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SOMMAIRE

La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet
du déploiement de singularités d’équations différentielles ordinaires analytiques dans
le plan complexe.

L’article Analytic classification of families of linear differential systems unfold-
ing a resonant irregular singularity traite le problème de l’équivalence analytique
de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une
singularité résonante générique de rang de Poincaré 1 dont la matrice principale est
composée d’un seul bloc de Jordan. La question: quand deux telles familles sont-
elles équivalentes au moyen d’un changement analytique de coordonnées au voisi-
nage d’une singularité? est complètement résolue et l’espace des modules des classes
d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels
et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des
déploiements universels sont donnés pour toutes ces singularités.

Dans l’article Confluence of singularities of non-linear differential equations via
Borel–Laplace transformations on cherche des solutions bornées de systèmes para-
métriques des équations non-linéaires de la variété centre de dimension 1 d’une sin-
gularité col-nœud déployée dans une famille de champs vectoriels complexes. En
général, un système d’ÉDO analytiques avec une singularité double possède une
unique solution formelle divergente au voisinage de la singularité, à laquelle on peut
associer des vraies solutions sur certains secteurs dans le plan complexe en util-
isant les transformations de Borel–Laplace. L’article montre comment généraliser
cette méthode et déployer les solutions sectorielles. On construit des solutions de
systèmes paramétriques, avec deux singularités régulières déployant une singularité
irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux
points singuliers, et qui, à la limite, convergent vers une paire de solutions secto-
rielles couvrant un voisinage de la singularité confluente. La méthode apporte une
description unifiée pour toutes les valeurs du paramètre.
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Mots-clés: Phénomène de Stokes, singularité irrégulière, système paramétrique,
équations différentielles analytiques, déploiement, confluence, série asymptotique,
sommation de Borel, singularité col-nœud, forme normale.
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SUMMARY

The thesis is composed of a chapter of preliminaries and two articles on the theme of
unfolding of singularities of analytic differential equations in a complex domain. They
are both related to the problem of local analytic classification of parametric families
of linear systems: When two parametric families of linear systems are equivalent by
means of an analytic change of coordinates in a neighborhood of the singularity?

The article Analytic classification of families of linear differential systems unfold-
ing a resonant irregular singularity deals with the question of analytic equivalence
of parametric families of systems of linear differential equations in dimension 2 un-
folding a generic resonant singularity of Poincaré rank 1 whose leading matrix is a
Jordan bloc. The problem is completely solved and the moduli space of analytic
equivalence classes is described in terms of a set of formal invariants and a single
analytic invariant obtained from the trace of the monodromy. Universal unfoldings
are provided for all such singularities.

The article Confluence of singularities of non-linear differential equations via
Borel-Laplace transformations investigates bounded solutions of systems of differen-
tial equations describing a 1-dimensional center manifold of an unfolded saddle-node
singularity in a family of complex vector fields. Generally, a system of analytic ODE
at a double singular point possesses a unique formal solution in terms of a divergent
power series. The classical Borel summation method associates to it true solutions
that are asymptotic to the series on certain sectors in the complex plane. The article
shows how to unfold the Borel and Laplace integral transformations of the summa-
tion procedure. A new kind of solutions of parameter dependent systems of ODE
with two simple (regular) singular points unfolding a double (irregular) singularity
are constructed, which are bounded on certain “spiraling” domains attached to both
singular points, and which at the limit converge uniformly to a pair of the classi-
cal sectorial solutions. The method provides a unified treatment for all values of
parameter.
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INTRODUCTION

The use of divergent formal power series solutions of meromorphic differential equa-
tions near a singular point has a long and fruitful tradition. In case of a multiple
singular point their divergence is the general rule. It is known that one can always
construct true analytic solutions, defined on certain sectors attached to the singular-
ity, which are asymptotic to the formal series, and which are in some sense unique.
In the case where the singularity is not too degenerate, the method of construction
of such sectorial solutions is called the Borel summation, or k-summation (where
k + 1 is in the generic case the multiplicity of the singularity), while in the very
general case the method is called accelero-summation (or multisummation). Based
on an original idea of É. Borel from the end of the 19th century, it has been largely
developed during 1970–1980’s by J. Écalle (cf. [Ec]), and by J.-P. Ramis (cf. [Ra3]),
and became one of the main tools in the local study of singularities of analytic dif-
ferential equations. In general, the solutions on different sectors do not coincide, and
if extended to larger sectors, they may drastically change their asymptotic behavior
due to the presence of hidden exponentially small terms. This is traditionally known
as the (linear or non-linear) Stokes phenomenon. It is now understood, that the
divergence of the asymptotic series is caused by singularities of its Borel transform,
which also encode information on the geometry of the singularity.

The work in this thesis is part of a general program of studying parametric
families of differential systems unfolding such multiple singularities in several simple
ones. There are two basic goals for such an investigation:

1. To provide normal forms for germs of analytic unfoldings of singularities with
respect to analytic change of variables.

2. To explain the complex geometry of the multiple singularity and the Stokes
phenomena through a study of confluence of simple singularities. Generically,
analytic ODEs possess special particular local analytic solutions near simple
singularities, but there is no reason why they should match. Hence their limits
as the parameter tends to zero may only exist in sectors.
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The thesis is composed of two parts, corresponding to two of my papers, address-
ing two particular problems within the outlined framework.

The first article

[K1] M. Klimeš, Analytic classification of families of linear differential systems un-
folding a resonant irregular singularity, preprint (2013),

presented in Chapter 2, deals with the question of analytic equivalence of certain
parametric families of linear differential systems unfolding a generic resonant irreg-
ular singularity of Poincaré rank 1 in dimension 2.

The second article

[K2] M. Klimeš, Confluence of singularities of non-linear differential equations via
Borel-Laplace transformations, preprint (2013),

presented in Chapter 3, shows how to generalize the Borel method of summation of
1-summable formal series in order to investigate bounded solutions of systems of non-
linear differential equations describing a center manifold of an unfolded saddle-node
singularity of a parametric family of complex vector fields.

The problems addressed in each of the two articles are presented below.

0.1. On analytic classification of singularities of linear differ-
ential systems

Ameromorphic linear differential system with a singularity at the origin is written
locally as

xk+1 dy
dx = A0(x) y, x ∈ (C, 0), (0.1.1)

where A0 is an analytic matrix in neighborhood of 0 with A0(0) 6= 0, y(x) ∈ Cn, and
k is a non-negative integer, called the Poincaré rank.

The problem of analytic classification consists in determining when two germs of
systems can be transformed one to another by means of an analytic linear change of
the variable y, and in describing the moduli space of the equivalence classes.

This can be rephrased as a problem of existence of local isomorphisms between
parametric families of meromorphic connections on vector bundles on Riemann sur-
faces, as well as of existence of local coordinates in which they have certain canonical
form as simple as possible (e.g. diagonal). This is a problem with a long and rich his-
tory going back to B. Riemann and his work on the monodromy of the hypergeometric
functions. In contrast to regular1 singularities, which are analytically equivalent if
and only if they are equivalent by means of a formal power series transformation,
1The singularity at 0 of a system (0.1.1) is called regular if solutions have a moderate (power-like)
growth near the singularity; else it is irregular.
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in case of irregular singularities such formal transformations are generally divergent.
In other words, the formal normal forms are too simple to contain all the possible
complexities of the geometry of solutions near the irregular singular point.

The analytic classification of irregular singularities of systems (0.1.1) is now well
known. It has been first achieved for non-resonant2 irregular singularities by G.D.
Birkhoff in 1910’s, and completed in the general case during the 1980’s in a series of
works by W. Balser, W.B. Jurkat, B. Malgrange, J.-P. Ramis, Y. Sibuya and others
(see [Va] and the references therein). The role that monodromy3 plays in the case of
regular singularities is here embodied by a set of so called Stokes matrices: matrices
of passage between solutions with the same asymptotics on neighboring sectors.

An unfolding of a system (0.1.1) is a germ of a parametric family of linear systems

h(x,m) dydx = A(x,m) y, (x,m) ∈ (C× Cl, 0), (0.1.2)

with h(x, 0) = xk+1 and A(x, 0) = A0(x), analytic in both the variable x and the
parameterm. As before, two families of linear systems (0.1.2) depending on the same
parameter m are said to be analytically equivalent if there is an invertible analytic
linear gauge transformation bringing solutions of the first system to solutions of the
second system.

The problem is to extend the analytic classification to parametric families of
systems (0.1.2) unfolding an irregular singularity, and to understand the meaning
of the Stokes data by relating the analytic invariants of the original system to the
ones of the unfolded system. Relatively little has been written about this problem
until recently (apart of the study of confluence of hypergeometric equation by J.P.
Ramis, A. Duval, C. Zhang). It has been conjectured independently by V.I. Arnold,
A. Bolibruch and J.-P. Ramis, and later proved by A. Glutsyuk [G1], [G3], that
Stokes matrices of the limit problem (0.1.1) can be obtained as limits of transition
matrices between certain canonical solution bases at the regular singular points of
a generically perturbed system. All these works concern families depending on one
generic parameter and are limited to confluence in some sector of opening less that
2π in the parameter space. Very recently a complete analytic classification of germs
of parametric families of systems unfolding a non-resonant irregular singularity was
obtained, first by C. Lambert in her thesis [LR] for singularities of Poincaré rank
2The irregular singularity at the origin of (0.1.1), k ≥ 1, is non-resonant if the eigenvalues of the
leading matrix A0(0) are distinct.
3Continuing a solution of a linear system around a singularity produces another solution of the
system. This gives rise to the so called the monodromy operator, a linear representation associ-
ating to each loop from the fundamental group of the x-space punctured at the singularities an
automorphisms of the linear space of solutions of the system.
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k = 1, and later generalized to any Poincaré rank k by J. Hurtubise, C. Lambert and
C. Rousseau [HLR].

My article [K1] gives a full classification of parametric families unfolding a res-
onant irregular singularity of Poincaré rank k = 1 and dimension n = 2, whose
leading matrix is a Jordan bloc. The modulus of analytic equivalence of such para-
metric families is given by formal invariants and by an analytic invariant obtained
from the trace of the monodromy around the two singular points. The moduli space
is identified and an explicit polynomial normal form is provided for each equivalence
class.

There are two essential parameters in the unfolding of such singularity: one pa-
rameter separates the double (irregular) singularity into two simple (regular) ones,
the other separates the double (resonant) eigenvalue into two different (non-resonant)
ones. Hence, apart from the phenomenon of confluence of singularities, a new phe-
nomenon occurs which has not been studied before: a change of order of summability
of the formal normalizing transformations from 1-summable for non-resonant irreg-
ular singularity to 1

2 -summable for the limit resonant irregular singularity. They are
both explained together with the Stokes phenomenon in the parametric family.

0.2. On the Borel–Laplace transformations and their unfolding

The classical Borel–Laplace method is used to find sums of divergent series ob-
tained as formal solutions of ordinary differential equations near a singular point. A
typical example is given by a center manifold of a codimension 1 saddle-node singu-
larity of a complex analytic vector field. It is described by a non-linear system of
ODEs with a double singularity at origin

x2 dy

dx
= M0 y + f0(x, y), (x, y) ∈ C× Cm, (0.2.1)

whereM0 is an invertible matrix and f0(x, y) = O(x)+O(‖y‖2) is a germ of analytic
vector function. Such a system possesses a unique formal solution ŷ0(x) =

∑∞
l=1 yl0x

l,
which is generically divergent, however it is Borel 1-summable with unique sums de-
fined in certain sectors of opening > π, covering a full neighborhood of the singularity.
Hence, in general, no analytic center manifold of a saddle-node does exist, but in-
stead there exist unique “sectoral center manifolds”. The goal of my article [K2] is
to study how these sectoral center manifolds unfold in a parametric family of vector
fields deforming the singularity.

In view of the fact that the classical Borel method does not allow to treat sev-
eral singularities at one time, it is not suited for studying confluence in parametric
families.
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The article shows how one can generalize (unfold) the classical Borel–Laplace
transformations, and use them to investigate bounded solutions in family of non-
linear differential systems unfolding (0.2.1)

(x2− ε)dy
dx

= M(ε)y + f(x, y, ε), (x, y, ε) ∈ C× Cm× C, (0.2.2)

whereM(0) is an invertible matrix and f(x, y, ε) = O(‖y‖2)+xO(‖y‖)+(x2−ε)O(1).
It is well known that for generic (non-resonant) values of the parameter ε 6= 0,

there exists a local analytic solution on a neighborhood of each simple singularity
x = ±

√
ε. Previous studies of confluence ([M],[SS],[G2]) have focused at the limit

behavior of these local solutions when ε → 0. Because the resonant values of ε
accumulate at 0 in a finite number of directions, these directions of resonance in the
parameter space could not be covered in those studies. In my work, a new kind of
solutions are constructed, which are defined and bounded on certain ramified domains
attached to both singularities x = ±

√
ε (at which they possess a limit) in a spiraling

manner. They depend analytically on the parameter ε taken from a ramified sector
of opening > 2π (thus covering a full neighborhood of the origin in the parameter
space, including those parameters values for which the unfolded system is resonant),
and they converge uniformly, when ε tends radially to 0, to a pair of the classical
sectoral solutions: Borel sums of the formal power series solution of the limit system
(0.2.1), which are defined on two sectors covering a full neighborhood of the confluent
double singularity at the origin. In fact, each such pair of the sectoral Borel sums
for ε = 0, unfolds to a unique above mentioned parametric solution.

A motivation for looking at these solutions came originally from [LR] where
such solutions have been constructed in the particular case of systems of Riccatti
equations, using a different method. My work deals with the general case, from
which the previous results follow as corollary. It also provides a new perspective,
and an insight similar to that of the classical Borel–Laplace approach.
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Chapter 1

PRELIMINARIES

Notation 1.0.1. Throughout the text, N = {0, 1, 2, . . .} denotes the set of non-
negative integers, and N∗ = Nr {0}.

1.1. Summation of divergent series

Formal power series solutions of analytic ODEs near a multiple singular point
are generically divergent. The idea of Borel summation is to associate to these series
analytic functions uniquely defined on certain sectors, that are asymptotic to the
formal series. It turns out, that these “sectorial sums” are in fact solutions to the
original differential equation. What is crucial is the angular size of the sector: if
the sector is too narrow many asymptotic functions exist; if, on the other hand, the
sector is too wide, there may be none.

The material of this section largely follows the notes [Ma2], [MR2], [Ra3].

Definition 1.1.1. An open sector at the origin in the complex plane is a set

S = {x ∈ C : |x| < r, β1 < arg x < β2} ∪ {0},

where r > 0 is its radius, and 0 < β2 − β1 ≤ 2π is its opening. If β2 − β1 > 2π, one
may define a ramified sector S by taking x from the “universal sector” C̃, obtained
by adjoining 0 to the universal covering C̃∗ of C∗ = C r {0}. A closed sector is the
topological closure of an open sector. For two sectors S and S′, we write S′ ⊂⊂ S if
the closure of S′ is contained in S.

1.1.1. Asymptotic series

If f is an analytic function on a sector S (i.e. continuous on S and analytic on its
interior), then one says that f is asymptotic to a formal series f̂(x) =

∑+∞
k=0 akx

k if
for any closed subsector S′ ⊂⊂ S there exists a sequence of positive constants An,
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n ∈ N, such that ∣∣∣∣∣f(x)−
n−1∑
k=0

akx
k

∣∣∣∣∣ ≤ An|x|n, for all x ∈ S′.

The function f is said to be asymptotic of Gevrey order s to f̂ (s > 0), if An ≤
CAnΓ(1 + sn) for some C,A > 0 (Γ being the Γ-function). Note that s = 0 means
that the series f̂ is convergent with sum equal to f .

Lemma 1.1.2. A function f is asymptotic of Gevrey order s = 1
k to 0 on S, if and

only if, on every S′ ⊂⊂ S, |f(x)| ≤ C e−
B

|x|k for some B,C > 0.

Lemma 1.1.3 (Borel, Ritt, Gevrey). If the growth of the coefficients of f̂(x) =∑+∞
k=0 akx

k is bounded by |an| ≤ CAnΓ(1 + sn) for some s ≥ 0, then on any open
sector S of opening ≤ sπ there exists an analytic function f asymptotic of Gevrey
order s to f̂ .

In fact, there are infinitely many such functions f : assuming for simplicity that
S = {| arg x| < sπ

2 }, one can freely add any multiple of the function e
− B

xk , s = 1
k ,

B > 0, which is asymptotic of Gevrey order s to 0 on the sector. On the other hand:

Lemma 1.1.4 (Watson). If S is a closed sector of opening ≥ sπ, then any analytic
function f on S asymptotic of Gevrey order s to f̂ = 0 is null.

This is a consequence of the Phragmèn–Lindelöf theorem.

1.1.2. Borel summability

The Borel method of summation of (1-summable) divergent series is the following.
Suppose that the coefficients of a formal power series ŷ(x) =

∑+∞
l=1 yl x

l have at
most factorial growth: |yl| ≤ CAll! for some C,A > 0. Using the Euler formula for
the Γ-function: Γ(l) =

∫+∞
0 zl−1e−z dz, which is equal to (l − 1)! if l ∈ N∗, one can

formally rewrite the series as

ŷ(x) =
∞∑
y=1

yl x
l =

∞∑
l=1

yl
Γ(l)

∫ +∞eiα

0
ξl−1e−

ξ
x dξ =

∫ +∞eiα

0
B̂[f̂ ](ξ) · e−

ξ
x dξ.

where
B̂[ŷ](ξ) =

∑
l

yl
Γ(l) ξ

l−1, (1.1.1)

is the formal Borel transform of ŷ, which is convergent on a neighborhood of ξ = 0.
Let φ be the sum of B̂[ŷ] and assume that it extends analytically on a half-line eiαR+,
with at most exponential growth at infinity: |φ(x)| ≤ C eB|ξ|, ξ ∈ eiαR+, for some
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C,B > 0. Then the Laplace integral

Lα[φ](x) =
∫ +∞eiα

0
φ(ξ) e−

ξ
x dξ, (1.1.2)

is convergent for x in an open disc of diameter 1
B attached to 0 in the direction α

and extends to 0, defining there the Borel sum of ŷ(x). A series ŷ[x] is 1-summable
if its Borel sum exists in all but finitely many directions 0 ≤ α < 2π. When varying
continuously the direction in which the series is summable, the Borel sums are ana-
lytic extensions one of the other, yielding a function defined on a sector of opening
> π.

Let us remark that ŷ[x] is convergent if and only if it is Borel summable in all
directions. This means that the Borel sums of divergent series can only exist on
sectors. This is also known as the Stokes phenomenon.

Lemma 1.1.5. The Borel sum of a 1-summable formal series ŷ(x) is asymptotic to
ŷ(x) of Gevrey order 1 on its sector of definition.

An important propriety of the Borel summation is that it preserves differential
relations, hence if ŷ(x) is a formal solution to some analytic differential equation,
then so are its Borel sums.

Example 1.1.6. Perhaps the most simple example of a divergent series is the Euler
series ŷ(x) =

∑+∞
l=1 (l − 1)!xl, a formal solution of the equation

x2 dy

dx
= y − x.

Its formal Borel transform is B̂[ŷ](ξ) = 1
1−ξ , hence ŷ is Borel summable in all direc-

tions but R+. This means that the Borel sum of ŷ is defined on the open ramified
sector S = {arg x ∈ (−π

2 ,
5π
2 )} ∪ {0}.

If f is an analytic function on an open sector S of opening > π bisected by eiαR+

which is uniformly O(xλ), λ > 0, at 0 on any subsector S′ ⊂⊂ S, then its analytic
Borel transformation in direction α is well defined by

Bα[f ](ξ) = 1
2πi V.P.

∫
γ
y(x) e

ξ
x dx
x2 = 1

2πi

∫
γ′
y(x) e

ξ
x dx
x2 , for ξ ∈ eiαR+,

where the first integral is defined as the “Cauchy principal value” (V.P.) of the
integral over a circle γ = Reeiαx = A for some A > 0, while the second integral, over
a path γ′ as in Figure 1.1, is absolutely convergent.

In particular, for λ > 0

Bα[xλ](ξ) = ξλ−1

Γ(λ) . (1.1.3)
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Figure 1.1. Integration paths of the Borel transformation in direction α.

Proposition 1.1.7.
(i) Lα[Bα[f ]] = f, and Bα[Lα[φ]] = φ,

whenever the respective transformations Bα[f ] and Lα[φ] are defined.

(ii) Bα[fg] = Bα[f ] ∗ Bα[g], where [φ ∗ ψ](ξ) =
∫ ξ

0 φ(ξ − s)ψ(s) ds,

Bα[x2 df
dx ] = ξ · Bα[f ].

1.1.3. k-summability

The k-summability is a natural generalization of 1-summability.

Definition 1.1.8. Let k > 0. An analytic function f on a closed sector of opening
≥ π

k , bisected by eiαR, that is asymptotic of Gevrey order 1
k to a formal series f̂

is called a k-sum of f̂ in direction α. It is unique by the Watson’s lemma (Lemma
1.1.4). A series f̂ is k-summable if it has a k-sum in all but finitely many directions.

Hence k-summability is just 1-summability in z = xk. Let ρk be the ramification
map x 7→ x

1
k . The k-sum of some f̂ in a direction α can be obtained by the Borel–

Laplace summation method as

Lα
[
B̂α[f̂ ◦ ρk]

]
◦ ρ−1

k ,

where f̂ ◦ρk is a fractional power series whose formal Borel transformation B̂α[f̂ ◦ρk]
is well defined by (1.1.1) on the interior of some sector bisected by eiαR+.

Example 1.1.9. Let us consider the following vector field in Cm+1 with a codimen-
sion k saddle-node singularity

ẋ = xk+1, ẏ = My + f(x, y), (x, y) ∈ C× Cm, (1.1.4)

where M is an invertible m×m-matrix and f(x, y) = O(x) + O(‖y‖2) is a germ of
analytic vector function. It possesses a unique formal center manifold given by a
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formal solution ŷ(x) of the system

xk+1 dy

dx
= M y + f(x, y), (x, y) ∈ C× Cm. (1.1.5)

This formal solution is k-summable in every direction α with eikαR+ ∩ SpecM = ∅,
providing sectoral center manifolds on some sectors of opening > π

k .
In Chapter 3, we will study the unfolding of such sectoral center manifolds in a

parametric family of complex vector fields unfolding the singularity for k = 1.

1.2. Poincaré–Dulac theory of vector fields

A germ of a holomorphic vector field on a neighborhood of 0 ∈ Cm, with a
singularity at 0, is written as

u̇ = F (u), or F1(u) ∂

∂u1
+ . . .+ Fm(u) ∂

∂um
, u ∈ (Cm, 0), (1.2.1)

with F = (F1, . . . , Fm) : (Cm, 0) → (Cm, 0). Two such germs F, F ′ are analytically
(resp. formally) equivalent, if there exist an invertible analytic (resp. formal) map
H : (Cm, 0)→ (Cm, 0) such that(

∂H
∂u

)
(u) · F (u) = F ′(H(u)).

Definition 1.2.1. Let A =
(
∂F
∂u

)
(0) be the linearization matrix of a vector field

(1.2.1), and let λ1, . . . , λm be its eigenvalues (with possible repetitions). It has a res-
onance if for some λi there exists a tuple of non-negative integers k = (k1, . . . , km) ∈
Nm such that

λi = k1λ1 + . . .+ kmλm, (1.2.2)

with |k| = k1 + . . . + km ≥ 2, or |k| = 1 and ki = 0. A resonant monomial
corresponding to such a resonance is a monomial vector field uk1

1 . . . u
km
m

∂
∂ui

.

Theorem 1.2.2 (Poincaré, Dulac). A germ of a vector field F (u) = Au + . . . is
formally equivalent to a vector field F ′(u) = Ju+ . . . with J the Jordan normal form
of A and with only resonant monomials in the non-linear part.

More information on this subject can be found in [IY].
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1.3. Analytic classification of singularities of linear differen-
tial systems

In this section we summarize some classical results on local analytic classification
of linear differential systems near a singular point, which we place at the origin of
the complex plane. Such a system can be written as

xk+1 dy

dx
= A(x) y, x ∈ (C, 0), y ∈ Cn, (1.3.1)

with A(x) a matrix of germs of holomorphic functions at the origin, A(0) 6= 0. The
non-negative integer k is called the Poincaré rank of the singularity.

A fundamental matrix solution of (1.3.1) is a matrix function Φ(x) whose columns
form a local basis of solutions of the system near some point x0 6= 0. The analytic
continuation of Φ along a counterclockwise loop around zero t 7→ e2πitx0, t ∈ [0, 1],
defines another fundamental matrix solution, which we denote Φ(e2πix). It is related
to the original one by a constant invertible matrix M , called the monodromy matrix
of Φ:

Φ(e2πix) = Φ(x)M.

The conjugacy class of the monodromy matrix is an invariant independent of the
choice of fundamental matrix solution.

In order to understand the behavior of the solutions as x → 0, one investigates
invertible linear transformations y = T (x)u which bring the system (1.3.1) to another
system,

xk+1du

dx
= B(x)u, with B = T−1AT − xk+1dT

dx
, (1.3.2)

which one would like to be as simple as possible.

Definition 1.3.1. One says that the two systems (1.3.1) and (1.3.2) are: analyt-
ically equivalent (resp. meromorphically equivalent) if T (x) is analytic and ana-
lytically invertible (resp. meromorphic and meromorphically invertible) near the
origin; and one calls them formally equivalent (resp. formally meromorphically
equivalent) if T (x) =

∑+∞
l=0 Tlx

l is a formal transformation with T0 invertible (resp.
T (x) =

∑+∞
l≥l0 Tlx

l, l0 ∈ Z, is formally meromorphically invertible).

Let us remark that analytic and formal transformations preserve the Poincaré
rank, but meromorphic and formal meromorphic transformations may change it.
Here we are interested in formal / analytic equivalence of singularities.

Formal classification of singularities of linear systems (1.3.1) can be reduced to
formal classification of the associated vector fields

ẋ = xk+1, ẏ = A(x) y. (1.3.3)
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Indeed, the normalizing transformations provided by the Poincaré–Dulac theory can
be constructed so that they preserve the x-coordinate and are linear in y-coordinates.
The only resonant monomials in such a vector field are xlyj ∂

∂yi
, l ∈ N, i 6= j, which

may appear when the eigenvalues λ(0)
1 , · · · , λ(0)

n of A(0) satisfy a relation

λ
(0)
i = λ

(0)
j + l · δ, δ =

 1, if k = 0,

0, if k ≥ 1.
.

Definition 1.3.2. The singularity is:
– Fuchsian, if k = 0. A Fuchsian singularity is called non-resonant if no two
eigenvalues of the leading matrix A(0) differ by an integer.

– regular, if the solutions have a moderate growth (i.e. at most polynomial in
1
|x|) in any sector at the origin.

– irregular, if it is not regular (necessarily k > 0). An irregular singularity is
called non-resonant if the eigenvalues of the leading matrix A(0) are distinct.

Lemma 1.3.3 (Sauvage). A singularity of linear system is regular if and only if it is
meromorphically equivalent to a Fuchsian singularity. In fact, it is meromorphically
equivalent to any singularity x dydx = Ay with a constant coefficient matrix A whose
exponential e2πiA belongs to the conjugacy class of the monodromy matrix.

Proposition 1.3.4. (i) Formal (meromorphic) transformations between regular sin-
gularities are convergent.

(ii) A Fuchsian singularity (1.3.1), whose leading matrix A(0) has eigenvalues
λ

(0)
1 , · · · , λ(0)

n , is analytically equivalent to a system

x
dyi
dx

=
n∑
j=1

bij(x) yj ,

bij(x) =
∑+∞
l=0 b

(l)
ij x

l, where b
(0)
ii = λ

(0)
i and b

(l)
ij = 0 unless there is a resonance

λ
(0)
i − λ

(0)
j = l. In particular, one can order the eigenvalues in such a way that the

matrix B(x) = (bij(x)) is upper-triangular. This system possesses a fundamental
matrix solution Φ(x) = xΛxN , where Λ = Diag

(
λ

(0)
1 , . . . , λ

(0)
n

)
and N = B(1)−Λ is

nilpotent.

It follows that two non-resonant Fuchsian singularities are analytically equivalent
if and only if their leading matrices have the same eigenvalues.

For irregular singularities, the analytic classification is finer that the formal one
due to the divergence of the formal transformations (the Stokes phenomenon). A
complete formal and analytic classification of irregular singularities can be found for
example in [BJL2], [Ba], [BV], [MR3].
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1.3.1. Non-resonant irregular singularities.

It follows form the Poincaré–Dulac theorem that a non-resonant irregular singularity
of a linear system is formally equivalent to a singularity of a diagonal system. But
one say more:

Proposition 1.3.5. Let a singularity (1.3.1) be non-resonant irregular of Poincaré
rank k ≥ 1, and let

λi(x) = λ
(0)
i + xλ

(1)
i + . . .+ xkλ

(k)
i , i = 1, . . . , n,

be the eigenvalues of A(x) modulo O(xk+1). The singularity (1.3.1) is formally equiv-
alent to its formal normal form

xk+1du

dx
= Λ(x)u, Λ(x) = Diag(λ1(x), . . . , λn(x)), (1.3.4)

by means of a k-summable formal transformation y = T̂ (x)u, unique up to multipli-
cation by a constant diagonal matrix on the right. Its directions of non-summability
are those α for which λ(0)

l − λ
(0)
j ∈ eikαR+ for some pair l 6= j.

Remark 1.3.6. The proof of this proposition can be reduced to a particular case
of Example 1.1.9. The general idea is the following: Assuming that A(0) = Λ(0),
one can decompose T (x) = (tij(x)) as T (x) = (I + U(x)) ·Diag (t11(x), . . . , tnn(x)) ,
where U has only zeros on the diagonal, tii are analytic functions of U , and the
off-diagonal terms uij of U satisfy a system of Ricatti equations of the form

xk+1duij
dx

= (λi − λj)uij + . . . ,

which then possesses a unique k-summable formal solution. We will use the same idea
in Theorem 3.2.7 to construct “sectoral” normalizing transformations for parametric
families of linear systems unfolding a non-resonant irregular singularity of Poincaré
rank k = 1.

The diagonal system (1.3.4) has a diagonal fundamental matrix solution

Φ(x) = Diag(φ1, . . . , φn), φj = e
∫ λj(x)
xk+1 dx. (1.3.5)

For each pair i 6= j, the 2k rays where Re λ
(0)
i −λ

(0)
j

k xk
= 0 are called separation rays.

On one side of such a ray, the quotient function φi
φj

is flat (asymptotic to 0) of
Gevrey order k, and it is vertical on the other side. The separation rays allow
determining the maximal size of sectors on which the Borel sums of the formal
normalizing transformation exist.

Theorem 1.3.7 (Sibuya). Let T̂ (x) be the formal transformation of Proposition 1.3.5.
Then on any sector that contains exactly one separation ray for each pair i 6= j, there
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exists a unique normalizing sectorial transformation asymptotic to T̂ (x), that brings
the system (1.3.1) to (1.3.4).

If Tα, Tβ are two normalizing transformations defined on two adjacent sectors Sα,
Sβ and asymptotic to T̂ , then T−1

β Tα is an automorphism of the system (1.3.4) on the
intersection Sα ∩ Sβ, asymptotic to the identity matrix. Let Φα,Φβ be restrictions
on Sα, Sβ of the fundamental matrix solution Φ(x) (1.3.5) of (1.3.4), then

Tβ(x)−1Tα(x) = Φβ(x)CβαΦα(x)−1 (1.3.6)

for a constant matrix Cβα ∈ GLn(C), called a Stokes matrix. It follows, that at least
one of the entries of Cβα at each two symmetric positions ()ij , ()ji must be null for
every i 6= j, and that its diagonal entries must be equal to 1; hence Cβα is a unipotent
matrix (i.e. Cβα − I is nilpotent).

Let us now fix sectors S1, . . . , S2k of the Sibuya theorem, covering a neighborhood
of the origin in clockwise order, together with unique normalizing transformations
T1, . . . , T2k asymptotic to T̂ , and diagonal fundamental matrix solutions Φ1, . . . ,Φ2k

(1.3.5). This determines a set of Stokes matrices C12, C23, . . . , C2k,1 (1.3.6) called
Stokes data. Let us remark that one can always choose the covering sectors so that
Cm,m+1 is upper-triangular ifm is odd and lower-triangular ifm is even. The product
C12C23 . . . C2k,1 is equal to the monodromy matrix of the fundamental matrix solution
T1Φ1 of the original system (1.3.1).

Theorem 1.3.8 (Birkhoff). Two formally equivalent germs of systems (1.3.1) with a
non-resonant irregular singularity at the origin are analytically equivalent if and only
if their Stokes data are conjugate by a same invertible diagonal matrix. Any Stokes
data are realizable by a system (1.3.1) formally equivalent to the system (1.3.4).

This can also be naturally formulated in a more general way in terms of a non-
abelian cohomology of a Stokes sheaf (i.e. non-abelian sheaf of sectorial automor-
phisms of (1.3.4) asymptotic to the identity), see e.g. [Ma1], [BV].
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Chapter 2

ANALYTIC CLASSIFICATION OF FAMILIES OF
LINEAR DIFFERENTIAL SYSTEMS UNFOLDING A

RESONANT IRREGULAR SINGULARITY

Abstract. We give a complete classification of analytic equivalence of germs of
parametric families of systems of complex linear differential equations unfolding
a generic resonant singularity of Poincaré rank 1 in dimension n = 2 whose
leading matrix is a Jordan bloc. The moduli space of analytic equivalence
classes is described in terms of a tuple of formal invariants and a single analytic
invariant obtained from the trace of monodromy. Moreover, analytic normal
forms are given for all such singularities.

2.1. Introduction

A system of meromorphic linear differential equations with a singularity at the
origin can be written locally as ∆0(z) y = 0, with

∆0(z) = zk+1 d

dz
−A0(z), z ∈ (C, 0), (2.1.1)

y(z) ∈ Cn, where A0 is an analytic matrix in a neighborhood of 0 with A0(0) 6= 0,
and k is a non-negative integer, called the Poincaré rank. Its unfolding is a germ of
a parametric family of systems ∆(z,m) y = 0, with

∆(z,m) = h(z,m) d
dz
−A(z,m), (z,m) ∈ (C× Cl, 0), (2.1.2)

y(z,m) ∈ Cn, where the scalar function h and the n×n-matrix function A depend
analytically on both the variable z and the parameter m. Two families of linear
systems (2.1.2) depending on the same parameter m are analytically equivalent if
there exists an invertible analytic linear gauge transformation bringing solutions of
the first system to solutions of the second.

The analytic classification of singularities of single systems (2.1.1) is well known:
it is given by a formal normal form and by so called Stokes operators. Regular
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singularities are analytically equivalent if and only if they are equivalent by means
of a formal power series transformation. In contrast, for irregular singularities such
formal transformations are generally divergent. However they are asymptotic to true
analytic transformations on certain sectors, whose general mismatch is known as the
Stokes phenomenon.

Investigating parametric unfoldings of singularities has two essential goals: to
explain the Stokes phenomenon through confluence, and to provide analytic normal
forms for germs of parametric systems. It has been conjectured independently by V.I.
Arnold, A. Bolibruch and J.-P. Ramis, that Stokes matrices of the limit problem can
be obtained as limits of transition matrices between certain canonical solution bases
at the regular singular points of a generically perturbed system; this was later proved
by A. Glutsyuk for non-resonant [G1] and certain resonant singularities [G3]. But
Glutsyuk’s approach covers only a sector in the parameter space, on which the defor-
mation is generic: all the singularities are supposed to be simple and non-resonant.
A complete analytic classification of germs of parametric families of systems unfold-
ing a non-resonant irregular singularity was obtained recently by J. Hurtubise, C.
Lambert and C. Rousseau [LR], [HLR].

This article provides the first results on analytic classification of parametric fam-
ilies unfolding a resonant irregular singularity. We consider germs of parametric
families of systems ∆(z,m) in a neighborhood of (z,m) = 0 unfolding a system
∆0(z) = ∆(z, 0),

∆0(z) = z2 d

dz
−A0(z), with A0(0) =

λ(0)
0 1
0 λ

(0)
0

 , (2.1.3)

that has a resonant singularity of Poincaré rank 1 at the origin, and satisfies a generic
condition that the element a(1)

21 on the position 2,1 of the matrix d
dzA0(0) is non-zero:

a
(1)
21 = − d

dz det(A0(z)− λ(0)
0 I)

∣∣
z=0 6= 0. (2.1.4)

An analytic classification of germs of such single systems ∆0(z) was originally given
in [JLP2].

In Section 2.2.1 we give a complete analytic classification of all germs of para-
metric systems ∆(z,m) unfolding such a ∆0(z) (Theorem I), and an explicit analytic
normal form, i.e. a universal unfolding for any system ∆0 (2.1.3) satisfying (2.1.4)
(Theorem II). No restriction is imposed on the nature of the analytic deformation
∆(z,m) of ∆0(z) or on the complex parameter m ∈ (Cl, 0).

Section 2.2.2 is devoted to a study of the Stokes phenomena in parametric fami-
lies. We construct “sectorial” transformations in the (x,m)-space between formally
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equivalent families (Theorem III), and explain the phenomena of confluence of sin-
gularities and of change of order of summability.

2.2. Statement of results

Definition 2.2.1. By a parametric system we shall mean a germ (2.1.2) unfolding
(2.1.3) satisfying (2.1.4).

Definition 2.2.2. Let ∆(z,m)y = 0 be a parametric family of linear systems (2.1.2)
and y(z,m) = T (z,m)u(z,m) be a linear transformation of the dependent variable.
Let us define a transformed system

T ∗∆ := h
d

dz
−
[
T−1AT − hT−1dT

dz

]
, (2.2.1)

satisfying (T ∗∆)u = 0 if and only if ∆y = 0.
We say that two germs of parametric systems ∆(z,m) = h(z,m) ddz − A(z,m),

∆′(z,m) = h′(z,m) ddz − A
′(z,m), depending on the same parameter m are analyti-

cally equivalent, if there exists an invertible linear transformation T (z,m) ∈ GLn(C),
depending analytically on (z,m), such that h′−1 ·∆′ = h−1 · T ∗∆.

Definition 2.2.3 (The invariants).
(i) After multiplying by a non-vanishing germ of scalar function, any parametric

system ∆(z,m) unfolding (2.1.3) can be written in a unique way with

h(z,m) = z2 + h(1)(m)z + h(0)(m). (2.2.2)

We shall suppose that h is in this form from now on. Then we define invariant
polynomials λ(z,m), α(z,m) by

λ(z,m) = 1
2 trA(z,m)

(
mod h(z,m)

)
= λ(1)(m) z + λ(0)(m),

α(z,m) = −det (A(z,m)−λ(z,m)I)
(
mod h(z,m)

)
= α(1)(m) z + α(0)(m).

(2.2.3)

We call the triple h(z,m), λ(z,m), α(z,m) formal invariants of ∆.
(ii) We define an analytic invariant γ(m) by

γ(m) = e−2πλ(1)(m) · trM(m), (2.2.4)

where for each fixed value of the parameter m, M(m) is a monodromy matrix of
some fundamental solution Φ(z,m) of the system ∆(·,m) around the two zeros
of h(z,m) in the positive direction:

Φ(e2πiz0,m) = Φ(z0,m)M(m).
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The value of γ(m) is independent of the choice of the fundamental solution
Φ(z,m) or of the point z0, and can be calculated for each value of m indepen-
dently.

Proposition 2.2.4. h(z,m), λ(z,m), α(z,m) and γ(m) are all analytic in m and
invariant under analytical equivalence of systems. The genericity condition (2.1.4)
means that α(1)(0) 6= 0.

Proof. Elementary.

Remark 2.2.5. Let
∆m := ∆(·,m)

denote the restriction of ∆ to a fixed parameter m. The corresponding restriction
of the invariants h(x,m), λ(x,m), α(x,m), determine for almost all values of m a
complete set of formal invariants of ∆m, i.e. invariants with respect to formal power
series transformations T̂m(z) =

∑∞
l=0 T

(l)
m (z − zi)l. (cf. [Ba],[IY],[Wa]).

(a) If h(z,m) has a double zero at z1 and A(z1,m) has a double eigenvalue, i.e.
α(z1,m) = 0, then ∆m has a resonant irregular singularity1, and the values
λ(z1,m), λ(1)(m), α(1)(m) constitute a complete set of its formal invariants.
[JLP2]

(b) If h(z,m) has a double zero at z1 and α(z1,m) 6= 0, then ∆m has a nonreso-
nant irregular singularity1, and λ(z1,m), λ(1)(m), α(z1,m), α(1)(m) constitute
a complete set of its formal invariants. [JLP1]

(c) If h(z,m) has two different zeros z1 6= z2, then the system ∆m has a Fuchsian
singularity1, at each of them. Supposing that ∆m is non-resonant at zi, i.e. that
2
√
α(zi,m)
zi− zj /∈ Z (j = 3− i), then the values of λ(zi,m)

zi− zj and α(zi,m)
(zi− zj)2 constitute a

complete set of formal invariants for the germ of ∆m at zi. [IY],[Wa]

2.2.1. Analytic theory

Theorem I (Analytic classification).
(a) Two germs of parametric systems ∆(z,m), ∆′(z,m) are analytically equivalent

if and only if their invariants h, λ, α, γ are the same:

h(z,m) = h′(z,m), λ(z,m) = λ′(z,m),
α(z,m) = α′(z,m), γ(m) = γ′(m).

1A singularity of a system ∆m(z) = hm(z) d
dz
−Am(z) is Fuchsian if it is a simple pole of Am(z)

hm(z) ; it is
regular if the growth of solutions is power-like, or equivalently, if it is meromorphically equivalent to
a simple pole; else it is irregular. A Fuchsian singularity at z1 is non-resonant if no two eigenvalues of
the residue matrix of Am(z)

hm(z) at z1 differ by an integer. An irregular singularity at z1 is non-resonant
if the eigenvalues of Am(z1) are distinct.
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(b) Any four germs of analytic functions h(z,m), λ(z,m), α(z,m), γ(m) with
h(z, 0) = z2, α(0)(0) = 0 and α(1)(0) 6= 0 are realizable as invariants of some
parametric system ∆(z,m).

Corollary 2.2.6. Two germs of parametric systems ∆(z,m),∆′(z,m) are analyti-
cally equivalent if and only if there exists a small neighborhood Z×M of 0 in C×Cl

such that for each m ∈ M the restricted systems ∆m(z), ∆′m(z) are analytically
equivalent on Z.

The Theorem II provides a normal form for any germ of parametric system
unfolding ∆0.

Theorem II (Universal unfolding). Let ∆(z,m) be a germ of parametric system and
h(z,m), λ(z,m), α(z,m), γ(m) its invariants.

(i) If γ(0) 6= 2, then ∆(z,m) is analytically equivalent to a germ at 0 of parametric
system ∆̃(h(z,m), λ(z,m), α(z,m), q(m)) given by

∆̃(h, λ, α, q) = h(z) d
dz
−

 λ(z) 1
α(z) + qh(z) λ(z)

 , (2.2.5)

where q(m) is an analytic germ such that

γ(m) = −2 cos π
√

1 + 4q(m). (2.2.6)

Let us remark that ∆̃ is meromorphic in z ∈ CP1 and has a regular singular
point at infinity.

(ii) If γ(0) 6= −2, then ∆(z,m) is analytically equivalent to a germ at 0 of parametric
system ∆̃′(h(z,m), λ(z,m), α(z,m), b(m)) given by

∆̃′(h, λ, α, b) = h(z) d
dz
−

λ(z) 1 + bz

β(z) λ(z)

 , (2.2.7)

with

β(z) = α(0) + bh(0)β(1) + β(1)z, β(1) = α(1) − bα(0)

1− bh(1) + b2h(0) , (2.2.8)

where b(m) is an analytic germ such that

γ(m) = 2 cos 2π
√
b(m)β(1)(m). (2.2.9)

Let us remark that ∆̃′ is meromorphic in z ∈ CP1 and has a Fuchsian singular
point at infinity. It is in, so called, Birkhoff normal form.2

2V. Kostov [Ko] showed that any unfolding of an arbitrary system ∆0 (2.1.1) in a Birkhoff normal
form, whose eigenvalues of Resz=0

A0(z)
z2 do not differ by a non-zero integer, is analytically equivalent

to a parametric system in a Birkhoff normal form. Our result confirms it in the case studied here:
γ(0) = −2 corresponds exactly to systems ∆̃′0 violating the condition of Kostov.
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2.2.2. Formal theory and a study of confluence

Proposition 2.2.7 (Formal classification). A germ of parametric system ∆(z,m) is
formally equivalent to its formal normal form

∆̂(z,m) = h(z,m) d
dz
−

λ(z,m) 1
α(z,m) λ(z,m)

 , (2.2.10)

by means of a unique formal power series transformation in (x,m)

T̂ (x,m) =
+∞∑

j,|k|=0
T (j,k)xjmk, mk = mk1

1 . . .mkl
l , T (0,0) = I.

Generically, this series is divergent in x and m.
In this sense, two parametric systems ∆(z,m), ∆′(z,m) are formally equivalent

if and only if their formal invariants h, λ, α are the same.

Remark 2.2.8. Let us remark that any linear transformation T (z,m) commutes
with scalar matrices

T ∗(∆− λI) = T ∗∆− λI,

i.e. that two systems ∆, ∆′ are analytically (resp. formally) equivalent if and only if
the systems ∆− λI, ∆′ − λI are. Hence we can restrict ourselves to systems whose
formal invariant λ(z,m) = 0.

Definition 2.2.9 (Reduced invariants ε(m), µ(m)). Let ∆(z,m) be a parametric
system with formal invariants h(z,m), λ(z,m), α(z,m). Put

x(z,m) = 1
α(1)

(
z + h(1)

2

)
and ε(m) = ( 1

α(1) )2
(
(h(1)

2 )2 − h(0)
)
, (2.2.11)

so that h(z,m) = (α(1))2(x2 − ε). Then in the new coordinate x, after division by
α(1), the system ∆− λI becomes

∆(x,m) = (x2− ε) d
dx −

A(z(x,m),m)−λ(z(x,m),m)I
α(1)(m) ,

with formal invariants

h(x,m) = x2− ε(m), λ(x,m) = 0, α(x,m) = µ(m) + x,

where
µ = α(0)

(α(1))2 − h(1)

2α(1) .

The invariants ε(m) and µ(m) are responsible for two basic qualitative changes
of the system:
• ε(m) corresponds to separation of the double singularity (ε = 0) into two simple
ones (ε 6= 0),
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• µ(m) corresponds, when ε(m) = 0, to separation of the double eigenvalue (µ =
0) of A(0,m) into two simple ones (µ 6= 0), hence to the disappearance of
resonance.

In the rest of this section we will for simplicity assume that ∆(x,m) = ∆(x,m)
is in this reduced form, and so is its formal normal form of Proposition 2.2.7

∆̂(x,m) = (x2− ε) d
dx
−

 0 1
µ+ x 0

 . (2.2.12)

Remark 2.2.10 (Sectorial normalization of ∆m(x)). Let ∆(x,m) be analytic on a
polydisc X×M ⊆ C×Cl, and letm ∈M be such that both roots of h(x,m) = x2−ε(m)
are in X. As before, let ∆m(x) denote the restriction of ∆(x,m) to the fixed value
of m. Following Remark 2.2.5, depending on ε(m) and µ(m) we have the following
four possible situations:
(a) ε = µ = 0 : The restricted system ∆m, which has a resonant irregular singu-

larity at the origin, is formally equivalent to ∆̂m by means of a 1
2 -summable

formal power series transformation T̂O,m(x). In particular, there exists a unique
normalizing sectorial transformation TO,m(x), defined on a ramified sector

SO,m = {x ∈ X | | arg x+ π| < 2π − η}, with η > 0 arbitrarily small,

which is asymptotic to the formal series T̂O,m.
(b) ε = 0, µ 6= 0 : The restricted system ∆m, which has a non-resonant irregular

singularity at the origin, is formally equivalent to ∆̂m by means of a 1-summable
formal power series transformation T̂I,m(x). In particular, there exists a unique
pair of normalizing sectorial transformations T±I,m(x), defined on a pair of sectors

S±I,m = {x ∈ X | | arg x∓ arg√µ| < π − η}, with η > 0 arbitrarily small,

which are asymptotic to the formal series T̂I,m.
(c) ε 6= 0 : The restricted system has two Fuchsian singularities at x1 =

√
ε and

x2 = −
√
ε. Supposing that m is such that the singularity at xi is non-resonant,

i.e. that
√
µ+xi
xi

/∈ Z, then there exists a unique local analytic transformation
Ti,m(x), defined on a neighborhood Si,m of xi, such that Ti,m(xi) = I and
T ∗i,m∆m = ∆̂m. One can take

Si,m = {x ∈ X | | arg x− arg xi| < π − η}, with η > 0 arbitrarily small.

(d) ε 6= 0 : If a Fuchsian singularity at xi is resonant, i.e. ±
√
µ+xi
xi

= k ∈ N∗, then
there exists a transformation Ti,m(x) = T ′i,m(x) + (x− xi)k log(x− xi)T ′′i,m(x),
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(a) 0 < ε < µ2, µ > 0 (b) ε = 0 < µ (c) ε = µ = 0

Figure 2.1. Examples of the outer and inner domains O(ε, µ), I(ε, µ) of
Theorem III for selected values of µ, ε.

with T ′i,m, T
′′
i,m analytic on a neighborhood Si,m of xi, T ′i,m(xi) = I and T ′′i,m

nilpotent, such that T ∗i,m∆m = ∆̂m.

The change of order of summability of the formal normalizing transformations in
between the cases (a) and (b) is a phenomenon that has not been studied previously.
In the following Theorem III it is explained by an appearance of a new domain of
normalization I(µ, ε), for (µ, ε) 6= (0, 0), with a new normalizing transformation TI
corresponding to the case (b), different than the transformation TO corresponding
to the case (a), which persists on a domain O(µ, ε). These domains I,O, and the
normalizing transformations TI , TO on them, will be defined for all values of the
parameter m taken from a ramified domain covering a full neighborhood of 0 in the
parameter space.

Definition 2.2.11 (Analytic functions on parametric domains). Let Ω be a con-
nected (ramified) set in the space (x,m) ∈ C × Cl, corresponding to a parametric
family of (ramified) domains

Ω(m) = {x | (x,m) ∈ Ω},

in the x-plane depending on a parameter m. We write

f ∈ B(Ω) if (i) f ∈ C(Ω) ∩ O( int Ω)
(ii) f(·,m) ∈ O( int Ω(m)) for each m.

Theorem III (Sectoral normalization). Let ∆(x,m) be a germ of a parametric
system, unfolding ∆0(x), and let ε(m), µ(m) be its reduced formal invariants. There
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exist two ramified domains of normalization in the (x,m)-space: an outer domain
O and an inner domain I, covering together a full neighborhood of 0 ∈ C × Cl, on
which exist normalizing gauge transformations TO ∈ GL2(B(O)), TI ∈ GL2(B(I)),
between the unfolded system and its formal normal form (2.2.12):

T ∗Ω∆ = ∆̂, Ω = O, I.

More precisely, the domains Ω = O, I can be written as parametric families of
ramified domains Ω(µ(m), ε(m)) in the x-plane, whose shape depends only on the
invariants ε(m), µ(m)

Ω =
⋃
m∈M

Ω(µ(m), ε(m))× {m},

over a ramified domain M covering the parameter space m. See Figure 2.1.
(a) The outer domain O(µ(m), ε(m)) is doubly attached to x1 =

√
ε. For (µ, ε) =

(0, 0) it becomes a ramified sector O(0, 0) at the origin of opening > 2π, in which
case TO(·,m) = TO,m of Remark 2.2.10.

(b) The inner domain I(µ(m), ε(m)) is ramified and attached to x1 =
√
ε and x2 =

−
√
ε. For ε = 0, µ(m) 6= 0, it splits in to a pair of sectors I±(µ(m), 0) at the

origin of opening > π, in which case TI(·,m) = T±I,m of Remark 2.2.10. For
(µ, ε) = (0, 0) the domain shrinks to a single point I(0, 0) = {0}.

The domains O, I are constructed in section 2.3.6.

As a corollary, we obtain the following result on convergence of the normalizing
transformations of Remark 2.2.10, (b) T±I,m and (c) Ti,m to (a) TO,m.

Theorem IV. Following the notation of Remark 2.2.10.
(i) The normalizing transformations T+

I,m (resp. T−I,m) converge to TO,m, as µ(m)→
0 radially, for each m with 0 < argµ(m) < 2π (resp. 0 > argµ(m) > −2π).
The convergence is uniform on compact sets in S+

I,m (resp. S−I,m).
(ii) The normalizing transformation T2,m, analytic on a neighborhood of x2 =−

√
ε(m),

converges to TO,m, when ε(m) → 0 radially and µ(m) = O(ε(m)), if arg x2 ∈
(π2 ,

3π
2 ), i.e. | arg

√
ε(m)| < π

2 . The convergence is uniform on compact sets in
S2,m.

The second statement was originally established by A. Glutsyuk [G3] in a more
general setting.
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2.3. Proofs

Without loss of generality, we can always assume that the parametric system
∆(x,m) has the reduced form of Definition 2.2.9 with formal invariants equal to

h(x,m) = x2− ε(m), λ(x,m) = 0, α(x,m) = µ(m) + x. (2.3.1)

Our strategy will be the following. In Section 2.3.1 we will bring the system by
an analytic gauge transformation to a simple prenormal form and prove Proposition
2.2.7. Theorem II follows from Theorem I (a) by an easy calculation of the invariants
of the two families ∆̃, ∆̃′, done in Section 2.3.2. And part (b) of Theorem I is a direct
consequence of Theorem II. To prove part (a) of Theorem I, we will first construct
the normalizing transformations of Theorem III, together with their natural domains
Ω = O, I, and provide a canonical set of fundamental matrix solutions defined on
these domains. The analytic equivalence of two parametric systems with the same
analytic invariant γ is established after expressing all the connection matrices (Stokes
matrices) between the canonic fundamental solutions.

It turns out that it is better to do all this in a new ramified coordinate

s =
√
µ+ x.

The lifting to this s-coordinate produces a two-fold symmetry of the systems as well
as their normalizing transformations. After establishing the analytic equivalence of
the lifted systems in the s-coordinate, one uses this symmetry to push it down to
the x-coordinate.

While everything, all the transformations and connection matrices, will depend
on the parameter m, we will often drop it from our notation, and think of it as im-
plicitly present; for example, we will sometimes write (µ, ε) rather than (µ(m), ε(m)).

2.3.1. Prenormal form.

Proposition 2.3.1 (Prenormal form). A germ of a parametric system ∆(x,m), with
formal invariants (2.3.1), is analytically equivalent to

∆′(x,m) = (x2− ε) d
dx
−

 0 1
µ+ x+ (x2− ε) r(x,m) 0

 . (2.3.2)

Proof. We will bring the system ∆ into the demanded form in four steps.
1) There exists an analytic germ of an invertible matrix C(m), constant in x, such
that

∆1 =: C∗∆ = (x2− ε) d
dx
−A(x,m), with A(x,m) =

∞∑
l=0

A(l)xl
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and A(0) =
(

0 1
a

(0)
21 a

(0)
22

)
, see [Ar].

2) We look for a transformation in the form of a convergent series

T (x,m) = I +
∞∑
l=1

T (l)(m)xl, with T (l) =
(

0 0
t
(l)
21 t

(l)
22

)
,

analytic in m, such that ∆2 =: T ∗∆1 = (x2 − ε) d
dx −B(x,m),

B(x,m) =
∞∑
l=0

B(l)xl, with B(0) = A(0) and B(l) =
(

0 0
b
(l)
21 b

(l)
22

)
. (2.3.3)

This means that

B(l) = [A(0), T (l)]+A(l) +
l−1∑
j=1

A(j)T (l−j)−
l−1∑
j=1

T (l−j)B(j)−(l−1)T (l−1) +ε(l+1)T (l+1),

with elements in the first line equal to

0 = t
(l)
2,i + a

(l)
1i +

l−1∑
j=1

a
(j)
12 t

(l−j)
2i , i = 1, 2,

giving a recursive formula for the coefficients of T . Knowing that A(x) is convergent,
i.e. |a(l)

ki | ≤ K l for some K>0, we shall find inductively that |t(l)2,i| ≤ (2K)l: indeed,
|t(l)2,i| ≤

∑l
j=1 2l−jK l ≤ 2lK l.

3) Let b22(x,m) =
∑∞
l=0 b

(l)
22x

l (2.3.3), and put S(x,m) =
(

1 0
1
2 b22 1

)
, then

∆3 =: S∗∆2 = (x2 − ε) d
dx
−
( 1

2 b22(x,m) 1

f(x,m) 1
2 b22(x,m)

)
,

for some f(x,m). By the assumption (2.3.1) we know that we can write b22(x,m) =
(x2− ε)g(x,m) with an analytic germ g, and that f(x,m) = µ+x+ (x2− ε)r(x,m)
for some germ r.

4) Finally use R(x,m) = e−
∫ x

0
1
2g(t,m)dtI, to get rid of the diagonal term: R∗∆3 =∆′

is in the demanded form.

Proof of Proposition 2.2.7. Let ∆(x,m) be a germ of parametric system in the
prenormal form (2.3.2). We will show that there exists a formal transformation
T̂ (x,m) in form of a power series in (x, µ, ε) whose coefficients depends analytically
on m, that brings ∆(x,m) to the reduced formal normal form ∆̂(x,m) (2.2.12). We
shall be looking for T̂ written as

T̂ (x,m) = a(x,m) I + b(x,m)

 0 1
µ+ x 0

+ (x2− ε)

 0 0
c(x,m) d(x,m)

 .
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We want that ∆̂ = T̂ ∗∆, which means 0 1
µ+ x 0

 ,
 0 0
c(x,m) d(x,m)

+

 0 0
r(x,m) 0

 · T̂ (x,m) = dT̂ (x,m)
dx

,

where [·, ·] stands for the commutator of matrices. This gives a system of equations

c = a′, (2.3.4)

d = b′, (2.3.5)

−(µ+ x)d+ ar = b+ (µ+ x)b′ + 2xc+ (x2− ε)c′, (2.3.6)

−c+ br = a′ + 2xd+ (x2− ε)d′, (2.3.7)

where ′ stands for the (formal) derivative w.r.t. x. Substituting (2.3.4) and (2.3.5)
in (2.3.6) and (2.3.7) gives

b+ 2(µ+ x)b′ = ar − 2xa′ − (x2− ε)a′′, (2.3.8)

2a′ = br − 2xb′ − (x2− ε)b′′. (2.3.9)

Writing a(x,m) =
∑

(j,k,l) aj,k,l(m)µjεkxl, b(x,m) =
∑

(j,k,l) bj,k,l(m)µjεkxl, r(x,m) =∑
l rl(m)xl, and identifying the coefficients of the term µjεkxl in (2.3.8) and (2.3.9)

shows that
(2l + 1) bj,k,l + 2(l + 1) bj−1,k,l+1 is a finite linear combination of

aj̃,k̃,l̃, (j̃, k̃, l̃) ≤LEX (j, k, l),

2(l + 1) aj,k,l+1 is a finite linear combination of
bj̃,k̃,l̃, (j̃, k̃, l̃) ≤LEX (j, k, l),

where ≤LEX is the lexicographic ordering on N3. There is no constraint on the
coefficients a(j,k,0), which we choose 0 for (j, k) 6= (0, 0), and a(0,0,0) = 1. All the
coefficients are now uniquely determined through a transfinite recursion with respect
to the ≤LEX -ordering on (j, k, l) ∈ N3.

2.3.2. Proof of Theorem II.

Lemma 2.3.2. The analytic invariant γ defined by (2.2.4) of a system

h(z) d
dz
− [A(0) +A(1)z] = 0, with A(k) =

(
a

(k)
11 a

(k)
12

a
(k)
21 a

(k)
22

)
(2.3.10)

and h(z) = z2 + h(1)z + h(0), is equal to

γ = 2 cos 2π

√(a(1)
11 − a

(1)
22

2
)2

+ a
(1)
12 a

(1)
21 . (2.3.11)



29

Proof. This system considered on the Riemann sphere CP1 has singularities only
at the zero points of h(z) and at the point z =∞. Therefore in the formula (2.2.4)

γ = e−2πiλ(1)trM, with λ(1) = a
(1)
11 + a

(1)
22

2 ,

M is a matrix of monodromy around z = ∞ in the negative direction. In the
coordinate t = z−1 the system (2.3.10) is equivalent to

t (1 + h(1)t+ h(0)t2) d
dt

+ [A(1) +A(0)t] = 0, (2.3.12)

which has only a regular singularity at t = 0. The eigenvalues of its principal matrix
−A(1) are −λ(1) ±

√
D where D := (a

(1)
11 −a

(1)
22

2 )2 + a
(1)
12 a

(1)
21 . Suppose first that the

singularity is non-resonant, i.e. that 2
√
D /∈ Z, in which case there exists a local

analytic transformation T (t) near t = 0, that brings (2.3.12) to the diagonal system

t (1 + h(1)t+ h(0)t2) d
dt

+
(
λ(1)+

√
D 0

0 λ(1)−
√
D

)
= 0,

for which an associated diagonal fundamental solution has its monodromy matrix
around t = 0 in the negative direction equal to

M = e2πiλ(1)
(
e2πi

√
D 0

0 e−2πi
√
D

)
.

Therefore γ = 2 cos 2π
√
D.

The resonant case is a limit of non-resonant cases, and the formula (2.3.11)
for γ remains valid, because the trace of monodromy depends analytically on the
coefficients of A.

Proof of Theorem II. Use (2.2.3) to verify that h(z), λ(z) and α(z) are indeed
the formal invariants of the system ∆̃(h, λ, α, q) (resp. ∆̃′(h, λ, α, b)).

To verify (2.2.6), set Q := 1
2(−1±

√
1 + 4q), so that q = Q2 +Q, and T (z) :=( 1 0

Qz 1

)
, then

T ∗∆̃(h, λ, α, q) = h(z) d
dz
−

 λ(z) +Qz 1
α(z) + (h(0) + h(1)z)Q2 λ(z)−Qz

 .
Now γ = 2 cos 2πQ = −2 cos π

√
1 + 4q (2.2.6) using (2.3.11).

Also, (2.2.9) follows directly from the formula (2.3.11). If γ(0) 6= −2, then the
equation (2.2.9) with β(1)(m) = α(1)(0) +O(m) given by (2.2.8), α(1)(0) 6= 0, has an
analytic solution b(m) for small m.
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2.3.3. Systems in the s-coordinate.

Let ∆(x,m) be a germ of parametric system in the prenormal form of Proposition
2.3.1. The problem of Theorem I (a) is that of proving that two such systems with
the same µ, ε are analytically equivalent if and only if they have the same trace of
monodromy.

Let s be a new coordinate defined by

x = s2− µ, (2.3.13)

and let
S(s) =

(
1 0
0 s

)
, V =

(
1 1
1 −1

)
. (2.3.14)

Then the transformed parametric system ∆s := 1
s · (SV )∗∆ in the s-coordinate is

equal to

∆s(s,m) = x2− ε
2s2

d

ds
−
[(

1 0
0 −1

)
− x2− ε

4s3

( 1 −1
−1 1

)
+ x2− ε

2s2 r
(

1 1
−1 −1

)]
. (2.3.15)

We will be looking for normalizing transformations FΩ(s,m), defined on some do-
mains Ω in the (s,m)-space, bringing it to a diagonal system FΩ

∗∆s = ∆s for

∆s(s,m) = x2− ε
2s2

d

ds
−
[(

1 0
0 −1

)
− x2− ε

4s3 I

]
. (2.3.16)

This diagonal system ∆s is a model system in the s-coordinate. However, the corre-
sponding system ∆ = s · (V −1S−1)∗∆s in the x coordinate,

∆(x,m) = (x2− ε) d
dx
−
[(

0 1
µ+x 0

)
+ x2− ε

4(µ+x)
(
−1 0
0 1

)]
,

has an additional singularity at the point x = −µ, hence does not belong to the
considered class of systems. So instead, in the x-coordinate, we take the formal
normal form ∆̂(x,m) (2.2.12) as the model. Now, if EΩ(s,m) is the diagonalizing
transformation “FΩ(s,m)” for the transform ∆̂s = s−1 · (SV )∗∆̂ of (2.2.12) on a
domain Ω, then the composed transformation

TΩ(x,m) = S(s)V FΩ(s,m)EΩ(s,m)−1V −1S(s)−1, (2.3.17)

defined on the ramified projection of the domain Ω into the x-coordinate, will be
non-singular at the point x =−µ and will bring ∆ to TΩ

∗∆ = ∆̂.
The diagonal model system (2.3.16) serves as an intermediate through which to

compare systems, and for which one knows an explicit canonical fundamental matrix
solution, denoted Ψ (see below). Hence the advantage of the s-coordinate. The
lifted system ∆s(s,m) then has a canonical fundamental matrix solution FΩΨΩ on
the domain Ω, where ΨΩ is a restriction of Ψ on Ω.
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Fundamental solution of ∆s(s,m).

On a neighborhood of∞ on the Riemann sphere CP1 = C∪{∞}, define the function
θ(s, µ, ε) by

d

ds
θ(s, µ, ε) = 2s2

x2 − ε
= 2s2

(s2− µ)2− ε
, θ(∞, µ, ε) = 0. (2.3.18)

We have

θ(s, µ, ε) =



√
µ+
√
ε

2
√
ε

log s−
√
µ+
√
ε

s+
√
µ+
√
ε
−
√
µ−
√
ε

2
√
ε

log s−
√
µ−
√
ε

s+
√
µ−
√
ε
, if ε(µ2−ε) 6= 0,

− s
s2−µ −

1
2√µ log s+√µ

s−√µ , if ε = 0,

− 1√
2µ log s−

√
2µ

s+
√

2µ , if µ2 = ε,

−2
s , if µ, ε = 0.

(2.3.19)

which is analytic in s ∈ CP1 r
⋃4
i=1[0, si], if each [0, si] denotes the closed segment

between the origin and a zero point si(µ, ε) of x2(s)− ε = (s2−µ)2− ε. The function
θ(s, µ, ε) is continuous in (µ, ε) ∈ C2 and analytic for (µ, ε) ∈ C2 r {ε (µ2−ε) 6= 0}.
It is odd in s

θ(−s, µ, ε) = −θ(s, µ, ε),

and it satisfies
θ(s, µ, ε) = θ(s, e2πiµ, ε) = θ(s, µ, e2πiε)

for each s in its domain. The function θ(s, µ, ε) has a ramified analytic extension
θ(š, µ̌, ε̌) defined on a ramified covering of the (s, µ, ε)-space with ramification at the
zero points si(µ̌, ε̌) of (s2− µ)2− ε. We will use the notation (š, µ̌, ε̌) for the points
on this ramified cover that project to (s, µ, ε).

A simple calculation shows that the matrix function

Ψ(s, µ, ε) =
√

2
2 i s

− 1
2

e θ(s,µ,ε) 0
0 e−θ(s,µ,ε)

 (2.3.20)

is a fundamental solution for the diagonal model system ∆s (2.3.16).

Fundamental solutions of ∆(x,m) (resp. ∆̂(x,m)).

If FΩ (resp. EΩ) are normalizing transformations for ∆s(s,m) (resp. ∆̂s(s,m))
as above, on some domain Ω, and ΨΩ is a restriction of Ψ on Ω, then the matrix
functions

SV FΩΨΩ, (resp. SV EΩΨΩ) (2.3.21)

are fundamental solutions for the parametric systems ∆(x,m) (resp. ∆̂(x,m)).
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2.3.4. Z2-symmetry.

Let us remark that if ΨΩ(s, µ, ε) is a fundamental solution of ∆s, or ∆s, on a do-
main Ω(m) in the s-plane, then ΨP

Ω(s,m) =
(

0 1
1 0

)
ΨΩ(−s,m)

(
0 1
1 0

)
is a fundamental

solution of the same system, this time on a rotated domain Ω(m)P = −Ω(m). Con-
sequently, if FΩ is a normalizing transformation for ∆s on a domain Ω, FΩ

∗∆s = ∆s,
then so is F P

Ω on ΩP.
The following definition gives the ()P notation precise meaning.

Definition 2.3.3 (Rotation action of Z2). If g(s) is a function on some domain Y
in the s-space, denote

gP(s) := g(e−πis), s ∈ Y P := eπiY

the rotated function on the rotated domain. For a 2×2-matrix function G(s), denote

GP(s) :=
(

0 1
1 0

)
G(e−πis)

(
0 1
1 0

)
,

and for a constant matrix C,

CP :=
(

0 1
1 0

)
C
(

0 1
1 0

)
.

Equation of the normalizing transformation FΩ.

We will be looking for FΩ written as

FΩ(s, m̌) = PΩ(s, m̌)DΩ(s, m̌) (2.3.22)

with PΩ =
(

1 pi

pP
j 1

)
that diagonalizes ∆s :

(PΩ)∗∆s = x2−ε
2s2

d

ds
−
[(

1 0
0 −1

)
− x2−ε

4s3 I + x2−ε
s2

(
βP
j (s) 0

0 −βi(s)

)]
,

and

DΩ(s, m̌) =

e ∫ 2βP
j (s)ds 0

0 e−
∫

2βi(s)ds

 .
This means that the transformation PΩ needs to satisfy

x2−ε
2s2

d
dsPΩ =

[(
1 0
0 −1

)
, PΩ

]
+ x2−ε

4s3
(

0 1
1 0

)
PΩ + r x

2−ε
2s2

(
1 1
−1 −1

)
PΩ − x2−ε

s2 PΩ

(
βP
j 0

0 −βi

)
,

i.e.

x2−ε
2s2

d
ds

(
0 pi

pP
j 0

)
= 2

(
0 pi

−pP
j 0

)
+ x2−ε

4s3

(
pP
j 1

1 pi

)
+ r x

2−ε
2s2

( 1+pP
j 1+pi

−1−pP
j −1−pi

)
+ x2−ε

s2

(−βP
j piβi

−pP
jβ

P
j βi

)
.
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The diagonal terms give:
−βi = 1

4spi −
r
2(1 + pi)

βP
j = 1

4sp
P
j + r

2(1 + pP
j ).

(2.3.23)

The anti-diagonal terms after substitution of (2.3.23) and division by x2−ε
2s2 are:

d
ds pi = 4s2

x2−ε pi + 1
2s(1− p

2
i ) + (1 + pi)2r,

− d
ds p

P
j = 4s2

x2−ε p
P
j − 1

2s(1−(pP
j )2) + (1 + pP

j )2r.

Therefore both pi, pj are solutions of the same ODE

d
ds p = 4s2

x2−ε p+ 1
2s(1− p

2) + (1 + p)2r. (2.3.24)

2.3.5. Solution pi of (2.3.24) on a ramified domain Di.

For each zero si(µ̌, ε̌) of the function h(x,m) = (s2− µ)2− ε, we construct a ramified
domain Di(µ̌, ε̌) in the s-space adherent to it, on which there exists a unique bounded
solution pi(s, m̌) to the equation (2.3.24), obtained as a fixed point of an integral
operator associated to the equation. Each domainDi will be constructed as a ramified
union of integration paths of this operator: real trajectories of the vector field ωχ,
with

χ(s, µ, ε) := (s2− µ)2− ε
4s2 ∂s, (2.3.25)

and some ω ∈ C. The complex vector field χ is defined on the Riemann sphere
CP1 = C ∪ {∞}, and is polynomial in s−1.

Let the three constants δs, δµ, δε > 0 determine small discs

S = {|s| < δs}, M = {|µ| < δµ}, E = {|ε| < δε}. (2.3.26)

And let si(µ̌, ε̌), i = 1, . . . , 4, be zeros of (s2− µ)2− ε depending continuously on a
ramified coordinate (µ̌, ε̌) from a covering space of M×E (this covering is ramified
over the set {ε (µ2− ε) = 0} and includes it). The projection map m 7→ (µ(m), ε(m))
from the parameter space toM×E lifts to a map m̌ 7→ (µ̌(m̌), ε̌(m̌)) from a covering
of the parameter space. We shall suppose that δµ, δε are small enough so that all the
zero points si(µ̌, ε̌) fall inside S.

Definition 2.3.4 (Domains Di). Let a constant L ≥ 2, determining an annular
region in the s-plane

|s| < δs, |(s
2 − µ)2 − ε

s4 | < L, (2.3.27)

and an angular constant 0 < η < π
2 be given. For each value of (µ̌, ε̌), and a zero

point si(µ̌, ε̌) of (s2− µ)2− ε, we define a ramified simply connected set Di(µ̌, ε̌)
(see Figure 2.2) as the union of real positive trajectories of the vector fields ω χ,
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with continuously varying −η < argω < η, that end in the point si(µ̌, ε̌) and never
leave the annular region (2.3.27). Hence š ∈ Di(µ̌, ε̌) if there exists ω = ω(š),
with argω ∈ (−η, η) depending continuously on š, and a real positive trajectory
σ(ξ), ξ ∈ R+, of the vector field ωχ, such that
• š = σ(0), si(µ̌, ε̌) =limξ→+∞σ(ξ),
• |σ(ξ)| < δs, | (σ(ξ)2−µ)2−ε

σ(ξ)4 | < L, for all ξ ∈ R+,

• dσ
dξ = ω (σ(ξ)2−µ)2−ε

4σ(ξ)2 , i.e.
ω ξ = 2θ(σ(ξ), µ, ε)− 2θ(s, µ, ε), (2.3.28)

for the function θ (2.3.19). In particular si(µ̌, ε̌) ∈ Di(µ̌, ε̌).
For some values of (µ̌, ε̌) the interior D̊i(µ̌, ε̌) of Di(µ̌, ε̌) can be empty. This is

the case when si(µ̌, ε̌) is a repulsive point of the real vector field ωχ for all admissible
ω, or when si(µ̌, ε̌) = 0 and µ 6= 0, in which case si is not a singular point of ωχ.

We set
Di =

⋃
m̌

Di(µ̌(m̌), ε̌(m̌))× {m̌}.

(a) 0 < ε < µ2, µ > 0 (b) ε = 0 < µ (c) ε = µ = 0

Figure 2.2. The domains Di(µ, ε) for selected values of µ, ε

Lemma 2.3.5. Let the constants L, η from Definition 2.3.4 satisfy

Lδs(1 + 4 sup
|s|<δs

|s r|) ≤ 2 cos η, (2.3.29)

where r = r(x(s,m),m) is as in (2.3.24). Then the equation (2.3.24) possesses a
unique solution pi ∈ B(Di) that is bounded in the domain Di and satisfies pi(si(µ̌, ε̌), m̌) =
0.
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Proof of Lemma 2.3.5. We are looking for a solution pi ∈ B(Di) of (2.3.24) sat-
isfying pi(si) = 0. From the definition of the function θ (2.3.18) and from (2.3.24)
we have

e2θ d
ds(e

−2θpi) = dpi
ds −

4s2
x2−εpi = 1

2s(1− p
2) + (1 + p)2r,

which we use to rewrite (2.3.24) as an integral equation

pi(s) =
∫ s

si

e2θ(s)−2θ(σ)
(

1−p2
i (σ)

2σ + (1 + pi(σ))2 · r(σ2−µ)
)
dσ := Kipi(s).

Taking the real trajectories σ(ξ), ξ ∈ R+, of the field ωχ (2.3.25), |ω| = 1, | argω| <
η, as the integration trajectories and substituting ξ as in (2.3.28), we obtain

Kipi(s) = −ω
∫ +∞

0
e−ωξ

(σ2− µ)2− ε
4σ2

(
1− p2

i

2σ + (1 + pi)2 · r
)
dξ

We are looking for a fixed point pi of Ki in the space of the functions f ∈ B(Di)
bounded by 1

||f || := sup
s∈Di
|f(s)| ≤ 1.

Using (2.3.27) and (2.3.29) we have∣∣∣ (s2−µ)2−ε
4s2

(
(1−f(s)2)

2s + (1 + f(s))2 · r
)∣∣∣ ≤ 1

4Lδs (1 + 4||sr||) ≤ 1
2 cos η.

Therefore
||Kif || ≤ 1

2 cos η ·
∫ +∞

0
e−Re(ω)ξdξ ≤ 1

2
cos η

Re(ω) ≤
1
2 .

Similarly∣∣∣ (s2−µ)2−ε
4s2

(
−f1+f2

2s + (2 +f1+f2) · r
)

(f1 − f2)
∣∣∣ ≤ 1

4Lδs (1 + 4||sr||) ||f1 − f2||

≤ 1
2 cos η · ||f1 − f2||,

and hence
||Kif1 −Kif2|| < 1

2 ||f1 − f2||.

So Ki is a contraction and the solution pi of (2.3.24) on Di exists, and is unique and
bounded by 1.

2.3.6. Domains Ω and normalizing transformations FΩ.

If pi is defined on Di and pP
j is defined on DP

j , then the diagonalizing transformation
FΩ(s, m̌) is well defined on a component Ω̊(µ̌, ε̌) of the intersection Di(µ̌, ε̌)∩DP

j (µ̌, ε̌),
which is attached to the points si(µ̌, ε̌) and sP

j (µ̌, ε̌) = −sj(µ̌, ε̌). We set

Ω(µ̌, ε̌) = Ω̊(µ̌, ε̌) ∪ {si(µ̌, ε̌),−sj(µ̌, ε̌)},

and show that FΩ(·, m̌) extends to Ω(µ̌, ε̌).
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In order to understand such domains Ω better, we need to understand first the
vector field χ (2.3.25).

Remark 2.3.6 (Rotated vector field.). The change of coordinates (s′, µ′, ε′) =
(ωs, ω2µ, ω4ε), ω ∈ C, transforms the vector field χ to ωχ:

ωχ(s, µ, ε) = (s′2− µ′)2− ε′

s′2
∂s′ .

Bifurcations of the vector field χ.

If in Definition 2.3.4 ω=1 was fixed, then Di(µ̌, ε̌) would be just the attractive basin
of the point si(µ̌, ε̌) relative to the annular region (2.3.27). To simplify things further,
supposing that δs =L= +∞, i.e. that the annular region is the whole C r∞, then
the interior Ω̊(µ̌, ε̌) of Ω(µ̌, ε̌) would be exactly the regions in CP1 bounded by the
real separatrices of the singularity at the origin of the vector field χ(s, µ, ε) and by
its unique real trajectory passing through the point at infinity. For a generic value
of the parameters (µ̌, ε̌), this gives 4 different regions: a symmetric pair of inner
regions that are bounded solely by the separatrices of the origin, and a symmetric
pair of outer regions bounded by the trajectory through ∞ and the separatrices of
the origin, see Figure 2.4. When ε = 0, each of the inner regions splits in two parts;
when µ2 = ε, the inner regions become empty.

Let us take a better look to how these regions evolve depending on the parameters
(µ̌, ε̌). There are two possibilities for a bifurcation:

ΣI : when the stability of a zero point si of χ changes between attractive and
repulsive through a center: the dashed lines in Figure 2.3,

ΣO: when the trajectory passing by infinity changes its end points: the solid curve
in Figure 2.3.

Both of the bifurcations ΣI , ΣO are instances of a same phenomenon: appearance of
a homoclinic orbit through the origin in CP1.

The bifurcation ΣI occurs when the multiplier
√
ε
si

of the linearization
√
ε
si

(s−si)∂s
of vector field χ at the point si = ±

√
µ±
√
ε becomes purely imaginary:

√
ε√

µ±
√
ε
∈

iR, which is equivalent to

µ ∈ ∓
√
ε− εR+ =: ΣI(ε). (2.3.30)

It is well known that a holomorphic vector field in C is analytically equivalent to its
linearization near each simple zero (see e.q. [IY]). As a consequence, if µ ∈ ΣI(ε)
then the real phase portrait of χ near the point si with purely imaginary multiplier
is that of a center.

The bifurcation ΣO occurs when the trajectory through infinity passes by the
origin, or equivalently when a separatrix of the origin passes through infinity. This
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means that θ(0)− θ(∞) ∈ R, where θ is as in (2.3.19), i.e. ±
√
µ+
√
ε±
√
µ−
√
ε

2
√
ε

πi ∈ R,

which is equivalent to −µ±
√
µ2−ε
ε = a ∈ R+ or

µ ∈ {−1
2(a−1+ εa) | a > 0} =: ΣO(ε). (2.3.31)

The set ΣO(ε) is a branch of a hyperbola.

Figure 2.3. Bifurcation curves in the µ-plane for the vector field χ(s, µ, ε)
according to values of ε: dashed lines ΣI(ε) correspond to change of stability
of a singular point, solid line curve ΣO(ε) corresponds to bifurcation of the
trajectory passing through ∞.
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(0) ε = 0:

(i) ε ∈ R+:
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(ii) ε ∈ −iR+:
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(iii) ε ∈ −R+:

(iv) ε ∈ iR+:

Figure 2.4. The real phase portrait of the vector field χ according to µ for
selected values of ε.
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The ramified domains Ω.

From the construction, a point š belongs to Ω̊(µ̌, ε̌) if there exists ω+ (resp. ω−) for
which the positive trajectory of ω+χ (resp. negative trajectory of ω−χ) starting at
š stays within the annular region (2.3.27) and connects to the point si(µ̌, ε̌) (resp.
−sj(µ̌, ε̌)). We will not lose much by restricting Ω̊(µ̌, ε̌) only to the points for which
the same ω+ = ω− =: ω is admissible, in another words, the whole real trajectory
of ωχ through š stays inside the annular region. Let us take a closer look at such
domains Ω.

For each ω, |ω| = 1, and a generic value of (µ, ε) the vector field ωχ(s, µ, ε) has 4
connected zones consisting of complete real trajectories inside the annulus (2.3.27):
a symmetric pair of inner regions, denote them RI,ω(µ̌, ε̌), RP

I,ω(µ̌, ε̌), and a symmetric
pair of outer regions, denote them RO,ω(µ̌, ε̌), RP

O,ω(µ̌, ε̌), see Figure 2.5 (a).
Depending on (µ, ε) the following can happen: When ω2µ ∈ ΣI(ω4ε)∪{±ω2√ε},

the inner regions RI,ω(µ̌, ε̌) become empty, and they split in two components when
ε = 0, µ 6= 0. The outer regions RO,ω(µ̌, ε̌) are empty whenever a separatrix of the
origin of the field ωχ(s, µ, ε) leaves the disc of radius δs (2.3.27): this happens for
values of (µ, ε) close to the bifurcation set ΣO (2.3.31), see Figure 2.5 (b). Therefore
a bifurcation of the region RO,ω occurs when a separatrix of the origin touches the
boundary of the disc of radius δs from inside for the first time: at that moment the
region ceases to exist as no outer points can be joined to both si and −sj inside the
annulus.

(a) (b)

Figure 2.5. The outer and inner regions RO,1(µ̌, ε̌) and RI,1(µ̌, ε̌) (with
ω = 1) inside the annulus (2.3.27) for (a) ε ∈ iR+, µ = 0, (b) ε ∈ iR+,
µ close to ΣI(ε): RO,1 = RP

O,1 = ∅. Compare with the corresponding vector
fields in Figure 2.4 (ii).
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Corresponding to the inner and outer regions of the vector field χ there are four
domains Ω: a symmetric pair of inner domains ΩI , ΩP

I , and a symmetric pair of
outer domains ΩO, ΩP

O, obtained as ramified unions of the regions RI,ω, RP
I,ω and

RO,ω, RP
O,ω over varying ω. They experience the same kind of bifurcations as their

corresponding regions R•,ω, but this time it is delayed by the effect of the variation of
argω ∈ (−η, η). This will determine the set of ramified parameters (µ̌, ε̌) for which
they exist.

LetM, E (2.3.26) be small discs of radii δµ, δε in the µ- and ε-spaces, and let η
be as in Definition 2.3.4. Define a ramified sectorial cover Ě of E as

Ě = {ε̌ | |ε̌| < δε & | arg ε̌| < 2π + η},

with each ε̌ being projected to ε ∈ E . For each value of ω and ε̌ ∈ Ě , let Mω(ε̌)
denote the connected component of the set {µ ∈ M | RO,ω(µ̌, ε̌) 6= ∅} r ΣI(ε) that
contains the point µ=

√
ε̌. By Remark 2.3.6

R•,ω(µ̌, ε̌) = ω−1R•,1(ω2µ̌, ω4ε̌), • = O, I,

hence Mω(ε̌) = ω−2M1(ω4ε̌). Define the domain M̌(ε̌) of ramified parameter µ̌ as
a ramified union

M̌(ε̌) =
⋃
|ω|=1
| argω|<η

Mω(ε̌) =
⋃
|ω|=1
| argω|<η

ω−2M1(ω4ε̌),

with µ̌=
√
ε̌ as the ramification point included in M̌(ε̌). See Figure 2.6.

To fix the notation, from now on, let

s1(µ̌, ε̌) :=
√
µ̌+
√
ε̌, s2(µ̌, ε̌) :=

√
µ̌−
√
ε̌ (2.3.32)

such that for arg ε = 0 and µ >
√
ε > 0 they are given by the usual square root. Let’s

agree that out of the two inner regions, RI,ω(µ̌, ε̌) is the one consisting of trajectories
from s1(µ̌, ε̌) to s2(µ̌, ε̌), and that out of the two outer regions (both consisting of
trajectories from s1(µ̌, ε̌) to −s1(µ̌, ε̌)), RO,ω(µ̌, ε̌) is the upper one (Figure 2.5).

For each m̌ ∈ M̌ let

Ω̊•(µ̌, ε̌) =
⋃

ω such that
µ∈Mω(ε̌)

R•,ω(µ̌, ε̌), • = O, I (2.3.33)

be a ramified union of the regions in the s-plane, and let

ΩI(µ̌, ε̌) (resp. ΩO(µ̌, ε̌) )

be Ω̊I(µ̌, ε̌) (resp. Ω̊O(µ̌, ε̌)) with the corresponding zero points s1(µ̌, ε̌), s2(µ̌, ε̌) (resp.
s1(µ̌, ε̌),−s1(µ̌, ε̌)) of (s2− µ)2− ε from its adherence added as in Proposition 2.3.7.
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Figure 2.6. The ramified domains M̌(ε̌) for the parameter µ̌ depending
on ε̌ ∈ Ě .

(a) 0 < ε < µ2, µ > 0 (b) ε = 0 < µ (c) ε = µ = 0

Figure 2.7. The domains ΩO(µ̌, ε̌) and ΩI(µ̌, ε̌) for selected values of µ, ε.

While the outer domain ΩO(µ̌, ε̌) is connected nonempty for all ε̌ ∈ M̌, µ̌ ∈ M̌(ε̌),
following from its construction, the inner domain becomes empty whenever µ2 = ε,
and splits into two components if ε = 0: ΩI(µ̌, 0) = ΩI+(µ̌, 0) ∪ ΩI−(µ̌, 0), with a
common point s1(µ̌, 0) = s2(µ̌, 0) =

√
µ̌ (see Figure 2.7).
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If ε̄ ∈ Ě ∩ e−2πiĚ and ε̃ = e2πiε̄ ∈ Ě ∩ e2πiĚ are two ramified parameters in Ě
that correspond to the same ε, then the two domains M̌(ε̄), M̌(ε̃) form together
a ramified cover of the µ-space M (if δµ, δε in (2.3.26) are sufficiently small), see
Figure 2.6.

The union of M̌(ε̌) in the (µ̌, ε̌)-space⋃
ε̌∈Ě

M̌(ε̌)× {ε̌}

is a single simply connected ramified cover ofM×E .
We define the ramified domain M̌ in the m̌-space, covering a neighborhood M of

0 in the m-space, by lifting this ramified cover (µ(m), ε(m)) : M→M×E

M̌ 3 m̌ � //
_

��

(µ̌(m̌), ε̌(m̌))∈
⋃
ε̌∈Ě M̌(ε̌)× {ε̌}

_

��
M 3m � // (µ(m), ε(m))∈M×E

Finally let Ω• be the union of all Ω•(µ̌, ε̌) m̌-fibered over M̌

Ω• :=
⋃
m̌∈M̌

Ω•(µ̌(m̌), ε̌(m̌))× {m̌}.

Proposition 2.3.7. Let a parametric system ∆s(s,m) be as in (2.3.15) and its diag-
onal model ∆s(s,m) be as in (2.3.16). On the domains Ω• and ΩP

• = eπiΩ•, • = O, I,
defined above, there exists unique diagonalizing transformations

F• ∈ GL2(B(Ω•)), (F•)∗∆s = ∆s

F P
• ∈ GL2(B(ΩP

• )), (F P
• )∗∆s = ∆s

(see Definition 2.2.11 and Notation 2.3.3), such that

FI(s1, µ̌, ε̌) =
( 1 0

0 κI(µ̌,ε̌)

)
, FI(s2, µ̌, ε̌) =

(
κI(µ̌,ε̌) 0

0 1

)
,

FO(s1, µ̌, ε̌) =
( 1 0

0 κO(µ̌,ε̌)

)
, FO(s2, µ̌, ε̌) =

(
κO(µ̌,ε̌) 0

0 1

)
,

(2.3.34)

where the functions κO, κI ∈ C(M̌) ∩ O( int M̌) are uniquely determined by ∆s.

Proof. By construction,

FΩ(s, m̌) =
(

1 pi

pP
j 1

)e
∫ s
sP
j

2βP
j (σ)dσ

0

0 e
−
∫ s
si

2βi(σ)dσ
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with βk = − 1
4spk + r

2(1 + pk), so it is well defined and bounded on the component Ω̊
of the intersection Di ∩DP

j . We need to show that the limits

FΩ(sk, m̌) = lim
s→sk

FΩ(s, m̌), sk = si,−sj

exist and are diagonal. In fact, for each m̌ fixed and sk(µ̌, ε̌) a singular point of ∆s
m,

it is well known from the non-parametric theory that there exists a diagonalizing
transformation defined on the restriction of Ω(µ̌, ε̌) to a small neighborhood of the
point, which extends continuously as I to sk(µ̌, ε̌) (cf. Remark 2.2.10). Therefore
FΩ(·, m̌) is related to such a transformation by right side multiplication by a bounded
automorphism of ∆s

m. Lemma 2.3.8 below shows that this automorphism extends
continuously to the point sk as a diagonal matrix, therefore FΩ(sk(µ̌, ε̌), µ̌, ε̌) exist
and is diagonal. The unicity of FΩ follows from Corollary 2.3.9 below.

Using the Liouville–Ostrogradski formula we know that the determinant of the
fundamental solution ΦΩ = SV FΩΨΩ (2.3.21) of ∆(x,m) is constant for each (µ̌, ε̌)
fixed since the trace of the matrix of this system is null; therefore

detFΩ(s,m) = det ΦΩ(x,m) = κΩ(m) ∈ C∗.

If FΩ(si) is diagonal, then we also know from the construction that FΩ(si) has 1 at
the second diagonal position, and similarly that FΩ(−sj) has 1 at the first diagonal
position, so we obtain (2.3.34).

Automorphisms of ∆s

Lemma 2.3.8. For m fixed, let U be a simply connected open subset of C r {s |
(s2− µ(m))− ε(m) = 0} and let AU (s) be an automorphism of the diagonal system
∆s
m (2.3.16): (AU )∗∆s

m = ∆s
m. If Ψ(s) is a fundamental solution (2.3.20) of ∆s

m,
we have

AU (s) = Ψ(s)CΨ(s)−1

for some constant invertible matrix C = (ckl). If AU is bounded on U , and if U
contains a real-positive trajectory σ+(ξ) of ω+χ (resp. a real-negative trajectory
σ−(ξ) of ω−χ) for some ω±, | argω±| < π

2 , then necessarily c12 = 0 (resp. c21 = 0)
and

lim
ξ→+∞

AU (σ+(ξ)) =
(
c11 0
0 c22

) (
resp. = lim

ξ→−∞
AU (σ−(ξ))

)
.

Proof. Let θ(s) be a branch of the function θ(s, µ, ε) in (2.3.19) on U . We have

AU (s) =

 c11 e2θ(s)c12

e−2θ(s)c21 c22

 .
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If | argω±| < π
2 , then it follows from (2.3.28) that Re

(
θ(σ+(ξ))

)
→ +∞ as ξ → +∞

(resp. Re
(
θ(σ−(ξ))

)
→ −∞ as ξ → −∞), which implies that c12 = 0 (resp. c21 = 0),

else AU (σ±) would not be bounded.

Corollary 2.3.9. An automorphism AΩ of ∆s (2.3.16) on a domain Ω of Proposition
2.3.7 is just a diagonal matrix constant w.r.t. s.

Proof of Theorem III

Proof of Theorem III. Let x̌(š,m) = š2 − µ̌(m), a one-to-one map from the
ramified coordinate š to a ramified coordinate x̌ (projecting on x), be a lifting of the
map x(s,m) = s2 − µ(m) (2.3.13). Then the ramified images of ΩO, ΩI in the x̌-
coordinate: x̌(Ω0(µ̌, ε̌))∩ X̌, x̌(ΩI(µ̌, ε̌))∩ X̌, cover for each (µ̌, ε̌) a full neighborhood
of each singular point x = ±

√
ε. Define

O(µ̌, ε̌), I(µ̌, ε̌),

depending continuously on m̌ ∈ M, as simply connected ramified extensions of these
images, in such a way that they agree with them near each singularity, are open
away of the singularities, and the union of their projections covers all X for each
m̌. In particular, we want to cover the points x= µ corresponding to s= 0, which
was not covered by ΩO ∪ ΩI . Since the fundamental solutions SV F•Ψ• of ∆(x,m)
and SV E•Ψ• of ∆̂(x,m) (see Section 2.3.3) are analytic away from the singularities
x = ±

√
ε, the transformations (2.3.17)

T•(x̌, m̌) = S(s)V F•(š, m̌)E•(š, m̌)−1V −1S(s)−1, • = O, I

extend then on • = O, I as normalizing transformation for the parametric system
∆(x,m):

T• ∈ GL2(B(•)), T ∗•∆ = ∆̂.

2.3.7. Connection matrices and proof of Theorem I (a).

For the following discussion we will want to fix a branch Ψ• of the fundamental
solution Ψ (2.3.20) of the diagonal system ∆s on each of the domains Ω•. In order
to do so, we need to split the inner domain ΩI(µ̌, ε̌) in two parts: ΩI+(µ̌, ε̌) and
ΩI−(µ̌, ε̌), corresponding to the two components of Ω̊I(µ̌, 0) when ε̌ = 0.

First we divide each inner region RI,ω(µ̌, ε̌) of the field ωχ into two parts by
cutting it along a chosen trajectory going from the repelling point s1(µ̌, ε̌) to the
attracting point s2(µ̌, ε̌): If θ is the function (2.3.19), one knows that the imaginary
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part of ω−1θ stays constant along each trajectory. Using (2.3.32), we can write θ as

θ(š, µ̌, ε̌) = s1(µ̌,ε̌)
2
√
ε̌

log s−s1(µ̌,ε̌)
s+s1(µ̌,ε̌) −

s2(µ̌,ε̌)
2
√
ε̌

log s−s2(µ̌,ε̌)
s+s2(µ̌,ε̌) ,

and we know (by setting s =∞) that points on the unique trajectory from s1 through
∞ satisfy

Im
(θ(š, µ̌, ε̌)

ω

)
= 0.

To cut RI,ω we will use the “opposite” outcoming trajectory from s1, that is the
trajectory, whose points s satisfy

Im
(θ(š, µ̌, ε̌)

ω

)
= ± Im

(s1(µ̌, ε̌)
ω 2
√
ε̌
πi
)

(the sign depends on from which side does one extend the function θ, the both
correspond to the same trajectory in the s-plane).
For each ω this trajectory divides RI,ω into: RI+,ω and RI−,ω, see Figure 2.8 (a).

We define ΩI+(µ̌, ε̌) and ΩI−(µ̌, ε̌) in the same way as in (2.3.33) for each µ̌2 6= ε̌.
Hence

ΩI = ΩI+∪ ΩI−, (see Figure 2.8 (b))

and we set FI+ = FI |I+ and FI−= FI |I−.

(a) (b)

Figure 2.8. (a) The regions RI±,1(µ̌, ε̌) of the vector field χ with the di-
viding trajectory from s1 to s2 dotted. (Picture with ε, µ ∈ R+, µ2 > ε,
compare to Figure 2.4 (i).) (b) The corresponding domains ΩI+(µ̌, ε̌) and
ΩI−(µ̌, ε̌), where ΩI(µ̌, ε̌) = ΩI+(µ̌, ε̌) ∪ ΩI−(µ̌, ε̌) is as in Figure 2.7 (a).

Definition 2.3.10. Let Φ1, Φ2 be two fundamental matrix solutions of a linear
system on two domains U1, U2 with connected non-empty intersection U1 ∩ U2. We
call the matrix C = Φ−1

1 Φ2 a connection matrix between Φ1 and Φ2 and represent
it schematically as

Φ1
C−−→ Φ2.

Choice of fundamental solutions Ψ•.

On the interior Ω̊• of each of the domains Ω•, • = O, I+, I−, we fix a branch Ψ•(š, µ̌, ε̌)
of the fundamental solution Ψ(š, µ̌, ε̌) (2.3.20) of the diagonal system ∆s so that the
connection matrices between them are as in Figure 2.9.



48

Figure 2.9. The connection matrices between the fundamental solutions
Ψ• for each fixed parameter (µ̌, ε̌), with µ̌2 6= ε̌ 6= 0, where N1 and N
are given by (2.3.35) and (2.3.36). If ε̌ = 0 then s1(µ̌, 0) = s2(µ̌, 0) and the
matricesN1 are missing from the picture. If µ̌2 = ε̌ then only the fundamental
solutions ΨO and ΨP

O persist together with the two connection matrices −iI.

The monodromy matrices of Ψ(s, µ̌, ε̌) around the points s1(µ̌, ε̌), resp. s2(µ̌, ε̌),
in the positive direction are independent of the choice of the branch, and are given
by

N1(µ̌, ε̌) =

e
s1(µ̌,ε̌)√

ε̌
πi 0

0 e
− s1(µ̌,ε̌)√

ε̌
πi

 , N2(µ̌, ε̌) =

e−
s2(µ̌,ε̌)√

ε̌
πi 0

0 e
s2(µ̌,ε̌)√

ε̌
πi

 , (2.3.35)

They satisfy
N P
i = N−1

i , i = 1, 2.

The monodromy matrix of Ψ around both of the points s1(µ̌, ε̌), s2(µ̌, ε̌) is equal to

N(µ̌, ε̌) = N1(µ̌, ε̌)N2(µ̌, ε̌) =

e s1−s2√
ε̌
πi 0

0 e
− s1−s2√

ε̌
πi

 . (2.3.36)

At the limit when ε̌ → 0 we get N(µ̌, 0) =

e
1√
µ̌
πi

0

0 e
− 1√

µ̌
πi

, which is for µ 6= 0

the monodromy matrix of Ψ around the double zero s1(µ̌, 0) = s2(µ̌, 0), while none
of the matrices N1(µ̌, ε̌), N2(µ̌, ε̌) has a limit. This is the reason for splitting the
domain ΩI into ΩI+, ΩI− and choosing ΨI+, ΨI− in the way we did. Therefore, the
fundamental solutionΨI± are well defined on the whole Ω̊I± and ΨO is well defined
on the whole Ω̊O.
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Considering now the fundamental solutions F•Ψ• of ∆s (2.3.15) on the ramified
(š, m̌)-space, there is a connection matrix whenever a point (s,m) ∈ S×M is covered
more than once: Either there can be two domains Ω(µ̌, ε̌) with the same (µ̌, ε̌),
or with two different ramified parameters (µ̌, ε̌) corresponding to the same (µ, ε).
The collection of all these connection matrices carries all the information about the
analytic equivalence class of the system ∆.

Proposition 2.3.11. Let ∆(x,m), ∆′(x,m) be two families of parametric systems
and let ∆s(s,m), ∆′s(s,m) be their transforms as in (2.3.15). Let F•, F ′• be normal-
izing transformations for ∆s, ∆′s:

(F•)∗∆s = ∆s = (F ′•)∗∆′s

on the domains • = O, I+, I− defined above. If all the connection matrices associated
to the fundamental solutions F•Ψ• of ∆s agree with those associated to the funda-
mental solutions F ′•Ψ• of ∆′s, then the two parametric families of systems ∆, ∆′ are
analytically equivalent.

Proof. Let H(s,m) := F ′•(š, m̌)F•(š, m̌)−1. Since all the connection matrices are
equal, H is a well defined non-ramified invertible matrix function defined on the union
of the projections of the domains Ω• to (s,m)-space, • = O, I+, I−. It is bounded
on a neighborhood of each singularity si, hence H can be analytically extended on
(S r {0}) ×M×E , where S,M, E are as in (2.3.26). It satisfies H = HP: if s is
in the projection of Ω•(µ̌, ε̌) and H(s, m̌) = F ′•(š, m̌)F•(š, m̌)−1 then −s is in the
projection of ΩP

• and

H(−s, m̌) = F ′•
P(eπiš, m̌) (F P

• (eπiš, m̌))−1 =

= ( 0 1
1 0 )F ′•(š, m̌)F•(š, m̌)−1 ( 0 1

1 0 ) =

= ( 0 1
1 0 )H(š, m̌) ( 0 1

1 0 ) .

Hence the function

G(x,m) := S(s,m)V H(s,m)V −1S−1(s,m),

with S, V as in (2.3.14), is well defined. The fundamental solutions Φ•(x̌, m̌) =
S(s)V F•(š, m̌) Ψ•(š, m̌) (resp. Φ′•(x̌, m̌) = S(s)V F ′•(š, m̌) Ψ•(š, m̌)) of the systems
∆(x,m) (resp. ∆′(x,m)) can for µ2 6= ε be analytically extended on a neighborhood
of the point x = −µ (i.e. s = 0) which is non-singular for these systems. As G =
Φ′•Φ−1

• , it means that G∗∆′ = ∆ and that G is an invertible analytic matrix function
on (X×M) r {x = −µ, ε = µ2}, where

X := {|x| ≤ δ2
s− δµ}.



50

Since the problematic points are in a set of codimension 2, G is analytic on the whole
neighborhood X×M of 0.

Figure 2.10. The connection matrices between the fundamental solutions
F•Ψ• for a fixed parameter (µ̌, ε̌), µ̌2 6= ε̌. For µ̌2 = ε̌, only the fundamental
solutions FOΨO and F P

OΨP
O persist, with the two corresponding connection

matrices −iC0, −iCP
0 . (Picture with (µ̌, ε̌) as in Figures 2.9 and 2.7(a)).

Lemma 2.3.12. Let F• be the normalizing transformations from Proposition 2.3.7
satisfying (2.3.34) with the uniquely determined functions κ•, and let Ψ• be as Figure
2.9. Then for each fixed m̌ ∈ M the connection matrices between the solutions F•Ψ•
on the domains Ω•(µ̌, ε̌) are given in Figure 2.10 with the matrices C0(m̌), . . . , C4(m̌)
equal to

C0 =

1 iγ

0 1

, C3 =

1 iκ−1e−2aπi

0 κ−1

 ,
C1 =

1 iκ−1(γ − e 2aπi− e−2aπi)
0 1

, C4 =

1 −iκ−1e 2aπi

0 κ−1

 ,
C2 =

 1 0
−iκe 2aπi 1

,
(2.3.37)

where

a(m̌) :=


s1(µ̌,ε̌)−s2(µ̌,ε̌)

2
√
ε̌

if ε̌ 6= 0,
1

2
√
µ̌

if ε̌ = 0 and µ̌ 6= 0,
(2.3.38)

κ(m̌) := κO(m̌)
κI(m̌) (2.3.39)

and γ(m), the analytic invariant of the system ∆(x,m), is the trace of monodromy.
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Proof. From Lemma 2.3.8 we know that a connection matrix on an intersection
domain that is adjacent to point s1(µ̌, ε̌) (resp. s2(µ̌, ε̌)) must be upper triangular
(resp. lower triangular), with the diagonal terms determined by the values of the
corresponding pair of transformations F•(s1(µ̌, ε̌), m̌) (resp. F•(s2(µ̌, ε̌), m̌)). Hence
we have

C0 =
(

1 c0
0 1

)
, C1 =

(
1 c1
0 1

)
, C2 =

(
1 0
c2 1

)
, C3 =

( 1 c3

0 κ−1

)
, C4 =

( 1 c4

0 κ−1

)
,

for some c0(m̌), . . . , c4(m̌).
Let M(m̌) be the monodromy matrix of the fundamental solution

ΦO(x̌, m̌) = S(s)V FO(š, m̌) ΨO(š, µ̌, ε̌)

of the system ∆ around the two singular points x = ±
√
ε̌ in the positive direction.

On the one hand we have

M = ΨO(š)−1FO(š)−1V −1S(s)−1 · S(−s)V FO(eπiš) ΨO(eπiš)

= ΨO(š)−1FO(š)−1V −1S(s)−1 · S(s)V F P
O(š) ΨP

0(š)
(

0 1
1 0

)
= −i C0

(
0 1
1 0

)
.

On the other hand, as apparent from Figure 2.10,

M = C3C1NC2C
−1
3 ,

where N =
(
e 2aπi 0

0 e−2aπi

)
. Therefore

−i C0
(

0 1
1 0

)
= C3C1NC2C

−1
3 = M,−ic0 −i

−i 0

 =

e 2aπi+ e−2aπic2(c1+c3) κe−2aπi(c1+c3)(1−c2c3)− κe 2aπic3

κ−1e−2aπic2 e−2aπi(1−c2c3)

 ,
which implies that

γ = trM = −ic0 = e 2aπi + e−2aπi + e−2aπic1c2, (2.3.40)

c2c3 = 1, and c2 = −iκe 2aπi, c3 = iκ−1e−2aπi.

From Figure 2.10 one also sees that

C3C1 = C0C4,

which gives the matrix C4.

The matrices C0(m̌), . . . , C4(m̌) of Lemma 2.3.12 determine for each fixed m̌ ∈ M̌
all the relations between the set of fundamental solutions F•(·, m̌), • = O, I+, I− and
their symmetric counterparts F P

• (·, m̌). We will now look at the situation of two
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different m̌ ∈ M̌ corresponding to the same value of m. One finds that the corre-
sponding connection matrices can be expressed in terms of the values of C0, . . . , C4

for the two ramified parameters, while certain cocycle relations must be satisfied.

Lemma 2.3.13. Let F•, Ψ• be as in Lemma 2.3.12. We will use the following kind
of notation: If m̄, ¯̄m ∈ M̌ (resp. m̃, ˜̃m ∈ M̌) are two values of the ramified parameter
m̌, we write X̄ = X(m̄), ¯̄X = X( ¯̄m) (resp. X̃ = X(m̃), ˜̃X = X( ˜̃m)) for any object
X depending on m̌.
(a) Let m̄, ¯̄m ∈ M̌ be two values of the ramified parameter that project to the same

m, such that

ε̄ = ¯̄ε =: ε̌ and ¯̄µ−
√
ε̌ = e2πi(µ̄−

√
ε̌),

i.e. ¯̄µ is µ̄ plus one positive turn around the ramification point
√
ε̌ in M̌(ε̌). So

¯̄s1 = s̄1, ¯̄s2 = eπis̄2.

Hence
¯̄ΩO = Ω̄O,

¯̄FO = F̄O,
¯̄ΨO = Ψ̄O,

and we have
¯̄κO = κ̄O =

¯̄κ κ̄

1− e−2 s̄2√
ε̌
πi
. (2.3.41)

(b) Let m̃, ˜̃m ∈ M̌ be two values of the ramified parameter that project to the same
m such that

(˜̃µ, ˜̃ε) = e2πi(µ̃, ε̃),

or more precisely, for |µ| �
√
|ε|, (˜̃µ, ˜̃ε) is obtained from (µ̃, ε̃) by simultaneously

turning both ε̌ and µ̌. So

˜̃s1 = eπis̃2, ˜̃s2 = eπis̃1, and ˜̃N = Ñ−1.

Hence
˜̃ΩI+ = Ω̃P

I−,
˜̃FI+ = F̃ P

I−,
˜̃ΨI+ = −i Ψ̃P

I−,
˜̃ΩI− = Ω̃P

I+,
˜̃FI− = F̃ P

I+,
˜̃ΨI− = −i Ψ̃P

I+Ñ
−1.

Therefore
˜̃C1 = Ñ−1C̃P

2 Ñ,
˜̃C2 = C̃P

1 , (2.3.42)

and we have

˜̃κI = κ̃I , (2.3.43)

γ = e2ãπi + e−2ãπi − κ̃ ˜̃κ e−2ãπi, (2.3.44)

where ǎ and κ̌ are defined in (2.3.38) and (2.3.39), and ˜̃a = −ã.
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Proof. (a) For each ε̌ ∈ Ě the ramification of the µ̌-parameter domain M̌(ε̌)
corresponds to the bifurcation ΣI(ε): the difference between (µ̄, ε̌) and (µ̃, ε̌) is that
of crossing the line ΣI(ε). Since this bifurcation affects only the inner regions of
the field χ, it therefore affects only the internal domains ΩI±, ΩP

I±, while the outer
domains are not affected. Therefore ¯̄ΩO = Ω̄O and consequently ¯̄FO = F̄O.

To obtain the assertion (2.3.41), it is enough to prove it for generic values of
(µ, ε), and extend it to the other values by continuity. So we can assume that ε 6= 0,
µ2 6= ε and moreover that both of the points s1(µ̌, ε̌), s2(µ̌, ε̌) are non-resonant.
In that case, aside from the transformations F•(š, m̌), • = O, I+, I−, we have also
unique local normalizing transformations Fi(š, m̌) defined on a neighborhood Ωi(µ̌, ε̌),
i = 1, 2, of si(µ̌, ε̌) not containing any other singularity sj(µ̌, ε̌) nor the origin, with
Fi(ši(µ̌, ε̌), m̌) = I. They satisfy

¯̄F1 = F̄1,
¯̄F2 = F̄ P

2 .

Let Ai be the connection matrix between FiΨI+ and FI+ΨI+:

FI+ΨI+ = FiΨI+Ai,

see Figure 2.11. It is easy to see that the monodromy of FI+ΨI+ around the point
s1 (resp. s2) is equal to

C1N1 = A−1
1 N1A1, ( resp. N2C2 = A−1

2 N2A2 ),

from which one can calculate using Lemma 2.3.12 that

A1 =

1 1
e21−1c1

0 κI

 , A2 =

 κI 0
1

1−e−2
2
c2 1

 , (2.3.45)

with
e1(µ̌, ε̌) := e

s1(µ̌,ε̌)√
ε̌

πi
, e2(µ̌, ε̌) := e

s2(µ̌,ε̌)√
ε̌

πi
,

and c1 = iκ−1(γ − e1
e2
− e2

e1
), and c2 = −iκ e1e2 .

Knowing that ¯̄F2 = F̄ P
2 one can see from Figure 2.11 that

¯̄A2
¯̄C−1

3 = N̄−1
1 ĀP

2 (N̄ P
1 )−1(C̄P

4 )−1,

where (N̄ P
1 )−1 = N̄1, i.e. ¯̄κI −i¯̄κI

¯̄e2
¯̄e1

i¯̄κ ¯̄e1 ¯̄e2
1−¯̄e22

¯̄κ 1
1−¯̄e22

 =

κ̄ ē2
ē2−ē−1

2
−iκ̄ ē−1

1
ē2−ē−1

2

iκ̄I
ē1
ē2

κ̄I

 (2.3.46)

This is satisfied if and only if

¯̄κI κ̄I = κO
ē2

ē2−ē−1
2
,
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Figure 2.11. Connection matrices between fundamental solutions F•Ψ• of
Lemma 2.3.12, with ε̌ fixed and µ̄ 6= ¯̄µ . (Picture with arg ε̌ = 0.) The
corresponding diagram for the diagonal solutions Ψ• of ∆̄s is obtained by
erasing all the F ’s and replacing the matrices Ai, Ci by identity matrices.
The top arrow in the diagram here F̄ P

2 Ψ̄P
I+

−iN̄1−−−−−→ ¯̄F2
¯̄ΨI+ follows from the

corresponding arrow Ψ̄P
I+

−iN̄1−−−−−→ ¯̄ΨI+ which one can easily read in the cor-
responding diagram for the diagonal solutions.

which is equivalent to (2.3.41). Similarly, one would find that

¯̄A1
¯̄C−1

3 = Ā1C̄
−1
3 ,

which is satisfied without imposing any new condition, since

A1C
−1
3 =

1 iγe−1
1 −ie2−ie

−1
2

e1−e−1
1

0 κO

 .
(b) Similarly to (a), the passage between (µ̃, ε̃), µ̃ ∈ M̌(ε̃), and (˜̃µ, ˜̃ε) = e2πi(µ̃, ε̃),
˜̃µ ∈ M̌(˜̃ε), is that of crossing the curve ΣO(ε), which affects only the outer regions,
and hence the outer domains. The inner domains rotate together with their vertices
s1(µ̌, ε̌), s2(µ̌, ε̌), therefore ˜̃ΩI+ = Ω̃P

I− and
˜̃ΩI− = Ω̃P

I+. So we have

˜̃FI+ = F̃ P
I−,

˜̃FI− = F̃ P
I+.

One can see from Figure 2.12 that the fundamental solutions ΨI± of the diagonal
system ∆ s satisfy

˜̃ΨI+ = −i Ψ̃P
I−,

˜̃ΨI− = −i Ψ̃P
I+Ñ.
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This then implies (2.3.42), i.e.

C̃1 =
(

1 −i˜̃κe−2ãπi

0 1

)
, ˜̃C1 =

(
1 −iκ̃e2˜̃aπi

0 1

)
,

C̃2 =
( 1 0
−iκ̃e 2ãπi 1

)
, ˜̃C2 =

( 1 0
−i˜̃κe 2˜̃aπi 1

)
,

as ˜̃a = −ã. Then (2.3.44) follows from (2.3.40).

Figure 2.12. Connection matrices between fundamental solutions Ψ• of
Lemma 2.3.12 with (˜̃µ, ˜̃ε) = e2πi(µ̃, ε̃).

All the connection matrices between the fundamental solutions F•Ψ• can now be
determined from Lemmas 2.3.12 and 2.3.13.

Proposition 2.3.14. (a) Let ∆ be a parametric system, ∆s its transform (2.3.15),
let F• be the normalizing transformations from Proposition 2.3.7 determined by the
condition (2.3.34) and let Ψ• be as in Figure 2.9. The collection of all the connection
matrices between the fundamental solutions F•Ψ• is uniquely determined by κ = κO

κI

and by the invariant γ, satisfying the relation (2.3.44).

(b) Let γ(m) be a germ of analytic function and assume that there exists an analytic
germ Q(m) such that γ = 2 cos 2πQ. Let a(µ̌, ε̌) be as in (2.3.38) and

b(µ̌, ε̌) := s1 + s2

2
√
ε̌
.

Then any triple of functions κI , κO, κ = κO
κI
∈ B(M̌) with κO(m̌) = 1 if (µ̌, ε̌) = 0

and κI(m̌) = 1 if ε̌ = 0, µ̌ ∈ M̌(0), satisfying the relations (2.3.41), (2.3.43) and
(2.3.44) of Lemma 2.3.13 are equal to

κI =

√
s1s2
ε̌ Γ( s1√

ε̌
) Γ( s2√

ε̌
)

Γ(1+b−Q) Γ(b+Q) e
2b log b− s1√

ε̌
log s1√

ε̌
− s2√

ε̌
log s2√

ε̌
+ fI , (2.3.47)
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κO= 2π
Γ( s1√

ε̌
) Γ(1 + s1√

ε̌
)

Γ(1+a−Q) Γ(1+b−Q) Γ(a+Q) Γ(b+Q) e
2a log a+ 2b log b− 2 s1√

ε̌
log s1√

ε̌
+ fO ,

(2.3.48)

κ = 2π

√
s1
s2

Γ( s1√
ε̌
) Γ( s2√

ε̌
)−1

Γ(1+a−Q) Γ(a+Q) e
2a log a− s1√

ε̌
log s1√

ε̌
+ s2√

ε̌
log s2√

ε̌
+ f
, (2.3.49)

where Γ is the gamma function and

f = (s1+s2) g(s1s2, s
2
1+s2

2), fI = (s1−s2) g(−s1s2, s
2
1+s2

2), fO = f + fI ,

for a unique analytic germ g.

Proof. (a) All the connection matrices between the fundamental solutions F•Ψ•
can be determined from Lemmas 2.3.12 and 2.3.13.

(b) Denote σ : m̄ 7→ ¯̄m the continuation map from Lemma 2.3.13 (a), and ρ : m̃ 7→ ˜̃m
the continuation map from Lemma 2.3.13 (b). Hence,

s1◦σ = s1, s2◦σ = eπis2, a◦σ = b, b◦σ = a,

s1◦ρ = eπis2, s2◦ρ = eπis1, a◦ρ = e−πia, b◦ρ = b.

One can easily verify that the functions κI , κO, κ of (2.3.47)–(2.3.49) satisfy κ = κO
κI

and the identities

(2.3.41) : κO◦σ = κO = κ (κ◦σ) e
s2√
ε̌
πi

2i sin s2√
ε̌
π

,

(2.3.43) : κI ◦ρ = κI ,

(2.3.44) : 2 cos 2πQ = 2 cos 2πa− κ (κ◦ρ) e−2aπi,

using the standard reflection formula Γ(z)Γ(1 − z) = π
sinπz . It follows from the

Stirling formula:

Γ(1 + z) ∼
√

2πz (z
e

)z
(
1 +O(1

z )
)

in the sector at infinity where
| arg z| < η for any 0 < η < π,

that limε̌→0 κI(m̌) = 1 and lim(µ̌,ε̌)→0 κO(m̌) = 1 with the limits being inside M̌.
On the other hand if κI , κO, κ are some functions satisfying the assumptions of

the proposition, let κ′I , κ′O, κ′ be given by (2.3.47)–(2.3.49) with fI = fO = f = 0,
then it follows that the functions

fI := log κI
κ′I
, fO := log κO

κ′O
, f := log κ

κ′
,
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satisfy

fO = f + fI , f ◦σ = fI , fO◦σ = fO, fI ◦ρ = fI , f ◦ρ = −f.

This implies, in particular, that fO ◦σ2 = fO = fO ◦ρ2, hence that fO is non-ramified
as a function of (s1, s2), and therefore fO is an analytic function of (s1, s2). Since
one can express f = 1

2(f − f ◦ρ) = 1
2(fO − fO◦ρ) and fI = 1

2(fO + fO◦ρ), they too
are analytic functions of (s1, s2). Moreover 0 = limε̌→0 fI = lims1−s2→0 fI , so we can
write

fI = (s1 − s2) · g, and f = (s1 + s2) · (g ◦ σ), fO = fI + f,

with g that is ρ-invariant, thus an analytic function of s1s2 =
√
µ̌2 − ε̌ and of s2

1+s2
2 =

2µ̌, which are algebraically independent and form a Hilbert basis of the space of
polynomials of (s1, s2) that are invariant to the action of ρ.

Corollary 2.3.15. Two germs of parametric families of systems ∆(x,m) and ∆′(x,m)
are analytically equivalent by means of a germ of analytic transformation G(x,m)
satisfying

G(x,m) = I whenever x2 − ε = 0, (2.3.50)

if and only if they have the same κ.

Proof. If G satisfying (2.3.50) is such that G∗∆′ = ∆, and if F•, • = O, I, are
the uniquely determined diagonalizing transformations of Proposition 2.3.7 for ∆s

(2.3.15): F•∗∆s = ∆s, then F ′• = V −1S−1GSV F• must be the uniquely determined
transformations for ∆′s, and therefore

κ• = detF• = detF ′• = κ′•.

Conversely, if κ = κ′, then also κO = κ′O, κI = κ′I and γ = γ′, which are de-
termined by (2.3.41), (2.3.39) and (2.3.44). Therefore the collections of connection
matrices are the same for the two systems (Proposition 2.3.14), and the transforma-
tion G(x,m) of the proof of Proposition 2.3.11 has the property (2.3.50).

Everything is now ready to finish the proof of Theorem I.

Proof of Theorem I (a). Let ∆(x,m), ∆′(x,m) be two parametric families of
systems, ∆s(s,m), ∆′s(s,m) their transforms (2.3.15) and F•, F ′• be the normalizing
transformations from Proposition (2.3.7) determined by the condition (2.3.34) with
κ•, κ′•. Suppose that their invariants γ = γ′ are the same. We want to show that
the two families of systems ∆, ∆′ are then analytically equivalent. We know that
κI(m̌) = 1 = κ′I(m̌) when ε̌ = 0, and κO(m̌) = 1 = κ′O(m̌) when (µ̌, ε̌) = 0. Let
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δ(m̌) depending continuously on the parameter m̌ ∈ M̌ be such that

κ′O
κ′I

= δ2κO
κI
, δ(0) = 1.

The relation (2.3.44) implies that δ( ˜̃m) δ(m̃) = 1. Put

F ′′O = δ−1 F ′O, F ′′I = F ′I

(
δ−1 0
0 δ

)
.

They are also normalizing transformations for the system ∆′s: (F ′′• )∗∆′s = ∆′s. It is
easily verified that the connection matrices between the fundamental solutions F ′′•Ψ•
are exactly the same as those between the fundamental solutions F•Ψ• (with Ψ• as
in Figure 2.10), hence one concludes by Proposition 2.3.11.

Proof of Theorem IV. (i) For ε(m) = 0, the transformation T+
I,m converges to

TO,m, i.e. |T+
I,m(s) − TO,m(s)| → 0, s ∈ S+

I,m, if and only if FI(·,m) converges to
FO(·,m), which happens if and only if the matrix C3(m)→ I.

(ii) To show that the transformation T2,m converges to TO,m, we need to show that
the corresponding transformation F2(·,m) converges to FO(·,m). It will be enough
to show that the difference of fundamental solutions F2ΨO − FOΨO converges to 0
for each fixed s. We know from the proof of Lemma 2.3.13 (a), Figure 2.11, that
FOΨO = F2ΨOA2C

−1
3 , where A2 is given by (2.3.45) and A2C

−1
3 has been calculated

in (2.3.46)

A2C
−1
3 =

 κI −iκI e2e1
iκ e1e2

1−e22
κ 1

1−e22

 , where ej = e
sjπi√
ε , j = 1, 2.

We need that A2C
−1
3 → I, which happens if and only if e2

e1
→ 0 and e1e2 → 0

as ε(m) → 0, i.e. Im
( s2−s1√

ε

)
> 0 and Im

( s2+s1√
ε

)
> 0. For µ = O(ε), we have

s1 = ε
1
4 + O(ε

3
4 ), s2 = ±iε

1
4 + O(ε

3
4 ), hence s2−s1√

ε
= −1∓i

s2
+ O(ε

1
4 ), s2+s1√

ε
= −1±i

s2
+

O(ε
1
4 ). Therefore the condition of convergence is satisfied if arg s2 ∈ (π4 ,

3π
4 ), i.e. if

arg x2 ∈ (π2 ,
3π
2 ).



Chapter 3

CONFLUENCE OF SINGULARITIES OF
NON-LINEAR DIFFERENTIAL EQUATIONS VIA

BOREL-LAPLACE TRANSFORMATIONS

Abstract. Borel summable divergent series usually appear when studying
solutions of analytic ODE near a multiple singular point. Their sum, uniquely
defined in certain sectors of the complex plane, is obtained via the Borel–Laplace
transformation. This article shows how to generalize the Borel–Laplace trans-
formation in order to investigate bounded solutions of parameter dependent
non-linear differential systems with two simple (regular) singular points un-
folding a double (irregular) singularity. We construct parametric solutions on
domains attached to both singularities, that converge locally uniformly to the
sectoral Borel sums. Our approach provides a unified treatment for all values
of the complex parameter.

3.1. Introduction

When studying solutions of complex analytic ODE near a multiple singular point,
it is the general rule to find divergent series. This is explained when considering
generic parameter depending deformations which split the multiple singular point
into several simple singularities: the local analytic solutions at each singular point
of the deformed equation do not match, thus explaining why solutions with nice
asymptotic behavior at the limit when the singular points coalesce only exist in
sectors. The solutions in these sectors can be found, using the Borel and Laplace
transformations, as the Borel sums of the divergent formal solution. Examples of
Borel summable (1-summable) divergent power series usually arise as formal solutions
of systems of ODEs at a double singular point.

When investigating families of analytic systems of ODEs depending on a complex
parameter, that unfold a multiple singularity, we are faced with the problem that
the Borel–Laplace method as such does not allow to deal with several singularities
and their confluence.
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The goal of this article is to show how one can generalize (unfold) the corre-
sponding Borel–Laplace transformations in order to investigate bounded solutions of
first order non-linear parametric systems with an unfolded double singularity of the
form

(x2− ε)dy
dx

= M(ε)y + f(x, y, ε), (x, y, ε) ∈ C× Cm× C, (3.1.1)

with M(0) an invertible m×m-matrix and f(x, y, ε) = O(‖y‖2) + xO(‖y‖) + (x2−
ε)O(1). Such solutions correspond to ramified center manifolds of an unfolded codi-
mension 1 saddle-node singularity in a family of complex vector fields

ẋ = x2− ε, ẏ = M(ε)y + f(x, y, ε).

It is well known that for generic (non-resonant) values of the parameter ε 6= 0,
there exists a local analytic solution on a neighborhood of each simple singularity
x = ±

√
ε. Previous studies of the confluence phenomenon (see [SS], [G2]) have

focused at the limit behavior of these local solutions when ε → 0. Because the
resonant values of ε accumulate at 0 in a finite number of directions, these directions
of resonance in the parameter space could not be covered in those studies.

We will construct a new kind of parametric solutions of systems (3.1.1) which
are defined and bounded on certain ramified domains attached to both singularities
x = ±

√
ε (at which they possess a limit) in a spiraling manner. They depend

analytically on the parameter ε taken from a ramified sector of opening > 2π (or
√
ε

from a sector of opening > π), thus covering a full neighborhood of the origin in the
parameter space (including those parameters values for which the unfolded system
is resonant), and they converge uniformly when ε tends radially to 0 to a pair of the
classical sectoral solutions: Borel sums of the formal power series solution of the limit
system, defined on two sectors covering a full neighborhood of the double singularity
at the origin. In fact, each such pair of the sectoral Borel sums for ε = 0 unfolds
to a unique above mentioned parametric solution. We state these results in Section
3.2.2, and illustrate them in Section 3.2.3 on the problem of existence of normalizing
transformations for families of linear differential systems unfolding a non-resonant
irregular singularity of Poincaré rank 1.

While these solutions can also be obtained by other methods, the advantage of our
approach is that it provides a unified treatment for all values of the parameter ε and
elucidates the form of natural domains on which the solutions exist and are bounded.
Most importantly, it gives an insight to intrinsic properties of the singularity and to
the source of the divergence similar to that provided by the classical Borel–Laplace
approach.
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3.2. Statement of results

Notation 3.2.1. Throughout the text (a, b) (resp. [a, b]) denotes the open (resp.
closed) oriented segment between two points a, b ∈ C; eiαR+ = [0,+∞eiα) is an
oriented ray, and c+ eiαR = (c−∞eiα, c+∞eiα), with α ∈ R, c ∈ C, is an oriented
line.

3.2.1. Borel–Laplace transformations and their unfolding

The Borel method of summation of (1-summable) divergent series is used to construct
their sectoral Borel sums: unique analytic functions that are asymptotic to the series
in certain sectors of opening > π at the singular point and satisfy the same differential
relations.

The formal Borel transform of a formal power series ŷ(x) =
∑+∞
k=1 yk x

k is a
series

B̂[ŷ](ξ) =
+∞∑
k=1

yk
(k − 1)! ξ

k−1. (3.2.1)

The plane of ξ is also called the Borel plane. If the coefficients of ŷ(x) have at most
factorial growth ( |yk| ≤ ckk! for some c > 0), then the series B̂[ŷ](ξ) is convergent on
a neighborhood of 0 with a sum φ(ξ). Now, if φ has an analytic extension to a half-
line eiαR+, and has at most exponential growth there (|φ(x)| ≤ K eΛ|ξ|, ξ ∈ eiαR+,
for some K,Λ > 0), then its Laplace transform in the direction α

Lα[φ](x) =
∫ +∞eiα

0
φ(ξ) e−

ξ
x dξ (3.2.2)

is convergent for x in a small open disc of diameter 1
Λ centered at eiα

2Λ and extends to
0 (which lies on the boundary of the disc), defining there the Borel sum of ŷ(x) in
direction α. A series ŷ[x] is called Borel summable (or 1-summable) if its Borel sum
exists in all but finitely many directions 0 ≤ α < 2π. When varying continuously the
direction in which the series is summable, the corresponding Borel sums are analytic
extensions one of the other, yielding a function defined on a sector of opening > π.

Let us remark that ŷ[x] is convergent if and only if it is Borel summable in all
directions. This means that the Borel sums of divergent series can only exist on
sectors. This is also known as the Stokes phenomenon.

Each Borel sum of ŷ(x) is asymptotic to the formal series ŷ(x) at the origin, and
most importantly, if ŷ(x) is a formal solution to some analytic differential equation,
then so are the Borel sums. More detailed information on the Borel summability can
be found, for example, in [MR2] and [Ma2].
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A typical source of Borel summable power series are formal solutions of generic
ODEs at a double irregular singular point.

Example 3.2.2. A non-linear analytic ODE with a double singularity at the origin

x2 dy

dx
= y + f(x, y), (x, y) ∈ C× C, (3.2.3)

where f(x, y) = O(x) + O(‖y‖2) is a germ of analytic function, possesses a unique
formal solution ŷ(x). Generically, this series is divergent (for instance if f(x, y) = −x
then ŷ(x) =

∑+∞
n=1(n − 1)!xn is the Euler series). The reason for the divergence of

ŷ(x) is materialized by a singularity of the Borel transform B̂[ŷ](ξ) at ξ = 1. The
Borel sum y(x) = Lα[B̂[ŷ]](x) of ŷ(x), α ∈ (0, 2π), is a solution to (3.2.3), well
defined in a ramified sector arg x ∈ (−π

2 ,
5π
2 ). The set (x, y(x)) is a center manifold

of a saddle-node singularity of the vector field

ẋ = x2, ẏ = y + f(x, y).

Hence, this example shows that in general an analytic center manifold does not exist,
but instead there are “sectoral center manifolds”.

The analytic Borel transformation in direction α of a germ of function y(x),
which is analytic in a closed sector of opening ≥ π bisected by eiαR+ and vanishes
at 0 as O(xλ) uniformly in the sector for some λ > 0, is defined as the “Cauchy
principal value” (V.P.) of the integral

Bα[y](ξ) = 1
2πi V.P.

∫
γ
y(x) e

ξ
x dx
x2 , for ξ ∈ eiαR, (3.2.4)

over a circle γ = {Re
(
eiα

x

)
= C}, C > 0, inside the sector.

The formal Borel transform (3.2.1) of an analytic germ y vanishing at 0 is related
to the analytic one by

Bα[y](ξ) = χ+
α (ξ) · B̂[y](ξ), for ξ ∈ eiαR, (3.2.5)

where

χ+
α (ξ) =

 1, if ξ ∈ (0,+∞eiα),

0, if ξ ∈ (−∞eiα, 0).

The idea of unfolding the Borel–Laplace operators in order to generalize the meth-
ods of Borel summability and resurgent analysis to systems with several confluent
singularities was initially brought up by Sternin and Shatalov in [SS]. The key lies
in appropriate unfolding of the “kernels” e

ξ
x
dx
x2 and e−

ξ
x dξ of the transformations

(3.2.2) and (3.2.4), and in right determination of the paths of integration. The Borel
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transformation is designed so that it converts the derivation x2 d
dx to multiplication

by ξ, and we will want to preserve this property.
The complex vector field x2 ∂

∂x with a double singularity at the origin is naturally
(and universally) unfolded as

(x2− ε) ∂
∂x , ε ∈ C. (3.2.6)

We will associate to it the unfolded Borel and Laplace transformations

B+
α [y](ξ,

√
ε) = 1

2πi

∫
Reeiαt(x,ε)=C

y(x) et(x,ε)ξ dt(x), 0 < C < Re
(
eiα πi√

ε

)
,

Lα[φ](x,
√
ε) =

∫ +∞eiα

−∞eiα
φ(ξ) e−t(x,ε)ξ dξ,

(3.2.7)

where t(x, ε) is the negative complex time of the vector field (3.2.6),

dx
dt = −(x2− ε). (3.2.8)

Let us remark that the (unilateral) Laplace transformation Lα[φ] in (3.2.2) is equal
to the (bilateral) Laplace transformation Lα[φ] with ε = 0 and t(x, 0) = 1

x , if one
extends the integrand by 0 for ξ ∈ (−∞eiα, 0):

Lα[φ] = Lα[χ+
α φ].

In Sections 3.3 and 3.4 we will establish some general properties of these transfor-
mations based on the classical theory of Fourier and Laplace integrals, and in Section
3.5 we will apply them to study solutions of (3.1.1) in the vicinity of the singular
points.

3.2.2. Center manifold of an unfolded codimension 1 saddle–node
type singularity

An isolated singular point of a holomorphic vector field in Cm+1 is of saddle–node
type if its linearization matrix has exactly one zero eigenvalue; it is of codimension 1 if
the multiplicity of the singualr point is 2. In convenient coordinates, such singularity
can be written as

ẋ = x2, ẏ = M0 y + f0(x, y), (x, y) ∈ (C× Cm, 0), (3.2.9)

withM0 an invertiblem×m-matrix and f0(x, y) = O(x)+O(‖y‖2) a germ of analytic
vector function. We consider a generic family of vector fields in Cm+1 depending
analytically on a parameter ε ∈ (C, 0) unfolding (3.2.9). Such a family is locally
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orbitally analytically equivalent to a family of vector fields1

ẋ = x2− ε, ẏ = M(ε) y + f(x, y, ε), (x, y, ε) ∈ (C× Cm× C, 0), (3.2.10)

with M(0) = M0 invertible and f(x, y, ε) = O(‖y‖2) + xO(‖y‖) + (x2− ε)O(1) a
germ of analytic vector function at the origin of C× Cm× C, f(x, y, 0) = f0(x, y).

The vector field (3.2.9) possesses a ramified 1-dimensional center manifold con-
sisting of several sectoral pieces tangent to the x-axis. We will study its parametric
unfolding in the family (3.2.10): It is given as a graph of a function y = y(x,

√
ε),

ramified at x = ±
√
ε, satisfying the singular non-linear system of m ordinary differ-

ential equations

(x2− ε)dy
dx

= M(ε) y + f(x, y, ε), (x, y, ε) ∈ C× Cm× C. (3.2.11)

Proposition 3.2.3 (Formal solution). The system (3.2.11) possesses a unique solu-
tion in terms of a formal power series in (x, ε):

ŷ(x, ε) = (x2− ε)
+∞∑
k,j=0

ykjx
kεj , ykj ∈ Cm. (3.2.12)

Proof. Write ŷ(x, ε) = (x2−ε)
∑
k,j ykjx

kεj and f(x, y, ε) = (x2−ε)
∑
k,j f0,kjx

kεj+∑
|l|≥1

∑
k,j fl,kjx

kεjyl, with ykj , fl,kj ∈ Cm, and M(ε) =
∑
jMjε

j . Substituting
ŷ(x, ε) for y in f and writing dy

dx =
∑
k,j(k+1)(yk−1,j−yk+1,j−1)xkεj in (3.2.11), one

can then divide by (x2− ε) and compare the coefficients of xkεj , obtaining a set of
equations

M0ykj = −f0,kj + Pkj{yk′j′ | k′ ≤ k, j′ ≤ j, k′ + j′ ≤ k + j − 1} − (k + 1)yk+1,j−1,

where Pkj is a polynomial in yk′j′ without constant term whose coefficients are linear
combinations of columns of Mj′′′ and fl,k′′j′′ , j′′, j′′′ ≤ j, k′′ ≤ k, k′′ + 2j′′ + 2|l| ≤
k+ 2j. Recursively with respect to the linear ordering of the indices (k, j) given by:

(k′, j′) < (k, j) if k′ + j′ < k + j or if k′ + j′ = k + j and j′ < j

this uniquely determines all the coefficient vectors ykj .

Sectoral center manifold and its unfolding.

For ε = 0 it is known that the equation (3.2.11) has a unique solution in terms of a 1-
summable formal power series ŷ0(x) = ŷ(x, 0) (cf. [Br], or [MR1] form = 1). Its for-
mal Borel transform B̂[ŷ0](ξ) extends analytically on Ξ0 := Cr

⋃
λ∈Spec (M0)[λ,+∞λ)

with singularities at the eigenvalues of M0. The series ŷ0(x) is Borel 1-summable
1See [RT], Proposition 3.1; it is stated and proved for planar vector fields (m = 1), but it stays valid
for any dimension m ≥ 1.
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in each direction α with eiαR+ ⊂ Ξ0. To each connected component Ω of C r⋃
λ∈Spec (M0) λR+ in the Borel plane (Figure 3.1) corresponds a unique Borel sum of

ŷ0(x), a solution of the equation, defined on a sector in the x-plane of opening > π

asymptotic to ŷ0(x) (cf. [Mlm]). For each two opposite components Ω+,Ω− of the
Borel plane (i.e. such that Ω+ ∪Ω− ∪ {0} contains some straight line eiαR), the two
corresponding sectors of summability form a covering of a neighborhood of the origin
in the x-plane.

Figure 3.1. The rays λR+, λ ∈ SpecM(0) divide the Borel plane in sectors.
The integration path eiαR+ of the Laplace transform Lα[B̂[ŷ0]] varies in
such sectors.

Theorem 3.2.4 will show that each such covering pair of sectors {Z+(0), Z−(0)}
unfolds for ε 6= 0 to a single ramified domain Z(

√
ε), adherent to both singular points

x = ±
√
ε (see Figure 3.2), on which there exists a unique bounded solution y(x,

√
ε)

of (3.2.11), depending analytically on
√
ε taken from a sector S of opening > π, that

converge uniformly to the two respective Borel sums of ŷ0(x) on Z+(0), Z−(0), when
√
ε→ 0.

Theorem 3.2.4. Consider a system (3.2.11) with M(ε) a germ of an invertible
m×m-matrix and f(x, y, ε) = O(‖y‖2) + xO(‖y‖) + (x2− ε)O(1) a germ of an
analytic function at the origin of C×Cm×C.

(i) To each pair {Ω+,Ω−} of opposite sectoral components of Cr
⋃
λ∈Spec (M(0)) λR+

(i.e. such that Ω+ ∪ Ω− ∪ {0} contains some straight line eiαR), there exists an as-
sociated family of ramified domains Z(

√
ε) parametrized by

√
ε from a sector S of

opening > π (see Figure 3.2), and a unique bounded analytic solution y(x,
√
ε) to

(3.2.11) that is uniformly continuous on

Z = {(x,
√
ε) | x ∈ Z(

√
ε)}

and analytic on the interior of Z and vanishes (is uniformly O(x2−ε)) at the singular
points.
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Figure 3.2. Example of the spiraling domains Z(
√
ε) of Theorem 3.2.4 (i)

according to
√
ε ∈ S.

Figure 3.3. The domains Z(
√
ε) of Theorem 3.2.4 (i) in the time t-

coordinate (3.4.1). They are obtained as unions of strips of convergence
of the unfolded Laplace transforms Lα[ỹ+](x(t),

√
ε) (3.5.21) with varying

α ∈ (β1, β2) ∩ (arg
√
ε+ η, arg

√
ε+ π − η) (here β1 ∼ π

4 , β2 ∼ 3π
4 ).
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To be more precise:
• S is a simply connected sectoral domain such that νS ⊆ S for any ν ∈ [0, 1],
and S r {0} is open.
• Each Z(

√
ε) is a simply connected ramified set in the x-plane, whose ramification

points ±
√
ε belong to Z(

√
ε) and are approached from within its interior Z(

√
ε)r

{
√
ε,−
√
ε} following a logarithmic spiral. The domain Z(0) is composed of two

opposing sectoral domains Z±(0) of opening > π intersecting at the origin.
• The domains Z(

√
ε) depend continuously on

√
ε ∈ Sr{0} and converge radially

to a sub-domain limν→0+ Z(ν
√
ε) ⊆ Z(0), while Z(0) is the union of these

radial limits.
• There exists a fixed neighborhood of the origin in the x-plane covered by each
domain Z(

√
ε), for each

√
ε small enough.

• When
√
ε tends radially to 0, the solution y(x,

√
ε) converges to y(x, 0) uni-

formly on compact sets of the sub-domain limν→0+ Z(ν
√
ε) of Z(0). The re-

striction of y(x, 0) to Z±(0) is the Borel sum of the formal series ŷ(x, 0) (3.2.12)
in directions α with eiαR+ ⊂ Ω± ∪ {0}.
• In the t-coordinate (3.2.8), the domains Z(

√
ε) are simply unions of slanted

strips that pass in between discs of radius Λ > 0 (independent of
√
ε) centered

at the points k πi√
ε
, k ∈ Z, of continuously varying directions −α + π

2 , with
α ∈ (β1, β2) ∩ (arg

√
ε + η, arg

√
ε + π − η), for η > 0 arbitrarily small and

β1 < β2 such that the cone
⋃
β∈(β1,β2) e

iβR is contained in Ω+ ∪Ω− ∪ {0} (and
hence it does not contain any eigenvalue of M(ε)). See Figure 3.3.

The solution y(x,
√
ε), and its domain Z, associated to each pair {Ω+,Ω−} are

unique up to the reflection (x,
√
ε)→ (x,−

√
ε), and an analytic extension.

(ii) If, moreover, the spectrum of the matrix M(0) is of Poincaré type (the convex
hull of SpecM(0) does not contain 0 inside or on the boundary), i.e. if there exists a
(unique) component Ω1 of C r

⋃
λ∈Spec (M(0)) λR+ of opening > π, then the solution

y1(x,
√
ε) on the domain Z1(

√
ε),
√
ε ∈ S1, associated to the pair {Ω1,Ω1} is ramified

only at one of the singular points, and analytic at the other (see Figure 3.4).
Such is the case in dimension m = 1.

The solutions y(x,
√
ε) will be constructed in Section 3.5.

Remark 3.2.5 (Hadamard–Perron interpretation for ε 6= 0). The linearization of
the vector field (3.2.10) at x = ±

√
ε is equal to

ẋ = ±2
√
ε · (x∓

√
ε), ẏ = M(ε) · y. (3.2.13)
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Figure 3.4. Example of the spiraling domains Z1(
√
ε) of Theorem 3.2.4 (ii)

according to
√
ε ∈ S1.

Figure 3.5. The spectrum of M(ε) in the Borel plane; the line eiαR is the
dividing line of the Hadamard–Perron theorem and also the integration path
of the Laplace transform Lα (3.5.21).

(i) Let a line eiαR separate the point 2
√
ε and k of the eigenvalues of M(ε)

from the point −2
√
ε and the other m − k eigenvalues (0 ≤ k ≤ m), see Figure

3.5. Then by the Hadamard–Perron theorem the vector field (3.2.10) has a unique
(k+ 1)-dimensional local invariant manifold at (

√
ε, 0), tangent to the x-axis and the

corresponding k eigenvectors, and a unique (m − k + 1)-dimensional local invariant
manifold at (−

√
ε, 0), tangent to the x-axis and the correspondingm−k eigenvectors.
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They intersect transversally as the graph of the solution y(x,
√
ε) of Theorem 3.2.4.

Since the root parameter
√
ε can vary within the half-plane bounded by the line

eiαR, whose angle α can also vary a bit, this gives a sector S of opening > π. We
see that one cannot continue this description in

√
ε beyond such maximal sector S.

(ii) If all the eigenvalues of M(ε) are in a same open sector of opening < π (i.e.
Spec (M(0)) is of Poincaré type), and −2

√
ε lies in the interior of the complementary

sector of opening > π, one obtains the solution y1(x,
√
ε) from Theorem 3.2.4 as

a continuation of the local analytic solution at x = −
√
ε (i.e. of the local invari-

ant manifold of (3.2.10), tangent to the x-axis, provided by the Hadamard–Perron
theorem) to the domain Z1(

√
ε).

While the Hadamard–Perron approach explains where do the solutions of The-
orem 3.2.4 come from, it does not provide their natural domain on which they are
bounded. One should however notice the similarities between the description pro-
vided by the Hadamard–Perron theorem for ε 6= 0 (Figure 3.5) and that of the Borel
summation for ε = 0 (Figure 3.1). In Section 3.5 we will unify the two of them using
the unfolded Borel–Laplace transformations (3.2.7).

Remark 3.2.6 (Local invariant manifolds for non-resonant ε 6= 0 and their conver-
gence). If the simple singular point of (3.2.10) at x =

√
ε 6= 0 satisfies the following

non-resonance condition
2
√
εN ∩ SpecM(ε) = ∅,

then it is known that the equation (3.2.11) possesses a unique convergent formal
solution near x =

√
ε, i.e. the vector field (3.2.10) has a 1-dimensional local analytic

invariant manifold tangent to the x-axis at the singularity. The resonant values
√
ε = λ

2n , λ ∈ SpecM(ε), n ∈ N∗, accumulate at the origin along the rays λR+,
λ ∈ SpecM(ε), dividing the

√
ε-plane in a finite number of sectors (Figure 3.6). It has

been shown,2 that if
√
ε 6= 0 lies in of one of these sectors (i.e.

√
εR+∩SpecM(0) = ∅),

then the local analytic solution at x =
√
ε converges, when

√
ε tends radially to 0,

to the sectoral Borel sum Lα[B̂[ŷ0]](x) of the formal solution of the limit system (cf.
Figure 3.1), where α = arg

√
ε is the direction on which lies the eigenvalue 2

√
ε of the

linearization (3.2.13) at x =
√
ε. Unless the spectrum of M(0) is of Poincaré type,

these sectors in the
√
ε-plane, on which the convergence happens, are of opening < π.

2In [G2] for planar vector fields, m = 1, and in [SS] for linear systems; the method of latter can be
generalized also for non-linear systems (3.2.11).
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Figure 3.6. The resonant values of
√
ε = λ

2n , λ ∈ SpecM(ε), n ∈ N∗,
accumulate along the rays λR+, dividing the

√
ε-plane in sectors on which

the local analytic solutions near x =
√
ε 6= 0 converge as

√
ε→ 0 to sectoral

solutions.

3.2.3. Sectoral normalization of families of non-resonant linear
differential systems.

An application of Theorem 3.2.4, interesting on its own, is the problem of existence
of normalizing transformations for linear differential systems near an unfolded non-
resonant irregular singularity of Poincaré rank 1. We will show that this problem can
be reduced to a system (3.2.11) of m = n (n − 1) Ricatti equations (where n is the
dimension of the system), providing thus a simple proof of a sectoral normalization
theorem by Lambert and Rousseau [LR].

Consider a parametric family of linear systems ∆(x, ε) y = 0 given by

∆(x, ε) = (x2− ε) d
dx
−A(x, ε), (x, ε) ∈ (C× C, 0) (3.2.14)

where y(x, ε) ∈ Cn, A(x, ε) is analytic, and assume that the eigenvalues λ(0)
i (0),

i = 1, . . . , n, of the matrix A(0, 0) are distinct. Let λi(x, ε) = λ
(0)
i (ε) + xλ

(1)
i (ε),

i = 1, . . . , n, be the eigenvalues of A(x, ε) modulo O(x2− ε), and define

∆̂(x, ε) = (x2− ε) d
dx
− Λ(x, ε), Λ(x, ε) = Diag(λ1(x, ε), . . . , λn(x, ε)), (3.2.15)

the formal normal form for ∆. The problem we address, is to find a bounded
invertible linear transformation y = T (x,

√
ε)u between the two systems ∆y = 0 and

∆̂u = 0. Such T is a solution of the equation

(x2− ε)dT
dx

= AT − TΛ. (3.2.16)

Note that if V (x, ε) is an analytic matrix of eigenvectors of A(x, ε) then the
transformation y = V (x, ε) y1 brings the system ∆y = 0 to ∆1y1 = 0, whose matrix
is written as A1(x, ε) = Λ(x, ε) + (x2− ε)R(x, ε), with R = −V −1 dV

dx (see [LR]).
Hence we can suppose that system (3.2.14) is already in such form.
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Theorem 3.2.7 ([LR], Theorem 4.21). Let ∆(x, ε) be a non-resonant system (3.2.14)
with A(x, ε) = Λ(x, ε)+(x2−ε)R(x, ε) for some analytic germ R(x, ε), and let ∆̂(x, ε)
be its formal normal form (3.2.15). Then there exists a family of ramified “spiraling”
domains Z(

√
ε),
√
ε ∈ S, as in Theorem 3.2.4 (i), Figure 3.2, on which there exists

a normalizing transformation T (x,
√
ε), solution to the equation (3.2.16), which is

uniformly continuous on

Z = {(x,
√
ε) | x ∈ Z(

√
ε)}

and analytic on its interior, and such that T (±
√
ε,
√
ε) = I + O(

√
ε) is diagonal.

This transformation T on Z is unique modulo right multiplication by an invertible
diagonal matrix constant in x.

Proof. Write T (x,
√
ε) =

(
I+U(x,

√
ε)
)
·TD(x,

√
ε), where TD(x,

√
ε) is the diagonal

of T , and the matrix U(x,
√
ε) = O(x2− ε) has only zeros on the diagonal. We search

for U(x,
√
ε), such that yD =

(
I + U(x,

√
ε)
)−1

y satisfies

(x2− ε)dyD
dx
−
(
Λ(x, ε) + (x2− ε)D(x,

√
ε)
)
yD = 0,

for some diagonal matrix D(x,
√
ε), and set

TD(x,
√
ε) = e

∫ x
√
ε
D(s,
√
ε) ds

.

The matrix U(x,
√
ε) is solution to

(x2− ε)dU
dx

= ΛU − UΛ + (x2− ε)
(
R (I + U)− (I + U)D

)
,

where one must set D to be equal to the diagonal of R (I + U). Therefore, U =
(uij)ni,j=1 is solution to the system of n(n− 1) equations

(x2−ε)duij
dx

= (λi−λj)uij +(x2−ε)
(
rij +

∑
k 6=j

rikukj−uijrjj−uij
∑
k 6=j

rjkukj
)
, i 6= j,

and one can apply Theorem 3.2.4.

3.3. Preliminaries on Fourier–Laplace transformations

We will recall some basic elements of the classical theory of Fourier–Laplace
transformations on a line in the complex plane. The book [Do] can serve as a good
reference.

For an angle α ∈ R and a locally integrable function φ : eiαR → C, one defines
its two-sided Laplace transform

Lα[φ](t) =
∫ +∞eiα

−∞eiα
φ(ξ) e−tξ dξ (3.3.1)
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whenever it exists. Later on, in Section 3.4, we will replace the variable t by the time
variable t(x, ε) (3.4.1) of the vector field (3.2.6).

Definition 3.3.1. Let A,B ∈ C be such that Re(eiαA) < Re(eiαB). Let us intro-
duce the two following norms on locally integrable functions φ : eiαR→ C:

|φ|A,B
eiαR = sup

ξ∈eiαR
|φ(ξ)| ·

(
|e−Aξ|+ |e−Bξ|

)
,

‖φ‖A,B
eiαR =

∫ +∞eiα

−∞eiα
|φ(ξ)| ·

(
|e−Aξ|+ |e−Bξ|

)
dξ · e−iα.

Proposition 3.3.2. If ‖φ‖A,B
eiαR < +∞, then the Laplace transform Lα[φ](t) converges

absolutely and is analytic for t in the closed strip

T
A,B
α := {t ∈ C | Re(eiαA) ≤ Re(eiαt) ≤ Re(eiαB)}.

Moreover, Lα[φ](t) tends uniformly to 0 as t→∞ in T
A,B
α .

Proof. The integral
∫ 0
−∞eiα φ(ξ) e−tξ dξ converges absolutely in the closed half-plane

Re(eiαt) ≤ Re(eiαB), while the integral
∫+∞eiα

0 φ(ξ) e−tξ dξ converges absolutely in
the closed half-plane Re(eiαt) ≥ Re(eiαA). For the second statement see [Do],
Theorem 23.6.

Lemma 3.3.3. If A,B,D ∈ C are such that 0 < Re(eiαD) < 1
2Re(eiα(B − A)),

then for any function φ : eiαR→ C,

‖φ‖A+D,B−D
eiαR ≤ 4

Re(e−iαD ) |φ|A,B
eiαR.

Proof. ∫ 0

−∞eiα
|φ(ξ)|

(
|e−(A+D)ξ|+ |e−(B−D)ξ|

)
dξ · e−iα

≤
∫ 0

−∞
|eeiαDs|ds · sup

ξ∈eiαR
|φ(ξ)|

(
|e−Aξ−2Dξ|+ |e−Bξ|

)
≤ 1

Re(eiαD ) · 2|φ|A,B
eiαR,

since |e−Aξ−2Dξ| ≤ |e−Bξ| ≤ |e−Aξ| + |e−Bξ|, for ξ ∈ (−∞eiα, 0]. The same kind of
estimate is obtained also for

∫+∞eiα
0 .

Corollary 3.3.4. If |φ|A,B
eiαR < +∞, then the Laplace transform Lα[φ](t) converges

absolutely and is analytic for t in the open strip

TA,Bα := {t ∈ C | Re(eiαA) < Re(eiαt) < Re(eiαB)}.

Moreover, Lα[φ](t) tends to 0 as t→∞ uniformly in each T
A1,B1
α ⊆ TA,Bα .
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Definition 3.3.5. The Borel transformation is defined for any function f analytic
on some open strip TA,Bα , that vanishes at infinity uniformly in each closed substrip
T
A1,B1
α ⊆ TA,Bα , by

f̃(ξ) = Bα[f ](ξ) = 1
2πi V.P.

∫ C+∞ie−iα

C−∞ie−iα
f(t) etξ dt, for ξ ∈ eiαR, (3.3.2)

where V.P.
∫ C+∞ie−iα
C−∞ie−iα stands for the “Cauchy principal value” limN→+∞

∫ C+ie−iαN
C−ie−iαN ,

and C ∈ TA,Bα .

The (two-sided) Laplace transformation (3.3.1) and the Borel transformation
(3.3.2) of analytic functions are inverse one to the other when defined. We will only
need the following particular statement.

Theorem 3.3.6.

1) Let f ∈ O(TA,Bα ) be absolutely integrable on each line C+ ie−iαR ⊆ TA,Bα and
vanishing at infinity uniformly in each closed sub-strip of TA,Bα . Then the Borel
transform f̃(ξ) = Bα[f ](ξ) is absolutely convergent and continuous for all ξ ∈ eiαR,

|f̃ |A1,B1
eiαR ≤ 1

2π sup
C∈TA1,B1

α

∣∣∫
C+ie−iαR

|f(t)| dt
∣∣ for T

A1,B1
α ⊆ TA,Bα ,

and f(t) = Lα[f̃ ](t) for all t ∈ TA,Bα .

2) Let f be as in 1) with B = B1 = +∞e−iα, the strips being replaced by half-planes.
Then the Borel transform f̃(ξ) = Bα[f ](ξ) is absolutely convergent and continuous
on eiαR, and f̃(ξ) = 0 for ξ ∈ (−∞eiα, 0),

|f̃ |A1,+∞e−iα
eiαR = sup

ξ∈(0,+∞eiα)
|f̃(ξ)e−A1ξ| ≤ 1

2π sup
Re(eiαC)≥Re(eiαA1)

∣∣∫ C+∞ie−iα

C−∞ie−iα
|f(t)| dt

∣∣,
and

f(t) = Lα[f̃ ](t) =
∫ +∞eiα

0
f̃(ξ) e−tξ dξ

is the one-sided Laplace transform of f̃ in the direction α.

Proof. See [Do], Theorems 28.1 and 28.2.

Under the assumptions of Theorem 3.3.6, the Borel transformation converts de-
rivative to multiplication by −ξ:

Bα[dfdt ](ξ) = −ξ · Bα[f ](ξ),

which can be seen by integration by parts. It also converts the product to the
convolution:

Bα[f1 ·f2] (ξ) = [f̃1 ∗ f̃2]α(ξ),
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defined by [
φ ∗ ψ

]
α
(ξ) =

[
ψ ∗ φ

]
α
(ξ) :=

∫ +∞eiα

−∞eiα
φ(s)ψ(ξ − s) ds. (3.3.3)

Indeed, we have Lα[f̃1 ∗ f̃2](t) = Lα[f̃1](t) · Lα[f̃2](t) = f1(t) · f2(t) using Fubini
theorem and Theorem 3.3.6, and the assertion is obtained by the inversion theorem
of the Laplace transform: Bα

[
Lα[φ]

]
(ξ) = 1

2 limν→0+ φ(ξ + eiαν) + φ(ξ − eiαν) (cf.
[Do], Theorem 24.3), using the continuity of [f̃1∗f̃2]α(ξ).

Lemma 3.3.7 (Young’s inequality).

|φ ∗ ψ|A,B
eiαR ≤ |φ|

A,B
eiαR · ‖ψ‖

A,B
eiαR ( and ≤ ‖φ‖A,B

eiαR · |ψ|
A,B
eiαR ),

‖φ ∗ ψ‖A,B
eiαR ≤ ‖φ‖

A,B
eiαR · ‖ψ‖

A,B
eiαR.

Proof. Observe that

(|e−Aξ|+ |e−Bξ|) ≤ (|e−As|+ |e−Bs|) · (|e−A(ξ−s)|+ |e−B(ξ−s)|), (3.3.4)

the rest follows easily.

3.3.1. Convolution of analytic functions on open strips.

In the subsequent text, rather then dealing with functions on a single line eiαR, one
will work with functions which are analytic on some open strips in the ξ-plane (also
called the Borel plane), or on more general regions obtained as a connected union of
open strips of varying directions α.

If Ω is a non-empty open strip in direction α, then for two constants A,B ∈ C,
with Re(eiαA) < Re(eiαB), define the norm of analytic functions φ ∈ O(Ω),

|φ|A,BΩ = sup
c+eiαR⊆Ω

|φ|A,B
c+eiαR,

‖φ‖A,BΩ = sup
c+eiαR⊆Ω

‖φ‖A,B
c+eiαR.

Similarly for more general domains. For any two strips Ωj , j = 1, 2, of the same
direction α, and two analytic functions φj ∈ O(Ωj)) of bounded ‖ · ‖A,BΩ -norm, their
convolution

(φ1 ∗ φ2)(ξ) =
∫ c1+∞eiα

c1−∞eiα
φ1(s)φ2(ξ − s) ds, ξ ∈ c1 + c2 + eiαR, cj ∈ Ωj

is well defined and analytic on the strip Ω1 + Ω2. The Young’s inequalities of
Lemma 3.3.7 are easily generalized as
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|φ1 ∗ φ2|A,BΩ1+Ω2
≤ min

{
|φ1|A,BΩ1

· ‖φ2‖A,BΩ2
, ‖φ1‖A,BΩ1

· |φ2|A,BΩ2

}
(3.3.5)

‖φ1 ∗ φ2‖A,BΩ1+Ω2
≤ ‖φ1‖A,BΩ1

· ‖φ2‖A,BΩ2
. (3.3.6)

3.3.2. Dirac distributions in the Borel plane.

It is convenient to introduce for each a ∈ C the Dirac mass distribution δa(ξ), acting
on the ξ-plane as shift operators ξ 7→ ξ − a: If φ(ξ) is an analytic function on some
strip Ω in a direction α one defines[

δa ∗ φ
]
(ξ) := φ(ξ − a),

its translation to the strip Ω− a. With this definition, the operator δ0 plays the role
of the unity of convolution. One can represent each δa as a “boundary value” of the
function 1

2πi (ξ−a) (cf. [Bre]): Let

δ↓a(ξ) := 1
2πi (ξ−a) � Cr [a, a+∞ ieiα), δ↑a(ξ) := 1

2πi (ξ−a) � Cr [a, a−∞ ieiα),

be its restrictions to the two cut regions (see Figure 3.7). One then writes

δa(ξ) = δ↓a(ξ)− δ↑a(ξ),

and defines the convolution and the Laplace transform involving δa by integrating
each term δ↓a (resp. δ↑a) along deformed paths γ↓α (resp. γ↑α) of direction α in their
respective domains as in Figure 3.7,[

δa ∗ φ
]
(ξ) = V.P.

∫
γ↓α−γ↑α

1
2πi (s−a) φ(ξ − s) ds = φ(ξ − a),

Lα[δa](t) = V.P.

∫
γ↓α−γ↑α

1
2πi (ξ−a) e

−tξ dξ = e−at.

Figure 3.7. The domains of definition of δ↓a (resp. δ↑a) together with the
deformed integration paths γ↓α (resp. γ↑α).
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3.4. The Borel and Laplace transformations associated to the
vector field (x2−ε) ∂

∂x

In this section we define the unfolded Borel and Laplace transformations Bα, Lα
(3.2.7) and summarize their basic properties. We need to specify:

- the time function t(x, ε) of the kernel,
- the paths of integration,
- the domains in x-space and ξ-space where the transformations live,
- sufficient conditions on functions for which the transformations exist.

We provide these depending analytically on a root parameter
√
ε ∈ C. Here

√
ε

is to be interpreted simply as a symbol for a new parameter (a coordinate on the
“
√
ε-plane”), that naturally projects on the original parameter ε = (

√
ε)2.

Let

t(x, ε) = −
∫

dx

x2−ε
:=

−
1

2
√
ε

log x−
√
ε

x+
√
ε
, if ε 6= 0,

1
x , if ε = 0,

(3.4.1)

with t(∞, ε) = 0, be the complex time of the vector field −(x2−ε) ∂
∂x ; well defined

for x ∈ CP1 r [−
√
ε,
√
ε]. And let X̌(

√
ε) denote the Riemann surface of the analytic

continuation of t(·, ε). Let us remark that the limit surface lim√ε→0 X̌(
√
ε) is com-

posed of Z-many complex planes identified at the origin, but the surface X̌(0) is just
the x-plane in the middle.

Definition 3.4.1. For 0 ≤ Λ < π

2
√
|ε|
, denote

X(Λ,
√
ε) := {x ∈ C | |t(x, ε)− k πi√

ε
| > Λ, k ∈ Z}

an open neighborhood of the origin in the x-plane (of radius ∼ 1
Λ when ε is small)

containing the roots ±
√
ε.

If α is a direction, assuming that Λ satisfies 0 ≤ 2Λ < −Re
(
eiαπi√

ε

)
, denote

X̌+
α (Λ,

√
ε) :={x ∈ X̌(

√
ε) | Λ < Re(eiαt(x, ε)) < −Re( eiαπi√

ε
)− Λ},

X̌−α (Λ,
√
ε) :={x ∈ X̌(

√
ε) | −Λ > Re(eiαt(x, ε)) > Re( eiαπi√

ε
) + Λ},

open domains of the ramified surface X̌(
√
ε), corresponding to slanted strips of direc-

tion −α+ π
2 in the t-coordinate passing between two discs of radius Λ centered at 0

and ∓ πi√
ε
(see Figures 3.8 and 3.9). Their projection to the x-plane is contained inside

the neighborhoodX(Λ,
√
ε). Let us remark that the radial limits limν→0 X̌

±
α (Λ, ν

√
ε)

split each into two opposed discs of radius 1
2Λ tangent at the origin, of which only

one lies inside the surface X̌(0) (i.e. the x-plane): X̌+
α (Λ, 0) is a disc centered at

eiα 1
2Λ , and X̌−α (Λ, 0) is a disc centered at −eiα 1

2Λ (Figure 3.9 (b)).
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(a)
√
ε 6= 0 (b)

√
ε = 0

Figure 3.8. The domains X̌±α (Λ,
√
ε) in the time coordinate t with the

integration paths of the Borel transformation for α = π
2 .

(a)
√
ε 6= 0 (b)

√
ε = 0

Figure 3.9. The domains X̌±α (Λ,
√
ε) projected to the x-plane for α = π

2 .
The integration paths γ±α are projections of the paths c± − ie−iαR in the
t-coordinate (which have opposite direction than those in Figure 3.8).

In order to apply the Borel transformation (3.3.2) in a direction α to a function f
analytic on the neighborhood X(Λ,

√
ε), one may choose to lift f either to X̌+

α (Λ,
√
ε)

or to X̌−α (Λ,
√
ε) giving rise to two different transforms B+

α [f ] and B−α [f ]:

Definition 3.4.2. Assume that X̌±α (Λ,
√
ε) 6= ∅, α ∈ (arg

√
ε, arg

√
ε + π), and let

f ∈ O
(
X̌±α (Λ,

√
ε)
)
vanish at both points

√
ε,−
√
ε. The unfolded Borel transforms

B±α [f ] are defined as:

B±α [f ](ξ,
√
ε) = 1

2πi

∫ c±+∞ie−iα

c±−∞ie−iα
f(x(t, ε)) etξ dt, c± ∈ t

[
X̌±α (Λ,

√
ε), ε

]
.

For
√
ε 6= 0 : If x ∈ X̌±α (Λ,

√
ε) respectively, then t(x, ε) = − 1

2
√
ε

(
log

√
ε−x√
ε+x ± πi

)
,

B±α [f ](ξ,
√
ε) = e

∓ ξπi
2
√
ε · 1

2πi

∫
γ±α

f(x)
x2−ε

(√
ε−x√
ε+x

)− ξ
2
√
ε dx, (3.4.2)
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where the integration path γ±α (see Figure 3.9) follows a real time trajectory of the
vector field ie−iα(x2−ε) ∂

∂x inside X̌±α (Λ,
√
ε). Hence

B−α [f ](ξ,
√
ε) = e

ξπi√
ε · B+

α [f ](ξ,
√
ε) (3.4.3)

= −B+
α+π[f ](ξ, eπi

√
ε), (3.4.4)

as X̌−α (Λ,
√
ε) = X̌+

α+π(Λ, eπi
√
ε).

For
√
ε = 0 :

B±α [f ](ξ, 0) = 1
2πi

∫
γ±α

f(x)
x2 e

ξ
x dx, (3.4.5)

where γ±α is a real time trajectory of the vector field ie−iαx2 ∂
∂x inside X̌±α (Λ, 0).

It is the radial limit of the precedent case as
√
ε→ 0,

B±α [f ](ξ, 0) = lim
ν→0+

B±α [f ](ξ, ν
√
ε).

The transformation B+
α [f ](ξ, 0) is the standard analytic Borel transform (3.2.4) in

direction α, and
B−α [f ](ξ, 0) = −B+

α+π[f ](ξ, 0). (3.4.6)

If f = f(x, ε) depends analytically on ε, we define B±α [f ](ξ,
√
ε) := B±α [f(·, ε)](ξ,

√
ε).

The following proposition summarizes some basic proprieties of these unfolded
Borel transformations.

Proposition 3.4.3. Let α be a direction, and suppose that arg
√
ε ∈ (α− π, α) if

ε 6= 0.

1) If
√
ε 6= 0, let a function f ∈ O(X̌±α (Λ,

√
ε)), be uniformly O(|x−

√
ε|a|x+

√
ε|b) at

the points ±
√
ε, for some a, b ∈ R with a+ b > 0. Then the transforms B±α [f ](ξ,

√
ε)

converge absolutely for ξ in the strip

Ωα = {−Im(e−iα2b
√
ε) > Im(e−iαξ) > Im(e−iα2a

√
ε)}, (3.4.7)

see Figure 3.10, and are analytic extensions of each other for varying α. Moreover
for any Λ < Λ1 < −Re

(
eiαπi
2
√
ε

)
and A = e−iαΛ1, B = − eiαπi√

ε
− e−iαΛ1, they are of

bounded norm |B±α [f ]|A,B
c+eiαR on any line c+ eiαR ⊆ Ωα.

2) If
√
ε 6= 0 and a+ b > 0, then for ξ ∈ Ωα (defined in (3.4.7))

B+
α [(x−

√
ε)a(x+

√
ε)b](ξ,

√
ε) = e

− ξπi
2
√
ε
+aπi · (2

√
ε)a+b−1 · 1

2πi B(a− ξ
2
√
ε
, b+ ξ

2
√
ε
),

where B is the Beta function.

3) In particular, for a positive integer n, and ξ in the strip in between 0 and 2n
√
ε,

B±α [(x−
√
ε)n](ξ,

√
ε) = χ±α (ξ,

√
ε) ·

( ξ
(n−1) − 2

√
ε
)
·
( ξ

(n−2) − 2
√
ε
)
· . . . ·

( ξ
1 − 2

√
ε
)
,
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Figure 3.10. The strip Ωα in the ξ-plane.

where for
√
ε 6= 0 and α ∈ (arg

√
ε, arg

√
ε+ π)

χ+
α (ξ,
√
ε) := 1

1− e
ξπi√
ε

, χ−α (ξ,
√
ε) := −1

1− e−
ξπi√
ε

, (3.4.8)

and for
√
ε = 0

χ+
α (ξ, 0) :=


1, if ξ ∈ (0,+∞eiα),
1
2 , if ξ = 0,

0, if ξ ∈ (−∞eiα, 0),

χ−α (ξ, 0) := χ+
α (ξ, 0)− 1.

Let us remark that χ±α (ξ, ν
√
ε) ν→0+−−−−→ χ±α (ξ, 0) for ξ ∈ eiαRr {0}.

4) If f(x) is analytic on an open disc of radius r > 2
√
|ε| centered at x0 = −

√
ε (or

x0 =
√
ε) and f(x0) = 0, then

B±α [f ](ξ,
√
ε) = χ±α (ξ,

√
ε) · φ(ξ)

where φ is is an entire function with at most exponential growth at infinity ≤ e
|ξ|

R−2
√
|ε| ·

O(
√
|ξ|) for any 2

√
|ε| < R < r (where the big O is uniform for (ξ,

√
ε)→ (∞, 0)).

5) For
√
ε 6= 0, c ∈ C, the Borel Transform B±α

[(
x−
√
ε

x+
√
ε

)c]
(ξ,
√
ε) = δ2c

√
ε(ξ) is

the Dirac mass at 2c
√
ε, acting as translation operator on the Borel plane by ξ 7→

ξ − 2c
√
ε:

B±α
[(

x−
√
ε

x+
√
ε

)c
· f
]

(ξ,
√
ε) = B±α [f ](ξ − 2c

√
ε,
√
ε).

Remark 3.4.4. Although in 1) and 2) of Proposition 3.4.3 the function f = O((x−
√
ε)a(x+

√
ε)b), a + b > 0, might not vanish at both points ±

√
ε as demanded in

Definition 3.4.2, one can write

(x−
√
ε)a(x+

√
ε)b =

(
x−
√
ε

x+
√
ε

)c
(x−
√
ε)a−c(x+

√
ε)b+c, for any − b < c < a,
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hence, using 5) of Proposition 3.4.3, the Borel transform B±α [f ] is well defined as the
translation by 2c

√
ε of the Borel transform of the function f ·

(
x−
√
ε

x+
√
ε

)−c
, this time

vanishing at both points:

B±α [f ](ξ,
√
ε) = B±α

[
f ·
(
x−
√
ε

x+
√
ε

)−c ]
(ξ − 2c

√
ε,
√
ε).

Proof of Proposition 3.4.3. 1) For
√
ε 6= 0, one can express

x−
√
ε = 2

√
ε

e−2
√
ε t

1− e−2
√
ε t
, x+

√
ε = 2

√
ε

1
1− e−2

√
ε t
.

If ξ is in the strip Ωα, ξ ∈ 2c
√
ε+ eiαR for some c ∈ (−b, a), one writes

B±α [(x−
√
ε)a(x+

√
ε)b](ξ,

√
ε) = 1

2πi

∫
C±+e−iαiR

(x−
√
ε)a−c(x+

√
ε)b+ce(ξ−2c

√
ε)t dt

=(2
√
ε)a+b 1

2πi

∫
C±+e−iαiR

(e−2
√
ε t)a−c

(1− e−2
√
ε t)a+b e

(ξ−2c
√
ε)t dt.

The term e(ξ−2c
√
ε)t stays bounded along the integration path, while the term e−2

√
ε t (a−c)

(1−e−2
√
ε t)a+b

decreases exponentially fast as t−C± → +∞ie−iα and t−C± → −∞ie−iα , if
α /∈ arg

√
ε+ πZ.

2) From (3.4.2)

B+
α [(x−

√
ε)a(x+

√
ε)b](ξ,

√
ε) = −e−

ξπi
2
√
ε
+aπi 1

2πi

∫
γ+
α

(
√
ε−x)a−1− ξ

2
√
ε (
√
ε+x)b−1+ ξ

2
√
ε dx

= e
− ξπi

2
√
ε
+aπi · (2

√
ε)a+b−1 · 1

2πi

∫ 1

0
(1− s)a−1− ξ

2
√
ε s

b−1+ ξ
2
√
ε ds,

substituting s =
√
ε+x

2
√
ε
. For α = arg

√
ε + π

2 , the integration path γ+
α (= a real

trajectory of the vector field e−i arg
√
ε(x2−ε) ∂

∂x) can be chosen as the straight oriented
segment (

√
ε,−
√
ε). The result follows.

3) From 2) using standard formulas.

4) For x0 = −
√
ε, one can write f(x) as a convergent series f(x) =

∑+∞
n=1 an (x+

√
ε)n with |an| ≤ CKn for some C > 0 and 1

r < K < 1
R . Hence

(
1− e

ξπi√
ε
)
· B+[f ](ξ,

√
ε) =

+∞∑
n=1

an
(

ξ
n−1 − 2

√
ε
)
· · ·
(
ξ
1 − 2

√
ε
)

=:
+∞∑
n=1

bn(ξ,
√
ε),

where the series on the right is absolutely convergent for any ξ ∈ C. Indeed, let
N = N(ξ,

√
ε) be the positive integer such that

|ξ|
N + 1 ≤ R− 2

√
|ε| < |ξ|

N
, (3.4.9)

then
• for n ≥ N + 1: K · ( |ξ|n + 2

√
|ε|) ≤ RK,
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• for n ≤ N : 2
√
|ε| < 2

√
|ε|

R−2
√
|ε|
|ξ|
n and hence K · ( |ξ|n + 2

√
|ε|) ≤ K|ξ|

n

(
1 +

2
√
|ε|

R−2
√
|ε|

)
≤ 1

n ·
|ξ|

R−2
√
|ε|
.

+∞∑
n=1
|bn(ξ,

√
ε)| =

N−1∑
n=0
|bn+1(ξ,

√
ε)|+

+∞∑
n=N
|bn+1(ξ,

√
ε)|

≤
N−1∑
n=0

CK
1
n!

(
|ξ|

R−2
√
|ε|

)n
+ CK

1
N !

(
|ξ|

R−2
√
|ε|

)N
·

+∞∑
n=N

(RK)n−N

≤ CKe
|ξ|

R−2
√
|ε| + CK · Γ

(
|ξ|

R−2
√
|ε|

)−1 ( |ξ|
R−2
√
|ε|

) |ξ|
R−2
√
|ε| · 1

1−RK

= e
|ξ|

R−2
√
|ε| ·

(
CK + CK

1−RK

√
|ξ|

2π(R−2
√
|ε|)

+O
(√

R−2
√
|ε|

|ξ|

))
,

using (3.4.9) and the Stirling formula: Γ(z)−1 =
(
e
z

)z · (√ z
2π +O

( 1√
z

))
, z → +∞.

5) From the definition.

There is also a converse statement to point 1) of Proposition 3.4.3.

Proposition 3.4.5. Let ε 6= 0 and α ∈ (arg
√
ε, arg

√
ε + π). If φ(ξ) is an ana-

lytic function in a strip Ωα (3.4.7), with a + b > 0, such that it has a finite norm
|φ|A,B2c

√
ε+eiαR on each line 2c

√
ε + eiαR ⊆ Ωα, for some 0 ≤ Λ < −Re

(
eiαπi
2
√
ε

) and
A = e−iαΛ, B = − eiαπi√

ε
− e−iαΛ, then the unfolded Laplace transform of φ

Lα[φ](x,
√
ε) =

∫ 2c
√
ε+∞eiα

2c
√
ε−∞eiα

φ(ξ)e−t(x,ε)ξ dξ, c ∈ (−b, a) (3.4.10)

is analytic on the domain X̌±α (Λ,
√
ε), and is uniformly o(|x−

√
ε|a1 |x+

√
ε|b1) for any

a1 < a, b1 < b, on any sub-domain X̌±α (Λ1,
√
ε), Λ1 > Λ.

Proof. This is a reformulation of Corollary 3.3.4, which also implies that Lα[φ] is
o
(∣∣∣x−√ε
x+
√
ε

∣∣∣c) for any −b < c < a.

Definition 3.4.6 (Borel transform of x). We know form Proposition 3.4.3 that for
√
ε 6= 0, B±α [x+

√
ε] = χ±α in the strip in between −2

√
ε and 0, while B±α [x−

√
ε] = χ±α

in the strip in between 0 and 2
√
ε, and the function χ±α has a simple pole at 0 with

residue Res0χ
±
α =

√
ε

πi , therefore

B±α [x+
√
ε]− B±α [x−

√
ε] = 2

√
ε δ0

in the sense of distributions (see section 3.3.2), where δ0 is the Dirac distribution
(identity of convolution). Hence one can define the distribution

B±α [x] := B±α [x−
√
ε] +
√
ε δ0 = B±α [x+

√
ε]−
√
ε δ0.
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Correspondingly, the convolution of B±α [x] with a function φ, analytic on an open
strip containing the line eiαR, is then defined as

[B±α [x] ∗ φ]α(ξ,
√
ε) =

∫
c1+eiαR

φ(ξ − s)χ±α (s,
√
ε) ds+

√
ε φ(ξ), c1 ∈ (0, 2

√
ε)

=
∫
c2+eiαR

φ(ξ − s)χ±α (s,
√
ε) ds−

√
ε φ(ξ), c2 ∈ (−2

√
ε, 0).

3.4.1. Remark on Fourier expansions.

For
√
ε 6= 0, we have defined the Borel transformations B±α for directions transverse

to
√
εR: in fact, we have restricted ourselves to α ∈ (arg

√
ε, arg

√
ε+π). Let us now

take a look at the direction arg
√
ε. So instead of integrating on a line c± + ie−iαR

in the t-coordinate as in Figure 3.8, this time we shall consider an integrating path
cR + i√

ε
R in the half plane Re(ei arg

√
εt) > Λ (resp. cL + i√

ε
R in the half plane

Re(ei arg
√
εt) < −Λ ), see Figure 3.11. If f is analytic on a neighborhood of x =

√
ε

(resp. x = −
√
ε), then the lifting of f to the time coordinate, f(x(t, ε)), is πi√

ε
-

periodic in the half-plane Re(ei arg
√
ε t) > Λ (resp. Re(ei arg

√
εt) < −Λ ) for Λ large

enough, and can be written as a sum of its Fourier series expansion:

f(x) =
+∞∑
n=0

aRn e
−2n
√
ε t(x) =

+∞∑
n=0

aRn ·
(
x−
√
ε

x+
√
ε

)n
,

resp. f(x) =
+∞∑
n=0

aLn e
2n
√
ε t(x) =

+∞∑
n=0

aLn ·
(
x+
√
ε

x−
√
ε

)n
.

The Borel transform (3.3.2) of f(x(t, ε)) on the line cR + i√
ε
R (resp. cL + i√

ε
R) is

equal to the formal sum of distributions

BR[f ](ξ,
√
ε) := 1

2πi

∫ cR+ i√
ε
∞

cR− i√
ε
∞

f(x(t, ε)) etξdt =
+∞∑
n=0

aRn δ2n
√
ε(ξ),

resp. BL[f ](ξ,
√
ε) := 1

2πi

∫ cL+ i√
ε
∞

cL− i√
ε
∞

f(x(t, ε)) etξdt =
+∞∑
n=0

aLn δ−2n
√
ε(ξ).

These transformations were studied by Sternin and Shatalov in [SS]. Let us remark
that one can connect the coefficients a•n of these expansions to residues of the unfolded
Borel transforms B±α , arg

√
ε < α < arg

√
ε+ π,

aR0 = f(
√
ε), aRn = 2πiRes2n

√
ε B±α [f ], n ∈ N∗,

aL0 = f(−
√
ε), aLn = 2πiRes−2n

√
ε B±α [f ], n ∈ N∗,

(the residues of B+
α [f ] and B−α [f ] at the points ξ ∈ 2

√
εZ are equal).
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Figure 3.11. The integration paths c• + i√
ε
R (• = L,R) in the time t-coordinate.

Remark 3.4.7. Without providing details, let us remark that one could apply these
Borel transformations BR (resp. BL) to the system (3.2.11) to show the convergence
of its unique local analytic solution at x =

√
ε 6= 0 (resp. x = −

√
ε 6= 0) to a

Borel sum in direction arg
√
ε of the formal solution ŷ0(x) of the limit system, when

√
ε→ 0 radially in a sector not containing any eigenvalue of M(ε), as mentioned in

Remark 3.2.6.

3.5. Solution to the equation (3.2.11) in the Borel plane.

We will use the unfolded Borel transformation B±α to transform the equation

(3.2.11) : (x2− ε) dydx = M(ε) y + f(x, y, ε)

to a convolution equation in the Borel plane (= the ξ-plane), and study its solutions
there. We write the function f(x, y, ε) = O(‖y‖2) + xO(‖y‖) + (x2− ε)O(1) as

f(x, y, ε) =
∑
|l|≥2

ml(ε) yl + x ·
∑
|l|≥1

al(ε) yl + (x2− ε) ·
∑
|l|≥0

gl(x, ε) yl, (3.5.1)

where yl := yl11 · . . . · ylmm for each multi-index l = (l1, . . . , lm) ∈ Nm, and |l| =
l1 + . . .+ lm.

Let a vector variable ỹ = ỹ(ξ,
√
ε) correspond to the Borel transform B±α [y](ξ,

√
ε),

with α ∈ (arg
√
ε, arg

√
ε + π) if

√
ε 6= 0. Then the equation (3.2.11) is transformed

to a convolution equation in the Borel plane

ξ ỹ = M(ε) ỹ +
∑
|l|≥2

ml ỹ
∗l + h̃±0 +

∑
|l|≥1

(al x̃± + h̃±l ) ∗ ỹ ∗l, (3.5.2)

where ỹ ∗l := ỹ ∗l11 ∗ . . . ∗ ỹ ∗lmm is the convolution product of components of ỹ, each
taken li-times,

h̃±l (ξ,
√
ε) = B±α [(x2− ε) gl](ξ,

√
ε),
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and x̃± = B±α [x] is the distribution of Definition 3.4.6. The convolutions are taken
in the direction α. Let us remark that by 1) of Proposition 3.4.3, the functions
h̃±l (ξ,

√
ε) are analytic in the ξ-plane in strips passing in between the points −2

√
ε

and 2
√
ε. In Proposition 3.5.2, we will find a unique analytic solution ỹ±(ξ,

√
ε) of

the convolution equation (3.5.2) as a fixed point of the operator

G±[ỹ](ξ,
√
ε) := (ξI −M(ε))−1 ·

∑
|l|≥2

ml ỹ
∗l + h̃±0 +

∑
|l|≥1

(al x̃± + h̃±l ) ∗ ỹ ∗l
 (3.5.3)

on a domain Ω(
√
ε) in the ξ-plane, obtained as union of (a bit more narrow) strips

Ωα(
√
ε) of continuously varying direction α, that stay away from the eigenvalues

of the matrix M(ε) as well as from all the points ±2
√
εN∗ (N∗ = N r {0}); see

Figure 3.12. In general, several ways of choosing such a domain Ω(
√
ε) are possible,

depending on its position relative with respect to the eigenvalues of M(ε). Different
choices of the domain Ω(

√
ε) will, in general, lead to different solutions ỹ±(x,

√
ε) of

(3.5.2), as shown in Example 3.5.6 below.

Figure 3.12. The regions Ω(
√
ε) and the eigenvalues λ1, . . . , λm (here m =

3) of M(ε) in the ξ-plane according to
√
ε ∈ S, together with integration

paths eiαR of the Laplace transformation Lα.
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Family of regions Ω(
√
ε) in the Borel plane, parametrized by

√
ε ∈ S.

Let ρ > 0 be small enough, and let β1 < β2 be two directions, such that for |
√
ε| < ρ

none of the closed strips

Ωα(
√
ε) =

⋃
c∈[− 3

2
√
ε, 32
√
ε]

c+ eiαR, (3.5.4)

with α ∈ (β1, β2), contains any eigenvalue ofM(ε). Let 0 < η < 1
2(β2−β1) ≤ π

2 be an
arbitrarily small angle and define a family of regions Ω(

√
ε) in the ξ-plane depending

parametrically on
√
ε ∈ S as

Ω(
√
ε) :=

⋃
α

Ωα(
√
ε),

where
max{arg

√
ε+ η, β1} < α < min{β2, arg

√
ε+ π − η}, (3.5.5)

and where S is a sector at the origin in the
√
ε-plane of opening > π, determined by

(3.5.5),

S = {
√
ε ∈ C | arg

√
ε ∈ (β1 − π + η, β2 − η), |

√
ε| < ρ} ∪ {0}. (3.5.6)

We denote Ω the union of the Ω(
√
ε),
√
ε ∈ S, in the (ξ,

√
ε)-space

Ω := {(ξ,
√
ε) | ξ ∈ Ω(

√
ε)}. (3.5.7)

Definition 3.5.1. Let Ω be as above, with some ρ, η > 0, and let 0 ≤ Λ < π sin η
2ρ .

For a vector function φ = (φ1, . . . , φm) : Ω→ Cm, we say that it is analytic on Ω, if
it is continuous on Ω, analytic on the interior of Ω, and φ(·,

√
ε) is analytic on Ω(

√
ε)

for all
√
ε ∈ S. We define the norms

|φ|ΛΩ := max
i

sup√
ε, α

|φi|Aα,BαΩα(
√
ε), ‖φ‖ΛΩ := max

i
sup√
ε, α

‖φi‖Aα,BαΩα(
√
ε),

where
√
ε ∈ S and α as in (3.5.5), i.e. such that Ωα(

√
ε) ⊂ Ω(

√
ε), and Aα = e−iαΛ,

Bα = − πi√
ε
− e−iαΛ.

Let us remark that the convolution of two analytic functions φ, ψ on Ω(
√
ε) does

not depend on the direction α (3.5.5), and that the norms |φ ∗ ψ|ΛΩ, ‖φ ∗ ψ‖ΛΩ satisfy
the Young’s inequalities (3.3.5) and (3.3.6):

|φ ∗ ψ|ΛΩ ≤ min
{
|φ|ΛΩ · ‖ψ‖ΛΩ, ‖φ‖ΛΩ · |ψ|ΛΩ

}
(3.5.8)

‖φ ∗ ψ‖ΛΩ ≤ ‖φ‖ΛΩ · ‖ψ‖ΛΩ. (3.5.9)
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Proposition 3.5.2. Suppose that the matrix M(ε) and the vector function f(x, y, ε)
in the equation (3.2.11) are analytic for

x ∈ X(Λ1,
√
ε),

m∑
i=1
|yi| < 1

L1
, |
√
ε| < ρ1, for Λ1, L1, ρ1 > 0.

Then there exists Λ > Λ1, 0 < ρ ≤ ρ1, and a constant c > 0, such that the operator
G+ : φ(ξ,

√
ε) 7→ G+[φ](ξ,

√
ε) (3.5.3) is well-defined and contractive on the space

{φ : Ω→ Cm | φ is analytic on Ω, ‖φ‖ΛΩ ≤ c, |φ|ΛΩ < +∞}

with respect to both the ‖ · ‖ΛΩ-norm and the | · |ΛΩ-norm. Hence the equation G+[ỹ+] =
ỹ+ possesses a unique analytic solution ỹ+(ξ,

√
ε) on Ω, satisfying ‖ỹ+‖ΛΩ ≤ c and

|ỹ+|ΛΩ < +∞. Similarly, the vector function ỹ−(ξ,
√
ε) := e

ξπi√
ε · ỹ+(ξ,

√
ε) is a unique

analytic solution of the equation G−[ỹ−] = ỹ− on Ω.

To prove this proposition we will need the following technical lemmas which will
allow us to estimate the norms of G+[φ].

Lemma 3.5.3. There exists a constant C = C(Λ1, η) > 0 such that, if f ∈ O(X(Λ1,
√
ε)),

|
√
ε| < ρ, and Λ1 < Λ < π sin η

2ρ (where η, ρ > 0 are as in (3.5.5), (3.5.6)), then

|B+
α [(x2− ε)f ]|ΛΩ ≤ Cρ sup

x∈X(Λ1,
√
ε)
|f(x)|.

Proof. By a straightforward estimation. Essentially, we need to estimate the inte-
gral

∫
Re(eiαt)=Λ

∣∣x−√ε
x+
√
ε

∣∣c d|x|, with c ∈ [−3
4 ,

3
4 ] and α ∈ (arg

√
ε+η, arg

√
ε+π−η).

Lemma 3.5.4. Let φ be an analytic function on Ω with a finite |φ|ΛΩ (resp. ‖φ‖ΛΩ).
Then its convolution with the distribution x̃± is again an analytic function on Ω
whose norm satisfies

|x̃± ∗ φ|ΛΩ ≤ |φ|ΛΩ ·
(
ρ+ ‖χ±α ‖ΛΩL

)
, (3.5.10)

resp. ‖x̃± ∗ φ‖ΛΩ ≤ ‖φ‖ΛΩ ·
(
ρ+ ‖χ±α ‖ΛΩL

)
, (3.5.11)

where χ±α is given in (3.4.8), ρ is the radius of S, and

ΩL(
√
ε) = Ω(

√
ε) ∩

(
Ω(
√
ε)−2

√
ε
)
, for each

√
ε ∈ S. (3.5.12)

Proof. It follows from Definition 3.4.6 and 2
√
ε-periodicity of χ±α .

Lemma 3.5.5. If φ, ψ : Ω→ Cm are analytic vector functions such that ‖φ‖ΛΩ, ‖ψ‖ΛΩ ≤
a, then for any multi-index l ∈ Nm, |l| ≥ 1,

|φ∗l − ψ∗l|ΛΩ ≤ |l| · a|l|−1 · |φ− ψ|ΛΩ.

The same holds for the ‖ · ‖ΛΩ-norm as well.
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Proof. Writing φ∗l = φi1∗ . . . ∗ φi|l| , ij ∈ {1, . . . ,m}, we have

φ∗l − ψ∗l = (φi1−ψi1) ∗ φi2∗ . . . ∗ φi|l| + ψi1∗ (φi2−ψi2) ∗ φi3∗ . . . ∗ φi|l| +

. . . + ψi1∗ . . . ∗ ψi|l|−1∗ (φi|l|−ψi|l|).

The statement now follows from the convolution inequalities (3.5.8) (resp. (3.5.9)).

Proof of Proposition 3.5.2. Let ml(ε), al(ε), gl(x, ε) be as in (3.5.1). If L >

m · L1, then there exists K > 0 such that for each multi-index l ∈ Nm

max{‖ml(ε)‖, ‖al(ε)‖, ‖gl(x, ε)‖} ≤ K ·
(|l|
l

)
L|l|,

where for y ∈ Cm, ‖y‖ =
∑m
i=1 |yi|, and where

(|l|
l

)
are the multinomial coefficients

given by (y1 + . . .+ ym)k =
∑
|l|=k

(|l|
l

)
yl, satisfying∑

|l|=k

(|l|
l

)
= mk.

It follows from Lemma 3.5.3, Lemma 3.5.4 and Lemma 3.3.3, that if Λ > Λ1, then
the terms of (3.5.2) can be bounded by

‖h̃+
0‖

Λ
Ω ≤ K1, ‖alx̃± + h̃+

l ‖
Λ
Ω ≤ K1 ·

(|l|
l

)
L|l|,

for some K1 > 0. Moreover, if we take Λ sufficiently large and ρ sufficiently small,
then we can make the constant K1 small enough so that it satisfies (3.5.13) below.

Let
δ = max

(ξ,
√
ε)∈Ω

∥∥ (Iξ −M(ε))−1 ·
( 1...

1

)∥∥+ 1
10mKL,

then δ < +∞ if the radius ρ of S is small, and let

c = 1
50m2δKL2 ≤

1
5mL, and K1 ≤ (5cmL)2K ≤ (5cmL)K. (3.5.13)

First we show that ‖φ‖ΛΩ ≤ c implies ‖G+[φ]‖ΛΩ ≤ c:

‖G+[φ]‖ΛΩ ≤ δ ·
( +∞∑
k=2

∑
|l|=k

K

(
|l|
l

)
L|l|c|l| +K1 +

+∞∑
k=1

∑
|l|=k

K1

(
|l|
l

)
L|l|c|l|

)

≤ δ ·
(
K

+∞∑
k=2

mkLkck +K1

+∞∑
k=0

mkLkck
)

≤ δ ·
(
K(5cmL)2

+∞∑
k=2

1
5k +K1

+∞∑
k=0

1
5k
)
≤ c

2 ·
( 1
20 + 5

4
)
≤ c,

using (3.3.6) and (3.5.13); in the first sum of the second line, we have ck ≤ (5cmL)2

(5mL)k

since k ≥ 2. Similarly, |G+[φ]|ΛΩ ≤ max{c, |φ|ΛΩ} if ‖φ‖ΛΩ ≤ c.
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Now we show that |G+[φ] − G+[ψ]|ΛΩ ≤ 1
2 |φ − ψ|ΛΩ if ‖φ‖ΛΩ, ‖ψ‖ΛΩ ≤ c. Using

Lemma 3.5.5, (3.5.13) and the convolution inequality (3.5.8), we can write

|G+[φ]− G−[ψ]|ΛΩ
|φ− ψ|ΛΩ

≤ δ ·
( +∞∑
k=2

∑
|l|=k

K

(
|l|
l

)
Lk · k ck−1 +

+∞∑
k=1

∑
|l|=k

K1

(
|l|
l

)
Lk · k ck−1

)

≤ δ ·
(
(5cmL)KmL

∞∑
k=2

k

5k−1 +K1mL
∞∑
k=1

k

5k−1

)
≤ 5cm2δKL2 ·

( 9
16 + 25

16
)
≤ 1

2 .

The same holds for the ‖ · ‖ΛΩ-norm. Hence the operator G+ is | · |ΛΩ-contractive, and
the sequence

(
G+)n[0] converges, as n→ +∞, | · |ΛΩ-uniformly to an analytic function

ỹ+ satisfying G+[ỹ+] = ỹ+.
From (3.4.3) it follows that h̃−l = e

ξπi√
ε · h̃+

l and x̃− = e
ξπi√
ε · x̃+, hence G−[ỹ−] =

G−[e
ξπi√
ε ỹ+] = e

ξπi√
ε · G+[ỹ+] = e

ξπi√
ε · ỹ+ = ỹ− is a fixed point of G−.

The following example shows that the solutions ỹ± of the convolution equation
(3.5.2) in the Borel plane depend on the choice of the domain Ω.

Example 3.5.6. Let u satisfy

(x2− ε)du
dx

= u+ (x2− ε), (3.5.14)

and let y = (x2− ε)u. It satisfies a differential equation

(x2− ε)dy
dx

= y + 2xy + (x2− ε)2. (3.5.15)

The Borel transform of the equation (3.5.14) is

ξũ±α = ũ±α + ξ · χ±α ,

therefore ũ±α (ξ,
√
ε) = ξ

ξ−1χ
±
α (ξ,
√
ε), which is independent of the direction α. This

is no longer true for the solution ỹ±α = ũ±α ∗ B±α [x2− ε] of the Borel transform of the
equation (3.5.15)

ξỹ±α = ỹ±α + 2x̃±∗ ỹ±α + χ±α · (ξ3− 4εξ).

If, for instance, Im(
√
ε) < 0, and arg

√
ε < α1 < 0 < α2 < arg

√
ε+π, then the strips

Ωα1(
√
ε), Ωα2(

√
ε) (3.5.4) in directions α1, α2, are separated by the point ξ = 1, and

one easily calculates that for ξ ∈ Ωα1(
√
ε) ∩ Ωα2(

√
ε)

ỹ±α1(ξ,
√
ε)− ỹ±α2(ξ,

√
ε) = (ξ − 1)χ±α (1,

√
ε)χ±α (ξ − 1,

√
ε),

i.e. the two solutions ỹ±α1 , ỹ
±
α2 differ near ξ = 0 by a term that is exponentially flat

in
√
ε.
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Figure 3.13. The extended regions Ω1(
√
ε) in the Borel plane, together

with the modified integration path Γ of the Laplace transform (compare with
Figure 3.12). The limit region Ω1(0) :=

⋃
√
ε∈S

⋂
ν→0+ Ω1(ν

√
ε)r(−2

√
ε)N∗

is composed of two sectors connected at the origin; the solution ỹ+(ξ, 0)
vanishes on the lower sector, while the solution ỹ−(ξ, 0) vanishes on the
upper one.

Proposition 3.5.7. If the spectrum ofM(0) is of Poincaré type, i.e. if it is contained
in a sector of opening < π, then, for small

√
ε, the region Ω(

√
ε) may be chosen so

that it has all the eigenvalues of M(ε) on the same side—let’s say the side where
2
√
ε is. In such case, let Ω1(

√
ε) be the extension of Ω(

√
ε) to the whole region on the

opposite side (see Figure 3.13). The solutions ỹ±(ξ,
√
ε) of Proposition 3.5.2 can be

analytically extended to Ω1(
√
ε) r (−2

√
ε)N∗ with at most simple poles at the points

−2
√
εN∗ (where N∗ = Nr {0}). The function ỹ±

χ±α
is analytic in Ω1 and has at most

exponential growth < CeΛ|ξ| for some Λ, C > 0 independent of
√
ε.

Proof. The solution ỹ+ is constructed as a limit of the iterative sequence of func-
tions (G+)n[0], n → +∞. We will show by induction that for each n, the function
(G+)n[0] is analytic on Ω1r{ξ ∈−2

√
εN∗} and has at most simple poles at the points

ξ ∈ −2
√
εN∗, and that the sequence converges uniformly to ỹ+ with respect to the

norm
8φ8Λ

Ω1 := sup
(ξ,
√
ε)∈Ω1

| φ
χ+(ξ,

√
ε)| e−Λ|ξ|. (3.5.16)
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To do so we will introduce another norm || · Λ
Ω1
, defined in (3.5.20) below, such that

the two norms satisfy convolution inequalities similar to those satisfied by | · |ΛΩ and
‖ · ‖ΛΩ (Lemma 3.5.8 below). Then one can simply replicate the proof of Proposi-
tion 3.5.2 with the norm 8 · 8Λ

Ω1
in place of | · |ΛΩ and the norm || · Λ

Ω1
in place of

‖ · ‖ΛΩ.

(a) Im
(
ξ√
ε

)
> 0 (b) Im

(
ξ√
ε

)
< 0

Figure 3.14. The integration path Γξ of convolution (φ ∗ ψ)(ξ), ξ ∈ Ω1(
√
ε).

Let us first show that if φ, ψ are two functions analytic on Ω1(
√
ε) r (−2

√
εN∗),

then so is their convolution φ∗ψ. If ξ ∈ Ω1(
√
ε)r
√
εR, then the analytic continuation

of φ ∗ ψ at the point ξ is given by the integral

(φ ∗ ψ)(ξ) =
∫

Γξ
φ(s)ψ(ξ − s) ds

with Γξ a symmetric path with respect to the point ξ
2 passing through the segments

[−3
2
√
ε, 3

2
√
ε] and [ξ− 3

2
√
ε, ξ+ 3

2
√
ε], as in Figure 3.14. Note that when ξ approaches a

point on (−∞
√
ε,−2

√
ε)r (−2

√
εN∗) from one side or another, the values of the two

integrals are identical, since both paths Γξ pass in between the same singularities.
Suppose now that φ, ψ have at most simple poles at the points −2

√
εN∗. If

ξ is in Ω(
√
ε) ∪ 2ΩL(

√
ε) (ΩL is defined in (3.5.12)), then Γξ = c + eiαR for some

c ∈ [−3
2
√
ε,−1

2
√
ε] ⊂ ΩL(

√
ε). Else ξ ∈ 2ΩL(

√
ε) − 2k

√
ε for some k ∈ N∗, and one

can express the convolution as

(φ ∗ ψ)(ξ) =
∫

c−2k
√
ε+eiαR

φ(s)ψ(ξ − s) ds + 2πi
k∑
j=1

Res−2j
√
ε φ · ψ(ξ + 2j

√
ε)
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=
∫

c+eiαR

φ(t− 2k
√
ε)ψ(ξ0 − t) dt − 2

√
ε
k−1∑
j=0

φ
χ+(−2(k − j)

√
ε) · ψ(ξ0 − 2j

√
ε),

(3.5.17)

where c ∈ [−3
2
√
ε,−1

2
√
ε] ⊂ ΩL(

√
ε) and ξ0 = ξ + 2k

√
ε ∈ c + ΩL(

√
ε), i.e. ξ − s ∈

ΩL(
√
ε), see Figure 3.14. We will use this formula to obtain an estimate for the norm

8φ ∗ ψ8Λ
Ω1
, Λ ≥ 0. Since | 1

χ+(ξ,
√
ε) | ≤ (1 + |e

sπi√
ε |)(1 + |e

(ξ−s)πi√
ε |), cf. (3.3.4), we have

|φ ∗ψ
χ+ (ξ)| e−Λ|ξ| ≤ sup

s∈ΩL(
√
ε)−2k

√
ε

|φ(s)|(1 + |e
sπi√
ε |) e−Λ|s| · ‖ψ‖ΛΩ(

√
ε)

+ 2
√
|ε| ·8φ8Λ

Ω1 ·
k−1∑
j=0
| ψ
χ+(ξ0 − 2j

√
ε)| e−Λ|ξ0−2j

√
ε|, (3.5.18)

due to the 2
√
ε-periodicity of χ+.

Let µ ≥ 1 be such that

1 + |e
sπi√
ε | ≤ µ | 1

χ+(s,
√
ε) | for all s ∈ ΩL(

√
ε) (3.5.19)

and define

|ψ Λ
Ω1 := µ ‖ψ‖ΛΩ + sup√

ε∈S
ξ∈2ΩL(

√
ε)

2
√
|ε|

+∞∑
k=0
| ψ
χ+(ξ − 2k

√
ε)| e−Λ|ξ−2k

√
ε|. (3.5.20)

Then (3.5.18) implies that

8φ ∗ ψ8Λ
Ω1 ≤ 8φ8Λ

Ω1 · |ψ
Λ
Ω1 .

Note that by 4) of Proposition 3.4.3, if f(x,ε)
x2−ε is analytic on {|x2−ε| < r2}×{|ε| <

ρ2} for some r > 2ρ > 0, then for any Λ > 1
r−2ρ

8Bα[f ]8Λ
Ω1 < +∞, |B+

α [f ] Λ
Ω1 < +∞,

and one can see that |Bα[f ] Λ
Ω1

can be made arbitrarily small taking Λ sufficiently
large (cf. Lemma 3.3.3).

Lemma 3.5.8. Let φ
χ+,

ψ
χ+ be analytic functions on Ω1 such that φ

χ+(0,
√
ε) =

ψ
χ+(0,

√
ε) = 0. Then

8φ ∗ ψ8Λ
Ω1 ≤ 8φ8Λ

Ω1 · |ψ
Λ
Ω1 ,

|φ ∗ ψ Λ
Ω1 ≤ |φ

Λ
Ω1 · |ψ

Λ
Ω1 .
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Proof. The first inequality is given in the proof of Lemma 3.5.7. We need to prove
the second one. By definition

|φ ∗ ψ Λ
Ω1 = µ ‖φ ∗ ψ‖ΛΩ + sup√

ε∈S
ξ∈2ΩL(

√
ε)

2
√
|ε|

+∞∑
k=0
|φ∗ψ
χ+ (ξ − 2k

√
ε)| e−Λ|ξ−2k

√
ε|.

The first term is smaller than

µ ‖φ‖ΛΩ ‖ψ‖ΛΩ ≤ µ2 ‖φ‖ΛΩ ‖ψ‖ΛΩ since µ ≥ 1.

For the second term, using (3.5.17), (3.5.19) and 2
√
ε-periodicity of χ+, we have

+∞∑
k=0
|φ∗ψ
χ+ (ξ − 2k

√
ε)| e−Λ|ξ−2k

√
ε|

≤
∫

c+eiαR

µ ·
+∞∑
k=0
| φ
χ+(t− 2k

√
ε)| e−Λ|t−2k

√
ε| ·
(
|ψ(ξ − t)| (1 + |e

(ξ−t)πi√
ε |) e−Λ|ξ−t|

)
d|t|+

+ 2
√
|ε|

+∞∑
k=0

k∑
j=1
| φ
χ+(−2j

√
ε)| e−Λ|2j

√
ε| · | ψ

χ+(ξ − 2(k − j)
√
ε)| e−Λ|ξ−2(k−j)

√
ε|

≤ sup
ξ∈2ΩL(

√
ε)

+∞∑
k=0
| φ
χ+(ξ − 2k

√
ε)| e−Λ|ξ−2k

√
ε| ·

·
(
µ ‖ψ‖ΛΩ + sup

ξ∈2ΩL(
√
ε)

2
√
|ε|

+∞∑
j=0
| ψ
χ+(ξ − 2j

√
ε)| e−Λ|ξ−2j

√
ε|
)
.

Proof of Theorem 3.2.4. i) Let ỹ±(ξ,
√
ε) be the solution of the convolution

equation (3.5.2) of Proposition 3.5.2 on Ω with bounded ‖ · ‖ΛΩ-norm. Its Laplace
transform

y±(x,
√
ε) := L[ỹ±](x,

√
ε) =

∫ +∞eiα

−∞eiα
ỹ±(ξ,

√
ε) e−t(x,ε)ξ dξ, (3.5.21)

where α can vary as in (3.5.5), is a solution of (3.5.1) defined for x ∈
⋃
α X̌

±
α (Λ,

√
ε),

(see Figure 3.3 for the domain of convergence in the time t(x)-coordinate). Both
y+ and y− project to the same ramified solution on a domain Z(

√
ε) in the x-plane

(Figure 3.2).

ii) If the spectrum ofM(0) is of Poincaré type and ỹ±(ξ,
√
ε) is defined on Ω1 as in

Proposition 3.5.7, with 8ỹ+8Λ
Ω1
< +∞, then, for x ∈ Z1(

√
ε) ∩ {Re(ei arg

√
εt(x, ε))<

−Λ}, one may deform the integration path of the Laplace transform (3.5.21) to
Γ, indicated in Figure 3.13, and use the Cauchy formula to express y±(x,

√
ε), for
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√
ε 6= 0, as a sum of residues at the points ξ = −2k

√
ε, k ∈ N∗,

y±(x,
√
ε) =

∫
Γ
ỹ±(ξ,

√
ε) e−t(x,ε)ξ dξ = 2πi

∞∑
k=1

Res−2k
√
ε ỹ
± ·
(
x+
√
ε

x−
√
ε

)k
= −2

√
ε
∞∑
k=1

(
ỹ±

χ±

)
(−2k

√
ε,
√
ε) ·

(
x+
√
ε

x−
√
ε

)k
. (3.5.22)

This series is convergent for
∣∣x+√ε
x−
√
ε

∣∣ < e−2
√
|ε|Λ, and its coefficients are the same in

both cases ỹ+ and ỹ−. It defines a solution y1(x,
√
ε) of (3.2.11) on a domain Z1(

√
ε),

analytic at x = −
√
ε and ramified at x =

√
ε (Figure 3.4).
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CONCLUSION

The article [K1], presented in Chapter 2, is part of the large program of explaining the
geometric meaning of analytic invariants of irregular singularities of linear differential
systems by unfolding the systems. It shows that the program can also be performed
for resonant singularities when there is a change of the order of summability. The
thesis provides full analytic classification of germs of parametric systems unfolding a
generic resonant singularity of Poincaré rank k = 1 in dimension n = 2. The analytic
classification of parametric systems unfolding a non-resonant irregular singularity of
arbitrary Poincaré rank k in any dimension n has been achieved in [HLR]. There are
several possibilities of generalization. The next step may be to provide an analytic
classification of parametric systems unfolding a generic resonant singularity with, for
example,
• Poincaré rank k > 1 and dimension n = 2,
• Poincaré rank k = 1 and dimension n > 2, whose leading matrix has a single
Jordan bloc,
• Poincaré rank k = 1 and dimension n > 2, whose leading matrix has one
double eigenvalue in 2×2-Jordan bloc and other eigenvalues simple.

The general strategy should be the same: First, one needs to determine formal invari-
ants and construct sectorial normalizing transformations between formally equiva-
lent systems (as in Theorem III in section 2.2.2). We know from the previous studies
([LR], [HLR], [K1], [K2]) that the domains on which such transformations exist
are obtained as unions of real trajectories of a certain polynomial, or rational, vector
field on CP1. Then one has to identify the modulus of analytic equivalence. We
should remark here that the situation of Theorem I (in section 2.2.1 of the present
study), where there is just a single analytic invariant, which can be easily calculated
from the monodromy, is very special to the particular case studied here. In the more
general situations mentioned above, when k > 1 or n > 2, there will be at least
(kn− 1)(n− 1) analytic invariants needed, and thus the modulus will have to be de-
scribed in terms of equivalence of certain Stokes data (i.e. set of transition matrices
between canonical fundamental matrix solutions). A natural way of considering such
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Stokes data is as representing some kind of “cocycle” of automorphisms of a system
in a formal normal form. Finally, one has to identify which moduli are realizable by
an analytic family of systems; and possibly provide analytic normal forms (this last
problem is however still open even for non-resonant irregular singularities of single
(non-parametric) systems in dimensions n ≥ 4).

An interesting question that comes to one’s mind is that of whether Corollary
2.2.6 stays valid also in more general situations:

Considering two families of systems depending on the same parameter, if the
systems restricted to each parameter value are analytically equivalent on some open
set independent of the parameter, does that imply that they are also equivalent as
parametric families on that set?

The second article [K2], presented in Chapter 3, shows that it is possible to
unfold the Borel-Laplace correspondence. In the literature the classical Borel-Laplace
transform can take two forms: it could be a correspondence between sets of functions
defined on sectors or a correspondence between a set of formal series and a set of
convergent series. Unfolding the second form with parameters in a general setting is
an interesting challenge. There are also some smaller questions more closely related to
the article itself that deserve to be considered. For instance, it remains to describe
what is the relation between the different solutions of the transformed equation
(3.5.1) in the Borel plane corresponding to different choices of the domain Ω? We
know that at the limit, for

√
ε = 0, they are just analytic extensions of the same

function—the Borel transform of the unique formal solution ŷ0(x) of the limit system
(3.2.11) defined on a neighborhood of ξ = 0.

Another problem is to generalize the present construction for saddle-node singular
points of multiplicity k + 1 (which are points with one zero eigenvalue), k > 1,
i.e. to unfold the k-summation. Again, the corresponding unfolded Borel–Laplace
transformations should be associated to the universal unfolding of the vector field
xk+1 ∂

∂x (let us mention that such polynomial complex vector fields in C have been
studied in the seminal work of A. Douady and P. Sentenac [DES], see also [BD]).
Possible difficulties may come from the more complicated geometry of the Riemann
surface of the time function of such unfolded vector field.

We hope to address some of these problems in the near future.
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