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Abstract

The purpose of this chapter is to provide an elementary introduction to the nonrenewable
resource model with multiple demand curves. The theoretical literature following Hotelling
(1931) assumed that all energy needs are satisfied by one type of resource (e.g. “oil”), ex-
tractible at different per-unit costs. This formulation implicitly assumes that all users are
the same distance from each resource pool, that all users are subject to the same regula-
tions, and that motorist users can switch as easily from liquid fossil fuels to coal as electric
utilities can. These assumptions imply, as Herfindahl (1967) showed, that in competitive
equilibrium all users will exhaust a lower cost resource completely before beginning to extract
a higher cost resource: simultaneous extraction of different grades of oil or of oil and coal
should never occur. In trying to apply the single-demand curve model during the last twenty
years, several teams of authors have independently found a need to generalize it to account
for users differing in their (1) location, (2) regulatory environment, or (3) resource needs.
Each research team found that Herfindahl’s strong, unrealistic conclusion disappears in the
generalized model; in its place, a weaker Herfindahl result emerges. Since each research team
focussed on a different application, however, it has not always been clear that everyone has
been describing the same generalized model. Our goal is to integrate the findings of these
teams and to exposit the generalized model in a form which is easily accessible.



1 Introduction

The purpose of this chapter is to provide an elementary introduction to the nonrenewable

resource model with multiple demands. The theoretical literature following Hotelling (1931)

assumed that each grade of a resource can be shipped to users all over the world at the same

cost, that all users are subject to the same taxes and regulations; and that motorists are can

switch as easily from liquid fossil fuels to coal as electric utilities can.

As Herfindahl (1967) showed, these assumptions imply that in competitive equilibrium

all users will exhaust a lower cost resource completely before beginning to extract a higher

cost resource; moreover, users will switch to this higher cost resource at the same moment so

simultaneous extraction of different grades of oil or of oil and coal will never occur. That is,

Herfindahl’s conclusion about the order of extraction follows from his assumption of a single

demand curve.

But this assumption is highly unrealistic. A glance at the morning paper tells us that not

all users pay the same cost to access a given source of energy. Consider a nonrenewable source

like Canadian oil sands. At current prices, if the proposed Keystone pipeline transported

tar sands oil from Alberta south to refineries in the Gulf Coast of Texas, it would be the

cheapest way for properly equipped refineries to produce gasoline. In the absence of a

pipeline, however, the oil sands will have to be shipped by rail and even properly equipped

refineries would find using lighter oil from the Middle East to be the cheapest input to refine

into gasoline.

Even with the Keystone pipeline, however, some refineries are not equipped to refine oil

sands into gasoline and must incur an additional cost per unit (a “conversion cost”) to refine

oil sands. For this reason, properly equipped refineries may find oil sands to be the cheapest

source for producing gasoline while other refineries will continue to find the lighter oil from

Saudi Arabia cheapest to refine.

However, not all users of this same Saudi oil pay the same price because they may live

in different jurisdictions where taxes and environmental regulations differ. Gasoline refined

from Saudi oil costs Europeans more than Americans in large part because Europeans are
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subject to higher gasoline taxes. As a result, it may be cheapest for someone seeking to

travel within the city of Los Angeles to use a car powered by gasoline but within Paris to

use a subway powered by electricity generated from nuclear power.

The cost of accessing any given source of energy differs because users incur different

transportation costs, conversion costs, or taxes/regulations—or a combination of these costs.

When cooking, heating and lighting their homes or traveling around town, people typically

choose the cheapest alternative available to them. Because different alternatives may be

cheapest to different users, however, people make different choices at any given time.

Because users accessing a given energy source pay different costs, Hotelling’s assumption

of a single demand curve misses important features of world energy markets and leads to

predictions that are easily refuted. In trying to apply this single-demand curve model during

the last twenty years, several teams of authors have independently found a need to generalize

it to account for users differing in their (1) location (Gaudet, Moreaux and Salant, 2001;

Ley, Macauley and Salant, 2000, 2002), (2) regulatory environment (Fischer and Salant, 2014;

Hoel, 2011), or (3) resource needs (Chakravorty and Krulce, 1994; Chakravorty, Krulce and

Roumasset, 2005; Im, Chakravorty and Roumasset, 2006). Each research team found that

in the generalized model, users switch from one resource to another at different times and

some users skip the use of some resources entirely; and yet, at the same time, a generalized

Herfindahl result emerges. Since each research team focused on a different application,

however, it has not always been clear that everyone has been describing the same generalized

model. Our goal is to integrate the findings of these teams and to exposit their generalized

model in a form which is easily accessible.

We proceed as follows. In the next section we review the properties of the standard partial

equilibrium model of competitive equilibrium when firms have constant per-unit costs which

may differ and may change over time due to exogenous technical change. We consider both

the case where the cost is the same of supplying every consumer using a given technology and

where these supply costs differ. In Section 3, we introduce cumulative production constraints

on some of the sources of supply. We show that the Herfindahl result that two sources of
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supply will never be used at the same time disappears when we relax the standard but

unrealistic assumption that a source of supply can provide the resource to everyone at the

same per-unit cost. In Section 4, we decompose the per-unit cost of supplying different users

from a given source and clarify its various interpretations. Section 5 concludes the paper.

2 Unconstrained Production

Consider a static model where the needs of J consumers are satisfied from I sources. Let

wij be the per-unit cost of supplying user j with source i and qij be the amount supplied to

him from that source. We consider in turn the single user case and the multiple users case.

Multiple users can be either heterogeneous or homogeneous. In the latter case, all J users

can be supplied from the same source i at the same per-unit cost.

2.1 Single User (J = 1)

In this subsection, we assume that there is a single user (J = 1) and therefore dispense with

the j subscript. Hence, wij = wi and qij = qi. Let Q =
∑

i qi denote aggregate consumption

from the I sources. Index the sources so a lower cost source has a lower index: wi < wi′ for

i < i′. Therefore, source 1 has the lowest per-unit cost, w1.

Suppose a planner chooses to obtain Q > 0 units of output, some from a source other than

source 1. Then, the planner cannot be optimizing since marginally less can be obtained from

the higher cost source and replaced by the same amount from source 1, thereby reducing the

cost of obtaining the same quantity Q. If a plan is optimal, it must be obtained at least cost

and that entails using only source 1. In addition, the marginal benefit of consuming more

from source 1 must equal w1, the marginal cost of obtaining it: U ′(Q∗) = w1. Assuming that

U(·) is a strictly concave function with U ′(0) > w1, a solution to this equation, Q∗, exists

and is unique.

This planning solution can be decentralized as a competitive equilibrium. In this for-

mulation, the owner of technology i takes the market price P as given and maximizes his

profit. The market price induces aggregate supply equal to aggregate demand. If the inverse
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demand curve is P (Q) = U ′(Q), then in the planning solution, Q∗ = q∗1, and in the compet-

itive solution P = P (Q∗) = U ′(Q∗) = w1. Given this price, higher cost producers will find

producing nothing to be profit-maximizing.

2.2 Multiple Users (J > 1)

Suppose instead that the planner has to satisfy a set of J > 1 users. Let wij denote the

exogenous, per-unit cost of obtaining one unit from source i and delivering it to user j and

qij ≥ 0 the endogenous number of units user j obtains from source i. A set of users is either

heterogeneous or homogeneous. Users are defined as heterogeneous if and only if there exist

at least two users (j, j′ ∈ J) who cannot receive goods from some source (i ∈ I) at the same

per-unit cost: that is, wij 6= wij′ for some i, j, j′. For our analysis, it does not matter whether

the j users have the same or differing utility functions as long as each of them is strictly

concave (U ′′j (·) < 0), strictly increasing (U ′j(·) > 0), and passes through the origin (Uj(0) = 0)

with a finite slope larger than the cheapest source available to j (U ′j(0) > miniwij).
1

The planner’s goal is to maximize:

maxqij≥0 U1

(∑
i

qi1

)
+ . . .+ UJ

(∑
i

qiJ

)
−
∑
j

∑
i

wijqij, (1)

2.2.1 Heterogeneous Users

Let Qj denote the total number of units the planner sends to user j from the I sources:

Qj =
∑I

i=1 qij. Clearly, no plan where user j can obtain his Qj units at lower cost by

altering his sourcing can be optimal since altering his sources has no effect on the other

J − 1 users. Hence, in the optimal plan each user will obtain all of his output from the

source which is cheapest: user j will choose source i such that wij < wi′j. But since users are

heterogeneous, source i is not necessarily cheapest for user j′. That is, different users may

1Sources may need to be converted in order to satisfy a particular use (j) but, after conversion, they
are assumed to be perfect substitutes. Otherwise the utility (Uj) would depend, even after conversion, on a
vector of consumptions instead of a single aggregate. Even with linear costs, users would then simultaneously
access multiple sources since they would be imperfect substitutes; they would also utilize multiple sources if
the flow of production from each source was capacity constrained.
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simultaneously rely on different sources.

To illustrate, suppose two users can satisfy their needs from three sources. Hence, there

will be six exogenous cost parameters. We array them in the matrix [wij], which has I = 3

rows and J = 2 columns. Suppose user 1 (respectively, user 2) can obtain the same good

from three sources at the per-unit costs arrayed in column 1 (respectively, column 2):

[wij] =


2 4

1 5

3 3

 .

Clearly, user 1 will rely on source 2 since, at $1 per unit, it is cheapest for him. At the

same time, user 2 will rely on source 3 since it is cheapest at $3 per unit. Indeed, since it

is optimal for user j to obtain Q∗j such that he would gain no more from an additional unit

than it would cost to obtain it, user 1 would obtain q∗21 units from source 2 where U ′1(q∗21) = 1

while user 2 would obtain q∗32 from source 3 where U ′2(q∗32) = 3.

A problem of any dimension can be solved in the same way. To determine which source

to use for a given consumer, the planner would review the entries in the column pertaining

to that user and select the source with the smallest cost. He would then obtain units for

that user from that source until the marginal benefit of acquiring an additional unit equalled

the marginal cost for that user of acquiring it.

2.2.2 Homogeneous Users

If the set of J users is homogeneous, then the cost per unit of supplying any of the users is

the same: wij = wij′ for all i, j, j′. In that case every entry in a given row of the [wij] matrix

is the same although the numbers in different rows differ. So each user j has the identical

column vector listing the per-unit costs of the sources available to him, and the planner will

satisfy the needs of all J users from the same source, the cheapest one. If in addition the

users are assumed to have identical utility functions, then this case is the exact equivalent

of the single user case of Section 2.1. From another perspective, in the single user case, the
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matrix [wij] consists of a single column.

2.3 Technical Change

If there is exogenous technical change, then the exogenous per-unit costs will depend on

time: wij(t). At time t, the planner will still satisfy the needs of user j entirely from the

source which is cheapest at time t, a consequence of the linearity of costs in (1). But some

other source may be experiencing faster cost-reducing technical change and if it becomes

cheapest in the future, it will be utilized instead to satisfy the needs of user j.

If we introduce such dynamics into the homogeneous users case, where entries in a row

of the [wij(t)] matrix are identical, then every user will rely on the same source at date t

and if one user subsequently switches to another source, every user will switch to that same

resource simultaneously. Clearly, this behavior is unrealistic. We do not see everyone in

the world getting the same good or service from the same technology and switching at the

identical moment to another technology if it becomes cheapest. But this prediction follows

from the unrealistic assumption that at any date any of the J users can acquire a unit of

the good from a given source i at the same cost. Rather than discarding the useful partial

equilibrium framework with constant per-unit costs because it gives unrealistic predictions

when this unrealistic assumption is made, it seems more sensible to replace that assumption

with something more realistic.

If we introduce exogenous technological change into the heterogeneous users case, where

entries in a row of [wij(t)] differ, it is again optimal for the planner to rely entirely on the

lowest cost source at t when satisfying the needs of user j. But as we have seen in the

example above, what is lowest cost for one user need not be lowest cost for another. And if

a different source becomes cheapest for the first user at some future date, he will switch to

that source. Other users will not switch at the same moment since that source may not at

that moment become cheapest for them.

We conclude this section by noting that the planning problem(s) we have been discussing

can all be decentralized as competitive equilibria. Consider the most general case, where
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users are heterogeneous and the exogenous per-unit costs differ and change due to technical

progress. The planning problem in (1) can be modified as:

max
qij(t)≥0

U1

(∑
i

qi1(t)

)
+ . . .+ UJ

(∑
i

qiJ(t)

)
−
∑
j

∑
i

wij(t)qij(t), (2)

At time t if the planner sends qij(t) from source i to user j, then in the decentralized solution

the price in market j is P j(t) = wij(t).

3 Constraints on Cumulative Production: the Hotelling Model

In this section, we constrain cumulative supply from some or all of the I sources, a mod-

ification first introduced by Hotelling (1931). To begin we assume that every source is

constrained: Si ≥
∑

j

∫∞
t=0

qij(t)dt for all i = 1, . . . , I. This would apply to the case where

every source is a nonrenewable like oil. In Section 3.3, we will assume that a subset of the

sources have no such constraint. Typical examples are solar or geothermal energy. These are

referred to in the Hotelling literature as “backstops.” To simplify we revert to our assumption

that the matrix [wij] is stationary, taking up the nonstationary case in Section 3.4.

3.1 Single User (J = 1)

In this subsection, we return to the case of a single user (J = 1) and therefore dispense

again with the j subscript. Hence, wij = wi and qij(t) = qi(t). Let Q(t) =
∑

i qi(t) denote

aggregate consumption from the I sources. Index the sources so a lower cost source has a

lower index: wi < wi′ for i < i′. Therefore, source 1 has the lowest per-unit cost, w1. In

terms of the matrix [wij], it consists of a single column with I components which increase

as one moves from the first to the last component.

It was Hotelling’s insight that wi is no longer the full cost at time t of using another

unit of resource i provided the reserve constraint is binding. For if Si =
∫∞
t=0

qi(t)dt, then

providing more of resource i at time t requires cutting back at some other time(s). Suppose

a program is optimal. Then whenever source i is utilized (qi(t) > 0), the net present value of
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using more of it must be the same for every t. For if the net present values at t and t′ 6= t of

marginally increasing use of source i were not the same, the planner could marginally expand

usage on a date with a strictly higher net present value and could contract by an equal

amount usage on the date with the strictly lower net present value. This perturbation would

strictly increase the planner’s payoff and cannot occur if his program is optimal. Denote

the common net present value of marginally increasing source i as λi. For any t such that

qi(t) > 0, U ′(qi(t)) = wi + λie
rt for all i, t. Moreover, whenever qi(t) = 0, U ′(0) ≤ wi + λie

rt.

For otherwise, a gain in net present value could be achieved by marginally expanding usage

on the date when nothing is used and contracting it equally on date(s) where qi(t) > 0.

Hence, at t the analog of the exogenous per-unit cost wi in Section 2.1 is the augmented

per-unit cost: wi + λie
rt. But since the augmented per-unit cost changes over time, the

closest analog is the model with exogenous technical change in Section 2.3. Once we assign

the I multipliers, we can construct the augmented matrix [wi +λie
rt]. In the case of a single

user it will consist of a single column. The planner will use only the source with the lowest

augmented per-unit cost. But when a different source becomes cheapest, the planner will

immediately switch to it.

It was left to Herfindahl (1967)) to clarify what intertemporal cost-minimization implies

in the single user case. If wi < U ′(0) for all i then the planner will want to exhaust each

source eventually and so λi > 0 for all i. Hence, the multipliers must be assigned so that

each source i has the least augmented per-unit cost for some interval of time.

This limits what multipliers can be assigned. For example, if wi < wi′ one cannot assign

λi ≤ λi′ or source i′ will never have the smallest augmented per-unit cost and will never

be used. Hence, one must set λi > λi′ . Moreover, one cannot assign the multipliers so that

λi +wi > λi′ +wi′ or source i will never be used. For every source to be least cost over some

time interval, therefore, λ1 > . . . > λI and λ1 + w1 < . . . < λI + wI . Given our indexing

convention, the planner will exhaust source i before beginning to utilize source i+ 1.

This makes perfect sense. For the planner cannot be optimizing if he could obtain the

same quantity path in a cheaper manner. Suppose at some date t he was (mistakenly)
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taking some reserves from pool i′ despite its strictly higher cost before exhausting pool i,

with wi < wi′ . Suppose he planned to subsequently utilize source i after some interval of

time ∆ > 0. Then he could lower his costs by marginally reducing his current usage of

pool i′ and replacing it with an equal quantity from pool i; at date t + ∆ he would then

provide the marginal amount of i′ that he had saved during the interval of time ∆ so that

the same quantity was restored at that date, although the replacement would come from

pool i′ instead of pool i. This perturbation is feasible and would lower costs since, although

the current cost reduction is equal to the cost increase that occurs after the interval ∆,

the former dominates because of discounting: the discounted value of the cost change is:

−wi′ + wi + e−r∆(wi′ − wi) = (wi − wi′)(1 − e−r∆) < 0 where the inequality follows since

wi′ > wi.

3.2 Multiple Users

3.2.1 Heterogeneous Users

Suppose the planner uses the I sources to satisfy the needs of a heterogeneous set of J users

with preferences Uj. That is, his goal is to maximize:

maxqij(t)≥0

∫ ∞
t=0

e−rt

[
U1

(∑
i

qi1(t)

)
+ . . .+ UJ

(∑
i

qiJ(t)

)
−
∑
j

∑
i

wijqij(t)

]
dt (3)

subject to the constraint that Si ≥
∑J

j=1

∫∞
t=0

qij(t)dt for i = 1, . . . , I.

As before, if source i is exhausted in the optimal plan, then the full cost of using more of it

at t must reflect the opportunity cost of using less of it at other times. As before, if a program

is optimal, every user of source i must derive from it the same present value of marginal net

benefit. Denoting that common value as λi, then in the optimal plan, U ′j(qij) = wij + λie
rt

for every i, j, t provided qij(t) > 0; moreover, when qij(t) = 0, U ′j(0) ≤ wij + λie
rt.

A unique set of multipliers is associated with the solution to the planning problem pro-

vided the objective function is smooth and strictly concave. Every resource i such that

wij < U ′j(0) for some j will have cumulative usage equal to the exogenous upper bound
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(Si > 0) and a strictly positive multiplier (λi > 0). Every resource i such that wij > U ′j(0)

for every j will be unused and will have a multiplier of zero (λi = 0).

In the optimal plan, user j relies at time t entirely on the resource with the lowest aug-

mented per-unit cost. One can determine the source which user j will rely on at time t by con-

structing the lower envelope of his augmented per-unit cost paths: min{w1j +λ1e
rt, . . . , wIj +

λIe
rt}. As long as every source with a strictly positive multiplier is used by at least one of

the J users over some time interval, we can construct a planning problem that these paths

solve. To construct it, one simply computes the cumulative usage over time of each source

by the J users and assumes the initial reserve of each source (Si for i = 1, . . . , I) is equal to

the usage computed for that source.

Figures 1 and 2, therefore, depict the solutions to two planning problems with J = 2 and

I = 3. We use them to illustrate behaviors that occur in the multiple demand model with

heterogeneous users. In Figure 1, user 1 is assigned source 1, followed by source 2 and then

source 3. User 2 skips from source 1 to source 3 without ever being assigned source 2. So

in the multiple demand case, users need not utilize the same sources. Moreover, although

source 1 has the lowest exogenous per-unit cost for user 1 (w11 = min{w11, w21, w31}), the

planner switches user 1 to source 2 before source 1 is exhausted. This is efficient because

allocating additional units of source 1 to user 2 has a higher net present value than allocating

any more of them to user 1. The “invisible hand” induces user 1 to abandon source 1 when

reserves with lower exogenous per-unit costs remain by making the full price of source 2 (the

exogenous per-unit cost plus the endogenous multiplier, capitalized to t) smaller than the

full price of source 1. Note that in this example different sources are simultaneously in use:

at the time that user 1 is relying on source 2, user 2 is relying on source 3. In Figure 2 ,

source 2 is utilized by user 1, then utilized by nobody, and then utilized by user 2.2

The solution of the planning problem and its competitive analog displays what we have

elsewhere called the “Generalized Herfindahl Principle” (Gaudet et al., 2001, p. 1153). Any

user j who is assigned source i early in the program and i′ later in the program must have

2The resumption of usage of a source by one user after it has been abandoned by another user and has
remained idle is illustrated in Figure 1 of Im et al. (2006).
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Figure 1: Simultaneous Use of Different Resources and User 2 Never Uses Source 2

0
Time 

Augmented  

Per-unit Cost 

1 11w 
2 21w 

3 31w 

1 12w 

2 22w 

3 32w 

1 

2 

3 

1 

2 

3 

wij < wi′j. For using sources in that order can only occur if λi > λi′ . But then for source i

ever to be used by j we must have wij < wi′j. This result in turn implies that if user j and

user j′ use source i and then some time later source i′, then i is the cheaper source for both

users.

If j regards source i as cheaper but, to the contrary, j′ regards source i′ as cheaper, then at

most one of the users will use both sources. For suppose, user j was assigned both resources.

Then he will use source i first since wij < wi′j and will use source i′ later only if λi > λi′ . But

then user j′ will never use source i since, for him, wij′ > wi′j′ and so wij′ +λie
rt > wij′ +λi′e

rt

for all t ≥ 0. Thus, it will never be optimal for user j to use the two resources in one order

and user j′ to use the same two sources in the opposite order.

Now suppose source i has the lower per-unit cost for both user j and j′ and in the optimal

plan each user switches to i′ immediately after i. Then user j would switch at the instant tj
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Figure 2: No One Uses Source 2 for an Interval of Time
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defined by

λi − λi′ = (wi′j − wij)e
−rtj > 0, (4)

while user j′ would switch at instant tj
′

i′ defined by

λi − λi′ = (wi′j′ − wij′)e
−rtj′ > 0. (5)

Notice that both equation (4) and equation (5) have the same left-hand sides. If wi′j −

wij = wi′j′−wij′ , the two users must switch at exactly the same time. Hence if the two users

switch from source i to i′ and the difference between the component i and component i′ of

their respective column vectors coincide, then they will switch simultaneously. This would

occur if the entire column vector of the two users in the augmented per-unit cost matrix were

identical, as will be discussed in Section 3.2.2; it would also occur if every component of one
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column vector differed from the corresponding components of the other column vector by a

constant.

If instead the per-unit cost increase in switching from source i to i′ is larger for user j

than for j′ (wi′j − wij > wi′j′ − wij′), then equations (4) and (5) imply that j will linger

longer on source i before switching to i′ (tj > tj
′
). Intuitively, user j would delay switching

to the higher cost source because the cost increase is larger than it is for user j′. Elsewhere,

we have referred to this property as “The Principle of Comparative Advantage” (Gaudet et

al., 2001, p. 1153).3

In the multiple demand model, it is impossible for a source to be used by j, abandoned

by everybody, and then utilized again by the same user j. For, after source i is abandoned

for any alternative i′, λie
rt +wij > λi′e

rt +wi′j and source i will never again have the lowest

augmented per-unit cost. If setup costs are added to the multiple demand model, however,

vacillation of this kind can occur. Gaudet et al. (2001) provide an example with I = 3 and

J = 2. One source has the lowest per-unit cost but, unlike the other two sources, is not

utilized initially because it has not yet been set up. Instead, each of the two users relies on

a different source. When one of those resources runs out, the planner sets up for that user

the low cost resource and supplies his needs from it. Since the per-unit cost of supplying the

needs of the other user as well from that setup resource is strictly smaller than continuing

to supply them from the source he has been using, the planner will switch him as well to

the resource he has just set up. At this point, all the setup costs have been paid and we are

in familiar territory. The remaining reserves in the abandoned resource must eventually be

used by at least one of the two users. If the user who abandoned the resource before it was

exhausted has the comparative advantage in using that source (a strictly smaller per-unit

cost difference than the other user), then he must eventually return to it.4

3Chakravorty et al. (2005, Section 2.4) introduce various notions of comparative advantage, including
this one, which they refer to as “pairwise comparative advantage.” Prior to that the concept of comparative
advantage was also mentioned in Chakravorty and Krulce (1994, pp. 1445 and 1448) and Chakravorty,
Roumasset and Tse (1997, p. 1222).

4Unlike the case in Im et al. (2006), discussed in footnote 2, the same user returns to the source he had
abandoned.
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3.2.2 Homogeneous Users

In the case of homogeneous users, every per-unit cost in a given row of the matrix [wij] is the

same but the number in a different row may differ. We can again index the wij so that row 1

has the lowest per-unit cost.. . . and row I has the highest per unit marginal cost. If we add

λie
rt to every term in row i for i = 1, . . . I. we obtain the augmented per-unit cost matrix:

[wij + λie
rt]. Every column of that matrix will be the same. Given Herfindahl’s insight,

if every row is to be lowest over some time interval then the first row must be assigned

the largest multiplier. . . the last row must be assigned the smallest multiplier. Nonetheless

the multipliers must be assigned so that at t = 0 the first row in the augmented matrix is

smallest . . . and row I is largest. Over time, the second row then becomes the smallest, then

the third row,. . . until the I th row becomes the smallest. As in the single user case, nothing

is used of a higher cost resource until the lower cost resource is exhausted. Moreover, in the

case of homogeneous users (and J > 1), every user switches from one resource to the next at

the same instant. This is a consequence of assuming homogeneous users; it does not occur

in the Hotelling model when users are heterogeneous (except in some circumstances when

two columns in the matrix differ by a constant).

3.3 Backstops

Assume now that B < I backstop technologies are available, that can serve the users in-

definitely without facing the constraint on the cumulative amount supplied that limits each

nonrenewable source. Their cumulative production being unconstrained, λi = 0 for each of

these B sources of supply and their augmented per-unit cost of serving user j reduces to the

exogenously given wij. We assume, without loss of generality, that the first I − B sources

are nonrenewables and the remaining B sources are backstops.

In the unlikely case that for each j = 1, . . . , J there exists some backstop technology

b = I−B+ 1, . . . I (which may differ across the j’s) such that wbj < wij for i = 1, . . . , I−B,

then, as long as wij is stationary for all i, j, all users would be served forever by some backstop

technology; no nonrenewable source would ever be used. We would essentially find ourselves
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in the situation of unconstrained production assumed in Section 2.2 and the analysis carried

out therein would apply. Let us assume that this is not the case and that at least some of

the users are, at the outset, supplied from a nonrenewable source for which λi > 0, as in

Section 3.2.

In fact the entire analysis of Section 3.2 continues to hold. As before, the source

which user j will be using at any time t is determined by constructing the lower en-

velope of his augmented per-unit cost paths; this lower envelope is given by min{wij +

λ1e
rt, . . . , wI−B,j + λI−Be

rt, wI−B+1,j, . . . , wI,j}. The only unique situation which may arise

when backstop technologies are present is that if user j switches to some backstop technol-

ogy b, b = I − B + 1, . . . , I, at some date t̂, then he must have been using a sequence of

one or more nonrenewable sources for t ∈ [0, t̂) and this backstop must have been the last

source in his sequence of sources: he will use it for all t ≥ t̂ and will never return to a

nonrenewable source. Indeed, had the cost-minimizing choice of user j been some backstop

b′ in the interval of time preceding t̂, switching to backstop b could not reduce his cost. He

must therefore have been using a nonrenewable source of supply. If nonrenewable source i

is being used in the interval of time preceding the switch, it has a lower augmented per-unit

cost than any other nonrenewable source during that interval of time, wij + λie
rt < wbj for

t < t̂ and wij + λie
rt̂ = wbj. Since wij + λie

rt is growing over time for all i and all t, relying

on the unconstrained backstop b will therefore remain cost- minimizing forever for user j.

Note that if it is optimal for two users, say j and j′, to switch from the same nonrenewable

source i to the same backstop b, they will not switch at the same time unless wbj − wij =

wbj′ − wij′ , by the Principle of Comparative Advantage discussed in Section 3.2.1. To see

this, simply set i′ = b and λi′ = 0 in equations (4) and (5). More generally, not only can

users switch from a nonrenewable to a backstop technology at different times, but when they

do switch it may well be to different backstop sources (and from different nonrenewables).
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3.4 Technical Change

We have so far assumed in this section that wij is time-invariant for all i, j. But if source i is

subject to technical change, then wij will be decreasing over time towards some lower bound

and we should write it as time-dependent: wij(t). If the source is a backstop and hence

λb = 0, then its augmented per-unit cost reduces to wbj(t), which will be decreasing over

time. If the source is a nonrenewable, then its augmented per-unit cost of supplying user j

is wij(t) +λie
rt. Since this is the sum of a decreasing and an increasing function, it can have

regions where it increases and regions where it decreases; it will be decreasing if and only if

the reduction over time in the exogenous wij(t) due to technical progress is sufficient to more

than offset the growth at the rate of interest of the present value of marginally increasing

the finite stock of source i.

The introduction of technical change does not alter the fact that at any date t each

user will rely on the source which has the lowest augmented per-unit cost to him. But

now less can be said in general about the lower envelope of these time paths since each

time path may have both increasing and decreasing regions. As a result, many scenarios

for the sequence of use of the different sources are theoretically possible. To take but one

example, if it is optimal for user j to switch to some backstop technology b at date t̂, then,

unlike in Section 3.3 where the wij’s are stationary, we cannot rule out that he may have

been using a different backstop technology prior to t̂. Nor can we rule out that he may

return to a nonrenewable source in the future if technical progress has sufficiently reduced

the exogenous component of the augmented per-unit cost of this alternative source. A user

may also abandon a nonrenewable source i at some date t1 in favor of another nonrenewable

source i′ and then come back to source i at a future date t2, depending on the evolution of

wij(t) and wi′j(t) over the interval of time [t2, t2]. In the absence of technical change, this

could only happen if there were significant set-up costs, as shown in Gaudet et al. (2001)

and briefly discussed in Section 3.2.1.
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4 Decomposition of wij

Source of supply i, i = 1, . . . , I can be thought of as being obtained from a resource of type n,

n = 1, . . . , N , of grade g, g = 1, . . . , G, located geographically at site `, ` = 1, . . . , L. As for

demand j, it can be thought of as serving end use k, k = 1, . . . , K, at location `, ` = 1, . . . , L.

Hence I = NxGxL and J = KxL. It then becomes clear that the cost wij of providing for

demand j from source i will not depend only on the cost of extraction (or production, in

the case of a reproducible substitute). It will also depend on the cost of transporting to

location ` the resource of type n of grade g converted for end use k, which can be specific

to demand j. Hence, if we denote by ci the unit cost of extraction (or production), by dij

the transport cost from source i to demand j, by zij the conversion cost of source source i

to satisfy demand j, and by τij any taxes (or subsidies) specific to source i serving demand

j, we have that

wij = ci + dij + zij + τij. (6)

The full marginal cost, which also includes the imputed cost of depleting supply source i

by an extra unit, is wij + λie
rt, with λi positive whenever the cumulative supply faces a

binding constraint and zero otherwise. Decomposing the exogenous cost wij in this way sets

the stage for useful applications of the multi-demand framework described in the previous

sections.

In some cases, one may want to stress the fact that the many users of the multiple

sources of supply for a single end use (i.e. K=1) are spatially distributed, as in Gaudet et

al. (2001) and Ley et al. (2000, 2002). The cost of transporting from each source to each

user then becomes the dominant factor in explaining the equilibrium allocation of sources

to users. If regulatory constraints can be neglected (i.e. τij set to zero), this amounts to

writing wij = ci + dij. A particularly interesting example of this can be found in Ley et

al. (2002), who apply the multi-demand model developed in Gaudet et al. (2001) to study

the efficient intertemporal allocation of the solid waste of cities in the United States to

17



spatially distributed landfills and incinerators (the backstop technology).5 They append to

the planning problem time-varying constraints on the maximal activity at each landfill and

the maximal flow between particular city-landfill pairs. The multipliers associated with these

constraints can be added to obtain τij(t). They then use this model to evaluate the positive

and normative consequences of proposed regulatory policies.

In other instances it may be appropriate to neglect the spatial dimension in order to

emphasize the cost of converting different sources of supply (e.g. various grades of oil, coal,

natural gas, etc.) to satisfy demand for different end uses (e.g. heating, transportation,

electricity. etc.). This then assumes users and supply sources to be identically located (i.e.

L = 1) and, in the absence of regulatory interventions, we may interpret the different costs

as wij = ci + zij. This is the interpretation retained in Chakravorty and Krulce (1994),

Chakravorty et al. (1997) and Chakravorty et al. (2005). Chakravorty et al. (1997) provide

a nice application of this approach to the multi-demand framework. As in Nordhaus (1979),

they retain four demand sectors (electricity, industry (mainly process and space heating),

residential/commercial (mainly heating) and transportation) and four energy sources (oil,

coal, natural gas and solar (as a backstop technology)). Using actual data for the conversions

costs zij, they simulate the model for the world economy and draw conclusions for the

projected long term sequences of use of the resources, as well as the resulting carbon emissions

and their effects on global warming.

In some situations it is the effect of regulatory environments that differ across users that

one may wish to emphasize (i.e. varying τij). Hoel (2011) and Fischer and Salant (2014) are

examples of this. Both recognize that climate policies differ considerably across countries

and adopt a version of the multi-demand model to analyze some of the consequences of this

fact for the intertemporal and spatial effects of various changes in climates policies. Hoel

considers a case where a single nonrenewable carbon emitting resource and a backstop are

two perfectly substitutable sources of energy (I = 2), the latter having a higher (constant)

5The volume of space contained in a landfill at any given time can be viewed as a stock of nonrenewable
resource that is being depleted: dumping solid waste in the landfill is equivalent to extracting the displaced
volume of space from it and shipping it to satisfy a demand for solid waste disposal.
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unit cost. This energy is demanded by two countries (J = 2) who have different climate

policies (carbon taxes or subsidies), which is the only thing that distinguishes them. Hence

one may set dij = zij = 0 and wij = ci + τij. He studies various scenarios whereby the

taxes or the subsidies to the backstop are increased and shows that such increases can have

very different effects on climate costs if the initial taxes or subsidies are different to begin

with than if they are the same. Fischer and Salant consider a world of identical countries,

a fraction of which are regulated and the rest unregulated (J = 2). Therefore, as in Hoel,

the only thing that distinguishes the two sets of countries is whether they are regulated or

not. There are I sources of energy: I − 1 different grades of the polluting nonrenewable

resource characterized by different time-invariant per-unit costs, different emission factors

and different underground reserves, and a clean backstop that experiences exogenous cost-

reducing technical change. The cost of energy from the backstop exceeds initially that of

the highest cost nonrenewable sources. There are no transport costs (dij = 0) and no

conversion costs (zij = 0). Denote the exogenous emissions factor (emissions per barrel) at

source i by µi and the initial emissions tax by τij. Over time, the emissions tax (or, price of

bankable emissions permits) is assumed to rise at the rate of interest. Hence we may write

wij(t) = ci(t) + ertτij(µi), where ci(t) = ci for i = 1, . . . , I − 1. They consider the effects

on intertemporal and spatial leakage of an increase in the emission tax, in the speed of

technical change in the backstop, and in the fraction of regulated countries.6 They identify

circumstances where even a “negative leakage” can occur, in the sense that a policy change

that induces reductions in emissions in the regulated countries also induces reductions in

emissions in the unregulated countries. This suggests that promoting technical change in

clean substitutes, for instance, could be an alternative to attempting to secure international

cooperation on setting target emission reductions and implementing them.

6The term leakage is used here to describe a situation where, for instance, an increase in a carbon tax at
a particular date (or in a particular region) would result in an increase in emissions at another date (or in
another region). The latter can be referred to as “spatial leakage” and the former as “intertemporal leakage”.
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5 Conclusion

The Hotelling model is often criticized for its unrealistic prediction that every user of a non-

renewable resource will exhaust it and will then simultaneously move on to the cheapest of

the remaining nonrenewables. We trace this unrealistic prediction to the unrealistic assump-

tion that each resource is available to every user at the same exogenous per-unit cost. This

assumption fails to hold when users are (1) spatially separated, (2) subject to different taxes,

or (3) requiring different processes for the source to be useful. Each of these cases has been

studied in isolation in the literature, but the unity of these disparate cases has not always

been clear to readers. In this chapter, we have examined the general case. We discussed

its main properties: the Generalized Herfindahl Principle and the Principle of Comparative

Advantage. Finally, we have shown how some contributions to the literature are special cases

of this general framework.
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