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en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en Février

2014,

c© Samuel Ranellucci,
.



CONTENTS

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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RÉSUMÉ

Il y a des problèmes qui semblent impossible à résoudre sans l’utilisation d’un tiers parti

honnête. Comment est-ce que deux millionnaires peuvent savoir qui est le plus riche sans dire à

l’autre la valeur de ses biens ? Que peut-on faire pour prévenir les collisions de satellites quand

les trajectoires sont secrètes ? Comment est-ce que les chercheurs peuvent apprendre les liens

entre des médicaments et des maladies sans compromettre les droits privés du patient ? Com-

ment est-ce qu’une organisation peut empêcher le gouvernement d’abuser de l’information

dont il dispose en sachant que l’organisation doit n’avoir aucun accès à cette information ?

Le Calcul multiparti, une branche de la cryptographie, étudie comment créer des protocoles

pour réaliser de telles tâches sans l’utilisation d’un tiers parti honnête.

Les protocoles doivent être privés, corrects, efficaces et robustes. Un protocole est privé

si un adversaire n’apprend rien de plus que ce que lui donnerait un tiers parti honnête. Un

protocole est correct si un joueur honnête reçoit ce que lui donnerait un tiers parti honnête.

Un protocole devrait bien sûr être efficace. Être robuste correspond au fait qu’un protocole

marche même si un petit ensemble des joueurs triche. On démontre que sous l’hypothèse d’un

canal de diffusion simultané on peut échanger la robustesse pour la validité et le fait d’être

privé contre certains ensembles d’adversaires.

Le calcul multiparti a quatre outils de base : le transfert inconscient, la mise en gage, le

partage de secret et le brouillage de circuit. Les protocoles du calcul multiparti peuvent être

construits avec uniquements ces outils. On peut aussi construire les protocoles à partir d’hy-

pothèses calculatoires. Les protocoles construits à partir de ces outils sont souples et peuvent

résister aux changements technologiques et à des améliorations algorithmiques. Nous nous

demandons si l’efficacité nécessite des hypothèses de calcul. Nous démontrons que ce n’est

pas le cas en construisant des protocoles efficaces à partir de ces outils de base.

Cette thèse est constitué de quatre articles rédigés en collaboration avec d’autres cher-

cheurs. Ceci constitue la partie mature de ma recherche et sont mes contributions principales

au cours de cette période de temps. Dans le premier ouvrage présenté dans cette thèse, nous

étudions la capacité de mise en gage des canaux bruités. Nous démontrons tout d’abord une

limite inférieure stricte qui implique que contrairement au transfert inconscient, il n’existe

aucun protocole de taux constant pour les mises en gage de bit. Nous démontrons ensuite que,

en limitant la façon dont les engagements peuvent être ouverts, nous pouvons faire mieux et



même un taux constant dans certains cas. Ceci est fait en exploitant la notion de �cover-free

families �. Dans le second article, nous démontrons que pour certains problèmes, il existe un

échange entre robustesse, la validité et le privé. Il s’effectue en utilisant le partage de secret

vérifiable, une preuve à divulgation nulle, le concept de fantômes et une technique que nous

appelons les balles et les bacs. Dans notre troisième contribution, nous démontrons qu’un

grand nombre de protocoles dans la littérature basée sur des hypothèses de calcul peuvent

être instanciés à partir d’une primitive appelée Transfert Inconscient Vérifiable, via le concept

de Transfert Inconscient Généralisé. Le protocole utilise le partage de secret comme outils de

base. Dans la dernière publication, nous counstruisons un protocole efficace avec un nombre

constant de rondes pour le calcul à deux parties. L’efficacité du protocole dérive du fait qu’on

remplace le coeur d’un protocole standard par une primitive qui fonctionne plus ou moins

bien mais qui est très peu couteux. On protège le protocole contre les défauts en utilisant le

concept de �privacy amplification �.

Mots Clés : Boite-noire, Transfert inconscient, Partage de Secret, Mise en

Gage, Circuit Brouillé , Robustesse, Validité, Privé
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ABSTRACT

There are seemingly impossible problems to solve without a trusted third-party. How can

two millionaires learn who is the richest when neither is willing to tell the other how rich

he is? How can satellite collisions be prevented when the trajectories are secret? How can

researchers establish correlations between diseases and medication while respecting patient

confidentiality? How can an organization insure that the government does not abuse the

knowledge that it possesses even though such an organization would be unable to control

that information? Secure computation, a branch of cryptography, is a field that studies how

to generate protocols for realizing such tasks without the use of a trusted third party. There

are certain goals that such protocols should achieve. The first concern is privacy: players

should learn no more information than what a trusted third party would give them. The

second main goal is correctness: players should only receive what a trusted third party would

give them. The protocols should also be efficient. Another important property is robustness,

the protocols should not abort even if a small set of players is cheating.

Secure computation has four basic building blocks : Oblivious Transfer, secret sharing,

commitment schemes, and garbled circuits. Protocols can be built based only on these build-

ing blocks or alternatively, they can be constructed from specific computational assumptions.

Protocols constructed solely from these primitives are flexible and are not as vulnerable to

technological or algorithmic improvements. Many protocols are nevertheless based on compu-

tational assumptions. It is important to ask if efficiency requires computational assumptions.

We show that this is not the case by building efficient protocols from these primitives. It is

the conclusion of this thesis that building protocols from black-box primitives can also lead

to efficient protocols.

This thesis is a collection of four articles written in collaboration with other researchers.

This constitutes the mature part of my investigation and is my main contributions to the

field during that period of time. In the first work presented in this thesis we study the com-

mitment capacity of noisy channels. We first show a tight lower bound that implies that in

contrast to Oblivious Transfer, there exists no constant rate protocol for bit commitments.

We then demonstrate that by restricting the way the commitments can be opened, we can

achieve better efficiency and in particular cases, a constant rate. This is done by exploiting

the notion of cover-free families. In the second article, we show that for certain problems,



there exists a trade-off between robustness, correctness and privacy. This is done by using

verifiable secret sharing, zero-knowledge, the concept of ghosts and a technique which we call

“balls and bins”. In our third contribution, we show that many protocols in the literature

based on specific computational assumptions can be instantiated from a primitive known as

Verifiable Oblivious Transfer, via the concept of Generalized Oblivious Transfer. The pro-

tocol uses secret sharing as its foundation. In the last included publication, we construct a

constant-round protocol for secure two-party computation that is very efficient and only uses

black-box primitives. The remarkable efficiency of the protocol is achieved by replacing the

core of a standard protocol by a faulty but very efficient primitive. The fault is then dealt

with by a non-trivial use of privacy amplification.

Keywords: Black-Box, Oblivious Transfer, Secret Sharing, Commitment scheme,

Garbling scheme, Robustness, Correctness, Privacy
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CHAPTER 1

INTRODUCTION

The age of information has arrived. With the rise of data mining, the amount of stored

information has grown tremendously : e-mails, web habits, medical databases, location track-

ing, etc. In addition, the ability to process such information, both algorithmically and in

terms of raw processing power has increased dramatically. If used wisely, it could protect

nations, grant us medical knowledge that saves lives, improve the effectiveness of businesses,

save us from the annoyance of bureaucratic tasks. It could even simplify and expand the

democratic process.

On the other hand, if the privacy of ordinary citizens is betrayed.The consequences to

the layman could be dire. They could be prevented from travelling, lose their jobs, they can

suffer humiliation and be sent to prison.

It is this potential and this fear that establishes the importance of secure computation.

It is the field that studies how parties can learn the output of an agreed upon function based

on their joint inputs without leaking additional information. Many of the following sections

of this chapter will contain applications of secure computation. In the last section, we will

discuss the utility of building blocks of secure computation.

Statistical database

Secure computation can allow us to gain medical knowledge which can save lives. The

goal is to find information without revealing private data from within databases. There is

a lot of data that people don’t wish to share but which could be used to save and improve

our lives. This information can be used to find cures, link drugs to harmful effects and even

localize outbreaks of disease. A concrete example would be to compare the prevalence of

heart disease in a population taking a certain drug to a control group. A secure protocol

should do this without revealing which patients either take the drug or have a heart disease.



Big brother

Secure computation can be applied to allow the government to keep us safe without

sacrificing our liberties. In 2013, documents leaked by Edward Snowden revealed the extent

of government spying. In short, it was revealed that the National Security Agency (NSA) had

unlimited access to e-mail accounts, cell phone data, browsing habits and other metadata

of private citizens. Many governments have taken the position that even if illegal, it is

necessary that they capture and process all this information to keep people safe. There have

been many abuses, people ending up on no-fly lists, government employees spying on their

potential mates. In contrast, civil organisations have demanded that privacy be respected.

It may seem impossible to reconcile such contradictory positions, but secure computation

may provide solutions. In particular, we can envision a system where data can be shared

between a governmental agency and a non-governmental group. Any data is only released if

both the agency and the group authorize its distribution. This can be done in such a way

that requests stay secret but at the same time the group is able to verify that the requests

either respects privacy or is properly authorized.

In addition, this could also improve people’s lives. Applying for a visa, a passport, a

residency permit or filling out taxes is an extremely frustrating waste of time. In some

cases the government already has the information required, and in other cases it could easily

acquire it. Privacy has to be maintained and so the government should not have control

of that knowledge. An elegant solution would be to securely distribute all the information

between the government and organizations dedicated to privacy. In addition, this information

could be used to prove the innocence of people by providing reliable alibis. This would allow

us to have all the advantages of Big Brother without living in the world of 1984 from [Orw49].

Sugar Beet auctions

Secure computation can also be applied to markets. In Denmark, farmers are contracted

by the company Danisco to produce sugar beets, each farmer is contracted to provide a

certain amount of sugar beets. European subsidies for sugar beets ceased. As a result, it was

necessary to redistribute the production rights between farmers. The farmers had to decide

how much production rights they would buy or sell for a given price. The farmers didn’t want

this information to be public because it would give Danisco a stronger bargaining position.
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A functionality was implemented to determine the market clearing price, the price at which

demand and supply are in equilibrium. This is the first practical implementation of secure

computation, its full description can be found in [BCD+09].

Satelite collision prevention

Even in Space, there are even useful applications of secure computation. There are

thousands of satellites in orbit. Each satellite cost millions of dollars to launch into orbit. If

two satellites collide, the monetary loss is gigantic. It also generates floating debris which

poses a risk to other satellites. The satellites “Iridium 33” and “Kosmos 2251” were lost due

to such a collision. A trivial solution to prevent such accidents would be to simply reveal

the trajectory of the satellites. Unfortunately, many parties due to security concerns are

unwilling to publicize this information. A company, named Cybernetica has developed a

solution using secure computation to prevent such occurrences.

Building Blocks

Secure computation can be achieved using four basic building blocks: Oblivious Transfer,

secret sharing, commitment schemes, and garbled circuits. Protocols can be built based only

on these building blocks from the seminal work of [Kil88] and [Yao82]. A black-box protocol

is a protocol which is constructed exclusively from these primitives. These building blocks

can be instantiated from a variety of computational assumptions and from information the-

oretic primitives such as noisy channels. If an assumption is no longer considered secure, it

is easy to replace a building block instantiation with another one based on another hardness

assumption.

In contrast, protocols can be constructed with the aid of specific computational assump-

tions. For example, many protocols are based on the discrete logarithm problem or on the

decisional Diffie-Helman problem. This means that the protocol is secure only if the under-

lying problem is hard.

There are many disadvantages of protocols built on computational assumptions. They

can suffer due to algorithmic or technological improvements. They can become completely

worthless. For example, a quantum computer would render any protocol based on the hard-

ness of factoring completely useless. Algorithmic improvement could force certain protocols
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to use larger cryptographic keys. This would make the protocol less efficient.

In contrast, protocols based on these building blocks are more robust and can be easily

adapted to deal with technological and algorithmic improvement. Naturally one may ask,

why build protocols under specific computational assumptions? The reason is that it seems

easier to build more practical protocols based on specific computational assumptions. The

question is can we build protocols that are constructed solely from black-box primitives that

are as efficient as those built using specific computational assumptions. The main focus of

this thesis is to show that this is indeed the case.
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CHAPTER 2

PRELIMINARIES

In this chapter, we will introduce important notions of secure computation. We will define

a strong notion of security called Universal Composability and we will precisely explain the

building blocks of secure computation.

2.1 Security

Many protocols that were once deemed ”secure” were found to be completely broken

when combined with other protocols. It is therefore important to define a notion of security

where protocols remain secure even under composition. Universal composability from [Can01]

is a paradigm for proving that a protocol is secure even under composition. It is based

on simulating the trusted third party. The main feature of universal composability is the

composition theorem. It guarantees that security of protocols is not compromised by running

other secure protocols in parallel and that any ideal functionality can be replaced by a

protocol that securely implements it.

Ideal functionality

An ideal functionality is a way of specifying the realized security properties of a protocol.

It is modeled by a trusted third party that takes the input from each participant and outputs

the values consistent with its specification to each party. The ideal functionality in the

universal composability framework knows which parties are corrupt (see [CLOS02],[Can06]).

This can be useful for modeling functionalities that leak information against a corrupt player

or on adaptive corruption.

Real Model

In the real world, a reflection of reality, when considering a protocol between two players,

there are three parties : the environment Z, the honest party P and the adversary A. This

can easily be generalized for protocols with more parties. The environment Z provides some

initial input to A and party P . The honest party P will faithfully execute the protocol



π as specified and will only forward messages that are outputs of the functionality to the

environment. The adversary will execute arbitrary code and relay any message that it wishes

to the environment and vice-versa. REALπ,A,Z denotes the random variable induced by

running a particular A,Z. It is important to note that the adversary can be entirely removed

in this setting by allowing Z to interact directly with the honest party in the protocol

execution.

Ideal model

In the ideal world, a reflection of what we want the protocol to realize, when considering

a protocol between two players, there are three parties namely Z,P and a new party called

the simulator S. In this model, the environment starts in the same way by giving inputs

to each party. The simulator will only be able to interact with the honest party through

the ideal functionality F . The simulator will also interact with the environment in the same

way that an adversary in the real model would. IDEALF ,S,Z denotes the random variable

formed by running a particular S,Z for a given functionality F .

Hybrid model

The hybrid model is an extension of the real model. In addition to the real model,

the parties have access to an unbounded number of instances of an ideal functionality F .

The parties can interact directly with these functionalities. We call it the F -Hybrid model.

However, REALπ,A,Z will still be used to denote the random variable even under a F -hybrid

model.

Security definition

For a protocol to be considered secure, for every adversary there exists a simulator such

that the view (the messages it receives) generated for the environment by the adversary can

also be generated by the simulator. The security can come in many different flavors, it can be

perfect, statistical or computational. A protocol is perfectly secure if the views are the same.

A protocol is statistically secure if the views are statistically indistinguishable. A protocol is

computational if no polynomial time adversary can distinguish them.

Definition 1 A protocol π securely realizes an ideal functionality F , if for every adversary
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A there exists a simulator S such that, for every environment Z,the following hold:

REALπ,A,Z ≈ IDEALF ,S,Z

Composition theorem

The composition theorem demonstrates that a protocol which is secure in the universal

composability framework remains secure even when used as a subroutine or used in parralel

with other protocols. Informally, if a protocol πF securely realizes F in the G-hybrid model

and that πG securely realizes G. If we create π′F by substituting G for πG in πF , the resulting

protocol will still securely realize F . The basic way to prove this theorem is by showing that

if it weren’t true then it would be possible to generate an environment that would be able to

distinguish between πG and G or between πF and F . This results in a contradiction and as

such completes the proof sketch of the composition theorem.

Privacy and correctness

Intuitively, privacy is the notion that the only information any set of players should learn

is what they can learn from their own inputs and the output of the functionality. Correctness

is the notion that what each player receives is what the ideal functionality would have given

them. Privacy and correctness are the main concerns of secure computation. In some cases

privacy trumps correctness while in other it may be the opposite.

An interesting way of showing that a protocol is private but not correct is by defining

a functionality fpriv which takes the input from all participants, sends the output to the

adversary, takes an extra string w from the adversary and sends w to the honest players.

Similarly, we can see a protocol that is correct but not private by defining a functionality

fcorrect which takes the input from all participants, then leaks the sender’s input and sends

the output to all participants.

2.2 Black-box primitives

In this section, we introduce the different building blocks of secure computation. Secret

Sharing, Commitment schemes, Oblivious Transfer and garbling schemes allow us to con-

struct secure computation. Secret sharing and commitment schemes allow us to verifiy that
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players acted honestly. Garbling schemes enable efficient constant-round secure two-party

computation. Oblivious Transfer is the most important building block of secure computation.

Secret sharing

A secret sharing scheme ([Sha79]) is a method of generating shares of a secret. Certain

subsets of shares allow the secret to be reconstructed. The subsets of shares which do not

reveal the secret should give no information about the secret. The access structure defines

which shares allow reconstruction of the secret. The simplest secret sharing is when the

shares add up to the secret, the only way to have any information about the secret is to have

all the shares. We refer to the collections that contains all set of shares that allows a receiver

to construct the secret as the access structure. An important example of secret sharing is

Shamir’s secret sharing scheme. It is a secret sharing with parameters (t, n) where t ≤ n.

In this scheme, there are exactly n shares, any set of t shares allows reconstruction of the

secret and less than t shares give no information about the secret. Verifiable secret sharing

schemes are secret sharing schemes with the additional property that even if a small set of

shares have been corrupted, faulty shares can be identified and thus the secret can still be

reconstructed. In most contexts, a secret sharing scheme is defined in terms of players rather

than shares. For our purpose, this is insufficient.

Commitment schemes

A physical implementation of a commitment scheme which may help the reader under-

stand the primitive is as follows: In the commit phase, the sender puts his message in a safe

and gives the safe to the receiver. In the reveal phase, the sender gives the combination of the

safe to the receiver. The receiver can then open the safe and learn the message. This scheme

is binding since the receiver has the safe and thus the sender cannot change the message in

the safe. This scheme is concealing since the receiver cannot open the safe without learning

the combination.

A commitment scheme [BCC88, GMW91] is a two-phase primitive between a sender and

a receiver. In the commit phase, the sender first commits to a message. In the reveal

phase, the sender reveals some information to the receiver which allows him to learn the

message. The binding property is that after the commit stage there exists a unique value

that the receiver will accept as the message. The concealing property requires that prior
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to the reveal phase, the receiver should not be able to learn any information about the

message or any function of committed messages. Commitment schemes can be instantiated

from a variety of computational assumptions [GMW86, BCC88, GMR89, Nao91, GK96?

, HILL99, HR07, FLM11, Lin11]. Commitment schemes can also be instantiated from a

variety of information-theoretic primitives [Cré97, DKS99, WNI03, Wul09].

Commitment schemes were introduced by Manuel Blum in [Blu83]. They are useful for

generating efficient protocols. They allow players to verify that the other participants acted

honestly.

Figure 2.1 – Commitment

Oblivious Transfer

Intuitively, Oblivious Transfer (OT) is a primitive where the sender selects two messages,

the receiver learns one of them, learns no information about the other message and the sender

learns no information on which message the receiver chose. Oblivious Transfer was first

introduced by [Rab81], originally it was a primitive that resembles an erasure channel with

the additional property that the sender was oblivious to whether or not the receiver acquired

the messages. The variant more commonly used for secure computation was introduced by

[EGL85]. Oblivious Transfer was actually conceived earlier by Wiesner in an unpublished

manuscript [Wie83] but he did not forsee its applications to cryptographic protocols. It

was shown in [Cré87] that these two variants are in fact equivalent. Oblivious Transfer

is a primitive that is complete for two-party computation as shown by Killian in [Kil88].

Oblivious Transfer can be instantiated from a variety of computational assumptions [BM90,

FMR96, KSV07, PVW08, GH08, CKWZ13]. Oblivious Transfer can also be instantiated

under a variety of information-theoretic of primitives. [CK88, CS91, Bea96, CCM98]
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In contrast to Commitment schemes, Oblivious Transfer is complete for two-party com-

putation. It is thus a more powerful primitive.

Figure 2.2 – Oblivious Transfer

Verifiable Oblivious Transfer

Verifiable Oblivious Transfer is a variant of Oblivious Transfer where the sender is com-

mitted to his inputs. This variant of Oblivious Transfer allows the receiver to verify that the

sender acted honestly. Verifiable Oblivious Transfer is similar to another variant called Com-

mitting OT. Verifiable Oblivious Transfer was presented in [CC00] and [KSV07]. Committing

OT appears in the works of [JS07] and [SS11].

As specified in the diagram, Alice sends two message, Bob chooses to learn one of them.

This is the OT part of this primitive. Later, Alice can ask the functionality to reveal one of

the messages of her choice to Bob. This is the commitment part of this functionality.

Figure 2.3 – Verifieable Oblivious Transfer
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Generalized Oblivious Transfer

Generalized Oblivious Transfer is an interesting application of Verifiable Oblivious Trans-

fer. It was first described by [IK97]. An interesting way of describing an OT is by describing

the groups of messages that the receiver can get as sets in a collection. In the case of a simple

OT, he can learn one of the sets in {{1}, {2}}. K-out-of-N OT is an OT with a collection

that contains all the sets of messages of size k or less. This mindset allows us to generalize

Oblivious Transfer to its most general form. There is an important link between Generalized

Oblivious Transfer and secret sharing.

Figure 2.4 – Generalized Oblivious Transfer

The works of [SSR08] and [Tas11] construct GOT by using secret sharing. The basic

idea of [SSR08] is that the sender constructs a secret and generates shares for it. The sender

allows the receiver for each message to either learn a share of the secret or to learn a one-time

pad that will be used to decrypt a cyphertext of the message. The receiver is then supposed

to forward the secret to the sender and then the sender sends the encrypted messages to the

receiver.

Unfortunately both protocols are insecure. The protocols from [SSR08] and [Tas11] are

insecure against a malicious sender. A malicious sender can easily break the privacy of both

schemes. In the protocols, a simple OT is used and share validation is non-existent. As a

result, it is possible for the sender to determine if a specific message was chosen. A concrete

attack on [SSR08] will be demonstrated. An adversary wishes to learn if a receiver learns

the message mc, he selects a secret S and executes the share algorithm resulting in shares sj.

He replaces sc by s′c and executes the GOT protocol with those shares. As a result, if the

receiver selects mc, he will reconstruct s correctly otherwise he will reconstruct an s′ 6= s.

The attack breaks the privacy of the receiver. The same idea can be applied to attack the

protocol from [Tas11].
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As part of the third article, we show how to securely realize GOT with the aid of com-

mitments and Verifiable Oblivious Transfer.

Garbling scheme

In 1982, Yao in [Yao82] generated a construction that came to be known as Yao’s garbled

circuit. The basic idea was to encode a circuit in such a way that by giving a party the

right keys he could evaluate the circuit on a specific input and yet learn nothing about the

input except what could be deduced from the circuit. This construction came to be used in

many different applications each with their own divergent variants. Lindell and Pinkas were

the first to prove the security of Yao’s garbled circuit in the field of two party computation

nearly 20 years later in [LP04]. The construction is only secure in the semi-honest model.

Garbling schemes decribed in [BHR12] characterize the notions and generate definitions that

unify these different variants. Garbling schemes can be used under the assumption that

block ciphers act as random permutations or under the assumption of random oracles. In

our case, garbling schemes allow us to instantiate constant-round secure computation that is

practically efficient even against malicious adversaries. The idea behind these constructions

is to generate many circuits, use one subset of circuits to verify that the circuits are well

formed and use the others to evaluate the function.

Intuitively, a garbling scheme is an algorithm which takes the description of a function

and outputs three functions. The first function takes any input and encrypts it, this function

is called the encoding function. The second function (evaluation function) can only generate

an encrypted output from an encrypted input. The third function (decoding function) takes

an encrypted output and converts it to a plaintext. The evaluation function, the decoding

function and the output should only reveal a limited amount of information about the garbled

function.

In secure computation, garbling schemes are used to instantiate constant round secure

two-party computation. A simplification of how garbling schemes are used is as follows: we

will call the parties the sender and the receiver. They wish to compute f with inputs x

and y respectively. The sender will first compute the function gx(y) := f(x, y) which is the

currying of the function f with input x. He will then garble it and send the last two resulting

functions to the receiver. The sender, which posseses the encoding function, and the receiver

will use oblivious transfer so that the receiver learns his input encrypted, the sender though
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is assured that the receiver does not gain additional information. The receiver thus learns

the output without gaining additional information.

The diagram that follows explain that running a garbling scheme with function f , input x

produces the same result as simply evaluating f on input x. Garbling scheme also guarantee

that knowing F,X, d does not reveal additional information except what is specified by the

leakage function and the output of the function.

Figure 2.5 – Garbling scheme
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CHAPTER 3

CONTRIBUTIONS

In this chapter, we specify the contributions of the articles listed in this thesis. The

personal contributions of the author of this thesis are specified at the end of this chapter.

On the efficiency of bit commitment reductions

In the first paper, we show that any protocol that implements n instances of bit com-

mitments with security parameter s (-log of the failure probability) requires ns instances

of Oblivious Transfer or calls to a noisy channel. In particular, it is impossible to achieve

a constant rate. This is in contrast to Oblivious Transfer where a constant rate reduction

is possible We then show that by restricting the way in which the bit commitments can

be opened, it is possible to beat the above lower bound. In the special case where only a

constant number need to be opened, our protocol achieves a constant rate, which is optimal.

Our protocols implements these restricted bit commitments from string commitments.

Trading robustness for correctness and privacy in certain multiparty

computations, beyond an honest majority

In the second paper, we implement a tradeoff between robustness (everyone gets the

right answer), privacy (each player’s input remains private) and correctness (if a player gets

an output, it is the correct one). We show that under the assumption of a simultaneous

broadcast channel, we can trade privacy and correctness for robustness for a restricted class

of functionalities which includes voting and anonymous message transmission. More precisely,

for any threshold t < n/2 where n is the number of players, we can generate a protocol that

is robust against t players and is private and correct against less than n − t players. This

trade-off is impossible for the general class of functionalities.



General Constructions of efficient multiparty computation

It is possible to generalize Oblivious Transfer. The sender can send any number of mes-

sages and the receiver is only allowed to learn certain subsets of those messages. We show

how to construct Generalized Oblivious Transfer from a primitive called Verifiable Oblivious

Transfer. We show how Generalized Oblivious Transfer can be used to implement impor-

tant primitives that are traditionally based on very specific computations. We show how to

implement Cut-and-Choose OT, modified Cut-and-Choose OT and Multi-Sender k-out-of-n

OT. These primitives serve as an important backbone to secure computation protocols. We

also show how Verifiable Oblivious Transfer can be constructed from bilinear pairings.

Efficient Secure Two-Party Computation From Black-Box Primi-

tives via Faulty Cut-And-Choose OT

In the fourth paper, we focus on secure two-party computation. The paper builds upon

the ideas of the third paper. The goal of this paper was to construct an efficient protocol

that relies only on black-boxes for Oblivious Transfer, commitment schemes and garbled

circuits. We took the construction of [LP11], replaced the cut-and-choose OT with a faulty

cut-and-choose OT. We then had to integrate privacy amplifcation in their protocol to prevent

leakage.

Personal contributions

On the directions of my supervisor, I was advised to try to construct efficient commitment

protocols based on noisy channels. In [RTWW11], I contributed to the notion of restricted

bit commitments and the applications of cover-free families.

Originally, Anne Broadbent, Stacey Jeffery and Alain Tapp had designed a protocol for a

restricted class of functionalities which included voting that was private and correct against

any subset of players. Unfortunately, any player could make the protocol abort. Based on

their work, I was able to obtain a tradeoff of robustness for correctness and privacy. This was

done by the introduction of the concepts of ghosts. I also proposed the anonymous message

transmission protocol. Those results appeared in [BJRT12].

In General Constructions of efficient multiparty computation, I constructed Generalized
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Oblivious Transfer from Verifiable Oblivious Transfer and then applied it to implement many

of the oblivious primitives in the literature. This work will be submitted to ICITS 2014

[DNRT12].

It was due to the work on Generalized Oblivious Transfer, that I realised that efficient

two-party computation could be constructed from a basic oblivious transfer by combining

faulty Generalized Oblivious Transfer with privacy amplification. The protocol was later

simplified by directly implementing a faulty version of the Cut-and-Choose OT from [LP11].

At the time this thesis was submitted, this work was in the process of being refereed by the

CRYPTO 2014 committee [RT13].
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CHAPTER 4

ON THE EFFICIENCY OF BIT COMMITMENT REDUCTIONS

Authors: Samuel Ranellucci, Alain Tapp, Severin Winkler, Jürg Wullschleger

4.1 Abstract

Two fundamental building blocks of secure two-party computation are oblivious transfer

and bit commitment. While there exist unconditionally secure implementations of oblivious

transfer from noisy correlations or channels that achieve constant rates, similar constructions

are not known for bit commitment.

In this chapter, it will be demonstrated that any protocol that implements n instances

of bit commitment with an error of at most 2−k needs at least Ω(kn) instances of a given

resource such as oblivious transfer or a noisy channel. This implies in particular that it is

impossible to achieve a constant rate.

It will then be shown that it is possible to circumvent the above lower bound by restricting

the way in which the bit commitments can be opened. In the special case where only a

constant number of instances can be opened, the protocol achieves a constant rate, which is

optimal. The protocol implements these restricted bit commitments from string commitments

and is universally composable. The protocol provides significant speed-up over individual

commitments in situations where restricted commitments are sufficient.

Keywords: secure two-party computation, bit commitment, string commitment, obliv-

ious transfer, noisy channel, information theory

4.2 Introduction

Commitment schemes [Blu83] are one of the basic building blocks of two-party compu-

tation [Yao82]. Commitments can be used in coin-flipping [Blu83], zero-knowledge proofs

[GMR85, GMW91], zero-knowledge arguments [BCC88] or as a tool in general two-party

computation protocols to prevent malicious players from actively cheating (see for example

[CvdGT95]).



A commitment scheme has two phases. In the commit phase, the sender has to decide

on a value b. After the commit phase the value b is fixed and cannot be changed, while the

receiver still does not get any information about its value. At a later time, the players may

execute the second phase, called the open phase, where the bit b is revealed to the receiver.

The scheme is called a bit commitment if b is only one bit, and it is called a string commitment

if b is a longer bit string.

Efficiency of Reductions Bit commitments can be implemented from a wide variety of

information-theoretic primitives [Cré97, DKS99, WNI03, Wul09]. There are protocols which

implement a single string commitment from noisy channels at a constant rate, meaning that

the size of the string grows linearly with the number of instances of noisy channels used,

which is essentially optimal [WNI03]. Protocols which implement individual bit commit-

ments at a constant rate, however, are not known. In [NOIMQ03] it has been shown that

in any perfectly correct and perfectly hiding non-interactive bit commitment scheme from

distributed randomness with a security of 2−k, the size of the randomness given to the players

must be at least Ω(k).

Another primitive which is of fundamental importance in two-party computation is obliv-

ious transfer (OT) [Wie83, Rab81, EGL85]. Oblivious transfer can be implemented from

noisy channels [Cré87, CK88, Cré97, CMW05], cryptogates [Kil00] and weak variants of

noisy channels [DKS99, DFMS04, Wul07, Wul09]. While all these protocols require Ω(k)

instances of a given primitive to implement a single OT with a security of 2−k, it has been

shown in [HIKN08, IPS08, IKOS09] that there are more efficient protocols if many OTs are

implemented at once. In the semi-honest model and in some cases also in the malicious

model, it is possible to implement OT at a constant rate, which means n instances of OT can

be implemented from just O(n) instances of the given primitive, if n is big enough compared

to the security parameter. It is, therefore, possible to achieve the lower bound for such reduc-

tions [DM99, BM04, WW05, WW10] up to a constant factor. In the following, the question

whether such efficient protocols also exist in the case of bit commitment is addressed.

4.2.1 Contribution

It will be shown that — in contrast to implementations of OT — no constant rate reduc-

tion can exist. More precisely, in Theorem 4 it will be shown that if a protocol implements n
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bit commitments with a security of at least 2−k from distributed randomness, then the mutual

information between the sender’s and the receiver’s randomness must be almost kn or larger.

This implies that at least Ω(kn) instances of oblivious transfer or noisy channels are needed

to implement n bit commitments, and hence executing for each bit commitment a protocol

that uses O(k) instances is optimal. In combination with the lower bound from [WNI03],

this bound can be generalized to string commitments: any protocol that implements n string

commitments of length m needs at least Ω(n(k + m)) bits of distributed randomness. This

result is somewhat surprising, as OT is generally harder to implement than commitments.

However, in many applications of bit commitments the full properties of the commitment

scheme is not required. For example in the famous zero-knowledge protocol of [GMW91], it

is only required that a constant number of committed bits be opened. It will be shown that

restricting the ways in which the bit commitments can be opened enables us to implement

more efficient schemes that circumvent our impossibility result. 1 A new concept named

bit commitments with restricted openings will be introduced. It allows a sender to commit

to N bits, from which he may open up to r < N one by one. After that, he may only

open all the remaining bits at once. The protocol uses so-called cover-free families, and

implements bit commitments with restricted openings from string commitments. Together

with a simple construction of a cover-free family from [EFF85], the results imply that for

any prime power q, N = q2 bit can be implemented from which r can be opened from

(r + 1)q string commitments of length q. (See Corollary 17 for the more general statement.)

Together with the protocol from [WNI03], for any constant r, a constant-rate bit commitment

protocol from noisy channels can be achieved. As bit commitments with restricted openings

are strictly stronger than a string commitment, this is optimal. Together with another

construction of a cover-free family from [DBV03], it is possible to implement N = 2Ω(n/r2)

bit commitments from n string commitments. The security of protocols is proven in the

Universal Composability model (UC) [Can01].

We will prove our lower bounds for independent bit commitments in Section 4.3. In

Section 4.4, we introduce commitments with restricted openings and give reductions to string

commitments. Note that Section 4.4 can be read without reading Section 4.3.

1. Note that for the specific case of zero-knowledge proofs other, more efficient, techniques are known
[KMO89].
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4.2.2 Notation

In the following, the probability distribution of a random variable X is denoted by PX(x)

which defines the probability that X outputs x. The joint distribution PXY (x, y) implies a

conditional distribution PX|Y (x, y), for all y with PY (y) > 0. The statistical distance between

the distributions PX and PX′ over the domain X is defined as

δ(PX , PX′) := max
D
| Pr[D(X) = 1]− Pr[D(X ′) = 1] | ,

where it is maximized over all (inefficient) distinguishers D : X → {0, 1}. The notation [n]

is used for the set {1, . . . , n}. For a sequence x = (x1, . . . , xn) and t ∈ [n], xt denotes the

subsequence (x1, . . . , xt).

4.2.3 Information Theory

The following tools from information theory will be used in the proof. It is assumed that

the reader is familiar with the basic concepts of information theory, and refer to [CT12, HK02]

for more details. The conditional Shannon entropy of X given Y is defined as 2

H(X | Y ) := −
∑
x,y

PXY (x, y) logPX|Y (x, y) .

The following notation is used

h(p) = −p log(p)− (1− p) log(1− p)

for the binary entropy function, i.e., h(p) is the entropy of the Bernoulli distribution 3 with

parameter p. The mutual information of X and Y given Z is defined as

I(X;Y | Z) = H(X | Z)− H(X | Y Z) .

2. All logarithms are binary, and use the convention that 0 · log 0 = 0.
3. The Bernoulli distribution with parameter p ∈ [0, 1] takes on the value 1 with probability p and 0

otherwise.
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The mutual information satisfies the following chain rule

I(X1, . . . , Xn;Y ) =
n∑
i=1

I(Xi;Y | X1, . . . , Xi−1).

The Kullback-Leibler divergence or relative entropy of two distributions PX and QX on X is

defined as

D(PX ‖ QX) =
∑
x∈X

PX(x) log
PX(x)

QX(x)
.

The conditional divergence of two distributions PXY and QXY on X × Y is defined as

D(PY |X ‖ QY |X) =
∑
x∈X

PX(x) D(PY |X=x ‖ QY |X=x) .

The binary divergence of two probabilities p and q is defined as the divergence of the Bernoulli

distributions with parameters p and q, i.e.,

d(p ‖ q) = p log
p

q
+ (1− p) log

1− p
1− q

.

The divergence (and hence also the conditional divergence) is always non-negative. Further-

more, we have the following chain rule

D(PXY ‖ QXY ) = D(PX ‖ QX) + D(PY |X ‖ QY |X) . (4.1)

This implies

D(PXPY |X ‖ PXQY |X) = D(PY |X ‖ QY |X). (4.2)

Let QX and PX be two distributions over the inputs to the same channel PY |X . Then the

divergence between the outputs PY =
∑

x PXPY |X and QY =
∑

xQXPY |X of the channel is

not greater than the divergence between the inputs, i.e., the divergence satisfies the data-

processing inequality

D(PX ‖ QX) ≥ D(PY ‖ QY ) . (4.3)
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Furthermore, for random variables X, Y and Z distributed according to PXY Z

I(X;Y | Z) = D(PX|Y Z ‖ PX|Z) . (4.4)

Let PX|Y=y = PX|Y=y,Z=z for all y, z (or PZ|Y=y = PZ|Y=y,X=x for all y, z, which is equiv-

alent). Then we say that X, Y and Z form a Markov-chain, denoted by X ↔ Y ↔ Z. If

W ↔ XZ ↔ Y , then

I(X;Y | ZW ) ≤ I(X;Y | Z) . (4.5)

4.3 Impossibility Results

4.3.1 Model and Security Definition

The following model will be considered: a trusted third party chooses random variables

(U, V ) according to a distribution PUV and sends U to the sender and V to the receiver. The

sender receives an input bit b ∈ {0, 1}. In the commit phase, the players exchange messages

in several rounds. Let all the messages exchanged be M , which is a randomized function of

(U, V, b). In the open phase, the sender sends b together with a value D1 to the receiver. The

receiver then sends a message E1 to the receiver, who replies with a message D2 and so on.

Let N := (D1, E1, D2, E2, . . . , Et−1, Dt) be the total communication in the open phase. (It is

assumed that the number of rounds in the open phase is upper bounded by a constant t. By

padding the protocol with empty rounds it can thus be assumed without loss of generality

that the protocol uses t rounds in every execution.) Finally, the receiver accepts or rejects,

which is modeled by a randomized function F (b, V,M,N) that outputs 1 for accept and

0 for reject. Let the distribution in the honest setting be PUVMN |B=b. Three parameters

are defined that quantify the security for the sender and the receiver, respectively, and the

correctness of the protocol.

— ε-correct : Pr[F (b, V,M,N) = 1] ≥ 1− ε.
— β-hiding : δ(PVM |B=0, PVM |B=1) ≤ β.

— γ-binding : For any b ∈ {0, 1} and for any malicious sender that is honest in the commit

phase on input b and tries to open 1 − b, we have Pr[F (1 − b, V,M,N ′) = 1] ≤ γ,

where N ′ is the communication between the malicious sender and the honest receiver

36



in the open phase.

Note that the above security conditions are not sufficient to prove the security of a protocol 4,

but any sensible security definition for commitments implies these conditions. Since we

only use the definition to prove the non-existence of certain protocols, this makes the result

stronger.

4.3.2 Lower Bound for Multiple Bit Commitments

In the following we prove a new lower bound on the mutual information between the

randomness of the sender and the randomness of the receiver in any bit commitment protocol.

First, we show the following technical lemma.

Lemma 1 If a protocol that implements bit commitment from randomness (U, V ) is γ-

binding, ε-correct and β-hiding, then

d(1− ε ‖ γ + β) ≤
t∑
i=1

I(Di;V |MDi−1Ei−1). (4.6)

where M is the whole communication in the commit phase and N = (D,E) = (D1, E1, . . . , Dt)

is the whole communication in the open phase.

Proof. Let b ∈ {0, 1} and b̄ := 1− b. Assume that the sender in the commit phase honestly

commits to b. If she honestly opens b in the open phase, the communication can be modeled

by a channel PDE|VM (that may depend on b) and the resulting distribution is

PDEVM |B=b = PDE|VMPVM |B=b ,

We have omitted U as it does not play a role in the following arguments. The correctness

property implies that an honest receiver accepts values drawn from this distribution with

probability at least 1 − ε. Let the sender commit to b̄ and then try to open b by sampling

her messages according to the distributions PD1|M and PDi|MDi−1Ei−1 for 2 ≤ i ≤ t. (Note

that the sender does not know V and, therefore, chooses her messages independently of V .)

4. To prove the security of a protocol one has to consider for example a malicious sender in the commit
phase.
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The communication in the opening phase can be modeled by a channel

QDE|VM := PD1|MPE1|VMD1 . . . PDt|MDt−1Et−1 .

The binding property implies that the receiver accepts values distributed according to PVM |B=b̄QDE|VM

with probability at most γ. δ(PVM |B=b, PVM |B=b̄) ≤ β implies that

δ(PVM |B=bQDE|VM , PVM |B=b̄QDE|VM) ≤ β,

and hence values drawn from the distribution PVM |B=bQDE|VM are accepted with probability

at most γ + β. Note that the bit indicating acceptance can also be modeled by a channel

PF |DEVM . Thus, we can apply the data-processing inequality (4.3) to bound d(1−ε ‖ γ+β).

Using the chain rule (4.1) and the non-negativity of the relative entropy, we have (we omit

conditioning on B = b in the following)

d(1− ε ‖ γ + β) ≤ D(PVMPDE|VM ‖ PVMQDE|VM)

= D(PDE|VM ‖ QDE|VM)

=
t∑
i=1

D(PDi|VMDi−1Ei−1 ‖ PDi|MDi−1Ei−1)

+
t−1∑
i=1

D(PEi|VMDiEi−1 ‖ PEi|VMDiEi−1)

=
t∑
i=1

D(PDi|VMDi−1Ei−1 ‖ PDi|MDi−1Ei−1)

=
t∑
i=1

I(Di;V |MDi−1Ei−1)

2

The following lemma from [OW05] gives a lower bound on the binary divergence, which we

will use to bound the right-hand side of (4.6) in the following.

Lemma 2 (Lower Bound on the binary divergence)

d(a ‖ b) ≥ (a− b)2

1− 2b
log

1− b
b
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Let ε = β = γ = 2−k. Then, for k ≥ 3, we have

d(1− ε ‖ γ + β) =
(1− 3 · 2−k)2

1− 2−k+2
log(2k−1 − 1)

≥ (k − 2) · 1− 2−k+3

1− 2−k+2
≥ (k − 2) · 2k−2 − 2

2k−2 − 1
. (4.7)

Next, we prove a lower bound on the information that the communication in the open

phase must reveal about the receiver’s randomness V for any protocol that implements bit

commitment from a shared distribution PUV . This lower bound is essentially k if the error

of the protocol is at most 2−k.

Lemma 3 Let k ≥ 3. Then any 2−k-secure bit commitment must have

I(N ;V |M)− I(N ;V | UM) = I(U ;V |M)− I(U ;V |MN) ≥ (k − 2) · 2k−2 − 2

2k−2 − 1
.

where M and N is the whole communication in the commit phase and in the open phase,

respectively.

Proof. Consider a protocol over t rounds in the open phase, i.e., the whole communication

is N = (D,E) = (D1, E1, . . . , Dt).

Furthermore, from Ei ↔ VMDiEi−1 ↔ U and inequality (4.5) follows that for all i

I(Ei;V |MDiEi−1) ≥ I(Ei;V | UMDiEi−1) .

Hence, we have

I(N ;V |M) =
∑
i

I(Ei;V |MDiEi−1) +
∑
i

I(Di;V |MDi−1Ei−1)

≥
∑
i

I(Ei;V | UMDiEi−1) +
∑
i

I(Di;V |MDi−1Ei−1)
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and

I(U ;V |MN) = I(NU ;V |M)− I(N ;V |M)

= I(U ;V |M) +
∑
i

I(Ei;V | UMDiEi−1)− I(N ;V |M)

≤ I(U ;V |M)−
∑
i

I(Di;V |MDi−1Ei−1) .

The statement now follows from Lemma 1 and inequality (4.7).

2

Next, we consider implementations of n individual bit commitments. The sender gets

input bn = (b1, . . . , bn) and commits to all bits at the same time, which results in the overall

distribution

PUVM |Bn=bn = PUV PM |UV,Bn=bn .

after the commit phase. To reveal the ith bit, the sender and the receiver interact resulting

in the transcript Ni. The following theorem says that the mutual information between the

sender’s randomness U and the receiver’s randomness V must be almost kn to implement n

bit commitments with an error of at most 2−k. The proof uses Lemma 3 to lower bound the

information that the sender must reveal about V for every bit that he opens.

Theorem 4 Let k ≥ 3. Then any 2−k-secure protocol that implements n bit commitments

from randomness (U, V ) must have for all bn ∈ {0, 1}n

I(U ;V ) ≥ I(U ;V |M,B = bn) ≥ n(k − 2) · 2k−2 − 2

2k−2 − 1
.

Proof. Let î ∈ [n]. We first construct a commitment to a single bit, which will allow us

to apply the bound from Lemma 3. This bit commitment is defined as follows: to commit

to the bit b, the players execute the commit phase on input bn, which is equal to the input

bit b on position î and equal to the constant b̂n on all other positions. Additionally, (still as

part of the commit phase), the sender opens the first î− 1 commitments, which means that

the messages N î−1 get exchanged. To open the commitment, the sender opens bit î. This

bit commitment scheme has at least the same security as the original commitment. Thus,
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Lemma 3 implies that

I(U ;V |MN î) ≤ I(U ;V |MN î−1)− (k − 2) · 2k−2 − 2

2k−2 − 1
. (4.8)

Since this holds for all î, we can apply (4.8) repeatedly to get

0 ≤ I(U ;V |MNn)

≤ I(U ;V |MNn−1)− (k − 2) · 2k−2 − 2

2k−2 − 1

≤ I(U ;V |M)− n(k − 2) · 2k−2 − 2

2k−2 − 1

By induction over all rounds of the commit protocol using (4.5) (see, for example, [WW10]

for a detailed proof) it follows that

I(U ;V |M) ≤ I(U ;V ) .

This implies the statement.

2

It is possible to securely implement 1-out-of-2 bit oblivious transfer
((

2
1

)
-OT1

)
from ran-

domness distributed according to PUV with I(U ;V ) = 1 [BBCS92, Bea96]. A binary symmet-

ric noisy channel ((p)-BSNC) with crossover probability p can be implemented from random-

ness distributed according to PUV with I(U ;V ) = 1− h(p). Together with these reductions,

Theorem 4 implies that (almost) kn instances of
(

2
1

)
-OT1 or kn/(1 − h(p)) instances of a

(p)-BSNC are needed to implement n bit commitments with an error of at most 2−k.

There exists a universally composable protocol 5 that implements bit commitment from

2k instances of
(

2
1

)
-OT1 with an error of at most 2−k. Thus, n bit commitments can be

implemented from 2n(k+log(n)) instances of
(

2
1

)
-OT1 with an error of at most n·2−(k+log(n)) =

2−k using n parallel instances of this protocol. Theorem 4 shows that this is optimal up to

a factor of 4 if k ≥ log(n).

5. See for example Claim 33 in the full version of [Can01].
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4.3.3 Lower Bounds for Multiple String Commitments

A string commitment is a generalization of bit commitment where the sender may commit

to a string of length ` ≥ 1. It is weaker than ` instances of bit commitment because the sender

has to reveal all bits simultaneously. In [WNI03] a lower bound on the conditional entropy

of the sender’s randomness U given the receiver’s randomness V for any string commitment

protocol from randomness (U, V ) has been shown. This bound essentially says that H(U | V )

must be greater than or equal to ` to implement a string commitment of length `. The

following lemma provides a similar bound for the security definition considered here. (The

proof is given in the appendix.)

Lemma 5 If any protocol implements an `-bit string commitment from randomness (U, V )

is ε-correct, β−hiding and γ-binding, then

H(U | V ) ≥ (1− ε− β − γ)`− h(β)− h(ε+ γ).

Together with the bound of Theorem 4, we obtain the following lower bound on the

randomness of the sender in any bit commitment protocol.

Corollary 6 Let k ≥ 3. For any protocol that implements n individual m-bit string commit-

ments from randomness (U, V ) with an error of at most 2−k

H(U) ≥ n(k + `− 2) · 2k−2 − 2

2k−2 − 1
− 3 · 2−k · n`− 3h(2−k).

Proof. Using Lemma 5 and Theorem 4, we get

H(U) = I(U ;V ) + H(U | V )

≥ n(k − 2) · 2k−2 − 2

2k−2 − 1
+ (1− 3 · 2−k)n`− h(2−k)− h(2−k+1)

≥ n(k + `− 2) · 2k−2 − 2

2k−2 − 1
− 3 · 2−k · n`− 3h(2−k).

2

In [BMSW02] it has been shown that any non-interactive perfectly hiding and perfectly

correct bit commitment protocol from distributed randomness PUV is at most (2−H(V |U))-

42



binding. This result implies stronger bounds than Theorem 4 and Lemma 5 for certain

reductions. The following lemma provides a lower bound on the uncertainty of the sender

about the receiver’s randomness for any bit commitment protocol. This lower bound is

essentially equal to k if the protocol is 2−k-secure and implies, in particular, the result from

[BMSW02].

Lemma 7 If a protocol that implements bit commitment from randomness (U, V ) is γ-

binding, ε-correct and β-hiding, then

d(1− β − ε ‖ γ) ≤ H(V | UM) ≤ H(V | U).

where M is the whole communication in the commit phase. If β = γ = ε = 2−k, then

H(V | U) ≥ (k − 1) · 2k−1 − 4

2k−1 − 1
. (4.9)

Proof. We have δ(PVM |B=b, PVM |B=b̄) ≤ β. This implies that the distribution PU |VM,B=b̄PVM |B=b

is β-close to PUVM |B=b̄. Thus, when the sender honestly opens b̄ starting from values dis-

tributed according PU |VM,B=b̄PVM |B=b, the receiver accepts the resulting values with proba-

bility at least 1− β− ε. We consider the following attack: the sender honestly commits to b,

generates v′ by applying PV |UM,B=b and then generates u by applying the channel PU |VM,B=b̄

to (v′,m). When the sender now tries to open b̄, the binding property guarantees that the

receiver accepts the resulting values with probability at most γ. Thus, we can apply the

data-processing inequality (4.3) to bound d(1 − β − ε ‖ γ). Let V ′ be a copy of V , i.e., a

random variable with distribution PV V ′(v, v) = PV (v). Using the chain rule (4.2), we have

d(1− β − ε ‖ γ) ≤ D(PV V ′|UM,B=bPUM |B=b ‖ PV |UM,B=bPV |UM,B=bPUM |B=b)

≤ D(PV V ′|UM,B=b ‖ PV |UM,B=bPV |UM,B=b)

= H(V | UM,B = b)

≤ H(V | U).

Using Lemma 2 this implies inequality (4.9).

2
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Consider a protocol that implements bit commitment with security of 2−k from N in-

stances of
(

2
1

)
-OTM where M denotes the length of the string transfered. Since

(
2
1

)
-OTM

can be reduced to a shared distribution PUV with H(V |U) = 1, Lemma 7 implies that

N ≥ (k − 2) · 2k−1−4
2k−1−1

, i.e., one needs, independently of M , almost k instances of OT.

Together with Theorem 4 and Lemma 5, this implies the following lower bound on the

number of instances of OT needed to implement multiple string commitments, which demon-

strates that all three lower bounds can be meaningful in this scenario.

Corollary 8 Let k ≥ 3. For any protocol that implements n individual `-bit string commit-

ments with an error of at most 2−k from N instances of
(

2
1

)
-OTM

N ≥ max

(
(1− 3 · 2−k)`n− 3h(2−k)

M
, (k − 2) · n

M
· 2k−2 − 2

2k−2 − 1
, (k − 1) · 2k−1 − 4

2k−1 − 1

)
.

4.4 Commitments with restricted openings

In this section, we will present protocols that implement commitments with restricted

openings from several instances of string commitment. We will use the Universal Compos-

ability model [Can01], and assume that the reader is familiar with it. In our proof, we will

only consider static adversaries. For simplicity, we omit session IDs and players IDs.

String Commitment is a functionality that allows the sender to commit to a string of n

bits, and to reveal the whole string later to the receiver. The receiver does not get to know

the string before it is opened, and the sender cannot change the string once he has sent it.

Definition 9 (String-Commitment) The functionality FnSCOM behaves as follows:

— Upon input (commit, b) with b ∈ {0, 1}n from the sender: check that commit has not

been sent yet. If so, send committed to the receiver and store b. Otherwise, ignore

the message.

— Upon input openall from the sender: check if there has been a commit message

before, and the commitment has not been opened yet. If so, send (openall, b) to the

receiver and ignore the message otherwise.

Note that given FnSCOM, it is possible to commit to individual bits at different times: the

sender simply commits to a random string b′ = (b′1, . . . , b
′
n), and whenever he wants to commit
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to a bit bi for i ∈ [n], he sends bi ⊕ b′i to the receiver. On the other hand, it is not possible

to open bits at different times using FnSCOM.
Bit commitment is a string commitment of length 1, i.e., FBCOM := F1

SCOM. We denote n

independent bit commitments by (FBCOM)
n. Since (FBCOM)

n does allow bits to be opened at

different times, it is strictly stronger than FnSCOM. However, as we have seen in the last section,

(FBCOM)
n can is also quite expensive, in terms of resources needed, to implement. Therefore,

we define a primitive that is somewhere between these two: commitments with restricted

openings allow a sender to commit to n bits, but then he may only open r individual bits

of his choice one by one. To open more than r bits, he has to open the remaining bits all

together.

Definition 10 (Commitments with restricted openings) The functionality Fn,rRCOM be-

haves as follows:

— Upon input (commit, b) with b ∈ {0, 1}n from the sender: check that commit has not

been sent yet. If so, send committed to the receiver and store b. Otherwise, ignore

the message.

— Upon input (open,i) with i ∈ [n] from the sender: check that there has been a commit

message before, and that i has not been opened yet. Also check that the number of

opened values so far is smaller than r. If so, send (open, i, bi) to the receiver and

ignore the message otherwise.

— Upon input openall from the sender: check if there has been a commit message

before, and no openall message has been received yet from the sender. If so, send

(openall, b) to the receiver and ignore the message otherwise.

For r = 0 and r = n, commitment with restricted openings are equivalent to string

commitments and individual bit commitments, respectively: FnSCOM ≡ F
n,0
RCOM and (FBCOM)

n ≡
Fn,nRCOM.

4.4.1 Warm-up: A Protocol for r = 1

Let n ≥ s ≥ 1. We define N :=
(
n
s

)
. Let f(i) be a bijection from [N ] to the subsets of [n]

of size s. We now present a protocol that implements FN,1RCOM from n instances of FNSCOM. We

denote the ith bit of string cj by cj,i.
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Protocol 1:

— When the sender receives (commit, b), he chooses n uniformly chosen strings

c1, . . . cn ∈ {0, 1}N , with the restriction that for all i ∈ [N ] ⊕j∈f(i)cj,i = bi. For all

j ∈ [n], the sender sends (commit, cj) to the jth instance of FNSCOM. After that he

ignores all messages (commit, b′).

— When the receiver has received committed from all instances of FNSCOM, he outputs

committed.

— When the sender receives (open,i), he sends (open,i) to the receiver and openall

to all instances of FNSCOM in f(i). After that, he ignores all messages (open,i′), for

any i′.

— When the receiver receives (open,i) from the sender, he waits until for all j ∈ f(i),

he has received a message (open, cj) from the jth instance of FNSCOM. He then

outputs (open, i, ⊕j∈f(i)cj,i). After that, he ignores all messages (open,i′) for any

i′.

— When the sender receives openall, he sends openall to the receiver and to all

instances of FNSCOM. After that, he ignores all messages openall.

— When the receiver receives openall from the sender, he waits until for all j ∈ [n]

he has received a message (open, cj) from the jth instance of FNSCOM. He then

outputs (openall, b′), where b′i := ⊕j∈f(i)cj,i, for all i ∈ [N ]. After that, he ignores

all messages openall.

Theorem 11 For any n ≥ s ≥ 1 and N =
(
n
s

)
Protocol 1 UC-implements FN,1RCOM from(

FNSCOM
)n

.

Since Protocol 1 is a special case of Protocol 2, Theorem 11 follows from Theorem 15. We

will, therefore, only provide a proof sketch and refer to the proof of Theorem 15 for details.

Proof. [Proof Sketch] It is easy to verify that the protocol is correct if the two players are

honest. Furthermore, since the opened values are calculated from the values the sender is

committed to, it is also clear that the protocol must be binding. That the protocol is hiding

before anything is opened is obvious. It remains to show that the protocol is hiding after

one bit has been opened. Since one subset of size k cannot be a proper subset of any other

subset of size k, all bit that have not been opened yet are shared among string commitments
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from which at least one has not been opened. Hence, they remain perfectly hidden from the

receiver.

2

Note that in each of the n instances of FNSCOM in Protocol 1, there are exactly (n− s)/n ·N
bits that are not used. Since they are at fixed positions and both players know where they

are, they can be removed without changing the properties of the protocol. So the length of

the string commitments used can be reduced to Ns/n.

Our protocol makes use of cover-free families [KS64a, EFF85, SWZ00, DBV03], which are

a generalization of Sperner sets [Spe28] , which means that no element of the set is covered

by any other. By strengthening this requirement to so-called cover-free families, Protocol 1

can be generalized in a natural way such that r > 1 bits can be opened. Cover-free families

are also known as superimposed codes from [KS64b] and require that no set is covered by the

union of r other sets.

Definition 12 Let X be a set of n elements and let B be a set of subsets of X , then (X ,B)

is a r-cover-free family r−CFF(X ,B) if for any r sets Bi1 , . . . Bir ∈ B, and any other B ∈ B,

it holds that

B 6⊆
r⋃
j=1

Bij .

Example 13 All subsets of [n] of size k form a cover-free family for r = 1, because there is

no subset that completely covers any other subset.

Here is a simple example of a cover-free family for r > 1 given in [EFF85].

Example 14 [EFF85] Let q be a prime power, and d, r ∈ N such that rd < q. Let X =

Y ×GF(q), where Y ⊆ GF(q) and |Y| = rd+ 1. An element B in the family B is constructed

from a polynomial p(y) := a0 + y · a1 + ... + yd · ad of degree d where ai ∈ GF(q) by

B := {(y, p(y)) : y ∈ Y)}. Two polynomials of degree d intersect at most d times. Therefore,

any union of r elements B1, . . . Br intersects any other element B at most rd < |Y| times,

and therefore cannot cover B. (X ,B) is therefore a r-cover-free family with |X | = (rd+ 1)q

and |B| = qd+1.

We now give a protocol that implements FN,rRCOM from n instances of FNSCOM using a r−CFF(X ,B),

where X = {1, . . . , n} and B = {B1, B2, ..., BN}.
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Protocol 1:

— When the sender receives (commit, b), he chooses n uniformly chosen strings

c1, . . . cn ∈ {0, 1}N , with the restriction that for all i ∈ [N ] we have

⊕
j∈Bi

cj,i = bi .

For j ∈ [n], the sender sends (commit, cj) to the jth instances of FNSCOM. After that

he ignores all messages (commit, b′).

— When the receiver has received committed from all instances of FNSCOM, he outputs

committed.

— For the first r times when the sender receives (open,i), he sends (open,i) to the

receiver and openall to all instances of FNSCOM in Bi, if they have not been opened

yet. After that, he ignores all messages (open,i).

— For the first r times when the receiver receives (open,i) from the sender and

(open, cj) from all instances FNSCOM in Bi, he outputs (open,
⊕

j∈Bi cj,i). After that,

he ignores these messages.

— When the sender receives openall, he sends openall to the receiver and to all

instances of FNSCOM. After that, he ignores all openall messages.

— When the receiver receives openall from the sender and (open, cj) from all in-

stances of FNSCOM, he outputs (openall, (b′1, . . . , b
′
N)), where b′i := ⊕j∈Bicj,i. After

that, he ignores all messages openall.

Theorem 15 Given an r−CFF(X ,B) where |X | = n and |B| = N , protocol 1 UC-implements

FN,rRCOM from n instances of FNSCOM.

Proof. It is easy to verify that the protocol is correct if the two players are honest.

Corrupted sender. First, we consider the case where the comitter is corrupted. He may

send messages (commit, cj) or openall to the instances of FNSCOM, and message (open,i) or

openall to the receiver.

Our simulator simulates the adversary, and records all messages sent out by the adversary.

After receiving all messages (commit, cj) to the instances of FNSCOM, he calculates bi := ⊕j∈Bicj,i

48



for all i and sends (commit, (b1, . . . , bN)) to FN,rRCOM. After receiving (open,i) and all messages

openall sent to the instances of FNSCOM in Bi, he sends (open,i) to FN,rRCOM. After receiving

openall sent to the receiver and all instances FNSCOM, he sends openall to FN,rRCOM. It is not

difficult to verify that our simulation is perfect, and we get real ≡ ideal.

Corrupted receiver. Let the receiver be corrupted by the adversary. He receives committed

and (open,cj) messages from the instances of FNSCOM, and messages (open,i) and openall from

the sender.

Our simulator simulates the adversary, and interacts with FN,rRCOM and the adversary. Af-

ter receiving the committed message from FN,rRCOM, it sends committed from all FNSCOM to the

adversary. After receiving message (open,i,bi) from FN,rRCOM, he first sends (open,i) to the

adversary. Then for all instances of FNSCOM in Bi which have not been opened yet, he chooses

strings cj uniformly at random, with the restriction that ⊕j∈Bicj,i = bi, and sends (open,cj)

from the jth instance of FNSCOM to the adversary. After receiving message (openall,b) from

FN,rRCOM, he first sends openall to the adversary. Then for all instances of FNSCOM which have

not been opened yet, he chooses the strings cj uniformly at random, with the restriction that

⊕j∈Bicj,i = bi, and sends (open,cj) from the jth instance of FNSCOM to the adversary.

To show that this simulation in the ideal setting is identical to the real setting, we have

to show that they are identical after each step. It is easy to see that this is the case before

anything has been opened, and after openall has been executed.

FN,rRCOM allows the sender to open at most r values. Assume that s ≤ r have been opened

so far. Since B is a r−CFF(X ,B), there is at least one instance of FNSCOM in Bi for all the

remaining i ∈ [N ] that has not been opened yet. Since the ith bit of that string is uniform

and all the ith bits of the strings in Bi add up to bi, the bits at the ith position of all the

opened strings are uniform and independent of each other and of the bit bi. Therefore, the

simulated values cj sent to the adversary have the same distribution in the real and in the

ideal setting. The simulation is again perfect, and we get real≡ ideal.

2

Corollary 16 For any n ≥ s ≥ 1 and N =
(
n
s

)
there exists a protocol that UC-implements

FN,1RCOM from
(
FNs/nSCOM

)n
.

If we use the cover-free family of Example 14, then the size can be reduced by a factor

of q because we can let all the bit commitments which have different values a0 but the same
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values a1, ..., ad share the same position in the string commitments. For s = 2, we have

N = n(n − 1)/2. So from n string commitments of length n − 1, we can build n(n − 1)/2

bit commitments from which one can be opened. When choosing s = n/2, we obtain an

exponential number of committed bits from n strings (N > 2n/2√
n

). Note that the protocol

is optimal in the length of the strings up to a factor s; otherwise it would be possible

to implement a string commitment of length bigger than n · ` from n instances of string

commitment of length `, which is not possible.

Corollary 17 Let q be a prime power, d < q and N := qd+1. There exists a protocol that

UC-implements FN,rRCOM from (rd+ 1)q instances of FN/qSCOM.

To obtain an exponential number of bit commitments from n string commitments, we can

use Corollary 1 in [DBV03] which gives an explicit construction of a t−CFF(X ,B) where

|X | < 24t2 log(|B|+ 2). Hence,

Corollary 18 There exists a protocol that realizes FN,rRCOM from 24r2 log(N + 2) instances of

FNSCOM.

This is close to the optimal efficiency we can expect from Protocol 2, as it has been shown

in Theorem 1.1 in [SWZ00] that t−CFF(X ,B) must have

|X | ≥ c · t2

log t
log |B| ,

for a constant c.

Our protocols can be generalized in a simple way as follows: let FN,r,cRCOM be the same

functionality as FN,rRCOM except that every bit is replaced by a block of size c. The sender

can open up to r blocks, or all N blocks at the same time. It is not difficult to see that if

Protocol 2 implements FN,rRCOM from n instances of F `SCOM, then it can be transformed into a

protocol that implements FN,r,cRCOM from n instances of F `cSCOM.

4.4.2 Commitments from Noisy Channels at a Constant Rate

Choosing d = 1 in Corollary 17, we get N = q2 and n = (r + 1)q. Thus, there exists a

protocol that uses (r+1)q string commitments of length q and implements q2 bit commitments

from which r can be opened. In combination with the string commitment protocol presented

in [WNI03], we get the following corollary.
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Corollary 19 For any constant r, there exists a protocol that implements Fn,rRCOM using only

O(n) noisy channels.

This is optimal up to a constant factor.

4.5 Conclusions

In this work we have shown a strong lower bound for reductions of multiple bit commit-

ments to other information theoretic primitives, such as oblivious transfer or noisy channels.

Our bound shows that every single bit commitment needs at least Ω(k) instances of the un-

derlying primitive. This makes bit commitments often much more costly to implement than

oblivious transfer, for example.

We have presented protocols that implement bit commitments more efficiently, when the

number of bits that can be opened is restricted. Our protocols implement commitments

with restricted openings from string commitments. We think that for some resources more

efficient protocols might be possible by implementing them directly, instead of using string

commitments as a building block.
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CHAPTER 5

TRADING ROBUSTNESS FOR CORRECTNESS AND PRIVACY IN

CERTAIN MULTIPARTY COMPUTATIONS, BEYOND AN HONEST

MAJORITY

Authors: Anne Broadbent, Stacey Jeffery, Samuel Ranellucci, Alain Tapp

5.1 Abstract

We improve on the classical results in information-theoretically secure multiparty com-

putation among a set of n participants, by considering the special case of the computation

of the addition function over binary inputs in the secure channels model with a simultaneous

broadcast channel. This simple function is a useful building block for other applications.

The classical results in multiparty computation show that in this model, every function can

be computed with information-theoretic security if and only if less than n/2 participants are

corrupt. In this chapter we show that, under certain conditions, this bound can be overcome.

More precisely, let t(p), t(r) and t(c) be the privacy, robustness and correctness thresholds;

that is, the minimum number of participants that must be actively corrupted in order for

privacy, robustness or correctness, respectively, to be compromised. We show a series of

novel tradeoffs applicable to the multiparty computation of f(x1, . . . , xn) = x1 + . . .+ xn for

xi ∈ {0, 1}, culminating in the most general tradeoff: t(p) + t(r) = n+ 1 and t(c) + t(r) = n+ 1.

These tradeoffs are applicable as long as t(r) < n/2, which implies that, at the cost of

reducing robustness, privacy and correctness are achievable despite a dishonest majority (as

an example, setting the robustness threshold to n/3 yields privacy and correctness thresholds

of 2n/3 + 1).

We give applications to information-theoretically secure voting and anonymous message

transmission, yielding protocols with the same tradeoffs.

Keywords: multiparty computation, secret sharing, information-theoretic security, simul-

taneous broadcast, addition, voting, anonymous communication.



5.2 Introduction

Secure multiparty computation [Yao82] enables a group of n participants to collaborate

in order to compute a global function on their private inputs. Assuming that private random

keys are shared between each pair of participants, every function can be securely computed

if and only if less than n
3

participants are corrupt. This fundamental result is due to Chaum,

Crépeau and Damg̊ard [CCD88] and to Ben-Or, Goldwasser and Wigderson [BOGW88].

When a broadcast channel is available, the results of Rabin and Ben-Or [RBO89] tell us that

this proportion can be improved to n
2
.

In [BT07] and [BT08], Broadbent and Tapp presented multiparty protocols for voting

and anonymous message transmission that are information-theoretically secure even in the

presence of a dishonest majority. Along with the use of authenticated private communication,

the protocol uses a simultaneous broadcast channel. In this paper we present a new approach

in the same model that achieves better functionality.

In this chapter we show how to achieve tradeoffs between the privacy, correctness, and

robustness thresholds for certain multiparty functions. In most multiparty computation

results to date, the approach has been to define a model in which bounds on the numbers

of corrupt players are known, and to define protocols that work in that model. In another

approach, sometimes called hybrid security or multiple threshold security, no assumptions

are made on the number or type of adversaries, but rather, various thresholds are given for

different adversarial situations. This model reflects reality — it is never known in practice

how many participants are honest. It is simply hoped that enough are honest for the security

properties of the protocol to hold, some of which may be more important than others.

One way to accomplish this is to differentiate between various types of corrupt partici-

pants as is done by Fitzi, Hirt, Holenstein and Wullschleger in [FHHW03] and Fitzi, Hirt

and Maurer in [FHM98]. In the latter model, there are ta actively corrupt players, whose

behaviour is entirely controlled by the adversary, tp passively corrupt players, whose entire

information is known to the adversary, and tf fail-corrupt players, who can be made to cease

all participation in the protocol by the adversary, but are otherwise honest. Their results

state that multiparty computation with zero failure probability can be done if and only if

3ta + 2tp + tf < n (whether or not a broadcast channel is available), and multiparty com-

putation with exponentially small failure probability is achievable given a broadcast if and
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only if 2ta + 2tp + tf < n; if no broadcast is available, the additional condition 3ta + tf < n

is necessary and sufficient.

In a recent result by Lucas, Raub and Maurer [LRM10], tradeoffs were given between

information-theoretically secure robustness and computationally secure correctness and pri-

vacy for general multiparty computation, achieving the bounds established in [IKLP06b].

We achieve a similar tradeoff, with information-theoretic correctness and privacy, that can

be applied to a limited number of multiparty computation problems. The result of [LRM10]

is achieved using a technique called virtual players, where a set of participants simulate a new

participant. We use another kind of virtual player called a ghost to achieve our tradeoffs.

5.2.1 Contributions

We define the function SUM : {0, 1}n → {0, . . . , n} by SUM(x1, . . . , xn) = x1 + · · · + xn,

the integer sum of n bits. If the input is regarded as an n-bit string, this function is the

Hamming weight. We present three protocols for multiparty computation of SUM. Our

protocols have the property that the outcome is always correct if all participants are honest.

The protocols can be trivially generalized to allow each participant an input in {0, . . . , k}
for arbitrary k by having each participant simulate k participants. Each of our protocols for

multiparty sum yields protocols for voting and anonymous message transmission with the

same security properties.

The first protocol achieves privacy and correctness in the presence of a dishonest majority

of up to n− 1 actively corrupt participants, but has low robustness: a single participant can

make the protocol abort. The corresponding voting protocol improves over the one from

[BT07] and [BT08] by having an exact tally.

The second protocol trades privacy for correctness and robustness. For any t ∈ [0, n
2
), the

protocol is private whenever there are less than n − t corrupt participants, and also correct

and robust whenever there are less than t + 1 corrupt participants. This tradeoff is also

applicable to the computation of any multiparty linear function. The third protocol achieves

a similar but slightly improved tradeoff: privacy and correctness for robustness. For any

t ∈ [0, n
2
), the protocol is private and correct whenever there are less than n − t corrupt

participants, and also robust whenever there are less than t + 1 corrupt participants. The

corresponding voting and anonymous message transmission protocols are an improvement

over [BT07] and [BT08] in that robustness can be improved at the cost of a slight decrease
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in privacy and correctness. It may certainly be the case, particularly in an application such

as voting, that privacy and correctness are much more important than robustness, however

a robustness threshold greater than 1 may be desirable.

We begin by describing our model in Section 5.3. We then give some preliminaries,

followed by our three protocols for multiparty sum in Sections 5.5, 5.6, and 5.7. Finally

we show in Section 5.8 how those protocols can be generalized to larger inputs and how

they can be turned into protocols for voting and anonymous message transmission.

5.3 Model and Definitions

In this section, we describe our model and give basic security definitions. For all our

security definitions we assume an active adversary that completely controls a certain number

of participants. We assume that all pairs of participants are connected by a private authen-

ticated channel, which is equivalent to the assumption that they share a polynomial-sized

private random key. We also assume that the participants have access to a simultaneous

broadcast channel.

Definition 20 An n participant simultaneous broadcast channel is a collection of n broad-

cast channels, one for each participant, such that each participant chooses his input to the

broadcast before receiving the value of any other participant’s broadcast.

It is not uncommon in multiparty computation to allow additional resources, even if those

resources cannot be implemented with the threshold on the honest participants (the results of

[RBO89], which combine a broadcast channel with n
2

honest participants being one example).

Our work suggests that a simultaneous broadcast channel is an interesting primitive to study

in this context. Sealed bid envelopes that are opened publicly are an example of a practical

implementation of a simultaneous broadcast channel. Our protocols then provide everlasting

security: as long as the computational assumptions are not broken during the execution

of the protocol (more precisely, during the execution of the simultaneous broadcast), the

security of the protocols is perfect. Note that breaking the computational assumption is not

sufficient on its own to compromise privacy of the protocols.

Note that under the assumption that trapdoor one-way permutations exist, [FGH+02]

gives a protocol for secure multiparty computation in our model; the advantage of our scheme

is that we only require simultaneous broadcast.
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Throughout this paper, we assume that n is even. We will use calligraphic script letters

to denote the players involved in various schemes, such as A,B, C, . . . . Arrays will be denoted

using standard vector notation ~x and array elements will be denoted with superscripts: ~x =

(~x(1), . . . , ~x(`)). The notation [y1, . . . , yn] = SCHEME-Stage[P1(x1), . . . ,Pn(xn)] means that

some stage, Stage, of some scheme, SCHEME, is being carried out, with players P1, . . . ,Pn.

Player i uses input xi, and receives output yi.

We will now present the main security definitions.

Definition 21 A multiparty protocol for computing f is private if a group of corrupt par-

ticipants, C, can learn no more about x1, . . . , xn than they would learn from f(x1, . . . , xn)

for some choice of {xi : i ∈ C}.

The following two security properties, correctness and robustness, are generally both

included in correctness. However, we view them as separate properties in light of the fact

that obtaining an incorrect answer is often more problematic than aborting.

Definition 22 A multiparty protocol for computing f is correct if (except with exponentially

small probability), whenever the protocol does not abort, the output is consistent with the

inputs of the honest participants and some fixed inputs for the dishonest participants, known

to them before they learn the outcome of the protocol.

Definition 23 A multiparty protocol for computing f is robust if it is correct and does not

abort except with exponentially small probability.

In the case of a protocol aborting, we can view the output as NULL. If a subprotocol

aborts, then by default the calling protocol aborts unless otherwise specified. Note that

aborting conditionally on some honest player’s input is considered to be breaking privacy.

Definition 24 We denote by t(c) the correctness threshold, or the minimum number of

corrupt participants that can compromise correctness. Similarly, t(p) denotes the privacy

threshold, and t(r) the robustness threshold.

Unlike in [FHM98], we only consider an active adversary; one with complete control over

the actions of each player it corrupts. We do not consider an adversary who actively corrupts

some amount of players and then passively corrupts some additional players. Additionally,

though our notation is similar to [FHM98], the meaning is quite different. In [FHM98],
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the meaning of tp is the number of participants that are passively corrupted, whereas in

our model, t(p) is the minimum number of participants that must be actively corrupted for

privacy to be lost.

We do not place any restrictions on the dishonest participants, though we assume that

all corrupt participants are part of a single collusion, called the adversary.

5.4 Preliminaries

5.4.1 Sharing a Secret

All of our protocols are based on secret sharing [Sha79], and derive their security prop-

erties in part from the secret sharing scheme used. A secret sharing scheme is a multiparty

computational primitive, whereby a secret can be distributed over a group of participants

such that an authorized group of participants can reconstruct the secret (correctness), and

any unauthorized group of participants can learn nothing about the secret (privacy).

Note that the notions of privacy and correctness for secret sharing are slightly different

than those for general multiparty computation, however we still use t(p), t(c), and later t(r),

to denote the thresholds for privacy, correctness and robustness, respectively.

What defines an authorized group varies between secret sharing schemes. For instance, in

some secret sharing schemes, an authorized subset of participants is defined to be any set of

more than t participants, for some t ≤ n. Such a secret sharing scheme is called a t-out-of-n

threshold secret sharing scheme.

The first protocol, SSp,n (see Scheme 1), uses a very basic n-out-of-n threshold secret

sharing scheme. A secret sharing scheme has two phases, distribute and reconstruct. The

distribution phase is a protocol for constructing shares of the secret and distributing them to

the receivers. The reconstruction phase is a protocol by which an authorized set of receivers

can learn the secret.

Privacy in SSp,n follows from the fact that, given any group of n−1 participants {P1, . . . ,Pn}\
Pj, there are p equiprobable possibilities for Pj’s share, each corresponding to a distinct pos-

sibility for the secret m ≡ mj +
∑

i 6=jmi (mod p). Therefore, given n− 1 shares, the secret

is still completely unknown.

Definition 25 We say that a secret sharing scheme SCHEME is linear if, for a publicly
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Scheme 1 SSp,n
Players: a sender S

n receivers R1, . . . ,Rn

Distribute: [∅,m1, . . . ,mn] = SSp,nDist[S(m),R1, . . . ,Rn]
Input: m, the secret, input by sender S
Output: mi, the ith share, output to Ri for each i, such that∑n

i=1mi = m mod p

1. S chooses mi ∈R Zp for i = 1, . . . , n− 1, and sets
mn = m−

∑n−1
i=1 mi mod p

2. S sends mi to Ri

Reconstruct: [m, . . . ,m] = SSp,nRec[R1(m1), . . . ,Rn(mn)]
Input: mi input by Ri for i = 1, . . . , n
Output: m output to Ri for i = 1, . . . , n

1. Each Ri for i = 1, . . . , n, inputs mi into the simultaneous broadcast channel.

2. Each Ri constructs m =
∑n

j=1mj mod p

known integer a and any two secrets m and m′ shared among P1, . . . ,Pn, with shares

m1, . . . ,mn and m′1, . . . ,m
′
n respectively, if {Pi1 , . . . ,Pit} is an authorized subset of receivers,

then SCHEME-Rec[Pi1(ami1 +m′i1), . . . ,Pit(amit +m′it)] outputs am+m′ to each Pij .

It is easy to see that SSp,n is a linear secret sharing scheme.

Definition 26 A linear distributed secret, LDS[P1, . . . ,Pn](m) is a list of shares (mi), each

in possession of player Pi, such that [m1, . . . ,mn] = SCHEME-Dist[m] for some linear secret

sharing scheme SCHEME.

5.4.2 Sub-Protocols Used

Given a set of two or more linear distributed secrets LDS[R1, . . . ,Rn](m(j)), relative to

any linear secret sharing scheme, the participants can always create a new linear distributed

secret by the following: each Ri adds all his shares to get a share of
∑

jm
(j). This simple

procedure does not involve any interaction between participants, but allows them to generate

a new shared secret: the sum of two or more previously shared secrets.

Procedure 1 shows how to generate randomness in a group of participants {P1, . . . ,Pn}
with a simultaneous broadcast. As long as one participant is honest, the output is an unbiased

integer between 0 and p− 1.
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Procedure 1 [a, . . . , a] = RANDOMn,p[P1, . . . ,Pn]

Players: n participants, P1, . . . ,Pn
Output: An unbiased a ∈ Zp is output to all players

1. Each participant Pi inputs ai ∈R {0, ..., p−1} into the simultaneous broadcast channel.

2. Each participant Pi sets a =
∑n

i=1 ai (mod p).

In order to bias the outcome, a corrupt participant’s input would have to depend on the

inputs of all other players. The simultaneous broadcast channel makes this impossible.

The following procedure can be used to check the equality of a set of linear distributed

secrets, without revealing the values of the individual secrets. If there are two distinct secrets

in the set, then the procedure outputs unequal except with exponentially small probability

in the security parameter s. This procedure is used in our second and third protocols.

Procedure 2 EQUALITYs
Players: n participants P1, . . . ,Pn
Input: {Xj}2s

j=1 a set of 2s LDSs, Xj = LDS(xj)
Output: equal or unequal
Repeat the following s times in parallel:

1. The participants use RANDOM to choose a random partition {P,Q} of [1..2s] with
|P | = |Q| = s.

2. The participants locally compute Y =
∑

j∈P X
j −

∑
j∈QX

j.

3. The participants reconstruct the secret Y . If Y 6= 0 they output unequal.

If Y = 0 in every round, output equal.

5.4.3 Properties of GHOST-SUM

Theorem 27 EQUALITY detects inequality (mod p) in {X i}, except with exponentially

small probability.

Proof.

Suppose the input {Xj} is unequal (the values distributed are not all the same). Let P

and Q be any partition of {Xj} such that |P | = |Q| and
∑

i∈P X
i =

∑
i∈QX

i. Note that

by swapping any two non-equal elements in Q and P respectively, we make the two sums

unequal. This observation is not entirely obvious, since we’re working (mod p). Suppose we

swap a ∈ P and b ∈ Q where a > b. This will result in
∑

i∈P X
i decreasing by a − b and
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∑
i∈QX

i increasing by a− b. Since these two sums were equal before the swap, we now have

a difference of 2(a−b). If 2(a−b) ≡ 0 (mod p), since p is odd, then we must have (a−b) ≡ 0

(mod p), which is a contradiction since a and b are assumed non-equal. So as long as we

swap non-equal elements from the partitions, their sums will no longer be equal. From this

observation, we will show that there are at least as many partitions with
∑

i∈P X
i 6=

∑
i∈QX

i

as there are with
∑

i∈P X
i =

∑
i∈QX

i.

Consider the operation of swapping the first two unequal elements in the sorted sets P

and Q. Clearly this operation maps equal sum partitions to unequal sum partitions. In

addition, let us specify that the partition where P and Q are identical be mapped to the

partition obtained by sorting the set {X i} and setting P equal to the first half; the result

will be unequal since {X i} is unequal. We now have a one-to-one mapping from equal sum

partitions to unequal partitions, so no more than half of the possible partitions can have the

property
∑

i∈P X
i =

∑
i∈QX

i.

Thus the probability of choosing a partition with this property when two or more elements

are unequal is less than 1
2
. With s repetitions, the probability of an unequal set passing

EQUALITY is less than 1
2s

. 2

Theorem 28 t(p)(GHOST-SUMn,g) = n+g
2

.

Proof. Again, the privacy threshold follows directly from that of the employed secret sharing

scheme. 2

Theorem 29 t(c)(GHOST-SUMn,g) = t(r)(GHOST-SUMn,g) = n−g
2

.

Proof. The protocol aborts if and only if:

1. the honest participants fail to reconstruct the total (secret sharing scheme aborts), or

2. the reconstructed total’s bins sum to a value other than n.

The first case is not possible, by Theorem 35.

Note that the value of the secret cannot be changed after the distribution phase because

the total number of non-honest parties is less than n−g
2

+ g = n+g
2

, which is t(c)(ICVSSn+g).

We therefore need only show that if an input is ill-formed it will be found in the verification

steps and discarded and if an input differs across the s parallel computation rounds it will

be found in the second verification step.
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If a participant wants to share an ill-formed BIN-ARRAY in a set, he must create no

more than s invalid BIN-ARRAYs in that set, or he is guaranteed to have at least one invalid

BIN-ARRAY opened in the first verification phase. If he has 1 ≤ x ≤ s invalid BIN-ARRAYs,

then the probability that no invalid BIN-ARRAY is opened is:(
2s−x
s

)(
2s
s

) ≤ 1

2

If the participant has at least one invalid BIN-ARRAY per set, the probability that an invalid

BIN-ARRAY is not opened is ≤ 1
2s

. If a participant has invalid BIN-ARRAYs in some sets and

not others, then his inputs are not equal across all rounds.

If the inputs are not equal across all rounds, then except with exponentially small prob-

ability, the input is discarded and the player disqualified in the second verification step.

2

5.5 Multiparty Sum with Bins

The first tool we will apply is the use of a concept we call bins. The intuitive description

that follows makes clear the reason for this name.

The following physical analogy applies to all three of our protocols. The protocols are

modelled after the concrete setup of an array of 2n bins. A participant may place a ball in

any bin, but may not remove a ball from a bin or observe the contents of a bin. If xi = 1,

participant Pi chooses a random bin from j = 1, . . . , n, called the count bins, and places his

ball in the jth bin. Otherwise, if xi = 0, Pi chooses a random bin from j = n + 1, . . . , 2n,

called the no-count bins, and places his ball in the jth bin. When all balls have been placed,

the totals for each bin are revealed and the sum over all balls in the count bins (the first n

bins) is the output y = SUM(x1, . . . , xn). So far the need for 2n bins instead of 2 bins is not

clear, but we will soon explain this necessity.

For our protocols, we model each bin as an integer (mod p), with an input xi encoded as

a string of 2n integers, one integer for each bin (p ≥ 2n+ 1). The ith integer of an encoded

input represents the contents of the ith bin. In this case, a well-constructed input encoding

has exactly one bin with value 1 and all other bins with value 0. In our protocols, each

participant splits his input into shares, each share consisting of 2n integers (mod p), with

the property that each bin of the input array can be reconstructed from the bins of the shares
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using some secret sharing scheme. For instance, if we use SS, the bin-wise sum (mod p) of

the shares is equal to the encoded input. Given a set of bin array inputs shared among the

n participants, it is easy to compute the tally without revealing any information about the

inputs, by simply adding the shares and reconstructing the total. We require only that the

secret sharing scheme used be linear.

Without looking at individual bin arrays, we must ensure that all bin arrays are well-

constructed. If a participant attempts to contribute more than 1 ball to the total, or negate

part of the total by a constant c by putting p − c balls in the n count bins, then the sum

over all 2n bins in the tally will not be equal to n. Thus, a cheating strategy would be to

include c+ 1 balls in the n count (respectively no-count) bins, and −c = p− c balls in the n

no-count (respectively count) bins. However, having 2n bins makes it likely that many bins

will be empty and a negative number of balls, p−c, in an empty bin would be detected, since

p − c > n. This justifies the need for 2n bins, as well as p = 2n + 1. A negative number of

balls is detected with constant probability and repetition yields exponential security.

5.5.1 Protocol

Here we present the first protocol for SUM, which makes use of the bins idea. It may

be useful to consider the simple secret sharing scheme, SS, but note that any linear secret

sharing scheme would work.

The following procedure encodes a bit as described above.

Procedure 3 BIN-ARRAYn
Input: x ∈ {0, 1}
Output: ~x = (~x(i))2n

i=1

1. if x = 1 choose j ∈R {1, . . . , n} otherwise if x = 0 chose j ∈R {n+ 1, . . . , 2n}

2. for i = 1, . . . , 2n: if i = j, ~x(i) = 1, else ~x(i) = 0

We call an array encoding an integer in this way a BIN-ARRAY. We say that a BIN-ARRAY

is well-formed if each bin is an integer in {0, 1} and the sum over all bins is 1. A BIN-ARRAY

that is not well-formed is called ill-formed.

We will need to distribute BIN-ARRAYs among the n participants. We can easily distribute

shares of an array by simply creating shares of each entry. We define the following addition
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on shares of an array, which follows directly from the addition on the individual shares. Let

~ai = (~a
(j)
i )`j=1 and ~bi = (~b

(j)
i )`j=1 be two array-shares. Then ~ai +~bi = (~a

(j)
i +~b

(j)
i )`j=1.

We now give our first protocol for SUM.

Protocol 1 BIN-SUMn,s

Players: n participants P1, . . . ,Pn
Input: Pi inputs xi ∈ {0, 1}, for i = 1, . . . , n

Output: Each participant gets output y = x1 + · · ·+ xn

Repeat in parallel s times:

1. Each Pi creates ~xi = BIN-ARRAYn(xi) and distributes Xi = LDS[P1, . . . ,Pn](~xi) using

some linear secret sharing scheme.

2. Participants create the sum, Y =
∑n

j=1 Xj .

3. Participants input their shares of Y into the simultaneous broadcast channel and

reconstructs the value of Y , ~y.

4. If the sum over all bins in ~y does not equal n, abort.

5. Each participant computes y =
∑n

j=1 ~y
(j), the total over all count bins of Y .

If the outcome y is not the same in every round, abort.

Since the only way to break privacy is to break the secret sharing scheme, as long as we

use a secret sharing scheme with t(p) = n, such as SS, we get t(p)(BIN-SUM) = n (Theorem

30).

The only way for a adversary to make the output inconsistent with the honest inputs is

to put more than 1 ball in either the count or the no-count bins. If they use more than 1

ball in total, it will be detected when the total number of balls in y is more than n, and the

protocol will abort. To avoid this, the adversary must put −1 in some bin, and hope that it

is non-empty. However, any bin is empty with constant probability, and so repetition yields

exponential security. Therefore, no dishonest coalition of any size can make an output that

is inconsistent with honest inputs, that is, t(c) = n (Theorem 31).

The major downfall of this protocol is that any participant can make the protocol abort.

In other words, t(r) = 1 (Theorem 32). In many situations, such as voting (see Section

5.8.1), it may be desirable to have t(p) and t(c) much higher than t(r), however, it is often

desirable to have t(r) > 1. In our next protocol, we allow t(r) to be as high as n
2

at the expense
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of some privacy and correctness.

5.5.2 Properties of BIN-SUM

Theorem 30 t(p)(BIN-SUM) = n.

Proof. The privacy threshold of BIN-SUM follows directly from that of the employed secret

sharing scheme. If we use a threshold scheme with threshold n, such as SS, then we get

t(p) = n in BIN-SUM. 2

Theorem 31 t(c)(BIN-SUM) = n.

Proof. Suppose a coalition of c < n dishonest voters wishes to cause the sum to be incorrect.

If they deposit more than c balls between them, the final tally over all bins will be greater

than n and the protocol will abort. Thus, the only way for them to cause the final sum

to be inconsistent with the honest inputs is for at least one dishonest participant to put a

negative number of balls in at least one bin, say bin b. If no other participant deposits a ball

in bin b, then the bin total will be p − 1 > n, so the protocol will abort. For a participant

to succeed in depositing a negative ball in a count bin (respectively no-count bin), he must

put his negative ball in a no-count bin (respectively count bin) with at least one ball in it.

Even in the worst case where all n − 1 other balls are deposited in the no-count bins, the

probability that bin b is empty is (n−1
n

)n−1, which is greater than 1
3

for all n. By repeating

the protocol s times, the probability that a participant successfully deposits a negative ball

without the protocol aborting is less than (2
3
)s. 2

Theorem 32 t(r)(BIN-SUM) = 1.

Proof. A single participant need only encode a number that is strictly greater than 1 to

cause the total number of balls in all bins to be strictly greater than n, making the protocol

abort. 2

5.6 Multiparty Sum with Bins and Ghosts

The second tool we make use of is the concept of ghost players. Given a verifiable secret

sharing scheme with privacy, correctness and robustness thresholds t(p) = t(c) = t(r) = n
2
,
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we modify the protocol as follows. During the distribution phase, the sender creates n + g

shares, distributes n of them, and discards g of them, for some g ∈ [0, n). This lowers the

proportion of actively corrupt participants by adding participants who cannot be actively

corrupted. Now n+g
2

corrupt players are required to break privacy, and ghost players cannot

contribute to this corrupt coalition. Thus we get privacy threshold t(p) = n+g
2

. In order

to prevent the correct reconstruction of a secret, we need n+g
2

corrupt players. We can’t

assume the ghosts do not contribute to such a collusion, so among the real players, we have

correctness and robustness thresholds of t(c) = t(r) = n+g
2
− g = n−g

2
. We thus obtain a

tradeoff between correctness and robustness, t = n−g
2

, and privacy, n − t, where t ∈ [0, n
2
).

Again, our protocol implements the multiparty computation of SUM, but we can also use the

linearity of the underlying secret sharing scheme to show that this tradeoff can be applied

to any linear function as well. (Note that our function, SUM is not actually linear, because

of the restriction that the input be in {0, 1}). This is accomplished, without the use of bins.

Each participant simply distributes his input xi to some linear function f , using the verifiable

secret sharing scheme we now present, GVSS. Each participant computes f on his shares of

the inputs and outputs the resulting share of f(x1, . . . , xn).

We can view the ghosts as a kind of virtual player. Since these ghost players do nothing,

they are all fail-corrupt. However, they are honest in every other respect.

We do require that the secret sharing scheme to which we apply the ghost modification

be verifiable to gain the desired accuracy and robustness thresholds. We now detail this

concept.

5.6.1 Verifiable Secret Sharing

Verifiable secret sharing is an extension of secret sharing that allows reconstruction of

a secret even in the presence of faulty or missing shares. More formally, a verifiable secret

sharing scheme is a secret sharing scheme with the following properties:

P1 If the sender is honest, then before the reconstruction phase has been initiated, the

adversary has no information about the secret.

C1 The probability that the distribution phase completes successfully and there exist

distinct m and m′ such that both m and m′ have non-negligible probability of being

the outcome of the reconstruction phase is exponentially small. If the sender is honest,

the uniquem that can be the outcome of reconstruction with non-negligible probability
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is the message input by the sender during the distribution phase.

R1 The probability that the distribution succeeds and the reconstruction phase outputs

NULL is exponentially small (even if the sender is corrupted). If the sender is honest,

the distribution phase succeeds except with exponentially small probability.

In any verifiable secret sharing scheme, each property will be subject to some threshold of

corrupt participants. Property R1 and C1 are often combined, but we will find it convenient

to discuss them separately.

It is not difficult to see that these properties are necessary to obtain our tradeoff, for

otherwise we could not reconstruct a non-NULL secret from the uncorrupted shares.

There exist linear verifiable secret sharing schemes with t(c) = t(r) = t(p) = n
2

[CDM00].

We can use such a scheme, in conjunction with the usage of ghost players, to get an improved

protocol for SUM. The protocol, which we call GHOST-SUM, is similar to BIN-SUM, but we

require the secret sharing scheme used to be a verifiable secret sharing scheme, and we modify

the distribution phase slightly. In addition, we add some verification steps to ensure that the

inputs are well-formed in order to increase robustness.

Let VSSn be a black box n
2
-out-of-n-threshold verifiable secret sharing scheme (satisfying

properties P1, C1, and R1) with distribution phase [∅,m1, . . . ,mn] = VSSnDist[S(m),R1, . . . ,Rn].

We define the distribution phase of GVSSn,g as:

GVSSn,gDist[S(m),R1, . . . ,Rn] = VSSn+gDist[S(m),R1, . . . ,Rn,S, . . . ,S]

In words, the distribution phase of GVSSn,g is just the distribution phase of VSSn+g, where

S does not distribute the last g shares to other players. These shares are considered to be

discarded.

5.6.2 Properties of GVSS

Theorem 33 Suppose an honest sender has distributed a secret m using any verifiable secret

sharing scheme with privacy threshold t(p). Then a coalition of t(p)−1 actively corrupt parties

and any number of fail-corrupt participants can’t gain any information about m.

Proof. Suppose the actively corrupt participants could learn some information about m.

This information must be a function of the private communication transcript for each corrupt
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player, as well as the transcript of all public broadcasts. A fail-corrupt participant adds no

information to these, since he does not communicate at all. Therefore, if the actively corrupt

participants could gain information about m in the presence of fail-corrupt players, they

could do so without the fail-corrupt players, contradicting the threshold t(p). 2

Theorem 34 Suppose an honest sender has distributed a secret m using GVSSn,g. Then a

coalition of less than n+g
2

dishonest participants can’t learn any information about m except

with exponentially small probability.

Proof. There are at most n+g
2
− 1 actively corrupt participants, out of n + g participants

total. The rest are either fail-corrupt (ghosts) or honest. therefore, by Theorem 33, the

actively corrupt participants can learn no information about m. 2

Theorem 35 Suppose less than n−g
2

participants are corrupt. The probability that the dis-

tribution phase of GVSSn,g outputs shares m1, . . . ,mn to receivers R1, . . . ,Rn and there is no

fixed m such that the reconstruction phase will output m is exponentially small.

Proof. Suppose there are n−g
2
− 1 corrupt participants. There are n − (n−g

2
− 1) = n+g

2
+

1 honest participants, so with probability exponentially close to 1, the distribution phase

aborts, or it succeeds and there exists a fixed value m such that VSSn+gRec will output m

except with exponentially small probability, by properties C1 and R1 of VSS (with threshold

n
2

for n participants). 2

In our second protocol, the use of a verifiable secret sharing scheme means that the

participants commit to their inputs in some way. In BIN-SUM with SS, a participant can

change his input any time he wants in an arbitrary way by simply changing his own share

of his input. In contrast, after the distribution stage of a verifiable secret sharing scheme,

the sender is committed to his secret. Therefore, in this second protocol, we introduce some

verification steps where the participants check that the committed BIN-ARRAYs are well-

formed without learning their values. This allows us to raise the robustness threshold by

detecting and eliminating ill-formed BIN-ARRAYs.

One tool we will use in the verification is equality testing. This allows participants to

check that in every round the inputs from a particular participant have the same value.
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Procedure 4 BIN-ARRAY-EQUALITYs
Players: n participants P1, . . . ,Pn
Input: {Xj}s2j=1, a set of LDSs, with Xj = LDS(~vj) where ~vj = (v

(`)
j )2n

`=1 is a BIN-ARRAY
Output: equal or unequal
For i = 1, . . . , s− 1:

1. For j = (i− 1)s+ 1, . . . , (i+ 1)s

(a) Y j =
∑n

`=1 LDS(v
(j)
` )

(b) N j =
∑2n

`=n+1 LDS(v
(j)
` )

2. Compute EQUALITY({Y j}(i+1)s
j=(i−1)s+1) and EQUALITY({N j}(i+1)s

j=(i−1)s+1). If either out-
puts unequal, return unequal.

Return equal.

This procedure takes s sets of s shared BIN-ARRAYs and checks that they encode the

same value. It does this by equality testing with two sets at a time, testing the equality of

the sum over the count bins, Y j, as well as the sum over the no-count bins, N j.

The other verification technique involves opening some BIN-ARRAYs to see that they

are well-formed. In order to avoid revealing the value of the opened BIN-ARRAYs, each

participant shares his BIN-ARRAYs with the bins permuted. Some of the BIN-ARRAYs are

selected for opening, and the sender reveals the permutations on his unopened BIN-ARRAYs

so that they can be unpermuted before computation takes place.
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Protocol 2 GHOST-SUMn,s,g

Players: n participants P1, . . . ,Pn
Input: Pi inputs xi ∈ {0, 1}, for i = 1, . . . , n

Output: Each participant gets output y = x1 + · · ·+ xn

Preparation Each Pi creates s sets of 2s copies of identical BIN-ARRAYn(xi)s. The

BIN-ARRAYs should vary randomly over different sets, but be identical within a set.

Pi then applies a random permutation to each BIN-ARRAY.

Distribution Each BIN-ARRAY is distributed among all n participants using

GVSSn,gDist. If any call to GVSSn,gDist aborts, the sender is excluded from future

steps of the protocol.

Verification 1 For each set of 2s BIN-ARRAYs:

1. Half the BIN-ARRAYs are opened (chosen using RANDOM) and checked for well-

formedness.

2. For each unopened BIN-ARRAY in this iteration, Pi broadcasts the permutations

on the bins, which each participant applies to his shares of that BIN-ARRAY.

Verification 2 For each participant Pi, all s2 of Pi’s unopened BIN-ARRAYs are put into

BIN-ARRAY-EQUALITY. If it returns unequal then Pi’s shares are discarded and he is

excluded from future steps of the protocol.

Computation For each participant Pi, the participants choose the first unopened

BIN-ARRAY from each set and use these to compute s parallel totals, as in Protocol

1. If each repetition does not give the same answer the protocol aborts.

What we have essentially done here is to throw away the correctness of the first protocol,

making it the same property as robustness. We then use the ghost players to establish

a tradeoff between privacy and correctness/robustness. The result is a threshold tradeoff

(t(p), t(c), t(r)) = (n− t, t+ 1, t+ 1) for any t ∈ [0, n
2
), by setting g = n−2t (Theorem 28 and

29). However, by using a verifiable secret sharing scheme with certain desirable properties,

we can keep correctness fairly high, and then use the ghosts to establish a tradeoff between

privacy/correctness and robustness. In our third and final protocol, we do just that.
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5.7 Multiparty Sum with Bins, Ghosts and Commitments

We now present our third and final protocol for SUM. It has the strongest security

properties, with (t(p), t(c), t(r)) = (n− t, n− t, t+ 1).

This new protocol uses the concept of ghosts, just as in the second, but we obtain an

improved tradeoff by making use of the particular properties of a specific verifiable secret

sharing scheme from [CDD+99a].

5.7.1 Verifiable Secret Sharing with Signatures

We will outline the verifiable secret sharing scheme of [CDD+99a], which we call ICVSS,

and show that it has the properties we require to achieve our improved tradeoff.

The scheme makes use of an information-theoretically secure pseudo-signature that has

the properties we require. The secret is encoded as f(0) for some degree ≤ n
2

polynomial

f , with shares f(i) for i ∈ {1, . . . , n}. Each player Pi commits to his shares by distributing

signed shares of his shares, which we call subshares.

The signature scheme involves a signer S, an intermediate receiver I, and several final

receivers R1, . . . ,Rn. The three stages are as follows:

Distribute S sends a message m to I, and some auxiliary signature information to I
and each Ri.

Confirm For each i, I and Ri carry out computations on their auxiliary information to

ensure that if Ri is honest, he will accept m in the reveal phase.

Reveal I reveals m to all Ri and gives each Ri some auxiliary information. Each Ri

accepts or rejects m. If more than t(r) receivers accept, then m is considered to be

accepted.

The signature scheme has the following properties:

SC1 If S, I, and at least t(r) of R1, . . . ,Rn are honest, then each honest Ri will accept

in the reveal phase.

SC2 If I, Ri, and at least t(r)−1 other receivers are honest, then after the confirm phase,

I knows a message m such that Ri will accept m in the reveal phase.

SC3 If S, Ri, and at least t(c) − 1 other receivers are honest, then Ri will reject every

value m̃ 6= m except with exponentially small probability.
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SP1 If S and I are honest, then no Ri can learn any information about m before the

reveal phase.

SL1 If c is a publicly known scalar, and σ and σ′ represent signatures for messages m

and m′ respectively, then cσ + σ′ is a signature for cm+m′.

A pseudo-signature scheme is a kind of commitment scheme. We say that S commits

to m through I. Of course, the value of m is only committed to from the perspective of

R1, . . . ,Rn, who must have received some auxiliary information during the distribute and

confirm phases. However, for simplicity, we will gloss over this fact by saying S commits to m

through I and assume that every participant in the calling protocol is implicitly a receiver.

When we say that some I opens a commitment we mean that he carries out the reveal phase.

A pseudo-signature scheme with the above properties, as well as a verifiable secret sharing

scheme based on these signatures can be found in [CDD+99a]. Both have thresholds t(r) =

t(c) = t(p) = n
2
. We now present their secret sharing scheme, which will form the basis for our

third protocol.

Definition 36 A vector of shares (m1, . . . ,mn) is t-consistent if there exists a polynomial f

of degree at most t containing every point (i,mi) for i = 1, . . . , n.
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Scheme 2 ICVSSn
Players: a sender S

n receivers R1, . . . ,Rn

Distribute: [∅,m1, . . . ,mn] = ICVSSnDist[S(m),R1, . . . ,Rn]

Input: m, the secret, input by sender S
Output: mi, the ith share, output to receiver i, Ri

1. S randomly chooses f ∈ Zp[x][y] of degree at most n
2

in each variable such that

f(0, 0) = m. Let mij = f(i, j). For each i ∈ {1, . . . , n}, S sends Ri the vectors

~ci = (m1i, . . . ,mni) and ~ri = (mi1, . . . ,min) S commits to ~ci and ~ri through Ri.

Set mi = (~ci, ~ri).

2. Each receiverRi checks that the two vectors he received are n
2
-consistent. If not,Ri

opens the inconsistent vector that S committed to. If the commitment is accepted,

then the protocol aborts.

3. For i = 1, . . . , n and j = 1, . . . , n with j 6= i, Ri sends Rj the share mji. Ri

commits to mji through Rj. Ri ensures that the value he receives from Rj, m̃ij

matches his mij. If mij 6= m̃ij then Ri opens the commitment to mij from S and

the commitment to m̃ij from Rj. Seeing this, Rj opens the commitment to m̃ij

from S (or is disqualified). If all commitments are accepted, then the protocol

aborts.

Reconstruct: [m, . . . ,m] = ICVSSnRec[R1(m1), . . . ,Rn(mn)]

Input: mi input by Ri for i = 1, . . . , n

Output: m output to Ri for i = 1, . . . , n

1. Each Ri inputs his row ~ri = (mi1, . . . ,min) into the simultaneous broadcast chan-

nel, and for each j, opens the commitment from Rj to mij. If any of these com-

mitments are rejected, then Ri is disqualified. All other players check that this

row is n
2
-consistent.

2. The secret m can be interpolated from the shares of non-disqualified players.

We can characterize the exact property of ICVSS that allows us to achieve our improved

tradeoff for SUM. In order to achieve correctness in SUM, we require that the secret sharing

scheme have a weaker version of the correctness property, since some of the correctness of
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SUM comes from the bin technique and verification steps. The property is as follows:

C′ Suppose the behaviour of corrupt parties results in the reconstruct phase outputting

m̃. Before the reconstruction phase has completed they have exactly as much infor-

mation about m̃ as they have about the secret.

What this property essentially means is that the corrupt participants, though they may

be able to change the output of the reconstruction phase, cannot control the outcome if

they don’t know m. That is, if the number of corrupt participants is less than the privacy

threshold, then the corrupt participants cannot control the outcome of the reconstruction

phase.

Since ghosts are fail-corrupt participants, we require that fail-corrupt participants can’t

help break privacy or this weaker correctness of the scheme. For privacy, this is true of any

verifiable secret sharing scheme (See Theorem 33).

Any scheme that satisfies these properties can give us the improved tradeoff. By Theo-

rems 33 and 41, ICVSS has the required properties.

5.7.2 Protocol

We use a secret sharing scheme similar to GVSS called IC-GVSS. It is identical to GVSS

except that the underlying verifiable secret sharing scheme is ICVSS.
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Protocol 3 IC-GHOST-SUMn,s,g

Players: n participants P1, . . . ,Pn
Input: Pi inputs xi ∈ {0, 1}, for i = 1, . . . , n

Output: Each participant gets output y = x1 + · · ·+ xn

Preparation Each Pi creates s sets of 2s copies of identical BIN-ARRAYn(xi)s. The

BIN-ARRAYs should vary randomly over different sets, but be identical within a set.

Pi then applies a random permutation to each BIN-ARRAY.

Distribution Each BIN-ARRAY is distributed among all n participants using

IC-GVSS-Distn,g. If any call to IC-GVSS-Distn,g aborts, the sender is excluded from

future steps of the protocol.

Verification1 For each set of 2s BIN-ARRAYs:

1. Half the BIN-ARRAYs are opened (chosen using RANDOM), including the com-

mitments by the sender of that set. The opened BIN-ARRAYs are checked for

well-formedness. If one of a participant’s BIN-ARRAYs is found to be ill-formed,

his shares are discarded and he is excluded from future steps.

2. For each unopened BIN-ARRAY in this iteration, Pi broadcasts the permutations

on the bins, which each participant applies to his shares of that BIN-ARRAY.

Verification2 For each participant Pi, all s2 of Pi’s unopened BIN-ARRAYs are put into

BIN-ARRAY-EQUALITY. If it returns unequal then Pi’s shares are discarded and he is

excluded from future steps.

Computation For each participant Pi, the participants choose the first unopened

BIN-ARRAY from each set and use these to compute s parallel totals, as in Protocol

1. If each repetition does not give the same answer the protocol aborts.

In IC-GHOST-SUM we achieve the desired threshold tradeoff (t(p), t(c), t(r)) = (n − t, n −
t, t + 1) for any t ∈ [0, n

2
), by setting g = n − 2t (Theorems 42, 44, 45 and 46). Table 1

summarizes the characteristics of the three protocols.

5.7.3 Properties of IC-GVSS

Theorem 37 t(p)(IC-GVSSn,g) = n+g
2

.
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t(p) t(c) t(r)

BIN-SUM n n 1
GHOST-SUM n− t t+ 1 t+ 1

IC-GHOST-SUM n− t n− t t+ 1

Table 5.I – Thresholds on privacy t(p), correctness t(c) and robustness t(r), for our three
main protocols that compute addition of binary inputs. The parameter t ∈ [0, n

2
) yields

various tradeoffs for protocols GHOST-SUM and IC-GHOST-SUM. The tradeoff for protocol
GHOST-SUM is also applicable to the computation of any linear function.

Proof. This follows from Theorem 34. 2

Theorem 38 t(r)(IC-GVSSn,g) = n−g
2

.

Proof. This follows from Theorem 35. 2

Theorem 39 A set of less than n+g
2

dishonest receivers cannot forge a signature.That is,

they cannot create a share and a signature that convinces an honest participant that the share

came from an honest sender.

Proof. If the sender and a receiver are honest, then the receiver will reject any value

different from the intended share except with exponentially small probability by property

SC3. Therefore, n+g
2
− 1 corrupt players cannot convince a single honest player to accept

the fake share, therefore they cannot get n+g
2

participants to accept the fake share, which is

required for it to pass. 2

Theorem 40 In IC-GVSSn,g, an honest sender cannot be eliminated in the share phase unless

at least n+g
2

participants are corrupt.

Proof. A sender can be eliminated in the distribution phase if and only if a participant

shows signed shares that are ill-formed and n+g
2

participants accept the signature. If a sender

is honest, he will give well-formed shares and so any player accepting a signature on an

ill-formed share is accepting a forged share, which can’t be done by Theorem 39. 2

Theorem 41 IC-GVSSn,g has property C′ when simultaneous broadcast is used in the recon-

struction phase.
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Proof. Let m1, . . . ,mn be shares distributed using IC-GVSS. Suppose the actively cor-

rupt participants, P1, . . . ,Pc change their shares to m′1, . . . ,m
′
c. Let g be a polynomial

interpolating the actual shares and g′ be a polynomial interpolating the changed shares,

m′1, . . . ,m
′
c,mc+1, . . . ,mn. If a simultaneous broadcast channel is used, the new shares can-

not be a function of any honest shares.

Consider (g′ − g)(0) = a. The secret reconstructed from the new shares will be m′ =

g′(0) = m + a. The dishonest coalition knows a, since they know g′ − g (the shares of

honest parties are all 0). Therefore, they have information about m′ if and only if they have

information about m. 2

5.7.4 Properties of IC-GHOST-SUM

Theorem 42 In t(p)(IC-GHOST-SUMn,g) = n+g
2

.

Proof. Follows from Theorem 28. 2

Theorem 43 BIN-ARRAY-EQUALITY will not output unequal for an equal set when there

are less than n+g
2

corrupt participants, except with exponentially small probability.

Proof. It is not difficult to see that this would require dishonest players to forge shares.

This is not possible, except with exponentially small probability, by Theorem 39. 2

Theorem 44 If less than n+g
2

participants are corrupt, then no honest participant will be

disqualified except with exponentially small probability.

Proof. In the distribution phase, an honest participant will not be disqualified except with

exponentially small probability, by Theorem 40.

In the first verification phase, a participant can only be disqualified if one of his BIN-ARRAYs

is opened to an invalid secret. In order to accomplish this, at least one corrupt participant

must open an incorrect share with the first participant’s signature forged. This cannot be

done with less than n+g
2

corrupt participants by Theorem 39.

In the second verification phase, a participant can only be disqualified if one round of

equality outputs unequal. This can’t happen to an honest participant except with exponen-

tially small probability, by Theorem 43. 2

Theorem 45 t(c)(IC-GHOST-SUMn,g) = n+g
2

.
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Proof. Suppose a dishonest collusion of n+g
2
− 1 participants want to cause the total Y to

be inconsistent with the inputs of honest participants. They must change the value of some

shared BIN-ARRAY, X.

By Theorem 37, nothing is known about X before the computation (and output) phase.

By Theorem 41, the dishonest collusion will therefore know nothing about the value of the

shared BIN-ARRAY X ′ that would result from their behaviour. It could be any array of

2n integers (mod p). There are p2n of these, and only 2n well-formed BIN-ARRAYs. The

probability of creating a well-formed BIN-ARRAY is thus less than 2n
p2n

, which is bounded by

a constant. Repetition yields exponential security.

2

Theorem 46 In t(r)(IC-GHOST-SUMn,g) = n−g
2

.

Proof. This proof is identical to that of Theorem 29. 2

5.8 Applications

The sum of bits is a very basic function that can be useful in several contexts. In this

section we present two very distinct applications. The first one, voting, is very natural. The

second application is less obvious and regards anonymous transmission of information. We

would first like to point out the fact that it is very easy to modify the three SUM protocols

to have a more general set of inputs than bits. More precisely, by having each participant

simulate k participants, it is possible to perform the sum of integers between 0 and k.

5.8.1 Voting

The multiparty problem of voting is as follows. Players Pi for i = 1, . . . , n input xi ∈
{0, . . . , c − 1}. The output is f(x1, . . . , xn) = (t1, . . . , tc) where tj = |{i : xi = j}|. Each

player inputs a choice in {0, . . . , c−1} and the output is the tally of how many players voted

for each of the c choices.

To see how the same ideas applied to multiparty sum can be applied to voting, we can

think of SUM as a vote for one of two choices, where submitting your vote to the tally (i.e.,

putting your ball in one of the first n bins) corresponds to voting for one choice, and with-

holding your vote from the tally (i.e., putting your ball in one of the last n bins) corresponds
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to voting for the other choice. In fact, we may regard the first n bins as one tally, and the

last set of n bins as a separate tally. We can generalise by considering cn bins, with bins

(i − 1)n + 1, . . . , in corresponding to the ith candidate, or choice. Similar to the protocols

for SUM, the total over all bins in the final tally must be equal to n or the protocol aborts.

We can easily extend the voting protocol to allow each voter k votes. This could allow

a voter to weigh various candidates as he chooses, for instance, giving several votes to his

favourite candidate, who he may feel is unlikely to win, and several votes to his second

favourite candidate, who is more likely to win the majority. A further application of multiple

votes is a multi-issue ballot, where a voter can divide his votes among issues as he chooses.

Another less straightforward extension of the voting protocol could transform it into

a more practical protocol. A set of distinguished players, called voting authorities, can be

introduced. Channels would only be required between each participant and each authority, as

well as between all authorities. The initial sharing stage would be similar, but all subsequent

stages of the protocol would be carried out by the voting authorities. All thresholds now

apply to the authorities, including robustness. Note that even if we were to use the simple

secret sharing scheme SS, no dishonest coalition of non-authority voters can make the protocol

abort. This is true because of the verification stages, which find ill-formed votes except with

exponentially small probability.

5.8.2 Anonymous Message Transmission

The multiparty problem of anonymous message transmission is as follows. One or more

players Pi from i = 1, . . . , n inputs a message xi ∈ {0, 1,⊥}` and a designated receiver R
receives the multiset of all transmitted messagesM = {xi}. We require two privacy properties

to hold: if Pi sends message xi, then for each j 6= i, Pj learns nothing about xi; and for each

xi ∈M , R has no information about i (the receiver learns nothing about the identity of any

sender).

The protocols in [BT07] and [BT08] achieve unconditional privacy, but a single participant

can cause the protocol to fail. In addition, the protocols abort whenever two players try to

send messages simultaneously. In this section, we describe a protocol which trades privacy

for robustness and allows any set of messages to be sent. We do this by slightly modifying

the voting protocol from Section 5.8.1 to achieve anonymous message transmission. We get

the same security properties in this modified protocol.
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Anonymous bit transmission, the case where ` = 1, can be achieved by a three candidate

vote. The first candidate represents 0, the second candidate represents 1, and the third

candidate represents no message, ⊥. We call this a BIT-BIN-ARRAY. At the end of the

computation, the shares of the total are sent to the receiver, rather than broadcast to all

participants. The receiver then knows how many participants sent him the message 0, and

how many sent 1.

We can efficiently generalise the above idea to larger `, by defining a MESSAGE as a

vector of ` BIT-BIN-ARRAYs. (In the case of a message of arbitrary length, we don’t need ⊥,

since we can encode the sending of no message as some string, say the all zeros string, but

we leave it in for simplicity). We have two additional requirements.

A bin can be defined by a pair of numbers, (c, b), where c ∈ {0, 1,⊥} represents the

candidate, or choice, that the bin falls under, and b denotes the bin number within that

candidate. The first requirement is that every BIT-BIN-ARRAY in a MESSAGE must have a

single non-empty bin, as in a standard vote, but the bin number (b) of the non-empty bin

must be the same in each message. That is, to show that two bits are part of the same

message, they must use the same bin (in different BIT-BIN-ARRAYs).

Secondly, in order to distinguish between different messages, we require that two senders

don’t choose the same bin number b.

The second requirement can be solved by increasing the number of bins in a BIT-BIN-ARRAY

from 3n to 3n2. We then have b ∈ [n2], so in each round, the probability that two messages

collide is bounded by a constant. Repetition yields exponential probability that there will

be some round in which no two messages collide.

For the first requirement, we simply need to add an extra step to the second verification

phase, where we call the following procedure on each MESSAGE for each sender.
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Procedure 5 BIN-NUMBER-EQUALITYs
Players: P1, . . . ,Pn
Input: (Xj)`j=1 a set of s LDSs, Xj = LDS(~v

(i)
j )6s

i=1

Output: equal or unequal

For k = 1, . . . , n2:

1. For j = 1, . . . , `, Y j = ~v
(k)
j + ~v

(n2+k)
j + ~v

(2n2+k)
j

2. Compute EQUALITY({Y j}`j=1). If it outputs unequal, return unequal.

Return equal.

The above protocol simply ensures that, for any MESSAGE and any bin number b ∈ [n2],

the sum of the values in bins (0, b), (1, b), and (⊥, b) are same in each BIT-BIN-ARRAY

throughout the MESSAGE. If that MESSAGE uses bin b, the sums will all be 1 (since exactly

one of 0, 1, and ⊥ was chosen for each bit of the message) and otherwise the sums will all

be 0.
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CHAPTER 6

GENERAL CONSTRUCTION OF EFFICIENT MULTIPARTY

COMPUTATION

Authors: Bernardo David, Ryo Nishimaki, Samuel Ranellucci, Alain Tapp

6.1 Introduction

Secure multiparty computation (MPC) allows mutually distrustful parties to compute

functions on private data that they hold, without revealing their data to each other. Ob-

taining efficient multiparty computation is a highly sought after goal of cryptography since it

can be employed in a multitude of practical applications, such as auctions, electronic voting

and privacy preserving data analysis.

Notably, it is known that MPC can be achieved from the garbled circuits technique first

proposed by Yao [Yao86] and from a basic primitive called oblivious transfer (OT), which

was introduced in [Rab81, EGL85]. The basic one-out-of-two oblivious transfer (OT 2
1 ) is a

two-party primitive where a sender inputs two messages m0,m1 and a receiver inputs a bit

c, referred to as the choice bit. The receiver learns mc but not m1−c and the sender learns

nothing about the receiver’s choice (i.e. c). This primitive was proven to be sufficient for

achieving MPC in [Kil88, OGW08, CvdGT95].

Even though many approaches for constructing MPC exist, only recently methods that

can be efficiently instantiated have been proposed. Among these methods, the IPS compiler

[IPS08] stands out as an important construction, achieving MPC without honest majority in

the OT-hybrid model. In this work we will focus on the cut-and-choose OT based construction

and the improvement of the IPS compiler introduced by Lindell et al. [LP11, LP12, LOP11,

Lin13]. Other interesting protocols are introduced in [SS11, DFH12, NNOB12, AJLA+12,

LATV12, DPSZ12].

In the approaches for obtaining efficient MPC presented in [LP11, Lin13], the authors em-

ploy cut-and-choose OT, where the sender inputs s pairs of messages and receiver can choose

to learn both messages b0, b1 from s
2

input pairs, while he only learns one of the messages in

the remaining pairs. A batch version of this primitive is then combined with Yao’s protocol



to achieve efficient MPC. In the improvement of the IPS compiler, the authors employ Multi-

sender k-out-of-n OT, where j senders input a set of n messages out of which a receiver can

choose to receive k messages. These complex primitives are usually constructed from specific

number-theoretic and algebraic assumptions yielding little insight to their relationship with

other generic and potentially simpler primitives.

In parallel to the efforts for obtaining efficient MPC, research has been devoted to obtain-

ing constructions of basic primitives that can be efficiently combined between themselves in

order to obtain more complex primitives and protocols. One of the main approach taken to-

wards this goal has been called structure preserving cryptography, which aims at constructing

primitives where basically all the public information (e.g. signatures, public keys, ciphertexts

and commitments) are solely composed of bilinear group elements. This allows for the appli-

cation of efficient Groth-Sahai non-interactive zero knowledge (NIZK) proof systems [GS08]

and efficient compostion of primitives. Until now the main results in this area have been

structure preserving signature and commitment schemes [AFG+10, AGHO11] and encryp-

tion [CHK+11].

6.1.0.1 Our Contributions:

The central goal of this paper is to present general constructions of the primitives used as

the main building blocks in the frameworks of [LP11, LOP11, LP12, Lin13] in the universal

composability model [Can01]. We show general relations between such primitives by gener-

ically constructing them from simple variants of oblivious transfer. We present three main

results:

— The first general constructions of Multi-sender k-out-of-n OT and Batch

Single Choice Cut-and-Choose OT: We show that Multi-sender k-out-of-n OT

and Batch Single Choice Cut-and-Choose OT can be obtained from generalized OT

(GOT) [IK97] combined with proper access structures. Differently from the original

constructions of [LP11, LP12, LOP11, Lin13], our constructions are based on a simple

generic primitive and do not require Committed OT or specific computational assump-

tions. These constructions can be readily used to instantiate the MPC frameworks

presented in [LP11, LP12, LOP11, Lin13].

— Generalized Oblivious Transfer based on Verifiable Oblivious Transfer: Ver-

ifiable Oblivious Transfer (VOT) [CC00, JS07, KSV07] is a flavor of 1-out-of-2 OT
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where the sender can reveal one of his messages at any point during the protocol ex-

ecution allowing the receiver to verify that this message is indeed one of the original

sender’s inputs. We show that GOT can be obtained from VOT, generalizing even

more the constructions describe before. Moreover, our generic construction of GOT

may be of independent interest.

— Structure Preserving Oblivious Transfer and the first generic composable

constructions of Verifiable Oblivious Transfer: We introduce structure preserv-

ing oblivious transfer (SPOT), which is basically a UC secure 1-out-of-2 OT where

the sender’s messages and the protocol transcript are represented solely by bilinear

group elements. We then build on this characteristic to provide a generic construction

of VOT from any SPOT protocol combined with structure preserving extractable or

equivocable commitments and Groth-Sahai NIZKs. Differently from the VOT proto-

cols of [CC00, JS07, KSV07], our constructions are totally modular and independent of

specific assumptions. Moreover, we introduce a round optimal SPOT protocol based

on a protocol by Peikert et al. [PVW08] and observe that the protocols in [CKWZ13]

fit our definitions.

Our contributions are two-fold, showing that efficient MPC can be based on a weaker

simple primitive (i.e. VOT) and providing a generic method for constructing such a primi-

tive. Our results generalize previous approaches for efficient MPC by providing constructions

ultimately based on SPOT rather than original Multi Sender k-out-of-n OT and Batch Sin-

gle Choice Cut-and-Choose OT. Such general constructions help understand the relationship

between the these complex variants of oblivious transfer and simpler primitives. In fact,

these modular constructions are as efficient as the underlying NIZK proof system, structure

preserving commitment and SPOT. Hence, they can easily take advantage of more efficient

constructions of these primitives. Furthermore, we introduce the notion of SPOT, which can

be useful in other goals apart from general MPC.

6.2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. When

D is a random variable or distribution, y
R← D denotes that y is randomly selected from D

according to its distribution. If S is a set, then x
U← S denotes that x is uniformly selected
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from S. y := z denotes that y is set, defined or substituted by z. When b is a fixed value,

A(x) → b (e.g., A(x) → 1) denotes the event that machine (or algorithm) A outputs b on

input x. We say that function f : N → R is negligible in λ ∈ N if for every constant c ∈ N

there exists kc ∈ N such that f(λ) < λ−c for any λ > kc. Hereafter, we use f < negl(λ) to

mean that f is negligible in λ. We write X
c
≈ Y to denote that X and Y are computationally

indistinguishable.

Bilinear Groups. Let G be a bilinear group generator that takes security parameter 1λ

as input and outputs a description of bilinear groups Λ := (p,G,H,GT , e, g, ĝ) where G, H

and GT are groups of prime order p, g and ĝ are generators in G and H, respectively, e is an

efficient and non-degenerate map e : G×H→ GT . If G = H, then we call it the symmetric

setting. If G 6= H and there is no efficient mapping between the groups, then we call it the

asymmetric setting.

Symmetric External Decisional Diffie-Hellman (SXDH) Assumption. Let GDDH1(1λ)

be an algorithm that on input security parameter λ, generates parameters Λ := (p,G,H,GT , e, g, ĝ)
R←

G(1λ), chooses exponents x, y, z
U← Zp, and outputs ~I := (Λ, gx, gy) and (x, y, z). When an

adversary is given ~I
R← GDDH1(1

λ) and T ∈ G, it attempts to distinguish whether T = gxy

or T = gz. This is called the DDH1 problem. This advantage AdvDDH1
A (λ) is defined as follows:

AdvDDH1
A (λ) :=

∣∣∣Pr
[
A(~I, gxy)→ 1

∣∣∣(~I, x, y, z)
R← GDDH1(1λ);

]
− Pr

[
A(~I, gz)→ 1

∣∣∣(~I, x, y, z)
R← GDDH1(1λ);

]∣∣∣
Definition 47 (DDH1 assumption) We say that the DDH1 assumption holds if for all

PPT adversary A, AdvDDH1
A (λ) < negl(λ).

The DDH2 is similarly defined in terms of group H. If both DDH1 and DDH2 assump-

tions hold simultaneously, then we say that the symmetric external Diffie-Hellman (SXDH)

assumption holds.

6.3 Universal Composability

The Universal Composability framework was introduced by Canetti in [Can06] to analyse

the security of cryptographic protocols and primitives under arbitrary composition. In this

framework, protocol security is analysed by comparing an ideal world execution and a real

world execution under the supervision of an environment Z, which is represented by a PPT
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machine and has access to all communication between individual parties. In the ideal world

execution, dummy parties (possibly controlled by a PPT simulator) interact directly with

the ideal functionality F , which works as a fully secure third party that computes the desired

function or primitive. In the real world execution, several PPT parties (possibly corrupted

by a real world adversary A) interact with each other by means of a protocol π that realizes

the ideal functionality. The real world execution is represented by the ensemble EXECπ,A,Z ,

while the ideal execution is represented by the IDEALF ,S,Z . The rationale behind this

framework lies in showing that the environment Z is not able to efficiently distinguish between

EXECπ,A,Z and IDEALF ,S,Z , thus implying that the real world protocol is as secure as the

ideal functionality. In this work we consider security against static adversaries, i.e. once a

party is corrupted it remains so during the whole execution. See [Can01] for further details.

Definition 48 A protocol π is said to UC-realize an ideal functionality F if, for every

adversary A, there exists a simulator S such that, for every environment Z, the following

holds:

EXECπ,A,Z
c
≈ IDEALF ,S,Z

6.4 Ideal Functionalities

In this section we present the FCRS , FOTand FCOM universally composable ideal func-

tionalities.

COMMITMENT: FCOM
— On input (Commit,x) from the sender records x and send (committed) to the

receiver.

— On input (Open) from the sender, send (Reveal,x) to the receiver.

OBLIVIOUS TRANSFER: FOT

FOT is parameterized with N ∈ N and domain D and interacts with sender S,

receiver R, and an adversary.
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— Upon receiving input (Send, sid, x0, x1) from S, where x0, x1 ∈ D, store (x0, x1, sid)

and generate a public delayed output (Receipt, sid) to S and R.

— Upon receiving input (Transfer, sid, c) from R, check if Transfer com-

mand has been sent with the given sid, if not, send public delayed output

(Transfered, sid, xc) to R, otherwise ignore the command.

COMMON REFERENCE STRING: FCRS is parameterized by distribution D.

1. On input (CRS,sid) from some party P , verify that sid = (P , sid′) where P is

a set of identities, and that P ∈ P ; else ignore the input. If there is no value crs

recorded then choose and record value crs
R← D(1λ). Send (CRS,sid,crs) to P .

6.5 Definition of Dual-Mode Cryptosystem

A dual-mode cryptostem is a crypto-sytem where two public keys are derived on key

generation. Dual-mode cryptostem can be instantiate under one of two modes, messy and

decryption mode. This crypto-system is used to instantiate Oblivious Transfer as shown in

[PVW08].

In messy mode, when the receiver generates two keys, one of them will statistically hide

any plaintext encrypted under that key and the other can be used to decypher a cypher-

text. This is exactly the mode that is useful for Oblivious Transfer. It is possible using the

trapdoor of the CRS to determine which is which. This mode allows extraction of receiver’s

input by the simulator.

In decryption mode, both keys will allow description of the messages. This thus statisti-

cally hides the receiver’s input and allow extraction of the sender’s input by the simulator.

Finally, it is important that these two modes are computationally indistinguishable so that

the environment cannot distinguish in which model he is part of.

A dual-mode cryptosystem with message space {0, 1}` consistes of the following PPT

algorithms.

86



Setup(1λ, µ): On input security parameter λ and mode µ ∈ {0, 1}, it outputs CRS crs

and trapdoor t. We let SetupMessy(·) := Setup(·, 0) and SetDec(·) := Setup(·, 1).

Gen(σ): On input branch value σ{0, 1}, it outputs public key pk and secret key sk on

branch σ.

Enc(pk, b,m): On input pk, branch b ∈ {0, 1}, and message m ∈ {0, 1}`, it outputs

ciphertext c on branch b.

Dec(sk, c): On sk and c, it outputs message m.

FindMessy(t, pk): On input t and pk, it outputs branch value b ∈ {0, 1} corresponding to

a messy branch of pk.

TrapGen(t): On input t, it outputs public key pk and corresponding secret keys for

branches 0 and 1, respectively.

Definition 49 (Dual-Mode Encryption [PVW08]) A dual-mode cryptosystem is a tu-

ple of algorithms described above that satisfy the following properties:

Completeness for decryptable branch: For any µ ∈ {0, 1}, any (crs, t)
R← Setup(1λ, µ),

any σ ∈ {0, 1}, any (pk, sk)
R← Gen(σ), and any m ∈ {0, 1}`, Dec(sk,Enc(pk, σ,m))→

m.

Indistinguishability of modes: crs0
c
≈ crs1 where (crsµ, tµ)

R← Setup(1λ, µ).

Trapdoor identification of a messy branch: For any (crs, t)
R← SetupMessy(1λ) and

any pk,

FindMessy(t, pk) → b such that Enc(pk, b,m0)
s
≈ Enc(pk, b,m1) for any m0,m1 ∈

{0, 1}`.

Trapdoor generation of keys decryptable on both branches: For any (crs, t)
R←

SetupDec(1λ), (k, sk0, sk1)
R← TrapGen(t) such that for any σ ∈ {0, 1}, (pk, skσ

s
≈

Gen(σ)).

6.6 Full Description of Groth-Sahai Proof System

Groth and Sahai presented an efficient non-interactive proof system based on bilinear

mappings (often called GS-proofs) [GS08]. Their proofs are non-interactive witness indistin-

guishable (NIWI) or non-interactive zero-knowledge (NIZK) proofs (introduced in [BFM88])
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for the satisfiability of equations such as pairing product equations, multi exponentiation

equations. GS-proofs are quite useful when witnesses consist of group elements. The GS-

proof system can be instantiated under the subgroup decision, SXDH, or decisional linear

(DLIN) assumption. The GS-proof system gives efficient non-interactive WI (NIWI) proofs

and non-interactive ZK (NIZK) proofs for the satisfiability of equations such as pairing prod-

uct equations [GS08]. Ghadafi, Smart, and Warinschi corrected some errors in [GS08] at

PKC’10 [GSW10]. The GS-proof system can be instantiated under the Subgroup decision,

SXDH, and DLIN assumptions.

The Groth-Sahai proof system is based on Groth-Sahai (homomorphic) commitment

schemes.

Groth-Sahai Commitment Scheme. In this scheme, we first generate standard param-

eter Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ).

GS.ComSetup(Λ): On input Λ, it outputs CRS crscom.

GS.Commit(crscom,m, d): In order to commit m ∈ G, it takes as input m, CRS crscom,

and decommitment value d and outputs commitment c
R← GS.Commit(crscom,m, d).

GS.ExpCom(crscom,m, b, d): On input m ∈ Zp, base b ∈ G, CRS crscom, and decommit-

ment d, it outputs (b, c) where c
R← GS.Commit(crscom, b

m, d).

GS.Opening(crscom, c,m, d): If d is valid decommitment for (m, c), then it outputs 1. Oth-

erwise, it outputs 0. That is, GS.Opening(crscom, c,m, d)→ 1/0. In the case of verify-

ing that (b, c) is a commitment to exponent m, GS.Opening(crscom, c, b
m, d)→ 1/0.

The common reference strings of the Groth-Sahai commitment scheme have two types of

generation. In one type, the commitment is perfectly binding, computationally hiding, and

extractable. In the other type, the commitment is perfectly hiding, computationally binding,

and equivocal. These two types are computationally indistinguishable.

The GS commitment scheme based on the SXDH assumption is as follows:

GS.ComSetup(1λ) It chooses α, α̂, β, β̂, ρ, ρ̂
U← Zp,

Extractable CRS: ~u := (g, gα), ~v := (gρ, gρα), xk := α.

Equivocal CRS: ~u := (g, gα), ~v := (gρ, gρα+β), ek := (α, β).

GS.Commit(crs,m, d) It chooses r1, r2
U← Zp, for X ∈ G, Com(ck,X, r) := (ur11 v

r2
1 , X ·

ur12 v
r2
2 ) = (gr1(gρ)r2 , X · (gα)r1(gρα)r2).
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If the CRS is extractable and we have α, we can extract X like the decryption algorithm of

the ElGamal encryption scheme.

Groth-Sahai Proof System. The proof system consists of the following algorithms.

GS.Setup(Λ): On input Λ
R← G(1λ), it outputs CRS GS for the proof system.

GS.Prove(GS, S,W ): On input statement S (some equation) and witness W , it outputs

non-interactive (WI or ZK) proof of knowledge π.

GS.Vrfy(GS, S, π): On input S and π, it verifies the proof and outputs 1 if it is valid, 0

otherwise.

GS.ExtSetup(Λ): On input Λ, it outputs CRS GS (this distribution is identical to the

normal CRS generated by GS.Setup) and trapdoor tdext for extraction of valid witnesses

from valid proofs.

GS.Extract(GS, tdext, π): On input proof π and trapdoor tdext, it extracts witness W that

satisfies the statement of π. This extraction does not require rewinding.

GS.SimSetup(Λ): It outputs simulated CRS G̃S and trapdoor tdsim. Simulated CRS G̃S

is computationally indistinguishable from the normal CRS output by GS.Setup(Λ).

GS.SimProve(G̃S, tdsim, S): On input G̃S and trapdoor tdsim, it outputs simulated proof π̃

for S. It holds that GS.Vrfy(G̃S, S, π̃) = 1. This simulation does not require rewinding.

In the GS-proof system, we can extract witnesses from proofs by using trapdoor tdext as

long as those values are group elements. Unfortunatly, if we use witness w ∈ Zp, then we

compute gw ∈ G and generate a proof with witness gw. Thus, we can only extract gw. This

is not w itself but an output of function F (w) := gw. Therefore, it is said that the GS-proof

system has F -extractability [BCKL08].

The statement S to be proven consists of the following list of values: variable {Xi}i ∈
G, {Yj}j ∈ H (i ∈ [m], j ∈ [n]), {xi′}i′ , {yj′}j′ ∈ Zp (i′ ∈ [m′], j′ ∈ [n′]), constants Ai ∈
G, Bi ∈ H , tT ∈ GT , T1 ∈ G, T2 ∈ H, ai, bi, γi,j, t ∈ Zp as well as commitments {Ci}i, {Dj}j
to {Xi}i ∈ G, {Yj}j ∈ H. Groth and Sahai proposed how to construct non-interactive proofs
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of knowledge (NIPK) for the following equations:

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yi)
γi,j = tT ,

n′∏
i=1

Ayii ·
m∏
i=1

Xbi
i ·

m∏
i=1

n′∏
j=1

X
γi,jyj
i = T1,

n∏
i=1

Y ai
i ·

m′∏
i=1

Bxi
i ·

m′∏
i=1

n∏
j=1

Y
γi,jxi
i = T2,

n′∑
i=1

aiyi +
m′∑
i=1

xibi +
m′∑
i=1

n′∑
j=1

γi,jxiyj = t.

This proof π includes commitments C1, . . . , Cm, D1, . . . , Dn. Groth and Sahai provided an

efficient extractor that opens these commitments to values X1, . . . , Xm, Y1, . . . , Yn that satisfy

the pairing product equation.

The proof system satisfies correctness, extractability, CRS indistinguishability, and com-

posable WI (or composable ZK) [GS08].

Correctness: For all π
R← GS.Prove(GS, S,W ), it holds GS.Vrfy(GS, π)→ 1.

Extractability: For (GS, tdext)
R← GS.ExtSetup(Λ) and proof π, if GS.Vrfy(GS, π) → 1,

then witness W := GS.Extract(GS, tdext, π) satisfies statement S with probability 1.

CRS indistinguishability: For GS
R← GS.Setup(Λ) and G̃S

R← GS.SimSetup(Λ), it

holds GS
c
≈ G̃S.

Composable Witness Indistinguishability: For all PPT A, it holds that

AdvcpWI
A (λ) := 2·Pr

b = b′

∣∣∣∣∣∣ G̃S
R← GS.SimSetup(Λ); (S,W0,W1, s)

R← A(G̃S);

b
U← {0, 1}; π R← GS.Prove(G̃S, S,Wb); b

′ R← A(s, π)

−1 = 0.

The GS-proof provides composable zero-knowledge proofs for some restricted class of state-

ments (ΣZK denotes this class).
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Composable Zero Knowledge: For all PPT A, it holds that

AdvcpZKA (λ) := 2 · Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(G̃S, tdsim)
R← GS.SimSetup(Λ);

(S ∈ ΣZK , w, s)
R← A(G̃S, tdsim);

π0
R← GS.Prove(G̃S, S, w);

π1
R← GS.SimProve(G̃S, tdsim, S);

b
U← {0, 1}; b′ R← A(s, πb)


− 1 = 0.

6.7 Dual-Mode Cryptosystem

In this section, we construct a dual-mode cryptosystem which only uses group operations.

As a result, we can use the resulting Oblivious Transfer with Groth-Sahai proof systems and

convert the Oblivious Transfer into a Verifiable Oblivious Transfer. The idea is that to open

one of the message, simply send it and then prove using the Groth Sahai Proof System that

that was the message that was sent in the Oblivious Transfer. This will be proven in a later

section.

SetupMessy(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0, g1

U← G, x0, x1
U← Zp where x0 6=

x1. Let hb := gxbb for b ∈ {0, 1}, crs := (g0, h0, g1, h1), and t := (x0, x1). It outputs

(crs, t).

SetupDec(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0

U← G, y
U← Z∗p, g1 := gy0 , x

U← Zp,

hb := gxb for b ∈ {0, 1}, crs := (g0, h0, g1, h1), and t := y. It outputs (crs, t).

Gen(σ) r
U← Zp, g{g}rσ, h{h}rσ, pk := (g, h) ∈ G2, sk := r. It outputs (pk, sk).

Enc(pk, b,m) For pk = (g, h) and message m ∈ G, reads (gb, hb) from crs = (g0, h0, g1, h1),

chooses s, t
U← Zp, and computes u = gsbh

t
b, v = gsht. It outputs ciphertext (u, v ·m) ∈

G2.

Dec(sk, c) c = (c0, c1), It outputs c1/c
sk
0 .

FindMessy(t, pk) For input t = (x0, x1) where x0 6= x1, pk = (g, h), if h 6= gx0 , then it

outputs b = 0 as a messy branch. Otherwise, we have h = gx0 6= gx1 , so it outputs

b = 1 as a messy branch.

TrapGen(t) For input t = y, it chooses r
U← Zp, computes pk := (gr0, h

r
0) and outputs

(pk, sk := r, sk1 := r/y).
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6.7.0.2 Proof Sketch

Theorem 50 The above construction is a dual-mode cryptosystem.

In messy mode, CRS is crs = (g0, g
x0
0 , g1, g

x1
1 ) and this is non-DDH tuple. In decryption

mode, CRS is crs = (g0, g
x
0 , g1, g

x
1 ) and this is DDH tuple. These CRSs are computationally

indistinguishable by the SXDH assumption. In messy mode, public key is pk = (grσ, h
r
σ) =

(grσ, g
xσr
σ ) for x0 6= x1, so if we have trapdoor t = (x0, x1), we can test h = gx0 or not. If

σ = 1, then it holds h 6= gx0 and b = 0 is the messy branch. Otherwise, b = 1 is the messy

branch.

In decryption mode, public and secret keys are (pk, sk0, sk1) = ((gr0, h
r
0), r, r/y), so (pk, sk0)

is identically distributed to Gen(0). If we set r := r′y, then we can rewrite (pk, sk1) =

(gr
′y

0 , hr
′y

0 , r′) = (gr
′

1 , h
r′
1 , r

′) and this is identically distributed to Gen(1) since r′ = r/y ∈ Zp
is uniformly random.

6.7.1 UC OT based on Dual-mode Cryptosystem [PVW08]

Let mode ∈ {mes, dec}. Peikert, Water, and Vaikuntanathan proposed protocol dmmode

as follows: Parties use the dual-mode cryptosystem described above. Sender S has input

m0,m1 ∈ G, receiver R has input σ ∈ {0, 1}. S and R query Fmode
CRS with (sid,S,R) and

gets (sid, crs). If mode is mes/dec, then crs is generated by SetupMessy/SetupDec. First, R

computes (pk, sk)
R← Gen(crs, σ), sends (sid, ssid, pk) to S. When S receives (sid, ssid, pk),

it computes yb
R← Enc(pk, b,mb) for each b ∈ {0, 1}, and sends (sid, ssid, y0, y1) to R. When

R receives (sid, ssid, y0, y1), it outputs (sid, ssid,Dec(sk, yσ)).

Theorem 51 ([PVW08]) Let mode ∈ {mes, dec}. If the SXDH assumption holds, protocol

dmmode securely realizes F̂OT in the Fmode
CRS -hybrid mode in the static corruption model.

The messages exchanged in protocol dmmode are all group elements, so it is compatible

with GS-proofs. The following commitment scheme based on the SXDH assumption is used to

construct GS-proofs based on the SXDH assumption. The CRS is crs := (~u := (u1, u2), ~v :=

(v1, v2)) where ~u,~v ∈ G2, the witness is X ∈ G, and the commitment is Com := (ur11 v
r2
1 , X ·

ur12 v
r2
2 ) where r1, r2

U← Zp.

Thus, in protocol dmmode, if the sender generates a commitment of mb by the above

commitment scheme, then it can prove that the message inside encryption yb = Enc(pk, b,mb)
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is consistent with the message inside the commitment by GS-proofs. That is, for (c0, c1) =

(u, v ·mb) = (gsbh
t
b, g

sht ·mb) and Com := (com1, com2) = (ur11 v
r2
1 , u

r1
2 v

r2
2 ·mb), it should hold

c1/com2 = gshtu−r12 v−r22 . Equivalently,


gb hb 1 1

1 1 u1 v1

g h u−1
2 v−1

2

 ·


s

t

r1

r2

 :=


gsb · htb · 1r1 · 1r2

1s · 1t · ur11 · vr21

gs · ht · (u−1
2 )r1(v−1

2 )r2

 =


gsbh

t
b

ur11 v
r2
1

gshtu−r12 v−r22

 .

Thus, we can use Groth-Sahai NIZK proofs for the linear equation above.

6.7.2 NIZK for Linear Equation

In order to prove that revealed mb is consistent with the messages exchanged in the

protocol execution, we use Groth-Sahai NIZK proofs. We borrow the notation of Dodis,

Haralambiev, López-Alt, and Wichs [DHLW10]. In the UC OT protocol described above, the

sender prove that the message inside encryption yb = Enc(pk, b,mb) is the same mb revealed

by the sender. That is, it should hold that for (c0, c1) = (u, v ·mb) = (gsbh
t
b, g

sht ·mb) and

GS.Commit(gk,mb, (r1, r2)) = (com1, com2) = (ur11 v
r2
1 , u

r1
2 v

r2
2 · mb), c1/com2 = gshtu−r12 v−r22 ,

that is


gb hb 1 1

1 1 u1 v1

g h u−1
2 v−1

2




s

t

r1

r2

 =


gsbh

t
b

ur11 v
r2
1

gshtu−r12 v−r22

 .

Thus, we use Groth-Sahai NIZK proofs for the equation above. The matrix multiplication of

A ∈ Gm×n and X ∈ Zn×k,

A = {ai,j}m×n =


— ~a>1 —

· · ·
— ~a>m —

 , X = {xi,j}n×k =

 ~x1 · · · ~xk


is given by A · X := {bi,j}m×k where := 〈~ai, ~xj〉 =

∏n
r=1 a

xr,j
i,j . For Υ = {γi,j}n×k ∈ Hn×k,

then A • Υ := {ti,j}n×k ∈ Gn×k
T where ti,j =

∏n
r=1 e(ai,r,γr,j). Dodis, et al [DHLW10]
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expressed GS NIZK for linear equations in a general form as follows.
b1,1 b1,2 · · · b1,N

b2,1 b2,2 · · · b2,N

...
...

. . .
...

bM,1 bM,2 · · · bN,M




w1

w2

...

wN

 =


c1

c2

...

cM


Group description is as follows: (p,G,H,GT , e, g, γ0)

R← G(1λ). If we set K = 1, then the

proof is instantiated with the SXDH assumption in asymmetric groups.

GS.Setup: Outputs CRS crs := Υ and tk := ~t where γ1, . . . , γK
U← H, ~t := (t1, . . . , tK)

U←
ZKp , and

Υ =



γ
∑K
i=1 ti

0 γt11 γt22 · · · γtKK

γ0 γ1 1 · · · 1

γ0 1 γ2 · · · 1
...

...
...

. . .
...

γ0 1 1 · · · γK


∈ H(K+1)×(K+1).

GS.Prove: For inputs B ∈ GM×N ,~c ∈ GM , ~w ∈ ZNp , it chooses R
U← ZN×Kp and outputs

π := (∆,P ) where

∆ :=


w1

...

wN

R

 ·Υ, P := B ·R

for ∆ ∈ HN×(K+1), P ∈ GM×K .

GS.SimProve: For inputs B ∈ GM×N ,~c ∈ GM , it chooses R
U← ZN×Kp and outputs π :=

(∆,P ) where

∆ :=


0
...

0

R

 ·Υ, P :=


c1

...

cM

B

 · (−t1 · · · − tNR

)

where ∆ ∈ HN×(K+1), P ∈ GM×K .
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GS.Vrfy: For input π = (∆,P ), it outputs 1 iff it holds that

B •∆ :=


c1

...

cM

P

 •Υ.

6.8 Generic Construction of Verifiable OT from Structure Pre-

serving OT

In this section, we introduce Structure Preserving Oblivious Transfer (SPOT) and use

it to construct verifiable oblivious transfer (VOT) . SPOT will be the basic building block

of our efficient general constructions of secure multiparty computation. It is first used in a

general transformation that yields VOT, which will be used to obtain generalized oblivious

transfer (GOT) and more complex primitives later on.

6.8.1 Structure Preserving Oblivious Transfer

Basically we require all the SPOT protocol messages (i.e. the protocol transcript) and

the sender’s input messages in the protocol to be composed solely of group elements, this

allows us to apply GS proofs to prove relations between the parties’ inputs and the protocol

transcript. Further on, our general transformation will rely on GS proofs to show that a

given sender input is associated with a specific protocol transcript.

Definition 52 (Structure Preserving Oblivious Transfer) Formally a structure preserv-

ing oblivious transfer protocol defined over a bilinear group Λ := (p,G,H,GT , e, g, ĝ) must

have the following properties:

1. Each of the sender’s input messages m0,m1 consists of an element of G or H.

2. All the messages exchanged between S and R (i.e. the protocol transcript) consist of

elements of G and H.

3. The relation between a given input message mb, b ∈ {0, 1} and a given protocol

transcript is expressed by a set of pairing product equations or multi exponentiation

equations.
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Notice that our general transformations can be applied to any OT protocol in a bit by

bit approach, by mapping the binary representation of each element in a given protocol to

specific group elements representing 0 and 1 and applying GS proofs individually to each of

those elements. However, this trivial approach is extremely inefficient, the number of GS

proofs and group elements exchanged between parties would grow polynomially. The first

OT protocol to fit this definition was proposed in [GH08], but it relies simultaneously on

SXDH, DLIN and q-hidden LSRW assumptions. A recent result by Choi et. al. [CKWZ13]

also introduced OT protocols based on DLIN and SXDH that match out definition of SPOT.

However, these protocols already require a GS proof themselves, introducing extra overhead

in applications that combine SPOT with GS proofs.

6.8.2 Obtaining SPOT from Dual-Mode Cryptosystems

Peikert, Vaikuntanathan, and Waters proposed a general framework for constructing uni-

versally composable oblivious transfer protocols by using dual-mode encryption schemes

[PVW08]. They proposed dual-mode encryption schemes based on the DDH, QR, LWE

assumptions [PVW08]. The DDH-base scheme can be instantiated in asymmetric pairing

groups under the SXDH assumption. We construct such a dual-mode cryptosystem in Ap-

pendix 6.7. Note that the CRS, all messages which are exchanged between the sender and

the receiver, and inputs to the sender are all group elements. Therefore, the composable OT

protocol of Peikert et al. based on the dual mode cryptosystem presented in Appendix 6.7

is a SPOT protocol compatible with GS-proofs based on the SXDH assumption.

6.8.3 Obtaining VOT

Verifiable oblivious transfer is basically an 1-out-of-2 oblivious transfer where the sender

may choose to open one of its input messages mb where b ∈ {0, 1} at any time, in such a way

that the receiver is able to verify that this message had indeed been provided as input. This

notion is formalized by the following ideal functionality:

Verifiable Oblivious Transfer: FV OT
— Upon receiving (Send,x0,x1,sid) from the sender, if sid has not already been

used, store (x0, x1, sid) and send (Receipt,sid) to the sender and the receiver.
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— Upon receiving (Transfer,c,sid) from the receiver, check if Transfer com-

mand has been sent with the given sid, if not, send (transfered,sid,xc) to

the receiver, otherwise ignore the command.

— Upon receiving (Open,b,sid) from the sender, send (reveal,b,xb,sid) to

the receiver.

We will construct a general protocol πV OT that realizes FV OT from any universally com-

posable SPOT protocol πSPOT by combining it with a structure preserving commitment πCom

(such as the schemes in [GS08][AFG+10]) and Groth-Sahai NIZK proofs. We consider that

both parties are running the underlying universally composable structure preserving oblivious

transfer protocol SPOT and describe the extra steps needed to obtain VOT. An interest-

ing property of this generic protocol is that even though it was designed for an underlying

structure preserving protocol that realizes the 1-out-of-2 OT functionality FOT , it can be

applied multiple times to the individual transfers of an adaptive OT protocol in order to

obtain verifiable adaptive OT. In this case, the same CRS can be reused for all the individual

transfers. Notice that this is the first generic construction of universally composable VOT.

6.8.3.1 Protocol πV OT :

S inputs two messages m0,m1 and R inputs a choice bit c.

— Setup: A common reference string is generated containing the following information:

— The public parameters for a sound instance of a Groth-Sahai non-interactive zero

knowledge proof system.

— The CRS for the underlying structure preserving commitment scheme πCom.

— The CRS for the underlying UC structure preserving OT πSPOT .

— Commitment phase: Before starting πSPOT , S commits to m0 and m1 by sending

(sid,Com(m0),Com(m1)) to R, where m0,m1 ∈R {0, 1}n (Notice that it is possible

to efficiently map the messages into corresponding group elements that will serve as

inputs to πSPOT [GH08]).

— πSPOT protocol execution S and R run πSPOT storing all the messages exchanged

during the protocol execution up to the end of πSPOT with S’s input (m0,m1) and R’s

input c or until S decides to reveal one of its messages.
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— Reveal phase: If S decides to reveal one of its messages mb where b ∈ {0, 1} at any

point of the protocol execution it sends a decommitment to mb and a GS-proof ψ that

the messages exchanged up to that point of the execution contain a valid transfer of

message mb (this proof is zeo-knowledge), sending (sid, b,Open(mb), ψ) to R.

— Verification phase: After receiving the decommitment and the GS-proof, R verifies

ψ and the decommitment validity. If both are valid, it accepts the revealed bit,

otherwise it detects that S is cheating. If the protocol πSPOT did not reach its end

yet, S and R continue by executing the next steps, otherwise they halt.

Theorem 1 For every universally composable structure preserving oblivious transfer proto-

col πSPOT and every universally composable structure preserving commitment scheme πCom,

Protocol πV OT securely realizes the functionality FV OT in the FCRS-hybrid model.

Before proceeding to the security proof we show that the protocol works correctly. First of

all, notice that since πSPOT is a structure preserving oblivious transfer protocol it is possible

to prove statements about the sender’s input messages and the protocol transcript using

Groth-Sahai NIZK proof systems. Correctness of Protocol πV OT in the case that no Reveal

phase happens follows from the correctness of protocol πSPOT . The correctness of the Reveal

phase follows from the commitment scheme’s security and the GS-proof completeness and

soundness. When S opens the commitment, R is able to check whether the revealed message

is indeed one of the messages that S used as input in the beginning of the protocol and

by verifying the GS-proof, R is able to check that the input message mb is contained in the

messages exchanged by both parties meaning that this message is indeed used in the protocol

execution. The full proof is presented in Appendix 6.9

6.9 Security Proof of πV OT

In order to prove the security of this protocol we construct simulator that interacts with

an internal copy of the adversary A that may corrupt parties, the ideal functionality FV OT
and an environment Z. For the sake of simplicity, we present the case of a corrupted S and

that of a corrupted R separately. In the trivial case where both parties are corrupted, the

simulator S simply forwards all the messages between Z and A . Analogously, when both

parties are honest, S forwards all the messages between the parties S, R and Z.

In order to construct the simulators we will use the following setup:
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Setup: Simulator S generates a common reference string by computing the following

information:

— The ”simulated” public parameters for an of a Groth-Sahai NIZK proof system.

— The ”simulated” CRS for the underlying structure preserving commitment scheme

πCom that allows the simulator to generate an equivocal commitment using trapdoor

t.

— The ”simulated” CRS for the underlying UC structure preserving OT πSPOT that

allows the simulator to obtain the receiver’s choice bit c or the sender’s input messages

m0,m1.

6.9.1 Simulator for the Case of a corrupted S:

Simulator S interacts with a corrupted sender A , the ideal functionality FV OT and the

environment Z.

— Setup: When A requests a CRS, S responds by sending the CRS described above.

— Commitment Phase: S waits for the commitments (sid,Com(m0),Com(m1)) from

A and then interacts with it using protocol πSPOT .

— πSPOT protocol execution S and A run πSPOT storing all the messages exchanged

during the protocol execution up to the end of πSPOT or until A decides to reveal one

of its messages. If A doesn’t decide to reveal one of its messages before the protocol

ends, S uses the same procedures of the original πSPOT simulator to extract m0,m1

and sends (Send,m0,m1,sid) to FV OT .

— Reveal phase: If the A decides to reveal one of its messages mv at any point of the

protocol execution sending S the message (sid, b,Open(mb), ψ), S verifies whether the

the revealed message is correct by using the same procedures of a honest receiver. If

it is correct, S sends (Open, b, sid) to FV OT . Otherwise, it reveals an invalid bit by

sending a corrupted message to FV OT . S then proceeds by simulating the execution

with A using the same procedures of the original πSPOT simulator.

Lemma 1 When A corrupts only the sender, for any universally composable structure pre-

serving oblivious transfer protocol πSPOT and structure preserving commitment scheme πCom,

the following holds:

EXECπV OT ,A,Z
c
≈ IDEALF̂V OT ,S,Z
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Proof. Note that the simulator S generates all messages exactly as the real protocol and

as the original simulator for protocol πSPOT . Thus, the simulation is indistinguishable from

the real execution with protocol πV OT . The difference in the CRS is computational indis-

tinguishable since the simulated common reference strings from the commitment protocol,

since the GS-proof system and the structure preserving OT protocol are computationally

indistinguishable from the real common reference string used for each of these protocols. 2

6.9.2 Simulator for the Case of a corrupted receiver:

Simulator S interacts with a corrupted sender A , ideal functionality FV OT and environ-

ment Z.

— Setup: When A requests a CRS, S responds by sending the CRS described above.

— Commitment phase: Before starting πSPOT , S commits to two random messages

m0,m1 ∈R {0, 1}n by sending (sid,Com(m0),Com(m1)) to A .

— πSPOT protocol execution S and A run πSPOT storing all the messages exchanged

during the protocol execution up to the end of πSPOT or until S receives a message

(Reveal, b,m′b), sid from FV OT . If not interrupted, S follows the procedures of the

original πSPOT simulator, extracts the choice bit c and sends (Transfer,c,sid)

to FV OT , obtains mc and sends it to A to complete the protocol.

— Reveal phase: If S receives a message (Reveal, b,m′b, sid) from FV OT (meaning that

the honest sender revealed his message mb) it reveals the same bit mb to A by doing

the following:

1. S generates an arbitrary opening to Open(m′b) corresponding to the original com-

mitment Com(mb) using the trapdoor corresponding to the simulated CRS for

πCom.

2. S generates a proof ψ that the messages exchanged with A contain a valid transfer

of m′b using the simulated CRS for the GS NIZK proof system.

3. S sends (sid, b,Open(m′b), ψ) to A .

— If there are still steps of πSPOT to be executed, S proceeds as the original πSPOT

simulator until the end of the protocol.

Lemma 2 When A corrupts only the receiver, for any universally composable structure pre-

serving oblivious transfer protocol πSPOT and any universally composable structure preserving
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commitment scheme πCom the following holds:

EXECπV OT ,A,Z
c
≈ IDEALF̂V OT ,S,Z

Proof. The only deviations from the real protocol πV OT lie in the commitments (sid,Com(m0),Com(m1))

sent in the beginning of the protocol and in the case that the honest sender decides to reveal

one of its messages. In contrast to the real protocol, S commits to random m0,m1 ∈R {0, 1}n,

and computational indistinguishability from commitments to the real messages follows from

the commitments hiding property.

When the honest sender decides to reveal one of the messages, S deviates from the real

protocol by opening one of the previously sent commitments to an arbitrary value and gen-

erates a GS-proof of a relation for which it does not know the witnesses. The underlying

commitment protocol has been set up with a simulated CRS. This allows the simulator who

knows the trapdoor t to issue decommitments to arbitrary values and this difference is com-

putationally indistinguishable. The indistinguishability for the GS-proof that the messages

exchanged between the parties contain a transfer where mb = m′b follows from the zero

knowledge property of GS-proof systems that are set up with the simulated CRS. The only

remaining difference is the CRS, which is indistinguishable since the simulated common ref-

erence strings of the underlying protocols are themselves computationally indistinguishable

from the real common reference strings. 2

6.10 Generalized Oblivious Transfer

Generalized Oblivious Transfer is an interesting application of Verifiable Oblivious Trans-

fer. An interesting way of describing an OT is by describing the groups of messages that the

receiver can get as sets in a collection. In the case of a simple OT, he can learn one of the

sets in {{1}, {2}}. The k-out-of-n OT is an OT with a collection that contains all the sets of

messages of size k or less. This mindset allows us to generalize oblivious transfer to its most

general form. There is an important link between generalized oblivious transfer and general

access structures.

Definition 2

— Let I = {1, 2, ..., n} be a set of indices. A collection A ⊆ P(I) is monotone if the
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fact that B ∈ A and B ⊆ C implies that C ∈ A.

— An access structure is a monotone collection A of non-empty sets of I. A set s is

authorized if s ∈ A and a set s′ is minimal if there exists no strict subset s′′ of s′

such that s′′ ∈ A.

— The complement of a collection C is defined as C∗ = {b ⊆ I | ∃ c ∈ C, b = I − c}.
— We define Closure(C) = {c ⊆ c′ | c′ ∈ C}.
— A collection C is enclosed if C =Closure(C).

— An element c ∈ C is maximal if there exists no c′ ∈ C such that c ⊆ c′ and c 6= c′.

Theorem 53 For every enclosed collection C, there exists a unique access structure A such

that C∗ = A

See [SSR08] for a full proof.

Definition 3 A secret sharing scheme is a triplet of randomized algorithms (Share, Re-

construct, Check) over a domain D with an access structure A. ShareA(s) always output

(s1, . . . , sn) such that:

(1) for all A ∈ A, ReconstructA({(i, si) | i ∈ A}) = s,

(2) for any A′ 6∈ A, {(i, si) | i ∈ A′} gives no information about s.

CheckA(si) = 1 if and only if for all A ∈ A, ReconstructA({(i, si) | i ∈ A}) = s.

Definition 4 Shares {si} are consistent if for any authorized subset of shares, the recon-

structed secret is the same.

GENERALIZED OBLIVIOUS TRANSFER: FGOT
Let I be an enclosed collection and m1, . . . ,mn ∈ {0, 1}l.

— Upon receiving (Send, m1, ...,mn) from the sender, if such a command was not

done previously, store (m1, ...,mn).

— Upon receiving (Choice,I) where I ∈ I is a set of indices, if no Choice com-

mand was previously sent, and I is in I, then for each i ∈ I, send (Reveal,i,mi)

to receiver.
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6.10.1 Protocol

In this section, we will give a protocol that implements FGOT in the FV OT , FCOM hy-

brid model with the aid of secret sharing. The fact that every enclosed collection is the

complement of an access structure will be key to this construction. The protocol requires

n instances of FV OT . The size of the elements transferred in the FV OT is the maximum

between the length of the messages and the size of the shares which depends on the under-

lying access structure. The probability that the receiver breaks the protocol is D−1 where

D is the number of possible element of the secret sharing use in the protocol. Let s be a

security parameter and I be an enclosed collection that defines the subset of messages that

are accessible to the receiver.

Protocol: πGOT (I)

1. The sender selects k1, k2, ..., kn
U← {0, 1}l (one-time pads)

2. Let A = I∗, s U← D and (s1, s2, ..., sn) = ShareA(s).

3. The sender selects a set of n ids that have never been used, denote these ids as sidi

and sends them to the receiver. For each i, sender sends (send,ki,si,sidi) to FV OT
.

4. Let I ∈ I be the set of messages that the receiver wishes to receive, he sets bi = 0 when

i ∈ I otherwise he sets bi = 1. For each i, the receiver sends (Transfer,bi,sidi) to

FV OT and records the result.

5. The receiver executes the recover algorithm with the shares he received and obtains S.

If the reconstruction failed, he chooses an arbitrary value for S instead. The receiver

sends (commit,S) to FCOM .

6. For each i, the sender sends (open,1,sidi) to FV OT .

7. The receiver abort if CheckA(s1, s2, ..., sn) 6= 1.

8. The receiver sends open to FCOM . The sender verifies that S = s and if not, aborts

the protocol.

9. The sender sends zi = mi ⊕ ki to the receiver. ({mi} are the messages)

Theorem 54 πGOT , given access to FV OT and FCOM , securely realizes FGOT .
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Proof. (Sender simulation) The simulator awaits the commands (Send,ki,si,sidi)

from the environment. The simulator then forwards the message (committed) to the

environment. The simulator awaits for the environment to forward all the (open,1,sidi).

The simulator checks if shares are consistent, if not, the simulator aborts the protocol. The

simulator extracts S and sends (reveal,S) to the Environment. After the simulator

received all the zi, he sends (Send, z1 ⊕ k1,...,zn ⊕ kn) to FGOT .

The simulator in the ideal setting and the receiver in the real world are both able to check

the validity of shares. Therefore the receiver revealing the secret won’t leak any information.

It is important to note that aside from the reveal of the commitment, no information is given

to sender. Since the simulator can extract the messages, he can input the messages to the

ideal functionality.

(Receiver simulation) Simulator generates a random secret s, a set of random ki and

shares si = Share(s). Simulator awaits command (transfer,bi,sidi) from environment.

Simulator sets di = ki when bi = 0 and di = si when bi = 1 and then forwards to the

environment (transferred,di,sid). The simulator records I as the set of i such that

bi = 0. The simulator awaits command (Commit,S) from the environment. The simulator

then forwards the message (Reveal,1,si,sidi) to the environment. On reception of

(open) , checks if S = S ′ and I ∈ I, if it is not the case abort. The simulator selects

random strings ri. The simulator sends (Choice,I) to FGOT and for all i ∈ I sends

(mi ⊕ ki) and for all i 6∈ I sends ri.

For the sender to break the protocol, he must learn more messages then he should. This

could only occur if he extracts less shares then he should and then correctly guesses the

secret. This would force the simulator to abort. Fortunately, the probability of correctly

guessing the secret is negligible. We thus have what we need.

2

6.10.2 Applications

The GOT protocols can be used to instantiate k-out-of-n OT using a (n-k)-out-of-n secret

sharing. Priced Oblivious Transfer can be instantiated using weighted secret sharing. The

price of an object mi is the weight of the share si. Another more complex application

is multivariate oblivious polynomial evaluation presented in [Tas11]. Although the GOT

protocol in that paper is different, the same techniques in this paper can be used for that
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protocol.

6.10.3 Security flaws in previously published protocols based on secret sharing

The protocols from [SSR08] and [Tas11] are insecure against a malicious sender. A mali-

cious sender can easily break the privacy of both schemes. In their protocols, a simple OT is

used and share validation is non-existent. As a result, it is possible for the sender to corrupt

shares and learn some information about receiver’s input from the secret that he reconstructs.

6.11 Batch Single-Choice Cut-and-Choose OT

The Batch Single-Choice Cut-and-Choose OT (Fcacot) is an instentiation of FGOT for

a specific enclosed collection. The procedure was introduce in [LP11] and it was used to

implement constant round secure function evaluation.

In a FCACOT , the data that will be transferred has a three dimensional structure; a table

of pairs. The receiver can learn two category of element of the table. First he can learn

exactly all the pair in half the columns. In addition to that, independently for each line,

he can either learn the first element of every pair or the second element of every pair. The

formal definition of the enclosed collection follows.

Cut-and-Choose OT FCACOT
Input:

— Sender: mijk where i ∈ [1, n], j ∈ [1, s], k ∈ {0, 1}
— Receiver: y ∈ {0, 1}n, a ∈ {0, 1}s/2

Output:

— Sender: no output

— Receiver: { mijk | k = yi } ∪ { mijk | j ≡ adj/2e mod 2}

Theorem 55 Any FCACOT can be implemented with 2ns calls to FV OT where the elements

transferred by FV OT are the maximum between twice the size of the secret and the value of

the messages transferred.

We will now show that there exists an efficient secret sharing scheme with an access

structure C∗ such that its complement is the enclosed collection C. We will use a combination

105



of linear secret sharing (mod p) to share s = σ-S+J-S mod p, the sum of two secret. Thus,

to reconstruct s, the participant will need to reconstruct both σ-S and J-S. Let sijk,where

i ∈ [n], j ∈ [s], k ∈ {0, 1}, be the shares of the secret sharing implementing the acces structure

C∗. We construct sijk by the concatenation of σ-Sijk and J-Sij as defined below.

σ-Share: The sender selects a random σ-S. He shares σ-S using a n-out-of-n Secret

Sharing resulting in shares σ-Si and then takes each Si and distributes each of them twice

using an s/2-out-of-s secret sharing resulting in shares σ-Sij0, σ-Sij1.

J-Share The sender selects a random J-S and shares it using a s/2-out-of-s secret sharing

resulting in shares J-Sj. He then shares each J-Sj using a n-out-of-n secret sharing resulting

in shares J-Sij where J-Sij is a share of J-Sj.

6.12 Modified Cut-and-Choose from [Lin13]

The Cut-and-Choose OT from [Lin13] is very similar to the one in [LP11]. There are two

important differences. First, the set of indices in J is no longer size restricted (instead of size

s/2). In addition, for each j 6∈ J , the receiver receives a special string vj which will allow the

receiver to prove that j 6∈ J . Although, we could still use the protocol for generalized oblivious

transfer defined above, the complement access structure is very complicated. Instead, we will

provide a hybrid of the protocols from [Tas11] and [SSR08] to realize this functionality. The

protocol follows the same basic approach of the previous protocol: a sharing of a secret, a

verifiable oblivious transfer phase, a commitment to a secret, a proof of share validity and

finally the message encryption step.

6.12.1 Construction

Essentially, by reconstructing the secret from the sharing that follows the prover will be

able to prove two statements. First, it will show that, for each column, the receiver either

didn’t learn the verification string or one element from each pair. Secondly, it demonstrates

that for each row, the receiver either learned the first element of each pair or the second

element of each pair. The first statement which can be thought of as a proof of ignorance

reflects the approach of [SSR08], while the second one, which can be thought as a proof of

knowledge, reflects the approach of [Tas11]. The protocol that follows is thus a hybrid of

[Tas11] and [SSR08].
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Since the protocol is very similar to the the generalized OT protocol, we will simply de-

scribe: how shares are constructed and what is transferred by the Oblivious Transfer.

6.12.2 Sharing

— s = sr + sc

— {sri} = share(sr) using a n-out-of-n secret sharing scheme

— {srijk} = share(sri) using a s-out-of-s secret sharing scheme twice

— {scj} = share(sc) using a s-out-of-s secret sharing scheme

— {scij} = share(scj) using a n-out-of-n secret sharing scheme

— (sc0
ijk, sc

1
ijk) = share(scij) using a 2-out-of-2 secret sharing scheme twice

(so that the receiver can’t learn kijb and srij(1−b) and still be able to reconstruct the

secret)

6.12.3 Sender’s input to VOT

— (Send,vj,scj)

— (Send,kijk,sc0
ijk)

— (Send,srijk,sc1
ijk)

6.12.4 Receiver’s input to VOT

— if j ∈ J , learn scj, srijk and kijk.

— Otherwise if j 6∈ J , learn vj, kijσi , srijσi , sc0
ij(1−σi) and sc1

ij(1−σi).

6.13 Multi-sender k-Out-of-n OT

The Multi-sender k-out-of-n OT functionality was defined in [LOP11] where it was used

to optimize the IPS compiler. The functionality involves p sender and one receiver. It

is essentially many k-out-of-n OT executed in parallel with the same choice made by the

receiver in each execution. This OT primitive can be implemented using ideas similar to

the ones used to implement GOT in conjunction with the appropriate use of linear secret

sharing.
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The protocol is divided in four phases. In the first phases, the senders will construct/distribute

the shares of a special secret sharing with value S. They must commit to this information.

In the VOT phase, each sender will transfer a key for each message along with the associated

share. The receiver will read the key associated with the messages he wishes to learn and

otherwise he will obtain a share. The next phase is a verification phase, the sender will

commit to S which he could only obtain if he was requesting the same k messages from each

sender. The senders will open all their commitment so that the shares are validated by the

receiver. If the verification phase succeds, the receiver opens S which proved he only read a

legal set of key. In the last phase, the senders will transmit all the messages encrypted with

the appropriate key.

The following functionality and protocol involves p senders with n messages of length r

each and one receiver. We denote the shares of a a-out-of-b linear secret sharing as {B}a-b.

Functionality FMSOT

1. On input (Send,〈m1j, . . . ,mnj〉) from a sender (associated to index j), record all

mij.

2. On input (Transfer,I ⊂ [n]), check if |I| = k, if not abort. Send to receiver,

for each j = [p] and i ∈ I, the message (Receipt-player,i,j,mij))

Protocol: (πMSOT )

Preparation

1. Each sender a selects a random secret Sa and broadcasts a non-interactive commitment

to Sa.

We define S =
∑

a Sa.

2. Each sender a reshares Sa to obtain {Sab}(n−k)-n.

3. Each sender a reshares each Sab to obtain {Sabc}p-p.

4. For each j, b and c, sender j sends share Sjbc to sender c.

5. Each sender c computes for each b, S ′bc =
∑
a

sabc.

We have that S ′′b = {S ′bc}p-p and
∑
S ′′b = S.

VOT’s
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1. Each sender j selects uniformly at random a set of n one-time pads kij of length r.

He also selects n unused ids denoted by idij and sends them to the receiver.

2. Each sender j, for each i ∈ [n] sends FV OT the command (Send,kij,S
′
ij,idij)

3. Let I ∈ I be the set of messages that receiver wishes to receivem he sets bi = 0 if

i ∈ I otherwise he sets bi = 1. For each i, for each sender, receiver sends FV OT the

command (Transfer, bi, sidij) and records the result.

Verification

1. Receiver computes S ′′b = {S ′bc}p-p then S =
∑
S ′′b and broadcasts a non-interactive

commitment to S. The receiver commits to a random S if he cannot reconstruct S.

2. Each sender j, for each i, player j opens the commitment to Sij.

3. Receiver verifies that each opened values is consistent with a legal preparation phase

and aborts otherwise.

4. Receiver reveals S and if the secret is invalid, the senders abort the protocol.

Transfer

1. Each sender , sends mij ⊕ kij to receiver who can now calculate mij for all i ∈ I.

Theorem 56 πMSOT securely realizes FMSOT .

6.14 Security of πMSOT

Proof. (Corrupt senders) The senders are controlled by the environment. It can be

shown that the situation is analagous to a single corrupt sender in the GOT simulator. As

such, the protocol for multi-sender k-out-of-n OT against corrupt senders follows the same

simulation as a single corrupt sender in GOT. Therefore, the real model with corrupt sender

can be simulated using the ideal functionality.

(Corrupt receiver) If the senders are controled by many trusted third parties, this

would be undistinguishable from a single trusted third party that controls all the honest

parties. It can be shown that for the receiver the situation is analagous to the GOT, As such

the real model with corrupt sender can be perferctly simulated using the ideal functionality.

(Corrupt senders and corrupt receiver) The simulator selects random-shares for each

honest participant and forwards any sharing to environment. After receiving shares from the
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environment, the simulator simulates commitment to the secrets for all honest player. The

simulator selects random keys and simulates a FV OT for each honest party. The simulator

awaits that the environment (acting as the receiver) sends a commitment command for a

secret S . The simulator reveals the share of honest parties to the environment in a fashion

that simulates the open command of VOT. The simulator reveals the commited shares and

awaits the open command from the corrupt senders. The simulator awaits the open command

from receiver and checks if secret matches the opened shares otherwise abort. The simulator

extracts the set of messages that corrupt receiver chose by looking at honest sender’s VOT

and seing what value the receiver chose from them. The simulator sends FMSOT the receiver’s

choice and forwards the appropriate messages to the environment. 2

6.15 Conclusion

In this paper, we present the first generic constructions of Multi Sender k-out-of-n OT

and Batch Single Choice Cut-and-Choose OT. These constructions are based on Generalized

OT, which we show how to build from Verifiable OT and proper access structures. Moreover,

we formalize structure preserving OT, instantiating a practical protocol and showing how to

use it to obtain VOT. This sequence of results provides a novel view the MPC frameworks of

[LP11, LP12, LOP11, Lin13], shedding light on the general relations between the primitives

used as their main building blocks. As future works we suggest the construction of more

efficient general constructions and further investigation of the relations between different

flavors of oblivious transfer. An interesting problem in this realm is analyzing the trade-off

between share size and number of oblivious transfers in GOT protocols. Moreover, we suggest

obtaining versions of our protocols secure against adaptive adversaries building on the recent

results of [CKWZ13].
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CHAPTER 7

EFFICIENT SECURE TWO-PARTY COMPUTATION FROM BLACK-BOX

PRIMITIVES VIA FAULTY CUT-AND-CHOOSE OT

Authors: Samuel Ranellucci, Alain Tapp

7.1 Abstract

We construct a protocol for constant round Two-Party Secure Function Evaluation which

improves previous protocols. Our protocol is secure in the standard model, it does not require

a random oracle. Our protocol, with the aid of garbled circuits, only requires black-box calls

to OT and Commitment. This is achieved by the use of a faulty instantiation of the Cut-

and-Choose Oblivious Transfer. The concepts of Garbling Schemes, Oblivious Transfer and

Privacy Amplification are combined using the Cut-and-Choose paradigm to obtain the final

protocol.

7.2 Introduction

The field of secure multiparty computation studies how to simulate a trusted third party

when several players need to compute a function on their private data. Auctions, electronic

voting and privacy preserving data analysis are important applications of secure multiparty

computation.

The tools that we use in this paper are Oblivious Transfer [Rab81, EGL85], Commitment

Schemes [Blu83, Eve83] and some variation of Yao’s Garbled Circuit [Yao82, BHR12]. In

this work, we consider malicious adversaries and a strong notion of security, called Universal

Composability [Can01]. The goal of this work is to present a very efficient protocol for

constant round Two-Party Secure Function Evaluation in this model based on the above

primitives.

Important work has gone into optimizing the primitives of secure computation. Oblivious

Transfer requires expensive public key operations to instantiate from scratch, thus the idea

of generating a large number of them from a much smaller number of OT by using private

key operations is extremely valuable. This concept is called OT extension [Bea96, IKNP03]



and the fact that the protocol we present in this chapter is based on black-box OT insures

that these types of optimization apply.

Garbling schemes [Yao82] are convenient and efficient constructions and have been the

basis of many interesting two-party computation protocols [FJN+13, KSS12, LP11, SS11,

LP07] but other approaches have been used [IPS08, LOP11, NO09, NNOB12].

7.2.0.1 Our results in perspective

In recent times, Secure Function Evaluation with malicious adversaries using Garbled

Circuits have become more and more practical. Previous protocols based on garbling schemes

following the Cut-and-Choose paradigm required Ω(ns) calls to OT. Lindell and Pinkas

started the trend with their work in [LP07] that required Ω(ns) OT but Ω(ns2) Commitments.

The work of [LP11] and [SS11] only require Ω(ns) commitments but require stronger notions

of OT such as committing OT and Batch Single Choice Cut and Choose OT. These protocols

do not admit OT extension. The results of [FJN+13] allows OT extension and requires

Ω(cs/log(c)) commitments but reduces the number of garbled gates by a log(c) factor. The

result [Fre12], [MR13] and [KSS12] allow OT extensions but the first two are in the Random

Oracle model and the last one relies on Claw-Free Collections. In contrast, our work only

uses O(n + s) OT, allows OT extension and does not rely on additional assumptions. Note

that OT extension does not provide OT for free.

paper OT Commit OT extension Assumptions

[LP07] ns ns2 yes None

[LP11] ns ns no DDH

[SS11] ns ns no Claw-Free Collection, DDH

[Fre12, FN13] ns ns yes Random oracle

[KSS12] ns ns yes Claw-Free Collection

[FJN+13] n+ s cs/log(c) ∗ yes Random oracle

[MR13] ns ns yes Random oracle

[Lin13] ns ns no DDH

[HKE13a] ns ns no DDH, Random oracle

this work n+ s ns yes None
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7.2.0.2 Notation and convention

We will denote the adversary’s view of a player’s input as a random variable. We will refer

to 1-out-of-2 Oblivious String Transfer for string of length l as OT. The security parameter

will be denoted by s. The number of gates of the circuit will be denoted by c and its input

size by n. Uniformly random and independent choices for x in a set X is denoted x ∈R X.

The notation x ∈R A describes the random selection of an element x according to random

Variable A. The range of an integer starting from i and ending with j is denoted [i, j]. As

usual, we define secure function evaluation FSFE as a two-party computation where Bob

learns the output.

7.2.0.3 Structure of the paper

We first present our notation for the Garbling schemes. This leads to a very good

generic protocol for two-party computation using perfect Cut-and-Chose OT. We then

present a Faulty Cut-and-Choose OT. The drawback of using this faulty primitive is

formalized in the Selective failure attack section. This is followed by our Main protocol

where we propose a very efficient and secure protocol based on the Faulty Cut-and-Choose

OT. The security proof in the universal composability paradigm follows (sender simulation

and receiver simulation).

7.3 Garbling schemes

In 1982, Yao generated a construction that came to be known as Yao’s garbled circuit.

The idea was to encode a circuit in such a way that by giving a party the right keys he could

evaluate the circuit on a specific input and yet learn nothing about the input except what

could be deduced from the output. This construction came to be used in many different

applications each with their own divergent variant. Lindell and Pinkas were the first to prove

the security of Yao’s garbled circuit in the field of two-party computation [LP09]. Garbling

schemes proposed in [BHR12] define the notions that unify these different variants.

We will need to distinguish between a function f : {0, 1}n → {0, 1}m and its representation

f̄ (in our case we can restrain ourselves to circuits). A garbling algorithm GB is a randomized

algorithm that transforms f̄ into a triple of functions GB(f̄) = (F, e, d). We require that

f = d.F.e . The encoding function e turns an initial input x ∈ {0, 1}n into a garbled input
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X = e(x). Evaluating the garbled function F on the garbled input X gives a garbled output

Y = F (X). The decoding function d turns Y into the final output y = d(Y ), which must

coincide with f(x). One has probabilistically factored f into d.F.e . Thus a garbling scheme

G = (GB,En,De,Ev, ev) is regarded as a five-tuple of algorithms, with strings d̄, ē, f̄ , and

F̄ interpreted as functions under the auspices of functions De, En, ev, and Ev.

A circuit garbling scheme is a five-tuple of algorithms G = (GB,En,De,Ev, ev). The first

two algorithms are probabilistic, the remaining are deterministic. The string f̄ represents

the function f that we wish to garble. On input f̄ , the algorithm GB outputs an encoding

function En(ē, .) which maps an initial input x ∈ {0, 1}n to a garbled input X = En(ē, x), as

well as F̄ that describes a garbled function which maps each garbled input X into a garbled

output Y , and a string d̄ describing a decoding function DE(d̄, .) which maps each garbled

output Y into a a final output y = De(d̄, Y ).

The side-information function is an important feature of garbling schemes. In a protocol

that follows, Alice will have to garble a circuit. Bob will have to verify that part of the output

is independent from part of his input. The only way this can be achieved is by looking at

the underlying side-information.

Definition 5 A garbling scheme is correct if for any function f the application of GB

results in strings (F̄ , ē, d̄) such that De(d̄, Ev(F̄ , En(ē, x))) = ev(f̄ , x).

Definition 6 A garbling scheme with an encoding function En(ē, .) with input x = x1 . . . xn

where xi ∈ {0, 1} is projective if for every ē there exists a list of tokens (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n)

such that En(ē, x) = (T x11 , . . . , T xnn ).

Definition 7 A projective scheme is transparent, if given f̄ , F̄ ,and the token (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n)

in a random order for each variable, one can efficiently verify that F̄ is consistent with GB(f̄)

and furthermore the order of the tokens can be deduced.

Definition 8 The side-information function ψ denotes the information revealed about f̄ from

(F̄ , ē, d̄).

Definition 9 A garbling scheme is private relative to a topological side information function

ψ if for any inputs x0,x1 and description of functions f̄0, f̄1 such that ev(f̄0, x0) = ev(f̄1, x1)

and ψ(f̄0) = ψ(f̄1), the adversary cannot distinguish between (F̄0, ē0, d̄0, X0) generated from

(f̄0, x0) and (F̄1, ē1, d̄1, X̄1) from (f̄1, x1).
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Definition 10 A garbling scheme is malleable if for any function f̄ such that GB(f̄) =

(F̄ , ē, d̄) and every y ∈ {0, 1}m there exists a ḡ such that ∀x, g(x) = y and ψ(f̄) = ψ(ḡ).

7.4 Two-party computation

The first application of a Garbling scheme was presented by Yao in order to implement

secure two-party computation. In a context where the players are semi-honest, by using OT

it becomes easy for Alice and Bob to evaluate a circuit of their choice securely on their private

inputs. Alice can construct the garbled circuit and send it to Bob with the keys associated

to her input. Alice then transmits to Bob his keys using OT. For each of Bob’s input bits,

Alice will send the key associated with the value 0 and the key associated with the value 1.

For each of his input bits, Bob will choose to learn the key corresponding to his input at

that position. Since Bob has all the input keys as well as the circuit, he can now perform

the evaluation and extract the result.

In order to make this scheme secure against an active adversary, several issues have to be

addressed. In terms of correctness, Bob must know that the circuit he evaluates computes

the right function. This is not sufficient since Alice could transfer keys that are correct only

for certain input bit and thus learn information about Bob’s input following the success or

failure of the protocol. Bob must know that the protocol would have worked correctly even

if he had chosen another input. These two requirements can be ensured by using what is

called Batch-Single Choice Cut-and-Chose OT introduced in [LP11].

Informally, Alice will create s circuits with all of their associated input keys. Half of the

circuits will be completely revealed so that Bob can verify that they are correct. It is thus

unlikely that this phase succeeds and that more than a few of the remaining unopened circuit

are incorrect. By evaluating the remaining circuits and taking the most common result as

the output, correctness is guaranteed. To keep Alice’s input private, it is important that Bob

always evaluates the circuit with the same input. Combining all these requirements, we see

that the generic Oblivious Transfer has to be replaced with something with more structure.

The set of pairs of keys for all the circuits will be organized in a table. Each of the s columns

is associated with a circuit. Each row is associated with an input variable (of Bob) and each

element of the table is a pair of keys, which are respectively associated with the values 0 and

1. Learning half of the circuits (check circuits) means Bob must learn for exactly half of the
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columns the value of both keys. The fact that Bob always uses the same inputs bits means

that for every individual row he must choose between learning the first element of each pair

or learning the second element of each pair. In the following section, we will present a variant

of that primitive that we call Cut-and-Chose OT.

Bob can now reveal the identity of the check circuit so that Alice sends him all the

associated input keys. With all the keys he can verify the correctness of those circuits. The

rest of the circuits are going to be evaluation circuits and for all of those, Alice will send

the keys associated to her input. By choosing different inputs for some evaluation circuit,

Alice can learn information about the sensitivity of the circuit conditioned on Bob’s input.

To solve this problem [Fre12, FN13] introduced a verification functions v. Instead of just

generating garbled circuits for f , garbled circuits for f ′[(x, a), (y, b)] = (f [x, y], v[x, a, b]) will

be generated. The following choice of functions has been introduced.

Definition 11 We will denote zi(x, a, b) = (pi(x) · b)⊕ ai and v(x, a, b) = (z0, . . . , zn) as the

verification function. Where pi is the cyclic shift toward the right of i position and · the inner

product mod 2.

It was proven in [Fre12] that v does not reveal information about Alice’s inputs and at

the same time guarantees that inconsistent inputs will be detected except with exponentially

small probability.

7.5 Faulty Cut-and-Choose OT

In this section, we will introduce the Cut-and-Choose OT which is a faulty variant of the

Batch-Single Choice Cut-and-Chose OT introduced by [LP11]. This is a variant of OT where

more than 2 messages are sent simultaneously and where the choice of messages received by

Bob has a special structure. The input from the sender is a table M of ns pairs of binary

messages (mij0,mij1) of length l. Using our faulty protocol, an honest sender would learn

nothing and an honest receiver would learn exactly the following. For each row, the receiver

selects a yi and gets {mijk | k = yi }. For each odd index of column j, the sender selects an

aj ∈ {0, 1} and learns all messages in {mi(j+aj)k}.
We implement a faulty variant of this primitive from O(n+ s) OT. The transfer of rows

and the transfer of columns will be done independently and thus an honest Alice has to use

the same information twice. Each of the n rows will incur one OT where the first string will
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be the first element of each pair in that row and the second string will be the second element

of each pair. For each pair of columns, each column will be contained in a single string. The

sender and the receiver will execute s OT with the strings associated to the columns. If the

sender is honest, the receiver will get exactly what he requested. One of the problems of the

protocol is that the choice of Bob can be adaptive. To prevent this, Alice will send keys (One

time pads) instead of messages. Once every key is transmitted, she will send the messages

encrypted with different keys. Another problem with this protocol is that the sender can

choose the elements of the row inconsistent with the columns. The receiver, if he finds an

inconsistency, will have to abort but this can be done at a later time. Instead, for the time

being, he will select the column value as the output. This is essential to the main protocol. In

any case, the success or failure of the verification step leaks information about Bob’s choice

and if used in the protocol described previously, it would leak information about Bob’s input.

This issue will be dealt with in the final protocol. The following collection denotes the sets

of messages that the receiver can pick and where he learns exactly all the messages in the

chosen set.

Definition 12 Each messages is denoted as mijk where i ∈ [1, n], j ∈ [1, s], k ∈ {0, 1}.
— I = I0 ∪ I1

— I0 = { {mijk | k = yi } | yi ∈ {0, 1} }
— I1 = { {mi(j+aj)k | aj ∈ {0, 1} } | j ∈ [1, 3, . . . , s− 3, s− 1]}
— pic = pi1c, ..., pisc

— wj = p1j0, p1j1, ...pnj0, pnj1

The following protocol implements the Cut-and-Choose OT.

Protocol: πCCOT

1. For each i ∈ [1, n], j ∈ [1, s], k ∈ {0, 1}, the sender selects pijc ∈R {0, 1}l.

2. For each i ∈ [1, n], the sender and the receiver execute FOT with messages (pi0, pi1)

with choice bit yi.

3. For each odd j ∈ [1, s], the sender and the receiver execute FOT with messages

(wj, wj+1) and choice bit aj.

4. The receiver checks that the values he received (the pic and wj′) are consistent. If not,

he notes the inconsistency and uses the column value as the output (the wj′).
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5. The sender sends zijk = mijk ⊕ pijk.

The protocol is faulty and therefore its security will not be proven independently in this

section. That being said, the problem only arises in the case of a cheating sender and therefore

we can still discuss the possibility of simulating the receiver.

Theorem 57 A simulator having access to the ideal functionality for Cut-And-Chose OT,

when the environment controls the receiver, can simulate the view of the environment in the

real world.

Proof. The simulator selects pijc ∈R {0, 1}l. The simulator awaits the environment’s choice

(yi and aj) for each OT. (The simulator is able to extract the choice bits in the OTs for

each row and column pair.) The simulator forwards the appropriate combination of keys

as specified in the protocol. The simulator calls the ideal functionality with these choices.

For each message mijk that the simulator has obtained from the ideal functionality, he uses

the key pijk to encrypt those messages and sends the cyphertext zijk = mijk ⊕ pijk to the

environment. For the messages mijk that the simulator has not extracted, he forwards a

random message zijk.

The distribution of mijk, zijk, pijk in the simulation is identical to the distribution of the

real world. 2

7.6 Selective Failure Attack

In order to achieve a very high level of efficiency in our final protocol, we will have to

combine several ideas. One of them is to use a faulty Cut-And-Chose OT. In our protocol,

Alice can gain information about Bob’s input by misbehaving and waiting to see if this causes

the protocol to abort.

In general, a selective failure is a type of attack where the adversary makes the successful

completion of the protocol depend on the other player’s input. In our case, by making sure

that the selective failure attack only leaks one bit (whether or not the protocol failed), we

can later use privacy amplification to render this information useless to Alice.

The following definitions and lemmas will be used in the security proof of our protocol

([DKRS06, DORS08]). Let et A,B be random variables and U` the uniform distribution over

{0, 1}`.
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Definition 13 H∞(A) := −log max
a∈A

(Pr [A = a ])

Definition 14 H̄∞(A|B) := −log E
b∈B

max
a∈A

Pr [A = a | B = b ]

Lemma 58 If B has at most 2λ values, then H̄∞(A|B) ≥ H∞(A)− λ.

Lemma 59 Assume H is a class of universal hash functions from {0, 1}n to {0, 1}`, for any

random variable A, B such that H̄∞(A|B) ≥ k. We have that for a randomly selected h ∈ H,

the distributions of (h(A),H,B) and (U`,H,B) are ε-close where ε = 2−
1
2

(k−l)+1.

7.7 Main protocol

Although the complete protocol requires many steps, the right combination of ingredients

results in a very efficient protocol based on general assumptions. In the previous section, we

explained a known approach to combine Cut-and-Choose OT and Garbling Schemes to obtain

Two-Party Secure Computation. Our general protocol will follow this approach. Without

further modification of the protocol, the privacy of the receiver’s input would be jeopardized

by the faultiness of the Cut-and-Chose OT. We will thus modify the general protocol to

address this problem. The function to be evaluated will be modified in such a way that the

leakage contains no information on Bob’s input.

The function of two players, which is to be evaluated, will be replaced by f ′(x, y′, h, q) =

f(x, h(y′) ⊕ q) = f(x, y). To extract the output, y′ will be chosen uniformly at random,

h will be taken randomly from a family of universal hash functions with the appropriate

parameters and q = h(y′) ⊕ y. Since h and q do not contain information about the input,

they can (and will) be declared publicly after the faulty Cut-and-Chose OT has been used

to transfer y′ among all the different circuits. Thus, Alice’s input will remain the same, but

Bob’s input is now decomposed into (y′, h, q), where only y′ is transferred using the Cut-

and-Choose OT. Intuitively, since only a limited amount of information about y′ is leaked,

privacy amplification ensures that y remains private.

Another important technicality has to be taken care of. We require that the topological

leakage function of the garbling scheme show that for each garbled circuit that the output

of the verification function is independent of (h, q, y′). In other words, that the tokens for

(h, q, y′) do not affect the output of the validation function. If this was not verified, then a

corrupted sender could simply make the consistency of the output for the verification function
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depend on y. This would allow the sender to learn information based on a selective failure

attack.

Definition 15 We denote H a family of Universal Hash Function from {0, 1}n+2s+1 to

{0, 1}n.

Any universal Hash Function Family can be used in our protocol but the one presented

in [Tho09] is compact and efficient.

Definition 16 Denote f ′((x, a), (y′, h, q, b)) = (f(x, h(y′)⊕q), v(x, a, b)) where h is in H and

v is the verification function that was defined in the previous section.

In our main protocol, any circuit garbling scheme that is correct, private, malleable,

transparent, and projective relative to a topological side information function ψ can be used.

Garbling schemes similar to Yao’s garbled circuit normally meet those requirements. For

explicit constructions, see [LP07, BHR12]. We will also use the following length parameters,

the length of the input to the function to be evaluated is denoted as usual by n. We will

denote nq = n, nh = 2(n+2s+1), nx = n, na = n, ny = 2n+2s+1 and nt = nq+nx+ny+nh.

To clarify the role of each player, we will refer to Alice as the sender and Bob as the receiver.

Protocol: πSFE

1. The sender extracts s triplets GB(f ′)→ (Fj, ej, dj).

2. For each circuit j, using the encoding functions ej, the sender extracts all of the

tokens associated to both values for all inputs. Tokens associated to the sender

will be denoted by (x0
1j, x

1
1j, . . . , x

0
nxj, x

1
nxj), (a0

1j, a
1
1j, . . . , a

0
naj, a

1
naj), those to y′ by

(y0
1j, y

1
1j, . . . , y

0
nyj, y

1
nyj), those to the hash function by (h0

1j, h
1
1j, . . . , h

0
nhj
, h1

nhj
), those

associated to q by (q0
1j, q

1
1j, . . . , q

0
nqj, q

1
nqj) and those to b by (b0

1j, b
1
1j, . . . , b

0
nbj
, b1
nbj

).

3. The receiver selects y′ ∈R {0, 1}n+2s+1, q ∈R {0, 1}n, h ∈R H and J ∈R {0, 1}s/2. The

receiver sets q = h(y′) ⊕ y and commits to h and q. (J represent the check circuit

selection)

4. The sender and the receiver execute πCCOT where the sender’s input is (y0
1j, y

1
1j, . . . , y

0
nyj, y

1
nyj)

and the receiver’s input is the set consistent with y′ and J . (as mentioned earlier, in

case of inconsistency, the receiver chooses the column value)

5. For each circuit j ∈ [1, s] the sender performs the following steps
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— send Fj, dj to the receiver

— for each i ∈ [1, nh], commit to h0
ij and h1

ij

— for each i ∈ [1, nb], commit to b0
ij and b1

ij

— for each i ∈ [1, n], select rij ∈R {0, 1} and commit to (X0
ij, X

1
ij) = (x

rij
ij , x

1⊕rij
ij )

— for each i ∈ [1, na], select r′ij ∈R {0, 1} and commit to (A0
ij, A

1
ij) = (a

r′ij
ij , a

1⊕r′ij
ij )

6. For each j ∈ [1, s], the receiver checks from Fj, dj and ψ that the output of the

verification function is not affected by the tokens for (h, q, y′). (ψ is the topological

side information function)

7. The receiver reveals J to the sender. For each j ∈ J and each input i ∈ [1, n], he

sends y0
ij, y

1
ij to the sender.

8. The sender aborts if the values he received in the previous step differ from what he

had sent.

9. For all j ∈ J , and i having the appropriate range, the sender opens the commitments

(X0
ij, X

1
ij), (A

0
ij, A

1
ij), (h

0
ij, h

1
ij), (q

0
ij, q

1
ij), (b

0
ij, b

1
ij).

10. For all j ∈ J , the receiver checks that the garbled circuit j is valid. The receiver

aborts at this point if a garbled circuit is faulty or if he had noticed any inconsistency

during the cut-and-choose protocol.

11. For all j 6∈ J , and all i ∈ [1, n], the sender opens X
xj⊕rij
ij = x

xj
ij . For all j 6∈ J , and all

i ∈ [1, s], the sender opens X
xj⊕rij
ij = x

xj
ij and A

aj⊕r′ij
ij = a

aj
ij .

12. The receiver opens his commitments to h and q and declares a value b.

13. The sender opens the commitments to the token associated to the values h, q, b.

14. The receiver uses the tokens he received as well as the pairs (Fj, dj) to do the evalu-

ations using the garbling scheme. He checks if the validation outputs are consistent

and aborts if they are not. The receiver takes the most common value as his output.

7.8 Sender simulation

The sender does not receive any output and the receiver mostly reveals randomly chosen

values in the protocol. Therefore the simulator job consists mostly of extracting the sender’s

input, aborting with the same distribution as in the real world and revealing random values.
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— The simulator sends the messages (committed) which are associated to the receiver

committing to h and q. (3)

— The simulator selects uniformly at random the set J (of size s/2) and the string y′

and derives an associated set I.

— The simulator simulates an execution of πCCOT and extracts the environment’s input

to πCCOT . (4)

— The simulator awaits the commitment command with the keys associated to the cir-

cuits as well as each (Fj, dj). (5)

— The simulator forwards J as well as all the keys whose indices are matched to J . (7)

— The simulator awaits that the environment sends the open command associated to

all the keys in the check circuit. The simulator aborts using the same criteria as an

honest receiver. He aborts if any of the check circuits is incorrect or if the outputs of

the OTs in the πCCOT are inconsistent.

— The simulator awaits that the environment sends the open command to the keys

associated to his choice of input. (11)

— The simulator chooses uniformly at random h, q and b and forwards them to the

environment (h,q as a reveal command from FCOM ). (12)

— The simulator awaits that the environment sends the open commands for Commit-

ments to keys associated to the given h, q and b. (13)

— The simulator evaluates the evaluation circuits and checks that all validation outputs

(v(.)) are consistent; if not he aborts.

— The simulator has all the tokens, because of the transparency of the garbling scheme,

he can determine for each circuit and each input the value of input associated to each

key. For each of the sender’s input bit, he takes as input bit the value that appears in

the majority of evaluation circuits. He can thus extract the input and send it to the

ideal functionality. (14)

Lemma 60 If we denote Y ′ as a random variable denoting the honest sender’s choice for y′

(input to Faulty Cut-and-Choose OT). After step 10, the environment’s view of h(Y ′) in the

real world is 2−s-close to the uniform distribution over {0, 1}n.

Proof. First, we note that until step 10, the environment’s view is independent of Y ′. In step

10, we note that the environment already knows if the protocol would have failed because of a
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faulty check circuit. If it is the case, then the protocol would have aborted anyways and h(Y ′)

looks exactly like the uniform distribution. Otherwise, the environment learns whether or

not the receiver decided to abort. This is modeled as a variable Z. Since each pair of columns

and each row was obliviously transfered, the only information about y′ that the environment

has is Z. Z has a one bit domain and thus H̄∞(Y ′|Z) ≥ H∞(Y ′)− 1 = n+ 2s+ 1. Therefore

by lemma 58, we have what we want. 2

7.8.1 Simulation Validity

It is evident to see that if the environment does not corrupt circuits, send inconsistent

shares in Faulty cut-and-choose OT or open tokens which results in different inputs for

different evaluation circuits, the environment will be unable to distinguish between the real

or ideal setting. The distribution of all variables is identical and neither the simulator nor

the real world execution will abort.

We first address the case where the environment only corrupted some circuits. This would

make the simulation fail if the probability of having the simulation abort is different from the

probability in the real world execution or if the simulation does not abort but is unable to

extract the relevant information. In the simulation (as in the honest protocol), each circuit is

a check circuit with probability one-half. Since the receiver does not reveal any inconsistency

in the cut-and-choose OT until after he has declared the choice of check circuit, the sender

must corrupt circuits in such a way that more than half of evaluation circuits are corrupted

and none of the check circuits are corrupted. Otherwise the simulator aborts as in the real

world setting. This can only happen with exponentially small probability.

We now address the case where the sender provides inconsistent inputs to the OT in the

Cut-and-Choose OT protocol.

The keys that are returned by the receiver for the check circuits only depend on the

environment’s choice of values in the columns (see πCCOT ). Since an honest receiver always

knows those values by virtue of being associated to check circuits. The simulator can perfectly

simulate that step by simply revealing what an honest receiver would know in the real world.

We will show that the leakage does not allow the environment to distinguish between

the ideal world and the real world. If the simulator notices any inconsistency during the

Cut-and-Choose protocol or that a garbled circuit was faulty, he aborts. Since the check

circuits are public at this point, the environment knows that either a corrupted circuit was
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a check circuit (case we already dealt with) or that the receiver (simulator or honest party)

has selected an input such that the row and column are inconsistent. The key factor is that

the probability that the protocol aborts depends only on the choice of inconsistency and is

the same for the simulation as for the real world.

We can see (by lemma 59) that in the real world h(y′) is indistinguishable from a value

uniformly selected at random from {0, 1}n. As such, the simulator cannot distinguish between

a q which depends on y (real world) versus one that is generated uniformly at random (ideal

world).

Finally, if the environment tries to send inconsistent inputs for two circuits and the

circuits are valid, the validation step will result in an abort except with exponentially small

probability. This abort, due to the fact that the receiver verified that tokens for (y′, h, q) do

not affect the output of the verification function, is independent of Bob’s input. Thus we can

see that sending inconsistent inputs will not allow the environment to distinguish between

the real and ideal setting.

7.9 Receiver Simulation

— The simulator awaits the commit command associated to h and q. (3)

— The simulator awaits the receiver’s input for πCCOT from the environment, the simu-

lator notes the receiver’s choice of check circuit as J as well as the input y′ and sets

y = h(y′)⊕ q.
— For each j ∈ J , the simulator sets (Fj, dj, ej) = GB(f ′).

— The simulator selects r uniformly at random. Let g′[(x, y), (h, y′, r)] = (z, r). Because

of the malleability of the scheme, the simulator can produce g consistent with GB(g′)

such that ψ(f ′) = ψ(g). For each j 6∈ J , the sender sets (Fj, dj, ej) = GB(g).

— The simulator sends the appropriate tokens that are associated with the environment’s

input in the πCCOT . He also forwards the Commitment messages to the remaining

tokens as well as all the (Fj, dj, ej) he has constructed. (5)

— The simulator awaits the environment’s choice of check circuits as well as the inputs

he received in the πCCOT . The simulator checks if these values are consistent with

what he has sent, if it is not the case, the simulator aborts. (7)

— The simulator sends the reveal messages for all of tokens associated to check circuits.
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(11)

— The simulator randomly selects for each input and each circuit to send a reveal message

for one of the tokens. (12)

— The simulator awaits the open commands to h and q. The simulator simulates the

opening of all the tokens required by the protocol. (14)

First we note that in the case of a corrupted receiver, the simulator can simulate the

faulty variant of cut-and-choose OT using a cut-and-choose OT functionality. The simulator

can trivially extract the environment’s input from the choice of input to the faulty variant of

cut-and-choose OT, as well as his commitments to h and q. The main difference between the

ideal setting and the real setting is the construction of a fake garbled circuit. Fortunately,

due to the privacy of garbling schemes, these do not allow the environment to distinguish

which model he is part of. The only remaining recourse for the environment is to try to

lie about which circuits are check circuits. But since the probably of guessing the keys is

negligible, we can see that the real and ideal setting are indistinguishable.

7.10 Circuit Optimization

We believe that the strong point of the two-party computation protocol presented in this

chapter is its efficiency. In this section, we will explain why some recent work on optimization

of protocols based on garbled circuits can be applied to our protocol. In [Lin13], a very nice

optimization technique is presented for achieving secure computation while reducing the

total number of circuits that have to be transmitted to s and still achieving security of 2−s.

Another approach was presented in [HKE13a] but Lindell’s technique applies more naturally

to our protocol. The detailed presentation of the technique requires a full length publication

and therefore we will assume in this section that the reader is familiar with Lindell’s article.

The basic idea of this optimization is as follows: the protocol will be divided in two

computations, an output extraction and a cheating sender input extraction. In the

output extraction phase, the receiver will be able to extract the output of the functionality

or a proof that the sender has cheated. In the cheating sender input extraction phase,

the sender inputs the same value as in the output extraction, if the receiver has acquired

a proof of cheating, he is able to extract the sender’s input and otherwise he gets nothing.

Note that having the receiver obtain the sender’s input enables the protocol to be correct
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in a trivial way. It is necessary to weave these two computations together so that certain

properties are verified. First, the protocol must ensure that the sender uses the same input

in both computations. Second, it is also needed that evaluation of the garbled circuits of

both computations is done before checking either of them. This is to insure that a receiver

can’t extract a proof of cheating from an honest sender.

A necessary building block of the construction is the modified cut-and-choose OT similar

to the one in [LP11]. There are two important differences. First, the set of indices in J is no

longer size restricted (instead of size exactly s/2). In addition, for each j 6∈ J , the receiver

receives a special string which allows him to prove that j 6∈ J .

We will now describe how the main protocol can be modified to enable this optimization.

Since we do not have the space to formally describe the construction, we will instead provide

a high level overview of the changes required.

Instead of implementing a modified cut-and-choose directly, our protocol implements a

faulty modified cut-and-choose OT. We thus have to adapt the ideas from the main protocol

to deal with the faultiness and leakage. We have to tangle the computations, delay the input

verification of the output extraction and merge it with the input consistency of cheating

sender input extraction.

7.10.0.1 Faulty Modified Cut-and-Choose OT

The faulty version of modified cut-and-choose OT can easily be implemented by a minor

modification of the faulty cut-and-choose OT protocol. Instead of doing one OT per pair of

column, one simply does an OT for each column where the first element transferred in the

OT is the value of the column and the second element is the secret that allows the sender to

proves that j 6∈ J .

7.10.0.2 Sender input consistency

It is not to hard to realize that in the main protocol, the receiver can extract an output

(even if it is an error) and then use the consistency check to verify that the outputs were all

consistent. It is thus possible to merge the consistency check of output extraction and the

consistency check of cheating sender input extraction together, in order to verify that

the sender uses the same input in both computations.
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7.10.0.3 Verification of circuits

It is important to note that in our main protocol, once the faulty cut-and-choose has

taken place and the sender has committed to his inputs, the circuits are fully determined.

As such, we can delay the checking phase after evaluation has taken place.

7.11 Conclusion

Although our protocol is very efficient, we explain why some recent optimization work

also apply to our protocol. We believe some further optimizations are possible. The inclusion

of the hash function into the function to be computed could increase the size of the circuit,

especially small ones. Although it is not straightforward, we believe that by using the appro-

priate garbling scheme coupled with a family of hash function with a nice circuit structure,

one could hardcode the hash function into the circuit. Another possible optimization could

be to select a class of universal hash functions which mends well with the free XOR technique

[KS08]. The construction of universal hash function from random binary matrices seems to

be an ideal choice for these two optimizations. We believe that the idea of using faulty prim-

itives with adapted protocols can improve secure computation also beyond two-party secure

function evaluation.
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