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EN ABRÉGÉ

Soit P (z) :=
n∑
ν=0

aνz
ν un polynôme de degré n et M := sup

|z|=1
|P (z)|. Sans aucne

restriction suplémentaire, on sait que |P ′(z)| ≤ Mn pour |z| ≤ 1 (inégalité de
Bernstein). Si nous supposons maintenant que les zéros du polynôme P sont à
l’extérieur du cercle |z| = k, quelle amélioration peut-on apporter à l’inégalité de
Bernstein? Il est déjà connu [23] que dans le cas où k ≥ 1 on a

(∗) |P ′(z)| ≤ n

1 + k
M (|z| ≤ 1),

qu’en est-il pour le cas où k < 1? Quelle est l’inégalité analogue à (∗) pour une
fonction entière de type exponentiel τ?

D’autre part, si on suppose que P a tous ses zéros dans |z| ≥ k (k ≥ 1),
quelle est l’estimation de |P ′(z)| sur le cercle unité, en terme des quatre premiers
termes de son développement en série entière autour de l’origine. Cette thèse
constitue une contribution à la théorie analytique des polynômes à la lumière de
ces questions.
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Mots-clés : Inégalité de Bernstein – polynômes et polynômes trigonométriques
– fonctions entières de type exponentiel – théorème de Schwarz-Pick – intégrale
infinie – théorème des trois cercles d’Hadamard.



vii

ABSTRACT

Let P (z) :=
n∑
ν=0

aνz
ν a polynomial of degree n and M := sup

|z|=1
|P (z)|. Without

any additional restriction, we know that |P ′(z)| ≤ Mn for |z| ≤ 1 (Bernstein’s
inequality). Now if we assume that the zeros of the polynomial P are outside the
circle |z| = k, which improvement could be made to the Bernstein inequality? It
is already known [23] that in the case where k ≥ 1, one has

(∗) |P ′(z)| ≤ n

1 + k
M (|z| ≤ 1),

what would it be in the case where k < 1? What is the analogous inequality for
an entire function of exponential type τ? On the other hand, if we assume that
P has all its zeros in |z| ≥ k (k ≥ 1), which is the estimate of |P ′(z)| on the
unit circle, in terms of the first four terms of its Maclaurin series expansion. This
thesis comprises a contribution to the analytic theory of polynomials in the light
of these problems.
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INTRODUCTION

In 1938, Jean Dieudonné published a mémoire entitled “La théorie analytique
des polynômes d’une variable”. Eleven years later , appeared “The geometry
of the zeros of a polynomial in a complex variable” by Morris Marden. These
two monographs are among the publications that announced the birth of the
new branch of mathematics called “Analytic theory of polynomials”, a branch
about the problems of the zeros and the critical points of a polynomial, the local
behaviour of a polynomial in the neighbourhood of a given point, the extremal
properties of certain polynomials, etc. The problem of finding an estimate of the
modulus of the derivative of a polynomial in terms of its degree and its maximum
modulus in a subset of the complex plane is also amongst the problems of the
analytic theory of polynomials. Such results are generally called Bernstein type
inequalities. In the following example : if P is a polynomial of degree at most n
and M is its maximum modulus over the interval [−1,+1], then

|P ′(x)| ≤Mn2 (x ∈ [−1,+1]),

the inequality is called the Markov inequality. Initially, it was a question asked
and answered by the imminent chemist D. Mendeleev for n = 2 when he rep-
resented the graph of the gravity of a solution as a quadratic function of the
dissolved substance. The obtained result was mentioned to A. A. Markov, who
established the result in its final form above-mentioned. Another example of
Bernstein’s type inequality is the Bernstein’s inequality which stipulates that if
P is a polynomial of degree n and M its maximum modulus over the unit circle,
then we have

|P ′(z)| < Mn for |z| ≤ 1,

and the inequality is sharp except when P (z) = λzn where λ is of modulus equal
to M . Despite what its name suggests, Bernstein’s inequality was not initially
proven by Bernstein, it was Fejér, maybe, the first who has done that.

In chapter one, I shall deal with Bernstein’s inequality, I will give two proofs of
this inequality within two different approaches and will discuss some refinements
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of this inequality under different hypothesis for the polynomial P . The following
question will be tackled in this opening chapter: What is the sharp upper bound
for sup|z|=1 |P ′(z)| if P is a polynomial of degree n such that |P (z)| ≤ M on
the unit circle and P (z) 6= 0 for |z| < k for some k > 0? Some known results
concerning these refinements are presented especially for k > 1 but the case k < 1
has turned out to be very challenging.

In chapter two, I shall present the extension of Bernstein’s inequality to the
class of trigonometric polynomials, furthermore I shall tackle the extension of a
polynomial’s inequality , due to Govil, to a special class of entire functions of
exponential type. In spite of Govil’s simple proven result, its extension presented
in chapter two requires strong results from the classical theory of functions.

In connection with entire functions of exponential type evocated in the prece-
dent chapter, there are situations where an integral, involving in its integrand the
maximum modulus M(r) of such function f for |z| = r, is required to converge.
In chapter three, I shall be interested in such problem by giving the behavior of
the M(r) in view of the convergence of a specific integral.

Govil, Rahman and Schmeisser had published a paper in which they estab-
lished an estimation of the derivative of a polynomial of degree n involving its
value at the origin and the values of its two consecutive derivatives at the ori-
gin. In chapter four, I will construct a similar estimation of the derivative of
the polynomial involving its value at the origin and the values of its first three
derivatives at the origin. Actually, the most important task in this chapter is
a lemma preceding the main result, which contains an elegant highlight of the
Schwarz-Pick theorem.

In the present dissertation, and to make a clear distinction between new results
and known ones, theorems, propositions and lemmas are numerated as follows : if
the result is known and not my own discovery, then it is numerated using a capital
letter preceded by the chapter’s number; otherwise, the result is numerated using
the arabic numbers preceded by the chapter’s number. To make this dissertation
self readable, I added four appendices at its end, each one contains some classical
theorems from the analytic theory of polynomials and the theory of functions.



Chapter 1

BERNSTEIN’S INEQUALITY FOR
POLYNOMIALS ON THE UNIT DISK

1.1. Introduction
In this chapter, I start with an inequality about the growth of a polynomial of

degree n. Then, we use it in conjunction with the Gauss–Lucas theorem to prove
Bernstein’s inequality for the derivative of a polynomial on the unit disk. The idea
of the proof via the Gauss–Lucas theorem is almost certainly due to Bernstein
himself [3]. Next, we present another approach to Bernstein’s inequality, which
we find very interesting. It readily lends itself to other applications as we shall
see. Bernstein’s inequality says that if P is a polynomial of degree n such that
|P (z)| ≤ M on the unit circle, then |P ′(z)| ≤ Mn for all z on the unit circle.
The bound Mn in this inequality is attained only when P has all its n zeros at
the origin. This led to the following question: What is the sharp upper bound
for sup|z|=1 |P ′(z)| if P is a polynomial of degree n such that |P (z)| ≤ M on
the unit circle and P (z) 6= 0 for |z| < k for some k > 0? The answer to this
question is known in the case where k ≥ 1. The case k < 1 has turned out to be
very challenging. I shall briefly but clearly describe the known results and then
mention some of my own observations.

1.1.1. An inequality about the growth of polynomials

The following inequality, which is a simple consequence of the maximum mod-
ulus principle, is a result of fundamental importance.

Theorem 1-A. Let P be a polynomial of degree at most n such that |P (z)| ≤M

for |z| = 1. Then
|P (z)| < M |z|n (|z| > 1) , (1.1)

unless P (z) ≡M eiγ zn for some real γ.
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In fact, Q(z) := znP (1/z) is a polynomial of degree at most n such that
|Q(z)| = |P (z)| ≤ M for |z| = 1 and so by the maximum modulus principle
|Q(z)| < M for |z| < 1 unless Q is a constant. Therefore Theorem 1-A holds.

1.1.2. Bernstein’s inequality for the derivative of a polynomial

Let P be a polynomial of degree at most n such that |P (z)| ≤ M for |z| = 1
and suppose that P (z) 6≡M eiγ zn for any real γ. Then by (1.1), |P (z)| < M |z|n

for |z| > 1. Hence, P (z) −M λeiγ zn cannot vanish for λ ≥ 1 and γ ∈ R. This
means that for any λ ≥ 1 and any real γ the polynomial P (z) −M λeiγ zn has
all its zeros in the closed unit disk. By the Gauss–Lucas theorem [32, p. 71] the
derivative

P ′(z)−Mnλeiγ zn−1

must also have all its zeros in the closed unit disk. In other words, this polynomial,
which depends on the parameters λ and γ, cannot vanish for any z such that
|z| > 1. It is easily seen that this is possible only if |P ′(z)| < Mn |z|n−1 for
|z| > 1. Thus, we have proved the following result.

Theorem 1-B. Let P be a polynomial of degree at most n such that |P (z)| ≤M

for |z| = 1. Then
|P ′(z)| < Mn |z|n−1 (|z| > 1) , (1.2)

unless P (z) ≡M eiγ zn for some real γ.

Letting |z| → 1 in (1.2), we obtain what is known as Bernstein’s inequality
for the derivative of a polynomial.

Corollary 1-A. [35] Let P be a polynomial of degree at most n such that
|P (z)| ≤M for |z| = 1. Then

|P ′(z)| ≤Mn (|z| = 1) . (1.3)

The example P (z) := M zn shows that the bound given in (1.3) is sharp.

1.2. Stronger conclusions
In this section we present De Bruijn’s approach to Bernstein’s inequality and

show how it allows us to say more than what Bernstein’s inequality does.

1.2.1. Bernstein’s inequality via Laguerre’s theorem

The following result which is a simple consequence of Szegő’s formulation of
Laguerre’s theorem [Appendix B, Theorem A-B] has proved to be a very useful
tool in connection with Bernstein’s inequality.
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Lemma 1-A. Let P be a polynomial of degree not exceeding n. Furthermore, let
S := {P (z) : |z| < 1} and S := {P (z) : |z| ≤ 1}. Then

P (z)− 1
n
zP ′(z) + ζ

1
n
P ′(z) ∈ S (|z| < 1 , |ζ| < 1) , (1.4a)

and
P (z)− 1

n
zP ′(z) + ζ

1
n
P ′(z) ∈ S (|z| ≤ 1 , |ζ| ≤ 1) , (1.4b)

Proof. Let w be any point not belonging to S. Then f(z) := (P (z)− w) /n is a
polynomial of degree not exceeding n that has no zeros in the open unit disk D1.
Hence, by the Szegő’s formulation of Laguerre’s theorem [Appendix B , Theorem
A-B]

n
P (z)− w

n
+ (ζ − z)P

′(z)
n

has no zeros in D1 for any ζ such that |ζ| < 1. In other words,

P (z) + ζ − z
n

P ′(z) 6= w (|z| < 1 , |ζ| < 1) ,

which proves (1.4a).
In order to prove (1.4b), let w be any point 6∈ S. Then f(z) := (P (z)− w) /n

is a polynomial of degree n that has no zeros in the closed unit disk D1. Now
apply Szegö’s formulation of Laguerre’s theorem. �

We wish to indicate how Bernstein’s inequality (1.3) follows from Lemma 1-A.

The other proof [11] of Corollary 1-A
Let P be a polynomial of degree at most n satisfying the conditions of Corol-

lary 1-A. Also, let

S := {w = P (z) : |z| < 1} and DM := {w : |w| ≤M} .

Then
S := {w = P (z) : |z| ≤ 1} ⊆ DM .

By (1.4b),
P (z)− 1

n
zP ′(z) + ζ

1
n
P ′(z)

lies in S and so in DM for any z such that |z| ≤ 1 and any ζ such that |ζ| ≤ 1.
This means that for any z such that |z| ≤ 1, the disk of radius |P ′(z)|/n centered
at the point P (z)− (1/n)zP ′(z) lies in DM . Clearly, any disk that can be placed
in DM cannot be of radius larger than M and so |P ′(z)| ≤Mn for all z ∈ D1. �

Remark. This method of proof allows us to identify (see [31, pp. 28–29]) the
polynomials for which (1.3) becomes an equality. For this note that in (1.3)
equality can hold only if S covers every point of DM and is not a proper subset



8

of it. If P (z) is extremal, then, obviously, it cannot be a constant and so |P (z)|
cannot be equal to M except for |z| = 1. Hence, |P (eiθ)|2 = M2 for infinitely
many values of θ ∈ (0 , 2π]. Since |P (eiθ)|2 is a trigonometric polynomial of degree
at most n, we conclude that |P (z)| = M at every point z of the unit circle. Once
we know this, there is a classical argument that can be used to conclude that
P (z) must be of the form M eiγzn, γ ∈ R if it is extremal.

1.2.2. A strengthening of Bernstein’s inequality

From Lemma 1-A we can deduce another result which has been found to be
very useful.

Lemma 1-B.[32, p. 524] Let P (z) be a polynomial of degree at most n such that
|P (z)| ≤M for |z| = 1 and let Q(z) := znP (1/z). Then

|Q′(z)|+ |P ′(z)| ≤Mn (|z| = 1) . (1.5)

Proof. From (1.4) it readily follows that

|nP (z)− zP ′(z)|+ |P ′(z)| ≤Mn (|z| = 1) . (1.6)

However, if z = eiθ, θ ∈ R , then Q(eiθ) = einθ P (eiθ) and so

i eiθQ′(eiθ) = ineinθ P (eiθ) + einθ i eiθ P ′(eiθ) ,

from which it follows that

|Q′(z)| = |Q′(eiθ)| =
∣∣∣nP (eiθ)− eiθ P ′(eiθ)

∣∣∣ =
∣∣∣nP (eiθ)− eiθ P ′(eiθ)

∣∣∣ .
Thus, we see that

|nP (z)− zP ′(z)| = |Q′(z)| (|z| = 1) . (1.7)

Using (1.7) in (1.6) we obtain (1.5). �

This is as good a place as any other to state another auxiliary result which
often comes in very handy.

Lemma 1-C.[32, p. 510] Let A(z) := ∑n
ν=0 aνz

ν be a polynomial of degree at
most n and B(z) := ∑n

ν=0 bνz
ν a polynomial of exact degree n which means that

bn is different from 0. Suppose that B(z) has all its n zeros in the closed unit
disk D1 and that |A(z)| ≤ |B(z)| on the unit circle. Then

|A′(z)| ≤ |B′(z)| (|z| ≥ 1) . (1.8)
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1.3. Polynomials not vanishing in the disk |z| < k

We shall start this section with a result of Turán about polynomials having
all their zeros in the closed unit disk.

Let P (z) := c
∏n
ν=1(z− zν) be a polynomial of degree n having all its zeros in

|z| ≤ k for some k ≤ 1. It is easily checked that if rν := |zν |, then for any real θ,
we have

<
(

eiθ

eiθ − zν

)
≥ 1

1 + rν
≥ 1

1 + k
(ν = 1, . . . , n) .

This implies that∣∣∣∣∣P ′(eiθ)
P (eiθ)

∣∣∣∣∣ ≥ <
(

eiθ P ′(eiθ)
P (eiθ)

)
=

n∑
ν=1
<
(

eiθ

eiθ − zν

)
≥ n

1 + k
(θ ∈ R) .

Hence, the following result holds.

Theorem 1-C∗.[32, p. 536] Let P be a polynomial of degree n having all its
zeros in |z| ≤ k for some k ≤ 1, and let M denote the maximum of |P (z)| on
the unit circle. Then

max
|z|=1
|P ′(z)| ≥M

n

1 + k
.

Turán’s inequality

In the case where k = 1, which has some special significance, this result was
proved by Turán [38]. It is convenient to state it separately.

Theorem 1-C. Let P be a polynomial of degree n having all its zeros in the
closed unit disk, and let M denote the maximum of |P (z)| on the unit circle.
Then

max
|z|=1
|P ′(z)| ≥M

n

2 . (1.9)

A conjecture of Erdős

We really do not know, but we wonder if it was not Theorem 1-C that moti-
vated P. Erdős to wonder if the following statement (to be compared with Corol-
lary 1-A) was true. We call it the conjecture of Erdős because that is the way it
has been referred to in the literature.

The conjecture (of Erdős). If P is a polynomial of degree at most n having no
zeros in the open unit disk such that |P (z)| ≤M on the unit circle, then

|P ′(z)| ≤M
n

2 (|z| = 1) . (1.10)

In the special case where P has all its zeros on the unit circle, inequality
(1.10) was proved by G. Szegö and by G. Pólya independently, using completely
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different reasonings. Their proofs are published in [21], which is a paper of
P.D. Lax. Knowing that (1.10) was true in the case where all the zeros of P lay
on the unit circle, Lax [21] proved that (1.10) must remain true if the zeros of P
were allowed to lie anywhere on or outside the unit circle.

A proof of (1.10)
Let P be a polynomial of degree at most n having no zeros in the open unit

disk such that |P (z)| ≤M on |z| = 1 and let S := {P (z) : |z| < 1}. Then, (1.4a)
says that for any z in the open unit disk, the disk of radius |P ′(z)|/n centered at
P (z) − (1/n)zP ′(z) lies in S and so in the punctured disk {w : 0 < |w| < M}.
The radius of any disk, contained in the punctured disk, must be less than M/2.
Hence, |P ′(z)| < Mn/2 for any z in the open unit disk and so (1.10) must hold.
This is the way De Bruijn [11] proved the conjecture of Erdős. �

From Theorem 1-C and (1.10) it follows that if P is a polynomial of degree n
having all its zeros on the unit circle, then

max
|z|=1
|P ′(z)| = n

2 max
|z|=1
|P (z)| .

A result of M.A. Malik
Let P (z) be a polynomial of degree at most n not vanishing in the open disk

Dk := {z : |z| < k} for some k ≥ 1. By Laguerre’s theorem as formulated by
Szegö [36],

nP (z)− zP ′(z) + ζP ′(z) 6= 0

for any z ∈ Dk and any ζ ∈ Dk. For any given z ∈ Dk this is possible for all
ζ ∈ Dk only if

|nP (z)− zP ′(z)| ≥ k|P ′(z)| .

Hence, if Q(z) := znP (1/z), then, in view of (1.7), this is possible for any z on
the unit circle only if

|Q′(z)| ≥ k|P ′(z)| (|z| = 1) . (1.11)

Using (1.11) together with (1.5), we obtain the following result.

Theorem 1-D. Let P (z) be a polynomial of degree at most n such that |P (z)| ≤
M for |z| = 1. Furthermore, let P (z) 6= 0 in the disk Dk := {z : |z| < k}, where
k ≥ 1. Then

|P ′(z)| ≤M
n

1 + k
(|z| = 1) . (1.12)

�

Theorem 1-D is due to Malik [23]. As it has already been pointed out, in the
case where k = 1 equality holds in (1.12) for any polynomial P which has all its
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zeros on the unit circle and for which max|z|=1 |P (z)| = M . For k > 1, the upper
bound given in (1.12) is attained for polynomials of the form

P (z) := M eiβ
(
z + k eiα

1 + k

)n
, α ∈ R , β ∈ R .

What if P (z) 6= 0 in |z| < k, where k < 1?

This question has turned out to be something very challenging. Not much is
known in the case where k < 1. Here is what we know.

It is clear that if P (z) := c (z − z1) is a polynomial of degree 1 not vanishing
in |z| < k, where k < 1, then M := max|z|=1 |P (z)| ≥ |c| (1 + k), whereas
max|z|=1 |P ′(z)| = |c|. Thus

max
|z|=1
|P ′(z)| ≤M

1
1 + k

(
= M

n

1 + kn
, n = 1

)
.

Next, let P (z) be a polynomial of degree 2 having both its zeros on the circle
|z| = k, where 0 < k < 1. Without loss of generality, we can suppose that
P (z) := c (z − k eiα)(z − k e−iα), 0 ≤ α ≤ π/2. Then∣∣∣P (eiθ)

∣∣∣2 = |c|2
∣∣∣(eiθ − k eiα)(e−iθ − k e−iα)(eiθ − k e−iα)(e−iθ − k eiα)

∣∣∣2
= |c|2

{
1 + k2 − 2k cos(θ − α)

}{
1 + k2 − 2k cos(θ + α)

}
= |c|2

{
1 + k4 + 2k2 cos 2α + 4k2 cos2 θ − 4k(1 + k2)(cosα) cos θ

}
≤ |c|2

{
1 + k4 + 2k2 cos 2α + 4k2 + 4k(1 + k2)(cosα)

}
=
∣∣∣P (eiπ)

∣∣∣2 .
Thus

max
|z|=1
|P (z)|2 = |c|2

{
(1 + k2)2 + 4k(1 + k2) cosα + 4k2 cos2 α

}
.

Since P ′(z) is equal to c (2z − 2k cosα), we readily see that

max
|z|=1
|P ′(z)|2 = 4|c|2(1 + 2k cosα + k2 cos2 α) .

Thus
max|z|=1 |P ′(z)|2
max|z|=1 |P (z)|2 = ψ(cosα) ,

where
ψ(u) := 4 1 + 2ku+ k2u2

(1 + k2)2 + 4k(1 + k2)u+ 4k2u2 .

In order to determine how large ψ(u) can be we calculate its derivative and find
that

ψ′(u) = −32k(1− k2) 2k2u2 + k(3 + k2)u+ 1 + k2

{(1 + k2)2 + 4k(1 + k2)u+ 4k2u2}2 ,
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which is clearly negative. This means that ψ(u) decreases as u increases from 0
to 1. So, the largest value of ψ(u) occurs for u = 0, that is, for α = π/2. Thus,
we see that

max|z|=1 |P ′(z)|2
max|z|=1 |P (z)|2 ≤

4
(1 + k2)2 .

In other words, if P (z) is a polynomial of degree 2 having both its zeros on the
circle |z| = k, where 0 < k < 1, and |P (z)| ≤M for |z| = 1, then

|P ′(z)| ≤M
2

1 + k2

(
= n

1 + kn
, n = 2

)
(|z| = 1) . (1.13)

The bound in (1.13) is attained for polynomials of the form

P (z) := M eiγ z
2 + k2

1 + k2 , γ ∈ R .

This led to the speculation that (1.13) might be true for any polynomial P of
degree 2 which has both its zeros in |z| ≥ k, where 0 < k < 1. However, this is
not true as the following example found by E. B. Saff shows.

Example. Let P0(z) := (z − 1/2)(z + 1/3). This is a polynomial of degree 2
whose zeros lie on or outside the circle |z| = k = 1/3. By elementary calculation,
we find that for any real θ,

|P0(eiθ)|2 = 2
3

(25
12 −

5
12 cos θ − cos2 θ

)
and so

max
|z|=1
|P0(z)| = max

θ∈R
|P0(eiθ)| =

√2
3

(25
12 −

5
12 cos θ − cos2 θ

)
cos θ=−5/24

= 35
12
√

6
.

Since P ′0(z) = 2z − 1/6, we readily see that max|z|=1 |P ′0(z)| = 13/6, so that

max|z|=1 |P ′0(z)|
max|z|=1 |P0(z)| = 26

√
6

35 = 1.819620952... > 1.8 = 2
1 + (1/3)2 = n

1 + kn
.

Let Pn denote the class of all polynomials of degree at most n. We shall say
that P (z) belongs to Pn,k if P ∈ Pn and P (z) 6= 0 in the disk Dk := {z : |z| < k}.
Let

µn,k := sup
P∈Pn,k

max|z|=1 |P ′(z)|
max|z|=1 |P (z)| .

Saff’s example shows that, in the case where n = 2, µn,k may be larger n/(1 + kn)
for some values of k in (0 , 1); for k = 1/3 it is definitely so. It might seem
surprising but we do not know what the value of µ2 , 1/3 really is. We see that
by restricting ourselves to the case where n = 2 we do not get very far because
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the calculations become quite unmanageable even for a polynomial of the form
(z − k)(z − `eiα), where ` > k and α is real.

However, by studying the problem for quadratics, we have learnt that deter-
mining the exact value of µn,k is not a simple matter when 0 < k < 1.

A result of N. K. Govil
By a theorem of Govil (see [15, p. 52]), if P (z) := ∑n

ν=0 aνz
ν is a polynomial

of degree n having no zeros in |z| < k for some k < 1, then

max
|z|=1
|P ′(z)| ≤ n

1 + kn
max
|z|=1
|P (z)| , (1.14)

if the coefficients aν are either all non-negative or all non-positive. In fact, he
states his theorem as follows.
Theorem 1-E. Let P (z) be a polynomial of degree n having no zeros in
|z| < k, k ≤ 1, and let Q(z) := znP (1/z). If max|z|=1 |P ′(z)| and max|z|=1 |Q′(z)|
are attained at the same point of the unit circle |z| = 1, then (1.14) holds.

The bound is attained for the polynomial P (z) := c (zn + kn) , c ∈ C.
In connection with (1.14), another result of Govil [17, p. 544] gives an in-

equality in the opposit direction when all the zeros are inside |z| < k (k ≥ 1). It
can be stated as follows
Theorem 1-F. If p(z) = ∑n

ν=0 aνz
ν is a polynomial of degree n with max

|z|=1
|p(z)| =

1 and p(z)has all its zeros in the disk |z| ≤ k, k ≥ 1, then

max
|z|=1
|p′(z)| ≥ n

1 + kn
.

The result is best possible with equality for the polynomial (z) = zn + kn

1 + kn
.

Remark. In Theorem 1-E, requiring P (z) to be different from zero in |z| < k

and to have coefficients either all non-negative or all non-positive might seem a
bit too restrictive. However, the result is not without interest. We note that any
polynomial of the form P (z) := ∑n

ν=0 aνz
ν 6≡ 0, where

a0 ≥ ka1 ≥ · · · ≥ kνaν ≥ kν+1aν+1 ≥ · · · ≥ knan ≥ 0 ,

satisfies the conditions of Theorem 1-E. One should not forget that there are no
other large classes of polynomials P (z) which have no zeros in |z| < k for some
k < 1 and for which the sharp estimates for

max|z|=1 |P ′(z)|
max|z|=1 |P (z)|

are known.
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Let 0 < k < 1. If P (z) := zn + kn, then
max|z|=1 |P ′(z)|
max|z|=1 |P (z)| = n

1 + kn
= n− nkn +O(k2n) ,

which shows that even when all the zeros of P lie on |z| = k, the improvement
in the upper bound for

(
max|z|=1 |P ′(z)|

)
/
(
max|z|=1 |P (z)|

)
as compared to the

one given by (1.3) cannot be greater than nkn + O(k2n), which for any given
k ∈ (0 , 1) tends to 0 as n→∞. We wish we were able to decide if the supremum
of
(
max|z|=1 |P ′(z)|

)
/
(
max|z|=1 |P (z)|

)
over all polynomials of degree n having

no zeros in |z| < k for some k < 1 was n− nkn +O(k2n) as n→∞ but we have
not succeeded.

Now, we shall describe what we have been able to prove without imposing
any restriction on the degree n.

Theorem 1.1. Let P (z) be a polynomial of degree at most n having a zero on
the circle |z| = k for some k ∈ (0 , 1) and suppose that |P (z)| ≤ M for |z| = 1.
Then,

m := min
|z|=1
|P (z)| ≤ 1− kn

1 + kn
M (1.15)

and

|P ′(z)| ≤Mn− M

4πn (1− a) {1− a− sin (1− a)} (|z| ≤ 1) , (1.16)

where
a := 1− kn

1 + kn
.

An auxiliary result
The proof of Theorem 1.1 is based on the following result of A. Giroux and

Q. I. Rahman (see [14, Theorem 1]).
Lemma 1-D. Let P (z) := ∑n

ν=0 aνz
ν be a polynomial of degree at most n such

that |P (z)| ≤ M for |z| = 1. Furthermore, let min|z|=1 |P (z)| ≤ aM , where
0 ≤ a < 1. Then (1.16) holds

Proof of Theorem 1.1. By a recent result of Qazi and Rahman [27] if P is
a polynomial of degree at most n such that m ≤ |P (z)| ≤ M for |z| = 1, then
P (z) 6= 0 in the open annulus(

M −m
M +m

)1/n
< |z| <

(
M +m

M −m

)1/n
.
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Hence, if P has a zero on the circle |z| = k < 1, then necessarily

k ≤
(
M −m
M +m

)1/n
and so

m ≤ 1− kn
1 + kn

M ,

which proves (1.15). Now, Lemma 1 may be applied with a := (1− kn)/(1 + kn)
to complete the proof of Theorem 1.1. �

A remark on (1.15)
The example

P (z) := (M +m) zn − (M −m)
2

shows that the upper bound for m given in (1.15) cannot be improved even if P
is supposed to have all its zeros on |z| = k.

If P (z) := c
∏n
ν=1(z − zν) = ∑n

ν=0 aνz
ν is a polynomial of degree n having all

its zeros on the circle |z| = k, then

|a0| = |c| kn andM := max
|z|=1
|P (z)| ≤ |c| (1 + k)n

so that
|a0| ≥M

kn

(1 + k)n . (1.17)

It is known [32, p. 518, see Corollary 14.2.2] that if P is a polynomial of degree
n such that |P (z)| ≤M on the unit circle, then

|P ′(z)| ≤Mn− 2n
n+ 2 |P (0)| (|z| = 1) .

Using (1.17) in this inequality, we obtain the following result.

Theorem 1.2. Let P be a polynomial of degree n having all its zeros on the circle
|z| = k and let |P (z)| ≤M for |z| = 1. Then

|P ′(z)| ≤M

(
n− 2n

n+ 2
kn

(1 + k)n

)
(|z| ≤ 1) .

�





Chapter 2

ENTIRE FUNCTIONS OF EXPONENTIAL
TYPE NOT VANISHING IN THE

HALF-PLANE =Z > K, WHERE K > 0

2.1. Introduction
In this chapter, we present the extension of Bernstein’s inequality (1.3) to

trigonometric polynomials and also to transcendental entire functions of expo-
nential type. The main result of this chapter is a generalization of Theorem 1-E
to entire functions of exponential type.

2.1.1. Bernstein’s inequality for trigonometric polynomi-
-als

Let Pm denote the class of all polynomials of degree at most m. From Lemma
1-B it follows that if P ∈ Pn and |P (z)| ≤M for |z| = 1, then∣∣∣∣∣ d

dθP (eiθ)
∣∣∣∣∣+

∣∣∣∣∣−inP (eiθ) + d
dθP (eiθ)

∣∣∣∣∣ ≤Mn (θ ∈ R) .

If t(θ) := ∑n
ν=−n aνeiνθ and |t(θ)| ≤ M for all real θ ∈ R, then einθt(θ) = P (eiθ),

where P ∈ P2n and |P (z)| ≤ M for |z| = 1. Applying the preceding inequality
with 2n instead of n, we obtain

|int(θ) + t′(θ)|+ | − int(θ) + t′(θ)| ≤ 2Mn (θ ∈ R) . (2.1)

In particular, we have

|2t′(θ)| ≤ |int(θ) + t′(θ)|+ | − int(θ) + t′(θ)| ≤ 2Mn (θ ∈ R) ,

that is,
|t′(θ)| ≤Mn (θ ∈ R) . (2.2)
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This is the famous inequality of S. Bernstein for trigonometric polynomials. It is
sharp and in (2.2), equality can hold at any point θ ∈ R.

From (2.1) it follows that if t(θ) is real for all real θ, then

n2t2(θ) + (t′(θ))2 ≤M2n2 (θ ∈ R) . (2.3)

Remark. Bernstein had proved (2.2) for cosine polynomials and also for sine
polynomials. M. Riesz [34] seems to have been the first to prove it in its full
generality. Inequality (2.3) is a result of J. G. van der Corput and G. Shaake
[10].

2.1.2. Functions of exponential and Bernstein’s inequality

Basic properties of functions of exponential type

A trigonometric polynomial t(θ) := ∑n
ν=−n aνeiνθ is well defined for any θ in the

complex plane C and not only when θ is restricted to the real line. Replacing θ by
z, we obtain t(z) := ∑n

ν=−n aνeiνz, which is holomorphic throughout the complex
plane. Thus, a trigonometric polynomial t(θ) can be seen as the restriction of an
entire function to the real axis. Unless all the coefficients aν except a0 are zero,
t(z) is an entire function of order 1 and of type T ≤ n. Clearly, there exists a
constant C such that |t(z)| < C en|z| for all z ∈ C. In other words, t(z) is an entire
function of exponential type n. Let us recall that a function f(z) holomorphic
in an unbounded domain D ⊆ C is said to be of exponential type τ in D if for
any ε > 0, there exists a constant K(ε) such that |f(z)| < K(ε) e(τ+ε)|z| for all
z ∈ D. In the present context, an interesting example of an unbounded domain
is the sector

A(α, β) := {z = reiθ : 0 < r <∞ , α ≤ θ ≤ β} ,

where β ∈ (α , α + 2π), and half-planes have special significance. Some of the
important results about functions of exponential type are to be found in what
follow.

We know that trigonometric polynomials are 2π-periodic, but an entire func-
tion of exponential type may not be periodic at all; (sin τz)/z is such a function.
As another example, we wish to mention

f(z) :=
n∑
ν=0

aνeiλνz , λ0 < · · · < λn , (2.4)

which is an entire function of exponential type τ := max{|λ0| , |λn|} but is gen-
erally not periodic.
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It is known (see [6, Theorem 6.10.1]) that if f(z) is an entire function of
exponential type τ which is periodic on the real axis with period ∆, then it must
be of the form f(z) = ∑n

ν=−n aν e2πiνz/∆ with n ≤
⌊
∆τ/(2π)

⌋
.

To characterize the dependence of the growth of a function f of exponential
type τ in a sector A(α, β) on the direction in which z tends to infinity, Phragmén
and Lindelöf introduced the function

hf (θ) := lim sup
r→∞

log |f(r eiθ)|
r

(α ≤ θ ≤ β) ,

called the indicator function of f . It is known that unless hf (θ) ≡ −∞, hf (θ) is
continuous in α < θ < β and that if α ≤ θ < θ + π ≤ β, then

hf (θ) + hf (θ + π) ≥ 0 . (2.5)

If f is an entire function of order 1 whose type is τ, then, hf (θ) ≤ τ for all θ and
so, by (2.5), hf (θ) ≥ −τ . See [6, Chapter 5] for these and many other properties
of the indicator function.

A basic lemma

The following lemma [6, Theorem 6.2.4] serves as a basic tool in the study of
functions of exponential type. In [26] the reader will find a proof of this result,
which contains a thorough discussion of the case of equality.

Lemma 2-A. Let f be a function of exponential type in the open upper half–
plane such that hf (π/2) ≤ c. Furthermore, let f be continuous in the closed
upper half–plane and suppose that |f(x)| ≤M on the real axis. Then

|f(x+ iy)| < M ecy (−∞ < x <∞, y > 0) (2.6)

unless f(z) ≡M eiγ e−icz for some real γ.

Bernstein’s inequality for entire functions of exponential type

Bernstein himself was the first to extend inequality (1.20) to entire function
of exponential type. The extended version may be stated as follows.
Theorem 2-A (S. Bernstein [32, p. 513]). Let f(z) be an entire function of
exponential type τ such that |f(x)| ≤M on the real axis. Then

|f ′(x)| ≤Mτ (x ∈ R) . (2.7)

In (2.7) equality holds if and only if f(z) is of the form a e−iτz + b eiτz, where
|a|+ |b| = M .
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If P (z) is a polynomial of degree at most n, then f(z) := P (eiz) is an entire
function of exponential type n. Besides, |f(x)| ≤M on the real axis if |P (z)| ≤M

on the unit circle. Hence, inequality (1.3) is covered by (2.7).

2.1.3. Boas’s extension of Lax’s inequality (1.10)

If p is a polynomial of degree n > 0 such that |p(z)| ≤ M on the unit circle,
then f(z) := p(eiz) is an entire function of order 1 and type n such that |f(x)| ≤M

on the real axis. If p(z) 6= 0 in the open unit disk, then f(z) = p(eiz) 6= 0 in the
open upper half-plane. In addition,

hf

(
π

2

)
= 0 ,

since |p(0)| > 0. This motivated Boas to ask the following question. How large
can |f ′(x)| be on the real axis if f is an entire function of exponential type τ having
no zeros in the open upper half-plane such that hf (π/2) = 0 and |f(x)| ≤M for
all real x? He answered this question by proving the following result [7].

Theorem 2-B. (R.P. Boas). Let f(z) be an entire function of order 1 and type
τ having no zeros in the open upper half-plane. Furthermore, let |f(x)| ≤ M on
the real axis and suppose that hf (π/2) = 0. Then

sup
−∞<x<∞

|f ′(x)| ≤M
τ

2 . (2.8)

Clearly, f(z) := M (eiτz − 1)/2 satisfies the conditions of Theorem 2-B and
for this function |f ′(x)| = M τ/2 for all real x. It was proved by Rahman and
Tariq [33] that if f(z) is an entire function of exponential type τ with only real
zeros such that

sup
−∞<x<∞

|f(x)| = M, hf

(
−π2

)
= τ and hf

(
π

2

)
= 0 ,

then
sup

−∞<x<∞
|f ′(x)| = M

τ

2 .

Entire functions of exponential type satisfying f(z) 6= 0 in =z > k, k > 0

Now, we shall formulate and prove an extension of Theorem 1-E (a theorem
of N.K. Govil) to entire functions of exponential type. Our result may be stated
as follows.

Theorem 2.1. Let f(z) be an entire function of order 1 and type τ having no
zeros in the half-plane =z > k for some k > 0. In addition, let hf (π/2) = 0 and
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|f(x)| ≤M on the real axis. Define ωf (z) := eiτz f(z) and suppose that

sup
−∞<x<∞

|f ′(x)| and sup
−∞<x<∞

|ω′f (x)|

are both attained at the same point of the real axis. Then

|f ′(x)| ≤ Mτ

1 + e−τk (−∞ < x <∞) . (2.9)

The following special case of Theorem 2.1 deserves to be mentioned explicitly.
For basic facts about uniformly almost periodic functions, we refer the reader to
Appendix D.

Corollary 2.1. Let f(z) be a uniformly almost periodic entire function of expo-
nential type τ having no zeros in the half-plane =z > k for some k > 0 and let
hf (π/2) = 0. In addition, let |f(x)| ≤ M on the real axis and suppose that the
Fourier coefficients of f are all non-negative. Then (2.9) holds.

2.2. Some more auxiliary results

The proof of Theorem 2.1 requires some preparation which consists in recalling
certain notions and additional results about entire functions of exponential type.

Definition 2.1. An entire function f of exponential type is said to belong to the
class P if it has no zeros in the open lower half-plane and hf (−π/2) ≥ hf (π/2).

Note. From (2.5) it follows that if f 6≡ 0 is an entire function of exponential
type 0, then hf (θ) = 0 for all θ. Hence, any entire function of exponential type 0
having all its zeros in the closed upper half-plane belongs to the class P.

It is known (see [22] or [6, Theorem 7.8.3]) that the Hadamard factorization
of a function f belonging to the class P has the form

f(z) = Azm ecz
∞∏
k=1

{(
1− z

zk

)
ez<(1/zk)

}
, (2.10)

where zk 6= 0, =zk ≥ 0 and 2=c = hf (−π/2)− hf (π/2) ≥ 0.
It is also known [6, p. 129, Theorem 7.8.1] that if f belongs to P, then

|f(z)| ≥ |f(z)| (=z < 0) . (2.11)

From (2.11) it follows that if f belongs to P, then hf (−α) ≥ hf (α) for all
α ∈ (0 , π).

The following result (see [22, p. 59, Lemma 3] or [6, p. 130, Theorem 7.8.6])
is of fundamental importance. Its significance in the present context cannot be
over-emphasized.
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Lemma 2-B. Let f be an entire function of order 1 and type τ belonging to the
class P. Furthermore, let g be an entire function of exponential type σ ≤ τ such
that

|g(x)| ≤ |f(x)| for all x ∈ R . (2.12)

Then φλ(z) := g(z)− λf(z) belongs to P for any λ ∈ C , |λ| > 1.

Definition 2.2. An additive homogeneous operator B[f(z)] which carries entire
functions of exponential type into entire functions of exponential type and leaves
the class P invariant is called (see [22, p. 60] or [6, p. 225, Definition 11.7.1]) a
B-operator.

It may be added that an operator B is additive if B[f + g] = B[f ] +B[g] and
homogeneous if B[cf ] = cB[f ].

Using the representation (2.10), it can be easily shown that differentiation is
also a B-operator (see [6, p. 226]).

Let f(z) be an entire function of order 1 and type τ . Suppose that |f(x)| ≤M

on the real axis and that hf (π/2) ≤ 0. Then by Lemma 2-A, |f(z)| < M in
the open upper half-plane. Hence, φ(z) := f(z) − Me−iα, α ∈ R, is an entire
function of order 1 and type τ which has no zeros in the open upper half-plane.
Consequently, the function

ωφ(z) := eiτz φ(z) = ωf (z)−Meiα eiτz

belongs to the class P and |φ(x)| = |ωφ(x)| for all real x. By Lemma 2-B, the
function φ(z)− λωφ(z) belongs to the class P for any λ ∈ C with |λ| > 1. Since
differentiation is a B-operator, the function φ′(z) − λω′φ(z) also belongs to the
class P for any λ ∈ C with |λ| > 1. In particular, φ′(z)−λω′φ(z) 6= 0 in the lower
half-plane for any λ ∈ C with |λ| > 1. In other words,

f ′(z)− λ
(
ω′f (z)−M iτ eiαeiτz

)
6= 0 (2.13)

for any z with =z < 0, for any α ∈ R and for any λ ∈ C with |λ| > 1. Now, note
that f is not a constant and so ωf (z) cannot be of the form M eiγ eiτz, γ ∈ R.
Hence, by Theorem 2-A and Lemma 2-A, ω′f (z) −M iτ eiαeiτz is different from
zero at every point of the open lower half-plane. Hence (2.13) can hold for any z
with =z < 0, any α ∈ R and any λ ∈ C with |λ| > 1 only if

|f ′(z)| ≤Mτe−τ=z − |ω′f (z)| .

Hence, the following result holds. Thus, we have proved that if f is an en-
tire function of order 1 and type τ such that |f(x)| ≤ M on the real axis and
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hf (π/2) ≤ 0, then

|f ′(z)|+ |ω′f (z)| ≤M τ e−τ=z (=z < 0) .

By continuity, the same must be true for z belonging to the real axis. In other
words, the following result holds.

Lemma 2-C. Let f be an entire function of order 1 and type τ . Suppose, in
addition, that |f(x)| ≤M on the real axis and that hf (π/2) ≤ 0. Then

|f ′(z)|+ |ω′f (z)| ≤M τ e−τ=z (=z ≤ 0) . (2.14)

2.3. Proof of Theorem 2.1

As the first step towards the proof of Theorem 2.1, we prove the following
proposition.

Proposition 2.1. Let F be an entire function of order 1 and type τ having all its
zeros in the half-plane {z ∈ C : =z ≥ −k} for some k > 0. Suppose that |F (x)| is
bounded on the real axis and that hF (π/2) ≤ 0. In addition, let ωF (z) := eiτzF (z).
Then

sup
−∞<x<∞

|ω′F (x)| ≤ eτk sup
−∞<x<∞

|F ′(x)| . (2.15)

Proof. Suppose that |F (x)| ≤M on the real axis. The function g(z) := F (z− ik)
is of order 1 and type τ . Besides, by Lemma 2-A, |g(x)| ≤ M eτk for all real x.
We claim that g belongs to the class P introduced in Definition 2.1. Clearly, g
has no zeros in the open lower half-plane. Hence, it is sufficient to check that
hg(−π/2) ≥ hg(π/2).

Since |g(x)| is bounded on the real axis and hg(π/2) = hF (π/2) ≤ 0, we must
necessarily have

hg

(
−π2

)
= hF

(
−π2

)
= τ ,

otherwise, by Lemma 2-A, g and so F would not be of order 1 and type τ . Note
that τ must be positive because a function of order 1 that is bounded on the real
axis or on any line cannot be of type 0. Thus, hg(−π/2) > 0 whereas hg(π/2) ≤ 0.
Hence in fact, hg(−π/2) > hg(π/2) and so g belongs to P.

Let ωg(z) := eiτzg(z). Then, |ωg(x)| = |g(x)| ≤ M eτk for all real x. Besides,
hωg(π/2) = −τ + hg(−π/2) = 0. Hence, by Lemma 2-A, |ωg(z)| ≤ M eτk in the
upper half-plane. Since

ωg(z) = eiτzF (z − ik)

= eτk eiτ(z+ik) F (z + ik) = eτkωF (z + ik)



24

we see that
hωg

(
−π2

)
= τ + hg

(
π

2

)
≤ τ

and so, by Lemma 2-A, |ωg(z)| ≤ M eτ(k+|=z|) in the lower half-plane. In partic-
ular, ωg(z) is an entire function of exponential type at most τ .

We have a function g of order 1 and type τ which belongs to the class P.
Besides, we have a function ωg(z) of exponential type τ such that |ωg(x)| = |g(x)|
for all real x. So, Lemma 2-B may be applied with g in place of f and ωg in place of
g to conclude that for any λ such that |λ| > 1, the function ωg(z)−λ g(z) belongs
to the class P. Since differentiation is a B-operator, the function ω′g(z)− λ g′(z)
also belongs to the class P for any λ ∈ C such that |λ| > 1. In particular,
ω′g(z) − λ g′(z) 6= 0 if =z < 0 for any λ ∈ C such that |λ| > 1. This is possible
only if |ω′g(z)| ≤ |g′(z)| for any z in the open lower half-plane. By continuity, the
same must be true for any real z also. Thus, |ω′g(z)| ≤ |g′(z)| for =z ≤ 0, which
means that

eτk |ω′F (z + ik)| ≤ |F ′(z − ik)| (=z ≤ 0) .

Taking z = x− ik, in this inequality, we obtain

eτk |ω′F (x)| ≤ |F ′(x− 2ik)| (−∞ < x <∞) . (2.16)

Since F is an entire function of order 1 and type τ , the same can be said about
the function F ′. Hence, by Lemma 2-A, applied to the function F ′(z̄), we obtain

|F ′(x− 2ik)| ≤ e2τk sup
−∞<x<∞

|F ′(x)|

for any real x. Combining this with (2.16), we find that

|ω′F (x)| ≤ eτk sup
−∞<x<∞

|F ′(x)|

for any real x, which is equivalent to (2.15). �

Proposition 2.2. Let f be an entire function of order 1 and type τ having no
zeros in the half-plane =z > k where k > 0. Besides, let hf (π/2) = 0 and suppose
that |f(x)| is bounded on the real axis. In addition, let ωf (z) := eiτzf(z). Then

e−τk sup
−∞<x<∞

|f ′(x)| ≤ sup
−∞<x<∞

|ω′f (x)| . (2.17)

Proof. Lemma 2-A can be used to see that hf (−π/2) = τ . Hence, ωf (z) :=
eiτzf(z) is an entire function of order 1 and type τ having all its zeros in the
half-plane =z > −k. Besides, hωf (π/2) = 0 and |ωf (x)| is bounded on the real
axis. Hence, ωf satisfies all the conditions of Proposition 2.1. So, let us apply
Proposition 2.1 taking F = ωf . Clearly, then ωF = ωωf = f and so by (2.15), we
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have
sup

−∞<x<∞
|f ′(x)| ≤ eτk sup

−∞<x<∞
|ω′f (x)| ,

which proves (2.17). �

Proof of Theorem 2.1. Suppose that

sup
−∞<x<∞

|f ′(x)| and sup
−∞<x<∞

|ω′f (x)|

are both attained at the same point x0 of the real axis.
Combining (2.14) and (2.17), we obtain that

(1 + e−τk) sup
−∞<x<∞

|f ′(x)| ≤ sup
−∞<x<∞

|f ′(x)|+ sup
−∞<x<∞

|ω′f (x)|

≤ |f ′(x0)|+ |ω′f (x0)|

≤ Mτ.

Then
sup

−∞<x<∞
|f ′(x)| ≤ τ

1 + e−τkM,

which proves the theorem. �





Chapter 3

ON THE CONVERGENCE OF CERTAIN
INTEGRALS

3.1. Introduction
Let M(r) := max|z|=r |f(z)|, where f(z) is an entire function. Also let α > 0

and β > 1. We discuss the behaviour of the integrand M(r)e−α(log r)β as r → ∞
if
∫ ∞

1
M(r)e−α(log r)βdr is convergent.

3.1.1. Convergence of integrals vis-à-vis convergence of series

There is one fundamental property of a convergent infinite series in regard to
which the analogy between infinite series and infinite integrals breaks down. If∑∞
n=1 θ(n) is convergent, then θ(n)→ 0 as n→∞; but it is not always true, even

when θ(r) is always positive, that if
∫∞
a θ(r) dr is convergent, then θ(r) → 0 as

r →∞. It is however true that if
∫∞
a θ(r) dr converges and θ(r) is non-negative,

then
lim inf
r→∞

r (log r)(log log r) · · · (`kr) θ(r) = 0 ,

where `kr is the k-th iterate of log r. If this was not true, then there would exist
positive numbers c and R0 such that for all R > R0, we would have∫ eR

R
θ(r) dr >

∫ eR

R

c

r (log r)(log log r) · · · (`kr)
dr = c (`kR− `k+1R)

and then
∫ eR
R θ(r) dr could not be made arbitrarily small by taking R sufficiently

large, contradicting the convergence of the integral
∫∞
a θ(r) dr. On the other

hand, it is well known that if θ(r) is positive and non-increasing, then
∫∞
a θ(r) dr

can converge only if r θ(r) → 0 as r → ∞. The same conclusion can be drawn
if θ(r) is the product of a monotonic function ϕ(r) and a non-negative function

L(r) which is continuous and L(cr) ∼ L(r) as r → ∞ (i.e. lim
r→+∞

L(cr)
L(r) = 1).

This can be explained as follows. Let ε be any given positive number. Then for
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all sufficiently large values of u, we have

ε >

∣∣∣∣∫ 2u

u
ϕ(r)L(r) dr

∣∣∣∣ ≥ min {|ϕ(u)| , |ϕ(2u)|}
∫ 2u

u
L(r) dr = |ϕ(2u)|

∫ 2u

u
L(r) dr

(say). That uθ(u) → 0 as u → ∞, now follows from the fact (see Lemma 3-A
bellow) ∫ u

a
L(r) dr ∼ uL(u) .

Lemma 3-A. ([20], Lemma 4) The condition

ϕ1(t) =
∫ t

1
ϕ(u)du ∼ tϕ(t)

is equivalent to

ϕ(kt) ∼t→∞ ϕ(t) for every fixed positive k.

3.1.2. A special kind of integrands

Let M(r) := max|z|=r |f(z)|, where f(z) is an entire function. In his work
on Carlson’s theorem [6, Chapter 9] for entire functions of exponential type
Rahman [30, Theorem 7] had a situation where the integral

∫∞ r2QM(r) e−πr dr
was convergent and he wanted to know the behavior of M(r) for large values of
r. He noted [30, Lemma 6] that r2QM(r) e−πr → 0 as r →∞. In order to prove
it we do not require anything more than the fact that M(r) is a non-decreasing
function of r. However, M(r) is not just a non-decreasing function of r but also
logM(r) is a downward convex function of log r. Thus r2QM(r) = o (eπr) was
not expected to be all that the convergence of

∫∞ r2QM(r) e−πr dr would imply.
Recently, Qazi [25] has proved the following stronger result, which is “essentially”
best possible.

Theorem 3-A. Let M(r) := max|z|=r |f(z)|, where f is an entire function and
suppose that

∫∞
0 rαM(r) e−βr dr < ∞ for some α > 0 and some β > 0. Then

√
r · rαM(r) e−βr = O(1) as r →∞.

3.2. The main result
An entire function f is a polynomial if and only if there exists a positive

number k such that M(r) := max|z|=r |f(z)| = O(rk) as r → ∞. The degree of
f is the infimum of all such numbers k. If f is a transcendental entire function,
then

logM(r)
log r →∞ as r →∞ ;
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however, M(r) e−α(log r)β may tend to zero as r → ∞ for some α > 0 and some
β > 1. This can happen if f is an entire function of order 0, that is, if

lim sup
r→∞

log logM(r)
log r = 0 .

In connection with Theorem 3-A, one may then ask the following question: What
can we say about the behavior of M(r) as r →∞ if f is an entire function such
that

∫∞
1 M(r) e−α(log r)β dr converges for some α > 0 and some β > 1?

We give an answer to this question. The proof of Theorem 3-A as given
by Qazi [25] is based on the use of the well known Stirling’s formula for Eu-
ler’s Gamma function. This was somehow natural because of the integrand in∫∞
0 rαM(r) e−βr dr having e−βr as a factor. Since the integrand does not any-
more have such a factor, the use of Stirling’s formula is more or less out of the
question. So, we have to use some other ideas. In addition to Stirling’s for-
mula, Qazi’s proof of Theorem 3-A uses Hadamard’s three-circles theorem. That
remains available to us and we have tried to use it as efficiently as we could.

Theorem 3.1. Let M(r) := max|z|=r |f(z)|, where f is an entire function and
suppose that

∫∞
1 M(r) e−α (log r)β dr <∞ for some α > 0 and some β > 1. Then,

for any ε > 0,
lim
r→∞

r (log r)−γ−ε ·M(r) e−α (log r)β = 0 ,

where γ := max {0 , (β − 2)/2} .

3.3. Proof of Theorem 3.1
We present the proof in several steps.

Step I. First we prove that
R

(logR)β−1 M(R) e−α(logR)β → 0 as R→∞ . (3.1)

Take any ε > 0 and note that
M(r)

(log r)β−1(1/r)
is an increasing function of r for all large r. Hence, if R is large enough, then

RM(R)
αβ(logR)β−1

∫ R2

R
αβ (log r)β−1

(1
r

)
e−α (log r)β dr ≤

∫ R2

R
M(r) e−α (log r)β dr

< ε ,

that is,
R

(logR)β−1M(R)
(
e−α (logR)β − e−α (2 logR)β

)
< αβε ,
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which implies (3.1).

Step II. Next, we prove that for all large r,

M(S) e−α (logS)β <
(logS)γ

S
for some S = S(r) ∈

(
r , r + r

(log r)γ

)
. (3.2)

If this was not true, then for all t ∈ (r , r + r/(log r)γ), which in the case where
1 < β ≤ 2 means “for all t ∈ (r , 2r)”, we would have

M(t) e−α (log t)β ≥ (log t)γ
t

.

This would imply that∫ r+r/(log r)γ

r
M(t) e−α (log t)β dt ≥

∫ r+r/(log r)γ

r

(log t)γ
t

dt

= 1
γ + 1


(

log
(
r + r

(log r)γ

))γ+1

− (log r)γ+1

 .

It is easily checked that the last expression is equal to log 2 if γ is zero and is
1 + o (1) if γ is positive. Thus the integral

∫∞
1 M(t) e−α (log t)β dt would not be

convergent, contradicting our hypothesis. Hence (3.2) holds. This means that for
all large r,

M(λr) < (log λr)γ

λr
eα (log λr)β for some λ ∈

(
1 , 1 + 1

(log r)γ

)
. (3.3)

Step III. Since logM(r) is a convex function of log r, we have

(M(r))2 ≤M
(
r

λ

)
M(λr) (λ > 0) . (3.4)

This is our main tool. We use (3.1) and (3.3) in (3.4) to conclude that

lim
r→∞

r (log r)−(γ+β−1)/2M(r) e−α (log r)β = 0 . (3.5)

If r is sufficiently large and

λ ∈
(

1 , 1 + 1
(log r)γ

)
(3.6)

is chosen such that (possible by (3.3))

M(λr) < (log λr)γ
λr

eα (log λr)β ,

then using this and (3.1) in (3.4), we obtain

(M(r))2 ≤ c1(r) (log(r/λ))β−1

r/λ
eα (log(r/λ))β · (log(λr))γ

λr
eα (log(λr))β ,
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where c1(r) = o(1) as r →∞. Now, note that

(log(r/λ))β−1 (log(λr))γ = (log r)γ+β−1


(

1− log λ
log r

)β−1 (
1 + log λ

log r

)γ
≤ (log r)γ+β−1


(

1− log λ
log r

)β−1 (
1 + log λ

log r

)β−1


< (log r)γ+β−1

because γ < β − 1. Hence

(M(r))2

≤ c1(r)(log r)γ+β−1

r2 exp

α (log r)β
(1− log λ

log r

)β
+
(

1 + log λ
log r

)β
= c1(r)(log r)γ+β−1

r2 exp

α (log r)β
2 + (β (β − 1) + c2(r))

(
log λ
log r

)2


= c1(r)(log r)γ+β−1

r2 exp
{
α (log r)β

(
2 + (β (β − 1) + c2(r)) (log r)−2γ−2

)}
,

where c2(r) = o(1) as r → ∞, and where we have used (3.6) in the last line.
Note that β − 2γ − 2 is negative if 1 < β < 2 and zero if β ≥ 2. Hence
(log r)β−2γ−2 = O(1) as r →∞. This allows us to conclude that

M(r) ≤ c3(r) (log r)(γ+β−1)/2

r
eα (log r)β = c3(r) (log r)γ+(β−1−γ)/2

r
eα (log r)β ,

where c3(r) = o(1) as r →∞; which is equivalent to (3.5).
Inequality (3.5) is considerably stronger that (3.1) and provides a better esti-

mate for M(r/λ) in (3.4). Using (3.5) and (3.3) in (3.4) the way (3.1) and (3.3)
were used above in (3.4), we obtain

lim
r→∞

r (log r)−γ−(β−1−γ)/22
M(r) e−α (log r)β = 0 , (3.7)

which may in turn be used to conclude that

lim
r→∞

r (log r)−γ−(β−1−γ)/23
M(r) e−α (log r)β = 0 . (3.8)

Clearly, (3.8) is stronger than (3.7). Since this process can go on indefinitely, we
see that for any positive integer k, we have

lim
r→∞

r (log r)−γ−(β−1−γ)/2kM(r) e−α (log r)β = 0 ,

from which the desired result follows. �

Remark. The proof of Theorem 3.1 is of a somewhat wider scope than it might
appear. In fact, the property of the function M(r) by which logM(r) is a convex
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function of log r is shared by some other functions associated with an entire
function f . For example, if

Mp(r) :=
( 1

2π

∫ 2π

0

∣∣∣f(r eiθ)
∣∣∣p dθ

)1/p
, p > 0 ,

then, logMp(r) is a convex function of log r for any p > 0. This is a well-known
result of G. H. Hardy [19]. The reader might find [28] to be of some interest in
this connection.

Also, if f(z) := ∑∞
n=0 anz

n, then for any r > 0, the maximum of |an|rn for
n ∈ {0, 1, 2, . . .} is called the maximum term. It is usually denoted by µ(r) and
log µ(r) is known [39, pp. 30–31] to be a convex function of log r.



Chapter 4

FUNCTIONS HOLOMORPHIC AND
BOUNDED IN THE UNIT DISK

4.1. Introduction
In this chapter, I present a generalization of an inequality due to Govil, Rah-

man and Schmeisser [18] giving an estimation of the value of a polynomial of
degree n on the unit circle in terms of its value at the origin, and the values
of its two consecutive derivatives at the origin. My result is involving the value
of its third derivative at the origin in addition to the known result. An elegant
highlight of the Schwarz-Pick theorem is used in the proof of my result.

4.2. Functions holomorphic and bounded in |z| < 1
4.2.1. Some basic facts

Let f(z) := ∑∞
ν=0 aνz

ν be holomorphic with |f(z)| ≤ 1 for |z| < 1. Then
∞∑
ν=0
|aν |2r2ν = 1

2π

∫ 2π

0
|f(reiθ)|2 dθ ≤ 1 (0 < r < 1) ,

from which it follows that ∑∞ν=0 |aν |2 ≤ 1. In particular, we have

|aν | ≤ 1 (ν = 0, 1, 2, . . .) . (4.1)

It is also known that [37, p. 212 ] that

|f(z)| ≤ |z|+ |f(0)|
|f(0)||z|+ 1 = |z|+ |a0|

|a0||z|+ 1 (|z| < 1) . (4.2)

In (4.2) equality holds for functions of the form

f(z) := zeiγ + a0

a0zeiγ + 1 , |a0| < 1, γ ∈ R . (4.3)
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Another inequality which we wish to recall says that

|f(z)|2 + (1− |z|2)|f ′(z)| ≤ 1 (|z| < 1) .

It is known as the Schwarz–Pick theorem [1, p. 3]. In particular, it says that if
f(z) := ∑∞

ν=0 aνz
ν is holomorphic with |f(z)| ≤ 1 for |z| < 1, then

|a0|2 + |a1| ≤ 1 . (4.4)

In (4.4) equality holds for any function of the form (4.3). In fact, if f(z) is as in
(4.3), then f ′(0) = (1− |a0|2)eiγ.

Let B1 denote the class of all functions f(z) := ∑∞
ν=0 aνz

ν holomorphic in the
open unit disk D such that |f(z)| ≤ 1 for all z ∈ D. Note that f belongs to
B1 if and only if eiαf belongs to B1 for all α ∈ R. So, we may suppose that
a0 = f(0) ≥ 0. Then (4.4) says that if f(z) := ∑∞

ν=0 aνz
ν ∈ B1 and a0 ∈ [0 , 1),

then a1 lies in the disk of radius 1− |a0|2 centered at the origin.

Next, we note that f(z) := ∑∞
ν=0 aνz

ν belongs to B1 if and only if

eiαf(zeiβ) = a0eiα + a1ei(α+β)z +
∞∑
ν=2

aν ei(α+νβ)zν , α ∈ R , β ∈ R

does. By choosing α and β appropriately, we can arrange that

a0eiα = |a0| ≥ 0 and a1ei(α+β) = |a1| ≥ 0 .

There is therefore no loss of generality in assuming f(0) ≥ 0 and f ′(0) ≥ 0 in the
following question.

Question. Let f belong to B1 and suppose that f(0) and f ′(0) are given. What
kind of values can f ′′(0) take?

Here is the answer to this question.

Theorem 4.1. Let f(z) := ∑∞
ν=0 aνz

ν be holomorphic with |f(z)| ≤ 1 for |z| < 1.
Furthermore, let f(0) = a0 = a ≥ 0 , f ′(0) = a1 = b ≥ 0. Then∣∣∣∣∣a2 −

(
− ab2

1− a2

)∣∣∣∣∣ ≤ (1− a2)2 − b2

1− a2 . (4.5)

Inequality (4.5) says that a2 lies in the closed disk D(c ; ρ) whose center is c and
the radius is ρ, where

c := − ab2

1− a2 and ρ := (1− a2)2 − b2

1− a2 .

Any point in D(c ; ρ) is a possible value for a2 as we proceed to explain.
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(1−a2)2−b2

1−a2

−
{

(1− a2)− b2

1+a

}
− ab2

1−a2

Fig. 4.1. The disk where c
2 lies

Let us take the point

Pγ : − ab2

1− a2 −
(1− a2)2 − b2

1− a2 eiγ , 0 ≤ γ < 2π

belonging to the boundary of D(c ; ρ). We are going to construct a function
f(z) := ∑∞

ν=0 aνz
ν belonging to B1 for which

a0 = a , a1 = b and a2 = − ab2

1− a2 −
(1− a2)2 − b2

1− a2 eiγ . (4.6)

Since f(0) = a0 = a ≥ 0, the function

F (z) := f(z)− a
af(z)− 1 = − f ′(0)

1− a2 z + terms in higher powers of z (4.7)

belongs to B1 also. Now, note that the function

z
z eiγ − b

1−a2

− b
1−a2 z eiγ + 1

belongs to B1. Its Maclaurin series expansion is

z
z eiγ − b

1−a2

− b
1−a2 z eiγ + 1

= − b

1− a2 z + terms in higher powers of z (4.8)

and ∣∣∣∣∣z z eiγ − b
1−a2

− b
1−a2 z eiγ + 1

∣∣∣∣∣ ≤ r0
r0 + b

1−a2

b
1−a2 r0 + 1

≤ r0 (|z| ≤ r0 < 1) . (4.9)

Comparing (4.7) and (4.8), we see that in order to have a function f ∈ B1 with
f(0) = a and f ′(0) = b, we may consider f such that

f(z)− a
af(z)− 1 = z

z eiγ − b
1−a2

− b
1−a2 z eiγ + 1

=: w . (4.10)
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Solving for f(z), we find that

f(z) = a− w
1− aw

and so in view of (4.9), we have

|f(z)| ≤ r0 + a

ar0 + 1 < 1 (|z| ≤ r0 < 1) .

Thus, we know that the function f satisfying (4.10) belongs to B1. Now, let us
calculate the first three terms of its Maclaurin series. We easily see that

f(z) =
a+ b

1−a2 (1− a eiγ)z − eiγz2

1− b
1−a2 (eiγ − a)z − a eiγz2

=
{
a+ b

1− a2 (1− a eiγ)z − eiγz2
}{

1 + b

1− a2 (eiγ − a)z

+ aeiγz2 + b2

(1− a2)2 (eiγ − a)2z2 + · · ·
}

= a+ bz +{
a2eiγ+ ab2

(1− a2)2 (eiγ−a)2+ b2

(1− a2)2 (1−a eiγ)(eiγ−a)− eiγ
}
z2 + · · ·

= a+ bz +
{
−(1− a2)eiγ+ b2

(1− a2)2 (eiγ−a)(aeiγ−a2+1−aeiγ)
}
z2 + · · ·

= a+ bz + (1− a2)
{
−eiγ + b2

(1− a2)2 (eiγ−a)
}
z2 + · · ·

= a+ bz +
{
− ab2

1− a2 −
(1− a2)2 − b2

1− a2 eiγ
}
z2 + · · · ,

which proves that

f1(z) :=
a+ b

1−a2 (1− a eiγ)z − eiγz2

1− b
1−a2 (eiγ − a)z − a eiγz2 (4.11)

belongs to B1 and has the properties stipulated in (4.6).
Replacing γ by γ + π, we obtain the function

f0(z) :=
a+ b

1−a2 (1 + a eiγ)z + eiγz2

1 + b
1−a2 (eiγ + a)z + a eiγz2 =

∞∑
ν=0

aνz
ν , (4.12)

which belongs to B1 and for which

a0 = f0(0) = a, a1 = f ′0(0) = b and a2 = 1
2f
′′
0 (0) = − ab2

1− a2 + (1− a2)2 − b2

1− a2 eiγ .

Any point of the diameter of D(c ; ρ) that joins the points

Pγ : − ab2

1− a2 −
(1− a2)2 − b2

1− a2 eiγ and Pγ+π : − ab2

1− a2 + (1− a2)2 − b2

1− a2 eiγ
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can be written as

λ

{
− ab2

1− a2 −
(1− a2)2 − b2

1− a2 eiγ
}

+ (1− λ)
{
− ab2

1− a2 + (1− a2)2 − b2

1− a2 eiγ
}

for some λ ∈ [0 , 1]. Clearly, fλ(z) := λf1(z) + (1 − λ)f0(z) belongs to B1.
Furthermore, fλ(0) = a, f ′λ(0) = b and

1
2f
′′
λ (0) = λ

{
− ab2

1− a2 −
(1− a2)2 − b2

1− a2 eiγ
}

+(1− λ)
{
− ab2

1− a2 + (1− a2)2 − b2

1− a2 eiγ
}
.

Since γ can be any real number, we can find a function f(z) := ∑∞
ν=0 aνz

ν of
the form λf1(z) + (1− λ)f0(z), 0 ≤ λ ≤ 1 , γ ∈ R for which

a0 = f(0) = a , a1 = f ′(0) = b

and a2 is an arbitrarily chosen point of D(c ; ρ).
Now we turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. Without loss of generality, it has been assumed that
a0 = f(0) = a ≥ 0 and a1 = f ′(0) = b ≥ 0. By (4.4), a2 + b ≤ 1. We may suppose
that a < 1 since otherwise f would be identically 1 and a2 would be 0. Let us
consider the function

F (z) := f(z)− a
af(z)− 1 ,

introduced in (4.7). As we have already indicated, it belongs to B1. It is to be
noted that

F (0) = 0 and F ′(0) = − f ′(0)
1− a2 = − b

1− a2 .

Besides, simple calculation shows that

F ′′(z) = −(1− a2)f
′′(z)(1− af(z)) + 2 a(f ′(z))2

(1− af(z))3

and so
F ′′(0) = −2 ab2 + 2 a2(1− a2)

(1− a2)2 .

Thus,

F (z) = F (0) + 1
1!F

′(0)z + 1
2!F

′′(0)z2 + · · ·

= − b

1− a2 z −
ab2 + a2(1− a2)

(1− a2)2 z2 + · · · .
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Since F (0) = 0, the function φ(z) := F (z)/z also belongs to B1. Its Maclaurin
series expansion being

φ(z) = − b

1− a2 −
ab2 + a2(1− a2)

(1− a2)2 z + · · · ,

it follows from (4.4) that

b2

(1− a2)2 + |ab
2 + a2(1− a2)|

(1− a2)2 ≤ 1 ,

which can also be written as (4.5) �

Lemma 4-A. (Govil, Rahman, Schmeisser) [18] . If f(z) is an analytic function
and |f(z)| ≤ 1 in |z| < 1, then

|f(z)| ≤ (1− |a|) |z|2 + |bz|+ |a| (1− |a|)
|a| (1− |a|) |z|2 + |bz|+ (1− |a|) (|z| < 1) , (4.13)

where a = f(0), b = f ′(0).

Let
f(0) = a, f ′(0) = b, f ′′(0) = c .

Then, by Theorem 4.1, we have

t := |2ab2 + c (1− a2)| ≤ 2 (1− a2 − b)(1− a2 + b) . (4.14)

Let φ(z) := F (z)/z := 1
z
f(z)−a
af(z)−1 . Set

A := |φ(0)| = b

1− a2 , B := 1
2
|2ab2 + c(1− a2)|

(1− a2)2

and apply the lemma of Govil, Rahman and Schmeisser (Lemma 4-A) to the
function φ(z). We obtain

|F (z)| ≤ R(ρ) := (1− A)ρ3 +Bρ2 + A(1− A)ρ
A(1− A)ρ2 +Bρ+ 1− A (|z| = ρ < 1) .

Hence, for |z| = r < ρ:

|f(z)| ≤ R(ρ) + a

1 + aR(ρ)

=
(1−A)ρ3+Bρ2+A(1−A)ρ
A(1−A)ρ2+Bρ+1−A + a

1 + a(1−A)ρ3+aBρ2+aA(1−A)ρ
A(1−A)ρ2+Bρ+1−A

= (1− A)ρ3 + {B + aA(1− A)}ρ2 + {aB + A(1− A)}ρ+ a(1− A)
a(1− A)ρ3 + {aB + A(1− A)}ρ2 + {B + aA(1− A)}ρ+ 1− A .
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We have

1− A = 1− a2 − b
1− a2 , A(1− A) = b(1− a2 − b)

(1− a2)2 , B = 1
2
|2ab2 + c(1− a2)|

(1− a2)2 .

Using the parameter t introduced in (4.14), we find that

B + aA(1− A) = 1
(1− a2)2

{1
2 t+ ab(1− a2 − b)

}
,

aB + A(1− A) = 1
(1− a2)2

{
a

2 t+ b(1− a2 − b)
}

and
a(1− A) = a(1− a2 − b)

1− a2 .

Thus, setting
N(t) := (1− a2)(1− a2 − b)(ρ3 + a) +

(1− a2 − b)b(aρ2 + ρ) +
(1

2ρ
2 + a

2ρ
)
t (4.15)

and
D(t) := (1− a2)(1− a2 − b)(aρ3 + 1)+

b(1− a2 − b)(ρ2 + aρ) +
(
a

2ρ
2 + 1

2ρ
)
t (4.16)

we see that
|f(z)| ≤ ψ(t) := N(t)

D(t) (|z| = r ≤ ρ) , (4.17)

where t is subject to (4.14).
We note that ψ(t) is an increasing function of t. For this we calculate ψ′(t)

and find that

D2(t)ψ′(t)

=
(1

2ρ
2 + a

2ρ
)
{(1− a2)(1− a2 − b)(aρ3 + 1) + b(1− a2 − b)(ρ2 + aρ)}

−
(
a

2ρ
2 + 1

2ρ
)
{(1− a2)(1− a2 − b)(ρ3 + a) + b(1− a2 − b)(aρ2 + ρ)}

= 1
2(1− a2)(1− a2 − b){(ρ2 + aρ)(aρ3 + 1)− (aρ2 + ρ)(ρ3 + a)}

+1
2b(1− a

2 − b){(ρ2 + aρ)2 − (aρ2 + ρ)2}

= 1
2(1− a2)2(1− a2 − b)(ρ2 − ρ4)− 1

2b(1− a
2 − b)(1− a2)(ρ2 − ρ4)

= 1
2(1− a2 − b)2(1− a2)(ρ2 − ρ4) > 0
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for 0 < ρ < 1. This proves that ψ(t) is an increasing function of t. By (4.14),
t ≤ 2 (1− a2 − b)(1− a2 + b) and therefore for |z| ≤ ρ we have

|f(z)| ≤ψ(t) ≤ ψ
(
2 (1− a2 − b)(1− a2 + b)

)
= (1− a2)ρ3 + {1− a2 + ab+ b}ρ2 + {a(1− a2 + b) + b}ρ+ a(1− a2)
a(1− a2)ρ3 + {a(1− a2 + b) + b}ρ2 + {1− a2 + b+ ab}ρ+ (1− a2)

= (1− a)ρ3 + (1− a+ b)ρ2 + (a− a2 + b)ρ+ a− a2

(a− a2)ρ3 + (a− a2 + b)ρ2 + (1− a+ b)ρ+ 1− a

= (1− a)ρ2 + bρ+ a(1− a)
a(1− a)ρ2 + bρ+ 1− a .

Thus, the bound for |f(z)| given by (4.17) is generally smaller than the one given
by (4.13). Of course, (4.17) requires us to know f ′′(0) in addition to f(0) and
f ′(0) whereas (4.13) takes into account f(0) and f ′(0) only. As an immediate
application of the previous lemma, we have the following theorem.
Theorem 4.2. Let P (z) := ∑n

ν=0 cνz
ν be a polynomial of degree n having all its

zeros in |z| ≥ k ≥ 1 and let consider the following quantities

λ := k

n

P ′(0)
P (0) = k

n

c1

c0
, µ := k2

n

P ′′(0)
P (0) = 2k

2

n

c2

c0
and τ := k3

n

P ′′′(0)
P (0) = 6k

3

n

c3

c0
.

Then
max
|z|=1
|P ′(z)| ≤ nR(k) max

|z|=1
|P (z)|,

where

R(k) := (1− A) + {B + |λ|A(1− A)}k + {|λ|B + A(1− A)}k2 + |λ|(1− A)k3

{B + |λ|A(1− A)}k(1 + k2) + {|λ|B + A(1− A)}k2 + (1− A)(1 + k4) ,

A := |µ− (n− 1)λ2|
1− |λ|2

and B := |τ(1− |λ|2) + 2µ2λ̄+ (3n− 4)µλ+ (7n− 8)µλ|λ|2 + 2(n− 1)2λ3|
2(1− |λ|2)2 .

Proof of Theorem 4.2. Let us recall the polynomial Q(z) := znP (1
z
) and

consider the function
f(z) := kP ′(kz)

nP (kz)− kzP ′(kz) .

Since P (z) is not vanishing for |z| < k, then by the Laguerre’s theorem (Theorem
A-B in the Appendix B)

nP (z) + (ζ − z)P ′(z) 6= 0 (|ζ| < k and |z| < k),

hence
|nP (z)− zP ′(z)| 6= |ζ||P ′(z)| (|ζ| < k and |z| < k)
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and consequently f is holomorphic on the unit disk and |f(z)| ≤ 1 for |z| < 1.
Furthermore, a long calculation gives f(0) = λ, f ′(0) = µ − (n − 1)λ2 and
f ′′(0) = τ + 2(n− 1)2λ3 + (3n− 4)λµ. In view of (4.17) we have, for |w| = ρ < 1,

|f(w)| ≤ (1− A)ρ3 + {B + |λ|A(1− A)}ρ2 + {|λ|B + A(1− A)}ρ+ |λ|(1− A)
|λ|(1− A)ρ3 + {|λ|B + A(1− A)}ρ2 + {B + |λ|A(1− A)}ρ+ 1− A .

In the last inequality, if we replace w by z
k
where |z| = 1, then we obtain

k|P ′(z)| ≤ r(k)
k3r

(
1
k

) |Q′(z)| (|z| = 1)

where r(k) := (1−A)+{B+ |λ|A(1−A)}k+{|λ|B+A(1−A)}k2 + |λ|(1−A)k3.

By (1.5) we have

|P ′(z)|+ |Q′(z)| ≤ nmax
|z|=1
|P (z)| (|z| = 1)|.

Using this two inequalities, we obtain{
1 + k4

r(k)r
(1
k

)}
|P ′(z)| ≤ |P ′(z)|+ |Q′(z)| ≤ nmax

|z|=1
|P (z)| (|z| = 1)|,

and consequently
max
|z|=1
|P ′(z)| ≤ nR(k) max

|z|=1
|P (z)|,

where R(k) := r(k)
r(k) + k4r

(
1
k

) . �

Remark. Our result in Theorem 4.2. contains the result of Malik (Theorem
1.D.) as it is shown in what follows.

Recall that R(k) = r(k)
r(k) + k4r

(
1
k

) , where
r(k) := (1− A) + {B + |λ|A(1− A)}k + {|λ|B + A(1− A)}k2 + |λ|(1− A)k3.

We have to show that R(k) ≤ 1
1+k , (k ≥ 1), which is equivalent to show that

r(k) ≤ k3r
(

1
k

)
. Let check the sign of k3r

(
1
k

)
− r(k). We have

k3r
(1
k

)
− r(k) = (1− A)k3 + {B + |λ|A(1− A)}k2 + {|λ|B + A(1− A)}k

+ |λ|(1− A)

= (1− |λ|)(1− A)(k3 − 1) + (1− |λ|)k(k − 1){B − A(1− A)}

= (1− |λ|)(k − 1){(1− A)(k2 + k + 1) + kB − kA(1− A)}

= (1− |λ|)(k − 1){(1− A)k2 + [B + (1− A)2]k + (1− A)}
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Using the condition |f(z)| ≤ 1 for |z| < 1 and the Schwarz-Pick theorem, we

deduce that |λ| ≤ 1 and A = |f ′(0)|
1− |f(0)|2 ≤ 1. Furthermore B ≥ 0, hence

k3r
(

1
k

)
− r(k) ≥ 0, and consequently R(k) ≤ 1

k+1 for k ≥ 1.
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CONCLUSION

In this dissertation, we were able to extend some results given by Govil, Rah-
man, and Schmeisser and to describe the behaviour of M(r)e−α(log r)β as r → ∞
when

∫ ∞
1

M(r)e−α(log r)βdr is convergent. Moreover, we extended a result of Govil
(Theorem 1-E) to a special class of entire functions of exponential type (Theorem
2.1).

However, in view of this thesis, some comments and questions which can be
considered in future works arise :
1- It seems that the sharp estimation of |P ′(z)| over the unit circle, in the case
where P (z) 6= 0 for |z| < k when k < 1, requires new most sophisticated methods,
since the improvement in the case where P (z) having its zeros on the circle |z| = k

is very small.
2- More generaly, how large can be

max|z|=1 |P ′(z)|
max|z|=1 |P (z)|

when P (z) lies among all the polynomials of degree n having m zeros inside the
circle |z| = k?
3- In Theorem 2.1 (and analogously Theorem 1-E) there is a condition which
should be verified, i.e. “sup−∞<x<∞ |f ′(x)| and sup−∞<x<∞ |w′f (x)| are both at-
tained at the same point of the real axis”. This hypothesis is very restrictive, can
it be replaced by a weakly one? Even in the polynomial case, the problem turned
to be challenging.





Appendix A

THE GAUSS–LUCAS THEOREM

Let g be a polynomial. We shall use K(g) to denote the convex hull of the zeros
of g. It may be noted that K(g) is the smallest convex set containing all the zeros
of g.

Theorem A-A (K.F. Gauss & F. Lucas) Let f(z) := c
∏n
ν=1(z − zν) be a poly-

nomial of degree n. Then K(f ′) ⊆ K(f).

Proof. We need to show that any critical point ζ of f (a zero of f ′) can be
expressed as a convex linear combination of the zeros z1, . . . , zn. It is clear that
ζ is either a multiple zero of f or else

n∑
ν=1

1
ζ − zν

= 0 . (A.1)

If ζ = zµ, then we can write ζ = ∑n
ν=1 λνzν , where

λν :=

 1 if ν = µ ,

0 otherwise .

Now, let us turn to the case where (A.1) holds. Then ζ 6= zν for all ν. Since
a complex number vanishes if and only if its conjugate does, (A.1) holds if and
only if

n∑
(ν=1

ζ − zν
|ζ − zν |2

= 0 ,

that is, if and only if n∑
µ=1

1
|ζ − zµ|2

 ζ =
n∑
ν=1

ζ

|ζ − zν |2
=

n∑
ν=1

zν
|ζ − zν |2

,

that is, if and only if

ζ =
n∑
ν=1

(
|ζ − zν |−2∑n
µ=1 |ζ − zµ|−2

)
zν .
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This says that ζ = ∑n
ν=1 λν zν , where

λν := |ζ − zν |−2∑n
µ=1 |ζ − zµ|−2 (ν = 1, . . . , n) .

Clearly, the numbers λν are all positive and and their sum is 1. �



Appendix B

A THEOREM OF E. LAGUERRE

By a circular domain we mean a domain D in C which is of one of the following
forms:

(i){z : |z−a| < ρ} , (ii){z : |z−a| ≤ ρ} , (iii){z : |z−a| > ρ} , (iv){z : |z−a| ≥ ρ} ,

(v) {z : ={(z − z0) eiγ} < 0} , (vi) {z : ={(z − z0) eiγ} ≤ 0} ,

where z0 ∈ C and γ ∈ R.
The following result is Laguerre’s theorem as formulated by Szegö [36, p. 33].

In this form it has proved to be a very efficient tool.

Theorem A-B Let f(z) be a polynomial of degree at most n having no zeros in
the circular domain D. Then

n f(z) + (ζ − z)f ′(z) 6= 0 (z ∈ D , ζ ∈ D) . (B.1)

Proof. Let f(z) := c
∏m
ν=1(z− zµ), m ≤ n and suppose that D is of the form (i).

For any z ∈ D, we have
f ′(z)
f(z) =

m∑
µ=1

1
z − zµ

and so

n+ (ζ − z) f
′(z)
f(z) = n+

m∑
µ=1

ζ − z
z − zµ

=
m∑
µ=1

(
ζ − z
z − zµ

+ 1
)

+ n−m

= n · 1
n

 m∑
µ=1

ζ − zµ
z − zµ

+
∑

n−m terms
1


For z ∈ D and ζ ∈ D, arbitrarily chosen but fixed, we can find ρ0 < ρ such that z
and ζ still belong to |z − a| < ρ0. Then, according to our hypothesis, the points
z1, . . . , zn all lie outside the circle C := {z ∈ C : |z − a| = ρ0}.
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As usual, let Ĉ denote the extended complex plane, that is, Ĉ := C ∪ {∞}
and consider the Möbius transformation

T (w) := ζ − w
z − w

.

Under this transformation, no point in C\{|w − a| < ρ0} goes to the point at
infinity. Also the point at infinity does not; in fact, the point at infinity goes
to 1 under this transformation. Thus we see that the transformation T maps
Ĉ\{|w − a| < ρ} onto a closed disk ∆ having 1 as one of its interior points and
the circle C onto a circle Γ containing ∆ inside it. It is important to note that 0
lies outside the circle C whereas ∆ lies inside it. Note that

ζ − z1

z − z1
, . . . ,

ζ − zn
z − zm

all lie in ∆ and so does 1. With this we see that

1
n

 m∑
µ=1

ζ − zµ
z − zµ

+
∑

n−m terms
1


is the arithmetic mean (center of gravity) of n numbers all lying in the closed
disk ∆. So, it must lie in ∆ too and cannot be 0 since 0 lies outside ∆. Thus

n+ (ζ − z) f
′(z)
f(z) = n · 1

n

 m∑
µ=1

ζ − zµ
z − zµ

+
∑

n−m terms
1
 6= 0 ,

which implies (B.1).

Now let D be of the form (ii). In this case, there exists ρ1 > ρ such that p has
no zeros in the disk D1 := {z| :: |z − a| < ρ1. By what we have already proved

nf(z) + (ζ − z)f ′(z) 6= 0 (z ∈ D1 , ζ ∈ D1) ,

which covers (B.1).
Using appropriate linear transformations we can deduce the desired result in

a case where D is of one of the remaining four forms. �



Appendix C

HADAMARD’S THREE CIRCLES THEOREM

In this section we collect some basic facts about the functionM(r) which we have
used in our proof of Theorem 3.1.

Convexity of logM(r) as a function of log r
Hadamard’s three-circles theorem [37, p. 172] says: Let f(z) be an analytic

function, regular for r1 ≤ |z| ≤ r3. Furthermore, let r1 < r2 < r3, and let
M1,M2,M3 be the maxima of |f(z)| on the three circles |z| = r1, r2, r3, respec-
tively. Then

M
log(r3/r1)
2 ≤M

log(r3/r2)
1 M

log(r2/r1)
3 . (C.1)

Since we may write (C.1) in the form

logM(r2) ≤ log r3 − log r2

log r3 − log r1
logM(r1) + log r2 − log r1

log r3 − log r1
logM(r3) , (C.2)

Hadamard’s three-circles theorem may be expressed by saying that logM(r) is a
convex function of log r.

In our case, M(r) := max|z|=r |f(z)|, where f is an entire function. Unless f
is a constant, M(r) is a strictly increasing function of r. It is easily seen that
f(z) is a polynomial of degree n, that is f(z) := ∑n

ν=0 aνz
ν , an 6= 0 if and only

if logM(r)
log r → n as r → ∞. From (C.2) it follows that if f(z) is a transcendental

entire function, then there exists a number r0 such that logM(r)
log r is an unbounded

strictly increasing function of r for r ≥ r0.
We know that logM(r) is continuous. In addition, it is a convex function

of log r. It is known (see [8, p. 142]) that a continuous convex function has
finite right-hand and left-hand derivatives at each point, and that these derivatives
themselves are nondecreasing functions.





Appendix D

ALMOST PERIODIC FUNCTIONS

This section contains some basic facts about uniformly almost periodic functions.
A periodic function f with period ∆ has the property that f(x + t) = f(x)

for all real x and any t ∈ {0, ±∆, ±2∆, . . .}. The set E := {0, ±∆, ±2∆, . . .}
has the property that every interval (α , α+ `) of length greater than ∆ contains
at least one element of E.

In order to explain what an almost periodic function means we need to intro-
duce the following definition.

Definition A-D. A set E of real numbers is said to be relatively dense if there
exists a positive number ` such that any interval (α , α+ `) contains at least one
number of E.

The set E := {0, ±∆, ±2∆, . . .} associated with a ∆-periodic function f is
relatively dense. On the hand, the set {±n2 : n ∈ N} is not relatively dense.

For a periodic function f the equation f(x+ t) = f(x) is satisfied for all real
x and infinitely many values of t which form a relatively dense set. If f is not
periodic but the equation f(x + t) = f(x) is satisfied with arbitrary degree of
accuracy for an infinitely many values of t which form a relatively dense set, then
we say that f is almost periodic. In somewhat more precise terms, f is almost
periodic if for any positive ε, there exists a relatively dense set E = E(ε) such
that |f(x+ t)− f(x)| ≤ ε for all real x and all t ∈ E.

Definition B-D. A real number t = t (ε) = tf (ε) is called a translation number
of f corresponding to ε provided that |f(x+ t)− f(x)| ≤ ε for all real x.

We are now ready to give the precise definition of a uniformly almost periodic
function.
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Definition C-D. A continuous function f : R → C is called uniformly almost
periodic function, u.a.p. for short, if there exists a relatively dense set of trans-
lation numbers of f corresponding to any given ε > 0. In other words, for any
ε > 0 we can find a positive number ` = ` (ε) such that an arbitrary interval of
length ` contains at least one translation number t (ε).

Clearly, any continuous periodic function is uniformly almost periodic. If f is
uniformly almost periodic then so is cf for any constant c; also |f | is u.a.p. since
||f(x+ t)| − |f(x)|| ≤ |f(x+ t)− f(x)|. Here are some other properties of u.a.p.
functions. We refer the reader to [4., pp. 2–6, 12–15] for proofs.

• A u.a.p. function f is bounded on the real axis, i.e. there exists a constant
M = M (f) such that |f(x)| ≤M for all real x.
• A u.a.p. function f is uniformly continuous for −∞ < x <∞, i.e. to an
arbitrary ε > 0 there corresponds a δ = δ (ε) > 0 such that

|f(x1)− f(x2)| ≤ ε (|x1 − x2| ≤ δ) .

• The limit function f(x) of a sequence of u.a.p. functions f1(x), . . . , fn(x), . . .,
uniformly convergent for −∞ < x <∞, is also u.a.p.
• If f and g are two u.a.p. functions, then f + g and fg are both u.a.p.
• If f is u.a.p., then (1/T )

∫ T
0 f(x) dx tends to a finite limit as T → ∞.

The limit is denoted byM{f} and is called the mean value. Since |f | is
u.a.p. because f is, we may add that also (1/T )

∫ T
0 |f(x)| dx tends to a

finite limit as T tends to ∞.
Let f be uniformly almost periodic. Since g(x) := e−iλx is periodic and so

uniformly almost periodic, the product f(x) e−iλx is uniformly almost periodic.
Hence,

a(λ) =M{f(x) e−iλx} := lim
T→∞

1
T

∫ T

0
f(x) e−iλx dx (D.1)

exists and this for any λ ∈ R. The following result (see [4., pp. 16–18] for a
proof) plays a key role in the theory of u.a.p. functions.

Theorem A-D. Let f be uniformly almost periodic, and let a(λ) be as in (D.1).
Then a(λ) = 0 except for a countable number of λ’s.

Let f be uniformly almost periodic. Denote the values of λ for which a(λ)
differs from zero by Λ1, Λ2, . . . , and write An := a(Λn) for n ∈ N. We call
the numbers Λ1, Λ2, . . . , Fourier exponents and the numbers A1, A2, . . . Fourier
coefficients of the function f . The formal series

∞∑
n=1

An eiΛnx = A1 eiΛ1x + A2 eiΛ2x + · · ·
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is called the Fourier series of f .

The following result for whose proof we refer the reader to [4., pp. 21–28] is
called “Bohr’s fundamental theorem” or “Parseval equation”.

Theorem B-D. Let f(x) be any u.a.p. function and let ∑∞n=1An eiΛnx be its
Fourier series. Then

M{|f |2} =
∞∑
n=1
|An|2 .

By a result in [4., pp. 51–52], the Fourier series ∑∞n=1An eiΛnx of a uni-
formly almost periodic function is absolutely convergent if the Fourier coefficients
A1, A2, . . . are positive. This result has been extended; the extended version [33,
Lemma 1] says that the Fourier series of a uniformly almost periodic function
is absolutely convergent as long as the coefficients A1, A2, . . . lie in a sector of
opening γ ∈ (0 , π).

It is useful to know (see for example [5]) that the Fourier exponents Λn of a
uniformly almost periodic entire function of exponential type are bounded. The
following lemma clearly shows this.

Lemma A-D. Let f be an entire function of exponential type τ bounded on the
real axis, and let λ be any real number such that |λ| > τ . Then

lim
T→∞

1
T

∫ T

0
f(x) eiλx dx = 0 . (D.2)


