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Tactical Vehicle Routing Planning with Application to Milk Collection and Distribution

par
Iman Dayarian
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Sommaire

De nombreux problèmes pratiques qui se posent dans dans le domaine de la logis-
tique, peuvent être modélisés comme des problèmes de tournées de véhicules. De façon
générale, cette famille de problèmes implique la conception de routes, débutant et se
terminant à un dépôt, qui sont utilisées pour distribuer des biens à un nombre de clients
géographiquement dispersé dans un contexte où les coûts associés aux routes sont min-
imisés. Selon le type de problème, un ou plusieurs dépôts peuvent-être présents. Les
problèmes de tournées de véhicules sont parmi les problèmes combinatoires les plus
di�ciles à résoudre.

Dans cette thèse, nous étudions un problème d’optimisation combinatoire, appar-
tenant aux classes des problèmes de tournées de véhicules, qui est liée au contexte des
réseaux de transport. Nous introduisons un nouveau problème qui est principalement
inspiré des activités de collecte de lait des fermes de production, et de la redistribution
du produit collecté aux usines de transformation, pour la province de Québec. Deux
variantes de ce problème sont considerées. La première, vise la conception d’un plan
tactique de routage pour le problème de la collecte-redistribution de lait sur un horizon
donné, en supposant que le niveau de la production au cours de l’horizon est fixé. La
deuxième variante, vise à fournir un plan plus précis en tenant compte de la variation
potentielle de niveau de production pouvant survenir au cours de l’horizon considéré.

Dans la première partie de cette thèse, nous décrivons un algorithme exact pour la
première variante du problème qui se caractérise par la présence de fenêtres de temps,
plusieurs dépôts, et une flotte hétérogène de véhicules, et dont l’objectif est de minimiser
le coût de routage. À cette fin, le problème est modélisé comme un problème multi-
attributs de tournées de véhicules. L’algorithme exact est basé sur la génération de
colonnes impliquant un algorithme de plus court chemin élémentaire avec contraintes
de ressources.

Dans la deuxième partie, nous concevons un algorithme exact pour résoudre la
deuxième variante du problème. À cette fin, le problème est modélisé comme un
problème de tournées de véhicules multi-périodes prenant en compte explicitement les
variations potentielles du niveau de production sur un horizon donné. De nouvelles
stratégies sont proposées pour résoudre le problème de plus court chemin élémentaire
avec contraintes de ressources, impliquant dans ce cas une structure particulière étant
donné la caractéristique multi-périodes du problème général.



Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables,
une approche de résolution de nature heuristique est requise. La troisième partie pro-
pose un algorithme de recherche adaptative à grands voisinages où de nombreuses
nouvelles stratégies d’exploration et d’exploitation sont proposées pour améliorer la
performances de l’algorithme proposé en termes de la qualité de la solution obtenue et
du temps de calcul nécessaire.

Mots-clés. Problème de tournées de véhicules, problème de tournées de véhicules
multi-périodes, génération de colonnes, chemin la plus court élémentaire avec con-
traintes de ressources, recherche adaptative à grands voisinages, algorithmes exacts,
algorithmes heuristiques.
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Summary

Many practical problems arising in real-world applications in the field of logistics can be
modeled as vehicle routing problems (VRP). In broad terms, VRPs deal with designing
optimal routes for delivering goods or services to a number of geographically scattered
customers in a context in which, routing costs are minimized. Depending on the type
of problem, one or several depots may be present. Routing problems are among the
most di�cult combinatorial optimization problems.

In this dissertation we study a special combinatorial optimization problem, belong-
ing to the class of the vehicle routing problem that is strongly linked to the context
of the transportation networks. We introduce a new problem setting, which is mainly
inspired by the activities of collecting milk from production farms and distributing the
collected product to processing plants in Quebec. Two di↵erent variants of this prob-
lem setting are considered. The first variant seeks a tactical routing plan for the milk
collection-distribution problem over a given planning horizon assuming that the pro-
duction level over the considered horizon is fixed. The second variant aims to provide a
more accurate plan by taking into account potential variations in terms of production
level, which may occur during the course of a horizon. This thesis is cast into three
main parts, as follows:

In the first part, we describe an exact algorithm for the first variant of the prob-
lem, which is characterized by the presence of time windows, multiple depots, and a
heterogeneous fleet of vehicles, where the objective is to minimize the routing cost.

To this end, the problem is modeled as a multi-attribute vehicle routing problem.
The exact algorithm proposed is based on the column generation approach, coupled
with an elementary shortest path algorithm with resource constraints.

In the second part, we design an exact framework to address the second variant of
the problem. To this end, the problem is modeled as a multi-period vehicle routing
problem, which explicitly takes into account potential production level variations over
a horizon. New strategies are proposed to tackle the particular structure of the multi-
period elementary shortest path algorithm with resource constraints.

To solve realistic instances of the second variant of the problem in reasonable com-
putation times, a heuristic approach is required. In the third part of this thesis, we
propose an adaptive large neighbourhood search, where various new exploration and



exploitation strategies are proposed to improve the performance of the algorithm in
terms of solution quality and computational e�ciency.

Keywords. Vehicle routing problem, multi-period vehicle routing problem, column
generation, elementary shortest path with resource constraints, adaptive large neigh-
borhood search, exact algorithm, heuristic algorithm.
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Chapter 1

Introduction

Combinatorial optimization is an important field in the area of computer science and
operations research. Many real-life activities, as well as industrial applications, can be
modeled as combinatorial optimization problems. The vehicle routing problem (VRP),
initially introduced by Dantzig and Ramser [42], is an important key to e�cient logistics
system management; in fact, it is one of the most important combinatorial optimization
in the field. Logistics incorporates activities which attempt to govern physical flows of
raw material, semi-finished and finished products, as well as to assess the informational
flow within an organization in order to provide resources relevant to needs, economic
conditions and the necessary quality of service within organizations. In other words,
logistics represents all activities that allow the right amounts of products to be provided
at a lower cost when and where a demand exists.

The classic VRP concerns itself with fashioning a set of collection or delivery routes
performed by a homogeneous fleet of vehicles, departing from one depot in order to
satisfy customer demands so that some objective functions are optimized [151]. Often,
the objective function of the VRP consists of minimizing the vehicles’ total traveled
distance, but it is also common to minimize other objectives such as the sum of fixed
and variable costs or the number of used vehicles.

This dissertation deals with tactical planning for a class of routing problems in-
spired by some real-world logistics activities. Planning is the process of organizing
the activities required to achieve a desired goal with respect to the available means.
Planning a distribution system involves devising routes to satisfy di↵erent clients’ re-
quests, so as to optimize an objective function. An e↵ective tactical plan requires a
comprehensive knowledge of restrictions and requirements for di↵erent periods of the
considered planning horizon. This is based on a global vision of development practices
during the period in question. This view is often obtained through information from
historical data or predictive models.

Vehicle routing problems have been the subject of considerable research, as shown
by the existence of extensive scientific literature on the subject. The VRP generalizes



the well-known traveling salesman problem (TSP), but is much more di�cult to solve
in practice [102]. Over the past few decades, researchers in the field have introduced
numerous extensions to the classic VRP, often to address practical problem settings
encountered in real-world transportation activities. As Toth and Vigo [151] claimed, the
use of appropriate solution methodologies to e�ciently solve vehicle routing problems in
distribution processes may result in savings, ranging from 5% to 20% in transportation
costs. An appropriate solution methodology relies on simultaneously representing the
reality through the mathematical models while proposing concrete solution approaches,
both in terms of solution quality and computational e↵ort.

Similar to many other combinatorial optimizations, further to general increases in
the computational power and also significant advances, both in exact and heuristic
methods, the tools and knowledge to find good solutions to practical variants of the
VRP in a reasonable time has tremendously increased. However, these studies have still
been criticized for being too focused on non-realistic models based on simplified assump-
tions. Therefore, many recent studies have attempted to simultaneously incorporate
several complicating attributes, defining the feasibility structure and optimality criteria
of the considered problems, which in turn translate to an increase in the complexity in
terms of modeling and solution methodology. In the combinatorial optimization litera-
ture, such problems are referred to as “multi-attribute problems.” The multi-attribute
vehicle routing problems (MAVRPs) [79] are often concerned with a subset of the fol-
lowing attributes or characteristics: capacity and travel time constraints, time window
restrictions, heterogeneous vehicle fleets with di↵erent travel costs, order-vehicle com-
patibility constraints, orders with multiple pickups and deliveries, di↵erent start and
end locations for vehicles, and route restrictions for vehicles.

While many theoretical and methodological advances have been made in the classic
VRPs (such as the capacitated vehicle routing problem (CVRP) or the vehicle routing
problem with time windows (VRPTW)), more recently, a growing tendency to address
real-life routing problems, often taking the form of MAVRPs, has been observed among
researchers.

This dissertation consists of three papers, concerning the development of mathemat-
ical models as well as methodological solution approaches addressing di↵erent variants
of a real-life MAVRP, inspired by the milk collection and distribution activities in
Quebec.

1.1 Problem statement

This dissertation addresses two variants of a combinatorial optimization problem en-
countered in the context of milk collection in Quebec. For the sake of simplicity,
throughout this dissertation, this problem is referred to as the dairy transportation
problem (DTP). We begin this section by providing some facts regarding the dairy
industry in Quebec. About 49% of Canada’s dairy farms are located in Quebec, while
about 50% of Canada’s dairy industries are located in Quebec. Furthermore, the dairy

2



industry ranked third in the Canadian agricultural sector, in terms of value in 2010 [1].

The Fédération des producteurs de lait du Québec (FPLQ) is responsible for nego-
tiating on behalf of the dairy farmers annual transportation contracts with the carriers.
A negotiation takes place through the FPLQ to discuss and determine the cost and con-
tracts before formalizing the agreement [2, 101]. Each contract with a carrier involves
multiples routes, each of which consists of an origin (the vehicle depot), a collection
sequence from producers’ farms, and a destination (the processing plant).

The approach currently used by to construct the milk routes is mainly based on
historical data. Based on the above description, there are three types of stakeholders,
which are described below:

• The producers, which periodically produce a limited quantity of one or more
products.

• The plants, which periodically receive the products. They transform these raw
materials into consumable goods.

• The carriers, which collect the products from the producers and deliver them to
the plants. Each carrier has one or more depots, where the vehicles are located.

The individual vehicles usually have di↵erent capacities, fixed costs, and variable
costs. The fixed costs are the expenses that are not related to the distance traveled and
should be paid when the vehicle is used while the variable costs depend on the distance
traveled. Each plant has an associated demand window indicating the minimum and
maximum quantities that can be delivered.

A route is a path that starts and ends at a depot and visits producers and plants; it
may contain one or more pick-up and delivery phases. A route is feasible if the pick-ups
do not exceed the vehicle capacity and the associated time windows are respected. The
cost of a route is the sum of the costs of the arcs on the path plus the sum of the
vehicle’s fixed and variable costs. We assume throughout this paper that the triangle
inequality holds for the costs and travel times. Also, the service times are considered
to be independent of the quantities collected or delivered.

A vehicle can perform one or more circuits per day. We define three route types as
follows:

Simple route: Each vehicle visits several producers and collects their products. It
then delivers its entire load to one plant and returns to its depot.

Multi-drop route: A vehicle delivers its load to more than one plant before returning
to its depot.

Interlaced multi-drop routes: Vehicles perform several circuits per day. A vehicle
may visit other producers after completing its first visit to a plant. One or more
plants are visited.
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Figure 1.1: General configuration of simple route

Figure 1.2: General configuration of multi-drop route

Figure 1.3: General configuration of interlaced multi-drop route

In this dissertation, we assume that all the routes are under the simple route pattern.

1.1.1 Single-period variant of the DTP

The first problem considered in this dissertation consists of a MAVRP variant of the
problem described above. The attributes and characteristics of this problem setting
are inspired by the DTP. In the considered problem, a daily plan is designed for a
heterogeneous fleet of vehicles that depart from di↵erent depots and must visit a set
of producers for collection operations. The collected products are delivered to a set
of processing plants before the vehicles return to their original depots. In this multi-
attribute vehicle routing problem, two kinds of constraints are considered: 1) each
vehicle has a limited capacity of collecting products, and 2) there is time window
associated with each producer, during which the collection operation must begin. The
daily production of each producer is assumed to be known a priori, and fixed over the
horizon. Moreover, each plant has a predetermined demand, which must be fulfilled
by receiving a su�cient quantity of product per day. The cost of each vehicle route is
computed through a system of fees depending on the distance traveled. Two variants of
this problem are considered. In the first variant, which corresponds to the current state
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of activities performed in Quebec, producers are preassigned to depots. The main goal
of this variant is to design a set of least cost routes so that each producer is served via a
route departing from its assigned depot. Moreover, one has to make sure that the daily
plants’ demands are covered by the delivered quantity of product. The second variant
of the problem, allowing the revision of the producer-depot assignments, corresponds
to a setting where all the preassignments are removed.

1.1.2 Multi-period variant of the DTP

The second problem considered in this dissertation is a new variant of the DTP. The
main goal of this problem is to design a unique routing plan, which will be used as the
basis of cost negotiations between di↵erent stockholders in a contract. The designed
plan is considered to be fixed over a horizon despite the fact that, often in reality,
producers’ production levels may vary on daily or seasonal bases. The daily variations,
caused by exceptional situations such as daily meteorological variations, cattle nutrition
or cattle diseases, are quite minor. On the other hand, seasonal variations, caused by
seasonal meteorological changes as well as animal birth cycles, are more significant.
It is worth noting that, in this particular context, by a season, we do not necessarily
refer to the conventional definition of a season (quarter of a year), but rather, the sub-
periods of the year determined by variations in cattle’s production levels, which could
be shorter or longer than the traditional calendar use of the term.

Currently, these variations are not accounted for while designing the routes. More
precisely, the producers’ production over a horizon is represented by their mean values,
often obtained from historical data. Accordingly, executing such a plan during the
periods of the horizon with higher-than-average production levels, a planned route
may fail at a given producer as a result of insu�cient residual capacity to serve each
producer’s demand. In this dissertation, such a situation is referred to as a Failure.
Following a failure, the vehicle returns to its assigned plant to empty its tank, before
resuming the route by visiting the remainder of its planned producers and delivering
to the plant once again. We call this extra travel to a plant a Recourse Action. The
main goal of this problem is to design a single plan over a given horizon, so that the
total routing costs (the sum of planned routes and recourse costs) plus the vehicles
fixed costs are minimized.

In this problem, since all the producers in a given geographical region experience the
same seasonal circumstances, their seasonal variations are almost perfectly correlated.
Accordingly, one can recognize periods of the horizon, corresponding to production
seasons, in which all the producers’ production levels are relatively fixed (ignoring po-
tential daily variations). In fact, while designing the routes, potential daily variations,
which represent the intra-period production fluctuations, are often absorbed by leaving
a safety capacity of 5% to10% to be empty on each vehicle.
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1.2 Thesis contributions

The main contributions of this dissertation are as follows:

• We introduce two variants (single- and multi-period) of the MAVRP inspired by
milk collection and redistribution in Quebec. It di↵ers from well-studied variants
such as VRPTW and MDVRPTW because there is an extra level of di�culty
associated with the assignment of routes to plants. We also investigate the char-
acteristics of these problems.

• We first propose a set partitioning formulations for the single-period variant of
the problem.

• We develop a branch-and-price algorithm. It includes a number of structural
exploration and exploitation features that improve the computational e�ciency
of the solution strategy.

• We perform an extensive analysis using a large set of randomly generated in-
stances, to illustrate the e�ciency of the algorithm and investigate the character-
istics of the problem.

• Next, we propose a mathematical programming model for the multi-period variant
of the problem considering the seasonal behavior of the supply.

• We propose a state-of-the-art branch-and-price algorithm. It includes a series of
bounds as well as structural modifications in the multi-period problem, allowing
us to take advantage of technical advances in single-period VRPs.

• We perform an extensive analysis using a large set of randomly generated in-
stances, to illustrate the performance and the limits of our algorithm.

• In the third part of the dissertation, we design a new metaheuristic based on
the adaptive large neighborhood search (ALNS) for for the multi-period problem
setting.

• We design several new operators based on the special structure of the problem.
We also adapt some existing operators in the literature.

• We propose a new adaptive layer for the ALNS in which destruction and con-
struction heuristics are coupled to form the operators, rather than being treated
independently.

• We propose a new diversity management system for the ALNS, which is based on
extracting information from a list of diverse solutions and restarting the search
from a diverse solution when it seems to be trapped in a local optimum.

• To evaluate the quality of the solution, we compute a series of lower and upper
bounds on the value of the multi-period solution. We compare the solutions
obtained through the ALNS with these bounds.
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• We perform a series of extensive numerical tests for a large set of randomly
generated instances, to illustrate the performance of the algorithm in terms of
computational time and solution quality.

1.3 Thesis organization

This dissertation addresses two combinatorial problems, encountered in a collection-
distribution context. Chapter 2 covers the state of the art for the works related to the
context of this dissertation. A brief classification of di↵erent exact and metaheuristic
solution methods for the main extensions of the VRP is presented.

Chapter 3, the first paper of this dissertation, addresses the problem described in
Section 1.1.1, as well as the details of the problem setting and the proposed solution
method based on the branch-and-price algorithm. The performance of our algorithm
is discussed in the same chapter.

The second paper of this dissertation is presented in Chapter 4. This paper ad-
dresses the second problem, described in Section 1.1.2. In this chapter, we present
a set covering formulation for the multi-period variant of the problem. The solution
method is again based on the branch-and-price algorithm. This chapter finishes with
the presentation of the numerical results and an evaluation of the performance of our
algorithm.

Chapter 5, forming the third paper of this dissertation, takes over the same problem
as in Chapter 4. To be able to address more realistic size configurations of this problem,
we propose a solution method, which is based on a metaheuristic framework. Di↵erent
features of the adaptive large neighbourhood search, proposed in this paper, are dis-
cussed in detail. Extensive numerical tests are performed to evaluate the performance
of our algorithm. The outcomes of these tests are presented at the end of this chapter.

Finally, Chapter 6 provides conclusions, including the evaluation of our work as well
as our research perspectives.
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Chapter 2

Literature Review

The vehicle routing problem (VRP), first introduced by Dantzig and Ramser [42], is
one of the most challenging problems in the field of combinatorial optimization. The
classical VRP is defined as the problem of designing least-cost delivery routes from a
depot to a set of geographically scattered customers. However, due to the diversity
of practical operating rules and constraints encountered in real-life applications, many
variants and extensions of the classical VRP have been introduced and addressed in
the literature. For books and survey articles on the VRP, readers are referred to Toth
and Vigo [151], Cordeau et al. [37], Golden et al. [74] and Laporte [102].

The classical VRP, usually referred to as the capacitated VRP (CVRP), can formally
be defined as follows: Let G = (V,A) be a directed graph, where V = {0, . . . , n} is
the vertex set and A ✓ (V ⇥ V) is the arc set. Vertex 0 represents the depot, whereas
the remaining vertices N = {1, . . . , n} correspond to customers. A fleet of m identical
vehicles of capacity Q is based at the depot. The fleet size is given a priori or is a
decision variable. Each customer i has a non-negative demand qi. A cost matrix cij is
defined on arc set A, where travel costs, distances and travel times are often considered
to be proportional. The VRP consists of designing m vehicle routes, such that each
route starts and ends at the depot, each customer is visited exactly once by a single
vehicle, and the total demand of a route does not exceed Q.

Numerous extensions and variants of the CVRP are introduced in the literature.
Among them, the following problems have similar attributes or characteristic to the
problems of this dissertation:

The Vehicle Routing Problem with Time Windows (VRPTW): This problem
is an extension of the VRP, in which the service for each customer must start
within a time interval, referred to as a time window. If the vehicle arrives before
the beginning of a customer time window, it has to wait. The VRPTW has been
proved by Savelsbergh [137] as a NP-hard problem.

The Multi-Depot Vehicle Routing Problem (MDVRP): This problem is about



designing the most e�cient schedule for the vehicles; while assuming that multiple
depots, from which the vehicles depart and arrive, exist.

2.1 Set covering-based algorithms for the VRP

Exact methods for the VRP are based on two large formulation families: 1) flow-based
formulations, and 2) set covering-based formulations. The flow-based formulation is
often solved using the branch-and-cut approach, while the set covering-based formula-
tions are solved using the branch-and-price approach.

In this section, we first start by presenting a general set covering formulation for
the CVRP. We devote special attention to the branch-and-price approach, since this is
the core algorithm used in Chapters 3 and 4 of this thesis.

2.1.1 Set covering formulation for the VRP

To present the set covering formulation of the classical VRP, let us suppose that R is
the set of all feasible routes for a given problem. Moreover, the binary parameter air
is equal to 1, if customer i is visited by route r 2 R and zero, otherwise. Let us also
suppose that cr and ck stand for the variable and fixed vehicle costs associated with
route r. The set covering formulation of the VRP is as follows:

min
X

r2R
(cr + ck)yr (2.1)

subject to

X

r2R
airyr � 1 (i 2 N ); (2.2)

yr 2 {1, 0} (r 2 R). (2.3)

In the above formulation, Constraints (2.2) insure that each producer is visited
exactly once by exactly one route. Note that the set covering formulation is derived
from a set partitioning formulation, in which Constraints (2.2) are under equality form.
However, it is worth mentioning that in the case of problems, where the distance matrix
satisfies the triangle inequality, the set partitioning and set covering formulations are
equivalent. The advantage of working on the set covering formulation is related to its
simpler implementation.

To solve the set covering formulation, first, a linear relaxation is often considered.
The linear relaxation is obtained by replacing Constraints (2.3) with the following
constraints:
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0  yr  1 (r 2 R). (2.4)

To solve the linear programming relaxation of the problem without enumerating all
routes, one can use the column generation technique. In this procedure, a subset of
all possible routes is enumerated, and the linear relaxation, which is restricted to this
partial route set, is solved. Using the values of the optimal dual variables with respect
to the partial route set, we solve a simpler optimization problem, where we identify
whether there is a route that should be included in the formulation. Then, the linear
relaxation of this expanded problem is resolved. This procedure continues until no new
improving routes are found.

2.1.2 Branch-and-price for the VRP

For more than two decades, branch-and-price has been successful in solving a wide vari-
ety of the VRP (see Desrosiers et al. [51] and Desaulniers et al. [47]). Branch-and-price
algorithm is a branch-and-bound in which the lower bounds are computed using the
column generation technique (for a recent and complete survey of column generation,
see Lübbecke and Desrosiers [109]). The column generation is a generalization of the
[43]. Often, starting from the arc-flow formulation, the problem is formulated as a set
partitioning problem on which the column generation is applied. The set partitioning
formulation of the CVRP was originally proposed by Balinski and Quandt [15] and
associates a binary variable with each feasible route. Such a formulation splits the
problem into two major structures: a master problem and a subproblem. In the VRP
application, each variable of the set partitioning formulation represents a feasible route.
Moreover, most successful decomposition approaches for di↵erent variants of the VRP
cast the subproblem as an elementary shortest path problem with resource constraints
(ESPPRC).

The column generation is an iterative process, which is based on the interaction
between the master problem and the subproblem. The master problem is, in fact,
the linear relaxation of the set partitioning formulation of the problem, where the
constraints regarding the feasibility of routes are evaluated in the subproblem. The
subproblem involves a modified objective function based on the dual variables of the
master problem. More precisely, the subproblem is responsible for finding feasible
routes with negative reduced cost with respect to the current dual variables of the
master problem, which are then fed to the master problem. At each iteration of the
column generation, a restricted linear master problem (RLMP) is solved rather than
the master problem. The set of the columns in the RLMP is limited to only those
that have already been generated. Once the RLMP is solved, the objective function
of the subproblem is updated with respect to the current dual variables of the RLMP.
The interaction between the master problem and the subproblem continues until no
negative-reduced-cost column is found through solving the subproblem.
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The column generation does not guarantee the integrality of the solution. There-
fore, a branch-and-price scheme, which is based on the idea of the branch-and-bound
algorithm, is employed. In this approach, at the end of the column generation proce-
dure, if the obtained solution is an integer, it is a valid solution to the original master
problem. If the solution of the relaxed problem does not satisfy the integrality con-
ditions, branching occurs to cut o↵ the current fractional point. A valid branching
scheme should cut o↵ the current fractional solution, produce a balanced search tree
and keep the structure of the problem unchanged. At the end of the search process,
the best integer solution is the optimal solution for the original integer problem.

The master problem

A relaxation of Constraints 2.1 and 2.3 converts the set partitioning model into a
set covering yielding the linear master problem. Consequently, the RLMP, which is
restricted to a smaller subset of columns R0 ✓ R, takes the following form:

min
X

r2R0

(cr + ck)yr (2.5)

subject to

X

r2R0

airyr � 1 (i 2 N ); (2.6)

0  yr  1 (r 2 R0). (2.7)

where Constraints 2.6 guarantee at least one visit to each producer.

The subproblem

The subproblem should find one or more columns with negative reduced costs with
respect to a given dual solution of the RLMP. The subproblem takes the form of an
ESPPRC, where the resource constraint concerns with the vehicle capacities. Consider
the following dual variables of the RLMP (2.5)-(2.7):

• �i : nonnegative dual variable of (2.6) for producer i 2 N ;

Let xij be a binary decision variable, which equals 1 if customer j follows customer
i on the shortest path and 0, otherwise. Moreover, associated with each customer i
there is a demand qi. Using these notations, the subproblem takes the following form:

min
X

i2N

X

j2N
(cij � �i)xij + ck (2.8)
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subject to

X

i2N
xih �

X

j2N
xhj = 0; (h 2 N ) (2.9)

X

j2N
x0j = 1; (2.10)

X

i2N
qi

X

j2N
xij  Q; (2.11)

xij 2 {1, 0} (i, j 2 N ). (2.12)

In this model, Constraints 2.9-2.10 are flow constraints which result in a path from
depot to itself. Constraints 2.11 are the capacity constraint, whereas Constraints 2.12
ensures the solution integrality.

Elementary shortest path problem with resource constraints

Most of advances in the field of the branch-and-price for the classical variants of the
VRP such as the CVRP and the VRPTW, have been built upon proposing e�cient
methodologies to optimally solve the subproblem. As mentioned in Section 2.1.2, in
most VRP applications solved by column generation, the subproblem corresponds to a
shortest path problem with resource constraints (SPPRC), an ESPPRC, or one of their
variants. In these problems, one may have resource constraints related to time (e.g.,
time windows, route duration), vehicle capacity and many other resources.

The standard approach to solve the SPPRC or the ESPPRC, in practice, is based
on dynamic programming and has a pseudo-polynomial complexity. This approach,
being an extension of the well-known Ford-Bellman algorithm, is to associate with each
possible partial path a label indicating the consumption of resources. In the classi-
cal dynamic programming-based algorithms, starting from an initial label associated
with the depot, the algorithm extends the labels along arcs using extension functions.
To avoid creating a huge number of labels, dominated labels are eliminated by some
dominance rules.

The elementary condition adds an extra layer of complexity to the SPPRC, being
a NP-hard problem [53]. One of the main papers dedicated to the ESPPRC, especially
as a subproblem for a column generation methodology, is the work of Feillet et al. [55].
The authors proposed an exact algorithm, based on the label-correcting algorithm of M.
[110], in which new resources are introduced to enforce the elementary path constraint.
Their algorithm has strongly improved the e�ciency of the algorithm by introducing
the idea of unreachable nodes supporting the elementary paths.

In a classical labeling procedure for an ESPPRC, based on Feillet et al. [55], where
resource constraint is the vehicle capacity, each label � = (C,L, S,�) has the following
component:

12



1. C for the reduced cost,

2. L for the vehicle load,

3. S for the number of unreachable nodes,

4. set � containing unreachable nodes from the current label.

A label �1 = (C1, L1, S1,�1) dominates a label �2 = (C2, L2, S2,�2), if the following
criteria are met:

(a) L1  L2,

(b) C1  C2,

(c) S1  S2,

(d) �1 ✓ �2.

Since the paper of Feillet et al. [55], many authors addressed the ESPPRC and
many improvements have been achieved in accelerating the solution of the ESPPRC.
The most promising methodologies for the ESPPRC, relaxing partially the elementary
conditions, are based on either the decremental state-space relaxation (DSSR), on the
ng-route relaxation, or on ng-route decremental state-space relaxation (ngR-DSSR).
These two strategies are briefly introduced in the following sections.

State-space relaxation

In the DSSR strategy, initially proposed by Boland et al. [23], the elementary conditions
are completely or partially relaxed, turning the ESPPRC into a SPPRC. Adding new
resources, up to obtaining the optimal elementary solution, iteratively tightens the
relaxation. At the end of each iteration of solving the SPPRC, using the label correcting
procedure, all columns with no cycle are added into the master problem. Moreover, the
set of critical nodes are recognized and through a state-space augmentation strategy,
cycle formation on one or more of them is prohibited for the next iterations. A critical
node refers to a node on which a cycle has occurred in the relaxed problem, SPPRC. The
process repeatedly continues by adding partial elementary conditions to the SPPRC as
long as new negative reduced cost columns, even containing cycles, price out. Several
state-space augmentation strategies have been proposed by Boland et al. [23].

The main advantage of this strategy is a reduction in the number of resources stored
on each label to be compared and updated following each label extension, while also
guaranteeing the elementarity of the obtained columns. Let us suppose that for a given
label �, resource bS keeps the number of unreachable critical nodes, and a set b� ✓ �
contains the critical nodes unreachable from the current label. The set � stores all
the nodes recognized as critical. Accordingly, for a label �1 to dominate a label �2 the
following conditions are required:
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(adssr) L1  L2,

(bdssr) C1  C2,

(cdssr) cS1  cS2,

(ddssr) c�1 ✓c�2.

ng-route relaxation

In the ng-Route Relaxation strategy, proposed by Baldacci et al. [13], the elementary
conditions are partially relaxed. Consequently, the optimality of the lower bound is
sacrificed for the sake of time e�ciency. Following this relaxation, near-elementary
routes are often generated with a fraction of the computational e↵ort.

Based on this strategy, a new state-space relaxation is used to compute lower bounds
to routing problems, such as the CVRP and the VRPTW. It consists of partitioning the
set of all possible paths ending at a generic vertex according to prefixed neighbourhoods
of graph vertices and also a mapping function. The latter associates a subset of the
visited vertices with each path that depends on the order in which such vertices are
visited. The subset of vertices associated with each ng-path is used to impose partial
elementarity. This relaxation was proved to be particularly e↵ective in computing
lower bounds in the CVRP, the VRPTW and the traveling salesman problem with
time windows (TSPTW).

The ng-Route Relaxation performs as follows. Suppose that Vr represents the set of
producers visited by partial path r. Moreover, for each customer i 2 N , let Ni ✓ N , the
so-called neighborhood of producer i, represent a set of producers, selected according
to a neighborhood criterion for customer i. For label �, associated with a given partial
path r = (0, i1, . . . , in), we define a set ⇧(r) ✓ Vr, containing all prohibited immediate
extensions from customer in. The set ⇧(r) is

⇧(r) = {ij 2 Vr|ij 2
n\

k=j+1

Nik , j = 1, . . . , n� 1} [ {in}. (2.13)

Consequently, each label � has new members Sng, representing the size of the ⇧
set, where ⇧ represents the set of inaccessible customers according to the ng-rules.
Given two labels, �1 = (C1, T1, L1, Sng1,⇧1) and �2 = (C2, T2, L2, Sng2,⇧2), label �1
dominates label �2 if and only if the following conditions are satisfied:

(ang) L1  L2,

(bng) C1  C2,

(cng) Sng1  Sng2,

(dng) ⇧1 ✓ ⇧2.
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ng-Route Decremental State-Space Relaxation (ngR-DSSR)

An e�cient ng-route pricing was proposed by Martinelli [111], in which a DSSR tech-
nique is embedded into the ng-route relaxation. It consists of an ng-route relaxation
procedure in which resources associated with the vertices’ neighbours are initially de-
activated. These neighbourhoods are iteratively augmented based on a DSSR scheme
to insure the ng-feasibility of all obtained columns.

2.2 Metaheuristics for the VRP

In this section, we review the most popular categories of metaheuristics used in the
literature of the VRP. Complete surveys on the application of metaheuristics to di↵erent
extensions of the VRP can be found in [68, 156]. There exist the following two major
categories of metaheuristics [147, 63].

1. Neighborhood-based methods,

2. Population-based methods.

Using the concepts from these two categories, two classes of methodologies are
also designed: 1) hybrid metaheuristics, and 2) parallel an cooperative metaheuristics.
Hybrid metaheuristics, combine concepts from various solution methodologies or meta-
heuristic classes to take advantage of their respective strengths. The combining may
take the form of a juxtaposition of methods (e.g., two algorithms called on consecu-
tively) or an indissociable inclusion of elements from one method into a fully-functional
di↵erent metaheuristic. Hybrids may exclusively combine metaheuristic concepts, or
also involve algorithmic ideas and modules from mathematical programming, constraint
programming, tree-search procedures, and so on. On the other hand, parallel meta-
heuristics are concerned with the e�cient exploitation of simultaneous work (often on
several processors) to solve a given problem instance [39].

2.2.1 Neighborhood-based metaheuristics

While solving optimization problems, neighborhood-based metaheuristics improve a
single solution. They could be viewed as search trajectories through the neighbourhoods
of the search space of the problem at hand [38]. The trajectories are performed by
iterative procedures that move from one solution to another one in the search space.
A search trajectory is defined as follows: from a solution xt at iteration t, the search
moves to a solution xt+1 in the neighbourhood of xt until a stopping criterion is met.

Numerous neighborhood-based metaheuristics have been proposed over the past
decades. Some of the main single solution-based metaheuristics are simulated annealing

15



(SA) [93, 154], tabu search [73, 70, 71], variable neighbourhood search (VNS) [113, 78],
large neighbourhood search (LNS) [142] and finally adaptive large neighbourhood search
(ALNS) [134, 135, 121].

In simulated annealing, the heuristic considers some neighbouring state xt+1 of the
current state xt at each iteration, and probabilistically decides between moving the
system to state xt+1 or staying in state xt. These probabilities are based on a tem-
perature parameter, which is lowered from one iteration to the next. The probability
of accepting a non-improving solution diminishes with the value of the temperature,
as the algorithm unfolds. If the temperature is reduced su�ciently slowly, then the
system can reach an equilibrium (steady state) at each iteration. Typically this step
is repeated until the system reaches a state that is good enough for the application, or
until a given computation budget has been exhausted. The most well-known simulated
annealing algorithms in the context of the VRP are developed by Golden et al. [76] and
Osman [117].

In tabu search, at each iteration, starting from a solution xt, the algorithm moves
to the best solution xt+1 in the neighbourhood of xt, even if this leads to a deterioration
of the objective function value. To avoid cycling, attributes of recently visited solutions
are declared tabu for a certain number of iterations. This process is repeated until a
stopping criterion is satisfied. Some of the most well-known tabu search algorithms for
the VRP are proposed by Gendreau et al. [64, 65], Rego and Roucairol [129], Xu and
Kelly [159], Bachem et al. [8] and Toth and Vigo [152].

The variable neighbourhood search explores distant neighborhoods of the current
solution xt, and potentially moves to a new solution xt+1. Based on the fact that a
local optimum is defined for a given neighbourhood, the VNS systematically changes
the nature or the parameters of the neighborhoods. The space exploration during the
search is performed in two phases; firstly, descent to find a local optimum and finally, a
perturbation phase to get out of the corresponding valley. The order of neighbourhood
evaluations and the solution acceptance criteria can be either deterministic or prob-
abilistic. For the CVRP, additional solution perturbation mechanisms are sometimes
employed [99, 58, 28].

In large neighbourhood search, an initial solution is gradually improved by alter-
nately destroying and constructing the solution. The LSN algorithm is based on the
observation that searching a large neighborhood may result in finding high quality local
optima, and consequently, promising final solutions. The LNS algorithm is also related
to the ruin-and-recreate approach of Schrimpf [138].

In the same spirit, the adaptive large neighbourhood search extends the large neigh-
borhood search heuristic of Shaw [142] by allowing the use of multiple destruction and
construction operators within the same search process. This method belongs to the
class of very large-scale neighborhood search algorithms [122]. At each iteration t, the
heuristic destroys a part of the current solution xt using a destruction operator and then
reconstructs it, using a construction operator, so that a new solution xt+1 is generated.
The frequency of applying each operator is adapted throughout the search relatively to
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its past performance. The new solution xt+1 replaces the current solution through an
acceptance criterion, which is often based on simulated annealing. Recently, ALNS has
provided good solutions for a wide variety of vehicle routing problems. For example
see [134, 121, 122, 7, 118].

2.2.2 Population-based metaheuristics

Population-based metaheuristics could be viewed as iterative improvement in a popu-
lation of solutions. Most population-based metaheuristics share the following common
concepts: First, the population is initialized. Then, a new population of solutions is
generated. Finally, this new population is integrated into the current one using some
selection procedures. The search process is stopped when a given stopping criterion is
satisfied.

Some examples of population-based metaheuristics are: genetic algorithms (GA)
and evolutionary algorithms (EA) [84], scatter search (SS) and its generalization called
path relinking (PR) [69, 131] as well as particle swarm optimization (PSO) [92, 143].

Evolutionary algorithms are inspired from a natural metaphor, while genetic al-
gorithm is one of the best-known solution methodologies. Di↵erent main types of
evolutionary algorithms have independently evolved during the past five decades. For
example, genetic algorithms, mainly developed by Holland [82, 83], and evolution strate-
gies, developed by Rechenberg [127, 128]. Basically, the evolutionary algorithms mimic
the way that species evolve and adapt to their environment, according to the Darwinian
principle of natural selection.

Under this paradigm, a population of solutions, known as chromosomes, evolves
from one generation to the next through the application of operators that are similar
to those found in nature, like survival of the fittest, genetic crossover and mutation.
Traditional GA and EA have a tendency to progress too slowly. However, they have
been enhanced with various education operators such as local search. Many successes
in genetic algorithms for the CVRP have been achieved since the introduction of giant-
tour solution representation without trip delimiters by citetPrins2004. Some of the
most well-known GAs for the CVRP are proposed by Baker and Ayechew [10], Prins
[125], Nagata et al. [115], Vidal et al. [155], while a complete survey on the EAs is
provided by Potvin [123].

Scatter search is an evolutionary metaheuristic whose main idea is based on the fact
that useful information about the solution is typically contained in a diverse collection
of elite solutions. Therefore, multiple solution combinations enhance the opportunity to
exploit information contained in the union of elite solutions. The combination strategies
incorporate both diversification and intensification. The scatter search explores solu-
tion spaces by evolving a set of reference points, operating on a small set of solutions
while making only limited use of randomization. On the other hand, path-relinking
is an intensification strategy used to explore trajectories connecting elite solutions ob-
tained by heuristic methods such as scatter search and tabu search. In path-relinking,
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unlike other evolutionary methods, such as GAs, where randomness is a key factor in
the creation of o↵spring from parent solutions, path-relinking systematically generates
new solutions by exploring paths that connect elite solutions. To generate the desired
paths, an initial solution and a guiding solution are selected from a so-called reference
list of elite solutions to represent the starting and the ending points of the path. At-
tributes of guiding solution are progressively inserted in the initial solution, so that
the intermediate solutions contain fewer characteristics from the initial solution and
more from the guiding solution. The trajectory created from connecting these two so-
lutions potentially contains new improving solutions. Ho and Gendreau [81] proposed
a path-relinking-based algorithm for the VRP.

Particle swarm optimization is another optimization method which iteratively tries
to improve a candidate solution with respect to a given quality measure. This method
is based on a population of candidate solutions, called particles, and moving these
particles around in the search-space according to the experiments under study. Each
particle has its vector position, while each particle’s movement is influenced by its local
best known position and is also guided toward the best known positions in the search-
space, which are updated as better positions are found by other particles. Thus, at each
iteration, particles move to a new vector position in the research space and the process
is repeated until a stop condition is met, usually after a certain number of iterations.

2.3 Selected extensions of the VRP

In this section, we review the literature of two VRP extensions, which include similar
features to the problems considered in this dissertation. For each class of problem, we
first present the exact algorithms followed by classifying metaheuristic methods.

2.3.1 VRP with time windows

The vehicle routing problem with time window (VRPTW) is an important generaliza-
tion of the classical VRP, in which the service at each customer i must begin within a
time window [ai, bi]. A vehicle may arrive before ai and wait until the client becomes
available, while arriving after bi is prohibited. The VRPTW has several applications in
the management of distribution such as food and beverage delivery, newspaper delivery
and collection of industrial and commercial waste [75]. Therefore, the VRPTW is one
of the most intensively studied NP-hard combinatorial optimization problems in the
last three decades. In fact, the VRPTW is a generalization of the VRP, when ai = 0
and bi =1 for all customer i.

Exact methods are still not able to address most large-size applications of the
VRPTW. Moreover, the performance of existing exact methods strongly varies ac-
cording to the time-window characteristics. Therefore, heuristic and meta-heuristic
approaches have been the methodology of choice (see Bräysy and Gendreau [26, 27]
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and Gendreau and Tarantilis [63].). The algorithms proposed have been mostly evalu-
ated and compared on standard benchmark instances introduced by Solomon [146] and
Gehring and Homberger [61] relative to their computational e�ciently and the quality
of the solutions obtained. In this section, we first start by focusing on exact methods
and then the metaheuristic approaches for the VRPTW are presented.

The first optimization algorithm for the VRPTW has been proposed by Kolen et al.
[96], who used a dynamic programming procedure coupled with a state-space relaxation
[31] to find lower bounds in a branch-and-bound algorithm. Among the exact methods,
three approaches have been applied to address the VRPTW: the Lagrangian relaxation
methods, as well as the column generation and branch-and-cut approaches. Each of
these methods is briefly described below.

Fisher [56] and Fisher et al. [57] proposed a Lagrangian relaxation based on m-tree
by relaxing the constraints on the flow conservation, capacity, and time window and
then they proposed formulations to manage each of the violated capacity and time
window constraints. Kohl and Madsen [94] and Kallehauge et al. [91] proposed other
exact solution methods based on Lagrangian relaxation for VRPTW.

Balinski and Quandt [15] were among the first to propose a set partitioning for-
mulation for the CVRP. Later, Desrosiers et al. [50] and Kohl et al. [95] also applied
the column generation approach for the VRPTW. More recently, Danna and Pape [41]
developed a cooperative scheme between branch-and-price and local search applied to
the VRPTW, to speed up the branch-and-price finding good integer solutions. During
the process of branch-and-price, a local search is applied from the best known integer
solution. This often results in improving the upper bounds that will later be used to
prune new nodes in the tree. In addition, new columns obtained in the course of the
local search can be injected into the restricted master problem. Thus, the algorithm
of branch-and-price, taking advantage of the local search is provided at each stage by
high quality upper bounds. On the other hand, the local search takes advantage of
branch-and-price, by working on a variety of di↵erent initial solutions and therefore,
an e↵ective diversification form.

A branch-and-cut algorithm for the VRPTW was developed by Bard et al. [16]. The
algorithm incorporates five inequalities types: subtour elimination constraints, comb
inequalities, incompatible path inequalities, time and load constraints and incompatible
pair inequalities. At each node of the search tree, an upper bound is computed by
means of a “greedy randomized adaptive search procedure (GRASP),” proposed by
Kontoravdis and Bard [97].

Desaulniers et al. [48] proposed an e�cient branch-and-price-and-cut approach, in
which the three following conclusions are presented: First, the application of the tabu
search method for heuristically solving the subproblem and rapidly generating negative
reduced cost columns showed to be e↵ective. Second, the generalization of the k-path
inequalities did not prove to be very useful in practice. Third, the partial elementary
shortest path problem with resource constraints subproblem provided a compromise
between lower bound quality and subproblem complexity.
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As mentioned before, due to the di�culty of the VRPTW and its practical relevance,
there is a strong need to develop fast algorithms that are capable of producing good
quality solutions in a shorter time. Here, we focus on the meta-heuristics proposed
in the literature for the VRPTW. A complete survey on the application of the meta-
heuristics to address the VRPTW is presented in Gendreau and Tarantilis [63].

The first application of tabu search, as a meta-heuristic, to the VRPTW can be
attributed to Semet and Taillard [141] and Potvin et al. [124], who combined an in-
sertion heuristic proposed by Solomon [146] with an improving idea based on node
and chain exchange precedure. Badeau et al. [9] developed and implemented a parallel
tabu search for the VRPTW. In the proposed algorithm, first, some initial solutions
are generated using a stochastic insertion heuristic. Each of the initial solutions is then
improved by applying a tabu search. Finally, for a predetermined number of itera-
tions, a solution is constructed from routes obtained from each iteration. A process
called decomposition/reconstruction method enhances this solution. A hybrid method
to solve the VRPTW is presented by Rousseau et al. [136]. Their Method, based on the
work of Pesant and Gendreau [119], describes how a constraint framework can be used
to e�ciently explore large neighborhoods using a branch-and-bound procedure. The
proposed algorithm by Rousseau et al. [136] uses three operators, which define three
di↵erent neighborhoods. During neighborhood exploration through branch-and-bound,
propagation and pruning are used to reduce the search space. Bräysy and Dullaert [24]
implemented a fast evolutionary metaheuristic for the VRPTW. The proposed method
consists of several steps: an initial set of solutions is first generated, then, the number
of routes in each initial solution is reduced through a new ejection chains procedure.
Finally, the total distance is minimized using an evolutionary metaheuristic which con-
sists of moving the chains of consecutive customers and a parallel insertion heuristic.

The most competitive results are currently o↵ered by the hybrid genetic algorithm
of Nagata et al. [115] and Vidal et al. [157]. Nagata et al. [115] proposed a method,
which combines powerful route minimization procedures, with a very e↵ective edge as-
sembly crossover, and extremely e�cient local search procedures. On the other hand,
Vidal et al. [157] proposed an e�cient hybrid genetic search with advanced diver-
sity control for a large class of time-constrained vehicle routing problems, including
multi-depot vehicle routing problem with time windows (MDVRPTW), periodic vehi-
cle routing problem with time windows (PVRPTW), and split delivery vehicle routing
problem with time windows (SDVRPTW). The proposed algorithm, based on the hy-
brid genetic search coupled with local search of Vidal et al. [155], outperforms all
current state-of-the-art approaches on classical literature benchmark instances for any
combination of periodic, multi-depot, site-dependent, and duration-constrained vehicle
routing problem with time windows.

The Adaptive Large Neighbourhood Search of Pisinger and Ropke [121] and the
Unified Tabu Search (UTS) of Cordeau et al. [34, 35, 36] are also worth mentioning.
These methods stand out in terms of simplicity and wider applicability, as both have
been extended to address various VRP variants.

Pisinger and Ropke [121] addressed a large variety of VRP extensions, including
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VRPTW. Di↵erent problem settings are first transformed to a rich pickup and delivery
problem with time windows (RPDPTW). In order to transform a VRPTW instance to
a RPDPTW instance, the authors map every customer in the VRPTW to a request in
the RPDPTW. Such a request consists of a pickup at the depot and a delivery at the
customer site. The amount of goods that should be carried by the requests is equal to
the demand of the corresponding customer. The time window of the pickup is set to
[ad, ad], where ad is the start of the time window of the depot in the VRPTW and its
service time is set to zero. The time window and service time of the delivery correspond
to the original VRPTW. The obtained RPDPTW is solved using the adaptive large
neighborhood search framework introduced by Ropke and Pisinger [134] and Ropke
and Pisinger [135]. They proposed a time oriented removal operator, in which they try
to remove requests that are served at roughly the same time hoping that these requests
are easy to interchange.

2.3.2 Multi-depot VRP and periodic VRP

The multi-depot vehicle routing problem is another generalization of the classical VRP,
in which the vehicles are housed in several depots. In other words, routes can originate
from several available depots. The goal is to design a set of lowest-cost routes, so that
all the customer demands are met. The MDVRP, being an extension of the VRP, is a
NP-hard problem as proved by Bertossi et al. [20].

Three main variants of the MDVRP are possible. In the first type, called problems
with fixed fleet, each vehicle ends its route to the same depot, where it has started.
In addition, the number of all vehicles housed in each depot is fixed. This is the
case of situations in which several carriers perform the transportation task, while each
company has its own depot with fixed sets of vehicle assigned to each depot. The
second possibility is that the number of vehicles assigned to each depot varies; that is,
one can manoeuvre the vehicle-depot assignments. This is the case of a company that
can a↵ect the vehicles at its depots depending on the distribution of demands on the
network. The third situation is when each vehicle can end its route at a depot which
is not necessarily the one from which the route began. The most studied variant of the
MDVRP in the literature is the first case.

A problem closely related to the MDVRP is the periodic VRP (PVRP). The PVRP
was initially introduced in the seminal paper by Beltrami and Bodin [17]. In this prob-
lem, vehicle routes must be constructed over multiple units of time (e.g., day), forming
a time horizon. Each customer is characterized by a service frequency, representing the
number of visits to be performed during the time horizon, as well as a list containing
the possible visit-period combinations, called patterns. The main goal of the PVRP
is to select a visit pattern for each customer, based on which a set of least-cost routes
over the time horizon are constructed. The MDVRP can be formulated as a PVRP by
realizing that di↵erent depots can be modeled as multiple periods in the context of a
PVRP. Therefore, any algorithm that solves the PVRP can also solve the MDVRP.

The literature on exact approaches for the MDVRP is sparse. Laporte et al. [104]
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developed a branch-and-bound algorithm that is capable of solving problems of small
size (up to 50 clients and 8 depots) with symmetrical cost matrix. Later, Laporte et al.
[105] studied the asymmetrical classes of the MDVRP. In the first step, the algorithm
transforms the problem into an assignment problem. Optimal solutions are then found
by a branch-and-bound algorithm, in which the subproblems are assignment problems.
This method is capable of solving problems with up to 80 customers and 3 depots.

A recent exact method reporting results on the MDVRP is one proposed by Bal-
dacci and Mingozzi [11]. This method is based on the additive bounding procedure,
initially proposed by Christofides et al. [30], applied to several di↵erent relaxations
of the problem. The MDVRP is formulated as a set partitioning and solved using
a column generation strengthened with the so-called strong capacity constraints and
clique inequalities. Baldacci et al. [12] proposed an exact algorithm for the PVRP that
generalizes their former method for the MDVRP.

Mingozzi [112] proposed an exact method to to solve the MDPVRP. In the pro-
posed method, the problem is first modeled using an extension of the set partitioning
formulation of the CVRP. The proposed exact method to solve the problem uses vari-
able pricing in order to reduce the set of variables to more practical proportions. The
pricing model is based on the bounding procedure for finding near optimal solutions
of the dual problem of the LP relaxation of the set partitioning model. The bounding
procedure is an additive procedure that determines a lower bound on the MDPVRP
as the sum of the dual solution costs obtained by a sequence of five di↵erent heuristics
for solving the dual problem, where each heuristic explores a di↵erent structure of the
MDPVRP. Three of these heuristics are based on relaxations, whereas the two others
combine subgradient optimization with column generation.

Two meta-heuristic algorithms based on a large neighborhood search and tabu
search were presented by Pepin et al. [118]. Using a set of randomly generated instances,
the authors compared these two methods with three other existing approaches: A
heuristic application of CPLEX MIP solver, a Lagrangian heuristic and a heuristic
column generation. They showed the dominance of heuristic column generation, in
terms of solution quality. Based on their results, if the goal is to find a compromise
between quality and computational time, the large neighborhood search is the best
alternative.

Renaud et al. [130], Cordeau et al. [34, 35] also proposed algorithms based on tabu
search for MDVRP. Renaud et al. [130] proposed a tabu search heuristic, in which an
initial solution is built by first assigning each customer to its nearest depot. A petal
algorithm is then used to solve the VRP associated with each depot. The algorithm
is completed by an improvement phase using either a subset of the 4-opt exchanges
to improve individual routes, swapping customers between routes from the same or
di↵erent depots, or exchanging customers between three routes. Unified tabu search
by Cordeau et al. [34] can be used to solve the MDVRP, the PVRP and also periodic
travelling sales man problem (PTSP). In their algorithm, assigning each customer to
its nearest depot generates an initial solution and a VRP solution is generated for each
depot by means of a sweep algorithm. Improvements are performed by transferring a
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customer between two routes incident to the same depot, or by relocating a customer
in a route associated with another depot. Insertions and removals of customers are
performed using the GENI heuristic [64] operator. The authors introduced an innova-
tive guidance scheme, which collects statistics on customer assignments to periods and
vehicle routes in order to penalize recurring assignments within the solutions obtained
and, thus, gradually diversify the search. For a long period of time, this method stood
as the state of the art solution approach for both the PVRP and the MDVRP. It has
been first outperformed by the variable neighborhood search (VNS) of Hemmelmayr
et al. [80]. This latter is based on various well-known VRP neighborhoods,such as string
relocate, swap, and 3-opt. It is also worth mentioning the VNS algorithm of Pirkwieser
and Raidl [120] with multilevel refinement strategy, which is specifically designed for
large-size instances.

Pisinger and Ropke [121] addressed a large variety of the VRP extensions, including
the MDVRP. The MDVRP is first transformed to a RPDPTW, which is then solved
using the ALNS framework. The MDVRP transformation to a RPDPTW is performed
as follows: Create a dummy base location, where all routes start and end and where
all ordinary requests are picked up. Moreover, create a dummy request for each vehicle
k in the problem. The pickup and delivery locations of these requests are located at
the depot of the corresponding vehicle. A dummy request has zero demand, it does
not have any service time and it can be served at any time. The set Nk of each vehicle
k contains all ordinary requests and the dummy request corresponding to the vehicle.
The precedence of a pickup and a delivery corresponding to an ordinary request are set
to zero and two, respectively, while the precedence of the pickup and delivery of the
dummy requests are set to one and three, respectively. The distance and travel time
between an ordinary request pickup and any other location is set to zero. All other
distances and travel times are set as defined by the original MDVRP.

Dondo and Cerdá [52] studied the case of a vehicle routing problem with multiple
depots in the presence of time windows. They suggested an approach based on a
large-scale neighbourhood search algorithm that gradually improves an initial solution
through a three-phase cluster-based hybrid approach. Lau et al. [106] addressed an
MDVRP using a genetic algorithm with fuzzy logic adjusting the crossover rate and
mutation rate.

Cordeau and Maischberger [33] proposed a parallel tabu search-based algorithm to
address several variants of the VRP, including the MDVRP. Their algorithm is based
on embedding tabu search within the framework of iterated local search.

Most solution methods proposed address the periodic and multi-depot VRP set-
tings, with neighborhood-based methods yielding, the best results on standard bench-
mark instances. Two evolutionary approaches, which both take advantage of geometric
aspects within the the MDVRP were proposed. Thangiah and Salhi [149] represented
solutions as circles in the 2D space, whereas Ombuki-Berman and Hanshar [116] in-
troduced a mutation operator that targets the depot assignment to “borderline” cus-
tomers, which are close to several depots. Recently, evolutionary methods have proven
to be e�cient on the standard VRP [125, 114, 155]. Prins [125] introduced an im-
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portant methodological element, namely the solution representation for the VRP as a
TSP tour without delimiters along with a polynomial time algorithm to partition the
sequence of customers into separate routes. Vidal et al. [155] proposed a hybrid genetic
algorithm to address MDVRP, PVRP and MDPVRP. The most interesting feature of
the proposed algorithm is based on combining the exploration capabilities of genetic
algorithms with e�cient local search-based improvement procedures and diversity man-
agement mechanisms. The authors proposed a new population diversity management
mechanism, which allows broader access to reproduction, while preserving the mem-
ory of what characterizes good solutions represented by the elite individuals of the
population. The method evolves feasible and infeasible solutions in two separate sub-
populations. Genetic operators are iteratively applied to select two parents from the
subpopulations, combine them into an o↵spring, which undergoes a local search-based
education, is repaired if infeasible, and is finally inserted into the suitable subpopula-
tion. The method terminates when a predefined number of successive iterations have
been performed without improvement.

Crainic et al. [40] proposed a parallel cooperative search method, called integrative
cooperative search (ICS), to solve multi-attribute combinatorial optimization problems.
The ICS framework relies on an attribute decomposition approach and its structure
is similar to a self-adaptive evolutionary meta-heuristic evolving several independent
populations, where one of these populations corresponds to the solutions of the main
problem. The other populations consist of the solutions addressing specific dimensions
of the problem, obtained by attribute fixing. The authors used the MDPVRP with
time windows to illustrate the applicability of the developed methodology. Lahrichi
et al. [100] enhanced the idea of ICS. The proposed ICS framework involves problem
decomposition by decision sets, integration of elite partial solutions yielded by the
sub-problems, and adaptive guiding mechanism to solve highly complex combinatorial
optimization problems. The authors used the MDPVRP to present the applicability of
the developed methodology.
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Chapter 3

A Column Generation Approach
for a Multi-Attribute Vehicle
Routing Problem

This paper has been submitted to the European Journal of Operational Research.
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Abstract

In this paper, we consider a deterministic multi-attribute vehicle routing problem de-
rived from a real-life milk collection system. This problem is characterized by the
presence of a heterogeneous fleet of vehicles, multiple depots, and several resource con-
straints. A branch-and-price methodology is proposed to tackle the problem. In this
methodology, di↵erent branching strategies, adapted to the special structure of the
problem, are implemented and compared. The computational results show that the
branch-and-price algorithm performs well in terms of solution quality and computa-
tional e�ciency.

Keywords: Multi-attribute vehicle routing problem, Heterogeneous fleet, Mul-
tiple depots, Branch-and-price.
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3.1 Introduction

The vehicle routing problem (VRP) lies at the center of logistics and distribution man-
agement and is one of the most studied problems in the field of operations research.
Numerous variants have been studied since the problem was first introduced by Dantzig
and Ramser [42]. The simplest problem in this domain is the capacitated vehicle rout-
ing problem (CVRP). In the CVRP, all the customers correspond to deliveries. The
customers’ demands are deterministic, known in advance, and may not be split. The
vehicles are identical and based at a single central depot. Each vehicle can perform
only one route, and the quantity supplied cannot exceed the vehicle capacity. The
objective most commonly used is to minimize the total cost (i.e., a weighted function
of the number of routes and their length or travel time) of serving all the customers
[151].

In recent decades, there has been a tremendous improvement in algorithms that
find good solutions to practical variants of the VRP in a reasonable time. This is due
not only to the general increase in computing power, but also to significant advances
in both exact and heuristic methods. However, VRP research has often been criticized
for being too focused on nonrealistic models, and simplifying assumptions reduce the
practical applications.

Many real-world combinatorial optimization problems, including logistics applica-
tions and transportation problems, have several complicating attributes. Theses at-
tributes lead to the characteristics, constraints, and objectives that define the problem.
When there are many attributes the problem becomes complex and challenging. In the
combinatorial optimization literature, such problems are called “multi-attribute prob-
lems.” Recently, the research community has focused on simultaneously considering
multiple attributes, to provide more representative models of real-world situations. In
particular, VRP researchers have recently concentrated on multi-attribute vehicle rout-
ing problems (MAVRP) [79]. They have explored several variations of the MAVRP,
each representing a specialized extension of the classical VRP and reflecting a real-world
application. However, not all variants have received the same attention. Furthermore,
most of the contributions have developed heuristics and metaheuristics, and there are
few e�cient exact algorithms for the variants of the MAVRP.

We introduce a new MAVRP variant that incorporates some common real-world
features. It is inspired by collection-redistribution activities in the raw-milk industry
of Quebec. This problem consists of route planning for a heterogeneous fleet of vehicles
departing from di↵erent depots. The vehicles must visit a set of producers in specific
time windows, and the collected product is then delivered to processing plants. Finally,
the vehicles return to their home depots. The most similar model in the literature is the
multi-depot heterogeneous vehicle routing problem with time windows (MDHVRPTW).

The main goal of this paper is to investigate the challenges of complex problems
with features such as collection-redistribution activities. We formulate a multi-attribute
VRP with certain special features that takes the form of an MDHVRPTW with deliv-
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eries to plants. The main contributions of this paper are summarized as follows:

• We introduce a variant of the MAVRP. It di↵ers from well-studied variants such as
VRPTW and MDVRPTW because there is an extra level of di�culty associated
with the assignment of routes to plants.

• We propose a set partitioning formulation for this problem.

• We develop a branch-and-price algorithm. It includes a number of structural
exploration and exploitation features that improve the computational e�ciency
of the solution strategy.

• We perform an extensive analysis using a large set of randomly generated in-
stances, to illustrate the e�ciency of the algorithm and investigate the character-
istics of the problem.

The remainder of the paper is organized as follows. In Section 3.2, we describe
in detail the problem class and its di↵erent variants. In Section 3.3, we give a brief
literature review to better position the present study. In Section 3.4, we choose a
special case of the problem class and present the set partitioning model. In Section 3.5,
we present the proposed solution methodology, and experimental results are given in
Section 3.6. Finally, Section 3.7 provides concluding remarks.

3.2 Problem class

In this section, we introduce a new MAVRP variant inspired by the dairy problem
in Quebec [101]. This problem represents many real-world transportation activities.
Basically, it consists of constructing collection routes that are then assigned to plants
that receive the collected products. It is usually encountered in the collection and re-
distribution of perishable products. There are three types of stakeholders, as described
below:

• The producers, which periodically produce a limited quantity of one or more
products.

• The plants, which periodically receive the products. They transform these raw
materials into consumable goods.

• The carriers, which collect the products from the producers and deliver them to
the plants. Each carrier has one or more depots where the vehicles are located.
The vehicles usually have di↵erent capacities, fixed costs, and variable costs. The
fixed costs are the expenses that are not related to the distance traveled and have
to be paid when the vehicle is used; the variable costs depend on the distance
traveled.
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In most applications, each producer has an associated time window indicating the
earliest and latest collection times. Each plant has an associated demand window
indicating the minimum and maximum quantities that can be delivered.

A route is a path that starts and ends at a depot and visits producers and plants; it
may contain one or more pick-up and delivery phases. A route is feasible if the pick-ups
do not exceed the vehicle capacity and the associated time windows are respected. The
cost of a route is the sum of the costs of the arcs on the path plus the sum of the
vehicle’s fixed and variable costs. We assume throughout this paper that the triangle
inequality holds for the costs and travel times. Also, the service times are considered
to be independent of the quantities collected or delivered.

There may be some preassignments based on contractual restrictions, strategic/tactical
planning decisions, or equipment compatibility. We introduce three: (1) producer-depot
preassignments, which assign a producer to a specific depot; (2) producer-plant pre-
assignments, which specify which plant receives the products of a given producer; (3)
producer-depot-plant preassignments, which assign a producer to a depot and a plant.
The most general variant of the problem has no preassignments.

A vehicle can perform one or more circuits per day. We define three route types as
follows:

Simple route: Each vehicle visits several producers and collects their products. It
then delivers its entire load to one plant and returns to its depot.

Figure 3.1: General configuration of simple route

Multi-drop route: A vehicle delivers its load to more than one plant before returning
to its depot.

Figure 3.2: General configuration of multi-drop route
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Interlaced multi-drop routes: Vehicles perform several circuits per day. A vehicle
may visit other producers after completing its first visit to a plant. One or more
plants are visited.

Figure 3.3: General configuration of interlaced multi-drop route

We consider simple routes, and Section 3.4 gives the details of this subclass of the
problem.

3.3 Literature review

In this section, we review research into di↵erent variants of the MAVRP. We focus on
exact algorithms rather than heuristic methods and consider variants of the VRP with
attributes similar to those of our problem.

Among the variants of the VRP, the VRPTW has received the most attention, and
numerous researchers have applied column generation methodology. For the VRPTW,
column generation was first used by Desrochers et al. [49] in a Dantzig–Wolfe decom-
position framework. They devised a branch-and-bound algorithm to solve a number of
original time-window constrained problems from Solomon [145] to optimality or near
optimality. Kohl et al. [95] improved the method by adding 2-path inequalities to the
LP relaxation of the set partitioning formulation. Kohl and Madsen [94] proposed a
branch-and-bound algorithm in which subgradient and bundle methods were employed
to compute the lower bounds. These methods were based on 2-cycle elimination algo-
rithms. Irnich and Villeneuve [87] proposed a branch-and-price algorithm in which the
subproblem is solved using a k-cycle elimination procedure. Branch-and-price has been
the leading methodology for the VRPTW since the beginning of the 1990s.

Feillet et al. [55] improved the extension of the Ford–Bellman algorithm proposed
by M. [110]. More precisely, they improved the labeling procedure for the elementary
shortest path problem with resource constraints (ESPPRC), which is the backbone of a
number of solution procedures based on column generation, by proposing new labels and
dominance rules. Righini and Salani [132] proposed an improved bounded bidirectional
label-correcting algorithm in which two sequential labeling processes starting from the
depot and a copy of the depot (considered the sink node) cooperate to accelerate the
solution of the ESPPRC.
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The most e�cient algorithms for the ESPPRC are based on a partial or complete
relaxation of the elementarity condition. Boland et al. [23] and Righini and Salani
[133] embedded a decremental state space relaxation (DSSR) scheme into the label-
ing procedure. In this method, the elementarity condition on the generated routes is
initially relaxed, transforming the problem into a shortest path problem with resource
constraints (SPPRC). After each iteration, using an augmentation strategy, restrictions
are added to the problem to prevent the formation of cycles. Several state-space aug-
mentation strategies were evaluated by Boland et al. [23]. Later, Desaulniers et al.
[48] used heuristic dynamic programming and a tabu search (TS) heuristic to rapidly
generate routes with negative reduced costs. The dynamic heuristic is based on making
the graph more sparse by eliminating arcs that do not seem promising and applying
aggressive dominance rules (relaxed conditions). Their method outperformed all previ-
ous algorithms in terms of the computational time. Moreover, they successfully solved
5 of 10 Solomon instances not previously solved.

Baldacci et al. [13] introduced a new state-space relaxation, called the ng-path
relaxation, to compute lower bounds for routing problems such as the CVRP and the
VRPTW. This relaxation partitions the set of all possible paths ending at a generic
vertex. This is done according to prespecified neighborhoods of graph vertices, and
a mapping function associates with each path a subset of the vertices that depends
on the order in which these vertices are visited. These subsets of vertices are used to
impose partial elementarity. This relaxation proved particularly e↵ective in computing
lower bounds for the CVRP, the VRPTW, and the traveling salesman problem with
time windows (TSPTW). Baldacci et al. [14] proposed a new dynamic programming
method to improve the ng-path relaxation. It iteratively defines the mapping function
of the ng-path relaxation using the results from the previous iteration. This method
is analogous to cutting plane methods, where the cuts violated by the ng-paths at a
given iteration are incorporated into the new ng-path relaxation at the next iteration.

Martinelli [111] proposed an e�cient ng-route pricing in which a DSSR technique is
embedded into the ng-route relaxation. It consists of an ng-route relaxation procedure
in which resources associated with the vertices’ neighbors are initially deactivated.
These neighborhoods are iteratively augmented using a DSSR scheme to ensure the
ng-feasibility of all the columns.

A unified exact method capable of solving di↵erent classes of the VRP, including
the multi-depot heterogeneous vehicle routing problem (MDHVRP), was proposed by
Baldacci and Mingozzi [11]. It is based on the solution of an integer linear programming
problem and on dual heuristics. It can solve instances with up to 100 customers to
optimality; this takes several hours. Finally, Bettinelli et al. [22] proposed a branch-
and-cut-and-price algorithm for the MDHVRPTW. The method allows for di↵erent
combinations of cutting and pricing strategies, and both heuristic and exact approaches
are proposed for the subproblems.

To summarize, we make the following observations:

• Our literature review supports our claim about the novelty of the problem con-
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sidered in this paper. To the best of our knowledge, this variant has not been
previously studied. The plant-assignment phase is more complex than in other
variants.

• Many e�cient techniques have been developed for classes of the VRP with features
similar to those of our variant. Our algorithm is based on a specialization of a
cutting-edge branch-and-price algorithm, and it incorporates techniques from the
literature.

• We evaluate the e�ciency and relevance of these techniques in the context of our
problem.

3.4 Milk collection problem

We consider a deterministic subclass of the general problem, which is a real-world
tactical planning problem in the context of milk collection. We consider two variants:

1. The depot associated with each producer is preassigned based on contractual
agreements.

2. We remove the preassignments; this is a logical extension of the first variant. We
claim that slight modifications in the data set can reduce variant 2 to variant 1.

We first consider variant 1 and in Section 3.5 we show how to adapt the approach for
variant 2. We assume that the vehicles perform simple routes as described in Section
3.2, and collections and deliveries are made once a day. The problem is therefore a
multi-depot vehicle routing problem with time windows, heterogeneous vehicle fleets,
plant deliveries, and producer-depot preassignments.

Several carriers, based in di↵erent depots, collect milk from farms in a specific
geographical region and deliver it to milk-processing plants. The model is defined on a
directed graph G = (V,A), where V and A are the node and arc sets, respectively. The
node set contains the depots, producers, and plants: V = D[N[U where D = (1, . . . , d)
represents the depot set, N = (1, . . . , n) the producer set, and U = (1, . . . , u) the plant
set. The arc set A ⇢ V⇥V defines feasible movements between di↵erent locations in V.
Associated with each arc (i, j) is a transportation cost cij that is proportional to the
travel time between locations i and j. Each carrier has one or more vehicle types, and
K = (1, . . . , k) is the set of vehicle types. The capacity, the fixed cost, and the variable
cost coe�cient of the kth vehicle type are Qk, ck, and wk, respectively. More precisely,
wk is the cost for vehicle type k 2 K to travel one unit of distance. Associated with
each plant is a daily demand, Du, and we assume that there is su�cient supply to meet
the demand.

We introduce a path-based formulation that yields a set partitioning model. Let
Pk
du be the set of feasible routes from depot d 2 D to plant u 2 U operated by vehicle
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Table 3.1: Notation for the set partitioning formulation

Notation Description
Parameters

aip 1 if producer i is visited on route p.
Du Daily demand of plant u.
ck Fixed cost of the vehicle type k.
cp Variable cost of route p.
gp Collected quantity via route p.

Variables
yp 1 if route p is selected in the optimal solution.

type k 2 Kd. Each route p 2 Pk
du can serve only the producers assigned to depot d, and

Cd is this set of producers. Let yp be a binary variable such that yp is 1 if route p is
selected in the optimal solution and 0 otherwise. The quantity collected on route p, gp,
cannot exceed the capacity of the vehicle; gp is 0 for all plants not visited on route p.
Parameter aip is 1 if producer i is visited on route p and 0 otherwise. The variable cost
of each route p 2 Pk

du is cp; it is the sum of the arc costs of the route. The path-based
model is as follows:

min
X

u2U

X

d2D

X

k2Kd

X

p2Pk
du

(cp + ck)yp (3.1)

subject to X

u2U

X

d2D

X

k2Kd

X

p2Pk
du

aipyp = 1 (i 2 N ); (3.2)

X

d2D

X

k2Kd

X

p2Pk
du

gpyp � Du (u 2 U); (3.3)

yp 2 {1, 0} (d 2 D; k 2 Kd;u 2 U ; p 2 Pk
du). (3.4)

Constraint (3.2) ensures that each producer is visited exactly once by exactly one route,
and constraint (3.3) guarantees that the plant demands are satisfied. In the following
sections, we describe our algorithm in detail.

3.5 Solution method

In this section, we present our algorithm. In the path-based integer model (3.1)–(3.4),
the number of paths is so large that it is not practical to solve the model directly using
an MIP solver. Thus, the usual solution method is based on the branch-and-price al-
gorithm. This is a branch-and-bound algorithm where the lower bounds are computed
using column generation (for a complete survey of column generation methods, see
Lübbecke and Desrosiers [109]). Column generation is often successful when the asso-
ciated integer programs are set partitioning (or set covering) problems. In the VRP,
each variable of the set partitioning formulation represents a feasible route. However,
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most successful decomposition approaches for the VRP formulate the pricing problem
as an ESPPRC. At each iteration of the column generation, a restricted linear master
problem (RLMP) is solved rather than the master problem itself. The columns in the
RLMP are limited to those that have already been generated in the pricing problem.

The search tree is initialized at the root node. Initialization involves adding to the
RLMP su�cient columns to obtain a feasible solution. At each node of the search
tree, the RLMP contains a subset of the feasible columns, already priced out by the
subproblem, which are in compliance with the branching decisions. It is solved by
column generation. If the solution is integer, it is a valid solution to the original master
problem, and it is compared to the incumbent solution. Otherwise, branching occurs to
eliminate the current fractional point. In other words, when no column is available to
enter the basis but the solution of the linear relaxation is not integer, branching occurs.
A valid branching scheme will eliminate the current fractional solution, produce a
balanced search tree, and keep the structure of the problem unchanged. At the end
of the search process, the best integer solution found is the optimal solution for the
original problem.

As mentioned in Section 3.4, variant 2 has no preassignments. The decision about
the depot associated with each producer is made during the solution process. A slight
modification allows our algorithm to solve this more general problem: we set Cd = N
for each depot d 2 D. Variant 2 may be useful for proposing a first set of assignments
or revising an existing set in a strategic planning phase.

In Sections 3.5.1–3.5.4, we describe the branch-and-price algorithm.

3.5.1 Master problem

A relaxation of integrality constraints (3.8) yields the linear master problem. The
RLMP, which is restricted to a subset of columns P 0kdu ⇢ Pk

du, takes the following form:

(RLMP)

min
X

u2U

X

d2D

X

k2Kd

X

p2P 0k
du

(cp + ck)yp (3.5)

subject to X

u2U

X

d2D

X

k2Kd

X

p2P 0k
du

aipyp = 1 (i 2 N ); (3.6)

X

d2D

X

k2Kd

X

p2P 0k
du

gpyp � Du (u 2 U); (3.7)

yp � 0 (d 2 D; k 2 Kd;u 2 U ; p 2 P 0kdu) (3.8)

where constraint (3.6) ensures at least one visit to each producer, and constraint (3.7)
guarantees that the plant demands are satisfied. It is worth mentioning that contrary
to the case of most problems formulated using the set partitioning formulation, in our
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problem a transformation from the set partitioning formulation to the set covering
scheme does not necessarily result in the same optimal solution. In fact the presence
of constraints (3.7) may result in multiple visits to some producers. Accordingly, con-
straints (3.6) are kept under equality form.

3.5.2 Initialization

To obtain the first set of dual variables of the master problem, we add two sets of
initial columns. The first set consists of routes that start and end at a given depot and
visit one producer and one plant for all possible combinations of depots, producers,
and plants. The second set is generated using the classical savings heuristic of Clarke
and Wright [32]. For each depot-vehicle pair, the method starts with |Cd| routes, each
serving a single producer and starting and ending at the depot. It then computes the
cost reduction achieved by combining two routes (by connecting the end point of one
to the end point of the other) via the following equation:

savingij = c0i + c0j � cij (3.9)

where i and j represent the two connected end points. Here, the end point is defined to
be the first or last producer in the route. The heuristic greedily selects the maximum
saving and combines the associated routes provided the constraints on time windows
and vehicle capacities are not violated. When no routes can be merged, the algorithm
terminates by assigning the routes obtained to the members of the plant set.

3.5.3 Pricing problem

The pricing problem aims to find one or more master problem variables p with a negative
reduced cost with respect to a given dual solution of the linear relaxation of the master
problem. In our column generation approach, the pricing problem is decomposed into
several similar subproblems. Each subproblem is an ESPPRC associated with a specific
depot, plant, and vehicle type, where the set of resource constraints contains time
windows and vehicle capacities. Consider the following dual variables of the RLMP
(3.5)–(3.8):
�i: free-signed dual variable of (3.6) for producer i 2 N ;
µu: nonnegative dual variable of (3.7) for plant u 2 U .
Let xij be a binary decision variable that is 1 if vertex vj follows vi on the shortest path,
and 0 otherwise. Variable ti is the time at which the service starts at vertex i if the
shortest path visits this node. Binary variable fu is 1 if the shortest path visits plant
u, and 0 otherwise. A supply qi is associated with each producer i. Each producer has
a time window [ei, li] during which the service may occur. The node 0d represents the
depot and the node 00d represents a copy of the depot that plays the role of a fictitious
sink node in the standard form of the shortest path problem.

Using this notation, the pricing problem for a vehicle type k, which leaves depot
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Table 3.2: Notation for the pricing problem

Notation Description
Parameters

qi Supply of producer i.
[ei, li] Time window of producer i.
Qk Capacity of the vehicle type k.
ck Fixed cost of the vehicle type k.
cij Length of arc (i, j).
wk Variable cost coe�cient of the vehicle type k.
�i Dual variable of (3.6) for producer i 2 N .
µu Dual variable of (3.7) for plant u 2 U .

Variables
xij 1 if vertex vj follows vi on the shortest path.
ti Time at which the service starts at vertex i.
fu 1 if the shortest path visits plant u.

0d, d 2 D, and services the producers of the set Cd, is as follows:

min
X

i2Cd

X

j2Cd

(wkcij � �i)xij �
X

u2U
gpµu + ck (3.10)

subject to X

i2Cd

xih �
X

j2Cd

xhj = 0 (h 2 Cd); (3.11)

X

j2Cd

x0dj = 1; (3.12)

fu �
X

i2Cd

xiu = 0 (u 2 U); (3.13)

X

u2U
fu = 1; (3.14)

fu � xu00d = 0 (u 2 U); (3.15)
X

i2Cd

X

u2U
xui = 0; (3.16)

xij(ti + si + tij � tj)  0 (i 2 Cd; j 2 Cd [ U); (3.17)

ei  ti  li (i 2 Cd [ U); (3.18)

gp 
X

i2Cd

qi
X

j2Cd

xij  Qk; (3.19)

xij 2 {1, 0} (i, j 2 Cd); (3.20)

fu 2 {1, 0} (u 2 U). (3.21)

Constraints 3.11–3.16 are flow constraints that result in a path from the depot 0d to 00d
ensuring that the shortest path visits a plant before returning to the depot. Constraints
3.17 and 3.18 are time-window constraints. Constraint 3.19 is the capacity constraint,
and Constraints 3.20 and 3.21 ensure integrality.
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The subproblems above are variants of the ESPPRC and thus are NP-hard problems
in the strong sense [53]. To reduce the number of iterations to solve this complex
problem to optimality, one may try to generate multiple negative-reduced-cost columns
using fast heuristics. However, when the heuristic procedures fail to find a new column,
we must perform at least one iteration of the exact procedure to prove the optimality of
the lower bound. We solve the subproblems with a bilevel column generation procedure.
The first level consists of a procedure based on heuristic dynamic programming (HDP),
and it is followed by exact dynamic programming (EDP). We describe these modules
below. We first summarize the EDP and then describe the heuristic strategies that
speed up the procedure. Finally, the bilevel procedure is presented in Algorithm 1,
which shows how these modules interact.

5.3.1 Exact dynamic programming (EDP)

Classical dynamic programming algorithms start from an initial label associated with
the depot and extend the labels along arcs using extension functions. To avoid creat-
ing too many labels, dominated labels are eliminated by a dominance procedure. As
described in Section 3.3, much research has focused on the computational e�ciency of
the labeling procedure for the ESPPRC subproblem. DSSR [133, 23] and the ng-route
relaxation [13] have received the most attention.

DSSR can be considered a special case of the ng-route relaxation. However, we
consider DSSR as a stand-alone procedure and DSSR embedded into the ng-route re-
laxation [111] as di↵erent strategies for the pricing problems. In both cases, the elemen-
tarity relaxation of the ESPPRC allows the generation of paths with cycles throughout
the labeling procedure. The relaxation is iteratively tightened by considering new re-
sources that forbid cycles. However, in the ng-route relaxation (but not DSSR), the
ng-feasible columns may still contain cycles. Therefore, the lower bound obtained using
the ng-route relaxation can be weaker than the DSSR bound, representing the optimal
lower bound.

Decremental state-space relaxation (DSSR)

This relaxation of the ESPPRC allows the generation of paths with cycles throughout
the labeling procedure. The relaxation is iteratively tightened by considering some
nodes to be critical and forbidding multiple visits to them. Critical nodes are selected
based on an augmentation policy, from those nodes involved in a cycle in at least one
route. If at the end of a labeling iteration, the paths contain no cycles, the solution is
valid for the ESPPRC. Otherwise, the relaxed state space is augmented by one or more
resources associated with newly recognized critical nodes and the procedure restarts.
At the end of each iteration of the labeling algorithm, the nodes with visit multiplicity
greater than one on the lowest cost path are recognized as new critical nodes.

In our implementation, each label � = (C, T, L, bS,�) has a component C to repre-
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sent the reduced cost of the partial path, a resource T for the time, a resource L for
the vehicle load, a resource bS for the number of unreachable critical nodes, and a set
� ✓ � that contains the critical nodes unreachable from the current label, where �
represents the set of all the recognized critical nodes at a given state of the procedure.
At the end of each iteration of the SPPRC, a state-space augmentation policy defines
which nodes should be added into �, and a resource associated with each of the critical
nodes is added into the resource set to prevent cycling on that node.

For �1 = (C1, T1, L1, bS1,�1) and �2 = (C2, T2, L2, bS2,�2) two labels corresponding
to two partial paths from a depot to a given node, we say that �1 dominates �2 if the
following criteria are met:

(aDSSR) T1  T2,

(bDSSR) L1  L2,

(cDSSR) C1  C2,

(dDSSR) C1 � µu⇤(L2 � L1)  C2, where u⇤ = argmaxu2U{µu},

(eDSSR) bS1  bS2,

(fDSSR) �1 ✓ �2.

Condition (dDSSR) is used to prevent the dominance of partial paths that appear
to be dominated by other paths with respect to the conditions (aDSSR)–(cDSSR) and
(eDSSR)–(fDSSR) in a producer node, but that later become less costly by delivering
more product to a plant.

ng-Route Decremental State-Space Relaxation (ngR-DSSR)

The ng-route relaxation [13], originally proposed for the CVRP and the VRPTW, pro-
vides a good compromise between obtaining good lower bounds and e�ciently pricing
routes that are not necessarily elementary.

The ng-route relaxation can be described as follows. Suppose that Vrd represents
the set of producers visited by partial path r starting from depot d. Moreover, for
each customer i 2 Cd, let Ni ✓ Cd, the so-called original neighborhood of producer
i, represent a set (with an a priori fixed size) of producers, selected according to a
neighborhood criterion for producer i. For label �, associated with a given partial path
r = (d, i1, . . . , in), we define a set ⇧(r) ✓ Vrd, containing all prohibited extensions from
producer in. The set ⇧(r) is

⇧(r) = {ij 2 Vrd|ij 2
n\

k=j+1

Nik , j = 1, . . . , n� 1} [ {in}. (3.22)
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Consequently, each label � = (C, T, L, Sng,⇧) has new members Sng, representing the
size of the ⇧ set, where ⇧ represents the set of inaccessible producers according to
the ng-rules. Again, to reduce the number of possible labels, a dominance rule is
incorporated into the algorithm.

Given two labels �1 = (C1, T1, L1, Sng1,⇧1) and �2 = (C2, T2, L2, Sng2,⇧2), repre-
senting two partial paths ending at a given producer, label �1 dominates label �2 if and
only if any possible extension from �1 is feasible from label �2 with a lower reduced
cost. This condition is satisfied if the following criteria are met:

(ang) T1  T2,

(bng) L1  L2,

(cng) C1  C2,

(dng) C1 � µu⇤(L2 � L1)  C2, where u⇤ = argmaxu2U{µu},

(eng) Sng1  Sng2,

(fng) ⇧1 ✓ ⇧2.

ng-route decremental state-space relaxation (ngR-DSSR) consists of an ng-route re-

laxation procedure in which initially empty sets cNi ✓ Ni, called applied neighborhoods,
are considered rather than the original neighborhoods Ni. At the end of each iteration,
all columns with negative reduced costs and no cycles as well as those that satisfy the
ng-rules with respect to the original neighborhoods (called ng-feasible columns) are
added to the RLMP. If the best column according to its reduced cost is not ng-feasible,
some of the applied neighborhoods are augmented and the procedure restarts. Two
augmentation strategies are considered:

1. At the end of an iteration, the nodes that violate the ng-rules on the best columns
are recognized as critical. Newly recognized critical node i is then added into
the applied neighborhoods of all other nodes that consider i as their neighbor,
according to their original neighborhoods.

2. Here we augment the applied neighborhoods of only those nodes forming a cycle
involving i, when the ng-rules are violated, by adding i into these neighborhoods.

Our experiments showed that the second strategy is more e�cient. The smaller sets
of applied neighborhoods make the dominance easier by more easily satisfying condition
(fng). Note that in our implementation, cNi is initialized (set to ;) at the root node
and not elsewhere in the search tree. This is because of the high likelihood of the
recreation of cycles that violate the ng-rules, if cNi is reset to ; at each node of the tree;
this is equivalent to extra iterations to augment the applied neighborhoods to ensure
ng-feasibility.
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5.3.2 heuristic dynamic programming (HDP)

To speed up the generation of the negative-reduced-cost columns, we implement a re-
laxed version of the labeling procedure described above. The relaxations are based on
weakening the dominance rules (reducing the number of conditions tested) so that a
larger number of labels are discarded. This may result in the generation of some but
not all of the existing negative-reduced-cost paths, in a shorter computational time. We
accelerate the labeling procedure by ignoring the dominance conditions corresponding
to the comparison of unreachable nodes. For the DSSR, this is done by relaxing condi-
tions (eDSSR) and (fDSSR), while for the ngR-DSSR, (eng) and (fng) are ignored. This
harsh dominance accelerates the labeling process by extending a smaller set of labels
from each node and by comparing new labels to a shorter list of existing labels.

5.3.3 Description of the bilevel column generation procedure

To schematically show how the column generators cooperate within our algorithm, we
introduce the following notation:

NBCOLHDP : Number of negative-reduced-cost columns generated by HDP.

NBCOLEDP : Number of negative-reduced-cost columns generated by EDP.

We now present the procedure which, at each iteration, finds the non-dominated
paths and adds them to the RLMP.

Algorithm 1 Solution of bilevel subproblem

repeat
repeat
NBCOLHDP = 0
HEURISTIC DYNAMIC PROGRAMMING()
Update NBCOLHDP

Update and Solve the RLMP
until NBCOLHDP == 0
NBCOLEDP = 0
EXACT DYNAMIC PROGRAMMING( )
Update NBCOLEDP

Update and Solve the RLMP
until NBCOLEDP == 0.

Clearly, the di�culty of this algorithm depends on the size of the problem: the
number of depots, plants, producers, and vehicle types. The di�culty is also a↵ected
by the tightness of the time window and vehicle capacity constraints.
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As mentioned in Section 3.4, variant 2 has no preassignments. The following mod-
ification to the algorithm for variant 1 makes it applicable to variant 2: we solve the
ESPPRC for a depot, a specific vehicle type, and for the entire set of producers instead
of a preassigned subset.

3.5.4 Branching strategy

As mentioned in Section 3.5, we find an integer solution via a branch-and-price algo-
rithm. In the literature, binary branching strategies, which divide a problem into two
more restricted problems, have been proposed for the VRPTW. Branching must be
performed at each node where the optimal solution to the linear relaxation includes
fractional path variables. The classical branching strategy is branching on the flow
variables, i.e.,

P
k x

k
ij , where xkij represents the flow on arc (i, j) for vehicle k. This

results in two new nodes in the tree, one with the new constraint
P

k x
k
ij = 0 and the

other with
P

k x
k
ij = 1. The advantage of this strategy is that the added constraints

are easily integrated into both the master and pricing problems. Moreover, it finds an
optimal integer solution if such a solution exists. However, this approach is not e�cient
enough to obtain integer solutions rapidly. In other words, the elimination of one arc
from the graph via the branching constraint (especially the constraint

P
k x

k
ij = 0) may

have little e↵ect on the solution and does not necessarily decrease the complexity of
the problem [62].

To overcome this weakness, we study two bilevel branching procedures. In each case,
the procedure is followed by branching on flow variables. We describe these procedures
below.

Branching by plant assignment (BPA)

The special structure of our problem allows us to derive e�cient new constraints
through a branching scheme. Since there are multiple plants to which the products of a
specific producer can be delivered, we can assign producers to plants via the branching
procedure. Since producers are preassigned to depots, this strategy attempts to divide
the problem into several smaller problems, each containing one depot, one plant, and
a limited number of producers. We branch on the flow variables when there are no
more producer-plant candidates for branching. The producers that are not permitted
to serve a plant because of branching decisions are removed from the subgraph asso-
ciated with the plant. We branch on the producer-plant candidate with flow closest
to 0.5. This flow is obtained by summing the basic variables of the master problem
associated with the routes containing a given producer and a given plant. The removal
of a producer from the subgraph associated with a plant is much more restrictive than
the elimination of a single arc. Therefore, we expect this strategy to be more e↵ective
than branching on the flow variables.
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Branching on time windows (BTW)

This binary branching strategy, originally proposed by Gélinas et al. [62] for the
VRPTW, splits the time window of a node into two new subintervals; each branch
corresponds to one of the subintervals. Some routes become infeasible following a split
in a producer’s time window. Gélinas et al. [62] claimed that this strategy is stronger
than branching on flow variables since constraints such as time and capacity have a
major impact on the di�culty of the VRPTW.

3.6 Computational results

We have proposed di↵erent options for column generation and two branching strategies.
To evaluate the performance of these approaches, we carried out a series of computa-
tional experiments, and we report the results in this section. First, we describe the
creation of a large set of randomly generated instances for our tests. Then, we discuss
the e�ciency of DSSR and ngR-DSSR. Next, we compare the two branching strategies,
BPA and BTW.

We ran the experiments on a computer with a 2.67GHz processor and 24GB of
RAM. The algorithms were implemented in C++ and the linear models were solved
using Cplex 12.2.

3.6.1 Test problems

Since, to the best of our knowledge, there is no prior study of the multi-depot vehicle
routing problem with time windows and deliveries to plants, we generated new test
problems. We considered narrow and wide time windows, where the wide windows are
on average twice as wide as the narrow windows. We also considered di↵erent plant
locations on the graph.

In the case that we call inside plants, the depots and plants are randomly located in
a (�50, 50)2 square, according to a continuous uniform distribution. The producers are
randomly located in a (�100, 100)2 square; they are placed one by one via a generation-
validation procedure. Suppose that vi is the current producer, mind is the distance from
vi to its closest depot, and z is a number in the interval [0, 1] chosen according to a
continuous uniform distribution. This producer is retained if z < exp(�h.mind) where
h = 0.05, and otherwise is dropped. The application of this probabilistic function,
inspired by Cordeau et al. [34], increases the likelihood of producer clusters around the
depots.

In the case that we call outside plants, the plant locations are randomly generated in
the area beyond the region containing the producers: (�150, 150)2�(�100, 100)2, where
the producers are located randomly in a (�100, 100)2 square via a new generation-
validation procedure. We retain producers satisfying z < exp(�h(mind.↵ +minp(1 �
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↵))) where mind and minp are the distances from the newly generated producer to the
closest depot and the closest plant, respectively. Moreover, z and ↵ are two uniform
random numbers that are respectively generated in [0, 1] and [0.3, 0.7]. Once again,
this probabilistic function leads to clusters of producer nodes in the region between the
plants and the depots. Figure 3.4 shows an example of an instance with three depots,
three outside plants, and 100 producers.

Figure 3.4: Producer locations in case with three outside plants

We use the Euclidean distance between two nodes. The preassignments of producers
to depots for variant 1 are done one by one in numerical order: we greedily assign each
producer to its closest depot while trying to ensure that each depot has the same
number of producers.

The service duration and the quantity supplied by each producer are randomly
and independently chosen according to a discrete uniform distribution on [1, 25]. To
increase the probability of feasible instances, we set the sum of the plant demands to
90% of the total supply available.

Table 3.3 shows the characteristics of the four problem classes. The size of each
instance is determined by the number of depots, producers, and plants; the values that
we considered are presented in Table 3.4. Instances with the same number of depots
and plants have those facilities in the same positions. We generated five instances for
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each size combination of each problem class. For example, instance pr04-50-2D3P-5
represents the fifth instance of the fourth class with fifty producers, two depots, and
three plants.

Table 3.3: Four problem classes

Class Number Plant Location Time Windows

pr01 inside narrow
pr02 inside wide
pr03 outside narrow
pr04 outside wide

Table 3.4: Specifications of test problems

Number of depots Number of producers Number of plants

2 30, 40, 50 2, 3
3 30, 40, 50 2, 3

3.6.2 Linear relaxation

To evaluate the e�ciency of our column generation, we ran a group of tests for a set of
problems with fifty producers, representing the most di�cult instances. We considered
one instance from each group of five for a given size combination of each class, forming
a group of sixteen instances. We solved the root linear relaxation using either DSSR
or ngR-DSSR with two di↵erent neighborhood sizes, |Ni| = 5 and |Ni| = 8 for each
producer i 2 N . Table 3.5 gives the results both with and without HDP. The pairs
in the “nb. Iter.” column give the number of heuristic and exact column-generation
iterations. Column “T” gives the computational time (in seconds) to solve the linear
relaxation.

Table 3.5: Results for solution of linear relaxation for instances with fifty producers

EDPDSSR HDPDSSR + EDPDSSR EDPng5 EDPng8 HDPng5 + EDPng5 HDPng8 + EDPng8

Class Number T nb. iter. T nb. iter. T nb. iter. T nb. iter. T nb. iter. T nb. iter.
pr01-50-2D2P 5.5 (0, 18) 2.4 (21, 1) 7.2 (0, 18) 7.0 (0, 18) 2.7 (17, 1) 2.5 (17, 1)
pr01-50-2D3P 9.1 (0, 14) 6.3 (19, 5) 10.7 (0, 14) 10.6 (0, 14) 7.0 (16, 5) 6.8 (16, 5)
pr01-50-3D2P 6.3 (0, 26) 2.3 (29, 1) 10.9 (0, 28) 10.1 (0, 28) 3.9 (33, 1) 3.9 (33, 1)
pr01-50-3D3P 12.2 (0, 16) 5.3 (17, 1) 16.1 (0, 15) 17.2 (0, 15) 6.6 (15, 1) 6.1 (16, 1)
pr02-50-2D2P 23.2 (0, 30) 9.4 (31, 3) 39.5 (0, 36) 45.8 (0, 26) 15.6 (33, 7) 18.4 (29, 6)
pr02-50-2D3P 95.8 (0, 15) 73.9 (24, 5) 119.8 (0, 16) 147.6 (0, 18) 101.7 (16, 6) 98.1 (17, 6)
pr02-50-3D2P 118.5 (0, 18) 65.3 (28, 4) 240.3 (0, 20) 225.8 (0, 23) 103.5 (21, 4) 88.7 (23, 5)
pr02-50-3D3P 394.8 (0, 13) 269.2 (16, 3) 570.2 (0, 13) 643.1 (0, 14) 386.1 (15, 4) 317 (15, 3)
pr03-50-2D2P 1.4 (0, 17) 0.9 (16, 1) 2.5 (0, 18) 2.1 (0, 18) 1.2 (15, 1) 1.1 (15, 1)
pr03-50-2D3P 2.0 (0, 15) 1.2 (18, 1) 2.8 (0, 14) 2.5 (0, 14) 1.3 (15, 1) 1.2 (15, 1)
pr03-50-3D2P 1.6 (0, 15) 1.0 (21, 1) 2.8 (0, 18) 2.4 (0, 17) 1.3 (17, 1) 1.4 (17, 1)
pr03-50-3D3P 1.0 (0, 14) 0.8 (15, 1) 2.0 (0, 13) 1.6 (0, 13) 1.0 (15, 1) 0.9 (15, 1)
pr04-50-2D2P 23.2 (0, 20) 23.8 (34, 8) 38.0 (0, 23) 30.7 (0, 21) 22.2 (26, 7) 26 (27, 9)
pr04-50-2D3P 3.6 (0, 11) 3.1 (13, 2) 6.6 (0, 14) 6.6 (0, 14) 5.0 (15, 4) 5.3 (15, 4)
pr04-50-3D2P 23.1 (0, 18) 13.8 (23, 3) 40.8 (0, 23) 38.1 (0, 21) 21.2 (23, 5) 22.7 (24, 6)
pr04-50-3D3P 21.1 (0, 13) 21.1 (20, 5) 30.5 (0, 14) 29.6 (0, 14) 23.3 (13, 6) 23 (13, 5)

Average 46.4 (0, 17) 31.2 (22, 3) 71.3 (0, 19) 76.3 (0, 18) 44.0 (19, 3) 38.9 (19, 4)

On average the use of HDP improves the computational time by decreasing the
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number of calls to EDP. We also studied the use of metaheuristics to generate columns;
we implemented a method based on TS. This approach, inspired by the procedure of
Desaulniers et al. [48], attempts to generate new negative-reduced-cost columns from
the set of existing columns. However, our experiments showed that it did not improve
the computational time. Our results support those reported by Desaulniers et al. [48].
However, our results for instances with 100 and 200 nodes show that TS is more e�cient
for larger instances and longer routes.

3.6.3 Branching and integer solution

As mentioned in Section 3.5, a branching scheme is often necessary. We now evaluate
the performance of the two branching strategies introduced in Section 3.5.4. We present
the results for three approaches. All three use EDP and HDP, because they decrease
the average computational time. The first method uses DSSR, the second uses ngR-
DSSR with |Ni| = 5, and the third uses ngR-DSSR with |Ni| = 8. Our experiments
have shown that |Ni| > 8 increases the computational time and therefore reduces the
number of instances solved to optimality within the time limit.

As previously noted, in variant 1 the producers are preassigned to the depots; we
consider both variant 1 and variant 2 in this section. We set the maximum computa-
tional time for each instance to five hours. There are three possibilities:

(a) The optimal solution is attained.

(b) The optimal solution is not attained, but one or more integer solutions are found
during the branching process.

(c) No integer solutions are found.

Tables 3.11–3.14 present the results for variant 1, and Tables 3.15–3.18 present the
results for variant 2. The branching strategies BPA and BTW are compared using the
following metrics:

1. Computational time (CPU): This is reported for the problems that achieved
optimality (case (a)) and represents the time to obtain the optimal solution. The
CPU is set to 18000 (s) when the optimal solution is not found within five hours
(cases (b) and (c)).

2. Root gap: This is calculated via (optimal solution - root solution)/root solution.
For cases (b) and (c), the root gap is set to 1.

3. Optimality gap: This is obtained via (best upper bound - best lower bound)/best
lower bound. For case (a), the gap is zero and for case (c) it is infinity and
therefore not reported.
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4. Lower bound (LB) improvement: This is obtained via (best lower bound - root
solution)/root solution, and it is presented for case (c). In a best-first branching
strategy, this value represents the improvement in the lower bound; it allows us
to compare the performance of di↵erent branching strategies for problems with
no integer solution. Recall that in a best-first branching strategy the node with
the best LB is treated first.

T1 is the mean time to solve the five instances in a class, and T2 is the mean time
for the instances that achieved optimality. Moreover, # Opt. Sol. and # Int. Sol.
are the number of instances corresponding to case (a) and case (b), respectively. The
root gap, Opt. gap, and LB Imp. columns give the mean percentages for the root
gaps, optimality gaps, and LB improvements when relevant. Note that, because of the
significant ratio of fixed costs to variable costs, the gaps are generally small.

Variant 1: Preassignment

Generally the performance of the algorithm decreases as the number of producers in-
creases, for both branching strategies. However, given a fixed number of producers,
increasing the number of depots generally reduces the di�culty. This is because of a
decrease in the producer-depot ratio when the producers are preassigned.

We now group the instances from classes pr01–pr04 according to the number of
producers; this gives three groups of 30, 40, and 50 producers with 80 instances in
each group. Table 3.6 presents the percentage of instances solved to optimality by each
branching strategy; the percentage of instances in which at least one integer solution
was found; T1; and T2.

It can be seen that BTW is more successful for larger instances. Table 3.7 shows
that both branching strategies weaken in terms of the number of problems solved to
optimality and the mean CPU time when the time windows are wider, i.e., pr02 and
pr04. BTW weakens more significantly because although we split the time windows
during the branching, the new windows are still wide enough that numerous routes
with similar costs may be feasible.

Based on Table 3.6, using DSSR with BTW gives the best results. It represents
the highest percentage of solved instances to optimality and therefore the least T1 and
T2, among the six di↵erent combination of subproblem solving strategies and branching
strategies. Table 3.7 also shows that except for the class pr02, when BTW is used, DSSR
almost always outperforms ngR-DSSR in terms of the percentage of solved problems.
DSSR also has a smaller T1.
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Table 3.6: Comparison of BPA and BTW for 30 to 50 producers (Variant 1)

BPA BTW
No. producers Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR
30 75% 23% 6483 3433 90 % 5 % 2918 1251
40 45% 34% 11329 4882 75% 11% 5587 1790
50 30 % 38% 13288 3597 64% 9% 8288 3757

ng5
30 65% 33% 6848 1132 88 % 5% 2790 692
40 43% 28% 11946 5016 74 % 11% 5453 1220
50 34% 18% 13393 8708 61% 14% 8011 3310

ng8
30 78% 20% 6090 3444 88% 8% 2677 544
40 48 % 33% 11112 4890 74% 13% 5429 1498
50 30 % 36% 13027 3036 64% 10% 7932 3940

Table 3.7: Comparison of BPA and BTW (Variant 1)

BPA BTW
Problem class Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR

pr01 57% 35% 8942 1462 95% 2% 1595 791
pr02 40% 28% 12698 7203 45% 18% 10905 3125
pr03 60% 30% 8446 3325 97% 3% 1612 1014
pr04 43% 32% 11381 3893 68% 10% 8279 4133

ng5

pr01 48 % 42% 10001 1176 95 % 3% 1275 459
pr02 28% 22% 13780 8705 43% 18% 10961 2761
pr03 68% 23% 6981 1637 95% 5% 1294 396
pr04 43% 17% 12154 8291 63% 13% 8143 3347

ng8

pr01 60 % 33% 8843 2031 95% 3% 1287 474
pr02 42% 27% 12254 6818 43% 20% 10953 3137
pr03 60% 30% 8102 2588 95% 5% 1293 395
pr04 45% 28% 11106 3724 67% 12% 7851 3969

Variant 2: No preassignment

We solved the same instances using the algorithm adapted for variant 2. We used the
same two branching strategies. Tables 3.15–3.18 report the results for pr01–pr04 with
30, 40, and 50 producers.

We again group the instances according to the number of producers. Tables 3.8
and 3.9 compare the performance of BPA and BTW in terms of the instances solved
to optimality and those with at least one integer solution. BTW generally outperforms
BPA in terms of the number of instances solved. However, BPA is competitive with
BTW when the time windows are wider (pr02 and pr04).

Table 3.8 shows that the combination of BTW and ng5 definitely outperforms the
other combinations. A comparison of pr01 and pr03 with pr02 and pr04 shows the
higher di�culty of the instances with wider time windows. The results indicate that
the plant location (inside or outside) has no significant impact on the di�culty of the
problem.

3.6.4 Value of preassignment

To evaluate the impact of preassignment in terms of solution quality and computational
time, we selected a subset of instances with 40 producers (instances with identifier ”2”
among the 5 instances with the same size combination). The results for this subset of
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Table 3.8: Comparison of BPA and BTW for 30 to 50 producers (Variant 2)

BPA BTW
No. producers Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR
30 65% 35% 6827 1035 83% 9% 4944 2650
40 43 % 33% 12012 5166 54 % 13% 10193 6023
50 31% 19% 13610 8404 45% 6% 10841 7492

ng5
30 66% 34% 6863 1574 88% 5% 2804 710
40 43 % 33% 11943 5019 74% 11% 5418 1231
50 33 % 16% 13508 8569 61 % 14% 8149 3506

ng8
30 65% 34% 6757 850 83% 8% 4681 2309
40 44 % 34% 11724 5062 53% 11% 10041 5380
50 33 % 19% 13507 8563 46 % 6% 10887 7854

Table 3.9: Comparison of BPA and BTW (Variant 2)

BPA BTW
Problem class Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR

pr01 47% 45% 10003 739 83% 12% 4656 2440
pr02 27% 23% 14039 8641 28% 5% 14237 9487
pr03 68% 23% 6976 1627 85% 10% 3779 1758
pr04 43% 23% 12248 8466 45% 10% 11967 7869

ng5

pr01 48 % 42% 9979 1140 95% 3% 1440 665
pr02 28% 22% 14154 9424 43% 17% 10980 2765
pr03 68% 23% 6872 1498 95% 5% 1299 401
pr04 43% 23% 12080 8152 63% 15% 8109 3432

ng8

pr01 48 % 40% 9978 1139 87% 10% 4379 2712
pr02 27% 28% 13814 7903 28% 3% 14107 9305
pr03 70% 22% 6851 2224 85 % 10% 3732 1685
pr04 43% 25% 12007 8036 42% 10% 11928 7022

instances, using the DSSR and BTW strategies for both variant 1 and 2 are reported
in Table 3.10. In this table, column “st.” represents the status of solution based on the
three possible cases described in Section 3.6.3. The columns “LB”, “UB” and “CPU”
represents the value of the solution in the root node, best upper bound obtained in the
time limit and the computational time, respectively.

The performance of our algorithm depends on the producer-depot ratio, and variant
2 is therefore more di�cult to solve. In fact, a higher producer-depot ratio represents
larger subproblems, and consequently, the overall computation is more time demanding.
This fact is illustrated by the larger number of instances with optimal solutions in a
much smaller average computational time in the case of instances in variant 1, compared
to the instances in variant 2.

However, one must notice that the quality of producer-depot preassignments has
a significant impact on the value of the solution. As mentioned in Section 3.6.1, in
our instances, we assigned producers to the depots based on a greedy heuristics. Ta-
ble 3.10 compares also the solution quality of the same instances with and without
the mentioned preassignment strategy. The comparison shows that there is a trade-o↵
between computational e↵ort and solution quality following a simple producer-depot
preassignment. In fact, as this is the case in the most of MDVRPs, the producer-depot
assignment may have a significant impact on the quality of the solution (37% deterio-
ration in average in the value of the solution in the case of the considered instances).
This result provides practical managerial insights to evaluate the value of integrating
assignment decisions into the model, where the decision maker has this choice.
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Table 3.10: Comparison of results with and without preassignment

Instances with preassignment Instances without preassignment
Instance st. LB UB CPU st. LB UB CPU

pr01-40-2D2P-2 a 18164.3 19365.2 1 a 14159.1 14159.6 2
pr01-40-2D3P-2 a 20028 20074.3 3 b 17856.3 19743.2 18000
pr01-40-3D2P-2 a 20724 22271.3 3 a 15341.7 16691.9 1045
pr01-40-3D3P-2 a 21915.4 21936.5 3 a 16665.6 16730.9 11723
pr02-40-2D2P-2 a 15930.7 16712.5 588 c 12586.4 1 18000
pr02-40-2D3P-2 c 15557.2 1 18000 c 12758.2 1 18000
pr02-40-3D2P-2 a 17938.2 19607.4 10 a 13764.4 14150.8 849
pr02-40-3D3P-2 a 18053.9 19674.9 7 c 13253.6 1 18000
pr03-40-2D2P-2 a 25797 27154.7 37 a 18367.6 18393.9 13
pr03-40-2D3P-2 a 23657.6 23686.5 8 c 16921.9 1 18000
pr03-40-3D2P-2 a 27103.5 29765.1 1 a 18076 18098.9 32
pr03-40-3D3P-2 a 29404.1 32145.5 503 a 18235.2 18308.3 28
pr04-40-2D2P-2 b 16602.6 18286.6 18000 c 13775.5 1 18000
pr04-40-2D3P-2 a 24753.2 27014.4 9337 a 18428.7 18504.8 21
pr04-40-3D2P-2 a 24157.9 26788.8 2472 c 13421.3 1 18000
pr04-40-3D3P-2 c 19333.7 1 18000 a 14128.8 14922.9 11282

Average 13 a, 1 b, 2c 21195.1 4186 9 a, 1 b, 6 c 15483.8 9437

3.7 Conclusions

We have considered a new variant of the vehicle routing problem with attributes such
as multiple depots, heterogeneous fleets of vehicles, time windows, and deliveries to
plants. Its main novelty is the need to satisfy the plant demands by delivering the
supplies collected earlier. We introduced a new set covering model for this problem,
and we proposed a specialized cutting-edge column generation procedure to solve its
linear relaxation. We also presented a new branching strategy based on the special
structure of the problem and compared its performance with the well-known BTW.

To evaluate our algorithm, we developed randomly generated test problems with
and without producer-depot preassignments. We obtained promising results in terms
of solution quality and computational time, especially for problems with up to 50
producers.

Future research will focus on developing more intelligent branching strategies and
considering the more complex route structures presented in Section 3.2. Our long-
term goal is the e↵ective solution of the given problem in the presence of stochastic
parameters, which would make the model more realistic.
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Chapter 4

A Branch-and-Price Approach
for a Multi-Period Vehicle
Routing Problem
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Abstract

In this paper, we consider tactical planning for a class of the multi-period vehicle routing
problem (MPVRP). This problem involves optimizing daily product collections from
several production locations over a given planning horizon. In this context, a single
vehicle routing plan for the whole horizon must be prepared, and the seasonal varia-
tions in the producers’ supplies must be taken into account. The production variations
over the horizon are approximated using a sequence of periods, each corresponding to
a production season, while the intra-period variations are neglected. We propose a
mathematical model that is based on the two-stage a priori optimization paradigm.
The first stage corresponds to the design of a plan which, in the second stage, takes
the di↵erent periods into account. The proposed set-partitioning-based formulation
is solved using a branch-and-price approach. The subproblem is a multi-period ele-
mentary shortest path problem with resource constraints (MPESPPRC), for which we
propose an adaptation of the dynamic-programming-based label-correcting algorithm.
Computational results show that this approach is able to solve instances with up to
twenty producers and five periods.

Keywords: Multi-period vehicle routing problem, Branch-and-price, Seasonality.
Tactical planning.
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4.1 Introduction

The vehicle routing problem (VRP) is a well-studied topic in operations research; it
has been investigated by many researchers since it was introduced by [42]. Given an
unlimited fleet of vehicles based in a single depot, the VRP, in its general form, involves
finding a set of least-cost feasible routes to deliver goods to (or collect goods from) a
set of customers. A feasible solution consists of a set of routes in which each customer
is visited once by exactly one vehicle, and the quantity of delivered (collected) goods
on each route does not exceed the vehicle capacity [151].

Several variants and extensions of the classical VRP have been introduced, and
they are supported by a well-developed literature [37]. The problem setting that we
consider is the design of tactical plans for a large class of real-life routing problems; it
incorporates several new attributes and characteristics. This problem setting is inspired
by a real-life application of the VRP in the dairy industry in Quebec. Milk is collected
from the producers’ farms and then delivered to a set of processing plants. At a
given time, denoted t, a tactical plan is prepared for a horizon T , consisting of several
collection days, starting at t + �. This plan is executed on a daily basis during the
horizon T . We must design routes for a set of vehicles departing from di↵erent depots in
a geographical region, each visiting a subset of producers and collecting a single product
type, which is then delivered to the processing plants. The objective is to minimize the
transportation cost while meeting the plants’ demands. Every producer is visited by
exactly one vehicle, and each vehicle visits only one plant per day. We assume that the
daily quantity supplied by the producers satisfies the total plant demand.

The main challenge is the design of a single plan for a horizon, when the supply is
subject to seasonal variations. The plan may provide service consistency and regularity
by attempting to always follow the same sequence of visits. Moreover, in the dairy
industry, because of contractual arrangements, the plan is the basis of the negotiations
between the stakeholders involved in each contract.

To summarize, the main goal of this paper is to address the above problem by
proposing routing plans that account for the seasonal variations in the production
levels. We approximate the production fluctuations over the horizon T using a sequence
of periods (day clusters), with the same production level within each period, forming
a multi-period vehicle routing problem (MPVRP). The formulation appears similar to
the scenario-based formulation of the vehicle routing problem with stochastic demands
(VRPSD). However, in our problem each production level occurs only in a specific
period. The main contributions of this paper are:

• We investigate the characteristics of the problem.

• We propose a mathematical programming model for the problem and the seasonal
behavior of the supply.

• We propose a state-of-the-art branch-and-price algorithm. It includes a series of
bounds as well as structural modifications in the multi-period problem, allowing

65



us to take advantage of technical advances in single-period VRPs.

• We perform an extensive analysis using a large set of randomly generated in-
stances, to illustrate the performance and the limits of our algorithm.

The remainder of this paper is organized as follows. In Section 4.2, we describe the
problem, and Section 4.3 presents the proposed multi-stage formulation. The algorithm
is presented in Section 4.4, and its components are described in Sections 4.5 to 4.7. The
experimental results are reported in Section 4.8, and Section 4.9 provides concluding
remarks.

4.2 Problem statement

In this section, we introduce the problem; it is inspired by a dairy problem in Quebec.
It involves building an a priori tactical plan for a given horizon over which certain
parameters may vary.

For a detailed description of the dairy transportation problem in Quebec (DTPQ),
the reader is referred to Lahrichi et al. [101] and Dayarian et al. [44]. The DTPQ can
be briefly described as follows: In Quebec, the Fédération des producteurs de lait du
Québec (FPLQ), a coalition of milk producers, is responsible for managing the collection
and transportation of milk produced in the province. This involves negotiating, on
behalf of the producers, annual transportation contracts with the carriers [2]. Each
contract with a carrier is based on a plan containing multiple routes. Each route
specifies an origin and a destination (the vehicle’s depot) and consists of collection
from producers followed by delivery to a processing plant and then return to the depot.
The contractual regulations require a single plan to be prepared for every six-month
horizon; it is the basis of negotiations and payments. Its routes are the basis of the
collection-delivery operations, executed on a daily basis over the horizon covered by the
contract. The goal is to minimize the transportation costs while satisfying the plant
demand and visiting all the producers.

The supply may vary daily as well as seasonally. The daily variations, caused
by exceptional situations such as meteorological variations, cattle nutrition, or cattle
diseases, are quite minor. The seasonal variations, caused by seasonal meteorological
changes and animal birth cycles are more significant and may have a greater impact on
the plan. Note that, in this context, seasons are subperiods determined based on the
production level of the cattle; they can be shorter or longer than calendar seasons.

Currently, these variations are not accounted for during the planning phase, and the
routes are designed based on the annual average production. In seasons with a higher
supply, it may not be possible to complete the planned routes because of insu�cient
residual capacity in the vehicles. In this case the vehicle usually travels to a plant to
unload its tank and then visits the remaining producers of the planned route.

The problem considered in this paper can be formally described as follows: We wish
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to design a tactical plan for a given horizon T containing several collection days. A plan
consists of a set of routes, each performed by a single vehicle on every collection day of
T . An unlimited fleet of identical vehicles is assumed to be based in multiple depots.
On every collection day, each vehicle departs from a depot, collects a single product
type from a subset of producers, delivers the collected product to a plant, and then
returns to its depot. This can be seen as an extension of the well-known multi-depot
vehicle routing problem (MDVRP) with additional deliveries to multiple plants. As an
extension of the VRP, this problem is NP-hard [107].

We assume that a year can be divided into several periods, each corresponding to a
seasonal production level. We take inter-period production variations into account; the
potential intra-period fluctuations are neglected. Intra-period fluctuations can often
be handled by leaving a spare capacity of 5%–10% on each vehicle when designing the
routes. Daily fluctuations may vary from one producer to another, but seasonal fluc-
tuations are strongly linked and are here assumed to be perfectly positively correlated.
This correlation arises because almost all the producers in a given geographical region
are exposed to similar seasonal cycles. The plants must adjust their seasonal demands
according to the supply so that the total supply always covers the total demand.

The objective is to design a collection-delivery plan for a given horizon, providing
a certain level of service consistency and quality while taking into account the seasonal
variation and minimizing the total routing costs.

The most consistent strategy is to design the plan based on the highest production
level of the horizon. The resulting routes can be performed in any period without
adjustment. The main drawback of this strategy is its cost: it may require a large
number of vehicles. An alternative is allow a limited number of failures per route,
i.e., situations where a lack of vehicle capacity prevents the completion of the route.
A correction, called a recourse, is then necessary to adjust the route to the current
situation. We define a feasible route to be a route that is executable in any period
of the horizon with at most one failure. The cost of a route consists of a fixed part,
representing the sum of the fixed vehicle costs and the costs of the planned route
arcs, and the weighted cost of the recourse actions necessary in di↵erent periods of the
horizon. The period weight is proportional to the ratio of the period length and the
length of the horizon.

We control the desired service quality over a given horizon by setting a service
reliability threshold (SRT), indicating the minimum percentage of days over the horizon
T that the planned routes should be executable without encountering any failures. The
SRT is a tool provided to the decision-maker to govern the robustness of the plan over
di↵erent periods of the horizon.

In Section 4.3, we present our model, which takes into account both the seasonal
variations and the service quality.
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4.3 Model

In this section, we present a model for the problem introduced in Section 4.2. The
formulation takes into account the routing characteristics and specifications and the
variations in the supply over a given horizon T .

4.3.1 Multi-period scheme

A convenient way to model the seasonal fluctuations is to represent the horizon as a
finite set of periods. More precisely, we aggregate several days with similar seasonal
characteristics to form a period.

Our multi-period scheme concatenates several periods, each corresponding to a
production season. Let S be the set of all periods in the horizon T ; within each period
s 2 S, the production levels are assumed to be fixed. Accordingly, we may associate
with each period s a production coe�cient, Ps, which is defined to be the ratio of the
production level in period s to the average annual production level. We also associate
with each period a weight Ws, representing the share of period s in horizon T . It is
calculated by dividing the length of period s by the length of horizon T . In other words,
Ws indicates the occurrence frequency of a given production level over the horizon T .

For a given SRT, we perform the following procedure:

step 1 Let � be an empty period set.

step 2 The periods s 2 S are sorted in ascending order of production level.

step 3 Following the order from step 2, the periods are removed from S and are added
to � until their cumulative weight covers the SRT: (⌃s2�Ws � SRT).

step 4 All the periods in � are aggregated into a mega-period, referred to as the
reference period. It has production coe�cient Ptref , the reference production
level, defined to be the largest Ps, where s 2 �. The reference period is added to
S.

step 5 All the production coe�cients Ps : s 2 S are normalized by division by Ptref ,
so that Ptref equals 1.

The plan is designed in such a way that no failure is permitted in the reference
period. This procedure also allows us to reduce the number of periods. Figure 4.1(a)
shows an example of the period distribution in a given horizon, where the SRT is
set to 40%. In this example, periods 1 to 3 are added to �. Routes that have no
failures in period 3 will have no failures in periods 1 and 2. Therefore, we can merge
periods 1–3 into a mega-period with the production equal to 1.1 and the weight equal
to the cumulative weight of periods 1–3, i.e., 60%. Figure 4.1(b) shows the normalized
distribution of the periods.
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Figure 4.1: (a) Example of period distribution.
(b) Normalized distribution of periods based on reference period.

Our model is based on the a priori optimization framework [21, 89], originally in-
troduced for stochastic problems. This multi-stage framework assumes that a plan is
designed in the first stage. New decisions are then taken over several stages, as exact
information is revealed about uncertain parameters. In a classical two-stage stochastic
programming model, the first-stage decision consists of an a priori plan, which is ex-
ecuted during the second stage. During the second stage, called the execution phase,
as the real values of stochastic parameters are revealed, new decisions and adjustments
are made to make the plan more accurate. These second-stage adjustments (recourse)
usually generate a cost or a saving that should be taken into account in the first-stage
plans. The objective of a stochastic programming model is to find a first-stage plan
that minimizes the expected sum of all the costs associated with the plan and the
second-stage corrective actions.

Although the information for our problem is assumed to be known a priori, its
multi-period nature makes it similar to a stochastic problem. We therefore develop a
two-stage approach: in the first stage we design an a priori plan, and in the second
stage we execute this plan in all of the parallel independent periods of the horizon.
Our recourse policy is similar to strategy (a) in the context of the VRPSD [21]. In
this strategy, the vehicle visits the producers in the same fixed order as in the a priori
planned route. Consequently, the total traveled distance corresponds to the fixed length
of the planned route plus the extra distance that must be covered when the load exceeds
the vehicle capacity. We assume that if a vehicle is full after a collection, it continues
to the subsequent producer, where the failure occurs. The extra distance traveled
corresponds to a return trip to the plant where the vehicle empties its tank before
resuming the planned route at the failure point. We selected this simple recourse
because it provides high service consistency.

4.3.2 Two-stage formulation

The model is defined on a directed graph G = (V,A), where V and A are the node
and arc sets, respectively. The node set contains the depots, producers, and plants:
V = D [N [ P . The arc set A ⇢ V ⇥ V defines feasible movements between di↵erent
locations in V. For each pair of locations i, j 2 V, i 6= j, there exists an arc (i, j) 2 A.
Each arc (i, j) 2 A has a nonnegative travel cost cij that is proportional to the travel
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time. We assume throughout this paper that the triangle inequality holds for costs
and travel times. In each period, each producer j 2 N produces a limited quantity of
product on a daily basis. The production levels in period s 2 S are given by a vector in
which the jth entry, qsj , is the supply from producer j. Moreover, the production level

of each producer j in the reference period is given by qrefj . Therefore, based on the
assumption of a perfect correlation among the production levels of di↵erent producers
within each period, the supply of producer j in period s is

qsj = Ps.q
ref
j , j 2 N s 2 S. (4.1)

Each plant p 2 P receives, again on a daily basis, the collected product, and the plant
demands are adjusted to the seasonal production. Each route is performed using a
vehicle k 2 K, with capacity Q, where K represents an unlimited homogeneous fleet
of vehicles. The routes are designed to have no failures in the reference periods and
at most one failure in the periods with Ps > 1. In other words, for each route r, the
following inequalities must hold:

X

j2r
qsj  2Q, s 2 S (4.2)

and X

j2r
qrefj  Q. (4.3)

Let Rdp be the set of all feasible routes from depot d 2 D to plant p 2 P. Each
feasible route corresponds to a path from a depot d 2 D to itself and consists of
collection from a subset of producers followed by delivery to a single plant. Let R =S

d2D,p2P Rdp.

Let yr be a binary variable such that yr is 1 if route r 2 R is selected in the
optimal solution and 0 otherwise. The collection on route r in the reference period
that is delivered to plant p is denoted lpr. The total delivery to each plant p must
completely cover the plant’s demand Dp. As mentioned before, the demand at each
plant is proportional to the production level in the corresponding period. Therefore,
only the demands in the reference period should be taken into account. Accordingly, let
lrefpr and Dref

p represent, respectively, the quantity collected on route r and the quantity
demanded by plant p in the reference period.

Parameter air is 1 if route r visits producer i and 0 otherwise. Associated with
each vehicle k 2 K is a fixed cost ck that applies whenever the vehicle is employed. In
general, most of the variable costs are positively correlated with the distance traveled,
and thus minimizing the total distance traveled is a reasonable objective function. The
deterministic cost of each route r, denoted cr, is the sum of the costs on the arcs of the
route.

Our model is then as follows:
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min
X

r2R
(cr + ck)yr + F(x) (4.4)

subject to
X

r2R
airyr = 1 (i 2 N ); (4.5)

X

r2R
lrefpr yr � Dref

p (p 2 P); (4.6)

yr 2 {1, 0} (r 2 R). (4.7)

Here F(x), the recourse function defined below by (RF), represents the total recourse
cost incurred in the di↵erent periods for a given x, and x is the set of arcs used in
the construction of the routes forming the solution of problem (4.4)–(4.7). In fact,
F(x) represents the value of the second-stage problem given a first-stage solution x.
Constraint (4.5) ensures that each producer is visited exactly once by exactly one route,
and constraint (4.6) guarantees that the plant demands are satisfied.

For the second-stage problem (the recourse problem), let xijk be a binary parameter
obtained from a given first-stage solution; it is 1 if customer j 2 N follows customer
i 2 N on a route performed by vehicle k 2 K. The vector qs represents the supply in
period s. Moreover, suppose that zsijk is the flow on arc (i, j) for all i, j 2 V traveled
by vehicle k in period s. Also, let ws

ik be a parameter that is 1 if a failure occurs as
producer i is served by vehicle k in period s and 0 otherwise. Therefore, zs and ws

represent the vectors zsijk and ws
ik, respectively. The recourse problem is defined as

follows:

(RF)

F(x) =
X

s2S
PsF (x, qs) (4.8)

where
F (x, qs) = min

X

k2K

X

i2N
2cipkw

s
ik (4.9)

subject to

zsijk  Qxijk (i, j 2 V, k 2 K, s 2 S), (4.10)

ws
ik 

X

j2N
xijk (i 2 V, k 2 K, s 2 S), (4.11)

X

j2N[U
zsijk =

X

j2N[D
zsjik + qsi �Qws

ik (i 2 N , k 2 K, s 2 S), (4.12)

X

j2N
zsdjk = 0 (d 2 D, k 2 K, s 2 S), (4.13)

zs � 0 (s 2 S), (4.14)

ws
ik 2 {0, 1} (i 2 N , k 2 K, s 2 S). (4.15)
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Constraint (4.10) shows that the flows are nonzero only on planned routes and do not
exceed the vehicle capacity. Constraint (4.11) specifies that a failure for producer i
on route k can occur only if i belongs to route k. Constraint (4.12) defines when a
failure occurs on a given node i. Constraint (4.13) ensures that vehicles depart from
the depots with empty tanks.

As previously mentioned, our model is similar to a two-stage paradigm for a stochas-
tic planning problem over a time horizon. However, in stochastic programming, there is
a set of scenarios, and the size of the scenario set is based on the statistical dimension of
the problem. Moreover, any scenario may occur, with a certain probability determined
via a probability distribution, in any period of the horizon. Therefore, the cost of a plan
is the sum of the first-stage cost, representing the routing costs and the fixed vehicle
costs, and the second-stage cost, indicating the expected recourse cost with respect to
di↵erent realizations of the probabilistic parameters. In our problem, the size of the
period set is based on the number of seasons. We have a set of weights indicating the
portion of the horizon represented by a given period. Moreover, each production level
occurs only in a given period known a priori. This similarity between our formulation
and the stochastic formulation may result in similar solution approaches. In the follow-
ing section, we describe our solution approach based on the branch-and-price paradigm.
We believe that this approach may be suitable for stochastic problems with a similar
structure.

4.4 Solution approach

Since the cardinality of R is extremely large, the approach used to solve (4.4)–(4.7) is
based on a branch-and-price algorithm. We apply a branch-and-bound scheme, and the
lower bound at each node of the search tree is found by using column generation to solve
the linear relaxation. The column generation procedure is based on iteratively solving
a restricted master problem and one or more subproblems. The restricted linear master
problem (RLMP) consists of the linear relaxation of the augmented model restricted
to a subset of its variables. This subset simply contains those variables generated by
solving the subproblems. Solving the RLMP using a linear programming solver, usually
based on the simplex algorithm, results in primal and dual solutions. Each subproblem,
often taking the form of an elementary shortest path problem with resource constraints
(ESPPRC), is typically solved using an algorithm based on dynamic programming (DP)
[see 55, 86]. The resulting negative reduced cost columns are then added into the RLMP
and another iteration begins. The process stops when no subproblem is able to find
new negative reduced cost variables for the RLMP.

We initialize the branch-and-price search tree by adding a set of initial columns to
the RLMP at the root node. At each node of the tree, the lower bound is calculated
through the iterative solution of the master problem and the subproblems, as described
above. If the solution of the RLMP is integer, it is a feasible solution to the original
problem, and the current incumbent is updated if necessary. If the solution is not
integer, a branching procedure is applied to cut o↵ the fractional part of the solution.
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If the RLMP is infeasible, the node is fathomed. The optimal solution is the current
incumbent solution after all the branches have been explored.

4.4.1 Literature review

In this section, we review research into di↵erent VRPs. This will allow us to take
advantage of recent advances in exact methods for VRPs that are similar to our model.
The most closely related problem is the consistent vehicle routing problem (ConVRP)
proposed by [77]. In the ConVRP, customers with known demands receive service either
once or with a predefined frequency over a multiple-day horizon. Frequent customers
must receive consistent service, which is defined as visits from the same driver (vehicle)
at approximately the same time throughout the planning horizon [148].

There is little literature on the MPVRP, in which decisions span multiple time
periods. In most of these studies, customers request a service that could be done over a
multi-period horizon [see 153, 4, 158, 5]. The MPVRP is closely related to the periodic
vehicle routing problem (PVRP) in which the customers specify a service frequency and
allowable combinations of visit days. A complete survey of the PVRP and its extensions
can be found in Francis et al. [59]. The best-known algorithms for the PVRP are those
of Cordeau et al. [34], Hemmelmayr et al. [80], and Vidal et al. [155].

In our problem, all the producers need to be served every period on a daily basis.
Moreover, the definition of the periods is based on production variations. To the best
of our knowledge, no prior work has considered this setting. Therefore, a review of
the state of the art of the MPVRP would be irrelevant. Hence, this literature survey
is divided into two parts: 1) a review of exact methods for VRPSDs, and 2) a review
of advances in the solution of the ESPPRC, which is the core of exact methodologies
based on branch-and-price, in the context of deterministic VRPs.

Vehicle routing problem with stochastic demands

The first study of the VRPSD was carried out by Tillman [150] for the multi-depot
problem; the solution method was based on the savings heuristic. Dror and Trudeau
[54] proposed other heuristics and showed the impact of the direction of travel on the
expected travel cost, even in VRPSDs with symmetric distance matrices.

A few authors proposed exact algorithms. Séguin [140] and Gendreau et al. [66] pre-
sented integer L-shaped algorithms capable of solving instances with up to 70 nodes.
Their Benders-decomposition-based approach follows the L-shaped algorithm of La-
porte and Louveaux [103], which itself is an extension of the integer L-shaped method
of Slyke and Wets [144]. More recently, Jabali et al. [88] proposed an integer L-shaped
method based on the branch-and-cut scheme, in which some lower-optimality cuts are
generated to eliminate feasible solutions. Moreover, lower-bounding functionals are
used to improve the e�ciency of the algorithm.
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Christiansen and Lysgaard [29] introduced a new branch-and-price-based exact al-
gorithm for the VRPSD. In their approach, the columns are generated through a label-
correcting scheme on an exploded auxiliary graph containing several copies of each
customer. More precisely, they create a new copy of each node for each quantity of
product up to the capacity of the vehicle and each potential value of the demand.
The graph is constructed assuming that all the labels arriving at a given node have
collected the same product load. The customers’ demands are given by Normal or
Poisson distributions. This algorithm was recently reimplemented by Gauvin et al. [60]
using state-of-the-art techniques for branch-cut-and-price.

The classical recourse, proposed in the context of the VRPSD, is based on a simple
return to the depot to replenish (empty) the vehicle when a failure occurs. However,
more sophisticated recourse actions have been proposed by various authors [160, 139,
3, 90].

In the next section, we describe the state of the art of solution methodologies for
the deterministic ESPPRC.

Elementary shortest path problem with resource constraints

Many recent advances in branch-and-price for the classical deterministic variants of
the VRP such as CVRP and VRPTW have provided promising results. Most propose
e�cient methodologies to optimally solve the subproblem, which takes the form of an
ESPPRC. The elementarity condition adds an extra layer of complexity to the shortest
path problem with resource constraints (SPPRC), itself an NP-hard problem. The
most promising methodologies for the deterministic ESPPRC are based on one of the
following strategies:

1. The elementarity conditions are completely or partially relaxed and the relaxation
is iteratively tightened to obtain an optimal elementary solution.

2. The elementarity conditions are partially relaxed, and the optimality of the lower
bound is sacrificed for the sake of time e�ciency. After this relaxation, near-
elementary routes are often generated in a fraction of the computational e↵ort.

The decremental state-space relaxation (DSSR) proposed by Boland et al. [23] and
Righini and Salani [133] is based on the first strategy. In this method, the elementarity
conditions of the generated routes are initially relaxed, turning the problem into an
SPPRC. After each iteration, using a state-space augmentation policy, restrictions are
added to the problem to prevent the formation of cycles. Baldacci et al. [13] intro-
duced a new state-space relaxation, called ng-path relaxation and based on the second
strategy, to compute lower bounds to routing problems such as the CVRP and the
VRPTW. It partitions the set of all possible paths ending at a generic vertex according
to prespecified neighborhoods of graph vertices and a mapping function. The latter
associates with each path a subset of the visited vertices that depends on the order in
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which the vertices are visited. The subset associated with each ng-path is used to im-
pose partial elementarity. This relaxation is particularly e↵ective in computing lower
bounds for the CVRP, the VRPTW, and the traveling salesman problem with time
windows (TSPTW).

Martinelli [111] proposed a new ng-route pricing in which a DSSR technique is
embedded into the ng-route relaxation. It consists of an ng-route relaxation procedure
in which resources associated with the vertices’ neighbors are initially deactivated.
These neighborhoods are iteratively augmented based on a DSSR scheme to ensure the
ng-feasibility of all the columns. The ng-path relaxation is based on a compromise
between the computational e�ciency of the procedure and the quality of the lower
bound. Our solution methodology is built on this approach, which will be referred to
as ng-route decremental state-space relaxation (ngR-DSSR) throughout this paper. In
our implementation, we have proposed a new DSSR layer on top of the ngR-DSSR to
guarantee the elementarity of the columns obtained. This modification is detailed in
Section 4.6.2.

In the following sections we discuss the di↵erent modules of our branch-and-price-
based methodology and extra features that help us to deal with the stochastic nature
and the period-based formulation of the problem.

4.5 Master Problem

The master problem is in fact the linear relaxation of the set partitioning formulation
(4.5)–(4.7). Often, the set partitioning formulation is transformed into a set covering
formulation by relaxing constraints (4.5), at it can be shown the the optimal solution of
the set covering formulation coincides with the optimal solution of the set partitioning
formulation. However, in the case of this problem, the presence of constraints (4.6), in
some special situations, may result in multiple visits to certain producers. Therefore,
constraints (4.5) cannot be relaxed and should stay under equality form. The master
problem becomes

(MP)

min
X

r2R0

(cr + ck)yr + F(x) (4.16)

subject to
X

r2R0

airyr = 1 (i 2 N ); (4.17)

X

r2R0

lrefpr yr � Dref
p (p 2 P); (4.18)

yr � 0 (r 2 R0) (4.19)

where constraint (4.17) specifies that there should be at least one visit to each producer.
Moreover, R0 represents all the existing variables of the model. The following section
describes in detail the subproblems and the proposed solution method.
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4.6 Subproblems

In a column generation method, the subproblems must be able to find master-problem
variables that have negative reduced costs with respect to a given dual solution to
the RLMP. We solve a subproblem for each plant p 2 P . The subproblem takes the
form of a multi-period shortest path problem with resource constraints (MPESPPRC).
Consider the following dual variables:
�i: free-signed dual variable of (4.17) for producer i 2 N ;
µp: nonnegative dual variable of (4.18) for plant p 2 P.

In each subproblem, the objective function is given by

min Z =
X

i2V

X

j2V
(cij � �i)xij �

X

p2P
lrefpr µp + ck + F(x) (4.20)

where Z represents the reduced cost of the generated column. Since the ESPPRC is an
NP-hard problem in the strong sense [86], this is the most computationally demanding
part of the branch-and-price process. Therefore, we propose a multi-phase column
generation procedure. Dayarian et al. [44] have discussed the e�ciency of a bi-level
column generation process, consisting of heuristic DP (HDP) followed by exact DP
(EDP), for the single-period variant of the problem.

The proposed multi-phase procedure uses three column generators, each finding
negative reduced cost columns. In Section 4.8.2 we compare this procedure with the
bi-level process. As is common for hybrid procedures, we initiate the procedure with a
heuristic solver, here a tabu search (TS), which rapidly generates a subset of negative
reduced cost columns. It is followed by two other column generators, a procedure
based on HDP and one based on EDP. EDP, based on total enumeration, visits all
possible permutations of the nodes to obtain all the negative reduced cost columns.
HDP, a relaxation of EDP, explores the graph partially and more quickly but does not
guarantee to generate all the columns. EDP is much more time-consuming than TS
and HDP. These three generators are described in detail below.

4.6.1 Tabu search

TS [see 72, 25] is a powerful tool for di�cult combinatorial optimization problems. It
has been successfully used in hybrid algorithms to speed up column generation given
a set of existing columns [see 48]. It starts with an initial solution that is improved
through one or several neighborhood searches. This iterative approach selects the least-
cost neighbor of the current solution given a set of allowable moves at each iteration.
The new solution replaces the current solution even if it is not as good as that of
the previous iteration. To prevent the algorithm from becoming trapped in a local
minimum, a tabu list prohibits the reversal of the latest moves. The number of iterations
for which a move is tabu is called the tabu tenure. To control the length of the tabu
list, we can select the tabu tenure of each move randomly in the interval [minTabu,
maxTabu], where minTabu and maxTabu are specified by the user.
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Our tabu search, an iterative multi-start procedure, starts with an initial set of
columns, representing the basic variables of the current RLMP. We perform a limited
number of iterations, Imax, each covering a series of moves, on each variable to find
new routes with negative reduced costs, knowing that the search region is restricted to
the set of feasible solutions. Our neighborhood search allows the following moves:

Insertion: This move inserts new producer vertices in di↵erent positions of the route.
We restrict it by inserting only a predefined set of producer vertices at each
potential position. For a given position  + 1, the successor set contains the
nbSucc producer vertices closest to vertex i at position . The closeness of vertex
i is found from the value of cij � �j for all j 2 N .

Deletion: This simple move evaluates a route after the removal of a vertex. All the
possible deletions in a route are evaluated one by one, and a removed vertex is
replaced before the next deletion.

Swap: This move swaps the position of two producers in a route.

To maintain feasibility, each route derived from a move should satisfy the routing
constraints and the branching constraints (discussed in Section 4.7). Clearly, the former
check is not needed for deletions. The procedure stops when either the predefined
maximum number of iterations Imax is attained or no new route with a negative reduced
cost is obtained for Istop iterations, where Imax and Istop are predefined values.

New routes are checked to ensure that they satisfy inequality (4.3), and then their
expected costs and reduced costs, with respect to the di↵erent periods, are calculated
as explained above. This procedure tends to generate a large number of columns with
negative reduced costs, especially in the first nodes of the branch-and-price tree where
the dual variables are larger and the branching constraints are less restrictive. If we
add all the columns to the RLMP we increase the size of the model and therefore the
computational time necessary. We instead apply a procedure that attempts to select a
smaller number of generated routes that are not dominated by the others. Let �1 and
�2 be respectively the producers visited on two routes r1 and r2 obtained through TS,
and C1 and C2 their reduced costs. The selection procedure ignores r2 if the following
conditions hold:

(a) C1  C2,

(b) �1 ✓ �2.

This approach allows us to eliminate a large number of routes that may not improve
the solution. The remaining columns are then added to the RLMP.
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4.6.2 Exact dynamic programming

As mentioned in Section 4.4, an MPESPPRC is solved for each plant. We solve it
using a DP-based procedure, ng-route decremental state-space relaxation. In DP-based
approaches, new paths, encoded by labels, are systematically built from a source node
toward a sink node. To simultaneously construct the routes from all the depots toward
a given plant, we start the labeling at the plant. In other words, in our implementation,
the source node is a plant and a copy of the same plant plays the role of the sink node.
The route construction process begins with a label associated with a plant that is
then extended to the depots, to the producers, and back to the plant. The labels are
extended in feasible directions via extension functions. Define the di↵erent components
of a label � = (L,F,C, S,�) as:

L: vehicle load in the reference period,

F : vector of size |S| indicating periods in which a failure has occurred,

C: reduced cost of the partial path with respect to di↵erent periods,

Nb: number of unreachable nodes,

�: set containing the nodes j 2 N unreachable from the current label.

The real load of each period can be obtained from the product of its production
coe�cient and the load in the reference period. Therefore, one may track only the
collected load in the reference period. Suppose that Li, Fi, and Ci are the loads,
failures, and cost components of a label �i associated with producer i 2 N . Extending
this label along the arc (i, j) 2 A produces a new label �j associated with producer j,
with components Lj , Fj , and Cj . The extension functions ExtLij , ExtFij , and ExtCij are
given by

ExtLij : L+ qrefj

ExtFij :

8
<

:

Fjs = 1, if Fis = 0 and L.Ps > Q
s 2 S

Fjs = Fis, otherwise

ExtCij :

⇢
C + Cij � �j +

P
s2S Ws(Fjs � Fis)Cjp, if j 2 N

C + Cij + Lµj , if j 2 P.

To increase the e�ciency of the algorithm, we use a dominance subalgorithm to
disable paths that are not useful either for building a Pareto-optimal set of paths or
for being extended into Pareto-optimal paths. For a given set M ⇢ RR, an element
m 2 M is Pareto-optimal if x ⇥ m holds for all x 2 M, x 6= m. A disabled label is

78



neither extended nor compared with other new labels on the node. Dominance rules
identify the paths that are not useful for defining the set of Pareto-optimal solutions,
i.e., the paths that are not part of the Pareto-optimal set and whose extension can-
not lead to paths in the Pareto-optimal set. The structure of the dominance rules is
problem-dependent and is related to the path structural constraints. Many e�cient
dominance rules have been proposed by di↵erent researchers for elementary and not
necessarily elementary SPPRCs [see 86]. We will now describe a special phenomenon
that occurs when extending labels using the above extension functions in the case of
the MPESPPRC.

Nonmonotonic resource consumption

In almost all ESPPRC cases solved using the DP-based label-correcting procedure, the
resource consumption on the arcs can be shown to be monotonic. The monotonicity
property ensures that the resource consumption is identical along a given common
extension from two di↵erent labels on a given node. However, in the cost extension
function presented above, based on our recourse structure, the reduced cost of a label
depends on the positions where failures occur in each period. Therefore, the cost
resource consumption is not necessarily monotonic for the same extension from two
di↵erent labels on a given node. Thus, two labels with the possibility of future failure
in at least one of the periods cannot be compared using the dominance rules for the
classical ESPPRC [see 55]. To see this, consider the following example.

Example 1. Consider a graph with five producers, one depot (D), a plant (P ), and
a vehicle with capacity Q = 8, as depicted in Figure 4.2. For a given period, each
producer’s supply is given in parentheses. Two labels �1 and �2 representing the partial
paths (D, 1, 3) and (D, 1, 2, 3) are in the label list of node 3. According to the classical
dominance rules, �2 is dominated by �1. However, for the common extension (4, 5)
from node 3, �1 encounters a failure in node 5, while �2 encounters a failure in node
4. The failure cost from node 5 (a return trip to the plant) covers the cost di↵erence
between �2 and �1 plus the failure cost from node 4 associated with �2. This example
shows that the classical conditions do not take into account nonmonotonic consumption
of the cost resource.

Two labels can be compared using the classical dominance rules in the following
cases:

Case 1: L1 = L2;

Case 2: For all s 2 {s 2 S|Ps > 1}, Fs1 = Fs2 = 1.

Two labels satisfying Case 1 will always encounter simultaneous failures, while two
labels satisfying Case 2 will not face failure in the remainder of the label-extension
procedure. In all other situations, relying on the classical dominance rules may result
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Figure 4.2: Example 1

in the discarding of partial paths that seem more costly but will become beneficial later
when they encounter a less costly failure.

Note that the nonmonotonicity is directly related to the nature of the recourse. In
applications where the recourse cost is based on a fixed penalty that is independent of
the location where failure occurs, the resource consumption is monotonic.

Bounding the recourse cost

To deal with nonmonotonic resource consumption, we must consider a look-ahead con-
dition based on the labels’ potential failures. For a given label �1, let bS1 = {s 2 S|Ps >
1, Fs1 = 0} and bV1 = {i 2 V|i 62 �1}. The following extra condition is required to
prevent the incorrect dominance of �2 by �1:

C1 +
X

s2 bS1

Ws[max
E

(Cr)�min
E

(Cr)]� µp(L2 � L1)  C2 (8E ✓ bV2)

) C1 +
X

s2 bS2

Ws[max
bV2

(Cr)�min
bV2

(Cr)] +
X

s2 bS1\ bS2

Ws[max
bV2

(Cr)]� µp(L2 � L1)  C2

where Cr represents the recourse cost corresponding to a return trip to the plant.
Moreover, minbV2

(Cr) and maxbV2
(Cr) represent the minimum and maximum potential

recourse costs with respect to the set of nodes reachable by �2. It should be noted that
min(Cr) and max(Cr) are calculated only for bV2, since �1 ✓ �2 and therefore bV2 ✓ bV1.
In fact,

P
s2 bS2

Ws[maxbV2
(Cr) � minbV2

(Cr)] +
P

s2 bS1\ bS2
Ws[maxbV2

(Cr)] represents an

upper bound on the failure cost di↵erence that may occur for any common extension
from �1 and �2.

Therefore, for �1 = (L1, F1, C1, Nb1,�1) to dominate �2 = (L2, F2, C2, Nb2,�2), we
must have:
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(a) L1  L2;

(b) C1 � µp(L2 � L1)  C2;

(c) Nb1  Nb2;

(d) �1 ✓ �2;

(e) C1 +
P

s2 bS2
Ws[maxbV2

(Cr) � minbV2
(Cr)] +

P
s2 bS1\ bS2

Ws[maxbV2
(Cr)] � µp(L2 �

L1)  C2.

Taking into account the nonmonotonic cost resource consumption by including con-
dition (e) prevents any incorrect label discarding during the label-correcting procedure.
However, the bound maxbV2

(Cr)�minbV2
(Cr) could be so large that satisfying condition

(e) is almost impossible, and consequently little domination occurs. Based on our ex-
periments, the low rate of dominance and the costly verification of conditions (a)–(e),
depending on the structure of the graph, sometimes make it impossible to perform a
single labeling iteration in a reasonable time. This is directly related to the combi-
natorial nature of solving the MPESPPRC using the label-correcting procedure. We
now explain how to e�ciently manage the labels on the graph by potentially keeping
a larger number of labels on each node to significantly accelerate the verification of
dominance.

Matrix-based implementation

As mentioned in Section 4.6.2, on a given node of the graph, labels with equal loads
following a common path extension will always encounter simultaneous failures. Further
to this property, at each node of the graph, following Denardo and Fox [46], one may
create buckets that store labels with the same loads. We implement a matrix-based
data structure of size |N |⇥Q to store the labels on the graph. Each cell (i, q) of this
matrix contains a sorted list (w.r.t. the reduced cost) of all the labels arriving at node
i 2 N with collected quantity equal to q, for 0  q  Q. The advantage of this data
structure is that since each cell stores labels with the same load, the labels in a cell can
be compared using the classical dominance rules (see Case 1 of Section 4.6.2). More
precisely, when we compare two labels from the same cell, the verification of condition
(e) becomes unnecessary. The disadvantage of the data structure is the large number
of labels stored. On a given node i, certain labels in cell (i, q) could dominate labels
in the cells (i, q0) for q0 > q. We do not detect this because the domination verification
considers only the labels in the same cell.

With this approach, �2 in a given cell is dominated by �1 in the same cell if condi-
tions (b)–(d) hold. Moreover, condition (b) can be simplified to

(b) C1  C2.
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It is worth mentioning that all the labels on a plant node can be compared since
there will be no further failure. Therefore, applying the dominance conditions (a)–(d)
to labels on plant nodes allows us to identify a large number of dominated labels.

Maintaining elementarity in the label-correcting procedure

For a given label �, � ✓ N contains the nodes unreachable from the label, and Nb is
the number of these nodes. DSSR and the ng-route relaxation aim to keep this set as
small as possible without losing the elementarity of the routes.

Let Vr be the set of producers visited by the partial path r. Moreover, for each
customer i 2 N , let Ni ✓ N be the so-called original neighborhood of producer i; it is
a set of producers selected according to a neighborhood criterion for producer i. For
the label � associated with a given partial path r = (d, i1, . . . , in) we can define a set
⇧(r) ✓ Vr containing all the prohibited extensions from producer in. According to the
ng-route relaxation rules, the set ⇧(r) is defined as

⇧(r) = {ij 2 Vr|ij 2
n\

k=j+1

Nik , j = 1, . . . , n� 1} [ {in}. (4.21)

The ngR-DSSR procedure starts with applied neighborhood sets in which the mem-
bers of the original neighborhoods are present but initially deactivated. At the end
of each iteration, if the best route found does not contain any cycles, it is added to
the RLMP. If it contains at least one cycle that violates the ng-rules according to the
original neighborhoods, the applied neighborhoods of all the nodes in the cycle are
augmented by reactivating the resource corresponding to the node on which the cycle
occurred.

In our implementation, since the ng-rules do not guarantee the elementarity of the
routes, a new layer of the DSSR is added to the solution procedure. In this layer, if
a cycle on the best route found respects the ng-rules according to the original neigh-
borhoods, the node on which the cycle occurred is recognized as a critical node. A
new iteration of the labeling procedure begins by prohibiting cycles on critical nodes.
The recognition of a node as critical is equivalent to augmenting all the applied neigh-
borhoods of all the nodes by an active resource for the corresponding critical node.
This additional layer ensures the elementarity of all the columns, which provides a
better lower bound. In our implementation, each label contains the components L, F ,
and C as described earlier, while Nb and � are decomposed into the four following
components:

⇧: set of prohibited immediate extensions of the corresponding partial path;

Nbng: size of ⇧;

�: set of critical nodes unreachable from the current label;
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NbSSR: number of unreachable critical nodes.

Therefore, for the domination of �2 = (L2, F2, C2, Nbng2,⇧2, NbSSR2,�2) by �1 =
(L1, F1, C1, Nbng1,⇧1, NbSSR1,�1), we require

(a) L1  L2,

(b) C1 � µp(L2 � L1)  C2,

(c) Nbng1  Nbng2,

(d) ⇧1 ✓ ⇧2,

(e) NbSSR1  NbSSR2,

(f ) �1 ✓ �2.

In a matrix-based implementation, we may omit condition (a) and drop the second
term in the left-hand side of (b).

4.6.3 Heuristic dynamic programming

To speed up the generation of the negative reduced cost columns, we implement a
relaxed version of the labeling procedure described above. The relaxations are based
on weakening the dominance rules or ignoring or simplifying the assumptions or the
problem characteristics. They may allow us to discard more labels more rapidly and
therefore accelerate the column generation. Our HDP is based on the following relax-
ations:

1. Ignoring the nonmonotonic behavior of the cost resource consumption;

2. Dropping conditions (c)–(f).

Relaxation 1 allows us to simply consider the deterministic dominance conditions.
Therefore, the matrix-based label storing becomes unnecessary. Relaxation 2 makes
the dominance much easier. Note that the extension of labels throughout the graph
follows the same extension functions while the storage of the labels on each node and
the dominance conditions have been modified. This allows us to price out a significant
portion of the negative reduced cost columns. However, as a result of the two relaxations
we may miss some negative reduced cost columns.
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4.6.4 Skeleton of the multi-phase subproblem algorithm

Algorithm 2 describes the column generation procedure for each node of the search
tree up to the branching phase. Note that NBCOL is the number of newly generated
columns with negative reduced costs.

As shown in Algorithm 2, the TS-based column generator is called while it finds
negative reduced cost columns. We then call the HDP-based column generator. After
each HDP iteration, if any column is priced out, the algorithm returns to TS. When
both TS and HDP fail to add a new column, the EDP-based generator is called. The
main aim of this multi-phase procedure is to reduce the number of calls to EDP, which
is the bottleneck.

Algorithm 2 Solution of multi-phase subproblem

repeat
repeat
NBCOL = 0;
TABU SEARCH( );
Update NBCOL;
Update and Solve the RLMP;

until NBCOL == 0
HEURISTIC DYNAMIC PROGRAMMING( );
Update NBCOL;
Update and Solve the RLMP;

until NBCOL == 0
repeat
EXACT DYNAMIC PROGRAMMING( );
Update NBCOL;
Update and Solve the RLMP;

until NBCOL == 0

4.7 Strong branching

The column generation does not guarantee the integrality of the solution. Therefore, as
described in Section 4.3, we use a branching scheme to cut o↵ the fractional part of the
solution. It is crucial to reduce the number of search tree nodes to reduce the number of
calls to EDP. Therefore, we carefully choose the fractional variable to branch on. The
strong branching strategy applied in this paper is a multilevel branching scheme based
on the branching by plant assignment (BPA) proposed by Dayarian et al. [44] and the
well-known strategy based on flow variables. In the BPA, on one branch, a producer is
assigned to a specific plant, and on the other branch, that producer is removed from
the subproblem associated with the plant. Note that assigning producer i to plant p
means that all the routes visiting producer i must deliver to plant p. These decisions
are easily imposed in the subproblems, and the existing columns that do not respect

84



the branching decision are removed before we solve the new RLMP. When no branching
candidate is identified by the BPA, we branch on a flow variable.

The variable branched on often has a significant impact on performance, especially
in the lower levels of the search tree. At these levels, it is reasonable to use a more
sophisticated selection.

Strong branching may allow us to find better lower bounds faster. It uses a candidate
set of variables and determines which provides the best lower-bound progress before
actually branching. For each candidate, it solves the linear relaxations of the two child
nodes that would be created by the branch. If all the fractional variables are included
in the candidate set, the locally best branch candidate can be identified. However,
this approach may be computationally expensive. To accelerate the process, we may
evaluate only a subset of the fractional variables. We evaluate the candidates using the
following score function, based on the function proposed by Linderoth and Savelsbergh
[108]:

score = �max(�R,�L) + (1� �)min(�R,�L), (4.22)

where �R and �L respectively represent the increase in the objective function value
before column generation in the right and left children of the node, if this candidate is
branched on. The function can be calibrated using di↵erent values for the parameter
� 2 [0, 1]; in our experiments, � = 0.25 worked well. We select the three best candidates
with respect to this score function. We then choose among these candidates using a
procedure that depends on the depth of the node in the tree. If the node’s depth is less
than a prespecified parameter dep⇤, we call TS and HDP to generate as many columns
as possible for each candidate, and we select the best candidate according to the score
function. If the node’s depth is greater than dep⇤, we call only the TS column generator
and otherwise proceed as above. Our experiments indicate that the best results are
obtained when dep⇤ = 10. The selected branching variable j satisfies

j = argmax{�max(�R,�L) + (1� �)min(�R,�L)}. (4.23)

4.8 Computational results

To assess the performance of our algorithm, we carried out a computational study of
test problems with di↵erent characteristics. Section 4.8.1 explains the characteristics
of these problems, and Section 4.8.2 discusses the contribution of the di↵erent column
generators. The results from the branch-and-price procedure are discussed in Section
4.8.3. In Section 4.8.4, we study the value of the multi-period approach.

The tests were run on computers with a 2.67GHz processor and 24GB of RAM.
The linear programs were solved using Cplex 12.2 and the time limit was set to 18000 s.
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4.8.1 Test problems

We generated the instances using the generator of Dayarian et al. [44] with some mod-
ifications to adapt it to the structure of our problem. As shown in Table 4.1, Dayarian
et al. [44] generated four groups of instances with di↵erent plant positions (inside or
outside) and time windows (narrow or wide). The inside plants are placed in the central
region of the graph, and the outside plants are placed in the outlying region.

Table 4.1: Four problem classes generated by Dayarian et al. [44]

Class Number Plant Location Time Windows

pr01 inside narrow
pr02 inside wide
pr03 outside narrow
pr04 outside wide

For the tests in this paper, we generate instances based on pr03, ignoring the time
windows. We add parameters defining the characteristics of the periods to each in-
stance. We assume that the data for each instance represent the production levels in
the reference period (Ps = 1). We then consider a set of period distributions with the
SRT ranging from 20% to 60%. We recall that the SRT indicates the percentage of
days without a failure. The Ws and Ps values of these di↵erent distributions are shown
in Table 4.2. We generate five versions of each size combination (number of depots,
number of plants, number of producers). We consider all the period distributions for
every instance.

Table 4.2: Probability and production-level distribution of the periods

# periods Type 1 Type 2 Type 3 Type 4 Type 5

4

Ps Ws% Ps Ws% Ps Ws% Ps Ws% Ps Ws%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 20 1.30 25 1.20 35 1.10 30 1.10 40
1.50 10 1.50 15 1.35 20 1.20 25 1.30 30
1.70 10 1.70 10 1.50 15 1.40 15 1.70 10

5

Ps Ws% Ps Ws% Ps Ws% Ps Ws% Ps Ws%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 15 1.30 20 1.20 25 1.10 25 1.10 35
1.50 15 1.50 15 1.35 20 1.20 20 1.20 25
1.70 5 1.70 10 1.50 10 1.40 15 1.40 15
1.90 5 1.90 5 1.65 5 1.70 10 1.70 5

4.8.2 Linear relaxation

To evaluate the TS column generator, we ran a sample of the instances with and without
it. Table 4.3 gives the value of the di↵erent parameters used; these values were obtained
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through a series of trial-and-error tests.

Table 4.3: Parameter values used in tabu search

Parameter Tuned value

[minTabu,maxTabu] [3, 8]
Imax 25
Istop 5

nbSucc 0.5 |N |

Table 4.4 reports the results for the linear relaxation: the computational time (in
seconds) and the number of iterations of HDP and EDP. In 34 of the 40 instances, TS
has improved the computational e�ciency. This is often accompanied by a decrease in
the overall number of HDP and EDP iterations. It is interesting to compare this with
the behavior of the single-period variant of the problem [see 44], where the HDP and
EDP were more e�cient in the absence of TS. This indicates the extra complexity of
the multi-period approach.

4.8.3 Integer solution

For each group of five instances of the same size, Tables 3.3 and 4.8 give:

# producers: number of producers in each group.

# size comb.: number of depots (D) and plants (P ), e.g., “2D3P” indicates two
depots and three plants.

# periods: number of periods (four or five) in each instance.

period type: type of period distribution (see Table 4.2).

# opt. sol.: number of optimal solutions found in each group.

# int. sol.: number of integer solutions found without achieving optimality.

CPU1: average computational time for every group with a given distribution, whether
or not the optimal solution is found. The computational time for unsolved in-
stances is set to the time limit.

CPU2: average computational time for solved instances.

opt. gap: The optimality gap is zero for a solved instance, infinity for an instance
with no integer solution, and otherwise calculated via

optimality gap =
(best upper bound - best lower bound)

best lower bound
. (4.24)
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Table 3.3 gives the results for the instances with fifteen producers, and Table 4.8
gives the results for twenty producers.

The results indicate that the algorithm is sensitive to an increase in the number
of producers. For fifteen producers, the variations in terms of the number of solved
instances are not significant because optimality was usually reached. However, the
algorithm found the optimal solution for all instances with three plants, while for the
instances with two plants, there is always one for which the algorithm could not close
the gap within the time limit.

This variation is more noticeable for the instances with twenty producers. The
results also show that the structural configuration is generally more important than
the number and distribution of the periods. This can be seen in Table 4.8: changing
the number of periods or their distributions in the instances with 2D3P or 3D3P has a
minor impact on performance (number of optimal solutions in cases with 4 or 5 periods
for 2D3P: 21 vs. 20 and for 3D3P: 18 vs. 18). These results also show that the lower
the weight of the reference period (e.g., T5), the easier the problem. Moreover, for
instances with twenty producers, the algorithm performed better when the numbers
of plants and depots were larger. An increase in the number of plants is equivalent
to an increase in the number of subproblems and branching candidates. However, in
instances with more plants, the average cost of failure is lower, and thus the impact
of the recourse component of the route cost is lower. Another explanation is based
on the branching strategy. In the first layers of the search tree, we attempt to assign
the producers to plants. An increase in the number of plants reduces the number
of producers per plant, leading to smaller subproblems per plant. This explains the
higher number of successes for instances with three plants compared to instances with
the same number of producers but two plants.

4.8.4 Value of the multi-period solution

To evaluate the multi-period approach, we compare the multi-period solutions (MPS)
to the solutions of

1. Worst case scenario (WCS): WCS represents the most conservative strategy. A
deterministic VRP is solved by considering the highest production level. The
routing cost is higher and there is no recourse cost.

2. Reference Period (RP): RP considers only the reference period. This is similar
to solving a chance-constrained program when the service quality is fixed to the
weight of the reference period.

As mentioned in Section 4.3, we calculate the route cost based on 1) the fixed vehicle
costs, 2) the routing costs, and 3) the recourse costs. Let these elements be cf (x), c(x),
and F(x), respectively, and let the optimal solution for the multi-period formulation
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be xMPS . For any feasible solution x, we have

cf (xMPS) + c(xMPS) + F(xMPS)  cf (x) + c(x) + F(x). (4.25)

Since the fixed cost of the vehicles is high compared to the routing cost, RP and
MPS use the same (minimum) number of vehicles. However, the routing cost in the
RP case provides a lower bound on the routing cost of the MPS:

c(xRP )  c(xMPS). (4.26)

The multi-period formulation finds a solution xMPS that minimizes the correspond-
ing costs in the first and second stages, with respect to the di↵erent production levels
(inequality (4.25)). We also have

c(xRP )  c(xMPS)  c(xWCS), (4.27)

F(xWCS)  F(xMPS)  F(xRP ). (4.28)

Therefore, solving MPS rather than RP also leads to a lower recourse, i.e., smaller
modifications to the a priori plan.

We ran the problems of Section 4.8.2 using WCS and RP. The routes obtained were
then costed assuming di↵erent periods with di↵erent production levels and weights.
Table 4.9 shows the results for MPS, WCS, and RP. Column ST gives the solution
status for each of the procedures, where Tmax = 18000 s and “X” indicates an optimal
solution, “•” indicates a solution that is not necessarily optimal, and “–” indicates no
integer solution. The comparison is based on computational time and solution quality
in terms of 1) the total solution cost (cf (x) + c(x) + F(x)) and 2) the recourse cost
part (F(x)). The cost gaps for WCS and RP are calculated via the following formulas
and are reported in Column “gap%” of Table 4.9:

gap(WCS) =
[cf (xWCS) + c(xWCS) + F(xWCS)]� [cf (xMPS) + c(xMPS) + F(xMPS)]

cf (xMPS) + c(xMPS) + F(xMPS)
,

(4.29)

gap(RP ) =
[cf (xRP ) + c(xRP ) + F(xRP )]� [cf (xMPS) + c(xMPS) + F(xMPS)]

cf (xMPS) + c(xMPS) + F(xMPS)
.

(4.30)

The gaps based on the recourse cost are computed only for RS. They are reported
in Column “recourse gap%” and obtained via the following formula:

Recourse gap (RP) =
F(xRP )� F(xMPS)

F(xMPS)
. (4.31)

WCS is robust to potential variations in the production levels, but it is significantly
more expensive than MPS. In WCS, no failure occurs (F(xWCS) = 0), but more vehicles
are required. For RP, the total cost gaps are not large, but the large recourse gaps and
the comparable computational times indicate that it is preferable to solve MPS.
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4.9 Conclusions

We have explored a vehicle routing problem in which producers’ supplies vary on a
seasonal basis. Moreover, the variations between producers are strongly correlated.
We have proposed a multi-period model based on a set partitioning formulation. Our
solution method is based on a branch-and-price algorithm; new columns are generated
through a hybrid multi-phase column generation process. We have also introduced the
issue of nonmonotonic resource consumption in the DP-based subproblem algorithm.
We use a strong branching rule to find integer solutions.

Our solution method was able to solve problems with up to twenty producers and
five periods. Real-life applications, such as the DTPQ, involve hundreds of producers.
However, smaller problems with small districts may be solved by our algorithm. For
larger problems, we plan to develop metaheuristic-based approaches to obtain good
solutions in a reasonable computational time. The results obtained in this paper will
help to evaluate future approaches.

We also plan to develop a stochastic formulation that considers the intra-period
variation. This will increase the applicability of our formulation, since uncertainties
exist in many real-life planning applications.
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Table 4.4: Comparing results of linear relaxation with and without TS

With TS Without TS
# producers size comb. # periods period type CPU # TS # HDP # EDP CPU # HDP # EDP

15

2D2P

4

T1 2.72 18 13 12 1.55 27 6
T2 11.22 37 21 12 21.02 27 16
T3 2.19 34 20 8 7.05 23 14
T4 5.65 38 25 10 8.96 23 15
T5 5.77 46 22 11 19.65 33 13

5

T1 4.57 29 21 9 10.45 31 11
T2 5.05 37 27 8 6.46 29 11
T3 2.12 35 21 6 6.9 24 13
T4 17.19 32 19 20 20.09 26 18
T5 5.91 26 17 12 4.77 20 13

2D3P

4

T1 2.57 20 12 6 6.09 17 9
T2 1.23 27 18 3 4.29 19 10
T3 6.89 28 19 8 5.87 23 6
T4 18.39 33 17 10 121.3 15 13
T5 47.17 30 18 14 43.58 17 15

5

T1 36.38 31 18 12 44.47 19 15
T2 37.16 25 17 12 121.32 20 18
T3 4.35 33 19 3 6.56 22 7
T4 1.99 25 16 5 3.32 23 7
T5 6.57 34 16 9 5.38 19 7

3D2P

4

T1 3.34 28 20 9 7.33 22 13
T2 16.67 32 18 14 23.45 23 16
T3 2.71 37 24 6 12.02 27 15
T4 4.66 38 18 5 5.09 26 7
T5 17.52 37 16 14 20.82 30 14

5

T1 11.22 33 22 10 29.08 29 14
T2 4.76 30 21 6 5.42 26 8
T3 3.43 40 22 10 4.17 28 11
T4 8.99 34 21 10 27.1 26 16
T5 5.69 38 26 9 7.03 30 14

3D3P

4

T1 20.37 36 21 11 36.81 21 17
T2 22.5 47 25 9 97.66 21 15
T3 7.12 27 13 12 5.41 19 12
T4 6.57 29 17 8 8.69 20 12
T5 28.19 39 17 9 47.76 17 13

5

T1 65.41 44 21 8 154.69 17 14
T2 12.92 25 18 10 23.76 19 12
T3 4.87 33 17 8 8.03 19 13
T4 21.1 39 14 10 55.14 23 17
T5 18.97 33 20 11 25.47 18 17

Avg. 12.80 33 19 9 26.85 23 13
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Table 4.5: Computational results for instances with 15 producers

# producers size comb. # scen. scen. type # opt. sol. # int. sol. CPU1 CPU2 opt. gap %

15

2D2P

4

T1 4 1 3642.2 52.8 19.1
T2 4 1 3648 60.1 18.0
T3 4 1 3659.5 74.4 15.3
T4 4 1 3671.2 89 17.2
T5 4 1 3703.8 129.8 15.1

5

T1 4 1 3654.3 67.9 19.5
T2 4 1 3646.9 58.7 17.2
T3 4 1 3660.1 75.1 15.8
T4 4 1 3671.1 88.9 15.8
T5 4 1 3696.7 120.9 16.0

2D3P

4

T1 5 0 988.5 988.5 0.0
T2 5 0 947.3 947.3 0.0
T3 5 0 816.6 816.6 0.0
T4 5 0 765.2 765.2 0.0
T5 5 0 838.3 838.3 0.0

5

T1 5 0 1032.6 1032.6 0.0
T2 5 0 1063.4 1063.4 0.0
T3 5 0 882.4 882.4 0.0
T4 5 0 860.5 860.5 0.0
T5 5 0 790 790 0.0

3D2P

4

T1 3 2 7273.8 123.1 25.5
T2 3 2 7294.3 157.2 24.0
T3 3 2 7323 205 22.3
T4 3 2 7354.5 257.5 23.8
T5 3 2 7296.1 160.2 23.6

5

T1 3 2 7371 285.1 25.1
T2 3 2 7295.4 159 24.1
T3 3 2 7313.8 189.7 23.2
T4 3 2 7263.3 105.5 22.6
T5 3 2 7266.7 111.2 22.3

3D3P

4

T1 5 0 1457.9 1457.9 0.0
T2 5 0 1383.1 1383.1 0.0
T3 5 0 1180.4 1180.4 0.0
T4 5 0 1189.3 1189.3 0.0
T5 5 0 1076 1076 0.0

5

T1 5 0 1325.1 1325.1 0.0
T2 5 0 1377.2 1377.2 0.0
T3 5 0 1296.4 1296.4 0.0
T4 5 0 1247.9 1247.9 0.0
T5 5 0 1280.7 1280.7 0.0
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Table 4.6: Computational results for instances with 20 producers

# producers size comb. # scen. scen. type # opt. sol. # int. sol. CPU1 CPU2 opt. gap %

20

2D2P

4

T1 0 0 Tmax Tmax 1
T2 0 0 Tmax Tmax 1
T3 0 0 Tmax Tmax 1
T4 0 0 Tmax Tmax 1
T5 0 0 Tmax Tmax 1

5

T1 0 0 Tmax Tmax 1
T2 0 0 Tmax Tmax 1
T3 0 0 Tmax Tmax 1
T4 0 0 Tmax Tmax 1
T5 0 0 Tmax Tmax 1

2D3P

4

T1 3 2 11877.8 7796.3 4.4
T2 3 2 11759.5 7599.1 3.1
T3 4 1 8747.8 6434.8 4.8
T4 5 0 7688.8 7688.8 0.0
T5 5 0 9052.4 9052.4 0.0

5

T1 2 2 8461.4 3153.5 4.1
T2 3 1 11368.4 6947.4 2.2
T3 4 0 11302.1 9627.6 1
T4 5 0 7015.4 7015.4 0.0
T5 5 0 7664.6 7664.6 0.0

3D2P

4

T1 0 0 Tmax Tmax 1
T2 0 0 14400 Tmax 1
T3 0 0 14400 Tmax 1
T4 0 0 14400 Tmax 1
T5 0 0 18000 Tmax 1

5

T1 0 0 14400 Tmax 1
T2 0 0 14400 Tmax 1
T3 0 0 14400 Tmax 1
T4 0 0 14400 Tmax 1
T5 0 0 18000 Tmax 1

3D3P

4

T1 3 0 11807.9 7679.8 1
T2 3 0 11681.7 7469.6 1
T3 4 0 6437.9 8047.4 1
T4 4 0 9602.3 7502.8 1
T5 4 0 8254.2 5817.8 1

5

T1 3 0 8117 7528.3 1
T2 3 0 11822.6 7704.3 1
T3 4 0 6038.6 7548.3 1
T4 4 0 10672 8840 1
T5 4 0 8874.7 6593.4 1
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Table 4.7: Computational results for instances with 20 producers

# producers size comb. # scen. scen. type # opt. sol. # int. sol. CPU1 CPU2 opt. gap %

20

2D2P

4

T1 0 0 Tmax Tmax 1
T2 0 0 Tmax Tmax 1
T3 0 0 Tmax Tmax 1
T4 0 0 Tmax Tmax 1
T5 0 0 Tmax Tmax 1

5

T1 0 0 Tmax Tmax 1
T2 0 0 Tmax Tmax 1
T3 0 0 Tmax Tmax 1
T4 0 0 Tmax Tmax 1
T5 0 0 Tmax Tmax 1

2D3P

4

T1 3 2 11877.8 7796.3 4.4
T2 3 2 11759.5 7599.1 3.1
T3 4 1 8747.8 6434.8 4.8
T4 5 0 7688.8 7688.8 0.0
T5 5 0 9052.4 9052.4 0.0

5

T1 2 2 8461.4 3153.5 4.1
T2 3 1 11368.4 6947.4 2.2
T3 4 0 11302.1 9627.6 1
T4 5 0 7015.4 7015.4 0.0
T5 5 0 7664.6 7664.6 0.0

3D2P

4

T1 0 0 Tmax Tmax 1
T2 0 0 14400 Tmax 1
T3 0 0 14400 Tmax 1
T4 0 0 14400 Tmax 1
T5 0 0 18000 Tmax 1

5

T1 0 0 14400 Tmax 1
T2 0 0 14400 Tmax 1
T3 0 0 14400 Tmax 1
T4 0 0 14400 Tmax 1
T5 0 0 18000 Tmax 1

3D3P

4

T1 3 0 11807.9 7679.8 1
T2 3 0 11681.7 7469.6 1
T3 4 0 6437.9 8047.4 1
T4 4 0 9602.3 7502.8 1
T5 4 0 8254.2 5817.8 1

5

T1 3 0 8117 7528.3 1
T2 3 0 11822.6 7704.3 1
T3 4 0 6038.6 7548.3 1
T4 4 0 10672 8840 1
T5 4 0 8874.7 6593.4 1
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Table 4.8: Evaluating the impact of considering the nonmonotonic resource consump-
tion

# producers size comb. # periods period type LB 1 LB 2 st.

15

2D2P

4

T1 4952.43 4952.31 ⇥
T2 4055.46 4055.46
T3 4457.55 4457.55
T4 4006.2 4006.2
T5 4058.9 4054.38 ⇥

5

T1 3958.3 3958.3
T2 3957.57 3957.57
T3 4420.36 4417.62 ⇥
T4 4100.53 4100.19 ⇥
T5 5061.29 5061.29

2D3P

4

T1 4326.77 4326.77
T2 4619.79 4619.58 ⇥
T3 4126.15 4126.15
T4 4625.38 4625.26 ⇥
T5 3978.01 3972.43 ⇥

5

T1 3832.21 3832.21
T2 4566.53 4566.53
T3 4095.59 4095.59
T4 4688.17 4688.17
T5 4448.74 4440.62 ⇥

3D2P

4

T1 4403.94 4403.94
T2 3944.89 3944.89
T3 4106.95 4106.95
T4 4599.3 4599.3
T5 4113.8 4113.73 ⇥

5

T1 4014.23 4014.23
T2 4540.44 4540.31 ⇥
T3 4078.01 4078.01
T4 4024.66 4024.57 ⇥
T5 4573.2 4568.03 ⇥

3D3P

4

T1 4558.04 4558.04
T2 3803.59 3803.59
T3 4751.48 4751.38 ⇥
T4 4407.22 4402.88 ⇥
T5 3835.37 3835.17 ⇥

5

T1 3745.21 3744.48 ⇥
T2 4345 4345
T3 4716.23 4716.23
T4 3843.6 3843.6
T5 4647.65 4647.49 ⇥

95



Table 4.9: Comparing MPS, RP, and WCS

Multi-period Reference period Worst Case
# producers size comb. # periods period type ST CPU ST gap % recourse gap % CPU ST gap % CPU

15

2D2P

4

T1 • Tmax • 0.8 55.8 Tmax X 27.8 11
T2 X 40 X 0 0.0 43 • 81.7 Tmax

T3 X 24 X 0.1 9.9 15 • 125.1 Tmax

T4 X 97 X 0 0.0 35 – 22.6 Tmax

T5 X 213 X 0.8 17.2 193 • 81.8 Tmax

5

T1 X 164 X 0.1 2.6 157 • 82.5 Tmax

T2 X 56 X 0 0.0 55 • 81.8 Tmax

T3 X 16 X 0 2.0 17 • 74 Tmax

T4 X 73 X 0.6 13.8 47 • 79.3 Tmax

T5 • Tmax • 1.2 147.1 Tmax X 27.3 12

2D3P

4

T1 X 1175 X 0.2 134.6 923 • 64.8 Tmax

T2 X 534 X 0 0.0 541 – – Tmax

T3 X 988 X 0.5 508.7 1018 X 0.1 92
T4 X 541 X 0 4.0 787 X 2.5 6
T5 X 1125 X 1.2 706.6 1217 • 32.2 Tmax

5

T1 X 1368 X 0 52.2 1300 • 71 Tmax

T2 X 783 X 0 0.0 779 – – Tmax

T3 X 975 X 0.3 166.3 1217 • 31 Tmax

T4 X 499 X 0.7 65.5 531 • 38.1 Tmax

T5 X 741 X 0 0.0 934 • 70.7 Tmax

3D2P

4

T1 • Tmax • 0.1 24.3 Tmax • 29 Tmax

T2 X 1182 X 0.2 7.1 999 – 33.6 Tmax

T3 X 35 X 0 0.0 21 – 36.3 Tmax

T4 • Tmax • -0.1 85.3 Tmax • 32.1 Tmax

T5 X 191 X 0.1 2.3 93 • 75.6 Tmax

5

T1 X 68 X 0 0.0 64 • 81.1 Tmax

T2 • Tmax • -0.2 6.8 Tmax X 28 1
T3 X 28 X 0 0.0 15 • 84.9 Tmax

T4 X 229 X 1.5 42.3 1348 – 34.4 Tmax

T5 • Tmax • -0.3 57.4 Tmax • 26.2 Tmax

3D3P

4

T1 X 469 • 0 2.3 442 – – Tmax

T2 X 1975 X 0.7 383.3 2144 X 2.7 7
T3 X 599 X 0 0.0 944 – – Tmax

T4 X 897 X 0.1 246.7 767 X 0.6 25
T5 X 2261 X 0 0.0 2179 X 0.6 48

5

T1 X 3029 X 0 0.0 2780 • 32 Tmax

T2 X 1002 X 1.7 105.6 736 – – Tmax

T3 X 615 X 0 0.0 918 • 69.9 Tmax

T4 X 1685 X 0 102.4 2163 X 2.7 8
T5 X 353 X 0.4 131.6 463 – – Tmax

Average 40/40 3301.2 40/40 1.3 77.1 3347.5 30/40 46.6 12008
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for a Multi-Period Vehicle
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Abstract

We consider tactical planning for a particular class of multi-period vehicle routing
problems (MPVRP). This problem involves optimizing product collection and redistri-
bution from several production locations to a set of processing plants over a planning
horizon. Each horizon consists of several days, and the collection-redistribution are
performed on a repeating daily basis. In this context, a single routing plan must be
prepared for the whole horizon, taking into account the seasonal variations in the sup-
ply. We model the problem using a sequence of periods, each corresponding to a season,
and intra-season variations are neglected. We propose an adaptive large neighborhood
search with several special operators and features. To evaluate the performance of the
algorithm we performed an extensive series of numerical tests. The results show the
excellent performance of the algorithm in terms of solution quality and computational
e�ciency.

Keywords: Multi-period vehicle routing problem, Tactical planning, Seasonal
variation, Adaptive large neighborhood search.
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5.1 Introduction

The vehicle routing problem (VRP) is a di�cult combinatorial optimization problem
that is used in many practical applications relating to the design and management of
distribution systems. Studies of the classical VRP and its many variants and extensions,
starting with the seminal work of Dantzig and Ramser [42], represent a significant
portion of the operations research literature [151]. The classical VRP, referred to as
the capacitated vehicle routing problem (CVRP), concerns the determination of routes
for a fleet of homogeneous vehicles, stationed at a central depot, that must serve a
set of customers with known demands (supplies). The goal is to design a collection of
least-cost routes such that: 1) each route, performed by a single vehicle, begins at a
depot, 2) each customer is visited once by exactly one vehicle, and 3) the quantity of
goods delivered (collected) on each route does not exceed the vehicle capacity [74].

In the classical VRP, the routing plan is executed repeatedly over the planning hori-
zon. The parameters of the problem, such as the quantities to be delivered (collected)
at each customer location, are assumed fixed over the horizon and known a priori.
However, in many real-life applications, this assumption may result in poor-quality
routing plans. Our problem setting requires routing over relatively long horizons, in
environments with significant seasonal fluctuations. This setting, milk collection and
redistribution in the dairy industry of Quebec, initially introduced by Dayarian et al.
[45], has several problem-specific attributes and characteristics. The routing corre-
sponds to the collection of milk from producers’ farms followed by the distribution of
the product to a set of processing plants. The routes must be designed in such a way
that the plant demands are completely satisfied, while every producer is visited by
exactly one vehicle and each vehicle delivers to just one plant per day. We assume that
the daily quantity of milk produced satisfies the total plant demand.

The first studies of this problem were performed by Lahrichi et al. [101] and Da-
yarian et al. [44]; both studies assumed that the annual production is fixed. Dayarian
et al. [45] addressed a variant of the problem that accounted for seasonal variations
in the supply. Because of contractual and service-consistency requirements, a single
routing plan must be prepared for a given horizon. The contractual negotiations be-
tween the di↵erent stakeholders (producers, carriers, and plants) are based on a single
routing plan. For service consistency, each producer should always be included in the
same route and served by the same vehicle. The drivers to plan their daily operations
also use this routing plan.

Dayarian et al. [45] proposed an exact methodology based on a branch-and-price
approach and a multi-period model. They divided the horizon into a series of periods,
each a cluster of days with similar seasonal characteristics. The horizon can then be
represented as a sequence of periods. The need to design a single plan for changing con-
texts recalls the a priori optimization framework for stochastic optimization problems.
In stochastic programming, a two-stage model is often considered. The solution from
the first stage is updated at the second stage as the values of the stochastic parameters
are revealed.
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The solution approach proposed by Dayarian et al. [45] provides optimal solutions
for instances with up to twenty producers. However, real-life problems may have several
hundred producers. Therefore, we need solution approaches that can find good but not
necessarily optimal solutions to larger problems. The main goal of this paper is to find
such solutions using an e↵ective adaptive large neighborhood search (ALNS) framework
[121, 134]. Our main contributions are as follows:

• We design a new metaheuristic based on the ALNS for our problem setting, which
is described in more detail in Section 5.2.

• We design several new operators based on the special structure of the problem.
We also adapt some existing operators in the literature.

• We propose a new adaptive layer for the ALNS in which destruction and con-
struction heuristics are coupled to form the operators, rather than being treated
independently.

• We propose a new diversity management system for the ALNS, which is based on
extracting information from a list of diverse solutions and restarting the search
from a diverse solution when it seems to be trapped in a local optimum.

• To evaluate the quality of the solution, we compute a series of lower and upper
bounds on the value of the multi-period solution. We compare the solutions
obtained through the ALNS with these bounds.

• We perform a series of extensive numerical tests for a large set of randomly
generated instances, to illustrate the performance of the algorithm in terms of
computational time and solution quality.

The remainder of this paper is organized as follows. In Section 5.2, we describe the
problem and the notation that we will use. Section 5.3 discusses the state-of-the-art
of work in this field. In Section 5.4, we present the classical ALNS for the VRP, and
in Section 5.5 we present our approach to the problem. In Section 5.6, we propose
a series of bounds that allow us to evaluate the performance of the algorithm. The
experimental results are reported in Section 5.7, and Section 5.8 provides concluding
remarks.

5.2 Problem statement and notation

In this section, we introduce the problem; it is inspired by a dairy problem in Quebec.
For a detailed description of the dairy transportation problem in Quebec (DTPQ), the
reader is referred to Lahrichi et al. [101] and Dayarian et al. [45, 44].

The problem can be formally described as follows: We wish to design a single tactical
routing plan for a given horizon T . A plan consists of a set of routes, each performed
by a single vehicle on every collection day of T . An unlimited fleet of identical vehicles
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is assumed to be available in multiple depots. On every collection day, each vehicle
departs from a depot, collects a single product type from a subset of producers, delivers
the collected product to a single plant, and then returns to its depot. This can be seen
as an extension of the VRP with additional deliveries to multiple plants, and it is
therefore NP-hard [107].

The producers’ supply over the horizon may vary seasonally. The seasonal variations
are often significant and may have a major impact on the routing. We assume that a
year can be divided into several periods, each representing a seasonal production level.
We take inter-period production variations into account; the potential intra-period
fluctuations are neglected. Intra-period fluctuations can often be handled by leaving a
spare capacity of 5%–10% on each vehicle when designing the routes. The producers’
seasonal fluctuations are assumed to be perfectly positively correlated. This correlation
arises because almost all the producers in a given geographical region are exposed to
similar seasonal cycles. The plants must adjust their seasonal demands according to
the supply so that the total supply always meets the total demand.

The proposed multi-period model has some similarities to an a priori optimiza-
tion framework in the context of the vehicle routing problem with stochastic demand
(VRPSD). In a two-stage formulation of a stochastic problem, the solution from the
first stage is updated at the second stage as the exact values of the stochastic param-
eters are revealed. We seek a solution that minimizes the total expected cost of the
original plan and the potential adjustments in the second stage. Similarly to algorithms
for the VRPSD, in the context of our multi-period problem at the first stage we design
a single plan for the planning horizon, taking into account possible supply changes
between periods. At the second stage, the plan is adjusted based on the specificities
of each period. In seasons with higher supply levels, at a given producer location a
vehicle may have insu�cient residual capacity to collect the supply. We refer to this as
a failure. Following a failure, the vehicle usually travels to a plant to empty its tank
and then proceeds to visit the remaining producers of the planned route. We refer to
this extra travel as a recourse action.

Under our recourse policy, the vehicle always visits the producers in the order of
the planned route; when a failure occurs, it travels to its assigned plant. Consequently,
the total distance traveled corresponds to the fixed length of the planned route plus
the length of the return trip to the plant.

The goal is to design a single least-cost collection-delivery plan for a given horizon,
providing a certain level of service consistency and service quality, and taking into
account the existence of several periods. We define a feasible plan to be one that is
executable over the horizon with at most one failure per operation per route.

A single plan is necessary because 1) the contractual arrangements with the carriers
require a single plan that can be used for cost estimation for the whole horizon; and 2)
there is a consistent driver-producer relationship when the producer is always served
via the same route operated by the same vehicle. The second point leads to a familiar
environment for the producer and the driver and avoids potential incompatibilities
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between the vehicles and the producer’s facilities.

We control the desired service quality over a given horizon by setting a service
reliability threshold (SRT), indicating the minimum percentage of days over the horizon
T that the planned routes should be executable with no failures. The magnitude of
the SRT has a major impact on the design of the plan. Clearly, if SRT = 100%, no
failure occurs in any period of the horizon. However, this strategy is not cost-e�cient,
because it often requires many vehicles.

Let ⌅ be the set of all periods in a given horizon T . We associate with each period
⇠ 2 ⌅ a weight W⇠, representing the share of period ⇠ in horizon T . It is calculated by
dividing the length of period ⇠ by the length of horizon T . We also associate with each
period ⇠ a production coe�cient, P⇠, which is defined to be the ratio of the production
level in period ⇠ to a chosen reference production level Pref . The choice of the reference
production level is discussed in detail in Dayarian et al. [45].

The model is defined on a directed graph G = (V,A), where V and A are the
node and arc sets, respectively. The node set contains the depots, producers, and
plants; V = D [ N [ P . The arc set A ⇢ V ⇥ V defines feasible movements between
di↵erent locations in V. For each pair of locations ni, nj 2 V, ni 6= nj , there exists
an arc (i, j) 2 A. Each arc (i, j) 2 A has an associated nonnegative travel cost that
is proportional to the length of the arc distij . An unlimited fleet of vehicles K, with
identical capacity Q, is available at each depot. However, employing vehicle k 2 K
incurs a fixed cost of ck.

In each period, each producer nj 2 N produces a limited product quantity on a
daily basis. The supply levels in period ⇠ 2 ⌅ are given by a vector in which the jth
parameter, denoted o⇠j , is the supply (o↵er) of producer j. Moreover, the supply of each

producer nj in the reference period is given by orefj . Therefore, the supply of producer
nj in period ⇠ is

o⇠j = P⇠.o
ref
j (j 2 N , ⇠ 2 ⌅), (5.1)

where P⇠ represents the production in period ⇠. Each plant p 2 P receives, on a daily

basis, the collected product. The demand of each plant p in period ⇠ is given by D⇠
p.

The routes are designed to have no failures in the reference periods and at most one
failure in the other periods. In other words, for each route r, the following inequalities
hold:

X

j2r
o⇠j  2Q, s 2 S (5.2)

and X

j2r
orefj  Q. (5.3)

The cost of the solution has three components: 1) the fixed vehicle costs; 2) the first-
stage routing costs, which are the costs of the planned routes; and 3) the second-stage
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routing costs, which are the expected recourse costs in di↵erent periods of the horizon.

5.3 Literature review

In this section, we review metaheuristic methods for VRPs with a similar structure to
our problem.

Our problem setting has some special features:

1. The need to satisfy the plant demands; our problem can be seen as a many-to-one
pickup and delivery problem (PDP).

2. The need to account for the production variations, while planning over a horizon.

Lahrichi et al. [101], investigating the same dairy application, considered a variant
of the VRP with features similar to those of our problem. They used a generalized
version of unified tabu search [35]. They simultaneously considered the plant deliveries,
di↵erent vehicle capacities, di↵erent numbers of vehicles at each depot, and multiple
depots and periods. Dayarian et al. [44] proposed a branch-and-price algorithm for a
variant of the DTPQ in which a time window is associated with each producer, and
the production levels over the horizon are assumed to be fixed.

The VRP that is the most similar to our problem is the multi-period or periodic MD-
VRP. In most studies of the multi-period vehicle routing problem (MPVRP), customers
request a service that could be done over a multi-period horizon [see 153, 4, 158, 5].
The classical MPVRP is closely related to the periodic vehicle routing problem (PVRP)
in which the customers specify a service frequency and allowable combinations of visit
days. A complete survey of the PVRP and its extensions can be found in Francis et al.
[59]. The best-known algorithms for the PVRP are those of Cordeau et al. [34], Hem-
melmayr et al. [80], Vidal et al. [155], and Rahimi-Vahed et al. [126]. In our problem, all
the producers need to be served every period on a daily basis. Moreover, the definition
of the periods is based on the seasonal variations.

A single plan for a horizon of several periods has been investigated in the context of
telecommunication network design [98, 67]. However, apart from the work of Dayarian
et al. [45], we are not aware of any previous study of the VRP with the multi-period
configuration considered in this paper. Dayarian et al. [45] used a branch-and-price
approach to solve the problem that we investigate. However, their algorithm is able to
solve instances with only up to twenty producers.

There are certain similarities between our problem and the consistent vehicle rout-
ing problem (ConVRP) introduced by Groër et al. [77]. In the ConVRP, customers
with known demands receive service either once or with a predefined frequency over
a multiple-day horizon. Frequent customers must receive consistent service, which is
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defined as visits from the same driver at approximately the same time throughout the
planning horizon [148].

Complete surveys of metaheuristics for the VRP can be found in Gendreau et al. [68]
and Vidal et al. [156]. They include neighborhood searches [65, 35, 136, 24], population-
based methods such as evolutionary and genetic algorithms [19, 25, 155], hybrid meta-
heuristics [61, 18, 85] and parallel and cooperative metaheuristics [39, 40, 100]. Of the
neighborhood search methods, the large neighborhood search (LNS) algorithms [142]
have proven to be successful for several classes of the VRP. The ALNS [134, 121], an
extension of the LNS, is also related to the ruin-and-recreate approach of Schrimpf
[138]. Recently, ALNS has provided good solutions for a wide variety of vehicle routing
problems; see for instance Ropke and Pisinger [134], Pisinger and Ropke [122], Azi et al.
[7], and Pepin et al. [118].

The MPVRP, as considered in this paper, has to date received limited attention.
Based on the success of the ALNS, we propose an ALNS for our problem. This algo-
rithm is outlined in the next section.

5.4 Classical ALNS for the VRP

The ALNS algorithm is an iterative process, in which at every iteration part of the
current solution is destroyed using a destruction heuristic and then reconstructed using
a construction heuristic in the hope of finding a better solution. The destruction
heuristic usually disconnects a number q 2 [qmin, qmax] of the nodes from their current
routes and places them into the unassigned node pool, �. Note that qmin and qmax

are parameters whose values are to be tuned. The construction heuristic then inserts
the nodes from � into the routes of the solution. The main components of the ALNS
[134, 121] are:

Adaptive search engine: At each iteration of the ALNS, one independently selects
a destruction and a construction heuristic via a biased random mechanism, re-
ferred to as the roulette-wheel. It favors the heuristics that have been successful
according to certain criteria in recent iterations. The adaptive layer of the ALNS
procedure controls the functionality of the roulette-wheel. One associates with
each heuristic a weight that is incremented during the search based on a scoring
mechanism that measures the performance of the heuristic. The probability of
selecting a given heuristic is proportional to the ratio of its weight to the sum of
the weights of the other heuristics.

Adaptive weight adjustment: One divides the search into a number of fixed-length
segments of consecutive iterations. In the first segment, all the heuristics have the
same weight. At the end of each segment, the weights used to select the heuristics
are updated.

Acceptance and stopping criteria: The new solution obtained via the destruction-
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construction procedure is usually accepted or rejected based on some criterion.
This criterion is usually defined by the search paradigm applied at the master
level, e.g., simulated annealing (SA) [see 93]. The new solution s0 replaces the
current solution s if f(s0) < f(s), where f(s) represents the value of solution s.
In SA, with �f = f(s0)� f(s), solution s0 is accepted with probability

exp(
��f

T
), (5.4)

where T > 0 is the temperature parameter. The temperature is initialized to
T init and at the end of each iteration it is lowered by a cooling rate c 2 (0, 1):
T  c.T . The probability of accepting worse solutions reduces as T decreases.
This allows the algorithm to progressively find better local optima. The stopping
criterion is based either on a predetermined number of iterations or a predefined
final temperature T fin.

5.4.1 Selected destruction/construction heuristics

Several destruction and construction heuristics have been proposed, and some can be
adapted to the VRP context. We focus on the destruction heuristics outlined below.

Random Removal: This heuristic [134] randomly selects q nodes, removes them from
their current position, and places them into �. The random nature of this heuris-
tic diversifies the search.

Worst Removal: This heuristic, initially proposed by Rousseau et al. [136] and later
used by Ropke and Pisinger [134], removes the q worst placed nodes and places
them into �.

Route Removal: This heuristic removes a randomly selected route and places the
corresponding nodes in �.

Cluster Removal: This heuristic [121] removes a cluster of nodes from a route, based
on their geographical region. It randomly selects a route from the current solution.
It then applies the well-known Kruskal algorithm to find a minimum spanning
tree for the nodes of this route, based on the arc length. When two forests have
been generated, one of them is randomly chosen and its nodes are removed and
placed in �.

Smart Removal: This heuristic [136] randomly selects a pivot node and removes por-
tions of di↵erent routes around the pivot, based on a reference distance and a
proximity measure.

We consider the following construction heuristics:

Sequential Insertion: This heuristic inserts the nodes from � in order. Each node
is placed in the position that incurs the minimal local cost.
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Best-First Insertion: This heuristic inserts each node in the cheapest position. At
each step it selects the node with the lowest insertion cost.

Regret Insertion: This heuristic [134], orders the nodes in � by decreasing regret
values. The regret value is the cost di↵erence between the best insertion position
and the second best. More generally, the k-regret heuristic defines the regret
value with respect to the k best routes.

5.5 Proposed solution framework

Our algorithm is based on a general ALNS but incorporates a number of intensification
and diversification strategies that improve its performance; an outline is presented in
Algorithm 3.

Similarly to the classical ALNS, the search is divided into several segments, each in-
cluding a series of consecutive iterations. However, we dynamically adjust the length of
each segment based on a criterion that will be described in Section 5.5.4. At each itera-
tion, we explore the neighborhood of the current solution, generating potentially ' new
solutions. We obtain the new solutions by applying a randomly selected destruction-
construction operator to the current solution. At the end of each iteration, we apply an
acceptance criterion to the best solution among the ' solutions found. If the solution
satisfies the criterion, it replaces the current solution. Our acceptance criterion, which
is based on a probabilistic threshold inspired by SA, is discussed in Section 5.5.4.

At the end of each segment, we apply a series of local search (LS) operators to the
best solution found in the segment. If this gives an improvement, we update the current
solution. To help the algorithm escape from local minima, we implement a diversity
management mechanism; see Section 5.5.6.

We also propose the use of an enhanced central memory. It stores both high-quality
solutions and a set of diverse solutions. We design several new destruction heuristics
that use information extracted from the central memory; see Section 5.5.7. Moreover,
we design new operators for our specific problem setting. The main components of our
algorithm are described below.

5.5.1 Search space

It is well known in the metaheuristic literature that allowing the search into infeasible
regions may lead to good solutions. We therefore permit infeasible solutions in which
the plant demands are not completely satisfied. We evaluate the moves and solutions
using a penalty function f(s) = C(s)+⌘D�(s), where C(s) is the total operating cost of
the solution (i.e., fixed, routing, and recourse costs) and D�(s) is the unsatisfied plant
demand. The parameter ⌘ is initially set to 1. After each block of Iteradj iterations,
we multiply ⌘ by 2 if the number of infeasible solutions in the last Iterhis iterations is

108



greater than �max, and we divide it by 2 if the number of such solutions is less than
�min.

This penalty function is similar to that used in Taburoute [65] and the unified tabu
search [35]. Our penalty strategy favors removal from routes serving plants with an
oversupply and insertion into routes serving plants with an undersupply.

Our penalty function adds a penalty ⇢ to the local cost of removal or insertion in a
given position, where

⇢ = ⌘D�(s). (5.5)

5.5.2 Destruction-construction operators

The new solutions are obtained by applying an operator opr 2 ⌦, to the current
solution, where ⌦ is the set of all operators. In the classical ALNS algorithm, the
destruction and construction heuristics are selected independently, but we form opr by
coupling a pair of heuristics. The main advantage is that we can weight the performance
of each (destruction-construction) pair. We use two main types of heuristics:

1. Generic heuristics: A generic destruction heuristic can be coupled with any
generic construction heuristic. The heuristics presented in Sections 5.4, 5.5.7,
and 5.5.8 are all considered generic heuristics.

2. Specialized heuristics: For each specialized destruction heuristic, we develop a
specialized construction heuristic. The resulting operator has a specific goal such
as the generation of solutions with a certain level of diversity. We present our
specialized heuristics in Section 5.5.9.

5.5.3 Central memory

We consider a central memory, denoted  , with a limited number of solutions. We
extract from it di↵erent types of information for use in destruction heuristics. There is
clearly a trade-o↵ between search quality on the one hand and computational e�ciency
and memory requirements on the other. We use the extracted information to determine
the relatedness between di↵erent nodes of the graph with respect to di↵erent criteria.
We design a destruction heuristic based on each criterion (see Section 5.5.7). The
central memory contains three lists of solutions:

- Best Feasible Solutions ( FS): A list of the �1 best feasible solutions generated
so far.

- Best Infeasible Solutions ( NFS): A list of the �2 best infeasible solutions gen-
erated so far.
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- Diverse Solutions ( DIV ): A list of �3 solutions, selected according to the quality-
diversity criterion discussed in Section 5.5.6.

5.5.4 Acceptance criterion

Our acceptance criterion is inspired by SA, but we do not perform the cooling pro-
cedure at the end of every iteration. We perform the procedure when no global best
feasible solution has been found in the last � iterations. This can be seen as a dynamic
repetition schedule that dynamically defines the number of iterations executed at a
given temperature.

We divide the search into several segments. The length of each segment corresponds
to the repetition schedule for a given temperature and therefore has a minimum length
of � iterations. If a new global best feasible solution is found in the current segment,
the length of the segment is extended.

5.5.5 Adaptive mechanism

At every iteration of the ALNS, we choose the operator to apply to the current solution
via a roulette-wheel mechanism. Each operator opr is assigned a weight !opr according
to its performance history. Given ⌦, the operator set, the probability of selecting opr
is !opr/

P
k2⌦ !k.

To evaluate the performance of the operators, we implement an adaptive weight ad-
justment procedure. After each block of � segments, referred to as a mega-segment, we
update the operator weights based on their long- and short-term performance history.
The short-term history covers the last mega-segment, and the long-term history covers
the entire search. Each operator is also assigned a score, which is reset to zero at the
end of each mega-segment. Initially, all the weights are set to one and all the scores
to zero. At each iteration, we update the scores. We do this by adding a bonus factor
�i, i 2 {1, . . . , 4}, where �i  �i+1, i 2 {1, 2, 3}, to the current score as follows:

I. We add �4 if a new global best feasible solution has been found.

II. We add �3 if the new solution improves the current solution but not the global
best feasible solution.

III. We add �2 if the new solution satisfies the acceptance criterion and is inserted
into  FS .

IV. We add �1 if the new solution satisifes the acceptance criterion but is not inserted
into  FS .

In all other cases, the bonus factor is zero. Moreover, suppose that ⇡opr is the
total score of opr obtained from ⌫opr applications of opr in the last mega-segment. We
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control the influence of the short- and long-term history using a parameter ↵ 2 [0, 1],
called the reaction factor, through the formula

!opr,◆+1 = !opr,◆(1� ↵) + ↵
⇡opr
⌫opr

. (5.6)

Here !opr,◆ represents the weight of operator opr in mega-segment ◆. A value of ↵ close
to zero increases the impact of the long-term history; a value close to one increases the
impact of the short-term history.

5.5.6 Diversity management

The diversity of the search is governed by the two mechanisms discussed below.

Diverse Solutions ( DIV )

The decisions taken in some destruction heuristics use the information extracted from
the central memory  . Recall that this central memory is divided into lists of best
feasible solutions, best infeasible solutions, and diverse solutions. Several strategies
have been proposed for determining a set of diverse solutions [155, 126].

We consider a new utility function that evaluates the solution based on g(s) =
C(s)� �DIV (s), where C(s) is the quality and DIV (s) is the diversity measure:

DIV (s) =
X

s02 FS[ NFS

�(s, s0). (5.7)

Parameter � is self-adjusting: if during the last nbSegmDIV segments no improved
solution has been found, � is doubled.

In Equation (5.7), �(s, s0) is the distance between solutions s and s0:

�(s, s0) =
X

i2N
(1(succsni

6= succs
0
ni
) + 2(ns

di 6= ns0
di) + 2(ns

pi 6= ns0
pi)). (5.8)

Here succsni
, ns

di
, and ns

pi are the successor, depot, and plant of node ni in solution s.

We compare two solutions based on their node sequencing and their assignments
to depots and plants. The weight of each sequencing di↵erence is set to one, and the
weight of each assignment di↵erence is set to two. We first attempt to insert every new
solution into  FS or  NFS . When a solution cannot be inserted or a solution currently
in one of these lists is replaced, we must decide whether or not to add it to  DIV . If
the number of solutions in  DIV is less than �3, we add the new solution. Otherwise,
we consider the current members of  DIV and the incoming solution, and we retain
the �3 best solutions as measured by g(s) values.
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Diversity segment

If after nbSegmDIV segments, no new best global solution is found, we devote a com-
plete segment to the generation of diverse solutions. In this diversity segment, at each
iteration, we randomly select one operator from the specialized operators (Section 5.5.9).
Similarly to the regular segments, at each iteration, we generate ' solutions. We take
the most diverse one according to DIV (s) that is within a radius of r of the best-
known solution and apply an acceptance criterion. In this criterion, the new solution
s0 replaces the current solution s if g(s0) < g(s).

5.5.7 Generic destruction heuristics

We now describe the generic destruction heuristics. Some are new, while others are
adapted from existing heuristics proposed by Pisinger and Ropke [121], which primarily
di↵er in the way that the relatedness are weighted. We use the six heuristics below.

Solution-Cost-Based Related Removal

The solution-cost-based related removal heuristic, based on the historical node-pair
removal [121], associates with each arc (u, v) 2 A a weight f⇤(u, v). This weight
indicates the value of the best-known solution that contains arc (u, v). Whenever a
new solution is inserted in the central memory, we update the f⇤(u, v) value of all the
arcs (u, v) in the solution.

Following a call to this heuristic, we perform a worst removal procedure in which
the weight f⇤(u, v) replaces the cost of each arc (u, v) 2 A. We repeat this process
until q nodes have been removed and placed in �.

Route-Cost-Based Related Removal

The route-cost-based related removal heuristic, which is similar to the heuristic above,
associates with each arc (u, v) 2 A a weight r⇤(u, v), indicating the value of the minimal-
cost route found so far that contains arc (u, v). We perform a worst removal based on
the r⇤(u, v) weights.

Paired-Related Removal

This heuristic investigates adjacent producer nodes. We give each arc (i, j) a weight
$(i,j), initially set to 0. The heuristic starts by adding a weight hs to the weights
of all the arcs used in the solutions of the central memory. When an arc (i, j) is
used by solution s, we add the weight hs to both (i, j) and (j, i). We compute hs
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Algorithm 3 ALNS
1: s InitialSolution;
2: Initialize the weights ⇡;
3: Set the temperature T ;
4: iter  0;
5: segmentIter  0;
6: seg  0;
7: sseg  s;
8: repeat
9: repeat

10: siter  s;
11: qiter  Number of nodes to be removed;
12: Opriter  Select an operator;
13: s0  Opriter(s, qiter);
14: if f(s0) < f(siter) then
15: siter  s0;
16: end if
17: until iter/' == 0
18: if f(siter) < f(s⇤) and siter feasible then
19: s⇤  siter;
20: sseg  siter;
21: segmentIter  0;
22: else
23: if ACCEPT(siter, s) then
24: s siter;
25: end if
26: end if
27: if f(siter) < f(sseg) then
28: sseg  siter;
29: end if
30: Update the score of opr;
31: if segmentIter == � then
32: s0  LOCAL SEARCH(sseg);
33: if f(s0) < f(s⇤) then
34: s⇤  s0;
35: segmentIter  0;
36: end if
37: else
38: if f(s) < f(s) then
39: s s0;
40: end if
41: T  c.T ;
42: sseg  s;
43: seg  seg + 1;
44: end if
45: if seg/� == 0 then
46: Update the weights;
47: end if
48: iter  iter + 1;
49: segmentIter  segmentIter + 1;
50: until Stopping Criterion
51: return s⇤
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via hs = List.size() � posinList(s), where List represents the list to which solution s
belongs, List.size() is the length of that list, and posinList(s) is the position of solution
s in that list. This procedure favors the solutions at the start of the lists. When a
new solution is inserted into any of the lists, we update the weights hs. We use the arc
weights $(i,j) to identify the q producer nodes that seem to be related to each other.
An initial node ni is randomly selected, removed, and placed in �. Then, while |�| < q,
we randomly select a node nj from � and identify the node nk in � that is the most
closely related to node nj (it has the highest $(j,k)). We then remove the node nk and
place it in �.

Route-Related Removal

This heuristic, similarly to the previous heuristic, adds a weight hs to all pairs of nodes
served by the same route in solution s. We assign weights as for the previous heuristic.
We remove nodes from their current position following a similar procedure to that for
the previous heuristic.

Depot-Producer-Related Removal

This heuristic attempts to identify the nodes that may be mis-assigned to a depot.
Each depot-node pair (nd, ni), for d 2 D and i 2 N , is assigned a weight. The weight
increases by hs if, in solution s, producer i is assigned to a route departing from depot
d. We calculate the value of hs as for the paired-related removal heuristic. We select a
node to remove via the following steps:

Step 1: We sort the producer-depot assignments in the current solution s according
to the historical pair weights obtained as described above in Listi,d(s).

Step 2: Starting from the producer-depot pair with the lowest weight, we remove
nodes from their current position with probability

Prni,ndi
(s) =

rank(ni)

Listi,d(s).size()
(5.9)

where rank(ni) is the position of the pair (ndi , ni) in Listi,d(s). Moreover,
Listi,d(s).size() is the length of the node-depot list, which is the number of pro-
ducer nodes. Accordingly, we remove the node with the lowest weight from its
current position with probability 1.

Step 3: If the list is traversed to the end, but the number of removed nodes is less
than q, we update the length of the list to Listi,d(s).size() � |�| and make the
corresponding updates to the pair ranking. We then return to Step 2.
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Plant-Producer-Related Removal

This heuristic follows the three steps above. It attempts to remove producer nodes
based on the node-plant pair weights calculated from the historical information.

5.5.8 Generic construction heuristics

After the destruction heuristic, the nodes that have been removed and placed in � are
considered for reinsertion into routes.

Sequential Insertion with Plant Satisfaction

This heuristic is identical to sequential insertion except that insertions are not penalized
with the parameter ⇢. To overcome possible infeasibilities, we use the following two-
phase insertion heuristic. In the first phase we insert nodes only for routes serving
plants with an unsatisfied demand. When all the plant demands are met we move to
the second phase. The remaining nodes may now be inserted in any route, as in normal
sequential insertion. This procedure does not necessarily guarantee the feasibility of
the new solution, because it depends on the infeasibility level of the original solution
and the nodes in �.

Minimum-Loss Insertion

This heuristic is based on the regret insertion heuristic but does not use ⇢. It inserts
nodes into the routes while attempting to maintain the feasibility of the solution at
the minimal cost. This heuristic is based on the regret associated with the insertion
of a node in a route serving a plant with unsatisfied demand rather than in the best
possible route. Clearly, the best candidate is a node for which the best possible position
is in a route serving a plant with unsatisfied demand. The best insertion candidate is
determined using the following criterion:

ni := arg min
ni2�

( min
r2RDP

s

(�fr+ni(s))� min
r2Rs

(�fr+ni(s))), (5.10)

where Rs is the set of routes for solution s, and RDP
s is the set of routes serving plants

with unsatisfied demand. If all the plant demands are met, the insertion order of the
remaining nodes in � is defined as for the regret insertion operator.

5.5.9 Specialized operators

We also design specialized operators for our problem setting. Each consists of a pair of
destruction and construction heuristics that work together; they are not coupled with
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any other heuristics. The destruction and construction heuristics cooperate to achieve
diverse solutions (recall that these operators are only used in the diversity segments).
We use the three operators below.

Depot-Exchange Operator

This operator changes the depot of a subset of the nodes to enhance the diversification.

Depot-Exchange Removal

This heuristic selects the nodes to be removed via the following steps:

Step 1: Randomly select a pair of depots, nd1 and nd2 .

Step 2: Sort the nodes ni, i 2 N in Listreg(nd1 , nd2) according to the regret of assign-
ing them to nd1 or nd2 using the following formula:

regret(ni)d1,d2 = |distd1,ni � distd2, ni|. (5.11)

Step 3: Starting from the node with the lowest regret value, remove nodes from their
current positions with probability

Prni =
rank(ni)

Listreg(nd1 , nd2).size()
, (5.12)

where rank(ni) is the position of node ni in Listreg(nd1 , nd2), so the position of
the node with the smallest regret value is Listreg(nd1 , nd2).size().

Step 4: If the Listreg(nd1 , nd2) is completely traversed but still |�| < q, replace
Listreg(nd1 , nd2).size() by Listreg(nd1 , nd2).size() � |�|, update rank(ni), and
go to Step 3.

Depot-Exchange Insertion

Following a call to the above heuristic, we reinsert nodes from � into routes using this
heuristic. It is based on the regret insertion heuristic, while nodes are preassigned to
the depots. This preassignment uses the depots nd1 and nd2 selected for the removal
heuristic. Each node ni 2 � is assigned to nd1 with probability

Prni,d1 = 1�
distd1,ni

distd1,ni + distd2,ni

, (5.13)

and to nd2 with probability 1� Prni,d1 .
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Plant-Exchange Operator

Similarly to the depot-exchange operator, this operator changes a subset of the producer-
plant assignments.

Plant-Exchange Removal

We randomly select two plants, np1 and np2 . We then sort the nodes based on the
regret value regret(ni)p1,p2 = |distp1,ni � distp2,ni |. Starting from the node with the
lowest regret value, we remove nodes from their current positions with probability

Prni =
rank(ni)

Listreg(np1 , np2).size()
. (5.14)

Plant-Exchange Insertion

This is a regret insertion heuristic that restricts the insertion of each node ni 2 �
to a preassigned producer-plant pair. The preassignments use the plants np1 and np2

selected for the removal heuristic. The probability function is

Prni,pj = 1�
distpj ,ni

distp1,ni + distp2,ni

, j 2 {1, 2}. (5.15)

Tabu-Based Operator

This operator pairs the most random removal and one of the most successful insertion
heuristics, i.e., the random removal heuristic and the regret insertion heuristic. To
diversify the search, it attempts to avoid generating the same solutions by prohibiting
the reassignment of removed nodes to their previous routes. The removal heuristic
records a list of the routes to which the removed nodes were previously assigned. The
regret insertion heuristic is as described in Section 5.4 except that it avoids reinserting a
node into its previous route. The removal heuristic has a high level of diversity, and the
insertion heuristic is designed to insert removed nodes into the best routes (provided
they are di↵erent from the previous routes).

5.5.10 Local search

At the end of each segment, LS procedures are performed on the best solution found
during the segment. Our LS procedures are inspired by the education phase of a genetic
algorithm proposed by Vidal et al. [155]. The procedures are restricted to the feasible
region. We build each node’s neighborhood using a granularity threshold #, initially
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proposed by Toth and Vigo [152], which is computed as follows:

# = �
Z(s)

nbArc(s)
, (5.16)

where Z(s) and nbArc(s) are the sum of the arc costs and the number of arcs used in
solution s, and � is a suitable sparsification factor. In our implementation, Z(s) and
nbArc(s) are limited to the arcs between producer nodes; the recourse costs and the

corresponding arcs are omitted. The value Z(s)
nbArc(s) is the average length of the arcs

between the producer nodes in solution s. The neighbour set of each node ni contains
all nodes nj such that distij  #.

Suppose that nu, assigned to route ru, is a neighbor of nv, assigned to route rv.
Moreover, suppose that nx and ny are immediate successors of nu and nv in ru and rv,
respectively. For every node nu and all of its neighbors nv, we perform the LS operators
in a random order. When a better solution is found, the new solution replaces the
current solution. The LS stops when no operator generates an improved solution. The
LS operators are as follows:

Insertion 1: Remove nu and reinsert it as the successor of nv.

Insertion 2: Remove nu and nx; reinsert nu after nv and nx after nu.

Insertion 3: Remove nu and nx; reinsert nx after nv and nu after nx.

Swap 1: Swap the positions of nu and nv.

Swap 2: Swap the position of the pair (nu, nx) with nv.

Swap 3: Swap the position of (nu, nx) with (nv, ny).

2-opt: If ru = rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx, ny).

2-opt* 1: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx, ny).

2-opt* 2: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, ny) and (nx, nv).

5.6 Bounds on the multi-period solution

To evaluate the performance of our algorithm, we compute lower and upper bounds
on the objective function value. This calculation is based on the set partitioning for-
mulation of the problem [45]. Let the single-period problem that considers only the
production levels in the reference period be P ref , with optimal solution xref . Let Pmp

be the multi-period problem, with optimal solution x⇤.

The route cost has three components: 1) fixed vehicle costs, 2) first-stage routing
costs, and 3) second-stage routing costs (recourse costs). These components are denoted
cf (x), c(x), and F(x), respectively.
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Table 5.1: Bounding multi-period solution notation

Notation Description
Pmp the multi-period problem.
P ref the single-period problem corresponding to the reference period.
x⇤ optimal solution of the multi-period problem.
xref optimal solution of P ref .
cf (x) fixed vehicle costs of solution x.
c(x) first-stage routing costs of solution x.
F(x) recourse costs of solution x.
pr the plant to which route r is assigned.

t⇠r is 1 if a failure occurs on route r in period ⇠.

For any feasible solution x of Pmp, the following inequality provides an upper bound
on the value of the multi-period solution:

cf (x
⇤) + c(x⇤) + F(x⇤)  cf (x) + c(x) + F(x). (5.17)

Moreover, since the fixed vehicle costs are significantly large compared to the total
routing costs, the number of vehicles used in the multi-period solution is the minimum
number of vehicles needed during the reference period, so the fixed vehicle costs are
the same:

cf (x
⇤) = cf (x

ref ). (5.18)

Since x⇤ is also a feasible solution to P ref , we have

c(xref )  c(x⇤). (5.19)

We combine (5.18) and (5.19) to obtain a lower bound on the value of the multi-period
solution:

cf (x
ref ) + c(xref )  cf (x

⇤) + c(x⇤) + F(x⇤). (5.20)

We also consider a lower bound on the value of F(x⇤). Let F (r, ⇠) be the recourse
cost in period ⇠ 2 ⌅ for route r 2 Rs, where Rs is the set of routes in solution s. We
have

F(x) =
X

⇠2⌅

X

r2Rs

F (r, ⇠). (5.21)

Let the set of producer nodes visited by route r be Nr, the plant to which r is assigned
be pr, and the set of all routes serving plant p 2 P be Rp

s ✓ Rs. Then

F (r, ⇠) � 2 min
i2Nr

disti,pr .t
⇠
r (5.22)

) F(x⇤) � 2
X

r2Rs

t⇠r min
i2Nr

disti,pr (5.23)

= 2
X

p2P

X

r2Rp
s

t⇠r min
i2Nr

disti,pr , (5.24)
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where F (r, ⇠) is the recourse cost on route r in period ⇠, and t⇠r is a binary parameter,
which is equal to 1 if a failure occurs on route r in period ⇠ and 0, otherwise.

The minimal failure cost for a given instance can then be computed by first deter-
mining the minimum number of vehicles needed to serve the plants and producers. We
then assign the producers to vehicles (routes) while attempting to minimize the total
failure cost. To do this, we assign failure points to the routes so that the total fail-
ure cost is minimized. We perform this two-step procedure by solving the bin-packing
models discussed below.

5.6.1 Minimum number of vehicles

We first present the model that allows us to determine the minimum number of vehicles
to cover the plant demands. Table 5.2 gives the notation, and the constraints are as
follows:

1. Each producer is assigned to one vehicle and each vehicle to one plant;

2. The vehicle capacities are respected;

3. The plant demands are satisfied.

Table 5.2: Bin-packing notation for minimum number of vehicles

Notation Description
xikp 1 if producer i is assigned to vehicle k and plant p.
ykp 1 if vehicle k serves plant p.
oi supply of producer i 2 N .
Dp demand of plant p 2 P.

The formulation is

min
X

k2K

X

p2P
ykp (5.25)

subject to X

k2K

X

p2P
xikp = 1 (i 2 N ); (5.26)

X

i2N

X

k2K
oixikp � Dp (p 2 P); (5.27)

X

i2N
oixikp  Q (p 2 P, k 2 K); (5.28)

xikp  ykp (i 2 N , p 2 P, k 2 K); (5.29)

xikp, ykp 2 0, 1 (i 2 N , p 2 P, k 2 K), (5.30)

where the objective function minimizes the number of vehicles. Constraint (5.26) en-
sures that all the producers are assigned to exactly one route. Constraint (5.27) ensures
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that the plant demands are satisfied, and Constraint (5.28) ensures that the vehicle ca-
pacities are respected.

5.6.2 Minimum failure cost

Given the minimum number of vehicles, we can compute a lower bound on the total
failure cost of Pmp based on inequality (5.24). Let the minimum number of vehicles be
K⇤. We assign nodes to the restricted vehicle set K⇤, assuming that for a given route
r, all the failures in di↵erent periods occur on the node that is closest to pr. We assign
the nodes by solving an extension of the first bin-packing formulation that minimizes
the failure cost.

Table 5.3: Bin-packing notation for minimum failure cost

Notation Description
K⇤ set of K⇤ identical vehicles.

t⇠k 1 if a failure in period ⇠ is assigned to vehicle k.

u⇠ikp 1 if a failure in period ⇠ is assigned to producer i on vehicle k, serving plant p.

lkp quantity delivered to plant p by vehicle k.

Table 5.3 gives the notation, and the formulation is

Z = min
X

⇠2S
W⇠

X

p2P

X

i2N
2.di,pu

⇠
ikp (5.31)

subject to

lkp =
X

i2N
oixikp (p 2 P, k 2 K⇤); (5.32)

lkp  Qykp (p 2 P, k 2 K⇤); (5.33)
X

p2P
ykp = 1 (k 2 K⇤); (5.34)

X

k2K⇤

lkp � Dp (p 2 P); (5.35)

X

k2K⇤

X

p2P
xikp = 1 (i 2 N ); (5.36)

xikp  ykp (i 2 N , p 2 P, k 2 K⇤); (5.37)

Pt(⇠)
X

p2P
lkp  Q(1 + t⇠k) (⇠ 2 S, k 2 K⇤); (5.38)

X

p2P

X

i2N
u⇠ikp = t⇠k (⇠ 2 S, k 2 K⇤); (5.39)

u⇠ikp  xikp (⇠ 2 S, i 2 N , p 2 P, k 2 K⇤); (5.40)

ykp  yk�1p + yk�1p�1 (p 2 P, k 2 K⇤); (5.41)

y11 = 1; (5.42)

xikp, ykp, t
⇠
k, u

⇠
ikp 2 {0, 1} (⇠ 2 S, i 2 N , p 2 P, k 2 K⇤). (5.43)
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Constraints (5.32) and (5.33) ensure that the vehicle capacities are satisfied. Constraint
(5.34) ensures that each vehicle is assigned to a single plant. Constraint (5.35) ensures
that the plant demands are satisfied, and Constraint (5.36) ensures that each producer is
assigned to a single vehicle. Constraint (5.37) ensures that producers are assigned only
to open routes. For each period ⇠, Constraints (5.38)–(5.40) determine the number and
location of failures on each vehicle k. Constraints (5.41) and (5.42) break the possible
symmetry due to the set of identical vehicles. The objective function, Z, represents
a lower bound on the total failure cost. We assume that, for a given route, all the
failures in di↵erent periods occur in the node that is closest to the assigned plant. The
bound can be tightened if we acknowledge that not all periods have failures at the same
node. Proposition 1 provides a condition determining when two periods both encounter
failure at the same node.

Proposition 1. Two periods ⇠1 and ⇠2 both encounter a failure at node nj if the
following inequality holds:

Q

P2
(1� P2

P1
)  oj . (5.44)

Proof. Assume that P1 � P2 and that in period ⇠1 the quantity collected prior to node
nj is Q. The quantity collected in period ⇠2 will then be P2.

Q
P1
. Moreover, ⇠2 has a

failure at node nj if P2.
Q
P1

+ P2.oj � Q.

Including this condition in the model (5.31)–(5.43) may lead to an increase in the
value of Z by assigning certain failure points to nodes that are farther from the plant.
This occurs when two di↵erent periods cannot both encounter failure on the closest
node to the plant.

5.7 Computational experiments

We now describe our computational experiments. In Section 5.7.1, we introduce the set
of test problems. We calibrate the parameter values via extensive sensitivity analysis;
the results of these tests are presented in Section 5.7.2. We also study the impact of
di↵erent components of the algorithm based on a series of tests, which are presented in
Section 5.7.3. Finally, the computational results for the test problems are presented in
Section 5.7.4.

5.7.1 Test problems

We consider the test problems proposed by Dayarian et al. [45] as well as extensions of
them. The extensions increase the size of the instances. Dayarian et al. [45] generated
instances with 15 or 20 producers, 2 or 3 depots, and 2 or 3 plants. Each instance was
solved with 4 or 5 periods, to represent the multi-periodic aspect of the problem. For
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each case with 4 or 5 periods, 5 di↵erent scenarios {T1, . . . , T5} were explored, di↵ering
in terms of the distribution of the period weights and the SRT level. The details of the
instances considered in this paper are presented in Table 5.4.

Table 5.4: Specifications of test problems

Number of producers Number of depots Number of plants

15 2, 3 2, 3
20 2, 3 2, 3
40 2, 3 2, 3
100 2, 3, 6 2, 3, 6
200 3, 6 3, 6

The production levels and period weights are the same as in Dayarian et al. [45];
Table 5.5 gives the production levels and weights.

Table 5.5: Weight and production-level distribution of the periods

# periods Type 1 Type 2 Type 3 Type 4 Type 5

4

Ps W⇠% P⇠ W⇠% P⇠ W⇠% P⇠ W⇠% P⇠ W⇠%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 20 1.30 25 1.20 35 1.10 30 1.10 40
1.50 10 1.50 15 1.35 20 1.20 25 1.30 30
1.70 10 1.70 10 1.50 15 1.40 15 1.70 10

5

P⇠ W⇠% P⇠ W⇠% P⇠ W⇠% P⇠ W⇠% P⇠ W⇠%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 15 1.30 20 1.20 25 1.10 25 1.10 35
1.50 15 1.50 15 1.35 20 1.20 20 1.20 25
1.70 5 1.70 10 1.50 10 1.40 15 1.40 15
1.90 5 1.90 5 1.65 5 1.70 10 1.70 5

We ran our ALNS algorithm for each of the above test problems and investigated its
performance in terms of solution quality and computational e�ciency. The algorithm
was coded in C++ and the tests were run on computers with a 2.67GHz processor and
24GB of RAM.

5.7.2 Parameter settings and sensitivity analysis

Similarly to most metaheuristics, changing the values of the parameters may a↵ect the
performance (but not the correctness) of the algorithm.

We tune the parameters via a blackbox optimizer to be described later. One draw-
back of this optimizer is that as the number of parameters increases, the accuracy of the
algorithm decreases considerably. We therefore apply a two-phase procedure, based on
extensive preliminary tests. It divides the parameters into two subsets. The first subset
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contains the less sensitive parameters, and the second subset includes the parameters
with a greater impact on the performance of the algorithm. We tune the parameters
in the first subset by trial-and-error; Table 5.6 gives the resulting values.

Table 5.6: Parameter values found by trial and error

Parameter Value

[qmin, qmax] Bounds on number of nodes removed q [min(5, 0.05|N |),min(20, 0.4|N |)]
Iteradj Number of iterations after which ⌘ is updated 20
Iterhis History used to update ⌘ 100

�min and �max Bounds on number of infeasible solutions used to update ⌘ 30 and 45
�1, �2, �3 Lengths of lists in central memory 20, 20, 10

� Sparsification factor in granularity threshold 1
�1,�2,�3,�4 Bonus factors for adaptive weight adjustment 1, 1, 1, 2

We set the initial temperature to T init = 0.05C(s0)
|N | ln(0.5) , where C(s0) is the value of the

initial solution. By Eq. ( 5.4), setting the initial temperature to 0.05C(s0)
ln(0.5) allows us to

accept solutions that are 5% di↵erent from the current solution with a probability of
50%. Our preliminary tests showed that dividing this value by the number of producers
improved the results; similar results were reported by Pisinger and Ropke [121]. We set
the final temperature to T fin = T init.c25000, allowing a minimum of 25000 iterations.

We tune the parameters in the second subset by first determining a range for each
parameter based on extensive preliminary tests. We then find the best value for each
parameter using the Opal algorithm [6]. Opal takes an algorithm and a parameter
vector as input, and it outputs parameter values based on a user-defined performance
measure. Opal models the problem as a blackbox optimization which is then solved by
a state-of-the-art direct search solver; see Audet et al. [6].

To define a performance measure for Opal, we selected a restricted set of training
instances. This set included instances ranging from 20 to 200 producer nodes, with 2 to
6 depots and plants. For a given vector of parameters, we ran each instance five times
and recorded the average objective function value. The performance measure is defined
to be the geometric mean of the average values of the training instances. Table 5.7
gives the values found for the second subset of parameters.

Table 5.7: Parameter values found using Opal

Parameter Range Value

� Default segment length [50, 150] 70
' Inner loop length [3, 7] 6
� Number of segments to update operator weights [1, 4] 2
↵ Impact of long-term/short-term memory in weight update [0, 1] 0.25
c Cooling rate for SA [0.9980, 0.9998] 0.9987
r Acceptance radius gap in diversity segments [0.01, 0.07] 0.05

nbSegmDIV Call diversity segment after observing no improvement in this number of segments [25, 100] 45

124



5.7.3 Evaluating the contributions of the heuristics

Table 5.8 provides statistics on the removal and insertion heuristics. We ran each
instance five times while excluding one heuristic and keeping the others. For each
instance, we recorded the average result over the five runs. The values in Table 5.8
indicate the degradation in the geometric mean of the values obtained for all the in-
stances in the training set. We use the geometric mean because the training set includes
problems of di↵erent sizes with varying objective values. With the geometric mean the
smaller instances are not dominated by the larger ones.

The plant-producer-related removal is the most e�cient removal heuristic, followed
by the route removal and smart removal heuristics. Minimum-loss insertion is the
most useful insertion heuristic, followed by the regret insertion heuristic. We do not
include the specialized operators in this evaluation because their main goal is to create
diversity in the search. However, we have studied the impact of excluding the diversity
segment. Our tests on the training set show that the solutions found without the
diversity segment are on average 0.01% better. However, in some cases, particularly
for smaller instances, the diversity segment helps us to escape from local optima. We
have also evaluated the LS operators for the training set. The solutions found without
these operators are on average 0.16% worse.

Table 5.8: Evaluation of contribution of each heuristic

Heuristic Solution degradation without this heuristic (%)

Random Removal -0.03
Worst Removal 0.00
Route Removal 0.05
Cluster Removal 0.02
Smart Removal 0.05
Solution-Cost-Based Related Removal 0.02
Route-Cost-Based Related Removal 0.04
Paired-Related Removal -0.03
Route-Related Removal 0.02
Depot-Producer-Related Removal 0.04
Plant-Producer-Related Removal 0.07

Sequential Insertion -0.01
Sequential Insertion with Plant Satisfaction 0.03
Best-First Insertion 0.02
Regret Insertion 0.04
Minimum-Loss Insertion 0.07

5.7.4 Computational results

Table 5.9 presents the results of applying our algorithm to the instances described in
Section 5.7.1. In this table,

ALNS best is the average of the best solutions found;
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ALNS avg. is the mean value of the average of the solutions found over the five runs;

% dev. is the average of standard deviation over the five runs;

T (s) is the average computational time.

Detailed results for each instance are given in Tables 5.10–5.16 in the Appendix. The
standard deviations reported in Table 5.9 are based on the routing costs; the fixed
vehicle costs have been removed. Tables 5.10–5.16 report the deviations based on both
the total cost and the routing costs.

Table 5.9: Results for instances of di↵erent sizes

Instance size ALNS best ALNS avg. % dev. T (s)

15 5074.80 5074.80 0.00 5
20 5935.33 5935.68 0.05 7
40 11551.42 11552.10 0.04 26
100 31951.60 31976.71 0.48 129
200 53601.86 53654.35 0.51 235

For the smaller instances, optimal solutions reported by Dayarian et al. [45]. In
Tables 5.10 and 5.11, these solutions are given in column BKS DCGR. For the larger
instances, we generate lower and upper bounds as described in Section 5.6. The lower
bound has two parts: 1) the value of the optimal solution for the VRP for the reference
period, and 2) a lower bound on the total recourse cost, obtained by solving the bin-
packing formulations in Section 5.6. We used Cplex 12.2 to solve these problems. We
compute the upper bound by evaluating the cost of the VRP for the reference period,
based on the objective function of the multi-period problem. We adapt the algorithm
proposed by Dayarian et al. [44] for a similar problem to solve the VRP for the reference
period. This algorithm can solve problems with up to 50 producers; we do not report
bounds for larger problems.

Table 5.10 gives the results for the instances with 15 producers. For the instances
with 2 or 3 depots and plants and 4 or 5 periods, our algorithm was able to find the
optimal solutions with a standard deviation of zero. The computational time is about
1/80th of that required by the branch-and-price algorithm of Dayarian et al. [45].

Table 5.11 gives the results for the instances with 20 producers for which the optimal
solutions are available. These instances have 2 or 3 depots and 3 plants. Table 5.12
gives the results for the instances with 20 producers for which the optimal solutions are
unknown. For 18 of the instances in Table 5.11, every run of the algorithm found the
optimal solution. For 19 of the instances in Table 5.12, our solution lies between the
computed bounds. We also calculate the value of LB

ALNSbest
. For Table 5.11, ALNSbest

is the optimal value for each instance; the average value of this ratio is 0.991. For
Table 5.12, the average value is 0.989. This comparative factor between instances in
Tables 5.11 and 5.12 indicates the quality of the solutions obtained for instances with
20 producers, for which the optimal solutions are available.
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For the instances with 40 producers, all the solutions found lie between the com-
puted bounds. The computational time is less than 2% of the time needed to solve the
single-period VRP using the branch-and-price algorithm. The results for the instances
with 100 and 200 producers show that larger problems are more di�cult. Increasing
the number of plants has a greater impact than increasing the number of depots, on
both the computational time and the deviation from the best solution.

5.8 Conclusions

We have investigated the design of tactical plans for a transportation problem inspired
by real-world milk collection in Quebec. To take the seasonal variations into account,
we modeled the problem as a multi-period VRP. We developed an ALNS algorithm
incorporating several heuristics for this VRP.

We tested the algorithm on a large set of instances of di↵erent sizes. The results for
the smaller instances were compared with the existing exact solutions in the literature.
For the larger instances, where optimal solutions were not available, we computed lower
and upper bounds on the value of the solution.

Future research will include more attributes and constraints such as soft time win-
dows on the collection, restrictions on the route length, and heterogeneous fleets of
vehicles. We also plan to consider the situation where a vehicle may perform several
deliveries to more than one plant per day. It would also be interesting to take into
account the daily variations in the production levels. This transforms the problem into
a VRP with stochastic demands.
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Table 5.10: Results for instances with 15 producers

Instance BKS T (s) ALNS best ALNS avg. % dev % dev T (s)
DCGR over 5 total cost routing cost

pr-15-2D2P4S-T1 4353.62 19 4353.62 4353.62 0 0 3
2 depots pr-15-2D2P4S-T2 4395.48 26 4052.82 4052.82 0 0 4
2 plants pr-15-2D2P4S-T3 4478.78 24 5930.40 5930.40 0 0 6
4 periods pr-15-2D2P4S-T4 4434.82 13 4395.48 4395.48 0 0 4

pr-15-2D2P4S-T5 4472.04 7 4090.51 4090.51 0 0 4
pr-15-2D2P5S-T1 4358.84 22 4478.78 4478.78 0 0 3

2 depots pr-15-2D2P5S-T2 4403.64 30 4148.54 4148.54 0 0 4
2 plants pr-15-2D2P5S-T3 4439.31 16 5959.89 5959.89 0 0 6
5 periods pr-15-2D2P5S-T4 4449.81 9 4434.82 4434.82 0 0 3

pr-15-2D2P5S-T5 4476.56 7 4115.57 4115.57 0 0 4
pr-15-2D3P4S-T1 5855.70 1422 5894.16 5894.16 0 0 5

2 depots pr-15-2D3P4S-T2 5860.58 911 4472.04 4472.04 0 0 3
3 plants pr-15-2D3P4S-T3 5831.72 964 4158.00 4158.00 0 0 4
4 periods pr-15-2D3P4S-T4 5821.90 998 5837.27 5837.27 0 0 5

pr-15-2D3P4S-T5 5843.12 947 4358.84 4358.84 0 0 4
pr-15-2D3P5S-T1 5871.89 1103 5898.82 5898.82 0 0 5

2 depots pr-15-2D3P5S-T2 5886.37 928 4055.18 4055.18 0 0 4
3 plants pr-15-2D3P5S-T3 5843.29 972 4403.64 4403.64 0 0 4
5 periods pr-15-2D3P5S-T4 5843.12 980 4098.60 4098.60 0 0 4

pr-15-2D3P5S-T5 5832.51 874 5945.35 5945.35 0 0 6
pr-15-3D2P4S-T1 4052.82 58 4439.31 4439.31 0 0 3

3 depots pr-15-3D2P4S-T2 4090.51 23 4118.45 4118.45 0 0 4
2 plants pr-15-3D2P4S-T3 4148.54 34 5985.97 5985.97 0 0 7
4 periods pr-15-3D2P4S-T4 4115.57 18 4132.68 4132.68 0 0 4

pr-15-3D2P4S-T5 4158.00 34 4449.81 4449.81 0 0 3
pr-15-3D2P5S-T1 4055.18 30 5900.75 5900.75 0 0 5

3 depots pr-15-3D2P5S-T2 4098.60 27 4476.56 4476.56 0 0 3
2 plants pr-15-3D2P5S-T3 4118.45 28 5896.57 5896.57 0 0 6
5 periods pr-15-3D2P5S-T4 4132.68 24 4152.31 4152.31 0 0 4

pr-15-3D2P5S-T5 4152.31 17 5866.92 5866.92 0 0 6
pr-15-3D3P4S-T1 5930.40 759 5843.12 5843.12 0 0 6

3 depots pr-15-3D3P4S-T2 5959.89 838 5871.89 5871.89 0 0 6
3 plants pr-15-3D3P4S-T3 5894.16 600 5843.12 5843.12 0 0 6
4 periods pr-15-3D3P4S-T4 5837.27 447 5855.70 5855.70 0 0 6

pr-15-3D3P4S-T5 5898.82 764 5886.37 5886.37 0 0 6
pr-15-3D3P5S-T1 5945.35 717 5821.90 5821.90 0 0 6

3 depots pr-15-3D3P5S-T2 5985.97 835 5860.58 5860.58 0 0 6
3 plants pr-15-3D3P5S-T3 5900.75 615 5843.29 5843.29 0 0 6
5 periods pr-15-3D3P5S-T4 5896.57 561 5831.72 5831.72 0 0 6

pr-15-3D3P5S-T5 5866.92 473 5832.51 5832.51 0 0 6
Avg. 5074.80 429 5074.80 5074.80 0 0 5
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Table 5.11: Results for instances with 20 producers with available optimal solutions

Instance LB BKS LB/BKS T (s) ALNS best ALNS avg. % dev % dev T (s)
DCGR over 5 over 5 total cost routing cost

pr-20-2D3P4S-T1 5810.84 5873.92 0.989 3934 5873.92 5873.92 0.00 0.00 6
2 depots pr-20-2D3P4S-T2 5827.34 5907.21 0.986 7338 5907.21 5907.21 0.00 0.00 6
3 plants pr-20-2D3P4S-T3 5851.1 5890.07 0.993 4431 5890.07 5890.07 0.00 0.00 7
4 periods pr-20-2D3P4S-T4 5790.35 5807.1 0.997 4240 5807.1 5807.1 0.00 0.00 7

pr-20-2D3P4S-T5 5789.32 5861.86 0.988 3617 5861.86 5861.86 0.00 0.00 6
pr-20-2D3P5S-T1 5827.04 5883.98 0.990 3371 5883.98 5883.98 0.00 0.00 7

2 depots pr-20-2D3P5S-T2 5848.16 5919.85 0.988 3422 5919.85 5919.85 0.00 0.00 7
3 plants pr-20-2D3P5S-T3 5854.21 5888.36 0.994 4814 5888.36 5888.36 0.00 0.00 7
5 periods pr-20-2D3P5S-T4 5826.85 5856.77 0.995 2239 5856.77 5856.77 0.00 0.00 7

pr-20-2D3P5S-T5 5808.6 5833.37 0.996 2166 5833.37 5833.37 0.00 0.00 7
pr-20-3D3P4S-T1 5951.3 6013.02 0.990 13090 6013.02 6013.02 0.00 0.00 8

3 depots pr-20-3D3P4S-T2 5974.3 6043.07 0.989 9930 6043.07 6043.07 0.00 0.00 8
3 plants pr-20-3D3P4S-T3 5950.7 6026.6 0.987 10404 6026.6 6026.6 0.00 0.00 8
4 periods pr-20-3D3P4S-T4 5898.75 5948.7 0.992 6706 5948.7 5948.7 0.00 0.00 7

pr-20-3D3P4S-T5 5917.5 5980.32 0.989 7072 5980.32 5981.44 0.03 0.12 8
pr-20-3D3P5S-T1 5979.4 6032.42 0.991 13749 6032.42 6032.42 0.00 0.00 8

3 depots pr-20-3D3P5S-T2 6002.4 6067.63 0.989 14925 6067.63 6067.63 0.00 0.00 8
3 plants pr-20-3D3P5S-T3 5962.9 6037.43 0.988 9448 6037.43 6038.69 0.03 0.11 8
5 periods pr-20-3D3P5S-T4 5950.56 6016.16 0.989 7633 6016.16 6016.16 0.00 0.00 8

pr-20-3D3P5S-T5 5924.85 5982.43 0.990 5735 5982.43 5982.43 0.00 0.00 8
Avg. 5887.324 5943.514 0.991 6913 5943.5135 5943.63 0.00 0.01 7

Table 5.12: Results for instances with 20 producers without available optimal solutions

Instance LB UB ALNS best LB/ALNS ALNS avg. % dev % dev T (s)
over 5 best over 5 total cost routing cost

pr-20-2D2P4S-T1 6162.22 6301 6237.18 0.988 6237.18 0.00 0.00 7
2 depots pr-20-2D2P4S-T2 6186.47 6366.29 6266.92 0.987 6266.92 0.00 0.00 7
2 plants pr-20-2D2P4S-T3 6158.79 6499.43 6226.73 0.989 6226.73 0.00 0.00 7
4 periods pr-20-2D2P4S-T4 6121.98 6481.62 6178.21 0.991 6178.21 0.00 0.00 6

pr-20-2D2P4S-T5 6185.52 6539.06 6246.02 0.990 6246.02 0.00 0.00 7
pr-20-2D2P5S-T1 6182.71 6302.52 6259.28 0.988 6259.28 0.00 0.00 7

2 depots pr-20-2D2P5S-T2 6220.79 6367.63 6301.07 0.987 6301.07 0.00 0.00 8
2 plants pr-20-2D2P5S-T3 6160.79 6431.58 6218.3 0.991 6218.3 0.00 0.00 7
5 periods pr-20-2D2P5S-T4 6172.34 6484.31 6258.85 0.986 6258.85 0.00 0.00 7

pr-20-2D2P5S-T5 6158.74 6543.94 6230.57 0.988 6230.57 0.00 0.00 7
pr-20-3D2P4S-T1 5552.08 5602.42 5588.46 0.993 5588.46 0.00 0.00 6

3 depots pr-20-3D2P4S-T2 5578.15 5640.67 5604.2 0.995 5604.2 0.00 0.00 6
2 plants pr-20-3D2P4S-T3 5542.82 5639.71 5627.18 0.985 5627.86 0.03 0.13 6
4 periods pr-20-3D2P4S-T4 5520.98 5597.4 5597.4 0.986 5600.46 0.12 0.62 6

pr-20-3D2P4S-T5 5550.18 5623.64 5623.64 0.987 5623.64 0.00 0.00 7
pr-20-3D2P5S-T1 5553.98 5614.93 5597.81 0.992 5597.81 0.00 0.00 7

3 depots pr-20-3D2P5S-T2 5565.85 5639.79 5616.21 0.991 5616.21 0.00 0.00 6
2 plants pr-20-3D2P5S-T3 5548.67 5626.75 5620.96 0.987 5620.96 0.00 0.00 7
5 periods pr-20-3D2P5S-T4 5543.6 5622.43 5622.43 0.986 5624.03 0.04 0.18 7

pr-20-3D2P5S-T5 5532.29 5621.31 5621.31 0.984 5627.81 0.15 0.75 7
Avg. 5927.14 0.989 5927.73 0.02 0.08 7
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Table 5.13: Results for instances with 40 producers

Instance Bounds on T (s) ALNS best ALNS avg. % dev % dev T (s)
opt. sol. over 5 total cost routing cost

pr-40-2D2P4S-T1 [12229.2, 12405.5] 5441 12389.5 12389.5 0.00 0.00 19
2 depots pr-40-2D2P4S-T2 [12336, 12558.3] 5337 12535.1 12535.1 0.00 0.00 20
2 plants pr-40-2D2P4S-T3 [12556.2, 12780.2] 5342 12752.5 12754.4 0.02 0.08 19
4 periods pr-40-2D2P4S-T4 [12569.8, 12700.3] 5386 12679.6 12679.6 0.00 0.00 19

pr-40-2D2P4S-T5 [12700.4, 12881.6] 5416 12856.6 12860.2 0.04 0.15 21
pr-40-2D2P5S-T1 [12241.8, 12415.4] 5344 12398.7 12398.7 0.00 0.00 22

2 depots pr-40-2D2P5S-T2 [12359.1, 12574.4] 5374 12555 12555 0.00 0.00 21
2 plants pr-40-2D2P5S-T3 [12463.5, 12652] 5358 12632.8 12632.8 0.00 0.00 22
5 periods pr-40-2D2P5S-T4 [12609.8, 12742.5] 5344 12730.4 12730.4 0.00 0.00 22

pr-40-2D2P5S-T5 [12693.3, 12844.1] 5352 12825.6 12825.6 0.00 0.00 22
pr-40-2D3P4S-T1 [11826.5, 12019.5] 1540 11956.1 11959.6 0.04 0.15 27

2 depots pr-40-2D3P4S-T2 [11893.3, 12135.6] 1536 12039.1 12040 0.02 0.06 26
3 plants pr-40-2D3P4S-T3 [11933.6, 12188.6] 1540 12093.4 12093.4 0.00 0.00 26
4 periods pr-40-2D3P4S-T4 [11838.9, 12033.8] 1532 11965.4 11965.4 0.00 0.00 26

pr-40-2D3P4S-T5 [11902.4, 12191.2] 1540 12072.3 12073.6 0.02 0.07 28
pr-40-2D3P5S-T1 [11846.3, 12040.4] 1525 11984.5 11986.5 0.02 0.08 29

2 depots pr-40-2D3P5S-T2 [11916.4, 12157.7] 1535 12074.6 12075.9 0.02 0.07 28
3 plants pr-40-2D3P5S-T3 [11899.8, 12120.9] 1725 12045.8 12045.8 0.00 0.00 28
5 periods pr-40-2D3P5S-T4 [11911.8, 12110.6] 1515 12068.7 12068.7 0.00 0.00 29

pr-40-2D3P5S-T5 [11895.3, 12128.5] 1534 12046.8 12046.8 0.00 0.00 28
pr-40-3D2P4S-T1 [9681.72, 9862.4] 640 9794.28 9794.28 0.00 0.00 27

3 depots pr-40-3D2P4S-T2 [9725.53, 9955.19] 640 9860.69 9860.69 0.00 0.00 27
2 plants pr-40-3D2P4S-T3 [9770.77, 10051] 634 9916.4 9917.29 0.02 0.08 26
4 periods pr-40-3D2P4S-T4 [9655.76, 9937.56] 650 9763.42 9768.03 0.07 0.29 26

pr-40-3D2P4S-T5 [9726.14, 10051.9] 648 9824.06 9824.06 0.00 0.00 25
pr-40-3D2P5S-T1 [9688.24, 9873.74] 641 9812.15 9812.64 0.01 0.05 29

3 depots pr-40-3D2P5S-T2 [9748.89, 9974.3] 648 9888.96 9888.96 0.00 0.00 30
2 plants pr-40-3D2P5S-T3 [9749.21, 9990.35] 635 9892.71 9893.51 0.01 0.04 29
5 periods pr-40-3D2P5S-T4 [9728.32, 9990.4] 638 9863.89 9863.89 0.00 0.00 30

pr-40-3D2P5S-T5 [9704.04, 10017.8] 644 9829.02 9830.13 0.02 0.11 30
pr-40-3D3P4S-T1 [11525.3, 11697.1] 229 11642.8 11642.8 0.00 0.00 24

3 depots pr-40-3D3P4S-T2 [11569.3, 11788.6] 233 11709.7 11709.7 0.00 0.00 24
3 plants pr-40-3D3P4S-T3 [11618, 11833.3] 228 11718.2 11718.2 0.00 0.00 25
4 periods pr-40-3D3P4S-T4 [11525.5, 11675.7] 233 11624.6 11629.1 0.06 0.27 26

pr-40-3D3P4S-T5 [11570.5, 11807.1] 228 11727.6 11727.8 0.00 0.02 27
pr-40-3D3P5S-T1 [11530.4, 11701.8] 233 11654 11654 0.00 0.00 25

3 depots pr-40-3D3P5S-T2 [11592.2, 11802.1] 221 11736 11736 0.00 0.00 28
3 plants pr-40-3D3P5S-T3 [11595, 11779.8] 229 11688.2 11688.2 0.00 0.00 27
5 periods pr-40-3D3P5S-T4 [11593.8, 11742.4] 252 11718.6 11718.6 0.00 0.00 28

pr-40-3D3P5S-T5 [11576.9, 11743.8] 231 11688.9 11688.9 0.00 0.00 30
Avg. [11412.5, 11623.9] 1949 11551.417 11552.1 0.01 0.04 26
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Table 5.14: Results for instances with 100 producers (1)

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-100-2D2P4S-T1 29519.2 29532.1 0.05 0.21 72
2 depots pr-100-2D2P4S-T2 29831.6 29838.2 0.03 0.14 71
2 plants pr-100-2D2P4S-T3 30193.8 30204.8 0.05 0.18 73
4 periods pr-100-2D2P4S-T4 29968.2 29988.2 0.09 0.35 74

pr-100-2D2P4S-T5 30251.3 30268 0.07 0.28 77
pr-100-2D2P5S-T1 29580.4 29591.2 0.04 0.18 79

2 depots pr-100-2D2P5S-T2 29892.1 29910.4 0.07 0.29 78
2 plants pr-100-2D2P5S-T3 29965 29988.7 0.09 0.37 77
5 periods pr-100-2D2P5S-T4 30100.9 30119 0.07 0.29 83

pr-100-2D2P5S-T5 30228.9 30248.8 0.08 0.33 85
pr-100-2D3P4S-T1 26407.4 26416.5 0.04 0.22 57

2 depots pr-100-2D3P4S-T2 26585.5 26609.1 0.10 0.48 56
3 plants pr-100-2D3P4S-T3 26830.6 26857.3 0.12 0.56 60
4 periods pr-100-2D3P4S-T4 26666.9 26710.9 0.19 0.92 60

pr-100-2D3P4S-T5 26925.1 26939.5 0.07 0.32 57
pr-100-2D3P5S-T1 26415.1 26430.8 0.07 0.36 61

2 depots pr-100-2D3P5S-T2 26626.5 26648.8 0.09 0.45 63
3 plants pr-100-2D3P5S-T3 26671.8 26691.4 0.09 0.43 61
5 periods pr-100-2D3P5S-T4 26786 26832.1 0.22 1.00 63

pr-100-2D3P5S-T5 26859.8 26920 0.27 1.26 66
pr-100-2D6P4S-T1 26940.4 26964.9 0.10 0.47 98

2 depots pr-100-2D6P4S-T2 27148.6 27179.1 0.14 0.60 99
6 plants pr-100-2D6P4S-T3 27418.9 27462.9 0.19 0.81 113
4 periods pr-100-2D6P4S-T4 27164.5 27178.7 0.08 0.35 119

pr-100-2D6P4S-T5 27413.6 27464.6 0.25 1.05 114
pr-100-2D6P5S-T1 26946.5 26980.7 0.15 0.67 114

2 depots pr-100-2D6P5S-T2 27171.6 27218.3 0.20 0.87 116
6 plants pr-100-2D6P5S-T3 27225.8 27248.9 0.11 0.47 121
5 periods pr-100-2D6P5S-T4 27338.8 27347.6 0.04 0.18 130

pr-100-2D6P5S-T5 27430.4 27451.9 0.10 0.44 131
pr-100-3D2P4S-T1 23774.1 23791.6 0.11 0.43 89

3 depots pr-100-3D2P4S-T2 24038.8 24049.3 0.05 0.20 86
2 plants pr-100-3D2P4S-T3 24269.8 24296.2 0.14 0.52 92
4 periods pr-100-3D2P4S-T4 24070.5 24084.5 0.08 0.33 83

pr-100-3D2P4S-T5 24289.4 24300.6 0.06 0.24 85
pr-100-3D2P5S-T1 23808.4 23811 0.02 0.07 86

3 depots pr-100-3D2P5S-T2 24062.1 24073.7 0.06 0.22 97
2 plants pr-100-3D2P5S-T3 24110.6 24127.9 0.10 0.38 97
5 periods pr-100-3D2P5S-T4 24204.8 24233.4 0.14 0.53 106

pr-100-3D2P5S-T5 24311 24315.2 0.03 0.11 107
pr-100-6D2P4S-T1 26283.4 26289.4 0.03 0.15 95

6 depots pr-100-6D2P4S-T2 26482.9 26487.5 0.02 0.10 94
2 plants pr-100-6D2P4S-T3 26721.2 26724.1 0.01 0.06 110
4 periods pr-100-6D2P4S-T4 26557 26572 0.07 0.34 89

pr-100-6D2P4S-T5 26790.2 26812.8 0.10 0.45 116
pr-100-6D2P5S-T1 26319.1 26324.4 0.03 0.12 100

6 depots pr-100-6D2P5S-T2 26533.7 26541.4 0.03 0.17 121
2 plants pr-100-6D2P5S-T3 26592 26598.1 0.03 0.13 116
5 periods pr-100-6D2P5S-T4 26710.7 26729.7 0.08 0.39 122

pr-100-6D2P5S-T5 26793.7 26801.2 0.04 0.16 113
Avg. 33630.72 33655.19 0.11 0.49 113
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Table 5.15: Results for instances with 100 producers (2)

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-100-3D3P4S-T1 27704.8 27740 0.14 0.59 101
3 depots pr-100-3D3P4S-T2 27904.7 27927.7 0.11 0.45 102
3 plants pr-100-3D3P4S-T3 28143.9 28163.3 0.09 0.35 101
4 periods pr-100-3D3P4S-T4 27803.8 27852.6 0.20 0.82 107

pr-100-3D3P4S-T5 28037.4 28081.3 0.18 0.70 110
pr-100-3D3P5S-T1 27768.7 27779.1 0.05 0.19 107

3 depots pr-100-3D3P5S-T2 27990.1 28015.9 0.10 0.42 107
3 plants pr-100-3D3P5S-T3 28006.1 28023.4 0.07 0.28 111
5 periods pr-100-3D3P5S-T4 28038 28067.5 0.14 0.54 119

pr-100-3D3P5S-T5 28067.9 28076.4 0.04 0.15 121
pr-100-3D6P4S-T1 33482.8 33489.6 0.03 0.14 134

3 depots pr-100-3D6P4S-T2 33605.1 33652.9 0.16 0.81 136
6 plants pr-100-3D6P4S-T3 33501.3 33534.9 0.11 0.59 148
4 periods pr-100-3D6P4S-T4 33185.2 33195.4 0.04 0.22 150

pr-100-3D6P4S-T5 33413.7 33435.1 0.08 0.42 157
pr-100-3D6P5S-T1 33531.2 33560.7 0.10 0.52 139

3 depots pr-100-3D6P5S-T2 33751.2 33760.5 0.04 0.19 141
6 plants pr-100-3D6P5S-T3 33512.3 33540.2 0.09 0.48 154
5 periods pr-100-3D6P5S-T4 33500.2 33519.6 0.07 0.35 163

pr-100-3D6P5S-T5 33345.4 33362.3 0.06 0.30 162
pr-100-6D3P4S-T1 26829.5 26838.3 0.04 0.18 109

6 depots pr-100-6D3P4S-T2 27056.5 27069 0.05 0.24 112
3 plants pr-100-6D3P4S-T3 27256.4 27289.8 0.14 0.60 115
4 periods pr-100-6D3P4S-T4 26980.3 26994.1 0.06 0.27 122

pr-100-6D3P4S-T5 27225.3 27239.1 0.07 0.30 125
pr-100-6D3P5S-T1 26852.4 26858.2 0.03 0.13 114

6 depots pr-100-6D3P5S-T2 27089.7 27110.9 0.09 0.40 117
3 plants pr-100-6D3P5S-T3 27140.4 27152.4 0.05 0.23 120
5 periods pr-100-6D3P5S-T4 27147.4 27177.6 0.13 0.57 129

pr-100-6D3P5S-T5 27176.4 27190.5 0.06 0.28 132
pr-100-6D6P4S-T1 30673 30705.2 0.15 0.68 210

6 depots pr-100-6D6P4S-T2 30878.8 30919.7 0.16 0.70 208
6 plants pr-100-6D6P4S-T3 31076 31109.8 0.15 0.66 218
4 periods pr-100-6D6P4S-T4 30795.9 30824.8 0.12 0.53 226

pr-100-6D6P4S-T5 31072.9 31099.1 0.10 0.46 231
pr-100-6D6P5S-T1 30729 30754.4 0.10 0.47 215

6 depots pr-100-6D6P5S-T2 30929.2 30974.6 0.19 0.83 216
6 plants pr-100-6D6P5S-T3 30995.4 31027.9 0.13 0.58 223
5 periods pr-100-6D6P5S-T4 30964.4 31026.3 0.24 1.07 233

pr-100-6D6P5S-T5 30943.6 31002.7 0.27 1.19 240
Avg. 29852.7 29878.6 0.11 0.47 150
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Table 5.16: Results for instances with 200 producers

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-200-3D3P4S-T1 53888 53915.7 0.06 0.26 167
3 depots pr-200-3D3P4S-T2 54490.3 54514.3 0.06 0.22 165
3 plants pr-200-3D3P4S-T3 55283.6 55326.7 0.10 0.36 172
4 periods pr-200-3D3P4S-T4 54907 54985.3 0.17 0.63 186

pr-200-3D3P4S-T5 55642 55682.7 0.09 0.33 192
pr-200-3D3P5S-T1 53968.6 53995.9 0.06 0.24 174

3 depots pr-200-3D3P5S-T2 54525.8 54564.7 0.08 0.33 176
3 plants pr-200-3D3P5S-T3 54817.5 54860.6 0.09 0.35 182
5 periods pr-200-3D3P5S-T4 55176.1 55210.7 0.08 0.30 184

pr-200-3D3P5S-T5 55519.3 55551.3 0.08 0.29 195
pr-200-3D6P4S-T1 49392.1 49440.8 0.11 0.54 207

3 depots pr-200-3D6P4S-T2 49871.4 49977.6 0.26 1.20 202
6 plants pr-200-3D6P4S-T3 50415.7 50505.7 0.21 0.95 194
4 periods pr-200-3D6P4S-T4 50163.1 50193.6 0.08 0.36 202

pr-200-3D6P4S-T5 50753.3 50767.6 0.04 0.17 204
pr-200-3D6P5S-T1 49435.4 49509.5 0.17 0.82 217

3 depots pr-200-3D6P5S-T2 49913.3 50014.5 0.23 1.06 215
6 plants pr-200-3D6P5S-T3 50124.4 50178.7 0.12 0.56 213
5 periods pr-200-3D6P5S-T4 50382.9 50439.2 0.13 0.56 212

pr-200-3D6P5S-T5 50668.5 50700.9 0.08 0.35 218
pr-200-6D3P4S-T1 50071.9 50118 0.10 0.47 189

6 depots pr-200-6D3P4S-T2 50576.1 50606.9 0.08 0.33 194
3 plants pr-200-6D3P4S-T3 51270.7 51318.6 0.11 0.46 200
4 periods pr-200-6D3P4S-T4 50913.8 50987.5 0.16 0.69 216

pr-200-6D3P4S-T5 51526.7 51605.9 0.18 0.75 211
pr-200-6D3P5S-T1 50113 50152.8 0.10 0.46 188

6 depots pr-200-6D3P5S-T2 50644.7 50688.8 0.11 0.46 198
3 plants pr-200-6D3P5S-T3 50942.2 50967.5 0.07 0.29 202
5 periods pr-200-6D3P5S-T4 51235.6 51311.9 0.18 0.74 217

pr-200-6D3P5S-T5 51426.1 51537 0.26 1.06 224
pr-200-6D6P4S-T1 57968.5 58008.4 0.08 0.37 318

6 depots pr-200-6D6P4S-T2 58522.4 58565.8 0.09 0.38 329
6 plants pr-200-6D6P4S-T3 58977.3 59060.3 0.16 0.69 351
4 periods pr-200-6D6P4S-T4 58463.3 58536 0.15 0.65 359

pr-200-6D6P4S-T5 59006.3 59039.8 0.07 0.29 369
pr-200-6D6P5S-T1 58006.9 58058.9 0.11 0.49 331

6 depots pr-200-6D6P5S-T2 58597.2 58654.8 0.12 0.50 330
6 plants pr-200-6D6P5S-T3 58701.8 58742.1 0.09 0.36 344
5 periods pr-200-6D6P5S-T4 58880.1 58907.4 0.05 0.23 363

pr-200-6D6P5S-T5 58891.3 58969.3 0.17 0.72 379
Avg. 53601.855 53654.3425 0.12 0.51 235
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Chapter 6

Conclusion

The VRP plays a vital role in the planning of many real-life collection/distribution sys-
tems such as garbage collection, mail delivery, and task sequencing. From a theoretical
point of view, it also has drawn interest from many researchers during the past decades
as a well-known combinatorial NP-hard problem. Due to significant economic benefits
that can be achieved by optimizing logistics and transportation problems in practice,
increased attention has been focused on various routing problems. Real-life problems
often incorporate several attributes, constraints and characteristics and, consequently,
get through the category of multi-attribute problems. Contrary to the classical VRP
that focuses on the simplified models considering a small subset of existing attributes,
the research on the multi-attribute extensions of the VRP attempts to simultaneously
consider several complicating attributes encountered in real-life problems.

In this dissertation, we addressed a tactical planning problem arising in the milk
collection-distribution activity in Quebec. This problem involves some special practical
issues that are rarely considered by other authors in the field.

We first drew the sketch of a new class of problems, which is encountered in
collection-distribution of perishable products such as milk, cheese, poultry and eggs.
The characteristics and attributes of this class of problems are mainly inspired by the
milk collection-distribution activity in Quebec. This problem deals with designing rout-
ing plans, where each route consists of two main phases. The first phase is expressed
by a series of visits to a set of geographically dispersed producers in order to collect
their product. The second phase consists of one or more visits to a set of processing
plants to deliver the collected quantity of product.

The first paper focuses on a deterministic variant of the problem based on simple
configuration of routes. It is characterized with an unlimited fleet of heterogeneous
vehicles, departing from di↵erent depots to visit a set of producers. This problem in-
volves constraints such as vehicle capacity, producer time windows and the necessity
of satisfying plants’ demands by delivering them adequate quantities of products. The
goal of the considered problem is to minimize the total cost of a plan over the plan-



ning horizon. The cost of a plan consists of two main components: fixed and variable
costs. The fixed costs are incurred when a vehicle is employed, while the variable
costs depend of the total traveled distance. We presented a mathematical model for
this problem taking the form of a set covering formulation. Our solution methodol-
ogy was based on the branch-and-price framework. This approach deals with a master
problem and a set of subproblems. The master problem is the linear relaxation of the
proposed set covering. The subproblems, on the other hand, take the form of an ele-
mentary shortest path problem with resource constraints. In this particular problem,
the resource constraints are associated with the vehicle capacity and producers’ time
windows. Solving the subproblems represents the bottleneck of the whole procedure.
Therefore, we proposed a bilevel subproblem solving procedure, which is based on a
dynamic-programming label-correcting procedure. The first level consists of a heuristic
label-correcting procedure, in which an aggressive dominance rule is applied. Accord-
ingly, a large portion of negative-reduced-cost columns is generated in a fraction of
computational e↵ort. However, the optimality is not guaranteed, since there may exist
undiscovered negative-reduced-cost columns. Therefore, the second level consists of an
exact label-correcting procedure, assuring the generation of all the remaining negative
reduced-cost columns. We employed several cutting-edge strategies to accelerate the
exact label-correcting procedure, and their performances are compared. Most of these
strategies are based on partially relaxing elementarity condition and tightening it in the
course of the procedure. Moreover, a new branching strategy, based on the structure
of the problem, was proposed. This bi-level branching strategy first attempts to assign
the producers to the plants through the branching decision. When all the producer-
plant assignment variables are integer, the new branches are derived based on the flow
variables. This branching strategy has been compared to another bi-level branching
scheme; first branching on time windows and also, on flow variables. To evaluate the
performance of this branch-and-price, a large set of randomly generated instances were
considered. Di↵erent accelerating strategies, as well as, di↵erent branching strategies
were compared on instances with up to fifty producers, three depots and three plants.
The results show the high performance of the algorithm in terms of solution quality
and computational e�ciency.

In the second part of this dissertation, we addressed a new variant of the same
problem class. In this variant, the assumptions regarding fixed production levels over
a horizon are removed. Accordingly, two types of potential variations in terms of
producers’ production levels have been introduced; daily and seasonal variations. The
seasonal variations occur periodically, following di↵erent seasonal characteristics, while
the daily variations may take place on a random basis. In this work, we focused on
inclusion of the seasonal variations in the routing plan design. In other words, the
main goal of this problem is to design a unique routing plan over a horizon, while the
existing seasonal variations, in terms of producers’ production levels, are accounted
for. The problem is modeled as a multi-period vehicle routing problem, in which each
period represents a production season. A new set covering formulation was proposed.
In this multi-period model, each period represents a given production level for each
producer. The structure of this multi-period problem is very similar to the idea of an a
priori optimization for a vehicle routing problem with stochastic demands. The solution
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methodology proposed in this paper is based on the branch-and-price algorithm. Similar
to the case of the first paper, the most significant, challenging, and time-consuming task
was solving the subproblems. In this problem, one subproblem exists for each plant,
which takes the form of a multi-period elementary shortest path problem with resource
constraints. We introduced the non-monotonic resource consumption phenomena in
the case of the MPESPPRC, which increases the di�culty of the dominance rules. To
deal with this non-monotonicity phenomenon, we have proposed a bucket-based label
storing strategy. A series of numerical tests was run to investigate the performance of
the proposed algorithm. This algorithm is able to solve instances with twenty producers,
three depots, three plants, and five periods.

To be able to address larger-scale problems, which are closer to real-life instances,
in the third part of this thesis, a metaheuristic approach was proposed for the multi-
period variant of the problem. This approach, based on the adaptive large neigh-
bourhood search framework, includes several new destruction/construction operators,
which are designed with insights from the structure of the problem. Moreover, some
generic operators from the literature are adapted to the problem and are included in
the algorithm. Also, in order to increase the e�ciency of the search, a new diversity
management procedure is proposed. The evaluation of the algorithm’s performance is
based on the following two criteria: 1) in the case of smaller instances, the solutions
were compared to their optimal values obtained in the second paper, and 2) for the
medium sized instances, a set of lower and upper bounds are computed. The lower
bound is based on two components: 1) routing cost; a lower bound on the routing cost
is obtained by solving a single variant of the problem, and 2) recourse cost; a lower
bound on the recourse cost is obtained based on a bin-packing formulation. Results for
instances with up to 200 producers, six depots, six plants and 5 periods are reported.

6.1 Future works and perspectives

We conclude this chapter by highlighting some research perspectives. Future works can
be categorized in the three following ways:

1. As mentioned in Chapter 1, di↵erent route patterns are recognized in the DTP. All
our problem descriptions in this dissertation were based on the simple route con-
figuration. A research extension can address the single and multi-period variants
of the problem, where more sophisticated route configurations are considered.

2. In the second and third papers of this thesis, we attempted to include the exist-
ing seasonal variations in the planning design. However, potential daily variations
were neglected. Considering the potential daily fluctuations, in terms of produc-
ers’ production level change the problem into a stochastic setting.

3. In the multi-period variant of the problem, no time window is considered for
the producers. We plan to consider a new version of the problem, in which
associated with each producer, there is a soft time window. The time windows of
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the producers, being visited after a failure, may be violated, incurring a penalty.
This penalty may be independent from the tardiness of the visit to the producer
or as a function of temporal violation.
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[66] M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Operations Research,
44(3):469–477, 1996.

[67] M. Gendreau, Y. Potvin J, A. Smires, and P. Soriano. Multi-period capacity
expansion for a local access telecommunications network. European Journal of
Operational Research, 172:1051–1066, 2006.

142
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