
Université de Montréal

Privacy in Bitcoin through decentralized mixers

par

Olivier Coutu

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures

en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en informatique

30 Avril, 2014

c© Olivier Coutu, 2014.



Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé:

Privacy in Bitcoin through decentralized mixers

présenté par:

Olivier Coutu

a été évalué par un jury composé des personnes suivantes:

Louis Salvail, président-rapporteur

Alain Tapp, directeur de recherche

Neil Stewart, membre du jury

Mémoire accepté le: 31 Décembre 2014



RÉSUMÉ

Dans les crypto-monnaies telles Bitcoin, l’anonymité des utilisateurs peut être com-

promise de plusieurs façons. Dans ce mémoire, nous effectuons une revue de littérature

et une classification des différents protocoles existants pour anonymiser les usagers et

analysons leur efficacité. S’appuyant sur certains critères désirables dans de tels proto-

coles, nous proposons un modèle de mixeur synchrone décentralisé. Nous avons ciblé

deux approches qui s’inscrivent dans ce modèle, le plan de transaction et le réseau de

transactions, le second étant une contribution originale de ce mémoire. Nous expliquons

son fonctionnement puis analysons son efficacité dans le contexte actuel d’utilisation de

Bitcoin.

Mots clés: Bitcoin, anonymité, vie privée, mixeur, argent électronique, réseau.



ABSTRACT

In cryptocurrencies such as Bitcoin, the anonymity of the users may be compromised

in many ways. In this thesis, we review the literature concerning existing protocols used

to increase anonymity by a method called mixing and produce a classification for such

protocols. We propose a decentralized synchronous N-to-N mixing model that takes into

account many considerations of mixers. We address two frameworks within this model,

the transaction blueprint and the network of transactions, the second approach being a

new contribution. We explain how it functions and analyse its efficiency in the current

Bitcoin ecosystem.

Keywords: Bitcoin, anonymity, privacy, mixer, ecash, cryptocurrency, network.
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INTRODUCTION

While computer security has been extensively studied since before the dawn of the

Internet, privacy in the digital world has become more relevant in recent years, as indi-

viduals may wish to shield their private life from governments and private corporations.

This thesis addresses one specific aspect of this phenomenon, that is the lack of privacy

in the world of commerce, and analyses the performance in that regard of the Bitcoin

cryptocurrency. To motivate this thesis, we initially survey both the positive and nega-

tive consequences of privacy, or the lack thereof, with regard to financial transactions.

The Case Against Privacy

Opponents of privacy within payment systems point to a number of problems that

may stem from anonymous payment. Elias [37] argues that anonymous payments may

act as a Ring of Gyges 1 on the Internet and allow nefarious users to commit crimes

in an anonymous manner. The nefarious application that is arguably the most cited

[39, 74, 78] in this context is money laundering, that is the concealment of the source of

a large amount of money. This facilitates tax evasion, although some argue that it would

only democratize it [38]. Additionally, criminals of all kinds may demand to be paid

in some form of anonymous payment such as Bitcoin in order to avoid being identified.

Widespread usage of an anonymous payment system for this purpose might force law

enforcement agencies to adapt their means of identifying criminals.

Although published before the rise to prominence of Bitcoin, the Financial Action

Task Force’s Money Laundering Using New Payment Methods [39] report examines the

use of various anonymous or semi-anonymous payment methods and their usage for

money laundering. The report illustrates not only the variety of ways that money can

be laundered using these payment methods but also the various ways that criminals are

caught even though the payments are anonymous.

Other alarming possible consequences of anonymous payment systems relate to ran-

1. In The Republic, Plato posits that no man could possibly be virtuous while possessing a ring that

had the power to make the wearer invisible.
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soms. Ransomware [48] such as Cryptolocker is a type of malware that has been used

by criminals to encrypt victim’s hard drives and offer to decrypt them in exchange for

payment. Payment systems such as Bitcoin enable the attackers to receive the funds

securely, anonymously and irreversibly, which would not have been possible with tra-

ditional payment methods. For instance, an anonymous poster claiming to own 2012

American presidential candidate Mitt Romney’s tax return asked for a Bitcoin ransom

[29] in order not to publicize the document, and one might imagine how not only infor-

mation but also objects and even people might be ransomed through Bitcoin.

The Federal Bureau of Investigation (FBI) has taken notice of Bitcoin and assessed its

use for illegal activities [74]. Among its conclusions, this US government organisation

believes that cyber criminals would use Bitcoin as a payment option and possibly use

it to launder money or make donations to illicit groups. The FBI also believes that law

enforcement still have the ability to identify malicious actors if these actors convert their

coins into fiat currency through enforcement of anti-money laundering laws concerning

third-party Bitcoin services that exchange money for Bitcoins.

The Case For Privacy

In 1975, Foucault expanded Bentham’s idea of the Panopticon in his book Discipline

and Punish [40]. The Panopticon represents the idea that a citizen can be placed in a sit-

uation where they might constantly be spied upon without them knowing when it is the

case. In 2013, National Security Agency contractor Edward Snowden leaked documents

to The Guardian’s Glenn Greenwald and Laura Poitras that proved that governments

around the world were collecting massive amounts of data on users and decrypting com-

munications previously thought secure with limited or inexistant judicial oversight [3].

This massive collection of private information enables governments to potentially spy

on both their own citizens and people abroad in a manner that would have been unimag-

inable even in Orwell’s 1984 [76]. It also is a realization of Foucault’s Panopticon, as

one can never know when they are being spied upon.

One specific aspect of this breach of privacy comes in the form of financial trans-
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actions, that is, information on who is transferring funds to whom and for what reason.

This transfer of funds might happen when a product is bought, when money is deposited

at the bank or when a donation is made. There are many aspects of money transac-

tions that can leak information that users might prefer to keep private. For example, one

might not want one’s colleagues and friends to learn one’s salary or where one spends

their money. While this demand for privacy is often with respect to other people that

one may know personally, some people demand that corporations or even the state or the

bank not know how they are spending their money.

The lack of privacy with respect to corporations may have unexpected consequences

for the users of the services they offer. Unrestrained access to a customer’s purchasing

history or financial data through the use of fidelity cards or credit cards enables these

companies to paint a precise portrait of a customer’s habits. One controversial conse-

quence of this data collection might be some form of data redlining, that is discrimination

between customers based on the data collected about them, e.g. denying a loan [52]. An-

other remarkable example of privacy breach happened when the marketing department

of the Target stores was able to correctly guess that a young woman was pregnant by

analysing her purchasing behavior [35]. This enabled the marketing department to send

her coupons by mail for diapers and other baby items before the baby’s birth. However,

receiving these coupons forced the young woman to admit to her parents that she was

pregnant before she wished to do so. This story illustrates the very real consequences of

the lack of privacy that are already upon us today.

This transaction data may also be used by the state to collect information on indi-

viduals. One of the Snowden leaks [89] has shown that the NSA is already collecting

financial information from major credit card companies with the avowed objective of

"[collecting, parsing and ingesting] transactional data for priority credit card associa-

tions, focusing on priority geographic regions." Furthermore, donors and supporters of

organizations that are deemed against the interest of the state may be harassed [43]. This

enables a 1984-esque social control and repression of political enemies by the state. If

it is acceptable in so-called liberal democracies to detain people with connections to

whistleblowers [4], one can only imagine what an authoritarian government with an all-
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seeing eye may do.

Finally, we consider that the "illicit groups" that the FBI refers to may include groups

that are considered subversive and do not align with the interests of some governments

but whose actions are lauded by others. One such example is the whistle-blowing website

Wikileaks. When governments forced major credit card companies to cease accepting

payments for Wikileaks donations [6], the website turned to Bitcoin to enable donations

that would not be censored by governments. While the way that Wikileaks handled the

anonymity of the donations might be criticized [79], anonymous donations might be

necessary to avoid the kind of repression that has come with being associated with the

whistle-blowing organisation [43].

Similarly and quite prominently, The Silk Road 2 is a website that sells various, gen-

erally illicit goods and accepts only bitcoins. The website is only accessible through

Tor to conceal IP addresses and relies on Bitcoin’s anonymity to protect both the mer-

chant’s and customer’s identities. While few condone some of the services offered on

the website, such as assassinations, many libertarians involved in Bitcoin rejoice at the

idea of buying drugs from sellers who can maintain a reputation on the website. Eventu-

ally, one might imagine such a market where goods that are not illicit can be b ought on

the internet by people who are simply concerned about the privacy-breaching measures

described above.

Although we realize that the downsides of anonymous payments are present, we be-

lieve that the increase in privacy not only acceptable but necessary, which is why we

wish to encourage the development of more anonymous payment methods. Further-

more, we believe that Bitcoin’s possible anonymity should be publicized and cherished

accordingly.

Plan

This thesis is divided as follows. In chapter 1, we describe e-cash and some imple-

mentations of the concept. In chapter 2, we introduce Bitcoin and explain how it works

2. This website cannot is only accessible through Tor and its location changes over time.
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and how it compares to traditional e-cash. Chapter 3 exposes the difficulties in being

anonymous while using Bitcoin and defines our threat model. Chapter 4 surveys differ-

ent ways that users mix their coins to become more anonymous. Chapter 5 describes one

approach to mixing that has been explored before while in chapter 6 we propose a new

framework to mix bitcoins. We conclude with some final remarks and avenues for future

research.



CHAPTER 1

E-CASH

Before addressing the Bitcoin protocol per se, we briefly review the state of research

on various means of anonymous financial transactions.

1.1 Cash and Modern Banking

Cash tends to be what people think of first for anonymous financial transactions.

Upon closer inspection however, cash is not truly untraceable as in most currencies, each

paper unit has a serial number that can be traced. Some collaborative 1 or law enforce-

ment [60] efforts attempt to track or follow cash. Nevertheless, effectively tracing a large

number of units to produce a complete map of transactions is considered impossible in

most situations.

On the other hand, modern banking and the use of credit cards, debit cards, cheques

and wire transfers is built to be traceable. Every time money changes hands this way,

the bank knows the sender, the receiver, the amount and the time of the transaction. This

information is necessary to the functioning of the system as the bank must know at all

times the balance of its users’ accounts to decide if transactions should be accepted or

not.

The collection of this information represents a breach of the bank user’s privacy.

Furthermore, a bank can merge this data with the data provided by the bank users when

opening an account to assemble a precise portrait of the users and their real-world habits,

again compromising their privacy. These concerns motivate the study of e-cash, whose

objective is to make all these convenient electronic transactions possible without violat-

ing users’ privacy [80].

1. For example http://www.trackmycash.com/.
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1.2 Setting

Electronic money (or e-cash) was first introduced by Chaum [26]. The goal of e-

cash is to enable private electronic banking transactions between users in that the bank

needs not know the identities of the users taking part in a transaction. An e-cash protocol

involves three types of entities that exchange uniform value denominations called e-coins

or simply coins.

– Users want to spend coins anonymously. They have accounts in banks with bal-

ances in other currencies.

– Merchants want to accept payments in e-cash that they can later redeem for an-

other currency at the bank.

– Banks enable users to withdraw money and merchants to deposit it. It credits the

accounts of both parties appropriately.

While a merchant might also be a user, we consider these roles differently as most

protocols use coins that are not transferable without passing through the bank.

1.3 Security

Currencies, whether virtual or real, have a certain set of desired properties [58, 66].

A proper currency should be difficult to forge or duplicate. This presents a challenge

for e-cash as the currency is just data that is easily copied from one device to another.

Measures must be taken so that it is impossible for a single coin to be spent in two

transactions in such a way that both transactions are simultaneously considered valid.

Such an occurrence is called a double spend.

Different measures are taken by e-cash schemes to detect and prevent double spend-

ing. When a scheme is online 2, a double-spend can usually be immediately detected

and blocked, as the merchant will not accept the coin. For offline schemes, the de-

tection happens after the purchase and appropriate measures are taken by the bank to

identify and punish the offending users. While most proposed e-cash protocols in the

2. A scheme is called online if the merchant and the bank are always communicating during the Spend
phase of the protocol.
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literature [21, 24, 28] have provided offline solutions, Bitcoin uses online verification to

prevent double-spending. Finally, Aaronson [1, 2] proposes a protocol that would use

the no-cloning theorem from quantum mechanics to guarantee that the money will not

be copied, which enables his schemes to simply ignore double-spending.

1.4 Overview

While we do not do provide a complete description of any particular e-cash scheme,

we describe an general overview that most e-cash schemes follow that is based on

Chaum’s first protocol with Fiat and Naor [28].

The idea of the protocol is the following. First, Alice creates an account at the bank

where she is given an identity and a secret key. At this point, Alice’s identity is known to

the bank. When she withdraws funds, the bank blind-signs 3 a coin that acts as a prepaid

cheque and withdraws the funds from Alice’s account. Alice can then send the coin to a

merchant, who can verify its validity since it is signed by the bank. When the merchant

cashes the cheque at the bank, the bank accepts the cheque as it has signed it before but

cannot tell it came from Alice. We now describe a more formal protocol.

In the first step, Alice creates an account at the bank where she generates public key

pkU and secret key skU and deposits some funds. The bank knows pkU and each coin

that Alice withdraws will contain some information about pkU . Alice’s withdrawal of

a coin is illustrated in Algorithm 1. This protocol is online since it requires interaction

between Alice and the bank.

3. A blind signature is a signature where the bank signs a message without knowing the exact content

of the message but while knowing some information about the message. In this case, the bank knows that

the coin is well-formed. For more information, see [28].
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Algorithm 1: Withdrawal

1 Alice identifies herself to the bank with pkU and authenticates by using skU to

sign a random string given by the bank;

2 Alice chooses 2k random values (a0, ...,a2k) and produces h(ai) and h(ai⊕ pkU)

∀i where h is a collision-resistant hash function a. These hash values act as

commitments b to values (a0, ...,a2k);

3 Alice gives the bank all of the previous hash values, thus committing to

(a0, ...,a2k);

4 The bank asks Alice to reveal ai for k values of i that the bank chooses. It then

verifies that the committed hashes correspond to the values given by Alice for

both values of each pair;

5 If all of the k opened commitments are valid, the bank knows that Alice can only

have cheated with probability O( 1
2k−1 ) for each commitment pair that it has not

opened. If even one of the commitments that the bank opens is invalid, the bank

aborts the protocol;

6 The bank blind-signs the k remaining pairs to produce σi for each remaining

commitment. These k hash pairs constitute k messages mi. With their k signatures

σi the set of k pairs (mi,σi)∀i constitutes a coin;

7 Alice’s account is debited by the bank;

a. A collision-resistant hash function h is a hash function where the probability that a probabilistic

polynomial-time bounded adversary knowing h can find x and x′ such that x 6= x′ and h(x) = h(x′) is

negligible. A formal definition can be found in [56, p. 8].

b. A commitment can be thought of in the following way. Alice puts a message in a safe, locks the

safe and gives it to Bob. At a later time, Alice may send the key to Bob so that Bob may discover the

message. For more information on commitments, see [84].

The protocol that Alice uses to spend a coin is illustrated in Algorithm 2. The bank

does not need to be involved in this step, making it offline.
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Algorithm 2: Spending

1 Alice shows the merchant the coin composed of k messages and signatures

(mi,σi);

2 The merchant uses cut-and-choose to verify that the messages and signatures are

properly formed. This means that for each message, the merchant asks Alice to

either reveal ai or ai⊕ pkU ;

3 If all of the commitments revealed are valid and the messages are correctly

signed, the merchant accepts the coin and keeps a record of the transaction;

Finally, the merchant deposits the coin at the bank in Algorithm 3.

Algorithm 3: Deposit

1 The merchant brings the transaction log to the bank;

2 If the coin is valid and was never spent, the bank credits the merchant’s account

and keeps a copy of the transaction log;

3 If the coin is invalid, the merchant should not have accepted it and the deposit is

refused;

4 If the coin is valid but was already spent, the combined information related to both

transactions from this coin enables the bank to obtain pkU with high probability.

Alice is then appropriately punished;

In online protocols [47], the merchant is communicating with the bank during the

Spending phase and the Spending and Deposit protocols are combined into a single phase

where the merchant knows immediately if the coin has already been spent.

1.5 Identifying Double-Spenders

Suppose Alice double-spends a coin. The first spending transaction to be brought

back to the bank is accepted, the merchant’s account is debited and the bank keeps a

copy of the transaction log. When the second spending transaction is brought to the

bank, it will try to identify the double-spending user. To do so, the bank looks at the
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logs of both transactions. Each transcript will contain either ai or ai⊕ pkU for k values.

If the two transcripts contain answers to a different query for even one i, the bank will

be able to extract pkU = ai⊕ai⊕ pkU and thus Alice’s identity. The probability of each

merchant asking exactly the same queries is 1
2k and thus negligible for large k. If this

does happen, that bank can reliably infer that both merchants were colluding in asking

the same questions, and can refuse to debit the second merchant. Once the offender has

been identified, the bank may take appropriate measures to deal with her.

1.6 Analysing Anonymity

We briefly argue why an honest user Alice cannot be linked with her spend transac-

tions while executing this protocol. This means that she can withdraw coins at the bank

and spend them with a merchant without the bank and the merchant being able to know

that both transaction involves the same person when the merchant deposits the funds at

the bank.

1. Withdrawal: Alice creates her key pair on her own, thus the bank learns no in-

formation on it. When Alice registers at the bank, it learns her public key pkU .

When she comes back to the bank, Alice authenticates with skU but never reveals

it. It is not necessary for the bank to know any information about Alice. When

Alice withdraws coins, the bank learns that Alice, or specifically the person with

public key pkU , has withdrawn coins. The bank signs k messages mi for Alice

without ever seeing them, and only knows that the message is well formed except

with a small probability. This lack of identifying information on mi and σi is the

consequence of blind-signing.

2. Spending: When Alice spends the funds, the merchant may learn ai or ai⊕ pkU

∀i but never learns pkU . Furthermore, the merchant verifies that the signatures are

valid but the signatures reveal no information about pkU .

3. Deposit:When the merchant shares the transcript with the bank, neither party

learns Alice’s identity as the bank has never seen the mi or σi before.
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1.7 Limiting Anonymity

Anti-money laundering (AML) laws in the U.S. and around the world are one of the

political aspects that limit the adoption of e-cash. A number of adaptations to e-cash have

been proposed to comply with such laws and strike a balance between accountability and

anonymity. The simplest solution is to use a trusted third party (TTP) to make sure AML

laws are respected [22, 50, 57, 90]. However, this approach goes against the aim of

e-cash since it requires the TTP to trace transactions to particular users. Furthermore,

the TTP would need to trace every transaction, which would be very expensive in this

model. Another variant [49, 75] that doesn’t use a TTP makes user’s coins anonymous

but linkable, so that excessive spending is detected. Hohenberger [47] introduced the

bounded-anonymity model where each receiver has a publicly-known limit to the number

of coins that may be received within a certain time window. A simpler variant [54]

would be to divide time into short time periods and issue at most k coins to a user per

time period. One consideration is that this variant might fail to fulfill certain transaction

needs or might be vulnerable to Sybil attacks 4.

1.8 E-Cash Adoption

Although proposals for e-cash have been numerous [1, 21, 24, 28], none of the im-

plementations have been commercially successful. In 1990, Chaum founded Digicash,

an e-cash company that was to apply the scheme he had devised, but the company filed

for bankruptcy in 1998[44]. Another cryptography-based anonymous payment system,

e-gold, suffered a similar fate due to a lack of compliance with AML laws. This lack

of adoption explains why e-cash has not been in the spotlight before the invention and

relatively massive adoption of Bitcoin.

4. A Sybil attack happens when one party pretends to be many different parties, see [34].



CHAPTER 2

BITCOIN

In 2008, a pseudonymous developer known as Satoshi Nakamoto released a paper

[72] that laid the foundation of a digital currency called Bitcoin. This currency repre-

sented a major departure from previous digital currencies as it is entirely decentralized,

meaning there is no bank to issue the currency or verify the authenticity of the transac-

tions. Bitcoin exists only as a peer-to-peer network where each peer may access the en-

tire history of transactions. While the users themselves are pseudonymous 1, the balance

of each user’s account is public and every peer can verify that an outgoing transaction is

valid and has not already been spent.

In 2009, Nakamoto released the first open source software implementation of his

idea [73]. This original client 2 is now known as the Qt-client 3 and is the default client

to manage Bitcoin wallets 4. Other clients such as Bitcoin Armory 5 and Electrum 6

now offer different features based on the same protocol. As the userbase grew, more

developpers started working with Nakamoto and using Bitcoin and the value of each

bitcoin grew from under a penny in 2009 to over 1000 USD in 2013 [18]. The rising

value of the currency has brought it to the spotlight in the media and in the eyes of

security researchers. Nevertheless, even with the source code under scrutiny, a major

breach in the security of the protocol has yet to be found. The anonymity of the protocol

however has been called into question by many studies [5, 7, 79, 83].

1. Pseudonimity is the lack of a need to use personally identifying information as users are identified

through pseudonyms.

2. A client is a program that is used to send and receive bitcoins.

3. http://sourceforge.net/projects/bitcoin/

4. A Bitcoin wallet is similar to a bank account.

5. https://bitcoinarmory.com/

6. http://electrum.org/
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2.1 Bitcoin Overview

A bitcoin (abbreviated btc or coin) can be described as a chain of transactions from

one user to the next. Each user owns both a public key and a private key that are used

for signatures, the public key also serving as a pseudonym. To spend a coin, a user Alice

must sign a hash of both the transaction in which she received the coin and the public

key of the next owner, thus transferring ownership of the coin 7. This signature then

becomes a part of the coin. Because each transaction references the previous transaction,

each coin includes a chain of transactions whose authenticity can be verified back to its

original minting.

A newly signed transaction must be sent out to the network to be validated. There is

no centralized issuer or verifier in Bitcoin so these duties are handled by miners. These

particular users chose to dedicate some hardware to solving a difficult computational

problem known as a proof of work. Every time a miner succeeds in solving a problem,

they create what is known as a block that consists of a set of transactions that are then

marked as validated as well as a reference to the previous block that was accepted by the

network. Additionally, creating a block instantly mints a certain number of new coins

for the miner to reward them for the effort of solving the problem. This is also how

new coins are created as no centralized authority can issue them. This is illustrated in

Figure 2.1 8.

7. One can imagine Alice sending Bob a cheque, and then Bob signing under Alice’s signature to

enable Catherine to cash the cheque.

8. Image taken from http://www.builtinchicago.org/blog/beginners-guide-

bitcoin-part-one.
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Figure 2.1: Bitcoin network overview
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2.1.1 Bitcoin Developement

The core of the Bitcoin protocol follows what was initially proposed and imple-

mented by Satoshi in the first Bitcoin client but there have been minor revisions to the

protocol. These modifications influence not only how the clients work internally but

how they interact. For example, in 2013, there has been some debate as to whether the

maximum size of a block should be increased. If such a change were enacted, all of the

Bitcoin clients would have to simultaneously switch to the new version of the protocol.

If this were not the case, the clients using different versions of the protocol would not be

able to communicate, and the network would split with disastrous results. Major changes

in the protocol are called hardforks [17], as opposed to softforks that are changes in the

way the protocol is handled that are compatible with clients that have not enacted these

forks. While hardforks have been done in the past 9, they introduce stability risks and

require overwhelming consensus. For these reasons, we concentrate in this thesis on

exploring softforks as well as techniques that do not require any changes to the current

Bitcoin protocol.

2.2 Transactions

In a traditional bank account, each account has a balance that lists the amount of

money that it contains. The balance itself is independent of where that money came from,

although banks might sometimes keep that information about the users. In Bitcoin, the

balance of an account is determined by the number of coins that this account controls. In

this context, the coins controlled by an address are called transaction outputs or txouts

as they represent the output of a previous transaction. The total amount of coins carried

by these txouts corresponds to the balance of an account. When Alice creates a spend

transaction for Bob, she will always specify what txouts she is spending, although this

will typically be done automatically by the client software.

The spending of txouts is similar to choosing coins in a purse to pay a merchant for

9. http://siliconangle.com/blog/2013/05/13/bitcoin-blockchain-hard-

fork-coming-may-15th-final-warning/
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a pack of gum. For brick-and-mortar stores, the merchant will give Alice change for her

coin if she doesn’t have the correct denominations, while in the case of Bitcoin Alice

can give herself the change from the transaction. As in the physical case, Alice needs

to fully spend every txout she uses as an input, but this change is returned to Alice as a

new txout. It is recommended [15] that Alice use a new address for every change txout

that she receives for privacy reasons.

2.2.1 Address Generation

Consider a user Alice that wants to create a new Bitcoin public key. She uses an

ECDSA elliptic-curve based signature scheme 10 to generate a public-private key pair

ECDSA→ (ska, pka)

Here, skA is a 256-bit integer private key and pka is the corresponding 520-bit public

key . This public key is then hashed through both SHA256 11 and RIPEMD160 12 and

transfered into Base58 13 for readability and error-checking reasons. The result is what

is called an address. This transformation is illustrated in Figure 2.2 from Bitcoin forums

user itotheipi.

Addresses are the equivalent of bank accounts. Alice can publicize her address and

receive transactions to that address as she would receive cheques to her bank account.

As address generation is free, fast and can be done offline, Alice may easily create any

number of addresses. When they are created, these addresses do not control any funds,

and are similar to an empty bank account.

2.2.2 Transaction Verification

Suppose Alice has produced and publicized transaction txab that sends funds to Bob’s

address B. Suppose then that Bob wants to spend the funds he has received to Catherine’s

10. ECDSA specification secp256k1 http://www.secg.org/collateral/sec2_final.pdf.

11. http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

12. http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

13. https://en.bitcoin.it/wiki/Base58Check_encoding







20

validated. A block that contains an invalid proof, an invalid transaction or any error will

be considered invalid itself and thus ignored by the network.

2.3.1 Reasons for Block Creation

There are three reasons that we can see to justify the use of a proof of work within

the Bitcoin network.

First, miners act as gatekeepers to the integrity of the network. They are necessary to

keep the network coherent as they are the entities that stop double spending by validating

transactions. These duties could be handled by a centralized entity in a much simpler

and more efficient manner by simply publishing an official record of transactions that are

valid, but this would go against the design goal of Bitcoin as a decentralized currency.

The second reason for the proof of work is its predictable outcome and lack of scaling

that makes decentralization possible. It is designed in such a way that financial invest-

ments in solving it give a linear expected financial return. This makes it unlikely that a

single party might get a monopoly on mining since even parties with limited resources

can mine profitably. This conception has arguably been weakened by the emergence of

application-specific integrated circuits [51].

Finally, since the expected time between blocks is known, the rate at which blocks

are received acts as a proof of connectivity to the entire network for peers. This means

that if an attacker were to attempt to split the network in two to enable the spending of a

transaction in both halves simultaneously, users could realize that the network has been

split through the slowdown in block creation and the attack could be thwarted.

2.3.2 Mining Specifications

Mining a block is similar to winning the lottery by randomly picking a number with

the correct properties. To mine a block, a miner must produce a block header BH [13]

such that

SHA256(SHA256(BH))< target
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where target is a 256-bit large number that determines the level of difficulty of mining

at a specific time.

In addition to a reference to the previous block, there are elements in the block header

that vary with each try. The difficulty of block generation, that is the target above, is

adjusted dynamically. Details are in Appendix I.

2.4 The Blockchain

Since each block validates some transactions, two incompatible 15 transactions can-

not be concurrently accepted in two different blocks. To prevent this from happening,

each new block must refer to the preceding block that was published to the network by

integrating its hash into the proof of work. This chain of blocks extends from the most

recent block until the first block ever created, the genesis block. This chain is called the

blockchain and acts as a distributed timestamp server. As each transaction that is ac-

cepted by the network belongs in a block, the blockchain represents the exact state of the

network at any given time. Alice can download what she is missing from the blockchain

at any time from the peer-to-peer network, which removes the need for any centralized

entity to keep track of the transactions. As the blockchain is self-certifying, an external

entity is not needed to verify its authenticity.

2.4.1 Blockchain Forks

Whenever a block is created, it is rapidly sent to the entire network for validation.

Whenever a miner receives a block, they will start working on a new block that references

it. As the expected time between the creation of two valid blocks is 10 minutes, it might

happen that two blocks are created almost simultaneously, both referencing the same

previous block. As only one block may directly follow another, the network must decide

which of the two blocks will be considered valid.

This situation is known as a blockchain fork, at which point different parts of the

15. Two transactions are incompatible if each specifies the sending of a single txout to different ad-

dresses.
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network accept different blocks as valid. As each miner works to build on top of the

most recent block that they have received, one of the forks will become longer as more

blocks are generated and added to that fork. The miners then abandon the shorter fork

and the blocks within it. The transactions included in the abandoned blocks are no longer

considered valid but may be validated in later blocks in the dominant blockchain. This

is illustrated in Figure 2.4

Figure 2.4: Blockchain image taken from [12]

Because of this uncertainty concerning the permanence of blocks, transactions that

are included in a block that does not yet have another block following it are typically

not yet considered fully confirmed. We name the number of blocks built over the block

a transaction txA is in the number of confirmations of txA. Typically, a transaction is

considered confirmed once it has six confirmations 16.

2.5 Hypotheses in the Bitcoin Network

The functioning of the Bitcoin network relies on some fundamental hypotheses. The

first is that a majority of the miners are not colluding to cheat the protocol, as they

are the gatekeepers of the validity of the transactions. We note here that this majority

16. Satoshi Nakamoto determined that with such a number the probability of the branch being later

abandoned is extremely low [72]. Specifically, an adversary that could control 10% of the hashing power

of the network would be able to catch up to 6 blocks with a probability lower than 0.0002429.
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is not a strict N >
1
2
, but the chances of abusing the protocol grow very rapidly with

the increasing number of colluding miners [72]. It is conceptually easier to consider

the miners as discrete entities, but as the power to validate transactions comes from the

ability to solve a computational problem, a miner’s representation in these decisions is

directly proportional to the amount of computing power they have.

The second hypothesis is that the computational problem solved by miners is hard,

that is the SHA256 hashing function is collision resistant [56]. Furthermore, it is an

unofficial requirement that mining must be able to be done in a decentralized manner. For

this to be the case, the proof of work problem must be without memory so that increases

in raw computing power increase the probability of solving the proof of work no more

than linearly. As noted above, it can be argued that the emergence of application-specific

integrated circuits has reduced decentralization of mining due to the investment required

in order to mine profitably.

Finally, it is assumed that the network is fully connected that is every node can com-

municate with every other node and any update to the blockchain is rapidly known to the

entire network. If a part of the network were to be separated from the rest, a txout could

simultaneously be spent on both networks and the authenticity of the Bitcoin network

would break down. One defense against this type of separation is to check the rate of

block creation on the network. If it were to suddenly drop, one might suspect something

is amiss and use extra caution. If an adversary had enough mining power to compensate

for that hash rate, it would be more financially interesting to use that hashrate following

the network rules than to enable a double-spend in most cases, that is whatever means

could be used to cheat would be better used by a profit-driven adversary to cooperate

with the network.

2.6 Differences Between Bitcoin and E-Cash

While traditional e-cash relies on a centralized authority, namely a bank, to issue and

often verify the authenticity of transactions, Bitcoin operates in an entirely decentralized

fashion. This means that the state of the currency is not determined by a bank but by
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the state of the network. The authority over what happens to the network belongs to

the majority of the miners, as they are the ones that eventually decide if a transaction

is accepted or not, and any change to the protocol needs to be approved by a majority

of miners. Furthermore, there is no distinction between a user and a merchant from the

network’s point of view. As nothing needs to be hidden on the Bitcoin network, there is

no encryption of any kind that is used. Private keys used for signing are the only private

component of the network and they are never transmitted over the network.

While most e-cash schemes in the literature are offline, Bitcoin is inherently online

as a user must be aware of the state of the network to be able to assess if a transaction is

valid. On the other hand, it is not required for a user to be online to receive funds from

a transaction.



CHAPTER 3

ANONYMITY IN BITCOIN

Anonymity is generally not recognized as an explicit goal of Bitcoin by the core de-

velopers [11], and Bitcoin has often been called pseudo-anonymous [20]. Specifically,

if Alice does not actively try to hide her tracks, public access to the blockchain makes

it easy for anyone with an internet connection to link transactions, which is considered

undesirable to the privacy seekers [15]. The level of anonymity granted by the use of

pseudonyms in Bitcoin has been called into question by many researchers [5, 7, 79, 83].

Nevertheless, Bitcoin’s use of pseudonyms only, or pseudonymity, has encouraged a

number of users that want to use the currency as a way to conduct anonymous transac-

tions. We briefly survey attacks on the anonymity of Bitcoin users.

3.1 De-Anonymizing Bitcoin Users

At first glance, Bitcoin might look like a truly anonymous protocol because Alice

never has to identify herself with her true identity in order to spend or receive coins.

Furthermore, Alice may have as many identities as she wants and can create a new one

for every new transaction. However, there are many ways that Alice’s identity could be

known to some users on the network without her knowledge or consent. Once her real

identity can be linked to an address A that she controls, then any address that A interacts

with can be linked to Alice in some way.

3.1.1 IP Addresses

IP address leaking is always a risk to privacy within the Bitcoin network or any

computer network. When Alice decides to publish a transaction to the network to be

approved, she sends it to a few nodes on the network, who send it to more nodes and

so on until the whole network of listening nodes is aware of the proposed transaction.

If an adversary had a sufficient number of nodes listening in on the network, then that
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adversary might be able to detect what IP the transaction is originally coming from.

Kaminsky [55] proposed the idea and wrote a software called Blitcoin as a proof of

concept.

Bitcoin is not the first electronic protocol where users may want to hide their IP

address, and IP-anonymizing networks such as Tor [33] and I2P 1 can be used to conceal

IP addresses. These protocols have known weaknesses [10, 46] that can be exploited in

specific circumstances, but we do not concern ourselves with these weaknesses in this

thesis. Since these solutions to IP address leakage are network-wide and not specific to

Bitcoin, we do not treat them further but assume that in every protocol, users are using

an encrypted, authenticated and pseudonymous connection to exchange information and

publish transactions to the network.

3.1.2 Entering or Exiting the Network

Most users of the Bitcoin network are not miners. These users must get their coins

before they spend them, which means someone has to send them coins. If Alice receives

coins at address A from Bob 2 for whatever reason, it will probably happen that Bob has

some information about Alice. This information can be as directly identifying as her

name and home address or as remote as the IP address that she used to contact Bob. The

same reasoning can be applied to exiting the Bitcoin network. As a financial transfer

medium, bitcoins are only useful if they can be spent, that is exchanged for something

outside of the Bitcoin network. In the vast majority of cases where Alice sends some

coins to Bob, he will learn something about Alice. This could be what Alice looks like

and in what city she lives if the transaction is done face to face, or her postal address if

Bob is shipping something to Alice.

1. http://geti2p.net/en/

2. We note that Bob could be a bank.
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3.1.3 Linking Addresses

Alice might be tempted to mitigate this information disclosure by sending the exact

amount that she owes Bob from her main 3 address A1 to a one-time spending address

A2 that is only used for this one transaction with Bob. Alice could then discard A2 after

the transaction with Bob as one would discard an empty subway card. However, since

the entire history of transactions is public, Bob or anyone else could see that A2’s funds

came from A1 and thus reasonably infer that A1 also belongs to Alice. The transfer of

one address’s information to another is called taint.

The most direct way that addresses can be linked is by appearing together in the

same transaction. Suppose Alice wants to buy a car from Bob that costs 5 btc and owns

a total of 6 btc divided in two addresses A1 and A2, each address controlling a single

txout valued at 3 btc. In this case neither address controls enough funds to buy the car

but Alice can combine the txouts of both addresses to pay Bob in a single transaction

tx : (A1,A2)⇒ (B,A3) or more precisely

txoutA1

3btc
−→ B

txoutA2

2btc
−→ B

txoutA2

1btc
−→ A3

Since txouts must be spent entirely to be spent at all, A1 and A2’s balances go to zero

and A3 receives the change of the transaction 4, that is 1 btc minus the transaction fees.

The transaction is broadcast to the network and eventually confirmed.

On the privacy side, such a transaction of course leaks some of Alice’s private in-

formation to Bob, such as her ownership of addresses A1, A2 and A3 but also leaks

some information to any observer that watches the blockchain once the transaction is

confirmed. For a transaction to be accepted, all parties inputting funds must sign the

3. In most wallets, there is no such thing as a main address.

4. It is called the change address.
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transaction, which suggests that both A1 and A2 belong to the same entity. Furthermore,

a blockchain observer may infer that one of {A3,B} is Alice’s change address, and this

address may be deduced with certainty if B is a public address. This enables a blockchain

observer to link Alice’s three addresses.

This linking enables the grouping of a large number of addresses contained in the

blockchain, and has been the main method used to analyse ownership of addresses in

the blockchain in the past [5, 79, 83]. More recently, the validity of this assumption

has been called into question because while the owner of each txout used in a transac-

tion must sign the final transaction, the signatures may be provided by different parties.

This can be thought of as a business contract: The contract is only valid if each party

signs it and if even one party does not sign, the contract is void. While the assumption

that multiple signatures belonged to the same entity might have been valid in the early

days of Bitcoin as one-to-one transactions were by far the most common kind, the emer-

gence of many services that explicitly use the multi-signature property to save on costs

and gain anonymity [64] has arguably made the assumption less valid. Furthermore,

the hypothesis that some of the output addresses are change addresses is challenged by

Meilkejohn [67] due to the prevalence of mining pool and gambling sites using multiple

payout addresses simultaneously.

3.2 Getting Anonymity Back

The object of this thesis is the survey and development of protocols that enable a

user Alice to transfer her funds from her original, tainted address Ai to a new, untainted

address Ao in a way where it is hard for opponents to link Ai and Ao. These protocols are

known as mixing protocols and are discussed in chapter 4. We start by describing our

threat model and compare different measures for anonymity.

3.2.1 Threat Model

We consider an adversary whose aim is to de-anonymize Alice by linking Ai and Ao

after a mixing protocol. Without loss of generality, we assume that it is always Alice
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that the adversary is attempting to de-anonymize and that the adversary always knows

Alice’s position before the protocol. The adversary is computationally bounded, mono-

lithic, static and active and may corrupt any number of parties involved in the schemes,

including any trusted third party. Through the inherent pseudonimity of Bitcoin, the ad-

versary might in fact just be one or many of those users simultaneously. Of course, the

adversary always has full access to the blockchain. In some cases, we may restrict the

resources of an adversary to enable simpler schemes, say by restricting the adversary to

a simple blockchain observer or by making the adversary unable to corrupt a TTP.

3.2.2 Sybil Attacks

The concept of the Sybil attack was first introduced by Douceur [34] and defined by

Levine [63] as an attack against identity in which an individual entity masquerades as

multiple simultaneous identities. The very low cost of address generation combined with

the pseudonimity of Bitcoin make Sybil attacks a substantial threat in any anonymizing

protocol that relies on users hiding in a large group.

One special case we must consider is when an adversary floods a mixing service

with requests to mix in such a way that all the users except Alice are colluding to de-

anonymize Alice. In that case, since the inputs and outputs of the mixer are public, the

attacker can deduce that the one output address that does not belong to them belongs to

Alice. Thus, Alice does not gain any privacy at all with respect to the attacker. This

is called an (N− 1) attack and cannot be remedied by any protocol [88]. While Sybil

attacks cannot be eliminated, their threat can be mitigated by making either a small

fee or a CAPTCHA 5 necessary to use a mixing service, thus making such an attack

prohibitively expensive. For this reason, we consider the effects of a financially bounded

adversary where a massive scale Sybil attack would be infeasible.

5. Completely Automated Public Turing test to tell Computers and Humans Apart.
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3.2.3 Defining Privacy

Privacy has many definitions that all relate to a user’s personal information being

secret in some way. Due to the difficulty of quantifying privacy, we introduce the quan-

tifiable concepts of unlinkability and anonymity.

Definition 1. Pfitzmann defines [77] unlinkability as the inability for an adversary to

distinguish if two items of interest 6 are related.

In the context of e-cash and Bitcoin, related can be interpreted as follows: two ad-

dresses are said to be unlinkable when an adversary is unable to know if two spending

transactions involve the same entities. Unlinkability is not a binary attribute and the level

of unlinkability can vary from one protocol to another. Additionally, there is no single

way to measure unlinkability.

Definition 2. Pfitzmann defines anonymity [77] as the inability for an adversary to

identify a subject within a set of subjects, the anonymity set.

A user Alice is perfectly anonymous if an adversary is unable to identify her within

the set of all users of the service with a probability higher than 1
N where N is the total

number of users. As before, anonymity is not binary in general and can be measured in

many ways.

Pfitzmann defines both sender and receiver anonymity. The former refers to inability

to distinguish the sender of a message, and the later the receiver of a message. In the

context of Bitcoin, both the sending and receiving addresses included in a transaction can

be found in the blockchain and are thus public. Nevertheless, the identities associated

with these addresses are not a priori known and we may then both consider sender and

receiver anonymity in Bitcoin. In the mixing approach defined in the next chapter, we

always assume that the identity of the sender is known 7 and the mixing protocol enables

her to increase her receiver anonymity.

6. Items of interest are any object that are visible to the adversary, e.g. spending transactions.

7. We call this sender Alice.
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3.2.4 Measuring Anonymity

The simplest way to measure anonymity is to measure the size of the anonymity set,

in which case maximal anonymity is obtained when the anonymity set is the largest set

possible. Within a protocol with N output addresses 8, the maximal anonymity set size

would be N. However, Diaz [32] and Serjantov [87] point out that a mixing protocol that

leaks information might have a reduced anonymity set. In particular, an adversary taking

part in the protocol will know that her output address or addresses are not controlled by

Alice, that is if there are k colluding adversaries in the protocol, the maximal anonymity

set size is N− k. Additionally, other information might be leaked by the protocol that

enables the adversary to determine that certain addresses have a higher likelihood of

belonging to Alice. This can be formalized as a probability distribution DE for Alice’s

position from the adversary’s point of view. If the adversary has any information that

helps her probability of correctly identifying Alice, DE will not be uniform. To address

this disparity between distributions, Diaz and Serjantov propose using Shannon entropy

to quantify anonymity from the adversary’s point of view.

Definition 3. Shannon entropy H(D) =−∑P(xi)lg(P(xi))

Serjantov describes this as being the number of additional bits of information that

the attacker needs in order to definitely identify Alice at the output of the mix.

3.2.5 Min-Entropy

While it is an improvement over set size anonymity, we believe that Shannon entropy

is not the best measure of anonymity in situations such as Bitcoin mixing and propose us-

ing min-entropy instead. The reasoning for this deviation from a previously established

measure is the following.

If the adversary were to try to guess which address belongs to Alice, one or many

addresses would have the highest probability among the set of addresses to belong to

Alice. We call this probability Pmax and define it as follows:

8. Many of these users might in reality correspond to the same entity.
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Definition 4. Maximal location probability Pmax = max(Pi)∀i where i is the position of

each address.

This measure may be represented by min-entropy.

Definition 5. Min-entropy H∞(D) =−lg(Pmax)

We now argue that min-entropy better represents anonymity than Shannon entropy

within the context of Bitcoin mixing. First, we remark that this entropy can be used

to quantify the probability that the adversary correctly identifies Alice if she uses the

information she has in the best way possible, as Pmax =
1

2H∞(D) . Furthermore, in the con-

text of Bitcoin mixing, it is reasonable to believe Alice will probably be using multiple

consecutive and unrelated mixers as illustrated in Figure 3.2.5. An adversary wanting

to follow Alice through these mixers would likely be unable to follow Alice through all

paths exiting the first mixer simultaneously, especially if the adversary wants to control

adversaries in each mixing protocol. It is much more reasonable for the adversary to fol-

low the most likely path for Alice, in which case min-entropy is the appropriate metric

to quantify the adversary’s probability of identifying Alice. This quantity may be added

linearly for each consecutive mix, enabling accurate measurement.

M11

M21

M22

M23

Figure 3.1: Multiple mixers branching out

We illustrate the intuitive sense in using min-entropy over Shannon entropy. Suppose

we have the following two probability distributions:
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Both of these distributions have the same min-entropy:

H∞(D1) = H∞(D2) =−
2
3
lg(2

3
)≈ 0.39

However, the Shannon entropy of these distributions is not the same:

H(D1) =−
2
3
lg(2

3
)− 1

3
lg(1

3
)≈ 0.92

H(D2) =−
2
3
lg(2

3
)− 1

3
lg(1

9
)≈ 1.22

From the Bitcoin mixing point of view, both distributions are equally desirable since

we assume that multiple mixers will be used, and only a single branch can be followed.

Yet, while they have the same min-entropy, their Shannon entropies are different. This

variance in the measure that is used for anonymity when comparing two situations where

the intuitive notion of anonymity is the same leads us to using min-entropy over Shan-

non entropy for measuring anonymity in this context. Nevertheless, as this anonymity

measure is not widely accepted, we provide both Shannon entropy and min-entropy for

each proposed mixing protocol that we quantify.

3.2.6 Entropy and Mixing

The point of mixing for Alice is to increase the entropy of the position within a proto-

col of the address she controls at the end of a protocol. If D is the probability distribution

of Alice’s address’s position and H is either Shannon entropy or min-entropy, then the

objective of the protocol is maximizing HD in order to minimize Pmax. The next chapter

formally describes the mixing model that we chose to study and the reasons behind that

choice.



CHAPTER 4

MIXING

We return to our setting where a user Alice has an address Ai that is tainted with

her identity and she wants to transfer her funds to an address Ao that is not tainted. The

most naive attempt to do so would be to simply transfer all her funds directly from one

address to the other in a single transaction.

∀i, txoutAi → Ao

This approach fails at reliably anonymizing Alice since an adversary can reasonably

infer from the blockchain that both addresses are controlled by the same person with a

high probability. A variation might be for Alice to use many intermediate addresses and

possibly split them on the way to Ao or keep the funds split. This does not work as Ron

[83] has shown that it is possible to connect the addresses together with high probability

simply by looking at the blockchain.

The solution to this problem may come in the form of mixing. Protocols that attempt

to make user’s coins more anonymous take different forms but all follow an idea that

was introduced by Chaum in his paper on mix networks [25]. A basic mix network,

also known as a mixnet or simply a mix, is a routing protocol where a server takes as

input messages from multiple senders, shuffles them, and sends them back in random

order to the receivers. The aim of such a mixer is to make an adversary unaware of the

correspondence between inputs and outputs. Executing such a protocol many times in a

row is called a mix-cascade [9] and may be used to enhance anonymity as well as reduce

the need for trust in individual mixing servers by alternating between servers.

4.1 Mixing in Bitcoin

Mixing in Bitcoin uses a mixnet-like protocol to send funds instead of messages from

tainted addresses to new, untainted addresses in such a way that an adversary cannot link
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the input and output addresses. This is illustrated in Figure 4.1 where each input address

with subscript i sends to an output address with subscript o with a one-to-one function.

The mixing server, called a mixer in the Bitcoin literature, must route the funds such that

the input and output addresses of a certain transaction that goes through the mixer do not

belong in general to the same entity. The amount of btc used in each input is the same

so that no party loses money in the exchange.

Mixer

Ai

Bi

Ci

Ao

Bo

Co

Figure 4.1: Possible permutation produced by a mixer

Mixers may be synchronous or asynchronous. In synchronous mixing, users must

wait for other users to be willing to mix before a protocol may be started, while in

asynchronous mixing, a user may send coins to a TTP at any time and get unlinked coins

back some time later independently of how many people have wanted to mix within

that period of time. Our research indicates that most centralized mixers that are used

as of 2014 are asynchronous and support N-to-M operations where N 6= M in general,

that is the number of input and output addresses of a single user does not need to be

the same. N-to-M synchronous transfers are difficult to implement in a private manner

although some efforts worth noting have been made by Mike Hearn [45] to develop

private protocols. These asynchronous mixers have usability advantages such as possibly

faster operations but they suffer from a reduced anonymity set and are generally not
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secure since the TTP controls the funds during some time.

The easiest way to mix coins is by actually using a TTP to implement the mixing.

Such protocols are called centralized mixers. Websites such as Bitcoin Fog 1 or the

Bitcoin Laundry 2 offer services where a user can send the service b coins with instruc-

tions to later transfer the same amount of coins to one or many output addresses. Of

course, these services attempt to send outgoing funds that are not linked to the incoming

funds, although as Möser [71] points out, not all such services are successful in doing

so. These services generally work in an asynchronous manner, which enables more re-

sponsive operations but a smaller anonymity set. We note that although it is not their

primary purpose, some online wallets [67] and exchanges may provide similar unlinka-

bility properties.

There are some properties that make a mixing protocol more desirable in the context

of Bitcoin. It is desirable that a protocol be decentralized and not use a TTP since doing

so does not respect the decentralized nature of Bitcoin. Another consideration is that

the protocol should be easy to implement within the actual Bitcoin network without

resorting to a hardfork. The costs of the protocol in terms of money, computing power

and communication should also be limited. Similarly, the protocol must not be a large

burden on the Bitcoin network. Finally, we wish a protocol to be attack resistant, both

in the sense of denial-of-service (DOS) resistance and in the sense that we want Alice to

still gain some anonymity in the presence of adversaries.

The centralized approach to mixing suffers from serious security and privacy vulner-

abilities if the TTP is not trustworthy after all.

1. Security: The TTP can fail to repay the mixed funds and might be hard to trace

[67, 70]. A mixer that does not suffer from this vulnerability is said to be secure.

2. Privacy: Against an adversary colluding with the TTP, no anonymity is gained. A

mixer that does not suffer from this vulnerability is said to be private.

We survey some mixing protocols that attempt to correct one or both of these vulner-

abilities.

1. http://www.bitcoinfog.com/

2. http://www.bitcoinlaundry.com/
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4.2 Secure Centralized Mixer

Caution: Mixing services may themselves be operating with anonymity. As

such, if the mixing output fails to be delivered or access to funds is denied

there is no recourse. Use at your own discretion. - The Bitcoin Wiki

The security vulnerability may be addressed to produce a secure mixer while ignor-

ing the privacy side for the moment. This section describe various centralized protocols

that may be used to implement a secure mixer. Some of these protocols use third par-

ties but these parties are never in a position where they can steal coins without serious

consequences.

4.2.1 Transaction Blueprint with a Facilitator

A curious third party that cannot steal coins can be used to produce a transaction

blueprint. We name such a party a facilitator. A mixing protocol using a facilitator is

illustrated in Algorithm 4. At no point does the third party have any control over the

coins. This simple approach does not guarantee privacy and has disadvantages that we

explain in chapter 5.

Algorithm 4: Mixing with a facilitator

1 Each party wanting to mix privately communicates their input address (Ai for

Alice, Bi for Bob, etc.) and output address (Ao for Alice, Bo for Bob, etc.) to

facilitator F ;

2 Once F has received all of the expected addresses, they produce Π(Ai,Bi, ...), a

permutation of all input addresses illustrated in Figure 4.3;

3 F then produces a transaction blueprint B that spends the txouts from the input

addresses to the output addresses. This is illustrated in Figure 4.4;

4 F publishes B to all parties involved;

5 The parties sign B if it correctly mixes their funds;

6 The signed transaction blueprint is sent to the network as a valid transaction to be

integrated into the blockchain;
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4.2.2 Mixcoin

Another approach may be to force a traditional mixer to honour a contract or face the

consequences. Mixcoin [19] makes this possible through the use of contracts. The mixer

signs a contract that engages them to transfer a user’s coins from an input address Ai to an

output address Ao through intermediate address belonging to the mixer Am. If the mixer

does not honour the contract in a timely manner, the user may reveal the contract and

prove that it has not been fulfilled, thereby damaging the reputation of the mixer. The

authors argue that for certain realistic parameters it is better for a rational, profit-driven

mixer to honour contracts rather than losing reputation and business.

4.2.3 Hashlock Transactions

Gregory Maxwell proposed CoinSwap [64], a cryptography-based asynchronous mix-

ing protocol where users’ coins are secure. We produce the first comprehensive descrip-

tion of this protocol.

CoinSwap uses a special type of transaction called a hashlock transaction and in-

volves a first user Alice, a mixer Bob 3 and a second user Catherine. The protocol ini-

tially was proposed to enable transactions between Alice and Catherine that cannot be

linked by looking at the blockchain alone but it can be transformed into a mixing proto-

col if Alice and Catherine are the same entity. In general, it is assumed that Alice and

Catherine are collaborating even if they are not the same entity. The protocol is divided

in three phases, uses two types of special transactions and is illustrated in Figure 4.2 and

Table 4.I.

The first special transaction is called 2-of-2 escrow timelocked transaction. This is

a two-party transaction that is equivalent to putting some money in escrow where the

funds may be later transferred if two parties agree to transfer them. If the funds are not

transferred after a certain time, the funds are automatically refunded to their original

owner.

In the first phase, Alice creates timelocked transactions tx0 that will be refunded at

3. Bob need not be a centralized mixer and can be a peer in a P2P network.
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Alice Bob Catherine

Phase 1

tx0: 2-of-2 Alice and Bob
tx1: 2-of-2 Bob and

Catherine
tx0id

−−−−−−−−−−−−−−−−−−−−−→
tx1id

−−−−−−−−−−−−−−−−−−−−−→
Computes tx0 locked refund Computes tx1 locked refund

tx0 refund

←−−−−−−−−−−−−−−−−−−−−−
tx0 refund

←−−−−−−−−−−−−−−−−−−−−−
Announces tx0 to network Announces tx1 to network

*Network confirms tx0 and tx1*

Phase 2
Selects secret value x
Computes H = H(x)

H
←−−−−−−−−−−−−−−−−−−−−−

H
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tx2 : tx0 > Bob+ x
tx2

−−−−−−−−−−−−−−−−−−−−−→
tx3 : tx1 >Catherine+ x

tx3

−−−−−−−−−−−−−−−−−−−−−→
x

←−−−−−−−−−−−−−−−−−−−−−
Phase 3

tx4 : tx1 >Catherine
tx4

−−−−−−−−−−−−−−−−−−−−−→
Signs and announces tx4

*Network confirms tx4*

tx5 : tx0 > B
tx5

−−−−−−−−−−−−−−−−−−−−−→
Signs and announces tx5

*Network confirms tx5*

Figure 4.2: CoinSwap
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Transaction Origin Destination Requirements

tx0 Alice Escrow Signed by Alice and Bob

tx1 Bob Escrow Signed by Bob and Catherine

tx2 tx0 Bob Includes x′ such that H(x′) = H and signed by Bob

tx3 tx1 Catherine Includes x′ such that H(x′) = H and signed by Catherine

tx4 tx1 Catherine Signed by Catherine

tx5 tx0 Bob Signed by Bob

Table 4.I: Individual transactions in CoinSwap

time t0. We note that such a locked transaction can be spent in another transaction if

Alice wishes. Bob also creates a similar timelocked transaction tx1 that will be refunded

at time t1. Both these transactions are released to the network to be validated. It is

necessary that t0 expire later than t1 for reasons that we explain below. The first phase

ends when both transactions are validated by the network.

The second phase of the protocol uses a hashlock transaction. We note that any hid-

ing commitment scheme could be used as the object of the hashing is a commitment to a

value. At the start of this phase, Catherine produces a random x and sends H(x) where H

is a collision-resistant hash function to both Alice and Bob. Alice then creates a transac-

tion tx2 that takes tx0 as input and can be redeemed by whoever can simultaneously sign

with Bob’s signature and produce a value that hashes to H(x), that is produce x. Alice

shares tx2’s description with Bob, after which Bob creates a similar transaction tx3 with

tx1 as its input and needing a similar x that hashes to the same H(x) and Catherine’s

signature. Bob sends tx3’s description to Catherine. These transactions are private to

the users of the protocol and are not published to the Bitcoin network at large. Once she

has received tx3’s description, Catherine releases x to Bob. At this point, both tx2 and

tx3 could be sent to the network and claimed. However, this is not desirable because it

would be easy for a blockchain observer to link them as they share the same hash.

In the third phase, Bob can transfer the funds locked in tx1 to Catherine uncondition-

ally with a new transaction tx4 without fear of being defrauded. Once tx4 is confirmed,

Alice can transfer tx0 to Bob through a new transaction tx5. The protocol ends when tx5

is accepted by the network.

We now argue that in each phase, neither party can cheat. The arguments used are
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intuitive and could use a rigorous proof as further work. As Alice is attempting to send

mixed coin to Catherine, we can always assume that Alice and Catherine are cooperating.

We thus consider an adversarial relationship between, on one side, Alice and Catherine,

and on the other, Bob. Each party is computationally bounded and may thus not break the

commitments that are the hashed values. Each party has access to private communication

channels and a broadcast channel. Each party is online and we ignore DOS attacks

that would make one party unable to take an action before the timeout for a transaction

expires.

During the first phase, if one party does not collaborate or does not respond, the other

party just lets the timeout expire and the funds return to their original owners.

In the second phase, Bob is unable to spend tx2 before he receives x as he cannot

find a collision in H. After he receives x, he has the power to spend tx2 but spending it

reveals x and thus enables Alice to spend tx3, which is not to Bob’s advantage. When

considering Alice and Catherine’s point of view, we have to assume that Alice may know

x from her cooperation with Catherine. As Alice shares tx2 before she or Catherine learn

tx3, any spending of tx3 will reveal x which will enable Bob to satisfy tx2. Catherine

cannot wait for tx0 to expire and then validate tx3 since tx1 expires before tx0. At any

point, any lack of action from any party will simply refund the initial transactions tx0

and tx1.

In the third phase, if all parties collaborate by signing their parts, tx4 and tx5 go

through to the network and the protocol completes successfully. If tx5 goes through but

Alice refuses to produce or sign tx4 within a reasonable delay, Bob can send tx2 to the

network to be approved as he now knows x. Alice cannot counter by sending tx3 to the

network as its input tx1 has already been spent in tx5. Bob cannot cheat Catherine by

not releasing tx5 as Alice can release tx3 in a similar way. Both tx0 and tx1 cannot have

been spent maliciously as both parties need to sign to spend them. As a result, it is in

each party’s best interest to collaborate until the end of the protocol.

The protocol requires four published transactions that look like regular 2-of-2 escrow

transactions when everyone is honest. In this case, one cannot positively identify such

transactions as belonging to a CoinSwap transaction by looking at the blockchain. This
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might be advantageous if one of the mixing parties wishes not to be seen mixing for

whatever reason. If one user does not act honestly however, the hashlocked transactions

are used and the transactions can be identified as being used with CoinSwap.

We also note that Bob need not be a centralized entity or service and could be any

party in a P2P network. Bob might be motivated to act as the intermediary because the

coins that he receives from Alice are unlinked to his, so he gains some anonymity too.

We note that Alice and Catherine are not anonymous with respect to Bob, and vice versa.

4.3 Decentralized Mixing: Secure and Private

In an effort to simultaneously address both the security and the privacy problem, we

may chose to remove the third party entirely by making the protocol decentralized. This

can be done in general for any functionality by using multi-party computation (MPC)

[42]. However, most of the tools used in MPC are both too expensive to use in the con-

text of Bitcoin as well as not supported in the scripting language used for transactions.

Furthermore, some requirements of typical MPC protocols, such as the privacy of the

inputs, are not necessary in Bitcoin. In addition, many assumptions that are often used

in general MPC, such as threshold correctness 4, cannot be applied to Bitcoin because of

the threat of Sybil attacks.

In the next section, we describe a synchronous, decentralized N-to-N 5 mixing model

that is at the core of this thesis. Nevertheless, some mixing protocols do not fit this model

but still deserve our attention. We describe Zerocoin and fair exchange, two decentral-

ized secure mixing protocols that have been described in peer-reviewed literature but do

not fit our model since they are asynchronous.

4. Threshold correctness is a property of a protocol where is a minimum number of parties must follow

the protocol correctly for the output to be correct. A protocol is correct when the right output is given. If

a Bitcoin protocol were not correct, coins could be transferred against the will of their owner for example.

5. N-to-N means that the number of input and output addresses in the mixing is the same.
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4.3.1 Zerocoin

Zerocoin [68] is a cryptographic extension to the core Bitcoin protocol. Its interest

is mostly academic as Zerocoin requires a hardfork in the Bitcoin protocol that breaks

compatibility with the current protocol and requires every user, whether they use Ze-

rocoin or not, to change the way they use the network. Zerocoin uses provably secure

cryptographic tools to create a pool where coins can be deposited and withdrawn in an

unlinkable manner at a later date, thereby offering the same functionality as an asyn-

chronous centralized mixer without the security and privacy vulnerabilities.

Zerocoin achieves its goal by creating a separate anonymous currency, called zero-

coins, that operates side-by-side with the Bitcoin network on the blockchain. Zerocoins

act as hidden bitcoins and can be exchanged with their regular counterpart with a one-to-

one ratio. Whenever a zerocoin mint transaction is included in the blockchain, a zerocoin

is created and a bitcoin is put in the shared pool. This can be thought of as pawning a

bitcoin in order to receive a zerocoin that may be traded back at a later time. The reverse

operation can be done with a zerocoin spend where a zerocoin is destroyed and a bitcoin

from the pool is sent to a new, unlinked address. This works because a spend operation

only references the mint operation in a zero-knowledge fashion 6. This is done using an

accumulator that is incremented when a zerocoin mint is done, returning information to

the minter. This information can be used to later prove in zero-knowledge that such a

mint was done in the past. While zerocoin is cryptographically interesting, the need for a

hardfork and for a trusted setup phase suggests that it and its variants, such as Pinnochio

coin [31], will not be implemented in Bitcoin in the near future.

4.3.2 Fair Exchange

Barber [7] proposed fair exchange, a decentralized protocol that works in a similar

manner to Zerocoin since it creates a pool of locked transactions that can later be re-

deemed by a user that has previously contributed to the pool. Instead of a large pool

6. To continue the pawn shop analogy, the shopkeeper could have blind-signed the zerocoin. When

the zerocoin is redeemed, they would only know that this zerocoin is valid and can be exchanged. This

analogy is limited because in the case of Zerocoin, the shopkeeper is a pool and not a centralized entity.
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from which any coin can be redeemed at a spend transaction, fair exchange has pairs of

parties exchange their coins in a way that cannot be linked within that pool. This means

that while both parties are aware that they have exchanged coins, their inputs and outputs

are indistinguishable within the pool of actively locked fair exchange transactions.

Fair exchange uses timelocked and hashlocked transactions similar to those used by

CoinSwap. Each party in the pair commits to a hashlocked transaction in such a way that

the other user may redeem it. One redemption automatically enables the redemption of

the other as was done in CoinSwap. This enables the safe exchange of the coins between

both parties while hiding the link between them. The main disadvantage of this protocol

is its poor scalability and the non-zero chance of one party cheating and stealing coins.

4.4 Our Model: Synchronous N-to-N decentralized Mixing

We define a framework for synchronous, decentralized N-to-N mixing, which we

use in the remainder of this thesis. As noted before, this model is not the only one

that exists, but we choose it because of its interesting properties regarding guaranteed

anonymity. Furthermore, this model can be described as a black box that executes an

idealized function, enabling the comparison of different solutions.

We define an ideal mixing functionality as one that involves N parties who each

control a public input address that has at least b btc available to spend and a private

output address. Thus, Alice controls (Ai,Ao), Bob controls (Bi,Bo), etc. To describe our

model, we use a TTP that gathers all the input and output addresses of the parties in a

private manner. The TTP then knows the set of input addresses I = {Ai,Bi, ...}, which

we can consider to be publicly known, and the set of output addresses O = {Ao,Bo, ...},

which is private at this point. This TTP then shuffles the output addresses to produce

SO = πO and publicizes it to the mixing parties without revealing what address was

submitted by whom. This is illustrated in Figure 4.3. The TTP, or any other party, may

then propose a transaction that transfers the funds from the ith input address of I to the

i output address of SO, that is ∀i, I(i)→ SO(i). This is illustrated in Figure 4.4. We

call such a proposed transaction that has yet to be signed a transaction blueprint. This
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transaction may then be signed by all the parties if it is fair and sent to the network.

�(Ao, Bo, Co)

Ao

Bo

Co

Figure 4.3: Ideal permutation functionality

Ai

Bi

Ci

�(1)

�(2)

�(3)

Transaction

Figure 4.4: Transaction after a permutation

This is similar to the facilitator introduced in section 4.2.1. The aim of this thesis

is finding ways to instantiate this idealized function without the need for any TTP. In

this context, the privacy of a mixer depends on the way that the permutation π is imple-

mented.

4.4.1 Chaumian Mixers

The permutation functionality described is quite similar to that of a Chaumian mixnet,

but there are subtle differences. The first is that if the protocol aborts in Bitcoin mixers,

the output addresses need not stay secret. This is in contrast to many applications of
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Chaumian mixnets where the privacy of the sent message is of utmost importance even

in the case of a protocol abortion. We call this property of Bitcoin mixers the lack of a

need for privacy on abort.

The second difference is that as in the context of Bitcoin mixing, some information

leakage is acceptable since a protocol may be repeated many times and the anonymity

gain for each protocol execution is independent. This enables the relaxation in general of

privacy requirements when compared to traditional mixnets, enabling simpler and more

efficient protocols to be used in some situations.

Finally, the mixing protocols in Bitcoin need not be verified for output correctness in

the same way mixnets are since a protocol whose output messages are not correct simply

aborts at signing step and no user loses any privacy.

Nevertheless, we briefly describe some interesting possibilities to use Chaumian

mixnets and their variants to mix bitcoins in section 5.2.

4.4.2 Model Limitations

There are some limits concerning what is possible with such a protocol. One of them

is that Alice cannot gain any anonymity if all other parties are colluding adversaries in

a (N− 1) attack. The Bitcoin protocol also imposes the limitation that any party may

force the protocol to abort by not signing a transaction at any time.

Moreover, we the amount of btc input by each party must be the same. If it were

not the case, either some parties would get less btc than they input, or it would be trivial

to link and output input addresses simply by looking at the value of each input and

output. It has been proposed by Yang [91] to use amounts of coins that are powers of

2 i.e. {1
4
,

1
2
,1,2,4...} to anonymize the entire contents of an initial address by dividing

the amount contained in the address and then anonymizing the contents of these new

addresses 7. Mixers could then advertise these standard sizes to ensure that the parties

involved mix the same amount.

Alice may further enhance her anonymity by using such a protocol many times with

7. For example, 2.5 btc may be divided into 2 btc and 0.5 btc, both of which are powers of 2. These

amount may then be mixed in different instances of a mixing protocol that take appropriate input sizes.
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different people. However, this option is complicated by the fact that it is standard for

users to pay fees for each transaction. As a result, the new address receives slightly less

btc than the original address sent. The amount sent for transaction fees can be standard

within a transaction to avoid leaking information on the correspondence between ad-

dresses, but that does mean that one cannot transfer the same amount many times in a

row. To solve this problem, one solution would be for miners to accept a certain number

of mixing transactions every block. This makes sense as we believe that these mixing

transactions contribute to the health of the Bitcoin network. This modification could be

implemented by requiring that every block includes a certain number of such transac-

tions for free, but enforcing this rule might require a change to the Bitcoin protocol.

Bonneau [19] proposed using randomized mixing fees to pay the miners. This would

enable the majority of mixing transactions to not have any mixing fees at all a very low

proportion of inputs in a mixing transaction would be sent as mining fees. This can be

done in a provably secure way without affecting the anonymity of the scheme.

4.4.3 Mixing in our Model

The next two chapters contain the main results of this thesis. We consider two cat-

egories of protocols to mix coins without a TTP. We named these approaches blueprint

mixing and networks of transactions.

The first mixing framework we define is one where the parties instantiate the ideal-

ized function described in section 4.4 without the use of a TTP. This approach has been

explored before both in the literature [91] and on the forums [85]. The parties collabo-

rate to produce a transaction that mixes N inputs and N outputs in a single transaction

blueprint that hides the link between the ownership of the input and output addresses,

not only from a blockchain observer, but also from other parties. Once the blueprint is

publicized, each party can sign the transaction if it is acceptable to that party, i.e. if that

party’s new address is included in the output for the correct amount. When all parties

have signed the transaction, it is sent to the Bitcoin network to be confirmed. We explore

various ways to produce a blueprint such as the one in Figure 4.5.

In Chapter 6, we propose a novel approach that uses networks of small, few-parties
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Figure 4.5: Multi-party transaction blueprint

mixing transactions to produce the same result as a larger mixing. The N parties do 2-

party transactions in pairs and send them to the network at each step. This is illustrated

by the example in Figure 4.6. Once each transaction has been confirmed, the parties

can go on to do the next step of the network. This approach effectively produces an

N-permutation that is unknown to non-colluding attackers in most cases.
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Figure 4.6: Network of transactions



CHAPTER 5

BLUEPRINT MIXING

In this chapter, we survey protocols that have been proposed to implement transaction

blueprints and propose some of our own. Since creating a permutation with the output

addresses while keeping these addresses private until the permutation is revealed is at the

heart of decentralized mixing, we concentrate on ways to implement this permutation

securely. Once the secure permutation is known, it is easy to construct a transaction

blueprint from it.

The simplest way to create a permutation is for every party to reveal his or her out-

put address to the group of people mixing and then create a provably random permu-

tation 1. This is similar to the facilitator approach of section 4.2.1 and is the approach

used by some implementations of Coinjoin [65], such as Sharedcoin 2, which use a TTP

to aggregate and publish transactions. Another implementation, Coinmux 3, has peers

communicate with one another to set up the transaction blueprint. Although such meth-

ods are private against a blockchain observer, they are not with respect to the TTP for

Sharedcoin and with respect to the other peers for Coinmux.

5.1 The Bulletin Board

One way to attempt to fix this is to use a private bulletin board where N users that

want to mix may post their output addresses anonymously by using an obfuscated IP

address. When N output addresses are posted in the bulletin board, a random permutation

of these addresses is produced and publicized. The users may then post their input

addresses on another board and a transaction blueprint is produced by a script on the

bulletin board that links the input and shuffled output addresses. The transaction is then

signed as usual. While this method may be private, it is exceptionally DOS-prone as any

1. We show how to do this in appendix II.

2. http://sharedcoin.com

3. http://github.com/michaelgpearce/coinmux
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party included in the mixing may produce two output addresses on the bulletin board

or a party not in the mixing might attempt to post an address on the board in order to

receive coins. These attempts would be thwarted by the honest parties not signing the

transaction in the end, but this illustrates the DOS-vulnerability coming from both inside

and outside parties.

This vulnerability, as well as the requirement for a semi-trusted bulletin board, makes

such a solution less interesting. The next protocols have the participants enter their

obfuscated or encrypted output address in a protocol, and they are only made public

once the permutation is complete.

5.2 Mixnets and Multi-Party Sorting

Any implementation of mixnets and the protocols that relate to them can be used to

build Bitcoin mixers. Among others, blind signatures [16, 26, 61], ring signatures [82]

and DC-nets [27] may be used to create a blueprint. These techniques do not leverage

the reduced requirements of Bitcoin described in section 4.4.1. For a survey of these

methods, see [86].

Yang [91] proposed producing a secure multi-party sorting of the set of output ad-

dresses. Since the addresses are randomly generated, their sorting is one type of per-

mutation that achieves the required properties. The cost of the sorting as proposed by

Jonsson [53] is O(Nlog2N) comparisons and O(log2N) rounds and requires a secret

sharing scheme. As of this writing, the high cost of securely comparing the lengthy

addresses is the main obstacle to the use of this technique.

5.3 Mixing Through Encryption

The following protocols rely Alice learning the output addresses of Bob and Cather-

ine, Bo and Co, without knowing which address belongs to whom. This is done through

the use of encryption. Alice can then produce a permutation that includes both of these

addresses as well as her own output address.
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Some precautions must be taken when choosing the encryption scheme. Specifi-

cally, since Bob and Catherine encrypt each other’s addresses and send them back, the

encryption schemes must be secure against chosen-plaintext attacks 4. An encryption

scheme that realizes such a requirement is said to be CPA-secure. Furthermore, the

shuffled plaintexts are eventually revealed so one must make sure that this does not en-

able, say, Bob to test all of the output addresses to find Catherine’s. The protocol also

needs the encryption scheme to be commutative. ElGamal encryption [36] or unpadded

RSA encryption [81] could be used to achieve both the requirements of CPA-security

and commutativity [62].

Since two parties colluding against a third would constitute an (N− 1) attack that

cannot be prevented, we assume that the parties are not colluding. Furthermore, the lack

of a need for privacy on abort enables us to ignore any party not collaborating at any

point. As usual, access to authenticated, private communication channels between each

party is assumed.

5.3.1 Mixing Through Public Key Encryption

Rosenfeld [85] proposed using commutative public key encryption to produce a se-

cure 3-address permutation as illustrated in Figure 5.3.1. This protocol uses 8 rounds of

communication and 4 encryptions and decryptions before the permutation is published.

We refer to the original post for more detail.

The previous method may be generalized to N parties. We first extend the 3-party

construction to another participant, Dave. The extension can then be done recursively

for other parties. The intuition behind the extension is that Alice is to occupy a similar

position to that of Bob in the previous protocol and Dave is to take Alice’s place.

First, Dave creates a public and private key and publishes his public key. Alice, Bob

and Catherine encrypt their addresses with Dave’s public key. The protocol then unfolds

in the same way as in the 3-party case with the addresses replaced by their counterparts

encrypted with Dave’s key. Since the encryption scheme is commutative, Alice can re-

move the layer of encryption that used her key from the two addresses she received from

4. These attacks are described in [56, p. 8].
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Alice Bob Catherine

Ao Bo Co

Key exchange phase

Gen(SKB,PKB,SKC,PKC)
PKB

−−−−−−−−−−−−−−−−−−−−−→
PKC

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Encryption phase

BE1 = EPKB(Bo) CE1 = EPKC(Co)
BE1

−−−−−−−−−−−−−−−−−−−−−→
CE1

←−−−−−−−−−−−−−−−−−−−−−
CE2 = EPKB(CE1) BE2 = EPKC(BE1)

BE2

←−−−−−−−−−−−−−−−−−−−−−
{S1,S2}=ΠB(BE2,CE2)

←−−−−−−−−−−−−−−−−−−−−−
D1 = DSKB(DSKC(S1))
D2 = DSKB(DSKC(S2))

Publish phase

Publish permutation output

ΠA{Ao,D1,D2}

Figure 5.1: 3-party mixing through public key encryption
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Bob. This leaves Dave’s encryption on so that Alice cannot discover Bob and Cather-

ine’s output addresses. Alice then shuffles the two Dave-encrypted addresses she obtains

with her own Dave-encrypted address and passes them to Dave. Dave decrypts them all,

recovering the original address, shuffles them with his own address and publishes the

output of the shuffling, which is a permutation of all the parties’ addresses. We can add

parties by doing this procedure recursively.

In terms of efficiency, the ith participant will encrypt O(N − i) times and decrypt

O(i) times for a total of O(N) encryptions and decryptions. The number of amortized

communication rounds is also O(N).

5.3.2 3-Party Mixing Through Private Key Encryption

The greater efficiency of private key encryption over its public counterpart motivates

our creation of a new, 3-party mixing protocol that uses private key encryption.

In this protocol, Alice produces two random keys {kB,kC} that she shares with Bob

and Catherine respectively. These keys are used with a commutative CPA-secure encryp-

tion scheme such as Algorithm 5 to encrypt the output addresses of Bob and Catherine.

The encryption scheme we use is a block cipher uses a pseudorandom function Fk that

could be instantiated with AES 5 or a keyed hash function.

We prove that encryption scheme of Algorithm 5 is commutative and CPA-secure as

long as the random nonces used in each encryption are known and FK is pseudorandom.

Algorithm 5: A commutative, CPA-secure symmetric block cipher

1 Alice and Bob share key k;

2 Alice encrypts m: Ek(m) := Fk(r)⊕m;

3 Alice sends {r,Ek(m)} to Bob;

4 Bob finds m = Ek(m)⊕Fk(r);

Lemma 5.3.1. The block cipher of Algorithm 5 is commutative.

Proof. C = Ek1
(Ek2

(m)) = m⊕Fk1
(r1)⊕Fk2

(r2)

5. AES stands for Advanced Encryption Standard and is a widely used symmetric encryption function

[69]
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Dk1,r1
(Dk2,r2

(C) = m⊕Fk1
(r1)⊕Fk2

(r2)⊕Fk2
(r2)⊕Fk1

(r1) = m

Dk2,r2
(Dk1,r1

(C) = m⊕Fk1
(r1)⊕Fk2

(r2)⊕Fk1
(r1)⊕Fk2

(r2) = m

Therefore the encryption is commutative.

Lemma 5.3.2. The block cipher of Algorithm 5 is CPA-secure.

Proof. The proof of the CPA-security of the scheme can be found in [56, p. 90].

This encryption scheme can be used to build a 3-party mixing protocol based on

private key encryption, as shown in the algorithm in Figure 5.2.

Proof. The above construction is private against a blockchain observer or a single ad-

versary within the protocol.

Lemma 5.3.3. Bob and Catherine’s output addresses are indistinguishable by Alice.

Proof. Suppose that Alice is able to differentiate Bob and Catherine’s output addresses,

that is she can differentiate between {BE2,rB2
,rC1
} and {CE2,rB1

,rC2
}. We first note

that Bob gives Alice the nonces in an order that enables her to know which nonce cor-

responds to whom but not which nonce corresponds to which encryption, the first or

the second. Attempting to decrypt with a wrong key or in the wrong order will al-

ways produce a rubbish output that will be detected as such since it will fail the check-

sums used for Bitcoin addresses. Furthermore, Alice cannot infer any information from

the nonces alone since they follow an entirely random distribution. The only informa-

tion that Alice can extract from the nonces is that m1 = BE2⊕FkB(rB2
)⊕FkC(rC1

) and

m2 = CE2⊕FkB(rB1
)⊕FkC(rC2

). This means that she can differentiate between the en-

crypted addresses, but our hypothesise specify the encryption scheme is CPA-secure.

This is a contradiction.

Therefore Alice cannot differentiate between Bob and Catherine’s output addresses.

Lemma 5.3.4. Alice and Catherine’s output addresses are indistinguishable by Bob.
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Alice Bob Catherine

Ao Bo Co

Key exchange phase

Gen(kB,kC)
kB

−−−−−−−−−−−−−−−−−−−−−→
kC

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Encryption phase

{BE1,rBi}= EkB(Bo) {CE1,rC1
}= EkC(Co)

BE1

−−−−−−−−−−−−−−−−−−−−−→
{CE1,rC1

}

←−−−−−−−−−−−−−−−−−−−−−
{BE2,rB2

}= EkB(CE1) {CE2,rC2
}= EkC(BE1)

{CE2,rC2
}

←−−−−−−−−−−−−−−−−−−−−−
{{S1,r11,r12},{S2,r21,r22}}= ΠB({BE2,rB2

,rC1
},{CE2,rBi ,rC2

})
{{S1,r11,r12},{S2,r21,r22}}

←−−−−−−−−−−−−−−−−−−−−−
D1 = DkB,r11

(DkC,r12
(S1))

D2 = DkB,r21
(DkC,r22

(S2))
Publish phase

Publish permutation output

ΠA(Ao,D1,D2)

Figure 5.2: 3-party mixing through private key encryption
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Proof. We first note that Bob never sees Alice’s output address, encrypted or otherwise,

before the addresses are revealed by Alice. At this point, Alice’s address is indistin-

guishable from a random address. Thus, Bob can only distinguish Alice and Catherine’s

addresses if he can learn some information about Catherine’s address.

When Bob receives {CE1,rC1
}, he cannot extract any information about Co since the

encryption is CPA-secure and thus secure against eavesdroppers. When Bob receives

{CE2,rC2
}, he knows the message being encrypted but cannot extract any information

on kC since the encryption scheme is CPA-secure. Therefore, Bob has no information on

Catherine’s output address before the permutation is published.

Therefore Bob cannot differentiate Alice and Catherine’s output addresses.

The proof for Catherine’s inability to differentiate between Alice and Bob’s addresses

is similar to Bob’s. Therefore the protocol is private against non-colluding adversaries.

5.4 Denial of Service Mitigation

In any protocol where the only transaction is at the end, if any party does not re-

spect the protocol in a detectable way, the protocol is aborted without a loss of funds

or anonymity and the party may be banned. We note that such banning is inherently

difficult since the protocols are anonymous. Consequently, executing a small proof of

work such as a CAPTCHA or paying a small fee before the protocol might be used as a

token of goodwill and a deterrent to DOS attacks.
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the results of this switching are not known to anyone but the parties participating in a

switchbox. The link permutations are predetermined, public permutations between the

positions of the users. The link permutations can be mathematically described before-

hand and determine the type of network being used. For efficiency concerns, we aim to

reduce the number of switchboxes and the depth 1 of the network as much as possible.

6.1.1 Switchboxes

Each switchbox in the network consists in a transaction or transaction blueprint with

a small fixed number of parties that produces some permutation of the funds to be trans-

ferred between input and output addresses of these parties. In this thesis, we focus on

using two-party switchboxes.

Algorithm 6 illustrates how two parties may get together and mix their inputs. The

result is shown in Figure 6.2.

Algorithm 6: Two-party mixing switchbox

1 Alice and Bob meet and decide to mix coins;

2 Alice and Bob each create an output address;

3 Each party communicates this address as well their input address to the other

party on a private and authenticated channel;

4 The parties decide together at random on one of two scenarios: either Alice will

send her funds to her own output address and Bob to his, or Alice will send her

funds to Bob’s output address and Bob to Alice’s;

5 Either of the parties creates a transaction blueprint that enacts the transaction

above;

6 Both parties sign the transaction;

This entire protocol might seem useless since Alice knows that the output address

that isn’t hers belongs to Bob and vice versa. Yet, an adversary who is colluding with

neither Alice nor Bob cannot guess with probability higher than 1
2

what situation, switch

1. The depth of the network is the maximum length number of switchboxes on the path from one input

to one output.
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Figure 6.2: Switchbox

or not, was enacted. Additionally, each party’s funds are secure as there is only one

transaction that is signed by both parties. In terms of entropy, both the Shannon entropy

and the min-entropy of Alice’s position against a blockchain observer after the mix are

equal to 1. We include the technical aspects of setting up such a protocol in appendix II.

The protocol requires 3 rounds of communication between the participants and one bit

commitment before the transaction can be sent to the network.

6.1.2 Link permutations

One might object that a 50% chance that Eve can successfully guess the positions

of the parties may too low to be useful. The power of this protocol lies in using it as

a building block to chain small permutations together in order to lead to a much lower

probability of Eve successfully guessing Alice’s position. In order to do this, these

switchboxes must be chained together with link permutations.

Since there are N = 2n participants, the position of each participant can be labelled

by n bits as bn−1bn−2...b0. A link permutation LP is a bit-shuffling permutation that

maps bn−1bn−2...b0 to bsn−2
bsn−1

...bs0
with the condition that s j = sk ⇐⇒ j = k. The

value of s j indicates the source of the bit in position j at after the link permutation. We

introduce two bit-shuffling permutation. We first is called butterfly permutation of scope

2k, denoted βk−1, for which each output bit s j follows the rule

s j =















k−1 if j = 0

0 if j = k−1

j if 0 < j < k−1, j ≥ k

The second bit-shuffling permutation is called a perfect shuffle permutation σn and
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is described by

s j =















k−1 if j = 0

j−1 if 0 < j < k

j if j ≥ k

These two bit-shuffling permutations describe the link permutations of section 6.1.4.

6.1.3 Random Pairing

Random pairing or random mixing is the simplest way to build a network and in-

stantiate the link permutations. We use it as a baseline for comparing various networks.

The network is composed of d rounds where at each round, participants randomly get

together in groups of two and execute the switchbox protocol above. We assume that

each party anonymizes itself between each round, and one round’s output addresses are

the next round’s input addresses. At the end of the d rounds, we are interested in know-

ing the average entropy gain of each party. We do not describe the link permutations

associated as they are not fixed.

We note here that a blockchain observer has to follow Alice’s many possible paths.

If Alice mixes with Bob and Bob subsequently mixes with Catherine, a blockchain ob-

server cannot tell if Alice was implicated in this second mixing and must assume that it

is possible. The anonymity results for this type of mixing can be found in section 6.2.

6.1.4 Structured Networks

While participating in random mixing, if Alice is unlucky she might end up mixing

with a number of people much smaller than N and thus gain very little anonymity. It is

unlikely but possible that Alice could continually mix with the same person, in which

case she would gain nothing more than she would have had she only have mixed with one

other party. To avoid this, it is interesting to analyse structured networks that guarantee

that Alice mixes with as many different participants as possible.

To avoid this situation situation we turn to networks with a fixed structure where ev-
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ery input position can be routed to any output position for every execution of the proto-

col. One such network is the butterfly network illustrated in Figure 6.3. This network has

lg(N) depth and N
2

width and satisfies the address dispersion requirement. This means

that from the point of view of a blockchain observer, Alice could be anywhere at the end

of the mixing protocol. Consequently, both the Shannon entropy and min-entropy are

equal to the number of stages in the network.

This network may be represented with link permutations before each stage k with

1 < k ≤ lg(N). A butterfly network link permutation is defined as

LPk =















I if k = 0

βk−1 if 0 < k < lg(N)

σn−1 if k = lg(N)

LPk represents the link permutation that transfers the output of the switchboxes at

stage k− 1 to the input of the switchboxes at stage k. The butterfly network is defined

with a series of k+ 1 rows of N
2

switchboxes interconnected by the k link permutations

described above.

Figure 6.3: Butterfly network taken from [30]
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There are other networks that are functionally equivalent to the butterfly network,

that is, indistinguishable on the bases of the response at the output ports to any pattern of

inputs. The omega network is one such network. In our simulations, we found that these

networks indeed led to indistinguishable distributions both with and without adversaries

in the mixing. For this reason, we did not include the simulation results for this network.

The link permutations for an omega network are

LPk =







I if k = 0

σn−1 if 0 < k ≤ n

These permutations connect the rows of switchboxes as was the case for the butterfly

network.

Figure 6.4: Omega network taken from [30]
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6.1.5 Benes Network

While networks of depth lg(N) such as the butterfly and the omega networks may

enable Alice to occupy any output position at the end of the protocol, they cannot create

all possible permutations. The total number of switchboxes in such a network is N
2

lg(N),

which is smaller than the lg(N!) switchboxes needed to produce the N! different permu-

tations. This is not a problem if the adversary is not colluding with any of the users but

it becomes problematic if they are. In this case, the adversary learns a certain number of

{stage,position} pairs that do not belong to Alice. This knowledge enable them to rule

out certain output positions for Alice. For example, if Alice mixes with an adversary

at the first stage of a butterfly network, the adversary learn the output of the first stage

for Alice and can directly rule out half of the output addresses as not belonging to Alice

since she could not end up in these positions.

To fix this problem, we turn to the Benes network, which is composed of a butterfly

network followed by an inverse butterfly network with the first step of the inverse butter-

fly removed. That gives a total depth of 2lg(N)− 1 and a total number of switchboxes

of N
2
(2lg(N)−1) = Nlg(N)− N

2
. This network is illustrated in Figure 6.5.

Figure 6.5: Benes Network from Wikimedia Commons

A Benes network’s mathematical description requires the inverse of the permutation

used in the butterfly network, which is called the reverse butterfly permutation: β̄k−1 =

βn−k−1. The Benes network can then be described as follow:
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LPk =



























I if k = 0

βk−1 if 0 < k < n

β̄k−1 if n < k < 2n−1

I if k = 2n−1

The Benes network is known in the networking field as a shuffle-exchange network,

which means that the network can route various types of parallel processes. Cam [23]

has shown that (2n−1)-stage shuffle-exchange networks are rearrangeable, that is they

are able to produce all N! permutations. It was proven by Benes [8] that the network that

bears his name is optimal in producing all possible permutations in that its depth cannot

be reduced. We offer the proof of an alternative, slightly weaker claim.

Lemma 6.1.1. Any NxN network composed of two-party switchboxes that can produce

any permutation must have at least Nlg(N)−1.44N switchboxes

Proof. To produce the N! possible permutations we need a minimum of lg(N!) switch-

boxes since each switchbox only has two possible states. Using Stirling’s approximation,

ln(N!) = Nln(N)−N +O(ln(N))

that is, transforming to base 2,

lg(N!)

lg(e)
= N

lg(N)

lg(e)
−N +O(

lg(N)

lg(e)
)

Consequently

lg(N!) = Nlg(N)−Nlg(e)+O(lg(N))

≈ Nlg(N)−1.44N +O(lg(N))

Therefore any network that achieves the conditions above must have at least Nlg(N)−

1.44N +O(lg(N)) switchboxes.
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Since this result is a lower bound on the number of switchboxes needed to produce

the N! permutations, any network that could produce all N! permutations could only

remove a maximum of

Benes number−minimum number = (Nlg(N)−
N

2
)− (Nlg(N)−1.44N +O(lg(N)))

= 0.94N−O(lg(N))

switchboxes from a Benes network. However, since each level in the Benes network

uses N
2

switchboxes, no more than 1 level may be removed from this network without

losing some of the possible permutations. Furthermore, it would be useless to have more

than N
2

at any one level since there can be no fan-out in the network. Consequently, the

depth of the network cannot be reduced by more than 1 while keeping all permutations

possible.

The results for anonymity gained against a blockchain observer are the same as in

the butterfly case for the first lg(N) stages and the gain falls to zero afterwards. The

Benes network’s advantage comes in the presence of adversaries, although our results

show that this advantage is not as good as we could have expected.

6.2 Anonymity Results

This section details the anonymity results that we have obtained from our simulations

of networks of transactions. We decided to use a 64 party protocol as we believe it is

reasonable that this number of parties may get together to mix. Furthermore, 64 is a

power of 2 and thus suitable for the use of butterfly and Benes networks. Before the

protocol is executed, the adversary has no information on the output addresses as one

can imagine that they have not yet been generated. Whether this is the case or not is

irrelevant.

We start by simulating the mixing protocol against an adversary that is only a blockchain

observer. We then increase the number of adversaries present in the mixing to 8 and 32,
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which represent respectively 12.5% and 50% corruption of the parties mixing. We take

these values to represent respectively low and high percentages of collusion in the mix-

ing protocol.

The results are illustrated in Figures 6.6 to 6.19. The purple horizontal line represents

the maximum possible entropy gain in each situation, while the error bars represent the

variance of each value for one hundred iterations. The methodology used to do these

calculations is in appendix III.

6.2.1 Blockchain Observer

We initially calculate the average anonymity gained by Alice against a blockchain

observer for random mixing in Figures 6.6 and 6.7. Against a blockchain observer, we

observe that the Shannon entropy is almost linear in the number of stages with a slope

just under its maximum value of 1 until stage 6, at which point it is at approximately 85

% of its maximum possible value. Min-entropy only keeps this slope up to stage 4, at

which point the min-entropy has 50 % of its maximum possible value, before getting to

approximately 80 % of that value at stage 9. We conclude that random mixing reaches

50 % of its maximum potential after about 4 rounds against a blockchain observer but

takes many more rounds to reach full anonymity potential.

A butterfly network always produces a uniform probability distribution for Alice’s

position in the presence of a blockchain observer. The entropy gain for both entropies

is one per level, up to the depth of the network. This illustrates an improvement of

approximately 15 % over the random network at the same depth in the case of Shannon

entropy. In the case of min-entropy, this gain after 6 rounds is approximately 20 %.

The results for Benes networks are similar to those for a butterfly as no gains are

achieved after executing the first butterfly. The next section explores the effects of having

adversaries that are present in the mixing protocol.
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Figure 6.6: Shannon entropy for a random network N=64, k=0
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Figure 6.7: Min-entropy for a random network N=64, k=0
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6.2.2 Mixing with Adversaries

Before simulating the results of the presence of adversaries, we must consider the

importance of the initial positioning of the adversaries in the protocol. If an adversary is

colluding with k parties in the mixing, they can identify Alice with probability at least

1
N−k as they know that Alice does not end up in the position of the parties they are col-

luding with. However, in most cases, Alice’s anonymity loss compared to the blockchain

observer case is much larger. As seen in section 6.1.4, if the adversary colludes with the

first party that Alice exchanges with in a butterfly network, they can exclude exactly half

of the output addresses. Conversely, if the adversary colludes with a party that Alice

could not possibly exchange with until the last step, only one output address is elimi-

nated. To illustrate the strong dependence of the anonymity gain on the position of Eve’s

collaborators, one can convince oneself that if Eve is colluding with lg(N) parties, it

is possible that Alice will mix with an adversary at every step of the network and thus

gain no anonymity at all. This illustrates the necessity of randomness in specifying the

parties’ starting positions and in the coin tosses that decide the output of each switchbox.

One simple solution solution is to have participants commit to their input addresses.

After the reveal phase, participants are ordered by alphanumeric order of addresses.

Some parties may introduce bias by creating an address with certain properties 2 e.g.

having a low alphanumeric address. This is especially problematic if adversaries know

Alice or other participants’ input addresses as they can determine their relative positions.

This weakness can be addressed by using multi-party randomness to create the initial

ordering. This can be done by using the protocol found in appendix II.

6.2.2.1 Interpreting the Results

We calculate the maximum possible entropy that can be gained in the presence of

adversaries as Hmax = lg(N − k). This is not to be confused with the special type of

entropy called max entropy[59]. With 64 participants, this maximum entropy is 6 with

k = 0, 5.80 with k = 8 and 5 with k = 32. %max represents the comparison of each

2. Addresses with certain properties can be generated very rapidly and for free, e.g.

bitcoinvanity.appspot.com.



69

gained entropy with this maximum entropy. We calculated confidence intervals (CI)

for two sigma, which means that the probability that the result would be outside this

bound is under 5%. These are illustrated as the blue vertical bars on the graphs. The

confidence interval percentages CI pct = confidence interval
entropy

∗100 illustrates the accuracy of

the measure. This measure is not illustrated on the graphs but is contained in Tables 6.I

to 6.XIV.

6.2.2.2 Random Network With k=8 and k=32

We first illustrate the results for the random network in Figures 6.8 to 6.11 as the

baseline for comparing other networks. The results for 8 adversaries are quite similar to

those of a blockchain observer, although the variance is greater and the curve falls off

slightly earlier, meaning it takes more rounds to reach the same level of anonymity. With

32 adversaries, the anonymity gain is much slower, especially in the min-entropy case.

Furthermore, the variance is much greater than in the previous cases.
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Figure 6.8: Shannon entropy for a random network N=64, k=8
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Figure 6.9: Min-entropy for a random network N=64, k=8
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Figure 6.10: Shannon entropy for a random network N=64, k=32
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Figure 6.11: Min-entropy for a random network N=64, k=32
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6.2.2.3 Random and Butterfly Networks With k=8

We now compare the butterfly network to the random network with k= 8 in Tables 6.I

to 6.IV and Figures 6.12 and 6.13. The random permutations are illustrated with the blue

curve, the structured networks with the purple curve and maximum possible entropy with

the green line. We observe that the final benefit of structuring the network as a butterfly

is a 10% and 9% improvement over the random network with the Shannon entropy and

min-entropy metrics respectively.
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Shannon entropy for a random network N=64, k=8

Depth 1 2 3 4 5 6

Entropy 0.84 1.72 2.58 3.37 4.06 4.66

%max 14 % 30 % 44 % 58 % 70 % 80 %

Variance 0.13 0.21 0.26 0.28 0.28 0.21

CI 0.05 0.06 0.07 0.07 0.07 0.06

CI pct 6 % 4 % 3 % 2 % 2 % 1 %

Table 6.I: Shannon entropy for a random network N=64, k=8

Shannon entropy for a butterfly network N=64, k=8

Depth 1 2 3 4 5 6

Entropy 0.86 1.74 2.60 3.50 4.38 5.25

%max 15 % 30 % 45 % 60 % 75 % 90 %

Variance 0.12 0.21 0.24 0.24 0.22 0.21

CI 0.05 0.07 0.07 0.07 0.07 0.07

CI pct 6 % 4 % 3 % 2 % 2 % 1 %

Table 6.II: Shannon entropy for a butterfly network N=64, k=8
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Figure 6.12: Shannon entropy for random and butterfly networks N=64, k=8
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Min-entropy for a random network N=64, k=8

Depth 1 2 3 4 5 6

Entropy 0.84 1.65 2.29 2.79 3.28 3.66

%max 14 % 28 % 39 % 48 % 57 % 63 %

Variance 0.13 0.27 0.38 0.31 0.34 0.31

CI 0.05 0.08 0.09 0.08 0.08 0.08

CI pct 6 % 4 % 4 % 3 % 3 % 2 %

Table 6.III: Min-entropy for a random network N=64, k=8

Min-entropy for a butterfly network N=64, k=8

Depth 1 2 3 4 5 6

Entropy 0.86 1.66 2.29 2.95 3.55 4.18

%max 15 % 29 % 39 % 51 % 62 % 72 %

Variance 0.12 0.28 0.37 0.32 0.29 0.36

CI 0.05 0.07 0.08 0.08 0.07 0.08

CI pct 6 % 5 % 4 % 3 % 2 % 2 %

Table 6.IV: Min-entropy for a butterfly network N=64, k=8

1 2 3 4 5 6
0

1

2

3

4

5

6

Number of stages

M
in
-
e
n
tr
o
p
y
g
a
in

Min -entropygain N=64, k=8

Figure 6.13: Min-entropy for random and butterfly networks N=64, k=8
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6.2.2.4 Random and Butterfly Networks with k=32

Tables 6.V to 6.VIII illustrate random and butterfly networks with 32 adversaries.

The entropy gains are superior for the butterfly network by 4 % and 2 % for Shannon

entropy and min-entropy respectively. This figure is lower than we would have expected

by looking at the structure of the network. We interpret this as signifying that if half of

the participants are adversaries, the structure of the network does not matter much for

short networks. In the next section, we analyse Benes networks in order to determine if

the use of such networks improves the outcomes.



75

Shannon entropy for a random network N=64, k=32

Depth 1 2 3 4 5 6

Entropy 0.5 1.01 1.53 1.98 2.42 2.81

%max 10 % 20 % 31 % 41 % 48 % 56 %

Variance 0.25 0.40 0.47 0.60 0.62 0.60

CI 0.07 0.08 0.09 0.11 0.11 0.11

CI pct 14 % 9 % 6 % 5 % 5 % 4 %

Table 6.V: Shannon entropy for a random network N=64, k=32

Shannon entropy for a butterfly network N=64, k=32

Depth 1 2 3 4 5 6

Entropy 0.46 0.97 1.49 1.97 2.48 2.99

%max 9 % 20 % 30 % 39 % 50 % 60 %

Variance 0.25 0.46 0.57 0.69 0.74 0.72

CI 0.07 0.09 0.10 0.11 0.12 0.12

CI pct 15 % 10 % 7 % 6 % 5 % 4 %

Table 6.VI: Shannon entropy for a butterfly network N=64, k=32
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Figure 6.14: Shannon entropy for random and butterfly networks N=64, k=32
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Min-entropy for a random network N=64, k=32

Depth 1 2 3 4 5 6

Entropy 0.5 0.88 1.25 1.53 1.82 2.09

%max 10 % 18 % 25 % 31 % 36 % 42 %

Variance 0.25 0.31 0.40 0.45 0.49 0.51

CI 0.07 0.08 0.09 0.09 0.10 0.10

CI pct 14 % 9 % 7 % 6 % 5 % 5 %

Table 6.VII: Min-entropy for a random network N=64, k=32

Min-entropy for a butterfly network N=64, k=32

Depth 1 2 3 4 5 6

Entropy 0.46 0.85 1.25 1.56 1.88 2.19

%max 9 % 17 % 25 % 31 % 38 % 44 %

Variance 0.25 0.38 0.45 0.50 0.53 0.47

CI 0.07 0.08 0.09 0.10 0.10 0.10

CI pct 15 % 10 % 8 % 6 % 5 % 4 %

Table 6.VIII: Min-entropy for a butterfly network N=64, k=32

1 2 3 4 5 6
0

1

2

3

4

5

Number of stages

M
in
-
e
n
tr
o
p
y
g
a
in

Min -entropygain N=64, k=32

Figure 6.15: Min-entropy for random and butterfly networks N=64, k=32
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6.2.2.5 Random and Benes Networks with k=8

Tables 6.IX to 6.XII compare the random and Benes networks with 8 adversaries.

We show an increase number of rounds of random permutation to enable the comparison

with Benes networks. We see from Figures 6.16 and 6.17 that past the first butterfly at

step 6, very little is gained from the Benes network, to the point where random mixing

actually passes the Benes network at some stages. The end results for Shannon entropy

are indistinguishable since they are close to the maximum possible entropy. For min-

entropy, the random mixing exceeds the results from the Benes network by 1 % at the

last step, although this result is not significant.
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Shannon entropy for a random network N=64, k=8

Depth 1 2 3 4 5 6 7 8 9 10 11

Entropy 0.85 1.71 2.53 3.32 4.05 4.65 5.09 5.40 5.58 5.68 5.73

%max 15 % 29 % 44 % 57 % 70 % 80 % 88 % 93 % 96 % 98 % 99%

Variance 0.12 0.187 0.25 0.27 0.23 0.17 0.10 0.05 0.02 0.007 0.002

CI 0.04 0.06 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.006

CI pct 6 % 4 % 3 % 2 % 2 % 1 % 1 % 1 % 1 % 0.5 % 0.3 %

Table 6.IX: Shannon entropy for a random network N=64, k=8

Shannon entropy for Benes mixing N=64, k=8

Depth 1 2 3 4 5 6 7 8 9 10 11

Entropy 0.82 1.71 2.58 3.45 4.33 5.20 5.27 5.37 5.49 5.59 5.76

%max 14 % 30 % 44 % 60 % 75 % 90 % 91 % 92 % 95 % 96 % 99%

Variance 0.14 0.19 0.27 0.27 0.26 0.24 0.25 0.24 0.18 0.14 0.003

CI 0.05 0.06 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.05 0.008

CI pct 6 % 3 % 2 % 2 % 1 % 1 % 1 % 1 % 1 % 1 % 0.1 %

Table 6.X: Shannon entropy for a Benes network N=64, k=8
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Figure 6.16: Shannon entropy for random and Benes networks N=64, k=8
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Min-entropy for a random network N=64, k=8

Entropy 0.85 1.61 2.21 2.74 3.24 3.64 4.00 4.34 4.60 4.85 5.04

%max 15% 28 % 38 % 47 % 56 % 63 % 69 % 75 % 79 % 84 % 87 %

Variance 0.12 0.26 0.37 0.37 0.33 0.25 0.21 0.15 0.12 0.10 0.07

CI 0.04 0.07 0.08 0.08 0.08 0.07 0.06 0.05 0.05 0.04 0.03

CI pct 6 % 5 % 4 % 3 % 3 % 2 % 2 % 1 % 1 % 1 % 1 %

Table 6.XI: Min-entropy for a random network N=64, k=8

Min-entropy for Benes mixing N=64, k=8

Depth 1 2 3 4 5 6 7 8 9 10 11

Entropy 0.82 1.63 2.28 2.88 3.55 4.10 4.26 4.50 4.75 4.99 5.20

%max 14 % 28 % 39 % 50 % 61 % 71 % 73 % 78 % 82 % 86 % 90%

Variance 0.14 0.26 0.41 0.33 0.31 0.31 0.28 0.25 0.23 0.21 0.14

CI 0.05 0.07 0.09 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.05

CI pct 6 % 4 % 4 % 3 % 2 % 2 % 2 % 2 % 1 % 1 % 1 %

Table 6.XII: Min-entropy for a Benes network N=64, k=8
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Figure 6.17: Min-entropy for random and Benes networks N=64, k=8
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6.2.2.6 Random and Benes Networks with k=32

Finally, we compare the random and Benes networks with 32 adversaries in Ta-

bles 6.XIII to 6.XVI. The results are quite similar to the results of 8 adversaries and

slightly advantage the random network over the Benes network, although again this re-

sult is within the margin of error.
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Shannon entropy for a random network N=64, k=32

Depth 1 2 3 4 5 6 7 8 9 10 11

Entropy 0.52 1.03 1.52 1.97 2.41 2.82 3.22 3.55 3.83 4.08 4.28

%max 10 % 21 % 30 % 39 % 48 % 56 % 64 % 71 % 77 % 82 % 86%

Variance 0.25 0.38 0.48 0.50 0.48 0.51 0.47 0.44 0.38 0.31 0.23

CI 0.07 0.08 0.09 0.10 0.09 0.10 0.09 0.09 0.08 0.07 0.06

CI pct 13 % 8 % 6 % 5 % 4 % 3 % 3 % 3 % 2 % 2 % 2 %

Table 6.XIII: Shannon entropy for a random network N=64, k=32

Shannon entropy for Benes mixing N=64, k=32

Depth 1 2 3 4 5 6 7 8 9 10 11

Entropy 0.51 0.97 1.48 1.98 2.48 2.96 3.10 3.34 3.59 3.90 4.23

%max 10 % 20 % 30 % 40 % 50 % 59 % 62 % 67 % %72 %78 85%

Variance 0.25 0.40 0.50 0.53 0.52 0.59 0.61 0.56 0.52 0.44 0.29

CI 0.07 0.09 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.09 0.07

CI pct 13 % 9 % 7 % 5 % 4 % 4 % 4 % 3 % 3 % 2 % 2 %

Table 6.XIV: Shannon entropy for a Benes network N=64, k=32
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Figure 6.18: Shannon entropy for random and Benes networks N=64, k=32
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Min-entropy for a random network N=64, k=32

Entropy 0.52 0.91 1.22 1.51 1.79 2.09 2.32 2.51 2.76 2.91 3.09

%max 10 % 18 % 25 % 30 % 36 % 42 % 46 % 50 % 55 % 58 % 62 %

Variance 0.25 0.31 0.39 0.41 0.41 0.46 0.43 0.43 0.43 0.43 0.42

CI 0.07 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

CI pct 13 % 8 % 7 % 6 % 5 % 5 % 4 % 4 % 3 % 3 % 3 %

Table 6.XV: Min-entropy for a random network N=64, k=32

Min-entropy for Benes mixing N=64, k=32

Depth 1 2 3 4 5 6 7 8 9 10 11

Entropy 0.51 0.85 1.20 1.52 1.85 2.15 2.30 2.53 2.68 2.93 3.13

%max 10 % 17 % 24 % 30 % 37 % 43 % 46 % 51 % 54 % 59 % 63%

Variance 0.25 0.31 0.39 0.38 0.41 0.46 0.44 0.41 0.44 0.51 0.43

CI 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.10 0.09

CI pct 13 % 9 % 7 % 6 % 5 % 4 % 4 % 4 % 3 % 3 % 3 %

Table 6.XVI: Min-entropy for a Benes network N=64, k=32
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Figure 6.19: Min-entropy for random and Benes networks N=64, k=32
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6.3 Network Interpretation

Such networks may be interpreted in various ways. The most direct interpretation of

the network is the following.

Algorithm 7: Direct Network Execution

1 N parties get together to mix with new, untainted Tor identities;

2 The parties choose their initial ordering;

3 At the first stage of the network, parties execute the two-party switchbox shown in

Figure 6.2 to create a blueprint transaction;

4 Parties sign the transactions and send them to the network to be confirmed;

5 When all transactions are confirmed, the parties refresh their Tor identities and

proceed to the next step, openly declaring their new position in the mix. The new

position is linked to the Tor identity. If two parties do not agree on the positions,

the protocol is aborted;

6 The protocol finishes when all the switchbox protocols have been executed;

This protocol is more DOS resistant than most implementations of the blueprint ap-

proach. Although it may be interrupted by a single misbehaving user, the steps that have

previously been completed are not wasted as some anonymity most likely already has

been gained by most users. This can be seen in comparison to the blueprint approach

where if even a single user refuses to sign the final transaction, the protocol must be

aborted and the honest participants do not gain any anonymity. On the other hand, this

protocol incurs important communication costs both for the Tor identity creation step

and transactions step. The execution of a butterfly network above would create Nlg(N)

Tor identities and half that number of transactions on the blockchain. Furthermore, even

if only two confirmations for each transaction were required before passing to the next

step, the running time would be of the order of
lg(N)

6
hours 3. Additionally, since mining

fees are expected for each transaction, the exchange amounts for every switchbox must

decrease uniformly if only slightly, which may lead to problems if a user misbehaves

3. This is based on 10-minute average confirmation time.
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and the protocol must be restarted.

Using the same networks as above, one may create a single blueprint transaction

instead of a series of transactions. Step 4 in the protocol of Algorithm 7 may be replaced

by both parties agreeing on their respective positions. After a Tor identity refresh, each

party takes the position it has just agreed to and the network continues. Once the network

is finished, each party can create a new identity and announce its position and output

address, and a transaction blueprint can be constructed and signed as before. Thus, the

number of transactions sent to the blockchain is reduced to one. This also reduces the

problem of the transaction fees since they only need to be paid once and are Nlg(N)

times less for each party if we assume a fixed cost for any transaction on the blockchain.

However, this approach suffers from all the disadvantages of the blueprint approach. We

believe that this interpretation is not as interesting as others mentioned in the previous

chapters as it is more complex and offers few advantages.

A third interpretation for the network is to send the results of each level of mixing to

an untrusted third party who would create a transaction blueprint to be signed. Not only

can the third party not leave with the money, that party does not gain any information

that would not be accessible from the blockchain. This middle-of-the-road approach is

less costly than the first interpretation but a denial of service attack halts the protocol at

a specific stage. If this attack is not at the first stage, some anonymity is still gained.

Similarly, it is more costly than the second approach but is less DOS susceptible. We

believe that such interpretations may cohabit and satisfy different needs.

One can imagine excluding a misbehaving party and replacing that party with a new

party that has not yet participated in the protocols. The operator of a mixing service may

have a waiting list where people can join the protocol when a misbehaving party leaves.

This suggests the idea of an endless protocol with a fixed number of parties participating

in the protocol at any one time but being able to exit the protocol as the end of any step.

Of course, such a modification would have privacy repercussions that are beyond the

scope of this thesis. The modification could easily be integrated with random mixing in

particular.
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6.4 j-Party Switchboxes

The n-party mixing through encryption described in the previous chapter can be used

to replace two-party switchboxes with n-party switchboxes. Each switchbox requires

more computation and communication rounds but these switchboxes enable anonymiz-

ing networks with reduced depth. For example, we can build a butterfly-like network

that uses j-input switchboxes and which has depth log j(N) and width N
j for a total of

Nlog j(N)
j switchboxes. The Benes network thus has a depth of 2log j(N)− 1 for a total

size of
2Nlog j(N)−N

j .

We have seen in section 5.3.2 that three-party switchboxes can be feasibly imple-

mented through encryption. We believe that networks using these switchboxes could be

worth investigating.

6.5 Discussion

Networks of transactions benefit from not needing a trusted third party and being

more DOS-resistant than other approaches to anonymize but they suffer from increased

financial cost and latency in most implementations, in addition to being more compli-

cated to set up. The increase in efficiency of structured networks is minimal considering

the increased complexity and lower DOS resistance of such networks compared to ran-

dom mixing. Furthermore, doubling the number of steps to go from a butterfly network

to a Benes networks yields very little improvement, and we believe that these extra steps

should instead be used to mix with a new set of participants. It appears that our hypothe-

sis that enabling all N! would produce a better permutation was incorrect. We do believe

however that continuous random mixing is an option that is viable in the current state of

Bitcoin usage.

While we consider that these structured networks are not worth using in place of

other solutions in the context of Bitcoin, we might ask whether other mixing applications

might benefit from this analysis, especially those application where DOS-resistance and

the lack of a central party are priorities.



CONCLUSION AND FUTURE WORK

In the introduction, we motivated the study and use of anonymous payment systems

to hinder abusive privacy infringements by governments and companies. Our belief that

Bitcoin could be part of the solution to these problems motivated our efforts to make the

cryptocurrency more anonymous.

The existence of security and privacy vulnerabilities in traditional mixers used in Bit-

coin motivated our study of decentralized mixers. The survey of existing mixing proto-

cols enabled us to develop a framework to classify and compare the resulting anonymity

of various protocols. In addition to contributing an efficient 3-party mixing protocol to

the blueprint mixing approach, we have developed the network of transactions frame-

work in order to address the high DOS-vulnerability of blueprint mixing. Although our

findings indicate that this method will probably not be used for Bitcoin, we hope that

such a construction might be used for other anonymizing problems unrelated to Bitcoin,

possibly as a variant to mixnets in certain situations.

Our survey of mixers currently in use as well as proposed solutions indicates that

there exist accessible solutions to the security problem. While it does not address the

privacy vulnerability, blueprint mixing using a facilitator could be implemented at low

cost and would address the security vulnerability of today’s mixers. Fortunately, the

emergence of protocols such as Coinjoin and Sharedcoin indicates that the community

might be moving in such a direction. While more work would be needed to find a

truly efficient large-scale private decentralized mixer, we believe that the small-scale

solutions such as our proposed 3-party mixing through encryption could be implemented

to produce secure and private mixing today.

In future work, we would like to find efficient protocols to produce mixing that in-

volves more than three parties. Furthermore, an analysis of networks of transactions

including switchboxes that take more than two inputs might enable us to discover some

networks that are more efficient at anonymizing their users.
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APPENDIX I

BLOCK GENERATION DIFFICULTY

The expected amount of work for creating a block is adjusted dynamically by the

network so that the expected time between new blocks is 10 minutes. The target of

the hash function’s result is stored in a packed representation in each block as 256 bit

hexadecimal number. This packed representation can be expanded into the real target if

multiplied by 28∗(0x1b−3) [13]. The difficulty of mining a block as the expected amount

of work required to mine the next block compared to the minimum amount of work that

could possibly be used to mine a block. This corresponds to

difficulty =
maximum target

current target

where maximum target is 0x1d00 f f f f in packed form. Difficulty is dynamically ad-

justed by the network every 2016 blocks, that is about every 2 weeks. When this hap-

pens, every Bitcoin client multiplies the target by the percentage difference between

2016∗10min and the time it took to generate the last 2016 blocks. This modification is

bounded by a factor of 4 to prevent large changes in difficulty. This enables a decentral-

ized change in difficulty that every peer can agree to.

The probability distribution of the expected time between blocks follows a Poisson

distribution. Since this distribution has no memory, elapsed time since the last block has

no impact on expected time to the next block. The total number of hashes produced by a

mining computer per second is called the hashrate and is typically measured in MH/s 1.

The total hashrate of the network can be inferred from the difficulty and the time between

blocks. In the first half of 2014, it was of the order of 107 MH/s.

1. Millions of hash per second.



APPENDIX II

MULTIPARTY RANDOMNESS

This section details how to securely create 2-party randomness, that is a random

string that cannot be influenced by one or the other of two non-colluding parties. We

can call the party with the lowest alphanumeric input address Alice and the other party

Bob. To produce a single bit of multiparty randomness, Alice can commit to a random

bit bA and send the commitment to Bob. Bob can transmit bB to Alice, at which point

Alice reveals bA. We then define b := bA⊕ bB. This protocol’s output is as hiding and

binding 1 as the commitment scheme that it uses.

This choice of randomness may be used to implement 2-party switchboxes. If b = 0

then Alice and Bob each send the funds to themselves whereas if b = 1, they switch.

Alice then creates the transaction blueprint, signs it and sends it to Bob to be signed.

Bob signs it and publicizes it to the network. Alice cannot influence b as long as the bit

commitment scheme is computationally binding, and Bob cannot influence it as long as

the bit commitment scheme is computationally hiding. Any attempt to deviate from the

protocol results in the protocol aborting.

This can naturally be extended to produce j bits of randomness by making b a string

of j bits. One efficient way for Alice to commit to bA is by sending the hash of the

value with some random bits H(bA||r) to Bob. The random bits are necessary so that the

commitment cannot be searched through a brute-force attack.

In order for N parties to produce a random permutation, each party can in turn com-

mit to a random permutation and later reveal it, in which case the composition of these

permutations in the same order will produce a truly random permutation that cannot be

influenced by any non-complete subsets of the participants.

1. Intuitively, a protocol is hiding if it is hard for Bob to guess Alice’s commitment and is binding if

Alice may not change her commitment. For a more technical description, see [41].



APPENDIX III

NETWORK OF TRANSACTIONS SIMULATION

In this section, we describe the simulation we used to determine the Shannon entropy

and min-entropy of networks of transactions. We assume that 2-party switchboxes are

used but the methodology could be generalized to j-party switchboxes. We start by

considering that the adversary is a blockchain observer.

III.1 Blockchain Observer

We consider 4-party mixing with a butterfly network. The state of the system from

the adversary’s point of view can be illustrated as a column vector representing the prob-

ability distribution of Alice being at various positions. The positions of the parties can

be labelled from 00 to 11. Since we consider without loss of generality that Alice oc-

cupies position 00 at first, the probability distribution of Alice’s position can initially be

represented as

D0 =















1

0

0

0















which the adversary can interpret as Alice being in position 1 with 100% probability.

We can check that the Shannon entropy and min-entropy at this point are H∞(D0) =

H(D0) = lg(1) = 0 as expected since the adversary does not need any extra information

to know where Alice is.

At each stage, each participant mixes with their neighbour as illustrated in Figure 6.3.

This can be represented with the following matrix that is the same at all stages against a

blockchain observer:



xviii

S =















1
2

1
2

0 0

1
2

1
2

0 0

0 0 1
2

1
2

0 0 1
2

1
2















The resulting probability distribution for Alice’s position from the adversary’s point

of view after this first stage is

D1 = D0S =
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The adversary can interpret this as Alice’s position being 00 with P = 1
2

and 01 with

P = 1
2
. The Shannon entropy and min-entropy have grown as expected as H(D1) =

−21
2
lg(1

2
) = 1 and H∞(D1) =−lg(1

2
) = 2.

The link permutations in a network can be expressed by an NxN binary matrix of

rank N. In the N = 4 butterfly case, the first link permutation is represented by the

following matrix

LP0 =















1 0 0 0

0 0 1 0
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0 0 0 1















The resulting distribution after this link permutation is

D2 = LP0D1 =
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The final distribution is thus

D f = SD2 =
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In this case, both the resulting Shannon entropy and min-entropy of the distribution
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are H(D f )=H∞(D f )= 2. We realize that as expected, each stage yields an improvement

in anonymity. Furthermore, we note that both entropies are maximal and cannot be

increased.

III.2 Mixing in the Presence of Adversaries

We now consider the situation where each party that is not Alice might be colluding

with the adversary. The randomness generation described in appendix II ensures that

a corrupt party may not influence the result of a coin toss. We denote the positions of

corrupt parties with bold characters.

As noted previously, no anonymity is gained if Alice mixes with a party colluding

with the adversary. In this case, one of two situations will happen, but the adversary will

know which is which. For example if Alice is only mixing with one adversary, the first

stage would be one of S1 =
(

1 0
0 1

)

or S2 =
(

0 1
1 0

)

each with probability 1
2

but the adversary

would know which situation it is.

We may simulate a possible outcome of a 4-party butterfly with the adversary’s col-

laborator starting at position 01. In this example, the inputs that the adversary is involved

in switch for the first stage S0 but do not for the second stage S1.
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D f = S1D2 =
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In this case, the adversary can rule out both the first and second positions. Multiple

adversaries are treated similarly with different coin tosses.



APPENDIX IV

TECHNICAL SPECIFICATIONS

IV.1 Bitcoin’s Scripting Language

Bitcoin clients are written in various programming languages but the Bitcoin pro-

tocol itself uses a Forth-like scripting language called Script to describe transactions.

A script is a list of instructions recorded with each transaction that describes how the

next person who wants to spend the coins can access them in order to spend them. For

example, a simple script would not impose any conditions other than the signing of the

transaction by the sender for the receiver to be able to redeem the coins and spend them.

More complex scripts may enable a transaction to only be validated if certain conditions

are met, e.g. a certain date has passed. Although Script is intentionally not Turing-

complete 1, it enables the writing of transactions using a very large set of conditions.

One notable functionality is the use of transactions with multiple senders and receivers.

The only fixed requirement in all transactions is that all of the senders have signed the

transaction.

IV.2 Transaction Example

This example transaction T is taken from the Bitcoin wiki [14]. It represents a one

input one output transaction for the amount of 50 btc.

Input:

Previous tx: f 5d8ee39a430901c91a5917b9 f 2dc19d6d1a0e9cea205b009ca73dd04

470b9a6

Index: 0

scriptSig: 304502206e21798a42 f ae0e854281abd38bacd1aeed3ee3738d9e1446618

1. Turing-completeness is a property of a programming language in which anything that is computable

can be computed.
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c4571d10

90db022100e2ac980643b0b82c0e88 f f d f ec6b64e3e6ba35e7ba5 f dd7d5d6cc8d25c

6b241501

Output:

Value: 5000000000

scriptPubKey: OP_DUP OP_HASH160

404371705 f a9bd789a2 f cd52d2c580b65d35549d

OP_EQUALV ERIFY OP_CHECKSIG

The input specifies txout that is being spent in this transaction. The Previous tx is the

hash of the previous transaction being referenced. The index represents the specific out-

put number of the referenced transaction. ScriptSig is the first part of the script described

later.

The output contains instructions for sending the coins. Value is the number of

Satoshi 2 sent to the output address. The second part of the script is ScriptPubKey. If

there were a second output address or a change address, it would be specified here. Any

amount that is not redeemed in an output is automatically considered a transaction fee

that is paid to the miner for validating the transaction.

The script is written in the Bitcoin-specific Script scripting language and consists of

two parts, a signature (scriptSig) and a public key (scriptPubKey). The first is necessary

to verify the integrity of T ’s inputs and is executed first. The values of different variables

are left on the stack and when scriptPubKey is executed, it can use these values. The

script scriptPubKey is where the signature of the sender takes place and where special

conditions for the transaction may be coded. The transaction is accepted by the network

if the execution of scriptPubKey returns the value true.

2. A satoshi is 1
100,000,000

of a Bitcoin, the smallest denomination there is.


