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Résumé 
Les brosses de polyélectrolytes font l’objet d’une attention particulière pour 

de nombreuses applications car elles présentent la capacité de changer de 

conformation et, par conséquent, de propriétés de surface en réponse aux conditions 

environnementales appliquées. Le contrôle des principaux paramètres de ces brosses 

telles que l'épaisseur, la composition et l'architecture macromoléculaire, est essentiel 

pour obtenir des polymères greffés bien définis. Ceci est possible avec la 

Polymérisation Radicalaire par Transfert d’Atomes - Initiée à partir de la Surface 

(PRTA-IS), qui permet la synthèse de brosses polymériques de manière contrôlée à 

partir d’une couche d'amorceurs immobilisés de manière covalente sur une surface. 

Le premier exemple d’une synthèse directe de brosses de poly(acide acrylique) 

(PAA) par polymérisation radicalaire dans l’eau a été démontré. Par greffage d’un 

marqueur fluorescent aux brosses de PAA et via l’utilisation de la microscopie de 

fluorescence par réflexion totale interne, le dégreffage  du PAA en temps réel a pu 

être investigué. Des conditions environnementales de pH ≥ 9,5 en présence de sel, se 

sont avérées critiques pour la stabilité de la liaison substrat-amorceur, conduisant au 

dégreffage du polymère. 

Afin de protéger de l’hydrolyse cette liaison substrat-amorceur sensible et 

prévenir le dégreffage non souhaité du polymère, un espaceur hydrophobique de 

polystyrène (PS) a été inséré entre l'amorceur et le bloc de PAA stimuli-répondant. 

Les brosses de PS-PAA obtenues étaient stables pour des conditions extrêmes de pH 

et de force ionique. La réponse de ces brosses de copolymère bloc a été étudiée in 

situ par ellipsométrie, et le changement réversible de conformation collapsée à étirée, 

induit par les variations de pH a été démontré. De plus, des différences de 

conformation provenant des interactions du bloc de PAA avec des ions métalliques 

de valence variable ont été obtenues. Le copolymère bloc étudié semble donc 

prometteur pour la conception de matériaux répondant rapidement a divers stimuli. 

Par la suite, il a été démontré qu’un acide phosphonique pouvait être employé 

en tant qu’ amorceur PRTA-IS comme alternative aux organosilanes. Cet amorceur 
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phosphonate a été greffé pour la première fois avec succès sur des substrats de silice 

et une PRTA-IS en milieux aqueux a permis la synthèse de brosses de PAA et de 

poly(sulfopropyl méthacrylate). La résistance accrue à l’hydrolyse de la liaison 

Sisubstrat-O- Pamorceur a été confirmée pour une large gamme de pH 7,5 à 10,5 et a 

permis l’étude des propriétés de friction des brosses de PAA sous différentes 

conditions expérimentales par mesure de forces de surface. Malgré la stabilité des 

brosses de PAA à haute charge appliquée, les études des propriétés de friction ne 

révèlent pas de changement significatif du coefficient de friction en fonction du pH et 

de la force ionique. 

 

Mots-clé: Brosse de polymère, poly(acide acrylique), Polymérisation 

Radicalaire par Transfert d’Atomes Initiée à partir de la Surface, conformation 

brosse, pH- et force ionique, stimuli-répondant, ellipsometrie, dégreffage de brosses 

et stabilité, propriétés de surface, amorceur siloxane, amorceur phosphonate.  
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Abstract 
Polyelectrolyte (PE) brushes are interesting objects for many advanced 

applications because they are capable of changing their conformation and, 

consequently, their surface properties in response to applied environmental 

conditions. The control over the main brush parameters such as thickness, 

composition, and macromolecular architecture is essential to get well-defined grafted 

polymers. This is possible by Surface-Initiated Atom Transfer Radical 

Polymerization (SI-ATRP) that allows preparing polymer brushes in a well-

controlled manner from covalently immobilized initiator layer. The first example of 

direct synthesis of poly(acrylic acid) (PAA) brushes using water-mediated SI-ATRP 

from a siloxane-modified mica surface was demonstrated. By attaching a fluorescent 

tag to PAA and applying Total Internal Reflection Fluorescent microscopy, the 

monitoring over PAA degrafting in real-time was possible. Environmental conditions 

of pH≥9.5 with added salt were found to be critical for substrate-initiator linkage 

stability resulting in polymer detachment. 

In order to shield from hydrolysis the sensitive substrate-initiator bond and 

prevent undesired polymer degrafting, a hydrophobic polystyrene (PS) spacer 

between initiator and responsive PAA layer was introduced. The obtained PS-block-

PAA brushes were stable under extreme conditions of pH and ionic strength. The pH 

responsiveness of obtained block copolymer brushes was studied in situ by 

ellipsometry and the evidence of PAA reversible pH-induced switch from collapsed 

to extended conformation was provided. Also, the essentially different brush 

conformations as a result of interaction of PAA block with metal cations of different 

valency were obtained. Studied block copolymers present a promising responsive 

material for rapid switching. 

Additionally, it was demonstrated that phosphonic acid ATRP initiator could 

be used as an alternative to organosilanes.  The phosphonate initiator was 

successfully grafted for the first time to silica surface and water-mediated ATRP was 

applied to synthesize PAA and poly(sulfopropyl methacrylate) brushes. The 
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confirmed resistivity of Sisubstrate-O-Pinitiator bond towards hydrolysis in a wide range 

of pH from 7.5 to 10.5 allowed investigating the friction properties of PAA brushes 

under different environmental conditions using the Surface Forces Apparatus. 

Despite PAA brushes stability at high applied load, friction studies revealed non-

significant changes in friction coefficient with pH and ionic strength. 

 

Key words: polymer brush, poly(acrylic acid), Surface-Initiated Atom 

Transfer Radical Polymerization, brush conformation, pH- and ionic strength 

responsiveness, ellipsometry, brush degrafting and stability, surface properties, 

siloxane initiator, phosphonate initiator. 
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1.1. Polymer brushes. General concept 

The term end-grafted polymers corresponds to systems where 

macromolecules are attached by one anchoring point to the surface (interface). 

During the last decades, such polymer films have served as useful platforms to 

develop intelligent multifunctional materials for colloidal stabilization against 

aggregation,1,2 for numerous biomedical3-6 and engineering7-9 applications as well as 

“smart” substrates having unique properties.3,10 The large variety of substrates that 

can be modified with polymer layers includes silica, mica, graphite, metals, carbon, 

cellulose, etc. The combination of polymer chains with an inorganic material opens 

new opportunities for contemporary material chemistry in terms of designing 

hierarchically-ordered structures having well-controlled morphologies and 

properties.3  

There are three main conformations of surface end-grafted chains (Figure 1-

1): pancake, mushroom, and brush. The pancake conformation is characterized by 

low polymer grafting density with d>>RG, where d is the distance between anchoring 

points and RG is the corresponding radius of gyration of polymer chain in solution 

(Figure 1-1, A). This regime is also characterized by polymer-surface attraction, 

resulting in spreading of the polymer chains over the substrate. Mushroom 

conformation is observed when the d≥2RG
 (Figure 1-1, B). With increasing surface 

coverage, the brush conformation is adopted. In this regime d is much smaller than 

RG. All chains tend to stretch away from the surface because of strong repulsive 

segment-segment interactions. (Figure 1-1, C).  

The brush conformation exhibits particular properties because of its strong 

stretching. For example, polymer brushes can be used as ultra-low friction self-

lubricating surfaces in artificial implants.11 “Smart” or stimuli-responsive platforms 

are also possible with polymer brushes by undergoing conformational changes in 

response to specific stimuli (pH, ionic strength, light, mechanical stress) and such 

responsive platforms are extensively used in biology and medicine as nanosensors.3 
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Figure 1-1. Conformations of end-grafted polymer chains  

 A) – “pancake” conformation; B) – “mushroom” conformation; C) – “brush” 

conformation. 

 

This thesis focuses on the synthesis of polymer brushes and their surface 

properties at high grafting density. After a brief overview of different grafting 

methods, the synthesis of polymer brushes using controlled radical polymerization 

methods will be presented. A general theoretical description of different types of 

polymer brushes will also be given. The unique surface properties specified by 

higher-order interactions between adjacent polymer chains will also be reviewed and 

the current knowledge in the studied field will be provided.  

 
 

1.2  Polymer grafting methods 

Polymer grafting refers to linking (tethering) polymer chains to the substrate. 

Methods of polymer tethering can be divided into two major groups depending on the 

type of polymer interaction with the substrate: grafting by physisorption and grafting 

by chemisorption. Grafting by physisorption relies on physical interactions of the 

polymer with the substrate. This is straightforward and does not require complicated 

equipment. However, physisorbed films can be easily detached from the surface, and 
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their thermal instability leads to poor control over grafting density. Grafting by 

chemisorption is the covalent bonding of polymers to the substrate. This method is 

more complicated than physisorption and it requires precise grafting conditions and 

complex equipment. Chemisorbed polymer layers are more robust than physisorbed 

films and they show long-lasting stability. This is important for many practical 

applications.12-14 

 

1.2.1  Physisorption of polymers  

The physisorption of polymer involves weak interactions (electrostatic, 

hydrophobic, and hydrogen bonds) between the polymer chain and the substrate. 

Attaching the polymer to the substrate can be done using coating techniques, 

absorption from solution, Langmuir-Blodgett, and layer-by-layer deposition (Figure 

1-2).13  

For all coating techniques (spin coating, dip coating and spray coating), the 

molecules are deposited by evaporating the solvent. Spin-coating is a deposition 

procedure where the polymer is dissolved in a volatile solvent and the solution is 

spun over the substrate, followed by solvent evaporation (Figure 1-2, I).15 Dip 

coating can be separated into several steps: immersion of the substrate into a solution, 

withdrawal from the coating fluid, and drying (Figure 1-2, II, A-C).16 Spray coating 

is done by depositing the polymer solution on a substrate by a sprayer and the film is 

dried under air (Figure 1-2, III). These techniques can give well-defined polymer thin 

films when the deposition conditions (solvent, deposition time) are controlled 

properly. The advantage of dip- and spin-coating is that homogeneous films of the 

order of few nanometers thick are possible. 
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Figure 1- 2. Schematic illustration of different coating processes. 

I) spin-coating (Reproduced from ref. 15 with the permission of the Royal Society of 

Chemistry); II) dip coating process includes three steps: immersion of a substrate into 

the solution (A), withdrawal of the substrate (B), drying (C). (Reproduced from ref. 

16 with the permission of Elsevier); and III) spray coating.* 

 

Polymer adsorption from solution. Long polymer chains in solution can adopt 

numerous conformations because of entropic factors. However, the number of 

possible polymer conformations of a homopolymer is reduced when absorbed on a 

substrate. Polymer adsorption occurs when the attractive force between the polymer 

and the surface is higher than the conformational entropic loss.17-19 The simplest case 

is the adsorption of the homopolymer (Figure 1-3, A). 

                                                       
* It is important to mention that all these techniques can be applied for grafting by chemisorption when 

the used polymer is end-functionalized. 
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Figure 1-3. A) Schematic representation of homopolymer adsorption on a flat 

substrate from solution. B) Possible polymer chain conformation. 

 

The possible polymer conformation on the surface was studied experimentally and it 

was confirmed with computer simulations. Figure 1-3, B shows a typical 

conformation of a homopolymer chain adsorbed on the substrate. This conformation 

is represented by a combination of tails, loops, and trains.20 Tails are the end parts of 

adsorbed polymer chains that extend far from the surface.  Loops are groups of freely 

spaced adjacent monomers between two surface linked units. In contrast, trains are 

groups of adjacent units that are bonded to the surface. 

In adsorption of diblock copolymers, the poorly-solvated block interacts with 

the substrate, while, the other block extends away from the surface into solution. The 

adsorption of diblock copolymers has also attracted much attention, particularly, 

because such adsorbed macromolecules can be considered as high molecular weight 

amphiphiles and their morphological characteristics, such as molecular weight and 

relative length of the blocks, determine macroscopic film properties.21,22
 

Layer-by-Layer (LbL) deposition. This technique is based on stacking of 

oppositely charged polymers (Figure 1-4). This is done by successively dipping the 

substrate into solutions containing interacting macromolecules. After each 
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deposition, the substrate is thoroughly washed to remove the weakly adsorbed 

molecules and to avoid cross-contamination of the solutions. The driving force for 

polymer adsorption is the entropic gain from releasing the counter ions. The layers 

are typically stabilized by electrostatic forces.23 However, there are some examples 

where LbL films are stabilized by hydrogen bonding, hydrophobic interactions, DNA 

hybridization, and covalent bonding.24   

 

 

Figure 1-4. Schematic representation of layer-by-layer deposition on a flat surface.  

(Reproduced from ref. 24 with the permission of Elsevier). 

 

Langmuir-Blodgett (LB) technique. This is an elegant method for fabricating 

nanostructured films. It was invented by Irving Langmuir and Katherine Blodgett.25 

In this method the insoluble amphiphilic polymer chains form a monolayer at 

air/water interface. The hydrophilic block usually stays immersed in the aqueous 

medium while the hydrophobic block tends to be collapsed at the air/liquid interface 

because of the unfavourable interaction with water. The monolayer can be transferred 

to a solid support either by touching the monolayer with the substrate horizontally 

(Langmuir-Schaefer  method) or by pulling the substrate vertically out (Langmuir-

Blodgett method) (Figure 1-5).25,26 Once the monolayer is adsorbed, a thin film of 

accurate thickness and degree of ordering can be formed.27,28  LB polymer films, 
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however, suffer from limited mechanical and thermal stability. Particularly, 

decomposition of LB films often happens at temperature below 100oC.29 Also LB 

films can be destroyed under high pressure.  

 

Figure 1-5. Schematic representation of Langmuir-Blodgett deposition. 

(Reproduced with permission from ref. 13  

Copyright Wiley-VCH Verlag GmbH & Co. KGaA.) 

 

These deposition methods represent simple ways to prepare polymer-coated 

surfaces. However, the physisorbed polymer films have a limited range of potential 

applications due to the weak interactions between the substrate and polymers that 

results in film detachment or displacement. Polymer films can be destroyed by 

replacing the weakly attached polymers by strongly adsorbed polymers (adsorption-

desorption exchange).30-32  

Also, temperature changes cause many undesired processes with physisorbed 

polymers. For example, dewetting occurs when a thin polymer film is heated above 

its glass transition temperature (Tg), resulting in micro- or macroscopic ruptures in 

the film and to morphology changes.33-35 Another process is film delamination. This 

usually occurs at temperature below the Tg, when the film is in a glassy state. 

Delamination is caused by severe mechanical stress and also results in significant 

changes in film topography.24,25 
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Chemisorption overcomes most of the above mentioned shortcomings 

because of the stronger polymer-substrate bond. However, it requires more 

sophisticated deposition methods and equipment to accurately control the grafting 

conditions.1,13 

 

1.2.2 Chemisorption of polymers 

In contrast to physisorbed polymer coatings, chemisorbed layers are more 

robust because they are linked to the substrate via covalent bond. They can also 

sustain a larger variety of environmental conditions. There are three methods to get 

chemically attached polymer layers to the surface: grafting to (onto), grafting 

through and grafting from. 

 

1.2.2.1 Grafting to method 

In the grafting to method (Figure 1-6), presynthesized polymers are 

covalently attached to specific sites on the surface through their functional end 

groups. This results in end-tethered polymer chains.3 Typical end-groups that react 

with substrates are silanes,36-38 hydroxyls,39 thiols,40,41 amines42 and carboxylic acid 

groups.43 These chemical bondings are straightforward and are similar to the self-

assembly.13,44 The anchor group is usually polar, and such polar or charged side 

groups compete with end-grafting. In this case, the attached layer consists of both 

physisorbed and covalently linked polymers.45,46 The main advantage of grafting to 

approach is that the polymer can be fully characterized prior to the grafting. This 

allows the polymers with low molecular weight distribution to be used in grafting, 

resulting in well-defined polymer brushes. 
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Figure 1-6. A) Schematic illustration of grafting to. B) Limitation of grafting to: 

formation of steric barriers that prevent an additional attachment of polymers. 

 

The main disadvantage of the grafting to approach is its grafting density, and 

consequently, its low polymer film thickness (1-5 nm).13,37 Large grafting densities 

are difficult to obtain because the adsorbing chains disfavour further polymer 

adsorption due to the steric hindrance (or excluded volume) effect (Figure 1-6, B). 

This effect is more pronounced when increasing the grafting density. However, the 

grafting density of the brushes prepared with the graft to approach can be improved 

either by grafting the polymer from its melt,47 or from its concentrated solution,48 or 

using a “theta” solvent as the grafting solvent.49 These approaches usually result in 

higher polymer grafting density because of the screening of the excluded volume 

effect. 

 

1.2.2.2 Grafting through method 

This is a straightforward technique that consists of polymerizing in the 

presence of a monomer-functionalized substrate.13 The substrate containing a 

monomer layer is added to the polymerization mixture. After polymerization, the 

synthesized polymers remain connected to the substrate.50,51 
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An example of grafting through polymerization using reversible addition-

fragmentation chain-transfer (RAFT) is shown in Figure 1-7. A crosslinked layer of 

polycarbazole containing a methacrylate monomer was used for RAFT 

polymerization of methyl methacrylate and other monomers. The resulting PMMA 

film was varied from 9 to 22 nm in thickness.50 

 

Figure 1-7. Schematic representation of RAFT “grafting through”.  

CTA refers to chain transfer agent.  

(Reproduced from ref. 50 with the permission of Springer). 

The grafting through has the advantage of being straightforward and utilizes 

controlled radical polymerizations. It is a good alternative to grafting to because it 

does not require synthesizing end-functionalized polymers. However, it suffers from 

the same disadvantages as the grafting  to method, particularly, only limited grafting 

densities can be obtained.13  

 

1.2.2.3 Grafting from method 

Grafting from is a powerful alternative that involves the in-situ 

polymerization of an initiator-functionalized substrate. For this, the initiating groups 

are covalently attached to the surface (Figure 1-8).13,52  
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Figure 1-8. Schematic representation of “grafting from” consisting of an initiator 

covalently immobilized on the surface and polymerization using a controlled 

polymerization technique. 

In contrast to grafting to, the grafting from method produces well-defined polymer 

brushes of high grafting density. This is because the grafted layer is swollen by the 

monomer solution and monomer diffusion towards the growing chains is not 

limited.53  It must be noted that the polymer molecular weight distribution of the 

grafted chains is broader than in the grafting to method. This is linked to several 

aspects, such as polymerization side reactions, low initiator efficiency, and high 

termination rate between neighbouring propagating radicals.54 

The grafting from method is widely used to synthesize polymer brushes from 

substrates of different geometries, such as flat, curved, and linear topologies (Figure 

1-9). 

There are many polymerization techniques that can be used to synthesize 

polymer brushes, such as anionic,55,56 cationic,57,58 ring-opening,59  ring-opening 

metathesis,60 and conventional free radical polymerization.61,62 However, 

controlled/“living” radical polymerization (CRP) techniques are particularly 

attractive to obtain polymer brushes having desired thickness, composition, 

architecture, and functionality.37,63,64 
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Figure 1-9. Examples of chemically attached brushes on different substrates. 

 

1.3 CRP techniques: General overview 

The precise control of polymer molecular weight, composition, and 

functionality is possible with controlled/ “living” radical polymerization (CRP) 

methods. There are three main methods of CRP: nitroxide mediated polymerization 

(NMP), reversible addition-fragmentation chain transfer polymerization (RAFT), and 

atom transfer radical polymerization (ATRP). 

ATRP is the key polymerization technique that we used in the present work. 

We will therefore provide a brief comparison of CRP to conventional free radical 

polymerization. A detailed description of ATRP and its use for surface modification 

will follow. 

 

1.3.1 CRP vs. conventional free radical polymerization 

Understanding the principles of conventional free radical polymerization is of 

importance for investigation the advantages of CRP. Thus, this section focuses on 

comparing these two radical polymerization methods. 

Conventional radical polymerization involves three main steps: initiation, 

propagation, and termination. The initiation forms the reactive species – radicals, 
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followed by their addition to the monomer. During the propagation step, the radicals 

react with the monomer until bimolecular coupling between two radicals occurs. This 

leads to the formation of a dead polymer and the active sites are irreversibly 

destroyed (Scheme 1-1).65 

 

 
Scheme 1- 1. Schematic illustration of the three main steps of radical polymerization: 

I) initiation, II) propagation, III) termination,  

where I is an initiator, R. is a radical, M is a monomer. 

 

The overall kinetics can be expressed by the following equation (1.1):66 

Rp=kp[M](fkd[I]o/kt)
1/2                                                                                  (1.1) 

where Rp is a rate of polymerization, which is proportional to the initiation efficiency 

(f), initiator decomposition (kd), chain propagation (kp), chain termination (kt) rate 

constants, and concentration of monomer ([M]). 

The degree of polymerization depends on the termination and transfer rates. 

When the transfer is close to zero, the polymer average degree of polymerization 

(DPn) is proportional to the concentration of initiator ([I]) according to eq. 1.2: 

DPn=kp[M](fkd[I]okt)
-1/2                                                                         (1.2) 

During free radical polymerization, the radical lifetime is extremely short 

(less than a second). Such conditions cannot assure proper control over polymer 

molecular weight and molecular weight distribution. Therefore, well-defined block or 
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graft copolymers are not readily possible.46,47 However, this control is possible with 

“living” polymerization that has a low termination rate.  

Radical polymerization having “living” properties is called controlled radical 

polymerization (CRP). This approach was presented for the first time more than 35 

years ago,67 but it only was employed for controlled radical polymerization.  CRP has 

the advantage of simultaneous initiation and chain growth. A fast exchange between 

active and dormant species is an absolute requirement for controlled polymerization 

kinetics. An active species react with just a few monomers within a few milliseconds 

before it deactivates to the dormant state (Scheme 1-2).  

 

Scheme 1-2. Exchange between active and dormant species in CRP, where Pn is a 

polymer of length n, Pn
• is a polymeric radical of length n. 

 

Some important features between conventional free radical polymerization 

and CRP are compared in Table 1-1. 

There are three main types of CRP: RAFT, NMP and ATRP. RAFT is based 

on a degenerative transfer mechanism with the presence of a transfer agent, while 

NMP and ATRP are based on persistent radical effect. This effect relies on the 

formation of   two species, persistent (Y•) and transient (R•) radicals, during the 

initiation step (Scheme 1-3, I). Transient radicals can self-terminate (Scheme 1-3, 

III), while persistent radicals cannot and they disappear only by cross-coupling 

(Scheme 1-3, II). 70-72 In NMP persistent radicals are free nitroxide species, whereas, 

in ATRP, it is a metal complex in a higher oxidation state.65,66,68,69 
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Table 1-1. Comparison between free radical polymerization and CRP 

Parameter Free radical polymerization CRP 

1. Initiation 

Slow and continuous. Only a 
small initiator portion is 
consumed to initiate the 
reaction. 

Fast. Instantaneous initiation 
and growth of all chains. 

2. Growing chain      
lifetime 

Less than a second Up to several hours 

3. Polymerization 
rate 

Fast polymerization 
Relatively slow 
polymerization 

4. Portion of dead   
chains 

Almost all chains are dead 
The part of dead chains is 
<10% 

5. Steady state 
Balance between rates of 
initiation and termination. 

Balance between rates of 
activation and deactivation 

6. Termination 

Bimolecular termination and 
chain transfer (chain-breaking 
reactions) take place between 
long chains and generated 
new chains. 

No chain-breaking reactions. 
Because of the huge number 
of growing chains, only a 
small portion of them is 
terminated (1-10%), the rest 
of the chains are deactivated, 
but can be activated back. 

⃰ Comparison from information provided by references13,65,66,68,69 

 

Scheme 1-3. Schematic illustration of formation of persistent Y• and transient R• 

radicals and their termination. 

 

RAFT is a Radical Addition-Fragmentation chain transfer polymerization 

assisted by a chain-Transfer (RAFT) agent. The polymerization is started with a 

conventional free radical initiator (peroxide or AIBN) decomposition that generates 

I R.+

R-RR.+
R-YR.+

Y.

Y.

R.

I)

II)

III)
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the propagating radicals. The propagating radical adds to the carbon-sulfur double 

bond of the RAFT agent. This intermediate is further converted to another 

macroradical and an equilibrium between dormant and active species is established 

(Scheme 1-4, A).73,74 

 

Scheme 1-4. Mechanism of RAFT (A) and NMP (B) polymerizations, where Pn
• is a 

polymeric radical of length n, and kβ is a fragmentation rate coefficient. 

 

The driving force in NMP is the thermal homolytic breakage of an 

alkoxyamine bond followed by monomer addition to the transient radical. The 

reactive radical can then be capped with a persistent nitroxide to form a dormant 

species (Scheme 1-4, B).66,75 

ATRP is discussed more in details in the following sections. 

  

1.3.2. ATRP: General concept 

ATRP (Atom Transfer or transition metal catalyzed living Radical 

Polymerization) was introduced in 1995 by Sawamoto and Matyjaszewski 

independently.76,77 This polymerization method is based on atom transfer radical 

addition (ATRA), a well-known reaction of carbon-carbon bond formation.78 In turn, 

ATRA originates from the Kharasch addition reaction that was reported for the first 

A)

B)
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time in 1940s. ATRA refers to a direct addition of polyhalogeneted alkane to an 

alkene in the presence of a free radical initiator and involves a free radical 

mechamism (Scheme 1-5).79,80 

 

 

 Scheme 1-5. Schematic representation of Kharasch addition. 

 

ATRA is catalyzed by a metal complex. After the initial addition of the 

monomer to the double bond of an alkene, the obtained product is unstable and reacts 

with a transition metal complex irreversibly. Consequently, only one addition step 

occurs.81,82  

The ATRP mechanism is described in Scheme 1-6. ATRP is based on the 

reversible oxidation of a transition metal complex (MtnLm) with transport of a 

halogen atom, (X), from a dormant species, (Pn-X). A dynamic equilibrium is 

established between the halogen-capped polymer chain and the corresponding radical 

(Pn
•; active species) with a rate constant of activation, (kact), and deactivation, (kdeact). 

Propagating radicals polymerize with a propagation rate constant (kp) until it is 

deactivated by the Mtn+1Lm complex. The number of monomer units added during an 

activation cycle tends to be minimum and the kdeact is much larger than kp.
83 At the 

end of the polymerization reaction, all the chains are capped with a halogen through 

reversible halogen exchange reaction. Those can then be used as macroinitiators for 

further ATRP reactions.  

Shifting the equilibrium towards the dormant species and fast switching 

between the activation-deactivation states assures a low concentration of active 

species and, consequently, good control over the polymerization. As it has been 

shown by means of electron paramagnetic resonance (EPR), the concentration of 

deactivator (that relates to the concentration of active propagating species) does not 
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exceed 6% for a well-controlled system.84-86 Adding small portions of deactivator at 

the beginning of the polymerization can improve the general polymerization control. 

The role of deactivator in this case shifts the equilibrium towards the dormant species 

and improves the overall reaction control. Usually about 10% of deactivator is added, 

corresponding to the deactivator quantity that is generated during polymerization due 

to irreversible deactivation.87 Termination reactions can also occur with a rate 

constant of termination (kt). However, in well-controlled ATRP, only a few percent 

(≤5%) of growing polymer chains are subjected to termination.88 The termination 

reactions usually occur during the initial step when the concentration of deactivator 

(as persistent radicals) has not reached yet the optimum.71,88  

 

 
Scheme 1-6. Schematic representation of the ATRP mechanism. 

 

A key component of ATRP is the transition metal complex catalyst.69,88 The 

ideal transition metal has two oxidation states that differ by one electron and it must 

be able to accommodate the halogen atom within the coordination sphere. Suitable 

metals that satisfy these criteria are iron, ruthenium, nickel, and palladium. However, 

the most extensively used catalysts for ATRP are copper salts because of their low 

cost and exceptional versatility. The nitrogen- and phosphorus-based ligands play a 

vital role in solubilizing the transition metal salt in organic media and they adjust the 

redox potentials of the transition metal. For copper-mediated reactions, nitrogen-

based ligands are the most appropriate. 65,66,68,88   Figure 1-10 shows some examples 

of generally used ligands and initiators for ATRP. 
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Figure 1-10. Examples of commonly used ligands and initiators in ATRP. 

Ligands (from left to right): 2,2’-bipyridine (bipy), N,N,N′,N′′,N′′-pentamethyl 

diethylenetriamine (PMDETA), 1,1,4,7,10,10-hexamethyl triethylenetetramine 

(HMTETA), tris[2-(dimethylamino)ethyl]amine (Me6TREN);  

Initiators (from left to right): 1-phenyl ethylbromide (PEBr), methyl 2-

bromopropionate (MBrP), Ethyl 2-bromo-2-methylpropionate (EBiB) 

 

The role of the initiator is to define the number of propagating polymer 

chains. The initiator structure determines the activation rate, which should equal the 

propagation rate for well-controlled reactions. Alkyl halides (R-X) are typically used 

as initiators in ATRP, where the halide group (X) and alkyl radical (R) are carefully 

chosen, depending on the catalyst/ligand system. The most active initiator is α-

bromophenylacetate because of the active benzyl and ester moieties.89 Initiators 

containing multiple halide groups can also be used, resulting in the synthesis of 

complex architectures. 

 

1.3.2.1. ATRP equilibrium and kinetic aspects 

Understanding the impact of kinetic parameters on “living” polymerization is 

of importance for the synthesis of polymeric materials having defined characteristics. 

The overall ARTP equilibrium can be separated into four contributing reversible 

ATRP ligands

bipy PMDETA HMTETA Me6TREN

ATRP initiators

PEBr MBrP EBiB
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reactions (Scheme 1-7). ATRP follows first-order kinetics for monomer, initiator and 

metal complex in its lower oxidation state, and negative first-order kinetics for metal 

complex in its higher oxidation state. The rate of polymerization, (Rp), is expressed 

by the following equation (1.3), where kp is a propagation constant rate, [M] is a 

concentration of monomer, [P•] is a concentration of  polymeric radical, [PX] is a 

concentration of polymer, [XMt
n+1Lm] is a concentration of deactivator, [Mt

nLm] is a 

concentration of activator , and Keq the overall equilibrium constant:  

                                         (1.3) 

The overall equilibrium constant, (Keq), is defined by equation 1.4, where kact and 

kdeact are activation and deactivation rate constants, respectively. Both constants,  kact 

and kdeact, are strongly influenced by the structure of the ligand, monomer, and 

environmental conditions. Thus, all these parameters are highly important for 

polymerization control.68,82,83 

 

Scheme 1-7. Schematic representation of the contributing reactions of Cu-mediated 

ATRP. 

 

                                                            (1.4) 

The synthesis of polymers having controlled architectures requires controlling 

the degree of polymerization (DP) and polydispersity index (PDI). The degree of 

Contributing reactions for Cu-mediated ATRP
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polymerization is determined by the initial concentration of initiator, ([I]), and 

conversion, (p) according to eq. 1.5:  

                                                                                    (1.5) 

The molecular weight distribution in well-controlled systems typically is less than 

1.1.88 Equation 1.6 shows how the PDI is affected by concentration of the deactivator 

[XMt
n+1Lm], monomer conversion and kp/kdeact ratio.90 

                              (1.6) 

It can be concluded that the presence of the catalyst, which deactivates the growing 

chain faster, will result in a smaller kp and kdeact ratio and, consequently, a polymer 

with a narrow PDI will be obtained.88  Also, the PDI can be easily decreased by 

increasing the deactivator concentration or by pushing the polymerization to high 

conversions. Equation 1.6 shows the ideal situation where no chain termination and 

transport occur. However, in reality, the termination and transfer occur. They can be 

limited by lowering the degree of polymerization.89,90 Accomplishing these 

requirements results in well-defined polymers having narrow molecular weight 

distribution. 

 

1.4. Surface-Initiated ATRP (SI-ATRP) 

In general, ATRP is the most versatile and robust polymerization technique 

for modifying surfaces. The first example of polymer brush synthesis via SI-ATRP 

was reported in 1997 by Huang and Wirth, where they successfully polymerized 

acrylamide from the benzyl chloride monolayer on silica particles.91  

The key to SI-ATRP is the polymerization of a surface-attached initiator 

monolayer. This results in an end-tethered polymer layer. SI polymerization is based 
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on the same kinetic principles and rules as solution polymerization. Scheme 1-8 

shows a typical ATRP from an initiator-functionalized flat surface.92  

 

 

Scheme 1-8. Schematic representation of SI-ATRP using Cu-based catalyst. 

(Reproduced from ref. 64 with the permission of Springer). 

The first step is the attachment of the initiator (2-(4-chlorosulfonylphenyl) 

ethyltriethoxysilane, (CTS), to silica via a covalent Sisurf-O-Siinit bond. The Cu(I)X/L 

complex is transformed into a higher oxidation state (Cu(II)X2/L) by a halogen 

transition (activation). This results in a free radical at the end of the polymer chain, 

which reacts with monomers (propagation) until it is capped with the halogen 

(deactivation). The activation-deactivation occurs repeatedly and results in the 

simultaneous growth of surface-attached chains. 

 

1.4.1. SI-ATRP characteristics 

In spite of identical mechanism and general kinetic similarities between SI 

and solution ATRP, there are specific features of SI-ATRP that must be reviewed.  

1. The properties of the polymer film can be tuned by the initiator grafting 

density. This requires proper control over the initiator grafting process. 
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There are several ways to do this. The most common way is varying the 

concentration of deposited initiator molecules and/or the coupling time.93 

It can also be done by grafting a mixture of active and inactive 

(“dummy”) initiators in different ratios.94 Alternatively, a portion of 

grafted initiator can be destroyed under radiation exposure (post-grafting 

treatment).95 These approaches assure the proper number of initiator 

molecules to be attached to the substrate that, in turn, results in desired 

polymer brush characteristics (thickness, molecular weight, architecture).  

2. Low concentration of surface-attached initiator on flat surfaces causes 

slow generation of deactivating species. This results in extremely low 

deactivator concentration and, consequently, high probability of 

termination reactions. To overcome this, a deactivator or sacrificial 

initiator has to be added to the polymerization solution (see section 1.4.2 

for details). 

3. SI-ATRP is characterized by a limited rate of propagation due to the 

unavoidable hindered monomer and catalyst diffusion to the growing 

chain ends.96 This affects the polymerization kinetics and results in lower 

molecular weight of grafts compared to free chains. However, the 

opposite trend of larger Mn of grafts than free chains was also reported 

(see section 1.2.3 for details). 

4. Termination. As it was shown by Gao et al. for flat surfaces, the radical 

centers are distributed quite sparsely over the attached chains, even at 

high grafting density. The bimolecular termination is impossible when 

two radicals are separated by more than 1000 nm. However, termination 

takes place when the chain is activated in close proximity to the existing 

radical. Two radicals come together via activation-deactivation exchange 

with the catalyst in solution. This mechanism is called “migration-

termination”97 or “radical migration” (Scheme 1-9).98 
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Scheme 1-9. Schematic representation of  the “radical migration” mechanism. 

(X) represents dormant chain end, while (•) corresponds to active radicals. (Reprinted 

with permission from ref. 98 Copyright 2012 American Chemical Society.) 

“Migration” mechanism was first described for surface-initiated RAFT 

polymerization. It was then called “rolling migration” because chain-end 

radicals interact with adjacent dormant chains, so active sites migrate 

from one chain to another and never leave the surface99 resulting in high 

radical termination. In contrast to SI-RAFT,  radical “migration” in SI-

ATRP occurs through solution phase, and the term “hopping migration” is 

applied.98 SI-ATRP radical “migration” is assured by diffusion of the 

catalyst molecules from solution. So, the termination rate is directly 

proportional to the concentration of activator, and higher catalyst 

concentration results in more terminations to occur.97,98 

5. Self-initiation side reaction can be present during SI-ATRP. A recent 

report showed the presence of thermal self-initiation in solution during the 

SI polystyrene polymerization.100 The analyzed free chains had lower 

molecular weight and larger PDI comparing to graft chains because they 

are formed continuously. Meanwhile the attached chains are initiated 

simultaneously and grow homogeneously.  
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1.4.2. Addition of deactivator or free initiator 

The formation of highly homogeneous and smooth polymer layers requires a 

high degree of control over the polymerization process. One of the most important 

parameters affecting the polymerization kinetics is the deactivator concentration. 

Surface-initiated polymerization can be controlled only poorly because the 

concentration of dormant species attached to the surface is low.92 There are two 

approaches that address this shortcoming. The first approach adds Cu(II) deactivator 

to the polymerization medium to assure sufficient concentration of deactivator and, 

consequently, good control over polymerization. This approach was shown for the 

first time by Matyjaszewski, where a linear increase in polymer film thickness over 

time was observed. The linear correlation suggests a living character of the grafting 

reaction.96  

Adding free (sacrificial) initiator is an alternate way to control the surface-

initiated polymerization. In this case, the initiator plays the same role as the 

deactivator (Cu(II)). Additionally, free polymer formed in solution can be used to 

measure the molecular weight of grafted chains, assuming the polymerization occurs 

at the same rate in solution as on the surface. This is particularly essential for flat 

substrates, where the amount of polymer generated on the surface is insufficient for 

analysis with conventional techniques such as GPC and NMR.92,101 However, as 

reported recently, there is much uncertainty concerning the equivalence between Mn 

of free and grafted chains (see following section for details).  

 

1.4.3.  Mn of grafted chains vs. free polymer 

Many reports claim that the Mn of free polymers differs from the Mn of 

grafted chains.102-105 In general, the grafted propagating chains have fewer 

conformational degrees of freedom than in solution and confinement effects during 

surface-initiated polymerization are expected. The substrate curvature is also an 
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essential parameter that defines the accessible volume for catalyst and monomers to 

diffuse to the growing chains.54 Figure 1-11 shows the accessible volume decrease 

(highlighted in purple) for substrates of different geometries where polymer brushes 

of identical grafting density and thickness are grafted.  

For convex substrates, the Mn of grafted and free chains was shown to be 

similar. In contrast, for flat or concave surfaces, higher Mn of free polymer was 

measured compared to the Mn of grafts.102,104,106  There are a few examples where the 

Mn of free chains was lower than the Mn of grafted ones on flat substrates.103,107 The 

authors explained this result in terms of elevated local viscosity and increased local 

concentration of Cu(I) species. 

 

Figure 1-11. Schematic illustration of the confinement effect in SI-ATRP.  

Accessible volume decreases from convex to flat and to concave substrate. 

(Reprinted with permission from ref. 54 Copyright 2013 American Chemical 

Society.) 

High grafting density results in high concentration of growing chains near the 

surface. This, in turn, results in increased local viscosity that limits the mobility of 

attached molecules and decreases the probability of the termination reaction 

compared to the bulk. The grafted chain ends are situated within the “viscous front” 

that corresponds to a region close to the surface but is separated from the bulk. The 
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diffusion of Cu(I) is higher in comparison to Cu(II), because of the Cu(I) smaller 

size. Thus, the increased concentration of the Cu(I) shifts the equilibrium to the side 

of active species.107 

 

1.5. ATRP in aqueous medium 

Water-mediated ATRP is of significant interest for two main reasons. Firstly, 

water is environmentally friendly, ready accessible and it is a cheap solvent. 

Secondly, the development of new materials requires the synthesis of well-defined 

polyelectrolytes, ionomers, and polymers with hydrophilic functional groups.108-110 

Therefore, the direct synthesis of hydrophilic polymers will result in significant 

reduction of processing costs since a deprotection step of an hydrophobic polymer is 

not required. There are numerous reports of successful water-mediated ATRP in 

heterogeneous systems, such as miniemulsions, emulsions, and microemulsions.111-116 

However, some applications that involve, for example, the preparation of substrate-

attached polymer films require a water-assisted homogeneous system. 

The first report in 1998 of water-mediated ATRP described the 

polymerization of 2-hydroxyethyl acrylate with CuBr/bipy.117 The resulted polymer 

showed narrow PDI at high conversions (more than 80 %) demonstrating that ATRP 

can be easily performed in water. Since then, many water-mediated ATRP studies 

have been published, with different catalysts such as CuBr/HMTETA,118 

CuBr/TPMA (Tris[(2-pyridyl) methyl]amine),119 and CuBr/Me6TREN.120 In general, 

ATRP in water is much faster than in organic media and it can be done at room 

temperature. However, the presence of side reactions that do not occur with organic-

mediated ATRP makes water-assisted ATRP challenging.121-123 

 

 

 



Chapter 1                                                                               29 

  

1.5.1. Side reactions in water-mediated ATRP 

Scheme 1-10 demonstrates the overall process of water-mediated ATRP and 

its side reactions (highlighted in blue).  

 

 

Scheme 1-10. Schematic representation of ATRP in water.  

Side reactions are highlited in blue.  

(Adopted with permission from ref. 121. John Wiley and Sons) 

 

Side reactions of water mediated ATRP include:  

1. Disproportionation reaction of Cu(I) metal complex. The Cu(I) catalyst is 

not stable in water and it disproportionates. The Cu(I) converts into a 

species with two different oxidation states (Cu(II) and Cu(0)) (eq. 1.7).124-

126 Kdisp of the noncomplexed Cu(I) is 106.127 This value is much lower in 

organic solvents. For example, in DMF logKdisp= 4.26128 and logKdisp = 

0.56 in ethanol.129 
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             (1.7) 

                                                                                  

Disproportionation facilitates the polymerization, because of the superior 

activity of the Cu(0) species. Alkyl halide initiators can be exceptionally 

activated by the presence of Cu(0) through outer-sphere electron transfer 

(OSET) mechanism. Cu(0) species is able to generate a propagating 

radical and Cu(I).130 As was reported in literature, OSET is negligible 

compared to inner-sphere electron transfer (regular atom transfer) 

mechanism, however for controlled radical polymerization, the 

disproportionation has to be reduced in an optimum way.131,132 

Disproportionation can be significantly reduced by adding less polar 

solvents, such as methanol, ethanol, or acetone to the polymerization 

medium. Kdisp is also affected by the ligand addition. When the ligand (L) 

is added, it forms complexes with Cu(I) and Cu(II), and the equilibrium 

constant Kdisp changes to the conditional disproportionation constant, 

K∗
disp.

121 K∗
disp is described by the relative stabilization of the two 

oxidation states (eq.1.8) 

                           (1.8) 

where Kdisp is the disproportionation constant in the absence of ligand, βI 

and βII are stability constants of Cu(I) and Cu(II) complexes. 

The main parameter that determines the ligand choice is a low ([βI]/([βII])2 

ratio. There are several ligands that satisfy this condition and can form 

active complexes in water: HMTETA, TPMA, bipy.121,122 

2. Loss of halide of Cu(II) deactivator. Copper-based deactivator complexes 

(X-CuIILm) are unstable in water and they likely dissociate to form CuIILm 

species that cannot be reactivated.123 The concentration of deactivator (X-
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CuIILm) depends on the total concentration of Cu(II), concentration of 

halide species (X), and Cu(II) halidophilicity, KX (eq. 1.9, 1.10):  

                              (1.9) 

where F is described by eq. 1.10 

                                                    (1.10) 

Halido- or halogenophilicity measures the affinity of the halogen atom to 

the transition metal in its higher oxidation state. It cannot be directly 

measured but it can be calculated from overall ATRP kinetic. KX value 

depends on the ligand type and nature of the metal center, and it is larger 

for more active catalyst and for chlorine compared to bromine. In the 

presence of protic solvent, halidophilicity significantly decreases.133 

The low concentration of X-CuIILm deactivator that arises from the 

inactive CuIILm species results in PDI broadening, according to eq. 1.6. 

There are a few methods that can be used to prevent PDI broadening and 

improve the polymerization control. Firstly, an ATRP catalyst with high 

halidophilicity can be selected.122,123,134 Secondly, increasing deactivator 

amount (up to 80 mol%) of the total catalyst amount is sufficient for good 

polymerization control.123 Thirdly, adding extra halide salt (either Cu(I) or 

Cu(II)) will also improve the overall reaction control by forming 

additional deactivator species.122 

3. Other side reactions. Other side reactions related to the initiator stability 

and monomer coordination usually accompany water-mediated ATRP. 

The hydrolysis of the alkyl halide initiator and dormant chain ends can 

occur. These phenomena result in the polydispersity broadening and 

reducing the amount of end halides.121,134 The monomer can also be 

coordinated with Cu(I) by interacting with the double bond. This was 
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investigated for styrene, octene, methyacrylate, and methyl methacrylate. 

From the measured Cu(I)-monomer binding constants, it was concluded 

that methyl acrylate binds twice as strong to Cu(I) than methyl 

methacrylate and the monomer affinity to Cu(I) decreases in the order: 

methyl acrylate > styrene > 1-octene > methyl methacrylate. Moreover, 

the coordination is more pronounced at room temperature compared to 

elevated temperatures.135 The monomer coordination with the ATRP 

metal catalyst is relatively weak. However, monomer functional groups, 

such as amines, amides, and carboxylic acids, can displace the ligand 

from both Cu(I) and Cu(II) complexes and result in the catalyst 

deactivation. In order to prevent these undesired processes, a ligand that 

form a very stable complex must be chosen.135,136 

From the above discussion, it can be concluded that ATRP in water is an 

attractive and promising area of polymer synthesis. It overcomes many disadvantages 

of polymerization in organic solvents, such as high temperatures, long 

polymerization times, and addition of free initiator.137-140 However, the initiator, 

ligand, metal catalyst, and monomer have to be selected with care to minimize the 

side reactions and to obtain well-defined polymers of desired architectures and 

functionality.  

 

1.5.2. Direct synthesis of polyelectrolyte brushes using water ATRP 

The regular way of synthesis of surface-attached polyelectrolytes involves 

two stages: polymerization of their esters, and subsequent deprotection. For example, 

the synthesis of polyacrylic acid brushes starts with the polymerization of methyl-, 

ethyl-, or tert-butyl acrylate followed by hydrolysis or pyrolysis of side protective 

groups. The deprotection reaction usually involves treatment with strong acids that 

can result in partial polymer chain detachment from the surface.141 Clearly, direct 

synthesis of polyelectrolyte brushes is beneficial. First of all, this approach eliminates 
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deprotection step. It also involves less synthetic steps and, consequently, it reduces 

processing costs and time. For direct polymerization water-based medium as a 

solvent is usually used. Such media are compatible with a wide range of substrates. 

For example, pre-assembled sample for surface forces measurements includes a layer 

of the glue that can be easily dissolved in acetone or toluene under heating or in the 

presence of chlorinated solvents. Usually the regular functionalization of substrates 

with polyelectrolytes involves the utilization of organic solvents, which are undesired 

in terms of stability of such samples. The direct approach is a good alternative that 

prevents sample exposure to organic solvents. Another advantage of direct 

polymerizations is the fast kinetics. In water, polymer layers of larger thicknesses can 

be grown within shorter time compared to regular synthetic approach. For example, a 

40 nm thick PtBA layer can be obtained after 15 h of polymerization of tBA, 

resulting in 14 nm thick PAA brushes.142 In contrast, with water-based ATRP of 

sodium acrylate, more than 100 nm thick PAA layer can be synthesized within 1h 

(Chapter 5).† 

ATRP in water can be applied to a large variety of monomers. However, as it 

was shown for acrylic and methacrylic acids, their direct polymerization is 

impossible because of their fast coordination with metal complexes and formation of 

inactive ATRP catalyst.143 Acid monomer in its salt form can be used instead, as 

shown for the first time by Ashford et al.144 They used a CuBr/bipy system to 

polymerize sodium methacrylate in water at 900. Good control over molecular weight 

and a PDI of less than 1.3 was achieved. Sankhe et al. proposed a mechanism of 

[Cu(II)L]+ complexation with polymethacrylic acid during its synthesis from sodium 

methacrylate on the gold surface (Scheme 1-11).145  

                                                       
† The initiator grafting density is identical for both examples. 
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Scheme 1-11. Schematic representation of possible coordination of deprotonated 

PMAA with [Cu(II)L]+ complex. 

(Reprinted with permission from ref. 145  

Copyright 2006 American Chemical Society.) 

 

Here, carboxylate ions show higher affinity to copper ions in comparison with 

sodium ions. This results in ion exchange. The interaction of growing polyacid chain 

with [Cu(II)L]+ complex leads to the displacement of halogen from the [Cu(II)L]+ 

catalyst complex and the formation of a halogen-sodium ion pair. The resulting 

carboxylate complexes are weak deactivators and they cannot be reduced to an active 

catalyst.143 This affects the polymerization control and accelerates the termination.  

The choice of pH is critical for water ATRP because amino-based ligands are 

susceptible to protonation.146,147 Particularly, bipyridine becomes protonated at pH 6 

and below.144 The protonated ligand cannot coordinate Cu(I) and Cu(I) precipitates. 

At high pH, the rate of propagation is reduced because of the high charge density 

along the polymer chain. This was shown for free radical polymerization of 

methacrylic acid.148 A balance between ligand protonation and reduced propagation 

is possible with  8<pH<9.144  
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As was discussed above, many side reactions occur in pure water, leading to 

uncontrolled polymerization and broad polydispersity. For well-defined polymers the 

control over polymerization process is required. Reducing of the water content by 

adding an aprotic solvent can help to restore the control. Methanol, for example, 

stabilizes catalyst complexes and improves overall polymerization control. 121,123 As 

it was demonstrated for solution polymerization of sodium 4-styrene sulfonate, the 

polymerization is poorly controlled in water, but the control is restored after adding 

methanol as co-solvent.149 For surface-initiated polymerization, it was shown by 

Santonicola et al. thar PMAA brushes grow faster when polymerized using 1:1 water-

methanol mixture compared to pure water.150  

In spite of the extreme popularity of polyacrylic and poly(methacrylic acids) 

for the fundamental investigations and practical applications, the number of 

experimental studies reporting their direct synthesis is limited.10  There are some 

examples of surface-initiated polymerizations of methacrylate and acrylate sodium 

salts using water-mediated ATRP. Poly(methacrylic acid) chains from chitosan 

microspheres were synthesized with CuBr/PMDETA at 30oC.151 Dong et al. 

demonstrated the synthesis of 30 nm thick PAA film from silica. They utilized 

CuBr/bipy catalyst and performed the reaction at 30oC during 2 h.152 The medical 

degreased cotton was functionalized with a PNaA layer using CuBr/PMDETA 

catalyst.153 Sodium methacrylate was successfully polymerized by Tugulu et al. with 

CuBr/bipy for 2.5 h at 25oC. The obtained thickness varied depending on the 

monomer concentration, pH, and polymerization time.154 In the present work, the 

direct synthesis of polyacrylic acid brushes from silica surface was done using water 

ATRP in the presence of a CuBr/bipy catalyst (Chapter 2, 5). CuBr/bipy catalyst was 

selected because it stays active and stabile in water. It also shows high halidophilicity 

and low [βI]/([βII] ratio that result in low Cu(I) complex disproportionation.121,122 pH 

between 8 and 9 was adjusted in order to prevent bipyridine protonation. Water-

methanol (5:1) mixture was used to reduce side reaction and keep polymerization 

control. 
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1.6. End-grafted polymer architectures and 

applications 

Besides controlling the molecular weight and brush thickness, control over 

brush architecture is also possible by SI-CRP methods. SI-CRP methods have been 

widely used to prepare homopolymer brushes, block- and random copolymer brushes 

as well as highly branched and cross-linked polymer brushes.10 Figure 1-12 shows 

examples of different brush architectures that can be obtained via SI-CRP. Some of 

them are discussed below in details. 

 

Figure 1-12. Schematic illustration of different polymer brush architectures obtained 

via SI-CPR. 

 

Homopolymer brushes correspond to one type of end-attached polymer 

chains. Most of them can be easily obtained in one-step synthesis. The range of their 

applications is extremely broad and covers many developing technological fields 

(organic electronic devices, nanosensors, transport systems, microreactors, etc).10,58 

For example, poly(triphenylamine acrylate) brushes can be advantageously used in 
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electronic devices because of their improved charge mobility in comparison to spin-

coated film of the same polymer.155 Poly(N-isopropylacrylamide) brushes grafted 

from mesoporous silica particles are utilized in delivery system, where the controlled 

release of trapped analyte is performed by changing the temperature.156 Poly(glycidyl 

methacrylate) brushes grafted to the inner wall of microreactor and modified with 

organic catalyst, can be used in catalytical applications, where the amount of 

generated catalyst can be tuned by varying the brush thickness the.157 

Block copolymer brushes consists of two or more chemically different 

polymer blocks. They gained exceptional attention because of their ability to undergo 

vertical phase separation due to the immiscibility of different blocks. This type of 

architecture exhibits more complex response towards the external stimuli than 

homopolymer brushes. This was proved by many theoretical investigations and 

computer simulations.  Zhulina et al. showed a variety of possible nanostructures 

depending on the grafting density, polymer molecular weight, ratio between blocks, 

and the interaction energies between blocks and between blocks and solvent.158,159 

There are many examples of the reversible rearrangement of tethered block 

copolymers. For example, rearrangement of polystyrene-block-poly(N, N’-dimethyl 

acrylamide) and poly(N, N’-dimethyl acrylamide)-block-poly(methyl methacrylate) 

brushes was studied by Baum and Brittain.160 They used the contact angle technique 

to detect brush rearrangements after brush treatment with selective solvents.   Boyes 

at al. investigated poly(methyl methacrylate)-block-polystyrene brushes using 

AFM.141 They observed interesting morphologies upon brush exposure to 

dichloromethane and cyclohexane. Also, Xu et al. demonstrated solvent 

responsiveness for gradual poly(n-butyl methacrylate)-block-poly(2-(N, N’-

dimethylamino)ethyl methacrylate brushes depending on the relative length of the 

blocks.161 Thus, the surface properties of block copolymer brushes can be switched 

by “activation” of one or other block, leading to nano-structured films. This 

behaviour is now employed in many applications such as stimuli responsive 

platforms, separation membranes, nanoactuators.10,162,163  
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Mixed polymer brushes are composed of two different polymers attached to 

the substrate randomly. They can be subjected either to dynamic vertical segregation 

in a selective solvent or segregation in a lateral direction with a non-selective solvent. 

The important distinctive feature of mixed polymer brushes is their ability to alter 

their surface composition upon an external trigger. This characteristic is mainly 

determined by the grafting density and film thickness, and it can be used to tune the 

polymer film surface properties such as adhesion, friction, wettability, etc. 164-166 For 

example, Minko et al. employed mixed poly(2-vinyl-pyridine)-block-poly(ethylene 

oxide) and poly(2-vinyl-pyridine)-block-polystyrene brushes to modify silica 

nanoparticles to create responsive colloidal systems.167 

Cross-linked polymer brushes can be prepared either by SI polymerization of 

bifunctional monomers or by post-modification of presynthesized polymer brushes.10 

Cross-linking has a significant influence on polymer mechanical stability, 

permeability, and swelling properties. Kim et al. observed smaller size of hybrid 

nanoparticles, consisting of gold nanoparticles and crosslinked end-grafted poly(N-

isopropyl acrylamide) chains, in comparison to the non crosslinked hybrids.168 They 

associated this with the presence of cross-links that prevent formation of hydrogen 

bonds between amine groups and water molecules. Li et al. showed a significant 

increase of friction coefficient of poly(acrylamide) brushes with increasing the 

crosslinker content.169 They explained this behaviour by reducing the portion of 

lubricious brush structures after cross-linking and reduced water content inside the 

brush. 

 

1.7. Polymer brushes. Theoretical description 

End-grafted polymer layers usually refer to assemblies of macromolecules, 

tethered by one end to the solid substrate. The polymer conformation is inherently 

determined by the way in which the polymer is attached to the surface, the polymer’s 

degree of ionization (α), grafting density (σ), and the thickness of the polymer layer 
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(L). However, the conformation of an end-grafted polymers is extremely sensitive to 

conditions such as temperature, pressure, solvent, ionic strength, and pH, to name but 

a few. The brush behaviour is the focus of many theoretical models. Some of these 

are presented in the current section 

 

1.7.1. Neutral brushes 

The first scaling model of neutral end-grafted polymers at the interface was 

proposed by Alexander17 and de Gennes170. Depending on the grafting density of 

attached chains, two regimes have been studied: overlapping coils and separate coils. 

For large grafting density, when the distance between two anchoring points, 

d, is much smaller than RF, Flory radius of polymer chain in a good solvent 

(RF=aN3/5), polymer chains are strongly overlapped (overlapping coils regime). 

Figure 1-13 is a schematic representation of Alexander’s model for overlapping coils. 

In this regime, σ<N-6/5 and d=aσ-1/2, where N is a degree of polymerization, and a is a 

length of each repeating unit.17 

 

Figure 1-13. Alexander’s model of neutral stretched brushes in a good solvent.  

Each circle schematically represents a chain segment which behaves as a random 

coil. 
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For high grafting density, neutral polymer chains tend to stretch away from 

the surface and adopt a brush-like conformation. The stretching is a result of 

segment-segment interactions, which is balanced by free elastic energy. The polymer 

chains’ free energy, F, can be expressed as a sum of two contributions, the elastic 

free energy Fel, and the segment-segment interaction energy, Fint (eq. 1.11, 1.12).13 

                                                                                     (1.11) 

                                                                             (1.12) 

ν is an excluded volume parameter and L is a film thickness.  

Free elastic energy or stretching energy can expressed by the following equation 

(eq.1.13)170: 

                                                                                            (1.13) 

where k is the Boltzmann constant and T the temperature. The free energy per volume 

(interaction energy), in terms of excluded volume interaction is expressed as (eq. 

1.14)170: 

                                                                                  (1.14) 

where φ is a crossover value, which is equal to ν/a3.  

In good solvent the monomer-solvent interactions are dominated over 

monomer-monomer interactions. The film thickness (L) in this case is proportional to 

the polymer molecular weight of grafted chains:170 

                                                                                        (1.15) 

For a poor solvent, the interaction between monomers is attractive, leading to 

collapse of the polymer chain. The equation shows a slightly different exponent for 

the grafting density (eq. 1.16)13,171: 
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                                                                                             (1.16) 

The separate coils regime occurs at low grafting density, when d is much 

larger than RF (Figure 1-14). 170 In a good solvent, the polymer chains hardly interact 

with each other and the grafting density satisfies the following condition: σ>N-6/5. 

 

Figure 1-14. Schematic representation of the separate coils model. 

Distance between two anchoring sites (d) is much larger than Flory radius (RF).  

 

1.7.2. Polyelectrolyte brushes 

For polymer brushes formed from polyelectrolyte chains, additional 

considerations need to be addressed that take into account the electrostatic 

interactions within the brush layer. Great interest has been attracted by charged end-

grafted polymers because they offer one additional parameter that can be used to tune 

their conformation, i.e. the ionic strength of the medium. Polyelectrolyte brushes can 

be separated into two groups: strongly and weakly charged brushes.  Polyelectrolytes 

from both groups can undergo conformational changes upon changes in pH (weakly 

charged brushes) and ionic strength (weakly and highly charged brushes).1,172-

175There are several theoretical approaches based on scaling laws, molecular 

dynamics, self-consistent mean-field theory or strong-stretching theory  that describe 

polyelectrolyte brushes.176-179  

 

1.7.2.1. Strongly charged polyelectrolyte brushes 

Strongly charged (or quenched) brushes can be characterized by fixed degrees 

of dissociation that do not vary with the pH and ionic strength. The swelling 
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behaviour of strongly charged polyelectrolyte brushes, described by Pincus using a 

simple scaling model, assumes the presence of a fixed fraction of dissociated units (f) 

neutralized by counterions, which are localized either inside or outside the brush. 177 

The Pincus model only takes into account the osmotic pressure and it disregards 

excluded volume of repeating units. There are two main regimes for highly charged 

brushes: osmotic and Pincus regimes.  

The main parameter characterizing the highly charged brush regime is the 

Gouy-Chapman length, λGC, which is a height of the effectively bound counter ionic 

layer. It can be expressed in terms of surface charge density Σ: 

                                                                                 (1.17) 

where lB is the Bjerrum length‡ and Σ is a product of elementary charge e, degree of 

ionization f , degree of polymerization N and grafting density ρa (eq.1.18):                              

Σ =efNρa                                                                                                                                (1.18)                                       

In case, when all counterions are confined inside the brush in order to compensate the 

immobilized charges of the grafted chains, brush enters the osmotic regime. The 

polymer layer thickness is then determined by a balance between the osmotic 

pressure of the counter-ions inside the brush and the stretching entropy. The Gouy-

Chapman length, in this case, is smaller than the brush thickness L (Figure 1-15, A). 

The brush height in this case can be defined as follows (eq.1.19): 13,172 

                                                                                   (1.19) 

In contrast, when the counterion distribution extends into the bulk far beyond 

the brush, the osmotic pressure is relatively week compared to the large 

                                                       

‡  
where ε0 is the vacuum permittivity, εT the relative dielectric constant of the medium, 
kB the Boltzmann constant, and T the temperature in Kelvin.  
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uncompensated electrostatic segment-segment repulsion. This is the Pincus regime 

(Figure 1-15, B). Thickness in this regime is much smaller than λGC and it depends on 

the grafting density (ρa): 
1,177  

                                                                             (1.20) 

 

Figure 1-15. Polyacid brushes in the osmotic (A) and Pincus (B) regimes. 

 

The presence of salt ions has a significant influence on the polymer brush 

conformation as it can screen the electrostatic interactions within the brush. Pincus 

model predicts different behaviors of polyelectrolytes brushes depending on salt 

concentration (Figure 1-16).  
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Figure 1-16. Illustration of different brush regimes for strong (solid line) and weak 

(dashed line) polyelectrolytes. The Y-axis represents polymer brush thickness and the 

X-axis corresponds to the external salt concentration. (Reprinted with permission 

from ref.175 Copyright 2007 American Chemical Society.) 

 

 

For highly charged polyelectrolyte brushes, low added salt concentration does 

not affect the brush thickness as the salt ions screen the superficial polymer layer 

only.180 When the added salt concentration increases, there is an important difference 

between concentration of the free counter ions inside and outside the brush (salted 

brush regime). In this regime, the addition of salt significantly screens the 

electrostatic interactions within the brush and the brush height becomes dependent on 

the salt concentration according to (eq. 1.21):1,13,173 

                                                                         (1.21) 

At significantly high salt concentration, when the electrostatic interactions are 

highly screened and the osmotic pressure within the brush is significantly reduced, 

polyelectrolytes behave as a neutral brush and the thickness scales as described by 

eq. 1.15 Thus, the thickness of such polyelectrolyte brushes is insensitive to further 

increase in external salt concentration.173.  
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1.7.2.2. Weak polyelectrolyte brushes 

In contrast to highly charged brushes, where the degree of dissociation is 

fixed, for weakly charged (or annealed) brushes, the degree of dissociation can be 

tuned with pH and ionic strength. This allows a large variety of polymer 

conformations to be obtained. Weak polybasic brushes extend upon decreasing pH, 

while weak polyacid brushes extend with increasing pH. The first theoretical 

description of the properties of weak polyelectrolyte brushes was proposed by 

Zhulina and coworkers.174 They used the mean-field theory to predict conformational 

changes of weakly charged polyelectrolyte brushes upon changes in the ionic strength 

of the aqueous medium. They considered a polyacid brush where the charge density 

is a result of dissociation of a neutral polymer unit HA to a negatively charged 

polymer unit A- and a proton H+: 

                                                                               (1.22) 

for which the dissociation constant can be written as follows: 

                                                                                  (1.23) 

The average degree of dissociation, α is: 

                                                                                   (1.24) 

and it is related to the KD: 

                                                                                        (1.25) 

where CH+ is the concentration of protons inside the brush. 

Similarly to quenched brushes, two main regimes are defined for weakly 

charged brushes depending on the external salt concentration. At low ionic strength, 
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the counter-ions from polymer chains are localized inside the brush and the brush is 

globally neutral. When the ionic strength increases, there is an increase in the 

effective electrostatic potential at polymer/water interface, which is defined as the 

ratio between counter-ion concentrations inside and outside the brush.  For weakly 

charged brushes at low salt concentration, such a regime is called the annealed 

osmotic brush regime. The degree of dissociation α in this regime is: 

                                                          (1.26) 

where Cs is the concentration of the salt ions, and αB is the degree of dissociation of 

the polymer chains in solution. The thickness in this regime depends on the grafting 

density and the salt concentration according to equation 1.27:174 

                                        (1.27) 

For quenched brushes, where the number of charges is fixed, this regime is not 

expected to exist . The two last equations show that the degree of ionization of the 

brush can be smaller than that of the free polymer chains in solution for a given pH 

and ionic strength (α<αB) and the brush height can increase upon increasing salt 

concentrarion (Figure 1-16). Moreover, Zhulina’s model predicts a maximum brush 

height for a critical salt concentration (CS
max) which corresponds to the transition 

between the osmotic and salted brush regimes and depends on the grafting density 

and degree of dissociation of the free chains:181  

                                                                                  (1.28) 

At high salt concentration, the electrostatic potential which is the ratio 

between counter-ion concentrations inside and outside the brush becomes negligible 

and α≈αB. This results in the same equation as for the quenched brushes and it is 

called the salted brush regime (eq.1.21).182 
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1.8. Polymer brushes responsiveness 

Given their sensitivity to environmental conditions, end-tethered polymers 

can be used to modify surface properties in a controlled and reversible manner via 

changes in their conformation upon changes in the properties of the surrounding 

medium. Depending on the brush chemical structure and brush conformation, brush 

properties can be tuned upon many different external stimuli such as temperature, 

solvent, light, electric field, pH.10 The conformation of weakly charged polymers can 

be easily tuned with pH and/or ionic strength. 

 

1.8.1. Responsiveness of weakly charged polymer brushes 

Weakly charged brushes can be characterized by a non-fixed number of 

charges along the polymer chain, i.e. they can change their degree of ionization in 

response to pH and ionic strength. Weakly charged brushes are very interesting for 

many applications because they can adopt a wide range of conformations. For 

example, pH sensitive PS-b-PMAA brushes are used as a carrier in controlled 

delivery systems, where pH-induced switching between collapsed and swollen 

conformations assures the release of trapped dye molecules.183 Another example is 

pH-responsive nanoporous platforms, where nanovalves are possible by 

functionalization of porous silicon nitride films with PMAA brush (Figure 1-17, 

A).184 In this system, pH changes induce changes in PMAA brush conformation and, 

consequently, ion permeation control through the pores can be achieved. 

Additionally, PAA-functionalized materials are used as pH-sensitive platforms for 

antibody or protein immobilization.185,186 Moreover, pH-responsive polymers can be 

used as pH-active nanoactuators.8,187 Particularly, reversible mechanical actuation 

was shown by Zhou at al. for the first time (Figure 1-17, B).187 They used 

poly(methacryloyl ethylene phosphate) brushes to functionalize cantilevers. 
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Conformational brush changes with variation of pH and ionic strength induce 

cantilever bending in a controlled manner.  

 

Figure 1-17. Practical applications of weakly charged polymer brushes. 

A) Nanoporous platforms functionalized with PMAA brushes (Reprinted with 

permission from ref. 184 Copyright 2013 American Chemical Society.) B) 

Controlled bending of a cantillever modified using polymethacryloyl ethylene 

phosphate brushes (Reprinted with permission from ref. 187 Copyright 2006 

American Chemical Society.) 

 

1.8.1.1. Swelling behaviour 

The brush swelling/collapsing results in a change in polymer layer thickness 

because of the internal structural reorganizations upon external stimuli. For weak 

polyanionic brushes, such reorganizations are caused by changes in pH and ionic 

strength as described in section 1.7.2.2. There are some examples of swelling 
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behavior of weakly negatively charged polymer brushes upon changes in pH and 

ionic strength. Biesalski et al. performed PMAA brush swelling studies using 

multiple-angle null-ellipsometry.172 The authors investigated PMAA brush 

responsiveness to pH increase from 2 to 10. PMAA thickness was pH independent at 

pH<3. Within the pH range from 3.5 to pH 4.5, PMAA thickness increased almost 3 

times. At pH 10, the thickness reached the maximum, resulting in a 4 times increase 

from the initial value. This relates to an increase in the degree of dissociation that, in 

turn, results in an increase in osmotic pressure within the brush and polymer layer 

swelling. Also, authors studied the influence of salt concentration from 1 to 10-4 

mol/L on brush thickness.172 The maximum swollen thickness was measured at 

intermediate salt concentration (0.001 mol/L) that is in agreement with theoretical 

predictions. 

The responsiveness of PAA layer to the change in ionic strength at different 

grafting densities was investigated by Curie et al. using multiscope ellipsometer.188  

They found non-monotonic brush thickness change with salt concentration at a fixed 

pH and grafting density. At pH 3, the brush height was independent on the ionic 

strength while, at higher pH (4.0 and 5.8), it increased with increasing salt 

concentration. The thickness reached its maximum value at salt concentration of 

0.1M and, then, it decreased with further increase in salt concentration as expected 

from the model presented by Figure 1-16. Santonicola et al. investigated the PMAA 

brush pH-induced switching behavior between pH 4 and 8 using multiscope null 

ellipsometry.150 They found that the swelling factor, which is the ratio between 

maximum and minimum thickness values, is stable over 4 repetitive pH cycles and 

that no degrafting occurrs during these cycles. Interestingly, the PMAA brushes reach 

the equilibrium with surrounding medium in 1 min and brushes thickness remains 

stable within the following 30 min, before pH is changed. Unfortunately, no 

explanations was provided for obtained results.  
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Liu et al. investigated PAA-conformational switching upon pH changes from 

3.2 to 6.6 using a quartz crystal microbalance with dissipation (QCM-D). The 

changes in frequency and dissipation confirmed the periodic brush swelling and 

collapsing. Additionally, they studied changes in shear viscosity and elastic shear 

modulus that also have a periodic character and correlate well with changes in brush 

thickness. Shear viscosity increases with increasing pH because of PAA chain 

hydration. Moreover, the increase in pH causes an increase in electrostatic repulsions 

and results in an increase in the elastic shear modulus.    

Aulich et al. studied pH-dependent PAA switching using infrared 

spectroscopic ellipsometry (IRSE).189 This technique allows monitoring changes in 

adsorption and changes in polymer film optical properties simultaneously. 

Particularly, they observed intensity changes of COO- vs COOH vibrational bands 

with pH increase from 2 to 10. The pH was tuned by adding potassium hydroxide or 

hydrochloric acid directly to the liquid cell. The COOH vibrational band decreases 

with increasing pH, while the intensitiy of COO- asymmetric and symmetric 

stretching bands rises. These results indicate that the increases of the number of 

deprotonated carboxylic acid groups with pH leads to brush swelling. Besides, a 

hysteresis-like swelling behavior was observed during pH increase and decrease. This 

behavior was explained by a complex mechanism related to the concentrations of K+ 

and Cl- within the brush. During pH increase at low Cl- concentrations, only the 

uppermost polymer layer dissociates. At pH higher than 6, the concentration of 

chloride is sufficient to penetrate through the brush and dissociate most of the 

carboxylic acid groups. Decrease in pH leads to minor structural changes until pH 8 

is reached. From pH 8 to 7, only the uppermost layer is re-protonated. The deep 

region of the brush still contains high concentration of potassium ions that cannot be 

neutralized by low concentration of chloride ions. The brush is in a strongly 

negatively charged state. At pH from 7 to 6, when the concentration of chloride ions 

is sufficient, the reprotonation occurs and brush deepest region collapses.  
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Titration experiments using FTIR spectroscopy were done by Dong190 and 

Santonicola150 for PMAA brushes. In both studies the degree of dissociation of 

PMAA layer vs pH was determined by integrating the area under the characteristic 

band of carboxylic acid group. The obtained titration curves were fitted using a 

sigmoidal function to determine the effective pKa of brush. The obtained pKa of brush 

from both studies (pKa=6.5±0.1150 and pKa=6.9±0.03190) are larger than the pKa of 

the free polymer in solution. This can be explained by brush high segment density 

and small free volume within the brush in terms of Alexander and de Gennes scaling 

model presented before. 

 

1.8.1.2. Wettability 

Wettability, or degree of wetting, of a surface by a liquid is the ability of that 

liquid to cover the surface. This depends on the relative values of the surface tension 

between each pair of the three existing phases (surface, liquid and air). Each surface 

tension acts upon its respective interface, and define the contact angle θ at which the 

liquid contacts the surface (Figure 1-18). The smaller is the angle, the better the 

liquid will spread or wet the surface. Equilibrium considerations allow the wetting or 

contact angle to be predicted from the surface tensions. This is known as the Young’s 

equation (1.29)191: 

                                                                         (1.29) 

where γSG, γSL, and γLG correspond to surface tensions between solid and gas, 

solid and liquid, and liquid and gas, respectively (Figure 1-18).  

The most commonly method used to measure the contact angle is the sessile 

drop method. In this method, the drop of liquid is placed on the surface using a 

syringe and the angle between the liquid and surface is measured using a goniometer. 
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Figure 1-18. Schematic representation of contact angle (θ) of a droplet of liquid on 

solid surface. 

 

The geometry of droplets of liquid on the surface determines either material’s 

surface is hydrophobic or hydrophilic. The surface is hydrophilic if the droplet 

spreads over a large surface area, and measured contact angle is less than 90o (Figure 

1-19, A). In contrast, if the droplet forms a sphere on the surface, and contact angle is 

more than 90o, the surface is considered hydrophobic (Figure 1-19, B). 

Hydrophilicity is characterized by high surface energy, while hydrophobicity is 

indicated by low surface energy.192  

 

Figure 1-19. Schematic representation of contact angle for hydrophilic (A) and 

hydrophobic (B) surfaces. 

 

The surfaces with different degrees of ionization show different contact 

angles.193,194 For example, for a weak polyanionic brush, the surface was found to be 

hydrophobic at low pH, but hydrophilic at high pH.189,190,195 pKa of the top polymer 

film layer (pKa
surf) can be estimated from the variation in the contact angle as a 

function of pH. This method was described by Creager et al.196 The pKa
surf is 

estimated as an inflection point from the curve where the degree of dissociation is 
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plotted vs. pH. In turn, the degree of dissociation at certain pH can be found from cos 

theta value using the following equation:196 

                                            (1.30) 

where α is the degree of dissociation, Гacid the absolute surface coverage of acid 

groups, γlv the surface energy at liquid/vapour interface, and cosθlow pH  corresponds to 

the contact angle at certain pH, which resulted in protonation of all acidic groups. 

Dong et al. showed that the pKa
surf of PMAA and PAA brushes are almost 2 units 

smaller than the pKa of the corresponding polymer, pKa
bulk.190 They suggested that 

carboxylic acid groups located closer to the polymer surface are easier to be 

dissociated than groups buried near the substrate.  

The water contact angle analysis was also used to estimate the stability of the 

polymer film. PAA layer was subjected to repetitive pH switch from 3 to 10.195 A 

reproducible change in water contact angle with pH over 4 cycles was observed. This 

suggests that the PAA carboxylic acid groups can be protonated/deprotonated several 

times without decreasing the brush stability at the interface.  

1.8.1.3.  Adhesion and friction between polymer-bearing surfaces 

Polymer-functionalized substrates are intensively used to produce surfaces 

with high and low adhesion or friction. Such substrates are utilized in engineering 

and biomedical fields. In general, adhesion is the interatomic interaction at the 

interface of two surfaces.197  The adhesive force can be expressed as the force 

required to separate two adhesive surfaces apart and, for polymer surfaces, it strongly 

depends on the way and the velocity at which the surfaces are separated as well as on 

the time the surfaces remain into adhesive contact.198,199  Among the variety of 

adhesion mechanisms, three of them are generally used to explain the experimental 

data: mechanical coupling, molecular bounding and thermodynamic adhesion.197 

When two polymer-bearing surfaces are sliding against each other, shear and 
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frictional forces arise between them. The friction coefficient is a relative measure of 

friction, and it is expressed as a ratio between friction force and applied external 

force. The value of friction coefficient can vary from near zero to more than one. For 

polymer-polymer interaction, the typical range for friction coefficient is 0.05-1.0;200 

however, recent experimental studies extend this typical range from 0.0006201 to 

1.06.202  

The adhesion and tribological properties of polymer layers can be 

investigated using Atomic Force Microscopy (AFM), Surface Forces Apparatus 

(SFA), microtribometer, and pin-on-disc macrotribometer. Microtribometer and pin-

on-disc macrotribometer work at micro- and macroscales respectively, while AFM 

and SFA use nano- and milli-scales of applied load. Microtribometer was developed 

to measure the tribological properties between two solid bodies. The usual pair of 

sample is a flat substrate and ceramic or metallic ball. The spherical probe is loaded 

with precise weight, and control station provides linear motion of the ball over the 

flat surface. Thus, the friction force between the probe and the sample is measured. 

Additionally, obtained scar images are recorded and analyzed in order to provide 

information about the wear. Pin-on-disc consists of a rotating disc and a fixed “pin” 

that is the analyzed sample. The load of 1-10 N (up to 60 N) can be applied and a 

friction force up to 10 N can be measured. This is a powerful technique that allows 

simple test of friction and wear for many sample geometries (ball, cylinder, cub).   

While the investigation of tribological responses on macroscale is important 

for practical studies, the techniques that use nanoscale (AFM and SFA) allow to 

investigate the mechanisms of effective lubrication. In AFM, the sharp tip of the 

cantilever is approached close to the surface, and the cantilever is deflected. 

Cantilever deflection is used to determined the interaction force between the tip and 

the surface via Hooke’s law. Deflection of the cantilever in vertical direction as a 

function of tip-surface distance can be presented as a force vs. distance curve. This 

curve contains information about adhesive and repulsive forces between the tip and 
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the surface. To measure the friction force, the lateral cantilever bending has to be 

monitored.198  

For SFA, the two samples are two crossed cylinders. The forces can be 

estimated from the deflection of the spring that supports one of the cylinders. The 

main advantage of SFA in comparison to AFM is that the absolute separation 

distance between the two surfaces can be measured using multiple beam interference 

fringes of equal chromatic order (FECO) (Figure 1-20).198 In SFA experiments, the 

surface pressure is controlled by controlling applied load. 

 

Figure 1-20. Schematic representation of Surface Forces Apparatus.  

(Reproduced from ref. 198 with the permission of Elsevier) 
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The surface interactions and properties of grafted polymers are strongly 

dependent on polymer chain conformation. Many studies aiming to correlate the 

surface interactions between polymer bearing surfaces (adhesion, friction) with the 

polymer properties (degree of ionization, conformation, molecular weight), and the 

environmental conditions (pH, ionic strength, temperature, solvent quality) have been 

reported.203-207 Sudre et al. studied the adhesion between 

poly(N,Ndimethylacrylamide) and polyacrylamide as model gels and PAA brushes. 

They found the adhesion decreases when pH increases, which was explained by the 

formation of hydrogen bonds at the interface.208   

Landherr et al. studied the friction between polymer brushes 

(polydimethylsiloxane, polystyrene or poly(propylene glycol)-poly(ethylene glycol) 

block copolymer brushes) and non-functionalized surfaces.209  They correlated the 

surface coverage (σ) and the fraction of the friction force arising from the adhesion 

(ε). The experimental data showed a very close agreement to ε~σ4/3 scaling prediction 

regardless of the polymer nature, which confirmed negligible contribution of 

adhesion to friction. Also in their previous work, they reported, that ε ranges from 

0.003 to 0.008 for thick polydimethylsiloxane network.210 

Chen et al. correlated the molecular weight of grafted chains with adhesion.211  

For polystyrene and poly(vinylbenzyl chloride) layers, both friction and adhesion 

decrease with increasing of MW. Moreover, cross-linking leads to low adhesion 

while bond-breaking to high adhesion. This was attributed to the increase in the 

number of chains “ends” at the interface. 

Ramakrishna et al. aimed to understand the adhesion between poly(L-lysine)-

poly(ethylene glycol) (PLL-g-PEG) copolymers grafted to rough and flat surfaces, 

and polyethylene colloidal probe. Upon adsorption of PLL-g-PEG to the rough 

surface, adhesion decreases, but the lowest friction is achieved when a smooth 

surface is modified with the same brushes. This was related to the smaller contact 

area for a brush-functionalized flat surface compared to a rough surface. Decrease in 
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the contact area led to a decrease of adhesion and, consequently, to a decrease of 

friction.212 

Many theoretical and simulation studies tried to elucidate the lubricating 

mechanism of polyelectrolyte interaction.213-216 It was shown that friction coefficient 

correlates with the number of shearing polymer segments within the interpenetration 

region regardless of ionic strength and polymer degree of polymerization.217  

However, the role of polymer conformation as well as many other parameters (salt 

concentration, nature of the polyelectrolyte brush, presence of counter-ions) in 

effective lubrication is not clear yet. In general, polyelectrolyte brushes in aqueous 

environment reveal extremely low friction coefficient: it has been shown that the 

frictional forces between two opposing charged polymer brushes can be reduced to 

extremely low values (µ≈0.0006–0.001 at pressure of several atmospheres).201 The 

authors explained this behavior by the superior resistance towards brush 

interpenetration, as well as by the presence of mobile counter-ions, resulting in 

increased osmotic pressure. In contrast, Liberelle et al. reported much higher friction 

coefficients (µ≈0.1-0.3) depending on the applied pressure for end-grafted PAA 

brushes.218 They associated this with an increased mutual interpenetration upon 

compression, similar to the neutral brushes. Interestingly, no surface damage or 

polymer removal occurred even at high applied load (ca. 40 atm) confirming the 

superior robustness of these charged polymer brushes. Other studies for poly(2-

(dimethylamino)ethyl methacrylate) brushes grafted from gold surface were 

performed using AFM.202 The authors aimed to determine the role of the degree of 

dissociation on brush frictional properties. The results obtained contradict the results 

obtained for PAA brushes by Liberelle et al. The enhanced lubrication was revealed 

at low pH and explained by the formation of highly charged hydrated layers. Friction 

coefficient decreases from ca 1 to ca 0.1 when the pH decreases from 11 to 3 at 24oC. 

At high pH, when brushes collapse completely, the friction is low compared to 

partially collapsed chains, and that was explained by an increased surface roughness.  
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 Additionally, most of the tribological studies were performed using 

physisorbed polymers that can detach in the presence of small ions. These ions screen 

the electrostatic interactions with the surface and compete with the polyelectrolytes to 

the available adsorption sites. Therefore, the covalent attachment of polymer chains 

is prefered for surface properties studies. The ideal polymer system should be able to 

sustain high loads and extreme environmental conditions, and be wear resistant. Such 

system should also still be responsive and show reversible behavior upon changes in 

environmental conditions.  

 

1.9. Ellipsometry. Basic principle 

Ellipsometry is an optical technique that is widely used for investigating thin 

film dielectric properties. It measures the changes in light polarization after reflection 

from a planar surface. The name “ellipsometry” is attributed to this technique due to 

the fact that elliptical polarization is used.219-222 

 

Figure 1-21. Schematic representation of set up for ellipsometry measurements. 

 

A typical ellipsometry set up consists of a light source, polarizer, analyzer and 

detector (Figure 1-21). The type of light source determines the type of the instrument. 

A single-wavelength ellipsometer uses a specific wavelength laser as the light source, 

Light source

Polarizer Analyzer

Detector

Φ

Sample
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usually helium-neon lasers. A spectroscopic ellipsometer uses a broad spectral range 

(in ultraviolet, visible or infrared region) light source. For example, ellipsometer M-

2000 VASE employs a white light source ranging from 370 to 1000 nm. The 

polarizer converts the unpolarized light into linearly polarized light. After reflection 

from the substrate, elliptically polarized light enters the analyser and, then, the 

detector, which converts the light into an electronic signal.219,220,222 

 It is usual to describe the state of polarization using two orthogonal vectors s 

and p (Figure 1-22, A). One of them is parallel to the plane on incidence (p) and 

another is perpendicular to the plane of incidence (s) (Figure 1-22, B).  

 

 

Figure 1-22. A) Typical geometry of an ellipsometric measurement. B) Schematic 

representation of p and s vector orientation in an elliptically polarized light.  

Reproduced with permission from J.A. Woollam Co., Inc. 

 

Both components change their amplitudes differently after interacting with 

the surface. This change can be expressed by a complex reflectance ratio ρ (eq. 1-

31):220,222 

                                            (1.31) 
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where rp and rs are amplitudes of p and s components, respectively (Fresnel 

coefficients), tan ψ is the amplitude ratio, and Δ is the phase difference after 

reflection. 

There are several advantages of the ellipsometric technique: 1) it is 

nonconductive and non-destructive; 2) it is an absolute measurement (no references 

needed); 3) it is of high precision and fast; 4) it is suitable for in situ 

experiments.220,223 However, ellipsometry uses an indirect data analysis requiring a 

model. 

The experimental ψ and Δ values cannot be directly converted into optical 

constants n (refractive index) and k (extinction coefficient). Thus, a suitable and 

representive model must be used. The constructed model should include information 

about the substrate, layers, their quantity and approximate thicknesses. Once the 

appropriate model is built, the measured ψ and Δ values are compared to the ψ and Δ 

values provided by the model (fitting process). Using the Levenberg-Marquardt 

fitting algorithm, the model parameters are varied until the best correlation with the 

experimental values is obtained. After the fitting process, the optical (n and k) and 

structural (film thickness, porosity, crystallinity, anisotropy, uniformity) parameters 

of the analysed layer can be obtained.220,222 The mean squared error (MSE) parameter 

is typically used to estimate the difference between the experimental and calculated 

values (eq. 1.32).224   

                   (1.32) 

where N is the number of measured ψ and Δ pairs, M is the number of fitting 

parameters, σΔ,i 
exp and σψ,i 

exp are the experimental standard deviations for Δ and ψ of 

ith data points, obtained from the error bars of calibration parameters.  

When experimental data match perfectly the built model, MSE value should 

be equal to 0. But in real measurements this is impossible to achieve. And the 
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theoretical model is considered to describe well the experimental data when MSE 

value tends to zero.225 

In the optical model, each layer should include information about its 

wavelength dependent optical parameters (n and k). This dependence is available as a 

tabulated list and integrated into the analyzing software. However, for some layers, 

tabulated values do not describe the material properly. In this case, the dispersion 

model is the way to model the optical properties. For homogeneous layers, the 

Cauchy normal dispersion model can be used (eq. 1.33). It correlates the refractive 

index with the wavelength and it can be applied to any transparent material in the 

visible region (k=0):220,222 

                                                                          (1.33) 

λ is the wavelength, A, B, C are Cauchy coefficients, which describe wavelength 

dependent refractive index changes. For absorbing materials, the area of absorption is 

modeled using Lorentz, Harmonic, and Gaussian oscillator-based models.222 

 

1.9.1. Ellipsometry for characterizing polymer films 

Ellipsometry is an attractive technique to study the macroscopic parameters of 

polymer films. It provides information about the film thickness, porosity, 

composition, and the surface and interface roughness, without damaging the film.220  

1. Film thickness. When light interacts with the film, a portion of it is 

reflected from the film surface. Another portion travels through the film 

and it is reflected back from the substrate.  The interference between 

reflected and transmitted light includes amplitude and phase information 

that is used to estimate the thickness. For polymer-coated surfaces, this is 

the most popular method since it is non-destructive, does not require 
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special sample pre-treatment, and it is technically easy and fast to 

perform.221,222  

2. Porosity. Information about porosity percentage as well as the pore 

distribution within the layer can also be obtained using this technique. It 

requires an accurate model for determining the porosity percentage at the 

interface and in bulk. The model involves the effective medium 

approximation (EMA), where two or more materials (void and polymer in 

porous material) are mixed together.226 This is the physical model where 

macroscopic parameters are estimated based upon fractions of the optical 

properties of its components. 227,228 

3. Composition, surface/interface roughness. For heterogeneous systems 

consisting of two or more materials, the ratio between components can 

also be established using the EMA model. Rough surfaces are also 

considered as heterogeneous systems, where one of the components is 

ambient.227,229,230 

 

1.9.2. Liquid ellipsometry for studying polymer dynamics 

The optical properties of polymer films in situ can be studied by ellipsometry. 

The structural changes within the film can be monitored through changes in optical 

constants. Structural changes of polymer chains usually lead to changes in the film 

dimensions caused by swelling and collapsing. By monitoring the variation in optical 

properties, it is possible to obtain information about polymer conformational changes 

on the surface. There are several examples where swelling process as a function of 

time, temperature, changes in pH, and applied voltage was observed by ellipsometry. 

Zudans et al. monitored the swelling dynamics of poly(dimethyl diallyl ammonium 

chloride)-silica composite with time.231 Hydration caused significant changes within 

the film, and the transformation from dry to early hydrated and then to fully hydrated 
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film was observed by a combination of ellipsometry and electrochemistry. 

Temperature induced swelling studies of neutral poly(N-isopropyl acrylamide) 

(PNIPAM) brushes were done by Kostruba et. al.232 They monitored the thickness 

variation of PNIPAM brushes with the temperature of the surrounded solution. The 

authors found the temperature-dependent behaviour is determined by a phase 

transition. Changes in refractive index indicate that only the outer parts of the 

PNIPAM brushes are subjected to structural changes. Another example of 

temperature-driven structural conformations of PNIPAM brushes was presented by 

Rauch.233 They monitored the swelling dynamics and the measured water content 

inside the brush using the EMA Bruggerman approximation.233 Ramos et al. studied 

brush hydration and estimated the polymer water content by two techniques: Quartz 

Crystal Microbalance (QCM) and spectroscopic ellipsometry.234,235 Spectroscopic 

ellipsometry determined the optical mass, while QCM measured the acoustic mass, 

being composed of the polymer and the solvent masses. The water content was 

calculated from the difference between the acoustic and optical masses. The voltage-

induced swelling of poly-(2-(dimethylamino)ethyl methacrylate) brushes was studied 

by Weir et al. using optical ellipsometry.236 The authors concluded that voltage-

induced swelling resulted in a wider range of possible brush conformations in 

comparison to pH-induced conformational changes. Finally, multiple other examples 

of pH responsiveness studied by ellipsometry for homopolymer,172,233,237  mixed,238 

and block copolymer brushes188 have been reported. All these examples demonstrate 

that ellipsometry is a useful tool for quantitatively probing thin films and surfaces in 

the presence of fluids. 

 

1.9.3. Experimental data analysis and modeling  

This section describes the rational behind the model choice for evaluation of 

polystyrene-block-poly(acrylic acid) (PS-b-PAA) brushes thickness under different 

environmental conditions (pH and salt concentration). For in situ experiments, the 
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cell filled with liquid is used. The Horizontal Liquid Cell™ (J. A. Woollam Co) is 

described in Chapter 4. The studied polymer film should demonstrate sufficient 

optical contrast, i.e. n and k values, that are distinct from the medium (water).231 Prior 

to in situ measurements, the dry film thickness and corresponding optical constants 

must be determined. The refractive index of each block in PS-b-PAA brushes is 

bigger than the refractive index of water (nwater=1.3330). The refractive index of 

1.5893 is measured for a 10 nm thick PS layer. This value is close to the reported 

value at 589.3 nm (nPS(bulk)=1.590-1.592) for PS in bulk.239 A refractive index of 

1.4788 is measured for a 12 nm PAA film, which is slightly different from the value 

reported in the literature (nPAA(bulk)=1.527).239 This discrepancy between measured 

and values reported in the literature values can be explained by a fraction of voids 

(air) between the grafted chains that decreases the overall refractive index of the 

layer. 

The generic optical model consisting of five layers, as described in  Figure 1-

23, A was used to analyse the experimental data obtained in air. The dry thickness of 

each layer is measured prior to grafting the next layer. To determine the thickness of 

the top layer, thicknesses of all underlying layers have to be known and to remain 

fixed. L#0 is a silica substrate and its thickness is fixed as 1 mm. L#1 represents a 

silicon oxide layer. The thickness of this layer can vary from wafer to wafer. Usually, 

the silicon oxide thickness is stated by the manufacture. However, the exact SiO2 

thickness has to be determined prior to the substrate modification. Silicon wafers 

from University Wafer Co (100-mm diameter, boron-doped, (100) orientation, one side 

polished) with an average silicon oxide thickness of 2 nm is used. L#2 represents the 

initiator layer, and its thickness is measured prior to polymerization. The initiator 

layer thickness is 0.2±0.03 nm and it is modeled using Cauchy equation with fixed 

Cauchy coefficients (An=1.45, Bn=0.01 and Cn=0) resulting in MSE of 2.0-2.3. PS 

layer (L#3) is modeled using “polystyrene_g.mat” layer from the WVASE library. 

MSE for this layer thickness does not exceed 2.5. The top PAA layer (L#4) is also 
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modeled using the Cauchy equation with fixed An, Bn, and Cn coefficients and a MSE 

of less than 5 is usually obtained. 

The top “H2O” layer is added to the above described model for experiments 

done in liquid environment (water or buffer) as shown in Figure 1-23, B. The same 

top model layer (“H2O_22o”) is used for all experiments in water and in buffer 

because the refractive index of 0.1 M Tris buffer (nb=1.3344) is similar to the 

refractive index of pure water. The swollen PAA layer is modeled usingx the Cauchy 

equation with non-fixed An and Bn coefficients. This means that  the software finds 

the best correlation between experimental and modeled values not only by varying 

the thickness but also by changing An and Bn coefficients. This approach results in 

minimum MSE values. 

Figure 1-23 shows Ψ and Δ values for PS-b-PAA layer in air (A’) and in 

water (B’). The dashed green line is an experimental Ψ values, and the dashed blue 

line represents experimental Δ values. The red line corresponds to the generated data 

from the model.   

The spectrum of PS-b-PAA brushes in water is different than in air. This 

indicates reorganization within the brush. Since the PS layer is hydrophobic and does 

not undergo any structural change in presence of water, these spectrum changes can 

be associated with solvation of hydrophilic PAA layer. A good overlap between the 

experimental and generated data confirms that the selected models for both dry and 

wet measurements represent the film composition correctly. 

The structural changes within the PAA layer induced by pH and ionic 

strength can be precisely monitored in-situ with ellipsometry by measuring the 

thickness and refractive index of the layer. The thickness of PAA layer increases with 

pH (Table 1-2). This is expected due to the increase of the number of dissociated 

carboxylic acid groups with pH leading to electrostatic repulsion between the chains, 

and, therefore, to brush extending.  
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Figure 1-23. Optical model for the PS-b-PAA brushes in air (A) and MilliQ water 

(B) and the corresponding experimental data of Ψ and Δ obtained in air (A’) and 

liquid (B’). Thickness of the PS layer is 3.1 nm (in air) and PAA is 12.2 nm in dry 

state and 28.1 nm in water. 

 

Table 1-2. Refractive indices obtained by ellipsometry at 589.3 nm and 

corresponding PAA layer thickness at different conditions. Refractive index and 

thickness were estimated using the Cauchy model 

PAA layer Refractive index Thickness, nm 

air 1.4788±0.0002 12.2±0.01 

water 1.4235±0.0011 28.1±0.2 

pH 6.5 1.4106±0.0143 47.6±11.7 

pH 7.5 1.3975±0.0075 54.1±8.2 

pH 8.5 1.3874±0.0061 78.3±0.7 

pH 9.5 1.3765±0.0032 117.4±0.3 

pH 10.5 1.3616±0.0002 137.0±1.5 
 The error is a standard deviation from three different measurements. 
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The swollen polymer layer is a mixed phase of polymer chains and analyte. The 

refractive index of the polymer film immersed in the medium depends on the portion 

of the analyte trapped within the layer. Thus, in case of PAA layer immersed into 

water-based buffer solution, the overall refractive index of the swollen PAA layer 

decreases with increasing the portion of water trapped within the brush. Table 1-2 

shows that the refractive index of the PAA layer decreases while pH and the 

thickness increase. This can be explained by conformational changes within the PAA. 

Particularly, a pH increase leads to the deprotonation of PAA carboxylic acid groups. 

The presence of negative charges along the polymer chains results in strong chains 

repulsions and in a brush extension.  Moreover, with increasing the degree of 

dissociation, PAA layer becomes more hydrophilic and attracts more water inside the 

brush. The increase in water content results in a decrease in the PAA layer refractive 

index. So, the refractive index value is a good indicator of structural changes within 

the polymer brushes. 

 

1.10. Total Internal Reflection Fluorescence 

Microscopy (TIRFM) 

The total internal reflection fluorescence microscopy is a sensitive 

spectroscopic technique having a high signal-to-noise ratio. The main advantage of 

TIRF over other fluorescence microscopies as conventional fluorescence or confocal 

is its selective excitation such that only a thin layer of the fluorophore close to the 

substrate is examined. This is contrast to other fluorescence methods that examine the 

bulk properties in solution. Selective excitation with TIRF provides a high 

contrast.240-243 

TIRF microscopy is based on the total internal reflection (TIR) 

phenomenon.241, 242 This occurs when the incident light travels through a medium 

having a high and low refractive index at an angle greater than the critical angle. In 
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general, the refraction angle (θ2) is always greater than the angle of incidence (θ1) 

(Figure 1-24, A). When θ2=90o, θ1 is the critical angle (Figure 1-24, B). The light is 

completed reflected when θ1>the critical angle. The resulting total reflection is called 

internal because the energy from the incident wave is confined within the original 

medium.  

 

 

Figure 1-24. TIR principle. A) Typical geometry incident, refrected and 

reflected light at the medium boundary. B) Critical angle, above which total internal 

reflection occurs. 

 

When the incident wave passes the critical angle, the evanescent wave with 

the same frequency as an incident light, is generated. The evanescent wave creates a 

very thin electromagnetic field (evanescent field) that penetrates the second medium.  

It propagates parallel to the surface and excites the fluorophores that are within 100 

nm and exponentially decreases with increasing the distance from the surface.241, 242 

Thus, only fluorophores that are located close to the surface emit. In TIRF 

microscopy, a monochromatic laser is aligned within the objective. Two types of 

optical arrangement are used to direct the light: prism and numerical aperture.  
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TIRF microscopy is widely used to visualize biological samples such as living 

cells, because of it slow phototoxic effects. Additionally, TIRF microscopy has 

multiple applications in biochemistry and biology, such as selective visualization of 

the cell/substrate contrast, visualization of single fluorescent molecules, 

micromorphological structures, and dynamics of living cells.240,241 Additionally TIRF 

microscopy is also used to investigate the electrofluorochromic properties of metal-

organic compounds.243 

 

1.11. Objective and structure of the thesis 

The objective of the present work was to prepare well-defined weakly 

charged polymer brushes from silica-based surfaces, and to investigate their 

responsiveness to changes in pH and ionic strength, as well as their stability under 

different environmental conditions. Then, we aim to correlate physical and chemical 

properties of the end-grafted polymers (thickness of the polymer layer, grafting 

density, degree of ionization of the polymer), environmental conditions (ionic 

strength, pH, compression, and shear) and interactions (friction, adhesion and 

distance dependent forces) between opposing functionalized polymer-coated 

surfaces. This knowledge will allow identifying the key parameters which are 

effective in controlling adhesion and friction between polymer-bearing surfaces. 

The thesis includes six chapters: 

Chapter 1 represents a general introduction to polymer brushes. It describes 

methods of brush preparation, characterization and overview of recent achivements in 

the polymer brush field.  

Chapter 2 is a verbatim copy of the paper published in Macromolecular 

Symposia (2010, 297, 1-5). It presents a first report of direct synthesis of poly(acrylic 

acid) brushes from initiator-functionalized mica surface using water-assisted ATRP.  
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Chapter 3 is a verbatim copy of the full paper published in Macromolecules 

(2011, 44, 8177-8184). Here, we confirm that hydrolysis of substrate-initiator bond 

results in polymer brush cleavage, and we determine the conditions under which 

hydrolysis occurs. We used fluorescence polymers for the direct spectroscopic 

monitoring of polymer degrafting from silica via Total Internal Reflection 

Fluorescence Microscope.  

Chapter 4 is a verbatim copy of the full paper published in Polymer 

Chemistry (2014, 5, 2242-2252). We prepared polystyrene-block-poly(acrylic acid) 

brushes using SI-ATRP and studied their responsiveness to variation of pH and ionic 

strength using spectroscopic ellipsometry. We showed that the hydrophobic 

polystyrene block of the copolymer protects the substrate-initiator bond against 

hydrolysis.  

Chapter 5 is a verbatim copy of the full paper submitted to Polymer 

Chemistry, where we present a first report of covalent attachment of 

organophosphonic acid ATRP initiator to silica surface. Obtained organophosphonate 

layer was used to initiate polymerization, and prepared polyelectrolyte brushes were 

characterized by AFM, ATR-FTIR, and contact angle. Friction properties of PAA 

brushes as a function of pH and ionic strength were studied. 

Chapter 6 includes the main conclusions and future perspectives. In this 

chapter our significant contribution to the field is specified, and ideas for future work 

are proposed. 
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Chapter 2 
 

Direct Polymerization of Polyacrylic Acid on Mica 

Substrates using ATRP – A Preliminary Study§ 

                                      
 
 
 
 

 
 
  

                                                       
§ This chapter is a verbatim copy of the paper published in Macromolecular Symposia 2010, 

297, pp. 1-5. It is co-authored by W.G. Skene and Suzanne Giasson. 
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2.1 Summary 

Unprecedented direct polymerization of sodium acrylate (NaA) on mica and 

silica substrates was undertaken using standard ATRP polymerization conditions at 

room temperature. The resulting thickness of the poly(sodium acrylate) (PNaA) 

grafted layer was determined using ellipsometry and AFM.  

 

2.2 Introduction 

Polymers brushes covalently attached to surfaces provide the means to 

modify surface properties of substrates to develop responsive surfaces such as anti-

fouling surfaces1-3 selective permeation membranes4,5 and self-biolubricating 

surfaces.6,7 Polyelectrolytes (PE) brushes represent responsive layers because their 

degree of ionization can be reversibly varied via pH and ionic strength which results 

in conformational changes.  Therefore, controlled conformational responses to 

variations in the surrounding environmental conditions result in tuneable interfacial 

surface properties.8,9  

The most precise and reliable means for measuring surface interactions 

between brushes is the Surface Forces Apparatus (SFA).  The transparency and 

atomically smooth surface of cleaved mica make it an ideal substrate for SFA 

measurements. Direct polymerization of polymer brushes from mica is desired 

because it affords the means to modulate molecular weight, which in turns influences 

the brush height and conformation.  We recently demonstrated that poly-tert-butyl 

acrylate could be prepared on mica by controlled polymerization using ATRP.10 

Although poly-tert-butyl acrylate can be converted into polyacrylic acid by 

hydrolyzing the tert-butyl group,11 direct polymerization of acrylic acid involves 

fewer synthetic steps, and more particularly, the hydrolysis with strong acids is 

eliminated.  This reduces the possibility of unwanted polymer cleavage from the 
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substrate. Unfortunately, ATRP of acrylic acid is not possible as a result of reduced 

catalyst reactivity with the carboxylic acid.12  Conversely, sodium acrylate (NaA) can 

be polymerized by ATRP.13  Although NaA is possible to polymerize on silica 

substrates, its direct polymerization affording poly (sodium acrylic acid) (PNaA) on 

mica has not been demonstrated. Successful polymerization of NaA on mica is 

important for investigating the changes in surface properties and surface forces 

induced by changes in ionic strength and pH.  Herein, we present our preliminary 

results for the polymerization of NaA on mica as a proof of concept for NaA 

polymerization on mica in addition to demonstrating that absolute brush height 

measurements by AFM is possible. 

 

2.3 Results and Discussion 

 

Scheme 2-1. Schematic of immobilization of 1 and direct polymerization of NaA on 

mica. 

 

Polymerization of NaA was done using a previously reported ATRP initiator 

(1) that was immobilized on mica, as illustrated in Scheme 2-1, with a controlled 

surface density as previously reported.14 Mica sheets were first cleaved.  A mica strip 

was then laid across a portion of the freshly cleaved mica to form a mask.  The 
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exposed mica was subsequently activated by H2O/argon plasma using a Plasma Prep 

II from SPI Supplies to create hydroxyl groups.15  The initiator was chemically 

attached to these OH groups using self-adsorption from solution.14  

The polymerization of PNaA was done in the following manner:  NaA was 

added to a fixed volume of water and then left to stir at room temperature until it was 

completely dissolved.  The pH of the monomer solution was adjusted to that 

previously reported.16  Bipyridine, CuBr and CuBr2 were mixed in a round-bottomed 

flask and then deoxygenated under vacuum and backfilled with argon three times. 

The monomer solution was also deoxygenated under argon for 30 minutes after 

which it was transferred to the flask containing the copper-ligand mixture followed 

by stirring for 3 hours, until the solution was homogeneous.  A clean initiator-

functionalized mica substrate was placed in a flame-dried Schlenk flask under a 

stream of argon followed by deoxygenation under vacuum and then backfilled with 

argon three times.  The above-described polymerization solution was transferred into 

the Schlenk flask at room temperature under a stream of argon followed by stirring.  

After 70 minutes, the surfaces were removed, rinsed with water, absolute ethanol, 

extracted and then washed three times for two hours with Milli Q, rinsed again with 

absolute ethanol and Milli Q water and then dried under nitrogen. A typical 

polymerization was done with the following: water (5 mL, 280 mmol), NaA (2.79 g, 

30 mmol), bipy (155 mg, 0.99 mmol, CuBr (57 mg, 0,40 mmol), and CuBr2 (18 mg, 

0.08 mmol). AFM imaging and polymer film thickness measurements were carried 

out as previously reported.10 

We initially investigated the smoothness of the immobilized 1 on mica. As 

seen in Figure 2-1, the root mean square (rms) value measured by AFM confirms that 

a homogeneous surface coverage on mica is possible.  A smooth and homogenous 

initiator layer on the substrate is desired because the roughness of this layer can 

ultimately affect the polymer layer smoothness.  A smooth initiator layer will ensure 

a smooth polymer layer (vide infra).  
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Figure 2-1. AFM images of freshly cleaved mica and mica covered with initiator 

layer. 

The polymerization of NaA was done on mica with 1 in order to confirm that 

ATRP using this monomer was possible.  The topology of the resulting polymer layer 

on mica was studied with AFM and compared to that of virgin mica as illustrated in 

Figure 2-2. From this figure, the smoothness of the polymer layer is evident.  

Moreover, the smooth polymer layer makes for easy determination of the absolute 

polymer thickness by comparing the step-height difference between the virgin mica 

and the polymer regions.  The calculated thickness of the pNaA layer using the step-

height method was 94.5 nm.  

 

 

Figure 2-2. AFM image showing the step-height difference between the polymer 

layer of PNaA and the pristine mica. 
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The direct polymerization of NaA on a silica substrate was also investigated 

using similar polymerization conditions as with mica. This was done as a control test 

for comparing with NaA polymerized directly from mica. Comparisons of the 

resulting grafted polymer layers between mica and silica were done using an AFM 

step-height method and ellipsometry correspondingly. Ellipsometry was selected as a 

non-destructive technique to measure a thickness of the polymer layer. However, the 

multilayer mica structure results in a complex phase and amplitude signal, which is 

difficult to resolve. Thus, AFM was used as an alternative method for mica samples. 

The silicon wafer on which PNaA was obtained was investigated by 

ellipsometry.  The resulting polymer layer grafted from the initiator-modified silica 

shows a thickness of 57.3 nm, which is different from that obtained from 

functionalized mica. (Figure 2-3, Table 2-1).  

Although comparable thickness were obtained for both poly(butyl acrylate) 

(PBA) and PNaA (Table 2-1), the direct polymerization of the latter is advantageous 

because the polymerization is much faster and can be done at room temperature.  

Unwanted polymer degrafting possible by thermal cleavage is therefore minimized 

with the polymerization of NaA. The direct polymerization using NaA is 

advantageous because the polymerization can be done at room temperature. 

Moreover, by eliminating the hydrolysis step required with poly-tert-butyl acrylate,11 

for instance, there is no risk of degrafting the polymer from the substrate.  

Nonetheless, the step-height measurements confirm that directly polymerization at 

room temperature of NaA on mica is possible. 
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Figure 2-3. AFM topographical micrograph of PNaA polymerized on a silicon wafer. 

To confirm that the thickness of the polymer layer measured by step-height 

for mica was not an isolated phenomenon, we repeated the polymerization several 

times.  Polymer layers on the order of 90 nm in thickness were consistently obtained 

and varied only as a function of polymerization time, consistent with controlled 

polymerization kinetics.   

 

Table 2-1. Comparison of polymer layer thickness of PNaA polymerized via ATRP 

under similar polymerization conditions on mica and silica wafers. 

Substrate Film thickness, nm Measurement Technique 

Mica 94.5 AFM Step-height 

Silicon wafer 57.3 Ellipsometry 

 

Roughness (5x5µm) obtained by AFM 0.1 nm 

Thickness measured by ellipsometry 57.3 nm 



Chapter 2                                                                               92 

  

In conclusion, we demonstrated that NaA can be directly polymerized on 

activated mica using an ATRP initiator covalently linked to the substrate.  The 

polymerization of NaA on mica resulted in thick PNaA films within 70 minutes of 95 

nm in thickness.  The absolute thickness of the polymer layer was measured by AFM 

using the step-height method.  Under similar conditions, the ARTP polymerization of 

NaA on mica gave consistently thicker films than on silicon wafers.  Direct 

polymerization of NaA on mica provides the means to prepare polymers with tailored 

degrees of polymerization and for eventual surface-properties studies using SFA. 
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Monitoring in Real-Time the Degrafting of 

Covalently Attached Fluorescent Polymer Brushes 

Grafted to Silica Substrates– Effects of pH and Salt** 
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3.1 Abstract 

Poly(acrylic acid) (PAA) covalently immobilized on glass substrates was 

made fluorescent by grafting a BODIPY derivative (PMOH) via an ester linkage.  

Although only ng/cm2 of polymer are understood to be immobilized onto the SiO2 

substrate, the fluorophore-tagged polymer was readily visible to the naked eye and its 

fluorescence was easily detected. The characteristic BODIPY emission, centered at 

550 nm, was used to follow the degrafting of PAA from the glass substrates in 

aqueous solution in real-time using Total Internal Reflection Fluorescence (TIRF) 

microscopy.  The substrate-initiator bond hydrolysis and the conditions at which the 

PAA degrafting occurred were unequivocally confirmed in real-time by TIRF 

microscopy. No cleavage of the polymer occurred between pH 6.5 and 10.5 in the 

absence of NaCl.  In contrast, polymer degrafting from the substrate occurred at pH ≥ 

9.5 when 10 mM NaCl was added to the buffer solution. 

 

3.2 Introduction 

Polymer bearing surfaces are of interest because of their thermal and solvent 

response,1,2 their prospective use as protein and cell adhesive platforms,3-5 or as self-

biolubricating substrates, among others.6 Surface-tethered polymer chains provide the 

means to tailor the surface properties by undergoing externally stimulated 

conformational changes. This is particularly true for polyelectrolyte polymers such as 

poly(acrylic acid) (PAA) whose degree of ionization is highly influenced by pH, 

ionic strength, and the presence of multivalent species.7,8 Various polymer 

conformations including pancake and brushes are possible with end-tethered 

polyelectrolytes by varying surface density and the media.9 The control of 

conformational properties have allowed for advances in areas such as surface friction 
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modulation, switchable wettability, autophobicity,10-12 antifouling13-16 and 

lubricity,6,17-21 to name but a few. 

Surface-bound polymers of well-defined discrete degrees of polymerization 

and high surface homogeneity are desired for ensuring control of surface properties 

and reversible surface response with external stimuli such as temperature, pH and 

ionic strength.  These polymers can be obtained by controlled polymerization with an 

ATRP initiator chemically linked to the substrate. For silica substrates, the substrate–

initiator linkage (Sisubstrate-O-Siinitiator bond) is generally robust enough for both 

sustaining the reaction conditions required for ATRP and subsequent polymer brush 

formation and characterization. We recently showed that PAA brushes built on mica 

by anchoring polystyrene-polyacrylic acid (PS-b-PAA) diblock copolymers in a 

polystyrene monolayer covalently attached to OH-activated mica surfaces resist to 

cleavage at pH 5.5 with added salt for several days.22 However, there is still 

uncertainty regarding the robustness of the substrate-polymer bond and whether it is 

resistant to the extreme pH and ionic strengths that are required for conformational 

analyses of polyelectrolyte brushes. It is unknown whether these extreme conditions 

hydrolyze the Si-O-Si bond and cleave the polymer from the substrate leading to 

undesired decrease in polymer grafting density, similar to what was reported for 

poly(methacrylic acid) brushes and PAA brushes grafted from mica.23-25  

Knowing the conditions under which undesired polymer cleavage occurs is 

pivotal for accurate surface-property studies.  They are also important for controlling 

reversible polymer conformational changes, while preventing polymer degrafting. 

Although we previously provided indirect evidence for polymer cleavage from mica 

at high pH and salt concentrations,26 determining the exact conditions under which 

PAA cleavage occurred was not possible.  Also, unequivocal evidence for polymer 

degrafting from silica substrates has not yet been demonstrated. Therefore, direct 

evidence for polymer degrafting and the conditions under which it occurs on glass 

substrates is of importance for accurate structure-property studies. 
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Motivated by the need to unequivocally confirm polymer cleavage from silica 

substrates and to determine the exact pH and ionic conditions at which the undesired 

cleavage occurs, we explored a number of techniques to follow this process, 

including AFM and ellipsometry. On the one hand, AFM is a sensitive method for 

accurate step-height measurements for micron-sized areas, the low scan rate and 

limited sample area however preclude the analyses of multiple samples for accurately 

assessing the degrafting conditions in solution. It is also a static analytical tool 

requiring the samples to be equilibrated in the given solution prior to analyses.  

Therefore, detecting the real-time degrafting in solution is not possible. On the other 

hand, rapid surface analyses over larger areas are possible by ellipsometry. However, 

direct quantitative measurements in solution under various conditions are problematic 

owing to local variations in refractive indices with changes in pH and salt 

concentration.  

Total Internal Reflection Fluorescence (TIRF) microscopy is an ideal method 

for studying the degrafting of covalently linked polymer brushes from silica surfaces 

and it is a suitable alternative to AFM and ellipsometry. The evanescent field 

achieved in total internal reflection enables selective excitation of the region in close 

proximity (tens to hundreds of nanometers) to the surface resulting in strong signals 

with low background emission.27, 28 Labeling of the otherwise non-emissive PAA 

would make it compatible with TIRF microscopy usage while providing the 

sensitivity required for detecting the sub-ng polymer quantities grafted on the 

substrate.  An additional advantage of TIRF microscopy is that multiple samples of 

various medium conditions can be tested on a single silica substrate, therefore 

minimizing the variability in grafting density, surface roughness, and other inherent 

inconsistencies between different substrates.  By far, the main advantage of this 

technique is that solutions of desired pH and salt concentration can be flowed directly 

over the substrate during the fluorescence measurements (Figure 3-1).  Therefore, the 

pH and ionic strengths required for polymer degrafting can be directly obtained in 
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real-time by monitoring the fluorescence decrease as a function of the media being 

flowed over the substrate. 

 

Figure 3-1. Flow-through chamber of a silicon elastomer mounted on the glass 

coverslip bearing the PMOH_PAA. 

Although, TIRF microscopy is well suited for studying the degrafting of PAA 

from silica substrates in real-time and is advantageous relative to other techniques, 

the polymer must be fluorescent. As a result, we herein report the preparation of a 

fluorescently tagged PAA and the use of TIRF microscopy for unequivocally 

confirming polymer degrafting from glass substrates.  The pH and salt conditions 

required to promote polymer cleavage from the substrate are presented. 

 

3.3 Experimental section 

3.3.1 Materials 

Chemicals were used as received from Aldrich unless otherwise stated. 

Copper bromide (CuBr) was purified as previously reported.29 Tert-butyl acrylate 

(tBA) and styrene were purified by passing through a column of basic alumina, 

followed by vacuum distillation immediately prior to use. 8-Acetoxymethyl-2,6-

diethyl-1,3,5,7-tetramethyl pyrromethenefluoroborate (PM 605) was purchased from 

Exciton, Inc (Dayton, OH). MilliQ water was taken from a Millipore grade A 10 

purification system.  Silicon wafers were obtained from University Wafer Co. All 
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glassware was oven-dried at 120o C overnight.  Glass coverslips (Fisherbrand No. 1) 

for TIRF microscopy experiments were purchased from Fisher Scientific. 

8-Hydroxymethyl-2,6-diethyl-1,3,5,7-tetramethylpyrromethene 

fluoroborate (PMOH). PMOH was prepared from its commercially available ester 

(PM 605) following previously reported methods.30-33  

 

3.3.2 Substrate preparation and initiator immobilization 

Glass slides (22 x 22 mm2) were cut in half using a diamond pencil. The glass 

substrates were treated with a Piranha solution (H2SO4/H2O2 70:30 v/v) for 15 min 

for removing organic residues and for silanol activation.  The activated surfaces were 

then rinsed with water and ethanol and dried under a gentle stream of nitrogen. The 

initiator, 3-(chlorodimethylsilyl)propyl-2-bromoisobutyrate synthesized according to 

known means,29 was dissolved in anhydrous toluene (1 mM).29 Functionalization of 

one side of the substrate was done by covering the top side of the slide with a drop of 

the initiator solution.  The solution was allowed to react for 15 minutes at room 

temperature after which the slides were sequentially washed with toluene, absolute 

ethanol, and MilliQ water. They were dried with nitrogen and used immediately for 

surface-initiated polymerization.  

Silicon wafers were cut to 12 x 22 mm2 pieces and treated with Piranha 

solution for 15 min. The substrates were then washed thoroughly with MilliQ water 

and absolute ethanol, dried under nitrogen and placed in a compartmentalized reactor 

containing the initiator (1 mM) that was dissolved in anhydrous toluene.29 After 17 h, 

the substrates were removed from the reactor, rinsed with toluene, absolute ethanol, 

MilliQ water, and then dried under nitrogen.  The substrates were stored in a vacuum 

dessicator until used. 
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3.3.3 Surface-initiated polymerization of tert-butyl acrylate (tBA) 

with added free initiator 

Polymerization of the tBA on the initiator-functionalized glass substrates was 

carried out as previously reported.34 Residual physisorbed polymers on the glass 

slides were removed by Soxhlet extraction with THF for 8 h.  The slides were stored 

in a dessicator until used.  The resulting polymerization solution was diluted with 

acetone and passed through a column of neutral alumina for removing the copper 

salts. The polymer solution was then concentrated in vacuo, and the molecular weight 

was determined by GPC with the appropriate concentration in THF. 

 

3.3.4 Surface-initiated polymerization of styrene with added free 

initiator 

Freshly distilled styrene and acetone were deoxygenated under argon for 1 h. 

CuBr (30 mg, 2x10-4 mol) was placed into a 50 mL double-necked round bottomed 

flask. The flask was degassed under vacuum at room temperature and backfilled with 

argon three times. Deoxygenated styrene (9.2 mL, 8x10-2 mol), deoxygenated 

acetone (4.6 mL), and hexamethyltriethylenetetramine (HMTETA) (100 μL, 4x10-4 

mol) were added to CuBr, and the mixture was stirred at room temperature under 

argon until a homogeneous green solution was obtained. A clean initiator 

functionalized glass slide was placed in a flame-dried Schlenk flask, which was 

deoxygenated under vacuum and backfilled with argon three times. The above-

described polymerization solution was transferred into the reaction flask followed by 

injection of ethyl-2-bromoisobutyrate as the free initiator (30 μL, 2x10-4 mol). The 

flask was heated at 65 0C for 48 h with stirring. The Schlenk flask was then placed in 

a cold bath and the solution was diluted with acetone. The surface was removed and 

cleaned thoroughly with THF, acetone and absolute ethanol and dried under stream 
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of nitrogen. A Soxhlet extraction in THF was used for 8 h for removing any 

physisorbed polymer. The bulk reaction mixture was passed through a column of 

neutral alumina to remove the catalyst. The solvent was then evaporated and the 

polymer molecular weight was determined by GPC. 

 

3.3.5 Hydrolysis of surface grafted poly(tert-butyl acrylate) (PtBA) to 

PAA 

tert-Butyl ester cleavage was done by treating the PtBA–grafted glass slides 

with trifluoroacetic acid (dichloromethane/TFA 10:1 v/v) at room temperature with 

stirring overnight. The glass substrates were then washed repeatedly with absolute 

ethanol and MilliQ water, and then dried under a nitrogen stream. 

 

3.3.6 Coupling of PMOH to PAA 

PMOH (20 mg), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDCI; 60 mg) and 4-(dimethylamino)pyridine (DMAP; 60 mg) were 

dissolved in anhydrous dichloromethane (20 ml) in a 100 mL double neck round-

bottom flask. PAA-functionalized glass substrates were placed in a 

compartmentalized reactor equipped with stir bar. The above-prepared solution was 

transferred to the reactor by cannula and the mixture was then stirred at room 

temperature for 4 h under argon. The slides were removed from the reaction mixture, 

washed sequentially with dichloromethane, acetone, absolute ethanol, MilliQ water 

and then dried under a nitrogen stream.  The physisorbed PMOH was removed by 

Soxhlet extraction with dichloromethane for 8 h. The fluorophore containing slides 

were analyzed by UV-Vis absorption and fluorescence. 
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3.3.7 Degrafting of PAA 

Trizma base buffer solution (0.1 M) was prepared with MilliQ water and the 

pH was adjusted to 6.5, 7.5, 8.5, 9.5 and 10.5 with different volumes of HCl (0.1 M). 

The pH was measured with a Symphony SB20 pH meter with Ag/AgCl electrode. 

The ionic strength was varied by adding NaCl (10 mM) to the Trizma buffer solution. 

The buffer solution of the given pH was flowed over the polymer-substrates during 

imaging. 

 

3.3.8 Surface characterization 

Contact angle measurements 

Measurements were carried out using an FTA200 dynamic contact angle 

analyzer (First Ten Angstrom) in the equilibrium static mode, using MilliQ water as 

the probe liquid.  Data analyses were performed using Fta32 Video software and 

three separate measurements were done for each glass substrate. The average contact 

angle value was determined within an experimental precision of ± 3o. The empirical 

Cassie-Baxter equation and modified related equations35,35 were used to evaluate the 

relative surface density (or surface coverage) of grafted molecules on the glass 

surface. These equations correlate the equilibrium contact angle (θobs) of a chemically 

heterogeneous surface to the surface coverage of the different molecules on the 

surface and predict an increase in water contact angle with an increase in surface 

coverage of small hydrophobic molecules:  

                    (3.1) f1 + f2 = 1

1+ cos θobs( ) 
2

= f1 1+ cos θ1( ) 
2

+ f
2

1+ cos θ2( ) 
2
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The water contact angle of a surface covered with a maximum number of 

hydrophobic molecules, f1 = 1, is presumed to be θ1 = 90, and the water contact angle 

of uncovered glass surface, f2 = 1, is θ2 = 0. 

 

AFM measurements 

The dry thickness of all samples was measured before and after TIRF 

measurements at room temperature (Figure 3-S4). The samples were left in MilliQ 

water at least 2 h, rinsed with absolute ethanol, dried with nitrogen and the step-

height measured by AFM film. The AFM was equipped with a NanoScopeV 

extended controller and a MultiMode microscope (Digital Instruments, Santa 

Barbara, CA). All AFM images were collected in the tapping mode using an Arrow-

NCR silicon probe with a spring constant of 42 N/m and a resonance frequency of 

300 KHz (Nanoworld). Data analyses were performed using the NanoScope 7.30 

software. A scalpel was used to scratch and expose the bare slide and step-height 

between the native glass and the PAA layer was measured in the dry state by an AFM 

cross sectional height image. The thickness of each sample was measured at three 

different regions. 

 

Ellipsometry measurements 

Experiments were conducted using an Ellipsometer M-2000V from J.A. 

Woollam Co. in air at an incident angle of 75° and a wavelength range of 370–

1000 nm. Four independent measurements at different areas were done for each 

sample. 
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Ensemble characterization 

The absorption measurements were done on a Cary-500 spectrometer and the 

fluorescence studies were performed on an Edinburgh Instruments FLS-920 

fluorimeter by exciting at 520 nm. Fluorescence experiments in micelles were 

performed on a PTI Quantamaster 40 equipped with a Quantum Northwest TC 425 

temperature controller (at 20°C) by exciting at 500 nm. 

 

TIRF microscopy 

The PMOH-functionalized surface-grafted polymers were imaged using a 

wide-field objective-based total internal reflection (TIRF) microscopy set-up 

consisting of an inverted microscope (IX71, Olympus) equipped with a laser-based 

TIRF illumination module (IX2-RFAEVA-2, Olympus).36,37 Laser excitation was 

provided by a 25 mW, 532 nm output, diode-pumped cw laser (CL532-025-S, 

CrystaLaser), attenuated with metallic ND filters and providing 2 – 7 μW output at 

the objective. The excitation beam was directed to the sample by reflection on a 

dichroic beamsplitter (z532rdc) and focused on the back focal plane of a high 

numerical aperture (N.A. = 1.45) oil-immersion objective (Olympus PLAN APO 

60X).  Images were additionally magnified two-fold via an internal lens and a relay 

lens system and then captured on a back illuminated electron multiplying charge-

coupled device (EMCCD) camera (Cascade II:512B, Roper Scientific) using gains 

between 3700 and 4095 and frame exposure times of 0.6 s to 1.5 s. Laser and camera 

settings were adjusted for each sample in order to obtain initial fluorescence 

intensities of ca. 120 A.U., while minimizing laser-induced photobleaching.  The 

original 66 x 66 μm2 TIRF images were cropped to half of the size, corresponding to 

the reflected channel from a 640dcxr dichroic mirror (< 640 nm) in a two color 

emission setup. To further minimize photobleaching in areas of interest (AOI), 

images were focused on a subsection of the sample area (round dark regions near 
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middle of images) using an iris positioned in the excitation laser beampath. Image 

acquisition was started with this iris closed, which was then fully opened during the 

acquisition. Each image was acquired after repositioning the sample in a new, non 

illuminated region to minimize photobleaching of the AOI. 

TIRF image analysis 

From the captured movies, the first complete frame in which the iris is fully 

opened was selected from the others and then further analysed with the Image Pro 5.1 

software. The image analyses consisted of first selecting an AOI to ignore the 

photobleached focus point as well as consistently darker edges. A histogram of 

individual pixel intensities was constructed for all of the pixels contained in the AOI 

(ca. 70 000 pixels, corresponding to a sample area of ca. 1200 μm2). The histograms 

were then fitted to a Gaussian function in order to extract the center of the 

fluorescence intensity distribution. When multiple images were taken within 5 

minutes of each other, only the averaged center of the distribution was reported and 

the errors bars corresponding to the standard deviation were added. 

 

TIRF sample chamber 

Polymer-functionalized glass coverslips were typically washed with 

dichloromethane and ethanol prior to use. Flow chambers were assembled by 

depositing a homemade silicone gasket on the glass substrate. These gaskets were 

designed to have a narrow chamber with an inlet and an outlet holes for inserting the 

flow tubing. Chambers were fabricated using SYLGARD® 184 Silicone Elastomer 

Kit (Dow Corning Corporation). The undersized glass substrates (ca. 12 mm x 22 

mm) were then affixed to flat metal plates, which served as the sample holder. The 

chambers were closed by pressing a clean, blank coverslip on top of the gasket.  The 

sample chambers had internal volumes of ~ 50 μL. Solutions of known pH and NaCl 

concentration were continuously flowed at a rate of 1 µL/min over the substrate using 
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a syringe pump system for periods of 2 h or more. One freshly prepared PAA-PMOH 

covered glass slide for each buffer solution at a given pH and ionic strength was 

analyzed. 

 

3.4 Results and discussion 

3.4.1 Fluorescent Monomer Synthesis 

PMOH (Scheme 3-1) was prepared according to known means.32  This was 

the chosen fluorophore because its spectroscopic properties are well known and its 

alcohol derivative could be coupled to the immobilized PAA density of PtBA 

according to standard coupling protocols.  This would provide the required 

fluorescent polymer for TIFR measurements.23,38 The advantage of PMOH over other 

dyes is that it has a strong absorption extinction coefficient, narrow fluorescence 

emission, high emission quantum yield, and photochemical stability.23,39-41 These 

properties make it possible to detect the sub-ng quantities of the polymer 

immobilized on the glass substrates (Figure 3-S1 and 3-S2).  

 

Scheme 3-1. Schematic representation of PMOH coupling to immobilized PAA to 

provide the fluorescent polymer, PAA-PMOH. 

 

 

n 1 n 2
n 3
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3.4.2 Fluorescent Polymer Synthesis 

Immobilization of a uniform initiator layer was carried out on only one side of 

the spectroscopically transparent silica surface, specifically the one in contact with 

the aqueous solutions.  This is necessary to avoid background fluorescence from the 

layer not in contact with the flow solution.  Contact angle measurements were done 

for confirming initiator grafting to the substrate. The measured contact angle of 

θwater= 72o (Table 3-1) is in agreement with our previous results29,34 and confirms that 

the initiator is coupled to the substrate in comparison to Piranha-solution treated 

native glass slides whose contact angle is 0o. The equilibrium contact angle of a 

chemically heterogeneous surface can be related to the fraction of the initiator groups 

in terms of the phenomenological modified Cassie-Baxter equation (Eq. 3-1). 

According to this equation, a contact angle of 72o  corresponds to a surface coverage 

value of 76% (Table 1).  The surface density of end-grafted polymers synthesized 

using the graft from method inherently depends on the initiator grafting density. 

Controlled surface polymerization was subsequently done with the failsafe 

ATRP of tBA using ethyl-2-bromoisobutyrate as free initiator. Following 

polymerization at 60oC for 15 hours, the water contact angle measured was 83o 

(Table 3-1). Controlled polymerization was confirmed by the linear increase of both 

the polymer layer thickness and the average molecular weight of free-polymer in 

solution.  The trend provides indirect evidence that polymer degrafting does not 

occur under the polymerization conditions, otherwise both variable film thickness 

and variable molecular weight of the free-polymer in solution would be observed.  

The molecular weight of the free polymer, relative to polystyrene standards, was 

determined by GPC. The grafting density σ of the PtBA layer was calculated from 

the dry polymer thickness d (σ = dρNA/Mn

 
where ρ is the density of PtBA (1.047 

g.cm-3)), NA is the Avogadro’s number and Mn is the number average molecular 

weight of the grafted polymer chains which is assumed to be similar to that of the 

free polymer in solution (60 326 g/mol). We use this assumption because it was not 
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possible to determine the molecular weight of the very small amount of generated 

grafted chains. It has been shown that the molecular weight of the grafted polymer 

grown by ATRP can be similar to or slightly smaller than the molecular weight of 

free polymer in solution.42,43  High grafting density of 0.41 chain/nm2 was found 

(Table 1). The distance between two adjacent grafted end-groups can be estimated as 

s = 1/σ1/2 = 1.56 nm and compared to the characteristic size of the chains in order to 

evaluate the conformation of the chains. As the polymer layer is in a dry state, we 

assumed that the grafted chains adopt a collapsed state with a characteristic 

dimension R = 1.95 nm (R ≈ aN0.33, where a is a characteristic dimension of repeating 

unit, 0.25 nm)44 and N is the average number of repeating units of the PtBA chains 

which is assumed to be the same as that of the free polymer chains in solution, i.e., 

471. Pancake and mushroom conformations are specific to polymer chains tethered at 

low grafting density (or s > R) while the brush conformation prevails at high grafting 

density (or s << R).45 Our results (R is slightly larger than s) suggest that the grafted 

chains adopt a conformation at the frontier between the brush and mushroom 

conformations.  

Table 3- 1. Surface properties of initiator-functionalized and PAA-functionalized 

silica substrates 

Initiator 
layer 

Polymer layer 
PtBA PAA 

θwater 
(±2o) 

f1 θwater 
(±2o) 

dry 
thickness 
(±2nm)* 

Mn 
(g·mol-1) 

σ** 
(chain/nm2) 

θwater 
(±2o) 

dry 
thickness 
(±4nm)* 

72 76 80 40 60 326 0.41 35 14 

*The thickness was measured by AFM step height method 

** σ = (dρNA)/Mn where d is the dry layer thickness, ρ is the density of PtBA (1.047 

g/cm-3), NA is the Avogadro’s number, and Mn is the number average molecular 

weight of the grafted polymer chains and it is similar to the Mn of the free polymer. 
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An underestimation of molecular weight for the attached polymer chains would result 

in a smaller polymer grafting density σ for a given polymer layer thickness d, or a 

larger distance between grafted chains s, and therefore, the chains would adopt a 

mushroom conformation. However, in a good solvent or when ionized, the collapsed 

grafted chains are expected to stretch into a brush conformation for a given grafting 

density and chain length.45,46 

Removal of the tert-butyl deprotecting group was carried out by refluxing the 

polymer-immobilized glass substrates in trifluoroacetic acid/dichloromethane,47 

resulting in a decrease in the water contact angle to θwater=35o.  PMOH was 

subsequently coupled to PAA with EDCI to afford the fluorescent polymer, PAA-

PMOH (Scheme 3-1). Covalent coupling of PMOH to the immobilized PAA was 

spectroscopically confirmed by the characteristic absorbance and fluorescence of the 

PMOH ester, which peaked at 550 and 564 nm, respectively (Figure 3-2).  The 

surfaces were then washed via Soxhlet extraction in dichloromethane for 8 hours in 

order to remove any potentially physisorbed PMOH. Neither the absorbance nor 

fluorescence intensity changed after Soxhlet extraction, confirming covalent 

attachment of the PMOH to the polymer and covalent attachment of the polymer to 

the silica substrate. 

 

Figure 3-2. Normalized absorption (○) and emission (●) spectra (λex=520 nm) of 

immobilized PAA-PMOH on silica slides. 
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PMOH was grafted to the immobilized PAA layer in low amounts in order to 

ensure fluorimetric visualization of the polymer layer while minimizing polymer 

insensitivity towards both variations in pH and salt concentration arising from 

fluorophore tagging on every repeat unit. Also of note is the direct polymerization of 

AA-PMOH by ATRP on initiator-covered silica substrate that was attempted 

according to standard methods.48  Unfortunately, no polymer could be detected either 

in solution or on the surface.  Subsequently, direct polymerization of AA (acrylic 

acid) using modified ATRP protocols was pursued.  Although AA could be 

polymerized from the surface in water, the control of film thickness is relatively 

difficult to obtain because of fast polymerization kinetics49 and hydrolytic side 

reactions occurring in aqueous media.24  Indeed, the variable polymer thickness 

(between 10 and 120 nm), despite consistent polymerization conditions, confirms that 

the surface polymerization of AA is not controlled and that PAA is most likely 

cleaved from the substrate under the ATRP polymerization conditions of high pH 

(pH > 8) and salt concentration required for AA (vide infra). 

 

3.4.3 TIRF Microscopy Degrafting Studies 

Fluorescence from the PMOH-PAA immobilized on glass substrates was 

observed when immersing the substrates in aqueous solutions of increasing pH when 

excited with the TIRF system. The laser power transmitted through the objective was 

attenuated to 2-7 μW for minimizing any PMOH photobleaching during the 

experiments.  The top surface, to which was grafted the PMOH-PAA, was adapted 

with a ca. 50 μL volume flow chamber for both exposing the polymer layer to a 

constant flow of desired solution and washing away any degrafted  polymer (Figure 

3-1). 

Figure 3-3 displays typical fluorescence images of a 66 x 33 μm2 region 

obtained at close to neutral pH (pH = 6.5, top left panel A) and high pH (pH =10.5, 
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top right panel B).  The images were obtained shortly after initial exposure and 

following long exposure to the NaCl-free buffer solution.  Images with smooth 

intensity profiles were observed, confirming the homogeneous distribution of the 

PMOH-PAA layer across the slide. Intensity variations of ca. 10% were observed for 

a given sample as a result of different regions being monitored (see for example 

Figure 3-3E, pH 6.5 or 7.5) and variations in the laser power.  The intensity of a sub-

region (delimited by the rectangle and square in Figure 3-3 A and B) was further 

analyzed to indirectly quantify surface density of the immobilized polymer over time.  

The histogram of the intensity per pixel was obtained for a given pH with increasing 

exposure times to the solution (Figure 3-3 C and D).  New regions in the same 

substrate were then imaged at each time delay for minimizing PMOH photobleaching 

followed by plotting the intensity/pixel value at the center of the Gaussian-fitted 

histogram vs. time (bottom panel E, Figure 3-3).  It is obvious from the statistically 

analyzed data graphically summarized in Figure 3-3E that no polymer degrafting 

occurs regardless of pH at low ionic strength. 

Polymer degrafting at a high ionic strength was next investigated as a 

function of time and pH (Figure 3-4) with a NaCl concentration of 10 mM. Although 

the monovalent salt was not expected to directly promote polymer cleavage,25,50 it 

however can increase the degree of dissociation of PAA leading to polymer backbone 

extension with increasing density of negative charges.51,51  The expected extended 

conformation in turn exposes the substrate–initiator bond to hydroxyl ions, which 

potentially promotes degrafting. However, the exact location (within the initiator) 

where bond rupture occurs is unknown because the C-O, Si-O, Si-C bonds are all 

potentially labile and susceptible to hydrolysis. Our results further suggest that the 

substrate–initiator bond is protected against hydrolysis at low ionic strength most 

probably because of the collapsed conformation of polymer segments close to the 

surface.  However, at extreme pH with added salt, the end-grafted chains are ionized 

resulting in an extended brush conformation that exposes the substrate–initiator bond 

making it more susceptible to hydrolysis by hydroxyl ions. 
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Figure 3-3. Time-dependent PMOH-PAA fluorescence as a function of pH with no 

added NaCl. A and B: TIRF images of substrates after flowing at low (A) and high 

pH (B) NaCl-free solutions for increasing amounts of time. C and D: Time evolution 

of Gaussian-fitted individual pixel fluorescence intensity distributions when flowing 

at low (C) and high pH (D) NaCl-free solutions. E: Center of Gaussian-fitted pixel 

fluorescence intensity distributions versus time for all the salt-free solutions studied. 

The analyzed area is delimited by the square and rectangle on the corresponding 

picture. 
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Figure 3-4. Time and pH dependence of PMOH-PAA degrafting at 10 mM NaCl. A 

and B: Time evolution of Gaussian-fitted individual pixel fluorescence intensity 

distributions when flowing at low (A) and high pH (B) with 10 mM NaCl.  C: Center 

of Gaussian-fitted pixel fluorescence-intensity distributions versus time for all 

solutions studied at 10 mM NaCl.  

AFM step-height cross-sectional measurements (Figures 3-5 and 3-S4) were 

done before and after the TIRF measurements to ensure that the disappearance of the 

fluorescence signal was due to polymer cleavage and not from either fluorophore 

cleavage from the polymer or fluorophore quenching processes.  The step-height 

analysis revealed a drastic change in polymer film thickness for the substrates 

exposed to 10 mM NaCl at pH 10.5 (Figure 3-5 C and D). This is in contrast to the 

polymer thickness that remained unchanged before and after exposing to pH 10.5 



Chapter 3                                                                               114 

  

without added salt (Figure 3-5 A and B).  The height difference between the bare 

substrate and the polymer layer can quantitatively be determined from the AFM step-

height measurements. 

 

Figure 3-5. AFM images (10x10 µm) in the dry state showing the step-height 

difference between the bare glass and the polymer layer: A) before and B) after 

exposing the substrate to buffer solution at pH 10.5 and C) before and D) after 

exposing the substrate to buffer solution at pH 10.5 with added salt. The dashed 

rectangles (0.3 x 5 µm) refer to the step-height analyzed areas. 

The degrafting ratio, defined as the ratio between the polymer layer thickness after 

and before exposure to buffer solution, is ca. 0.2 for the substrate exposed to pH 10.5 

with added salt.  This suggests that more than 80% of the polymer is cleaved from the 

substrate. Similarly, 40% of the polymer is degrafted from the substrate exposed to 

pH 9.5 with added salt (Figure 3-6). Conversely, no polymer degrafting was observed 

by AFM for the substrate exposed to pH 9.5 without salt.  The AFM results 

corroborate the TIRF measurements in that polymer degrafting occurs only in the 

presence of salt at pH ≥9.5.  
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Figure 3-6. The average PMOH-PAA polymer degrafting ratio taken as the ratio 

between the polymer layer thickness after and before exposing the substrates to 

different pH without (▲) and with (●) added salt. Three different ratios were 

obtained for each substrate and the standard deviation was used as the error bar. 

Further confirmation that the observed change in fluorescence intensity arises 

from polymer degrafting rather than hydrolysis of the PMOH-PAA bond was 

obtained by studying the fluorescence of a PMOH-PAA model system, PM605, in 

micelles.  The hydrolysis of PM605 to PMOH (inset top Figure 3-7) would give rise 

to a hypsochromic shift in the fluorescence emission (right panel Figure 3-7).30-

32,39,52,53.  No change in either the emission spectrum shape or intensity was observed 

upon incubating PM605 for extended periods of time in solutions of pH and ionic 

strength similar to those used for the TIRF microscopy studies.  Only a slight 

fluorescence increase was observed at 564 nm at the onset of the measurement 

because of PM605 diffusing into the micelles.  In contrast, hydrolysis of PM605 

would result in a decrease in intensity at 564 nm.  The steady-state emission intensity 

vs. time analyses of PM605 in SDS micelles confirm that ester hydrolysis or 

bleaching of the dye do not occur.  The results further confirm that the fluorescence 
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decrease observed in TIRF microscopy is a result of PAA degrafting from the 

substrate and not from PMOH hydrolysis. 

 

Figure 3-7. Fluorescence emission spectra of PM605 and PMOH in sodium dodecyl 

sulfate (SDS, 10 mM) micelles and Trisma (0.1 M) buffer solution. Left: 

Fluorescence intensity acquired at the emission maximum of PM605 following 

various incubation periods in aerated solutions at pH 6.5, at 0 and 10 mM NaCl (red, 

closed and open circles, respectively), and  pH 10.5 at 0 and 10 mM NaCl (blue, 

closed and open triangles, respectively).  Right: Normalized steady-state fluorescence 

spectra at various pH and NaCl concentrations after incubation for 180 minutes.  The 

spectra of PMOH, (which is blue-shifted with respect to PM605), is shown for 

comparison illustrating that no ester hydrolysis and formation of PMOH occurs 

during this time period.  Excitation was performed at 500 nm in all experiments.   

A rough estimate of the degrafting rate can be estimated from the time-

dependent fluorescence change in Figure 3-4E. The degrafting rate for pH 9.5 and 

10.5 with added NaCl is approximately the same.  The lack of sensitivity of the 

degrafting rate to [OH-] and the sudden onset of degrafting can be interpreted by a 

change in polymer conformation when the pH is increased close to 9.5 at high ionic 
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strengths.  Although, the [OH-] is expected to be sufficient to induce polymer 

degrafting at pH < 9.5, the polymer conformation is tightly collapsed at low ionic 

strength and protects the labile substrate-initiator bond.  A combination of high pH 

and high ionic strength are thus needed to induce the conformation change of grafted 

PAA.  These results are in good agreement with our previous study showing 

conformation change of PAA brushes with pH and salt.23 

In order to protect the labile substrate-initiator bond at the polymer/substrate 

interface from undesired hydrolysis, a hydrophobic layer can be inserted between the 

substrate and the PAA as similarly done with a PS-b-PAA copolymer grafted to 

mica.22 The presence of the innermost hydrophobic layer directly bond to mica is 

expected to act as a protective layer against hydrolysis of the substrate-initiator bond 

by preventing water and hydrated ions from reaching the substrate. Therefore, we 

have grafted a polystyrene layer directly from the glass substrate using the 

immobilized ATRP initiator. The thickness of the grafted polystyrene layer measured 

by ellipsometry was 10 nm.  The substrate was then exposed to pH 10.5 solution for 

2.5 hours and then cleaned. No change in the polymer film thickness was observed 

by ellipsometry regardless of ionic strength, confirming that the polystyrene layer can 

provide a robust layer or spacer protecting the labile substrate-initiator bond against 

hydrolysis. As the PS chains contain a terminal bromine, they allow for subsequent 

polymerization of AA by ATRP block copolymerization. This is actively being 

pursued. 

 

3.5 Conclusion 

Degrafting of covalently immobilized fluorescent PAA from glass substrates 

was unequivocally confirmed in solution via TIRF microscopy.  The real-time 

fluorescence measurements confirm that the substrate–initiator bond is labile and can 

be cleaved.  Cleavage of the covalently bound polymer only occurred at pH ≥ 9.5 in 



Chapter 3                                                                               118 

  

the presence of salt.  The combination of high pH and added salt most probably 

induces a conformational change of the polymer layer, allowing hydrolysis of the 

substrate-initiator bond at the polymer/glass interface.  Although the exact salt and 

pH induced conformation change is unknown, the hydroxyl ions nonetheless 

penetrate through the PAA layer to the substrate and hydrolyze the glass–initiator 

bond.  The absence of polymer degrafting with 10 mM NaCl at pH < 9.5 suggests 

that the polymer adopts a compact conformation close to the surface and protects the 

glass–initiator bond against hydrolysis.  Regardless of conformation, we provided 

unprecedented real-time evidence for the degrafting of PAA from glass substrates. 

The stability of the covalently attached hydrophobic-hydrophilic copolymer layer is 

currently being investigated. 
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3.7 Supporting information 

 

Figure 3-S1. PAA-PMOH covered glass slide (top) and blank silica (bottom) under 

ambient light. 

 

 

Figure 3-S2. PAA-PMOH covered glass slide (a) and blank silica (b) under UV lamp 

(λ=365 nm) 
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Figure 3-S3. Gel permeation chromatogram of poly(tert-butyl acrylate).  

Mn=60 326 g/mol. 

 

 

Figure 3-S4. AFM images in the dry state showing the step-height difference 

between the native glass and the polymer functionalized surface: A) before and B) 

after exposing the substrate to buffer solution at different pH. 
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Chapter 4 
 

Polystyrene-block-poly(acrylic acid) brushes grafted 

from silica surfaces: pH- and salt-dependent 

switching studies†† 

 

                                                       
†† †† This chapter is a verbatim copy of the paper published in Polymer Chemistry (2014, 5, 

2242-2252). It is co-authored by Charly Ou,  W. G. Skene and Suzanne Giasson. 
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4.1. Abstract 

We report the preparation, characterization and responsive behavior of 

polystyrene-block-poly(acrylic acid) (PS-b-PAA) copolymer brushes grafted from 

silica substrates using Surface-Initiated Atom Transfer Radical Polymerization (SI-

ATRP). pH-dependent swelling behavior was investigated in situ by ellipsometry and 

it confirmed that PAA chains can be reversibly switched from collapsed to extended 

conformations.  It also confirmed that the grafted copolymer brushes were stable 

under extreme alkaline conditions of pH and with added salt. We showed that the 

hydrophobic polystyrene block of the copolymer protects the substrate-initiator bond 

against hydrolysis that would otherwise cause undesired polymer degrafting from the 

substrate. Also, we provide evidence of fundamentally different brush conformations 

with metal cations of increasing valency. Monovalent sodium and cesium ions caused 

brush stretching while only collapsed brushes were observed with divalent calcium 

ions. 

 

4.2. Introduction 

Polymer brushes generally consist of a monolayer of chains that are attached 

at one end to a substrate, while the free-end is exposed to the surrounding medium. 

Over the past few decades, polymer brushes have shown to be extremely useful for 

many applications, such as antifouling, cell adhesion substrates,1-4 biosensors,5-7 

nanocomposites,8 stationary phases in high performance chromatography,9-11 

microreactors12-14 or microactuators.15,16 Particular properties of charged polymer or 

polyelectrolyte brushes have attracted the greatest attention as their degree of 

dissociation, conformation, and brush height that can be reversibly tuned by pH and 

ionic strength.17 These variable properties are understood to govern the swelling and 

collapse of the polyelectrolyte brushes contingent on the type of electrolyte, their 



Chapter 4                                                                               126 

  

concentration, and pH.  Systems based on these responsive brushes have showed 

promise as smart materials, pH-gated hybrid membranes,18 nanoporous polymer-

functionalized platforms,19 and pH-sensitive nanosensors.20 

Linking polymer brushes to substrates is done either by “grafting to” or 

“grafting from”.21 “Grafting to” involves the pre-synthesis of end-functionalized 

polymers and their subsequent attachment to a surface. Limited grafting density is 

possible with this approach because of unfavorable steric interactions between 

grafted polymer chains at high grafting density. In contrast, a wide range of grafting 

densities is possible when polymerizing directly on initiator-coated substrates in the 

“grafting from” approach. The polymer layer thickness, composition and 

conformation of the resulting polymer-coated substrate can be controlled when 

employing controlled radical polymerization methods.  

A strong and irreversible polymer/substrate bond is required for accurate 

structure-property studies under various and extreme environmental conditions.  This 

is particularly important since the chain conformation is a key parameter that 

determines the surface properties of polymer films.22 The swelling-collapsing of 

covalently attached polymer layers is also of importance because there is a lack of 

accurate swelling studies that cover a full range of pH and salt effects, especially pH 

≥ 10, on smooth and well characterized dense polyelectrolyte brushes. This is in part 

owing to physisorbed copolymers that were weakly attached to the substrate in 

previous structure-properties investigations.23-25 However, covalently bonded 

polymers to the surface can also detach under particular conditions.26,27  This is the 

case for “grafting from” polyacrylic acid (PAA) brushes that cleaves from the surface 

at pH≥9.5 in the presence of added salt (10 mM NaCl).28 The extended polymer 

conformation adopted under such conditions favors water penetration throughout the 

brush layer to the substrate where it can hydrolyze the exposed Sisubstrate-O-Siinitiator 

bond, resulting in polymer detachment. In contrast, a collapsed compact polymer 

conformation adopted at low pH prevents water and salt from reaching the surface 

and protects the substrate-initiator bond against cleavage.28 The operating window for 
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assessing environmental structural effects is therefore limited with labile grafted 

polymers because of the potential polymer detachment from the substrate under 

certain conditions. Knowing the conditions that induce substrate–polymer bond 

cleavage, polymers that protect the labile bond against unwanted substrate-bond 

breaking can be designed and prepared. A PS-b-PAA copolymer covalently tethered 

to the substrate at the polystyrene end would be an ideal stimuli-responsive 

copolymer for hydrophilic surface-property studies. The hydrophobic polystyrene 

block would be consistently collapsed on the surface and it would prevent water from 

reaching the polymer-substrate interface. This would act as a hydrophobic barrier and 

protect the fragile surface-polymer bond against cleavage even under extreme pH and 

ionic strength. Meanwhile, the hydrophilic PAA brush would remain stimuli-

responsive with different polymer conformations being controlled by environmental 

changes, similar to previously investigated PAA brushes.24,25,29 

We therefore prepared a PS-b-PAA diblock copolymer via Surface-Initiated 

Atom Transfer Radical Polymerization (SI-ATRP) on silica wafers. The robustness 

of the covalent PS–substrate bond and the capacity of the copolymer to undergo 

conformational changes under extreme pH were evaluated. AFM and ellipsometry 

were used to investigate swelling-collapse cycles of the copolymer layer as a function 

of pH and presence of different types of salt. An extended window to examine the 

environmental conditions for swelling and conformation changes of charged polymer 

brushes is therefore possible with this copolymer that does not cleave from the 

surface. The knowledge gained from this study provides new insight into brush 

swelling mechanisms and support theoretical models.  
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4.3. Experimental section 

4.3.1. Materials and chemicals 

Silicon wafers were obtained from University Wafer Co (100-mm diameter, 

boron-doped, (100) orientation, one side polished). All chemicals were used as 

received from Aldrich unless specified. Copper bromide (CuBr) was purified 

according to previous methods.30 Tert-butyl acrylate (tBA) and styrene were purified 

to remove the inhibitor by passing through a column of basic alumina, followed by 

vacuum distillation immediately prior to use. MilliQ water was obtained from 

Millipore A10 purification system with a resistivity of 18.2 MΩ·cm at 25° C. All 

glassware was oven-dried at 120 oC overnight.   

4.3.2. Substrate preparation and initiator immobilization 

Silicon wafers were cut into 1x2 cm2 pieces using a diamond pencil, rinsed 

with acetone and dried under nitrogen. The substrates were immersed into a Piranha 

solution (H2SO4 concentrated /H2O2 70:30 v/v) for 20 min to remove the organic 

residues and activate the silica surface. (Caution: Piranha solution is highly 

corrosive and should be used with extreme carefulness!) Then, the substrates were 

washed multiple times with MilliQ water, absolute ethanol, followed by drying 

thoroughly under nitrogen. 

The ATRP initiator, 3-(chlorodimethylsilyl)propyl-2-bromoisobutyrate was 

synthesized using the previously reported procedure.30 The clean silicon substrates 

were immersed into 1 mM initiator solution in toluene and allowed to react with the 

initiator overnight at room temperature under nitrogen.30 The substrates were then 

washed with toluene, absolute ethanol and dried under a steam of nitrogen. The 

freshly prepared initiator-modified substrates were either used for surface-initiated 

polymerization or stored in a desiccator until used. 
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4.3.3. Surface-initiated ATRP of styrene with added free initiator 

CuBr (30 mg, 2x10-4 mol) was placed in a 50 mL double-necked round-

bottomed flask. The flask was degassed under vacuum at room temperature and 

backfilled with argon three times. Freshly distilled styrene was purged with argon for 

1 h. Deoxygenated styrene (14 ml, 4x10-2 mol), and N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA) (150 μL, 7.5x10-4 mol) were added to 

CuBr, and the mixture was stirred at room temperature under argon until a 

homogeneous light green solution was obtained. A clean initiator functionalized 

silicon wafer was placed in an oven-dried Schlenk flask, which was deoxygenated 

under vacuum and backfilled with argon three times. Ethyl-2-bromoisobutyrate as the 

free initiator (30 μL, 2x10-4 mol) was added to the mixture and the polymerization 

solution was transferred into the reaction flask. The flask was immersed in an oil bath 

heated at 90 0C for a given period of time with stirring. Opening the Schlenk flask 

and exposing the catalyst to air stopped the reaction. The surface was removed and 

cleaned thoroughly with THF, acetone and then dried under stream of nitrogen. The 

free polymer in solution was precipitated in methanol and dried under vacuum. The 

white polymer powder was solubilized in THF and analyzed by GPC. 

 

4.3.4. Surface-initiated polymerization of tert-butyl acrylate (tBA) 

with added free initiator 

A typical synthesis of  tBA brushes from PS-modified silicon wafer was done 

as previously reported.31 After polymerization, the substrate was cleaned by Soxhlet 

extraction with THF for 8 hrs in order to remove the physisorbed polymer, dried 

under nitrogen and stored in a desiccator until used.  The resulting polymerized 

solution was concentrated under vacuo, diluted with THF, and the molecular weight 

of the free polymer was analyzed by GPC.  
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4.3.5. Hydrolysis of surface grafted poly(tert-butyl acrylate) (PtBA) 

to PAA 

The hydrolysis of covalently attached PtBA brushes to PAA was done as 

previously reported.28 Afterwards, the substrates were washed repeatedly with 

absolute ethanol and MilliQ water, then dried under a nitrogen stream, and stored in 

desiccator until used. 

 

4.3.6 Swelling studies of PAA 

Trizma base buffer solution (0.1 M) was prepared with MilliQ water and the 

pH was adjusted to 6.5, 7.5, 8.5, 9.5 and 10.5 with different volumes of HCl (0.1 M). 

The pH was measured with a Symphony SB20 pH meter with Ag/AgCl electrode. 

The ionic strength was controlled by adding NaCl aqueous solution (10 mM) to the 

Trizma buffer solution.  

 

4.3.7. Molecular weight determination 

The number- and weight-average molecular weights (Mn and Mw, 

respectively) of the prepared polymers were measured by GPC. The GPC system 

consisted of Waters 717 plus autosampler, three columns (Phenomenex Phenogel 

500A, 10e4 and 10e5), a Waters 1525 binary HPLC pump, and a Waters 2414 

refractive index detector. The eluent was THF at a flow rate of 1 mL min-1, and the 

column and detector temperature was 35 °C. The polymer molecular weights were 

determined relatively to polystyrene standards (Shodex). 
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4.3.8 Surface characterization 

Contact angle measurements 

Measurements were carried out using an FTA200 dynamic contact angle 

analyzer (First Ten Angstrom) in the equilibrium static mode, using MilliQ water as 

the probe liquid.  Data analyses were performed using Fta32 Video software and 

three separate measurements were done for each silica substrate.  

 

AFM measurements 

Dry state topographical AFM studies were done using a MultiMode 

microscope equipped with a NanoScope V extended controller (Digital Instruments, 

Santa Barbara, CA) at room temperature. The surfaces were imaged in the tapping-

mode using a silicon cantilevered tip from Nanoworld with resonance frequency of 

~285 kHz and a spring constant of 42 N/m. At least three different areas were 

analyzed on each sample. 

Liquid AFM images were recorded using a Dimension 3100 MultiMode 

Scanning Probe Microscope equipped with Veeco NanoScope V extended controller 

(Digital Instruments, Santa Barbara, CA) by using MLCT silicon nitride probes 

(triangular E tip) with a resonance frequency of ~38 kHz and a spring constant of 0.1 

N/m. A sample was placed in a custom-made Teflon liquid cell filled with buffer 

solution and left to equilibrate for at least 1 hr before imaging. All images were 

recorded in the tapping mode at 1 kHz scan rate; 512 x 512 pixels image resolution 

and weak oscillation damping (10-15%). Data analyses were performed using the 

NanoScope 7.30 software. A scalpel was used to make a scratch on the polymer layer 

and the vertical distance, or step, between the outer layer of the polymer and the 

scratched area was used as a reference for the thickness of the dry polymer layer. 

This thickness was measured at three different regions on each sample. 
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Spectroscopic ellipsometry 

Ellipsometric measurements on the PS-b-PAA brushes both in dry and wet 

states were performed using M-2000V ellipsometer (J. A. Woollam Co).  This is a 

Rotating Compensator Ellipsometer (RCE) equipped with a CCD array spanning the 

wavelength range from 370 to 1000 nm and mounted on a manual angle base with a 

fixed angle of incidence of 75o. Ψ and Δ values were acquired by averaging 

ellipsometric measurements for at least 50 cycles of the RCE and all measurements 

were performed at ambient temperature (22 °C). 

 

Figure 4-1. Schematic representation of liquid cell used for ellipsometry 

measurements.  

 

For ellipsometric measurements in liquid, the 5 mL Horizontal Liquid Cell™ 

(J. A. Woollam Co) equipped with two fused silica windows was used (Figure 4-1). 

The sample was positioned over a custom-made 7.0 x 3.8 cm PTFE sample holder 

and then the cell cover was placed over the sample and fastened to the mounting plate 

with 4 screws. Light passed through one of the windows at 75o and then it was 

reflected from the silicon surface and exited at the opposite window. The liquid cell 

had two independent ports for solution input and output. The liquid entering the cell 

flowed over the sample and then it exited the chamber from the outport on top of the 
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cell. The total cell volume was 5 ml. The solution of study was manually pumped 

into the chamber with a syringe and the sample was equilibrated for one hour (unless 

otherwise stated). Switching between buffer solutions of different pH and salt 

concentration was done by purging the cell with MilliQ water (200 mL) to remove 

traces of the buffer solution. The cell was then filled with the buffer solution of 

desired pH (200 mL). Afterwards, the substrate was equilibrated for one hour with 

the new buffer solution before measuring.  

Modeling and data fitting were carried out using the WVASE32 software (J. 

A. Woollam Co, version 3.768). The WVASE32 software fitted the ellipsometric 

angles Ψ and Δ calculated from an optical model to the experimentally measured 

values of Ψ and Δ. The Levenberg-Marquardt multivariate regression algorithm33 

was used to determine the layer thickness and the optical constants. The mean-

squared error (MSE) was used to quantify the difference between experimental and 

calculated data, and it was minimized during the fitting process.32  

The angle of incidence was fitted at each step of the fitting process in order to 

correct for slight sample misalignment. The Cauchy equation was used to model the 

dispersion of the materials for which the refractive index was not included in the 

software library: 

                                                               (Equation 4-1) 

where n is the refractive index, A, B and C are parameters, and λ is the wavelength.  

In order to evaluate n, the dry thickness h, and the thickness of swollen layer 

H, an optical model consisting of five consecutive layers as illustrated in Figure 4-2 

was constructed. The bottom layer (L#0) models the silicon substrate and the top 

layer (L#5) represents the surrounding aqueous medium, i.e. the different buffer 

solutions. As the refractive index of the buffer solutions measured by refractometry 

had refractive indexes similar to pure water (nb=1.3344), layer #5 was assumed to be 
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pure water. A 2 nm (±0.03 nm) thick silicon oxide layer (L#1) was measured prior to 

surface modifications and it was kept constant in the subsequent steps of the process. 

The initiator layer (L#2) was modeled as a Cauchy layer and its thickness was 

evaluated as 0.2±0.03 nm and MSE=2.13 prior to polymer brush growth. The 

thickness of the polystyrene film (L#3) was measured using “polystyrene_g.mat” 

layer from WVASE library. The polyelectrolyte brush layer (PAA) was considered as 

a single Cauchy layer (L#4) and assumed to be transparent and homogeneous. 

 

 

Figure 4-2. Optical model used to calculate the thickness of swollen PAA brushes by 

ellipsometry. 

The Cauchy approximation was used (Equation 1) for all thickness 

measurements done with the liquid cell. For the dry polymer films with a thickness 

less than 10 nm, fixed Cauchy parameters A=1.45, B=0.01 and C=0 were used, as 

generally reported for transparent films.34  The film thickness in the dry state was 

measured using the same model as Figure 4-2, but without water as a top layer. The 

MSE of less than 5 was obtained for all measurements. 
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4.4 Results and discussion 

4.4.1 Synthesis of Polystyrene-block-poly(acrylic acid) brushes 

Scheme 4-1 shows the synthetic route for preparing the tethered polystyrene-

b-poly(acrylic acid) diblock copolymer brushes using a free initiator. We chose the 

monofunctional chlorosilane because it is well-known to form uniform monolayers.30 

This is in contrast to multifunctional chlorosilanes that result in disordered 

multilayers when assembled from solution.35, 36 The first step was grafting the 

initiator to the activated silica surface. This involved reacting the monochlorosilane 

initiator with the silicon wafer, resulting in a Si-O-Si bond.  The reaction was done in 

anhydrous toluene and lead to a covalently attached initiator monolayer. Grafting the 

initiator to the surface was confirmed by water contact angle measurements and 

ellipsometry.30,31 The measured contact angle of 78o±2 and thickness of 0.2 nm are in 

good agreement with previously reported values for a densely grafted initiator 

monolayer.28 The initiator surface coverage was estimated using the Cassie-Baxter 

equation37 and was relatively high (ca 85 ± 1% ) for all samples. 

 

Scheme 4-1. Synthetic route for the synthesis of PS-b-PAA brushes grafted from 

silica wafer. 
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The targeted PS-b-PAA block-copolymer brushes were prepared in three 

steps: 1) SI-ATRP of styrene with the initiator covalently attached to the substrate, 2) 

subsequent SI-ATRP of tBA by exploiting the dormant halogen end on the 

polystyrene brush, and 3) PtBA deprotection via acid hydrolysis. Styrene 

polymerization was done in two ways: 1) from the initiator-functionalized silica and 

2) in solution by adding a sacrificial initiator of identical concentration for all the 

polymerizations. The sacrificial initiator plays a significant role in controlling the 

surface-initiated ATRP and the preparation of well-defined polymers. In the absence 

of sacrificial initiator, the polymerization reaction is less controlled.  This results in 

inhomogeneous and rough polymer films. Homogeneous surface polymerization and 

hence controlled polymerization can be improved by adding free initiator to the 

solution.38 The additional advantage of adding free initiator to the reaction is the 

molecular weight of the free polymer from solution can be measured by standard 

solution polymer molecular weight characterization methods.  This is important 

because the amount of polymer cleaved from the flat substrate is on the order of sub-

micrograms, which is insufficient for analysis by conventional polymer 

characterization methods. Therefore, the molecular weights of the polymers in 

solution were used as an indicator of molecular weight of the grafted chains.38, 39 

However, it is important to note that the molecular weight of tethered polymers and 

those free in solution are not consistently similar. The substrate curvature can account 

for some molecular weight discrepancies between surface tethered and free polymers 

owing to surface moderated catalyst and monomer diffusion differences.40 For 

convex surfaces, grafted and free polymers have similar molecular weights. In 

contrast, the molecular weight of free polymers is usually higher than polymers 

tethered to flat and concave surfaces.41-44  However, there are limited examples of 

free polymers having lower molecular weight than polymers grafted on flat 

surfaces.45, 46 This was explained by high local viscosity and limited mobility of 

attached molecules on the surface favour Cu(I) diffusion to the growing front while 

decreasing terminations between growing chains.45  
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In our previous study, we examined whether a PS block could successfully 

protect the substrate-initiator bond against cleavage under extreme pH and salt 

concentration. A 10 nm PS block thickness was arbitrary chosen and it was found to 

protect the substrate-initiator bond, regardless of pH and salt concentration.28 In the 

present work we prepared the set of PS of varying thickness ranging from 1.7 to 10.1 

nm with the objective of finding the minimum PS thickness required to protect the 

substrate-initiator bond against environmental cleavage. Targeted degree of 

polymerization of 200 resulted in a polymer molecular weight of 22.8 kg/mol at 100 

% conversion for styrene. The linear variation of free polymer molecular weight with 

time up to ca. 19 h (Figure 4-3 A) and the relatively high molecular weight of free 

polymer (21 kg/mol) confirm controlled polymerization under the given reaction 

conditions within this time frame. Moreover, the molecular weight distribution 

remained low (maximum PDI is 1.1) throughout the polymerization, typical for a 

living polymerization reaction (Figure 4-3 B). The thickness of the polystyrene layer 

constantly increased with both molecular weight of the free polymer and 

polymerization time (Figure 4-3 C) up to a maximum of 13.1 nm at ca. 19 h. This 

trend implies there is sufficient deactivator in solution to provide controlled growth 

of the polymer film.38  After 19 h, the decrease in polymer thickness as well as in 

polymer molecular weight was observed indicating possible polymerization control 

loss. This was also reported by Jeyaprakash47 and Liu.48 A potential explanation for 

the loss of controlled surface polymerization of styrene is the decrease in active chain 

ends47 caused by the increase in chain-transfer and other side reactions.38, 49 

Regardless, the topography of the polystyrene layer measured by AFM was smooth 

and uniform with a rms of 0.2 nm (Figure 4-3 D). Grafting of PS to the silica wafer 

was additionally confirmed by ATR-FTIR (Figure 4-S1). Measurements were done 

after Soxhlet purification to remove any physisorbed polymers. The characteristic 

signals around 3030 cm-1 and 1440 cm-1 are attributed to the aromatic C-H and C=C 

stretching, respectively, confirming the covalently grafted polystyrene on the 

substrate.50-53  
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Figure 4-3. A) Mn of free polystyrene (squares) and PS thickness (triangles) as a 

function of time. Styrene/initiator/CuBr/PMDETA=200:1:1:3.75. The dashed line is a 

guide for the eye. Each square represents separate, but identical polymerization 

reactions. A standard deviation of 0.1 nm was obtained for all thickness values. B) 

Evaluation of the free polymer PDI as a function of polymerization time. C) 

Polystyrene film thickness vs. molecular weight (Mn) of the free polymer in solution. 

The dashed line is used only as a guide for the eye. D) Typical surface morphology of 

polystyrene brushes grafted from silica substrate. The thickness of the displayed 

sample is 10 nm. 

The PtBA block was synthesized by ATRP (see Scheme 4-1) from the end 

bromide groups of the grafted polystyrene chains. The polymerization was initiated 

from polystyrene layers having thickness ranging from 2 to 10 nm by adding CuBr, 

PMDETA and free initiator as previously reported.31 The PtBA blocks were 
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hydrolyzed to the desired acrylic acid by immersing the substrates in 10% TFA 

solution in dichloromethane for ca. 15 h. The thickness of the resulting PS-b-PAA 

brushes decreased by more than 50 % (Table 4-S1) and the water contact angle 

decreased from 800-820 (PS-b-PtBA film) to 250-370 (PS-b-PAA brushes). The 

topography of the PS-b-PtBA appeared to be smooth with a rms of 0.6 nm (Figure 4-

4 A1, B1). The deprotection step, resulting in PAA brushes led to a slight decrease in 

the surface roughness (rms of 0.3 nm) (Figure 4-4 A2, B2). This could be attributed 

to an increase in the chain flexibility caused by the loss of the tert-butyl groups.54 

However, after immersing the polymer brush in water for ca. 12 h, rinsing with 

ethanol, drying under nitrogen, the PAA layer appeared less homogeneous with a 

surface roughness of 0.9 nm (Figure 4-4 A3, B3). This can be explained by a 

reorganization of the PAA film with washing. Indeed, the PAA layer is expected to 

be neutral and relatively hydrophobic right after hydrolysis.26  The resulting surface 

appears smooth because the hydrophobic chains minimize their contact with the 

solvent and the effect of polydispersity on the surface roughness in the collapsed state 

is expected to be negligible.26,31 However when immersed in water at pH ≈ 5.5, the 

PAA chains are slightly charged and can extend into well-defined nanodomains. 

Accurate structure-properties studies require knowing the polymer grafting 

density since the polymer conformation is inseparably linked to it. The grafting 

density of each block was therefore calculated using Equation 4-2: 

                                                                             (Equation 4-2) 

where d is the dry thickness of the polymer layer, ρ represents polymer 

density (1.05 g/cm3 for PS55 and 1.047 g/cm3 for PtBA55), Mn is the number average 

molecular weight of free polymer in solution and NA is Avogadro’s number. 
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Figure 4-4. Top-view (A1) and 3D (B1) AFM images of 1x1 µm scan size PS-b-

PtBA brushes: PS layer = 1.7 nm and PtBA layer=41 nm. A2) and B2) PS-b-PAA 

brushes immediately after deprotection. A3) and B3) PS-b-PAA brushes after 

exposure to water (MilliQ) and drying under nitrogen, PAA=18.1 nm. 

The grafting densities ranged from 0.6 to 0.3 chains/nm2 for the PS block and from 

0.2 to 0.4 chains/nm2 for the PtBA block. The conformation of the attached polymer 

chains can be determined by comparing the distance between two adjacent grafting 

points s, (s = 1/σ1/2 ) with the size of the polymer chains. As the polymer layer 

thickness was measured in air (Table 4-1), we used the radius of gyration RG of a 

collapsed polymer coil as the reference size for the grafted chains, i.e.  RG ≈ aN0.33 

where a refers to the length of each repeating unit (0.25 nm for PS and PtBA, and 

corresponds to vinyl chain length56, 57), and N is the degree of polymerization.58 If the 

distance between adjacent grafting sites is significantly smaller than the size of the 

chains, s << RG, the polymer chains are forced to extend from the surface and form a 

brush conformation.58, 59 For both PS and PtBA, s is similar or slightly larger than RG 

(Table 4-1), indicating that the grafted copolymer chains adopt an intermediate 
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mushroom-brush conformation. However, in good solvent or when ionized, a 

stretched brush conformation is expected.58  

 

Table 4-1. Composition of PS-b-PAA brushes from different samples. 

S
am

p
le

 Polymer 
layer 

thickness 
(±0.1nm)a 

Mn of free 
polymer 
(kg/mol)b 

σ 
(chains/nm2)c 

s 
(nm) 

RG of a collapsed 
coil (nm) 

PS layer 

1 1.7 1.8 0.6 1.3 0.7 

2 3.1 4.1 0.5 1.5 0.8 

3 4.3 6.9 0.4 1.6 1.0 

4 9.5 18.5 0.3 1.8 1.4 

5 10.1 13.5 0.5 1.1 1.2 

PtBA layer 

1 41.1 64.5 0.4 1.6 2.0 

2 33.2 73.0 0.3 1.9 2.0 

3 24.9 63.2 0.3 2.0 2.0 

4 21.7 57.8 0.2 2.1 2.0 

5 15.7 51.0 0.2 2.2 2.0 

a measured in air using ellipsometry; b measured by GPC relative to 
polystyrene standards; c calculated from eq. 2 

 

4.4.2 Ellipsometry: Optical properties of PS-b-PAA film 

In order to accurately determine the thickness of the polymer layer by 

ellipsometry, the polymer must be optically contrasted from the substrate. This is the 

case with the PS and PAA whose refractive index is different from the SiO2 substrate 

(Figure 4-5). The experimentally measured refractive indices at 589.3 nm (sodium 

spectral line) for both the PS and PAA blocks were consistent with the literature 
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values (Table 4-2). However, no difference in refractive index was found between the 

silica wafer and the initiator layer.  This is because the initiator was only 0.2 nm, 

which exceeds the resolution of the ellipsometer. 

 

Figure 4-5. Refractive index vs. wavelength for the different layers used in the model 

illustrated in Figure 4-2. 

 

 

Table 4-2. Refractive indices obtained by ellipsometry at 589.3 nm. 

Polymer Refractive index Refractive index 

from literature55 

Model 

PS 1.5893 1.590-1.592 Polystyrene_g.mat

PAA 1.4788 1.527 Cauchy.mat 

 

4.4.3 pH-dependent swelling studies 

The brush swelling in water as a function of pH was investigated using the 

liquid ellipsometer cell (Figure 4-1). The brushes were equilibrated for 2 h in a given 

pH before the measurement and the swelling behavior of the PAA layer was 
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quantified using a swelling ratio (Q), defined as a ratio between swollen film 

thickness (H) and dry film thickness (h) (eq. 4-3). 

                                                                                    (Equation 4-3) 

Since only the PAA block is expected to swell with pH in water, the PS layer 

thickness was subtracted from the total measured thickness and the reported thickness 

refers to the PAA layer only.  

Figure 4-6 shows the swelling behavior measured using ellipsometry for two 

different PS-b-PAA samples (Samples 2 and 3 in Table 4-1 and Table 4-S1). In pure 

water (pH 5.5), Q = 2.3 and 3.0 for Sample 2 and 3, respectively. Similar swelling 

ratios were also obtained by AFM step height measurements on a different sample 

(Sample 5 in Table 4-1 and Table 4-S1). The total thickness of the dry PS-b-PAA 

layer measured by AFM was 12 ± 1 nm and the total thickness measured in MilliQ 

water at pH 5.5 was 15.5 ± 2 nm, corresponding to PAA swelling ratio Q ~ 3. 

Theoretical studies of polyelectrolyte brushes predict a complex variation in swelling 

depending on the degree of dissociation of the chain, grafting density, and salt 

concentration.17, 60-63 The scaling relationship describing the behavior of weakly 

charged polymer brushes in good solvents predicts that the degree of dissociation (α) 

decreases with increasing grafting density (σ) according to α ∝ σ-1/3.63 Therefore, the 

pH transition between neutral and charged brushes at high grafting density is 

expected to be higher than the acid dissociation constant of the acrylic acid monomer 

(pKa = 4.25)64 and of PAA in dilute solution (pKa ~ 4.2-5.5)25,65 . However, our 

results showing a significant swelling (Q >1) of the PAA brushes in MilliQ water at 

pH 5.5 and they suggest a partial dissociation of the COOH groups. This behavior 

differs from recently published data that showed no swelling of PAA brushes under 

similar conditions (pH 5.5).26,29  This discrepancy might be assigned to differences in 

the initial polymer conformation associated with different dry thicknesses together 

with the assumed molecular weight of the grafted chains. As previously discussed, 
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the molecular weight of the free polymers in solution used to determine the grafting 

density is most probably not representative of the grafted chains. Different initial 

conformations of the chains are therefore expected, which strongly affect the degree 

of dissociation for given pH.   

 

Figure 4-6. PAA thickness, H, measured by ellipsometry during first pH increase 

from 5.5 to 10.5 (squares) and decrease from 10.5 to 5.5 (circles), second pH increase 

from 5.5 to 10.5 (triangles) and decrease from 5.5 to 10.5 (inverted triangles). 

A) PS-b-PAA brushes with dry PS = 3.1 and PAA = 12.2 nm (Sample 2 in Table 

 4-1); B) PS-b-PAA brushes with dry PS = 4.3 and PAA = 9.2 nm (Sample 3 in Table 

4-1). Error bars are average values of three measurements on  

different areas of the substrate. 

 

Hysteresis effects were observed with brush swelling as a function of pH. An 

example of this is seen in Figures 4-6 A and B that show the swelling response with 

pH for two different samples. A progressive swelling ratio, increasing up to a 

maximum Q = 11.4 for Sample 2 and 8.4 for Sample 3, was observed for the first pH 

increase. The same maximum Q could not be attained with the second pH increase 

for sample 2 and a different Q was observed when decreasing the pH for both 

samples. This hysteresis-like swelling behavior was also previously observed.66  It 

was proposed that as the pH gradually increases, the dissociation of the PAA’s 
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carboxylic acid occurs gradually from the outer segments (at water/brush interface) 

towards those found close to the substrate.66   Therefore, the maximum degree of 

dissociation within the brush layer is expected to occur at pH ≈ 10.5. On decreasing 

the pH, the outer segments are first protonated, causing an increase in the 

hydrophobicity of the exposed brush. As a result, water cannot penetrate the brush 

and the inner charged segments cannot be reprotonated, giving rise to a brush 

swelling hysteresis.  

 

 

4.4.4 Stability studies 

The stability and reversible swelling of the PS-b-PAA brushes under extreme 

pH and added salt were also investigated. Figure 4-7 shows the change in PAA 

thickness with time when alternately immersing the sample in pH 10.5 and water.  

 

Figure 4-7. Variation of PAA thickness with time when alternately immersing the 

sample in pH 10.5 (squares) and water (circles).  

The numbering of the curves corresponds to the immersion sequence. PS-b-PAA 

brushes with dry PS = 1.7 and PAA = 18.1 nm (Sample 1 in Table 4-1). 

0 40 80 120

40

60

80

P
A

A
 t

h
ic

k
n

e
ss

, n
m

Time, min

1

2

3

4

5

6



Chapter 4                                                                               146 

  

At pH 10.5, the brush thickness equilibrated relatively fast and it remained stable for 

2 hr. Conversely, the brush thickness equilibration time was much longer (20-30 

minutes) when immersed into MilliQ water, owing to the gradual carboxylate 

protonation that prevents the inner groups from being reprotonated at low pH (vide 

supra). The slight thickness decrease that observed after 60 min indicates the 

continuous reprotonation process. 

The variation of PAA thickness with pH was relatively constant over 3 cycles 

when the samples were immersed for 2 hr as reported in Figures 4-7 and 4-8 A, 

confirming the robustness of the brush and no degrafting occurs. The stability of the 

PAA brushes was also confirmed over 13 cycles of pH switching with 10 min 

equilibration per cycle (Figure 4-8 B) where no significant variation in the swelling 

ratio (9.3±0.9) was observed.  

 

Figure 4-8. Variation in PAA brush thickness (H) with pH without salt (squares) or 

with different added salts: NaCl (circles), CsCl (triangles), CaCl2 (diamonds) and 

equilibration times of 2 hours (A), 10 min (B). The integer and fractional cycle 

numbers correspond to the buffer at pH 10.5 and water immersions, respectively. 

Layer thickness: PS=1.7 nm, PAA =18.1 nm (Sample 1, Table 4-1) (A) PS=9.5 nm 

and PAA=9.0 nm (Sample 4, Table 4-1) (B).  Three different regions were analyzed 

for thickness measurements and the error bar represent the standard deviation. 
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These results confirm the extreme robustness of the PS-b-PAA layer and its relatively 

fast response to variation of environmental conditions. This is based on the 

significant thickness change that was observed within 10 min after switching the pH. 

Thickness response measurements shorter than 10 min equilibration time were not 

possible owing to the lengthy experimental preparation for switching between water 

and buffered water. 

 

4.4.5 Effect of salt 

To the best of our knowledge, the brush stability and swelling/collapsing 

properties in presence of various salt ions have not been previously reported. 

Buffered solutions of 10 mM NaCl, CsCl and CaCl2 were used. This concentration 

was chosen as a critical value, as it was reported previously that PAA brushes can be 

cleaved at high pH and with salt at greater than10 mM.28  

Figure 4-8 A shows constant thickness response to pH variation for different 

salt counterions. This demonstrates that no brush degrafting over 3 

swelling/collapsing cycles under these conditions. A PS thickness of 1.7 nm is 

therefore a sufficient minimum amount of hydrophobic barrier to protect against 

substrate-initiator hydrolysis for swelling/collapsing switching studies. 

Also from Figure 4-8 A, information about swelling properties of PS-b-PAA 

system as a function of counterion radii was extracted. We demonstrated the PAA 

brush is thicker with sodium salt than without salt (98 vs. 88 nm with and without 

salt, respectively). The increase in brush thickness with added salt agrees well with 

Zhulina’s theory63 and with similar experimental work of Wu et al.54 This swelling is 

associated with an increase in the degree of dissociation of weak polyelectrolyte 

brushes with increasing of salt concentration. However, Lego et al,26 reported no 

change in PAA brush thickness with salt concentration at pH 6.  Conformational 

differences of the grafted PAA chains in the salt-free solution can explain the 
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observed discrepancy. In Lego’s work, the PAA brushes were undissociated and 

collapsed when exposed to water at pH < 7. Therefore, added ions could not 

penetrate the collapsed hydrophobic brush at this pH to swell the brush. In our study, 

the brushes are already swollen in water (pH 5.5) and therefore they are more 

permeable to added ions.  

For comparable ionic strength, the swelling with Сs+ was smaller than with 

Na+. The maximum swollen thickness with CsCl was 91 nm compared to 103 nm 

with NaCl (Figure 4-8 A). The difference in swelling response is a result of cesium’s 

lower charge density. The effective (hydrated) size of the cesium ion is smaller than 

sodium and it can bind fewer water molecules.67 Sodium ions are also known to favor 

the dissociation of weak polyelectrolyte brushes by replacing the protons of the 

COOH groups.25, 54, 63 This increases the osmotic pressure within the brushes and 

favors brush swelling.68 However, it has been proposed that the Cs+COO- ion pair is 

more easily dissociated than Na+COO-67, so Cs+ ions can more readily leave the 

brush, and the total concentration of Cs+ within the brush will be lower, resulting in 

lower osmotic pressure compared to Na+. 

In contrast to monovalent ions of sodium and cesium, the brush collapsed 

after exposure to 10 mM CaCl2 at pH 10.5 (19 nm compared to 24 nm in pure water) 

(Figure 8A). A weak response to pH was observed over a few pH-change cycles 

(Figure 8A). The same trend with PMAA brushes and calcium salt at comparable 

concentrations was observed by Konradi et al.68 However, once the PMAA brushes 

were immersed in salted solution, they could not be re-swollen in dionized water. 

Theoretical studies suggest that interactions between the carboxylic groups and 

calcium ions are ionic (i.e. columbic),69, 70 whereas experimental studies claim that 

the binding between polyelectrolyte brush and divalent alkaline-earth ions is a 

specific interaction.68 These previously reported experimental studies suggest that 

divalent ions can associate with either one carboxylic acid group or cross-link two 

neighboring COO- groups from different polymer chains.68 The latter results in less 



Chapter 4                                                                               149 

  

flexible and rigid polymer networks that have limited swelling behavior. Our results 

corroborate well with these observations.68  

 

4.5 Conclusion 

Our study reports for the first time the robustness of a charged polymer 

brushes and its capacity to undergo reversible conformational changes under extreme 

conditions of pH. SI ATRP was used to prepare polystyrene-b-polyacrylic acid (PS-

b-PAA) brushes covalently attached to silica via the PS block in a well-controlled 

manner. The stability was evaluated over pH-change cycles, confirming the extreme 

robustness of the PS-b-PAA layer and its responsiveness to pH and ionic strength. 

The hydrophobic PS layer was an effective barrier for protecting the surface-initiator 

bond against hydrolysis, which usually occurs at high pH and ionic strength.  A wider 

operating window of environmental conditions could therefore be used for examining 

the responsive behavior studies with the PS-b-PAA copolymer brushes. The PS-b-

PAA brushes exhibited pH responsiveness with hysteresis effects, which are 

presumably associated with a progressive change in the hydrophobicity of the PAA 

chains upon gradual pH changes. The effect of salt of different chemical nature on 

the copolymer brush stability and responsiveness was also investigated. Monovalent 

ions of sodium or cesium cause constant brush swelling/collapsing over repetitive pH 

cycles. In the presence of divalent calcium ions, the brushes collapsed and they could 

not be re-swollen in pure water. This contradicts theoretical models,69 but confirms 

previous experimental results,68 suggesting that specific interactions between charged 

polymer segments and divalent cations lead to cross-linking within the polymer layer. 

Nonetheless, friction, adhesion, permeability (diffusion or flow), and wetting can 

potentially be modulated via conformational changes with the stimuli responsive 

diblock that is a promising new smart material for rapid responsive switching. 
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Figure 4-S1. ATR-FTIR spectra of 10nm thick polystyrene brushes grafted from 

silica wafer. 

  



Chapter 4                                                                               151 

  

 PtBA layer PAA layer 

S
am

p
le

 
 

 
Degree of  

Polymerization 
(N) a 

 
 

 
RG of swollen 

coil (nm)b 
 

Fully extended 
length, nmc 

Thickness, 
nmd 

PS/PAA 
thickness ratio 

1 503 10 126 18.1 0.1 

2 570 11 143 12.2 0.3 

3 493 10 123 9.2 0.5 

4 451 10 113 9.0 1.1 

5 398 9 100 1.8 5.6 

 

Table 4-S1. Some parameters of PtBA and PAA layers.  
c calculated using formula: N=Mn(polymer)/Mn(monomer); b calculated using 

equation Rf≈aN0.6, where a=0.25 is a characteristic dimension of each repeating unit; 
c calculated from equation H=aN; d measured in air using ellipsometry; 
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Chapter 5 
 

Organophosphonic acids as viable linkers for the 

covalent attachment of polyelectrolyte brushes on 

silica and mica surfaces ‡‡ 
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5.1 Abstract 

We report the first successful preparation of polyelectrolyte brushes using an 

ATRP initiator that was covalently grafted to silica and mica substrates via an 

organophosphonic acid. Covalent attachment of the initiator to silica and mica and its 

subsequent synthesis of polyacrylic acid (PAA) and poly(sulfopropyl methacrylic 

acid) brushes by water mediated-ATRP was confirmed by ATR-FTIR, ellipsometry, 

AFM, and contact angle measurements. The initiator–substrate bond was robust and 

could resist a large range of pH in the absence of salt. Interactions between PAA 

brushes anchored to mica via the organophosphonic acid initiator were investigated 

using the Surface Forces Apparatus. The results confirmed the robustness of the 

initiator–mica bond as the brushes could resist shearing and compression under 

relatively high applied loads. 

 

5.2 Introduction 

Grafting of polymer brushes is a particularly versatile way of tailoring the 

surface properties of materials such as wettability, lubrication, and biocompatibility.1-

3 Polymer brushes are monolayers of polymer chains with one chain end tethered to a 

surface. Polymer brushes are generally observed for large surface density of grafted 

chains for which the limited space forces the chains to stretch. The polymer chain 

conformation depends on the grafting density, molecular weight and chemical 

composition of the grafted chains.4 In addition, end-tethered polymer brushes can 

change their conformation in response to the external trigger such as solvent quality, 

pH and/or ionic strength.5 This dynamic behavior is widely exploited for developing 

smart materials, having tunable surface properties.3, 6-8 One of the most suitable 

methods for preparing polymer brushes having a controlled grafting density and 

thickness is the grafting-from approach. This relies on synthesizing polymers directly 

from an initiator-modified surface in a well-defined manner.9 By controlling the 
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initiator surface coverage and the polymer molecular weight, a wide range of 

polymer grafting densities and chain conformations are possible.4 

Silicon oxide derivatives are widely used as substrates for synthesizing and 

characterizing polymer brushes.10 Silica surfaces have a significant number of silanol 

groups that can undergo silanization reactions with organosiloxanes.11 Surface 

polymerization takes advantage of an organosiloxane initiator monolayer that is 

covalently anchored to the surface via a Si–O–Si bond.12, 13 However, the labile 

siloxane bond between the surface and the initiator is susceptible to hydrolysis, 

leading to polymer cleavage from silica substrates in aqueous media under extreme 

pH and ionic strengths.14, 15  Organophosphonic acids are attractive alternatives to 

organosiloxanes for anchoring polymers to substrates.  This is in part owing to the 

multiple bonds occurring between organophosphonic acids and various substrates.16-

18 These are expected to give rise to robustly grafted uniform monolayers. Indeed, 

grafted organophosphonic acids have shown higher stability than siloxanes on 

metallic surfaces even at pH 7.5 for 7 days.19 For this reason, organophosphonic 

acids have also been grafted onto silica surfaces for various purposes such as 

immobilizing biological molecules,20, 21 biosensor applications,22 and organic thin-

film transistors.23-26 Despite their widespread use, only a limited number of studies 

have investigated the controlled surface polymerization from organophosphonic acid 

initiators and these exclusively focused on metal surfaces.27-31 We therefore report 

the first controlled ATRP of polyelectrolytes using an organophosphonic acid 

initiator covalently attached to silica and mica substrates.  Polyacrylic acid and 

poly(sulfopropyl methacrylic acid) brushes were examined owing to their known 

responsiveness to pH and ionic strength. They were additionally targeted to elucidate 

the role of brush conformation and electrostatic interactions in controlling adhesion 

and friction forces between surfaces in an aqueous environment. This is important 

because the use of dense end-grafted polyelectrolyte brushes has often been proposed 

for their remarkable lubricating properties.  However, the role of the polymer’s 

conformation and its degree of ionization in controlling friction remains unclear.2, 32-
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34 Water-mediated ATRP was chosen because it is fast, straightforward, and 

compatible with the targeted hydrophilic monomers.35 In addition, the desired 

polyelectrolytes can be prepared without additional experimental conditions and 

organic solvents that otherwise are incompatible with accurate surface measurements 

using a Surface Forces Apparatus (SFA). Herein, we demonstrate as a proof-of-

concept that the organophosphonic acid (5, Scheme 1) is a viable alternative to its 

siloxane derivative for the ATRP of polyelectrolytes that are covalently grafted on 

both silica and mica substrates.  

 

5.3 Experimental section 

5.3.1 Materials and chemicals 

Silicon wafers were obtained from University Wafer Co (100-mm diameter, 

boron-doped, (100) orientation, one side polished). All chemicals were used as 

received from Aldrich unless specified. Copper bromide (CuBr) was purified 

according to the previous report.35 MilliQ water was obtained from Millipore A10 

purification system with a resistivity of 18.2 MΩ·cm at 25° C. All surface 

manipulations were performed under an air flow cabinet and all glassware was 

carefully cleaned and oven-dried at 120o C overnight. 

 

5.3.2 5 synthesis 

11-(2-Bromoisobutyrate)-undecyl-1-phosphonic acid was synthetized in 

five steps similarly to previously reported method (see Figure 5-S1 for synthetic 

scheme).26  

11-Bromo-1-(tetrahydropyranyloxy)undecane (1). In a 100 mL round-

bottom flask equipped with a stir bar, 11-bromoundecanol (3.3 g, 13.1 mmol) and a 

catalytic amount of p-toluenesulfonic acid (15 mg, 0.09 mmol) were mixed in 
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dichloromethane (15 mL) at room temperature. The flask was then immersed in an 

ice bath at 0oC and an excess of 3,4-dihydro-2H-pyrane (6 mL, 65.7 mmol) was 

added drop-wise. After stirring the reaction mixture at room temperature for 73 h, 

diethyl ether (20 mL) was added. The ethereal layer was washed 3 times with a 

saturated sodium chloride aqueous solution.  It was then dried over MgSO4, filtered, 

and concentrated under reduced pressure. The crude product was purified by column 

chromatography (silica gel, eluent – hexane:ether=10:1, stained by vanillin or PMA). 

The title compound was isolated as a yellowish liquid (3.6 g, 81 %). 1H-NMR (400 

MHz, CDCl3): δ 1.28–1.42 (m, 18H), 1.54-1.59 (m, 6H), 3.41 (m, 2H), 3.5 (m, 2H), 

3.72 (m, 1H), 3.87 (m, 1H), 4.57 (dd, 1H). MS (ESI) m/z calculated 359 ([M+Na+H]+); 

found 359. 

11-(Diethylphosphoryl)-1-(2-tetrahydropyranyloxy)-undecane (2). In a 

100 mL double-neck round-bottom flask fitted with reflux condenser was loaded with 

1 (3.6 g, 10.7 mmol).  It was then closed with a septum and triethyl phosphite (30 

mL, 175 mmol) was added.  The reaction mixture was stirred at 165o С for 48 h. 

Afterwards, the triethyl phosphite excess was removed by vacuum distillation at 40o 

C at 4 x 10-2 mm Hg. The title compound was obtained as a yellowish liquid (1.46 g, 

35 %). 1H NMR (400 MHz, CDCl3):  δ 1.25–1.30 (m, 24H), 1.57 (m,2H), 1.70 (m, 

6H), 3.35-3.37 (m, 1H), 3.85 (m, 1H), 4.08 (m, 4H), 4.56 (dd, 1H). 13C-NMR (100 

MHz, CDCl3): δ 98.8,  77.4, 77.1, 76.7, 67.7, 62.4, 61.4, 61.3, 30.8, 30.7, 30.5, 29.8, 

29.6, 29.5, 29.4, 29.1, 26.3, 25.5, 25.0, 19.7, 16.5. MS (ESI) m/z calculated 415 

([M+Na]+); found 415. 

11-(Diethylphosphonyl)-undecanol (3). 2 (1.46 g, 3.7 mmol) and 

pyridinium-p-toluene-sulfonate (PPTS; 50 mg, 0.2 mmol) were combined in a 50 mL 

two-necked flask along with In methanol (15 mL) . The reaction mixture was 

refluxed at 60o C for 48 h. Afterwards, the mixture was cooled to room temperature 

and dichloromethane (20 mL) was added. The organic layer was washed 3 times with 

a saturated sodium chloride aqueous solution. It was then then dried over MgSO4, 
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filtered, and concentrated under reduced pressure. The title compound was isolated as 

a yellowish liquid (1.1 g, 96 %). 1H NMR (400 MHz, CDCl3): δ 1.26–1.30 (m, 24H), 

1.54 (m, 2H), 3.62 (t, 2H), 4.08 (m, 4H). 13C-NMR (100 MHz, CDCl3): δ 77.4, 77.1, 

76.7, 63.0, 61.4, 32.8, 30.7, 30.5, 29.5, 29.4, 29.3, 26.4, 25.7, 25.0, 22.4, 16.5. MS 

(ESI) m/z calculated 309 ([M+H]+); found 309. 

11-(2-Bromoisobutyrate)-undecyl-1-diethylphosphonate (4). In a 100 mL 

round bottom flask was loaded 3 (1.1 g, 3.6 mmol), anhydrous THF (10 mL), and an 

aqueous pyridine solution (99.5%; 1 mL, 12.4 mmol). 2-Bromoisobutyryl-bromide 

(1.2 mL, 9.7 mmol) was dissolved in THF (5 mL) and then it was added dropwise to 

the reaction mixture over 5 min. The reaction mixture was then stirred overnight at 

room temperature. Afterwards, petroleum ether (20 mL) was added and the organic 

layer was washed 3 times with 2 M HCl aq, twice with water, and twicet with a 

saturated sodium chloride aqueous solution. The organic layer was extracted, dried 

over MgSO4, and filtered. The solvent was removed under reduced pressure and the 

resulting oil was purified by column chromatography (silica; hexane:ethyl 

acetate=1:9; stained with KMnO4). The title compound was isolated as a yellow oil 

(0.6 g, 38 %). 1H NMR (400 MHz, CDCl3): δ 1.31 (24H), 1.67 (m, 2H), 1.92 (s, 6H), 

4.08 (m, 4H), 4.16 (t, 2H). 13C-NMR (100 MHz, CDCl3): δ 171.8, 66.2, 61.5, 56.0, 

30.8, 29.4, 29.1, 28.4, 26.4, 25.8, 24.9, 22.4, 16.5. MS (ESI) m/z calculated 459 

([M+2H]+); found 459. 

11-(2-Bromoisobutyrate)-undecyl-1-phosphonic acid (5). A 50 mL round-

bottom flask was loaded 4 (0.6 g, 1.3 mmol), afterwards bromotrimethylsilane (0.1 

ml, 0.76 mmol) was added dropwise. The reaction mixture was stirred overnight at 

room temperature and then it was quenched with acetone/water (4/1) mixture. The 

excess acetone was removed under reduced pressure and the final product was 

isolated as a yellow powder (475 mg, 1.18 mmol, 90 %). 1H NMR (400 MHz, 

CDCl3): δ 1.3 (m, 18H), 1.7 (m, 2H), 1.95 (s, 6H), 4.19 (t, 2H). 13C-NMR (100 MHz, 

CDCl3): δ 171.9, 77.4, 77.0, 76.7, 66.2, 57.7, 56.0, 30.8, 29.5, 28.4, 25.8, 25.7, 21.6. 
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MS (ESI) m/z calculated 403 ([M+2H]+); found 403. HR-MS (ESI) m/z calculated 

403 ([M+2H]+); found 403.  

 

5.3.3 Substrate preparation and initiator immobilization 

Silicon wafers 

Silicon wafers were cut into 1x2 cm2 pieces using a diamond pencil, sonicated 

in acetone for 20 min and then dried under nitrogen. The substrates were activated 

using a Piranha solution (H2SO4(conc.):H2O2=70:30 v:v) for 20 min at room 

temperature. (Caution: Piranha solution is extremely corrosive and should be used 

with absolute carefulness!) Afterwards, the substrates were removed from the Piranha 

solution and they were washed with copious amounts of MilliQ water, absolute 

ethanol, and finally dried thoroughly under nitrogen. The ATRP initiator (5) was 

solubilized in anhydrous dichloromethane (vide infra) at a concentration of 10-2 M. 

The clean substrates were immersed into the initiator solution overnight at room 

temperature under argon. They were then removed from the solution, washed with 

dichloromethane, and sonicated for 15 min in a triethylamine solution (2 mM) in 

dichloromethane. Afterwards, the surfaces were rinsed with dichloromethane, dried 

under nitrogen, and finally annealed at 140oC for 3 h in the oven. The phosphonic 

acid initiator (5) modified surfaces were subsequently either used for ATRP polymer 

grafting or stored in at desiccator under an inert atmosphere.  

 

SFA samples 

Back-silvered mica pieces were glued silver side down to SFA silica discs 

using an optical adhesive (Norland Products Inc., USA). The prepared surfaces were 

treated with a H2O/Ar plasma to generate an active mica silanol surface.36  The 

partial pressure of Ar2 was 80mTorr resulting in total pressure of Ar2 and water of 
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300 mTorr. After plasma activation, the disks were immediately transferred into a 

compartmentalized flask filled with the phosphonic acid initiator solution in 

anhydrous THF at a concentration of 10-2 M. The substrates were then removed from 

the solution, soaked in 2 mM triethylamine solution in THF for 30 min, rinsed with 

THF, dried under a steam of nitrogen, and finally annealed at 140oC for 3 h. 

Afterwards, the 5-modified SFA samples were used for surface initiated (SI) ATRP 

of sodium acrylate (NaA).  

 

5.3.4 5 recycling 

The excess of 5 used in the grafting solutions was isolated and reused several 

times without any detrimental effect either on the grafting or polymerization. A 50 

mL round- bottom flask containing the 5 solution was closed with a septum and the 

solvent was evaporated under a stream of argon until dry. The product was stored in 

the same flask under argon. The product stability and structural integrity were was 

confirmed by HR-MS (Figure 5-S17). 

 

5.3.5 Synthesis of conventional ATRP initiator and its grafting to 

silica 

The ATRP initiator, 3-(chlorodimethylsilyl)propyl-2-bromoisobutyrate (6) 

was synthesized according to previous reports.35 Piranha-treated silicon substrates 

were exposed to a 10-3 M initiator solution in toluene for overnight at room 

temperature under nitrogen.35 Afterwards, the initiator-covered surfaces were washed 

with toluene, absolute ethanol, and finally dried under a steam of nitrogen. The 

freshly prepared initiator-functionalized silica substrates were either used for surface-

initiated polymerization or stored in a desiccator until used. 
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5.3.6 Synthesis of polyacrylic acid (PAA) and poly(3-sulfopropyl 

methacrylate) (PSPMAA)  brushes via ATRP from initiator-

functionalized silica and mica surface 

A typical polymerization from the initiator-modified substrate (silica or mica) 

was as follows: bipyridine (129 mg, 0.83 mmol) and CuBr (48 mg, 0.33 mmol) were 

mixed in 100 mL double-necked round bottomed flask and the mixture was 

deoxygenated under vacuum and backfilled with argon three times. CuBr2 (15 mg, 

0.07 mmol) was added to the mixture and three vacuum-argon cycles were 

performed. Sodium acrylate (NaA) (9 g, 95.7 mmol) or 3-sulfopropyl methacrylate 

potassium salt (KSPMA) (23.5 g, 95.7 mmol) was solubilized in milliQ water (15 

mL) along with methanol (3 mL) at room temperature. The resulting solution was 

degased for 30 min by purging it with argon. The monomer was transferred to the 

catalyst mixture and the mixture was stirred at 50o until a homogeneous brown 

solution was obtained. The initiator-bearing substrates (maximum 4) were placed into 

an oven-dried compartmentalized flask, which was deoxygenated under vacuum and 

backfilled with argon three times. The monomer/catalyst solution was then 

transferred to the compartmentalize flask by cannula. Polymerization was done for 1 

h at room temperature. The reaction was stopped by opening the flask and exposing 

the catalyst to air. The substrates were removed, soaked in milliQ water for overnight 

(> 8 h), and then soaked in ethanol for 1 h followed by drying under nitrogen. Under 

these conditions, the salt is converted to the corresponding acid.  

 

5.3.7 PAA degrafting/swelling studies 

Trizma base buffer solutions (0.1 M) were prepared with MilliQ water and the 

pH was adjusted to 7.5, 9.0, 9.5, 10.0 and 10.5 with different volumes of HCl (0.1 

M). The pH was measured with a Symphony SB20 pH meter with Ag/AgCl 
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electrode. The ionic strength was adjusted by adding NaCl (10 mM) to the Trizma 

buffer solution. 

 

5.3.8 Surface characterization 

Contact angle measurements 

The water wettability of initiator- and polymer-covered substrates was 

measured with a FTA200 dynamic contact angle analyzer (First Ten Angstrom) in 

the equilibrium static mode using MilliQ water as the probe liquid.  Fta32 Video 

software was employed for data analyses. At least three separate measurements were 

done for each substrate and the average contact angle value was determined within an 

error of ± 3o.  

 

AFM measurements 

All surface topographical studies in air (unless specified) were performed 

using a MultiMode microscope equipped with a NanoScope V extended controller 

(Digital Instruments, Santa Barbara, CA) at room temperature with a constant 

humidity ≤ 40%. The surfaces were imaged in a tapping-mode using an ACTA 

silicon probe tip from AppNano with a resonance frequency of ~300 kHz and a 

spring constant of 40 N/m. All dry images were obtained at 1 kHz scan rate, medium 

oscillation damping (15–20%) and resolution of 512 x 512 pixels. NanoScope 7.30 

software was used to treat the images. At least three different areas were analyzed for 

each surface. 

All AFM images in liquid were recorded using a Dimension 3100 MultiMode 

Scanning Probe Microscope equipped with Veeco NanoScope V extended controller 

(Digital Instruments, Santa Barbara, CA) by using HYDRA-All-G silicon nitride 
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probes tip A or B. Triangular tip A with a resonance frequency of ~66 kHz and a 

spring constant of 0.29 N/m was used for imaging the polymer-coated surfaces at pH 

9.5 and 10.5. Tip B with a resonance frequency of ~17 kHz and a spring constant of 

0.045 N/m was used at low pH (5.5-8.5). A sample was fixed inside a custom-made 

Teflon liquid cell, filled with buffer solution, and left to equilibrate for at least 2 h 

before scanning. All images were done in the tapping mode at 1 kHz scan rate with 

an image resolution of 512 x 512 pixels and weak oscillation damping (10-15%). 

NanoScope 7.30 software was used to treat the images. A scratch on the polymer 

layer was made by using a scalpel and the height difference between bare substrate 

and an outer layer of the polymer film was measured by step-height analysis at three 

different regions for each sample.  

 

Spectroscopic ellipsometry 

The thickness of the initiator- and polymer-coated silica substrates was 

measured using an Ellipsometer M2000V from J.A.Woollam Co at a 75° angle of 

incidence at room temperature in air. The wavelength range from 370 to 1000 nm 

was used. Three different spots were analyzed for each sample. The modeling and 

data fitting were performed using the WVASE32 software (J. A. Woollam Co, 

version 3.768). A 2 nm (±0.03 nm) thick silicon oxide layer was measured prior to 

surface modification and it was considered as a constant when modeling the initiator 

and polymer layers using the Cauchy layer, assuming transparent and homogeneous 

polymer films. 
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Fourier Transform Attenuated Total Reflection Infrared 

Spectroscopy (ATR-IR) 

ATR infrared spectra of the initiator- and polymer-modified silicon wafers 

were recorded with a Tensor 27 Bruker Optics spectrometer equipped with a Harrick 

Seagull accessory. A germanium ATR crystal was used with p-polarized light at an 

incidence angle of 60o. The spectra were compile from 1024 scans at a resolution of 4 

cm-1. 

 

Forces measurements with SFA 

The surface forces technique (SFA) and detailed experimental procedures for 

measuring the normal and friction forces are described elsewhere.38, 39 In brief, two 

back-silvered molecularly smooth mica surfaces are glued to cylindrically curved 

silica lenses of radius R=2 cm. The force−distance profile between the surfaces is 

obtained by changing the position of the lower surface using a nanopositioner and 

measuring the actual variation in the separation distance between the surfaces with an 

interferometry technique using Fringes of Equal Chromatic Orders (FECO) with 

subnanometric resolution. The interaction force is then determined from the 

deflection of the spring by using Hooke’s law.38, 39 The upper surface is mounted on a 

motor-driven sliding device allowing lateral motion. Shearing cycles are carried out 

by moving the upper surface at constant velocity over a certain distance after which 

the driving direction is reversed. The upper surface is connected to a vertical 

cantilever spring whose lateral deflection, allowing the friction force to be 

determined, is measured using strain gauges with an accuracy of ±10-3 mN.  
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5.4 Results and discussion 

5.4.1 Initiator grafting to silica and mica 

The rationale for pursuing an organophosphonic acid (5) as an ATRP initiator 

immobilized on silica substrates was to demonstrate that functional groups other than 

siloxyl derivatives could be used for controlled surface polymerization of 

polyelectrolytes. This is of importance given the limited number of examples 

demonstrating the viability of alternate functional groups for the covalent 

immobilization of grafted from polymers on silica substrates.  Organophosphonic 

acids are advantageous over commonly used trialkoxy silyl counterparts because they 

consistently form monolayers without stringent deposition protocols. The 

organophosphonic acid derivative (5) was prepared as a proof-of-concept to 

demonstrate that it could sustain ATRP while being covalently attached to silica 

substrates.  The targeted 5 was prepared by expanding upon known methods, starting 

from commercially available 11-bromoundecanol.27 The hydroxyl of 11-

bromoundecanol was protected by attaching 2-tetrahydropyranyl group with the 

presence of catalytic amount of p-toluenesulfonic acid. The yield of the protected 

product 1 was 81%. Nucleophilic displacement of the bromide of 1 by diethyl 

phosphonate was done in 35% yield. The obtained 2 was deprotected to afford 3 in 

96% yield.  Next, 2-bromoisobutyryl was introduced to 3 in 38% yield. For the last 

step, the diethyl groups were removed to afford the final product 5 in 90% yield and 

9% overall yield for the five steps.  

Owing to the reduced reactivity of silica surfaces towards organophosphonic 

acids compared to metal oxides, a modified aggregation and growth (“T-BAG”) 

method was used for grafting the initiator to the substrate.41 This was used as an 

initial grafting protocol because of the limited number of studies of 

organophosphonic acid grafted to silica and mica substrates.21, 42  The given surfaces 

were immersed into either a 10-3 M dichloromethane or THF solution of 5 overnight 

(Scheme 5-1).  The substrates were then cleaned in triethylamine solutions of DCM 
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and THF by sonication. This was done to ensure the formation of only a monolayer.  

The substrates were finally annealed thermally at 120-140o C for 3 h to ensure 

covalent bonding of the targeted 5 to the substrate.41 

 

 

Scheme 5-1. Schematic representation of 5 coupling to silica or mica surfaces.  

 

The resulting 5-modified surfaces were characterized by water contact angle, 

ellipsometry, ATR-FTIR, AFM measurements. Water contact angles of 65o and 62o 

were observed for the initiator-modified silica and mica, respectively (Table 5-1).  

Meanwhile, an initiator film thickness of 0.9 nm (Table 5-1) was measured by 

ellipsometry.   

Table 5-1. Thickness and contact angle of water on 5-modified silica and 

polymer brushes  

Substrate Thickness, 
nma 

Contact angle, 
degrees o a 

5-modified silica 0.9±0.2b 65±3 

5-modified mica - 62±3 

    PAA brushes on 5-modified silica 17±4 25±3 

 PSPMAA brushes on 5-modified silica 13±4 30±3 
Concentration of the grafting solution of 5 is 10-2 M. 

a The thickness was measured by ellipsometry in air after sonication step.  
b The error is a standard deviation from three different measurements. 
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The measured contact angles were similar to previously reported values for 

alkylsilane initiator-modified substrates bearing an identical initiating group.  The 

large contact angles measured confirm the increased hydrophobicity of the surface 

upon grafting of 5.  This suggests that the initiator is coupled to the substrate, 

especially when comparing the contact angle to Piranha treated native glass slides 

whose θ=0.14   

While water contact angle measurements only provide qualitative evidence 

for 5 deposited on the substrate, unequivocal evidence of chemical bonding of 5 to 

the SiO2 substrate was provided by ATR-FTIR. Measurements were done after 

sonicating the initiator-coated substrate in triethylamine solutions in DCM. This step 

was to remove any physisorbed initiator. Immobilization of 5 on silica was confirmed 

by comparing its spectra to an authentic powder sample of 5 that was not attached to 

a surface.  Clear evidence of covalent attachment of the initiator to the substrate is 

had by examining the 800-1300 cm-1 spectral region (Figure 5-1).43  

 

 

Figure 5-1. A) ATR-FTIR spectra of 5 as a powder (red line) and immobilized on 

silica (dark green line). The ATR-FTIR spectrum of bare silica was subtracted from 

the spectrum of the immobilized 5. B) Expanded region corresponding to the dashed 

line from (A). 
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The loss of the P–O–H signal between 930 and 955 cm-1 confirms covalent 

attachment of 5 to the silica substrate.  This is further supported by the vibrations 

from PO2
- group at 1072-1048 cm-1 observed in the spectrum of 5-modified silica. 

ATR-FTIR was further beneficial for providing information about the surface 

packing. It is well known that the position of the methylene peak correlates with the 

degree of ordering of the alkyl chains in the film.44-46 The asymmetric CH2 stretching 

of disordered chains usually occurs at higher wavenumbers (~2925 cm-1) than that of 

well-ordered chains (~2915 cm-1). Figure 5-1A shows the different relative intensity 

of the two characteristics CH2 peaks for 5 in powder and immobilized 5. After 

immobilizing the initiator on silica, the CH2 stretching dominates at higher 

wavenumbers, suggesting a weak organization and alignment of the alkyl chains on 

the surface. This can be attributed to the bulky 2-bromo-2-methylpropionyloxy 

groups that prevent the layer from forming a close packed arrangement.27  

Figure 5-2 illustrates the surface topography of the 5-modified silica (A2, A3) 

and mica (B2, B3) surfaces. Randomly-distributed particles-like structures having a 

relative height of ca. 3 nm can be observed on both substrates. Since the length of a 

fully extended 5 is 2.05 nm (Figure 5-S18), the observed particle-like structures most 

probably correspond to initiator aggregates on the surface. However, the overall low 

surface roughness measured by AFM (rms of 0.4 for silica and 0.2 nm for mica) 

suggests a relative homogeneous grafted initiator layer.  
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Figure 5-2. AFM images of native silica (A1 (0.5x0.5 um)) and native mica (B1 (2x2 

um)), 5-modified silica (A2 (0.5x0.5 um), A3 (1.75x1.75 um)), and 5-modified mica 

(B2 (0.5x0.5 um), B3 (1.75x1.75 um)). AFM images (A2, A3, B2, B3) were obtained 

with SmartSPM (AIST-NT Inc, Novato) in the semicontact mode and Hi-Res C -

14/Cr-Au probes (Mikromasch). All images were done in air. 
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5.4.2 ATRP of immobilized organophosphonic acid initiator 

The capacity of 5-immobilized on silica to initiate the polymerization of 

different monomers was confirmed by synthesizing polyacrylic acid sodium salt 

(NaPAA) and poly(3-sulfopropyl methacrylic acid) potassium salt (KPSPMAA) 

polyelectrolyte brushes (Scheme 5-2). The ATRP of NaA and KSPMA using the 5-

modified silica wafer was done in water at room temperature using a 

CuBr/Bipyridine catalyst. A CuBr2 to CuBr ratio of 1:5 was used to moderate the 

polymerization. This ratio was found to be optimal for fast polymerization and for 

forming films of sufficient thickness for accurate swelling studies. They were 

characterized by ellipsometry, ATR-FTIR, AFM and contact angle measurements. 

After polymerization, the water contact angle of the coated substrates decreased and 

the grafted layer thickness increased, compared to the original 5-immobilized 

substrates (Table 5-1). 

 

Scheme 5-2. Synthetic scheme for the preparation of PAA and PSPMAA brushes 

from surface immobilized 5. 
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The resulting polyelectrolyte brushes were converted to their corresponding 

acid (COOH) by washing the surfaces with MilliQ water (vide supra) as confirmed 

by ATR-FTIR.  The ATR-FTIR spectra of the PAA showed a strong signal at 1575 

cm-1, corresponding to COO- (Figure 5-3). Also, the broad peak at 1730 cm-1 

indicates the presence of hydrogen-bonded carboxylic acids, consistent with previous 

reports for similar PAA brushes.47 The presence of both COO- and COOH bands 

confirms the partial ionization of the carboxylic acid groups. Similarly, the FTIR 

spectrum of the PSPMAA brushes clearly showed a narrow band at 1730 cm-1, 

corresponding to the carbonyl. Meanwhile, the sulfonate was confirmed by the two 

strong peaks at 1195 and 1050 cm-1.  These correspond to the asymmetric and 

symmetric sulfonate stretches.48  

 

 

 Figure 5-3. ATR FTIR spectra of PSPMAA (red) and PAA (blue) layers 

immobilized on silica (black) substrates. PAA and PSPMAA layer thickness  

is 20 and 13 nm, respectively. 
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The thickness of the polymerized films was quantitatively determined by 

ellipsometry. An average dry polymer layer thickness of 17 nm for PAA and 13 nm 

for PSPMAA was measured after 1 h of polymerization (Table 5-1). Both the PAA 

and PSPMAA layers were smooth with a rms of 0.4 nm (Figure 5-4 A1-A3) and 0.9 

nm, respectively (Figure 5-4 B1-B3).  

 

 

Figure 5-4. AFM images (A1 (5x5um), A2 (2x2 um)) and surface topographical 

profile (A3) of PAA brushes grafted from 5-functionalized silica. PAA film 

thickness=15 nm. AFM images (B1 (5x5um), B2 (2x2um)) and surface topographical 

profile (B3) of PSPMAA brushes grafted from PI-functionalized silica. PSPMAA 

film thickness=14 nm. All images were done in air. 

 

It should be noted that significant differences in the polymer layer thickness 

were obtained when polymerizing the same monomer with identical polymerization 



Chapter 5                                                                               177 

  

conditions with immobilized 5 and 6. While both have the same initiator 

(bromoisobutyrate), the aliphatic chain separating the surface-bound and 

polymerizable ends of 5 is longer than 6. Using similar polymerization conditions 

and an initiator concentration of 10-3 M for the surface functionalization, a dry PAA 

thickness of 2 nm and 120 nm (Figure 5-S12, A) was measured for silica surfaces 

coated with 5 and 6, respectively. The different thickness can be attributed to the 

different initiator surface coverage (Figure 5-5). Since 6 has a shorter aliphatic 

segment than 5, it is expected to form a denser monolayer, resulting in a higher 

amount of initiating sites on the surface. We previously showed that an increase in 

initiator coverage is associated with an increase in water contact angle.14, 15  An 

increase in concentration of the grafting solution of 5 (from 10-3 to 10-2 M) also 

resulted in an increase in the contact angle (from ca 60 to ca 65 o) as well as an 

increase in brush thickness (from 2 to 19 nm). Therefore, the smaller contact angle 

measured for the 5 –covered silica (60±3o) compared to 6-covered silica (72±3o) for 

the same initiator concentration (10-3 M) suggests a difference in the initiator surface 

coverage.  This can explain the difference in the resulting brush thickness. 
 

 

Figure 5-5. Schematic representation of polymer brushes grafted from 6 (A) and 5 

(B) immobilized on a silica substrate. 
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5.4.3 Hydrolytic stability of PAA brushes grafted from a silica 

immobilized 5 and 6 

The stability of the substrate–initiator bond was investigated with PAA 

brushes polymerized with the silica immobilized 5 and 6 under similar 

polymerization conditions. The brush swelling and grafting robustness were assessed 

by measuring the brush thickness at different pH and ionic strength using the AFM 

step-height method. The thickness of the PAA layer grafted from 6 progressively 

decreased with increasing pH from 7.5 to 10.0 in the absence of salt (Figure 6). The 

PAA thickness decrease can arise from either polymer collapse or polymer 

detachment from the surface. Polymer collapse can be dismissed because the PAA 

brush was previously demonstrated to swell with increasing pH for this process.15  

This swelling behavior is also confirmed experimentally15, 49, 50 and predicted by 

theory51 for weakly charged polyelectrolyte brushes. Therefore, the decrease in PAA 

thickness is most probably due to polymer degrafting. This is in contrast to previous 

studies that reported no PAA degrafting from silica immobilized derivatives of 6 in 

salt-free solutions at pH between 5.5 and 10.5.14, 47 Different PAA degrees of 

ionization and initiator coverage resulting from different experimental conditions can 

account for the observed discrepancy. The polymerization conditions used for water-

mediated ATRP (pH 8.5) favor the ionization of the carboxylic acid to its 

carboxylate, whereas the PAA brushes obtained in non-aqueous-mediated ATRP are 

expected to be neutral.14, 47 Indeed, a previous report confirmed no PAA brush 

swelling at pH < 7.5, regardless of the initiator surface coverage, when the brush was 

prepared in organic solvents using siloxane initiator-covered silica.47 This behavior 

was explained by the initial hydrophobicity of the PAA brushes prepared in organic 

solvents that block water and ions from penetrating the brush that would otherwise 

cleave the substrate–initiator bond. On the other hand, PAA brushes prepared in 

aqueous-media are significantly swollen at pH 7.5 (Figure 5-6A).  They are therefore 
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more permeable to water and ions and favor hydrolysis of the substrate–initiator 

bond.  

The behavior of the PAA brush prepared from the immobilized-5 is different 

from that of the immobilized-6 (Figure 5-6). In contrast to 6, the brush thickness for 

the immobilized-5 significantly increased from pH 9.0 to 10.0, regardless of the ionic 

strength. This suggests a more stable substrate–5 bond compared to its substrate–6 

counterpart under similar polymerization conditions. The thickness increase with pH 

is the result of the increasing number of deprotonated carboxylic acid groups along 

PAA chains. This causes the electrostatic repulsion between the chains and brush 

swelling. At higher pH (10.5), the PAA layer thickness slightly increased in salt-free 

solutions, whereas it drastically decreased in the presence of 10 mM NaCl (Figure 5-

6B, S13). Polymer cleavage was reported for PAA prepared from immobilized-6 at 

similar pH and with added salt.14, 47 It was shown, theoretically and experimentally, 

that salt can promote the dissociation of the carboxylic acids.49, 51 This leads to highly 

stretched chains that are hydrated, making the substrate–initiator more susceptible to 

hydrolysis by hydroxyl ions, and ultimately, polymer detachment.14, 47  Even though 

numerous stimuli-sensitive polyelectrolyte brushes studies have been reported, the 

exact swelling responses of PAA brushes and the conditions leading to their cleavage 

from the surface remain unclear. This is in part owing to the lack of systematic 

control of the initiator grafting density and molecular weight of the brushes between 

different analyzed samples. Nevertheless, our comparative study (Figure 5-6) clearly 

shows the resistivity of the substrate–5 bond towards hydrolysis over a large range of 

pH, especially in the absence of salt, compared to the substrate–6 bond.  The stability 

of the substrate–initiator bond was theoretically evaluated using Density Function 

Theory.  This was done by calculating the bond dissociation enthalpy (BDE) of the 

substrate–initiator bond, using the heats of formation (ΔHf) of the corresponding 

compounds.  The BDE was calculated according to: [ΔHf (substrate–initiator) + ΔHf 

(H2O)n] - [ ΔHf (substrate) + ΔHf (initiator)], where n= 1 for 6 and n=2 for the 

bidentate bonding for 5 to the surfaces.  Si(OH)4 was used as a representative model 
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for the silica substrate to significantly reduce the computational times. This 

simplification is valid given only the relative BDE of the substrate-initiator are 

targeted and not the absolute values. Gas phase geometric optimization was done 

using the 6-31g* basis set.  Single point energies and the corresponding ΔHf of the 

optimized geometries were calculated by applying a given solvent continuum.  While 

the absolute ΔHf cannot be accurately calculated for a given compound, the relative 

values, and hence the BDE, are highly representative of the actual bond strengths. 

Therefore, the relative BDE of the different substrate–initiator bonds can accurately 

be calculated according to: ΔBDE=[BDE(substrate–5)] - [BDE(substrate–6)]. The 

calculated ΔBDE was 14 kJ/mol (gas phase), 46 kJ/mol (dichloromethane), and 120 

kJ/ mol (water). The theoretical calculations confirmed the substrate–5 bond is 

indeed stronger than the corresponding substrate–6 bond, especially in water. 

 

 

Figure 5-6. A) Variation of the PAA layer thickness grafted from initiator 6 at 

different pH without added salt. pH was increased from 7.5 to 10.0. Original dry 

PAA thickness=120 nm.  B) Variation of PAA layer thickness prepared from 

immobilized 5 at different pH without (squares) and with added (triangles) NaCl. 

Original dry PAA thickness=20 nm. The sample was exposed to non-salty buffer 

solution with pH increased from 7.5 to 10.5. Sample was soaked in milliQ water for 

overnight and then exposed to buffer solutions with pH ranged from 7.5 to 10.5 with 

added salt. All thickness measurements were done in situ using AFM. 
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5.4.4 Surface forces characterization 

Normal and friction forces between two PAA layers of mica immobilized-5 

were measured using SFA under different pH and ionic strength. This was to assess 

the adhesion, friction and resistance to compression and shear of the polyelectrolyte 

brushes. The force profiles were measured step-wise during both approach and 

separation and each separation distance was measured at equilibrium. This was taken 

at a distance variation of less than 0.5 nm/min. Measurements were done on five 

different pairs of PAA coated mica surfaces and they were reproduced on different 

contact positions with the same pair of surfaces. A wait time of 2 hours was set 

between each approach-separation cycle. The friction forces were measured at 

different separation distances ranging from large distances (corresponding to a 

negligible applied normal load) to smaller distances, corresponding to pressure of ca 

40 atm for all pairs of surfaces. As for the force profiles, the lateral motion was 

initiated once the variation in the separation distance was less than 0.5 nm/min. The 

reported friction forces, Fs, are the average kinetic forces measured in the steady-state 

conditions (i.e., constant driving velocity and friction forces). The reported 

measurements were done at a sliding velocity of 1 μm/s for comparison with 

previously reported results. All reported friction forces were measured in the absence 

of surface damage, confirmed by the direct visualization of the contact region with 

the optical interferometry technique used for force measurements. 

Figure 5-7 shows the measured normal force profiles in water at 25 °C for 

different pH (5.5 and 9.5) and salt concentrations (0 and 10 mM NaCl) between two 

PAA layers on mica prepared from immobilized-5. For given pH and salt 

concentration, the forces profiles were not systematically reproducible and they 

exhibited hysteresis. These results suggest significant surface heterogeneity and 

thickness variability between the pairs analyzed. This most likely is from slight 

variances in the different degrees of polymerization52, 53 and polydispersities54 of the 

brushes between different samples, even when polymerized in the same reactor using 
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identical polymerization conditions.9, 55 The variable polydispersity of the polymer 

brushes are confirmed by AFM surface roughness measurements.  The film 

roughness (rms) of PAA polymerized from mica immobilized-5 ranged from 1.3 to 

2.3 nm (Table 5-S1).  This is much rougher than previously reported grafted to PAA 

brushes whose surface roughness was 0.5 nm.49 The rough film polymerized from the 

immobilized-5 suggests that the polymer molecular weight and/or grafting density 

are not well controlled with grafted from. Therefore, the polymer’s structural changes 

in response to its surroundings cannot be accurately quantified.  Nevertheless, the on-

approach and separation force profiles measured are typical of those for polymer 

brushes.  Only the on-approach measured surface profiles are illustrated for clarity. It 

should be noted that the force profiles do not clearly exhibit the long-rang 

exponential decay that is characteristic of double-layer electrostatic interactions. This 

would suggest that onset of the repulsion corresponds to the initial compression of 

the two apposing brush layers (i.e. twice the non-perturbed brush thickness). Half the 

onset distances for the mica immobilized PAA range between 50 and 225 nm is 

significantly larger than the measured AFM step-heights for the corresponding silica 

immobilized PAA of ca 20-160 nm (Fig. 5-7). This can be explained by the two 

different approaches used to determine thickness with both instruments, AFM and 

SFA. The AFM thickness (or step-height) was determined using a semi-contact 

mode, which does not exclude the compression of the brushes. With SFA, the 

thickness was inferred from the range of the repulsive forces which is sensitive to the 

non-compressed outer most segments of the brushes. In addition, the long-ranged 

repulsive forces may also include some non-contact electrostatic effects.  Therefore, 

it is expected to measure a larger thickness by the non-compressed SFA compared to 

AFM. 
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Figure 5-7. Normalized force profiles measured on approaching two opposing PAA 

brushes across (pink) water, (green) buffer solution pH 9.5 without salt and (gray) 

buffer solution pH 9.5 with salt. The shade areas represent the variability in the 

measured force profiles and the most representative profiles are illustrated. The PAA 

brushes were prepared on five mica pairs obtained from three independents 

experiments. (■) sample 1, (●) sample 2, (▲) sample 3 (◆) sample 4 and (+)  

sample 5. 

 

The relationships between the friction force (FS) and the normal load (FN) for 

three different experimental conditions with and without added salt are depicted in 

Figure 5-8. As can be seen from the normal forces profiles, the responsiveness of the 

brush to changes in pH and ionic strength cannot be unequivocally identified from 

the FS measurements (Figure 5-8). The FS versus FN curves are delimited by two 

linear regimes, which set the limiting values of the friction coefficient. The friction 

coefficients measured with the different samples range from ca 0.4 to 1.1 in salt-free 

water and increase to a maximum value of 3.9 with added salt. The values are 
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relatively high compared to those previously measured between two grafted to PAA 

brushes under similar experimental conditions.49 The measured friction coefficients 

are more consistent with those measured by AFM for poly(2-(dimethylamino)ethyl 

methacrylate) brushes grafted-from gold.50 

 

 

Figure 5-8. Friction force, FS, as a function of the normal force, FN,  between two 

opposing PAA brushes measured in water (red symbols), buffer solution pH 9.5 

without salt (green symbols) and buffer solution pH 9.5 with 10 mM salt (black 

symbols).  Sample 1 (■), sample 2 (●), and sample 4 different spots (◆, ◇). All 

measurements were done at a sliding velocity of 1μm/s. Inset:  typical friction traces. 

t1 and t2 illustrate times where sliding direction was reversed. 

 

The different friction coefficients for the grafted-to and grafted-from PAA 

brushes are most probably due to variations in the surface roughness, where the rms 

of grafted-from PAA in water was 1.3 as opposed to 0.4 for the grafted-to PAA. This 

is based on the well-known fact that the surface roughness has a significant effect on 

the friction coefficient, where it increases with surface roughness.56,57 It is worthy to 
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note that although high friction coefficients were obtained, the surfaces were not 

damaged during the force analyses.  No surface damage was observed even under 

applied loads up to 20 mN/m, corresponding to pressures of ca 40 atm. This confirms 

the strong covalent attachment of the organophosphonic acid to the mica substrate 

and illustrates the suitability of this anchoring group as a robust alternative to 

siloxanes. 

 

 

5.5 Conclusions 
An organophosphonic acid (5) was investigated as an alternative to 

commonly used organosiloxanes for robustly immobilizing an ATRP initiator to 

silica and mica. Covalent attachment of a monolayer of 5 to both mica and silica 

substrates was possible. We demonstrated for the first time that the covalently grafted 

5 to silica underwent surface polymerization of NaPAA and KPSPMAA via water-

mediated ATRP to afford polyelectrolyte brushes. The swelling behavior of the 

resulting grafted PAA brushes and their resistance to cleavage from the substrate at 

pH<10.5 demonstrated the robustness of the 5–substrate bond. The robustness of the 

5–mica bond was further illustrated by surface force measurements, where PAA 

brushes resisted shearing and compression upwards of several atmospheres. It was 

successfully proven that organophosphonic acids are viable alternatives to siloxanes 

derivatives for the robust covalent attachment of ATRP initiators to silica surfaces. 5 

is an attractive anchor for preparing covalently immobilized responsive smart 

materials that can sustain a wide range of environmental conditions. Meanwhile, SFA 

measurements demonstrated the complexity of controlling the thickness and surface 

homogeneity of PAA brushes prepared from water-mediated ATRP. The 

polydispersity and molecular weight of the polyelectrolytes grafted-from 5-substrates 

are important parameters that need to be examined in more detail because they affect 

the surface roughness of the polymer film and the brush surface properties. 
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5.7 Supporting information 
 

 

Figure 5-S1. Synthetic scheme for the preparation of phosphonic initiator (5). 
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 Figure 5-S2. 1H NMR spectrum of 1, 2, 3, 4 and 5 in chloroform. 

6.00

5.61

7.97

7.41

4.30

1.98

3.06

ppm (t1)
1.502.002.503.003.504.00

2.00

6.05

6.15

14.56

2.01

5.87

2.00

2.03

1.42

2.29

1.84

6.00

2.46

30.14

4.28

14.31

5

4

4.00

1.78

1.99

4.10

19.30

8.17

3.26

0.96

0.22

14.62

4.83

1.01

0.99

0.99

1.02

9.22

3

2

1



Chapter 5                                                                               189 

  

 

Figure 5-S3.13C NMR spectrum of 2, 3, 4 and 5 in chloroform. 
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Figure 5-S4. Mass spectrum of 1.  
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Figure 5-S5. Mass spectrum of 2. 
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Figure 5-S6. Mass spectrum of 3. 
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Figure 5-S7. Mass spectrum of 4. 
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Figure 5-S8. Mass spectrum of 5. 

  



Chapter 5                                                                               195 

  

 

 

Figure 5-S9. High resolution mass spectrum of 5. 
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Figure 5-S10. High resolution mass spectra of freshly synthesized 5 (B) after 5 

recycling cycles. 

 

 

Figure 5-S11. Theoretically calculated length of 5 after energy minimization. 

Chem3D software was used in option MM2, with a RMS gradient of 0.100. 
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Figure 5-S12. PAA (A) and PSPMAA (B) brushes on silica. Polymer grafting 

reaction was performed with the conventional (siloxane) initiator.  

Thickness of PAA layer = 120 nm and PSPMA layer =156 nm. 
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Figure 5-S13. Degrafting studies of PAA brushes synthesized from 5-modified silica 

wafer. Thickness of PAA layer in air = 20nm. 

 

 

Table 5-S1. PAA layer roughness measured under different conditions. The size of 

analyzed area is 4x4um. Polymer grafting reaction was performed with 5. 

Conditions Roughness, ±0.2nm 
water 1.3 

pH 9.5 no salt 1.5 
pH 9.5 with added 10mM NaCl 2.3 
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6.1. Conclusions 

The main goals of the present work were to prepare well-defined weakly 

charged polymer brushes, study their responsiveness with variation of pH and ionic 

strength, and correlate the brush conformation with the surface properties. Weakly 

charged brushes are of particular interest because they adopt a large variety of 

conformations when an external stimulus is applied. To prepare well-defined polymer 

brushes, SI-ATRP was chosen as an ideal method because it allows control over the 

polymer brush layer thickness, composition, and macromolecular architecture. For 

accurate conformation-properties studies, a robust substrate-polymer connection is 

required. For silica substrates, the ATRP with a siloxane initiator is typically used, 

because it provides a Sisilica-O-Siinitiator connection that is robust, and can resist the 

polymerization and characterization conditions. However, it was shown in the 

literature that this bond can hydrolyze resulting in polymer degrafting. The exact 

degrafting conditions were unknown. Thus, we aimed to determine the conditions 

that triggered undesired polymer detachment and to design a robust polymer brush 

system that would be stable under a wide range of environmental conditions. 

Changes in conformation of end-grafted polymers generally lead to changes in 

surface properties such as friction and adhesion. As it was shown previously by 

Raviv et al., polyelectrolyte brushes in aqueous environments have extremely low 

friction coefficients.§§ However, the exact mechanism of effective brush lubrication 

is still unclear. Correlating the surface properties of covalently attached brushes with 

different environmental conditions (pH and ionic strength) would help to elucidate 

the lubrication mechanism and reveal the role of polymer conformation.  

We are interested in polyacrylic acid brushes because its conformations can 

be finely tuned by varying the pH and ionic strength. The conventional PAA brush 

synthesis is usually done with an acrylate polyester, which can be converted to PAA 

                                                       
§§Raviv, U.; Giasson, S.; Kampf, N.; Gohy, J.-F.; Jérôme, R.; Klein, J. Nature 2003, 425, 163. 
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by removing the protecting ester groups. This approach has several drawbacks. First 

of all, harsh deprotection conditions are required that could detach the polymer 

leading to changes of polymer grafting density. Moreover, a washing step is required 

to remove the hydrolyzing solution.  Direct PAA synthesis in water avoids the 

deprotection step and leads to a well-defined polyelectrolyte in one step. Chapter 2 

is the first report of successful direct polymerization of sodium acrylate (NaA) from 

initiator-functionalized mica surface using water-mediated ATRP. Despite mica 

being commonly used as a substrate for force measurements, there are few reports 

showing the covalent attachment of polymers on mica because of its inertness toward 

chemical modification. Developed by Lego et al., the protocol of covalent 

immobilization of an ATRP initiator on mica involves activating the surface with 

water-argon plasma, and grafting the chlorosilane-based ATRP initiator via siloxane 

bond.*** In Chapter 2 we used this approach to activate mica and we showed the 

initiator monolayer could successfully initiate the polymerization of NaA in water, 

resulting in thick and smooth PAA layer of 95 nm within 70 min. We grafted PAA 

from both mica and silica surfaces under the same reaction conditions. The thickness 

of the layers for these two substrates was different. The PAA thickness on silica was 

57 nm while, for the mica substrate, the layer was about 95 nm. This difference could 

be due to the polymer brush cleavage as a result of substrate-initiator bond hydrolysis 

in alkaline conditions, which are required for water ATRP. As it was shown before in 

the literature, after activation, silica has more stable surface hydroxyl groups than 

mica. This should lead to denser polymer brushes on silica than on mica. At high 

polymer layer thickness, brush degrafting can be facilitated because of the stretched 

polymer conformation that, in turn, facilitates the penetration of hydroxyl ions close 

to the surface resulting in substrate-initiator bond rupture.  

Absolute evidence of polymer brush degrafting and the conditions under 

which it occurs were demonstrated in Chapter 3. We grafted PAA brushes from their 

                                                       
***Lego, B.; Skene, W. G.; Giasson, S. Langmuir 2008, 24, 379. 
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precursor (PtBA) from silica (glass slide) using SI-ATRP. To dynamically monitor 

polymer degrafting under different pH and salt conditions, we attached a 

fluorescence probe (PMOH) to the PAA chains and used TIRF microscopy. We 

observed strong fluorescence decrease at pH≥9.5 in the presence of salt indicating the 

brush detachment. Moreover, we performed complex studies to assure the decrease of 

fluorescent intensity was a result of polymer detachment rather than detachment of 

the fluorophore. We suggested that at low pH, the substrate-initiator bond was 

shielded by undissociated polymer units situated close to the substrate. Salt ions in 

combination with high pH caused full ionization of the attached polymer, resulting in 

the substrate-initiator bond being exposed to hydroxyl ions. The latter caused the 

substrate-initiator bond hydrolysis and resulted in polymer detachment. In Chapter 3 

we unambiguously proved for the first time that the substrate-initiator bond could be 

hydrolyzed, and the observed polymer thickness decrease was a result of this process. 

Obtained results are of importance for polymer brush conformational studies where a 

wide range of pH and ionic strength are required, and knowing the substrate-initiator 

bond hydrolyzing conditions could help avoid polymer detachment. 

In the subsequent chapter we developed a strategy to prevent polymer 

cleavage. This approach relied on introducing a polystyrene buffer layer between the 

siloxane initiator and PAA block (Chapter 4). This was done by SI-ATRP that 

allows grafting the first PS block, and then, extending it with PAA block by using 

bromide end groups. Acting as a hydrophobic barrier, the PS layer prevents water 

from penetrating close to the substrate and, thus, prevents substrate-initiator bond 

hydrolysis. In Chapter 4, we demonstrated the protective properties of the PS block 

as a function of its thickness. We showed that even the smallest PS thickness of 1.7 

nm can effectively protect the Sisubstrate-O-Siinitiator bond from hydrolysis under the 

extreme alkaline conditions with the presence of different salt ions. Multiple cycles 

of pH-change confirmed the robustness of PS-b-PAA brushes as well as its 

responsiveness to the variation of pH and ionic strength. The PAA thickness change 

was used to measure the brush responsiveness. Relatively fast constant response 
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(within 10 minutes) was observed upon pH switching from 10.5 to 5.5. This can be 

potentially used in engineering of smart stimuli-responsive materials. Moreover, pH-

induced swelling of PS-b-PAA brushes was studied, where we observed pronounced 

hysteresis of swollen brush thickness upon step-wise pH changes. We attributed this 

hysteresis-like behaviour to changes in brush hydrophobicity. pH increase caused the 

dissociation of the carboxylic acid groups of the outer brush regions, resulting in 

hydrophilicity increase and allowing the buffer solution to penetrate inside the brush 

and dissociate the rest of COOH groups. pH decrease, in contrast, resulted in an 

increase of hydrophobicity of the outer brush regions and decelerated the protonation 

COO- groups because of the restricted penetration of buffer solution through the 

brush. Additionally, we studied the role of salt ions of different valencies on brush 

swelling. Either sodium or cesium monovalent ions resulted in constant brush 

swelling/collapsing ratios upon several cycles, while the addition of calcium ions 

caused brush collapse and the brush could not be re-swollen. Thus, these results 

should attract considerable attention from those interested in synthesis and 

characterization of well-defined responsive polymer layers, brush conformational 

studies upon applying external stimulus, and design of smart switching materials.  

As an alternative to commonly used siloxane ATRP initiators, we proposed to 

use organophosphonic acid initiator (5) to graft to silica-based substrates. In Chapter 

5, we described the first example of 5 grafting to silica and mica. The covalent 

attachment of 5 to silica was confirmed by ATR-FTIR. AFM studies revealed the 

formation of homogeneous initiator layer on both substrates. We showed that the 

grafted phosphonate layer could effectively initiate the polymerization of sodium 

acrylate and 3-sulfopropyl methacrylate in water. The constant thickness of prepared 

PAA and PSPMA brushes confirmed the stability of silica-initiator interface in 

alkaline conditions, which are required by water-mediated ATRP. Moreover, we 

evaluated the stability of Sisubstrate-O-Pinitiator bond with respect to pH and ionic 

strength by monitoring changes in thickness of grafted PAA layer. We revealed that 

PAA brushes were stable in a wide range of pH (from pH 7.5 to 10.5), and brush 
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degrafting occurred at pH 10.5 with added salt only. These results confirm that used 

organophosphonic acid is a suitable ATRP initiator for silica because it is attached to 

the substrate through covalent bond, capable of initiating the polymerization, and 

assures stable substrate-polymer connection in a wide range of pH. These findings 

can be adopted to create stable silica-polymer interface. Usage of phosphonate 

linkage to graft polymer from silica could be beneficial for many applications such as 

biosensors, chromatographical and catalytical platforms, where the extended range of 

applied environmental conditions is required.  

Confirmed hydrolytic stability of PAA brushes grafted from phosphonate-

modified silica allowed pH- and ionic strength-induced changes of PAA’s surface 

properties to be investigated with Surface Forces Apparatus. The force profiles 

showed no changes in the range and amplitude of interactions regardless of pH and 

ionic strength, suggesting non-significant differences in polymer conformations. This 

was attributed to the sample thickness variability, which, in turn, related to the 

polymer preparation technique (water-mediated SI-ATRP). With this technique the 

relatively large polymer molecular weight distribution is possible. The friction was 

varied with sample and did not show significant difference between conditions. This 

was explained by the initial surface roughness as well as a roughness increase upon 

swelling. Thus, the large variability between samples prevented clear correlation of 

degree of ionization with friction to be observed.  

To conclude, these results present a significant contribution to the polymers 

on surface field. We showed for the first time that the Sisubstrate-O-Siinitiator bond can be 

hydrolysed resulting in polymer brush detachment. We determined the exact pH and 

ionic strength conditions that resulted in the siloxane linkage hydrolysis. We 

suggested a strategy to prevent polymer degrafting: by using hydrophobic PS layer as 

a protector for substrate-initiator bond. This approach resulted in stable and 

responsive PS-b-PAA brushes that allowed studying of pH-induced brush swelling 

over a wide range of environmental conditions, including the extreme conditions of 
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pH and ionic strength. Additionally, we used phosphonic acid ATRP initiator as an 

alternative to commonly used organosilanes to functionalize silica. We showed that 

the phosphonic acid initiator could be successfully grafted to silica and mica surfaces, 

and initiate the polymerization of PAA and PSPMA brushes in water. We confirmed 

the stability of Sisubstrate-O-Pinitiator bond under polymerization conditions and 

demonstrated its resistivity towards hydrolysis in a wide range of pH. Thus, the 

choice of the “protector” for the siloxane substrate-initiator bond, either PS layer or 

organophosphonic acid, depends on two main factors: what conditions (pH and salt 

concentration) the brushes will be exposed to,  and what polymerization medium 

(organic solvent or water) will be used.  

 

6.2. Future perspectives 

While substantial work of synthesis, characterization and studying pH- and 

ionic strength responsiveness of polyelectrolyte brushes were done, there is still 

space for future work. Here, we propose several ideas that can be pursued in order to 

complete the current project and explore PE brushes more extensively. 

PS-b-PAA brushes: stability studies. In Chapter 4, we presented PS layer of 

1.7 nm as a good protector for the substrate-initiator bond against hydrolysis. 

Prepared PS-b-PAA brushes were stable at pH 10.5 with added 10 mM NaCl during 

2 h. However, the brush stability at higher salt concentration was not studied. Thus, 

we propose to verify the stability of PS layer at concentration of NaCl >>10 mM. The 

extreme salt concentrations might require a thicker than 1.7 nm PS layer. 

PS-b-PAA brushes: studying of surface properties. We showed that PS-b-

PAA brushes are exceptionally stable under a wide range of environmental including 

extreme conditions. This makes PS-b-PAA brushes ideal candidates for brush 

conformational studies via monitoring their surface properties (adhesion and friction) 
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with one of the forces measuring techniques. Lateral force microscopy with colloidal 

probe can be used to evaluate the interactions between polymer layers. After 

performing appropriate calibration procedures, it will be possible to measure an 

absolute value of friction force and correlate it with pH and ionic strength. PS-b-PAA 

brushes can be grown from both microsized silica beads and flat silica substrates 

under the same polymerization conditions. This will assure identical brushes 

thickness on both substrates. Interaction forces can be measured with AFM, equipped 

with liquid cell that will allow varying the pH and ionic strength of solutions. This 

approach does not have limitations in sample preparation as SFA. The grafting of PS-

b-PAA brushes from SFA samples is restricted because the adhesive used to glue 

mica on SFA discs can be dissolved by multiple organic solvents (acetone with 

heating, DCM, etc.) that are used for brush synthesis. This will lead to sample 

destruction. Thus, the colloidal probe approach is advantageous. PS-b-PAA brushes 

will be prepared using solvent-mediated ATRP as described in Chapter 4. Therefore, 

the variability in polymer thickness mentioned in Chapter 5 will be minimized. This 

is because of the absence of side reactions that are usually present in water-mediated 

ATRP, and, which can influence the polymerization kinetics and molecular weight 

distribution.   

Control over PI surface coverage. For polymer brushes prepared using SI-

ATRP the control over initiator surface coverage is necessary because it determines 

the grafting density of attached chains. In Chapter 5, we showed the successful PI 

attachment to silica and mica, but the PI grafting kinetics was not explored. Also, the 

PI reactivity towards polymerization at different surface coverage must be examined. 

The initiator surface coverage could be investigated as a function of coupling time 

and concentration of initiator solution. The changes of surface coverage can be 

monitored by measuring the water contact angle. The increase in initiator surface 

density will lead to an increase of hydrophobicity and, consequently, to increased 

water contact angle.  In Chapter 5, we used one concentration of initiator solution 

(10-3 M). Other concentrations (10-1 and 10-2 M) can be investigated and obtained 
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initiator monolayers can be studied in terms of polymerization reactivity. So, our next 

step will be to investigate the PI adsorption kinetics and prepare initiator-

functionalized surfaces with different PI surface coverages. Different initiator surface 

coverages will result in polymer brushes with varied grafting density, i.e. with 

different polymer chain conformations. This will allow studying the role of brush 

conformation in controlling surface properties such as adhesion and friction. 

Studying PAA brush surface properties. Following the previous idea, we 

propose to investigate the surface properties of PAA brushes as a function of polymer 

grafting density. In Chapter 5, we studied PAA brushes of similar polymer grafting 

density because we assumed identical initiator surface coverage. To understand the 

role of main brush parameters such as polymer layer thickness, grafting density, and 

degree of ionization in polymer-polymer interactions, brushes of significantly 

different thicknesses and grafting densities should be studied as a function of pH and 

ionic strength. Thus, the goal for future work would be to prepare brushes of different 

thicknesses and grafting densities, and correlate the surface properties (friction, 

adhesion, distance dependant inter-surface forces) with layer thickness, polymer 

degree of ionization and environmental conditions. 

Studying of PSPMAA brush surface properties. With water-mediated ATRP, 

we were able to prepare PSPMAA brushes from phosphonate-modified silica. 

PSPMAA is a polymer that can tune its conformation in response to ionic strength. 

Studying surface properties of PSPMAA brushes as a function of ionic strength 

would be beneficial for understanding the role of salt ions in effective lubrication, 

and correlating changes in friction and adhesion with polymer conformation. 

Sisilica-O-Pinitiator bond hydrolytic stability. The grafting of PI to silica was 

done through Sisilica-O-Pinitiator bond. We studied the hydrolytic stability of substrate-

initiator linkage by monitoring changes in the thickness of the grafted polymer layer 

under different environmental conditions. It was shown before that polymer 

degrafting, because of the rupture of substrate-initiator bond, can be facilitated for 



Chapter 6                                                                               212 

  

thick polymer layers. Thus, to perform accurate stability studies, we propose to graft 

the phosphonate initiator to the glass slide, modify its end groups with fluorescent 

tags, and apply TIRF microscopy to visualize the layer. Then the solutions of 

different pH and ionic strength can be flowed, and the same methodology to analyse 

the changes of fluorescent intensity as described in Chapter 3 can be used.  

Brush sensing applications. PS-b-PAA brushes are sufficiently robust to 

sustain a wide range of pH without degrafting and at the same time stay responsive. 

So, this property can be potentially used in sensor engineering. Tokareva et al. 

showed an example of a nanosensor based on poly(2-vinylpyridine) (P2VP) brushes 

that change their conformation in acidic conditions.††† Brush thickness was reversibly 

altered by changing pH from 5.0 to 2.0. The gold nanoparticles were deposited to the 

brush surface and enhanced transmission surface plasmon resonance spectroscopy 

was applied. Similar methodology can be used to build PS-b-PAA-based sensor that 

will be operated in alkaline conditions. Such sensor will work in a wide pH range and 

will be able to sustain extreme conditions of pH and ionic strength.  

                                                       
††† Tokareva, I., Minko, S., Fendler, J. H., Hutter, E. J. Am. Chem. Soc. 2004, 126,  15950. 
 


