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Abstract

A measure of association is row-size invariant if it is unaffected by
the mutliplication of all entries in a row of a cross-classification table
by a same positive number. It is class-size invariant if it is unaffected
by the mutliplication of all entries in a class (i.e., a row or a column).
We prove that every class-size invariant measure of association as-
signs to each m×n cross-classification table a number which depends
only on the cross-product ratios of its 2× 2 subtables. We propose a
monotonicity axiom requiring that the degree of association should in-
crease after shifting mass from cells of a table where this mass is below
its expected value to cells where it is above —provided that total mass
in each class remains constant. We prove that no continuous row-size
invariant measure of association is monotonic if m ≥ 4. Keywords:
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monotonicity, transfer principle.
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1 Introduction

This paper revisits the old problem of measuring the degree of association
between two characteristics whose values cannot be quantified or even ordered
in a meaningful way. Gender, professional occupation, ethnic origin, political
affi liation are all common examples. Each characteristic may fall in a number
of predetermined classes and the distribution of the two characteristics in the
population under consideration is summarized by a cross-classification table:
this is an m× n matrix whose (i, j)th entry records the mass of individuals
whose first characteristic belongs to class i and whose second characteristic
belongs to class j. A measure of association is a function which assigns
a number to each such matrix. A survey of the literature on the problem
of constructing such a measure is offered in Goodman and Kruskal (1954).
The measurement of racial segregation is an example of application that
has received distinguished attention: see the survey by James and Taeuber
(1985)1.
We are interested here in association measures that are invariant under

multiplication of all entries in any given class —row or column—by a same
positive number. Such measures are sometimes called “margin-free”. The
motivation for this class-size invariance axiom is that the total mass in a
class is often determined by factors that have nothing to do with the inherent
association between the characteristics. Yule (1912), who originally suggested
the axiom, gives the following example. Suppose we are concerned with the
effect of a medical treatment on persons suffering from a potentially fatal
disease: the first characteristic is whether or not the person received the
treatment, the second is whether or not the person died from the disease.
Data from two hospitals are recorded in the following tables.

Hospital 1

Lived Died Total
Treated 84 4 88

Not treated 3 9 12
Total 87 13 100

Hospital 2

1The problem of measuring correlation between ordinal characteristics (whose values
cannot be measured but can be ordered) is different and has generated a separate literature.

2



Lived Died Total
Treated 42 2 44

Not treated 14 42 56
Total 56 44 100

These two tables differ only in the proportion of persons who received
treatment and the proportion who did not: the second table may be obtained
from the first by multiplying the first row by 1

2
and multiplying the second by

14
3
. It follows that the conditional probabilities of life given treatment (non-

treatment) are the same in both hospitals, namely .955 (.250). The degree of
association between treatment and life should therefore be considered equal
in both hospitals; the fact that the proportion of persons receiving treatment
is higher in hospital 1 is irrelevant.
Class-size invariance is well understood in the case of dichotomous char-

acteristics, i.e., whenm = n = 2. In that case, Edwards (1963) and Goodman
(1965) showed that every class-size invariant measure must be a function of
the cross-product ratio of the cross-classification table, that is, the ratio be-
tween the product of its diagonal entries and the product of its off-diagonal
entries.
For tables of arbitrary dimensions, Yule and Kendall (1950) observed that

any function of the cross-product ratios of the 2×2 subtables defines a class-
size invariant measure. Goodman (1969) showed how to use the collection
of 2× 2 cross-product ratios to study patterns of association. The class-size
invariant approach was extended to continuous densities by Plackett (1965),
Mosteller (1968), Holland and Wang (1987), and others.
Our first contribution in this paper is to prove the converse of Yule and

Kendall’s observation: every class-size invariant measure of association as-
signs to each m × n cross-classification table a number which depends only
on the cross-product ratios of its 2× 2 subtables.
Class-size invariance is a demanding property. In many contexts, a one-

sided version of the axiom is more compelling. In fact, in Yule’s example, the
argument that the hospital’s choice of the proportion of treated patients has
nothing to do with the association between treatment and life justifies row-
size invariance: multiplying all entries in a row by a same number should
leave the degree of association unchanged. The dual axiom of column-size
invariance, on the other hand, makes little sense because “multiplying all
entries in a column by a same number”is not an operation within the hos-
pital’s control. More generally, row-size invariance is appealing when a one-
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directional causal relationship is suspected between the row characteristic
and the column characteristic. The axiom has been discussed in a number
of applications, notably in the literature on segregation measurement: see
for instance James and Taeuber (1985) and Reardon and Firebaugh (2002).
Class-size invariance may be a better axiom when there is no reason to sus-
pect a one-directional causality between the characteristics.
Our second contribution consists in proving a disturbing incompatibility

between row-size invariance (hence, a fortiori, class-size invariance) and a
monotonicity condition which, we believe, captures the essence of what an
association measure should do. It is generally accepted that (the absolute
value of) a meaningful measure should reach its minimum when the charac-
teristics are independent, that is to say, when the proportion of observations
in any given cell (i, j) of the cross-classification table is equal to the expected
proportion, namely, the product of the proportion of observations in row i by
the proportion of observations in column j. We submit that an increase in
the mass of observations in cells where this mass already exceeds the expected
mass, coupled with a decrease in the mass of observations in cells where it
falls short of the expected mass should, if total mass in each class is kept
unchanged, increase the degree of association. We prove that no continuous
row-size invariant measure satisfies this monotonicity axiom if m ≥ 4.

2 Framework

Let M = {1, ...,m}, m ≥ 2, be the set of relevant classes for the first char-
acteristic and let N = {1, ..., n}, n ≥ 2, be the set of relevant classes for
the second characteristic. A cross-classification table is an m × n positive
real matrix A. The number aji in the intersection of row i and column j
records the mass of agents whose first characteristic belongs to class i and
whose second characteristic belongs to class j. We denote the ith row of A
by Ai and its jth column by Aj. We write ai =

∑
j∈N a

j
i , a

j =
∑

i∈M aji , and
a =

∑
i∈M

∑
j∈N a

j
i .We let A(m,n) denote the set of positive real m×n ma-

trices and define an (association) measure to be a function F : A(m,n)→R+.
A number of remarks are in order.

1) The labels 1, ...,m attached to rows and the labels 1, ..., n attached
to columns are used for convenience only. They have no intrinsic meaning:
a lower label should not be interpreted as reflecting a “lower value”of the
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characteristic. No relevant order structure is assumed on the sets M, N :
characteristics are only “categorical”, not “ordinal”.

2) A fundamental role of an association measure is to allow ordinal com-
parisons across cross-classification tables. Any function F : A(m,n)→R+
generates an association ordering % on A(m,n) via the relation A % B ⇔
F (A) ≥ F (B) : the two characteristics are “more closely associated”in table
A than in table B if and only if the association measure reaches a higher value
at A than at B. We are primarily interested here in this ordering, which is
invariant under monotonic transformations of F . Cardinal measures of asso-
ciation are beyond the scope of this paper.

3) We assume that the number of relevant classes for each characteristic is
fixed. We do so because the size invariance and monotonicity axioms do not
require a variable-dimensions framework. It is straightforward to reformulate
our results in such an extended context (taking ∪(m,n)≥(2,2)A(m,n) as the
domain of an association measure) but this generalization brings no new
insight into the problem we are interested in.

4) We assume that the entries in all cross-classification tables under con-
sideration are real numbers rather than integers. This is important for the
incompatibility result of Section 4, which involves a continuity argument. On
the other hand, we could (at the cost of a somewhat cumbersome reformula-
tion of the size invariance axioms) express our results in a framework where
the total mass of observations, a, is fixed and equal to one.

5) We focus on positive matrices. We briefly discuss the construction
of class-size invariant measures when zero entries are allowed at the end of
Section 3.

3 The class-size invariant measures of associ-
ation

If A ∈ A(m,n), i ∈ M, j ∈ N and λ ∈ R++, we denote by (λAi, A−i)
the matrix obtained by multiplying each entry of the ith row of A by λ
and leaving all other entries unchanged. Likewise, (λAj, A−j) is the matrix
obtained by multiplying each entry of the jth column of A by λ and leaving
all other entries unchanged.
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Class-Size Invariance. For all A ∈ A(m,n), i ∈ M, j ∈ N and λ ∈ R++,
F (λAi, A−i) = F (A) = F (λAj, A−j).

An elementary submatrix of A ∈ A(m,n) (also called a “tetrad”by Yule
and Kendall (1950)) is any 2× 2 submatrix whose entries belong to adjacent
rows and columns of A. The cross-product ratio of an elementary submatrix
(or an elementary cross-product ratio for short) is the ratio between the
product of the diagonal entries of this submatrix and the product of its
off-diagonal entries. Theorem 1 below asserts that a measure is class-size
invariant if and only if it assigns to each matrix a number that can be written
as a function of its elementary cross-product ratios.
More formally: for all A ∈ A(m,n), all i ∈M \ {m} and all j ∈ N \ {n},

define

rji (A) =
ajia

j+1
i+1

aj+1i aji+1

and let r(A) ∈ A(m− 1, n− 1) denote the matrix (rji (A))
j∈N\{n}
i∈M\{m}.

Theorem 1. Ameasure F : A(m,n)→ R+ is class-size invariant if and only
if there exists a function f : A(m−1, n−1)→ R+ such that F (A) = f(r(A))
for all A ∈ A(m,n).
Proof. “If”. This follows from the fact that for any λ > 0, i ∈ M and
j ∈ N, we have r(λAi, A−i) = r(A) = r(λAj, A−j).

“Only if”. Let F be a class-size invariant measure and let A,B ∈ A(m,n)
be such that r(A) = r(B).We show that F (A) = F (B).We use the following
notation: if C,D ∈ A(p, q), then C ∗D is the matrix in A(p, q) whose (i, j)th
entry is the product cjid

j
i of the (i, j)th entries of C and D.

Step 1. There exist λ, λ2, λ2 > 0 such that(
b11 b21
b12 b22

)
=

(
λ λ2

λ2
λ2λ

2

λ

)
∗
(
a11 a21
a12 a22

)
. (1)

To see this, simply define λ = b11
a11
, λ2 =

b12
a12
, and λ2 = b21

a21
. Trivially, b11 = λa11,

b12 = λ2a
1
2, and b

2
1 = λ2a21. And since r(A) = r(B) implies

a11a
2
2

a21a
1
2

=
b11b

2
2

b21b
1
2

,
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we have

b22 =

(
b21b

1
2a
1
1

a21a
1
2b
1
1

)
a22 =

λ2λ
2

λ
a22,

proving (1).

Step 2. There exist λ; λ2, ..., λm; λ2, ..., λn > 0 such that

B =


λ λ2 λ3 · · · λn

λ2
λ2λ

2

λ
λ2λ

3

λ
· · · λ2λ

n

λ
...

...
λm

λmλ
2

λ
λmλ

3

λ
· · · λmλ

n

λ

 ∗ A. (2)

For ease of exposition we assume m ≤ n; the case n ≤ m is treated
similarly. From Step 1 we know that there exist λ, λ2, λ

2 > 0 such that
bji =

(
λiλ

j

λ

)
aji for all (i, j) ∈M×N such that max(i, j) ≤ 2. Here and below,

λ1 = λ1 = λ. The rest of the proof proceeds by induction on max(i, j).
Fix an integer k such that 2 < k < n and make the following induction

hypothesis: there exist λ; λ2, ..., λmin(k−1,m); λ
2, ..., λk−1 > 0 such that bji =(

λiλ
j

λ

)
aji for all (i, j) ∈ M × N such that max(i, j) ≤ k − 1. We make two

claims. The first is that there exists a number λk > 0 such that

bki =

(
λiλ

k

λ

)
aki for i = 1, ...,min(k − 1,m). (3)

The second claim is that, if k − 1 < m, there exists a number λk > 0 such
that

bjk =

(
λkλ

j

λ

)
ajk for j = 1, ..., k. (4)

In order to prove the first claim, define λk = bk1
ak1
. By construction, bk1 =

λkak1 =
λ1λ

k

λ
ak1. Next, fix an integer q such that 1 < q < k and make the

auxiliary induction hypothesis that bki =
(
λiλ

k

λ

)
aki for i = 1, ..., q− 1. By the

assumption r(A) = r(B) we have

ak−1q−1a
k
q

akq−1a
k−1
q

=
bk−1q−1b

k
q

bkq−1b
k−1
q

,
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hence,

bkq =

(
ak−1q−1b

k
q−1b

k−1
q

akq−1a
k−1
q bk−1q−1

)
akq . (5)

By the (main) induction hypothesis, bk−1q =
(
λqλ

k−1

λ

)
ak−1q and bk−1q−1 =

(
λq−1λk−1

λ

)
ak−1q−1 whereas by the auxiliary induction hypothesis b

k−1
q−1 =

(
λq−1λk

λ

)
akq−1.

Therefore (5) implies

bkq =

(
λqλ

k

λ

)
akq ,

proving our first claim.
The proof of the second claim is similar. Suppose k−1 < m. Define λk =

b1k
a1k
. Then b1k = λka

1
k =

λkλ
1

λ
a1k. Fix an integer q such that 1 < q ≤ k (notice

the weak inequality this time) and make the second auxiliary hypothesis that

bjk =
(
λkλ

j

λ

)
ajk for j = 1, ..., q − 1. By assumption,

aq−1k−1a
q
k

aq−1k aqk−1
=

bq−1k−1b
q
k

bq−1k bqk−1
,

hence

bqk =

(
aq−1k−1b

q−1
k bqk−1

aq−1k aqk−1b
q−1
k−1

)
aqk. (6)

By the main induction hypothesis, bq−1k−1 =
(
λk−1λ

q−1

λ

)
aq−1k−1. By the sec-

ond auxiliary induction hypothesis, bq−1k =
(
λkλ

q−1

λ

)
aq−1k . Finally, bqk−1 =(

λk−1λ
q

λ

)
aq−1k : this holds by virtue of the main induction hypothesis if q < k

and by virtue of the first claim we proved if q = k. Therefore (6) implies

bqk =

(
λkλ

q

λ

)
aqk,

proving our second claim.

Step 3. Because of (2), the matrix B can be obtained by (i) multiplying
A1 and A1 by

√
λ, (ii) multiplying Ai by λi√

λ
for each i = 2, ...,m, and (iii)

multiplying Aj by λj√
λ
for each j = 2, ..., n. Class-Size Invariance now implies

that F (A) = F (B).�
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We make two brief remarks on Theorem 1.

1) The function f whose existence is asserted in Theorem 1 is unique. The
reason is that for each z ∈ A(m−1, n−1) there exists a matrix A ∈ A(m,n)
such that r(A) = z.
Of course, the cross-product ratio can be defined for every 2 × 2 (not

necessarily elementary) submatrix of A : for all i, k ∈M such that i < k and
all j, l ∈ N such that j < l, let

rj,li,k(A) =
ajia

l
k

alia
j
k

.

One checks that
rj,li,k(A) =

∏
i′=i,...,k−1
j′=j,...,l−1

rj
′

i′ (A). (7)

It follows that any function of the cross-product ratios of all 2×2 submatrices
of a matrix can be rewritten as a function of its elementary cross-product
ratios only.
We may therefore reformulate Theorem 1 as follows. Denote by µ the

number of 2 × 2 submatrices of any matrix A ∈ A(m,n). Let r(A) =
(rj,li,k(A))

1≤j<l≤n
1≤i<k≤m ∈ R

µ
++ be the vector of cross-product ratios of these sub-

matrices. A measure F : A(m,n) → R+ is class-size invariant if and
only if there exists a function f : Rµ++ → R+ such that F (A) = f(r(A))
for all A ∈ A(m,n). Such a function f, however, is not unique because
r : A(m,n)→ Rµ++ is not onto.
2) In many applications cross-classification tables may have some zero

entries. Class-size invariant measures may be defined on the domain of non-
negative real m × n matrices having at least one positive 2 × 2 submatrix.
Let Ã(m,n) denote that domain. For each A ∈ Ã(m,n), let r̃(A) denote
the vector of cross-product ratios of all the positive 2× 2 submatrices of A.
For any function f̃ , the measure F defined on Ã(m,n) by F (A) = f̃(r̃(A))
is class-size invariant.

4 The incompatibility between Row-Size In-
variance and Monotonicity

In order to construct a good measure of association, it is useful to identify
circumstances under which the degree of association between two character-
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istics should undoubtedly be deemed to increase. The fundamental postulate
of the literature is that association is nil in the case of independence, i.e., in a
matrix A such that ajia = aia

j for all i ∈M and j ∈ N. Taking independence
as a benchmark, we say that i, j are positively associated (in A) if

ajia > aia
j, (8)

or equivalently aji >
aia

j

a
, i.e., if the mass of observations in cell (i, j) exceeds

the “expected”mass. We say that i, j are negatively associated if the opposite
strict inequality holds.

We submit that the degree of association between two characteristics
should increase when we shift mass from cells where the mass is already
below expectation to cells where it is already above —provided that the total
mass in every class (row or column) remains unchanged. Our monotonicity
condition focuses on the simplest such shifts.

Monotonicity. Let i, i′ ∈ M and j, j′ ∈ N be such that i 6= i′ and j 6= j′.
Let A,B ∈ A(m,n). Suppose that both i, j and i′, j′ are positively associated
in A while both i, j′ and i′, j are negatively associated. If there exists δ > 0
such that bji = aji + δ, bj

′

i′ = aj
′

i′ + δ, bj
′

i = aj
′

i − δ, b
j
i′ = aji′ − δ, and blk = alk

whenever k /∈ {i, i′} or l /∈ {j, j′} , then F (B) > F (A).

As an illustration, consider the matrix

A =

 7 27 16
13 13 24
30 10 60

 .

Note that i = 2, j = 2 are positively associated in A since a22a = 2600 >
a2a

2 = 2500 : the mass in cell (2, 2) is above its expected value. Similarly,
i = 3, j = 3 are positively associated. On the contrary, i = 2, j = 3, as well
as i = 3, j = 2, are negatively associated. Shifting one unit of mass from cell
(2, 3) to cell (2, 2) and one unit of mass from cell (3, 2) to cell (3, 3) yields

B =

 7 27 16
13 14 23
30 9 61

 .

Our axiom therefore requires that F (B) > F (A).
Monotonicity involves changes in no less than four distinct cells. This

may seem unduly complicated. One may think that more elementary mass
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shifts should already be deemed to unambiguously increase the degree of
association. Consider for instance the matrix

C =

 7 27 16
13 14 23
30 10 60

 ,

which is obtained from A by merely shifting one unit of mass from cell (2, 3)
to cell (2, 2). Since the mass in cell (2, 3) is below expectation in A and
since the mass in cell (2, 2) is above expectation, it is tempting to ask that
F (C) > F (A). We think that this conclusion is unwarranted. The reason
is that the change from A to C increases the total mass in column 2 (from
a2 = 50 to c2 = 51) and decreases the total mass in column 3 (from a3 = 100
to c3 = 99). This in turn changes the expected masses in all cells belonging
to columns 2 and 3. In particular, the expected mass in cell (1, 2) increases
from a1a2

a
= 12.5 in A to c1c2

c
= 12.75 in C. As a consequence, the actual

mass in cell (1, 2), which remains unchanged from A to C (at a21 = c21 = 27)
becomes closer to its expected value (of 12.75 in C vs 12.5 in A). Similarly,
the expected mass in cell (1, 3) decreases from a1a3

a
= 25 in A to c1c3

c
= 24.75

in C, making the actual mass in that cell (a31 = c31 = 16) closer to expectation
(of 24.75 in C vs 25 in A). These induced changes should tend to decrease
the degree of association between the two characteristics, counteracting the
direct effect of the original changes and leaving the net effect unclear.
In fact, one checks that the most popular measure of association for cross-

classification tables of constant total mass (here a = c), the chi-square mea-
sure, does decrease from A to C :

χ2(A) =
∑

(i,j)∈M×N

(
aji − aia

j

a

)2
aiaj

a

= 34.56

> χ2(C) =
∑

(i,j)∈M×N

(
cji − cic

j

c

)2
cicj

c

≈ 34.36.

In contrast, because the changes considered in the monotonicity axiom leave
the total mass in every class (row or column) unchanged, the expected mass
in every cell also remains constant and, as a consequence, the gap between
actual and expected mass is modified only in the four cells under consider-
ation. Since all these gaps become wider, it is compelling to conclude that
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the degree of association increases. It is a simple exercise to check that the
chi-square measure of association does indeed satisfy Monotonicity. Another
famous measure that passes the monotonicity test is the entropy-based index
proposed by Theil and Finizza (1971) in the context of measuring segrega-
tion,

I(A) =
∑

(i,j)∈M×N

aji
a
log

(
ajia

aiaj

)
.

To the best of our knowledge, Monotonicity is a new condition. It is a
rather weak axiom. A similar but stronger axiom, inspired by the Pigou-
Dalton principle, can be found in the segregation measurement literature
(see for instance James and Taeuber (1985)):

Transfer Principle. Let i, i′ ∈ M and j, j′ ∈ N be such that i 6= i′ and

j 6= j′. Let A,B ∈ A(m,n). Suppose that aji
aj
>

aj
′
i

aj′
and

aj
i′
aj
<

aj
′
i′
aj′
. If there

exists δ > 0 such that bji = aji + δ, bj
′

i′ = aj
′

i′ + δ, bj
′

i = aj
′

i − δ, b
j
i′ = aji′ − δ,

and blk = alk whenever k /∈ {i, i′} or l /∈ {j, j′} , then F (B) > F (A).

This means, for instance, that if the proportion of black students is higher
in school j than in school j′ while the proportion of white students is higher
in school j′ than in school j, shifting a black student from j′ to j and a
white student from j to j′ increases segregation. This conclusion does not
follow from Monotonicity, unless the proportion of black students in j and
the proportion of white students in j′ exceed their expected value and the
proportion of white students in j and the proportion of black students in j′

are below their expected value.

Our second theorem is an incompatibility result.

Row-Size Invariance. For all A ∈ A(m,n), i ∈ M and λ ∈ R++,
F (λAi, A−i) = F (A).

Theorem 2. If m ≥ 4, no continuous measure F : A(m,n)→ R+ satisfies
Monotonicity and Row-Size Invariance.

Proof. Step 1. If F : A(m, 2)→ R+ satisfies Monotonicity and Row-Size
Invariance, then F satisfies the following property:

Strong Monotonicity. Let i, i′ ∈ M be such that i 6= i′ and let A,B ∈
A(m, 2). Suppose that a1i a2i′ > a2i a

1
i′ . If there exists δ > 0 such that b

1
i = a1i+δ,
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b2i′ = a2i′ + δ, b2i = a2i − δ, b1i′ = a1i′ − δ, and b
j
k = ajk for all k /∈ {i, i′} and

j ∈ {1, 2} , then F (B) > F (A).

To prove this claim, let i, i′ ∈ M be such that i 6= i′. Without loss of
generality, say i = 1 and i′ = 2. Let A,B ∈ A(m, 2). Suppose a11a22 > a21a

1
2

and suppose there exists δ > 0 such that

B =


a11 + δ a21 − δ
a12 − δ a22 + δ
a13 a23
...

...
a1m a2m

 .

We must show that F (B) > F (A).
For every ε > 0, let

A(ε) =


a11 a21
a12 a22
εa13 εa23
...

...
εa1m εa2m

 .

Let aji (ε) denote the (i, j)th entry of A(ε) and write ai(ε) =
∑

j∈N a
j
i (ε),

aj(ε) =
∑

i∈M aji (ε), and a(ε) =
∑

i∈M
∑

j∈N a
j
i (ε).

We claim that for ε small enough,

a11(ε)a(ε) > a1(ε)a
1(ε). (9)

To see why, define

α(ε) = a(ε)− (a11 + a21 + a12 + a22),

α1(ε) = a1(ε)− (a11 + a12),

and note that α(ε)→ 0 and α1(ε)→ 0 when ε→ 0. Moreover, we find that

a11(ε)a(ε)− a1(ε)a1(ε)
= a11

[
α(ε) + (a11 + a21 + a12 + a22)

]
− a1

[
α1(ε) + (a11 + a12)

]
= (a11a

2
2 − a21a12) +

(
a11α(ε)− a1α1(ε)

)
.
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Since a11a
2
2−a21a12 > 0 and the term in the last parenthesis vanishes as ε→ 0,

there exists ε > 0 such that (9) holds.
By a similar argument, the inequality a11a

2
2 > a21a

1
2 also implies that

a22(ε)a(ε) > a2(ε)a
2(ε) (10)

and
a21(ε)a(ε) < a1(ε)a

2(ε), (11)

a12(ε)a(ε) < a2(ε)a
1(ε) (12)

for ε > 0 small enough.
Now pick ε > 0 satisfying (9), (10), (11) and (12). This means that i = 1,

j = 1, as well as i = 2, j = 2, are positively associated in A(ε) whereas
i = 1, j = 2, as well as i = 2, j = 1, are negatively associated. By Row-Size
Invariance and Monotonicity,

F (A) = F (A(ε)) < F


a11 + δ a21 − δ
a12 − δ a22 + δ
εa13 εa23
...

...
εa1m εa2m

 = F (B).

Step 2. If F : A(m, 2) → R+ satisfies Monotonicity and Row-Size Invari-
ance, then F satisfies the following property:

Local Insensitivity. Let i, i′, i′′ ∈M be distinct. Let A ∈ A(m, 2) be such
that a1i a

2
i′ > a2i a

1
i′ and a1i a

2
i′′ < a2i a

1
i′′ . For every δ such that 0 < δ < a2i ,

denote by Aδ the matrix B ∈ A(m, 2) such that b1i = a1i + δ, b
2
i = a2i − δ, and

bjk = ajk for all k 6= i and j = 1, 2. There exists δ∗ such that 0 < δ∗ < aj
′

i and
F (Aδ) = F (A) for all δ such that 0 < δ < δ∗.

To prove this claim, fix distinct i, i′, i′′ ∈ M . Without loss, say i = 1,
i′ = 2, i′′ = 3. Let A ∈ A(m, 2) be such that

a11a
2
2 > a21a

1
2 (13)

and
a11a

2
3 < a21a

1
3. (14)
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Let δ∗ = min
(

a21a
1
3−a11a23

a11+a
2
1+a

1
3+a

2
3
, a21

)
. We show that F (Aδ) = F (A) for all δ such

that 0 < δ < δ∗.
For every δ such that 0 < δ < a21, consider the matrix

Aδ =


a11 + δ a21 − δ
a12 a22
...

...
a1m a2m

 .

For all λ > δ
a12
, Row-Size Invariance and Strong Monotonicity imply

F (A) = F


a11 a21
λa12 λa22
a13 a23
...

...
a1m a2m



< F


a11 + δ a21 − δ
λa12 − δ λa22 + δ
a13 a23
...

...
a1m a2m



= F


a11 + δ a21 − δ
a12 − δ

λ
a22 +

δ
λ

a13 a23
...

...
a1m a2m

 .

Since F is continuous, letting λ→ +∞ implies

F (A) ≤ F (Aδ). (15)

Next, fix δ such that 0 < δ < δ∗. Observe that for all λ ≥ 1,

δ < δ∗ ≤ a21a
1
3 − a11a23

a11 + a21 + a13 + a23
≤ λ(a21a

1
3 − a11a23)

(a11 + a21) + λ(a13 + a23)
,

hence, after rearranging,

(a11 + δ)(λa23 + δ) < (a21 − δ)(λa13 − δ).

15



For all λ > max(1, δ
a13
), Row-Size Invariance and Strong Monotonicity there-

fore imply

F (A) = F



a11 a21
a12 a22
λa13 λa23
a14 a24
...

...
a1m a2m



> F



a11 + δ a21 − δ
a12 a22

λa13 − δ λa23 + δ
a14 a24
...

...
a1m a2m



= F



a11 + δ a21 − δ
a12 a22

a13 − δ
λ

a23 +
δ
λ

a14 a24
...

...
a1m a2m


.

Since F is continuous, letting λ → +∞ yields F (A) ≥ F (Aδ). Combining
this inequality with (15) gives F (A) = F (Aδ), as claimed.

Step 3. No continuous measure F : A(m, 2) → R+ satisfies Monotonicity
and Row-Size Invariance.

Let m ≥ 4 and suppose that F : A(m, 2)→ R+ is a continuous measure
satisfying Monotonicity and Row-Size Invariance. We derive a contradiction.
Let A ∈ A(m, 2) be a matrix such that

a11a
2
2 > a21a

1
2, (16)

a11a
2
3 < a21a

1
3, (17)

a24a
1
3 > a14a

2
3, (18)

a24a
1
2 < a14a

2
2, (19)
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a11a
2
4 > a14a

1
2. (20)

The above inequalities are compatible: take for instance
a11 a21
a12 a22
a13 a23
a14 a24

 =


3 2
1 2
2 1
2 3

 .

For each δ > 0 suffi ciently small, define

Aδ =


a11 + δ a21 − δ
a12 a22
...

...
a1m a2m

 .

By Step 2, F satisfies Local Insensitivity. Because of inequalities (16) and
(17) we may use that property with i = 1, i′ = 2, i′′ = 3 to conclude

F (A) = F (Aδ) (21)

for all δ > 0 suffi ciently small.
For each δ > 0 suffi ciently small, define

Aδδ =



a11 + δ a21 − δ
a12 a22
a13 a23

a14 − δ a24 + δ
a15 a25
...

...
a1m a2m


and note that (18) and (19) imply

(a14 − δ)a22 > (a24 + δ)a12,

(a14 − δ)a23 < (a24 + δ)a13.

Because of these inequalities, we may use Local Insensitivity with i = 4,
i′ = 2, i′′ = 3 to conclude that

F (Aδδ) = F (Aδ)

17



for each δ > 0 suffi ciently small, which, combined with (21), implies that

F (A) = F (Aδδ)

for each δ > 0 suffi ciently small. Because of inequality (20), this contradicts
Strong Monotonicity

Step 4. Let m ≥ 4 and let n ≥ 3. Suppose, by way of contradiction,
that there exists a continuous measure F : A(m,n) → R+ that satisfies
Monotonicity and Row-Size Invariance. We show that there must then exist
a continuous measure F̃ : A(m, 2) → R+ that satisfies Monotonicity and
Row-Size Invariance, contradicting Step 3.
For each matrix

A =


a11 a21
a12 a22
...

...
a1m a2m


in A(m, 2), define Ã ∈ A(m,n) by

Ã =


a11 a21 a1 · · · a1
a12 a22 a2 · · · a2
...

...
...

...
a1m a2m am · · · am

 .

Define F̃ : A(m, 2)→ R+ by

F̃ (A) = F
(
Ã
)
.

Because F is continuous, so is F̃ . Because F satisfies Row-Size Invariance,
so does F̃ : considering for instance a rescaling of the first row, we have, for
any λ > 0,

F̃


λa11 λa21
a12 a22
...

...
a1m a2m

 .
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= F


λa11 λa21 λa1 · · · λa1
a12 a22 a2 · · · a2
...

...
...

...
a1m a2m am · · · am



= F


a11 a21 a1 · · · a1
a12 a22 a2 · · · a2
...

...
...

...
a1m a2m am · · · am



= F̃


a11 a21
a12 a22
...

...
a1m a2m

 .

It remains to be checked that F̃ is monotonic. Let A ∈ A(m, 2) and assume
that, say,

a11a > a1a
1, (22)

a22a > a2a
2, (23)

a21a < a1a
2, (24)

a12a < a2a
1. (25)

Let δ be such that 0 < δ < min(a21, a
1
2) and define

A(δ) =


a11 + δ a21 − δ
a12 − δ a22 + δ
a13 a23
...

...
a1m a2m

 .

We must prove that F̃ (A) < F̃ (A(δ)). From the definition of Ã and inequal-
ities (22) to (25), we get

ã11ã = (n− 1)a11a > (n− 1)a1a1 = ã1ã
1,

ã22ã = (n− 1)a22a > (n− 1)a2a2 = ã2ã
2,

ã21ã = (n− 1)a21a < (n− 1)a1a2 = ã1ã
2,

ã12ã = (n− 1)a12a < (n− 1)a2a1 = ã2ã
1.
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By definition of F̃ and monotonicity of F ,

F̃ (A) = F (Ã)

< F


ã11 + δ ã21 − δ ã31 · · · ãn1
ã12 − δ ã22 + δ ã32 · · · ãn2
ã13 ã23 ã33 · · · ãn3
...

...
...

...
ã1m ã2m ã3m · · · ãnm



= F


a11 + δ a21 − δ a1 · · · a1
a12 − δ a22 + δ a2 · · · a2
a13 a23 a3 · · · a3
...

...
...

...
a1m a2m am · · · am



= F̃


a11 + δ a21 − δ
a12 − δ a22 + δ
a13 a23
...

...
a1m a2m


= F̃ (A(δ)),

as desired.�
The whole analysis above is ordinal. We could have worked directly with

association orderings (as defined in Section 2) rather than association mea-
sures on A(m,n). In fact, this is worth doing because some association or-
derings cannot be represented by an association measure.
The suitable reformulation of Class-Size Invariance, Row-Size Invariance

and Monotonicity for association orderings is obvious. The reformulation of
Theorem 1 is equally straightforward: an association ordering % on A(m,n)
is class-size invariant if and only if there exists an ordering %0 on A(m −
1, n − 1) such that, for all A,B ∈ A(m,n), A % B if and only if r(A) %0
r(B). As for Theorem 2, call an ordering % on A(m,n) continuous if, for
every A ∈ A(m,n), the sets {B ∈ A(m,n) | B % A} and {B ∈ A(m,n) |
A % B} are closed in the standard (Euclidean) topology of A(m,n). By
a classic result of Debreu (1954), every continuous association ordering is
representable by a continuous association measure. It therefore follows from
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Theorem 2 that, if m ≥ 4, no continuous association ordering % on A(m,n)
satisfies Monotonicity and Row-Size Invariance.
We do not know whether monotonic and row-size invariant (necessarily

discontinuous) association orderings exist on A(m,n) when m and n are
arbitrary. Continuity plays an important role in the proof of Theorem 2.

5 Some possibility results

This section discusses a few special cases in which possibility results can be
established.

1) Monotonicity, Class-Size Invariance and Continuity are compatible in the
dichotomous case, i.e., when m = 2 and n = 2. In fact, it follows easily from
Theorem 1 that the first two axioms single out a unique ordering, which
happens to be continuous. This ordering on A(2, 2) is given by

A % B ⇔ max

(
a11a

2
2

a21a
1
2

,
a21a

1
2

a11a
2
2

)
≥ max

(
b11b

2
2

b21b
1
2

,
b21b

1
2

b11b
2
2

)
.

2) Monotonic and class-size invariant orderings do exist when m = 2 or
n = 2. This is of some interest because dichotomous characteristics are
common in practice: a good deal of the segregation measurement literature
focuses on that case. Here is an example when, say, m = 2 and n is arbitrary.
For every A ∈ A(2, n) and every each pair {j, l} ∈ 2N define

ρ{j,l}(A) = max

(
aj1a

l
2

aj2a
l
1

,
aj2a

l
1

aj1a
l
2

)
. (26)

Let ρ(A) ∈ R (n−1)n
2 be the vector ρ(A) = (ρ{j,l}(A)){j,l}∈2N . Let %L denote

the leximax ordering2 on R
(n−1)n

2 and define the ordering % on A(2, n) by

B % A⇔ ρ(B) %L ρ(A). (27)

2For any x ∈ R
(n−1)n

2 , let x∗ ∈ R
(n−1)n

2 denote the vector obtained by reordering the
coordinates of x in nondecreasing order. The leximax ordering %L on R (n−1)n

2 is defined

by letting x %L y if and only if either there exists j ∈
{
1, ..., (n−1)n2

}
such that x∗i = y

∗
i for

all i > j and x∗j > y
∗
j (in which case we write x �L y) or x∗i = y∗i for all i ∈

{
1, ..., (n−1)n2

}
(in which case we write x ∼L y).
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We prove in the Appendix that % is class-size invariant and monotonic. Of
course, % is not continuous.
3) Continuous, monotonic and class-size invariant measures do exist when
m = 2 and n = 3 (or m = 3 and n = 2). Two examples, as the reader
may check, are F (A) = max

(
ρ{1,2}(A), ρ{1,3}(A), ρ{2,3}(A)

)
and F (A) =

ρ{1,2}(A)ρ{1,3}(A)ρ{2,3}(A). Both generate the same ordering.

4) A matrix A ∈ A(m,n) is isotropic (Yule and Kendall (1950)) if rji (A) ≥ 1
for all i ∈M\{m} and all j ∈ N\{n} . Because of (7), this implies rj,li,k(A) ≥ 1
for all i, k ∈M such that i < k and all j, l ∈ N such that j < l. Moreover,

rj,li,k(A) ≤ rj
′,l′

i′,k′(A) if i
′ ≤ i < k ≤ k′ and j′ ≤ j < l ≤ l′. (28)

A rearrangement of a matrix A ∈ A(m,n) is any matrix Ã ∈ A(m,n) ob-
tained by permuting the rows and columns of A. We let Aiso(m,n) denote
the subset of matrices in A(m,n) that possess an isotropic rearrangement.
This corresponds to the case where, although the characteristics are only
categorical, their values can be “endogenously”ordered in a way that reveals
a positive correlation between them.
Recall our notation r(A) = (rj,li,k(A))

1≤j<l≤n
1≤i<k≤m ∈ R

µ
++, where µ is the num-

ber of 2×2 submatrices of anm×nmatrix and let%L be the leximax ordering
on Rµ++. If Ã, Â are two isotropic rearrangements of a matrix A ∈ Aiso(m,n),
it is easy to see that r(Ã) ∼L r(Â).We may therefore define the cpr-leximax
ordering % on Aiso(m,n) by

B % A⇔ r(B̃) %L r(Ã) for any isotropic rearrangements Ã, B̃ of A,B.
(29)

Proposition. The cpr-leximax ordering % on Aiso(m,n) is class-size in-
variant and monotonic.

Proof. Class-size invariance is obvious. To establish Monotonicity, let
A,B ∈ Aiso(m,n), let i, k ∈M and j, l ∈ N be such that i 6= k and j 6= l, and
suppose that i, j and k, l are positively associated in A whereas i, l and k, j
are negatively associated, i.e., ajia > aia

j, alka > aka
l, alia > aia

l, ajka > aka
j.

These inequalities imply ajia
l
k

alia
j
k

> 1. Let Ã, B̃ be isotropic rearrangements of

A,B. To simplify notation, suppose Ã = A and B̃ = B. Since A is isotropic,
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it follows that either (i) i < k and j < l or (ii) i > k and j > l. Without loss
of generality, assume i < k and j < l.
Suppose there is δ > 0 such that such that bji = aji + δ, bli = ali + δ,

bjk = ajk − δ, blk = alk − δ, and all other entries of A and B coincide. We must
show that r(B) �L r(A).
Without loss of generality, assume that δ is small enough to guarantee

that for all i′, i′′, k′, k′′ ∈M and j′, j′′, l′, l′′ ∈ N such that i′ < k′, i′′ < k′′, j′ <
l′, j′′ < l′′,

rj
′,l′

i′,k′(A) < rj
′′,l′′

i′′,k′′(A)⇒ rj
′,l′

i′,k′(B) ≤ rj
′′,l′′

i′′,k′′(B)

and
rj
′,l′

i′,k′(B) < rj
′′,l′′

i′′,k′′(B)⇒ rj
′,l′

i′,k′(A) ≤ rj
′′,l′′

i′′,k′′(A).

If δ violates this assumption, we can write it as a sum of increments that
do satisfy the assumption and apply the argument below to each of these
increments.
In order to prove that r(B) �L r(A), it suffi ces to show that if there exist

i′, k′ ∈M and j′, l′ ∈ N such that i′ < k′, j′ < l′, and

rj
′,l′

i′,k′(B) < rj
′,l′

i′,k′(A), (30)

then there exist i′′, k′′ ∈M and j′′, l′′ ∈ N such that i′′ < k′′, j′′ < l′′, and

rj
′′,l′′

i′′,k′′(B) > rj
′,l′

i′,k′(B), r
j′′,l′′

i′′,k′′(A). (31)

BecauseA is isotropic, inequality (30) only holds in the following cases: (i)
(i, j) = (i′, l′), (ii) (i, j) = (k′, j′), (iii) (i, l) = (i′, j′), (iv) (i, l) = (k′, l′), (v)
(k, j) = (k′, l′), (vi) (k, j) = (i′, j′), (vii) (k, l) = (i′, l′), (viii) (k, l) = (k′, j′).
Let us assume (i); all other cases are treated similarly. If k′ 6= k, we have

rj
′,l
i′,k′(B) =

aj
′

i a
l
k′

aj
′

k′(a
l
i − δ)

>
aj
′

i a
l
k′

aj
′

k′a
l
i

= rj
′,l
i′,k′(A) >

aj
′

i a
j
k′

aj
′

k′a
j
i

>
aj
′

i a
j
k′

aj
′

k′(a
j
i + δ)

= rj
′,l′

i′,k′(B),

where the second inequality is an application of property (28). If k′ = k, we
have

rj
′,l
i′,k′(B) =

aj
′

i (a
l
k + δ)

aj
′

k (a
l
i − δ)

>
aj
′

i a
l
k

aj
′

k a
l
i

= rj
′,l
i′,k(A) >

aj
′

i a
j
k

aj
′

k a
j
i

>
aj
′

i (a
j
k − δ)

aj
′

k (a
j
i + δ)

= rj
′,l′

i′,k′(B),

In both cases, (31) holds for i′′ = i′, k′′ = k′, j′′ = j′, l′′ = l.�
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6 Appendix

Let% be the ordering onA(2, n) defined in (27). We prove that% is class-size
invariant and monotonic.

Class-Size Invariance follows immediately from the observation that if B
is obtained by multiplying a row or a column of A, then ρ(A) = ρ(B), hence,
A ∼ B.

As for Monotonicity, letA,B ∈ A(2, n).Note that by definition ρ{j,l}(A) ≥
1 for every {j, l} ∈ 2N . Assume, without loss of generality, that i = 1, j = 1
as well as i = 2, j = 2 are positively associated whereas i = 1, j = 2 as well
as i = 2, j = 1 are negatively associated in A. These assumptions imply that
a11a

2
2 > a12a

2
1, hence by (26),

ρ{1,2}(A) =
a11a

2
2

a12a
2
1

> 1. (32)

Suppose there is δ > 0 such that b11 = a11 + δ, b21 = a21 − δ, b12 = a12 − δ,
b22 = a22 + δ and bji = aji for i = 1, 2 and all j ∈ N \ {1, 2} . We must check
that B � A.
Assume that δ is small enough to guarantee that for all {j, l} , {j′, l′},

ρ{j,l}(A) < ρ{j
′,l′}(A)⇒ ρ{j,l}(B) ≤ ρ{j

′,l′}(B)

and
ρ{j,l}(B) < ρ{j

′,l′}(B)⇒ ρ{j,l}(A) ≤ ρ{j
′,l′}(A).

This is without loss of generality because if δ violates this assumption, we
can write it as a sum of increments that do satisfy the assumption and apply
the argument below to each of these increments.
By definition of %, it is necessary and suffi cient to prove that ρ(B) �L

ρ(A). Note first that ρ{j,l}(B) = ρ{j,l}(A) whenever j, l /∈ {1, 2} . Moreover,
ρ{1,2}(B) =

(a11+δ)(a
2
2+δ)

(a12−δ)(a21−δ)
>

a11a
2
2

a12a
2
1
= ρ{1,2}(A). This means that ρ{j,l}(B) <

ρ{j,l}(A) only if (i) {j, l} = {1, l} and l 6= 2 or (ii) {j, l} = {2, l} and l 6= 1.
Suppose first that there exists l 6= 2 such that

ρ{1,l}(B) < ρ{1,l}(A). (33)

This can only occur if ρ{1,l}(A) = a12a
l
1

a11a
l
2
and ρ{1,l}(B) = (a12−δ)al1

(a11+δ)a
l
2
. In that case,

however, we have

al1a
2
2

al2a
2
1

=
a12a

l
1

a11a
l
2

a11a
2
2

a12a
2
1

= ρ{1,l}(A)ρ{1,2}(A).
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Since ρ{1,l}(A) ≥ 1 and ρ{1,2}(A) > 1, it follows that al1a
2
2

al2a
2
1
> 1, hence,

ρ{2,l}(A) =
al1a

2
2

al2a
2
1
> ρ{1,l}(A). Furthermore, ρ{2,l}(B) = al1(a

2
2+δ)

al2(a
2
1−δ)

>
al1a

2
2

al2a
2
1
=

ρ{2,l}(A). Hence,

ρ{1,l}(B) < ρ{1,l}(A) < ρ{2,l}(A) < ρ{2,l}(B). (34)

Suppose next that there exists l 6= 1 such that

ρ{2,l}(B) < ρ{2,l}(A). (35)

This can only occur if ρ{2,l}(A) = a21a
l
2

a22a
l
1
and ρ{2,l}(B) = (a21−δ)al2

(a22+δ)a
l
1
. In that case,

however, we have

al2a
1
1

al1a
1
2

=
a21a

l
2

a22a
l
1

a11a
2
2

a12a
2
1

= ρ{2,l}(A)ρ{1,2}(A).

Since ρ{2,l}(A) ≥ 1 and ρ{1,2}(A) > 1, it follows that al2a
1
1

al1a
1
2
> 1, hence,

ρ{1,l}(A) =
al2a

1
1

al1a
1
2
> ρ{2,l}(A). Furthermore, ρ{1,l}(B) = al2(a

1
1+δ)

al1(a
1
2−δ)

>
al2a

1
1

al1a
1
2
=

ρ{1,l}(A). Hence,

ρ{2,l}(B) < ρ{2,l}(A) < ρ{1,l}(A) < ρ{1,l}(B). (36)

Equations (34) and (36) say that if a coordinate of the ρ(X) vector de-
creases from X = A to X = B, some other coordinate whose value is greater
than the value of the decreasing coordinate must increase. By definition of
the leximax ordering, this implies that ρ(B) �L ρ(A).
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