With this decomposition we find

EQ [CT (X)] ≥ EQ
[∫ T

0
fa(t, 0)dXa

t −
∫ T

0
f b(t, 0)dXb

t

]

= EQ
[
fa(T, 0)Xa

T −
∫ T

0
Xa
t dM

a
t +

∫ T

0
Xa
t dN

a
t

]



38

−EQ
[
f b(T, 0)Xb

T −
∫ T

0
Xb
t dM

b
t −

∫ T

0
Xb
t dN

b
t

]

≥ EQ
[
fa(T, 0)Xa

T − f b(T, 0)Xb
T +

∫ T

0
Xa
t dN

a
t +

∫ T

0
Xb
t dN

b
t

]

≥ EQ
[
fa(T, 0)Xa

T − f b(T, 0)Xb
T

]
since

∫ T
0 Xa

t dN
a
t and

∫ T
0 Xb

t dN
b
t are non-negative. One note that this lower bound

for CT (X) is the same than (A.8) so that the rest of the proof remains valid for
the general case.

B. Generalized Itô’s formula
Let Cm([0,∞)n) be the space of m-times continuously differentiable functions

defined on [0,∞)n. For every compact K ∈ [0,∞)n, we set

||f ||m:K = sup
x∈K

|f(x)|
1 + |x| +

∑
1≤|α|≤m

sup
x∈K
|Dαf(x)|

where α = (α1, ..., αn) is a vector of n non-negative integers andDα the differential
operators ∂|α|

∂x
α1
1 ,...,∂xαnn

. A continuous function f(t, x), t ∈ [0, T ] and x ∈ [0,∞)n is
said to belong to Cm([0,∞)n) if for every t, f(t, ·) ∈ Cm([0,∞)n) and ||f(t, ·)||m:K

is integrable respect to t on [0, T ] for any compact K.
Let F (t, x) be a family of semimartingales with x ∈ [0,∞) and defineG(t, x, y) :=

〈F (t, x), F (t, y)〉 the quadratic variation of F (t, x) and F (t, y). There exists a pro-
cess g(t, x, y) and continuous increasing process such thatG(t, x, y) =

∫ t
0 g(s, x, y)dGs.

The pair (g(t, x, y), Gt) is called the local characteristic of F (t, x).
Theorem B.1. (Generalized Itô’s formula) Let F (t, x), x ∈ [0,∞) be a conti-
nuous C2([0,∞))-process and a continuous C1([0,∞))-semimartingale with g(t, y, x)
be a continuous C1([0,∞)2)-process such that ||a(t, x, y)||1:K is in L1(Gt) for every
compact K ∈ [0,∞)2. Suppose that Zt is a continuous semimartingale with value
in [0,∞). Then F (t, Zt) is a continuous semimartingale and

F (t, Zt)− F (0, Z0) =
∫ t

0
F (ds, Zs) +

∫ t

0

∂

∂x
F (s, Zs)dZs + 1

2

∫ t

0

∂2F

∂x2 (s, Zs)d〈Zs〉

+
〈∫ t

0

∂F

∂x
(ds, Zs), Zs

〉

The proof of this theorem can be found in Kunita (1990).



Chapitre 4

PRICING EUROPEAN OPTIONS IN A
DISCRETE TIME MODEL FOR THE LIMIT

ORDER BOOK

Résumé

Dans cet article, nous construisons un modèle pour la structure du
carnet d’ordres limites de sorte que le prix par action dépend de
la taille des transactions. Nous déduisons la valeur du portefeuille
lorsque l’investisseur utilise des ordres de marché et un compte
bancaire avec des taux d’intérêts différents pour prêter et emprun-
ter. Dans ce contexte de marché, nous déduisons des conditions
permettant d’éliminer les possibilités d’arbitrages et nous résolvons
les problèmes de tarification et de couverture pour les options eu-
ropéennes de vente et d’achat lorsque l’échéance est d’une période
et la livraison est physique. En utilisant la méthode d’optimisation
duale nous montrons que le prix des options européennes peut être
écrit comme un problème d’optimisation sur un certain ensemble
de mesures de probabilités.

Abstract

In this paper we build a discrete time model for the structure of
the limit order book, so that the price per share depends on the
size of the transaction. We deduce the value of a portfolio when
the investor trades using market orders and a bank account with
different interest rates for lending and borrowing. In this setting,
we deduce conditions to rule out arbitrage and solve the problem of
pricing and hedging an European call and put option with maturity
one and physical delivery. By using primal-dual optimization we
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show that the price of European options can be written as an
optimization problem over some set of probability measures.

1. Introduction
One of the most important topic in mathematical finance is the problem of

pricing and hedging contingent claims. Between the seminal work of Black and
Scholes (1973) and the early 1990’s, most of the research on this topic were done
under the assumption that the market is perfectly liquid. Since then, researchers
started to study this problem for illiquid markets and many approaches have been
tried. For instance, Liu and Yong (2005) proposed an extension of the Black and
Scholes model where the asset price depends on the size of the transaction. The
solution to the pricing problem is a non-linear partial differential equation. Cetin
et al. (2004) built a supply curve for stocks and show a version of the second fun-
damental theorem of asset pricing and that a smoothed version of delta hedging
can be used to hedge contingent claims, while Bank and Baum (2004) discuss the
case of superreplication also in a similar model. Another solution for the hedging
problem comes from forward backward stochastic differential equations as pre-
sented in Cvitanić and Ma (1996), or backward stochastic differential equations
as in Roch (2011). In Cetin et al. (2010) they study the superreplication problem
of a contingent claim depending on the fundamental value of the stock. The two
last papers use an extension of the model in Cetin et al. (2004).

All these approaches consider continuous time models and the solutions to the
hedging and pricing problem that arise are rarely explicit and difficult to analyze.
They also define an a priori value function for the contingent claims which might
not reflect the actual value that the seller or the buyer of the contingent claim
would define.

The purpose of this paper is to present a simplified framework, which still
keeps the characteristics of an illiquid market, such that the solution of the pro-
blem of hedging and pricing contingent claims can be found using a more funda-
mental approach. This way, the solutions we obtain present more explicitly the
relationship between the different inputs, and thus, it provides a better unders-
tanding of the effect of illiquidity on the price and the hedging strategy. For one
period European call and put, we derive an explicit expression for the price by
taking alternatively the point of view of the seller and the buyer which leads to
different hedging portfolios. The expressions for the prices that we find show a
completely different behaviour than in a perfectly liquid market. Since our model
includes the standard binomial model as a specific case, it makes for interesting
comparisons. Although some aspects of the model are simplistic, our proposed
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model considers bid-ask prices as well as different interest rates for lending and
borrowing, thus creating a somewhat realistic market.

In Section 2.3, we give a new result in the form of a no-arbitrage theorem.
For perfectly liquid markets, it is well known that the existence of an equivalent
martingale measure is equivalent to the absence of arbitrage, see Harrison and
Kreps (1979). In the literature about illiquid markets, most results state that the
existence of an equivalent martingale (resp. submartingale or supermartingale)
measure for the marginal price is a sufficient condition to rule out arbitrage, e.g.
Cetin et al. (2004), Bank and Baum (2004), Roch (2011), Roch and Soner (2013),
Simard (2014). In Theorems 2.1 and 2.2 we provide new conditions which make
the market free of arbitrage.

The theoretical setting is presented in the next section ; in Section 2.1 we define
the market model, and then compute the value of a general portfolio in Section
2.2, while some conditions of no-arbitrage are stated in Section 2.3. In Section
3 we consider the value call and put options, together with hedging portfolios
for the general model. These results are specialized for the one-period model in
Section 4, where the condition of no-arbitrage are stated in Section 4.1, while the
price of European call and put options are given in Sections 4.2 and 4.3. Also,
in Section 4.4, we discuss the results and we present an explicit example along
with numerical results in Section 4.5. Finally, in Section 5, we explore another
approach to solve the problem of pricing European options through primal-dual
optimization.

2. Theoretical setting
In what follows we first introduce the model, then we describe some properties.

2.1. The Model

We assume that the market is composed of two types of investors. First, we
suppose that there exists a large number of investors trading using limit orders.
These investors are liquidity providers and are responsible for the uncertainty.
The second type of investors are the buyers and the sellers of European call or
put options and they aim to hedge their position with market orders. As a result,
the size of their transactions has an influence on the value per share of the traded
asset. More specifically, when buying the stock, the cost per share increases with
the size of the transaction while, for selling the stock, the value per share decreases
with the size of the transaction. Finally, transactions are held at discrete time and
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we suppose there is enough liquidity to insure that the impact of market orders
have no lasting effect.

Let (Ω,F = {Ft}t=0,1,...,T , P ) be a filtered probability space. The evolution
of the limit order book is determined by two processes F a and F b defined on
{0, 1, . . . , T} × Ω, with values in the space C([0,∞)) of continuous functions.
The cost of buying x ≥ 0 shares at time t is given by F a

t (x), while the profit of
selling x ≥ 0 shares at time t is given by F b

t (x). To simplify some formulas, we
extend F a

t (x) and F b
t (x) to R by setting F a

t (x) = F b
t (x) = 0 for all x ≤ 0 and

all t ∈ {0, 1, . . . , T}. To satisfy the general structure of the limit order book we
impose the following properties :

(P1) For all x ∈ R, t 7→ F a
t (x) and t 7→ F b

t (x) are adapted processes.
(P2) For all t ∈ {0, 1, . . . , T}, x 7→ F a

t (x) is non-negative, non-decreasing
and convex while x 7→ F b

t (x) is non-negative, non-decreasing and concave.
Moreover, the right derivatives fat and f bt of F a

t and F b
t are such that for

any x ≥ 0, fat (x) ≥ f bt (x).
Remark 2.1. The property (P1) states that the structure of the limit order book
at time t incorporates all the informations up to time t. Property (P2) is necessary
to insure proper ordering of the limit orders in the order book. In fact, for any
x, y, z ≥ 0, one must have

F a
t (x+ y + z)− F a

t (x+ y) ≥ F a
t (x+ z)− F a

t (x), (2.1)

since the cost of buying z additional shares if one has already bought x + y is
at least as much as buying z shares while one has bought x. This implies that
fat (x) = D+F a

t (x) is non decreasing so F a
t is convex. Similarly, one must have

F b
t (x+ y + z)− F b

t (x+ y) ≤ F b
t (x+ z)− F b

t (x), (2.2)

for any x, y, z ≥ 0, implying that f bt (x) = D+F b
t (x) is non increasing, so F b

t is
concave. Finally, one must also have

F a
t (x+ y)− F a

t (x) ≥ F b
t (x+ y)− F b

t (x), for all x, y ≥ 0, (2.3)

which is equivalent to fat (x) ≥ f bt (x) for any x ≥ 0. In fact, one just need to
check that fat (0) ≥ f bt (0) since fat is non decreasing and f bt is non increasing. In
particular, one gets that F a

t (x) ≥ F b
t (x) for any x ≥ 0.

An interesting consequence of the model is given in the following proposition,
following from (2.1)–(2.2) by putting x = 0.
Proposition 2.1. Let g, h : [0,∞) → R be such that g is a convex function,
h is a concave function and g(0) = h(0) = 0. Then g is superadditive and h is
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subadditive, i.e., for all x, y ≥ 0

g(x+ y) ≥ g(x) + g(y),

and
h(x+ y) ≤ h(x) + h(y).

In particular, F a
t is superadditive and F b

t is subadditive. These properties will
be used often.

To complete the description of the model, we also assume that the investors
can lend or borrow money from a bank account with possibly different interest
rates for lending and borrowing. To this end, we define two processes {rat }t∈{1,...,T}
and {rbt}t∈{1,...,T} where ra is the interest rate for lending and rb for borrowing.
As usual, we suppose that 0 ≤ rat ≤ rbt , and both ra, rb are predictable, i.e.,
rat , r

b
t ∈ Ft−1 for t ∈ {1, . . . , T}.

2.2. Value of the portfolio

Let X be a predictable process representing the number of shares Xt in the
investor’s portfolio during period (t − 1, t], t ∈ {1, . . . , T}. Further set X0 = 0.
Since we have two set of prices, we need to keep track of the total number of
shares bought and sold. But first, we establish the following notation : (x)+ =
max{x, 0} and (x)− = max{−x, 0}. Then, we define Xa

t = ∑t
i=1(∆Xi)+ and

Xb
t = ∑t

i=1(∆Xi)−, where ∆Xt = Xt − Xt−1. The variable Xa
t (resp. Xb

t ) gives
the total number of shares bought (resp. sold) up to time t.

The cash flow of a transaction at time t is defined as

F a
t (∆Xa

t+1)− F b
t (∆Xb

t+1). (2.4)

Then, we define the process Y as the amount of money in the bank account. For
each t ∈ {1, . . . , T}, define `t−1(y) = y+(1 + rat )− y−(1 + rbt ), and set

Yt = `t−1(Yt−1)−
{
F a
t (∆Xa

t+1)− F b
t (∆Xb

t+1)
}
, (2.5)

where Y0 = π0 −
{
F a

0 (∆Xa
1 )− F b

0 (∆Xb
1)
}
and π0 is the initial value of the bank

account. The function `t provides the interest rate for the period (t, t + 1] ac-
cordingly to the positive or negative value of the amount in the bank account,
and Yt gives the value of the position in the bank account immediately after the
transaction at time t. From the definition of Yt, all the changes of positions in the
stock are financed by the bank account, so that we have a self-financing portfolio.
The next step is to determine the liquidation value of the portfolio.

As opposed to a perfectly liquid market, in our setting, the liquidation value
of the portfolio is not unique. It is well known in the literature, e.g. Bank and
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Baum (2004), Obizhaeva and Wang (2005), Predoiu et al. (2011), that an investor
should not trade a large amount of shares in one transaction since it will require to
go deeper in the limit order book. Therefore, an investor could choose to liquidate
its portfolio in many small trades instead of one large transaction. However, this
strategy includes uncertainty in the liquidation value and highly complicates the
computation of the portfolio value. To overcome this difficulty, some authors
assume, as in Cetin et al. (2004), that the last transaction is not affected by the
limit order book. In our case we consider that the impact of the last transaction
should be considered, and we define the liquidation value as

F b
t (Xt)− F a

t (−Xt). (2.6)

This value is the cash flow from closing the position in the stock in one transaction.
Finally, the value of the portfolio is given by

Vt(X, π0) = F b
t (Xt)− F a

t (−Xt) + `t−1(Yt−1) (2.7)

for all t ≥ 1 and V0(X, π0) = π0.
Remark 2.2. One should note that (2.7) is a self-financing portfolio condition.
At time t, before rebalancing the portfolio, the amount in the bank account is
`t−1(Yt−1). The cost of rebalancing the portfolio is −

{
F a
t (∆Xa

t+1)− F b
t (∆Xb

t+1)
}

which is equal to the variation in the bank account

Yt − `t−1(Yt−1) = −{F a
t (∆Xa

t+1)− F b
t (∆Xb

t+1)}.

2.3. Non arbitrage conditions

The question of finding conditions to rule out arbitrage in a market model
is crucial for the validity of a model. In the paradigm of a perfectly liquid and
frictionless market, this question has been solved in the work of Harrison and
Kreps (1979) and Harrison and Pliska (1981) and in a more general version of
arbitrage in Delbaen and Schachermayer (1994). It has been showed that the
absence of arbitrage is equivalent to the existence of an equivalent martingale
probability measure for the former and that the condition of no-free-lunch-with-
vanishing-risk is equivalent with the existence of an equivalent local-martingale
probability measure in Delbaen and Schachermayer (1994).

In the context of illiquidity models, Cetin et al. (2004) show that the equiva-
lence between the existence of an equivalent local-martingale probability measure
for the marginal price and the condition of no-free-lunch-with-vanishing-risk still
holds in their supply curve model. However, this result is based on the fact that
the investor can trades at the marginal price by using sufficiently smooth trading
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strategies. Recently, Roch (2011) and Cetin et al. (2010) improved the model of
Cetin et al. (2004) so that the investor cannot avoid the impact of the transactions
and, in this case, they can only show the sufficiency part of the result. Simard
(2014) presents a more general model where the investor cannot avoid the impact.
It is shown that the existence of an equivalent probability measure such that the
marginal price for the ask part and the bid part are respectively supermartingale
and submartingale is sufficient to rule out arbitrage. It is also shown that this
generalization to supermartingales and submartingales is not trivial. This result
suggests that the martingale paradigm from the perfect liquidity models is not
general enough. Our results, found in Theorems (2.1)-(2.2), bring a new kind of
condition to rule out arbitrage.

Before going further, we establish some definitions and some notation that
will be used throughout the paper. First, we restrict the set of trading strategies
to assure the integrability of the portfolio value at maturity.
Definition 2.1. A trading strategy (X, π0) is admissible if X is almost surely
bounded. The set of all admissible trading strategies is denoted by A.
Note that from (2.7), an admissible trading strategy is self-financing by definition.

Recall from (P2) that

fat (x) = D+F a
t (x) = lim

ε↓0

F a
t (x+ ε)− F a

t (x)
ε

,

f bt (x) = D+F b
t (x) = lim

ε↓0

F b
t (x+ ε)− F b

t (x)
ε

,

and for simplicity, set fat = fat (0) and f bt = f bt (0). The function fat (x) (resp. f bt (x))
gives the price of the stock for buying (resp. selling) an infinitesimal number of
shares in excess of x. For instance, the cost of buying x + dx shares, when dx is
”small“ , is approximately F a

t (x+ dx) = F a
t (x) + fat (x)dx.

We are now in a position to define the notion of arbitrage.
Definition 2.2. An arbitrage opportunity is an admissible trading strategy (X, 0)
such that

P {VT (X, 0) ≥ 0} = 1 and P {VT (X, 0) > 0} > 0.

Consequently, there is no arbitrage if and only if for any admissible trading
strategy (X, 0), one of the following (mutually exclusive) conditions is met :

(A1) P{VT (X, 0) = 0} = 1,

(A2) P{VT (X, 0) < 0} > 0.
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In the following, one gives conditions such that for a given probability measure,
the expectation of the portfolio value at maturity is not greater than its initial
value.

Let β0 = 1 and βt = βt−1
1+rt , where rt ∈ [rat , rbt ] for all t ∈ {1, . . . , T}. The

process β can be seen as a discount factor associated to the intermediate interest
rate process r. For a given probability measure Q on the filtered space (Ω,F), set

Ha
T = βTf

a
T ,

Ha
t−1 = min{βt−1f

a
t−1, EQ(Ha

t |Ft−1)}, t ∈ {1, . . . , T},
Hb
T = βTf

b
T ,

Hb
t−1 = max{βt−1f

b
t−1, EQ(Hb

t |Ft−1)}, t ∈ {1, . . . , T}.

(2.8)

Note that for each t ∈ {0, . . . , T},Ha
t ≤ βtf

a
t andHb

t ≥ βtf
b
t . MoreoverHa is a

submartingale, while Hb is a supermartingale. The properties of the processes Ha

and Hb will be used in Theorem 2.2 as a sufficient condition to rule out arbitrage.
To compare with the classical theory of risk neutral evaluation, the condition
for the absence of arbitrage is usually the existence of an equivalent probability
measure such that the discounted value of stocks are martingales. In our case, we
cannot define a unique discount factor, since there might be two different rates.
As a result, one has to find an intermediate interest rate rt ∈ [rat , rbt ], leading
to an intermediate discount factor βt. Accordingly, the processes Ha and Hb are
extension of the discounted value of the assets.

The proof of the following theorem is given is Appendix B.
Theorem 2.1. Let Q be a given probability measure on the filtered space (Ω,F)
and assume that EQ {F a

t (x)} < ∞ for all x and for all t ∈ {0, . . . , T}. Then
EQ {βTVT (X, π0)} ≤ π0 for all admissible strategies (X, π0) if the following condi-
tions are satisfied : for all t ∈ {1, . . . , T},

EQ (Ha
t |Ft−1) ≥ βt−1f

b
t−1, (2.9)

EQ
(
Hb
t |Ft−1

)
≤ βt−1f

a
t−1. (2.10)

Moreover, if rt = rat = rbt for all t ∈ {1, . . . , T}, then the conditions are also neces-
sary, i.e., if (2.9)–(2.10) are met, then EQ {βTVT (X, π0)} ≤ π0 for all admissible
strategies (X, π0).

Next, the following no-arbitrage result is a direct consequence of Theorem
2.1. This result gives a systematic way to rule out arbitrage in the market model.
The absence of arbitrage is an essential condition in the theory of pricing, since
it implies that assets producing the same returns must have the same value.
Theorem 2.2. Let the predictable process r be such that rat ≤ rt ≤ rbt , i ∈
{1, . . . , T}. Suppose there exists an equivalent probability measure Q on the filtered
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space (Ω,F) such that EQ {F a
t (x)} <∞ for all x and for all t ∈ {0, . . . , T}, and

such that the processes Ha and Hb defined in (2.8) satisfy (2.9)–(2.10). Then,
there is no arbitrage.
Remark 2.3. It is interesting to note that in the classical case of perfectly liquid
markets, i.e., F a

t (x) = F b
t (x) = ftx, for some adapted process ft, conditions (2.9)–

(2.10) are equivalent to Ha = Hb = βf and βf is a Q−martingale for some
probability measure Q equivalent to P , recovering the first fundamental theorem
of asset pricing.

2.4. Possible extension

Definition 2.2 states that an arbitrage opportunity must start with zero initial
wealth, that is π0 = 0. However, if ra ≡ rb, then VT (X, π0) = VT (X, 0) +VT (0, π0)
and we have that

P{VT (X, 0) ≥ 0} = P{VT (X, π0) ≥ VT (0, π0)}

and
P{VT (X, 0) > 0} = P{VT (X, π0) > VT (0, π0)}.

We see that, in this case, the definition of arbitrage given in 2.2 could be genera-
lized to π0 ∈ R and Theorem 2.2 would still be valid, which is not true if ra 6= rb.
It is also the case that in a perfectly liquid market with a unique interest rate,
the definition of arbitrage is equivalent whether the initial wealth is set to zero
or not. This suggests that, in our model, the definition of arbitrage opportunity
could be generalized and that other conditions would have to be defined to rule
out arbitrage in the general case. This problem will be studied in a future paper.

3. Value of call and put options for buyers and sellers
We now propose a way to evaluate European call and put options. Assume

that the maturity of the option is T ≥ 1, the strike isK, the option is written for 1
share of the underlying stock and the settlement is in-kind, not a cash settlement.
The latter occurs for example for options on indices.

In a perfectly liquid market, the price of an option, is the same whether the
settlement is in-kind or cash, since the payoff is the same. The latter is not true
in our setting, so we begin by assuming that the settlement is in-kind. Actually,
it is the case for most of the stock options in the market. The case of in-kind
settlement also allows to deduce the payoff function of the options. The case of
cash settlement is discussed in Section 3.4.
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To determine the value of the call or the put, one needs to take the viewpoint
of the buyer and the seller, thought the value of their hedging portfolios. We
consider that a price of the option is acceptable for the buyer or the seller if they
can build an hedging portfolio which is non-negative with probability one.

3.1. Hedging portfolios

In what follows we define the hedging portfolios for buyers and sellers of call
and put options. First, we consider the value of the portfolio for the buyer of a
call option.

3.1.1. Buyer of a call option

In order to realize a profit if she exercises, the buyer of the call has to sell
the share of the stock she receives from exercising the option. So, the decision to
exercise is based on the difference between the strike K and the value of selling
one share at market value at time T , i.e., F b

T (1). Consequently, we assume that
the call is exercised if and only if F b

T (1) > K.
The value of the buyer’s portfolio is

VT (X,−π0) = F b
T (XT + 1{F bT (1)>K})− F a

T (−XT − 1{F bT (1)>K}) (3.1)

+`T−1(YT−1)−K1{F bT (1)>K},

where Y0 = −π0 −
{
F a

0 (∆Xa
1 )− F b

0 (∆Xb
1)
}
and π0 is the price of the call. Here,

1A is defined as indicator function of the set A. In (3.1), one sees that the share
the buyer receives from exercising the option is added to the trading strategy in
the liquidation value of the portfolio.

Now we determine the value of the portfolio for the seller of a call.

3.1.2. Seller of a call contract

The seller must consider that she has to deliver one share of the underlying
stock when the buyer exercises, so that the value of the seller’s portfolio is given
by

VT (X, π0) = F b
T (XT − 1{F bT (1)>K})− F a

T (−XT + 1{F bT (1)>K}) (3.2)

+`T−1(YT−1) +K1{F bT (1)>K},

where Y0 = π0 −
{
F a

0 (∆X1)− F b
0 (−∆X1)

}
and π0 is the price of the call. This

time the sign before 1{F bT (1)>K} is different than in the buyer’s case since the seller
has to deliver the stock. The portfolios defined for the buyer and seller of the put
follow the same logic.
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3.1.3. Buyer of a put contract

In the case of a put option, for the buyer to realize a profit, she has to consider
the difference between the value of the strike K and the value F a

T (1) of buying
one share at period T . Consequently, one assumes that the put is exercised if and
only if F a

T (1) < K.
Then the value of the buyer’s portfolio is given by

VT (X,−π0) = F b
T (XT − 1{FaT (1)<K})− F a

T (−XT + 1{FaT (1)<K}) (3.3)

+`T−1(YT−1) +K1{FaT (1)<K},

where Y0 = −π0 −
{
F a

0 (∆X1)− F b
0 (−∆X1)

}
and π0 is the price of the put.

3.1.4. Seller of a put contract

Finally, using the same reasoning as before, the value of the seller’s portfolio
is given by

VT (X, π0) = F b
T (XT + 1{FaT (1)<K})− F a

T (−XT − 1){FaT (1)<K}) (3.4)

+`T−1(YT−1)−K1{FaT (1)<K},

where Y0 = π0 −
{
F a

0 (∆X1)− F b
0 (−∆X1)

}
and π0 is the price of the put.

3.2. Hedging value of the contracts

The hedging portfolio values are now used to define bid and ask prices for the
call and put options.

3.2.1. Bid price of the option

For the buyer of the option, the bid price is the highest π0 for which there
exists an admissible trading strategy (X, π0) such that VT (X,−π0) ≥ 0, where
VT (X,−π0) is given by (3.1) or (3.3), depending if it is a call or a put option.

3.2.2. Ask price of the option

For the seller, the ask price is the smallest π0 for which there exists an admis-
sible trading strategy (X, π0) such that VT (X, π0) ≥ 0, where VT (X, π0) is given
by (3.2) or (3.4), depending if it is a call or a put option.
Remark 3.1. In this section we defined how to determine the price of call and
put options written for one share of the underlying stock. In a perfectly liquid
market, the price of options (per unit of the underlying stock) does not depend
on the number of shares of the underlying stock specified in the option contract.
Consequently, there is no loss of generality considering an option for one share of
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the underlying stock. In our case, the price of an option (per unit of the under-
lying) depends, in general, on the number of shares of the underlying. The choice
of pricing options for one share of the underlying is a matter of rescaling the
problem.

Again, in a perfectly liquid market, the problem of pricing options does not
depend on the number of options in the hedging portfolio, which is not true in our
setting. Suppose we take the case of a buyer of n > 1 call options for one share of
the underlying stock with strike K and physical delivery. If F b

T (1) > K, then it is
not true in general that F bT (n)

n
> K since the function F b

T (x)/x is non-increasing.
Thus, the buyer will exercise m ≤ n options where m = arg supm≤n

F bT (m)
m

> K.
Consequently, the price the buyer is willing to pay will depend on the number of
options she bought.

3.3. Non linearity

A particularity of the model is that, in general, the portfolio value is not a
linear function of the hedging strategy, meaning that in general one does not have

VT (X + X̃, π0 + π̃0) = VT (X, π0) + VT (X̃, π̃0)

for (X, π0), (X̃, π̃0) ∈ A. This absence of linearity can creates a lot of problems.
For example, there is no more put-call parity formula, since it is based on a payoff
giving at maturity one share minus K dollars. Similarly, pricing forward contracts
or futures is not as easy as in the classical case. Also, by setting K = 0 in a call
option, one does not necessarily recover the value F a

0 (1). This last fact will be
discussed later.

3.4. Cash settlement

We mentioned at the beginning of this section that the problem of pricing
options with cash or physical settlement is no longer the same. Suppose we take
a call option with payoff function max{F b

T (1)−K; 0} and with cash settlement.
The value of the seller’s hedging portfolio is defined by

V (X, π0) = LT (X)− `T−1(YT−1)−max{F b
T (1)−K; 0},

where π0 is the price of the option. This value is different than the one defined in
(3.2) since the seller no longer has to deliver the stock. Indeed, the seller’s price
of the option should be different than in the case of physical delivery.

Moreover, the case of in-kind settlement leads naturally to the payoff function
of the option, since the buyer has to sell (resp. buy) one share of the underlying
when exercising the call (resp. put) option. It is no longer the case with cash
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settlement options. Since there is two sets of prices and that the buyer of the
option receives money upon exercise, there is no reason to restrict the payoff
functions to max{F b

T (1)−K; 0} for the call and max{K − F a
T (1); 0} for the put.

For instance, one could defined the payoff of the call as max{F a
T (1) − K; 0} or

max
[

1
2

{
F a
T (1) + F b

T (1)
}
−K; 0

]
.

4. One-period model
One now consider the question of pricing and hedging a European call or put

option in a one-period model. Most of the past researches on the topic consider
continuous time models and the solution to the hedging problem often turns out
to be equivalent to solving a complicated differential equation ; see, e.g., Liu and
Yong (2005) and Cvitanić and Ma (1996). The approach here is to simplify the
model by restricting the space Ω to be countable, i.e., Ω = {ωi; i ∈ I}, where
I is finite or I = N, and T = 1. Since I can be finite, one may assume that
P (ωi) > 0 for all i ∈ I. In this framework, the solution to the pricing problem can
be made more explicit so that it is easier to analyze the behaviour of the price
and the hedging strategy. By assuming that the investment horizon is T = 1,
one can also refine the no-arbitrage result by providing sufficient and necessary
conditions to rule out arbitrage, including different interest rates for the lender
and the borrower.

4.1. No-arbitrage conditions

Since X1 is F0-measurable it is constant, so one can set X1 = x as a non-
random variable. Setting π0 = 0, the value of the one-period self-financing port-
folio reduces to these two cases. Since it only depends on x, one writes V1(x) for
the value of the portfolio.

If x > 0 then Y1 = −F a
0 (x) and

V1(x) = F b
1 (x)− (1 + rb1)F a

0 (x).

If x = −y < 0 then Y1 = F b
0 (y) and

V1(−y) = −F a
1 (y) + (1 + ra1)F b

0 (y).

Then V1(x) ≥ 0 if F b
1 (x) ≥ (1+rb1)F a

0 (x) for some x ≥ 0 or F a
1 (x) ≤ (1+ra1)F b

0 (x)
for some x ≥ 0.

>From Definition 2.2, we see that there is no arbitrage opportunity if and
only if

P{V1(x) = 0} = 1 or P{V1(x) < 0} > 0.
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This last condition for the absence of arbitrage can be stated in a more prac-
tical way, which is the point of the next theorem, proven in Appendix C.
Theorem 4.1. There is no arbitrage for a one-period maturity portfolio if, from
the following conditions, either (NA1) or (NA2) is satisfied and either (NA3) or
(NA4) is also satisfied.

(NA1) : sup
ω∈Ω

f b1(0, ω) ≤ (1 + rb1)fa0 (0),

(NA2) : inf
ω∈Ω

f b1(0, ω) < (1 + rb1)fa0 (0) < sup
ω∈Ω

f b1(0, ω),

(NA3) : inf
ω∈Ω

fa1 (0, ω) ≥ (1 + ra1)f b0(0),

(NA4) : sup
ω∈Ω

fa1 (0, ω) > (1 + ra1)f b0(0) > inf
ω∈Ω

fa1 (0, ω).

Remark 4.1. Note that in the classical binomial tree model where f1 = f0U or
f1 = f0D, one recovers the usual conditions of non arbitrage, i.e., U > 1 + r > D

or U = D = 1 + r.
In the next two sections, one gives the price of the European call and put

options from the seller’s and buyer’s viewpoint. The results are then discussed in
Section 4.4.

4.2. Pricing European calls

In this section one determines the price for the European call with maturity
T = 1, strike price K, for physical delivery of one share of the underlying asset.
The expressions we derive are actually for the bid and the ask price of the options,
that is the highest and lowest price which allow the buyer or the seller of the option
to build a non-negative hedging portfolio. We sometimes refer to these values as
the price since the meaning will be clear from the context.

As discussed in Section 3, one assumes that the option is exercised if and only
if F b

1 (1) > K.
To treat this problem one imposes the following conditions :
(C1) : There is no possibility of arbitrage.
(C2) : supω∈Ω F

a
1 (x, ω) = supω∈{F b1 (1)>K} F

a
1 (x, ω).

(C3) : For any ω, ω̃ ∈ Ω, F b
t (x0, ω) ≤ F b

t (x0, ω̃) for some x0 > 0 if and only
if F b

t (x, ω) ≤ F b
t (x, ω̃) for all x ≥ 0. Also, for any ω, ω̃ ∈ Ω, F a

t (x0, ω) ≤
F a
t (x0, ω̃) for some x0 > 0 if and only if F a

t (x, ω) ≤ F a
t (x, ω̃) for all x ≥ 0.

Conditions (C2) and (C3) simplify some computations, but can also be justi-
fied financially. We can interpret the set {F b

1 (1) ≤ K} as bear market states and
{F b

1 (1) > K} as bull market states which explains (C2) while we suppose that
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an upward (resp. downward) movement on prices applies to the whole limit order
book structure, which explains (C3).

One needs to consider three cases : P{F b
1 (1) > K} = 1, P{F b

1 (1) > K} = 0,
and 0 < P{F b

1 (1) > K} < 1. The case P{F b
1 (1) > K} = 1 corresponds to the

situation where the buyer always exercises, while P{F b
1 (1) > K} = 0 is the case

where the buyer never exercises. Some consequences of these two limiting, and
rather extreme cases will be discussed in turn.

4.2.1. Seller’s call price

One first looks at the price of the option from the seller’s point of view. Using
(3.2) with T = 1, the value of the hedging portfolio of the seller of the call option
is

V1(x, π0) =

 F b
1 (x)− F a

1 (−x) + `0(y), if F b
1 (1) ≤ K,

F b
1 (x− 1)− F a

1 (−x+ 1) + `0(y) +K, if F b
1 (1) > K,

where y = π0 −
{
F a

0 (x)− F b
0 (x)

}
, and `0(y) = y+(1 + ra1) − y−(1 + rb1). The ask

price, i.e., the lowest price the seller is willing to accept, is the smallest π0 such
that there exists x for which V1(x, π0, ω) ≥ 0 for every ω ∈ Ω.

Set

`(ca)(x) = min
{

inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω), K + inf

ω∈{F b1 (1)>K}
F b

1 (x− 1, ω)
}

1[1,∞)(x)

+ min

 inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω), K − sup

ω∈{F b1 (1)>K}
F a

1 (1− x, ω)

1[0,1](x)

−max

 sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω), sup

ω∈{F b1 (1)>K}
F a

1 (1− x, ω)−K

1(−∞,0](x).

Then V1(x, π0, ω) ≥ 0 for all ω ∈ Ω if and only if π0 ≥ F a
0 (x) − F b

0 (x) +
`−1

0

{
−`(ca)(x)

}
.

In what follows, we will use the convention that the infimum and the supre-
mum of non negative functions over empty sets are respectively +∞ and−∞. This
way, `(ca) is well-defined even if P{F b

1 (1) > K} = 0 or 1. For if P{F b
1 (1) > K} = 0,

then

`(ca)(x) = inf
ω
F b

1 (x, ω)1[0,∞)(x)− sup
ω
F a

1 (−x, ω)1(−∞,0](x), (4.1)

while

`(ca)(x) = K + inf
ω
F b

1 (x− 1, ω)1[1,∞)(x)− sup
ω
F a

1 (1− x, ω)1(−∞,1](x),(4.2)

if P{F b
1 (1) > K} = 1.
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Theorem 4.2. Suppose that (C1)–(C3) hold. The ask price πa0 of the European
call is given by

(1) πa0 = 0, if P{F b
1 (1) > K} = 0 ;

(2)

πa0 = min
[

inf
x∈[0,x0]

{
F a

0 (x) +
supω∈{F b1 (1)>K} F

a
1 (1− x, ω)−K

1 + ra1

}
,

inf
x∈[x0,x1]

{
F a

0 (x) +
supω∈{F b1 (1)>K} F

a
1 (1− x, ω)−K

1 + rb1

}]
,

if 0 < P{F b
1 (1) > K} < 1, where x0, x1 are such that supω∈{F b1 (1)>K} F

a
1 (1−

x0, ω) = K,
x1 = inf

{
x ∈ (x0, 1); `(ca)(x) = infω∈{F b1 (1)≤K} F

b
1 (x, ω)

}
, and 0 < x0 <

x1 < 1 ;

(3)

πa0 = min
[

inf
x∈[0,x0]

{
F a

0 (x) + supω F a
1 (1− x, ω)−K

1 + ra1

}
,

inf
x∈[x0,1]

{
F a

0 (x) + supω F a
1 (1− x, ω)−K

1 + rb1

}]
,

if P{F b
1 (1) > K} = 1.

Remark 4.2. Note that the optimal number of shares to construct the hedging
portfolio is always between 0 and 1.

The proof is given in Appendix D.

4.2.2. Buyer’s call price

We now consider the price of the call from the buyer’s point of view. Using
(3.1) with T = 1, the value of the hedging portfolio is given by

V1(x,−π0) =

 F b
1 (x)− F a

1 (−x) + `0(y), if F b
1 (1) ≤ K,

F b
1 (x+ 1)− F a

1 (−x− 1) + `0(y)−K, if F b
1 (1) > K,

where y = −π0 −
{
F a

0 (x)− F b
0 (x)

}
and `0(y) = y+(1 + ra1)− y−(1 + rb1). The bid

price, i.e., the highest price the buyer is willing to accept, is the highest π0 such
that there exists x for which V1(x,−π0) ≥ 0 a.s.

Before stating the next theorem, set

`(cb)(x) = min
{

inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω), inf

ω∈{F b1 (1)>K}
F b

1 (x+ 1, ω)−K
}

1[0,∞)(x)



55

+ min

− sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω), inf

ω∈{F b1 (1)>K}
F b

1 (x+ 1, ω)−K

1[−1,0](x)

− max

 sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω), sup

ω∈{F b1 (1)>K}
F a

1 (−x− 1, ω) +K

1(−∞,−1](x).

We retain the same conventions for the infimum and supremum over empty sets.
If P{F b

1 (1) > K} = 0, then

`(cb)(x) = inf
ω
F b

1 (x, ω)1[0,∞)(x)− sup
ω
F a

1 (−x, ω)1(−∞,0](x),

while

`(cb)(x) = inf
ω
F b

1 (x+ 1, ω)1[−1,∞)(x)

− sup
ω
F a

1 (−x− 1, ω)1(−∞,−1](x)−K, (4.3)

if P{F b
1 (1) > K} = 1.

Theorem 4.3. Suppose that (C1)–(C3) hold. The bid price πb0 of the European
call option is given by

(1) πb0 = 0, if P{F b
1 (1) > K} = 0,

(2)

πb0 = sup
x≤0

{
F b

0 (−x) + `(cb)(x)
1 + ra1

}
,

if 0 < P{F b
1 (1) > K} < 1, and if supω∈{F b1 (1)≤K} F

a
1 (1, ω) < K, then

πb0 = sup
x∈[−1,0]

{
F b

0 (−x) + `(cb)(x)
1 + ra1

}
, (4.4)

(3)

πb0 = max
[

sup
x∈[−1,x0]

{
F b

0 (−x) + infω F b
1 (x+ 1, ω)−K

1 + ra1

}
,

sup
x∈[x0,0]

{
F b

0 (−x) + infω F b
1 (x+ 1, ω)−K

1 + rb1

}]
,

if P{F b
1 (1) > K} = 1, where x0 ∈ [−1, 0], is defined by infω F b

1 (x0 +1, ω) =
K.

The proof is given in Appendix E.

4.3. Pricing European puts

In this section we determine the price for the European put with maturity
T = 1, strike price K, for physical delivery of one share of the underlying asset.
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As discussed in Section 3, we assume that the option is exercised if and only if
F a

1 (1) < K.
To treat this problem, the following conditions are imposed :
(C1) There is no possibility of arbitrage.
(C2′) infω∈Ω F

b
1 (x, ω) = infω∈{Fa1 (1)<K} F

b
1 (x, ω).

(C3′) For ω, ω̃ ∈ Ω, F b
t (x0, ω) ≤ F b

t (x0, ω̃) for some x0 > 0 if and only if
F b
t (x, ω) ≤ F b

t (x, ω̃) for all x. Also, for any ω, ω̃ ∈ Ω, F a
t (x0, ω) ≤ F a

t (x0, ω̃)
for some x0 > 0 if and only if F a

t (x, ω) ≤ F a
t (x, ω̃) for all x ≥ 0.

Once again, conditions (C2′) and (C3′) simplify the computations, and are
justified financially as in Section 4.2. We interpret {F a

1 (1) < K} as bear market
states and {F a

1 (1) ≥ K} as bull market states, which explains (C2′) while we
suppose that upward and downward movements affect the whole limit order book
structure, which explains (C3′).

Also, one has to consider the three cases : P{F a
1 (1) < K} = 1 and P{F a

1 (1) <
K} = 0 corresponding respectively to the situations where the buyer exercises
with probability one and probability zero and finally the case 0 < P{F a

1 (1) <
K} < 1.

4.3.1. Seller’s put price

One first looks at the price of the option from the seller point of view. Using
(3.4) with T = 1, the value of the hedging portfolio of the seller of the put option
is

V1(x, π0) =

 F b
1 (x)− F a

1 (−x) + `0(y), if F a
1 (1) ≥ K,

F b
1 (x+ 1)− F a

1 (−x− 1) + `0(y)−K, if F a
1 (1) < K,

where y = π0 − {F a
0 (x) − F b

0 (x)} and `0(y) = y+(1 + ra1) − y−(1 + rb1). The ask
price, i.e., the lowest price the seller is willing to accept, is the smallest π0 such
that there exists x for which V1(x, π0) ≥ 0 a.s.

Set

`(pa)(x) = min
{

inf
ω∈{Fa1 (1)<K}

F b
1 (x+ 1, ω)−K, inf

ω∈{Fa1 (1)≥K}
F b

1 (x, ω)
}

1[0,∞)(x)

+ min

 inf
ω∈{Fa1 (1)<K}

F b
1 (x+ 1, ω)−K,− sup

ω∈{Fa1 (1)≥K}
F a

1 (−x, ω)

1[−1,0](x)

−max

 sup
ω∈{Fa1 (1)<K}

F a
1 (−x− 1, ω) +K, sup

ω∈{Fa1 (1)≥K}
F a

1 (−x, ω)

1(−∞,−1](x).
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In particular, if P{F a
1 (1) < K} = 0, then

`(pa)(x) = inf
ω
F b

1 (x, ω)1[0,∞)(x)− sup
ω
F a

1 (−x, ω)1(−∞,0](x),

while

`(pa)(x) = inf
ω
F b

1 (x+ 1, ω)1[−1,∞)(x)− sup
ω
F a

1 (−x− 1, ω)1(−∞,−1](x)−K,

if P{F a
1 (1) < K} = 1.

Theorem 4.4. Suppose that (C1), (C2′)–(C3′) hold. The ask price πa0 of the
European put is given by

(1) πa0 = 0, if P{F a
1 (1) < K} = 0,

(2)

πa0 = min
[

inf
x∈[x0,0]

{
K − infω∈{Fa1 (1)<K} F

b
1 (1 + x, ω)

1 + ra1
− F b

0 (−x)
}
,

inf
x∈[0,x1]

[
`−1

0

{
K − inf

ω∈{Fa1 (1)<K}
F b

1 (1 + x, ω)
}

+ F a
0 (x)

]]
,

if 0 < P{F a
1 (1) < K} < 1, where

x0 = sup

x ∈ ([−1, 0]; `(pa)(x) = − sup
ω∈{Fa1 (1)≥K}

F a
1 (−x, ω)

 ,
and x1 is such that infω F b

1 (x1+1, ω) = K. If in addition
infω∈{Fa1 (1)<K} f

b
1 (1,ω)

1+ra1
≤

fa0 (0), then

πa0 = inf
x∈[x0,0]

{
K − infω∈{Fa1 (1)<K} F

b
1 (1 + x, ω)

1 + ra1
− F b

0 (−x)
}
.

(3) If P{F a
1 (1) < K} = 1,

πa0 = min
[

inf
x∈[−1,0]

{
K − infω F b

1 (1 + x, ω)
1 + ra1

− F b
0 (−x)

}

inf
x∈[0,x1]

[
`−1

0

{
K − inf

ω
F b

1 (1 + x, ω)
}

+ F a
0 (x)

]]
.

If in addition infω fb1 (x+1,ω)
1+ra1

≤ fa0 (0), then

πa0 = inf
x∈[−1,0]

{
K − infω F b

1 (1 + x, ω)
1 + ra1

− F b
0 (−x)

}
.

The proof is given in Appendix F.
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4.3.2. Buyer’s put price

One now looks at the price of the put from the buyer’s point of view. Using
(3.3) with T = 1 the value of the hedging portfolio is given by

V1(x,−π0) =

 F b
1 (x)− F a

1 (−x) + `0(y), if F a
1 (1) ≥ K,

F b
1 (x− 1)− F a

1 (−x+ 1) + `0(y) +K, if F a
1 (1) < K,

where y = −π0 − {F a
0 (x) − F b

0 (x)} and `0(y) = ya(1 + ra1) − yb(1 + rb1). The bid
price, i.e., the highest price the buyer is willing to accept is the biggest π0 ≥ 0
such that there exists x for which V1(x,−π0) ≥ 0 a.s.

Before stating the next theorem, set

`(pb)(x) = min
{

inf
ω∈{Fa1 (1)<K}

F b
1 (x− 1, ω) +K, inf

ω∈{Fa1 (1)≥K}
F b

1 (x, ω)
}

1[1,∞)(x)

+ min

− sup
ω∈{Fa1 (1)<K}

F a
1 (−x+ 1, ω) +K, inf

ω∈{Fa1 (1)≥K}
F b

1 (x, ω)

1[0,1](x)

−max

 sup
ω∈{Fa1 (1)<K}

F a
1 (−x+ 1, ω)−K, sup

ω∈{Fa1 (1)≥K}
F a

1 (−x, ω)

1(−∞,0](x).

If P{F a
1 (1) < K} = 0,

`(pb)(x) = inf
ω
F b

1 (x, ω)1[0,∞)(x)− sup
ω
F a

1 (−x, ω)1(−∞,0](x),

while

`(pb)(x) = inf
ω
F b

1 (x− 1, ω)1[1,∞)(x)− sup
ω
F a

1 (−x+ 1, ω)1(−∞,1](x) +K,

if P{F a
1 (1) < K} = 1.

Theorem 4.5. Suppose that (C1), (C2′)–(C3′) hold. The bid price πb0 of the
European put is given by

(1) πb0 = 0, if P{F a
1 (1) < K} = 0.

(2)

πb0 = sup
x≥0

{
`(pb)(x)
1 + rb1

− F a
0 (x)

}
,

if 0 < P{F a
1 (1) < K} < 1. If in addition infω∈{Fa1 (1)≥K} F

b
1 (1, ω) > K,

then
πb0 = sup

[0,1]

{
`(pb)(x)
1 + rb1

− F a
0 (x)

}
.

(3)

πb0 = sup
x∈[0,1]

{
K − supω F a

1 (1− x, ω)
1 + rb1

− F a
0 (x)

}
,
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if P{F a
1 (1) < K} = 1.

The proof is given in Appendix G.

4.4. Discussion and specific cases

As we saw previously, even for a one maturity option, the problem of pricing
an European option is much more complex when we consider the structure of the
limit order book. Moreover, we see significant differences between those results
and corresponding results from perfect liquidity models. Here we highlight some
particularities of our results

As it is expected, the value of the option generally depends on the value of the
strike. However, for in-the-money options, the dependence is not necessarily linear
as it is the case for the classical one period binomial model. In the seller’s case, the
value of x0, with its respective definition in Theorems 4.2 and 4.4, depends on the
value of the strike. On the other hand, one surprising result is that it is possible
that the buyer’s price, as well as the hedging strategy, do not depend on the strike
for values in some open interval. For instance, let’s look at the buyer’s call price in
Theorem 4.3, for the case 0 < P{F b

1 (1) > K} < 1. If supω∈{F b1 (1)≤K} F
a
1 (1, ω) > K,

then there exists ε > 0 such that `(cb)(x) = − supω∈{F b1 (1)≤K} F
a
1 (−x, ω) for all

x ∈ [−1,−1 + ε). Moreover, one can define F b
0 (x) such that

πb0 = sup
x≤0

{
F b

0 (−x) + `(cb)(x)
1 + ra1

}
= F b

0 (−x∗)−
supω∈{F b1 (1)≤K} F

a
1 (−x∗, ω)

1 + ra1

for some x∗ ∈ [−1,−1+ε). This way, we have that the price is going to be constant
for all K in some open interval. A similar result applies for the buyer’s price of a
put.

Suppose now that P{F b
1 (1) > K} = 1 and take the viewpoint of the seller of

a call. Using Theorem 4.2 and setting x = 1, one finds that

πa0 ≤ F a
0 (1)− K

1 + rb1
.

Consequently, if F a
0 (1) < K

1+rb1
, then πa0 < 0. One can build a simple example to

illustrate this result.
Let Ω = {u, d} where u and d stand for an upward movement and a downward

movement in the price and set ra1 = rb1 = 0. From Theorem 4.1 one needs that
f b0 < fa1 (0, u) and fa0 > f b1(0, d). Then, assuming the price satisfy the following
inequalities

F b
1 (1, d) < F b

0 (1) < F a
1 (1, d) < F b

1 (1, u) < K < F a
0 (1) < F a

1 (1, u)

one finds that πa0 < 0 from Theorem 4.2.
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From a financial point, the seller knows that the buyer will exercise. To hedge
her position the seller pays F a

0 (1), but she will receive K
1+rb1

at t = 1 when the buyer
will exercise the option, which covers the hedging cost. One can get a similar result
for the seller of a put by taking P{F a

1 (1) < K} = 1 and K
1+ra1

< F b
0 (1). Although

it does not satisfy our definition of arbitrage in 2.2, this situation corresponds to
the intuitive idea of arbitrage since it is an opportunity of riskless profit. However,
the investor cannot exploit this arbitrage opportunity to create an arbitrary large
profit, as it is the case for arbitrage in a perfectly liquid market. In order to make
a larger profit, the seller could sell n > 1 call options and covers her position
in buying n shares of the underlying stock at a cost F a

T (n). However, although
she realizes a profit with one call option, recall that F a

1 (1) < K
1+rb1

, it is not true
in general that F a

1 (n) < n K
1+rb since Fa1 (n)

n
is non-decreasing in n. As we see, the

addition of the option as an investment opportunity creates a new possibility
of arbitrage. The fact that including options in the portfolio might creates new
arbitrage opportunities in a model of illiquidity were studied in Jarrow (1994).

4.5. Example and numerical results

In this section, we present an example where we price European options of
maturity T = 1 within a two parameter model for the structure of the order book
and with interest rates ra1 for the lender and rb1 the borrower. We suppose that
Ω = {ω1, ω2} where ω1 and ω2 correspond to downward and upward movement
in the prices. It is possible to see this example as a generalisation of the classical
one period binomial model under the perfect liquidity assumption. The structure
of the limit order book at time t = 0 is defined as follows :

F a
0 (x) = Sa0 {(1 + x)α0 − 1} ,

F b
0 (x) = Sb0

{
(1 + x)β0 − 1

}
,

where 0 < Sb0 ≤ Sa0 , α0 ≥ 1 and β0 ∈ (0, 1), while

F a
1 (x, ω) = Sa1 (ω)

{
(1 + x)α1(ω) − 1

}
,

F b
1 (x, ω) = Sb1(ω)

{
(1 + x)β1(ω) − 1

}
,

with 0 < Sb1(ω1) ≤ Sb1(ω2), 0 < Sa1 (ω1) ≤ Sa1 (ω2), α1(ω1) ≤ α1(ω2), β1(ω1) ≤
β1(ω2), α1(ω) ≥ 1 and β1(ω) ∈ (0, 1].

We also suppose that (C2)-(C1), (C2′)-(C1′) as well as the no-arbitrage
conditions in Theorem 4.1 are satisfied. We note that setting Sat = Sbt , αt = βt = 1
and ra1 = rb1 one recovers the binomial model.
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The first set of parameters satisfying these conditions is given in Table 4.1.
In Figure 4.1, we show the price of the call and the hedging strategy for the

seller and the buyer for different values of the strike. The buyer exercises with
probability one if K ≤ 0.953 and probability zero if K ≥ 1.0059. As we mentioned
in Section 4.4, Figure 4.1 provides an example where the buyer’s price depends
non-linearly on the strike. The parameters of the model are given in Table 4.1.

Table 4.1. Parameters used in the first example.

Sa0 α0 α1 ra1 Sa1 Sb0 β0 β1 rb1 Sb1
ω1 1 1.01 1.01 0.03 0.98 1 0.99 0.98 0.04 0.98
ω2 1 1.01 1.02 0.03 1.02 1 0.99 0.99 0.04 1.02

Figure 4.1. The value of the call for different strike values is
displayed on the left panel, while one the right panel, the number
of shares X1 for the hedging portfolios are displayed as a function
of the strike. For both graphs, the dashed lines denotes the seller
while the plain line is for the buyer.

In Figure 4.2 we show the effect of the convexity and concavity of the limit
order book structure. We start from the binomial model for a perfectly liquid
market (parameters are given in Table 4.2) and we change the value of α1(ω)
from 1 to 1.3 while β1(ω) varies from 1 to 0.97, at which point the buyer exercises
with probability zero.

Table 4.2. Parameters used in the first example.

Sa0 α0 α1 ra1 Sa1 Sb0 β0 β1 rb1 Sb1
ω1 1 1 1 0.01 0.98 1 1 1 0.01 0.98
ω2 1 1 1 0.01 1.02 1 1 1 0.01 1.02

Figure 4.2. The top figure shows the price of the call for α1(ω)
going from 1 to 1.3 while β1(ω) goes from 1 to 0.97. The scale of
the x-axis is β1(ω). The dashed line give the seller’s price while the
plain line gives the buyer’s price. The two following figures are the
position in the stock for hedging the option for the seller and the
buyer.
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5. Pricing an option with primal-dual optimization
In this last section we show that we can use primal-dual optimization to ex-

press the bid and ask prices of European call and put options as optimization
problems related to probability measures. We refer the reader to Boyd and Van-
denberghe (2009) for details about primal-dual optimization.

To simplify the presentation, we only consider the case of the seller of a call.
However, all the results of Theorems 4.2 to 4.5 can be deduced using primal-dual
optimization.

Consider the problem of pricing a European call with the same characteristics
as in Section 4.2 and assume that the probability space is given by Ω = {ωi; i ∈ I}
where I is finite, and P (ωi) > 0 for all i ∈ I.

Recall that the value of the hedging portfolio for the seller is given by,

V1(x, π0) =

 F b
1 (x)− F a

1 (−x) + `0(y), if F b
1 (1) ≤ K,

F b
1 (x− 1)− F a

1 (−x+ 1) + `0(y) +K, if F b
1 (1) > K,

where y = π0 − {F a
0 (x) − F b

0 (x)}, and `0(y) = y+(1 + ra1) − y−(1 + rb1). We also
define the set BK = {i ∈ I;F b

1 (1, ωi) > K}.
The pricing problem, which is the primal form of the optimization problem,

is written as
πa0 = inf

x,y∈R

{
F a

0 (x)− F b
0 (−x) + y

}
,

subject to the constraints `(i)(x) + `0(y) ≥ 0 for all i ∈ I, where

`(i)(x) =


F b

1 (x, ωi), i ∈ Bc
K , x ≥ 0,

−F a
1 (−x, ωi), i ∈ Bc

K , x < 0,
F b

1 (x− 1, ωi) +K, i ∈ BK , x ≥ 1,
−F a

1 (−x+ 1, ωi) +K, i ∈ BK , x < 1.

To construct the dual problem, we define the Lagrangian H(x, y, ξ) for ξ ≥ 0
by

H(x, y, ξ) = F a
0 (x)− F b

0 (−x) + y − `0(y)
∑
i∈I

ξi −
∑
i∈I

`(i)(x)ξi.

Further, let the Lagrange dual function be defined by G(ξ) = infx,yH(x, y, ξ).
Then the dual problem is to find supξ≥0G(ξ). In general on has that supξ≥0G(ξ) ≤
πa0 .

However, in the primal problem, the function to optimize is convex, the
constraints are concave and by taking x = 0 and y > 0 one has that `(i)(0) +
`0(y) > 0 for all i ∈ I. These conditions are sufficient to have strong duality,
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which means that
πa0 = sup

ξ≥0
G(ξ). (5.1)

These conditions for strong duality are known as Slater’s theorem ; see, e.g., Boyd
and Vandenberghe (2009)[Section 5.2.3].

Next, since

y − `0(y)
∑
i∈I

ξi = y

[
1−

{
(1 + ra1)1(y)[0,∞) − (1 + rb1)1(−∞,0)

}∑
i∈I

ξi

]
,

it follows that G(ξ) = −∞ whenever ∑i∈I ξi <
1

1+rb1
or ∑i∈I ξi >

1
1+ra1

. Let

D =
{
ξ ≥ 0;∑i∈I ξi ∈

[
1

1+rb1
, 1

1+ra1

]}
. Note that D is compact.

Using (5.1), one may assume that ξ ∈ D, from which it follows that G(ξ) =
infxH(x, 0, ξ).

At this point, we would like to simplify the expression of the Lagrange dual
problem by restricting the domain of ξ and the domain of x for the function
H(x, 0, ξ). To this end, let H = {ξ ∈ D; infxH(x, 0, ξ) > −∞}. As a result,

πa0 = sup
ξ∈H

inf
x
H(x, 0, ξ).

We first try to describe H more precisely. Let f bt (∞) = limx→∞
F bt (x)
x

and
fat (∞) = limx→∞

Fa1 (x)
x

. Note that both limits exist, f bt (∞) < ∞ while fat (∞)
might be infinite. Thus

lim
x→∞

H(x, 0, ξ)
x

= fa0 (∞)−
∑
i∈I

ξif
b
1(∞, ωi). (5.2)

Similarly
lim

x→−∞

H(x, 0, ξ)
−x

=
∑
i∈I

ξif
a
1 (∞, ωi)− f b0(∞). (5.3)

Using (5.2) and (5.3), one finds that G(ξ) > −∞ implies that ξ satisfies

fa0 (∞) ≥
∑
i∈I

ξif
b
1(∞, ωi) and f b0(∞) ≤

∑
i∈I

ξif
a
1 (∞, ωi).

In addition, if

fa0 (∞) >
∑
i∈I

ξif
b
1(∞, ωi) and f b0(∞) <

∑
i∈I

ξif
a
1 (∞, ωi),

then G(ξ) > −∞.
As a result, one can replace H by

H̃ =
{
ξ ∈ D; fa0 (∞) ≥

∑
i∈I

ξif
b
1(∞, ωi) and f b0(∞) ≤

∑
i∈I

ξif
a
1 (∞, ωi)

}
,
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so that
πa0 = sup

ξ∈H̃
G(ξ).

We now show that we can sometimes restrict the problem to definition of G(ξ)
to the infimum over the set x ∈ [0, 1].

First, note that for any ξ ∈ D, as x ↓ 1,
H(x, 0, ξ)−H(1, 0, ξ)

x− 1 ↓ fa0 (1)−
∑
i∈BcK

ξif
b
1(1, ωi)−

∑
i∈BK

ξif
b
1(0, ωi)

≥ fa0 (0)− 1
1 + ra1

max
i∈I

f b1(0, ωi).

So if
fa0 (0) ≥ 1

1 + ra1
max
i∈I

f b1(0, ωi), (5.4)

then infx≥1H(x, 0, ξ) = H(1, 0, ξ).
Similarly, as x ↑ 0,
H(x, 0, ξ)−H(0, 0, ξ)

−x
↓ −f b0(0) +

∑
i∈BcK

ξif
a
1 (0, ωi) +

∑
i∈BK

ξif
a
1 (1, ωi)

≥ 1
1 + rb1

min
i∈I

fa1 (0, ωi)− f b0(0).

As a result, if
1

1 + rb1
min
i∈I

fa1 (0, ωi) ≥ f b0(0), (5.5)

then infx≤0H(x, 0, ξ) = H(0, 0, ξ).
It follows that under (5.4)–(5.5),

G(ξ) = inf
x∈[0,1]

F a
0 (x)−

m∑
i∈BcK

ξiF
b
1 (x, ωi) +

∑
i∈BK

ξiF
a
1 (1− x, ωi)

−K ∑
i∈BK

ξi,

for any ξ ∈ D.

5.1. The dual problem and its relationship with expectations

LetQ be the set of probability measures. Then to any ξ ∈ D, one can associate
a unique couple (Q, r) ∈ Q× [ra1 , rb1] so that ∑i∈I ξ = 1

1+r and Q(ωi) = (1 + r)ξi,
i ∈ I.

Next, set

L(x, ω) =


F b

1 (x, ω), ω ∈ Bc
K , x ≥ 0,

−F a
1 (−x, ω), ω ∈ Bc

K , x < 0,
F b

1 (x− 1, ω) +K, ω ∈ BK , x ≥ 1,
−F a

1 (−x+ 1, ω) +K, ω ∈ BK , x < 1.
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It then follows that H(x, 0, ξ) can be written as

H(x, 0, ξ) = F a
0 (x)− F b

0 (−x)− 1
1 + r

EQ {L(x)} .

One can redefine H̃ in terms of (Q, r) viz.

H̃ =
{

(Q, r) ∈ Q× [ra1 , rb1];EQ

{
f b1(∞)
1 + r

}
≤ fa0 (∞) (5.6)

and EQ

{
fa1 (∞)
1 + r

}
≥ f b0(∞)

}
.

Finally, one gets

πa0 = sup
(Q,r)∈H̃

inf
x

[
F a

0 (x)− F b
0 (−x)− 1

1 + r
EQ {L(x)}

]
. (5.7)

Example 5.1. Assume a perfectly liquid market with no bi-ask spread. Then one
has F a

0 (x) = F b
0 (x) = S0x, F a

1 (x) = F b
1 (x) = S1x.

In this case, H̃ is the set of probability measures such that the discounted price
is a martingale. Also, L(x) = S1x− (S1 −K)+, so

πa0 = sup
Q∈H̃

inf
x

[ 1
1 + r

EQ
{

(S1 −K)+
}

+ x
{
S0 −

1
1 + r

EQ(S1)
}]

= sup
Q∈H̃

1
1 + r

EQ
{

(S1 −K)+
}
.

6. Conclusion
In this paper, we studied a market model where illiquidity is modeled through

the structure of the limit order book. We provided sufficient conditions to rule out
arbitrage for our general model and sufficient and necessary conditions for the one
period version. The conditions for the absence of arbitrage of Theorem (2.2) are
a weaker version of those given in the continuous time model of Simard (2014).
But again they show that the theory based on equivalent martingale measures
of perfectly liquid market is not general enough for illiquidity model. Sufficient
and necessary conditions for the absence of arbitrage in a general illiquid market
model are yet to be found.

Also, we discussed the pricing of one-period European call and put options.
The literature about options pricing under illiquidity assumptions is mainly focu-
sed on continuous time models and the solutions that are given are rarely explicit.
Alike the binomial model in perfectly liquid market, our framework allows for a
more intuitive approach and simpler solutions. By showing more explicitly how
the different inputs of the model affect the price and hedging strategies, our solu-
tions provide a better understanding of the impact of illiquidity in options pricing
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so that we could highlight some particularities of the results. The last section also
demonstrate that the pricing problem can be written as a problem of maximizing
an expectation over a particular set of probability measures.

A similar approach for options with longer maturity should be considered.
However, since we used different interest rates for lending and borrowing, at each
time step, the problem of option pricing required to split into cases where the
bank account is positive or negative. The complexity it creates might forbid our
method to be used in a multiperiod setting, so that more powerful tools might
be required.

A. Additional notations
To write the proofs in a more compact form, we introduce additional notations.
The liquidation value of the portfolio is denoted by

Lt(X) = F b
t (Xt)− F a

t (−Xt)

for t ≥ 1, while the cash flow of a transaction x at time t is given by

ct(X) = F a
t (∆Xa

t+1)− F b
t (∆Xb

t+1).

Recall that `t−1(y) = y+(1 + rat )− y−(1 + rbt ). The amount of money in the bank
account is written as

Yt = `t−1(Yt−1)− ct(X)

with Y0 = π0 − c0(X). Finally, the value of the portfolio at time t is given by

Vt(X, π0) = Lt(X) + `t−1(Yt−1)

where V0(X, π0) = π0.

B. Proof of Theorem 2.1
For sake of simplicity, the subscript Q is eliminated from the expectations.

B.1. Sufficiency

First, one shows that conditions (2.9)–(2.10) are sufficient. Note that

LT (X) = F b
T (XT )− F a

T (−XT ) ≤ X+
T f

b
T −X−T faT , (B.1)

since F a
T (x) ≥ x+faT and F b

T (x) ≤ x+f bT , using the convexity and concavity of F a

and F b respectively. Similarly, if c̃i(X) = fai (∆Xi+1)+ − f bi (∆Xi+1)−, we have

ci(X) = F a
i (∆Xi+1)− F b

i (−∆Xi+1) ≥ c̃i(X). (B.2)
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Also, it is easy to see that `i−1(y) ≤ y(1 + ri), for all i ≥ 1. Hence, using (2.5),
one finds that

`t−1(Yt−1) ≤ π0

βt
− 1
βt

t−1∑
i=0

βici(X) (B.3)

≤ π0

βt
− 1
βt

t−1∑
i=0

βic̃i(X). (B.4)

Note that (B.3) is indeed an equality when ra = rb.
Next, using (B.2) and (B.4), one obtains

βTVT (X, π0) = βTLT (X) + βT `T−1(YT−1)

≤ π0 + βTf
b
TX

+
T − βTfaTX−T

−
T−1∑
i=0

βi
{
fai (∆Xi+1)+ − f bi (∆Xi+1)−

}
.

For the next step, we use induction to show that

π0 + E
(
βTf

b
TX

+
T − βTfaTX−T |Fi

)
−

T−1∑
j=0

E (βj c̃j(X)|Fi)

≤ π0 +X+
i H

b
i −X−i Ha

i −
i−1∑
j=0

βj c̃j(X).

As a result, one may assume that π0 = 0 and β ≡ 1. For sake of simplicity set
VT = VT (X, 0).

Under assumptions (2.9)–(2.10), we can prove by induction that

E(VT |Fi) ≤ X+
i H

b
i −X−i Ha

i −
i−1∑
j=0

c̃j(X), i ∈ {1, . . . , T}. (B.5)

Note that the expectation in (B.5) is finite by assumption and by the definition
of an admissible strategy. The result in (B.5) is trivial for i = T . Suppose now
that (B.5) holds true for i. Then one will prove that (B.5) holds true for i − 1.
To do so, one must consider the following six cases :

(I1) Xi−1 ≥ 0, ∆Xi ≥ 0 ;

(I2) Xi−1 ≥ 0, ∆Xi ≤ 0, Xi ≥ 0 ;

(I3) Xi−1 ≥ 0, ∆Xi ≤ 0, Xi ≤ 0 ;

(I4) Xi−1 ≤ 0, ∆Xi ≥ 0, Xi ≥ 0 ;

(I5) Xi−1 ≤ 0, ∆Xi ≥ 0, Xi ≤ 0 ;

(I6) Xi−1 ≤ 0, ∆Xi ≤ 0.

So assume that E (VT |Fi) ≤ X+
i H

b
i −X−i Ha

i −
∑i−1
j=0 c̃j(X).
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(1) If (I1) holds, then

E (VT |Fi) ≤ X+
i H

b
i −X−i Ha

i −
i−1∑
j=0

c̃j(X)

= X+
i H

b
i − fai−1 (∆Xi)+ −

i−2∑
j=0

c̃j(X)

= X+
i−1H

b
i + (∆Xi)+

(
Hb
i − fai−1

)
−

i−2∑
j=0

c̃j(X).

Consequently, using (2.10) and the very definition of Hb, one gets

E (VT |Fi−1) ≤ X+
i−1E

(
Hb
i |Fi−1

)
+ (∆Xi)+E

(
Hb
i − fai−1|Fi−1

)
−

i−2∑
j=0

c̃j(X)

≤ X+
i−1H

b
i−1 −

i−2∑
j=0

c̃j(X)

= X+
i−1H

b
i−1 −X−i−1H

a
i−1 −

i−2∑
j=0

c̃j(X).

(2) If (I2) holds, then

E (VT |Fi) ≤ X+
i H

b
i + f bi−1 (∆Xi)− −

i−2∑
j=0

c̃j(X).

As a result, from the very definition of Hb, one obtains

E (VT |Fi−1) ≤ X+
i E

(
Hb
i |Fi−1

)
+ (∆Xi)−f bi−1 −

i−2∑
j=0

c̃j(X)

≤ X+
i H

b
i−1 + (∆Xi)−f bi−1 −

i−2∑
j=0

c̃j(X)

= X+
i−1H

b
i−1 + (∆Xi)−(f bi−1 −Hb

i−1)−
i−2∑
j=0

c̃j(X)

≤ X+
i−1H

b
i−1 −X−i−1H

a
i−1 −

i−2∑
j=0

c̃j(X).

(3) If (I3) holds, then

E (VT |Fi) ≤ −X−i Ha
i + (∆Xi)− f bi−1 −

i−2∑
j=0

c̃j(X)
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Consequently, using (2.9) and the very definition of Hb,

E (VT |Fi−1) ≤ −X−i E (Ha
i |Fi−1) + (∆Xi)−f bi−1 −

i−2∑
j=0

c̃j(X)

≤ −X−i f bi−1 + (∆Xi)−f bi−1 −
i−2∑
j=0

c̃j(X)

= X+
i−1f

b
i−1 −

i−2∑
j=0

c̃j(X)

≤ X+
i−1H

b
i−1 −X−i−1H

a
i−1 −

i−2∑
j=0

c̃j(X).

(4) Under (I4), one has

E (VT |Fi) ≤ X+
i H

b
i − (∆Xi)+ fai−1 −

i−2∑
j=0

c̃j(X).

Hence, using (2.10) and the very definition of Ha,

E (VT |Fi−1) ≤ X+
i E

(
Hb
i |Fi−1

)
− (∆Xi)+ fai−1 −

i−2∑
j=0

c̃j(X)

≤ X+
i f

a
i−1 − (∆Xi)+ fai−1 −

i−2∑
j=0

c̃j(X)

= −X−i−1f
a
i−1 −

i−2∑
j=0

c̃j(X)

≤ X+
i−1H

b
i−1 −X−i−1H

a
i−1 −

i−2∑
j=0

c̃j(X).

(5) If (I5) is true, then

E (VT |Fi) ≤ −X−i Ha
i − (∆Xi)+ fai−1 −

i−2∑
j=0

c̃j(X).

Consequently, from the very definition of Ha,

E (VT |Fi−1) ≤ −X−i E (Ha
i |Fi−1)− (∆Xi)+ fai−1 −

i−2∑
j=0

c̃j(X)

≤ −X−i Ha
i−1 − (∆Xi)+ fai−1 −

i−2∑
j=0

c̃j(X)

= −X−i−1H
a
i−1 − (∆Xi)+ (fai−1 −Ha

i−1)−
i−2∑
j=0

c̃j(X)

≤ −X−i−1H
a
i−1 −

i−2∑
j=0

c̃j(X)
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= X+
i−1H

b
i−1 −X−i−1H

a
i−1 −

i−2∑
j=0

c̃j(X).

(6) Finally, if (I6) holds true, then

E (VT |Fi) ≤ −X−i Ha
i + f bi−1βi−1 (∆Xi)− −

i−2∑
j=0

c̃j(X).

Consequently, using (2.9) and the very definition of Ha,

E (VT |Fi−1) ≤ −X−i−1E (Ha
i |Fi−1)− (∆Xi)−E

(
Ha
i − f bi−1|Fi−1

)
−

i−2∑
j=0

c̃j(X)

≤ −X−i−1H
a
i−1 −

i−2∑
j=0

c̃j(X)

= X+
i−1H

b
i−1 −X−i−1H

a
i−1 −

i−2∑
j=0

c̃j(X).

It follows from the previous 6 cases that

E (VT |Fi−1) ≤ X+
i−1H

b
i−1 −X−i−1H

a
i−1 −

i−2∑
j=0

c̃j(X),

completing the proof of (B.5). In particular, taking i = 1 in (B.5), one obtains

E (VT |F1) ≤ X+
1 H

b
1 −X−1 Ha

1 − (∆X1)+fa0 + (∆X1)−f b0
= X+

1 (Hb
1 − fa0 )−X−1 (Ha

1 − f b0).

As a result, E(VT ) ≤ 0, using the last inequality together with (2.9)–(2.10). This
proves that these conditions are sufficient.

B.2. Necessity

One will now prove that if ri = rai = rbi for all i ∈ {1, . . . , T}, then condi-
tions (2.9)–(2.10) are necessary to have E{βTVT (X, π0)} ≤ π0 for all admissible
strategy X.

Before going further, we need the following result. From the dominated conver-
gence theorem, one has that, for all t ≥ 0,

lim
n→∞

E {nF a
t (1/n)} = E(fat ) (B.6)

and
lim
n→∞

E
{
nF b

t (1/n)
}

= E(f bt ), (B.7)
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since 0 ≤ nF b
t (1/n) ≤ nF a

t (1/n) ≤ F a
T (1) for all n ≥ 1 and EQ {F a

T (1)} < ∞ by
assumption and (P2).

Recall from (B.3) and the assumption ra ≡ r ≡ rb that

`i−1(Yi−1) = π0

βi
− 1
βi

i−1∑
j=0

βjcj(X), i = 1, . . . , T,

so
βTVT (X) = π0 + βT{F b

T (XT )− F a
T (−XT )} −

T−1∑
j=0

βjcj(X). (B.8)

Based on (B.8), there is no loss of generality in assuming that π0 = 0.

First, take Xi = 0, i ∈ {1, . . . , T − 1}, and XT = 1Ax with A ∈ FT−1.

On one hand, if x ≥ 0,

βTVT (X) = βT
{
F b
T (1Ax)− F a

T−1(1Ax)(1 + rT )
}

= 1A
{
βTF

b
T (x)− βT−1F

a
T−1(x)

}
.

By taking the limit limX↓0E {X−1βTVT (X)} and using (B.6) and (B.7), one finds
that E {βTVT (X)} ≤ 0 implies that E

{
1A
(
βTf

b
T − βT−1f

a
T−1

)}
≤ 0 for any

A ∈ FT−1. Hence, E
(
βTf

b
T |FT−1

)
≤ βT−1f

a
T−1, proving (2.10) for t = T .

On the other hand, if x = −y ≤ 0, then

βTVT (X) = 1A
{
−βTF a

T (y) + βT−1F
b
T−1(y)

}
,

so, using (B.6) and (B.7) again, E {βTVT (X)} ≤ 0 implies that

E
{
1A
(
βTf

a
T − βT−1f

b
T−1

)}
≥ 0

for any A ∈ FT−1. Hence,

E (βTfaT |FT−1) ≥ βT−1f
b
T−1,

proving (2.9) for t = T .

Next, take A ∈ FT−2, and let ζ be a FT−1-measurable random variable with
ζ ∈ [0, 1]. Set Xi = 0, i ∈ {1, . . . , T − 2}, XT−1 = x1A, and XT = x(1 − ζ)1A.
Hence ∆XT = −xζ1A and ∆XT−1 = x1A.

Fox x ≥ 0, one gets,

βTVT (X) = βT1A
{
F b
T (x− xζ)− F a

T−2(x)(1 + rT−1)(1 + rT )
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+F b
T−1(xζ)(1 + rT )

}
= 1A

{
βTF

b
T (x− xζ)− βT−2F

a
T−2(x) + βT−1F

b
T−1(xζ)

}
.

Hence, E {βTVT (X)} ≤ 0 implies that

E
[
1A
{

(1− ζ)βTf bT + ζβT−1f
b
T−1 − βT−2f

a
T−2

}]
≤ 0.

Since the latter holds for any ζ ∈ [0, 1] with ζ being FT−1−measurable, on may
conclude that

(1− ζ)E
(
βTf

b
T |FT−1

)
+ ζβT−1f

b
T−1 ≤ max

{
E
(
βTf

b
T |FT−1

)
, βT−1f

b
T−1

}
,

and the upper bound is attained by setting ζ = 1{βT−1fbT−1≥E(βT fbT |FT−1)}. As a
result, E

(
Hb
T−1|FT−2

)
≤ βT−2f

a
T−2, proving (2.10) for t = T − 1.

For x = −y ≤ 0, XT = −y(1− ζ)1A and XT−1 = −y1A one gets

βTVT (X) = 1A
{
−βTF a

T (y − yζ)− βT−1F
a
T−1(yζ) + βT−2F

b
T−2(y)

}
.

Hence, E ({βTVT (X)} ≤ 0 implies that

E
[
1A
{

(1− ζ)E (βTfaT |FT−1) + ζβT−1f
a
T−1 − βT−2f

b
T−2

}]
≥ 0.

Since the latter holds for any ζ ∈ [0, 1] and ζ is FT−1-measurable, one may
conclude that

E
[
1A
[
min

{
E (βTfaT |FT−1) , βT−1f

a
T−1

}
− βT−2f

b
T−2

]]
≥ 0,

and it follows that E
(
Ha
T−1|FT−2

)
≥ βT−2f

b
T−2, proving (2.9) for t = T − 1.

Finally, for a given i ∈ {1, . . . , T − 2}, take A ∈ Fi−1 and set Xi = x1A, with
Xj = 0 for j < i. Further, set ∆Xj = −xζj1A, for j = i+ 1, . . . , T , where ζj ≥ 0,
ζj is Fj−1−measurable and ∑T

j=i+1 ζj ≤ 1. Then, XT = x1A
(
1−∑T

j=i+1 ζj
)
. If

x ≥ 0, then

βTVT (X) = 1A

βTF b
T

x− x T∑
j=i+1

ζj

+
T−1∑
j=i

βjF
b
j (xζj+1)

−βi−1F
a
i−1(x)

 .
The condition E {βTVT (X)} ≤ 0 implies that

E

1A

βT
1−

T∑
j=i+1

ζj

 f bT +
T−1∑
j=i

βjζj+1f
b
j − βi−1f

a
i−1


 ≤ 0. (B.9)
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Next, we set ζi+1 = ξi+1 and ζk = ξk
∏k−1
j=i+1(1 − ξj), for k = i + 2, . . . , T , where

ξj ∈ [0, 1] and ξj is Fj−1−measurable. This way we find that 1 − ∑T
j=i+1 ζj =∏T

j=i+1(1− ξj) and that (B.9) is equivalent to

E

1A

βTf bT
T∏

j=i+1
(1− ξj) +

T−1∑
j=i

βjf
b
j ξj+1

j∏
k=i+1

(1− ξk)− βi−1f
a
i−1


 ≤ 0.

(B.10)
Finally, one can show that E

(
Hb
i |Fi−1

)
≤ βi−1f

a
i−1 by choosing the ξ’s correctly,

e.g., by setting ξj = 1{βj−1fbj−1>E(Hb
j |Fj−1)} for i+1 ≤ j ≤ T . Then one gets (2.10)

for i ∈ {1, . . . , T − 2}, by taking conditional expectations recursively.

For instance, take the case i = T − 2. Using the iterated conditional property
together (B.10), one gets

E
[
1A(1− ξT−1)E

[
(1− ξT )E

[
βTf

b
T |FT−1

]
|FT−2

]
|FT−3

]
+E

[
1A(1− ξT−1)E

[
βT−1f

b
T−1|FT−2

]
|FT−3

]
+E

[
1AβT−2f

b
T−2ξT−1|FT−3

]
≤ βT−3f

a
T−3.

By setting ξt = 1{βt−1fbt−1>E(Hb
t |Ft−1)}, for t = T − 1, T one finds that

(1− ξT )E
(
βTf

b
T |FT−1

)
≥ Hb

T−1.

Similarly,
(1− ξT−1)E

(
βT−1f

b
T−1|FT−2

)
≥ Hb

T−2.

Replacing the two last inequalities in (B.11) one gets (2.10) for t = T − 2.
As expected, by setting x = −y ≤ 0 one can use the same method to show

that E (Ha
i |Fi−1) ≥ f bi−1βi−1, which completes the proof.

C. Proof of Theorem 4.1
Suppose there is no arbitrage. Then (A1) or (A2) must hold for any x ≥ 0.

Suppose first that P{V1(x0) = 0} = 1 for some x0 > 0. Then, for any x ∈ [0, x0],
P{V1(x) ≥ 0} = 1, since V1(x)

x
is non-increasing from (P2) for x > 0. In particular,

by taking the limit limx↓0
V1(x)
x

one finds that P{f b1 − (1 + rb1)fa0 ≥ 0} = 1. If
P{f b1 − (1 + rb1)fa0 = 0} = 1, then for any x ≥ 0, P{V1(x) = 0} = 1. However,
if P{f b1 − (1 + rb1)fa0 > 0} > 0, then there exists at least one x ∈ [0, x0] so that
P{V1(x) ≥ 0} = 1 and P{V1(x) > 0} > 0, so there is an arbitrage opportunity,
which is a contradiction. Hence one must have P{f b1 − (1 + rb1)fa0 = 0} = 1.
Similarly, if P{V1(−y0) = 0} = 1 for some y0 > 0, then one must have P{fa1 −
(1 + ra1)f b0 = 0} = 1. To summarize, if for x0 ≥ 0 (resp. x0 < 0) the no arbitrage



74

condition is established by P{V1(X0) = 0} = 1, then P
{
f b1 − (1− rb1)fa0 = 0

}
= 1

(resp. P
{
fa1 − (1 + ra1)f b0 = 0

}
= 1). Next, we study the consequences of the

condition P{V1(x) < 0} > 0.
Suppose now that there is no arbitrage, and that for all x 6= 0, P{V1(x) <

0} > 0. If there exists x0 > 0 so that P{V1(x0) > 0} > 0, then for any x ∈ (0, x0],

P
{
f b1 − (1 + rb1)fa0 > 0

}
≥ P

{
V1(x)
x

> 0
}
≥ P

{
V1(x0)
x0

> 0
}
> 0.

But since we showed that one cannot have P
{
f b1 − (1 + rb1)fa0 ≥ 0

}
= 1, it follows

that one must also have P
{
f b1 − (1 + rb1)fa0 < 0

}
> 0. On the other hand, if

P{V1(x) ≤ 0} = 1, for all x ≥ 0, then nV1(1/n) → f b1 − (1 + rb1)fa0 a.s., and it
follows from the properties of convergence in law that

1 = lim sup
n→∞

P{nV1(1/n) ≤ 0} ≤ P{f b1 − (1 + rb1)fa0 ≤ 0}.

Thus P{f b1 − (1 + rb1)fa0 ≤ 0} = 1. Similarly, if there exists y0 > 0 so that
P{V1(−y0) > 0} > 0, then one must have P

{
fa1 − (1 + ra1)f b0 < 0

}
> 0 and

P
{
fa1 − (1 + ra1)f b0 > 0

}
> 0. On the other hand, if P{V1(−y) ≤ 0} = 1, for all

y ≥ 0, then nV1(−1/n)→ −fa1 +(1+ra1)f b0 a.s., and it follows from the properties
of convergence in law that

1 = lim sup
n→∞

P{nV1(−1/n) ≤ 0} ≤ P{−fa1 + (1 + ra1)f b0 ≤ 0}.

Thus P{fa1 − (1 + ra1)f b0 ≥ 0} = 1.
Summarizing, non arbitrage implies that either (NA1) : P{f b1 − (1 + rb1)fa0 ≤

0} = 1 or (NA2) : P{f b1−(1+rb1)fa0 < 0} > 0 and P{f b1−(1+rb1)fa0 > 0} > 0, and
either (NA3) : P{fa1 − (1 + ra1)f b0 ≥ 0} = 1 or (NA4) : P{fa1 − (1 + ra1)f b0 < 0} > 0
and P{fa1 − (1 + ra1)f b0 > 0} > 0.

On the other hand, if (NA1) holds then P{V1(x) ≤ 0} = 1 for any x ≥ 0,
while if (NA2) holds then P{V1(x) ≤ 0} > 0 for any x ≥ 0, and there is x0 > 0
so that P{V1(x0) > 0} > 0. Similarly, if (NA3) holds then P{V1(x) ≤ 0} = 1 for
any x ≤ 0, while if (NA4) holds then P{V1(x) ≤ 0} > 0 for any x ≤ 0, and there
is x0 < 0 so that P{V1(x0) > 0} > 0. As a result conditions (NA1) or (NA2) and
(NA3) or (NA4) are necessary and sufficient for non arbitrage in the market.

D. Proof of Theorem 4.2
Recall that
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`(ca)(x) = min
{

inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω), K + inf

ω∈{F b1 (1)>K}
F b

1 (x− 1, ω)
}

1[1,∞)(x)

+ min

 inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω), K − sup

ω∈{F b1 (1)>K}
F a

1 (1− x, ω)

1[0,1](x)

−max

 sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω), sup

ω∈{F b1 (1)>K}
F a

1 (1− x, ω)−K

1(−∞,0](x).

One notes that the function `(ca)(x) regroups the worst case scenarios for the
portfolio value of the seller, so that one can write the condition V1(x, π0) ≥ 0 a.s. in
the simpler form π0 ≥ c0(x) + `−1

0

{
−`(ca)(x)

}
. As a result, the problem of finding

the lowest price of the option for which there exists x such that V1(x, π0) ≥ 0 a.s.
can be written as

πs0 = inf
x

[
`−1

0

{
−`(ca)(x)

}
+ c0(x)

]
.

First, consider the case 0 < P{F b
1 (1) > K} < 1, and note that `−1

0

{
−`(ca)(x)

}
+

c0(x) is non-decreasing for x ≥ 1. In fact, for x ≥ 1, one has

G(x) = `−1
0

{
−`(ca)(x)

}
+ c0(x) (D.1)

= F a
0 (x)− 1

1 + rb1
min

{
inf

ω∈{F b1 (1)≤K}
F b

1 (x, ω), K + inf
ω∈{F b1 (1)>K}

F b
1 (x− 1, ω)

}

= F a
0 (x)−

infω∈{F b1 (1)≤K} F
b
1 (x, ω)

1 + rb1
,

since

inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω) ≤ inf

ω∈{F b1 (1)≤K}
F b

1 (x− 1, ω) + inf
ω∈{F b1 (1)≤K}

F b
1 (1, ω)

≤ inf
ω∈{F b1 (1)>K}

F b(x− 1, ω) +K.

The first inequality follows from (P2), while the second one follows from (C3).
Then, we see from (D.1) that G is non-decreasing since, for all x, y ≥ 0,

F a
0 (x+ y) −

infω∈{F b1 (1)≤K} F
b
1 (x+ y, ω)

1 + rb1
≥ F a

0 (x) + F a
0 (y)

−
infω∈{F b1 (1)≤K} F

b
1 (x, ω)

1 + rb1
−

infω∈{F b1 (1)≤K} F
b
1 (y, ω)

1 + rb1
,

and F a
0 (y)−

inf
ω∈{Fb1 (1)≤K} F

b
1 (y,ω)

1+rb1
≥ 0, by Theorem 4.1.
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Next, note that `−1
0

{
−`(ca)(x)

}
+ c0(x) is non-increasing for x ∈ (−∞, 0]. In

fact, for x ≤ 0 one gets

`−1
0

{
−`(ca)(x)

}
+ c0(x) = 1

1 + ra1
max

 sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω),

sup
ω∈{F b1 (1)>K}

F a
1 (1− x, ω)−K

− F b
0 (−x)

=
supω∈{F b1 (1)>K} F

a
1 (1− x, ω)−K

1 + ra1
− F b

0 (−x), (D.2)

since

sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω) ≤ sup

ω∈{F b1 (1)>K}
F a

1 (−x, ω) + sup
ω∈{F b1 (1)>K}

F a
1 (1, ω)−K

≤ sup
ω∈{F b1 (1)>K}

F a
1 (1− x, ω)−K.

The first inequality follows from (C2) and (C3) while the last inequality is a
consequence of (P2). Then, (D.2) is non-increasing since for all x, y ≤ 0,{supω∈{F b1 (1)>K} F

a
1 (1− x− y, ω)

1 + ra1
− F b

0 (−x− y)
}

−
{supω∈{F b1 (1)>K} F

a
1 (1− x, ω)

1 + ra1
− F b

0 (−x)
}

≥
supω∈{F b1 (1)>K} F

a
1 (−y, ω)

1 + ra1
− F b

0 (−y) ≥ 0,

by Theorem 4.1.
So far, one has seen that

πs0 = inf
x∈[0,1]

{
`−1

0

{
−`(ca)(x)

}
+ F a

0 (x)
}
.

For x ∈ [0, 1], recall that

`(ca)(x) = min

 inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω), K − sup

ω∈{F b1 (1)>K}
F a

1 (1− x, ω)

 .
Now, `(ca)(0) = K − supω∈{F b1 (1)>K} F

a
1 (1, ω) < 0 and

`(ca)(1) = infω∈{F b1 (1)≤K} F
b
1 (1, ω) > 0. Set x0 = sup{x ∈ [0, 1]; `(ca)(x) ≤ 0}.

From the continuity of `(ca) and the monotonicity of F a
1 , `(ca)(x0) = 0. Moreover

`(ca)(x) < 0 for all 0 ≤ x < x0, and `(ca)(x) > 0 for all x0 < x ≤ 1. Consequently,
`−1

0

{
−`(ca)(x)

}
= `(ca)(x)

1+ra1
for all x ∈ [0, x0], and `−1

0

{
−`(ca)(x)

}
= − `(ca)(x)

1+rb1
for all
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x ∈ [x0, 1]. Further set

x1 = inf
{
x ∈ (x0, 1); `(ca)(x) = inf

ω∈{F b1 (1)≤K}
F b

1 (x, ω)
}
.

Using the fact that `(ca)(x) is concave on [0, 1], one finds that

`(ca)(x) =
infω∈{F b1 (1)≤K} F

b
1 (x, ω)

1 + rb1

for x ∈ [x1, 1], and

`(ca)(x) =
K − supω∈{F b1 (1)>K} F

a
1 (1− x, ω)

1 + rba

for x ∈ [x0, x1, 1]. Hence F a
0 (x)− `(ca)(x)

1+rb1
is non-decreasing for x ≥ x1.

As a consequence,

πa0 = min
[

inf
x∈[0,x0]

{
F a

0 (x) +
supω∈{F b1 (1)>K} F

a
1 (1− x, ω)−K

1 + ra1

}
,

inf
x∈[x0,x1]

{
F a

0 (x) +
supω∈{F b1 (1)>K} F

a
1 (1− x, ω)−K

1 + rb1

}]
,

proving the result when 0 < P{F b
1 (1) > K} < 1.

Suppose that P{F b
1 (1) > K} = 0. Then, using (4.1),

πa0 = min
[

inf
x≥0

{
F a

0 (x)− infω F b
1 (x, ω)

1 + rb1

}
, inf
x≥0

{
−F b

0 (x) + supω F a
1 (x, ω)

1 + ra1

}]
.

Since
{
F a

0 (x)− infω F b1 (x,ω)
1+rb1

}
/x and

{
−F b

0 (x) + supω Fa1 (x,ω)
1+ra1

}
/x converges respecti-

vely to
{
fa0 (0)− infω fb1 (0,ω)

1+rb1

}
and

{
−f b0(0) + supω fa1 (0,ω)

1+ra1

}
, as x ↓ 0, and both limits

are non-negative by the no-arbitrage assumption, it follows that πa0 = 0.

Finally, suppose that P{F b
1 (1) > K} = 1. Then, according to (4.2),

`(ca)(x) = K + inf
ω
F b

1 (x− 1, ω)1[1,∞)(x)− sup
ω
F a

1 (1− x, ω)1(−∞,1](x),

so

πa0 = min
[

inf
x≥1

G1(x), inf
x∈[0,x0]

G0x0(x), inf
x∈[x0,1]

Gx11(x), inf
x≤0

G−1(x)
]

where G1(x) = F a
0 (x) − K+infω F b1 (x−1,ω)

1+rb1
, G0x0(x) = F a

0 (x) + supω Fa1 (1−x,ω)−K
1+ra1

,
Gx01(x) = F a

0 (x) + supω Fa1 (1−x,ω)−K
1+rb1

, G−1(x) = −F b
0 (−x) + supω Fa1 (1−x,ω)−K

1+ra1
, and x0

is defined by supω F a
1 (1− x0) = K.
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First, for any x ≥ 1, G1(x)−G1(1) ≥ F a
0 (x−1)− infω F b1 (x−1,ω)

1+rb1
≥ 0 by convexity

and the no-arbitrage conditions. Similarly, G−1(x) ≥ G−1(0) for any x ≤ 0.
It then follows that

πa0 = min
[

inf
x∈[0,x0]

{
F a

0 (x) + supω F a
1 (1− x, ω)−K

1 + ra1

}
,

inf
x∈[x0,1]

{
F a

0 (x) + supω F a
1 (1− x, ω)−K

1 + rb1

}]
.

E. Proof of Theorem 4.3
Recall that

`(cb)(x) = min
{

inf
ω∈{F b1 (1)≤K}

F b
1 (x, ω), inf

ω∈{F b1 (1)>K}
F b

1 (x+ 1, ω)−K
}

1[0,∞)(x)

+ min

− sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω), inf

ω∈{F b1 (1)>K}
F b

1 (x+ 1, ω)−K

1[−1,0](x)

− max

 sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω), sup

ω∈{F b1 (1)>K}
F a

1 (−x− 1, ω) +K

1(−∞,−1](x).

The function `(cb)(x) represents the worst case scenarios for the portfolio value
of the buyer, so one can write the condition V1(x,−π0) ≥ 0 a.s. in the simpler
form π0 ≤ −`0

{
−`(cb)(x)

}
− c0(x). As a result, the problem of finding the highest

acceptable price of the option for which there exists x such that V1(x,−π0) ≥ 0
a.s., can be written as

πb0 = sup
x

[
−`−1

0

{
−`(cb)(x)

}
− c0(x)

]
= sup

x

{
(`(cb)(x))+

1 + rb
− (`(cb)(x))−

1 + ra
− c0(x)

}
.

First, one considers the case 0 < P{F b
1 (1) > K} < 1 and one shows that the

supremum is attained for x ≤ 0.
For x ≥ 0, set G1(x) = `(cb)(x)

1+rb1
− F a

0 (x). Then, G1(0) = 0 and one only needs
to show that G1(x) ≤ 0 for all x > 0. By taking the limit one finds that

lim
x↓0

G1(x)
x

=
infω∈{F b1 (1)≤K} f

b
1(0, ω)

1 + rb1
− fa0 (0) ≤ 0 (E.1)

where the inequality is given by Theorem 4.1. Since G1(x) is concave, one can
conclude that G1(x) ≤ 0 for all x ≥ 0.



79

Now, we study the behaviour of (`(cb)(x))+

1+rb − (`(cb)(x))−
1+ra − c0(x) for x ≤ −1. In

this case,

`(cb)(x) = −max

 sup
ω∈{F b1 (1)≤K}

F a
1 (−x, ω), sup

ω∈{F b1 (1)>K}
F a

1 (−x− 1, ω) +K

 ≤ 0.

Set H1(x) = F b
0 (−x) + `(cb)(x)

1+ra1
for x ≤ −1. If supω∈{F b1 (1)≤K} F

a
1 (1, ω) < K, then

`(cb)(−1) = −K and one has

lim
x↑−1

H1(x)−H1(−1)
x+ 1 = −f b0(1) +

supω∈{F b1 (1)>K} f
a
1 (0, ω)

1 + ra1

≥ −f b0 +
supω∈{F b1 (1)>K} f

a
1 (0, ω)

1 + ra1
≥ 0.

The first inequality follows from (P2) while the second is a due to (C1) and
Theorem 4.1. Since H1(x) is concave, one concludes that H1(x) ≤ H1(−1) for all
x ≤ −1, proving that

πb0 = sup
x∈[−1,0]

{
F b

0 (−x) + `(cb)(x)
1 + ra1

}
.

Finally, suppose that supω∈{F b1 (1)≤K} F
a
1 (1, ω) ≥ K. Then

sup
x≤−1

{
F b

0 (−x) + `(cb)(x)
1 + ra1

}
≤ sup

y≥0

{
F b

0 (1 + y)−
supω∈{F b1 (1)>K} F

a
1 (y, ω) +K

1 + ra1

}

≤ F b
0 (1)− K

1 + ra1

+ sup
y≥0

{
F b

0 (y)−
supω∈{F b1 (1)>K} F

a
1 (y, ω)

1 + ra1

}
.

Since H3(y) = F b
0 (y)−

sup
ω∈{Fb1 (1)>K} F

a
1 (y,ω)

1+ra1
is concave, it follows that

lim
y↓0

H3(y)/y = f b0 −
supω fa1
1 + ra1

≤ 0,

using (C1) and Theorem 4.1. As a result, H3(y) ≤ 0 = H3(0) for any y ≥ 0, so

sup
x≤−1

{
F b

0 (−x) + `(cb)(x)
1 + ra1

}
≤ F b

0 (1)− K

1 + ra1
,

This completes the proof of the case 0 < P{F b
1 (1) > K} < 1.

If P{F b
1 (1) > K} = 1, recall that

`(cb)(x) = inf
ω
F b

1 (x+ 1, ω)1[−1,∞)(x)

− sup
ω
F a

1 (−x− 1, ω)1(−∞,−1](x)−K.
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For x ≥ 0, one has −`−1
0

{
−`(cb)(x)

}
− c0(x) = G2(x), where

G2(x) = infω F b
1 (x+ 1, ω)−K

1 + rb1
− F a

0 (x).

Then

lim
x↓0

G2(x)−G2(0)
x

≤ infω f b1(0, ω)
1 + rb1

− fa0 ≤ 0,

where the first inequality comes from (P2) and the second from Theorem 4.1.
Since G2(x) is concave, one concludes that supx≥0G2(x) = G2(0).

Next, for x ≤ −1, one has −`−1
0

{
−`(cb)(x)

}
− c0(x) = H2(x), where H2(x) =

F b
0 (−x)− supω Fa1 (−x−1,ω)+K

1+ra1
. Then

lim
x↑−1

H2(x)−H2(−1)
x

= supω fa1 (0, ω)
1 + ra1

− f b0(1)

≥ supω fa1 (0, ω)
1 + ra1

− f b0(0) ≥ 0.

Again, the first inequality comes from (P2) while the second comes from Theorem
4.1. One concludes that supx≤−1H2(x) = H2(−1) since H2(x) is concave.

Finally, let x0 ∈ [−1, 0] be defined by infω F b
1 (x0 +1, ω) = K, so that `(cb)(x) ≤

0 if x ∈ [−1, x0] and `(cb)(x) > 0 if x ∈ (x0, 0]. Then, one has

πb0 = max
[

sup
x∈[−1,x0]

{
F b

0 (−x) + infω F b
1 (x+ 1, ω)−K

1 + ra1

}
,

sup
x∈[x0,0]

{
F b

0 (−x) + infω F b
1 (x+ 1, ω)−K

1 + rb1

}]
,

which completes the proof when P{F b
1 (1) > K} = 1.

If P{F b
1 (1) > K} = 0, then one proves that πb0 = 0 by showing that the

supremum is attained at x = 0. Recall that

`(cb)(x) = inf
ω
F b

1 (x, ω)1[0,∞)(x)− sup
ω
F a

1 (−x, ω)1(−∞,0](x).

`(cb)(x) =


inf
ω
F b

1 (x, ω), x ≥ 0,
− sup

ω
F a

1 (−x, ω), x ≤ 0.

Then `(cb)(0) = 0. Next, one can apply (E.1) to show that −`−1
0

{
−`(cb)(x)

}
−

c0(x) ≤ 0 for x ≥ 0. For x ≤ 0, −`−1
0

{
−`(cb)(x)

}
− c0(x) = F b

0 (−x)− supω Fa1 (−x,ω)
1+ra1
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and

lim
x↑0

1
x

{
F b

0 (−x)− supω F a
1 (−x, ω)

1 + ra1

}
= supω fa1 (0, ω)

1 + ra1
− f b0(0) ≥ 0.

The latter shows that F b
0 (−x)− supω Fa1 (−x,ω)

1+ra1
≤ 0. Since −`−1

0

{
−`(cb)(x)

}
− c0(x)

is non-decreasing for x ≤ 0, worths zero if x = 0 and is non-positive for x ≥ 0,
we have that πb0 = 0.

F. Proof of Theorem 4.4
Recall that

`(pa)(x) = min
{

inf
ω∈{Fa1 (1)<K}

F b
1 (x+ 1, ω)−K, inf

ω∈{Fa1 (1)≥K}
F b

1 (x, ω)
}

1[0,∞)(x)

+ min

 inf
ω∈{Fa1 (1)<K}

F b
1 (x+ 1, ω)−K,− sup

ω∈{Fa1 (1)≥K}
F a

1 (−x, ω)

1[−1,0](x)

−max

 sup
ω∈{Fa1 (1)<K}

F a
1 (−x− 1, ω) +K, sup

ω∈{Fa1 (1)≥K}
F a

1 (−x, ω)

1(−∞,−1](x).

Since the function `(pa)(x) represents the worst case scenarios for the portfolio
value of the seller, one can write the condition V1(x, π0) ≥ 0 a.s. in the simpler
form π0 ≥ `−1

0

{
−`(pa)(x)

}
+ c0(x). As a result, the problem of finding the lowest

price of the option for which there exists x such that V1(x, π0) ≥ 0 a.s. can be
written as

πa0 = inf
x

[
`−1

0

{
−`(pa)(x)

}
+ c0(x)

]
.

First, consider the case 0 < P{F a
1 (1) < k} < 1. Note that for all x ≤ −1,

`(pa)(x) = − supω∈{Fa1 (1)≥K} F
a
1 (−x, ω) since

sup
ω∈{Fa1 (1)<k}

F a
1 (−x− 1, ω) +K ≤ sup

ω∈{Fa1 (1)≥K}
F a

1 (−x− 1, ω)

+ sup
ω∈{Fa1 (1)≥K}

F a
1 (1, ω ≤ sup

ω{Fa1 (1)≥K}
F a

1 (−x, ω).

The first inequality comes from (C2′) and (C3′) while the second inequality comes
from (P2).

For x ≤ −1, set G1(x) =
supω∈{Fa1 (1)≥k} F

a
1 (−x,ω)

1+ra1
− F b

0 (−x). One finds that

lim
x↑−1

G1(x)−G1(−1)
x+ 1 = f b0(1)−

supω∈{Fa1 (1)≥k} f
a
1 (0, ω)

1 + ra1

≤ f b0(0)−
supω∈{Fa1 (1)≥k} f

a
1 (0, ω)

1 + ra1
≤ 0,



82

where the first inequality comes from (P2) and the second from Theorem 4.1.
Since G1(x) is convex, one concludes that G1(x) ≥ G1(−1) for x ≤ −1.

For x ∈ [−1, 0], one has that

`(pa)(x) = min

 inf
ω∈{Fa1 (1)<k}

F b
1 (x+ 1, ω)−K,− sup

ω∈{Fa1 (1)≥k}
F a

1 (−x, ω)

 ≤ 0.

Let x0 = sup
{
x ∈ [−1, 0]; `(pa)(x) = − supω∈{Fa1 (1)≥k} F

a
1 (−x, ω)

}
. One knows that

x0 exists since supω∈{Fa1 (1)≥k} F
a
1 (1, ω) ≥ K. Set H1(x) = −F b

0 (−x)− `(pa)(x)
1+ra1

, then

lim
x↑x0

H1(x)−H1(x0)
x− x0

≤ f b0 −
supω∈{Fa1 (1)≥k} f

a
1 (0, ω)

1 + ra1
≤ 0.

where the first inequality comes from (P2) and the second comes from Theo-
rem 4.1. Since H1(x) is convex, one concludes that H1(x) ≥ H1(x0), for x ∈
[−1, x0]. Hence

πa0 = inf
x≥x0

[
`−1

0

{
−`(pa)(x)

}
+ c0(x)

]
,

since

inf
x∈[−1,x0]

[
`−1

0

{
−`(pa)(x)

}
+ c0(x)

]
= − sup

x∈[−1,x0]
H1(x) = −H1(x0).

For x ≥ 0, one finds that

`(pa)(x) = min
{

inf
ω∈{Fa1 (1)<k}

F b
1 (x+ 1, ω)−K, inf

ω∈{Fa1 (1)≥k}
F b

1 (x, ω)
}

= inf
ω∈{Fa1 (1)<k}

F b
1 (x+ 1, ω)−K,

since

inf
ω∈{Fa1 (1)<k}

F b
1 (x+ 1, ω)−K ≤ inf

ω∈{Fa1 (1)<k}
F b

1 (x, ω) + inf
ω∈{Fa1 (1)<k}

F b
1 (1, ω)−K

≤ inf
ω∈{Fa1 (1)≥k}

F b
1 (x, ω).

Set J(x) = `−1
0

{
K − infω∈{Fa1 (1)<k} F

b
1 (x+ 1, ω)

}
+ F a

0 (x). Further let x1 be such
that infω∈{Fa1 (1)<k} F

b
1 (x1 + 1, ω) = K. Then

lim
x↓x1

J(x)− J(x1)
x− x1

≥ fa0 −
infω∈{Fa1 (1)<k} f

b
1(0, ω)

1 + rb1
≥ 0, (F.1)

by convexity, (C1) and Theorem 4.1. Hence, infx≥x1 J(x) = J(x1). Now,

lim
x↓0

J(x)− J(0)
x

≥ fa0 −
infω∈{Fa1 (1)<k} f

b
1(0, ω)

1 + ra1
. (F.2)
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Hence, if
infω∈{Fa1 (1)<k} f

b
1 (1,ω)

1+ra1
≤ fa0 (0), then J(x) ≥ J(0) for x ≥ 0, since J(x)

is convex.
>From these last observations, one may conclude that

πa0 = min
[

inf
x∈[x0,0]

{
K − infω∈{Fa1 (1)<k} F

b
1 (1 + x, ω)

1 + ra1
− F b

0 (−x)
}
,

inf
x∈[0,x1]

[
`−1

0

{
K − inf

ω∈{Fa1 (1)<k}
F b

1 (1 + x, ω)
}

+ F a
0 (x)

]]
,

and if
infω∈{Fa1 (1)<k} f

b
1 (x+1,ω)

1+ra1
≤ fa0 (0), then

πa0 = inf
x∈[x0,0]

{
K − infω∈{Fa1 (1)<k} F

b
1 (1 + x, ω)

1 + ra1
− F b

0 (−x)
}
.

If P{F a
1 (1) < k} = 1, recall that

`(pa)(x) = inf
ω
F b

1 (x+ 1, ω)1[−1,∞)(x)− sup
ω
F a

1 (−x− 1, ω)1(−∞,−1](x)−K.

For x ≤ −1, set

G2(x) = `−1
0

{
−`(pa)(x)

}
+ c0(x) = supω F a

1 (−x− 1, ω) +K

1 + ra1
− F b

0 (−x).

Then,

lim
x↑−1

G2(x)−G2(−1)
x+ 1 = f b0(1)− supω fa1 (0, ω)

1 + ra1

≤ f b0(0)− supω fa1 (0, ω)
1 + ra1

≤ 0,

where the first inequality comes from (P2) and the second comes from (C1’)
and Theorem 4.1. Since G2(x) is convex, one concludes that G2(x) ≥ G2(−1) for
x ≤ −1.

For x ≥ 0, one has that J(x) = `−1
0

{
K − infω F b

1 (x+ 1, ω)
}

+ F a
0 (x) since

infω F b
1 (x, ω) = infω∈{Fa1 (1)<k} F

b
1 (x, ω). Consequently, using (F.2), one finds that

πa0 = min
[

inf
x∈[−1,0]

{
K − infω F b

1 (1 + x, ω)
1 + ra1

− F b
0 (−x)

}
,

inf
x∈[0,x1]

[
`−1

0

{
K − inf

ω
F b

1 (1 + x, ω)
}

+ F a
0 (x)

]]
,

and if infω fb1 (x+1,ω)
1+ra1

≤ fa0 (0), then

πa0 = inf
x∈[−1,0]

{
K − infω F b

1 (1 + x, ω)
1 + ra1

− F b
0 (−x)

}
.
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Finally, if P{F a
1 (1) < k} = 0, recall that

`(pa)(x) =


inf
ω
F b

1 (x, ω), x ≥ 0,
− sup

ω
F a

1 (−x, ω), x ≤ 0.

For x ≤ 0, set G3(x) = `−1
0

{
−`(pa)(x)

}
+c0(x) = supω Fa1 (−x,ω)

1+ra1
−F b

0 (−x). Then,
using (C1) and Theorem 4.1, one gets

lim
x↑0

G3(x)
x

= f b0(0)− supω fa1 (0, ω)
1 + ra1

≤ 0,

which shows that G3(x) ≥ G3(0) = 0 for x ≤ 0, since G3(x) is convex.
For x ≥ 0, set H2(x) = `−1

0

{
−`(pa)(x)

}
+ c0(x) = F a

0 (x)− infω F b1 (x,ω)
1+rb1

. Then,

lim
x↓0

H2(x)
x

= fa0 (0)− infω f b1(0, ω)
1 + rb1

≥ 0,

where the inequality comes from Theorem 4.1. Again, since H2(x) is convex, one
has that H2(x) ≥ H2(0) = 0 for x ≥ 0. Hence one may conclude that πa0 = 0.

G. Proof of Theorem 4.5
Recall that

`(pb)(x) = min
{

inf
ω∈{Fa1 (1)<K}

F b
1 (x− 1, ω) +K, inf

ω∈{Fa1 (1)≥K}
F b

1 (x, ω)
}

1[1,∞)(x)

+ min

− sup
ω∈{Fa1 (1)<K}

F a
1 (−x+ 1, ω) +K, inf

ω∈{Fa1 (1)≥K}
F b

1 (x, ω)

1[0,1](x)

−max

 sup
ω∈{Fa1 (1)<K}

F a
1 (−x+ 1, ω)−K, sup

ω∈{Fa1 (1)≥K}
F a

1 (−x, ω)

1(−∞,0](x).

The function `(pb)(x) represents the worst case scenarios for the portfolio value
of the buyer, so one can write the condition V1(x,−π0) ≥ 0 a.s. in the simpler
form π0 ≤ −`−1

0

{
−`(pb)(x)

}
−c0(x). As a result, the problem of finding the highest

acceptable price of the option for which there exists x such that V1(x,−π0) ≥ 0
a.s., can be written as

πb0 = sup
x

{
−l−1

0

{
−`(pb)(x)

}
− c0(x)

}
= sup

x

{
(`(pb)(x))+

1 + rb1
− (`(pb)(x))−

1 + ra1
− c0(x)

}
.
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First, consider the case 0 < P{F a
1 (1) < k} < 1. One can show that (`(pb)(x))+

1+rb −
(`(pb)(x))−

1+ra − c0(x) ≤ 0 for x ≤ 0. Recall that for x ≤ 0,

`(pb)(x) = −max

 sup
ω∈{Fa1 (1)<k}

F a
1 (−x+ 1, ω)−K, sup

ω∈{Fa1 (1)≥k}
F a

1 (−x, ω)

 ≤ 0,

so that
(`(pb)(x))+

1 + rb1
− (`(pb)(x))−

1 + ra1
− c0(x) = G1(x),

where G1(x) = F b
0 (−x) + `(pb)(x)

1+ra1
. Then

lim
x↑0

G1(x)
x

=
supω∈{Fa1 (1)≥k} f

a
1 (0, ω)

1 + ra1
− f b0(0) ≥ 0,

where the inequality follows from (C1) and Theorem 4.1. Since G1(x) is concave,
one concludes that G1(x) ≤ G1(0) = 0 for x ≤ 0.

One now studies the behaviour of (`(pb)(x))+

1+rb1
− (`(pb)(x))−

1+ra1
−c0(x) for x ≥ 1. Recall

that for x ≥ 1,

`(pb)(x) = min
{

inf
ω∈{Fa1 (1)<k}

F b
1 (x− 1, ω) +K, inf

ω∈{Fa1 (1)≥k}
F b

1 (x, ω)
}
≥ 0,

so that
(`(pb)(x))+

1 + rb1
− (`(pb)(x))−

1 + ra1
− c0(x) = `(pb)(x)

1 + rb1
− F a

0 (x).

One has to split the problem in two cases, relatively to the value of
infω∈{Fa1 (1)≥k} F

b
1 (1, ω) and K.

Set H1(x) = `(pb)(x)
1+rb1

− F a
0 (x) and assume that infω∈{Fa1 (1)≥k} F

b
1 (1, ω) > K.

Then,

lim
x↓1

H1(x)−H1(1)
x− 1 =

infω∈{Fa1 (1)<k} f
b
1(0, ω)

1 + rb1
− fa0 (1)

≤
infω∈{Fa1 (1)<k} f

b
1(0, ω)

1 + rb1
− fa0 (0) ≤ 0,

where the first inequality comes from (P2) and the second from (C1) and Theorem
4.1. Using the fact that H1(x) is concave, one concludes that H1(x) ≤ H1(1) for
x ≥ 1, proving that

πb0 = sup
[0,1]

{
`(pb)(x)
1 + rb1

− F a
0 (x)

}
.

Finally, suppose that infω∈{Fa1 (1)≥k} F
b
1 (1, ω) < K. Then, for x ≥ 1, one has

that
`(pb)(x)
1 + rb1

− F a
0 (x) ≤

infω∈{Fa1 (1)<k} F
b
1 (x− 1, ω) +K

1 + rb1
− F a

0 (x)



86

≤
infω∈{Fa1 (1)<k} F

b
1 (x− 1, ω) +K

1 + rb1
− F a

0 (x− 1)− F a
0 (1)

≤ K

1 + rb1
− F a

0 (1),

using (C1), Theorem 4.1, and convexity. This shows that the supremum is finite,
concluding the proof for the case 0 < P{F a

1 (1) < k} < 1.
If P{F a

1 (1) < k} = 1, recall that

`(pb)(x) = inf
ω
F b

1 (x− 1, ω)1[1,∞)(x)− sup
ω
F a

1 (−x+ 1, ω)1(−∞,1](x) +K.

For x ≥ 1, set

H2(x) = `(pb)(x)
1 + rb1

− c0(x) = infω F b
1 (x− 1, ω) +K

1 + rb1
− F a

0 (x).

Then

lim
x↓1

H2(x)−H2(1)
x− 1 = infω f b1(0, ω)

1 + rb1
− fa0 (1) ≤ infω f b1(0, ω)

1 + rb1
− fa0 (0) ≤ 0,

where the first inequality is given by (P2) and the second by (C1), and Theorem
4.1. Since H2(x) is concave, one concludes that H2(x) ≤ H2(1) for x ≥ 1.

For x ≤ 0, set

G2(x) = −`−1
0

{
−`(pb)(x)

}
− c0(x) = `−1

0

{
K − sup

ω
F a

1 (1− x, ω)
}
− F b

0 (−x).

Then, one has

lim
x↑0

G2(x)−G2(0)
x

≥ supω fa1 (0, ω)
1 + ra1

− f b0(0) ≥ 0,

where the first inequality comes from (P2) and the second comes from (C1) and
Theorem 4.1. Finally, one concludes that G2(x) ≤ G2(0) for x ≤ 0 since G2(x) is
concave. The latter completes the proof for the case P{F a

1 (1) < k} = 1.
If P{F a

1 (1) < k} = 0, recall that

`(pb)(x) = inf
ω
F b

1 (x, ω)1[0,∞)(x)− sup
ω
F a

1 (−x, ω)1(−∞,0](x).

For x ≥ 0, set

H3(x) = `(pb)(x)
1 + rb1

− c0(x) = infω F b
1 (x, ω)

1 + rb1
− F a

0 (x).

Then
lim
x↓0

H3(x)
x

= infω f b1(0, ω)
1 + rb1

− fa0 (x) ≤ 0,

where the inequality comes (C1) and Theorem 4.1. Since H3(x) is concave, one
has that H3(x) ≤ H3(0) = 0 for x ≥ 0.
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Finally, for x ≤ 0, set

G3(x) = `(pb)(x)
1 + ra1

− c0(x) = F b
0 (−x)− supω F a

1 (−x, ω)
1 + ra1

.

Then
lim
x↑0

G3(x)
x

= supω fa1 (0, ω)
1 + ra1

− f b0(0) ≥ 0,

where the inequality comes from (C1) and Theorem 4.1. Since G3 is concave,
one concludes that G3(x) ≤ G3(0) = 0 for x ≤ 0, showing that πb0 = 0 when
P{F a

1 (1) < k} = 0.





Chapitre 5

FORECASTING TIME SERIES WITH
MULTIVARIATE COPULAS

Résumé

Dans cet article, nous présentons une méthode de prévision pour les sé-
ries temporelles qui est basée sur les modèles de copules pour les séries à
plusieurs dimensions. Nous étudions comment la performance des prévi-
sions évolue lorsque l’on fait varier la force des différentes dépendances
possibles et nous les comparons avec une version unidimensionnelle de
la méthode qui a été introduite par Sokolinskiy and Van Dijk (2011). De
plus, nous étudions aussi l’influence des distributions marginales grâce
à une nouvelle mesure de performance. Finalement, nous étudions com-
ment la structure de la dépendance affecte les prévisions et l’effet des
erreurs d’estimations. Nous présentons aussi un exemple d’application
sur des données financières.

Abstract

In this paper, we present a forecasting method for time series using
copula-based models for multivariate time series. We study how the
performance of the predictions evolve when changing the strength of the
different possible dependencies and compare it with the univariate ver-
sion of the forecasting method introduced by Sokolinskiy and Van Dijk
(2011). Moreover, we also study the influence of the marginal distribu-
tions with the help of a new performance measure. Lastly we look at
the impact of the dependence structure on the predictions performance
and the effect of estimation errors. We also give an example of practical
implementation with financial data.

Key words : copulas, time series, forecasting, realized volatility.
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1. Introduction
For many years, copulas have been used for modeling dependence between

random variables. See e.g. Genest et al. (2009) for a survey on copulas in finance.
The possibility to model the dependence structure independently from marginal
distributions allows for a better understanding of the dependence structure and a
wide range of joint distributions. More recently, copulas have been used to model
the temporal dependence in time series, first in the univariate case, as in Chen
and Fan (2006) and Beare (2010), and then in a multivariate setting, Rémillard
et al. (2012). Once again, the flexibility of copulas allows to model more complex
dependence structures and thus to better capture the evolution of the time series.
In the recent work of Sokolinskiy and Van Dijk (2011), copulas were used to
forecast the realized volatility associated with a univariate financial time series
and it was shown there that copula-based forecasts perform better than forecasts
based on heterogeneous autoregressive (HAR) model, Corsi (2009). The later
method had been proven successful in Andersen et al. (2007), Corsi (2009) and
Bush et al. (2011).

Looking at the literature, we see that all the tools are there to build forecasts
based on copula models for multivariate time series. For instance, Patton (2013)
suggests the idea of multivariate forecasting based on copulas. However, although
he makes a good presentation of the different aspects of modeling multivariate
time series using copulas, he never describes an actual forecasting method. Beyond
that, there is no understanding about how would perform predictions based on
multivariate time series respect to univariate copula-based predictions and what
could impact the performance of the predictions.

Consequently, our first goal is to extend the methodology of Sokolinskiy and
Van Dijk (2011) by proposing a forecasting method using copula-based models for
multivariate time series, as in Rémillard et al. (2012). As one can guess, we show
that forecasting multivariate time series using copula-based models gives better
results than forecasting a single time series, as long as there is dependence between
the series. For example, let {(X1,t, X2,t); t = 0, 1, ...} be two dependent time series
with both series showing temporal dependence. Suppose one wants to forecast
X1,T+1 based on the information available at period T . We show that forecasting
the joint values of (X1,T+1, X2,T+1) using the observed values (X1,T , X2,T ) gives
significantly better predictions of X1,T+1 in general than predictions on X1,T+1

based only on the single value of X1,T , which of course has to be expected. Since
{X1,t} and {X2,t} are dependent and temporally dependent, the knowledge of
(X1,T , X2,T ) gives more informations than the knowledge of X1,T alone.
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In practice, many factors might affect the quality of the predictions. However,
it would be impossible to test all practical aspects of the implementation of our
method. So, we designed some numerical experiments to test the impact of, what
we think, are the most important factors that could affect the performance of the
predictions.

Our first numerical experiment studies what is the impact on the predictions of
the strength of the different dependencies of the vector (X1,t−1, X2,t−1, X1,t, X2,t).
Similarly, we study the structure of the dependencies as well as the impact of
marginal distributions affect the performance of the predictions. Another impor-
tant aspect of the implementation of our method is the problem of estimation
errors, considering that a multivariate model might require more parameters to
estimate. We also study this question.

Although our numerical experiments focus on the bivariate case, our presen-
tation can be readily extended to an arbitrary number of dimensions. Actually,
the results of Rémillard et al. (2012), which provide the estimation methods, are
given for an arbitrary number of time series and most of the theoretical back-
ground is going to be presented in the general case. Moreover, the results of our
numerical experiments should naturally extend to the multivariate case.

The rest of the paper is structured as follows. In Section 2 we give some basic
results about copulas and apply the results to model time series. In Sections 2.3
we define our forecasting methods. Section 3 contains the result of our numerical
experiments as well as the analysis of the results. We also give a complete example
of practical implementation with financial data in Section 4. The last section
contains some concluding remarks.

2. Modeling time series with copulas
2.1. Copulas

We begin by giving some definitions and basic results about copulas. More
details about copulas can be found in Nelsen (1999) and Rémillard (2013).
Definition 2.1. (Copula)

A d-dimensional copula is a distribution function with domain [0, 1]d and uni-
form margins.

Equivalently, the function C : [0, 1]d → [0, 1] is a d-dimensional copula if
and only if there exists random variables U1, . . . , Ud such that P (Ui ≤ u) = ui for
i = 1, . . . , d and C(u) = P (U1 ≤ u1, . . . , Ud ≤ ud) for all u = (u1, . . . , ud) ∈ [0, 1]d.
The existence of a copula function for any joint distribution is given by Sklar’s
theorem.
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Theorem 2.1. (Sklar’s theorem)
Let X1, . . . , Xd be d random variables with joint distribution function H and

margins F1, . . . , Fd. Then, there exists a d-dimensional copula C such that for all
(x1, . . . , xd) ∈ R̄d,

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.1)

where R̄ = R⋃{−∞,∞}.
We note that the copula function in (2.1) is uniquely defined on the set

Range(F1) × · · · × Range(Fd). Hence, if Range(Fi) = [0, 1] for i = 1, . . . , d the
copula is unique.

We define the left continuous inverse of a distribution function F as

F−1(u) = inf {x;F (x) ≥ u} , for all u ∈ (0, 1).

Using this inverse and Sklar’s theorem, we have a way to define the copula function
in terms of the quasi-inverses and the joint distribution.

Assuming that the density fi of Fi exists for each i = 1, . . . , d, then the
density c of C exists if and only if the density h of H also exists. In this case,
differentiating equation (2.1), we get

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))Πd
i=1fi(xi).

Furthermore, for all (u1, . . . , ud) = (0, 1)d,

c(u1, . . . , ud) = h(F−1
1 (u1), . . . , F−1

d (ud))
Πd
i=1fi(F−1

i (ui))
. (2.2)

Following the example of conditional distributions it is also possible to define
conditional copulas. Let (X,Y) be a (d1 + d2)-dimensional random vector with
joint distribution H, where X has marginal distributions F1, . . . , Fd1 and Y has
marginal distributions G1, . . . , Gd2 .

Setting F(X) = (F1(X1), . . . , Fd1(Xd1)), G(Y ) = (G1(Y1), . . . , Gd2(Yd2)) and
defining the random vector (U,V) = (F(X),G(Y )) we can define the copula
CUV of the vector (X, Y ) as the joint distribution function of (U,V).

Assuming that the density functions exist and applying equation (2.2), one
obtains that the conditional copula CU|V, i.e., the conditional distribution of U
given V , is given by

CU|V(u; v) = ∂v1 · · · ∂vd2CUV(u, v)
cV(v) ,

with density
cU|V(u; v) = cUV(u, v)

cV(v) ,
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where cV is the density of the copula CV(v) = CUV(1, . . . , 1, v) associated to Y
or V.

Having defined conditional copulas, one can now look at how to obtain copula-
based models for multivariate time series.

2.2. Modeling time series

In order to get a prediction method, we first need to present how to use
copulas for modeling time series. The ideas presented here were developed in
Soustra (2006) and Rémillard et al. (2012), extending the results of Chen and
Fan (2006) to the multivariate case.

Let X = {Xt; t = 0, 1, . . .} be a d-dimensional time series and assume that
X is Markovian and stationary. We note Fi the marginal distribution of Xi,t

for i = 1, ..., d and H the joint distribution of (Xt−1,Xt) and assume that all
distributions are continuous. From the stationarity assumption, it follows that
all distribution functions F1, . . . , Fd and H are time-independent. Using Sklar’s
theorem, there is a unique copula C associated to (Xt−1,Xt) and unique copula
Q associated to Xt−1, viz.

Q(u) = C(1d, u) = C(u,1d) for all u ∈ [0, 1]d,

where 1d is the d-dimensional unit vector. The second equality above comes from
the hypothesis of stationarity, i.e. the distribution of Ut is the same as the distri-
bution of Ut−1.

Set Ut = F(Xt), for t ≥ 0. The next step is to deduce the conditional copula
of Xt given Xt−1, which is

C(u; v) = CUt|Ut−1(u; v) = ∂v1 · · · ∂vdC(u, v)
q(v) ,

with density
cUt|Ut−1(u; v) = c(u, v)

q(v) ,

where q is the density of Q.
Combining the knowledge of the marginal distributions and the conditional

copula above we can get the conditional distribution of Xt given Xt−1. This is
what we use to define our predictions.

2.3. Forecasting method

To expose our forecasting method, we first make the assumption that the
joint distribution as well as the marginal distributions of the time series are
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known. However, for practical implementation, these distributions are unknown
and estimations are to be done. This will be treated next.

Let X = {Xt; t = 0, 1, .., T} be a d-dimensional time series. Our goal is to
forecast XT+1 based on the information available at time T . Suppose that for
all t ≥ 0, Fi is the marginal distribution of Xi,t for i = 1, ..., d and the 2d-
dimensional vector (Xt−1,Xt) as joint distribution H and copula C. Using the
preceding section we can define the conditional copula C of Xt given Xt−1, namely
CUt|Ut−1(u; v).

Now suppose we observe the value XT = y for the time series at time T . The
prediction of XT+1 goes as follows :

(1) Set v = F(y).

(2) Simulate n realizations of the conditional copula, U(i) ∼ C(·; v), i =
1, . . . , n.

(3) For i = 1, . . . , n, set X(i)
T+1 = F−1(U(i)) .

(4) Set

X̂T+1 = 1
n

n∑
i=1

X(i)
T+1. (2.3)

We use X̂1,T+1 as a predictor for X1,T+1.

4′ One can also define a prediction interval of level 1− α ∈ (0, 1) for X1,T+1

by taking the estimated quantiles of order α/2 and 1 − α/2 amongst
{X(i)

1,T+1; i = 1, . . . , n}. We denote by L̂B
α

T+1 and ÛB
α

T+1 the lower and
upper values for the prediction interval.

As mentioned previously, we are going to compare our predictions performance
with the univariate version presented in Sokolinskiy and Van Dijk (2011). Let D
be the copula associated with (X1,t−1, X1,t) for t = 0, 1, .., i.e., D is the copula of
(U1,t−1, U1,t).

Suppose we observe the value X1,T = y1 ; The predictor presented in Sokolins-
kiy and Van Dijk (2011) is defined as

X̄1,T+1 = n−1
n∑
i=1

F−1
1 (Z(i)) (2.4)

where Z(i) are realizations of D(·; v1) where v1 = F1(y1) and D is the condi-
tional copula associated with X1,t given X1,t−1. As before, we can define the
prediction interval using the estimated α/2 and 1 − α/2 quantiles from the va-
lues {F−1

1 (Z(i)), i = 1, . . . , n}. We note the upper and lower bound of predictions
interval at time T + 1 by UBα

T+1 and LBα
T+1.



95

2.3.1. Implementation in practice

For practical implementation, one has to replace the known distributions F
and the copula C by estimated versions. The estimation method for copula-based
model for time series is presented in Rémillard et al. (2012) which use non-
parametrical estimation for marginal distribution and parametrical estimation
for conditional copula where the copula parameters are estimated through pseudo
maximum likelihood. Goodness-of-fit tests are also provided to help choose the
right copula family, but in the context of forecasting, one can also choose copulas
by their prediction power.

2.4. Including more information

The methodology proposed here can also be applied to predict X1,T+1 given
XT and X2,T+1, . . . , Xd,T+1, since the joint copula of (Xt,Xt+1) is given. For
instance, suppose one estimated a copula model for the series
{(X1,t, X2,t, X1,t+1, X2,t+1); t = 0, 1, . . .} where X1,t is the realized volatility and
X2,t is the volume of transaction. Using the conditional copula of X1,t+1 given
(X1,t, X2,t, X2,t+1) one can create different predictions of the realized volatility at
time t+ 1 based on the observed values of the volume and the realized volatility
at time t and different possible values of the volume at time t+ 1. This way, one
gets a curve of predictions for the realized volatility.

3. Analysis of the performance
Here we compare the performance of our forecasting method versus the me-

thod proposed by Sokolinskiy and Van Dijk (2011). The analysis is restricted
to bivariate time series but the results can easily be extrapolated to higher di-
mensions. For these experiments we suppose that the copula and the marginal
distributions are known so that the predictions are not affected by estimation
error. We will see in Section 3.5 the effect of parameter misspecification.

Theoretically, our proposed methodology should give better results because
we are using the additional information contained a second series, provided the
dependence is strong enough and we let aside the possible problems of model
and parameters misspecification. Consequently, the gain in performance should
be affected by the strength of the dependencies between and within time series,
i.e., the overall dependence associated with the vector (X1,t−1, X2,t−1, X1,t, X2,t).

To understand how these factors come into play, we consider two copulas :
The Student copula and the Clayton copula. The choice of the Student copula
is motivated by the fact that it seems to fit data well in practice and also that
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we have a lot of flexibility in specifying the correlation matrix for the Student
distribution, which in turn defines the strength of the dependencies in the related
copula. Actually, there is a bijection between the correlation matrix and the
Kendall’s tau matrix. If R = [Ri,j] for i, j = 1, ..., d are the elements of the
correlation matrix, the Kendall’s tau matrix for the Student copula is then given
by τi,j = 2

π
arcsin(Ri,j), (Fang et al., 2002). Note that in general the correlation

matrix R is not the correlation matrix of the observations. However, this is true
when the margins have a Student distribution with the same degrees of freedom,
i.e., if the joint law is Student. This is why in practice Kendall’s tau is used to
characterize the pairwise dependence for the Student copula.

In order to test a different dependence structure we also use data simulated
from the Clayton copula. See Appendix A for details about simulating multiva-
riate copula-based time series using the Student and Clayton copulas.

We also want to examine the impact of the marginal distributions on the
performance. To make things simpler, we chose the same margins for both series.
We can expect that the predictions of a random variable with large variance
should be less precise than when the variance is small. To try to eliminate this
effect, we propose a new measure of performance.

3.1. Performance measures

For most of the numerical experiments we use prediction intervals with α =
0.05. To measure the performance of the predictions we compute the mean length
of the prediction intervals and also give the proportion of observed values outside
the prediction intervals. Let UBα

t and LBα
t be the upper bound and lower bound

of the prediction interval with confidence level 1− α, for t = 1, . . . N . We define
the mean length as

MLα = 1
N

N∑
t=1

(UBα
t − LBα

t ) .

We will use M̂L
α for the mean length of prediction intervals based on the bivariate

series and ML
α if predictions are based on the univariate series. Indeed, smaller

values for the mean length of prediction intervals means better precision. However,
the proportion of observed values outside the prediction intervals must be close
to α = 0.05. For our numerical experiments, we put N = 10 000 so that using
the normal approximation for the binomial distribution one can find that a 95%
confidence interval for the proportion of observed values outside the prediction
intervals is approximately 0.05± 0.0042.
Remark 3.1. Instead of prediction intervals, one can choose to make pointwise
predictions using (2.3) and (2.4). In this case, a natural performance measure
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for the predictions is the mean absolute prediction errors. We also used this per-
formance measure for our numerical experiments of Sections 3.2.1 - 3.2.3 and
we found out that the results were the same as for the mean length of prediction
intervals. Consequently, we did not include these results in the paper since they
did not bring additional information.

In Section 3.3 we test the effect of different marginal distributions on the
quality of predictions. However, we expect that the mean length of prediction
intervals should be larger for distribution with bigger variance. To eliminate the
margins effect, we use pointwise predictions defined at (2.3) and (2.4) and we
propose the following performance measure called the mean absolute rank error.
Let X̃t be pointwise predictions of Xt for t = 1, . . . , N , the mean absolute rank
error is defined by

MARE = N−1
N∑
t=1
|F1(X1,t)− F1(X̃1,t)|,

where F1 is the marginal distribution of X1,t for all t = 1, . . . , N . As before, we
will use M̂ARE if predictions are based on the bivariate series and MARE for
the univariate case.

All those performance measures are summarized in Table 5.1. The table also
includes the mean absolute error that will be used in Section 4.

Table 5.1. Summary of the performance measures. X1,t is the
observed value, X̃1,t is the predicted value, F1 is the distribution
function of X1,t for all t ≥ 0 and UBα

t and LBα
t are respectively the

upper and lower bound of the prediction intervall with confidence
level α.

Performance measure Symbol Definition
Mean absolute error MAE N−1∑N

t=1

∣∣∣X1,t − X̃1,t

∣∣∣
Mean absolute rank error MARE N−1∑N

t=1

∣∣∣F1(X1,t)− F1(X̃1,t)
∣∣∣

Mean length of confidence interval
with confidence level α MLα N−1∑N

t=1 (UBα
t − LBα

t ) .

3.2. Impact of the dependencies strength

As we said previously, the structure and the strength of the dependencies of the
vector Xt = (X1,t−1, X2,t−1, X1,t, X2,t) should have an impact on the performance
of our predictor. To understand and quantify this impact, we first simulate Xt

with a Student copula and study the impact for a set of possible correlations. We
choose degrees of freedom ν = 8 and fix the initial values (X1,0, X2,0) = (0, 0). To
isolate the effect of the correlation, we take the margins as Student with ν = 8
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degrees of freedom as well, so the distribution of Xt is a multivariate Student
distribution with a correlation ρ between X1,t and X2,t. For these experiments,
we take N = 10 000 and we generate a sample of n = 1000 to compute prediction
intervals with error α = 0.05. For three different simulations we will take different
correlation values between (X1,t, X2,t), (X1,t, X1,t−1) and finally (X1,t, X2,t−1).
Remark 3.2. Recall that our method applies to stationary series. In all the fol-
lowing numerical experiments, when we have to generate stationary series, we
always discard the first 100 values of the series, so we can consider that the series
is stationary. To be precise, for a series of length N , we actually generate N+100
values and discard the first 100 values.

In all the following numerical experiments, we compare M̂L
α and ML

α and
we see that M̂L

α is always less than or equal toML
α. This observation shows that

predictions based on bivariate series outperform predictions based on univariate
series since prediction intervals are narrower. However, this comparison is valid
only if the proportion of observed values outside the prediction intervals is close to
0.05. As one will see these proportions are most of the time in the 95% confidence
interval [0.0458, 0.0542].

3.2.1. First numerical experiment

The first simulation study the impact of the dependence between both series.
We simulate the series using correlation matrices

Rρ =


1 ρ 0.25 0.25
ρ 1 0.25 0.25

0.25 0.25 1 ρ

0.25 0.25 ρ 1


with

ρ ∈ {−0.4,−0.3,−0.2,−0.1,−0.05,−0.01, 0.01, 0.05, 0.1, 0.2

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} .

Remark 3.3. As one can see, we introduce a correlation of 0.25 between the pairs
(X1,t, X1,t−1), (X1,t, X2,t−1) and (X2,t, X2,t−1), so that the effect of ρ is not com-
pletely isolated in the performance of the predictions. The reason of this choice is
that, in practice, one will implement this forecasting method only if there is depen-
dence between series. In this case, we consider that it is more likely that one will
find a minimum of dependence between all pairs in (X1,t−1, X2,t−1, X1,t, X2,t). This
additional dependence which is introduced should be kept in mind when analysing
the results in Sections 3.2.1-3.2.3.
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As seen in Figure 5.1, the bivariate method generates smaller prediction in-
tervals. Since they are prediction intervals with confidence level 95%, we expect
that the proportion of observed values out of sample should be around α = 0.5.
From Figure 5.2, we see that the proportion of observed values out of prediction
intervals is similar for both methods. Consequently, predictions from the bivariate
method are more precise. Also, from Figure 5.1, one sees that the mean length
of prediction intervals M̂L

α of our predictions increases when τ (Kendall’s tau)
increases. To explain this result, consider the extreme case where the Kendall’s
tau between X1,t and X2,t is one. Then, the two series are identical and hence
our predictor has no additional information coming from the second series. This
also explain why the difference between mean length of prediction intervals gets
closer to zero when τ is high. Again, as τ increases, the predictor M̂L

α tends to
ML

α, since the information from the second series becomes irrelevant.

Figure 5.1. Impact of the dependence between X1,t and X2,t. The
plain line gives the value of ML

α and the dashed gives the value of
M̂L

α. The x-axis gives the Kendall’s tau for X1,t and X2,t.

Figure 5.2. Proportion of observed values outside of prediction
intervals. The circles give the results for prediction intervals based
on univariate series while plus signs are for prediction intervals
based on bivariate series. The x-axis gives the Kendall’s tau for
X1,t and X2,t. The horizontal lines give the 95% confidence interval.

3.2.2. Second numerical experiment

For the second simulation, we study the impact of the serial dependence, i.e.,
the dependence between X1,t and X1,t−1 through τ = 2

π
arcsin(ρ), Kendall’s tau

between X1,t and X1,t−1. We simulate the series using correlation matrices

Rρ =


1 0.25 ρ 0.25

0.25 1 0.25 0.25
ρ 0.25 1 0.25

0.25 0.25 0.25 1


with

ρ ∈ {−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1,−0.05,−0.01,

0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} .
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Remark 3.4. We remark that the range of ρ is not the same than before. The
reason is that we have to keep the correlation matrices positive semi-definite.

A first observation from Figure 5.3 is that prediction intervals are smaller for
the bivariate method. Since the proportion of observed values outside the predic-
tion intervals is similar for both methods, according to Figure 5.4, we conclude
that predictions from the bivariate method are more precise. As expected theore-
tically, Figure 5.3 shows that the predictions are better when the dependence is
strong. However, it is interesting to note that, for this dependence structure, M̂L

α

benefits more from the negative dependence than ML
α. This is probably explai-

ned by the fact that there is a positive dependence between the other pairs of
random variables, i.e. (X1,t, X2,t) and (X1,t, X2,t−1). Finally, when the correlation
is close to one, the information given by the first lag dictates almost completely
the succeeding value and the information given by the second series then becomes
marginal. This is why the difference in prediction error is close to zero when the
correlation is close to one.

Figure 5.3. Impact of the dependence between X1,t and X1,t−1.
The plain line gives the value of ML

α and the dashed gives the
value of M̂L

α. The x-axis gives the Kendall’s tau forX1,t andX1,t−1.

Figure 5.4. Proportion of observed values outside of prediction
intervals. The circles give the results for prediction intervals based
on univariate series while plus signs are for prediction intervals
based on bivariate series. The x-axis gives the Kendall’s tau for
X1,t and X1,t−1. The horizontal lines give the 95% confidence inter-
val.

3.2.3. Third numerical experiment

The last simulation is about the impact of the strength of the dependence
between X1,t and X2,t−1. We simulate the series using correlation matrices

Rρ =


1 0.25 0.25 0.25

0.25 1 ρ 0.25
0.25 ρ 1 0.25
0.25 0.25 0.25 1


with

ρ ∈ {−0.4,−0.3,−0.2,−0.1,−0.05,−0.01, 0.01, 0.05, 0.1, 0.2
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0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} .

As one should expect, this is the most important dependence in the compara-
tive performance of our predictor. Since the information given by X2,t−1 cannot
be used by predictions based only on univariate series, our predictor gives much
better performance when this dependence is strong, as seen in Figure 5.5. In the
case where the dependence is strong, the information of X2,t−1 almost completely
dictates the value of X1,t and this is why we observe a great difference between
M̂L

α andML
α. Once again, the proportion of observed values outside prediction

intervals, as seen from Figure 5.6, is similar for both methods.

Figure 5.5. Impact of the dependence between X1,t and X2,t−1.
The plain line gives the value of ML

α and the dashed gives the
value of M̂L

α. The x-axis gives the Kendall’s tau forX1,t andX2,t−1.

Figure 5.6. Proportion of observed values outside of prediction
intervals. The circles give the results for prediction intervals based
on univariate series while plus signs are for prediction intervals
based on bivariate series. The x-axis gives the Kendall’s tau for
X1,t and X2,t−1. The horizontal lines give the 95% confidence inter-
val.

3.3. Impact of the marginal distributions

Another question we want to tackle is the impact of the margins. In order
to isolate more closely the impact of the different correlations in the first set of
simulations, we used only the Student copula with Student margins. In the next
experiment, we still use Student copula, but we are going to use different marginal
distributions. The parameters of the Student copula are the same as before and
we fix the correlation matrix at Ri,j = 0.25 for all i 6= j.

Looking at the results of Table 5.2, our first observation is that for the same
marginal distributions, the the mean length of prediction intervals are affected
by the change of parameters while the MARE is not. This observation seems
to confirm that our performance measure behaves as intended. So, looking at
the MARE values, we conclude that the marginal distributions do affect the
performance of the predictions.
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Table 5.2. Evolution of MARE and ML as a function of the
marginal distributions. Numbers in parenthesis are the proportion
of observed values out of prediction intervals.

Margins MARE M̂ARE ML
α

M̂L
α

T5 0.24 0.21 4.96 (0.0506) 4.35 (0.0514)
T8 0.24 0.21 4.44 (0.0526) 3.91 (0.0520)
T10 0.24 0.21 4.29 (0.0515) 3.78 (0.0514)
T15 0.24 0.21 4.11 (0.0527) 3.63 (0.0512)
T20 0.24 0.21 4.02 (0.0519) 3.56 (0.0513)
T30 0.24 0.21 3.94 (0.0534) 3.49 (0.0525)
T50 0.24 0.21 3.87 (0.0534) 3.43 (0.0518)

LN(0, 1) 0.28 0.23 6.69 (0.0541) 5.78 (0.0521)
χ2

8 0.25 0.21 14.79 (0.0530) 13.11 (0.0515)
Exp3 0.26 0.22 10.55 (0.0527) 9.26 (0.0526)
N(0, 1) 0.24 0.21 3.78 (0.0524) 3.36 (0.0512)
N(0, 2) 0.24 0.21 5.34 (0.0518) 4.75 (0.0511)
N(0, 4) 0.24 0.21 7.56 (0.0516) 6.71 (0.0502)
N(0, 8) 0.24 0.21 10.68 (0.0526) 9.49 (0.0513)
N(2, 1) 0.24 0.21 3.78 (0.0520) 3.36 (0.0507)
N(4, 1) 0.24 0.21 3.78 (0.0530) 3.36 (0.0513)
N(8, 1) 0.24 0.21 3.78 (0.0510) 3.36 (0.0524)

3.4. Impact of the dependence structure

Our last numerical experiment shows that the dependence structure has an
impact on the gain in performance of predictions based on bivariate series com-
pare to predictions based on univariate series. At first sight, we could think that
using the information provided by the series X2 might always give better pre-
dictions but we find that the dependence structure of the Clayton copula almost
negate this advantage. From the definition of the Clayton copula we see that the
dependence structure is symmetric, that is, all the dependencies of the vector
Xt = (X1,t−1, X2,t−1, X1,t, X2,t) are the same. Moreover, the strength of the de-
pendencies increases when θ increases. When θ is close to zero, the elements of
the vector Xt are close to be independent and so, there is not much information
to use to predict the next value. In contrast, when θ is high, both series are almost
the same and, this time, the series X2 cannot provides useful information to our
predictor.

The results illustrated in Figure 5.7 show the evolution of prediction perfor-
mances in terms of the parameter θ. First, Figure 5.8 shows that the proportion
of values outside prediction intervals corresponds to the confidence level of 95%.
Then, from Figure 5.7, we see that both predictors perform badly when θ is small
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and perform better as long as θ becomes bigger. We also see that that the dif-
ference between both prediction errors is slowly decreasing for high values of θ.
This is due to the fact that the Kendall’s tau between X1,t and it’s first lag X1,t−1

is close to one, and so, the additional information provided by X2 becomes mar-
ginal. As we see, with the dependence structure given by the Clayton copula the
advantage of using predictions based on the bivariate series is minor.

Figure 5.7. Impact of the parameter θ in the Clayton copula. The
plain line gives the value of ML

α and the dashed gives the value of
M̂L

α. The x-axis gives the values of θ.

Figure 5.8. Proportion of observed values outside of prediction
intervals. The circles give the results for prediction intervals based
on univariate series while plus signs are for prediction intervals ba-
sed on bivariate series. The x-axis gives the values of the parameter
θ. The horizontal lines give the 95% confidence interval.

3.5. Impact of estimation errors

In all the previous numerical experiments, we supposed that copulas and mar-
ginal distributions were known, i.e. there was no need to estimate parameters.
This way, we were able to isolate the effect of using the information provided
by the second series. We saw that using multivariate predictions outperform uni-
variate predictions, but in some cases the improvement is rather small. In these
cases, one can ask if the errors caused by parameters estimation might negate the
advantage of the multivariate forecasting method. Mostly when the multivariate
method requires more parameters to estimate. In this section, perform two nu-
merical experiments to test the impact of estimation errors on the performance
of the predictions.

For our first experiment we generate a bivariate series Xt of length N+1 from
a Student copula with ν = 8 degrees of freedom and correlation matrix

R =


1 0.25 0.25 0.25

0.25 1 0.7 0.25
0.25 0.7 1 0.25
0.25 0.25 0.25 1

 .

We estimate the parameters of the copula using the N first values of the series
and predict the value N+1. We repeat this experiment 10 000 times and compute
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the performance of the 10 000 predictions. To generate the series, we also take
Student marginal distributions with the same degrees of freedom as the copula.

In order to have different precisions for the estimated parameters we per-
form this experiment with sample sizes N ∈ {100, 250, 500, 750}. The results are
displayed in Table 5.3.

Table 5.3. Impact of estimation errors for the Student copula.
From left to right we have : the length of the series, the mean ab-
solute error for the bivariate and univariate method and the mean
length of prediction intervals for the bivariate and univariate me-
thod. The numbers in parenthesis are the proportion of observed
values out of the prediction intervals.

Student copula
Length MAE M̂AE ML

α
M̂L

α

100 0.8917 0.6936 4.5897 (0.0589) 3.3043 (0.0643)
250 0.8572 0.6956 4.4658 (0.0532) 3.242 (0.0592)
500 0.8597 0.6820 4.4505 (0.0539) 3.2366 (0.0554)
750 0.8726 0.6817 4.413 (0.0573) 3.3241 (0.0534)

The first observation from Table 5.3 is that pointwise predictions are more
precise for the bivariate method. Our second observation is that, even though
the bivariate method still creates smaller prediction intervals, the proportion of
observed values outside the prediction intervals are inside the confidence interval
only for the series of length 750. This means that the predictions of the quan-
tiles using the bivariate method is more sensitive to estimation errors than the
univariate method.

Our second experiment retains the same idea as before, except we generate
a bivariate series following a Clayton copula with parameter θ = 5 and uniform
marginal distributions. Looking at the results in Table 5.4, we see that the biva-
riate method outperforms the univariate method since the mean absolute error
for pointwise predictions as well as the mean length of prediction intervals are
smaller and the number of observed values outside predictions intervals are all
within the confidence interval.

From these results, we conclude that predictions based on the bivariate me-
thod still gives better predictions when considering estimation errors. However,
in the case of the Student copula, it seems that prediction intervals using the bi-
variate method are more sensitive to estimation errors, which is probably caused
by the fact that it uses more parameters. This explanation is also supported by
the results on the Clayton copula. In this case, all the predictions rely on one
estimated parameter and the bivariate method always gives the best predictions.
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Table 5.4. Impact of estimation errors for the Clayton copula.
From left to right we have : the length of the series, the mean ab-
solute error for the bivariate and univariate method and the mean
length of prediction intervals for the bivariate and univariate me-
thod. The numbers in parenthesis are the proportion of observed
values outside the prediction intervals.

Clayton copula
Length MAE M̂AE ML

α
M̂L

α

100 0.0983 0.0845 0.4730 (0.049) 0.4129 (0.0474)
250 0.0956 0.0831 0.4712 (0.0504) 0.411 (0.048)
500 0.0958 0.0833 0.4664 (0.049) 0.4076 (0.05)
750 0.0962 0.0833 0.4683 (0.0509) 0.4086 (0.0529)

It would be interesting to know if this conclusion can be generalized, but it would
require an exhaustive study to fully understand the effect of estimation errors.

4. Application
In this section we present an application of our method for forecasting rea-

lized volatility. Realized volatility might be defined as an empirical measure of
returns volatility. In a general setting, if we suppose that the value of an asset is
a semimartingale X, then the realized volatility of X over the period [0, T ] is its
quadratic variation at time T , [X]T . Thus, an estimator of the realized volatility
can be defined as the sum of squared returns

R̂V (X)[0,T ] =
N∑
i=1

(
Xti −Xti−1

)2
, (4.1)

where Xti , i = 0, ..., n, are observed values and 0 = t0 ≤ t1 ≤ · · · ≤ tn = T .
The first mention of realized volatility is probably Zhou (1996) but we refer the
reader to Andersen et al. (2001) for a detailed justification of the realized volatility
estimation.

Since each price observation is noisy (bid-ask spread, etc), a more realistic
model for observed price should be Yti = Xti+εti , where εti is a random variable. In
this context, it is easy to show that (4.1) is an inconsistent estimator. A common
practice to estimate realized volatility is to use (4.1) and to take observations
every 5 to 30 minutes. In using less observations the bias due to noise is somewhat
diminished and the estimation precision becomes acceptable. However, to perform
our realized volatility estimation we used the estimator of Zhang et al. (2005)
which is an asymptotically unbiased estimator that allows using high-frequency
data. Another good estimator is given by Martens and van Dijk (2007) which
makes use of high and low observed values. The reason we prefer the former
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estimator is that we used trade prices and it seems that this estimator is less
affected by bid/ask spread.

Figure 5.9. Estimated realized volatility (top panel) and volume
of transactions (bottom panel).

Figure 5.10. Scatter plot for the first difference of the log for the
realized volatility and the volume of transaction.

The data we are using are from the Trade and Quote database. We used
Apple (APPL) trade prices from 2006/08/08 to 2008/02/01, which consists of
374 trading days. In order to avoid periods of lower frequency trading we used
data from 9 :00 :00 to 15 :59 :59. In combination with the estimation of realized
volatility we also computed the aggregated volume of transactions, see Figure 5.9.

For our time series to satisfy the required hypothesis of stationarity, we had
to take the first difference of the logarithm of both series. We define X1,t =
log(r̂vt)− log(r̂vt−1) and X2,t = log(v̂olt)− log(v̂olt−1) where r̂vt is the estimated
volatility, and v̂olt is the aggregated volume of transaction and the time scale is
in days.

To verify the stationarity assumption of both series we used a non-parametric
change point test using the Kolmogorov-Smirnov statistic. With p-values of 21.7%
and 34.1% for the series X1 and X2, one cannot reject the null hypothesis of
stationarity.

Next, we performed parameters estimation and goodness-of-fit tests for Clay-
ton, Frank, Gaussian and Student copulas, as proposed in Rémillard et al. (2012).
From the p-values given in Table 5.5, we selected the Student copula as the best
model for the copula of (X1,t−1, X2,t−1, X2,t, X2,t). The estimated parameters for
the Student copula distribution are the degrees of freedom, ν̂ = 12.6451, and the
correlation matrix

R̂ =


1 0.6936 −0.3628 −0.1234

0.6936 1 −0.2960 −0.3035
−0.3628 −0.2960 1 0.6936
−0.1234 −0.3035 0.6936 1

 .
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The associated Kendall’s tau matrix is then given by

τ =


1 0.4880 −0.2364 −0.0788

0.4880 1 −0.1913 −0.1963
−0.2364 −0.1913 1 0.4880
−0.0788 −0.1963 0.4880 1

 .

Table 5.5. P-values for tests of goodness-of fit.

Copula p-value
Clayton 0
Frank 0

Gaussian 0.037
Student 0.0931

Finally we used our methodology to make one-period ahead predictions for
out-of-sample values of the seriesX1. The results of the prediction are displayed in
Figure 5.11. It is not clear from the graphics but if we take the mean length of the
confidence interval over the 100 forecasts, we get 2.1260 for the predictions using
X̂ while we obtain an average length of 2.1682 using X̄, showing our proposed
methodology is slightly better in this case.

Figure 5.11. 95% confidence interval for X1, using (X1, X2) (top
panel) and and using X1 only (bottom panel).

5. Conclusion
In this paper, we presented a forecasting method for time series based on

multivariate copulas and compare the performance of the predictions with the
univariate version. Using the Student copula, we studied the impact of different
combinations of dependencies for the vector (X1,t−1, X2,t−1, X1,t, X2,t) and we saw
that some combinations are more favorable for the multivariate method than
others. In a similar fashion, we also saw that with the symmetrical dependence
structure of the Clayton copula, the multivariate forecasting method shows only
a minor advantage. We also tested the effect of estimation errors. We observed
that the multivariate method keeps its advantage, but we saw that for series
following a Student copula, the sample size should be taken sufficiently large
in order to provides good estimated parameters if one wants to use prediction
intervals. We conjectured that the results we observed might be explained by the
number of estimated parameters used for the predictions but this matter would
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need a thorough study before to be settled. Finally, we presented a complete
application with parameters estimation and goodness-of-fit test on the bivariate
series of realized volatility and volume of transactions.

A. Simulation
A.1. Simulation of multivariate time series with Student copula

The Student copula is based on a multivariate Student distribution. Suppose
(X,Y) is a d = (d1 + d2)-dimensional random vector which follows a Student
distribution with mean 0, correlation matrix R and ν degrees of freedom. We
write the matrix R as a block matrix

R =
 RX RXY

RYX RY


where RX, RY, RYX and RXY are respectively the correlation matrices of the
variables in subscript. It is easy to check that all possible joint distributions of
a multivariate Student vector are also of Student distributions with respective
correlation matrix and the same degrees of freedom. Let Tν,R be the distribution
function of a multivariate Student vector. The Student copula, noted Cν,R is
defined, for all (u,v) ∈ (0, 1)d+1+d2 , by

Cν,R(u,v) = Tν,R
{
T−1
ν (u1), ..., T−1

ν (ud1), T−1
ν (v1), ..., T−1

ν (vd2)
}
.

Using Schur’s complement on the correlation matrix R, it is possible to show
that the conditional distribution of Y given X is also a Student distribution with
ν̃ = ν + d1 degrees of freedom, mean µ = BX, and scale matrix R̃ = λ

ν̃
Ω, where

λ = ν + x>Σ−1
X x, Ω = RY −RYXR

−1
X RXY, and B = RYXR

−1
X . The details of the

derivations are given in Appendix B.
To generate a d-dimensional time series {Xt}t=0,1,... such that (Xt−1,Xt) has

a Student conditional copula Cν,R with marginal distributions F1, ...Fd, and

R =
 R1 R12

R21 R1

 ,
we use the following algorithm :

(1) Generate Y0 from a d-dimensional Student distribution with ν degrees of
freedom and correlation matrix R1.

(2) For all t = 1, 2, ..., generate Yt from a d-dimensional Student distribution
with ν̃ degrees of freedom, scale matrix R̃ and mean BYt−1, where B =
R21R

−1
1 .
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(3) Compute Uit = Tν(Yit), for all i = 1, . . . , d.

(4) Set (X1t, ..., Xdt) = (F−1
1 (U1t), ..., F−1

d (Udt)).

Recall that to generate a d-dimensional random vector Y from the Student
distribution Tν,µ,R, one can generate V from the χ2

ν distribution and set Y =
Z
√
ν/V + µ where Z is a d-dimensional normal vector independent of V with

mean 0 and correlation matrix R.

A.2. Simulation of multivariate time series with Clayton copula

The Clayton copula is a member of the Archimedean family. A copula Cφ is
said to be Archimedean with generator φ if

Cφ(u) = φ−1 {φ(u1) + · · ·+ φ(ud)}

for any bijection φ : [0, 1)→ [0,∞) such that (−1)i di
dis
φ−1(s) ≥ 0 for all s ≥ 0 and

all i = 0, . . . , d− 1. Archimedean copulas are uniquely defined by the generator,
up to a positive scaling factor. The Clayton copula is part of the Archimedean
family and is defined by the generator φθ(t) = (t−θ − 1)/θ with θ > 0. Note that
more generally it is possible to define a generator for the Clayton copula with
parameter θ ≥ − 1

d−1 but we restrict ourself to the case with positive parameter.
Suppose that (U,V) is a (d1 + d2)−dimensional random vector which follows a
Clayton copula Cd,θ, where d = d1 + d2. Then it is possible to show that the
conditional copula of V given U is a Clayton copula with parameter θ̃ = θ

1+d1θ
.

To generate a 2d-dimensional time series {Xt}t=0,1,... such that (Xt−1,Xt)
follows a Clayton copula C2d,θ with marginal distributions F1, ..., Fd we use the
following algorithm :

(1) Generate U0 from the distribution Cd,θ.

(2) For all t = 1, 2, ... and i = 1, ..., d compute

Uit =
[(

d∑
i=1

U−θit−1 − d+ 1
)(

V −θ̃it − 1
)

+ 1
]−1/θ

where Vt ∼ Cd,θ̃ with θ̃ = θ
1+dθ .

(3) Set Xit = F−1
i (Uit) for all i = 1, ..., d and all t = 1, 2, ....

Recall that to generate a d-dimensional random vector Y from a Clayton copula
Cd,θ, we can simulate independently S from a Gamma(1/θ, 1) and E1, ..., Ed from
a Exp(1), and then we set Yi = (1 + Ei/S)−θ for i = 1, ..., d.
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B. Conditional Student distribution
Let Z> = (X>,Y>) be a d = (d1 + d2)-dimensional random vector which

follows a multivariate Student distribution Td(x; ν, bµ,Σ), where ν is the degrees
of freedom, µ> = (µ>X,µ>Y) is a (d1 + d2)-dimensional real vector which is the
location vector and

Σ =
 ΣX ΣXY

ΣYX ΣY


is the scale block matrix. The density function of the above multivariate Student
distribution is defined as

td(x,y; ν, µ,Σ) =
Γ(ν2 + d

2)
|Σ|1/2Γ(ν2 )(πν)−d/2

(
1 + (X− µ)>Σ−1(X− µ)

ν

)−( ν2 + d
2 )

,

where Γ(x) is the gamma function. Moreover, it is well know that all joint distri-
butions of a multivariate Student distribution are also Student. For our concern,
X follows a d1-dimensional multivariate distribution with parameters ν, µ1 and
ΣX .

Let Id and 0d be respectively the d−dimensional identity matrix and null
matrix. Using Schur’s method we can write Σ = A×M ×B where

A =
 Id1 0d1×d2

ΣY XΣ−1
X Id2


M =

 ΣX 0d1×d2

0d2×d1 ΣY − ΣY XΣ−1
X ΣXY


B =

 Id1 Σ−1
X ΣXY

0d2×d1 Id2

 .
Then we see that we can write the inverse of Σ the following way,

Σ−1 =
 Σ−1

X + B̃M̃−1Ã −B̃M̃−1

−M̃−1Ã M̃−1

 (B.1)

where Ã = ΣYXΣ−1
X , M̃ = ΣY − ΣYXΣ−1

X ΣXY and B̃ = Σ−1
X ΣXY. Using (B.1),

we have the decomposition

(Z− µ)>Σ−1(Z− µ) = (Y − µY − ÃX)>M̃−1(Y − µY − ÃX)

+(X− µX)>Σ−1
X (X− µX). (B.2)

It then follows from (B.2) and some algebraic manipulation that the conditio-
nal distribution of Y given X = x is a d2-dimensional Student distribution with
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degrees of freedom ν̃ = ν + d1, location parameter µ̃ = µ2 + Ãx and scale matrix
λ
ν̃
M̃ , where λ = ν + (x− µX)>Σ−1

X (x− µX).





Chapitre 5

CONCLUSION

Notre travail sur les séries temporelles donne une méthode de prévision avec
un grand potentiel d’application, en finance comme dans d’autres domaines. Ces
résultats ouvrent donc la porte à plusieurs projets empiriques. On peut facile-
ment imaginer différentes séries pour lesquelles on pourrait tenter de faire des
prévisions afin de construire de stratégies de gestion de portefeuille. Par exemple,
la volatilité du S& P500 et la valeur des CDS (Credit Default Swap) ou les prix
à l’ouverture d’un titre lors de l’ouverture de deux différentes bourses sur deux
fuseaux horaires différents. D’un autre côté, nos résultats ont montré que cer-
taines structures de dépendance peuvent grandement minimiser l’avantage que
peut avoir l’utilisation des séries multivariées. Il serait donc intéressant de refaire
des expériences numériques sur une liste plus exhaustive de copules afin de gui-
der l’application pratique de notre méthode. En parallèle, il serait envisageable
d’organiser nos codes et d’en faire une librairie afin de faciliter l’application.

Le modèle de marché du chapitre 3 représente bien la mécanique de transac-
tion des ordres de marché et l’impact sur la structure de carnet d’ordres limites.
Cependant, le modèle, tel qu’il est présenté dans toute sa généralité, est com-
plexe et difficile à manipuler. Par contre, il serait possible de construire des cas
particuliers pour lesquels certaines questions financières pourraient être étudiées.
Par exemple, puisque le modèle généralise celui de Predoiu et al. (2011), il serait
peut-être possible d’utiliser leur solution pour le problème d’execution optimale
et de l’appliquer à d’autres cas que notre modèle pourrait générer. D’un point de
vue plus pratique, l’article contient un exemple avec une méthode de calibration,
il serait intéressant de calibrer le modèle sur des données réelles et voir comment il
est possible de bien représenter ces données. Finalement, d’un intérèt strictement
théorique, la théorie des semimartingales avec paramètre spatial est développée
seulement pour les semimartingales continues. À l’instar de la théorie classique du
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calcul stochastique, il serait intéressant de généraliser cette théorie aux processus
avec sauts.

Le Chapitre 4 solutionne le problème de tarification et de couverture pour
des options européennes d’achat et de vente dans un modèle de marché à une
période pour le carnet d’ordres limites. La première idée qui nous vient en tête
est évidemment d’étendre le problème au cas multipériode. Cependant, pour le
cas multipériode, notre approche nécessite de de considérer séparément les cas
où la valeur du compte bancaire est positive ou négative, et ce, pour chaque pé-
riode. Le nombre de cas à traiter croît donc de manière exponentielle. De plus, le
problème d’optimisation n’est plus convexe (resp. concave) en général pour le cas
multipériode, ce qui complexifie encore le problème. L’extension de notre mé-
thode est donc peu envisageable et une autre approche devra être développée. Il
est aussi possible d’obtenir les mêmes solutions en utilisant la méthode d’optimi-
sation primal-dual, mais la difficulté reste la même. D’un autre côté, la simplicité
du modèle nous a permis d’obtenir des conditions moins sévères pour l’absence
d’arbitrage. Il serait intéressant d’étudier si ces conditions peuvent se transposer
au cas continu.
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