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remercier ma merveilleuse épouse Line pour avoir été ce support sur lequel
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fessoral et au personnel administratif.



vi

Résumé

Ma thèse est composée de trois essais sur l’inférence par le bootstrap à la fois dans

les modèles de données de panel et les modèles à grands nombres de variables in-

strumentales (VI) dont un grand nombre peut être faible. La théorie asymptotique

n’étant pas toujours une bonne approximation de la distribution d’échantillonnage

des estimateurs et statistiques de tests, je considère le bootstrap comme une al-

ternative. Ces essais tentent d’étudier la validité asymptotique des procédures

bootstrap existantes et quand invalides, proposent de nouvelles méthodes boot-

strap valides.

Le premier chapitre (co-écrit avec Śılvia Gonçalves) étudie la validité du boot-

strap pour l’inférence dans un modèle de panel de données linéaire, dynamique et

stationnaire à effets fixes. Nous considérons trois méthodes bootstrap: le recursive-

design bootstrap, le fixed-design bootstrap et le pairs bootstrap. Ces méthodes

sont des généralisations naturelles au contexte des panels des méthodes bootstrap

considérées par Gonçalves et Kilian (2004) dans les modèles autorégressifs en séries

temporelles. Nous montrons que l’estimateur MCO obtenu par le recursive-design

bootstrap contient un terme intégré qui imite le biais de l’estimateur original.

Ceci est en contraste avec le fixed-design bootstrap et le pairs bootstrap dont les

distributions sont incorrectement centrées à zéro. Cependant, le recursive-design

bootstrap et le pairs bootstrap sont asymptotiquement valides quand ils sont ap-

pliqués à l’estimateur corrigé du biais, contrairement au fixed-design bootstrap.

Dans les simulations, le recursive-design bootstrap est la méthode qui produit les

meilleurs résultats.

Le deuxième chapitre étend les résultats du pairs bootstrap aux modèles de

panel non linéaires dynamiques avec des effets fixes. Ces modèles sont souvent es-



vii

timés par l’estimateur du maximum de vraisemblance (EMV) qui souffre également

d’un biais. Récemment, Dhaene et Johmans (2014) ont proposé la méthode

d’estimation split-jackknife. Bien que ces estimateurs ont des approximations

asymptotiques normales centrées sur le vrai paramètre, de sérieuses distorsions de-

meurent à échantillons finis. Dhaene et Johmans (2014) ont proposé le pairs boot-

strap comme alternative dans ce contexte sans aucune justification théorique. Pour

combler cette lacune, je montre que cette méthode est asymptotiquement valide

lorsqu’elle est utilisée pour estimer la distribution de l’estimateur split-jackknife

bien qu’incapable d’estimer la distribution de l’EMV. Des simulations Monte Carlo

montrent que les intervalles de confiance bootstrap basés sur l’estimateur split-

jackknife aident grandement à réduire les distorsions liées à l’approximation nor-

male en échantillons finis. En outre, j’applique cette méthode bootstrap à un

modèle de participation des femmes au marché du travail pour construire des in-

tervalles de confiance valides.

Dans le dernier chapitre (co-écrit avec Wenjie Wang), nous étudions la validité

asymptotique des procédures bootstrap pour les modèles à grands nombres de vari-

ables instrumentales (VI) dont un grand nombre peu être faible. Nous montrons

analytiquement qu’un bootstrap standard basé sur les résidus et le bootstrap re-

streint et efficace (RE) de Davidson et MacKinnon (2008, 2010, 2014) ne peuvent

pas estimer la distribution limite de l’estimateur du maximum de vraisemblance

à information limitée (EMVIL). La raison principale est qu’ils ne parviennent

pas à bien imiter le paramètre qui caractérise l’intensité de l’identification dans

l’échantillon. Par conséquent, nous proposons une méthode bootstrap modifiée

qui estime de facon convergente cette distribution limite. Nos simulations mon-

trent que la méthode bootstrap modifiée réduit considérablement les distorsions

des tests asymptotiques de type Wald (t) dans les échantillons finis, en particulier

lorsque le degré d’endogénéité est élevé.

Keywords : bootstrap, données de panel, effets fixes, split-jackknife, instruments

faibles, EMVIL, bootstrap restreint et efficace.
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Abstract

My dissertation consists of three essays on bootstrap inference in both large

panel data models and instrumental variable (IV) models with many instru-

ments and possibly, many weak instruments. Since the asymptotic theory is

often not a good approximation to the sampling distribution of test statistics

and estimators, I consider the bootstrap as an alternative. These essays try

to study the asymptotic validity of existing bootstrap procedures and when

they are invalid, to propose new valid bootstrap methods.

The first chapter (co-authored with Śılvia Gonçalves) studies the validity

of the bootstrap for inference on a stationary linear dynamic panel data

model with individual fixed effects. We consider three bootstrap methods:

the recursive-design wild bootstrap, the fixed-design wild bootstrap and the

pairs bootstrap. These methods are natural generalizations to the panel

context of the bootstrap methods considered by Gonçalves and Kilian (2004)

in pure time series autoregressive models. We show that the recursive-design

wild bootstrap fixed effects OLS estimator contains a built-in bias correction

term that mimics the incidental parameter bias. This is in contrast with

the fixed-design wild bootstrap and the pairs bootstrap whose distributions

are incorrectly centered at zero. As it turns out, both the recursive-design

and the pairs bootstrap are asymptotically valid when applied to the bias-

corrected estimator, but the fixed-design bootstrap is not. In the simulations,

the recursive-design bootstrap is the method that does best overall.

The second chapter extends our pairwise bootstrap results to dynamic
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nonlinear panel data models with fixed effects. These models are often es-

timated with the Maximum Likelihood Estimator (MLE) which also suffers

from an incidental parameter bias. Recently, Dhaene and Jochmans (2014)

have proposed the split-jackknife estimation method. Although these es-

timators have asymptotic normal approximations that are centered at the

true parameter, important size distortions remain in finite samples. Dhaene

and Jochmans (2014) have proposed the pairs bootstrap as an alternative in

this context without a theoretical justification. To fill this gap, I show that

this method is asymptotically valid when used to estimate the distribution

of the half-panel jackknife estimator although it does not consistently esti-

mate the distribution of the MLE. A Monte Carlo experiment shows that

bootstrap-based confidence intervals that rely on the half-panel jackknife

estimator greatly help to reduce the distortions associated to the normal ap-

proximation in finite samples. In addition, I apply this bootstrap method to

a canonical model of female-labor participation to construct valid confidence

intervals.

In the last chapter (co-authored with Wenjie Wang), we study the asymp-

totic validity of bootstrap procedures for instrumental variable (IV) models

with many weak instruments. We show analytically that a standard residual-

based bootstrap and the restricted efficient (RE) bootstrap of Davidson and

MacKinnon (2008, 2010, 2014) cannot consistently estimate the limiting dis-

tribution of the LIML estimator. The foremost reason is that they fail to

adequately mimic the identification strength in the sample. Therefore, we

propose a modified bootstrap procedure which consistently estimates this

limiting distribution. Our simulations show that the modified bootstrap

procedure greatly reduces the distortions associated to asymptotic Wald (t)

tests in finite samples, especially when the degree of endogeneity is high.

Keywords : bootstrap, dynamic panel data, fixed effects, incidental pa-

rameter bias, half-panel jackknife, weak instruments, LIML, RE bootstrap.
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Introduction

This dissertation is a collection of three essays in theoretical and applied

econometrics, organized in the form of three chapters. In the three chapters,

my focus is on the bootstrap as a method of inference. The first two chapters

consider its application to panel data models with individual fixed effects

while the last chapter considers Instrumental Variable (IV) models with many

instruments and, possibly, many weak instruments.

The asymptotic theory provides an approximation to the sampling dis-

tribution of test statistics and estimators. However, it is now well known

that for the sample sizes encountered in practice, the asymptotic theory is

often not a good approximation. The bootstrap is an alternative method of

inference that can be used to approximate the distribution of an estimator

or characteristics of that distribution such as a variance or a quantile. It

generally provides a better approximation in finite samples than the stan-

dard asymptotic theory approximations and is extensively used in applied

research, although sometimes without any theoretical foundation. This the-

sis aims to fill this gap.

In the first chapter, we propose and theoretically justify the application

of bootstrap methods for inference in autoregressive panel data models with

fixed effects. Whereas the focus of the existing literature has been on bias

correcting the standard fixed effects OLS estimator (due to the well known

incidental parameter bias), our focus here is on improving the quality of infer-

ence by relying on the bootstrap instead of the standard normal distribution
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when computing critical values for test statistics. In particular, we show by

simulation that confidence intervals based on the normal distribution can

be very distorted in finite samples. Instead, a bootstrap that resamples the

residuals and generates the bootstrap observations recursively using the es-

timated autoregressive panel data model greatly reduces these distortions.

Thus, this method can be used to approximate the bias (as well as the en-

tire distribution) of the (biased) fixed effects OLS estimator. In contrast to

the recursive-design wild bootstrap, the fixed-design (treats the regressors as

fixed when building the bootstrap data) and the pairs bootstrap (resamples

observations only in the cross-section) do not consistently estimate the dis-

tribution of the standard biased fixed effects estimator and cannot be used

for bias correction. This last result is crucial because Gonçalves and Kilian

(2004) have established the validity of these two bootstrap procedures in pure

time series autoregressive context and it implies that a naive application of

these procedures to autoregressive panel data models with individual fixed

effects would produce unreliable results. Another interesting finding is that

the invalidity of the pairs bootstrap to estimate the distribution of the biased

fixed effects estimator does not prevent this method to be valid when applied

to the bias-corrected estimates.

Given the good performance of the pairwise bootstrap in the linear con-

text, the second chapter extends its results to nonlinear dynamic panel data

models with individual fixed effects. I focus on the pairs bootstrap since,

unlike the recursive or fixed designed wild bootstrap considered in the first

chapter, it is a non-parametric bootstrap and therefore, is generally more

robust to misspecification. The usefulness of the bootstrap in the nonlinear

context is crucial since nonlinearity complicates estimation and inference. As

pointed out by Hahn and Newey (2004) and Hahn and Kuersteiner (2011),

nonlinearity introduces an asymptotic bias in the limiting distribution of

the MLE even in nonlinear static panel data models – all the regressors are

strictly exogenous – in contrast to the linear case. Moreover, the MLE is gen-
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erally severely biased in the nonlinear context compared to the linear context

for panel data of the same sizes (n and T ). My main contribution is to pro-

pose and theoretically justify the application of the pairs bootstrap in this

context. I also illustrate the advantage of the bootstrap over the asymptotic

theory by applying it to a canonical model of female-labor participation to

construct accurate and valid confidence intervals.

In the last chapter, we consider bootstrap inference procedures for in-

strumental variable (IV) models with many weak instruments. It is now well

known in the literature on the problem of weak instruments or weak identi-

fication that standard first-order asymptotic theory breaks down when the

instruments are weakly correlated with the endogenous regressors, and com-

monly used IV estimators (e.g. two-stages least square (TSLS) and limited

information maximum likelihood (LIML) estimators) can lose consistency;

see Dufour (1997) and Staiger and Stock (1997) among others. However, as

has been pointed out by Chao and Swanson (2005), having many instruments

in such weakly identified situation can help to improve estimation accuracy.

Indeed, using a large number of instruments can enhance the growth of the

so-called concentration parameter even if each individual instrument is only

weakly correlated with the endogenous explanatory variables. In this frame-

work, Chao and Swanson (2005) have established consistency results for cer-

tain well-centered IV estimators such as the LIML estimator and Hansen,

Hausman, and Newey (2008) have derived asymptotic normality results and

gave Corrected Standard Errors (CSE) for these estimators. However, as

shown in our simulations, CSE-based asymptotic Wald (t) tests can be very

distorted in finite samples, especially when the degree of endogeneity is high.

Thus, one may consider improving the quality of inference by relying on the

bootstrap instead of the normal asymptotic approximation when computing

critical values for test statistics. Therefore, we study the asymptotic validity

of some existing bootstrap procedures for the limited information maximum

likelihood (LIML) estimator when the instruments in IV regression may be
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weak and the number of instruments goes to infinity with the sample size.

We show analytically that a standard residual-based bootstrap and the re-

stricted efficient (RE) bootstrap of Davidson and MacKinnon (2008, 2010,

2014) cannot consistently estimate the limiting distribution of the LIML es-

timator. The foremost reason is that they fail to mimic well the parameter

that characterizes the identification strength in the sample. Our results shed

new light on bootstrap properties in the context of IV regression, highlight-

ing in particular a fragility of bootstrap-based distributional approximations

with respect to the number and the quality of instruments in the model.

They also include a new, valid bootstrap-based inference procedure for IV

models which is more robust to the choice of instruments, and hence ex-

hibits demonstrably superior statistical properties over the bootstrap-based

inference procedures available in the literature.
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Chapter 1

Bootstrap inference for linear

dynamic panel data models

with individual fixed effects

1.1 Introduction

Estimation and inference in the context of linear dynamic panel data models

is complicated by the presence of fixed effects. Indeed, as noted by Neyman

and Scott (1948) and Nickell (1981), estimation of the fixed effects creates an

incidental parameter bias in the standard fixed effects OLS estimator that

persists even as n→∞ (and T is fixed). Although this inconsistency disap-

pears when both n and T diverge to infinity, an asymptotic bias appears in

the limiting distribution of the fixed effects estimator when n and T grow at

the same rate, as shown by Hahn and Kuersteiner (2002). The existence of

the incidental parameter bias has motivated the proposal of many bias re-

duction methods for panel autoregressive models with fixed effects, including

Kiviet (1995), Hahn and Kuersteiner (2002), Alvarez and Arellano (2003),

Bun and Carree (2005), Phillips and Sul (2007), Everaert and Pozzi (2007),

Gouriéroux, Phillips, and Yu (2010), Fernandez-Val and Weidner (2013) and
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Lee (2012), among others.

Our focus in this paper is on inference rather than bias correction. In par-

ticular, our main goal is to propose bootstrap methods whose finite sample

properties improve upon those of the asymptotic normal approximation when

computing critical values for test statistics based on bias-corrected estima-

tors. Although this asymptotic approach is justified by the existing literature,

our simulations show that asymptotic theory-based confidence intervals for

the common autoregressive parameter of an AR(1) model with fixed effects

can be severely distorted in finite samples. This provides motivation for the

use of the bootstrap.

A natural bootstrap scheme in this context is a recursive-design residual-

based bootstrap which resamples the residuals and recursively generates

bootstrap observations for the dependent variable using the estimated au-

toregressive panel data model. The choice of how to generate the bootstrap

residuals depends on the assumptions we make on the idiosyncratic error

term. Here, we follow most of the existing panel data literature and maintain

throughout the assumption of cross sectional independence. In contrast, we

allow for time series dependence in the error term by assuming that it satisfies

a martingale difference sequence assumption for each individual. This rules

out serial correlation but is compatible with time series and cross sectional

heteroskedasticity in the error term. To capture both forms of heteroskedas-

ticity, we implement the residual-based bootstrap using the wild bootstrap,

where bootstrap residuals are obtained by multiplying the estimated resid-

uals by an external random variable that is i.i.d.(0, 1) across both the time

series and the cross sectional dimensions. A version of the recursive-design

wild bootstrap method has been applied by Everaert and Pozzi (2007) for

bias correction without theoretical justification.

We consider two other bootstrap methods in this paper. One is a version

of the residual-based bootstrap that fixes the regressors when generating the

bootstrap observations on the dependent variable (i.e. we simply add the wild
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bootstrap residuals to the estimated conditional mean). We call this method

the fixed-design residual-based bootstrap. The other method is a pairs boot-

strap which resamples the pairs formed by the dependent and the lagged

dependent variables (this amounts to the standard nonparametric bootstrap

applied to the pairs). Given the cross sectional independence assumption,

our proposal is to resample only in the cross sectional dimension. The main

reason why we also consider these two methods is that they have been ap-

plied successfully in the pure time series literature by Gonçalves and Kilian

(2004), who showed that they are robust to more general forms of conditional

heteroskedasticity (in the form of leverage effects) than the recursive-design

residual-based bootstrap. As we will show, even though the three methods

we analyze here can be viewed as panel extensions of the bootstrap meth-

ods studied by Gonçalves and Kilian (2004), the results we obtain are not

a straightforward extension of the results obtained in the pure time series

autoregression model due to the presence of the incidental parameter bias.

Our first finding is that only the recursive-design residual-based bootstrap

is able to capture the incidental parameter bias term inherent in the fixed

effects OLS estimates. The fixed-design residual bootstrap and the pairs

bootstrap fail to do so as their bootstrap distributions are incorrectly cen-

tered at zero. Thus, although these bootstrap methods are more generally

applicable (in that they allow for leverage effects), they do not consistently

estimate the distribution of the standard fixed effects estimator in a linear

dynamic panel data model with individual specific fixed effects. This is in

contrast with the recursive-design bootstrap, which can be used to approxi-

mate the whole distribution of the fixed effects OLS estimator, including its

bias. We formally prove the consistency of this bootstrap bias, thus provid-

ing a theoretical justification for a bootstrap based bias correction as used

for instance in Everaert and Pozzi (2007).

Although our results for the recursive-design bootstrap justify bootstrap

inference based on the (uncorrected and biased) fixed-effects OLS estima-
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tor without the need for an explicit bias correction, further finite sample

improvements of the bootstrap approximation can be obtained if we base

our inference on a bias-corrected estimator. Bootstrapping a bias-corrected

fixed effects estimator essentially removes the incidental parameter bias from

the asymptotic distribution, resulting in a t-statistic that is asymptotically

pivotal.

Building on the theory of the bootstrap for the standard (biased) fixed

effects OLS estimator, we show that the recursive-design bootstrap is asymp-

totically valid when applied to the bias-corrected estimator of Hahn and

Kuersteiner (2002). The asymptotic invalidity of the fixed-design bootstrap

for the standard fixed effects estimator extends to the bias-corrected estima-

tor. However, as it turns out, the pairs bootstrap distribution of the boot-

strap bias-corrected fixed effects estimator is consistent provided we center

the bootstrap bias-corrected estimator around the bias-corrected estimator

evaluated on the original sample (instead of its biased version). In the simu-

lations, the recursive-design bootstrap is the method that does best overall,

essentially removing the finite sample distortions associated with the confi-

dence intervals that rely on the asymptotic normal distribution.

The existing literature on bootstrapping linear panel data models with

fixed effects is surprisingly rather limited. One important exception is Kapetan-

ios (2008), who proposed and studied the pairs bootstrap in the context

of panel regression models with strictly exogenous regressors and fixed ef-

fects, for which the incidental parameter bias does not exist. More recently,

Gonçalves (2011) proved the asymptotic validity of the moving blocks boot-

strap under general forms of cross sectional and time series dependence in

the regression error of a panel linear regression model. Although the regu-

larity conditions of Gonçalves (2011) allow in principle dynamic regressors,

the impact of the incidental parameter bias on inference was ruled out by

assuming that n/T → 0. Contrary to these papers, here we establish the

consistency of the bootstrap for fixed-effects estimators when the incidental
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parameter bias is present. A few other papers have recently studied the va-

lidity of the bootstrap for panel data models with fixed effects and incidental

parameter bias. In particular, Galvão and Kato (2013) study the asymptotic

properties of the pairs bootstrap in the context of linear dynamic panel data

models with possible misspecification. They find that the pairs bootstrap is

asymptotically valid when applied to a bias corrected estimator and that it

is robust to misspecification. Similarly, Kaffo (2013) also applies the pairs

bootstrap to a bias corrected estimator in the context of nonlinear dynamic

panel data models with fixed effects. In both cases, the bootstrap is not able

to capture the incidental parameter bias and is only valid when used for in-

ference on a bias corrected estimator. These results (although more general

than ours) are entirely parallel to what we find here for the simpler AR(1)

panel data model. However, contrary to these papers, here we are able to go

a step further and propose a bootstrap method that is also able to capture

the bias (the recursive-design bootstrap).

The remainder of the paper is organized as followed. Section 2 introduces

the model and the assumptions, and provides a summary of the asymptotic

theory for the fixed effects estimator. These results are a restatement of

Hahn and Kuersteiner’s (2002) results under our set of assumptions (which

are slightly different from theirs). Section 3 provides the bootstrap results

for the standard fixed effects OLS estimator for the three bootstrap schemes

described above. We show that only the recursive-design bootstrap is able to

capture the asymptotic bias term. Section 4 relies on the results of Section 3

to prove the consistency of this bootstrap method for estimating the distribu-

tion of the biased-corrected fixed effects estimator of Hahn and Kuersteiner

(2002). Section 5 contains Monte Carlo results while Section 6 concludes.

All proofs are relegated to the Appendix.
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1.2 Assumptions and asymptotic theory for

the fixed effects estimator when n, T →∞

Following Hahn and Kuersteiner (2002), we consider estimation of the au-

toregressive parameter θ0 in a stationary linear dynamic panel model with

fixed effects1

yit = αi + θ0yit−1 + εit, i = 1, . . . , n; t = 1, . . . , T, (1.1)

where |θ0| < 1 and αi are individual specific fixed effects that capture the

unobserved individual heterogeneity. We assume that the initial observation

yi0 is available. Given the stability condition that |θ0| < 1 and the assumption

that the panel is stationary, the impact of initial conditions does not matter

asymptotically when T is large.

The standard fixed effects OLS estimator of θ0 is given by

θ̂ =

(
1

nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−)2

)−1

1

nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−) (yit − ȳi) ,

where ȳi ≡ 1
T

∑T
t=1 yit and ȳi− ≡ 1

T

∑T
t=1 yit−1 are the individual time aver-

ages.

The main goal of this section is to provide a set of assumptions under

which we can prove the bootstrap results that will follow and at the same

time present the asymptotic theory of the fixed effects estimator under these

assumptions.

Assumption A1 describes formally our set of assumptions. Note that for

a given time series {wt} and for j ∈ N, we let cum
(
w0, wt1 , . . . , wtj−1

)
denote

the jth order joint cumulant of
(
w0, wt1 , . . . , wtj−1

)
(see Brillinger, 1981, p.

1Our results could be generalized to higher order dynamics at the cost of complicating
the notation. Since this would not add any additional insights, we prefer to follow Hahn
and Kuersteiner (2002) and focus on this simple AR(1) panel model.
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19), where t1, . . . , tj−1 are integers2.

Assumption A1

(i) {εit, t = 1, 2, . . .} are independent across i.

(ii) For each i, {εit, t = 1, 2, . . .} is a strictly stationary martingale difference

sequence, i.e. E
(
εit|F t−1

i

)
= 0, a.s., where F t−1

i = σ (εit−1, εit−2, . . .) .

(iii) E |εit|4r is uniformly bounded in i and t, for some r ≥ 2.

(iv) E (ε2
it) = σ2

i , where limn→∞
1
n

∑n
i=1 σ

2
i = σ2 <∞.

(v) E(ε2
itεit−lεit−p) = τilp is uniformly bounded for all i, t, l ≥ 1, p ≥ 1; τill >

0 for all l, and limn→∞
1
n

∑n
i=1 τilp = τlp, for fixed l, p ∈ N.

(vi)
∑+∞

t1,t2,t3=−∞ |cum (εit1 , εit2 , εit3 , εi0)| < ∆ <∞ uniformly in i.

(vii)
∑+∞

t1,t2,t3=−∞

∣∣cum (zl1it1 , zl2it2 , zl3it3 , zl4i0)∣∣ < ∆ <∞ uniformly in i, l1, l2, l3

and l4, where zlit = εitεit−l and l1,. . . ,l4 are positive integers.

(viii) 1
n

∑n
i=1 |αi|

2 = O(1).

(ix) n, T →∞ such that n/T → ρ <∞.

In this paper, we follow the fixed effects approach and treat αi as param-

eters to be estimated. Accordingly, Assumption A1 implicitly treats αi as

being constant. Alternatively, our analysis can be interpreted as being con-

ditional on a random realization of the fixed effects αi as long as we modify

our assumptions by conditioning on αi.
3

2In particular, cum (w0) = E (w0) and cum (w0, wt1) = Cov (w0, wt1) . For a zero
mean random variable, cum (w0, wt1 , wt2) = E (w0wt1wt2) and cum (w0, wt1 , wt2 , wt3) =
E (w0wt1wt2wt3)− E (w0wt1)E (wt2wt3)− E (w0wt2)E (wt1wt3)− E (w0wt3)E (wt1wt2) .

3For instance, A1(ii) should read “For each i, {εit, t = 1, 2, . . .} is a strictly stationary
martingale difference sequence conditional on αi, i.e. E

(
εit|F t−1i , αi

)
= 0, where F t−1i =

σ (εit−1, εit−2, . . .) .”. Similarly, all expectations should be conditional on αi and the limits
in parts (iv) and (v) should be replaced with probability limits. See Remark 1 of Hahn
and Kuersteiner (2011a) for more details on the appropriate modifications.
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Assumption A1(i) assumes cross sectional independence. Although we do

not impose homogeneity along the cross sectional dimension, we nevertheless

require this heterogeneity to disappear asymptotically. Assumption A1(ii)

imposes a martingale difference sequence restriction on {εit : t = 1, 2, . . .} for

each i = 1, . . . , n; time stationarity is also assumed for simplicity. The m.d.s.

assumption implies that the model for the conditional mean of yit given F t−1
i

is correctly specified. This is a strong assumption that has been recently

relaxed by Galvão and Kato (2013) in the context of possibly misspecified

linear dynamic panel data models with fixed effects. Specifically, their re-

sults show that the pairs bootstrap is asymptotically valid for inference on

a pseudo-true parameter when applied to a bias-corrected estimator. Here,

we assume the model is correctly specified for the conditional mean, which

allows us to obtain results for the recursive-design bootstrap based on the

wild bootstrap. The motivation for this method relies on the fact that the

m.d.s assumption restricts the dependence in the time dimension, ruling out

serial correlation in εit, but allows for time series dependence in the form

of conditional heteroskedasticity. Allowing for conditional heteroskedasticity

over time is important in order to capture GARCH effects, as documented

by the increasing literature on estimating large dimensional GARCH panels

(see e.g. Engle, Shephard, and Sheppard (2008) and Pakel, Shephard, and

Sheppard (2011)). Assumption A1(vi) restricts the fourth order cumulants

of εit whereas Assumption A1(vii) is an additional eighth order restriction on

the distribution of the innovations needed to establish a central limit theo-

rem and justify covariance matrix estimation. Given that |θ0| < 1, it implies

Condition 3 of Hahn and Kuersteiner (2002). Assumption A1(ix) assumes

that n and T diverge to infinity at the same rate and is standard in this

literature.

Under Assumption A1, we can prove the following result. See Appendix

A for the proof.

Theorem 1.2.1. Let {yit} be generated by (1.1). Under Assumption A1, we
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have √
nT
(
θ̂ − θ0

)
→d N (D,C) ,

where D = −√ρ(1 + θ0); and C = A−1BA−1, with A = σ2 (1− θ2
0)
−1

and

B =
∑∞

l=1

∑∞
p=1 θ

l+p−2
0 τlp.

Theorem 1.2.1 is a restatement of Hahn and Kuesteiner’s (2002) Theorem

1 under our Assumption A1. The method of proof follows closely that of

Gonçalves and Kilian (2004), adapted to the panel context considered here.

In particular, the cross sectional independence assumption A1(i) allows us to

use results by Hansen (2007) (see also Moon and Phillips (2000) and Moon

and Phillips (2004)) to derive the joint asymptotic theory of θ̂ as n, T →∞
under Assumption A1.

Presenting this result and its heuristic derivation is helpful in under-

standing the reasons for the (in)validity of the different bootstrap methods

we consider in the next section. The fixed effects OLS estimator can be

represented as

√
nT
(
θ̂ − θ0

)
= A−1

nT

1√
nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−) (εit − ε̄i) ,

where AnT = 1
nT

∑n
i=1

∑T
t=1 (yit−1 − ȳi−)2 . Under Assumption A1, we show

in the Appendix that AnT →P A. Moreover, adding and subtracting µi ≡
E (yit−1) = αi/ (1− θ0) to the term (yit−1 − ȳi−) and using the fact that the

average over t of (εit − ε̄i) is zero implies that

√
nT
(
θ̂ − θ0

)
= A−1 1√

nT

n∑
i=1

T∑
t=1

(yit−1 − µi) (εit − ε̄i) + oP (1) .
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The following decomposition holds for the normalized score,

1√
nT

n∑
i=1

T∑
t=1

(yit−1 − µi) (εit − ε̄i) =
1√
nT

n∑
i=1

T∑
t=1

(yit−1 − µi) εit︸ ︷︷ ︸
→dN(0,B)

− 1√
nT

n∑
i=1

T∑
t=1

(yit−1 − µi) ε̄i︸ ︷︷ ︸
→P−A·D

,

where the stochastic behavior of each of the two terms above is discussed in

Lemma A.4 in Appendix A.

This result has two implications for the validity of the bootstrap. First,

the bootstrap needs to mimic the asymptotic variance of θ̂ given by C =

A−1BA−1. This variance has the usual sandwich form under conditional

heteroskedasticity. In particular, it depends on the long run variance of the

score process (after concentrating out αi) defined as

B = lim
n,T→∞

V ar

(
1√
nT

n∑
i=1

T∑
t=1

(yit−1 − µi) εit

)
.

Theorem 1.2.1 shows that B depends on4 τlp, the limiting value of the cross

sectional average of the fourth order cumulants of εit. When εit are i.i.d.

(0, σ2), we have that τlp = σ4 for l = p and τlp = 0 for l 6= p, implying

that B = σ4/ (1− θ2
0). In this case, B = σ2A and C = 1 − θ2

0. But when

εit are heteroskedastic (in either dimension), the fourth order cumulants of

εit do not simplify and the sandwich form for C is obtained. As discussed

4Note that Hahn and Kuersteiner (2002) obtain a different but equivalent expression for

B, given by σ4

1−θ20
+ χ, where χ ≡

∑∞
t=−∞ χ(t, 0) and χ(t1, t2) ≡ E[uit1−1uit2−1εit1εit2 ]−

E[εit1εit2 ]E[uit1−1uit2−1], uit−1 = yit−1 − E (yit−1) . The constant χ reflects higher order
moments of the error term when conditional heteroskedasticity is allowed for and it be-
comes zero when εit is i.i.d.

(
0, σ2

)
, implying the same value for B. Our expression makes

the comparison of our results with Gonçalves and Kilian (2004) easier.
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by Gonçalves and Kilian (2004) in the pure time series context, bootstrap

validity depends on replicating the properties of τlp and this is also true in

the panel context.

Second, the bootstrap needs to capture the asymptotic bias term D cre-

ated by the estimation of the fixed effects. As the decomposition above

shows (and as was discussed already by Hahn and Kuersteiner (2002)), this

noncentrality parameter results from the correlation between the averaged

error terms ε̄i and the demeaned regressors yit−1 − µi and is non zero when

ρ = lim n
T
6= 0. As we will see next, the presence of this incidental param-

eter asymptotic bias is the crucial difference between the application of the

bootstrap in the pure time series context considered in Gonçalves and Kilian

(2004) and in the panel context considered here.

1.3 Bootstrap results for the fixed effects es-

timator

In this section, we study the asymptotic validity of the bootstrap when ap-

plied to the fixed effects OLS estimator θ̂. Following Gonçalves and Kilian

(2004), we consider three bootstrap methods adapted to the panel AR(1)

model considered here. Two of these are residual-based wild bootstrap (WB)

methods whereas the third one is a pairs bootstrap that resamples only in

the cross sectional dimension (which is justified under our cross sectional

independence assumption).

We use the following notation for the bootstrap asymptotics (see Chang

and Park (2003a) for similar notation and for several useful bootstrap asymp-

totic properties): Let Z∗nT be a sequence of bootstrap statistics. We write

Z∗nT = oP ∗ (1) in probability, or Z∗nT →P ∗ 0 in probability, if for any ε > 0, δ >

0, limn,T→∞ P [P ∗ (|Z∗nT | > δ) > ε] = 0. Similarly, we write Z∗nT = OP ∗ (1) in
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probability if for all ε > 0 there exists a Mε <∞ such that

lim
n,T→∞

P [P ∗ (|Z∗nT | > Mε) > ε] = 0.

Finally, we write Z∗nT →d∗ Z in probability if, conditional on the sample,

Z∗nT weakly converges to Z under P ∗, for all samples contained in a set with

probability converging to one. Specifically, we write Z∗nT →d∗ Z in probability

if and only if E∗ (f (Z∗nT )) → E (f (Z)) in probability for any bounded and

uniformly continuous function f .

1.3.1 Recursive-design wild bootstrap

The recursive-design bootstrap generates a panel of pseudo observations

{y∗it, i = 1, . . . , n; t = 1, . . . , T} recursively from the panel AR(1) model

with estimated parameters,

y∗it = α̂i + θ̂y∗it−1 + ε∗it, i = 1, . . . , n; t = 1, . . . , T,

where α̂i = 1
T

∑T
t=1(yit − θ̂yit−1), i = 1, . . . , n and θ̂ is the fixed effects OLS

estimator defined in the previous section (the method remains valid if θ̂

is replaced with any consistent estimator θ̃ of θ0). The initial condition

is y∗i0 = α̂i
1−θ̂ , i = 1, . . . , n, which is equivalent to setting y∗i0 equal to the

stationary mean in the bootstrap world. The bootstrap residuals are obtained

with the wild bootstrap ε∗it = ε̂itηit, where ηit ∼ i.i.d.(0, 1) over (i, t) with

E∗ |ηit|4 ≤ ∆ < ∞, and ε̂it = yit − α̂i − θ̂yit−1 are the estimated residuals.

The wild bootstrap was originally proposed by Wu (1986) and Liu (1988) in

the context of cross section regressions with unconditional heteroskedasticity.

Its application to the time series autoregressive context was considered by

Gonçalves and Kilian (2004) (see also Kreiss (1997)). Here we extend its

application to the panel autoregressive context with individual fixed effects

(see Gonçalves and Perron (2014) for a recent application to panel factor
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models).

Letting ηit be i.i.d.(0, 1) along the two dimensions is appropriate since

by Assumption A1 εit is independent across i and uncorrelated over t (due

to the m.d.s. assumption), but we allow for heteroskedasticity in the two

dimensions.

The bootstrap analogue of θ̂ is θ̂∗rd, the recursive-design wild bootstrap

OLS estimator,

θ̂∗rd =

(
1

nT

n∑
i=1

T∑
t=1

(
y∗it−1 − ȳ∗i−

)2

)−1

1

nT

n∑
i=1

T∑
t=1

(
y∗it−1 − ȳ∗i−

)
(y∗it − ȳ∗i ) ,

(1.2)

where ȳ∗i and ȳ∗i− are defined analogously to ȳi and ȳi−.

As in Gonçalves and Kilian (2004), we require a strengthening of As-

sumption A1 to establish the validity of the recursive-design wild bootstrap

for the fixed effects OLS estimator.

A1. (v′) τilp ≡ E (ε2
itεit−lεit−p) = 0 for all l 6= p, for all i, and t, l ≥ 1, p ≥ 1.

A1 (v′) is the panel analogue of Assumption A′(iv′) in Gonçalves and

Kilian (2004). As they remark, this assumption further restricts the class

of conditionally heteroskedastic autoregressive models that are covered by

excluding certain asymmetric GARCH and ARCH models (e.g. the popular

EGARCH model). This is crucial to prove that the bootstrap variance of θ̂∗rd
is consistent for C.

Theorem 1.3.1. Under Assumption A1 strengthened by Assumption A1(v′),

it follows that

sup
x∈R

∣∣∣P ∗(√nT (θ̂∗rd − θ̂) ≤ x)− P (
√
nT (θ̂ − θ0) ≤ x)

∣∣∣→P 0.

The proof of Theorem 1.3.1 is in Appendix B. The crucial difference

compared to the proof of Theorem 3.2 of Gonçalves and Kilian (2004) is the
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need to account for the incidental parameter bias generated by the estimation

of the fixed effects. In particular, Lemma .2.4 in Appendix B shows that the

incidental parameter bias in the bootstrap world is such that

1√
nT

n∑
i=1

T∑
t=1

(
y∗it−1 − µ̂i

)
ε̄∗i →P ∗ −A ·D,

in probability, where µ̂i = α̂i/
(

1− θ̂
)

= E∗
(
y∗it−1

)
. This, together with the

fact that
1√
nT

n∑
i=1

T∑
t=1

(
y∗it−1 − µ̂i

)
ε∗it →d∗ N

(
0, B̃

)
,

in probability, where B̃ =
∑∞

l=1 θ
2(l−1)
0 τll, implies that

√
nT
(
θ̂∗rd − θ̂

)
→d∗

N
(
D,A−1B̃A−1

)
, in probability. Since B̃ = B whenever τi,lp = 0 for l 6=

p (i.e. under A1(v′)), the recursive-design wild bootstrap distribution of√
nT
(
θ̂∗rd − θ̂

)
is consistent for the distribution of the biased fixed effects

OLS estimator
√
nT
(
θ̂ − θ

)
. In particular, the recursive-design bootstrap

contains a built-in bias correction term that mimics the incidental parameter

bias induced by the individual fixed effects.

Theorem 1.3.1 justifies the construction of bootstrap percentile-type con-

fidence intervals for θ0 without the need for an explicit bias correction method.

It does not however justify the use of the bootstrap to consistently esti-

mate the bias of θ̂ without further conditions, for instance that the sequence{√
nT
(
θ̂∗rd − θ̂

)}
is uniformly integrable (see e.g. Billingsley (1995), Theo-

rem 25.12).

Although our focus in this paper is on using the bootstrap for constructing

confidence intervals for θ0, we now provide a result that theoretically justifies

the use of the bootstrap for bias correction. The bootstrap has been used for

this purpose in Everaert and Pozzi (2007) without a theoretical justification.

Compared to the analytical bias correction method of Hahn and Kuersteiner

(2002) (and of many others since then), the bootstrap approach is easy to
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generalize to more complex models without requiring the need for different

analytical formulae.

Following Liu and Singh (1992) and Gonçalves and White (2005), we

focus on the following bootstrap fixed effects estimator

θ̃∗ =

{
θ̂∗rd if 1

nT

∑n
i=1

∑T
t=1(y∗it−1 − ȳ∗i−)2 ≥ δ

2

θ̂ otherwise,

for some δ > 0. Thus, θ̃∗ is equal to θ̂∗rd whenever 1
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)2

is bounded away from zero. Since n−1T−1
∑n

i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)2 →P ∗

A > 0, in probability, it follows that for any ε > 0 and sufficiently large n

and T , there exists δ > 0 such that

P

[
P ∗

(
1

nT

n∑
i=1

T∑
t=1

(
y∗it−1 − ȳ∗i−

)2 ≥ δ

2

)
> 1− ε

]
> 1− ε. (1.3)

Thus, this modification does not have adverse practical consequences but at

the same time it greatly simplifies the theoretical study of the bootstrap bias

estimator D∗ = E∗
(√

nT
(
θ̃∗ − θ̂

))
.

Theorem 1.3.2. Under the same assumptions as in Theorem 1.3.1, D∗ →P

D, where D∗ = E∗
(√

nT (θ̃∗ − θ̂)
)

and D = −√ρ(1 + θ0).

The proof of Theorem 1.3.2 is in Appendix B. We show that under As-

sumption A1 strengthened by A1(v′), E∗
(∣∣∣√nT (θ̃∗ − θ̂)

∣∣∣1+δ
)

= OP (1) for

some δ > 0, which is a sufficient condition for the uniform integrability of

the sequence
{∣∣∣√nT (θ̃∗ − θ̂)

∣∣∣}, in probability. This together with Theorem

1.3.1 implies Theorem 1.3.2.

To end this section, we discuss bootstrap percentile-t intervals based on



20

the following t-statistic

tθ̂∗rd
=

√
nT
(
θ̂∗rd − θ̂

)
√
Ĉ∗rd

,

where Ĉ∗rd = Â∗−1
rd B̂∗rdÂ

∗−1
rd , with

Â∗rd =
1

nT

n∑
i=1

T∑
t=1

(
y∗it−1 − ȳ∗i−

)2
and B̂∗rd =

1

nT

n∑
i=1

T∑
t=1

(
y∗it−1 − ȳ∗i−

)2
ε̃∗2it ,

(1.4)

and ε̃∗it = y∗it−ȳ∗i−θ̂∗
(
y∗it−1 − ȳ∗i−

)
. The statistic tθ̂∗rd

is the bootstrap analogue

of tθ̂ =
√
nT
(
θ̂ − θ0

)
/
√
Ĉ, where Ĉ is defined as Ĉ∗ using the original data.

Given Theorems 1.2.1 and 1.3.1, the asymptotic validity of a bootstrap

percentile-t interval based on tθ̂∗rd
follows from the following lemma. It shows

the consistency of Ĉ∗rd towards C = A−1BA−1, where B = B̃ under Assump-

tion A1 (v′).

Lemma 1.3.1. Under the same assumptions as in Theorem 1.3.1, Ĉ∗rd →P ∗

C = A−1B̃A−1, in probability.

1.3.2 Fixed-design wild bootstrap

The fixed-design wild bootstrap generates {y∗it, i = 1, . . . , n; t = 1, . . . , T}
according to

y∗it = α̂i + θ̂yit−1 + ε∗it, i = 1, . . . , n; t = 1, . . . , T, (1.5)

where ε∗it = ε̂itηit, with ηit ∼ i.i.d.(0, 1) across (i, t) such that E∗ |ηit|4 ≤ ∆ <

∞. As for the recursive-design wild bootstrap, θ̂ can be replaced by any

consistent estimator θ̃ of θ0 and α̂i by α̃i = 1
T

∑T
t=1

(
yit − θ̃yit−1

)
.
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The fixed-design wild bootstrap estimator is

θ̂∗fd =

(
1

nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−)2

)−1

1

nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−) (y∗it − ȳ∗i ) .

(1.6)

Gonçalves and Kilian (2004) consider this method in the context of a pure

time series autoregression and show that it is asymptotically valid for esti-

mating the distribution of the autoregressive parameter under conditional

heteroskedasticity of unknown form. In particular, and in contrast to the

recursive-design wild bootstrap, the fixed-design wild bootstrap is more gen-

erally applicable because it does not require Assumption A1(v′), thus allow-

ing for leverage effects in the form of an asymmetric response of volatility to

positive and negative shocks of the same absolute magnitude. It is therefore

interesting to know whether this method is valid in the context of a panel

autoregression model with individual fixed effects.

Theorem 1.3.3. Under Assumption A1, it follows that
√
nT
(
θ̂∗fd − θ̂

)
→d∗

N (0, C) , in probability, where C = A−1BA−1, with A and B defined as in

Theorem 1.2.1.

The proof of Theorem 1.3.3 is in Appendix B. In contrast to the recursive-

design wild bootstrap, the fixed-design wild bootstrap is not able to repro-

duce the noncentrality parameter of the limiting distribution of the fixed

effects OLS estimator. The bootstrap distribution of
√
nT (θ̂∗fd − θ̂) is incor-

rectly centered at zero, as n, T →∞.

The reason for the failure of the fixed-design wild bootstrap to capture

the incidental parameter bias is that it destroys the correlation between the

average bootstrap residuals ε̄∗i and the bootstrap regressors y∗it−1−µ̂i because

it fixes these at the sample values, i.e. y∗it−1− µ̂i = yit−1− α̂i/
(

1− θ̂
)
. This
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implies that

1√
nT

n∑
i=1

T∑
t=1

(
y∗it−1 − µ̂i

)
ε̄∗i =

1√
nT

n∑
i=1

T∑
t=1

(yit−1 − µ̂i) ε̄∗i →P ∗ 0,

since E∗ (ε̄∗i ) = 0.

Two implications follow from this negative result. First, the fixed-design

wild bootstrap cannot be used to approximate the distribution (nor the bias)

of the biased fixed effects OLS estimator θ̂. As our simulations show, this

method does not replicate the incidental parameter bias of θ̂ and therefore

fails when used to construct percentile (or percentile-t) bootstrap confidence

intervals for θ0 based on this estimator. The second implication is that

its invalidity extends to bootstrap confidence intervals for θ0 based on the

bias-corrected estimator that relies on the analytical bias correction method

of Hahn and Kuersteiner (2002). We will discuss the application of the

bootstrap to the bias-corrected estimator of Hahn and Kuersteiner (2002) in

Section 4.

1.3.3 Pairs bootstrap

A third method that is robust to conditional heteroskedasticity of unknown

form in the error term of a pure time series autoregressive model is the pairs

bootstrap, where one resamples with replacement the vector that collects the

dependent variable and its lagged values. This method was also studied by

Gonçalves and Kilian (2004), who proved its asymptotic validity under the

same assumptions as those underlying the validity of the fixed-design wild

bootstrap.

The goal of this section is to study the applicability of a panel ver-

sion of this bootstrap method in the context of a panel AR(1) model with

individual specific fixed effects. Specifically, we consider resampling only

in the cross-sectional dimension, by resampling the “pairs” (yi, yi−), where
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yi =
(
yi1 . . . yiT

)′
and yi− =

(
yi0 . . . yiT−1

)′
. This method was pro-

posed by Kapetanios (2008) in the context of a panel regression model with

strictly exogeneous regressors and fixed effects, in which case no incidental

parameter bias exists5. Our contribution here is to analyze the properties

of this method for linear dynamic panel models where the incidental pa-

rameter bias is present. Note that there are other ways of resampling the

pairs (yit, yit−1) in the panel context. For instance, one alternative bootstrap

method is to resample only in the time dimension, by resampling the “pairs”

(yt, yt−1), where yt =
(
y1t . . . ynt

)′
and yt−1 =

(
y1t−1 . . . ynt−1

)′
.

This method was also considered in Kapetanios (2008) and more recently in

Gonçalves (2011), who showed the asymptotic validity of the moving blocks

bootstrap under general forms of cross sectional dependence and time se-

ries dependence in the regression error of a panel linear regression model.

Although the regularity conditions of Gonçalves (2011) allow in principle dy-

namic regressors, the impact of the incidental parameter bias on inference is

ruled out by assuming that n/T → ρ = 0. We do not consider this bootstrap

method here because we assume cross sectional independence, in which case

resampling in the cross sectional dimension is more appropriate.

More specifically, we generate
(
y∗i , y

∗
i−
)
∼ i.i.d. {(yi, yi−1) : i = 1, . . . , n} ,

i.e. letting I1, . . . , In be i.i.d. Uniform on {1, . . . , n}, we have that

(
y∗i , y

∗
i−
)

=


yIi,1 yIi,0

...
...

yIi,T yIi,T−1

 .

The pairs bootstrap fixed effects estimator is then defined as the original fixed

effects OLS estimator but with {(yit, yit−1)} replaced with
{(
y∗it, y

∗
it−1

)}
. Let

θ̂∗pb denote this estimator.

5See also Hounkannounon (2010) for the applicability of this method in the context of
panel regression models with random effects.
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Theorem 1.3.4. Under Assumption A1, it follows that
√
nT
(
θ̂∗pb − θ̂

)
→d∗

N (0, C) , in probability, where C = A−1BA−1, with A and B defined as in

Theorem 1.2.1.

Similarly to the fixed-design wild bootstrap, the pairs bootstrap distri-

bution of the bootstrap fixed effects OLS estimator is incorrectly centered at

zero.

To understand the reason why the pairs bootstrap fails in capturing the

bias, note that the pairs bootstrap fixed effects OLS estimator has the fol-

lowing representation

√
nT
(
θ̂∗pb − θ̂

)
= A∗−1

nT

1√
nT

n∑
i=1

T∑
t=1

(
y∗it−1 − ȳ∗i−

) (
ε̂∗it − ε̂∗i

)
,

where A∗nT = 1
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)2
is the bootstrap analogue of AnT

and ε̂∗it is the bootstrap version of the error term εit, i.e. ε̂∗it = y∗it − α̂∗i −
θ̂y∗it−1 ≡ ε̂Ii,t. Since εit depends on αi (which is a function of i), its bootstrap

analogue when resampling in the cross sectional dimension involves resam-

pling α̂i, i.e. ε̂∗it depends on α̂∗i = α̂Ii , a resampled version of α̂i. Given that

resampling only occurs in the cross sectional dimension, we can define

s∗i ≡
1√
T

T∑
t=1

(
y∗it−1 − ȳ∗i−

) (
ε̂∗it − ε̂∗i

)
as being the bootstrap version of si ≡ 1√

T

∑T
t=1 (yit−1 − ȳi−)

(
ε̂it − ε̂i

)
, i.e.

s∗i = sIi for all i = 1, . . . , n. It follows that

√
nT
(
θ̂∗pb − θ̂

)
= A∗−1

nT

1√
n

n∑
i=1

s∗i = A−1 1√
n

n∑
i=1

s∗i︸ ︷︷ ︸
→d∗N(0,B)

+ oP ∗ (1) ,

given that A∗nT →P ∗ A, in probability. Since I1, . . . , In are i.i.d. uniformly
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distributed on {1, . . . , n}, {s∗i : i = 1, . . . , n} is i.i.d. (conditional on the orig-

inal observations) and a bootstrap CLT holds for 1√
n

∑n
i=1 s

∗
i , yielding an

asymptotic normal distribution for
√
nT
(
θ̂∗pb − θ̂

)
. Nevertheless, the asymp-

totic bootstrap population mean turns out to be zero because

E∗ (s∗i ) =
1

n

n∑
i=1

si =
1

n

1√
T

n∑
i=1

T∑
t=1

(yit−1 − ȳi−)
(
ε̂it − ε̂i

)
= 0,

by the first order condition for the fixed effects OLS estimator. Thus, the

limiting bootstrap distribution of
√
nT
(
θ̂∗pb − θ̂

)
is (incorrectly) centered at

zero.

1.4 Bootstrapping the bias-corrected estima-

tor

The results of Section 3 justify bootstrap inference on θ0 based on the

recursive-design bootstrap fixed effects OLS estimator θ̂∗rd. In particular,

Theorem 1.3.1 justifies the construction of bootstrap percentile intervals

for θ0 whereas Theorem 1.3.1 together with Lemma 1.3.1 justify bootstrap

percentile-t intervals. Although these approaches are valid and have the

advantage of avoiding the need for an explicit bias correction of θ̂, further

finite sample improvements of the bootstrap approximation can be obtained

if we base our inference on a bias-corrected estimator. Bootstrapping a bias-

corrected fixed effects estimator removes the incidental parameter bias from

the asymptotic distribution, resulting in a t-statistic that is asymptotically

pivotal.

For the particular panel AR(1) model with individual fixed effects that we

consider here, a simple analytical formula for the bias of θ̂ has been derived by

Hahn and Kuersteiner (2002). Specifically, their bias-corrected fixed effects
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estimator is given by
ˆ̂
θ = θ̂ +

1

T

(
1 + θ̂

)
, (1.7)

where θ̂ is the standard biased fixed effects OLS estimator. The intuition

for this bias correction is simple: by Theorem 1.2.1, θ̂ − θ0 is approximately

distributed as N
(
− 1
T

(1 + θ0) , 1
nT
C
)
. Therefore, ∆ = − 1

T
(1 + θ0) is the

bias of θ̂ of order O (1/T ). The bias-corrected estimator given in (1.7) is the

feasible version of the infeasible bias-corrected estimator given by θ̂ − ∆ =

θ̂ + 1
T

(1 + θ0).

The main contribution of this section is to prove the asymptotic validity

of the recursive-design bootstrap when applied to
ˆ̂
θ. As our simulations in

Section 5 show, bootstrap intervals based on
ˆ̂
θ have coverage probabilities

that are closer to the desired nominal level than the bootstrap intervals based

on θ̂. We also consider the application of the fixed-design and the pairs

bootstrap to
ˆ̂
θ. Our results show that whereas the asymptotic invalidity of

the fixed-design bootstrap to estimate the distribution of θ̂ extends to
ˆ̂
θ, this

is not the case for the pairs bootstrap, which becomes a valid method of

inference when used to estimate the distribution of
ˆ̂
θ.

We start by considering the recursive-design wild bootstrap, which we

now implement using only bias-corrected estimates. More specifically, the

bootstrap panel observations are generated recursively from the estimated

panel AR(1) model using the bias-corrected estimates, i.e. we let

y∗it = ˆ̂αi +
ˆ̂
θy∗it−1 + ε∗it, i = 1, . . . , n; t = 1, . . . , T, (1.8)

where ˆ̂αi = 1
T

∑T
t=1

(
yit − ˆ̂

θyit−1

)
, i = 1, . . . , n, and

ˆ̂
θ is the bias-corrected

fixed effects OLS estimator defined in (1.7). The initial condition is y∗i0 =

ˆ̂αi

(
1− ˆ̂

θ
)−1

, i = 1, . . . , n.

Let
ˆ̂
θ∗rd denote the bootstrap version of the bias-corrected fixed effects
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estimator (1.7), i.e.
ˆ̂
θ∗rd = θ̂∗rd +

1

T

(
1 + θ̂∗rd

)
, (1.9)

where θ̂∗rd is as defined in (1.2) but using bootstrap observations generated

as in (1.8).

Our goal is to show the consistency of the bootstrap distribution of√
nT
(

ˆ̂
θ∗rd −

ˆ̂
θ
)

for the distribution of
√
nT
(

ˆ̂
θ − θ0

)
. An immediate con-

sequence of Theorem 1.2.1 is that
√
nT
(

ˆ̂
θ − θ0

)
→d N (0, C) (see Theo-

rem 2 of Hahn and Kuersteiner (2002)). Therefore, it suffices to show that√
nT
(

ˆ̂
θ∗rd −

ˆ̂
θ
)
→d∗ N (0, C), in probability. This is an immediate conse-

quence of the proof of Theorem 1.3.1. Heuristically, by replacing
ˆ̂
θ∗rd with

(1.9) we have that

√
nT
(

ˆ̂
θ∗rd −

ˆ̂
θ
)

=
√
nT
(
θ̂∗rd −

ˆ̂
θ
)

︸ ︷︷ ︸
→d∗N(D,C)

+

√
n

T

(
1 + θ̂∗rd

)
︸ ︷︷ ︸
→P∗√ρ(1+θ0)≡−D

−→d∗ N (0, C) ,

where the first term converges in distribution to N (D,C) by Theorem 1.3.1

(note that we center θ̂∗rd around
ˆ̂
θ because the bootstrap DGP (1.8) depends

on
ˆ̂
θ; using

ˆ̂
θ instead of θ̂ does not change the consistency result of Theorem

1.3.1 as long as we center
ˆ̂
θ∗rd around

ˆ̂
θ because

ˆ̂
θ is a consistent estimator

of θ0). The second term converges in probability to −D because θ̂∗rd is a

consistent estimator of θ0 (albeit biased) and n/T → ρ under Assumption

A1.

Theorem 1.4.1 below states this result formally.

Theorem 1.4.1. Under the same assumptions as in Theorem 1.3.1, we have

that

sup
x∈R

∣∣∣P ∗ (√nT ( ˆ̂
θ∗rd −

ˆ̂
θ
)
≤ x

)
− P

(√
nT
(

ˆ̂
θ − θ0

)
≤ x

)∣∣∣→P 0.
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Theorem 1.4.1 justifies using the bootstrap distribution of
√
nT
(

ˆ̂
θ∗rd −

ˆ̂
θ
)

to consistently estimate the distribution of
√
nT
(

ˆ̂
θ − θ0

)
. The consistency

of the distribution of the bootstrap t-statistic t ˆ̂
θ∗rd

=
√
nT
(

ˆ̂
θ∗rd −

ˆ̂
θ
)
/
√
Ĉ∗

follows whenever Ĉ∗ is a consistent estimator of C, as in Lemma 1.3.1. In

particular, our proposal is to choose C̃∗rd = Ã∗−1
rd B̃∗rdÃ

∗−1
rd , where Ã∗rd and B̃∗rd

are exactly as defined in (1.4) with the difference that {y∗it} is generated as in

(1.8) and ε̃∗it is a function of
ˆ̂
θ∗rd instead of θ̂∗. To conserve space, we do not

provide the formal result but note that the same exact arguments used to

prove Lemma 1.3.1 can be applied to show the consistency of C̃∗rd towards C.

The Monte Carlo simulation results of the next section show that the finite

sample properties of this approach are superior to the asymptotic normal

approximation.

Next, we explain why the fixed-design bootstrap method is not asymp-

totically valid when applied to
ˆ̂
θ. Let

ˆ̂
θ∗fd denote the bootstrap version of

ˆ̂
θ

where θ̂∗fd is computed as (1.6) with {y∗it} generated using equation (1.5) with

θ̂ (and α̂i) replaced with
ˆ̂
θ (and ˆ̂αi). Proceeding as for the recursive-design

bootstrap, the following decomposition holds

√
nT
(

ˆ̂
θ∗fd −

ˆ̂
θ
)

=
√
nT
(
θ̂∗fd −

ˆ̂
θ
)

︸ ︷︷ ︸
→d∗N(0,C)

+

√
n

T

(
1 + θ̂∗fd

)
︸ ︷︷ ︸
→P∗√ρ(1+θ0)≡−D

−→d∗ N (−D,C) ,

where in particular Theorem 1.3.3 justifies the convergence of the the first

term. This shows that the bootstrap distribution of
√
nT
(

ˆ̂
θ∗fd −

ˆ̂
θ
)

is incor-

rectly centered at −D (the correct mean should be zero since the asymptotic

distribution of
√
nT
(

ˆ̂
θ − θ0

)
is centered at 0).

In contrast, the pairs bootstrap is asymptotically valid when applied to
ˆ̂
θ. In this case, letting

ˆ̂
θ∗pb denote the bootstrap version of

ˆ̂
θ based on the
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biased fixed effects estimator θ̂∗pb, we have that

√
nT
(

ˆ̂
θ∗pb −

ˆ̂
θ
)

=
√
nT
(
θ̂∗pb − θ̂

)
︸ ︷︷ ︸−

→d∗N(0,C)

√
n

T

(
1 + θ̂

)
︸ ︷︷ ︸
→P−√ρ(1+θ0)≡D

+

√
n

T

(
1 + θ̂∗pb

)
︸ ︷︷ ︸
→P∗√ρ(1+θ0)≡−D

−→d∗ N (0, C) .

Thus, although the pairs bootstrap does not provide a consistent estimator of

the distribution of
√
nT
(
θ̂ − θ0

)
(because its asymptotic distribution is in-

correctly centered at zero), the pairs bootstrap distribution of
√
nT
(

ˆ̂
θ∗pb −

ˆ̂
θ
)

is consistent for the distribution of
√
nT
(

ˆ̂
θ − θ0

)
. The formal result is stated

in the following theorem.

Theorem 1.4.2. Under the same assumptions as in Theorem 1.3.4, we have

that

sup
x∈R

∣∣∣P ∗(√nT ( ˆ̂
θ∗pb −

ˆ̂
θ
)
≤ x)− P (

√
nT
(

ˆ̂
θ − θ0

)
≤ x)

∣∣∣→P 0.

For bootstrap percentile-t intervals based on the pairs bootstrap, we con-

sider t∗pb =
√
nT
(

ˆ̂
θ∗pb −

ˆ̂
θ
)
/
√
C̃∗pb, with C̃∗pb = Ã∗−1

pd B̃∗pdÃ
∗−1
pd , where Ã∗pb and

B̃∗pb are defined as in (1.4) evaluated on the pairs bootstrap data and bias-

corrected estimator. The analogue of Lemma 1.3.1 is as follows.

Lemma 1.4.1. Under the same assumptions as in Theorem 1.3.4 , C̃∗pb →P ∗

C = A−1BA−1, in probability.

1.5 Simulations

The goal of this section is to evaluate the finite sample performance of the

three bootstrap methods studied in the previous section. We generate a panel

of AR(1) processes with GARCH errors using the following equation

yit = αi + θ0yit−1 + εit, i = 1, . . . , n; t = 1, . . . , T, (1.10)
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where εit is such that E (εit|Fit−1) = 0 and V ar (εit|Fit−1) = σ2
it, with

σ2
it = γi (1− ω − β) + ωε2

it−1 + βσ2
it−1, (1.11)

where γi > 0, ω, β ∈ [0, 1), and ω + β < 1. See Pakel, Shephard, and

Sheppard (2011) for more details on this particular GARCH specification.

Because ω + β < 1, these GARCH(1, 1) processes are stationary but het-

erogeneous. In particular, the unconditional variance is given by γi. In the

simulations, we set εit ∼ N (0, σ2
it) where σit is given by (1.11) with σ2

i0 = γi,

the unconditional variance. Following Pakel, Shephard, and Sheppard (2011),

we let γi ∼ i.i.d. U [0.02, 0.05], which matches the range of annual volatility

of most stock returns. The initial observations are drawn from the station-

ary distribution, yi0 | αi, γi ∼ N
(

αi
1−θ0 ,

γi
1−θ20

)
and we set ω and β equal to

0.30 and 0.65, respectively. Since the fixed-effects estimator is invariant to

αi, we let αi = 0; in addition, we let θ0 ∈ {0.3, 0.6, 0.9, 0.99}, and consider

n ∈ {20, 40, 60, 80, 100} and T ∈ {10, 20, 30}.
Tables 1 and Figures 1-4 summarize our results, which are based on 2500

Monte Carlo simulations with 999 bootstrap replications each.

Table 1 reports the bias properties of the different methods. The first col-

umn corresponds to the true finite sample bias E
(
θ̂ − θ0

)
whereas the second

column reports the estimated bias using the analytical correction of Hahn and

Kuersteiner (2002) (i.e. − 1
T

(
1 + θ̂

)
). The remaining three columns pertain

to the bootstrap bias estimators based on the recursive-design wild boot-

strap (RD), the fixed-design wild bootstrap (FD) and the pairs bootstrap

(PB). To implement the residual-based wild bootstrap methods, we let ηit

follow the Rademacher distribution (i.e. ηit = 1 with probability 0.5 and −1

with probability 0.5). We also used ηit ∼ N (0, 1) and ηit chosen according

to Mammen (1993) but these choices were dominated by the Rademacher

distribution, confirming the results by Davidson and Flachaire (2008) who

advocate the use of the Rademacher distribution.

The simulation results in Table 1 confirm our theory. The FD and the
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Table 1.1: Performance of the bootstrap for bias-correction
Bias

T n θ0 True AT RD FD PB

10 20 0.3 -0.098 -0.090 -0.098 0.000 0.000
0.6 -0.138 -0.116 -0.135 0.000 -0.003
0.9 -0.185 -0.141 -0.178 0.000 -0.005
0.99 -0.256 -0.164 -0.232 0.000 -0.008

60 0.3 -0.098 -0.09 -0.099 0.000 0.000
0.6 -0.135 -0.117 -0.133 0.000 -0.001
0.9 -0.180 -0.142 -0.174 0.000 -0.002
0.99 -0.248 -0.165 -0.227 0.000 -0.004

100 0.3 -0.099 -0.09 -0.099 0.000 0.000
0.6 -0.135 -0.116 -0.133 0.000 -0.001
0.9 -0.179 -0.142 -0.173 0.000 -0.002
0.99 -0.245 -0.165 -0.225 0.000 -0.003

20 20 0.3 -0.049 -0.048 -0.049 0.000 0.000
0.6 -0.070 -0.061 -0.069 0.000 -0.002
0.9 -0.093 -0.075 -0.091 0.000 -0.004
0.99 -0.130 -0.089 -0.124 0.000 -0.005

60 0.3 -0.050 -0.047 -0.050 0.000 0.000
0.6 -0.069 -0.062 -0.067 0.000 -0.001
0.9 -0.089 -0.076 -0.088 0.000 -0.002
0.99 -0.124 -0.089 -0.119 0.000 -0.002

100 0.3 -0.050 -0.048 -0.050 0.000 0.000
0.6 -0.067 -0.062 -0.067 0.000 -0.001
0.9 -0.087 -0.076 -0.087 0.000 -0.001
0.99 -0.122 -0.089 -0.118 0.000 -0.002
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PB do not capture the incidental parameter bias whereas the RD does. An

interesting result is that the RD outperforms the analytical bias correction

of Hahn and Kuersteiner (2002), especially as θ0 approaches 1.

Figures 1-4 report coverage rates of nominal 95% intervals for θ0 based

on the different bootstrap methods and the asymptotic normal distribution.

We consider intervals based on θ̂ (Figures 1 and 2) and intervals based on

its bias-corrected version
ˆ̂
θ (Figures 3 and 4). The bootstrap can yield both

equal-tailed and symmetric intervals whereas the normal distribution gen-

erates symmetric intervals by construction. Hence, we consider bootstrap

symmetric intervals in Figures 1 and 3 and bootstrap equal-tailed intervals

in Figures 2 and 4. Each figure contains nine plots, where each plot shows

the actual coverage rates across different values of n for a given combination

of T and θ0. Specifically, we vary T across rows (T ∈ {10, 20, 30}) and θ0

across columns (θ0 ∈ {0.3, 0.6, 0.9} for Figures 1-2 and, θ0 ∈ {0.6, 0.9, 0.99}
for Figures 3-4). All intervals are based on t-statistics studentized with an

heteroskedasticity-robust standard error.

Figure 1 shows that the asymptotic theory-based intervals that rely on

the biased fixed-effects estimator can be severely distorted, especially as n in-

creases. This is entirely expected because these intervals rely on the N (0, 1)

distribution, which does not take into account the presence of the incidental

parameter bias. We only include these intervals here as a benchmark for

the PB and the FD bootstrap methods, which also fail to capture this bias.

The results for these methods show that they indeed follow closely the in-

tervals based on the asymptotic standard normal distribution. Figure 1 also

shows that the RD bootstrap symmetric intervals outperform all the remain-

ing intervals, essentially eliminating the coverage distortions for θ0 = 0.3 and

0.6. For these values of θ0, the RD bootstrap shows very little sensitivity to

increases of n, which reflects the fact that it contains a built-in incidental

parameter bias correction. When θ0 = 0.9, the RD bootstrap rates deteri-

orate (with distortions increasing as a function of n), but it still dominates
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Figure 1.1: Coverage rates of nominal 95% symmetric intervals based on θ̂
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Figure 1.2: Coverage rates of nominal 95% equal-tailed confidence intervals based

on θ̂
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Figure 1.3: Coverage rates of nominal 95% symmetric intervals based on
ˆ̂
θ
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Figure 1.4: Coverage rates of nominal 95% equal-tailed confidence intervals based

on
ˆ̂
θ
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the remaining methods. Distortions decrease as a function of T . As Hahn

and Kuersteiner (2002) show, the limiting distribution of θ̂ (and its rate of

convergence) changes when θ0 = 1, which explains the deterioration of all

methods in the vicinity of one. The comparison of Figure 1 with Figure 2

shows that equal-tailed intervals based on the RD bootstrap outperform the

symmetric intervals, especially when θ0 is large (and close to one).

Figure 3 shows that asymptotic theory-based intervals that rely on the

bias-corrected estimator
ˆ̂
θ can be severely distorted in finite samples, espe-

cially if θ0 is large. In particular, large distortions arise when θ0 ∈ {0.9, 0.99}.
For instance, if T = 10 and θ0 = 0.9, the coverage rate of a 95% asymptotic

theory-based interval varies between 70% and 40% for values of n between

20 and 100. These rates increase to around 90% to 80% when T = 30. When

θ0 = 0.99, these numbers deteriorate by a lot, varying between 70% and 35%

when T = 30. When θ0 = 0.6, the asymptotic theory works much better, but

there are still noticeable coverage distortions when T = 10 (rates are around

90% in this case). By comparison, the RD bootstrap symmetric intervals are

much less distorted for all combinations of n, T and θ0. For θ0 ∈ {0.6, 0.9},
this method essentially eliminates all the coverage distortions noted for the

asymptotic theory-based intervals. When θ0 = 0.99, rates deteriorate but

not by much, remaining around 90% for all values of n and T . The PB

tends to follow the asymptotic theory-based intervals when θ0 = 0.6, but it

outperforms these intervals when θ0 increases. Symmetric intervals tend to

ouperform equal-tailed intervals for these two methods, as the comparison of

Figures 3 and 4 shows.

The FD bootstrap symmetric intervals are too conservative for all combi-

nations of n, T and θ0. The reason for this behavior is that the FD bootstrap

distribution is incorrectly centered at −D =
√
ρ (1 + θ0) > 0. Thus, the

bootstrap distribution of
√
nT
(

ˆ̂
θ∗fd −

ˆ̂
θ
)

is shifted to the right of that of
√
nT
(

ˆ̂
θ − θ0

)
, implying that the bootstrap quantiles of the absolute value

of
√
nT
(

ˆ̂
θ∗fd −

ˆ̂
θ
)

will be systematically larger than those of the original finite
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sample distribution (centered at zero). Instead, the equal-tailed FD intervals

tend to undercover, reflecting the fact that the bootstrap distribution is to

the right of the true distribution. As n increases, this pushes the center of

the bootstrap distribution further to the right, explaining the deterioration

of the results for large values of n.

1.6 Conclusion

The main contribution of this paper is to study the validity of the bootstrap

for inference on a stationary linear dynamic panel model with individual

specific fixed effects. We consider three bootstrap methods: the recursive-

design wild bootstrap, the fixed-design wild bootstrap and the pairs boot-

strap. These methods are a natural generalization to the panel context of the

bootstrap methods considered by Gonçalves and Kilian (2004) in the pure

time series autoregressive model.

A crucial difference between the pure time series context and the panel

context considered here is the presence of the incidental parameter bias due

to the estimation of the fixed effects. We show that only the recursive-design

bootstrap is able to capture this bias whereas the other two methods fail to

do so. Thus, in contrast with the recursive-design wild bootstrap, the fixed-

design and the pairs bootstrap do not consistently estimate the distribution

of the standard biased fixed effects estimator and cannot be used for bias

correction.

Although bootstrap intervals based on the biased fixed effects estimates

are asymptotically valid if obtained with the recursive-design bootstrap,

refinements can be obtained if bootstrap inference is based on the bias-

corrected estimates. Our results show that the recursive-design is valid in

this context whereas the fixed-design bootstrap is not. An interesting finding

is that the invalidity of the pairs bootstrap to estimate the distribution of

the biased fixed effects estimator does not prevent this method to be valid
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when applied to the bias-corrected estimates.

An important limitation of the present setup is the fact that we do not

allow for additional regressors xit.When these regressors are strictly exo-

geneous, a recursive-design bootstrap that fixes xit at their original values

should be able to capture the incidental bias. We have confirmed this by

simulations (not reported here). Providing a proof of this result is outside

the scope of this paper and is left for future research. The validity of the

pairs bootstrap when applied to a bias-corrected estimator under the pres-

ence of extra regressors has recently been studied by Kaffo (2013) in the more

general context of nonlinear dynamic models.

Further extensions of this work include the proposal of bootstrap methods

that are robust to nonstationarity, where a form of the grid bootstrap can

be useful, and a study of the higher order properties of the recursive-design

bootstrap using Edgeworth expansions. These extensions are outside the

scope of the present paper and are left for future research.
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Chapter 2

Bootstrap inference for

nonlinear dynamic panel data

models with individual fixed

effects

2.1 Introduction

It is well known that the presence of individual fixed effects in panel data

models generally causes the maximum likelihood estimator (MLE) of the

parameters of interest to be inconsistent in small T large n asymptotics.

Indeed, as noted by Neyman and Scott (1948) and Nickell (1981) in the linear

context, estimation of the fixed effects creates an incidental parameter bias

in the MLE that persists even as n → ∞ (and T is fixed). Nevertheless, in

large T , large n asymptotics, although the MLE is consistent, an asymptotic

bias appears in its limiting distribution and T grow at the same rate, as

shown by Hahn and Kuersteiner (2002). This result remains valid in the

general nonlinear context. However, nonlinearity additional problems. As

pointed out by Hahn and Newey (2004) and Hahn and Kuersteiner (2011b),
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nonlinearity introduces an asymptotic bias in the limiting distribution of

the MLE even in nonlinear static panel data models – all the regressors are

strictly exogenous – in contrast to the linear case. Moreover, the MLE is

generally severely biased in the nonlinear context compared to the linear

context for panel data of the same sizes (n and T ).

The presence of the incidental parameter bias has spurred interest in

bias-correction methods for nonlinear panel data models with individual

fixed effects. The most prominent examples in the literature are Hahn and

Kuersteiner (2011b), Arellano and Hahn (2006), Carro (2007), Fernandez-Val

(2009) and Dhaene and Jochmans (2014). Except for Dhaene and Jochmans

(2014), who have proposed the split-panel jackknife (SPJ) estimation, the

other bias reduction methods rely on analytical corrections of either the fixed

effects estimator, the moment equation or the concentrated likelihood. See

Arellano and Hahn (2005) and Moon, Perron, and Phillips (2014) for an

overview of the various approaches.

Our focus here is on inference rather than bias correction. Indeed, the

estimation problems introduced by the individual fixed effects also affect the

inference quality, since outside of automatic methods of bias correction such

as the jackknife, bias reduction methods generally use in the first step a biased

estimator to approximate the bias itself. This is theoretically justified in large

T asymptotics since the MLE is known to be consistent, but nevertheless

could lead to very imprecise estimates when T is relatively small, particularly

in the nonlinear case. That could explain Dhaene and Jochmans’s (2014)

simulations showing that asymptotic theory-based confidence intervals for

existing bias-corrected estimators can be severely distorted in finite samples.

These poor finite sample performances apply also to the half-panel jackknife

(HPJ) estimator. It is not surprising then that Dhaene and Jochmans (2014)

have proposed the bootstrap as an alternative, but without a theoretical

justification. This paper aims to provide such a theoretical justification. This

is important if we want to make sure that the bootstrap helps to construct



42

accurate and valid confidence intervals. We could consider other existing

bias-corrected estimators, but here we focus on the HPJ estimator for two

reasons. First, the HPJ estimator is both conceptually simple and easy

to apply. Second, it has better finite sample properties than competing

estimators (see Dhaene and Jochmans’s (2014) Monte Carlo experiment).

Dhaene and Jochmans’s (2014) bootstrap method amounts to resampling

the observations only in the cross-section, which is justified under cross sec-

tional independence. It is a natural extension of the traditional pairs boot-

strap in the linear context. This traditional non-parametric bootstrap ap-

proach is known to be generally valid under mild conditions in contrast to

a parametric bootstrap. Notice that we do not consider the wild bootstrap

because residuals do not always exist in the type of models considered here.

The asymptotic validity of the bootstrap for the HPJ estimator is established

in two steps. In the first step, we show that this bootstrap method is not

able to capture the incidental parameter asymptotic bias of the MLE when

both n and T diverge at the same rate. It fails to do so as its bootstrap

distribution is incorrectly centered at zero. Thus, this bootstrap method

does not consistently estimate the distribution of the MLE for nonlinear dy-

namic panel data model with individual specific fixed effects. However, as we

demonstrate in the second step, this method becomes asymptotically valid

when used to estimate the distribution of the half-panel jackknife estimator

provided we center the bootstrap HPJ estimator around the HPJ estimator

evaluated on the original sample (instead of the MLE).

The existing literature on bootstrapping nonlinear panel data model from

the inference perspective is surprisingly quite limited. One important excep-

tion is Sun and Kim (2013), who proposed a parametric bootstrap bias cor-

rected maximum likelihood (ML) estimator and a double bootstrap method

for inference as an alternative to asymptotic theory. Their bootstrap proce-

dure is a version of the recursive-design bootstrap studied in Chapter 1. More

recently, Gonçalves and Kaffo (2013) have studied several bootstrap meth-
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ods in a linear autoregressive context and showed the validity of the cross

section bootstrap when applied to the bias-corrected estimator of Hahn and

Kuersteiner (2002). Using the HPJ estimator, Galvão and Kato (2013) have

extended this result to linear panel data model under misspecification. The

present paper extends the results of those papers to the nonlinear dynamic

case.

The remainder of the paper is organized as followed. Section 2 introduces

the model and the assumptions, and provides a summary of the asymptotic

theory. In particular, we provide an alternative proof of the asymptotic

normality of the HPJ estimator of Dhaene and Jochmans (2014) under the

primitive conditions of Hahn and Kuersteiner (2011b). Section 3 provides

the bootstrap results for the MLE and shows that the bootstrap is not able

to capture the asymptotic bias term. Section 4, using the results of Section

3, proves the consistency of the bootstrap method for estimating the dis-

tribution of the HPJ estimator of Dhaene and Jochmans (2014). Section 5

contains Monte Carlo results. Section 6 applies the bootstrap to construct

valid intervals in a canonical model of female-labor force participation and

Section 7 concludes. All proofs are relegated to the Appendix.

2.2 Assumptions and asymptotic theory for

the fixed effects estimator and the half-

panel jackknife estimator when n, T →∞

To avoid imposing any structure on the relationship between regressors and

individual heterogeneity, we follow Hahn and Kuersteiner (2011b) and adopt

a fixed effects approach1. Suppose that we are given a panel data model with

common parameter of interest θ0 and individual fixed effects γi0, i = 1, . . . , n.

1We treat the sample realization of the individual effects {γi}i=1,...,n as parameters to
be estimated.
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The goal is to conduct inference on θ0. We observe data zit = (yit, xit) for

units i = 1, . . . , n and time periods t = 1, . . . , T . We define the maximized

estimator (fixed effects estimator henceforth) of (θ0, γ10, . . . , γn0) by

(
θ̂, γ̂1, . . . , γ̂n

)
= argmaxθ,γ1,...,γn

n∑
i=1

T∑
t=1

ψ (zit; θ, γi) ,

where ψ (·) is a known criterion function that does not depend on T . In

practice, ψ is often chosen to be the likelihood function for a particular

parametric family of distributions. We allow xit to contain lagged values

of yit, thus allowing for dynamic models. When the model contains lagged

endogenous regressors and ψ is a likelihood function, then it is a likelihood

function conditional on the lagged endogenous regressors. Thus, the estima-

tors θ̂, γ̂1, . . . , γ̂n are the MLEs conditional on yi0. To simplify notation, we

assume dim(γi) = 1. It is also useful to recall that the fixed effects estima-

tor θ̂ is formally obtained by concentrating out the fixed effects γi. Letting

γ̂i (θ) ≡ argmaxa
∑T

t=1 ψ (zit; θ, a), the fixed effects estimator of θ0 can be

rewritten as

θ̂ = argmaxθ

n∑
i=1

T∑
t=1

ψ (zit; θ, γ̂i (θ)) .

As shown in the literature, when T is fixed and n large, γ̂i is inconsis-

tent under regularity conditions. This inconsistency carries over to θ̂ and

the asymptotic bias of θ̂ is typically of order T−1. This is the well known

incidental parameters problem noted by Neyman and Scott (1948). However,

when n and T → ∞ and n/T → ρ < ∞, θ̂ is consistent and asymptotically

normal but its asymptotic distribution will be incorrectly centered when n

and T grow at the same rate.

To introduce the half-panel jackknife estimator proposed by Dhaene and

Jochmans (2014), suppose for simplicity that T is even, allowing for partition

{1, . . . , T} into two half-panels, S1 = {1, . . . , T/2} and S2 = {T/2 + 1, . . . , T}.
If we let θ̄1/2 = 1

2

(
θ̂S1 + θ̂S2

)
where θ̂Sj is the fixed effects estimator obtained
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from the half-panel Sj, j = 1, 2, then the half-panel jackknife estimator is

given by

θ̂1/2 = 2θ̂ − θ̄1/2. (2.1)

Under high-level conditions, Dhaene and Jochmans (2014) have shown that

when n, T → ∞ and n/T → ρ < ∞, θ̂1/2 is asymptotically normal and its

limiting distribution is free from the incidental parameters bias. However,

for showing bootstrap results, we need more primitive conditions. That is

why in the following, we adopt the more primitive assumptions of Hahn and

Kuersteiner (2011b) and provide a new proof for this result. Let us first

define:

uit (θ, γi) =
∂ψ (zit; θ, γi)

∂θ
,

vit (θ, γi) =
∂ψ (zit; θ, γi)

∂γi
,

Uit (θ, γi) ≡
∂ψ (zit; θ, γi)

∂θ
− ρi0

∂ψ (zit; θ, γi)

∂γi
,

ρi0 = E

[
∂2ψ (zit; θ0, γi0)

∂θ∂γi

]
/E

[
∂2ψ (zit; θ0, γi0)

∂γ2
i

]
,

Ii = −E
[
∂Uit (θ, γi)

∂θ′

]
.

We use the short-hand notation uit ≡ uit (θ0, γi0) and vit ≡ vit (θ0, γi0). We

will denote by uitγi and uitγiγi the first and second derivatives of uit with re-

spect to γi. Likewise, we will denote by vitγi the derivative of vit with respect

to γi.

Following Hahn and Kuersteiner (2011b), we adopt the following set of as-

sumptions:

Assumption A

(1) For each η > 0, infi
[
G(i) (θ0, γi0)− sup{(θ,γ):‖(θ,γ)−(θ0,γi0)‖>η}G(i) (θ, γ)

]
>
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0, where G(i) (θ, γi) ≡ E [ψ (zit; θ, γi)] and ‖·‖ denotes the Euclidian

norm.

(2) n, T →∞ such that n
T
→ ρ where 0 < ρ <∞.

(3) (i) {zit, t = 1, 2, . . . , } are independent across i; (ii) For each i, {zit, t = 1, 2, . . . , T}
is a stationary mixing sequence; (iii) supi |αi (m)| ≤ Cam for some a

such that 0 < a < 1 and some C > 0, where Ait ≡ σ (zit, zit−1, zit−2, . . .),

Bit ≡ σ (zit, zit+1, zit+2, . . .) and

αi (m) ≡ sup
t

sup
A∈Ait,B∈Bit+m

|P (A ∩B)− P (A)P (B)| .

(4) Let ψ (zit, φ) be a function indexed by parameter φ = (θ, γ) ∈ intΦ,

where Φ is a compact, convex subset of Rp, p = dim (φ) + 1, and

R = dim (θ). Let ν = (ν1, . . . , νp) be a vector of nonnegative integers νi,

|ν| =
∑p

j=1 νj and Dνψ (zit, φ) = ∂|ν|ψ (zit, φ) /
(
∂φν11 . . . ∂φ

νp
p

)
. There

exists a function M (zit) such that ‖Dνψ (zit, φ1)−Dνψ (zit, φ2)‖ ≤
M (zit) ‖φ1 − φ2‖ for all φ1, φ2 ∈ Φ and |ν| ≤ 5. The function M (zit)

satisfies supφ∈Φ ‖Dνψ (zit, φ)‖ ≤M (zit) and

sup
i
E
[
|M (zit)|(10+10q)/(1−10v)+δ

]
<∞

for some integer q ≥ p/2 + 2, some δ > 0, and 0 < v < 1/10.

(5) Let λiT denote the smallest eigenvalue of ΣiT = Var
(
T−1/2

∑T
t=1 Uit (θ0, γi0)

)
.

We assume that infi infT λiT > 0.

(6) infi |E [∂vit (zit;φ) /∂γi]| > 0 for all φ ∈ intΦ.

(7) Let µi1 ≤ . . . ≤ µik ≤ . . . ≤ µiR be the eigenvalues of Ii in as-

cending order. Assume that (i) 0 < infi µi1 ≤ supi µiR < ∞; (ii)

limn→∞ n
−1
∑n

i=1 Ii exists; (iii) letting I = limn→∞ n
−1
∑n

i=1 Ii, we as-

sume that I is positive definite.
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Assumptions (1)-(5) and (7) are as in Hahn and Kuersteiner (2011b). As-

sumption (6) is slightly stronger than their corresponding assumption. We

need it to prove the consistency of the fixed effects estimator in the bootstrap

world. Hahn and Kuersteiner (2011b) provide a detailed discussion of these

assumptions and show that they hold for several popular nonlinear models,

including dynamic binary-choice and dynamic Tobit models with exogenous

covariates.

Under these assumptions, Hahn and Kuersteiner (2011b) have shown that

√
nT
(
θ̂ − θ0

)
→d N

(
β
√
ρ, I−1ΩI−1

)
,

where f vU
γ

i ≡
∑∞

l=−∞Cov
(
vit, Uit−lγi

)
, f vvi ≡

∑∞
l=−∞Cov (vit, vit−l),

ϕvU
γ

i ≡ limn−1
∑n

i=1

(
E
[
vitγi

])−1
f vU

γ

i , ϕvvi ≡ 1
2

limn−1
∑n

i=1

(
E
[
vitγi

])−2
E
[
Uitγiγi

]
f vvi ,

Ψ = ϕvU
γ

i − ϕvvi , β = −I−1Ψ and, Ω ≡ limn→∞
1
n

∑n
i=1 Var

(
1√
T

∑T
i=1 Uit

)
.

β
√
ρ is the asymptotic incidental parameters bias. The previous result fol-

lows from the following Taylor series expansion:

√
nT
(
θ̂ − θ0

)
=

(
1

n

n∑
i=1

Ii

)−1(
1√
nT

n∑
i=1

T∑
t=1

Uit

)

−
√
n

T

(
1

n

n∑
i=1

Ii

)−1
 1

n

n∑
i=1

 1√
T

T∑
t=1

vit

E
[
∂vit
∂γi

]
 1√

T

T∑
t=1

Uγi
it −

E
(
Uitγiγi

)
2E
[
∂vit
∂γi

] vit
+oP (1) .

As they pointed out, the asymptotic bias comes from the term in curly brack-

ets. It is obvious that similar expansions will hold for the two half-panel
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jackknife estimators and therefore, one can show that

√
nT
(
θ̂1/2 − θ0

)
=
√
nT

(
2θ̂ − 1

2

(
θ̂1 + θ̂2

)
− θ0

)
= 2

√
nT
(
θ̂ − θ0

)
−
√

2

2

√
nT1

(
θ̂1 − θ0

)
−
√

2

2

√
nT1

(
θ̂2 − θ0

)
=

(
1

n

n∑
i=1

Ii

)−1(
1√
nT

n∑
i=1

T∑
t=1

Uit

)

−2

√
n

T

(
1

n

n∑
i=1

Ii

)−1
1

n

n∑
i=1

ZiT + oP (1) ,

where ZiT = Z1iT + Z2iT , T1 = T/2 and

Z1iT =

 1√
T

T1∑
t=1

vit

E
[
∂vit
∂γi

]
 1√

T

T∑
t=T1+1

Uγi
it −

E
(
Uitγiγi

)
2E
[
∂vit
∂γi

] vit
 ,

Z2iT =

 1√
T

T∑
t=T1+1

vit

E
[
∂vit
∂γi

]
 1√

T

T1∑
t=1

Uγi
it −

E
(
Uitγiγi

)
2E
[
∂vit
∂γi

] vit
 .

The half-panel jackknife removes the two sources for the asymptotic bias

identified by Hahn and Kuersteiner (2011b). Particularly, it deletes the rele-

vant (i) covariance of vit and Uγi
is and (ii) variance and autocovariance of vit.

We show in Appendix A that 1
n

∑n
i=1 ZiT →P 0 and therefore, we have the

following results:

Theorem 2.2.1. Under Assumption A, we have

√
nT
(
θ̂1/2 − θ0

)
→d N

(
0, I−1ΩI−1

)
,

where I ≡ limn→∞
1
n

∑n
i=1 Ii and Ω = limn,T→∞

1
n

∑n
i=1 Var

(
1√
T

∑T
i=1 Uit

)
.

Theorem 2.2.1 corresponds to Dhaene and Jochmans’s (2014) Theorem 1

applied to the half-panel jackknife estimator but now under the more prim-
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itive assumptions of Hahn and Kuersteiner (2011b). It simply states that

the half-panel jackknife eliminates the bias of order T−1 without inflating

the asymptotic variance of the fixed effects estimator. In principle, the nor-

mal approximation could be used to construct confidence intervals. However,

these confidence intervals can be very size distorted in finite samples as one

can see from our Monte Carlo experiment and from Dhaene and Jochmans

(2014).

2.3 Bootstrap results for the fixed effects es-

timator

In this section, we study the asymptotic validity of the pairs bootstrap when

applied to the fixed effects estimator θ̂. This bootstrap method amounts

to constructing bootstrap samples by resampling whole cross sectional units

with replacement as in Kapetanios (2008). Since we assume cross sectional

independence but temporal dependence, such a resampling scheme is of great

interest as it allows the application of i.i.d. bootstrap resampling rather than

block bootstrap resampling. It is well known that the former enables superior

approximation to distributions of statistics compared to the latter. More

recently, this method was also studied by Gonçalves and Kaffo (2013). They

proved that it does not capture the incidental parameter bias appearing in the

limiting distribution of the fixed effects OLS estimator of the autoregressive

parameter in a linear dynamic panel data models with individual fixed effects.

Our contribution here is to analyze the properties of this method for nonlinear

dynamic panel models. In particular, we show that, as in the autoregressive

linear case, this bootstrap method does not capture the incidental parameter

bias.

We assume that our bootstrap procedure resamples only in the cross-

sectional dimension. More specifically, we generate z∗i ∼ i.i.d. {zi : i = 1, . . . , n} ,
where z∗i = (z∗i1, . . . , z

∗
iT ) and zi = (zi1, . . . , ziT ); i.e. letting I1, . . . , In be i.i.d.
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Uniform on {1, . . . , n}, we have z∗it = zIit. Thus,

(
θ̂∗, γ̂∗1 , . . . , γ̂

∗
n

)
= argmaxθ,γ1,...,γn

n∑
i=1

T∑
t=1

ψ (z∗it; θ, γi) .

Notice that given the resampling scheme, while θ̂ is the bootstrap coun-

terpart of θ0, γ∗i0 ≡ γ̂Ii is the bootstrap counterpart of γi0. Let γ̂∗i (θ) ≡
argmaxa

∑T
t=1 ψ (z∗it; θ, a). It is also obvious that, γ̂∗i (θ) = γ̂Ii (θ) for all θ

where γ̂i (θ) ≡ argmaxa
∑T

t=1 ψ (zit; θ, a). Therefore, θ̂∗ can be rewritten as

θ̂∗ = argmaxθ

n∑
i=1

T∑
t=1

ψ (z∗it; θ, γ̂
∗
i (θ)) .

We also introduce the following bootstrap notations:

u∗it (θ, γi) =
∂ψ (z∗it; θ, γi)

∂θ
,

v∗it (θ, γi) =
∂ψ (z∗it; θ, γi)

∂γi
.

Our first main result is given in Theorem 2.3.1. It simply states that the

pairs bootstrap does not capture the incidental parameters bias.

Theorem 2.3.1. Under Assumption A, we have

√
nT
(
θ̂∗ − θ̂

)
→d∗ N

(
0, I−1ΩI−1

)
in probability

with I and Ω defined as in Theorem 2.2.1.

To understand the reason why the pairs bootstrap fails in capturing the

bias, note that the pairs bootstrap fixed effects estimator has the following

representation

√
nT
(
θ̂∗ − θ̂

)
= I∗−1

nT

1√
nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
, (2.2)



51

where

I∗nT =
1

nT

n∑
i=1

T∑
t=1

u∗itθ (θ̃∗, γ̂∗i (θ̃∗))−
1
T

∑T
t=1 u

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))v∗itθ (θ̃∗, γ̂∗i (θ̃∗))


is the bootstrap counterpart of In ≡ 1

n

∑n
i=1 Ii and θ̃∗ lies between θ̂∗ and θ̂.

Given that resampling only occurs in the cross sectional dimension and also

that γ∗i0 ≡ γ̂Ii , we can define

s∗i ≡
1√
T

T∑
t=1

u∗it

(
θ̂, γ∗i0

)

as being the bootstrap version of si ≡ 1√
T

∑T
t=1 uit

(
θ̂, γ̂i

)
, i.e. s∗i = sIi for

all i = 1, . . . , n. It follows that

√
nT
(
θ̂∗ − θ̂

)
= I∗−1

nT

1√
n

n∑
i=1

s∗i = I−1 1√
n

n∑
i=1

s∗i︸ ︷︷ ︸
→d∗N(0,I−1ΩI−1)

+ oP ∗ (1) ,

given that I∗nT →P ∗ I, in probability. Since I1, . . . , In are i.i.d. uniformly dis-

tributed on {1, . . . , n}, {s∗i : i = 1, . . . , n} is i.i.d. (conditional on the original

observations) and a bootstrap CLT holds for 1√
n

∑n
i=1 s

∗
i , yielding an asymp-

totic normal distribution for
√
nT
(
θ̂∗ − θ̂

)
. Nevertheless, the asymptotic

bootstrap population mean turns out to be zero because

E∗ (s∗i ) =
1

n

n∑
i=1

si =
1

n

1√
T

n∑
i=1

T∑
t=1

uit

(
θ̂, γ̂i

)
= 0,

by the first order condition for the fixed effects estimator. Thus, the limiting

bootstrap distribution of
√
nT
(
θ̂∗ − θ̂

)
is (incorrectly) centered at zero.
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2.4 Bootstrapping the half-panel jackknife es-

timator

The results of Section 2.3 show that bootstrap inference on θ0 based on the

pairs bootstrap fixed effects estimator θ̂∗ is not valid. However, as in the lin-

ear autoregressive case (see chapter 1), this bootstrap method becomes valid

when applied to the half-panel jackknife estimator. The main contribution of

this section is to prove the asymptotic validity of the pairs bootstrap when

applied to θ̂1/2. We assume again that T is even and partition {1, . . . , T}
into two half-panels, S1 = {1, . . . , T/2} and S2 = {T/2 + 1, . . . , T}. If we let

θ̄∗1/2 = 1
2

(
θ̂∗S1

+ θ̂∗S2

)
where θ̂∗Sj is the fixed effects estimator obtained from

the bootstrap half-panel Sj, j = 1, 2, then the bootstrap half-panel jackknife

estimator is given by

θ̂∗1/2 = 2θ̂∗ − θ̄∗1/2. (2.3)

Our goal is to show the consistency of the bootstrap distribution of
√
nT
(
θ̂∗1/2 − θ̂1/2

)
for the distribution of

√
nT
(
θ̂1/2 − θ0

)
. Therefore, it suffices to show that

√
nT
(
θ̂∗1/2 − θ̂

)
→d∗ N (0, I−1ΩI−1), in probability. This is an immediate

consequence of (2.2) and the proof of Theorem 2.3.1. Heuristically, by re-

placing θ̂∗1/2 and θ̂1/2 with (2.3) and (2.1) respectively, we have that

√
nT
(
θ̂∗1/2 − θ̂1/2

)
= 2

√
nT
(
θ̂∗ − θ̂

)
−
√

2

2

√
nT1

(
θ̂∗1 − θ̂1

)
−
√

2

2

√
nT1

(
θ̂∗2 − θ̂2

)
= 2I−1 1√

nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
−
√

2

2
I−1 1√

nT1

n∑
i=1

T1∑
t=1

u∗it

(
θ̂, γ∗i0

)
−
√

2

2
I−1 1√

nT1

n∑
i=1

T∑
t=T1+1

u∗it

(
θ̂, γ∗i0

)
+ oP ∗ (1)

= I−1 1√
nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
+ oP ∗ (1)→d∗ N

(
0, I−1ΩI−1

)
,
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where T1 = T/2 and the distributional result in the last equality follows

from the proof of Theorem 2.3.1. Thus, although the pairs bootstrap does

not provide a consistent estimator of the distribution of
√
nT
(
θ̂ − θ0

)
(be-

cause its asymptotic distribution is incorrectly centered at zero), the pairs

bootstrap distribution of
√
nT
(
θ̂∗1/2 − θ̂1/2

)
is consistent for the distribution

of
√
nT
(
θ̂1/2 − θ0

)
. The formal result is stated in the following theorem.

Theorem 2.4.1. Under the same assumptions as in Theorem 2.3.1, we have

that

sup
x∈R

∣∣∣P ∗ (√nT (θ̂∗1/2 − θ̂1/2

)
≤ x

)
− P

(√
nT
(
θ̂1/2 − θ0

)
≤ x

)∣∣∣→P 0.

Theorem 2.4.1 justifies using the bootstrap distribution of
√
nT
(
θ̂∗1/2 − θ̂1/2

)
to consistently estimate the distribution of

√
nT
(
θ̂1/2 − θ0

)
.

2.5 Simulations

In order to evaluate the bootstrap’s finite sample performance, we conduct

some Monte Carlo experiments. We focus on the following standard dynamic

binary-choice model:

yit = 1 {αi0 + ρ0yit−1 + β0xit ≥ uit} , t = 1, . . . , T − 1, i = 1, . . . , n,

where uit ∼ i.i.d. N (0, 1). We consider two data generating processes

(DGPs) for the strictly exogenous regressor xit and the individual fixed ef-

fects αi0 . The first DGP is similar to Hahn and Kuersteiner (2011b) probit

design with i.i.d. exogenous regressor. We generate xit ∼ i.i.d. N (0, 1),

αi0 = 3 (xi0 + xi1 + xi2 + xi4) /4 and yi0 = 1 {αi0 + β0xi0 ≥ ui0}. In the sec-

ond DGP, we generate αi0 ∼ i.i.d. N (0, 1) and

xit = .5αi0 + .5xit−1 + vit, t = 1, . . . , T − 1, i = 1, . . . , n.
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As in Dhaene and Jochmans (2014) Monte Carlo experiment, yi0 and xi0 are

drawn from their respective stationary distributions. Notice that in both

DGPs, the unobserved heterogeneity is correlated with the exogenous vari-

able. We set n = 500; T = 6, 9, 12, 15; ρ0 = .5, 1; β0 = .5; and ran 1,000

Monte Carlo replications and 399 bootstrap draws.

Table 1 and 2 report coverage rates of nominal 95% intervals for (ρ0, β0)

based on the bootstrap and the asymptotic normal distribution. We consider

both intervals based on the MLE
(
ρ̂, β̂
)

and intervals based on the HPJ esti-

mator
(
ρ̂1/2, β̂1/2

)
. The first 4 rows of each table pertains to (ρ0, β0) = (.5, .5)

while the four last rows pertain to (ρ0, β0) = (1, .5). Asymptotic theory-

based confidence intervals are based on plug-in estimates of the asymptotic

variance, computed from the profile Hessian whereas bootstrap confidence

intervals are computed using both percentile and percentile-t methods.

Table 2.1: Probit model with i.i.d. regressors

ρ̂ ρ̂1/2 β̂ β̂1/2

T ρ0 Asy Perc Perc-t Asy Perc Perc-t Asy Perc Perc-t Asy Perc Perc-t

6 0.5 0.0 0.0 0.0 18.7 48.0 48.2 21.0 30.6 11.1 53.0 79.6 80.0
9 0.5 0.0 0.0 0.0 82.6 91.4 91.5 30.8 39.1 20.3 85.4 90.5 90.4

12 0.5 0.1 0.1 0.0 90.1 94.5 94.5 43.1 46.7 31.9 92.6 94.6 94.5
15 0.5 0.5 0.5 0.2 92.1 93.8 94.0 46.1 50.2 35.7 94.2 95.2 95.2

6 1 0.0 0.0 0.0 39.9 70.6 70.1 24.4 32.9 10.4 64.1 87.9 88.4
9 1 0.0 0.0 0.0 88.1 95.3 95.0 34.0 41.5 20.0 87.1 93.4 93.4

12 1 0.0 0.0 0.0 90.5 94.6 94.6 44.9 50.9 27.8 92.8 94.6 94.4
15 1 0.4 0.4 0.1 92.9 95.4 95.3 46.3 50.5 32.5 94.4 94.8 95.3

As predicted by the theory, asymptotic theory- and bootstrap-based con-

fidence intervals that rely on the MLE are severely distorted. In additional

simulations (not reported here), we found that the bootstrap is not able to

capture the bias of the MLE if one uses the traditional bootstrap bias correc-

tion formula E∗
(
θ̂∗ − θ̂

)
to approximate E

(
θ̂ − θ0

)
. Indeed, E∗

(
θ̂∗ − θ̂

)
was close to zero for both models, implying that the bootstrap distribution is

incorrectly centered at zero. This explains why the performance of bootstrap

intervals based on the MLE is similar to that of asymptotic theory-based in-
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tervals since the later does not also take into account the presence of the

incidental parameter bias.

Table 2.2: Probit model with AR(1) regressor

ρ̂ ρ̂1/2 β̂ β̂1/2

T ρ0 Asy Perc Perc-t Asy Perc Perc-t Asy Perc Perc-t Asy Perc Perc-t

6 0.5 0.0 0.0 0.0 22.7 54.4 54.4 5.3 9.7 3.2 58.0 90.1 90.4
9 0.5 0.0 0.0 0.0 79.9 90.2 89.8 7.1 13.2 4.6 82.3 94.5 94.9

12 0.5 0.0 0.0 0.0 91.0 95.0 95.0 11.1 15.0 7.8 90.1 95.9 96.1
15 0.5 0.3 0.3 0.0 92.1 95.8 95.8 16.0 20.6 11.9 90.6 95.3 95.4

6 1 0.0 0.0 0.0 48.6 78.7 78.2 6.5 11.2 2.7 67.3 94.9 95.0
9 1 0.0 0.0 0.0 86.1 93.3 93.1 8.8 14.6 4.5 83.9 95.5 95.6

12 1 0.0 0.1 0.0 91.3 94.4 94.5 11.0 16.4 6.9 88.6 95.2 95.4
15 1 0.2 0.2 0.0 91.2 94.0 94.0 16.0 21.5 9.9 90.7 96.1 96.0

On the other hand, we see that the confidence intervals based on the

HPJ estimator have much improved coverage compared to the MLE, espe-

cially when computed by bootstrapping. The advantage of the bootstrap on

the asymptotic theory is more important when T is small. For instance, if

T = 9, the coverage rate of a 95% bootstrap-based confidence intervals of θ0

are approximately 10% higher than the coverage of asymptotic theory-based

intervals for both DGPs. The poor performances of both asymptotic theory-

and bootstrap-based confidence intervals for the HPJ estimator when T is

small (T = 6) may be explained by the fact the limiting distribution of the

HPJ estimator is derived under the asymptotics where T grows to infinity at

the same rate as n.

2.6 Empirical application: Female labor-force

participation

This section applies our bootstrap method to the inter-temporal labor force

participation of married women and allows us to construct valid confidence

intervals. Female labor-force participation may prove especially important
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in the years to come, as an ageing population will place an increasingly

severe burden on public finances of developed countries. Old age pension

expenditure will increase, as will government outlays for health care. Low

birth rates will add to the problem, and a shrinking working-age population

will have to provide for an increasing number of pensioners. Higher labor

force participation and longer careers are important parts of the solution. In

addition to reforming pension schemes, many countries now see a need to

make use of the large unused work potential among women.

The data used in the analysis pertain to the nine calendar years 1979-1988

of the Panel Study of Income Dynamics (PSID), corresponding to waves 13-

22 of the PSID. The sample consists of 1461 continuously married couples,

aged between 18 and 60 in 1985, and the husband is a labor force participant

in each of the sample years. During the sampling period, 664 women changed

participation status at least once. Following Dhaene and Jochmans (2014),

we consider a fixed effect approach. The empirical specification for modeling

intertemporal participation decisions involves the following dynamic reduced

form specification:

yit = 1 {αi0 + ρ0yit−1 + β0xit ≥ uit} , uit i.i.d. N (0, 1),

where yit is an indicator for labor-force participation of individual i at time

t and xit is a vector of time-varying covariates. The time-varying covariates

include the number of children of at most two years of age (# children 0-2),

between 3 and 5 years of age (# children 3-5), and between 6 and 17 years

of age (# children 6-17), as well as the log of the husband’s earnings (log

husband income), a quadratic function of age, and a set of year dummies.

This setup coincides with that of Dhaene and Jochmans (2014), Fernandez-

Val (2009) and is similar to that of Carro (2007).

Table 3 shows the estimation results by MLE and HPJ estimator with

the associated asymptotic and bootstrap confidence intervals; 999 bootstrap

replications were used. In line with the literature, there are significant differ-
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Table 2.3: Female labor-force participation: fixed-effect probit estimates and
confidence intervals

Dependant variable: participation

Regressor Estimates Asymptotic theory Percentile Percentile-t

MLE

Lagged participation 0.757 [0.672 0.841] [0.667 0.846] [0.667 0.847]
# children 0-2 -0.560 [-0.674 -0.445] [-0.730 -0.390] [-0.716 -0.403]
# children 3-5 -0.300 [-0.407 -0.194] [-0.445 -0.155] [-0.442 -0.158]
# children 6-17 -0.091 [-0.176 -0.006] [-0.202 0.020] [-0.201 0.019]
log husband income -0.241 [-0.350 -0.131] [-0.370 -0.112] [-0.368 -0.114]

HPJ

Lagged participation 1.322 [1.229 1.414] [1.204 1.440] [1.201 1.443]
# children 0-2 -0.720 [-0.845 -0.596] [-0.916 -0.525] [-0.911 -0.529]
# children 3-5 -0.414 [-0.531 -0.296] [-0.642 -0.185] [-0.631 -0.196]
# children 6-17 -0.119 [-0.212 -0.026] [-0.318 0.081] [-0.321 0.083]
log husband income -0.284 [-0.399 -0.169] [-0.453 -0.115] [-0.451 -0.117]

ences among the estimated parameters. The MLE underestimates the effect

of the lagged participation while the adjustment to the other coefficients

is smaller. Although bootstrap-based confidence intervals are always larger

than asymptotic theory-based confidence intervals, both types of intervals are

very similar for the MLE but significantly different for the HPJ estimator.

In the case of MLE, it confirms our theoretical results since both intervals

rely on critical values of distributions incorrectly centered at zero. The fact

that bootstrap intervals based on the HPJ estimator are significantly larger

than their asymptotic theory counterparts is also in line with our simulation

findings, suggesting that the latter will generally undercover compared to

the former, especially when T is relatively small (e.g. T = 9). Basically,

asymptotic theory-based confidence intervals will underestimate the uncer-

tainty about the parameters. This last result illustrates the superiority of

the bootstrap compared to the asymptotic theory, even after applying a bias

correction method.

Interestingly, the coefficient on the number of children between 6 and 17

years of age is significantly different from zero according to the asymptotic

theory (zero is not included in the asymptotic theory-based confidence inter-

val) while the bootstrap concludes that it is not the case (zero is included in

the bootstrap confidence interval). This result underscores the importance
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of having an accurate confidence interval. It means that, ceteris paribus, in-

creasing the number of children of at least 6 years old does not affect women’s

labor participation. In contrast to the prediction of the asymptotic theory,

this last result is intuitive given that children generally start to go to school

at 6 years of age and thus, women are less time constrained and have more

free time for searching and keeping a job. From the policymaker point of

view, it implies that in designing incentive measures to encourage female la-

bor participation, focusing on women with children of at most 5 years of age

– rather than all women – was enough.

2.7 Conclusion

In this paper we studied the validity of the bootstrap for inference in a

stationary nonlinear dynamic panel model with individual specific fixed ef-

fects. Proposed by Dhaene and Jochmans (2014) as an alternative to the

asymptotic theory, this bootstrap method amounts to resampling of the ob-

servations only from the cross-section. We show that this bootstrap method

is not able to capture the incidental parameter asymptotic bias of the MLE

when both n and T are large. It fails to do so as its bootstrap distribution

is incorrectly centered at zero. Thus, this bootstrap method do not consis-

tently estimate the distribution of the MLE for nonlinear dynamic panel data

model with individual specific fixed effects. However, an interesting finding

is that the invalidity of the pairs bootstrap to estimate the distribution of

the biased MLE does not prevent this method to be valid when applied to

the HPJ estimator. In Monte Carlo experiments, bootstrap confidence inter-

vals that rely on the HPJ estimator perform well in relatively short panels

with much improved coverage relative to asymptotic theory-based intervals.

Questions for future research include the proposal of bootstrap methods that

are robust to nonstationarity and/or misspecification of the likelihood.
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Chapter 3

Bootstrap Inference for

Instrumental Variable Models

with Many Weak Instruments

3.1 Introduction

Empirical applications of instrumental variables (IV) estimation often pro-

duce imprecise results. It is now well known in the literature on the problem

of weak instruments or weak identification that standard first-order asymp-

totic theory breaks down when the instruments are weakly correlated with

the endogenous regressors, and commonly used IV estimators (e.g. two-stage

least squares (TSLS) and limited information maximum likelihood (LIML)

estimators) can lose consistency; see Dufour (1997) and Staiger and Stock

(1997) among others. However, as has been demonstrated by Chao and

Swanson (2005), having many instruments in such weakly identified situa-

tion can help to improve estimation accuracy. Indeed, using a large number

of instruments can enhance the growth of the so-called concentration param-

eter even if each individual instrument is only weakly correlated with the

endogenous explanatory variables. Chao and Swanson (2005) show that for
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certain well-centered IV estimators such as LIML, consistency can be estab-

lished even when instrument weakness is such that the rate of growth of the

concentration parameter, rn, is slower than l, the number of instruments,

and possibly much slower than the sample size n, provided that
√
l/rn → 0

as n → ∞. Hansen, Hausman, and Newey (2008) reveal in an application

from Angrist and Krueger (1991) that using 180 instruments, rather than 3,

substantially improves estimator accuracy.

Moreover, for implementing Wald-type inferences in the context of many

weak instruments, Hansen, Hausman, and Newey (2008) derive asymptotic

normality of LIML and its modified version proposed by Fuller (1977), and

provide Corrected Standard Errors (CSE) for these estimators. The CSE are

an extension of those of Bekker (1994) and are asymptotically correct under a

variety of frameworks proposed in the IV literature, including the many weak

instrument sequence of Chao and Swanson (2005) and Stock and Yogo (2005),

as well as the many instrument sequence of Kunitomo (1980), Morimune

(1983) and Bekker (1994). Recently, the CSE have been further extended by

Chao, Swanson, Hausman, Newey, and Woutersen (2012), Hausman, Newey,

Woutersen, Chao, and Swanson (2012) to the heteroskedastic case and by

Newey and Windmeijer (2009) to continuously updating GMM (CUE) and

other generalized empirical likelihood (GEL) estimators.

However, our simulation evidence shows that CSE-based asymptotic Wald

(t) tests can be significantly distorted in finite samples, especially in the case

of strong endogeneity. This provides motivation for the use of bootstrap tests

instead of the CSE-based asymptotic Wald (t) tests to improve the quality

of inference. Furthermore, the CSE have a rather tedious form and thus can

be difficult to implement in practice; this also motivates the use of bootstrap

methods. In particular, the bootstrap would help to avoid computing the

tedious form of the CSE if percentile type bootstrap approximations are

valid under many/many weak instruments.

The existing literature on bootstrapping IV models turns out to be rather
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limited. Moreira, Porter, and Suarez (2009) provide theoretical proof that

guarantees the bootstrap validity of Kleibergen (2002)’s score statistic even

under Staiger and Stock (1997)’s weak instrument asymptotics, in which the

coefficients of the instruments are specified to be in an n−1/2 shrinking neigh-

borhood of zero and the number of instruments is kept fixed. Davidson and

MacKinnon (2008, 2010) study various bootstrap procedures (pairs boot-

strap and residual-based bootstrap) for hypothesis testing in the IV model.

Their extensive simulation results show that the bootstrap approaches typi-

cally perform very well relative to the normal approximation, including the

case in which instruments are quite weak. Moreover, in their recent paper,

Davidson and MacKinnon (2014) study asymptotic and bootstrap methods of

constructing confidence sets in a similar context. Their simulation evidence

reveals that bootstrap confidence sets obtained by inverting the t-statistic

based on LIML estimates perform very well relative to confidence sets using

asymptotic critical values. However, all these papers focus on the case where

the number of instruments is kept small relative to the sample size.

In this paper, we study bootstrap-based inference methods under many/many

weak instrument sequences. Based on the impressive results for the models

with a small number of instruments, one may expect the bootstrap to also

perform well when the number of instruments becomes large. Surprisingly,

we find that the bootstrap will typically fail in this context. More specifi-

cally, we study residual-based bootstrap procedures for the LIML estimator,

which attains consistency under much weaker conditions than TSLS in the

current asymptotic framework. We first consider a standard residual-based

bootstrap, in which the residuals of the structural-form equation are obtained

by using LIML, and in which the residuals of the reduced-form equation are

obtained by using the least squares estimator. We analytically demonstrate

that this procedure is not asymptotically valid in that it cannot consistently

estimate the limit distribution of LIML. In particular, when l is of the same

order of magnitude as rn, the bootstrap analogue of LIML converges at the



62

same rate as the original LIML, but the bootstrap limit distribution has an

asymptotic variance different from the original one. The inconsistency be-

comes even more severe when l/rn →∞; in this case, the bootstrap analogue

converges at a rate faster than the original LIML. The foremost reason of

this bootstrap failure is that the standard procedure cannot mimic well the

identification strength in the original sample. We also consider the restricted

efficient (RE) bootstrap procedure of Davidson and MacKinnon (2008, 2010,

2014) that generates bootstrap data under the null (Restricted) and uses an

efficient estimator of the coefficient of the reduced-form equation (Efficient).

With a relatively small number of instruments, Davidson and MacKinnon

(2008, 2010, 2014) show that this bootstrap procedure performs very well

relative to the standard bootstrap procedure. Here, we establish that in the

current context the RE bootstrap is also invalid in general. However, we also

find that it effectively mimics more key parameters in the limit distribution of

LIML than the standard bootstrap, and hence exhibits relatively less distor-

tion in finite samples. Finally, we propose a modified RE bootstrap procedure

and justify that it provides valid distributional approximation for LIML un-

der many/many weak instruments. More precisely, we modify the RE boot-

strap by accurately re-scaling the residuals and by introducing an alternative

reduced-form estimator to help the bootstrap to mimic well the identification

strength in the sample. In the simulations, the modified RE procedure is the

bootstrap method that performs best overall, essentially removing the finite

sample distortions generated by the standard/RE bootstraps; it also greatly

outperforms the CSE-based asymptotic normal approximation.

To the best of our knowledge, this paper is the first to theoretically study

the bootstrap validity in the context of IV regression under many/many

weak instrument asymptotic framework. Using this alternative asymptotic

framework, we obtain interesting implications of the properties of bootstrap

methods that can be overlooked under conventional asymptotics. In par-

ticular, our findings highlight a fragility of bootstrap-based distributional
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approximations to IV estimators with respect to the number and quality of

available instruments. Indeed, conditions much more restrictive than those

for the normal approximation are necessary for existing bootstrap methods

to work under many/many weak instruments. Our results also include a new,

valid bootstrap-based inference procedure for IV models, which is able to ef-

fectively mimic the important features in the limiting distribution of interest

and hence exhibits superior finite sample behavior.

The remainder of the paper is organized as follows. Section 2 introduces

the model and the assumptions, provides a summary of the asymptotic the-

ory for the LIML estimator and the CSE. Section 3 analyzes various residual-

based bootstrap procedures and documents the inconsistency of the standard

and RE bootstraps under many/many weak instrument sequences. Further-

more, we show that our modified bootstrap procedure provides a valid dis-

tributional approximation for LIML in this context. Section 4 contains the

Monte Carlo results, and Section 5 concludes. All proofs are relegated to the

Appendix.

3.2 Model, Assumptions and Asymptotic The-

ory

We consider a standard linear instrumental variable regression given by

y = Xβ + ε, (3.1)

X = ZΠ + V, (3.2)

where y and X are, respectively, an n × 1 vector and an n × k matrix of

observations on the endogenous variables, and Z is an n × l matrix of ob-

servations on the instruments, which we treat as deterministic. ε and V are,

respectively, an n × 1 vector and an n × k matrix of random disturbances.

Also denote PZ = Z(Z ′Z)−1Z ′ and MZ = In − PZ , where In is an identity
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matrix with dimension n. Throughout this paper, we consider the case where

k, the dimension of β, is small relative to n, but we let l→∞ as n→∞ to

model the effect of having many/many weak instruments.

The model and data are assumed to satisfy the following conditions.

Assumption 1

(i) The errors ηi = (εi, V
′
i )
′ are i.i.d. for i = 1, ..., n with mean zero and

positive definite variance matrix Σ =

(
σεε σ′V ε
σV ε ΣV V

)
; εi and Vi have

finite eighth moments.

(ii) Z includes among its columns a vector of ones, rank(Z) = l,
∑n

i=1 (1− Pii)2 /n ≥
C > 0 where Pii denotes the diagonal elements of the matrix PZ .

Assumption 1 (i) includes moment existence and homoscedasticity as-

sumptions. As pointed out by Hansen, Hausman, and Newey (2008), both

consistency of the LIML estimator and the CSE with many/many weak

instruments depend on the homoscedasticity assumption. The condition∑n
i=1 (1− Pii)2 /n ≥ C in Assumption 1 (ii) implies that l/n ≤ 1 − C,

because Pii ≤ 1 implies
∑n

i=1 (1− Pii)2 /n ≤
∑n

i=1 (1− Pii) /n = 1− l/n.

Assumption 2

As n → ∞, λn = l/n → λ for some constant λ satisfying 0 ≤ λ < 1. There

exists a non-decreasing sequence of positive real numbers rn such that, as

n → ∞, rn → ∞ and rn/n → κ for some constant κ, with 0 ≤ κ < ∞,

and such that Π′Z ′ZΠ/rn → Ψ, where Ψ is a positive definite matrix. Also

assume that
√
l/rn → 0 and

∑n
i=1 ‖Π′Zi‖4/r2

n → 0 as n→∞.

Assumption 2 adopts the many/many weak instruments asymptotic frame-

work in which the number of instruments is allowed to go to infinity with the
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sample size. Note that rn can be interpreted as the rate at which the concen-

tration parameter, Σ
−1/2
V V Π′Z ′ZΠΣ

−1/2
V V , grows as n increases. Given that the

concentration parameter is a natural measure of instrument strength, one

can characterize the quality of instruments by the order of magnitude of rn,

so that the slower is the divergence of rn, the weaker are the instruments. If

rn = n, then the number of instruments, l, may grow as fast as n and still sat-

isfy Assumption 2. This case corresponds to the many instrument sequence

considered by Kunitomo (1980), Morimune (1983), Bekker (1994), Donald

and Newey (2001), Anderson, Kunitomo and Matsushita (2010), Kuersteiner

and Okui (2010) among others. Allowing l to grow and rn to grow more

slowly than n corresponds to the many weak instrument sequence considered

by Chao and Swanson (2005), Stock and Yogo (2005), Hansen, Hausman,

and Newey (2008), Chao, Swanson, Hausman, Newey, and Woutersen (2012),

Hausman, Newey, Woutersen, Chao, and Swanson (2012), etc.

We emphasize that the many weak instrument asymptotics considered

here is very different from the so-called weak instrument asymptotics, in

which the number of instruments is assumed to be fixed and in which the

instruments are weak in the Staiger and Stock (1997) sense (i.e., Π is speci-

fied to be in an n−1/2 shrinking neighborhood of zero). It is well known that

under this weak instrument asymptotics, the k-class IV estimators, including

LIML, are inconsistent and that Wald type inferences based on these estima-

tors can have serious size distortions. In contrast, as has been demonstrated

by Chao and Swanson (2005), under many weak instrument sequence, the

consistency of these estimators is attained as long as the concentration pa-

rameter increases fast enough relative to the number of instruments. For

example, consider a special case where there is only one endogenous regres-

sor, where the instruments are orthonormal (Z ′Z = nIl), and where we have

the local-to-zero parametrization, Π = n−ζιl, ιl = (1, . . . , 1). In this case,

Π′Z ′ZΠ = n1−2ζl ≡ rn. Therefore, even when the instruments are weak in

the Staiger and Stock (1997) sense (ζ = 1/2), the consistency of LIML re-
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quires only that the number of instruments grows to infinity1. This illustrates

the potential benefit of using many instruments in situations where each in-

dividual instrument is only weakly correlated with the endogenous regressor.

Even if each component of Π is small, the combined effect of using a large

number of instruments may nevertheless allow the concentration parameter

to grow sufficiently fast, so that consistent estimation can be achieved as

l, n→∞.

Now we turn to describe our estimator of interest and the CSE. The

k-class formulation of the LIML estimator reads

β̂ =
(
X
′
PZX − α̂X

′
X
)−1 (

X
′
PZy − α̂X

′
y
)
,

with α̂ = min‖α‖=1
α′Y ′PZY α
α′Y ′Y α

and Y = [y,X]. We focus on LIML because it is

more robust to the number and the quality of the instruments than is TSLS,

the other commonly used IV estimator. It is well known in the literature that

TSLS is seriously biased when the number of instruments is large. Moreover,

in the current context of many weak instruments, LIML is consistent as long

as rn grows faster than
√
l while TSLS is consistent only when rn grows faster

than l. In addition, LIML enjoys some asymptotic optimal properties under

many instrument sequence, as has been shown by Anderson, Kunitomo, and

Matsushita (2010).

Following Hansen, Hausman, and Newey (2008), Chao et al. (2012) and

Hausman et al. (2012), we also distinguish between two cases depending on

the speed of growth of l relative to rn:

Case (I) : l/rn → γ, 0 ≤ γ <∞,

Case (II) : l/rn →∞.

This is necessary because the convergence rates and the limiting distributions

1In current example, the condition
√
l/rn → 0 as n→∞ is equivalent to n1−2ζ

√
l→∞.

When ζ = 1/2, it is satisfied as long as l→∞.
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of LIML differ in these two cases. In fact, Hansen, Hausman, and Newey

(2008) have shown the following asymptotic distributional results:

Theorem 3.2.1. Suppose Assumptions 1-2 hold. Then, in case (I)

√
rn(β̂ − β)→d N(0,ΛI), (3.3)

where ΛI = H−1ΥIH
−1, H = (1− λ)Ψ, ΥI = (1− λ)σεε {H + γΣṼ Ṽ }+ (1−

λ)
√
γ {A+ A′}+ γB,

A = E
(
ε2i Ṽi

)
× limn→∞

∑n
i=1

Π′Zi(Pii−λn)√
lrn

;

B = (φ− λ)E
(

(ε2i − σεε) ṼiṼ ′i
)

;

ΣṼ Ṽ = E
(
ṼiṼ

′
i

)
, Ṽ = V − εq′, q = σV ε/σεε and φ = limn→∞

∑n
i=1 P

2
ii/l;

in case (II),
rn√
l
(β̂ − β)→d N(0,ΛII), (3.4)

where ΛII = H−1ΥIIH
−1, ΥII = (1− λ)σεεΣṼ Ṽ +B.

Notice that in the formula of the asymptotic variance, H corresponds to

the variance term that appears in conventional asymptotics, and the term

with ΣṼ Ṽ corresponds to the additional term due to the effect of having

many/many weak instruments. Thus, Case (I) with γ > 0 can be considered

to be a knife-edge case where the additional variance term is of the same

order as the usual variance term. If rn grow faster than l (γ = 0), the usual

variance term will dominate. On the other hand, in Case (II) rn grows at

a rate slower than l, then the additional variance term will dominate. The

terms A and B account for the non-normality adjustment terms. As has

been noted by Hansen, Hausman, and Newey (2008), these terms will tend

to be quite small in practice.

Based on the results in Theorem 3.2.1, Hansen, Hausman, and Newey

(2008) give the CSE, which are an extension of Bekker (1994)’s standard

errors to the case of non-Gaussian disturbances. Let ε(β) = y−Xβ, σ̂εε(β) =

ε(β)′ε(β)/(n − k), λ̂(β) = ε(β)′PZε(β)/ε(β)′ε(β), X̂ = PZX, X̃(β) = X −
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ε(β) (ε(β)′X) /ε(β)′ε(β), V̂ (β) = MZX̃(β), λn = l/n, φn =
∑n

i=1 P
2
ii/l,

Ĥ(β) = X ′PZX − λ̂(β)X ′X,

Υ̂bkk(β) = σ̂εε(β)
{

(1− λ̂(β))2X̃(β)′PZX̃(β) + λ̂(β)2X̃(β)′MZX̃(β)
}
,

Υ̂(β) = Υ̂bkk(β) + Â(β) + Â(β)′ + B̂(β),

Â(β) =
n∑
i=1

(Pii − λn) X̂i

(
n∑
j=1

εj(β)2V̂j(β)/n

)′
,

B̂(β) =
l (φn − λn)

n(1− 2λn + λnφn)

n∑
i=1

(
εi(β)2 − σ̂εε(β)

)
V̂i(β)V̂i(β)′.

Their asymptotic variance estimator is given by

Λ̂ = Ĥ−1Υ̂Ĥ−1, Ĥ = Ĥ(β̂), Υ̂ = Υ̂(β̂).

Notice that Ĥ−1Υ̂bkk(β̂)Ĥ−1 is identical to the Bekker (1994) variance esti-

mator. The other terms in Υ̂(β̂) account for third and fourth moment terms

that are present with some forms of nonnormality. In the case of many weak

instruments, Λ̂ can be quite different from the usual asymptotic variance es-

timator σ̂εεĤ
−1 because when the reduced form R2 is small, Υ̂ can become

much larger than Ĥ. Then, the asymptotic normality of the t-test based on

the CSE can be established

tcse =
c′(β̂ − β)√

c′Λ̂c
→d N(0, 1) (3.5)

where c′β̂ is a linear combination of LIML and c is the linear combination

coefficient. Although in practice one cannot distinguish between Cases (I)

and (II) since rn is unobservable, this would not be a problem because Wald

inferences can be implemented using the t-test statistic in eq.(3.5) irrespective

of Cases (I) or (II).

However, the CSE-based normal approximation can be inaccurate in sam-
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ples of moderate size due to the slower than n−1/2 convergence speed of β̂

in the context of many weak instruments. In fact, as can be seen from sim-

ulation evidence in Hansen, Hausman, and Newey (2008) and also in ours,

Wald-type inferences based on the asymptotic normal approximation can

have serious size distortions, especially when the degree of endogeneity is

high (i.e., when the correlation between εi and Vi is high). This provides a

motivation for the use of the bootstrap as an alternative method of inference.

In particular, we can improve the quality of inference by relying on the boot-

strap instead of a normal approximation when computing critical values for

test statistics. Moreover, the CSE have a rather tedious form that empirical

researchers might find difficult to implement. This also motivates the use

of bootstrap-based methods. In cases where the analytical standard errors

have a tedious form or are believed to be difficult to estimate, the bootstrap

often provides a useful empirical alternative. For example, the widely used

percentile-type 100(1 − α)% symmetric confidence interval (CI)s take the

form

CI =
[
c′β̂ − q∗1−α, c′β̂ + q∗1−α

]
,

where q∗1−α is such that P ∗
(∣∣∣c′ (β̂∗ − β̂)∣∣∣ ≤ q∗1−α

)
= 1−α and P ∗ denotes the

probability measure induced by bootstrap. One can thus implement inference

using percentile-type CIs when they are valid without actually computing the

analytic standard errors. Another approach also many times employed in the

literature is to directly estimate the variance-covariance matrix of β̂ using the

bootstrap, as an alternative to an analytic standard-errors estimator. More

specifically, this approach leads to the following 100(1− α)% CIs:

CI =

[
c′β̂ − z1−α

√
c′Λ̂∗bootc, c

′β̂ + z1−α

√
c′Λ̂∗bootc

]
,
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where z1−α is such that P (|Z| ≤ z1−α) = 1− α with Z ∼ N (0, 1), and

Λ̂∗boot =
1

B

B∑
b=1

(
β̂∗b −

1

B

B∑
b=1

β̂∗b

)(
β̂∗b −

1

B

B∑
b=1

β̂∗b

)′

where B is chosen large enough so that Λ̂∗boot approximates well the variance-

covariance matrix of interest. However, as we shall see in the following sec-

tion, these two approaches will typically become invalid under many/many

weak instruments if bootstrap data are generated by existing procedures.

3.3 Main Results

In this section, we study the asymptotic validity of the bootstrap methods

when applied to the LIML estimator. Three residual-based bootstrap meth-

ods adapted to the linear IV model are considered. We begin with what

we call the standard bootstrap procedure that amounts to re-sampling the

residuals obtained by using the LIML estimate for equation (1) and the least

squares estimate for the reduced-form equation (2) to generate bootstrap

data. Then, we consider the restricted efficient (RE) bootstrap procedure

of Davidson and MacKinnon (2008, 2010, 2014) which generates bootstrap

data under the null hypothesis H0 : β = β0 and uses an efficient estimator

of the coefficient of the reduced-form equation. We demonstrate that these

two bootstrap procedures fail to provide valid distributional approximation

to LIML under many/many weak instruments. Furthermore, we propose a

modified version of the RE bootstrap procedure, and we prove the bootstrap

consistency of this procedure.

The following notations are used for the bootstrap asymptotics (see Chang

and Park (2003b) for similar notation and for several useful bootstrap asymp-

totic properties): for any bootstrap statistic T ∗ we write T ∗ →P ∗ 0 in

probability if for any δ > 0, ε > 0, limn→∞ P [P ∗ (|T ∗| > δ) > ε] = 0, i.e.,
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P ∗ (|T ∗| > δ) = oP (1). Also, we write T ∗ = OP ∗ (nϕ) in probability if and

only if for any δ > 0 there exists aMδ <∞ such that limn→∞ P [P ∗ (|n−ϕT ∗| > Mδ) > δ] =

0, i.e., for any δ > 0 there exists a Mδ <∞ such that P ∗ (|n−ϕT ∗| > Mδ) =

oP (1). Finally, we write T ∗ →d∗ T in probability if, conditional on the

sample, T ∗ weakly converges to T under P ∗, for all samples contained in

a set with probability converging to one. Specifically, we write T ∗ →d∗ T

in probability if and only if E∗ (f(T ∗)) → E (f(T )) in probability for any

bounded and uniformly continuous function f . To be concise, we sometimes

use the short version T ∗ →P ∗ 0 to say that T ∗ →P ∗ 0 in probability, and use

T ∗ = OP ∗ (nϕ) for T ∗ = OP ∗ (nϕ) in probability.

3.3.1 Standard bootstrap procedure

We begin with the standard residual-based bootstrap procedure. Given

the LIML estimate of β and the least squares (first-stage) estimate Π̂ =

(Z ′Z)−1Z ′X, the residuals are obtained as

ε̂ = y −Xβ̂ (3.6)

V̂ = X − ZΠ̂ (3.7)

Then, the residual ε̂ is re-centered to yield ε̃ and (ε∗, V ∗) are drawn from the

empirical distribution function of
(
ε̃, V̂

)
. Notice that we do not re-center

V̂ here since it already has mean zero by our assumption that Z includes a

constant term. Next, we set

y∗ = X∗β̂ + ε∗ (3.8)

X∗ = ZΠ̂ + V ∗ (3.9)
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Finally, we compute the bootstrap analogue of LIML using the pseudo-sample

{X∗, y∗}

β̂∗std =
(
X∗

′
PZX

∗ − α̂∗X∗′X∗
)−1 (

X∗
′
PZy

∗ − α̂∗X∗′y∗
)
,

where α̂∗ = min‖α‖=1
α′Y ∗

′
PZY

∗α
α′Y ∗′Y ∗α

and Y ∗ = [y∗, X∗]. 2

Below we show that the standard residual-based bootstrap fails to con-

sistently estimate the limiting distribution of LIML in both Cases (I) and

(II).

Theorem 3.3.1. Suppose Assumptions 1-2 hold. Then, in case (I) with

0 < γ <∞,
√
rn(β̂∗std − β̂)→d∗ N(0, Λ̄I) in probability,

where

Λ̄I = H̄−1
I ῩIH̄

−1
I

ῩI = (1− λ)σεε
{
H̄I + γΣ̄Ṽ Ṽ

}
+ (1− λ)

√
γ
{
Ā+ Ā′

}
+ γB̄

H̄I = H + (1− λ)γΣV V

Σ̄Ṽ Ṽ = ΣṼ Ṽ − λ {ΣV V + (λ− 2)σV εσ
′
V ε/σεε}

Ā = (1− λ)A

B̄ = (1− 2λ+ λφ)B + λ(φ− λ)2
{

2E
(
ε3i Ṽi

)
q′ + q

[
E
(
ε4i
)
− (σεε)

2
]
q′
}

;

in case (II), √
l(β̂∗std − β̂)→d∗ N(0, Λ̄II) in probability,

2This procedure is called Unrestricted Inefficient (UI) procedure in Davidson and
MacKinnon (2008) since the bootstrap d.g.p. is not generated under the null hypoth-
esis (thus Unrestricted) and the least squares estimator Π̂, instead of a more efficient
estimator, is used to estimate the reduced-form coefficient (thus Inefficient).
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where

Λ̄II = H̄−1
II ῩIIH̄

−1
II

ῩII = (1− λ)σεε
{
H̄II + Σ̄Ṽ Ṽ

}
+ B̄

H̄II = (1− λ)ΣV V

Theorem 3.3.1 makes it easy to quantify the inconsistency of the boot-

strap approximation in the case of many/many weak instruments. According

to Theorem 3.3.1, in Case (I) the bootstrap analogue β̂∗std has the same con-

vergence rate as β̂ and the bootstrap distribution is asymptotically normal,

but its asymptotic variance-covariance matrix is different from the one de-

rived in Theorem 3.2.1. More specifically, the formula of the asymptotic

variance-covariance matrix of LIML consists of certain key parameters such

as H, which characterizes the identification strength in the IV model, and

also various moments of the disturbances (εi, V
′
i )
′. It turns out that the

standard bootstrap fails to mimic well these key parameters, and thus can-

not provide a valid approximation to the limiting distribution of LIML. To

see why the bootstrap fails in the current context, let us first consider the

term H. The LIML objective function with bootstrap pseudo-data reads

Q̂∗(β) = (y∗ −X∗β)′ PZ (y∗ −X∗β) / (y∗ −X∗β)′ (y∗ −X∗β), and the usual

Taylor expansion of the first-order condition ∂Q̂∗(β̂∗std)/∂β = 0 yields

β̂∗std − β̂ =
(
∂2Q̂∗(β̄∗)/∂β∂β′

)−1

∂Q̂∗(β̂)/β

where β̄∗ is an intermediate value on the line joining β̂∗std and β̂. We can

show that in Case (I), the bootstrap Hessian term(
∂2Q̂∗(β̄∗)/∂β∂β′

)
/rn →P ∗ H̄I = (1− λ) (Ψ + γΣV V ) = H + (1− λ)γΣV V

in probability; P ∗ denotes the probability measure induced by the standard

bootstrap. Thus, in contrast to the limit of the original Hessian term in Theo-
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rem 3.2.1, the bootstrap approximation results in an extra term (1−λ)γΣV V .

Similarly, by applying a bootstrap CLT, we obtain that although the boot-

strap Jacobian term
√
rn

(
∂Q̂∗(β̂)/∂β

)
converges in probability to normal

distribution, the term H in the asymptotic variance of
√
rn

(
∂Q̂(β0)/∂β

)
is

also replaced by H + (1 − λ)γΣV V . Intuitively, in the current context, the

standard bootstrap fails to adequately capture the identification strength (or

instrument strength) in the original sample. Indeed, “extra” identification

strength will be generated by the bootstrap d.g.p. as long as the rate of

growth of l is not slower than that of rn, and this “extra” identification

strength will result in the extra term (1− λ)γΣV V .

The bootstrap failure becomes even more severe in case (II). It can be

seen from Theorem 3.3.1 that in this case, the convergence rate of β̂∗std turns

out to be different of that of β̂: β̂∗std − β̂ = OP ∗

(
1√
l

)
in probability, while

β̂ − β = OP

(√
l

rn

)
. Notice that 1√

l
/
√
l

rn
→ 0 since l/rn → ∞ in Case (II).

That is, β̂∗std, the bootstrap analogue of LIML, will converge to β̂, the true

value in the bootstrap world, at a higher speed than β̂ converges to β0. In

addition, the formula of the bootstrap asymptotic variance Λ̄II differs greatly

from ΛII in Theorem 3.2.1. Indeed, the conventional variance term H does

not appear in the formula of ΥII because in Case (II) it is dominated by

the many/many weak instrument adjustment term (1−λ)σεεΣṼ Ṽ and by the

non-normality adjustment term B. In contrast, H̄II , the bootstrap analogue

of H in Case (II), does appear in the formula of ῩII . This is also because of

the “extra” identification strength generated by the bootstrap d.g.p., which

guarantees that H̄II will not be dominated by the other terms.

Furthermore, some algebra shows that by the re-sampling scheme of the

standard bootstrap, the following results hold for the bootstrap disturbances



75

(
ε∗i , V

∗′
i

)′
under the current asymptotic framework:

E∗ (V ∗i ε
∗
i ) = n−1

n∑
i=1

V̂iε̃i →P (1− λ)σV ε

E∗
(
V ∗i V

∗′
i

)
= n−1

n∑
i=1

V̂iV̂
′
i →P (1− λ)ΣV V

Therefore, except for σεε, the standard residual bootstrap fails to consistently

estimate the other elements in the variance-covariance matrix of (εi, V
′
i )
′ when

the number of instruments grows at the same speed as the sample size (λ 6=

0). This also implies that for Ṽ ∗i ≡ V ∗i − ε∗i
E∗(V ∗i ε∗i )

′

E∗(ε∗2i )
,

E∗
(
Ṽ ∗i Ṽ

∗′
i

)
= E∗

(
V ∗i − ε∗i

E∗ (V ∗i ε
∗
i )
′

E∗ (ε∗2i )

)(
V ∗i − ε∗i

E∗ (V ∗i ε
∗
i )
′

E∗ (ε∗2i )

)′
→P ΣṼ Ṽ − λ

(
ΣV V + (λ− 2)

σV εσ
′
V ε

σεε

)
,

where E∗ denotes the expectation under the probability measure induced by

the standard bootstrap. As long as l goes to infinity at the same rate as n,

the standard residual bootstrap will fail to provide, even asymptotically, a

good approximation to ΣṼ Ṽ , which plays an important role in the formula

of the asymptotic variance in Theorem 3.2.1. Similar results of inconsistency

can also be shown for other bootstrap moments such as E∗
(
ε2∗i Ṽ

∗
i

)
and

E∗
(
ε∗2i Ṽ

∗
i Ṽ
∗′
i

)
.

Remarks:

1. Since β̂ attains consistency under our Assumptions 1-2, folklore may

suggest that the bootstrap d.g.p. in (6)-(9) will be valid as long as Π̂ is a

consistent estimator of Π. Interestingly, this turns out to be wrong accord-

ing to Theorem 3.3.1. Indeed, it is shown in Portnoy (1984) that Π̂ will

be consistent provided that the growth rate of l is not too fast related to

the growth rate of the sample size (l(logl)/n → 0). However, we can see
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from Theorem 3.3.1 that without proper restriction on the relationship be-

tween l and rn, such a condition is not adequate to guarantee the bootstrap

consistency under many/many weak instrument sequences.

2. Similar results of bootstrap failure can be shown for other k-class IV

estimators such as the commonly used TSLS estimator, the bias-adjusted

TSLS estimator (Nagar (1959), Rothenberg (1984), etc.), and the modified

LIML estimator proposed by Fuller (1977). We omit these results for the

conciseness of the paper.

3. Instead of using residual-based bootstrap, one may consider imple-

menting the nonparametric i.i.d. bootstrap (pairs bootstrap), which re-

samples the rows of the matrix (y : X : Z). Indeed, (y∗i , X
∗
i , Z

∗
i ), the ith

row of each bootstrap sample, is simply one of the row of (y : X : Z), chosen

at random with probability 1/n. However, the extensive simulation evidence

in Davidson and MacKinnon (2010,2014) shows that the pairs bootstrap per-

forms substantially worse than residual-based bootstrap methods, even when

the number of instruments is kept small relative to the sample size. Note

that under the nonparametric i.i.d. bootstrap, the bootstrap analogue of the

slope coefficient in the first-stage regression is characterized by

E∗
(
Z∗i Z

∗′
i

)−1

E∗ (Z∗iX
∗
i ) =

(
n−1Z ′Z

)−1 (
n−1Z ′X

)
,

which is exactly Π̂ used in the standard residual-based bootstrap.

On the other hand, when l is of lower order of magnitude relative to

rn, the formula of the asymptotic variance of
√
rn(β̂ − β) is considerably

simplified
√
rn(β̂ − β)→d N

(
0, σεεΨ

−1
)

and the standard residual-based bootstrap does consistently estimate this

asymptotic distribution.

Corollary 3.3.1. Suppose that Assumptions 1-2 holds and suppose that
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l/rn → 0 (γ = 0), then

supx∈R

∣∣∣P ∗ (√rn(β̂∗std − β̂) ≤ x
)
− P

(√
rn(β̂ − β) ≤ x

)∣∣∣→P 0

where P ∗ denotes the probability measure induced by the standard bootstrap

procedure.

Closely related to our paper is the literature on bootstrapping linear

model with increasing dimension. More precisely, consider the following

model

yi = X ′iβ + εi, i = 1, ..., n

where Xi’s and β are p-dimensional vectors, and εi’s are i.i.d. errors. Asymp-

totics where p may increase with n have been considered by Bickel, Freedman,

Bickel, Doksum, and Hodges (1983), Portnoy (1984), Mammen (1989, 1993),

among others. In particular, Bickel, Freedman, Bickel, Doksum, and Hodges

(1983) show that residual-based bootstrap consistently estimate the distribu-

tion of the least square estimates if p2/n→ 0, and for linear contrasts of the

least square estimates it works if p/n→ 0. Mammen (1988) generalizes these

results to the case of M estimates. Furthermore, it is shown by these authors

that under large p asymptotics, residual-based bootstrap even works in the

case that asymptotic normal approximation typically fails. Apparently, the

rate of growth of p with respect to n is crucial for bootstrap consistency

under this large p asymptotic framework.

In contrast, we show that for the current IV model with large l, the

bootstrap consistency depends importantly on the relative magnitude of rn

vis-à-vis l as n → ∞, but not so much on the relationship between l and

n. Additionally, different from bootstrapping under large p asymptotics,

conditions more restrictive than those for the normal approximation are

necessary for the standard bootstrap to work under many/many weak in-

struments. For the orthonormal instruments example in Section 2, since

Π′Z ′ZΠ = n1−2ζl = rn, the bootstrap consistency requires l/rn = n2ζ−1 → 0
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(ζ < 1/2, the instruments need to be stronger than the weak instruments in

the Staiger and Stock (1997) sense), while the CSE-based normal approxi-

mation only requires
√
l/rn = l−1/2n2ζ−1 → 0.

3.3.2 Restricted Efficient Bootstrap Procedure

In this section, we study the other residual-based bootstrap procedure re-

cently proposed by Davidson and MacKinnon (2008, 2010, 2014) for the IV

model. The RE residual-based bootstrap has two key features. First, the

bootstrap pseudo-data is obtained under the null H0 : β = β0 (instead of

using the LIML estimate β̂). Second, the RE bootstrap uses a more efficient

(reduced-form) estimate instead of Π̂ in the standard residual bootstrap.

Following Davidson and MacKinnon (2008, 2010, 2014), we first obtain the

residuals for the RE procedure by

ε(β0) = y −Xβ0

Ṽ (β0) = X − ZΠ̃(β0)

where

Π̃(β0) = (Z ′Z)−1Z ′
(
X − ε(β0)

ε′(β0)MZX

ε′(β0)MZε(β0)

)
.

Then, (ε∗, V ∗) are drawn from the empirical distribution function of(√
n

n− k
ε(β0),

√
n

n− l
Ṽ (β0)

)
3.

3Since
(√

n
n−k ε(β0),

√
n
n−l Ṽ (β0)

)
is not necessarily mean zero,

(ε∗, V ∗) should be drawn from the empirical distribution function of(√
n

n−k (ε(β0)− ε̄(β0)) ,
√

n
n−l

(
Ṽ (β0)− ¯̃V (β0)

))
where, ε̄(β0) ≡ 1

n

∑n
i=1 εi(β0) and

¯̃V (β0) ≡ 1
n

∑n
i=1 Ṽi(β0).
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Next, we set

y∗ = X∗β0 + ε∗

X∗ = ZΠ̃(β0) + V ∗

and obtain β̂∗re using pseudo-data generated by this procedure. Notice that

Π̃(β0) is the maximum likelihood estimator of Π when β is constrained to

take the null value β0. It is also used in Kleibergen (2002) and Moreira

(2003) to construct their weak identification robust statistics. In particular,

they show that using Π̃(β0) rather than Π̂ leads to their Lagrange Multiplier

(LM) test for H0 : β = β0 that is asymptotically pivotal even under weak

instruments asymptotics of Staiger and Stock (1997).

The RE bootstrap has been applied very successfully in IV models with

relatively small number of instruments. As can be observed from the exten-

sive simulation results in Davidson and MacKinnon (2008, 2010), using this

procedure instead of the standard residual bootstrap or the nonparametric

i.i.d. bootstrap greatly improves size control for testing the null hypothesis

H0 : β = β0, especially when the instruments are relatively weak (e.g., when

a = 2 in Davidson and MacKinnon (2008, 2010), which corresponds to the

case where the concentration parameter equals 4). The RE bootstrap is also

used in Davidson and MacKinnon (2014) to build confidence sets for β in

a similar context. Their simulation results show that in contrast to what is

widely believed, even when the instruments are quite weak, it is possible to

make the Wald-based confidence sets perform well using the RE bootstrap

procedure.

However, we find that under many/many weak instrument sequences the

RE bootstrap is also invalid in general. The following theorem states the

asymptotic distributional results for the RE bootstrap.

Theorem 3.3.2. Suppose Assumptions 1-2 hold. Then, in Case (I) with
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0 < γ <∞ and under H0 : β = β0,

√
rn(β̂∗re − β0)→d∗ N(0, Λ̃I) in probability,

where

Λ̃I = H̃−1
I Υ̃IH̃

−1

Υ̃I = (1− λ)σεε

{
H̃I + γΣṼ Ṽ

}
+ (1− λ)

√
γ
{
Ã+ Ã′

}
+ γB̃

H̃I = H + (1− λ)γΣṼ Ṽ

Ã =
√

1− λA

B̃ =
1− 2λ+ λφ

1− λ
B

In case (II) and under H0 : β = β0,

√
l(β̂∗re − β0)→d∗ N(0, Λ̃II) in probability,

where

Λ̃II = H̃−1
II Υ̃IIH̃

−1
II

H̃II = (1− λ)ΣṼ Ṽ

Υ̃II = (1− λ)σεε

{
H̃II + ΣṼ Ṽ

}
+ B̃

Investigating the results in Theorem 3.3.2, we find that the RE bootstrap

is also inconsistent as long as l goes to infinity at a rate equal to or faster

than that of rn. For example, using similar arguments as for the standard

residual bootstrap, we obtain that in Case (I) and under H0, the RE-based

approximation of the Hessian term(
∂2Q̂∗(β̄∗)/∂β∂β′

)
/rn →P ∗ H̃I = H + (1− λ)γΣṼ Ṽ (3.10)

in probability; P ∗ denotes the probability measure induced by the RE boot-
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strap and β̄∗ denotes an intermediate value on the line joining β̂∗re and

β0. Thus, the RE bootstrap also fails to adequately mimic the instrument

strength in the sample and results in an approximation error of the same

order of magnitude as the key parameter H. A similar problem occurs in

the bootstrap Jacobian term
√
rn

(
∂Q̂∗(β0)/∂β

)
. In Case (II), the bootstrap

failure becomes more severe as β̂∗re also converges at a rate of OP ∗

(
1√
l

)
, the

same convergence rate as β̂∗std. For the moments of bootstrap disturbances,

some algebra shows that under H0 : β = β0,

E∗ (V ∗i ε
∗
i ) =

√
n

n− k

√
n

n− l

(
1

n

n∑
i=1

Ṽi(β0)εi(β0)

)
→P σV ε√

1− λ

E∗
(
V ∗i V

∗′
i

)
=

n

n− l

(
1

n

n∑
i=1

Ṽi(β0)Ṽ ′i (β0)

)
→P ΣV V +

λ

1− λ
σV εσ

′
V ε

σεε

where E∗ denotes the expectation under the probability induced by the RE

bootstrap. Similar bootstrap inconsistency also appears in the non-normality

adjustment terms A and B.

Interestingly, the RE bootstrap does consistently estimate ΣṼ Ṽ , the vari-

ance of residuals from the population regression of Vi on εi; that is, we can

show that by the RE bootstrap d.g.p.,

E∗
(
Ṽ ∗i Ṽ

∗′
i

)
= E∗

(
V ∗i V

∗′
i

)
−
{
E∗ (V ∗i ε

∗
i )E

∗ (V ∗i ε
∗
i )
′ /E∗

(
ε∗2i
)}
→P ΣṼ Ṽ ,

under H0, including the case where l is of the same order of magnitude as

n. This is remarkable since according to the formula of the asymptotic vari-

ance in Theorem 3.2.1, the many/many weak instruments adjustment term

crucially depends on ΣṼ Ṽ . As has been highlighted by Hansen, Hausman,

and Newey (2008), in practice this adjustment term can be comparable to

the usual asymptotic variance term H, while the non-normality adjustment

terms will tend to be very small relative to ΣṼ Ṽ and H. Furthermore, al-

though the RE bootstrap cannot also consistently estimate H, it holds that
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H ≤ H̃I ≤ H̄I in Case (I) and H̃II ≤ H̄II in Case (II) since ΣṼ Ṽ ≤ ΣV V by

the definition of Ṽ . Therefore, our asymptotic results in Theorem 3.3.2 pre-

dict that the RE-based distributional approximation for LIML will typically

be more precise than the standard bootstrap-based approximation and this

is indeed confirmed by our simulation.

It is also easy to show that, as the standard residual bootstrap, the RE

bootstrap is consistent when l/rn → 0.

Corollary 3.3.2. Suppose that Assumptions 1-2 holds and that l/rn → 0

(γ = 0), then under H0 : β = β0,

supx∈R

∣∣∣P ∗ (√rn(β̂∗re − β0) ≤ x
)
− P

(√
rn(β̂ − β0) ≤ x

)∣∣∣→P 0

where P ∗ denotes the probability measure induced by the RE bootstrap proce-

dure.

Thus, similar to the standard bootstrap, the RE bootstrap is asymptoti-

cally valid only when the available instruments are sufficiently strong so that

the concentration parameter grows at a faster rate than the number of instru-

ments. One can thus expect the performance of the RE-based distributional

approximation for LIML to be quite sensitive to the quality and number of

instruments. In the next section, we propose a modified RE procedure which

is able to consistently estimate the distribution of LIML under much weaker

conditions on the growth rate of l relative to rn.

3.3.3 Modified RE Bootstrap Procedure

In this section, we propose a modified version of the RE bootstrap d.g.p. so

that the approximation errors can be removed from the bootstrap limit dis-

tribution. The modified RE (MRE) procedure achieves this goal by correctly

re-scaling the residuals and by using an alternative reduced-form estimator
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so that the bootstrap can effectively mimic the identification strength in the

original sample.

More specifically, for the MRE bootstrap the residuals are obtained as

ε(β0) = y −Xβ0

V̂ = X − ZΠ̂,

Then, (ε∗m, V
∗
m) is drawn from the empirical distribution function of(√

n

n− l
MZε(β0),

√
n

n− l
V̂

)
.

To generate the bootstrap d.g.p., we use Π̃m(β0) which is based on modifying

the RE reduced-form estimator Π̃(β0) in the following way

Π̃m(β0) = Π̃(β0)
(

Ψ̃−1/2(β0)Ψ̃1/2
m (β0)

)
(3.11)

where

Ψ̃(β0) = Π̃′(β0)Z ′ZΠ̃(β0)

Ψ̃m(β0) =
(

Ψ̃(β0)− lΣ̂Ṽ Ṽ (β0), 0
)+

Σ̂Ṽ Ṽ (β0) =
1

n− l
X̃ ′(β0)MZX̃(β0)

X̃(β0) = X − ε(β0)

(
ε′MZ(β0)X

ε′(β0)MZε(β0)

)
and (·, 0)+ = max (·, 0). Next, we set

y∗ = X∗β0 + ε∗m

X∗ = ZΠ̃m(β0) + V ∗m

and compute β̂∗m using the pseudo-data obtained by this bootstrap procedure.
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Notice that an alternative modified procedure based on β̂ could also be pur-

sued. More precisely, this procedure amounts to using ε̂ instead of ε(β0) and

using Π̃m(β̂) instead of Π̃m(β0) when generating the bootstrap d.g.p. Under

H0 : β = β0, these two procedures are asymptotically equivalent. However,

trial simulation shows that the modified bootstrap procedure generated un-

der β0 typically has much better finite sample performance, especially when

the instruments are weak.

To motivate the MRE procedure, let us first consider the modification

introduced in eq.(3.11). Since the bootstrap generated under Π̃(β0) cannot

mimic well the instrument strength in the current context and results in an

approximation error of order at least as large as the concentration param-

eter, we introduce Ψ̃−1/2(β0)Ψ̃
1/2
m (β0) as a correction factor to remove the

“extra” instrument strength in the RE bootstrap d.g.p. Indeed, we can show

that under the null H0 : β = β0,

Π̃′m(β0)Z ′ZΠ̃m(β0)

rn
=

Π̃′(β0)Z ′ZΠ̃(β0)

rn
−
(
l

rn

)
Σ̂Ṽ Ṽ (β0)→P Ψ

in both Cases (I) and (II). Therefore, in contrast to the standard/RE boot-

strap, the modified procedure is able to consistently estimate the key param-

eter Ψ that characterizes the identification strength under many/many weak

instruments.

Also, consider the bootstrap disturbances generated by the MRE proce-

dure. With our approach of re-scaling the residuals into
(√

n
n−lMZε(β0),

√
n
n−l V̂

)
,

the MRE bootstrap is able to mimic well each component of the covariance

matrix of (εi, V
′
i )
′ even in the case that l is of the same order of magnitude
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as n:

E∗
(
ε∗2i,m
)

=
n

n− l

(
ε′(β0)MZε(β0)

n

)
→P σεε

E∗
(
V ∗i,mε

∗
i,m

)
=

n

n− l

(
V̂ ′MZε(β0)

n

)
→P σV ε

E∗
(
V ∗i,mV

∗′
i,m

)
=

n

n− l

(
V̂ ′V̂

n

)
→P ΣV V

under H0 : β = β0, where E∗ denote the expectation generated by the MRE

procedure.

Remark: Our correction factor in eq.(3.11) is related to the restricted-

efficient-corrected (REC) bootstrap in Davidson and MacKinnon (2008, pg.458).

The REC bootstrap is motivated by the fact that ã2 = Π̃′(β0)Z ′ZΠ̃(β0)/
(
n−1Ṽ ′(β0)Ṽ (β0)

)
,

their RE-based estimator of the concentration parameter (in k = 1 case), is

inconsistent under Staiger and Stock (1997)’s weak instrument asymptotics,

and has a bias of l×(1− σ2
V ε/σεε). Although consistent estimation of the con-

centration parameter is impossible under weak instrument asymptotics, an

unbiased estimator can be constructed as ã2
BC = (0, ã2 − l(1− ρ̃2))

+
where

ρ̃2 = ε′(β0)Ṽ (β0)/
{

(ε′(β0)ε(β0))
(
Ṽ ′(β0)Ṽ (β0)

)}1/2

, and the reduced-form

equation of the REC bootstrap d.g.p. can be generated using

X∗ = ZΠ̃(β0)

(
ãBC
ã

)
+ V ∗

Under current many/many weak instrument sequences, it can be shown that
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in Case (I)

Π̃′BC(β0)Z ′ZΠ̃BC(β0)

rn
=

Π̃′(β0)Z ′ZΠ̃(β0)

rn

− l

rn

 Ṽ ′(β0)Ṽ (β0)

n
−
(
ε′(β0)ε(β0)

n

)−1
(
ε′(β0)Ṽ (β0)

n

)2


→P Ψ + γσṼ Ṽ − (1− λ)γσṼ Ṽ = Ψ + λγσṼ Ṽ

Thus, the REC bootstrap will be inconsistent when λ 6= 0. In Case (II), due

to this inconsistency Π̃′BC(β0)Z ′ZΠ̃BC(β0)/rn will diverge to infinity, leading

the REC-based bootstrap analogue of LIML to also converge too fast, like

the standard/RE bootstrap analogues.

Below, we introduce some additional assumptions that help to simplify

the variance formula, and we show that our modified bootstrap procedure is

able to consistently estimate the limiting distribution of LIML under either

of these assumptions.

Assumption 3

(i) λn → λ 6= 0 and n−1
∑n

i=1 |Pii − λn| → 0 as l, n→∞.

(ii) λn → λ = 0 as l, n→∞.

Assumption 3 (i) is also used in Anatolyev and Gospodinov (2011) for

many instrument sequence and in Anatolyev (2012) for many regressor se-

quence. As has been pointed out in their papers, this condition allows that

the number of instruments increases at the same rate as the sample size but

requires that (almost) all diagonal elements of the projection matrix PZ con-

verge to λ (note that under conventional asymptotics they converge to zero),

and it will typically hold if the instruments are homogenous across i. On

the other hand, Assumption 3 (ii) requires that the number of instruments

grows at a slower rate than the sample size. This case is most important in
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empirical applications, especially in microeconomic studies, where the num-

ber of instruments is usually small relative to the sample size. For example,

in their study of return to schooling problem, Donald and Newey (2001) and

Hansen, Hausman, and Newey (2008) used 180 instruments with a sample

size of 329, 509. The variance formula of LIML will be simplified under As-

sumption 3 (i) or Assumption 3 (ii) because the non-normality adjustment

terms A and B in the variance formula disappear under either assumption,

that is, A = B = 0. Such assumptions are mild because among the various

terms in the asymptotic variance of LIML, A and B will typically be quite

small compared with other terms, as emphasized by Hansen, Hausman, and

Newey (2008).

The distributional results for the MRE bootstrap procedure are stated in

the following theorem.

Theorem 3.3.3. Suppose that Assumptions 1-2 hold. Also suppose either

Assumption 3(i) or Assumption 3(ii) holds. Then under H0 : β = β0, in

Case (I),

sup
x∈R

∣∣∣P ∗ (√rn(β̂∗m − β0) ≤ x
)
− P

(√
rn(β̂ − β0) ≤ x

)∣∣∣→P 0

and in Case (II),

sup
x∈R

∣∣∣∣P ∗( rn√l (β̂∗m − β0) ≤ x

)
− P

(
rn√
l
(β̂ − β0) ≤ x

)∣∣∣∣→P 0

where P ∗ denotes the probability measure induced by the MRE bootstrap pro-

cedures.

Theorem 3.3.3 states that the MRE bootstrap procedure mimics well the

limiting distribution of
√
rn(β̂ − β) in case (I) and the limiting distribution

of rn√
l
(β̂ − β) in case (II), thus giving the asymptotic validity of percentile

type CIs constructed based on the MRE bootstrap. In terms of finite sample

behavior, our simulation evidence in Section 4 shows that the MRE-based
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percentile type CIs typically have better empirical coverage rates compared

with normal approximation-based CIs.

3.3.4 Bootstrapping t-test with Corrected Standard Er-

ror

In view of the success of the MRE procedure in providing distributional

approximation for LIML, we can expect that the distribution of tcse, t-test

statistic based on the LIML estimate and the CSE, can also be well approx-

imated by our bootstrap procedure. Moreover, since tcse is asymptotically

standard normal under many/many weak instrument asymptotics, folklore

suggests that the standard and RE bootstraps should also be capable of con-

sistently estimating its distribution even if these bootstrap procedures cannot

adequately mimic the limit distribution of LIML. This conjecture turns out

to be correct, because one can show that in Case (I),

rnΛ̂∗std ≈ V ∗
[√

rn

(
β̂∗std − β̂

)]
and rnΛ̂∗re ≈ V ∗

[√
rn

(
β̂∗re − β0

)]
with “A ≈ B” being shorthand for A−1B →P ∗ Ik in probability and V ∗

denoting the variance computed under the corresponding bootstrap distribu-

tion. Λ̂∗std and Λ̂∗re denote the CSEs computed using the pseudo-data gener-

ated by the standard and RE bootstrap d.g.p., respectively. Then, the result

of weak convergence in probability for the bootstrap analogues of tcse can be

established, i.e.,

c′(β̂∗std − β̂)√
c′Λ̂∗stdc

=
c′
√
rn(β̂∗std − β̂)√
c′rnΛ̂∗stdc

→d∗ N(0, 1)
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in probability and similar result holds for the RE bootstrap. Analogously,

we have for Case (II)

lΛ̂∗std ≈ V ∗
[√

l
(
β̂∗std − β̂

)]
and lΛ̂∗re ≈ V ∗

[√
l
(
β̂∗re − β0

)]
.

Thus, one can show that the standard/RE bootstrap-based approximations

of the distribution of tcse converges to standard normal distribution in prob-

ability, regardless of the fact that in Case (II) even the convergence speed

of β̂∗std and β̂∗re differs from that of β̂. More precisely, an application of the

continuous mapping theorem for weak convergence in probability yields the

following result for all the three bootstrap procedures.

Theorem 3.3.4. Suppose that Assumptions 1-2 hold, also suppose that H0 :

β = β0 holds for the RE and MRE bootstraps, then

supx∈R |P ∗ (t∗cse ≤ x)− P (tcse ≤ x)| →P 0

where t∗cse denotes the t-CSE test statistic generated by one of the three boot-

strap procedures.

Theorem 3.3.4 gives asymptotic validity for percentile-t type CIs based

on the standard, RE and MRE bootstrap procedures. Monte Carlo simula-

tions show that for percentile-t CIs, all the three bootstrap procedures have

reasonable empirical coverage rates with the CIs based on the MRE proce-

dure performing best. This is not surprising considering that the bootstrap is

able to provide asymptotic refinement only when the test statistic is asymp-

totically pivotal and when the bootstrap d.g.p. consistently estimates the

original d.g.p. (see Beran (1988)). Among the three bootstrap procedures,

one can only expect the MRE bootstrap to provide asymptotic refinement

for percentile-t type CIs since the other two procedures are not able to con-

sistently estimate the original d.g.p., as has been shown previously. We leave

a formal study of the MRE bootstrap’s higher order properties for future

work.
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3.4 Simulation Results

The goal of this section is to evaluate the finite sample performance of the

bootstrap methods studied in the previous sections. Following Davidson and

MacKinnon (2008, 2010 and 2014), we use the following DGP:

y = βX + ε

X = aw + v,

where w ∈ S(Z), the subspace spanned by the columns of the instruments

Z. w is an n-vector with ‖w‖2 = 1. As pointed out in their papers, the only

property of Z that matters here is the subspace spanned by the columns of

Z and in their setting, all the explanatory power comes from the vector w

and the other columns of Z are simply noise. For the disturbances, we set

ε = rε1 + ρε2

v = ε2,

with (ε1, ε2)′ ∼ N(0, I), r2 + ρ2 = 1. The strength of the instruments is

measured by the parameter a, the square of which equals the concentration

parameter.

In Figures 1-4, we present non-rejection frequencies for asymptotic and

bootstrap tests. For ease of comparison, we report results of the MRE boot-

strap versus the REC bootstrap in figures 5-8, separately from other boot-

strap procedures. The simulation evidence are based on 1,000 replications

and B = 399 bootstrap samples. The sample size is 100 and we use the

LIML estimator throughout the simulation.

For all bootstrap procedures, we consider both percentile and percentile-

t type Wald tests. Notice that we present the properties of percentile type

bootstrap tests for two reasons: (i) to show that they confirm our theory

which predicts that except for the MRE bootstrap, the other procedures
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are invalid and, (ii) to emphasize that in cases where the analytical standard

errors have a tedious form or, are believe to be difficult to estimate as it is the

case here, a MRE percentile bootstrap-based inference could provide a useful

alternative. Let us start with the standard residual bootstrap. Percentile

type bootstrap Wald tests reject H0 : β = β0 if |β̂−β0| is among the 0.05(B+

1) biggest values in {
|β̂ − β0|, |β̂∗1 − β̂|, ..., |β̂∗B − β̂|

}
. (3.12)

Notice that normally, we should reject H0 : β = β0 if
√
rn|β̂ − β0| is among

the 0.05(B + 1) biggest values in{√
rn|β̂ − β0|,

√
rn|β̂∗1 − β̂|, ...,

√
rn|β̂∗B − β̂|

}
in Case (I) and reject H0 : β = β0 if rn√

l
|β̂ − β0| is among the 0.05(B + 1)

biggest values in{
rn√
l
|β̂ − β0|,

rn√
l
|β̂∗1 − β̂|, ...,

rn√
l
|β̂∗B − β̂|

}
in Case (II). However, although we do not know the exact value of rn in

practice, we are still able to use the procedure described by (3.12) since
√
rn

and rn/
√
l will be canceled out in Case (I) and (II), respectively.

For percentile-t type bootstrap Wald tests, we reject H0 : β = β0 if |β̂−β0|√
Λ̂

is among the 0.05(B + 1) biggest values in |β̂ − β0|√
Λ̂

,
|β̂∗1 − β̂|√

Λ̂∗1

, ...,
|β̂∗B − β̂|√

Λ̂∗B

 .

In this formula,
√

Λ̂ is the CSE defined in Section 3.2 and

√
Λ̂∗std is its

standard bootstrap counterpart.
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Also, since bootstrap data of the RE, REC and MRE procedures are

generated under the null, percentile type bootstrap Wald tests reject H0 :

β = β0 if |β̂ − β0| is among the 0.05(B + 1) biggest values in{
|β̂ − β0|, |β̂∗j,1 − β0|, ..., |β̂∗j,B − β0|

}
,

where j ∈ {re, rec,m}. Percentile-t type bootstrap Wald tests reject H0 :

β = β0 if |β̂−β0|√
Λ̂

is among the 0.05(B + 1) biggest values in

 |β̂ − β0|√
Λ̂

,
|β̂∗j,1 − β0|√

Λ̂∗j,1

, ...,
|β̂∗j,B − β0|√

Λ̂∗j,B


where j ∈ {re, rec,m}. Finally, asymptotic theory-based Wald (t) tests rely

on critical values of the N (0, 1) distribution.

The first two figures each contains six plots and pertain to percentile and

percentile-t type bootstrap tests. They show the effect of varying the number

of instruments for three values of a2 and two values of ρ. Specifically, we

vary a2 across rows (a2 ∈ {4, 8, 16}) and ρ across columns (ρ ∈ {0.1, 0.8}).
One can interpret a2 = 4 as a very weak instruments case, a2 = 8 as a

weak instruments case and a2 = 16 as a moderately strong instruments case.

When ρ = 0.1, there is not much correlation between the structural and

reduced-form disturbances; when ρ = 0.8, there is a great deal of correlation.

As in the simulation results reported in Davidson and MacKinnon (2008)4,

CSE-based asymptotic Wald (t) tests for the LIML estimator underreject

when ρ is small and overreject when ρ is large, especially in the case that a2

is small. In particular, asymptotic Wald (t) tests have noticeable finite sam-

ple distortions for ρ = 0.8 and a2 = 4. Indeed, under this setting, the actual

non-rejection rates of nominal 95% asymptotic Wald (t) tests vary between

85% and 80% for values of l between 20 and 50. These non-rejection rates

4See, e.g., Figure 2 and 4 in Davidson and Mackinnon (2008)
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increase to around 90% to 85% when ρ = 0.8 and a2 = 8.

Figure 1 shows clearly that percentile bootstrap tests based on the stan-

dard residual and the RE bootstrap overreject with many/many weak in-

struments. Also, it turns out that the distortions of both standard and

RE bootstrap tests increase when the strength of the instruments decreases

and/or the number of instruments increases. Thus, our results in Theorems

3.1 and 3.2 give an excellent approximation to the finite sample behavior

of these bootstrap procedures. Furthermore, we find that the RE bootstrap

tends to dominate the standard bootstrap, confirming our theoretical pre-

dictions in Section 3.2 that the RE bootstrap-based approximation of the

distribution of LIML is typically more precise than the standard bootstrap-

based approximation. On the other hand, MRE percentile bootstrap tests

have much better performance for all values of a2 and ρ. It is remarkable that

in all plots, the MRE bootstrap displays very small distortions irrespective

of the values of l. This is not surprising considering that the MRE boot-

strap is the only bootstrap procedure able to mimic well the distribution of

LIML under many/many weak instrument sequence. Also, MRE percentile

bootstrap tests have large improvement over CSE-based asymptotic Wald (t)

tests when ρ = 0.8.

Figure 2 shows that non-rejection frequencies of the standard/RE boot-

strap percentile-t tests are much better than their corresponding percentile

versions. These results are in line with our Theorem 3.3.4 which predicts

in particular that percentile-t approximations based on these two bootstrap

procedures are asymptotically valid even if their percentile counterparts are

not. Also, we find that standard bootstrap tests have almost the same per-

formance as the CSE-based asymptotic Wald (t) tests for all configuration of

a2, ρ and l. The RE bootstrap improves upon the asymptotic theory and the

standard bootstrap, especially when ρ = 0.8, but is still notably distorted

for small values of a2. The MRE bootstrap has the best performance among

all the procedures.
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Figures 3-4 each contains nine plots and pertain to percentile and percentile-

t type bootstrap tests. They show the effect of varying the value of ρ for three

values of a2 and three values of l. In particular, Figure 3 shows that when ρ

is small, percentile type bootstrap tests based on the standard and the RE

bootstraps have poor non-rejection frequencies in comparison to CSE-based

asymptotic Wald (t) tests. For large values of ρ, the distortion of CSE-based

asymptotic Wald (t) tests become severe while the non-rejection frequen-

cies of RE percentile bootstrap tests become better and even improve upon

asymptotic Wald (t) tests in some cases. This is natural considering that our

theoretical analysis in Section 3.2 (see e.q.(3.10)) shows that the RE boot-

strap approximation error depends crucially on ΣṼ Ṽ , which equals 1− ρ2 in

current simulation setting. It also turns out that MRE percentile bootstrap

tests perform much better than standard/RE percentile bootstrap tests, and

improve upon asymptotic Wald (t) tests in most cases.

As in Figure 2, Figure 4 shows that non-rejection frequencies of percentile-

t type bootstrap tests are higher than those of percentile type bootstrap

tests for all the three bootstrap procedures. However, in contrast to Figure

3 where the most severe distortions occur when ρ is relatively small, the

standard/RE percentile-t type bootstrap tests tend to overreject when the

value of ρ becomes large, as also noticed in Figure 2 when ρ = 0.8. In

particular, standard bootstrap tests, as well as asymptotic Wald (t), can

have non-rejection frequencies as low as 75%. In contrast, non-rejection

frequencies of MRE percentile-t tests are very close to 95% across all the

settings of a2, ρ and l.

We compare non-rejection rates of MRE and REC bootstrap tests in fig-

ures 5-8. Notice that the grids on the vertical lines are changed for ease of

comparison. Investigating the results for percentile type bootstrap tests in

Figure 5 and Figure 7, we find that REC percentile bootstrap tests typically

have large distortion when l is large and ρ is small. This is also in line with our

analysis in Section 3.3 which states that the distortion of the REC approxima-
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tion depends mainly on the values of λ and ΣṼ Ṽ . On the other hand, figure 6

and figure 8 shows that MRE and REC percentile-t type bootstrap tests have

non-rejection rates very close to each other. Also, MRE/REC percentile-t

type bootstrap tests improve substantially upon asymptotic Wald (t) tests,

especially when a2 is small and ρ is large.

3.5 Conclusion

The main contribution of this paper is to study the validity of the bootstrap

for inference in linear IV regression when the available instruments may be

weak and the number of instruments may be large. Using the asymptotic

framework of many/many weak instruments, we obtain new theoretical re-

sults about the finite-sample behavior of the bootstrap methods that can be

overlooked under the conventional asymptotic framework.

In particular, we show that a standard i.i.d. residual-based bootstrap

method is unable to consistently estimate the limiting distribution of LIML

under many/many weak instrument sequences. More specifically, the stan-

dard bootstrap cannot mimic well the parameter that characterizes the iden-

tification strength in the original sample. It also fails to adequately mimic

certain important properties of the disturbances in the IV model. These

failures lead the bootstrap distribution to converge to a limit different from

the original one. Moreover, we show that the RE bootstrap proposed by

Davidson and MacKinnon (2008, 2010, 2014) is also invalid in general. How-

ever, the RE bootstrap is able to effectively mimic more features in the

limiting distribution of LIML, and thus its finite-sample distortion is typ-

ically smaller than that of the standard bootstrap. Finally, we propose a

modified RE bootstrap and we show that this procedure provides a valid

distributional approximation to LIML under many/many weak instruments.

A Monte Carlo experiment shows that our procedure has outstanding small

sample performance compared with asymptotic normal approximation based
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on the CSE and the other bootstrap procedures.

An extension of this work will include a study in general nonlinear frame-

work on the bootstrap validity (e.g., Hall and Horowitz (1996)’s nonpara-

metric i.i.d. bootstrap, Brown and Newey (2002)’s efficient bootstrap, etc.)

for GMM and GEL estimators under many weak moment sequence proposed

by Newey and Windmeijer (2009).



97

Figure 3.1: Non-rejection rates for percentile type bootstrap Wald tests as a

function of l
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Figure 3.2: Non-rejection rates for percentile-t type bootstrap Wald tests as a

function of l
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Figure 3.3: Non-rejection rates for percentile type bootstrap Wald tests as a

function of ρ
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Figure 3.4: Non-rejection rates for percentile-t type bootstrap Wald tests as a

function of ρ
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Figure 3.5: Non-rejection rates for percentile type bootstrap Wald tests as a

function of l
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Figure 3.6: Non-rejection rates for percentile-t type bootstrap Wald tests as a

function of l
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Figure 3.7: Non-rejection rates for percentile type bootstrap Wald tests as a

function of ρ
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Figure 3.8: Non-rejection rates for percentile-t type bootstrap Wald tests as a

function of ρ
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Annexes

.1 Proof of main results in Chapter 1

.1.1 Proofs of results in Section 1.2

Throughout this Appendix, we let ∆ denote a generic constant independent

of n and T.Given a matrix A, we let |A| = (tr (A′A))1/2 . The following results

are instrumental in the proofs that follow. They correspond to Lemmas 1

and 2 in Hansen (2007) respectively.

Theorem .1.1. Suppose ZiT are independent across i for all T with E (ZiT ) =

µiT and E |ZiT |1+δ < ∆ <∞ for some δ > 0 and all i, T . Then 1
n

∑n
i=1 (ZiT − µiT )→P

0 as n, T →∞ jointly.

Theorem .1.2. For k × 1 vectors ZiT , suppose ZiT are independent across

i for all T with E (ZiT ) = 0, E
(
ZiTZ

′
iT

)
= ΩiT , and E |ZiT |2+δ < ∆ < ∞

for some δ > 0. Assume Ω = limn,T
1
n

∑n
i=1 ΩiT is positive definite with

minimum eigenvalue λmin > 0. Then 1√
n

∑n
i=1 ZiT →d N (0,Ω) as n, T →∞

jointly.

We first provide some auxiliary lemmas, followed by the proof of Theorem

1.2.1. The proof of the auxiliary lemmas follows at the end.

Lemma .1.1. Under Assumption A1, for fixed l, p ∈ N, (i) 1
nT

∑n
i=1

∑T
t=1 εit−lεit−p →P

σ21{l=p}; and (ii) 1
nT 2

∑n
i=1

∑T
t=1

∑t−1
s=1 εit−lεis−p →P 0.



115

Lemma .1.2. Under Assumption A1, for fixed k ∈ N, 1√
nT

∑n
i=1

∑T
t=1 (εitεit−1, . . . , εitεit−k)→d

N (0,Ωk) , where Ωk ≡ [τlp]l,p=1,...,k.

Lemma .1.2 is the analog of Lemma A.1 of Gonçalves and Kilian (2004)

(henceforth GK (2004)). To state the following lemma, we need to introduce

some notation. In particular, let uit =
∑∞

l=0 θ
l
0εit−l, which is well defined

given that |θ0| < 1. It follows that

yit−1 =
αi

1− θ0

+
∞∑
l=1

θl−1
0 εit−l ≡

αi
1− θ0

+ uit−1, (13)

for all (i, t). Therefore,

AnT ≡
1

nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−)2 =
1

nT

n∑
i=1

T∑
t=1

u2
it−1−

1

n

n∑
i=1

ū2
i− ≡ AnT1−AnT2,

where ūi− = 1
T

∑T
t=1 uit−1. The next lemma establishes the consistency of

AnT .

Lemma .1.3. Under Assumption A1, (i) AnT1 →P A ≡ σ2 (1− θ2
0)
−1

; (ii)

AnT2 →P 0; and (iii) AnT →P A.

Our next lemma establishes the limiting distribution of

BnT ≡ 1√
nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−) (εit − ε̄i)

=
1√
nT

n∑
i=1

T∑
t=1

uit−1εit −
1√
nT

n∑
i=1

T∑
t=1

uit−1ε̄i ≡ BnT1 −BnT2.

BnT ≡

Lemma .1.4. Under Assumption A1, (i) BnT1 →d N (0, B), where B =∑∞
l,p=1 θ

l+p−2
0 τlp; (ii) BnT2 →P −A · D, where A = σ2 (1− θ2

0)
−1

and D =

−√ρ (1 + θ0) ; and (iii) BnT →d N (A ·D,B).
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Proof of Theorem 1.2.1. The proof follows from Lemmas .1.3 and .1.4 by

Slutsky’s theorem.

Proof of Lemma .1.1 (i) For fixed l, p ∈ N, let Z lp
iT = 1

T

∑T
t=1 εit−lεit−p, i =

1, . . . , n. We check that {Z lp
iT} satisfies the conditions of Theorem .1.1. First,

{Z lp
iT} are independent across i for all T with E

(
Z lp
iT

)
= σ2

i 1{l=p}. Second, we

show that E
∣∣∣Z lp

iT

∣∣∣1+δ

< ∆ <∞ for some δ > 0 and all i and T . Taking δ = 1,

by repeated application of the Cauchy-Schwartz inequality, we can show that

E
(
Z lp
iT

)2

≤ E (εit)
4 ≤ ∆ < ∞. Thus, 1

n

∑n
i=1

(
Z lp
iT − σ2

i 1{l=p}

)
→P 0 as

n, T →∞ jointly. The result follows by noting that limn→∞
1
n

∑n
i=1 σ

2
i = σ2

by A1(iv). To prove part (ii), define for fixed l, p ∈ N, Z lp
iT = 1

T 2

∑T
t=1

∑t−1
s=1 εit−lεis−p.

Then, {Z lp
iT} are independent across i for all T with E

(
Z lp
iT

)
= µlpiT , where

µlpiT = 0 for l ≤ p and for l − p ≥ T, and µlpiT = T−l−p
T 2 σ2

i for l − p ∈
{1, . . . , T − 1}. By repeated application of the Cauchy-Schwartz inequality,

we can show that E
(
Z lp
iT

)2

≤ E (εit)
4 ≤ ∆ < ∞, which proves that Z lp

iT

verifies the conditions of Theorem .1.1. To end the proof of (ii), note that by

definition of µlpiT ,

1

n

n∑
i=1

µlpiT =
T − l − p

T 2

(
1

n

n∑
i=1

σ2
i

)
1{l−p∈{1,...,T−1}} → 0

as n, T →∞ jointly, for all l, p ∈ N, given that limn→∞
1
n

∑n
i=1 σ

2
i = σ2.

Proof of Lemma .1.2 For fixed k ∈ N, let Zk
iT = 1√

T

∑T
t=1 (εitεit−1, . . . , εitεit−k)

′,

i = 1, . . . , n. We check that Zk
iT satisfies the conditions of Theorem .1.2.

First, Zk
iT are independent across i for all T with E

(
Zk
iT

)
= 0. Second,

E
(
Zk
iTZ

k′
iT

)
= [τilp]l,p=1,...,k ≡ Ωik for all i since by assumptionE (ε2

itεit−lεit−p) =

τilp for all t and all l, p. Third, we show that for fixed k ∈ N, E
∣∣Zk

iT

∣∣2δ ≤ ∆ <
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∞, uniformly in i for some δ > 1 (we take δ = 2). By the c− r inequality,

E
∣∣Zk

iT

∣∣4 = E

 k∑
l=1

(
1√
T

T∑
t=1

εitεit−l

)2
2

≤ k

k∑
l=1

E

(
1√
T

T∑
t=1

εitεit−l

)4

= k

k∑
l=1

1

T 2

T∑
t1,...,t4=1

E
(
zlit1z

l
it2
zlit3z

l
it4

)
,

where we let zlit = εitεit−l for all 1 ≤ l ≤ k. Noting that E
(
zlit
)

= 0 and

given the definition of the fourth order joint cumulant (see Brillinger (1981),

p. 19), we have that

E
(
zlit1z

l
it2
zlit3z

l
it4

)
= E

(
zlt1z

l
t2

)
E
(
zlt3z

l
t4

)
+ E

(
zlt1z

l
t3

)
E
(
zlt2z

l
t4

)
+E

(
zlt1z

l
t4

)
E
(
zlt2z

l
t3

)
+ cum

(
zlit1 , z

l
it2
, zlit3 , z

l
it4

)
.

By the m.d.s assumption, E
(
zltz

l
s

)
= E (εitεit−lεisεis−l) = τill1{t=s} for any

(t, s) , which implies that

1

T 2

T∑
t1,...,t4=1

E
(
zlit1z

l
it2
zlit3z

l
it4

)
= 3τ 2

ill +
1

T 2

T∑
t1,...,t4=1

cum
(
zlit1 , z

l
it2
, zlit3 , z

l
it4

)
.

Given the strict stationarity assumption,

cum
(
zlit1 , z

l
it2
, zlit3 , z

l
it4

)
= cum

(
zlit1−t4 , z

l
it2−t4 , z

l
it3−t4 , z

l
i0

)
,

which implies that

1

T 2

T∑
t1,...,t4=1

E
(
zlit1z

l
it2
zlit3z

l
it4

)
= 3τ 2

ill+
1

T 2

T∑
t4=1

{
T∑

t1,t2,t3=1

cum
(
zlit1−t4 , z

l
it2−t4 , z

l
it3−t4 , z

l
i0

)}
,

where the expression in curly brackets is O(1) uniformly in i, l and t4,

given A1(vii) (applied with l1 = l2 = l3 = l4 = l). This shows that
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1
T 2

∑T
t1,...,t4=1 E

(
zlit1z

l
it2
zlit3z

l
it4

)
is uniformly bounded in i, l and T and hence,

for a fixed k ∈ N, E
∣∣Zk

iT

∣∣4 ≤ ∆ <∞ uniformly in i and T . Also,

lim
n,T→∞

1

n

n∑
i=1

Ωik = lim
n→∞

1

n

n∑
i=1

[τilp]l,p=1,...,k =

[
lim
n→∞

1

n

n∑
i=1

τilp

]
l,p=1,...,k

= [τlp]l,p=1,...,k ≡ Ωk,

where Ωk is positive definite with minimum eigenvalue λmin > 0 since by

assumption, τll > 0 for all l. Thus, the conditions of Theorem .1.2 are

verified, ending the proof.

Proof of Lemma .1.3. The proof of part (i) follows from Lemma .1.1(i)

using the same steps as the proof that A1n →P 0 in Theorem 3.1 in GK (p.

108). To prove (ii), which is new in our panel context, we use the definition

of ūi− to decompose AnT2 as follows:

AnT2 =
1

n

n∑
i=1

(
1

T

T∑
t=1

∞∑
l=1

θl−1
0 εit−l

)2

=
1

T

{
∞∑
l=1

∞∑
p=1

θl+p−2
0

(
1

nT

n∑
i=1

T∑
t=1

εit−lεit−p

)}

+2

{
∞∑
l=1

∞∑
p=1

θl+p−2
0

(
1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εit−lεis−p

)}
≡ a1,nT + 2a2,nT .

Given part (i), we have a1,nT = (1/T ) × AnT1 = oP (1). Next we show that

a2,nT = oP (1). For fixedm ∈ N, define am2,nT =
∑m

l=1

∑m
p=1 θ

l+p−2
0

(
1

nT 2

∑n
i=1

∑T
t=1

∑t−1
s=1 εit−lεis−p

)
.

By Lemma .1.1(ii), it follows that that am2,nT → 0 for all m ∈ N. Thus, it

suffices to show that limm→∞ lim supn,T→∞ P
(∣∣a2,nT − am2,nT

∣∣ > δ
)

= 0, for

all δ > 0 (see Brockwell and Davis (1991)’s Proposition 6.3.9). By Markov’s
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inequality,

P
(∣∣a2,nT − am2,nT

∣∣ > δ
)
≤ 1

δ
E
∣∣a2,nT − am2,nT

∣∣
≤ 1

δ
E

∣∣∣∣∣
∞∑

l=m+1

∞∑
p=1

θl+p−2
0

(
1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εit−lεis−p

)∣∣∣∣∣
+

1

δ
E

∣∣∣∣∣
m∑
l=1

∞∑
p=m+1

θl+p−2
0

(
1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

εit−lεis−p

)∣∣∣∣∣
≤ 2

δ

∞∑
l=m+1

∞∑
p=1

|θ0|l+p−2

(
1

nT 2

n∑
i=1

T∑
t=1

t−1∑
s=1

E |εit−lεis−p|

)

≤

(
∞∑

l=m+1

|θ0|l−1

)
K → 0 as m→∞,

given the absolute summability of θl−1
0 and the fact that E |εit−lεis−p| ≤ ∆ <

∞ uniformly. This completes the proof of (ii). (iii) follows from (i) and (ii).

Proof of Lemma .1.4 Part (i) follows from Lemma .1.1 and the cross

sectional independence assumption, using arguments similar to those used

in the proof of Theorem 3.1 of GK (2004) (see part (ii) of their proof). To

prove (ii) (which is specific to the fixed effects OLS estimator), note that we
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can show that the following decomposition holds:

BnT2 ≡
1

T
√
nT

n∑
i=1

T∑
t=1

(
∞∑
l=1

θl−1
0 εit−l

)(
T∑
s=1

εis

)

=
1

T
√
nT

n∑
i=1

T∑
t=1

(
t−1∑
l=1

θl−1
0 εit−l +

∞∑
l=t

θl−1
0 εit−l

)(
T∑
s=1

εis

)

=

√
n

T

T−1∑
l=1

θl−1
0

1

nT

n∑
i=1

(
T−l∑
t=1

εit

)(
T∑
s=1

εis

)

+

√
n

T

1− θT0
1− θ0

{
∞∑
l=1

θl−1
0

(
1

nT

n∑
i=1

T∑
t=1

εitεi1−l

)}
≡ BnT2.1 + BnT2.2.

Now,

BnT2.1 =

√
n

T

T−1∑
l=1

θl−1
0

1

nT

n∑
i=1

(
T−l∑
t=1

εit

)(
T−l∑
s=1

εis +
T∑

s=T−l+1

εis

)

=

√
n

T

T−1∑
l=1

θl−1
0

1

nT

n∑
i=1

(
T−l∑
t=1

εit

)2

+

√
n

T

T−1∑
l=1

θl−1
0

1

nT

n∑
i=1

(
T−l∑
t=1

εit

)(
T∑

s=T−l+1

εis

)
≡ b1 + b2.

For fixed m ∈ N, define

b1,m =

√
n

T

m−1∑
l=1

θl−1
0

 1

n

n∑
i=1

(
1√
T

T−l∑
t=1

εit

)2
 =

√
n

T

m−1∑
l=1

θl−1
0

(
1

n

n∑
i=1

ZiT,l

)
,

where ZiT,l ≡ T−1
(∑T−l

t=1 εit

)2

. For fixed l, we can show that 1
n

∑n
i=1 ZiT,l →P

σ2 by an application of Lemma .1.1. In particular, we can use the same

arguments as in Lemma A.2 to show that E |ZiT,l|2 is uniformly bounded

by relying on Assumption A1 (vi). Thus, b1,m →P √ρ
∑m−1

l=1 θl−1
0 σ2 =

√
ρσ2 1−θm−1

0

1−θ0 ≡ Dm and Dm →
√
ρσ2 1

1−θ0 ≡ −A · D as m → ∞, where
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A ≡ σ2/ (1− θ2
0) and D ≡ −√ρ (1 + θ0). In addition, by Markov’s inequal-

ity, we have

P (|b1 − b1,m| > δ) ≤ 1

δ

√
n

T

T−1∑
l=m

|θ0|l−1

(
1

n

n∑
i=1

E (ZiT,l)

)

=
1

δ

√
n

T

T−1∑
l=m

|θ0|l−1

(
T − l
T

1

n

n∑
i=1

σ2
i

)
.

It follows that limm→∞ lim supn,T→∞ P (|b1 − b1,m| > δ) = 0 since n/T → ρ,

|θ0|l−1 is absolutely summable and 1
n

∑n
i=1 σ

2
i → σ2. Let us turn to b2. For

fixed m, define

b2,m =

√
n

T

m−1∑
l=1

θl−1
0

1

n

n∑
i=1

1

T

(
T−l∑
t=1

εit

)(
T∑

s=T−l+1

εis

)
≡
√
n

T

m−1∑
l=1

θl−1
0

1

n

n∑
i=1

YiT,l,

where YiT,l are independent across i, E (YiT,l) = 0 and E |YiT,l|2 ≤ E
(

1√
T

∑T
t=1 εit

)4

≤
∆ by Assumption A1 (v) and (vi). Thus, by Theorem .1.1, 1

n

∑n
i=1 YiT,l =

oP (1) and therefore, b2,m = oP (1). Finally, by Markov’s inequality, we have

P (|b2 − b2,m| > δ) ≤ 1

δ

√
n

T
E

∣∣∣∣∣
T−1∑
l=m

θl−1
0

1

nT

n∑
i=1

(
T−l∑
t=1

εit

)(
T∑

s=T−l+1

εis

)∣∣∣∣∣
≤ 1

δ

√
n

T

T−1∑
l=m

|θ0|l−1 1

n

n∑
i=1

E

(
1√
T

T∑
t=1

εit

)2

=
1

δ

√
n

T

(
1

n

n∑
i=1

σ2
i

)
T−1∑
l=m

|θ0|l−1 ,

which implies that limm→∞ lim supn,T→∞ P (|b2 − b2,m| > δ) = 0 for any δ >

0. To complete the proof of Lemma .1.4 (ii), we note that E (BnT2.2) = 0 and

we can show that V ar (BnT2.2) = O (1/nT ) = o (1). Part (iii) follows from

(i) and (ii) by Slutsky’s theorem.
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.1.2 Proofs of results in Section 1.3

Proofs of results in Section 1.3.1

Throughout this section, y∗it = α̂i + θ̂y∗it−1 + ε∗it, where ε∗it = ε̂it · ηit, with ηit

are i.i.d.(0, 1) and ε̂it = yit − α̂i − θ̂yit−1.

Auxiliary lemmas

Lemma .1.5. Under Assumption A1, for fixed k, l ∈ N, (i) n−1T−1
∑n

i=1

∑T
t=k+1 ε

∗2
it−k →P ∗

σ2; (ii) n−1T−1
∑n

i=1

∑T
t=k+1 ε

∗
it−kε

∗
it →P ∗ 0; and (iii) n−1T−1

∑n
i=1

∑T
t=max(k,l)+1 ε

∗2
it ε
∗
it−kε

∗
it−l →P ∗

τkl1{k=l}, in probability, where τkl = E (ε2
itεit−kεit−l) .

Lemma .1.6. Under Assumption A1, for all k ∈ N, 1√
nT

∑n
i=1

∑T
t=k+1

(
ε∗itε

∗
it−1, . . . , ε

∗
itε
∗
it−k
)′ →d∗

N
(

0, Ω̃k

)
, in probability, where Ω̃k ≡ diag (τ11, . . . , τkk).

For the next lemma, let y∗i0 = α̂i
1−θ̂ . It follows that for fixed i = 1, . . . , n

and t = 1, . . . , T ,

y∗it = θ̂t
α̂i

1− θ̂
+

1− θ̂t

1− θ̂
α̂i +

t−1∑
s=0

θ̂sε∗it−s =
α̂i

1− θ̂
+

t−1∑
s=0

θ̂sε∗it−s ≡
α̂i

1− θ̂
+ u∗it.

Therefore,

A∗nT =
1

nT

n∑
i=1

T∑
t=1

(
y∗it−1 − y∗i−

)2
=

1

nT

n∑
i=1

T∑
t=1

u∗2it−1−
1

n

n∑
i=1

ū∗2i− ≡ A∗nT1−A∗nT2,

where ū∗i− = 1
T

∑T
t=1 u

∗
it−1 and u∗it−1 =

∑t−1−1
s=0 θ̂sε∗it−1−s =

∑t−1
s=1 θ̂

s−1ε∗it−s.

Lemma .1.7. Under Assumption A1, (i) A∗nT1 →P ∗ A ≡ σ2

1−θ20
; (ii) A∗nT2 →P ∗

0; and (iii) A∗nT →P ∗ A, in probability.

Similarly, if we define B∗nT = 1√
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)
(ε∗it − ε̄∗i ), given
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the definition of y∗it−1, we have

B∗nT =
1√
nT

n∑
i=1

T∑
t=1

u∗it−1ε
∗
it −

1√
nT

n∑
i=1

T∑
t=1

u∗it−1ε̄
∗
i ≡ B∗nT1 −B∗nT2. (14)

Lemma .1.8. Under Assumption A1, (i) B∗nT1 →d∗ N
(

0, B̃
)

; (ii) B∗nT2 →P ∗

−A·D; and (iii) B∗nT →d∗ N
(
A ·D, B̃

)
, in probability, where B̃ =

∑∞
l=1 θ

2l−2
0 τll,

and A and D are defined as in Lemma .1.4.

Proofs

Proof of Theorem 1.3.1. The result follows from Lemmas .2.3 and .2.4,

Theorem .1.1 and Polya’s Theorem, given that the normal distribution is

everywhere continuous. Note that Assumption A1 needs to be strengthened

by A1(v′) in order for B̃ = B.

Proof of Theorem 1.3.2. We show that (1)
√
nT (θ̃∗ − θ̂) →d∗ N(D,C)

in probability; and (2) for some δ > 0, E∗
(∣∣∣√nT (θ̃∗ − θ̂)

∣∣∣1+δ
)

= OP (1).

Starting with (1), we can write
√
nT (θ̃∗ − θ̂) =

√
nT (θ̂∗rd − θ̂) + R∗nT , with

R∗nT = −
√
nT (θ̂∗rd − θ̂)1{ 1

nT

∑n
i=1

∑T
t=1(y∗it−1−ȳ∗i−)2< η

2}, given the definition of θ̃∗

(with δ = η
2

and η ∈ (0, σ2

1−θ20
)). By Theorem 1.3.1,

√
nT (θ̂∗rd − θ̂) = OP ∗(1),

in probability, and

E∗
(

1{ 1
nT

∑n
i=1

∑T
t=1(y∗it−1−ȳ∗i−)2< η

2}
)

= P ∗

(
1

nT

n∑
i=1

T∑
t=1

(y∗it−1 − ȳ∗i−)2 <
η

2

)
→P 0,

given (1.3). By Markov’s inequality, we conclude that R∗nT = oP ∗(1) in proba-

bility. To prove (2), we let δ = 1 and define S =
{

1
nT

∑n
i=1

∑T
t=1(y∗it−1 − ȳ∗i−)2 ≥ η

2

}
.
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Then, given the definition of θ̃∗, we have

E∗
(∣∣∣√nT (θ̃∗ − θ̂)

∣∣∣2) = E∗
(∣∣∣√nT (θ̂∗rd − θ̂)1S

∣∣∣2)

= E∗

( 1

nT

n∑
i=1

T∑
t=1

(y∗it−1 − ȳ∗i−)2

)−2(
1√
nT

n∑
i=1

T∑
t=1

(y∗it−1 − ȳ∗i−)(ε∗it − ε̄∗i )

)2

1S


≤ 4

η2
E∗

( 1√
nT

n∑
i=1

T∑
t=1

(y∗it−1 − ȳ∗i−)(ε∗it − ε̄∗i )

)2
 ≡ 4

η2
E∗(B∗2nT ),

where B∗nT can be decomposed as B∗nT = B∗1nT − B∗2nT , with B∗1nT and B∗2nT
given in equation (14). We now show that E∗(B∗2nT ) = OP (1) . We have that

E∗ (B∗2nT ) ≤ 2 (E∗ (B∗21nT ) + E∗ (B∗22nT )) , where E∗ (B∗21nT ) = V ar∗ (B∗1nT ) →P

B̃, so E∗ (B∗21nT ) = OP (1) . For the second term, note that

B∗2nT =
1√
nT

n∑
i=1

T∑
t=1

u∗it−1ε̄
∗
i = B∗nT2.1 + B∗nT2.2,

where B∗nT2.1 and B∗nT2.2 are defined in the proof of Lemma .2.4. As we argue

in that proof, E∗ (B∗2nT2.2) →P 0, so we are left to prove that E∗ (B∗2nT2.1) =

OP (1). Given the definition of B∗nT2.1,

E∗
(
B∗2nT2.1

)
=

1

nT 3

n∑
i,j=1

T−1∑
l,p=1

θ̂l+p−2E∗

(T−l∑
t=1

ε∗it

)2(T−p∑
s=1

ε∗js

)2


=
1

nT 3

n∑
i=1

T−1∑
l,p=1

θ̂l+p−2E∗

(T−l∑
t=1

ε∗it

)2(T−p∑
s=1

ε∗is

)2


+
1

nT 3

n∑
i 6=j

T−1∑
l,p=1

θ̂l+p−2E∗

(T−l∑
t=1

ε∗it

)2
E∗

(T−p∑
s=1

ε∗js

)2
 ≡ b∗1 + b∗2.
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Now,

b∗1 =
1

nT 3

n∑
i=1

T−1∑
l=1

θ̂2l−2E∗

(T−l∑
t=1

ε∗it

)4
+ 2

1

nT 3

n∑
i=1

T−1∑
l>p

θ̂l+p−2E∗

(T−l∑
t=1

ε∗it

)2(T−p∑
s=1

ε∗is

)2


= b∗11 + b∗12

For b∗11, using the fact that E∗|ηit|4 ≤ ∆ <∞,

b∗11 ≤
(1 + ∆)

nT 3

n∑
i=1

T−1∑
l=1

θ̂2l−2

{
T−l∑
t=1

ε̂4
it + 3

T−l∑
t6=s

ε̂2
itε̂

2
is

}

≤ 3 (1 + ∆)

T

{
1

nT 2

n∑
i=1

T∑
t,s=1

ε̂2
itε̂

2
is

}(
T∑
l=1

θ̂2l−2

)
= OP (

1

T
),

given that the terms in brackets are OP (1). Similarly,

b∗12 = 2
1

nT 3

n∑
i=1

T−1∑
l>p

θ̂l+p−2E∗

(T−p∑
t=1

ε∗it +
T−l∑

t=T−p+1

ε∗it

)2(T−p∑
s=1

ε∗is

)2


≤ 4

nT 3

n∑
i=1

T−1∑
l>p

θ̂l+p−2E∗

(T−p∑
t=1

ε∗it

)4

+

(
T−l∑

t=T−p+1

ε∗it

)2(T−p∑
s=1

ε∗is

)2


≤ 4 (1 + ∆)

nT 3

n∑
i=1

T−1∑
l>p

θ̂l+p−2

{
3

T∑
t,s=1

ε̂2
itε̂

2
is +

(
T−l∑

t=T−p+1

ε̂2
it

)(
T−p∑
s=1

ε̂2
is

)}

≤ 16 (1 + ∆)

T

{
1

nT 2

n∑
i=1

T∑
t,s=1

ε̂2
itε̂

2
is

}(
T−1∑
l>p

θ̂l+p−2

)
= OP (

1

T
) = OP (1).

Finally, for b∗2 we have

b∗2 =
1

nT 3

n∑
i 6=j

T−1∑
l,p=1

θ̂l+p−2

(
T−l∑
t=1

ε̂2
it

)(
T−p∑
s=1

ε̂2
js

)
≤ n

T

(
1

nT

n∑
i=1

T∑
t=1

ε̂2
it

)2( T−1∑
l,p=1

θ̂l+p−2

)
= OP (1).

This complete the proof of Theorem 1.3.2.
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Proof of Lemma 1.3.1. From Lemma .2.3, Â∗rd →P ∗ A. Hence, it suffices

to show that B̂∗rd →P ∗ B̃, in probability. We can write ε̃∗it − ¯̃ε∗i = ε∗it − ε̄∗i −(
θ̂∗rd − θ̂

) (
y∗it−1 − ȳ∗i−

)
, where ε̃∗it = y∗it−α̂∗i−θ̂∗rdy∗it−1 and ε∗it = y∗it−α̂i−θ̂y∗it−1.

Thus,

B̂∗rd = B̂∗1 + B̂∗2 + B̂∗3 , with

B̂∗1 = 1
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)2
(ε∗it − ε̄∗i )

2, B̂∗2 = −2
(
θ̂∗rd − θ̂

)
1
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)3
(ε∗it − ε̄∗i )

and B̂∗3 =
(
θ̂∗rd − θ̂

)2
1
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)4
.

We show: (a) B̂∗1 →P ∗ B, (b) B̂∗1 →P ∗ 0 and (c) B̂∗1 →P ∗ 0. Starting with

(a), note that

B̂∗1 =
1

nT

n∑
i=1

T∑
t=1

(
y∗it−1 − ȳ∗i−

)2
(ε∗it − ε̄∗i )

2

=
1

nT

n∑
i=1

T∑
t=1

(
u∗it−1 − ū∗i−

)2
(ε∗it − ε̄∗i )

2

=
1

nT

n∑
i=1

T∑
t=1

(
u∗2it−1 − 2u∗it−1ū

∗
i− + ū∗2i−

) (
ε̂∗2it − 2ε∗itε̄

∗
i + ε̄∗2i

)
=

1

nT

n∑
i=1

T∑
t=1

u∗2it−1ε
∗2
it +R∗nT ,

where

R∗nT = − 2

nT

n∑
i=1

T∑
t=1

u∗2it−1ε
∗
itε̄
∗
i +

1

nT

n∑
i=1

T∑
t=1

u∗2it−1ε̄
∗2
i −

2

nT

n∑
i=1

T∑
t=1

u∗it−1ū
∗
i−ε
∗2
it

+
4

nT

n∑
i=1

T∑
t=1

u∗it−1ū
∗
i−ε
∗
itε̄
∗
i +

1

nT

n∑
i=1

T∑
t=1

ū∗2i−ε
∗2
it −

3

n

n∑
i=1

ū∗2i−ε̄
∗2
i

≡ −R∗nT1 +R∗nT2 −R∗nT3 +R∗nT4 +R∗nT5 −R∗nT6.

By arguments similar to those of the proof of Corollary 3.1. of Gonçalves

and Kilian (2004), one can show that 1
nT

∑n
i=1

∑T
t=1 u

∗2
it−1ε

∗2
it →P ∗ B̃. To
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show that R∗nT →P ∗ 0 in probability, it suffices that E∗
(∣∣R∗nTj∣∣) →P 0 for

j = 1, 2, 3, 5, 4, 6. For j = 1,

|R∗nT1| ≤ 2

[
1

nT

n∑
i=1

T∑
t=1

u∗4it−1

]1/2 [
1

nT

n∑
i=1

T∑
t=1

ε∗2it ε̄
∗2
i

]1/2

≡ A∗1 × A∗2.

Let us start with A∗1. Since u∗it−1 =
∑t−1

s=1 θ̂
s−1ε∗it−s,

E∗ |A∗1|
2 =

1

nT

n∑
i=1

T∑
t=1

(
t−1∑
s=1

θ̂s−1ε∗it−s

)∗4

=
1

nT

n∑
i=1

T∑
t=1

t−1∑
s,p,q,r=1

θ̂s+p+q+r−4E∗
(
ε∗it−sε

∗
it−pε

∗
it−qε

∗
it−r
)

≤ ∆

nT

n∑
i=1

T∑
t=1

t−1∑
s,p=1

θ̂2s+2p−4ε̂2
it−sε̂

2
it−p ≤

∆

nT

n∑
i=1

T∑
t=1

T∑
s,p=1

θ̂2s+2p−4ε̂2
it−sε̂

2
it−p,

where ε̂it = 0 ∀t ≤ 0. Therefore,

E∗ |A∗1|
2 ≤ ∆

T∑
s,p=1

θ̂2s+2p−4

(
1

nT

n∑
i=1

T∑
t=1

ε̂2
it−sε̂

2
it−p

)

≤ ∆
T∑

s,p=1

θ̂2s+2p−4

(
1

nT

n∑
i=1

T∑
t=1

ε̂4
it−s

)1/2(
1

nT

n∑
i=1

T∑
t=1

ε̂4
it−p

)1/2

≤ ∆
T∑

s,p=1

θ̂2s+2p−4

(
1

nT

n∑
i=1

T∑
t=1

ε̂4
it

)
= OP (1) ,

given that 1
nT

∑n
i=1

∑T
t=1 ε̂

4
it = OP (1) under Assumption A1 and the fact

that θ̂ − θ0 = oP (1) with |θ0| < 1. To conclude that R∗nT1 →P ∗ 0, it suffices
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to show that E∗ (|A∗2|)→P 0. This can be done as follows:

E∗ |A∗2|
2 =

1

nT

n∑
i=1

T∑
t=1

E∗
(
ε∗2it ε̄

∗2
i

)
=

1

nT 3

n∑
i=1

T∑
t=1

T∑
p,q=1

E∗
(
ε∗2it ε

∗
ipε
∗
iq

)
=

1

nT 3

n∑
i=1

T∑
t=1

T∑
p=1

ε̂2
itε̂

2
ip =

1

T

 1

n

n∑
i=1

(
1

T

T∑
t=1

ε̂2
it

)2
 = OP

(
1

T

)
.

Similar arguments can be applied to R∗nT , j = 2, 3, 5, 4, 6. For B̂∗2 and B̂∗3 , one

can easily show that 1
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)3
(ε∗it − ε̄∗i ) and 1

nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)4

are OP ∗ (1).

Proof of Lemma .2.1. The proof follows closely that of Lemma A.2 in

GK (2004) and therefore we skip the details, only mentioning the changes

introduced in the panel context. As in GK (2004), for part (i), we can write

1

nT

n∑
i=1

T∑
t=1

ε∗2it −σ2 =

[
1

nT

n∑
i=1

T∑
t=1

ε̂2
it

(
η2
it − 1

)]
+

[
1

nT

n∑
i=1

T∑
t=1

ε̂2
it − σ2

]
≡ F ∗1 +F2,

where now ε̂it = εit + (αi − α̂i) +
(
θ0 − θ̂

)
yit−1 depends also on (αi − α̂i),

new to the fixed effects estimator. Thus, to show that F2 = oP (1), we

need to use the fact that sup1≤i≤n |α̂i − αi| = oP (1) under our assumptions.

Since E

[(∑T
t=1 εit

)2
]

=
∑T

t=1E (ε2
it) = O (T ), it follows that

∑T
t=1 εit =

OP

(√
T
)

uniformly in i, and therefore, 1√
T

∑T
t=1 εit = OP (1) uniformly in

i. Also, given that 1
T

∑T
t=1 yit−1 = OP (1) uniformly in i and θ̂− θ0 = oP (1),
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we have

sup
1≤i≤n

|α̂i − αi| = sup
1≤i≤n

∣∣∣∣∣ 1√
T

(
1√
T

T∑
t=1

εit

)
−
(
θ̂ − θ0

) 1

T

T∑
t=1

yit−1

∣∣∣∣∣
≤ 1√

T
sup

1≤i≤n

∣∣∣∣∣
(

1√
T

T∑
t=1

εit

)∣∣∣∣∣+
∣∣∣θ̂ − θ0

∣∣∣ sup
1≤i≤n

∣∣∣∣∣ 1

T

T∑
t=1

yit−1

∣∣∣∣∣
=

1√
T
OP (1) + oP (1)OP (1) = oP (1) .

The proof that E∗ (F ∗21 ) = oP (1) follows exactly the same steps as the

proof in GK (2004), with the only difference that we again rely on the

uniform convergence (over i) of α̂i towards αi (in addition to the conver-

gence of θ̂ towards θ0) to show that 1
nT

∑n
i=1

∑T
t=1 ε̂

4
it = OP (1) . The proof

of (ii) and (iii) follow similarly. In particular, to prove (iii) we show that
1
nT

∑n
i=1

∑T
t=max(k,l)+1 ε

2
itεit−kεit−l →P τkl by verifing the conditions of Theo-

rem .1.1.

Proof of Lemma .2.2. For fixed k ∈ N, we check that Z∗kiT = 1√
T

∑T
t=k+1

(
ε∗itε

∗
it−1, . . . , ε

∗
itε
∗
it−k
)′

satisfies the conditions of Theorem .1.2, conditionally on the original sample

with probability converging to one. First, {Z∗kiT } are (conditionally) indepen-

dent across i for all T with E∗
(
Z∗kiT
)

= 0. Second,

E∗
(
Z∗kiTZ

∗k′
iT

)
= diag

(
1

T

T∑
t=k+1

ε̂2
itε̂

2
it−1, . . . ,

1

T

T∑
t=k+1

ε̂2
itε̂

2
it−k

)
≡ Ω̂iT .

Under our assumptions, 1
nT

∑n
i=1

∑T
t=k+1 ε̂

2
itε̂

2
it−p →P τpp, p = 1, . . . , k, which

implies that plimn,T→∞
1
n

∑n
i=1 Ω̂iT = Ω̃k, where Ω̃k is positive definite with

minimum eigenvalue λmin > 0 since τrr > 0 for all r ≥ 1. Lastly, we can

show that E∗
∥∥Z∗kiT ∥∥2δ

= OP (1), uniformly in i for δ = 2. In particular, by
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the c− r inequality (with r = 2),

E∗
∥∥Z∗kiT ∥∥4

= E∗

 k∑
l=1

(
1√
T

T∑
t=k+1

ε∗itε
∗
it−l

)2
2

≤ k2−1

k∑
l=1

E∗

(
1√
T

T∑
t=k+1

ε∗itε
∗
it−l

)4

= k

k∑
l=1

1

T 2

T∑
t1,...,t4=k+1

E∗
(
ε∗it1ε

∗
it1−lε

∗
it2
ε∗it2−lε

∗
it3
ε∗it3−lε

∗
it4
ε∗it4−l

)
≤ ∆k

k∑
l=1

1

T 2

(
T∑

t=k+1

ε̂4
itε̂

4
it−l + 3

T∑
t6=s

ε̂2
itε̂

2
it−lε̂

2
isε̂

2
is−l

)
= OP (1) ,

given that 1/T
∑T

t=1+k ε̂
4
itε̂

4
it−l = OP (1) under Assumption A1. Note also the

use of the definition of ε∗it = ε̂itηit and the i.i.d. properties of ηit to justify the

fact that the only non-zero contributions to the sum in the second equality

are when (1) t1 = t2 = t3 = t4; (2) t1 = t2 6= t3 = t4; (3) t1 = t3 6= t2 = t4;

(4) t1 = t4 6= t2 = t3.

Proof of Lemma .2.3 The proof of (i) follows the same arguments of the

proof of Lemma A.4 of GK (2004), by replacing their Lemma A.2 with our

Lemma .2.1 to justify the convergence in probability of n−1T−1
∑n

i=1

∑T
t=k+1 ε

∗2
it−k

towards σ2 and of n−1T−1
∑n

i=1

∑T−l
t=k+1 ε

∗
it−kε

∗
it towards zero. Part (iii) fol-

lows from (i) and (ii). Part (ii) is new to the panel context considered here,

so we provide more details. First, recall that u∗it−1 =
∑t−1

s=1 θ̂
s−1ε∗it−s, which

implies that

ū∗i− ≡
1

T

T∑
t=1

u∗it−1 =
T∑
t=1

(
t−1∑
s=1

θ̂s−1ε∗it−s

)
=

T−1∑
l=1

θ̂l−1

(
1

T

T−l∑
t=1

ε∗it

)
︸ ︷︷ ︸

≡χ∗il

=
T−1∑
l=1

θ̂l−1χ∗il.
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Hence,

A∗nT2 =
1

n

n∑
i=1

ū∗2i− =
1

n

n∑
i=1

(
T−1∑
l=1

θ̂l−1χ∗il

)2

=
1

n

n∑
i=1

T−1∑
l=1

θ̂2(l−1)χ∗2il

+
2

n

n∑
i=1

T−2∑
k=1

T−1−k∑
l=1

θ̂(l−1)θ̂(k−1)χ∗ilχ
∗
il+k ≡ A∗1 +A∗2.

Given the definition of χ∗il, we have that

A∗1 =
1

n

n∑
i=1

T−1∑
l=1

θ̂2(l−1)

(
1

T 2

T−l∑
t=1

ε∗2it + 2
1

T 2

T−l−1∑
k=1

T−l−k∑
t=1

ε∗itε
∗
it+k

)
≡ a∗11 + a∗12.

Using Lemma .2.1.(i), and following the proof of Lemma A.4 of GK(2004),

we can show that

a∗11 =
1

T

{
T−1∑
l=1

θ̂2(l−1)

(
1

nT

n∑
i=1

T−l∑
t=1

ε∗2it

)}
= OP ∗

(
1

T

)
= oP ∗ (1) .

For the second term, we have that

a∗12 =
2

T

T−1∑
l=1

θ̂2(l−1)

(
1

T

1

n

n∑
i=1

T−l−1∑
k=1

T−l−k∑
t=1

ε∗itε
∗
it+k

)
=

2

T

T−1∑
l=1

T−l−1∑
k=1

θ̂2(l−1)

(
1

T

1

n

n∑
i=1

T−l−k∑
t=1

ε∗itε
∗
it+k

)
.

For fixed m, let

a∗12,m =
2

T

m−1∑
l=1

m−l−1∑
k=1

θ̂2(l−1)

(
1

T

1

n

n∑
i=1

T−l−k∑
t=1

ε∗itε
∗
it+k

)
.

By Lemma .2.1.(ii), we have that 1
T

1
n

∑n
i=1

∑T−l−k
t=1 ε∗itε

∗
it+k →P ∗ 0, in proba-

bility. Since θ̂ →P θ0, it follows that a∗12,m →P ∗ 0, in probability. To conclude

that a∗12 →P ∗ 0, in probability, it suffices to show that limm→∞ lim supn,T→∞ P
∗ (∣∣a∗12 − a∗12,m

∣∣ > δ
)

=
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oP (1). We have that

a∗12 − a∗12,m =
2

T

T−1∑
l=m

T−l−1∑
k=1

θ̂2(l−1)

(
1

T

1

n

n∑
i=1

T−l−k∑
t=1

ε∗itε
∗
it+k

)

+
2

T

m−1∑
l=1

T−l−1∑
k=m−l

θ̂2(l−1)

(
1

T

1

n

n∑
i=1

T−l−k∑
t=1

ε∗itε
∗
it+k

)
= R∗12.1,m +R∗12.2,m.

By the triangle inequality,

E∗
∣∣R∗12.1,m

∣∣ ≤ 2

T

T−1∑
l=m

θ̂2(l−1)

T−l−1∑
k=1

(
1

T

1

n

n∑
i=1

T−l−k∑
t=1

E∗
∣∣ε∗itε∗it+k∣∣

)

≤ 2

T

T−1∑
l=m

θ̂2(l−1)

T−l−1∑
k=1

(
1

T

1

n

n∑
i=1

T−l−k∑
t=1

|ε̂itε̂it+k|E∗ |ηitηit+k|

)
≤ 2∆

(
1

T

1

n

n∑
i=1

T∑
t=1

ε̂2
it

)(
T−1∑
l=m

θ̂2(l−1)

)
,

where we have used the fact that E∗ |ηitηit+k| ≤ ∆ and Cauchy-Schwartz’s

inequality to justify the third inequality. Under Assumption A1, we have

that 1
T

1
n

∑n
i=1

∑T
t=1 ε̂

2
it = OP (1) whereas

∑T−1
l=m θ̂

2(l−1) →P θ
2(m−1)
0 / (1− θ2

0),

which converges to 0 asm→∞ since |θ0| < 1. This shows that limm→∞ lim supn,T→∞E
∗
∣∣R∗12.1,m

∣∣ =

oP (1). For R∗12.2,m,

E∗
∣∣R∗12.2,m

∣∣2 ≤ 4

T 2

m−1∑
l=1

T−l−1∑
k=m−l

m−1∑
p=1

T−p−1∑
q=m−p

θ̂2(l+p−2)

(
1

n2T 2

n∑
i=1

T−l−k∑
t=1

n∑
j=1

T−p−q∑
s=1

E∗
(
ε∗itε

∗
it+kε

∗
jsε
∗
js+q

))

=
4

T 2

m−1∑
l=1

T−l−1∑
k=m−l

m−1∑
p=1

T−p−1∑
q=m−p

θ̂2(l+p−2)

 1

n2T 2

n∑
i=1

min(T−l−k,T−p−q)∑
t=1

E∗
(
ε∗2it ε

∗
it+kε

∗
it+q

)
=

4

T 2

m−1∑
l=1

m−1∑
p=1

min(T−l−1,T−p−1)∑
k=max(m−l,m−p)

θ̂2(l+p−2)

 1

n2T 2

n∑
i=1

min(T−l−k,T−p−q)∑
t=1

E∗
(
ε∗2it ε

∗2
it+k

)
≤ 4

(
1

nT

n∑
i=1

T∑
t=1

ε̂4
it

)
1

nT 2

m−1∑
l=1

m−1∑
p=1

θ̂2(l+p−2),
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which converges to 0 as n, T → ∞ since under Assumption 1, we have that
1
nT

∑n
i=1

∑T
t=1 ε̂

4
it = OP (1) and

p lim
n,T→∞

m−1∑
l=1

m−1∑
p=1

θ̂2(l+p−2) =

(
1− θ2(m−1)

0

1− θ2
0

)2

→ 1

1− θ2
0

as m→∞,

showing that limm→∞ lim supn,T→∞E
∗
∣∣R∗12.2,m

∣∣2 = oP (1). This ends the

proof of A∗1 = oP ∗(1). For A∗2, we have that

A∗2 =
2

n

n∑
i=1

T−2∑
k=1

T−1−k∑
l=1

θ̂(l+k−2)

(
1

T

T−l∑
t=1

ε∗it

)(
1

T

T−l−k∑
s=1

ε∗is

)

=
2

n

n∑
i=1

T−2∑
k=1

T−1−k∑
l=1

θ̂(l+k−2)

(
1

T

T−l−k∑
t=1

ε∗it +
1

T

T−l∑
t=T−l−k+1

ε∗it

)(
1

T

T−l−k∑
s=1

ε∗is

)

=
2

n

n∑
i=1

T−2∑
k=1

T−1−k∑
l=1

θ̂(l+k−2)

(
1

T

T−l−k∑
t=1

ε∗it

)2

+
2

n

n∑
i=1

T−2∑
k=1

T−1−k∑
l=1

θ̂(l+k−2)

(
1

T

T−l∑
t=T−l−k+1

ε∗it

)(
1

T

T−l−k∑
s=1

ε∗is

)
≡ a∗21 + a∗22.

Now,

a∗21 =
2

T

T−2∑
k=1

T−1−k∑
l=1

θ̂(l+k−2)

(
1

nT

n∑
i=1

T−l−k∑
t=1

ε∗2it

)

+
4

T

T−2∑
k=1

T−1−k∑
l=1

T−l−k−1∑
p=1

θ̂(l+k−2)

(
1

Tn

n∑
i=1

T−l−k−p∑
t=1

ε∗itε
∗
it+p

)
≡ a∗21.1 + a∗21.2.

By Lemma .2.1 (i), and following the proof of Lemma A.4 of GK(2004), we

can show that

a∗21.1 =
2

T

T−2∑
k=1

T−1−k∑
l=1

θ̂(l+k−2)

(
1

nT

n∑
i=1

T−l−k∑
t=1

ε∗2it

)
= OP ∗

(
1

T

)
= oP ∗ (1) .
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The proof that a∗21.2 = oP ∗ (1) follows by showing that E∗ |a∗21.2|
2 = oP (1).

For a∗22, we use Markov’s inequality and apply the same reasoning as that

used to show that b2 = oP (1) in the proof of Lemma A.4.

Proof of Lemma .2.4. Part (i) follows by the same arguments used by GK

(2004) to prove their Lemma A.5, given our Assumption A1 and the fact that

supi |α̂i − αi| = oP (1) and θ̂ →P θ0. Part (iii) follows trivially from parts

(i) and (ii). Part (ii) is the new bias term, which we consider in more detail

here. First, recall that
∑T

t=1 u
∗
it−1 =

(∑T−1
l=1 θ̂l−1

∑T−l
t=1 ε

∗
it

)
, which implies

that

B∗nT2 =
1√
nT

n∑
i=1

T∑
t=1

u∗it−1ε̄
∗
i =

1√
nT

n∑
i=1

(
T−1∑
l=1

θ̂l−1

T−l∑
t=1

ε∗it

)(
T−1

T∑
s=1

ε∗is

)
,

given the definition of ε̄∗i . It follows that

B∗nT2 =
1

T
√
nT

n∑
i=1

T−1∑
l=1

θ̂l−1

(
T−l∑
t=1

ε∗it

)(
T−l∑
s=1

ε∗is +
T−l∑

s=T−l+1

ε∗is

)

=
1

T
√
nT

n∑
i=1

T−1∑
l=1

θ̂l−1

(
T−l∑
t=1

ε∗it

)2

+
1

T
√
nT

n∑
i=1

T−1∑
l=1

θ̂l−1

(
T−l∑
t=1

ε∗it

)(
T−l∑

s=T−l+1

ε∗is

)
≡ B∗nT2.1 + B∗nT2.2.

For fixed l, we can write(
T−l∑
t=1

ε∗it

)2

=
T−l∑
t=1

ε∗2it + 2
T−l−1∑
k=1

T−l−k∑
t=1

ε∗itε
∗
it+k,

which implies that

B∗nT2.1 =
1

T
√
nT

n∑
i=1

T−1∑
l=1

θ̂l−1

T−l∑
t=1

ε∗2it +
2

T
√
nT

n∑
i=1

T−1∑
l=1

θ̂l−1

T−l−1∑
k=1

T−l−k∑
t=1

ε∗itε
∗
it+k ≡ b∗1+b∗2.

Using arguments similar to those applied in the proof of Lemma .2.3, we can
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show that b∗1 →P ∗ √ρ σ2

1−θ0 . For b∗2, we have that

E∗ |b∗2|
2 = 4

(n
T

) T−1∑
l=1

T−l−1∑
k=1

T−1∑
p=1

T−p−1∑
q=1

θ̂l+p−2 1

n2T 2

n∑
i,j=1

T−l−k∑
t=1

T−p−q∑
s=1

E∗
(
ε∗itε

∗
it+kε

∗
jsε
∗
js+q

)
= 4

(n
T

) T−1∑
l=1

T−l−1∑
k=1

T−1∑
p=1

T−p−1∑
q=1

θ̂l+p−2 1

n2T 2

n∑
i=1

min(T−l−k,T−p−q)∑
t=1

E∗
(
ε∗2it ε

∗
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∗
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)
= 4
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) T−1∑
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p=1

θ̂l+p−2 1
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n∑
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2
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≤ 4
1
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(
1
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n∑
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T∑
t=1

ε̂4
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)(n
T

)
T
T−1∑
l=1

T−1∑
p=1

θ̂l+p−2 = OP

(
1

n

)
.

Using similar arguments, we can show that E∗ |B∗nT2.2|
2 →P 0, which com-

pletes the proof of Lemma .2.4.

Proofs of results in Section 1.3.2

Proof of Theorem 1.3.3.

We show that

B∗nT ≡
1√
nT

n∑
i=1

T∑
t=1

(yit−1 − ȳi−) (ε∗it − ε̄∗i )→d∗ N (0, B)

in probability, where ε∗it = ε̂it · ηit, with ηit are i.i.d.(0, 1) . We can write

B∗nT =
1√
nT

n∑
i=1

T∑
t=1

uit−1ε
∗
it −

1√
nT

n∑
i=1

T∑
t=1

uit−1ε̄
∗
i ≡ B∗nT1 −B∗nT2.

Writing B∗nT1 = n−1/2
∑n

i=1 Z
∗
iT , with Z∗iT ≡ 1√

T

∑T
t=1 uit−1ε

∗
it, we verify that

the conditions of Theorem .1.2 hold with probability converging to one. First,

{Z∗iT} are independent across i for all T with E∗ (Z∗iT ) = 0 and E∗ (Z∗2iT ) =
1
T

∑T
t=1 u

2
it−1ε̂

2
it ≡ ΩiT . Moreover, for δ = 2, and using the independence of
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ε∗it across i and t, we have that

E∗
(
Z∗2+δ
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)
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T
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∗
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)4
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T 2
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T 2
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4
it+

6∆

T 2

T∑
t>s=1
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2
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2
itε̂

2
is = OP (1)

given that E∗ |ηit|4 ≤ ∆ < ∞. Finally, we can show that 1
n

∑n
i=1 ΩiT =

1
nT

∑n
i=1

∑T
t=1 u

2
it−1ε̂

2
it →P B. To complete the proof, we show that B∗nT2 =√

n
T

1
n

∑n
i=1 Z

∗
iT →P ∗ 0 by verifying that the conditions of Theorem .1.1 apply

to

Z∗iT ≡
1

T

T∑
t=1

uit−1ε̄
∗
i =

(
1√
T

T∑
t=1

uit−1

)(
1√
T

T∑
s=1

ε∗is

)
.

Given that ε∗is are independent across i, so are Z∗iT . Moreover, E∗ (Z∗iT ) = 0

and for δ = 1,

E∗
(
Z∗1+δ
iT

)
=

(
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T
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uit−1
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ε̂2
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)
= OP (1) .

Proofs of results in Section 1.3.3

Proof of Theorem 1.3.4.

Let I1, . . . , In be i.i.d. random variables uniformly distributed on {1, . . . , n},
and let (

y∗it, y
∗
it−1

)
= (yIit, yIit−1) , t = 1, . . . , T, i = 1, . . . , n.

Define ε̂it = yit− α̂i− θ̂yit−1, ε̂∗it = y∗it− α̂∗i − θ̂y∗it−1 and ε∗it = y∗it−α∗i −θ0y
∗
it−1,

where α∗i = αIi . We show that (a) A∗nT ≡ 1
nT

∑n
i=1

∑T
t=1

(
y∗it−1 − ȳ∗i−

)2 →P ∗
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i=1
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(
y∗it−1 − ȳ∗i−

) (
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)
→d∗ N (0, B) , in
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probability. Recall that yit−1 = αi
1−θ0 +uit−1. Similarly, define µi ≡ E (yit−1) =

αi
1−θ0 and µ∗i = µIi . Then, for (a),
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≡ A∗nT1 − A∗nT2.

We show that (a1) A∗nT1 →P ∗ A and (a2) A∗nT2 →P ∗ 0. For (a1), we let
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∑T
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(
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)2
, which implies that A∗nT1 = 1

n

∑n
i=1 Z

∗
iT , and we

use Theorem .1.1. Notice that {Z∗iT} are independent across i for all T with
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Also, for δ = 1,
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For (a2), define Z̃∗iT =
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1
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(
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∗
iT ,
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by Lemma .1.3. The result follows by showing that

E∗
(
Z̃∗1+δ
iT

)
=

1

nT 4

n∑
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T∑
t,s,p,q=1

uit−1uis−1uip−1uiq−1 = OP (1)

for δ = 1. Next we show (b). With our notations, B∗nT can be rewritten as

B∗nT =
1√
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n∑
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(yjs−1 − ȳj−) (εjs − ε̄j)

}

+

{
1

nT

n∑
i=1

T∑
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)
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′

nT+R∗nT .

Using (a) and Theorem 1.2.1, we have R∗nT = oP ∗ (1)OP (1) = oP ∗ (1). There-

fore, (b) follows if we prove that B∗
′
nT →dP∗ N (0, B) in probability. Noting

that
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≡ B∗nT1 −B∗nT2,

Therefore, it suffices to show that (b1) B∗nT1 →d∗ N (0, B) and (b2) B∗nT2 →P ∗

0 in probability. For (b1), we verify the conditions of Theorem .1.2 with

B∗nT1 = 1√
n

∑n
i=1 Z

∗
iT and

Z∗iT ≡
1√
T

T∑
t=1

z∗it ≡
1√
T
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t=1

(
y∗it−1 − µ∗i

)
ε∗it−

1

n
√
T

n∑
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ujs−1εjs ≡ q∗iT−E∗ (q∗iT ) .

Notice that {Z∗iT} are independent across i for all T with E∗ (Z∗iT ) = 0 and
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Ω∗iT ≡ E∗ (Z∗2iT ) = E∗ (q∗iT )2 − (E∗ (q∗iT ))2, where
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n∑
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By Lemma .1.4 (i),
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Moreover,

Ω∗1 =
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(
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=
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where the first term converges to B in probability and the second term is an

oP (1) given Assumption A1(vii) in particular. Thus, Ω∗ →P B. The result

follows by showing that E∗
(
q∗2+δ
iT

)
= O (1) for δ = 2. To prove (b2), we

proceed similarly but verify the conditions of Theorem .1.1 instead. We omit

the details to conserve space.

.1.3 Proofs of results in Section 1.4

Proof of Theorem 1.4.1. The proof follows from Theorem 1.3.1 and the

fact that θ̂∗rd →P ∗ θ0 in probability.

Proof of Theorem 1.4.2. The proof follows from Theorem 1.3.4 and the

fact that θ̂∗pb →P ∗ θ0 in probability.

Proof of Lemma 1.4.1. From the proof of Theorem 1.3.4, Â∗pb →P ∗ A.

Hence, it suffices to show that B̂∗pb →P ∗ B, in probability. We can write

ε̃∗it − ¯̃ε∗i = ε̂∗it − ¯̂ε∗i −
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θ∗pb −

ˆ̂
θ
) (
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∗
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θy∗it−1 with α̌i = α̂Ii . As in the



140

proof of Lemma 1.3.1, we can write

B̂∗pb = B̂∗1 + B̂∗2 + B̂∗3 , with
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where µi = E (yit) = αi
1−θ0 . By Cauchy-Schwartz inequality,
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where the first term obviously converges in probability to B while the remain-

ing terms converge to 0 by making use of the Cauchy-Schwartz inequality.

.2 Proof of main results in Chapter 2

.2.1 Proofs of results in Section 2.2

Proof of Theorem 2.2.1. Under Assumption A, Hahn and Kuersteiner

(2011b) have shown that
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The half-panel jackknife estimator is given by θ̂1/2 = 2θ̂ − 1
2

(
θ̂1 + θ̂2

)
. If

we assume for the mean time that T1 ≡ T/2 is an integer, then by similar
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arguments, one can show that
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By putting together these results, we obtain
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∂vit
∂γi

] vit
 .
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From Hahn and Kuersteiner (2011b), we have(
1

n

n∑
i=1

Ii

)−1
1√
nT

n∑
i=1

T∑
t=1

Uit →d N

(
0, I−1Ω

(
I ′
)−1
)
.

Thus, the half-panel jackknife estimator is asymptotically unbiased if B1 =
1
n

∑n
i=1 Z1iT = oP (1) and B2 = 1

n

∑n
i=1 Z2iT = oP (1). We are only going to

give a proof of B1 = oP (1), the proof of B2 = oP (1) follows similarly. Note

that the Z1iT are independent across i and

E [Z1iT ] =
ΣvU

1iT

E
[
∂vi
∂γi

] − E
(
Uitγiγi

)
2
(
E
[
∂vi
∂γi

])2 Σvv
1iT ,

where ΣvU
1iT = 1

T

∑T1
t=1

∑T
s=T1+1E [vitU

γi
is ] and Σvv

1iT = 1
T

∑T1
t=1

∑T
s=T1+1E [vitvis].

Under Assumption A (3) and (4), we can apply Lemma 2.1 of Davydov (1968)

with p = q = 3:

∥∥ΣvU
1iT

∥∥ ≤ 1

T

T1∑
t=1

T∑
s=T1+1

‖E [vitU
γi
is ]‖

≤ 1

T

T1∑
t=1

T∑
s=T1+1

12
(
E|vit|3

)1/3 (
E‖Uγi

is ‖3
)1/3

αi (s− t)1−1/3−1/3

≤ 12
1

T

T1∑
t=1

T∑
s=T1+1

(
E|M (xit) |3

)1/3 (
E|M (xit) |3

)1/3
a(1/3)(s−t)

≤ ∆
1

T

T1∑
t=1

T∑
s=T1+1

a1/3(s−t) = ∆a(1/3)

(
1− aT1/3

1− a1/3

)2
1

T
= O(

1

T
),

where ∆ is a generic constant which follows from Assumption A (4). There-

fore, ΣvU
1iT = o(1). Let us define Z1iT,1 = 1

T

∑T1
t=1

∑T
s=T1+1

vit

E
[
∂vi
∂γi

]Uγi
is . To
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conclude that

B1,1 ≡
1

n

n∑
i=1

1

T

T1∑
t=1

T∑
s=T1+1

vit

E
[
∂vi
∂γi

]Uγi
is =

1

n

n∑
i=1

Z1iT,1 = oP (1),

it suffices to show by Lemma 1 in Hansen (2007) that E ‖Z1iT,1‖1+δ < ∆ <∞
for some δ > 0 and all i, T . We set δ = 1. Then,

E ‖Z1iT,1‖2 =
1

T 2

T1∑
t,s=1

T∑
p,q=T1+1

E
[
vitvipU

γ′i
is U

γi
iq

]
(
E
[
∂vi
∂γi

])2 = O(1),

by combining Lemma 1 of Andrews (1991) and Lemma 2.1 of Davydov (1968)
5. Similarly, one can show that

B1,2 ≡
1

n

n∑
i=1

1

T

T1∑
t=1

T∑
s=T1+1

E (Uγiγi
is )

2
(
E
[
∂vi
∂γi

])2vitvis ≡
1

n

n∑
i=1

Z1iT,2 = oP (1).

This complete the proof of 1
n

∑n
i=1 Z1iT = oP (1) and therefore, the half-panel

jackknife estimator is asymptotically unbiased.

.2.2 Proofs of results in Section 2.3

In the bootstrap world, we define

u∗it (θ, γi) =
∂ψ (x∗it; θ, γi)

∂θ
,

v∗it (θ, γi) =
∂ψ (x∗it; θ, γi)

∂γi
.

5Arguments are similar to those of the proof of Theorem 1 of Hahn and Kuersteiner
(2011b).
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Therefore, the bootstrap counterpart of the maximization estimator is given

by (
θ̂∗, γ̂∗1 , . . . , γ̂

∗
n

)
= argmaxθ,γ1,...,γn

n∑
i=1

T∑
t=1

ψ (x∗it; θ, γi)

where {x∗it, i = 1, . . . , n t = 1, . . . , T} are data obtained by the pairs boot-

strap procedure. Lemmas .2.1 and Lemma .2.2 are the analog of Lem-

mas A.4 and A.5 of Goncalves and White (2004). To state the follow-

ing lemmas, we need to introduce some notation. For each θ ∈ Θ, let

Q∗nT (θ) ≡ 1
nT

∑n
i=1

∑T
t=1 D

νψ (x∗it; θ, γ̂
∗
i (θ)) be a pairs bootstrap resample

of QnT (θ) ≡ 1
nT

∑n
i=1

∑T
t=1D

νψ (xit; θ, γ̂i (θ)).

Lemma .2.1. (Bootstrap Pointwise WLLN). Under Assumption A, for

any η > 0, δ > 0 and for each θ ∈ Θ,

lim
n→∞

P [P ∗ (|Q∗nT (θ)−QnT (θ)| > η) > δ] = 0.

Lemma .2.2. (Bootstrap Uniform WLLN). Under Assumption A, for

any η > 0 and δ > 0,

lim
n→∞

P

[
P ∗
(

sup
θ∈Θ
|Q∗nT (θ)−QnT (θ)| > η

)
> δ

]
= 0.

Our next lemma establishes the consistency of θ̂∗.

Lemma .2.3. (Consistency of θ̂∗). Under Assumption A,

θ̂∗ − θ̂ →P ∗ 0.

Before stating our next lemma, let

I∗nT
(
θ̃∗
)

= − 1

nT

n∑
i=1

T∑
t=1

u∗itθ (θ̃∗, γ̂∗i (θ̃∗))−
1
T

∑T
t=1 u

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
)) v∗itθ (θ̃∗, γ̂∗i (θ̃∗))

 ,

where θ̃∗ lies between θ̂∗ and θ̂. The next lemma establishes the consistency
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of the Jacobian.

Lemma .2.4. (Consistency of the Jacobian). Under Assumption A

and for every θ̃∗ →P ∗ θ0,

I∗nT
(
θ̃∗
)
− I →P ∗ 0,

where I ≡ limn→∞
1
n

∑n
i=1 Ii.

For the next Lemma, we define D∗nT ≡ 1√
nT

∑n
i=1

∑T
t=1 u

∗
it

(
θ̂, γ∗i0

)
.

Lemma .2.5. (Asymptotic Normality). Under Assumption A,

D∗nT →d∗ N (0,Ω) , in probability,

with Ω defined as in Theorem 2.2.1.

Proof of Theorem 2.3.1. Recall that the pairs bootstrap resamples only

in the cross sectional dimension. More specifically, we generate x∗i ∼ i.i.d.

{xi : i = 1, . . . , n} , where x∗i = (x∗i1, . . . , x
∗
iT ) and xi = (xi1, . . . , xiT ); i.e. let-

ting I1, . . . , In be i.i.d. Uniform on {1, . . . , n}, we have x∗it = xIit. Thus, γ∗i0 ≡
γ̂Ii is the bootstrap counterpart of γi0. Let γ̂∗i (θ) ≡ argmaxa

∑T
t=1 ψ (x∗it; θ, a).

Notice that given the bootstrap DGP, γ̂∗i (θ) = γ̂Ii (θ) for all θ where γ̂i (θ) ≡
argmaxa

∑T
t=1 ψ (xit; θ, a). The following first order condition (FOC) holds:

1

nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂∗, γ̂∗i

(
θ̂∗
))

= 0.

Expanding this expression around the true parameter value θ̂ (in the boot-
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strap world) yields

0 =
1

nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ̂∗i

(
θ̂
))

+
1

nT

n∑
i=1

T∑
t=1

u∗itθ (θ̃∗, γ̂∗i (θ̃∗))+ u∗itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
)) ∂γ̂∗i (θ̃∗)

∂θ

(θ̂∗ − θ̂)

where θ̃∗ lies between θ̂∗ and θ̂. For the estimators of the individual effects,

the first order condition is 1
T

∑T
t=1 v

∗
it (θ, γ̂∗i (θ)) = 0. Differentiating this

expression with respect to θ yields:

∂γ̂∗i (θ)

∂θ
= −

1
T

∑T
t=1 v

∗
itθ (θ, γ̂∗i (θ))

1
T

∑T
t=1 v

∗
itγi

(θ, γ̂∗i (θ))
.

Therefore, we can write

θ̂∗ − θ̂ = −

 1

nT

n∑
i=1

T∑
t=1

u∗itθ (θ̃∗, γ̂∗i (θ̃∗))− u∗itγi (θ̃∗, γ̂∗i (θ̃∗))
1
T

∑T
t=1 v

∗
itθ

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

−1

× 1

nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ̂∗i

(
θ̂
))

,

or alternatively,

√
nT
(
θ̂∗ − θ̂

)
= −

 1

nT

n∑
i=1

T∑
t=1

u∗itθ (θ̃∗, γ̂∗i (θ̃∗))−
1
T

∑T
t=1 u

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
)) v∗itθ (θ̃∗, γ̂∗i (θ̃∗))


−1

× 1√
nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
,

since by definition γ̂∗i

(
θ̂
)

= γ̂Ii

(
θ̂
)
≡ γ∗i0. The result follows from Lemma
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.2.4 and lemma .2.5 since they establish that

I∗nT
(
θ̃∗
)

= − 1

nT

n∑
i=1

T∑
t=1

u∗itθ (θ̃∗, γ̂∗i (θ̃∗))−
1
T

∑T
t=1 u

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
)) v∗itθ (θ̃∗, γ̂∗i (θ̃∗))

→P∗
I

and

D∗nT =
1√
nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
→d∗ N (0,Ω) , in probability.

Proof of Lemma .2.1 Define Z∗iT (θ) ≡ 1
T

∑T
t=1 D

νψ (x∗it; θ, γ̂
∗
i (θ)). Then

Q∗nT (θ) ≡ 1
n

∑n
i=1 Z

∗
iT . Since γ̂∗i (θ) and γ̂i (θ) depend only on observations of

individuals Ii and i respectively, it follows that E∗ (Q∗nT (θ)) = E∗ (Z∗iT (θ)) =

QnT (θ) for all θ ∈ Θ. Conditionally on the data, we have by Tchebychev’s

inequality

P ∗ (|Q∗nT (θ)−QnT (θ)| ≥ η) ≤ 1

η2
V ar∗ (Q∗nT (θ)−QnT (θ))

=
1

η2
V ar∗

(
1

n

n∑
i=1

Z∗iT (θ)− E∗ (Z∗iT (θ))

)
=

1

η2

1

n2

n∑
i=1

V ar∗ (Z∗iT (θ)−QnT (θ))

=
1

η2

1

n2

n∑
i=1

{
E∗
(
Z∗iT (θ)Z∗iT (θ)

′
)
−QnT (θ)QnT (θ)

′
}

=
1

η2

1

n2

n∑
i=1

{
1

T 2

T∑
t,s=1

E∗
(
Dνψ (x∗it; θ, γ̂

∗
i (θ))Dνψ (x∗is; θ, γ̂

∗
i (θ))

′
)}
− 1

η2

1

n
QnT (θ)QnT (θ)

′

=
1

η2

1

n2T 2

n∑
i=1

T∑
t,s=1

Dνψ (xit; θ, γ̂i (θ))D
νψ (xis; θ, γ̂i (θ))

′
− 1

η2

1

n
QnT (θ)QnT (θ)

′
= OP

(
1

n

)
,

where the last equality follows from Assumption A (4), delivering the desired

result.

Proof of Lemma .2.2 Given η > 0, divide Θ into subsets Θ1,Θ2, . . . ,ΘM(ε)

such that ‖θ1 − θ2‖ < ε whenever θ1 and θ2 are in the same subsets. Let θi
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be a point in Θi for each i = 1, . . . ,M (η). Then

P ∗
(

sup
θ∈Θ
|Q∗nT (θ)−QnT (θ)| ≥ η

)
= P ∗

(
maxj sup

θ∈Θj

|Q∗nT (θ)−QnT (θ)| ≥ η

)

≤
M(η)∑
j=1

P ∗

(
sup
θ∈Θj

|Q∗nT (θ)−QnT (θ)| ≥ η

)
.

For θ ∈ Θj,

|Q∗nT (θ)−QnT (θ)| ≤ |Q∗nT (θ)−Q∗nT (θj)|+|Q∗nT (θj)−QnT (θj)|+|QnT (θj)−QnT (θ)|

≤ |Q∗nT (θj)−QnT (θj)|+
1

nT

n∑
i=1

T∑
t=1

M (x∗it) (ε+ maxi |γ̂∗i (θ)− γ̂∗i (θj)|)

+
1

nT

n∑
i=1

T∑
t=1

M (xit) (ε+ maxi |γ̂i (θj)− γ̂i (θ)|)

≤ |Q∗nT (θj)−QnT (θj)|+
1

nT

n∑
i=1

T∑
t=1

M (x∗it) (ε+ maxi |γ̂i (θj)− γ̂i (θ)|)

+
1

nT

n∑
i=1

T∑
t=1

M (xit) (ε+ maxi |γ̂i (θj)− γ̂i (θ)|)

≤ |Q∗nT (θj)−QnT (θj)|+
2

nT

n∑
i=1

T∑
t=1

M (xit) (ε+ maxi |γ̂i (θj)− γ̂i (θ)|)

+

[
1

nT

n∑
i=1

T∑
t=1

M (x∗it)−
1

nT

n∑
i=1

T∑
t=1

M (xit)

]
(ε+ maxi |γ̂i (θj)− γ̂i (θ)|) ,

where the third inequality uses maxi |γ̂∗i (θ)− γ̂∗i (θj)| ≤ maxi |γ̂i (θj)− γ̂i (θ)|
given that γ̂∗i (θ) = γ̂Ii (θ) for all θ. Since

γ̂i (θj)− γ̂i (θ) =
∂γ̂i

(
θ̃
)

∂θ
(θj − θ) = −

1
T

∑T
t=1 vitθ

(
θ̃, γ̂i

(
θ̃
))

1
T

∑T
t=1 vitγi

(
θ̃, γ̂i

(
θ̃
)) (θj − θ) ,



150

where θ̃ lies between θj and θ, we have

maxi |γ̂i (θj)− γ̂i (θ)| ≤ ε maxi

∣∣∣∣∣∣
1
T

∑T
t=1 vitθ

(
θ̃, γ̂i

(
θ̃
))

1
T

∑T
t=1 vitγi

(
θ̃, γ̂i

(
θ̃
))
∣∣∣∣∣∣ = OP (ε) ,

under Assumption A (4). Choose ε > 0 such that∣∣∣∣∣ 2

nT

n∑
i=1

T∑
t=1

M (xit) (ε+ maxi |γ̂i (θj)− γ̂i (θ)|)

∣∣∣∣∣ < η

3
w.p.a. 1.

Notice that this is always possible since we have shown that maxi |γ̂i (θj)− γ̂i (θ)| =
OP (ε). Then

P ∗

(
sup
θ∈Θj

|Q∗nT (θ)−QnT (θ)| ≥ η

)
≤ P ∗

(
|Q∗nT (θj)−QnT (θj)| ≥

η

3

)
+P ∗

(∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

M (x∗it)−
1

nT

n∑
i=1

T∑
t=1

M (xit)

∣∣∣∣∣ (ε+ maxi |γ̂i (θj)− γ̂i (θ)|) ≥
η

3

)
+ oP (1) .

We know from Lemma .2.1 that P ∗
(
|Q∗nT (θj)−QnT (θj)| ≥ η

3

)
= oP (1). On

the other hand, to show that

P ∗

(∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

M (x∗it)−
1

nT

n∑
i=1

T∑
t=1

M (xit)

∣∣∣∣∣ (ε+ maxi |γ̂i (θj)− γ̂i (θ))| ≥
η

3

)
= oP (1) ,

it suffices to check that 1
nT

∑n
i=1

∑T
t=1M (x∗it) − 1

nT

∑n
i=1

∑T
t=1M (xit) =

oP ∗ (1) since maxi |γ̂i (θj)− γ̂i (θ)| = OP (ε) and ε > 0 is fixed. However,

this result follows from arguments similar to those in Lemma .2.1. This

complete the proof of Lemma .2.2.

Proof of Lemma .2.3 Under Assumption A, QnT (θ) is uniquely maximized

on Θ at θ̂ w.p.a. 1. Then by standard arguments for extremum estimators,
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Lemma .2.2 applied with Q∗nT (θ) ≡ 1
nT

∑n
i=1

∑T
t=1 ψ (x∗it; θ, γ̂

∗
i (θ)) delivers

the desired result.

Proof of Lemma .2.4 The Jacobian can be rewritten as

I∗nT
(
θ̃∗
)

= − 1

nT

n∑
i=1

T∑
t=1

u∗itθ (θ̃∗, γ̂∗i (θ̃∗))−
1
T

∑T
t=1 u

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))v∗itθ (θ̃∗, γ̂∗i (θ̃∗))


≡ −J1

(
θ̃∗
)

+ J2

(
θ̃∗
)
,

with the obvious definitions. For J1

(
θ̃∗
)

, we can write

J1

(
θ̃∗
)

=
1

nT

n∑
i=1

T∑
t=1

u∗itθ

(
θ̃∗, γ̂∗i

(
θ̃∗
))
− 1

nT

n∑
i=1

T∑
t=1

u∗itθ

(
θ̂, γ̂∗i

(
θ̂
))

+
1

nT

n∑
i=1

T∑
t=1

u∗itθ

(
θ̂, γ̂∗i

(
θ̂
))
− 1

nT

n∑
i=1

T∑
t=1

uitθ

(
θ̂, γ̂i

(
θ̂
))

+
1

nT

n∑
i=1

T∑
t=1

uitθ

(
θ̂, γ̂i

(
θ̂
))

.

Lemma .2.1 shows that

1

nT

n∑
i=1

T∑
t=1

u∗itθ

(
θ̂, γ̂∗i

(
θ̂
))
− 1

nT

n∑
i=1

T∑
t=1

uitθ

(
θ̂, γ̂i

(
θ̂
))

= oP ∗ (1) .

Also, by Assumption A (4),

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
t=1

u∗itθ

(
θ̃∗, γ̂∗i

(
θ̃∗
))
− u∗itθ

(
θ̂, γ̂∗i

(
θ̂
))∥∥∥∥∥

≤ 1

nT

n∑
i=1

T∑
t=1

M (x∗it)
(∥∥∥θ̃∗ − θ̂∥∥∥+ maxi

∣∣∣γ̂∗i (θ̃∗)− γ̂∗i (θ̂)∣∣∣) = oP ∗ (1)

since θ̂∗ − θ̂ = oP ∗ (1) and θ̃∗ lies between θ̂∗ and θ̂. In the last statement,

the less obvious result is maxi

∣∣∣γ̂∗i (θ̃∗)− γ̂∗i (θ̂)∣∣∣ = oP ∗ (1) but this follows



152

by the mean value theorem since

γ̂∗i

(
θ̃∗
)
− γ̂∗i

(
θ̂
)

=
∂γ̂∗i

(
θ̄∗
)

∂θ

(
θ̃∗ − θ̂

)
= −

1
T

∑T
t=1 v

∗
itθ

(
θ̄∗, γ̂∗i

(
θ̄∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̄∗, γ̂∗i

(
θ̄∗
)) (θ̃∗ − θ̂)

where θ̄∗ lies between θ̃∗ and θ̂. The result follows given that
1
T

∑T
t=1 v

∗
itθ(θ̄∗,γ̂∗i (θ̄∗))

1
T

∑T
t=1 v

∗
itγi

(θ̄∗,γ̂∗i (θ̄∗))
=

OP ∗ (1) uniformly on i thanks to Assumption A (4) and (6). Therefore, we

have shown that

J1

(
θ̃∗
)

=
1

nT

n∑
i=1

T∑
t=1

uitθ

(
θ̂, γ̂i

(
θ̂
))

+ oP ∗ (1) .

For J2

(
θ̃∗
)

, we can apply the kind of arguments we have used for J1

(
θ̃∗
)

by replacing therein u∗itθ

(
θ̃∗, γ̂∗i

(
θ̃∗
))

by

1
T

∑T
t=1 u

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))

1
T

∑T
t=1 v

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))v∗itθ (θ̃∗, γ̂∗i (θ̃∗)) .



153

J2
(
θ̃∗
)

=
1

nT

n∑
i=1

T∑
t=1


1
T

∑T
t=1 u

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
)) − 1

T

∑T
t=1 u

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))

1
T

∑T
t=1 v

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))
 v∗itθ

(
θ̃∗, γ̂∗i

(
θ̃∗
))

︸ ︷︷ ︸
J ∗

21

+
1

nT

n∑
i=1

T∑
t=1

1
T

∑T
t=1 u

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))

1
T

∑T
t=1 v

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
)) (v∗itθ (θ̃∗, γ̂∗i (θ̃∗))− v∗itθ (θ̂, γ̂∗i (θ̂)))︸ ︷︷ ︸
J ∗

22

+
1

nT

n∑
i=1

T∑
t=1

1
T

∑T
t=1 u

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))

1
T

∑T
t=1 v

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
)) v∗itθ (θ̂, γ̂∗i (θ̂))− 1

nT

n∑
i=1

T∑
t=1

1
T

∑T
t=1 uitγi

(
θ̂, γ̂i

(
θ̂
))

1
T

∑T
t=1 vitγi

(
θ̂, γ̂i

(
θ̂
)) vitθ (θ̂, γ̂i (θ̂))

︸ ︷︷ ︸
J ∗

23

+
1

nT

n∑
i=1

T∑
t=1

1
T

∑T
t=1 uitγi

(
θ̂, γ̂i

(
θ̂
))

1
T

∑T
t=1 vitγi

(
θ̂, γ̂i

(
θ̂
)) vitθ (θ̂, γ̂i (θ̂))

︸ ︷︷ ︸
J24

.

J ∗21 and J ∗22 are oP ∗ (1) terms since

maxi

∣∣∣∣∣∣
1
T

∑T
t=1 u

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
))

1
T

∑T
t=1 v

∗
itγi

(
θ̃∗, γ̂∗i

(
θ̃∗
)) − 1

T

∑T
t=1 u

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))

1
T

∑T
t=1 v

∗
itγi

(
θ̂, γ̂∗i

(
θ̂
))
∣∣∣∣∣∣

= OP ∗

(∥∥∥θ̃∗ − θ̂∥∥∥+ maxi

∣∣∣γ̂∗i (θ̃∗)− γ̂∗i (θ̂)∣∣∣) = oP ∗ (1) ,

and

maxi

∣∣∣∣∣ 1

T

T∑
t=1

v∗itθ

(
θ̃∗, γ̂∗i

(
θ̃∗
))
− 1

T

T∑
t=1

v∗itθ

(
θ̂, γ̂∗i

(
θ̂
))∣∣∣∣∣

= OP ∗

(∥∥∥θ̃∗ − θ̂∥∥∥+ maxi

∣∣∣γ̂∗i (θ̃∗)− γ̂∗i (θ̂)∣∣∣) = oP ∗ (1) ,

given Assumption A (4) and (6) and the fact that θ̂∗− θ̂ = oP ∗ (1) and θ̃∗ lies

between θ̂∗ and θ̂. For J ∗23, one can apply the same kind of arguments as in

the proof of Lemma .2.1 to show that J ∗23 = oP ∗ (1). Thus, we have shown
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that

J2

(
θ̃∗
)

=
1

nT

n∑
i=1

T∑
t=1

1
T

∑T
t=1 uitγi

(
θ̂, γ̂i

(
θ̂
))

1
T

∑T
t=1 vitγi

(
θ̂, γ̂i

(
θ̂
))vitθ (θ̂, γ̂i (θ̂))+ oP ∗ (1)

and therefore

I∗nT
(
θ̃∗
)

= −J1

(
θ̃∗
)

+ J2

(
θ̃∗
)

= − 1

nT

n∑
i=1

T∑
t=1

uitθ (θ̂, γ̂i (θ̂))− 1
T

∑T
t=1 uitγi

(
θ̂, γ̂i

(
θ̂
))

1
T

∑T
t=1 vitγi

(
θ̂, γ̂i

(
θ̂
))vitθ (θ̂, γ̂i (θ̂))

+oP ∗ (1)

= − 1

n

n∑
i=1

Îi + oP ∗ (1)→P ∗ I,

by Lemma 13 of Hahn and Kuersteiner (2011b).

Proof of Lemma .2.5 We define

D∗nT ≡
1√
nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
=

1√
n

n∑
i=1

D∗iT ,

where D∗iT ≡ 1√
T

∑T
t=1 u

∗
it

(
θ̂, γ∗i0

)
. We are going to check the conditions of

Lemma 2 in Hansen (2007). Note that given our bootstrap DGP and recalling

that γ∗i0 = γ̂Ii

(
θ̂
)

= γ̂Ii , the D∗it are independent across i and

E∗ (D∗iT ) =
1

n
√
T

n∑
i=1

T∑
t=1

uit

(
θ̂, γ̂i

)
= 0

by the FOC. This last result explains why the pairs bootstrap is not able to



155

mimic well the incidental parameter bias. Also,

E∗
(
D∗iTD

∗′
iT

)
=

1

T

T∑
t,s=1

E∗
(
u∗it

(
θ̂, γ∗i0

)
u∗is

(
θ̂, γ∗i0

)′)
=

1

nT

n∑
i=1

T∑
t,s=1

uit

(
θ̂, γ̂i

)
uis

(
θ̂, γ̂i

)′

=
1

n

n∑
i=1

(
1√
T

T∑
t=1

uit

(
θ̂, γ̂i

))( 1√
T

T∑
t=1

uit

(
θ̂, γ̂i

))′
.

Expanding 1√
T

∑T
t=1 uit

(
θ̂, γ̂i

)
around (θ0, γi0) and using θ̂−θ0 = OP

(
1√
nT

)
=

OP

(
1
T

)
6 give

1√
T

T∑
t=1

uit

(
θ̂, γ̂i

)
=

1√
T

T∑
t=1

uit +
1√
T

T∑
t=1

uitθ

(
θ̂ − θ0

)
+

1√
T

T∑
t=1

uitγi (γ̂i − γi0) +OP

(
1√
T

)

=
1√
T

T∑
t=1

uit +
1√
T

T∑
t=1

uitγi (γ̂i − γi0) +OP

(
1√
T

)
.

Since γ̂i − γi0 = −
1
T

∑T
t=1 vit

E(vitγi)
+OP

(
1
T

)
7, we can write

1√
T

T∑
t=1

uit

(
θ̂, γ̂i

)
=

1√
T

T∑
t=1

(
uit −

1
T

∑T
t=1 uitγi

E (vitγi)
vit

)
+OP

(
1√
T

)

=
1√
T

T∑
t=1

Uit +OP

(
1√
T

)
,

since 1
T

∑T
t=1 uitγi = E (uitγi) +OP

(
1√
T

)
. Thus,

E∗
(
D∗iTD

∗′
iT

)
=

1

n

n∑
i=1

(
1√
T

T∑
t=1

Uit +OP

(
1√
T

))(
1√
T

T∑
t=1

Uit +OP

(
1√
T

))′

=
1

n

n∑
i=1

(
1√
T

T∑
t=1

Uit

)(
1√
T

T∑
t=1

Uit

)′
+OP

(
1√
T

)
→P Ω

6We are using the fact that T = O (n).
7see Kim and Sun (2013), P.30.
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under Hahn and Kuersteiner (2011b) assumptions. To conclude thatD∗nT →d∗

N (0,Ω) it suffices then to show that E∗
(
‖D∗iT‖

4) = OP (1), or alternatively

that E∗
(∣∣D∗jiT ∣∣4) = OP (1), where D∗jiT is the jth element of D∗iT , j = 1, . . . , p.

Similarly, for fixed j,

E∗
(∣∣D∗jiT ∣∣4) = E∗

∣∣∣∣∣ 1√
T

T∑
t=1

u∗jit

(
θ̂, γ∗i0

)∣∣∣∣∣
4


=
1

n

n∑
i=1

(
1√
T

T∑
t=1

ujit

(
θ̂, γ̂i

))4

=
1

n

n∑
i=1

(
1√
T

T∑
t=1

U j
it +OP

(
1√
T

))4

≤ C
1

n

n∑
i=1

(
1√
T

T∑
t=1

U j
it

)4

+OP

(
1

T 2

)
,

where C is a constant which do not depend on n and T . The result follows

since 1
n

∑n
i=1

(
1√
T

∑T
t=1 U

j
it

)4

= OP (1) by arguments similar to those in the

proof of Theorem 1 in Hahn and Kuersteiner (2011b).

.2.3 Proofs of results in Section 2.4

Proof of Theorem 2.4.1 We first assume that T is even and we define

T1 = T/2. By replacing θ̂∗1/2 and θ̂1/2 with (2.3) and (2.1) respectively, we

have that

√
nT
(
θ̂∗1/2 − θ̂1/2

)
= 2

√
nT
(
θ̂∗ − θ̂

)
−
√

2

2

√
nT1

(
θ̂∗1 − θ̂1

)
−
√

2

2

√
nT1

(
θ̂∗2 − θ̂2

)
.
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By Theorem 2.3.1, we know that the following expansions hold

√
nT1

(
θ̂∗1 − θ̂1

)
= I∗−1

1nT1

1√
nT1

n∑
i=1

T1∑
t=1

u∗it

(
θ̂, γ∗i0

)
√
nT1

(
θ̂∗2 − θ̂2

)
= I∗−1

2nT1

1√
nT1

n∑
i=1

T∑
t=T1+1

u∗it

(
θ̂, γ∗i0

)
,

where

I∗1nT1 = − 1

nT

n∑
i=1

T1∑
t=1

u∗itθ (θ̃∗1, γ̂∗i (θ̃∗1))−
1
T

∑T1
t=1 u

∗
itγi

(
θ̃∗1, γ̂

∗
i

(
θ̃∗1

))
1
T

∑T1
t=1 v

∗
itγi

(
θ̃∗1, γ̂

∗
i

(
θ̃∗1

)) v∗itθ (θ̃∗1, γ̂∗i (θ̃∗1))


I∗2nT1 = − 1

nT

n∑
i=1

T∑
t=T1+1

u∗itθ (θ̃∗2, γ̂∗i (θ̃∗2))−
1
T

∑T
t=T1+1 u

∗
itγi

(
θ̃∗2, γ̂

∗
i

(
θ̃∗2

))
1
T

∑T
t=T1+1 v

∗
itγi

(
θ̃∗2, γ̂

∗
i

(
θ̃∗2

)) v∗itθ (θ̃∗2, γ̂∗i (θ̃∗2))
 ,

with θ̃∗j lying between θ̂∗j and θ̂j, j = 1, 2. Since from Lemma .2.4 I∗nT →P ∗ I,

I∗1nT1 →
P ∗ I and I∗2nT1 →

P ∗ I, we can write

√
nT1

(
θ̂∗1 − θ̂1

)
= I−1 1√

nT1

n∑
i=1

T1∑
t=1

u∗it

(
θ̂, γ∗i0

)
+ oP ∗ (1)

√
nT1

(
θ̂∗2 − θ̂2

)
= I−1 1√

nT1

n∑
i=1

T∑
t=T1+1

u∗it

(
θ̂, γ∗i0

)
+ oP ∗ (1) .
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Thus, since T1 = T/2

√
nT
(
θ̂∗1/2 − θ̂1/2

)
= 2

√
nT
(
θ̂∗ − θ̂

)
−
√

2

2

√
nT1

(
θ̂∗1 − θ̂1

)
−
√

2

2

√
nT1

(
θ̂∗2 − θ̂2

)
= 2I−1 1√

nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
−
√

2

2
I−1 1√

nT1

n∑
i=1

T1∑
t=1

u∗it

(
θ̂, γ∗i0

)
−
√

2

2
I−1 1√

nT1

n∑
i=1

T∑
t=T1+1

u∗it

(
θ̂, γ∗i0

)
+ oP ∗ (1)

= I−1 1√
nT

n∑
i=1

T∑
t=1

u∗it

(
θ̂, γ∗i0

)
+ oP ∗ (1)→d∗ N

(
0, I−1ΩI−1

)
,

where the limit in distribution follows from the proof of Theorem 2.3.1.

.3 Proof of main results in Chapter 3

.3.1 Proofs of results for the Standard Bootstrap

All the proofs of the Lemmas are relegated at the end of Appendix A. Let

β̂∗ = β̂∗std throughout Appendix A. Let C denote a generic positive constant

that may be different in different uses. Also, P ∗ denotes the probability

measure induced by the standard residual based bootstrap procedure and

E∗ denotes the expectation under P ∗.

Lemma .3.1. Suppose that Assumptions 1-2 hold, then (a) E∗ (ε∗8i ) and (b)

E∗
(
‖V ∗i ‖

8)are bounded in probability.

Lemma .3.2. Suppose that Assumptions 1-2 hold, then the following state-

ments are true:

(a) V ∗
′
PZε

∗/l = σbV ε+OP ∗

(
1/
√
l
)
, (b) V ∗

′
PZV

∗/l = Σb
V V +OP ∗

(
1/
√
l
)
,

(c) ε∗
′
PZε

∗/l = σbεε+OP ∗

(
1/
√
l
)
, in probability; in Case (I), (d) Π̂′Z ′V ∗/rn =

OP ∗
(
1/
√
rn
)
, (e) Π̂′Z ′ε∗/rn = OP ∗

(
1/
√
rn
)
, in probability; in Case (II),
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(d′) Π̂′Z ′V ∗/l = OP ∗

(
1/
√
l
)
, (e′) Π̂′Z ′ε∗/l = OP ∗

(
1/
√
l
)
, in probability;

where σbV ε ≡ E∗ (V ∗i ε
∗
i ), Σb

V V ≡ E∗
(
V ∗i V

∗′
i

)
and σbεε ≡ E∗ (ε∗2i ).

To proceed, let A∗ = diag(a∗1, ..., a
∗
n) where a∗i = ε∗2i − σbεε, i = 1, .., n.

Lemma .3.3. Suppose that Assumptions 1-2 hold, then the following state-

ments are true: (a) Ṽ ∗
′
A∗Ṽ ∗/n = E∗

(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ; (b) Ṽ ∗

′
PZA

∗Ṽ ∗/n =

λnE
∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ; (c) Ṽ ∗

′
DZA

∗DZ Ṽ
∗/n = λnφnE

∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+

OP ∗ (1/
√
n) ; (d) Ṽ ∗

′
PZA

∗PZ Ṽ
∗/n = λnφnE

∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+ OP ∗ (1/

√
n) , in

probability.

Lemma .3.4. Suppose that Assumptions 1-2 hold, then both in Case (I) and

Case (II), β̂∗ − β̂ = oP ∗(1), in probability.

Let λ̂∗(β̂∗) = ε̂∗
′
(β̂∗)PZ ε̂

∗(β̂∗)

ε̂∗′ (β̂∗)ε̂∗(β̂∗)
, λ∗ = ε∗

′
PZε

∗

ε∗′ε∗
where ε̂∗(β̂∗) = y∗ − X∗β̂∗ and

{y∗, X∗} denotes the pseudo-sample generated by the standard bootstrap.

Lemma .3.5. Suppose that Assumptions 1-2 hold, then λ∗ = λn+OP ∗

(√
l/n
)

.

Lemma .3.6. If λ̂∗(β̂∗) = λ∗ +OP ∗
(
δλn
)

for δλn → 0, and β̂∗− β̂ = OP ∗
(
δβn
)

for δβn → 0, then for Case (I), (a) 1
rn

(X∗
′
PZX

∗ − λ̂∗(β̂∗)X∗
′
X∗) = H̄I,n +

OP ∗
(
1/
√
rn + δλnn/rn

)
, (b) 1

rn
(X∗

′
PZ ε̂

∗−λ̂∗(β̂∗)X∗′ ε̂∗) = OP ∗
(
1/
√
rn + δβn + δλnn/rn

)
,

where H̄I,n = (1−λn)
(

Π̂′Z ′ZΠ̂/rn

)
; for Case (II), (a′) 1

l
(X∗

′
PZX

∗−λ̂∗(β̂∗)X∗′X∗) =

H̄II,n+OP ∗

(
1/
√
l + δλnn/l

)
, (b′) 1

l
(X∗

′
PZ ε̂

∗−λ̂∗(β̂∗)X∗′ ε̂∗) = OP ∗

(
1/
√
l + δβn + δλnn/l

)
,

where H̄II,n = (1− λn)
(

Π̂′Z ′ZΠ̂/l
)

.

Lemma .3.7. Suppose that Assumptions 1-2 hold. Suppose β̂∗−β̂ = OP ∗
(
δβn
)

for δn → 0, then in Case (I), λ̂∗(β̂∗) = λ∗ + OP ∗
(
rn
n

(δβn)2
)
; in Case (II),

λ̂∗(β̂∗) = λ∗ +OP ∗
(
l
n
(δβn)2

)
.
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Let

D̂∗
(
β̂∗
)

=
∂

∂β


(
y∗ −X∗β̂∗

)′
PZ

(
y∗ −X∗β̂∗

)
2
(
y∗ −X∗β̂∗

)′ (
y∗ −X∗β̂∗

)
 = X∗

′
PZε

∗(β̂∗)− λ̂∗(β̂∗)X∗′ε∗(β̂∗),

where ε∗(β̂∗) = y∗ −X∗β̂∗ and λ̂∗(β̂∗) = ε∗(β̂∗)′PZε
∗(β̂∗)

ε∗(β̂∗)′ε∗(β̂∗)
.

Lemma .3.8. Suppose that Assumptions 1-2 hold. Suppose β̂∗−β̂ = OP ∗
(
δβn
)

for δβn → 0 then for Case (I),

− 1

rn

(
∂D̂∗(β̄∗)/∂β

)
= H̄I,n +OP ∗ (1/

√
rn + δn) ;

for Case (II),

−1

l

(
∂D̂∗(β̄∗)/∂β

)
= H̄II,n +OP ∗

(
1/
√
l + δn

)
,

in probability, where β̄∗ lies between β̂ and β̂∗.

Lemma .3.9. Suppose that Assumptions 1-2 hold, then the following state-

ments are true: in Case (I), 1√
rn
D̂∗
(
β̂
)

= 1√
rn

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗+

OP ∗
(
1/
√
rn
)
; in Case (II), 1√

l
D̂∗
(
β̂
)

= 1√
l

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗+

OP ∗

(
1/
√
l
)

, in probability, where Ṽ ∗ = V ∗ − ε∗
(
σb
′
V ε

σbεε

)
.

Proof of Theorem 3.3.1

Notice that the first-order conditions for the bootstrap analogue of LIML

can be written as D̂∗(β̂∗) = 0 with

D̂∗
(
β̂∗
)

=
∂

∂β


(
y∗ −X∗β̂∗

)′
PZ

(
y∗ −X∗β̂∗

)
2
(
y∗ −X∗β̂∗

)′ (
y∗ −X∗β̂∗

)


= X∗
′
PZε

∗(β̂∗)− λ̂∗(β̂∗)X∗′ε∗(β̂∗),
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where ε∗(β̂∗) = y∗ −X∗β̂∗ and λ̂∗(β̂∗) = ε∗(β̂∗)′PZε
∗(β̂∗)

ε∗(β̂∗)′ε∗(β̂∗)
. Expanding around β̂

gives

0 = D̂∗(β̂) +
∂D̂∗(β̄∗)

∂β
(β̂∗ − β̂)

where β̄∗ lies on the line joining β̂∗ and β̂;

Then, for Case (I) we have

√
rn(β̂∗ − β̂) = −

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1
√
rn
D̂∗(β̂)

and for Case (II),

√
l(β̂∗ − β̂) = −

(
1

l

∂D̂∗(β̄∗)

∂β

)−1
1√
l
D̂∗(β̂).

Lemma .3.8 establish the limit of − 1
rn

(
∂D̂∗(β̄∗)/∂β

)
in Case (I) and the

limit of −1
l

(
∂D̂∗(β̄∗)/∂β

)
in Case (II). Also, by Lemma .3.9,

1
√
rn
D̂∗(β̂) =

1
√
rn

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗ +OP ∗

(
1
√
rn

)
in Case (I) , and

1√
l
D̂∗(β̂) =

1√
l

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗ +OP ∗

(
1√
l

)
in Case (II).

To proceed, for Case (I) we let W ∗
I,i =

(
1√
rn

(1− λn)Π̂′Ziε
∗
i

1√
l
(Pii − λn)Ṽ ∗i ε

∗
i

)
, and we

check the conditions of Lemma A2 in Hansen, Hausman, and Newey (2008)

hold with Wi = W ∗
I,i, vi = Ṽ ∗i and ui = ε∗i , where Ṽ ∗i ≡ V ∗i − ε∗i

(
σb
′
V ε

σbεε

)
. We
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need to show that
∑n

i=1 E
∗
(∥∥∥ 1√

rn
(1− λn)Π̂′Ziε

∗
i

∥∥∥4
)
→P 0∑n

i=1 E
∗
(∥∥∥ 1√

l
(Pii − λn)Ṽ ∗i ε

∗
i

∥∥∥4
)
→P 0

For the first term, notice that

E∗
n∑
i=1

∥∥∥∥ 1
√
rn

Π̂′Ziε
∗
i

∥∥∥∥4

= E∗
n∑
i=1

∥∥∥∥ 1
√
rn

Π′Ziε
∗
i +

1
√
rn
V ′Z(Z ′Z)−1Ziε

∗
i

∥∥∥∥4

≤ C1

n∑
i=1

∥∥∥∥ 1
√
rn

Π′Zi

∥∥∥∥4

E∗
(
ε∗4i
)

+ C1

n∑
i=1

∥∥∥∥ 1
√
rn
V ′Z(Z ′Z)−1Zi

∥∥∥∥4

E∗
(
ε∗4i
)

≡ D1 +D2

where the inequality follows from Minkowski inequality. Note that E∗ (ε∗4i ) is

bounded in probability from similar arguments as in Lemma .3.1, therefore

we have

D1 = OP (1)C1

(
1

r2
n

n∑
i=1

‖ Π′Zi ‖4

)
→P 0

by Assumption 2. Similarly, we have for D2

D2 = OP (1)C1

(
1

r2
n

n∑
i=1

∥∥V ′Z(Z ′Z)−1Zi
∥∥4

)

Let w = (w1, ..., wn)′ be an arbitrary column of V , then by Marcinkiewicz-

Zygmund inequality,

E
[∣∣w′Z(Z ′Z)−1Zi

∣∣4] = E

∣∣∣∣∣
n∑
j=1

wjPji

∣∣∣∣∣
4
 ≤ CE

∣∣∣∣∣
n∑
j=1

w2
jP

2
ji

∣∣∣∣∣
2

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By Pii ≤ 1 it follows that (Pii)
2 ≤ Pii. Also, f(r) = r2 is a convex function

of r. Then by Jensen’s inequality and
∑n

j=1(Pji)
2 = Pii we have

E

∣∣∣∣∣
n∑
j=1

w2
jP

2
ji

∣∣∣∣∣
2
 ≤ (Pii)

2E

∣∣∣∣∣
n∑
j=1

w2
j (Pji)

2/Pii

∣∣∣∣∣
2
 = Pii

n∑
j=1

E
(
|wj|4

)((Pji)
2

Pii

)
≤ CPii

Combining the last two equations givesE
[
‖w′Z(Z ′Z)−1Zi‖4

]
≤ CPii. There-

fore

1

r2
n

n∑
i=1

E
(∥∥w′Z(Z ′Z)−1Zi

∥∥4
)
≤ C

(∑n
i=1 Pii
r2
n

)
= C

(
l

r2
n

)
→ 0

by
∑n

i=1 Pii = l and
√
l/rn → 0, then we obtain 1

r2n

∑n
i=1 ‖w′Z(Z ′Z)−1Zi‖4 →P

0 by Markov inequality. The conclusion for V follows by showing the result

for each column. Then, we obtain D2 →P 0, and the result for the first term

follows.

Also, for the second term
∑n

i=1E
∗
∥∥∥ 1√

l
(Pii − λn)Ṽ ∗i ε

∗
i

∥∥∥4

, we have byE∗ (ε∗8i )

and E∗ (V ∗8i ) being bounded in probability that

n∑
i=1

E∗
∥∥∥∥ 1√

l
(Pii − λn)Ṽ ∗i ε

∗
i

∥∥∥∥4

= OP (1)

(∑n
i=1 P

4
ii + nλ4

n

l2

)
≤ OP (1)

(
1

l
+
λ2
n

n

)
→P 0

as required. Then for case (I),

n∑
i=1

E∗
(
W ∗
I,iW

∗′
I,i

)

=

 ∑n
i=1

1
rn

(1− λn)2Π̂′ZiZ
′
iΠ̂E

∗ (ε∗2i )
∑n

i=1
1−λn√
lrn

(Pii − λn)Π̂′ZiE
∗
(
ε∗2i Ṽ

∗′
i

)
E∗
(
ε∗2i Ṽ

∗
i

)∑n
i=1

1−λn√
lrn

(Pii − λn)Z ′iΠ̂
∑n

i=1
1
l
(Pii − λn)2E∗

(
ε∗2i Ṽ

∗
i Ṽ
∗′
i

) 
→P

(
(1− λ)σεεH̄I (1− λ)Ā′

(1− λ)Ā (φ− λ)
(
σεεΣ̄Ṽ Ṽ + B̄

)) ≡ Ψ̄I ,
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where

H̄I = (1− λ) (Q+ γΣV V ) ;

Σ̄Ṽ Ṽ = ΣṼ Ṽ − λ
(

ΣV V + (λ− 2)
σV εσ

′
V ε

σεε

)
;

Ā = (1− λ)A, q =
σV ε
σεε

;

B̄ = (1− 2λ+ λφ)(φ− λ)B + 2λ(φ− λ)2E
(
ε3i Ṽi

)
q′ + λ(φ− λ)2q

(
E
(
ε4i
)
− (σεε)

2
)
q′.

These results follow from

n∑
i=1

1

rn
(1− λn)2Π̂′ZiZ

′

iΠ̂E
∗ (ε∗2i )

= (1− λn)2

(
ε̃′ε̃

n

)(
Π′Z ′ZΠ

rn
+

Π′Z ′V

rn
+
V ′ZΠ

rn
+
V ′PZV

rn

)
= (1− λn)2

(
ε̃′ε̃

n

){
Π′Z ′ZΠ

rn
+OP

(
1
√
rn

)
+OP

(
1
√
rn

)
+

(
l

rn

)[
ΣV V +OP

(
1√
l

)]}
→P (1− λ)2σεε (Q+ γΣV V ) ≡ (1− λ)σεεH̄I

since ε̃′ε̃
n
→P σεε,

Π′Z′ZΠ
rn

→ Q, and Π′Z′V
rn

= OP

(
1√
rn

)
.

For the off-diagonal term
∑n

i=1
1−λn√
lrn

(Pii − λn)Π̂′ZiE
∗
(
ε∗2i Ṽ

∗′
i

)
, we note

that

E∗
(
ε∗2i Ṽ

∗′
i

)
= E∗

(
ε∗2i V

∗′
i

)
− E∗

(
ε∗3i
)(σb′V ε

σbεε

)
=

1

n

n∑
i=1

ε̃2i V̂
′
i −

1

n

n∑
i=1

ε̃3i

(
1

n

n∑
i=1

ε̃iV̂
′
i

)(
1

n

n∑
i=1

ε̃2i

)−1
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Let â = (ε̂21 − σεε, ..., ε̂2n − σεε)
′
and a = (ε21 − σεε, ..., ε2n − σεε)

′
. Then, we have

1

n

n∑
i=1

ε̃2i V̂
′
i −

a′V̂

n
=

1

n

n∑
i=1

(ε̂i − ε̄)2V̂ ′i −
a′V̂

n

=
(â− a)′V̂

n
− 2¯̂ε

(
1

n

n∑
i=1

ε̂iV̂
′
i

)
+ ¯̂ε2

(
1

n

n∑
i=1

V̂i

)′
= oP (1) + oP (1) + oP (1) = oP (1)

where ¯̂ε = n−1
∑n

i=1 ε̂i. The results follows by noting that ‖â−a‖
2

n
= OP

(
1
rn

)
,

V̂ ′V̂
n

= V ′MZV
n

= (1−λ)ΣV V +oP (1) = OP (1), ¯̂ε→P E(εi) = 0, n−1
∑n

i=1 ε̂iV̂
′
i =

OP (1) and n−1
∑n

i=1 V̂i = OP (1). Also, by using arguments similar to those

in Lemma A9 of Hansen, Hausman, and Newey (2008), we obtain a′V̂
n
→P

(1 − λ)E (ε2iV
′
i ). Thus, it follows that E∗

(
ε∗2i V

∗′
i

)
→P (1 − λ)E (ε2iV

′
i ). For

the second term in E∗
(
ε∗2i Ṽ

∗′
i

)
, we have

1

n

n∑
i=1

ε̃3i

(
1

n

n∑
i=1

ε̃iV̂
′
i

)(
1

n

n∑
i=1

ε̃2i

)−1

=
1

n

n∑
i=1

(ε̂i−ε̄)3

(
1

n

n∑
i=1

(ε̂i − ε̄)V̂ ′i

)(
1

n

n∑
i=1

(ε̂i − ε̄)2

)−1

=

(
1

n

n∑
i=1

ε̂3i + oP (1)

)(
1

n

n∑
i=1

ε̂iV̂
′
i + oP (1)

)(
1

n

n∑
i=1

ε̂2i + oP (1)

)−1

→P (1−λ)E
(
ε3i
)(σ′V ε

σεε

)

where the second equality follows by ε̄→P 0, and the convergence in proba-

bility follows by 1
n

∑n
i=1 ε̂

3
i →P E (ε3i ),

1
n

∑n
i=1 ε̂iV̂

′
i →P (1 − λ)E (εiV

′
i ), and

1
n

∑n
i=1 ε̂

2
i →P E (ε2i ). Therefore, for the standard residual bootstrap, we ob-

tain E∗
(
ε∗2i Ṽ

∗′
i

)
→P (1−λ)E (ε2iV

′
i )−(1−λ)E (ε3i )

(
σ′V ε
σεε

)
= (1−λ)E

(
ε2i Ṽ

′
i

)
.

For E∗
(
ε∗2i Ṽ

∗
i Ṽ
∗′
i

)
, notice thatE∗

(
ε∗2i Ṽ

∗
i Ṽ
∗′
i

)
= σbεεE

∗
(
Ṽ ∗i Ṽ

∗′
i

)
+E∗

((
ε∗2i − σbεε

)
Ṽ ∗i Ṽ

∗′
i

)
.
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For the first term, by the bootstrap DGP, we have

E∗
(
Ṽ ∗i Ṽ

∗′
i

)
= E∗

{(
V ∗i − ε∗i

(
σb
′
V ε

σbεε

))(
V ∗i − ε∗i

(
σb
′
V ε

σbεε

)′)}

=
V̂ ′V̂

n
−

(
V̂ ′ε̃

n

)(
ε̃′V̂

n

)(
ε̃′ε̃

n

)−1

→P (1− λ)ΣV V − (1− λ)2σV εσ
′
V ε

σεε

which follows from V̂ ′V̂ /n →P (1 − λ)ΣV V , V̂ ′ε̃/n →P (1 − λ)σV ε, and

ε̃′ε̃/n→P σεε. Also, σbεε = ε̃′ε̃
n
→P σεε. For the second termE∗

((
ε∗2i − σbεε

)
Ṽ ∗i Ṽ

∗′
i

)
,

we let ω̃ be a column of Ṽ and ω be a column of V , also let ω̃∗ be a column

of Ṽ ∗ and ω∗ be a column of V ∗. By the standard bootstrap scheme,

E∗
((
ε∗2i − σbεε

)
ω̃∗2i
)

=
1

n

n∑
i=1

{
(ε̃2i − σbεε)

[
ω̂i − ε̃i

(
σbεω
σbεε

)]2
}

where ω̂ = MZω and σbεω = ε̃′ω̂
n

. Also note that

ω̂−ε̃
(
σbεω
σbεε

)
= MZω−ε̃

(
ε̃′MZω

n

)(
ε̃′ε̃

n

)−1

= MZω̃+MZεqω−(1−λn)εqω+oP (1)

where ω̃ = ω− εqω and qω ≡ σεω
σεε

; the second equality follows by the fact that

ε̃ = ε + oP (1), ε̃′MZω
n

= (1 − λn)σεw + oP (1) and ε̃′ε̃
n

= σεε + oP (1). Denote

A = diag(a1, ..., an), then

E∗
((
ε∗2i − σbεε

)
ω̃∗2i
)

=
1

n
(MZω̃ +MZεqω − (1− λn)εqω + oP (1))′A (MZω̃ +MZεqω − (1− λn)εqω + oP (1))

=
ω̃′MZAMZω̃

n
+ 2qω

(
ε′MZAMZω̃

n

)
− 2(1− λn)qω

(
ε′AMZω̃

n

)
+ q2

ω

(
ε′MZAMZε

n

)
−2(1− λn)q2

ω

(
ε′AMZε

n

)
+ (1− λ)2q2

ω

(
ε′Aε

n

)
+ oP (1)

→P (1− 2λ+ λφ)E
((
ε2i − σεε

)
ω̃2
i

)
+ 2qωλ(φ− λ)E

(
ε3i ω̃i

)
+ q2

ωλ(φ− λ)
(
E
(
ε4i
)
− (σεε)

2)
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by showing that

ω̃′MZAMZω̃

n
→P (1− 2λ+ λφ)E

((
ε2i − σεε

)
ω̃2
i

)
;

ε′MZAMZω̃

n
→P (1− 2λ+ λφ)E

(
ε3i ω̃i

)
;

ε′MZAMZε

n
→P (1− 2λ+ λφ)

(
E
(
ε4i
)
− (σεε)

2) ;

ε′AMZ ω̃
n
→P (1−λ)E (ε3i w̃i);

ε′AMZε
n
→P (1−λ)

(
E (ε4i )− (σεε)

2); and ε′Aε
n
→P

E (ε4i )− (σεε)
2 using similar arguments as in Lemma A10 and A11 in Hansen,

Hausman, and Newey (2008). We apply this result to each component of Ṽ

and the result for E∗
(

(ε∗2i − σbεε)Ṽ ∗i Ṽ ∗
′

i

)
follows.

Define U∗I =
(∑n

i=1W
∗
I,i,
∑n

i 6=j
1√
l
Ṽ ∗i Pijε

∗
j

)′
, then we have by Lemma A2

of Hansen, Hausman, and Newey (2008) that

U∗I →d∗ N

(
0,

(
ΨI 0

0 (1− φ)σεεΣ̄Ṽ Ṽ

))
, in probability

Also define FI,n =
(

1
√

l
rn

√
l
rn

)
, then FI,n → F0 ≡

(
1
√
γ
√
γ
)

and by

Lemma .3.9

1
√
rn
D̂∗(β̂) =

1
√
rn

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗ +OP ∗

(
1
√
rn

)
, in probability

= FI × U∗ +OP ∗

(
1
√
rn

)
, in probability

→d∗ N(0, ῩI), in probability

with ῩI = F0

(
ΨI 0

0 (1− φ)σεεΣ̄Ṽ Ṽ

)
F
′
0 = (1 − λ)σεε

{
H̄I + γΣ̄Ṽ Ṽ

}
+ (1 −

λ)
√
γ
{
Ā+ Ā′

}
+γB̄; together with the result in Lemma .3.8, we obtain that
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in case (I),

√
rn(β̂∗ − β̂) =

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1
√
rn
D̂∗(β̂)→d∗ N

(
0, Λ̄I

)
, in probability.

where Λ̄I = H̄−1
I ῩIH̄

−1
I .

Now we turn to case (II). Let

W ∗
II,i =

(
1√
l
(1− λn)Π̂′Ziε

∗
i ,

1√
l
(Pii − λn)Ṽ ∗i ε

∗
i

)′
,

Using arguments similar to Case (I), we obtain

n∑
i=1

E∗

(∥∥∥∥ 1√
l
(1− λn)Π̂′Ziε

∗
i

∥∥∥∥4
)
→P 0,

and

n∑
i=1

E∗
(
W ∗
II,iW

∗′
II,i

)

=

 ∑n
i=1

(1−λn)2

l
Π̂′ZiZ

′
iΠ̂E

∗ (ε∗2i )
∑n

i=1
1−λn
l

(Pii − λn)Π̂′ZiE
∗
(
ε∗2i Ṽ

∗′
i

)
E∗
(
ε∗2i Ṽ

∗
i

)∑n
i=1

1−λn
l

(Pii − λn)Z ′iΠ̂
∑n

i=1
1
l
(Pii − λn)2E∗

(
ε∗2i Ṽ

∗
i Ṽ
∗′
i

) 
→P

(
(1− λ)σεεH̄II 0

0 (φ− λ)
(
σεεΣ̄Ṽ Ṽ + B̄

)) ≡ Ψ̄II ,

where H̄II = (1 − λ)ΣV V . Notice that the off-diagonal terms converges in

probability to zero because in Case (II),
∑n

i=1

(
(Pii−λn)Π̂′Zi

l

)
→P 0.

Define U∗II =
(∑n

i=1W
∗
II,i,

∑n
i 6=j

1√
l
Ṽ ∗i Pijε

∗
i

)′
, then we have by Lemma A2

of Hansen, Hausman, and Newey (2008) that

U∗II →d∗ N

(
0,

(
Ψ̄II 0

0 (1− φ)σεεΣ̄Ṽ Ṽ

))
in probability.
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Also define FII = [1 1 1], then

1√
l
D̂∗(β̂) =

1√
l

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λṼ ∗
)′
ε∗ +OP ∗

(
1√
l

)
= FII × U∗II +OP ∗

(
1√
l

)
→d∗ N

(
0, ῩII

)
, in probability

where ῩII = FII

(
ΨII 0

0 (1− φ)σεεΣ̄Ṽ Ṽ

)
F
′
II = σεε

(
(1− λ)H̄II + (1− φ)Σ̄Ṽ Ṽ

)
.

Together with Lemma .3.7, this leads to the result that in case (II),

√
l
(
β̂∗ − β̂

)
=

(
1

l

∂D̂∗(β̄∗)

∂β

)−1
1√
l
D̂∗(β̂)→d∗ N

(
0, Λ̄II

)
in probability

where Λ̄II = H̄−1
II ῩIIH̄

−1
II . �

Proof of Corollary 3.3.1

By Theorem 3.3.1, we have when l/rn → 0

√
rn(β̂∗ − β̂)→d∗ N(0, σεεQ

−1)

in probability, which is the same as the limiting distribution of
√
rn(β̂ − β0)

under l/rn → 0. The result therefore follows by Polya’s Theorem. �

Now we give the proofs for the Lemmas.

Proof of Lemma .3.1

(a) Let ε̄ = 1
n

∑n
i=1 εi, V̄ = 1

n

∑n
i=1 Vi, Z̄ = 1

n

∑n
i=1 Zi and X̄ = 1

n

∑n
i=1Xi.
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Using Minkowski and Cauchy-Schwartz inequalities, we obtain

E∗
(
ε∗8i
)

=
1

n

n∑
i=1

(
εi − ε̄− (Xi − X̄)′(β̂ − β)

)8

≤ C1

{
1

n

n∑
i=1

|εi − ε̄|8 +
1

n

n∑
i=1

|(Xi − X̄)′(β̂ − β)|8
}

≤ C2

{
1

n

n∑
i=1

|εi − ε̄|8 +
∥∥∥β̂ − β∥∥∥8 1

n

n∑
i=1

∥∥Xi − X̄
∥∥8

}

for large enough constants C1 and C2. Using Minkowski inequality again, we

obtain

n−1

n∑
i=1

∥∥Xi − X̄
∥∥8

= n−1

n∑
i=1

∥∥Π′
(
Zi − Z̄

)
+
(
Vi − V̄

)∥∥8

≤ C

{
n−1

n∑
i=1

∥∥Π′
(
Zi − Z̄

)∥∥8
+ n−1

n∑
i=1

∥∥Vi − V̄ ∥∥8

}
= OP (1)

which follows from Z being fixed and n−1
∑n

i=1

∥∥Vi − V̄ ∥∥8
= OP (1) since

1

n

n∑
i=1

∥∥Vi − V̄ ∥∥8 ≤ C

{
1

n

n∑
i=1

‖Vi‖8 +
∥∥V̄ ∥∥8

}
→P C

{
E ‖Vi‖8 + ‖E (Vi)‖8}

and ‖E (Vi)‖ ≤ E ‖Vi‖ ≤
(
E ‖Vi‖8)1/8

by Jensen’s inequality. Similarly, we

have n−1
∑n

i=1 ‖εi − ε̄‖
8 = OP (1). Also, β̂ − β →P 0 under Assumption 1

and 2, E∗ (ε∗8i ) is thus bounded in probability.
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(b) Similarly,

E∗
(
‖V ∗i ‖

8) =
1

n

n∑
i=1

∥∥∥∥Vi − (Π̂− Π
)′
Zi

∥∥∥∥8

≤ C1

{
1

n

n∑
i=1

‖Vi‖8 +
1

n

n∑
i=1

∥∥∥∥(Π̂− Π
)′
Zi

∥∥∥∥8
}

= C1

{
1

n

n∑
i=1

‖Vi‖8 +
1

n

n∑
i=1

∥∥∥V ′Z (Z ′Z)
−1
Zi

∥∥∥8
}

Since by Assumption 1, 1
n

∑n
i=1 ‖Vi‖

8 = OP (1), it suffices to show that
1
n

∑n
i=1

∥∥V ′Z (Z ′Z)−1 Zi
∥∥8

= OP (1). We are going to show that this holds

for each element of the vector V ′Z (Z ′Z)−1 Zi. Let w = (w1, . . . , wn) an

arbitrary column of V . Then, by Marcinkiewicz-Zygmund inequality

E
∣∣∣w′Z (Z ′Z)

−1
Zi

∣∣∣8 = E

∣∣∣∣∣
n∑
j=1

wjPji

∣∣∣∣∣
8

≤ C2E

∣∣∣∣∣
n∑
j=1

w2
jP

2
ji

∣∣∣∣∣
4

Also notice that
(∑n

j=1 P
2
ji

)−4

≥ 1, then by Jensen’s inequality,

E

∣∣∣∣∣
n∑
j=1

w2
jP

2
ji

∣∣∣∣∣
4

≤ E

∣∣∣∣∣
n∑
j=1

w2
jP

2
ji/

(
n∑
j=1

P 2
ji

)∣∣∣∣∣
4

≤ E

[
n∑
j=1

w8
jP

2
ji/

(
n∑
j=1

P 2
ji

)]

≤
n∑
j=1

E
(
w8
j

)
P 2
ji/

(
n∑
j=1

P 2
ji

)
≤ C3

Thus, E ‖w′Z(Z ′Z)−1Zi‖8
= O(1). Applying this result to each column

of V , we obtain E ‖V ′Z(Z ′Z)−1Zi‖8
= O(1). Thus, by Markov inequality,

1
n

∑n
i=1 ‖V ′Z(Z ′Z)−1Zi‖8

= OP (1), and the conclusion of part (b) follows. �

Proof of Lemma .3.2

To prove part(a), note that it suffices to prove that V ∗(g)
′
PZε

∗/l = σ
b(g)
V ε +
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OP ∗

(
1/
√
l
)

as n→∞, where V ∗(g) denoted the g-th column of V ∗, so that

V ∗(g)
′
PZε

∗/l is the g-th element of V ∗
′
PZε

∗/l, and where σ
b(g)
V ε denotes the

g-th element of σbV ε, g = 1, ..., k.

From the bootstrap DGP, we have

E∗
(
V ∗(g)

′
PZε

∗

l

)
=

(
1

l

)
trace

(
PZE

∗
(
ε∗V ∗(g)

′
))

=

(
σ
b(g)
V ε

l

)
trace(PZ) = σ

b(g)
V ε

because E∗
(
ε∗iV

∗(g)
j

)
= E∗ (ε∗i )E

∗
(
V
∗(g)
j

)
= 0 for i 6= j by the property of

i.i.d. bootstrap.

Furthermore, note that

E∗
(
V ∗(g)

′
PZε

∗

l
− σb(g)V ε

)2

=
1

l2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

PijPklE
∗ (V ∗igε∗jV ∗kgε∗l )−

(
2σ

(g)b
V ε

l

)
n∑
i=1

n∑
j=1

PijE
∗ (V ∗igε∗j)+

(
σ
b(g)
V ε

)2

=
1

l2
E∗
(
V ∗2ig ε

∗2
i

) [ n∑
i=1

(Pii)
2

]
+

2

l2

(
Σ
b(g,g)
V V σbεε

)[ n∑
i=2

i−1∑
j=1

(Pij)
2

]

+

{
2

l2

(
σ
b(g)
V ε

)2
[

n∑
i=2

i−1∑
j=1

(
PiiPjj + (Pij)

2
)]
−
(
σ
b(g)
V ε

)2
}

≡ L1 + L2 + L3

The second equality follows from noting that E∗
(
V ∗igε

∗
jV
∗
kgε
∗
l

)
equals zero ex-

cept in the case where either (i = j = k = l) or (i = k, j = l) or (i = j, k = l)

or (i = l, j = k) and from using
∑n

i=1 Pii = l.
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Focusing on L1 first, notice that

L1 ≤
1

l2

(
1

n
E∗
(
V ∗4ig
))1/2 (

E∗
(
ε∗4i
))1/2

[
n∑
i=1

(Pii)
2

]

≤ 1

l

(
1

n
E∗
(
V ∗4ig
))1/2 (

E∗
(
ε∗4i
))1/2

= OP

(
1

l

)
where the first inequality follows from the Cauchy-Schwartz inequality, and

the second inequality follows from using
∑n

i=1 (Pii)
2 ≤

∑n
i=1 Pii = l. The

last equality follows from using the same arguments as in Lemma .3.1.

Next, for L2, we have

L2 ≤

(
Σ
b(g,g)
V V σbεε
l2

)[
n∑
i=1

(Pii)
2 + 2

n∑
i=2

i−1∑
j=1

(Pij)
2

]
=

Σ
b(g,g)
V V σbεε
l

= OP

(
1

l

)

because
∑n

i=1 (Pii)
2 + 2

∑n
i=2

∑i−1
j=1(Pij)

2 = Tr(P ′ZPZ) = Tr(PZ) = l given

that PZ is symmetric and idempotent.

Finally, for L3, we note that

|L3| =

∣∣∣∣∣(σb(g)V ε )2

l2

[
(Tr(PZ))2 + Tr(P ′ZPZ)− 2

n∑
i=1

(Pii)
2

]
−
(
σ
b(g)
V ε

)2

∣∣∣∣∣
=

∣∣∣∣∣∣∣
(
σ
b(g)
V ε

)2

l2

(
l − 2

n∑
i=1

(Pii)
2

)∣∣∣∣∣∣∣ ≤
(
σ
b(g)
V ε

)2

l
+

2
(
σ
b(g)
V ε

)2∑n
i=1 Pii

l2
= OP

(
1

l

)

Therefore, we obtain E∗
(
V ∗(g)

′
PZε

∗

l
− σb(g)V ε

)2

= OP

(
1√
l

)
.

But, for any T ∗ such that V ar∗ (T ∗) = OP (1/l), where V ar∗ denotes the

variance computed under P ∗, by the Tchebychev’s inequality, we have for
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any δ > 0 and any fixed Mδ > 0,

P ∗
(
|
√
lT ∗ |> Mδ

)
≤ 1

M2
δ

V ar∗
(√

lT ∗
)

=

(
1

M2
δ

)
OP (1),

Also, by the definition of OP (1), for δ, there exists a M
′

δ <∞ such that

lim
n→∞

P
(
| OP (1) |> M

′

δ

)
= 0.

If we take Mδ =

√
M
′
δ

δ
, i.e. M2

δ =
M
′
δ

δ
, then,

lim
n→∞

P

(
| 1

M2
δ

OP (1) |> δ

)
= lim

n→∞
P

(
δ

M
′
δ

| OP (1) |> δ

)
= lim

n→∞
P
(
| OP (1) |> M

′

δ

)
= 0.

Then, it follows that P ∗
(
|
√
lT ∗ |> Mδ

)
= oP (1), i.e. T ∗ = OP ∗

(
1/
√
l
)

.

Therefore it follows that V ∗(g)
′
PZε

∗/l − σ
b(g)
V ε = OP ∗

(
1/
√
l
)

, as required.

This proves part (a). Parts (b) and (c) follow from proof similar to that of

part (a).

The proof for parts (d) and (e) are similar, so we will only prove (d). To

proceed, note that by the properties of Expectation and Trace operator,

E∗

∥∥∥∥∥V ∗
′
ZΠ̂

rn

∥∥∥∥∥
2
 = E∗

(
trace

(
Π̂′Z ′V ∗V ∗

′
ZΠ̂

r2
n

))
=
trace

(
Σb
V V

)
rn

(
trace

(
Π̂′Z ′ZΠ̂

rn

))
.

When l/rn → γ <∞, by Π̂ = (Z ′Z)−1Z ′X we have

Π̂′Z ′ZΠ̂

rn
=

Π′Z ′ZΠ

rn
+
V ′ZΠ

rn
+

Π′Z ′V

rn
+
V ′PZV

rn
= Q+

(
l

rn

)
ΣV V +OP

(
1
√
rn

)
= OP (1)

Thus, E∗
(∥∥∥V ∗′ZΠ̂

rn

∥∥∥2
)

=
(

1
rn

)
OP (1)OP (1) = OP

(
1
rn

)
because Σb

V V is bounded

in probability by Lemma .3.1. It follows that Π̂′Z ′V ∗/rn = OP ∗
(
1/
√
rn
)
.
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The proof for parts (d’) and (e’) are similar, so we will only prove (d’).

Similar to part (d), we have

E∗

∥∥∥∥∥V ∗
′
ZΠ̂

l

∥∥∥∥∥
2
 =

trace
(
Σb
V V

)
l

(
trace

(
Π̂′Z ′ZΠ̂

l

))
.

When l/rn →∞,

Π̂′Z ′ZΠ̂

l
=

Π′Z ′ZΠ

l
+
V ′ZΠ

l
+

Π′Z ′V

l
+
V ′PZV

l

= ΣV V +OP

(rn
l

)
+OP

(√
rn
l

)
+OP

(
1√
l

)
= OP (1).

Thus, we obtain E∗
(∥∥∥V ∗′ZΠ̂

l

∥∥∥2
)

= OP

(
1
l

)
, and it follows that Π̂′Z ′V ∗/l =

OP ∗

(
1/
√
l
)

in this case. �

Proof of Lemma .3.3

The proof follows closely from Lemma A11 of Hansen, Hausman, and

Newey (2008) by replacing their ai with a∗i and Ṽ with Ṽ ∗. �

Proof of Lemma .3.4

Let β̂∗ = β̂∗std. Let Ῡ = [0, Zπ̂], V̄ ∗ = [ε∗, v∗], X̄∗ = [y∗, X∗] where

{y∗, X∗} are the pseudo-data generated by the standard bootstrap DGP, so

that X̄∗ = (Ῡ + V̄ ∗)D for

D =

[
1 0

β̂ 1

]
Note that rn/n ≤ C. Let B̂∗ = X̄∗

′
X̄∗/n. Then by trace

(
Ῡ′Ῡ

)
= trace (π̂′Z ′Zπ̂)

and E∗
[
V̄ ∗V̄ ∗

′] ≤ CIn in probability, we obtain

E∗
[∥∥Ῡ′V̄ ∗

∥∥2
/n2
]

= trace
(

Ῡ′E∗
[
V̄ ∗
′
V̄ ∗
]

Ῡ
)
/n2

≤ C × trace
(
π̂′Z ′Zπ̂/n2

)
→ 0
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in probability, so that Ῡ′V̄ ∗/n →P ∗ 0. Let Σ̄∗ = E∗
[
V̄ ∗i V̄

∗′
i

]
. Then by

standard arguments, we have Σ̄∗ →P Σ̄ ≡

(
σεε (1− λ)σ′vε

(1− λ)σvε (1− λ) Σvv

)
≥

Cdiag(Ik, 0) and

V̄ ∗
′
V̄ ∗/n− Σ̄∗ →P ∗ 0

so it follows that w.p.a.1,

B̂∗ = D′
(
V̄ ∗
′
V̄ ∗ + Ῡ′V̄ ∗ + V̄ ∗

′
Ῡ + Ῡ′Ῡ

)
D/n

= D′Σ̄∗D +D′Ῡ′ῩD/n+ o∗P (1) ≥ Cdiag(Ik, 0)

in probability. Note that Ῡ′Ῡ/n is bounded in probability, so that B̂∗ minus

a constant and it follows that

C ≤ (1,−β′)B̂∗(1,−β′)′ = (y∗ −X∗β)′(y∗ −X∗β)/n

≤ C ‖ (1,−β′) ‖2= C(1+ ‖ β ‖2)

in probability. Next, note that

E∗

[∥∥∥∥Ῡ′V̄ ∗

rn

∥∥∥∥2
]
≤ C × trace

(
Ῡ′Ῡ/rn

)
/rn

= C × trace (π̂′Z ′Zπ̂) /r2
n → 0

Then Ῡ′V̄ ∗/rn →P ∗ 0. Similarly, we have Ῡ′PZ V̄
∗/rn →P ∗ 0. Also, we have

1

rn

(
V̄ ∗
′
PZ V̄

∗ − λnV̄ ∗
′
V̄ ∗
)

=
1

rn

(
lΣ̄∗ +OP ∗

(√
l
)
− lΣ̄∗ +OP ∗

(
l√
n

))
= OP ∗

(√
l

rn
+

l

rn
√
n

)
→P ∗ 0

because
√
l/rn → 0.
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Let Â∗ = 1
rn
X̂∗

′
PZX̂

∗ − λnX̂∗
′
X̂∗.

Ῡ′Ῡ

rn
= diag

(
0,
π̂′Z ′Zπ̂

rn

)
≥ diag(0, Ik)

Then by T, w.p.a.1,

Â∗ = (1− λn)diag

(
0,
π̂′Z ′Zπ̂

rn

)
− 1

rn

[
Ῡ′PZ V̄

∗ + V̄ ∗
′
PZῩ− λnV̄ ∗

′
Ῡ− λnῩ′V̄ ∗ + V̄ ∗

′
PZ V̄

∗ − λnV̄ ∗
′
V̄ ∗
]

≥ Cdiag(0, Ik)

Note that
√
rnD(1,−β′)′ =

(√
rn,
√
rn(β̂ − β)

)′
. It follows that w.p.a.1

by X̄∗i = 1√
rn
D′X̃∗i , for all β,

1

rn
(y∗ −X∗β)′(PZ − λnIn)(y∗ −X∗β) =

1

rn
(1,−β′)

[
X̄∗

′
PZX̄

∗ − λnX̄∗
′
X̄∗
]

(1,−β′)′

=
1

rn
(1,−β′)D′rnÂ∗D(1,−β′)′

≥ C ‖ β − β̂ ‖2

Moreover, let

Q̂∗(β) =
1
rn

(y∗ −X∗β)′(PZ − λnIn)(y∗ −X∗β)
1
n
(y∗ −X∗β)(y∗ −X∗β)

Note that

β̂∗ = argminβQ̂
∗(β)

Also it is easy to see that

1

rn
ε∗
′
(PZ − λnIn)ε∗ →P ∗ 0
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so that by ε∗
′
ε∗/n ≥ C w.p.a.1, Q̂∗(β̂)→P ∗ 0. Therefore,

0 ≤ Q̂∗(β̂∗) ≤ Q̂∗(β̂)→P ∗ 0

and hence Q̂∗(β̂∗) →P ∗ 0. By (y∗ −X∗β)′(y∗ −X∗β)/n ≤ C(1+ ‖ β ‖2), it

follows that

0 ≤ ‖ β̂
∗ − β̂ ‖2

1+ ‖ β̂∗ ‖2
≤ CQ̂∗(β̂∗)→P ∗ 0

Now we show that if ‖ β̂∗−β̂ ‖2 /(1+ ‖ β̂∗ ‖2)→P ∗ 0, then ‖ β̂∗−β̂ ‖→P ∗

0.

When ‖ β̂∗ ‖≥ a ≡ 2 ‖ β̂ ‖ +(1 + 2 ‖ β̂ ‖2)1/2, by subtracting 2 ‖ β̂ ‖ and

squaring we have

(‖ β̂∗ ‖ −2 ‖ β̂ ‖)2 = ‖ β̂∗ ‖2 −4 ‖ β̂∗ ‖‖ β̂ ‖ +4 ‖ β̂ ‖2

≥ 1 + 2 ‖ β̂ ‖2

Substracting 2 ‖ β̂ ‖2, adding ‖ β̂∗ ‖2, and dividing by 2 gives

(‖ β̂∗ ‖ − ‖ β̂ ‖)2 ≥ (1+ ‖ β̂∗ ‖2)/2

Note that when ‖ β̂∗ ‖≥ a,

‖ β̂∗ − β̂ ‖2

1+ ‖ β̂∗ ‖2
≥ ‖ β̂∗ − β̂ ‖2

2(‖ β̂∗ ‖ − ‖ β̂ ‖)2
≥ 1/2

It follows that ‖ β̂∗ ‖< a w.p.a.1, and hence 1+ ‖ β̂∗ ‖2< 1 + a2 and

‖ β̂∗ − β̂ ‖2≤ (1 + a2)
‖ β̂∗ − β̂ ‖2

1+ ‖ β̂∗ ‖2
→P ∗ 0

�

Proof of Lemma .3.5
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By Lemma .3.2, we have ε∗
′
PZε

∗/l = σbεε + OP ∗

(
1/
√
l
)

. Similarly, one

can show that ε∗
′
ε∗/n = σbεε +OP ∗ (1/

√
n). Also, by standard arugments, we

have ε∗
′
ε∗ = OP ∗(n). Then

λ∗ − λn =
l

ε∗′ε∗

(
ε∗
′
PZε

∗

l
− σbεε −

(
ε∗
′
ε∗

n
− σbεε

))
= OP ∗

(
l

n

){
OP ∗

(
1√
l

)
+OP ∗

(
1√
n

)}
= OP ∗

(√
l

n

)

�

Proof of Lemma .3.6

Note that by standard arguments X∗
′
X∗ = OP ∗(n) and X∗

′
ε∗ = OP ∗(n).

Therefore, in Case (I), (λ̂∗ − λ∗)X
∗′X∗

rn
= OP ∗

(
δλnn
rn

)
and (λ̂∗ − λ∗)X

∗′ε∗

rn
=

OP ∗

(
δλnn
rn

)
. Also, by Lemma .3.5 and by l/rn → γ <∞ in Case (I)

(λ∗ − λn)
X∗

′
X∗

rn
= OP ∗

(√
l

n
· n
rn

)
= OP ∗

(√
l

rn

)
= OP ∗

(
1
√
rn

)

(λ∗ − λn)
X∗

′
ε∗

rn
= OP ∗

(√
l

n
· n
rn

)
= OP ∗

(√
l

rn

)
= OP ∗

(
1
√
rn

)

Also, by the results in Lemma .3.2, we have 1
rn

(
X∗

′
PZX

∗ − λnX∗
′
X∗
)

=

H̄I,n + OP ∗

(
1√
rn

)
and 1

rn

(
X∗

′
PZε

∗ − λnX∗
′
ε∗
)

= OP ∗

(
1√
rn

)
. Putting these

results together, we obtain

1

rn

(
X∗

′
PZX

∗ − λ̂∗X∗′X∗
)

= H̄I,n +OP ∗

(
1
√
rn

+
δλnn

rn

)
1

rn

(
X∗

′
PZ ε̂

∗ − λ̂∗X∗′ ε̂∗
)

= OP ∗

(
1
√
rn

+ δβn +
δλnn

rn

)
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by the triangle inequality and by the fact that

1

rn

(
X∗

′
PZ ε̂

∗ − λ̂∗X∗′ ε̂∗
)

=
1

rn

(
X∗

′
PZε

∗ − λ̂∗X∗′ε∗
)
−
(

1

rn
(X∗

′
PZX

∗ − λ̂∗X∗′X∗)
)

(β̂∗−β̂).

Using similar arguments, we obtain that for Case (II) (λ̂∗ − λ∗)X∗
′
X∗

l
=

OP ∗

(
δλnn
l

)
, (λ̂∗ − λ∗)X

∗′ε∗

l
= OP ∗

(
δλnn
l

)
, (λ∗ − λn)X

∗′X∗

l
= OP ∗

(
1√
l

)
, and

(λ∗−λn)X
∗′ε∗

l
= OP ∗

(
1√
l

)
. Also, by the results in Lemma .3.2, 1

l

(
X∗

′
PZX

∗ − λnX∗
′
X∗
)

=

H̄II,n + OP ∗

(
1√
l

)
and 1

l

(
X∗

′
PZε

∗ − λnX∗
′
ε∗
)

= OP ∗

(
1√
l

)
. Then, the con-

clusion follows by the triangle inequality. �

Proof of Lemma .3.7

Let σ̂∗εε(β̂
∗) = ε̂∗

′
ε̂∗/n, then for Case (I),

ε̂∗
′
PZ ε̂

∗

ε̂∗′ ε̂∗
− ε∗

′
PZε

∗

ε∗′ε∗
=

1

ε̂∗′ ε̂∗

(
ε̂∗
′
PZ ε̂

∗ − ε∗′PZε∗ − λ∗
(
ε̂∗
′
ε̂∗ − ε∗′ε∗

))
=

rn

nσ̂∗εε(β̂
∗)

(
(β̂∗ − β̂)′

(
X∗
′
PZX

∗ − λ∗X∗′X∗

rn

)
(β̂∗ − β̂)− 2(β̂∗ − β̂)′

(
X∗
′
PZε

∗ − λ∗X∗′ε∗

rn

))

= O∗P

(
rn(δβn)2

n

)

because
(
σ̂∗εε(β̂

∗)
)−1

= OP ∗(1), 1
rn

(
X∗

′
PZX

∗ − λ∗X∗′X∗
)

= OP ∗(1),

1
rn

(
X∗

′
PZε

∗ − λ∗X∗′ε∗
)

= OP ∗

(
1√
rn

)
by Lemma .3.6 with λ̂∗ = λ∗ and δλn =

δβn = 0.

Using similar arguments, we obtain that for Case (II)

ε̂∗
′
PZ ε̂

∗

ε̂∗′ ε̂∗
− ε∗

′
PZε

∗

ε∗′ε∗

=
l

nσ̂∗εε(β̂
∗)

(
(β̂∗ − β̂)′

(
X∗
′
PZX

∗ − λ̆∗X∗′X∗

l

)
(β̂∗ − β̂)− 2(β̂∗ − β̂)′

(
X∗
′
PZε

∗ − λ̆∗X∗′ε∗

l

))

= O∗P

(
l(δβn)2

n

)
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Proof of Lemma .3.8

Let ε̄∗ = y∗ −X∗β̄ and q̄∗ = X∗ε̄∗/ε̄∗
′
ε̄∗. Suppose β̄∗ lies between β̂∗ and

β̂. Then differentiating gives

−
(
∂D̂∗(β̄∗)/∂β

)
= X∗

′
PZX

∗ − ε̄∗
′
PZ ε̄

∗

ε̄∗′ ε̄∗
X∗

′
X∗ −X∗′ ε̄∗ ε̄

∗′PZX
∗

ε̄∗′ ε̄∗

−X
∗′PZ ε̄

∗

ε̄∗′ ε̄∗
ε̄∗
′
X∗ + 2

ε̄∗
′
PZ ε̄

∗

(ε̄∗′ ε̄∗)2
X∗

′
ε̄∗ε̄∗

′
X∗

= X∗
′
PZX

∗ − λ̄∗X∗′X∗ + q̄∗D̂∗(β̄∗)′ + D̂∗(β̄∗)q̄∗
′

where λ̄∗ = ε̄∗
′
PZ ε̄

∗/ε̄∗
′
ε̄∗. By Lemma .3.7, we have λ̄∗ = λ∗ + OP ∗

(
(δβn)2rn

n

)
for Case (I). Then by Lemma .3.6 with δλn = (δβn)2rn

n
, we obtain

1

rn

(
X∗

′
PZX

∗ − λ̄∗X∗′X∗
)

= H̄I,n +OP ∗

(
1
√
rn

+ (δβn)2

)
1

rn
D̂∗(β̄∗) = OP ∗

(
1
√
rn

+ δβn

)

Note that by standard argument q̄∗ = OP ∗(1), hence 1
rn

(
D̂∗(β̄∗)q̄∗

)
=

1
rn
D̂∗(β̄∗)OP ∗(1) = OP ∗

(
1√
rn

+ δβn

)
. The conclusion then follows by the tri-

angle inequality. For Case (II), note that by similar arguments, one can

obtain 1
l

(
X∗

′
PZX

∗ − λ̄∗X∗′X∗
)

= H̄II,n + OP ∗

(
1√
l
+ (δβn)2

)
, 1

l
D̂∗(β̄∗) =

OP ∗

(
1√
l
+ δβn

)
, and 1

l

(
D̂∗(β̄∗)q̄∗

)
= OP ∗

(
1√
l
+ δβn

)
. �

Proof of Lemma .3.9

Note that by Lemma .3.5, λ∗ = λn + OP ∗

(√
l/n
)

. Also, by standard

argument, Ṽ ∗
′
ε∗ = OP ∗(n). Moreover, For Case (I) we have Π̂′Z ′ε∗/

√
rn =
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OP ∗
(
1/
√
rn
)
, thus

1
√
rn
D̂∗(β̂) =

1
√
rn

(
X∗

′
PZε

∗ − λ∗X∗′ε∗
)

=
1
√
rn

{(
X∗ − ε∗

(
σb
′
V ε

σbεε

))′
PZε

∗ − λ∗
(
X∗ − ε∗

(
σb
′
V ε

σbεε

))′
ε∗

}

=
1
√
rn

{
Π̂′Z ′ε∗ + Ṽ ∗

′
PZε

∗ −
(
ZΠ̂ + Ṽ ∗

)′
ε∗

[
λn +O∗P

(√
l

n

)]}

=
1
√
rn

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗ +OP ∗

(
1
√
rn

)
where the last equality follows by noting that

1
√
rn

(
ZΠ̂ + Ṽ ∗

)′
ε∗OP ∗

(√
l

n

)
= OP ∗

(√
n

rn

)
OP ∗

(√
l

n

)
= OP ∗

(√
λn
rn

)

and λn → λ ∈ [0, 1) as n→∞. Using similar arguments, we obtain for Case

(II)

1√
l
D̂∗(β̂) =

1√
l

(
(1− λn)ZΠ̂ + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗ +OP ∗

(
1√
l

)
�

.3.2 Proofs of results for the RE Bootstrap

All the proofs of the Lemmas are relegated at the end of Appendix B. Let

β̂∗ = β̂∗re throughout Appendix B. Also, P ∗ denotes the probability measure

induced by the RE bootstrap procedure and E∗ denotes the expectation

under P ∗.

Lemma .3.10. Suppose that Assumptions 1-2 hold, then under H0 : β = β0,

(a) E∗ (ε∗8i ) and (b) E∗
(
‖V ∗i ‖

8) are bounded in probability.
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Lemma .3.11. Suppose that Assumptions 1-2 hold, then under H0 : β = β0,

the following statements are true as n→∞

(a) V ∗
′
PZε

∗/l = σbV ε +OP ∗

(
1/
√
l
)

;

(b) V ∗
′
PZV

∗/l = Σb
V V +OP ∗

(
1/
√
l
)

;

(c) ε∗
′
PZε

∗/l = σbεε +OP ∗

(
1/
√
l
)
,

in probability, in Case (I) (l/rn → γ <∞),

(d) Π̃′(β0)Z ′V ∗/rn = OP ∗
(
1/
√
rn
)

;

(e) Π̃′(β0)Z ′ε∗/rn = OP ∗
(
1/
√
rn
)
,

in probability, and in Case (II) (l/rn →∞),

(d′) Π̃′(β0)Z ′V ∗/l = OP ∗

(
1/
√
l
)

;

(e′) Π̃′(β0)Z ′ε∗/l = OP ∗

(
1/
√
l
)
,

in probability, where σbV ε ≡ E∗ (V ∗i ε
∗
i ), Σb

V V ≡ E∗
(
V ∗i V

∗′
i

)
and σbεε ≡ E∗ (ε∗2i ).

To proceed, let A∗ = diag(a∗1, ..., a
∗
n) where a∗i = ε∗2i − σbεε, i = 1, .., n.

Lemma .3.12. Suppose that Assumptions 1-2 hold, then both in Case (I)

and in Case (II),

(a) Ṽ ∗
′
A∗Ṽ ∗/n = E∗

(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ;

(b) Ṽ ∗
′
PZA

∗Ṽ ∗/n = λnE
∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ;

(c) Ṽ ∗
′
DZA

∗DZ Ṽ
∗/n = λnφnE

∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ;

(d) Ṽ ∗
′
PZA

∗PZ Ṽ
∗/n = λnφnE

∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ,

in probability.
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Lemma .3.13. Suppose that Assumptions 1-2 hold, then under H0 : β = β0,

both in Case (I) and in Case (II),

β̂∗ − β0 = oP ∗(1), in probability

Let λ̂∗ = ε̂∗
′
PZ ε̂

∗

ε̂∗′ ε̂∗
, λ̆∗ = ε∗

′
PZε

∗

ε∗′ε∗
where ε̂∗ = y∗−X∗β̂∗ and {y∗, X∗} denotes

the pseudo-sample generated by the RE bootstrap.

Lemma .3.14. Suppose that Assumptions 1-2 hold, then under H0 : β =

β0, λ
∗ = λn +OP ∗

(√
l/n
)

.

Lemma .3.15. If λ̂∗ = λ∗+OP ∗(δ
λ
n) for δλn → 0, and β̂∗− β0 = OP ∗(δ

β
n) for

δβn → 0, then under H0 : β = β0, for Case (I),

(a) 1
rn

(
X∗

′
PZX

∗ − λ̂∗X∗′X∗
)

= H̃I,n +OP ∗
(
1/
√
rn + δλnn/rn

)
;

(b) 1
rn

(
X∗

′
PZ ε̂

∗ − λ̂∗X∗′ ε̂∗
)

= OP ∗
(
1/
√
rn + δβn + δλnn/rn

)
,

where H̃I,n = (1− λn)
(

Π̃′(β0)Z ′ZΠ̃(β0)/rn

)
; for Case (II),

(a′) 1
l

(
X∗

′
PZX

∗ − λ̂∗X∗′X∗
)

= H̃II,n +OP ∗

(
1/
√
l + δλnn/l

)
;

(b′) 1
l

(
X∗

′
PZ ε̂

∗ − λ̂∗X∗′ ε̂∗
)

= OP ∗

(
1/
√
l + δβn + δλnn/l

)
,

where H̃II,n = (1− λn)
(

Π̃′(β0)Z ′ZΠ̃(β0)/l
)

.

Lemma .3.16. Suppose that Assumptions 1-2 hold. Suppose β̂∗ − β0 =

OP ∗
(
δβn
)

for δβn → 0, then under H0 : β = β0, in Case (I) λ̂∗ = λ∗ +

OP ∗
(
rn
n

(δβn)2
)
; in Case (II), λ̂∗ = λ∗ +OP ∗

(
l
n
(δβn)2

)
.

Lemma .3.17. Suppose that Assumptions 1-2 hold. Suppose β̂∗ − β0 =

OP ∗
(
δβn
)

for δβn → 0, then under H0 : β = β0, for Case (I),

− 1

rn

(
∂D̂∗(β̄∗)/∂β

)
= H̃I,n +OP ∗

(
1/
√
rn + δβn

)
,
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for Case (II),

−1

l

(
∂D̂∗(β̄∗)/∂β

)
= H̃II,n +OP ∗

(
1/
√
l + δβn

)
.

where β̄∗ lies between β0 and β̂∗.

Lemma .3.18. Suppose that Assumptions 1-2 hold, then under H0 : β = β0,

in Case (I)

1
√
rn
D̂∗(β0) =

1
√
rn

(
(1− λn)ZΠ̃(β0) + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗ +OP ∗ (1/

√
rn)

and in Case (II)

1√
l
D̂∗(β0) =

1√
l

(
(1− λn)ZΠ̃(β0) + PZ Ṽ

∗ − λnṼ ∗
)′
ε∗ +OP ∗

(
1/
√
l
)

where Ṽ = V ∗ − ε∗
(
σb
′
V ε

σbεε

)
.

Proof of Theorem 3.3.2

The proof is similar to that of Theorem 3.3.1. One can show that similar

to the standard bootstrap, for Case (I)

√
rn(β̂∗−β0) = −

√
rn

(
∂D̂∗(β̄∗)

∂β

)−1

D̂∗(β0) = −

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1
√
rn
D̂∗(β0)

and for Case (II), we let

√
l(β̂∗ − β0) = −

√
l

(
∂D̂∗(β̄∗)

∂β

)−1

D̂∗(β0) = −

(
1

l

∂D̂∗(β̄∗)

∂β

)−1
1√
l
D̂∗(β0).

where β̄∗ lies between β̂∗ and β0.

To proceed for Case (I), we let W ∗
I,i =

(
1√
rn

(1− λ)Π̃′(β0)Ziε
∗
i

1√
l
(Pii − λn)Ṽ ∗i ε

∗
i

)
. By using
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arguments similar to those in the proof of Theorem 3.3.1 and by replacing Π̂

with Π̃(β0), we can show that under H0
∑n

i=1E
∗
(∥∥∥ 1√

rn
(1− λn)Π̃′(β0)Ziε

∗
i

∥∥∥4
)
→P 0∑n

i=1E
∗
(∥∥∥ 1√

l
(Pii − λn)Ṽ ∗i ε

∗
i

∥∥∥4
)
→P 0

and

n∑
i=1

E∗
(
W ∗
I,iW

∗′
I,i

)
→P

(
(1− λ)σεεH̃I (1− λ)Ã′

(1− λ)Ã (φ− λ)
(
σεεΣṼ Ṽ + B̃

)) ≡ Ψ̃I .

where H̃I = HI + (1 − λ)γΣṼ Ṽ , Ã =
√

1− λA, and B̃ = 1−2λ+λφ
1−λ B. These

results follow by the fact that under the RE bootstrap DGP and under H0,

E∗
(
ε∗2i
)

=
n

n− k

ε′(β0)ε(β0)

n
−

(
1

n

n∑
i=1

εi(β0)

)2
 =

ε′(β0)ε(β0)

n
+oP (1)→P σεε;

E∗ (V ∗i ε
∗
i ) =

√
n

n− k

√
n

n− l

{
Ṽ ′(β0)ε(β0)

n
−

(
1

n

n∑
i=1

εi(β0)

)(
1

n

n∑
i=1

Ṽi(β0)

)}

=

√
n

n− l
Ṽ ′(β0)ε(β0)

n
+ oP (1)

=

√
n

n− l

(
X ′MZε(β0)

n
+

X ′MZε(β0)

ε′(β0)MZε(β0)

ε′(β0)PZε(β0)

n

)
+oP (1)→P σV ε√

1− λ
;

E∗
(
V ∗i V

∗′
i

)
=

n

n− l

 Ṽ ′(β0)Ṽ (β0)

n
−

(
1

n

n∑
i=1

Ṽi(β0)

)2


=
n

n− l
Ṽ ′(β0)Ṽ (β0)

n
+ oP (1)

=
n

n− l

{
X ′MZX

n
+

X ′MZε(β0)

ε′(β0)MZε(β0)

ε′(β0)PZε(β0)

n

ε′(β0)MZX

ε′(β0)MZε(β0)

}
+ oP (1)

→P ΣV V +
λ

1− λ
σV εσ

′
V ε

σεε
,
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Notice that under H0, 1
n

∑n
i=1 Ṽi(β0)→P 0 since

1

n

n∑
i=1

Ṽi(β0) =
1

n

n∑
i=1

(
X − ZΠ̃(β0)

)
i

=
1

n

n∑
i=1

(
X − Z(Z ′Z)−1Z ′

[
X − ε(β0)

ε′(β0)MZX

ε′(β0)MZε(β0)

])
i

=
1

n

n∑
i=1

V̂i +

(
1

n

n∑
i=1

(PZε(β0))i

)
ε′(β0)MZX

ε′(β0)MZε(β0)

=

(
1

n

n∑
i=1

(PZε(β0))i

)
ε′(β0)MZX

ε′(β0)MZε(β0)
,

where 1
n

∑n
i=1 V̂i = 0 given that the Z contains a column of ones. Also, we

have ε′(β0)MZX
ε′(β0)MZε(β0)

→P σ′V ε
σεε

underH0. Therefore, to conclude that 1
n

∑n
i=1 Ṽi(β0)→P

0, we only need to show that 1
n

∑n
i=1 (PZε(β0))i →P 0 under H0. Notice that

under H0, E
(

1
n

∑n
i=1 (PZε(β0))i

)
= 0 and

V ar

(
1

n

n∑
i=1

(PZε(β0))i

)
=

1

n2

n∑
i,j=1

E
(

(PZε(β0))i (PZε(β0))j

)
=

1

n2

n∑
i,j=1

n∑
k,l=1

PikPjlE (εkεl)

=
1

n2

n∑
i,j=1

n∑
k=1

PikPjkE
(
ε2k
)

=
σεε
n2

n∑
i,j=1

n∑
k=1

PikPjk

=
σεε
n2

n∑
i,j=1

n∑
k=1

PikPkj =
σεε
n2

n∑
i,j=1

Pij → 0,

since by the Frobenius norm,∣∣∣∣∣
n∑

i,j=1

Pij

∣∣∣∣∣ ≤
n∑

i,j=1

|Pij| ≡‖ PZ ‖1≤
√
n ‖ PZ ‖2=

√
n ‖ PZ ‖F=

√
nl.

This concludes the proof of 1
n

∑n
i=1 Ṽi(β0)→P 0.

Putting the result of E∗ (ε∗2i ), E∗ (V ∗i ε
∗
i ) and E∗

(
V ∗i V

∗′
i

)
together, we obtain

that E∗
(
Ṽ ∗i Ṽ

∗′
i

)
→P ΣṼ Ṽ , i.e., the RE bootstrap consistently estimates
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ΣṼ Ṽ . Similarly, we can show that

E∗
(
ε∗2i Ṽ

∗′
i

)
= E∗

{
ε∗2i

(
V ∗
′

i − ε∗i
σb
′
V ε

σbεε

)}
=

√
n

n− l

(
1

n

n∑
i=1

ε2i (β0)Ṽi(β0)

)
− 1

n

n∑
i=1

ε3i (β0)

(
σb
′
V ε

σbεε

)
+ oP (1).

Let ã = (ε21(β0)− σεε, ..., ε2n(β0)− σεε) and a = (ε21 − σεε, ..., ε2n − σεε), then we

have

1

n

n∑
i=1

ε2i (β0)Ṽi(β0) =
(ã− a)′Ṽ (β0)

n
+
a′Ṽ (β0)

n
= oP (1) +

a′Ṽ (β0)

n
.

Also notice that under H0,

a′Ṽ (β0)

n
=
a′
(
V + Z

(
Π− Π̃(β0)

))
n

→P (1− λ)E
(
ε2iVi

)
+ λE

(
ε3i
)(σ′V ε

σεε

)
.

Therefore, we obtain under H0, E∗
(
ε∗2i Ṽ

∗′
i

)
→P
√

1− λE
(
ε2i Ṽ

′
i

)
. Finally,

using Lemma A10 and A11 in Hansen, Hausman, and Newey (2008) and

using arguments similar to the case of standard bootstrap, we obtain

E∗
{(
ε∗2i − σbεε

)
Ṽ ∗i Ṽ

∗′
i

}
→P 1− 2λ+ λφ

1− λ
E
(

(ε2i − σεε)ṼiṼ ′i
)

Then using similar arguments as in Appendix A, we obtain that for Case

(I) and under H0

1
√
rn
D̂∗(β0) =

1
√
rn

{
(1− λn)ZΠ̃(β0) + PZ Ṽ

∗ − λnṼ ∗
}′
ε∗+OP ∗

(
1
√
rn

)
→d∗ N

(
0, Υ̃I

)
,
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with Υ̃I = (1− λ)σεε

{
H̃I + γΣṼ Ṽ

}
+ (1− λ)

√
γ
{
Ã+ Ã′

}
+ γB̃ and then

√
rn

(
β̂∗ − β0

)
=

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1
√
rn
D̂∗(β0)→d∗ N

(
0, Λ̃I

)
where Λ̃I = H̃−1

I Υ̃IH̃
−1
I .

For Case (II) we let W ∗
II,i =

(
1√
l
(1− λn)Π̃′(β0)Ziε

∗
i ,

1√
l
(Pii − λn)Ṽ ∗i ε

∗
i

)′
.

Then similar to the standard bootstrap, we have

n∑
i=1

E∗
(
W ∗
II,iW

∗′
II,i

)
→P

(
(1− λ)σεεH̃II 0

0 (φ− λ)
(
σεεΣṼ Ṽ + B̃

)) ≡ Ψ̃II ,

under H0; where H̃II = (1− λ)ΣṼ Ṽ . Then, similar to Case (I), we obtain

1√
l
D̂∗(β0) =

1√
l

{
(1− λn)ZΠ̃(β0) + PZ Ṽ

∗ − λnṼ ∗
}′
ε∗+OP ∗

(
1√
l

)
→d∗ N

(
0, Υ̃II

)
,

with Υ̃II = σεε

{
(1− λ)H̃II + (1− φ)ΣṼ Ṽ

}
. Together with Lemma .3.17, we

have

√
l
(
β̂∗ − β0

)
=

(
1

l

∂D̂∗(β̄∗)

∂β

)−1
1√
l
D̂∗(β0)→d∗ N

(
0, Λ̃II

)
,

where Λ̃II = H̃−1
II Υ̃IIH̃

−1
II . �

Proof of Corollary 3.3.2

By Theorem 3.3.2, we have when l/rn → 0,
√
rn(β̂∗re−β0)→d∗ N(0, σεεQ

−1),

which is the same as the limiting distribution of
√
rn(β̂−β0). The result then

follows by Polya’s Theorem. �

Now we give the proofs for the Lemmas.

Proof of Lemma .3.10
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It is similar to the proof of Lemma .3.1.

Proof of Lemma .3.11

It is similar to the proof of Lemma .3.2 by replacing Π̂ with Π̃(β0).

Proof of Lemma .3.12

It is similar to the proof of Lemma .3.3.

Proof of Lemma .3.13

It is similar to the proof of Lemma .3.4.

Proof of Lemma .3.14

It is similar to the proof of Lemma .3.5.

Proof of Lemma .3.15

Note that for the RE bootstrap, by .3.11 1
rn

(
X∗

′
PZX

∗ − λnX∗
′
X∗
)

=

H̃I,n + OP ∗

(
1√
rn

)
for Case (I), and 1

l

(
X∗

′
PZX

∗ − λnX∗
′
X∗
)

= H̃II,n +

OP ∗

(
1√
l

)
for Case (II), then the results follows by applying same arguments

as in the proof of Lemma .3.6. �

Proof of Lemma .3.16

It is similar to the proof of Lemma .3.7. �

Proof of Lemma .3.17

The result follows by using similar arguments as in the proof of Lemma

.3.8 and replacing H̄I,n, H̄II,n therein with H̃I,n and H̃II,n. �

Proof of Lemma .3.18

Note that by Lemma .3.14, λ∗ = λn+O∗P

(√
l
n

)
. Moreover, for Case (I) we

have Π̃′(β0)Z′ε∗√
rn

= OP ∗

(
1√
rn

)
and Ṽ ∗

′
ε∗√
rn

= OP ∗

(√
n
rn

)
by Markov inequality.
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Therefore, we obtain

1
√
rn
D̂∗(β0)

=
1
√
rn

{
Π̃′(β0)Z ′ε∗ + Ṽ ∗

′
PZε

∗ −
(
ZΠ̃(β0) + Ṽ ∗

)′
ε∗

[
λn +OP ∗

(√
l

n

)]}

=
1
√
rn

{
(1− λn)ZΠ̃(β0) + PZ Ṽ

∗ − λnṼ ∗
}′
ε∗ +OP ∗

(
1
√
rn

)
The result for Case (II) follows from similar arguments. �

.3.3 Proofs of results for the Modified RE Bootstrap

All the proofs of the Lemmas are relegated at the end of Appendix B. Let

β̂∗ = β̂∗m throughout Appendix C. Also, P ∗ denotes the probability measure

induced by the MRE bootstrap procedure and E∗ denotes the expectation

under P ∗.

Lemma .3.19. Suppose that Assumptions 1-2 hold, then under H0 : β = β0,

(a) E∗ (ε∗8i ) and (b) E∗
(
‖V ∗i ‖

8) are bounded in probability.

Lemma .3.20. Suppose that Assumptions 1-2 hold, then under H0 : β = β0,

the following statements are true as n→∞

(a) V ∗
′
PZε

∗/l = σbV ε +OP ∗

(
1/
√
l
)

;

(b) V ∗
′
PZV

∗/l = Σb
V V +OP ∗

(
1/
√
l
)

;

(c) ε∗
′
PZε

∗/l = σbεε +OP ∗

(
1/
√
l
)
,

in probability, and both in Case (I) and Case (II)

(d) Π̃′m(β0)Z ′V ∗/rn = OP ∗
(
1/
√
rn
)

;

(e) Π̃′m(β0)Z ′ε∗/rn = OP ∗
(
1/
√
rn
)
,
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in probability, where σbV ε ≡ E∗ (V ∗i ε
∗
i ), Σb

V V ≡ E∗
(
V ∗i V

∗′
i

)
and σbεε ≡ E∗ (ε∗2i ).

To proceed, let A∗ = diag(a∗1, ..., a
∗
n) where a∗i = ε∗2i − σbεε, i = 1, .., n.

Lemma .3.21. Suppose that Assumptions 1-2 hold, then both in Case (I)

and in Case (II),

(a) Ṽ ∗
′
A∗Ṽ ∗/n = E∗

(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ;

(b) Ṽ ∗
′
PZA

∗Ṽ ∗/n = λnE
∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ;

(c) Ṽ ∗
′
DZA

∗DZ Ṽ
∗/n = λnφnE

∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ;

(d) Ṽ ∗
′
PZA

∗PZ Ṽ
∗/n = λnφnE

∗
(
a∗i Ṽ

∗
i Ṽ
∗′
i

)
+OP ∗ (1/

√
n) ,

in probability.

Lemma .3.22. Suppose that Assumptions 1-2 hold, then both in Case (I)

and in Case (II),

β̂∗ − β0 = oP ∗(1)

Let λ̂∗ = ε̂∗
′
PZ ε̂

∗

ε̂∗′ ε̂∗
, λ∗ = ε∗

′
PZε

∗

ε∗′ε∗
where ε̂∗ = y∗−X∗β̂∗ and {y∗, X∗} denotes

the pseudo-sample generated by the MRE bootstrap.

Lemma .3.23. Suppose that Assumptions 1-2 hold, then λ∗ = λn+OP ∗

(√
l/n
)

.

Lemma .3.24. If λ̂∗ = λ∗ + OP ∗(δ
λ
n) for δλn → 0, and β̂∗ − β0 = OP ∗

(
δβn
)

for δβn → 0, then for both Case (I) and Case (II)

1

rn

(
X∗

′
PZX

∗ − λ̂∗X∗′X∗
)

= H̃m,n +OP ∗

(√
l/rn + δλnn/rn

)
1

rn

(
X∗

′
PZ ε̂

∗ − λ̂∗X∗′ ε̂∗
)

= OP ∗

(√
l/rn + δβn + δλnn/rn

)
where H̃m,n = (1− λn)

(
Π̃′m(β0)Z ′ZΠ̃m(β0)/rn

)
.
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Lemma .3.25. Suppose that Assumptions 1-2 hold. Suppose β̂∗ − β0 =

OP ∗
(
δβn
)

for δβn → 0, then under H0, both in Case (I) and Case (II) λ̂∗ =

λ∗ +OP ∗
(
rn(δβn)2/n

)
.

Lemma .3.26. Suppose that Assumptions 1-2 hold. Suppose β̂∗ − β0 =

OP ∗
(
δβn
)

for δn → 0 then under H0, for both Case (I) and Case (II)

− 1

rn

(
∂D̂∗(β̄∗)/∂β

)
= H̃m,n +OP ∗

(√
l/rn + δβn

)
where β̄∗ lies between β0 and β̂∗.

Lemma .3.27. Suppose that Assumptions 1-2 hold, then under H0, for Case

(I)

1
√
rn
D̂∗(β0) =

1
√
rn

{
(1− λn)ZΠ̃m(β0) + PZ Ṽ

∗ − λnṼ ∗
}′
ε∗ +OP ∗ (1/

√
rn) ,

and in Case (II)

rn√
l
D̂∗(β0) =

rn√
l

{
(1− λn)ZΠ̃m(β0) + PZ Ṽ

∗ − λnṼ ∗
}′
ε∗ +OP ∗

(√
l/rn

)
.

Proof of Theorem 3.3.3

Let β̄∗ be the mean value lying between β̂∗ and β0. For Case (I) we have

√
rn(β̂∗−β0) = −

√
rn

(
∂D̂∗(β̄∗)

∂β

)−1

D̂∗(β0) = −

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1
√
rn
D̂∗(β0)

and for Case (II), we have

rn√
l
(β̂∗−β0) = − rn√

l

(
∂D̂∗(β̄∗)

∂β

)−1

D̂∗(β0) = −

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1√
l
D̂∗(β0).
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Then, we let W ∗
i,m =

(
1√
rn

(1− λn)Π̃′m(β0)Ziε
∗
i,m

1√
l
(Pii − λn)Ṽ ∗i,mε

∗
i,m

)
and we obtain,

n∑
i=1

E∗
(
W ∗i,mW

∗′
i,m

)

=

 ∑n
i=1

(1−λn)2

rn
Π̃′m(β0)ZiZ

′
iΠ̃m(β0)E∗

(
ε∗2i,m

) ∑n
i=1

1−λn√
lrn

(Pii − λn)Π̃′m(β0)ZiE
∗
(
ε∗2i,mṼ

∗′
i,m

)
E∗
(
ε∗2i,mṼ

∗
i,m

)∑n
i=1

1−λn√
lrn

(Pii − λn)Z ′iΠ̃m(β0)
∑n

i=1
1
l (Pii − λn)2E∗

(
ε∗2i,mṼ

∗
i,mṼ

∗′
i,m

) 
→P

(
σεε(1− λ)H 0

0 0

)
≡ Ψ̃m,I ,

where the last line follows from the fact that under H0,

Π̃′m(β0)Z ′ZΠ̃m(β0)

rn
=
Q̃(β0)− lΣ̂Ṽ Ṽ (β0)

rn

=
Π′Z ′ZΠ

rn
+OP

(
1
√
rn

)
+

l

rn

{
ΣṼ Ṽ +OP

(
1√
l

)}
− l

rn

{
ΣṼ Ṽ +OP

(
1√
l

)}
=

Π′Z ′ZΠ

rn
+OP

(
1
√
rn

)
+OP

(√
l

rn

)
→P Q

and from Assumption 3(a) or Assumption 3(b).

Also notice that under the MRE bootstrap DGP and under H0

E∗
(
ε∗2i,m
)

=
n

n− l

(
ε′(β0)MZε(β0)

n

)
+ oP (1)→P σεε

E∗
(
V ∗i,mε

∗
i,m

)
=

n

n− l

(
V̂ ′MZε(β0)

n

)
+ oP (1)→P σV ε

E∗
(
V ∗i,mV

∗′
i,m

)
=

n

n− l

(
V̂ ′V̂

n

)
+ oP (1)→P ΣV V

which leads to the result that E∗
(
Ṽ ∗i,mṼ

∗′
i,m

)
→P ΣṼ Ṽ .

Proceeding as in the proof for Theorem 3.3.1 and Theorem 3.3.2, we
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obtain under H0 and in case (I),

√
rn

(
β̂∗ − β0

)
=

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1
√
rn
D̂∗(β0)→d∗ N

(
0, Λ̃m,I

)
,

where Λ̃m,I = H−1Υ̃m,IH
−1 and Υ̃m,I = (1 − λ)σεε {H + γΣṼ Ṽ }. Similarly,

we obtain that under H0 and in Case (II),

rn√
l

(
β̂∗ − β0

)
=

(
1

rn

∂D̂∗(β̄∗)

∂β

)−1
1√
l
D̂∗(β0)→d∗ N

(
0, Λ̃m,II

)
,

where Λ̃m,II = H−1Υ̃m,IIH
−1, Υ̃m,II = (1 − λ)σεεΣṼ Ṽ . Moreover, we obtain

that in Case (I),
√
rn(β̂−β)→d N

(
0, Λ̃m,I

)
, and in Case (II), rn√

l
(β̂−β)→d

N
(

0, Λ̃m,II

)
. Therefore, the bootstrap validity follows by applying Polya’s

Theorem to both Case (I) and Case (II). �

Now we give the proofs for the Lemmas.

Proof of Lemma .3.19

It is similar to the proof of Lemma .3.1.

Proof of Lemma .3.20

The proof for (a)-(c) is similar to those in the proof of Lemma .3.2. The

proof for (d) and (e) follows from noting that for both Case (I) and Case

(II), E∗
∥∥∥ Π̃′m(β0)Z′V ∗

rn

∥∥∥2

= OP

(
1
rn

)
and E∗

∥∥∥ Π̃′m(β0)Z′ε∗

rn

∥∥∥2

= OP

(
1
rn

)
because

Π̃′m(β0)Z ′ZΠ̃m(β0) = OP (rn) for both cases. �

Proof of Lemma .3.21

It is similar to the proof of Lemma .3.3.

Proof of Lemma .3.22

It is similar to the proof of Lemma .3.4.

Proof of Lemma .3.23

It is similar to the proof of Lemma .3.5.

Proof of Lemma .3.24
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Notice that by Lemma .3.20, for both Case (I) and Case (II) 1
rn

(
X∗

′
PZX

∗ − λnX∗
′
X∗
)

=

H̃m,n + OP ∗

(√
l

rn

)
. Then the results follows by applying same arguments as

in the proof of Lemma .3.5. �

Proof of Lemma .3.25

Let σ̂∗εε = ε̂∗
′
ε̂∗/n, then in both Case (I) and Case (II), we have

ε̂∗
′
PZ ε̂

∗/ε̂∗
′
ε̂∗ − ε∗′PZε∗/ε∗

′
ε∗

=
rn
nσ̂∗εε

{(
β̂∗ − β0

)′(X∗′PZX∗ − λ∗X∗′X∗
rn

)(
β̂∗ − β0

)
− 2

(
β̂∗ − β0

)′(X∗′PZε∗ − λ∗X∗′ε∗
rn

)}
= OP ∗

(rn
n
· (δβn)2

)
by (σ̂∗εε)

−1 = OP ∗(1) and r−1
n

(
X∗

′
PZX

∗ − λ∗X∗′X∗
)

= OP ∗(1). �

Proof of Lemma .3.26

Similar to the proof of Lemma .3.8, let ε̄∗ = y∗ − X∗β̄∗ and γ̄∗ =

X∗ε̄∗/ε̄∗
′
ε̄∗, where β̄∗ lies between β̂∗ and β0. Differentiating gives

−
(
∂D̂∗(β̄∗)/∂β

)
= X∗

′
PZX

∗ − λ̄∗X∗′X∗ + γ̄∗D̂∗(β̄∗)′ + D̂∗(β̄∗)γ̄∗
′
,

where λ̄∗ = ε̄∗
′
PZ ε̄

∗/ε̄∗
′
ε̄∗. Notice that for both Case (I) and Case (II), by

Lemma .3.24 and Lemma .3.25, we have

1

rn

(
X∗

′
PZX

∗ − λ̄∗X∗′X∗
)

= H̃m,n +OP ∗

(√
l

rn
+ (δβn)2

)
1

rn
D̂∗
(
β̄∗
)

= OP ∗

(√
l

rn
+ δβn

)

Also, by standard argument we have γ̄∗ = OP ∗(1), and 1
rn
D̂∗
(
β̄∗
)
γ̄∗ =

1
rn
D̂∗
(
β̄∗
)
OP ∗(1) = OP ∗

(√
l

rn
+ δβn

)
. The conclusion then follows by triangle

inequality. �

Proof of Lemma .3.27
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It is similar to the proof of Lemma .3.9.
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.3.4 Proofs of results for Theorem 3.3.4

We give the proof for the case of standard bootstrap. The proof for the

RE/MRE bootstraps are similar. Let β̂∗ = β̂∗std, X̂
∗(β̂∗) = X∗−ε∗(β̂∗) ε∗

′
(β̂∗)X∗

ε∗′ (β̂∗)ε∗(β̂∗)

and X̃∗ = X∗ − ε∗ σ
b′
V ε

σbεε
= ZΠ̂ + Ṽ ∗.

To obtain the asymptotic behavior of Λ̂∗(β̂∗), the bootstrap analogue of

the CSE, we start with the term Υ̂∗(β̂∗). For Case (I), notice that
∥∥∥β̂∗ − β̂∥∥∥ =

OP ∗

(
1√
rn

)
, then

n−1
∥∥∥ε̂∗(β̂∗)− ε∗∥∥∥2

≤ n−1 ‖X∗‖2
∥∥∥β̂∗ − β̂∥∥∥2

≤
(
n−1 ‖X∗‖2)OP ∗

(
1

rn

)
= OP ∗

(
1

rn

)
by X∗

′
X∗ = OP ∗(n). It then follows by standard arguments that

n−1

∥∥∥∥∥ X∗
′
ε̂∗(β̂∗)

ε̂∗′(β̂∗)ε̂∗(β̂∗)
− σbV ε
σbεε

∥∥∥∥∥
2

= OP ∗

(
1

rn

)

and

∥∥∥X̂∗(β̂∗)− X̃∗∥∥∥ =

∥∥∥∥∥ε̂∗(β̂∗) ε̂∗
′
(β̂∗)X∗

ε̂∗′(β̂∗)ε̂∗(β̂∗)
− ε∗

(
σb
′
V ε

σbεε

)∥∥∥∥∥ = OP ∗

(√
n

rn

)
.

Also,
∥∥∥X̃∗∥∥∥ = OP ∗ (

√
n). Therefore,

∥∥∥X̃∗′(β̂∗)X̃∗(β̂∗)− X̃∗′X̃∗∥∥∥ = OP ∗

(
n√
rn

)
.

Then, by λ̂∗ = λn +OP ∗

(√
l/n
)

, we obtain

∥∥∥∥∥λ̂∗
(
X̃∗

′
(β̂∗)X̃∗(β̂∗)

rn
− X̃∗

′
X̃∗

rn

)∥∥∥∥∥ = OP ∗

(
l

n

)
OP ∗

(
1

rn

)
OP ∗

(
n
√
rn

)
= OP ∗

(
l

rn
√
rn

)

Also, by X̃∗
′
X̃∗ = OP ∗(n), we have∥∥∥∥∥(λ̂∗ − λn) X̃∗

′
X̃∗

rn

∥∥∥∥∥ = OP ∗

(√
l

n

)
OP ∗

(
n

rn

)
= OP ∗

(√
l

rn

)
= OP ∗

(
1
√
rn

)
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in Case (I). Putting these results together, we obtain

λ̂∗

(
X̃∗
′
(β̂∗)X̃∗(β̂∗)

rn

)
= λn

(
X̃∗
′
X̃∗

rn

)
+
(
λ̂∗ − λn

) X̃∗′X̃∗
rn

+λ̂∗

(
X̃∗
′
(β̂∗)X̃∗(β̂∗)

rn
− X̃∗

′
X̃∗

rn

)

= λn

(
X̃∗
′
X̃∗

rn

)
+OP ∗

(
1
√
rn

)
+OP ∗

(
l

rn
√
rn

)
= λn

(
X̃∗
′
X̃∗

rn

)
+OP ∗

(
1
√
rn

)

Similarly, we can show that for Case (II)

λ̂∗

(
X̃∗
′
(β̂∗)X̃∗(β̂∗)

l

)
= λn

(
X̃∗
′
X̃∗

l

)
+
(
λ̂∗ − λn

) X̃∗′X̃∗
l

+λ̂∗

(
X̃∗
′
(β̂∗)X̃∗(β̂∗)

l
− X̃∗

′
X̃∗

l

)

= λn

(
X̃∗
′
X̃∗

l

)
+OP ∗

(
1√
l

)

Moreover, it follows from arguments similar to Lemma .3.2 that for Case (I)

λn

(
Ṽ ∗
′
Ṽ ∗

rn

)
=

(
l

rn

)(
Σb
Ṽ Ṽ

+OP ∗

(
1√
n

))
=

(
l

rn

)
Σb
Ṽ Ṽ

+OP ∗

(
l

rn
√
n

)
=

(
l

rn

)
Σb
Ṽ Ṽ

+OP ∗

(
1
√
rn

)

where Σb
Ṽ Ṽ

= E∗
(
Ṽ ∗i Ṽ

∗′
i

)
, and λn

(
Π̂′Z′Ṽ ∗

rn

)
= OP ∗

(
l
n

)
OP ∗

(
1√
rn

)
= OP ∗

(
1√
rn

)
.

Then, together with previous arguments, we obtain by X̃∗ = ZΠ̂ + Ṽ ∗ that

for Case (I)

λ̂∗

(
X̃∗

′
(β̂∗)X̃∗(β̂∗)

rn

)
= λn

(
X̃∗

′
X̃∗

rn

)
+OP ∗

(
1
√
rn

)

= λn

(
Π̂′Z ′ZΠ̂

rn

)
+

(
l

rn

)
Σb
Ṽ Ṽ

+OP ∗

(
1
√
rn

)

Similarly, we obtain for Case (II) that λ̂∗
(
X̃∗
′
(β̂∗)X̃∗(β̂∗)

l

)
= λn

(
Π̂′Z′ZΠ̂

l

)
+
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Σb
Ṽ Ṽ

+OP ∗

(
1√
l

)
.

Proceeding similarly for the term X̃∗
′
(β̂∗)PZX̃

∗(β̂∗)
rn

, we can show that for

Case (I)

X̃∗
′
(β̂∗)PZX̃

∗(β̂∗)

rn
− λ̂∗

(
X̃∗

′
(β̂∗)X̃∗(β̂∗)

rn

)
=

X̃∗
′
PZX̃

∗

rn
− λ̂∗

(
X̃∗

′
X̃∗

rn

)
+OP ∗

(
1
√
rn

)
= H̄I,n +OP ∗

(
1
√
rn

)
,

and for Case (II), X̃∗
′
(β̂∗)PZX̃

∗(β̂∗)
l

− λ̂∗
(
X̃∗
′
(β̂∗)X̃∗(β̂∗)

l

)
= H̄II,n +OP ∗

(
1√
l

)
.

Also, we obtain by standard arguments that σ̂∗εε(β̂
∗) = ε̂∗

′
ε̂∗/n = σbεε +

OP ∗
(
1/
√
rn
)

for Case (I) and σ̂∗εε(β̂
∗) = σbεε + OP ∗

(
1/
√
l
)

for Case (II).

Therefore, for Case (I)

r−1
n Υ̂∗bkk(β̂

∗) = σ̂∗εε(β̂
∗)

{(
1− 2λ̂∗(β̂∗)

)(X̃∗′(β̂∗)PZX̃∗(β̂∗)
rn

− λ̂∗(β̂∗)X̃
∗′(β̂∗)X̃∗(β̂∗)

rn

)

+λ̂∗(β̂∗)
(

1− λ̂∗(β̂∗)
) X̃∗′(β̂∗)X̃∗(β̂∗)

rn

}

= σbεε

{
(1− λn)

[
H̄I,n +

(
l

rn

)
Σb
Ṽ Ṽ

]}
+OP ∗

(
1
√
rn

)
and for Case (II)

l−1Υ̂∗bkk(β̂
∗) = σ̂∗εε(β̂

∗)

{(
1− 2λ̂∗(β̂∗)

)(X̃∗′(β̂∗)PZX̃∗(β̂∗)
l

− λ̂∗(β̂∗)X̃
∗′(β̂∗)X̃∗(β̂∗)

l

)

+λ̂∗(β̂∗)
(

1− λ̂∗(β̂∗)
) X̃∗′(β̂∗)X̃∗(β̂∗)

l

}

= σbεε
{

(1− λn)
[
H̄II,n + Σb

Ṽ Ṽ

]}
+OP ∗

(
1√
l

)
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Now we show the results for the non-normality adjustment terms Â∗(β̂∗)

and B̂∗(β̂∗). Let â∗(β̂∗) =
(
ε̂∗21 (β̂∗)− σbεε, ..., ε̂∗2n (β̂∗)− σbεε

)′
, a∗ =

(
ε∗21 − σbεε, ..., ε∗2n − σbεε

)′
,

and V̄ ∗ = MZ Ṽ
∗. By Z including a constant we have n−1

∑n
i=1 ε̂

∗2
i (β̂∗)V̂ ∗i (β̂∗) =

n−1V̂ ∗
′
(β̂∗)â∗(β̂∗).

Note that V̂ ∗(β̂∗)−V̄ ∗ = MZ

(
ZΠ̂ + ε∗

σb
′
V ε

σbεε
− ε̂∗(β̂∗) ε̂∗

′
(β̂∗)X∗

ε̂∗′ (β̂∗)ε̂∗(β̂∗)

)
= MZ

(
ε∗
σb
′
V ε

σbεε
− ε̂∗(β̂∗) ε̂∗

′
(β̂∗)X∗

ε̂∗′ (β̂∗)ε̂∗(β̂∗)

)
.

Then in Case (I), it follows by n−1
∥∥∥ε̂∗(β̂∗)− ε∗∥∥∥2

= OP ∗

(
1
rn

)
and

∥∥∥ ε̂∗′X∗
ε̂∗′ ε̂∗

− σbεV
σbεε

∥∥∥2

=

OP ∗

(
1
rn

)
that n−1

∥∥∥V̂ ∗(β̂∗)− V̄ ∗∥∥∥2

= OP ∗

(
1
rn

)
. By using similar arguments,

we obtain n−1
∥∥∥â∗(β̂∗)− a∗∥∥∥2

= OP ∗

(
1
rn

)
. Furthermore, notice that by us-

ing arguments similar to Lemma .3.1 and by Markov inequality n−1a∗
′
a∗ =

n−1
∑n

i=1

(
ε∗2i − σbεε

)2
= OP (1); by using arguments similar to Lemma .3.2,

we obtain n−1V̄ ∗
′
V̄ ∗ = OP ∗(1). Thus, we obtain by Cauchy-Schwarz inequal-

ity that in Case (I)

n−1

n∑
i=1

ε̂∗2i (β̂∗)V̂ ∗i (β̂∗)− n−1a∗
′
V̄ ∗ = n−1

(
â∗(β̂∗)− a∗

)′ (
V̂ ∗(β̂∗)− V̄ ∗

)
+ n−1

(
â∗(β̂∗)− a∗

)′
V̄ ∗ + n−1a∗

′
(V̂ ∗(β̂∗)− V̄ ∗) = OP ∗

(
1
√
rn

)

By Lemma .3.3, we have n−1a∗
′
V̄ ∗ = (1−λn)E∗

(
ε∗2i Ṽ

∗
i

)
+OP ∗

(
1√
n

)
. Then,

it follows by the triangle inequality that

n−1

n∑
i=1

ε̂∗2i (β̂∗)V̂ ∗i (β̂∗) = (1− λn)E∗
(
ε∗2i Ṽ

∗
i

)
+OP ∗

(
1
√
rn

)
(15)

Now, let di = 1√
l
(Pii − λn) and d = (d1, ..., dn)′. Notice that ‖d‖2 ≤ 1

and E∗
∥∥V ∗′PZd∥∥2

= OP (1)d′d = OP (1). Thus, V ∗
′
PZd = OP ∗(1) by

Markov inequality. Then, 1√
rn

∑n
i=1 Γ̂∗i

(
Pii−λn√

l

)
= 1√

rn

(
Π̂′Z ′d+ V ∗

′
PZd

)
=
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1√
rn

Π̂′Z ′d+OP ∗

(
1√
rn

)
, where Γ̂∗ = PZX

∗. Then we obtain with eq.(15) that

r−1
n Â∗(β̂∗) = (1−λn)

(√
l

rn

)
n∑
i=1

(
(Pii − λn)Π̂′Zi√

lrn

)
E∗
(
ε∗2i Ṽ

∗
i

)
+OP ∗

(
1
√
rn

)
(16)

For Case (II), we obtain n−1
∥∥∥â∗(β̂∗)− a∗∥∥∥2

= OP ∗
(

1
l

)
, n−1

∥∥∥V̂ ∗(β̂∗)− V̄ ∗∥∥∥2

=

OP ∗
(

1
l

)
, n−1a∗

′
V̄ ∗ = (1−λn)E∗

(
ε∗2i Ṽ

∗
i

)
+OP ∗

(
1√
n

)
, n−1

∑n
i=1 ε̂

∗2
i (β̂∗)V̂ ∗i (β̂∗) =

(1− λn)E∗
(
ε∗2i Ṽ

∗
i

)
+OP ∗

(
1√
l

)
, and

l−1Â∗(β̂∗) = (1−λn)
n∑
i=1

(
(Pii − λn)Π̂′Zi

l

)
E∗
(
ε∗2i Ṽ

∗
i

)
+OP ∗

(
1√
l

)
→P ∗ 0,

in probability, because
∑n

i=1

(
(Pii−λn)Π̂′Zi

l

)
→P 0.

For B̂∗(β̂∗) term, it follows by using similar arguments as for Â∗(β̂∗) that

for Case (I)∥∥∥∥∥n−1

n∑
i=1

(
ε̂∗2i (β̂∗)− σ̂∗εε(β̂∗)−

(
ε∗2i − σbεε

))
V̄ ∗i V̄

∗′
i

∥∥∥∥∥ = OP ∗

(
1
√
rn

)
,

∥∥∥∥∥n−1

n∑
i=1

(
ε̂∗2i (β̂∗)− σ̂∗εε(β̂∗)

)(
Ṽ ∗i (β̂∗)Ṽ ∗

′

i (β̂∗)− V̄ ∗i V̄ ∗
′

i

)∥∥∥∥∥ = OP ∗

(
1
√
rn

)
.

by which we obtain

n−1

n∑
i=1

(
ε̂∗2i (β̂∗)− σ̂∗εε(β̂∗)

)
Ṽ ∗(β̂∗)Ṽ ∗

′
(β̂∗) = n−1

n∑
i=1

(
ε∗2i − σbεε

)
V̄ ∗i V̄

∗′
i +OP ∗

(
1
√
rn

)
= (1− 2λn + λnφn)E∗

(
(ε∗2i − σbεε)Ṽ ∗i Ṽ ∗

′

i

)
+OP ∗

(
1
√
rn

)
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where the second equality follows from Lemma .3.3. It follows that

B̂∗(β̂∗) = (φn − λn)E∗
(

(ε∗2i − σbεε)Ṽ ∗i Ṽ ∗
′

i

)
+OP ∗

(
1
√
rn

)
. (17)

Also, we have for Case (II)

n−1
n∑
i=1

(
ε̂∗2i (β̂∗)− σ̂∗εε(β̂∗)

)
Ṽ ∗(β̂∗)Ṽ ∗

′
(β̂∗) = (1−2λn+λnφn)E∗

(
(ε∗2i − σbεε)Ṽ ∗i Ṽ ∗

′
i

)
+OP ∗

(
1√
l

)
,

and B̂∗(β̂∗) = (φn − λn)E∗
(

(ε∗2i − σbεε)Ṽ ∗i Ṽ ∗
′

i

)
+OP ∗

(
1√
l

)
.

Finally, we show the result for t∗cse, the bootstrap analogue of the t-ratio

based on the CSE. Notice that in Case (I)

rnΛ̂∗(β̂∗) =
(
r−1
n Ĥ∗(β̂∗)

)−1 {
r−1
n

(
Υ̂∗bkk(β̂

∗) + Â∗(β̂∗) + Â∗
′
(β̂∗) + B̂∗(β̂∗)

)}(
r−1
n Ĥ∗(β̂∗)

)−1

→P ∗ Λ̄I

in probability, which follows from Lemma .3.6, Lemma .3.7, previous results

for Υ̂∗bkk(β̂
∗), Â∗(β̂∗) and B̂∗(β̂∗), the fact that β̂∗− β̂ = OP ∗

(
1/
√
rn
)

in Case

(I), and by using arguments similar to those in Theorem 3.3.1. It follows that

t∗cse =
c′
√
rn

(
β̂∗ − β̂

)
√
c′rnΛ̂∗

(
β̂∗
)
c

→d∗ N (0, 1)

in probability, by Theorem 3.3.1 and by continuous mapping theorem for

weak convergence in probability (e.g., Xiong and Li (2008), Theorem 3.1).

For Case (II), we have lΛ̂∗(β̂∗) = Λ̄II + OP ∗

(
1√
l

)
, and the result follows

by using similar arguments as in Case (I). �




