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RÉSUMÉ

Cette thèse comporte trois essais sur les interactions sociales en sciences

économiques. Ces essais s’intéressent à la fois au côté théorique qu’empirique des in-

teractions sociales. Le premier essai (chapitre 2) se concentre sur l’étude (théorique

et empirique) de la formation de réseaux sociaux au sein de petites économies

lorsque les individus ont des préférences homophilique et une contrainte de temps.

Le deuxième essai (chapitre 3) se concentre sur l’étude (principalement empirique)

de la formation de réseau sociaux au sein de larges économies où les comporte-

ment d’individus très distants sont aproximativement indépendants. Le dernier

essai (chapitre 4) est une étude empirique des effets de pairs en éducation au sein

des écoles secondaires du Québec. La méthode structurelle utilisée permet l’identi-

fication et l’estimation de l’effet de pairs endogène et des effets de pairs exogènes,

tout en contrôlant pour la présence de chocs communs.

Mots Clés : Interactions Sociales, Réseaux Sociaux, Formation de Réseaux,

Effets de Pairs
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ABSTRACT

This thesis includes three essays on social interactions in economics, both from

a theoretical and applied perspective. The first essay (chapter 2) focusses on the

(theoretical and empirical) study of a network formation process in small economies

characterized by the fact that individuals have homophilic preferences and a time

constraint. The second essay (chapter 3) is focussed on the study (mostly empirical)

of a network formation process in large economies characterized by the fact that

distant individuals have approximately independent behaviours. The last essay

(chapter 4) is an empirical study of peer effects in education for Quebec high-school

teenagers. The structural method used allows for the identification and estimation

of the endogenous peer effect and the exogenous peer effects, while controlling for

the presence of common shocks.

Keywords: Social Interactions, Social Networks, Network Formation,

Peer Effects
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What you do in this world is a matter of no consequence.

The question is what can you make people believe you have done.

- Arthur Conan Doyle, A Study in Scarlet
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AVANT-PROPOS

“The temptation to form premature theories upon

insufficient data is the bane of our profession.”

-Sherlock Holmes

Le manque de données de qualité est un des principaux problèmes de l’étude des

intéractions sociales. La difficulté d’interpréter correctement les données disponibles

en est un autre. Les chapitres qui suivent tentent surmonter certains défis imposés

par ces problèmes. Il reste néanmoins beaucoup de travail à faire. Je reste persuadé

qu’une meilleure compréhension des phénomènes économiques sous-jacents est la

clé vers la résolution de nombreux problèmes d’origine statistique.
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CHAPITRE 1

INTRODUCTION

Ces dernières années, la litérature théorique et empirique sur les interactions

sociales et les réseaux sociaux en économique a pris beaucoup d’importance. Dans

cette thèse, je m’intéresse à deux branches de cette litérature : l’estimation des

effets de pairs, et l’estimation des processus de formation de réseaux sociaux.

Afin de faciliter la discussion, j’introduis les trois objets suivants : (y,X,G),

pour une population composée de n individus. Le vecteur y, de taille n×1 représente

une variable endogène potentiellement sujette à des effets de pairs (e.g. habitudes

alimentaires, résultats scolaires...). La matrice X, de taille n × k représente une

série de k variables exogènes (e.g. age, genre, revenu, groupe racial...). Finalement,

la matrice G, de taille n× n est une matrice (symétrique) d’adjacence donnant la

structure d’un réseau social. Si deux individus i et j sont liés, alors Gij = 1. Dans le

cas contraire, Gij = 0. L’estimation des effets de pairs se concentre principalement

sur l’étude et l’estimation de P(y|X,G) alors que l’estimation des processus de

formation de réseaux sociaux s’intéresse principalement à P(G|X).1

Effets de Pairs

Une des problématiques avec l’estimation de P(y|X,G) est d’identifier les effets

de pairs des potentiels chocs communs. Supposons que la population de taille n peut

être réparée en différents groupes indépendants et considérons la forme structurelle

suivante (issue de Bramoullé et al., 2009) pour le groupe r :

yr = αr + Xrβ + G̃rXrγ + λG̃ryr + εr

où G̃r est construit à partir de Gr en normalisant la somme de chaque ligne à 1.

Une méthode classique de contrôler pour l’effet fixe αr et de contourner le problème

1où P représente la densité.
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causé par la présence du paramètre fortuit αr (“incidental parameter problem”,

Newman et Scott, 1948) est de réécrire le modèle en déviations.

(I−Mr)yr = (I−Mr)Xrβ+λ(I−Mr)G̃ryr+(I−Mr)G̃rXrγ+(I−Mr)εr (1.1)

où Mr est une matrice carrée symétrique telle que la somme de chaque ligne est

normalisée à 1.

Dans ce cas, l’identification des paramètres β, λ, γ est loin d’être triviale. De

plus, l’estimation est compliquée par la présence de la variable endogène G̃ryr (“re-

flection problem”, Manski, 2003). Pour un réseau arbitraire, Bramoullé et al. (2009)

montent que l’identification est possible si les matrices I, G̃, G̃2 sont linéairement

indépendantes. Dans le cas spécifique où le réseau représente des interactions en

groupes (le réseau est complètement connecté pour chaque groupe r), Lee (2007)

développe un estimateur par maximum de vraisemblance basé sur la forme réduite

de (1.1). C’est cet estimateur qui est utilisé dans le chapitre 4.

Formation du Réseau

La problématique principale en ce qui a trait à l’étude de P(G|X) est l’important

degré de dépendance entre les observations. Par exemple, la probabilité que deux

individus créent un lien d’amitié peut dépendre des liens que chacuns ont. Donc,

en général, P(G|X) 6= Πij:i<jP(Gij|X). Dans les chapitres suivants, je présente

deux approches pour contourner ce problème. La première approche (chapitre 2)

est basée sur l’observation de plusieurs petites sous-économies indépendantes. La

deuxième (chapitre 3) est basée sur l’observation d’une large économie et sur un

argument d’indépendence asymptotique.

Une autre problématique est de pouvoir modéliser P(G|X) afin de répliquer les

faits stylisés observés. J’utilise l’une des principales caractéristiques des réseaux

sociaux : l’homophilie. L’homophilie caractérise le fait que deux individus liés sont

en moyenne davantage similaires que deux individus non liés. Dans le chapitre 2,

j’utilise une version forte de l’homophilie (l’homophilie structurelle) alors que dans
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le chapitre 3, j’utilise une forme très faible de l’homophilie (l’homophilie asympto-

tique).

Trois Essais...

Cette thèse comprend trois essais (chapitres 2,3 et 4). Le premier essai intitulé

Structural Homophily s’intéresse à la formation de réseaux d’amitié dans des écoles

secondaires de taille relativement faibles, aux États-Unis. Une des caractéristiques

de ces petites écoles est que les individus connaissent l’ensemble de leurs amis

potentiels. Chaque individu a une contrainte de temps (inobservée) qui introduit

une limite quant au nombre possible d’amis qu’il peut avoir. Lorsque les indivi-

dus préfèrent créer des liens avec des individus qui leurs sont similaires, l’unique

réseau d’équilibre possède une structure extrêmement particulière : l’homophilie

structurelle. Cette structure particulière permet de définir une méthode d’estima-

tion originale. Je développe un estimateur permettant d’estimer les poids relatifs

de la contribution de différentes caractéristiques socioéconomiques au processus de

formation du réseau. Cet estimateur est basé sur la maximization de la probabilité

que le réseau observé soit caractérisé par l’homophilie structurelle. J’utilise une

base de données américaine (AddHealth) contenant de l’information sur des ado-

lescents de niveau secondaire (“high-school”). Pour chaque adolescent, j’observe

son réseau social ainsi que son groupe racial. Je trouve que le niveau de ségrégation

varie considérablement selon le groupe racial considéré, les noirs étant davantage

ségrégués que les autres groupes raciaux.

Le deuxième essai est intitulé My Friend Far Far Away : Asymptotic Properties

of Pairwise Stable Networks.2 Comme pour l’essai précédent, nous nous intéressons

à P(G|X), mais maintenant, dans le cas où on observe l’unique réseau d’équilibre

d’une très vaste économie. L’estimateur est basé sur la maximisation de la proba-

bilité que le réseau d’équilibre soit Pairwise Stable (Jackson et Wolinsky, 1996). En

utilisant une généralisation des modèles spatiaux de dépendence limitée, nous mon-

trons que l’estimateur est convergent et asymptotiquement normalement distribué.

2Cooécrit avec Ismael Mourifié.
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Un des grands avantages de cet estimateur est sa simplicité. L’estimation peut se

faire à l’aide de commandes préprogrammées pour la majorité des logiciels statis-

tiques. Nous présentons une application en utilisant une base de données fournie

par Yahoo ! contenant de l’information sur l’utilisation de leur service de messagerie

instantanée pour plus de 22 millions d’utilisateurs. Nous trouvons que la probabi-

lité que deux individus interragissent par le service de messagerie instantanée est

fonction de la densité locale du réseau, du degré d’utilisation d’Internet par les

individus, ainsi que de la différence entre leurs caractéristiques socioéconomiques

et le contenu des pages qu’ils ont visitées.

Le troisième essai est intitulé Do Peers Affect Student Achievement ? Evidence

from Canada Using Group Size Variation.3 Cet essai est différent des deux essais

précédent puisqu’il utilise la forme du réseau (ici un réseau complètement connecté)

afin d’estimer les effets de pairs, i.e. P(y|G,X). À l’aide d’une base de donnnée

fournie par le Ministère de l’éducation et des loisirs et des sports du Québec, et

de l’approche structurelle de Lee (2007), nous estimons l’effet de pair endogène et

les effets de pairs exogènes, tout en contrôlant pour la présence de chocs communs

pour quatre matières : Français, Histoire, Sciences et Mathématiques. Les effets

endogènes sont positifs lorsqu’ils sont significatifs et de magnitude comparable avec

ceux trouvés dans la litérature. Nous trouvons aussi quelques effets exogènes, dont

un effet négatif de l’âge des pairs, qui est interprété comme un effet négatif de la

présence de doubleurs au sein d’un groupe.

3Cooécrit avec Yann Bramoullé, Habiba Djebbari et Bernard Fortin.
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CHAPITRE 2

STRUCTURAL HOMOPHILY

2.1 Introduction

The fact that similar individuals tend to interact with each other is a prominent

feature of social networks. The phenomenon, referred to as homophily, is increa-

singly being studied by economists.1 Indeed, the structure of the social networks

in which individuals interact has been shown to significantly influence many so-

cial outcomes such as segregation,2 information transmission and learning,3 and

employment and wages.4 Being able to understand, identify, and measure how

the social characteristics of an individual influence network formation is there-

fore of central importance. However, most studies to date overlook the equilibrium

implications of homophily, and disregard key factors such as the impact of time

constraints.

In this paper, I develop an empirically realistic model of strategic network for-

mation incorporating homophilic preferences and capacity constraints on the num-

ber of links. My analysis uncovers novel structural predictions generated by the

equilibrium interplay between the individuals’ homophilic preferences and capacity

constraints. Building on the explicit structure of homophily obtained in equili-

brium, I develop a new estimation technique that allows one to recover underlying

preferences parameters. I show as an illustration that the formation of friendship

networks among American teenagers is strongly influenced by racial considera-

tions. I also show that this preference bias toward individuals of the same race

varies considerably with respect to the racial group considered.

The emphasis on the equilibrium implications of homophilic preferences is new

1See for example Currarini et al. (2009), Bramoullé et al. (2012), and Rivas (2009).
2Echenique and Fryer (2007), Watts (2007), and Mele (2010).
3Golub and Jackson (2010a,2010b).
4van der Leij et al. (2009) and Patacchini and Zenou (2012).
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to the literature. The equilibrium network resulting from the theoretical model

exhibits more structure than the known stylized facts regarding homophilic patterns

in social networks.5 The equilibrium network architecture allows for an original

empirical methodology using a maximum likelihood approach. A key feature of the

estimation strategy is that it recovers explicit preference parameters characterizing

homophily in social networks. In other words, the estimation strategy allows for

the identification of preference interactions from constraint interactions.6

The theoretical framework produces sharp predictions. There exists a generi-

cally unique, empirically realistic equilibrium network. A key assumption is that the

homophilic preferences of individuals can be represented by a distance function on

the set of characteristics of the individuals. This idea is implicitly or explicitly ex-

ploited by many papers looking at homophily in social networks.7 This assumption

allows me to introduce enough heterogeneity in the model to generate empirically

realistic equilibrium networks. I also assume that individuals have link-separable

utilities, and an explicit resource constraint, such as time. For example, while a

teenager may prefer to be friends with other teenagers who have similar charac-

teristics, he must take into account the fact that he has limited time to spend

with the friends he chooses to have. Hence, the resource constraint explicitly intro-

duces an upper bound on the number of bilateral relationships an individual can

sustain.8 The specific notion of homophily emerging in equilibrium results from

the tension between the individuals’ homophilic preferences and the individuals’

resource constraint. These two premises imply a novel theoretical prediction on

the shape of homophily in equilibrium. I call this specific network architecture

structural homophily.

Structural homophily describes an explicit relationship between individuals’ so-

cioeconomic characteristics and the network architecture. An individual is charac-

5See Bramoullé et al. (2012), and Currarini et al (2009).
6Manski (2000) distinguishes between three sources of social interactions : Preference interac-

tions, Constraint interactions, and Expectations interactions.
7See for instance, Johnson and Gilles (2000), Marmaros and Sacerdote (2006), Iijima and

Kamada (2010), Mele (2010) and Christakis et al. (2010).
8It relates to the sociological and psychological observation referred to as the Dunbar’s number.
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terized by a “social neighborhood” on the space of individual characteristics.9 This

neighborhood explicitly determines the set of acceptable bilateral relationships. In

a network characterized by structural homophily, two individuals are linked if and

only if they belong to the intersection of their neighborhoods. These neighborhoods

are not directly observable, but are implied by equilibrium predictions of the theo-

retical model for a given a distance function. This novel theoretical prediction has

empirical power.

I use structural homophily to develop an original estimation strategy. This stra-

tegy is based on the duality between the equilibrium network structure, and struc-

tural homophily. Any equilibrium network exhibits structural homophily, and any

observed network that exhibits structural homophily is an equilibrium network. I

develop a maximum likelihood approach, defined over a population of distinct social

networks. The empirical method allows for the identification and estimation of pro-

minent socioeconomic characteristics affecting the equilibrium network structure.

This is relevant for policy making since it allows the policy maker to target rele-

vant socioeconomic characteristics. As an illustration, I use data on the friendship

networks of American teenagers provided by the Add Health database.10 I focus

the analysis on race-based choices and show that the same-race preference bias

substantially varies with respect to racial group. Blacks have a stronger bias than

Asians, while Whites have the smallest bias. The estimated coefficients are prefe-

rence parameters, and hence do not depend on the distribution of the racial groups

in the population, nor do they depend on the individuals’ resource constraints.

This paper contributes to the theoretical and the empirical literature on net-

work formation. Most theoretical models of network formation produce relatively

structured equilibrium networks such as stars, circles or chains.11 These models,

although highly relevant from a theoretical perspective, are not well suited for em-

9It relates to the sociological notion of a “social niche” ; see for instance McPherson et al.
(2001)

10Carolina Population Center, University of North Carolina at Chapel Hill ; see
http ://www.cpc.unc.edu/projects/addhealth.

11Bala and Goyal (2000), Jackson (2008, chapter 6), Jackson and Rogers (1997), Jackson and
Wolinsky (1996), and Johnson and Gilles (2000).
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pirical purposes. Indeed, the resulting set of equilibrium networks is both too large

(many equilibrium networks) and too constraining (stars, chains, circles, etc.) to

represent actual, observable, social networks. Most theoretical models assume that

payoffs depend on detailed features of the network structure, but neglect the ca-

pacity constraints on the number of links an individual can make.12 I show that

the introduction of this constraint, combined with explicit ex-ante homophilic and

link-separable utilities, implies the existence of a unique, empirically realistic equi-

librium network.13

Two alternative explanations of homophily have been proposed. The first is

through correlations in the meeting process :14 individuals have no preference bias,

but individuals with similar characteristics have a higher probability of meeting.

The second is through preference biases :15 individuals prefer to link with similar

individuals. In this paper, I assume that individuals have homophilic preferences,

but evolve in a deterministic world. I analyze the equilibrium implication of these

preferences in a fully strategic, non-cooperative setting.

The empirical literature on network formation is still in an early stage. The

few existing papers clearly identify homophily as a driving factor of the network

formation process.16 This paper contributes to the literature on strategic network

formation by providing an estimation strategy based on the equilibrium structure of

homophilic preferences. Equilibrium considerations are important, as they imply a

departure from link-level estimation techniques. The model defines a precise depen-

dence structure which allows for the definition of an explicit maximum likelihood

estimator.17

The remainder of the paper is organized as follows. In section 2.2, I present the

12Exceptions include Bloch and Dutta (2009) and Rub́ı-Barceló (2010).
13I concentrate on strategic models of network formation. There exists a large literature on ran-

dom network formation, which is not directly concerned with the current setting. The interested
reader can see for instance Jackson (2008, chapters 4 and 5) and the references therein.

14See for instance Bramoullé et al. (2012)
15See Currarini et al. (2009), and Mele (2010)
16See for instance Christakis et al. (2010), Mele (2010), Currarini et al. (2010), and Franz et

al. (2008)
17As opposed to the simulated Bayesian approaches in Christakis et al. (2010), and Mele (2010).
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theoretical model and key definitions. In section 2.3, I find and characterize the

(unique) equilibrium network. In section 2.4, I describe the empirical methodology

and explore its properties using Monte Carlo simulations. In section 2.5, I present

an application of race-based homophily in friendship networks using the Add Health

database. I conclude in section 2.6.

2.2 The Theoretical Model

In this section, I present a non-cooperative model of network formation that

characterizes the equilibrium effects of homophily. The model generically produces

a unique equilibrium. I first provide a formal definition of Structural Homophily.

Next, I outline the theoretical framework, and finally, I briefly present the main

definitions and equilibrium concepts.

2.2.1 Structural Homophily

In order to introduce this new notion of homophily, we need some preliminary

assumptions. There is a finite set of individuals N . Individuals may be linked to-

gether through a network. Let gi ⊆ N be the set of individuals linked to individual

i for all i ∈ N . Each individual i ∈ N is characterized by a type θi ∈ Θ, where Θ

is the type space. An individual’s type could represent, for instance, a series of so-

cioeconomic characteristics. I consider a distance d on Θ. For notational simplicity,

let dij ≡ d(θi, θj) for any i, j ∈ N . Then, structural homophily is defined as follows.

Definition 1 A network g exhibits structural homophily with respect to a dis-

tance d(., .) if whenever two individuals, i and j, are not linked, either dij ≥
maxk∈gi{dik} or dij ≥ maxk∈gj{djk}.

This definition formalizes the fact that two individuals that are “close” should

be linked. Intuitively, if two individuals are not linked, it is because, from the point

of view of one of the individuals, the other is located relatively too far. Notice

that this definition only makes sense when the creation of a link requires mutual
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consent. Figure 2.1 shows two examples of networks for Θ = R2. The first network

exhibits Structural Homophily, but the second does not. In Figure 2.1b, the closest

individuals (i.e. D and E) are not linked, which is in contradiction with structural

homophily since D is linked to C, and E is linked to B.

Figure 2.1 – Structural Homophily

(a) Respected

A

B

C D

E

(b) Violated

A

B

C D

E

More insight can be obtained by drawing the equivalence (or indifference) curves

corresponding to the farthest link for each individuals considered (i.e. for B and

D in Figure 2.2a, and for D and E in Figure 2.2b). These equivalence curves

define neighborhoods ; every individual inside the neighborhood of i is at a distance

smaller the distance between i and his farthest link. If both individuals belong to

the intersection of the two neighborhoods generated by the equivalence curves (as

in Figure 2.2b), then Structural Homophily is violated.18

Structural homophily has an interpretation in terms of revealed preferences.

Suppose that individuals have preferences over links with other individuals, and

that such preferences are a function of the distance between the individuals. Sup-

pose also that we observe the network (i.e. the individuals and their links), and

the types of the individuals in the network (i.e. a series of individual characteris-

tics). Then, under mutual consent, we should not observe networks such as the one

depicted in Figure 2.2b. That is, structural homophily should hold.

18This closely relates to the cutoff rule of Iijima and Kamada (2010).
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Figure 2.2 – Structural Homophily : Equivalence curves

(a) Respected

A

B

C D

E

(b) Violated

A

B

C D

E

It it interesting to note that small-worlds networks respect structural homophily

for a specific type space.19 In a small world model, individuals are located on islands.

In that setting, structural homophily implies that individuals are linked first with

individuals of the same island. Hence, if there is a link between two islands, those

islands have to be fully connected. I now present a social networking game, which

produces Structural Homophily at equilibrium.

2.2.2 The Game

There are n individuals, each of whom is endowed with a fixed amount of

resources x̄i = κiξ, where ξ ∈ R+ and κi ∈ N. We will see that, in equilibrium, κi

is interpreted as the maximum number of links that an individual i can have. A

strategy for an individual i is a vector xi = (x1
i , ..., x

n
i ) ∈ Xi, where Xi = {xi ∈

Rn
+|x

j
i ≤ ξ, and

∑
j∈N x

j
i ≤ κiξ}. Then, ξ plays the role of a link-level constraint.

The introduction of the link-level constraint is motivated by the empirical fact that

the number of links varies across individuals. Let X = ×i∈NXi. We say that there

is a link between an individual i and an individual j iff xji > 0 and xij > 0. Let

gi = {j ∈ N |i and j are linked}, so j ∈ gi iff i ∈ gj. That is, a link exists iff

both individuals invest a strictly positive amount of resources in it. Notice that

individual i can be linked to himself.

19See for instance Jackson and Rogers (2005) and Galeotti et al. (2006).
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The utility of an individual is given by the function ui : X → R. It is additive

in the different links he has, and it is represented by :

ui(x) =
∑

j∈N\{i}

vi(x
j
i , x

i
j, dij) · I{j∈gi} + wi(x

i
i) · I{i∈gi}

where I{P} is an indicator function that takes value 1 if P is true, and 0 otherwise.

The function vi(x, y, d) gives the value of any link for i. It is assumed to be twice

continuously differentiable with vx(x, y, d) > 0 if y > 0, vy(x, y, d) > 0 if x > 0,

and vd(x, y, d) < 0 if x, y > 0. The function wi(x
i
i) represents the payoff received

from the private investment of i.20 It is also twice continuously differentiable with

w′(x) > 0. I also allow for the presence of fixed costs, i.e. vi(0, 0, d) ≤ 0 and

wi(0) ≤ 0. Notice that an individual benefits from a link only if both individuals

invest in the link. The model induces a game Γ between the n individuals. Formally,

we have Γ = (N, {Xi}i∈N , {ui}i∈N).

The model has two important features. First, the initial endowment creates

scarcity and induces a feasibility constraint. This effect is typical of any matching

model. If some individual i invests resources in a link with individual j, he will

have less available resources to create a link with another individual. That is, the

feasibility constraint implies a tradeoff between the distance between two indivi-

duals, and the level of investment they put in the link. This is what Manski (2000)

refers to as “constraint interactions”. Second, the preferences are affected by the

presence of direct externalities. The amount of resources invested by some indivi-

dual in a given link directly affects the utility of the individuals he links to. That

is, in Manski’s terms, “preference interactions”. Those two features will play an

important role in equilibrium.

This completes the description of the game. I now present the main definitions.

20The function wi can also be interpreted as the private value of the resource x for i
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2.2.3 Definitions

Before turning to the analysis of the model, I introduce some definitions. The

collection of links between individuals generates a network g = (N,E). A network

is characterized by a set of individuals (here, N), and a set E of links, which are

(unordered) pairs of individuals. The set of all possible networks is denoted by G.

Any network g can be represented by a n×n adjacency matrix A that takes values

aij = 1 if j ∈ gi, and 0 otherwise, for all i, j ∈ N . The degree δi(g) of an individual

i is the number of links attached to i, i.e. δi(g) = |gi|.

I am interested in the following solution concepts :

Definition 2 A Nash Equilibrium (NE) is a profile x∗ ∈ X such that ui(x
∗
i , x
∗
−i) ≥

ui(xi, x
∗
−i) for all xi ∈ Xi, and for all i ∈ N .

The set of Nash equilibria is very large. Since an individual benefits only from a

collaborative link when both individuals invest in the link, it will never be profitable

to unilaterally start a new link. For this reason, I will focus on the following solution

concept, introduced by Goyal and Vega-Redondo (2007).

Definition 3 A Bilateral Equilibrium (BE) is a profile x∗ ∈ X such that :

(1) x∗ is a Nash Equilibrium

(2) There exists no i, j ∈ N , such that ui(xi, xj, x
∗
−i−j) > ui(x

∗) and uj(xi, xj, x
∗
−i−j) ≥

uj(x
∗) for some xi ∈ Xi and xj ∈ Xj.

This solution concept allows for bilateral deviations. This is a natural extension

of individual rationality, since individuals can benefit from the creation of links. For

certain economies, however, the BE concept will be too constraining. Accordingly,

I also introduce the following weakened equilibrium concept.

Definition 4 A Weak Bilateral Equilibrium (WBE) is a profile x∗ ∈ X such that :

(1) x∗ is a Nash Equilibrium

(2) There exists no i, j ∈ N , such that ui(xi, xj, x
∗
−i−j) > ui(x

∗) and uj(xi, xj, x
∗
−i−j) >

uj(x
∗) for some xi ∈ Xi and xj ∈ Xj.
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In a WBE, a deviation must strictly increase the payoff of both individuals

involved. Notice that BE ⊆ WBE ⊆ NE. I discuss the distinction between these

concepts in section 2.3.1 (lemma 2.3.1 and proposition 2.3.5).

2.3 Equilibrium Characterization

I first show the existence of an equilibrium. Since the payoff functions are not

continuous, we cannot directly use the standard fixed-point arguments. The exis-

tence of a NE is straightforward. Let xji = 0 for all j 6= i. Then, for every individual,

the maximization problem becomes : maxxi∈Xi
w(xii) ·I{i∈gi}. The allocation x∗ ∈ X

that maximizes this problem for all i ∈ N is obviously a NE. In order to show the

existence of a WBE (or a BE), I will need to introduce additional assumptions.

The next result provides an intuition on the additional restrictions imposed by the

bilateral stability on the solution set. It states that if a deviation is jointly profi-

table, but not unilaterally profitable, the deviating individuals have to invest more

in their collaborative link. All proofs can be found in appendix I.1.

Lemma 2.3.1 If x∗ ∈ X is a NE, but not a WBE, given any deviating pair (i, j),

with profitable deviations xi ∈ Xi and xj ∈ Xj, we have xji > xj∗i and xij > xi∗j .

Since x∗ is a NE, it is individually rational. Also, since the utility functions are

additive in the different links, the action of individual j on individual i only affects

i through the link between i and j. If x∗ is not jointly rational for i and j, the

incentive to deviate must come from the link i and j have together.

Throughout this section, I consider two alternative assumptions :

Assumption 1 (Finiteness) For all i, j ∈ N , xji ∈ {0, ξ}

Assumption 2 (Convexity) For all i ∈ N , ∂2vi
∂x2

(x, y, d) ≥ 0, ∂2wi

∂x2
(x) ≥ 0

The finiteness assumption is extensively used in the literature.21 Convexity is

often assumed when the network formation process involves continuous strategies.

21See for instance Jackson (2008) chapters 6 and 11.
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For example, Bloch and Dutta (2009) define the strength of a link between in-

dividuals i and j as the sum of a (strictly) convex function of the individuals’

investment, i.e. sij = f(xji ) + f(xij), with f ′ > 0 and f ′′ > 0. Rubi-Barceló (2010)

uses a linear (hence convex) function to represent the payoff from scientific colla-

boration between two researchers.22 I provide existence results and show that those

two assumptions imply that the equilibrium network exhibits structural homophily.

The next results are based on an algorithm referred to as the assignment al-

gorithm, and formally defined in Appendix I.2. The assignment algorithm uses as

inputs : (1) the list of preferences {ui(x)}i∈N , (2) the individual characteristics

{θi}i∈N , (3) the resource constraints {κi}i∈N , and (4) the distance function d on Θ.

It produces at least one allocation x ∈ X, and any allocation produced is such that

xji ∈ {0, ξ} for all i, j ∈ N . When xji ∈ {0, ξ}, the payoff that an individual receives

from the links can be ranked using the distance function (a small distance implies

a big payoff). Accordingly, the assignment algorithm proceeds first by linking the

pairs of individuals with the smallest distances (provided that the link is profitable

for both individuals, and leads to a higher payoff than the private investment). The

following results show that any allocation constructed in that fashion is a WBE,

and induces a network that exhibits structural homophily.

Let’s start with the finite case. Under Finiteness, the involvement of an in-

dividual in some link does not affect the amount of resources he invests in his

other (existing) links. The value of a link between two arbitrary individuals is then

independent of the other (potential) links. Consequently, we have the following :

Theorem 2.3.2 (Finite Strategy Space) Under Finiteness, an allocation is a

WBE iff it is produced by the assignment algorithm.

Under convexity, for a given link, it is also rational for both individuals to invest

resources until the link-level constraint ξ is met, provided that it leads to a positive

payoff. We then have the following :

22The value of a scientific collaboration as defined by Rubi-Barceló (2008, p.7) is interpreted
as a distance in my model.
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Theorem 2.3.3 (Existence) Under Convexity, any allocation produced by the as-

signment algorithm is a WBE.

Proposition 2.3.4 gives sufficient conditions so that any individual has to invest

up to the link-level constraint, in any WBE.

Proposition 2.3.4 (Uniqueness) Suppose that the inequalities in Assumption 2

are strict, then any WBE can be produced by the assignment algorithm.

Then, under Finiteness or Strict Convexity, any equilibrium can be constructed

through the assignment algorithm. It is worth noting that under Finiteness, xji ∈
{0, ξ} by assumption, while under Strict Convexity it must hold only in equilibrium.

The above results show the existence of a WBE, but not of a BE. The intuition

is the following. Suppose that Finiteness holds, and that the economy contains only

3 individuals : i, j, k. Suppose also that dij = dik < djk, and that x̄i = x̄j = x̄k = ξ.

Finally, suppose that vi(ξ, ξ, dij) = vj(ξ, ξ, dij) = vk(ξ, ξ, dik) > 0, while any other

link has a negative value. Then, in this example, there is no BE, but there are two

WBE (see Figure 2.3). The reason is that i is indifferent between a link with j or

a link with k. So, if i is linked with j, but receives a proposition from k, he will

be indifferent between keeping his link with j and replacing it with a link with k

(while k would be strictly better off with such a deviation).

In many contexts, however, individuals have many characteristics, and the like-

lihood of such a circumstance is small. In the absence of such a circumstance, we

can show the existence of a BE. Formally,

Proposition 2.3.5 Suppose that dij 6= dkl for any i 6= j and k 6= l, then any

WBE produced by the assignment algorithm is a BE. Moreover, if d is such that

vi(ξ, ξ, dij) 6= 0 and vi(ξ, ξ, dij) 6= wi(ξ) for all i, j ∈ N , this equilibrium is unique.

This implies that if for all i ∈ N , the types θi ∈ Θ are drawn from a distribution

with a dense support on Θ, then there exists a unique WBE, which is also a BE,

[a.s.]
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Figure 2.3 – WBE and BE

(a) The First WBE (b) The Second WBE

Let’s now turn to the characterization of the equilibrium network. Since the

level of investment of an individual in a potential link does not depend on the

number of links he has, the payoffs are only influenced by the distance. Suppose

i and j are linked. Then, the creation of a new link between j and k has no

spillover effects on i. This produces important consequences on the shape of the

equilibrium network. The next proposition characterizes the allocations produced

by the assignment algorithm.

Proposition 2.3.6 (Characterization) Let g∗ be the network generated by some

allocation produced by the assignment algorithm, then

(1) For all i ∈ N , δi(g
∗) ≤ κi.

(2) The network g∗ exhibits Structural Homophily.

The proof is immediate from the construction through the assignment algo-

rithm. Since investments are maximal in every link, the number of links an indi-

vidual can have is bounded by the resource constraint κi. Also, since the assign-

ment algorithm creates links starting from the ones associated with the smallest

distances, the induced network exhibits structural homophily. In essence, under Fi-

niteness or (strict) Convexity, any equilibrium network can be constructed through

the assignment algorithm, hence satisfying structural homophily.

Let’s now turn to efficiency issues. There are many ways to define efficiency. The

first one would be to consider the Pareto criterion. Given Finiteness or Convexity,

any BE is Pareto efficient. In fact, we have an even stronger result, which is the
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fact that any BE is a Strong Nash equilibrium (Aumann, 1959).

Proposition 2.3.7 Under Finiteness or Strict Convexity, any BE is a Strong

Nash equilibrium.

Since the utility functions are additive, bilateral stability implies stability in the

sense of a Strong Nash equilibrium. However, since the utility functions are non-

continuous (and utilities are not transferable), Pareto efficiency does not imply

efficiency in the sense of the utilitarian criterion. Consider the following social

welfare function :

W (x) =
∑
i∈N

ui(x)

In this case, efficiency is not guaranteed. In particular, one can find examples

of economies where the unique BE is efficient (in the sense of the utilitarian and

the Pareto criterion), as well as examples of economies where the unique BE is

inefficient (in the sense of the utilitarian criterion). This inefficiency comes from

two principle sources.

First, under the Finiteness assumption, any efficient allocation z ∈ X is such

that zji ∈ {0, ξ} for all i, j ∈ N (by assumption). Since an individual values only his

own payoff, while the social planner (SP) cares about all individuals, a collaborative

link is more valuable for the SP than it is for an individual. (It enters the utility

function of both the individuals involved.) The tradeoff between the individual and

the collaborative links is then different for an individual than for the SP.

Second, under the (strict) Convexity assumption, another issue arises. Since

the SP is willing to trade off the utilities of the individuals, an efficient allocation

z ∈ X need not be such that zji ∈ {0, ξ}. For example, suppose that there are no

fixed costs, then any network g∗ such that δi(g
∗) < κi for some i ∈ N is inefficient.

The reason is that if δ∗i < κi for some i ∈ N , the creation of a link with some

agent j (who is willing to invest a small amount ε) leads to vi(ξ, ε, dij) for i. If ε is

small enough, the loss for j is compensated by the discrete jump in the utility of
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i. Hence, g∗ is inefficient. However, it is possible that such a network g∗ is induced

by a BE.

This concludes the analysis of the theoretical model. In section 4, I develop an

estimation technique derived from structural homophily, and present Monte Carlo

simulations.

2.4 The Econometric Model

In this section, I present the econometric model. I use Structural Homophily in

order to estimate the weights of the distance function.23 I would like to emphasize

that the method and results of this section are self-contained. If one was willing

to assume structural homophily (instead of viewing it as the equilibrium outcome

of the non-cooperative game presented in the last section), all the results of this

section would apply.

In order to present the econometric model, I introduce the following definition :

Definition 5 An observation q is

1) a network g = (Nq, Eq), and

2) for each individual i ∈ Nq, a vector of R individual socioeconomic characteristics,

i.e. {θi}i∈N , where θi is a 1×R vector.

For a given observation q ∈ 1, ..., Q, I note (gq, θq), where θq is nq×R. Definition

5 implies that an econometrician does not observe the specific level of investment

in a link (i.e the link-level constraint), nor does he observe the resource constraint

κi.
24 Accordingly, given a set of observations (gq, θq)

Q
q=1, we do not possess enough

information to construct the equilibrium network through the assignment algo-

rithm, even assuming some structural form for the utility functions. Specifically,

a standard econometric model would be the following. Given a parametric form

23Čopič et al. (2009) also exploit homophily, although in a very different setting, in order to
develop their estimation technique.

24Notice that while κi is an upper bound to δi(g), they are not necessarily equals. See propo-
sition 2.3.6.
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for the payoff functions (i.e. {vi(x, y, d), wi(x)}i∈Nq), and the distance function (i.e.

d(i, j)), one would assume that the data is generated by :

gq = Λ(θq, κq, ξq, εq; β) (2.1)

where Λ is the assignment algorithm, κq is the nq × 1 vector of individual resource

constraints, ξq is the link-level resource constraint, εq is the error term, and β is

the vector of parameters to be estimated. Provided that one observes θq, κq, ξq,

one could, in principle, estimate β. Since κq and ξ are typically unobserved in

existing datasets, I use a different approach.25 From section 2.3’s results, I have

established that any allocation produced by the assignment algorithm respects

structural homophily.26 My approach will then be to maximize the likelihood that the

observed network exhibits structural homophily. Accordingly, the distance function

will play a central role. I assume the following structural form for the distance

function :

ln(dij) =
L∑
l=1

βlρl(θi, θj) + εij (2.2)

where ε ∼iid N(0, 1), and ρl(., .) is a dimension-wise distance function.27 The

vector (β1, ..., βL) ∈ Ξ ⊂ RL are the weights of the distance function. Equation

(2.2) highlights two important features of the model.

First, instead of trying to specifically identify the parameters of the utility

function, I limit myself to the estimation of the relative importance of the social

characteristics in the network formation process. That is, I only seek to estimate the

parameters of the distance function, and not the parameters of the utility functions

(for instance, I do not estimate the value of the resource for the individuals). This

25There are also severe computational and identification issues using the specification in (2.1).
26Also, by observing a network that exhibits structural homophily, one can always find some

vi(x, y, d), κi and ξ such that it is produced by the assignment algorithm.
27For instance, if Θ ∈ R2, one could choose ρl(θi, θj) = |θli − θlj |. The proposed structural form

is by no means the only possibility. Any positive and symmetric function could be used. I prefer
to use the specification in 2.2 to simplify the exposition.
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is illustrated in Figure 2.4. In Figure 2.4a, the individuals place more value on

the characteristic on the horizontal axis. Then, the “closest” individuals for the

central node are the ones on the top and bottom. Symmetrically, in Figure 2.4b,

the individuals place more value on the characteristic on the vertical axis. Then,

the “closest” individuals for the central node are the ones on the left and right. My

aim is to estimate the relative weights placed on each characteristics.28

Figure 2.4 – Changing the Weight of the Distance Function

(a) Relative Importance on
the Horizontal Characteris-
tic

(b) Relative Importance on
the Vertical Characteristic

Second, I assume that the distance function is observed with noise. That is, there

exists a set of variables, observed by the individuals within the model, but unob-

served by an econometrician, that affects the distance function.29 This assumption

is not standard and deserves a discussion.

A typical method to introduce unobserved heterogeneity into this type of models

would be to assume that the value of a link depends on some unobserved set of

characteristics, i.e. vi(x, y, d)+εij. However, this cannot be identified from a model

where the distance is observed with noise, since we can always define a symmetric

28Centered ellipses like those depicted in Figure 4 are implied by the additive form we assumed
in (2.2). The generalization to more general class of distance functions such as in Henry and
Mourifie (2011) is straightforward.

29For instance, εij can be interpreted as a measurement error.
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function d̃ : Θ2 → R such that vi(ξ, ξ, d̃ij) = vi(ξ, ξ, dij) + εij for all i 6= j.30

Now, given (2.2), we can compute the probability (conditional on an observa-

tion) that a network exhibits structural homophily. Let Ψ = 1−Φ, where Φ is the

c.d.f. of the standard normal distribution, and let γ =
(
β1/
√

2, ..., βL/
√

2
)
. The

probability that a network g (given a set of characteristics θ) exhibit Structural

Homophily is (algebraic manipulations can be found in appendix I.3) :

P(sh|g, θ, γ) = Πij /∈g
{

Πk∈giΨ [(sik − sij)γ′] + Πk∈gjΨ [(sjk − sij)γ′]

−Πk∈giΨ [(sik − sij)γ′] Πk∈gjΨ [(sjk − sij)γ′]
}

(2.3)

where sij is the 1× L vector of dimension-wise distance, i.e. slij = ρl(θi, θj).
31

Then, given that there are Q observations, I propose the following maximum

likelihood estimator :

`(β|θ) =
1

Q

Q∑
q=1

ln[P(sh|gq, θq, γ)] (2.4)

Provided that there exists a unique γ0 ∈ Ξ which maximizes (2.4), the maximum

likelihood estimator is well-behaved, and γ can be consistently estimated.32

The identification’s strategy is based on a link-deference approach. A link exists

if no individual refused it. There are two reasons for an individual to refuse a link :

(1) because he has no resources left (constraint interactions), or (2) because the

other individual is too distant (preference interactions). I want to identify the

preference effect, given that the resource constraint is unobserved. The estimation

strategy can be viewed as to minimize the probability that structural homophily is

violated.

30If vi is log quasi-linear in the distance, i.e. v(x, y, d) = f(x, y) − ln(d), the two models are
equivalent.

31Equation 2.3 assumes that there is no isolated individual (i.e. no individual i is such that
gi ∈ {∅, {i}}). This is done without loss of generality since for any pair of individuals in which one
of the individual is isolated, the condition imposed by structural homophily is trivially respected.

32Although the function in (2.3) looks peculiar, the MLE setting is standard and the estimation
of (2.4) requires only usual the usual set of assumptions. See for instance Cameron and Trivedi
(2005, p. 142-143) for the asymptotic properties of the maximum of likelihood estimator.
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Lets consider two alternative parameters β and β′. Suppose that we observe two

individuals, i and j, not linked together, as in Figure 2.5. According to β and β′, i

is linked to an individual, farther from him than j. This means that i would have

been willing to create a link with j, but that j refused. This implies that j cannot

be linked to individuals farther from him than i. If he does, structural homophily

is violated. Thus, if j is linked to farther individuals than i under β, but not under

β′, then β′ is chosen over β to represent individuals’ preferences.

Figure 2.5 – Admissible Parameters, Θ = R2

(a) Distance Weights according to β

i

j

(b) Distance Weights according to β′

i

j

This shows why isolated individuals (i.e. individuals that have no link) provide

no information : whatever the parameters’ values, they never contradict structural

homophily. In other words, for isolated individuals, we cannot identify whether

they are isolated because they have limited resources, or because they have strong

homophilic preferences. From a revealed preference approach, we gain information

about an individual’ preferences by observing his choices. If an individual is not

connected, he does not ”consume” any resource. We therefore cannot say anything

about his preferences.
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I now explore the properties of this method through Monte Carlo simulations.

2.4.1 Monte Carlo Simulations

I now present some Monte Carlo simulations. One of the advantage of section

2.3 is that it provides a simple algorithm allowing for the construction of the equi-

librium network. Using the assignment algorithm, I will explore the finite sample

properties of the estimator defined in the previous section. For simplicity and be-

cause of computational limitations, I assume that Θ = R2 (this could represent, for

example, the geographic position of the individuals), and ρl(θi, θj) = |θli − θlj|. For

all i ∈ N , I assume that θi ∼iid N(0, σ2I). Thus, σ2 controls for the dispersion of

the individuals on the plane. As assumed, I let εij ∼ N(0, 1). I run 1000 replications

of an economy composed of 150 independent populations (networks), each of which

has 20 individuals, and I vary κi and σ2 (I assume that κi is drawn from a uniform

distribution).

The simulated networks are generated using the assignment algorithm, assu-

ming that vi(ξ, ξ, dij) > 0 for all i, j ∈ N and that wi(ξ) < 0 for all i ∈ N . I assume

that the weights are β = (2, 6), so the distance is d(θi, θi) = 2|θ1
i − θ1

j |+ 6|θ2
i − θ2

j |.
Figure 2.6 displays a typical equilibrium network for this economy. Figure 2.6a

shows the simulated network on the plane while Figure 2.6b rearranges the indi-

viduals in order to see clearly the network structure. Notice that the individuals

value the vertical characteristic more than the horizontal one.

The small size of each observation (i.e. 20 individuals in every network) has an

impact on the precision of the estimator. Take the following limiting case. Suppose

that, as in the simulation framework, every link is profitable. Then, if the resource

constraint is large enough, the equilibrium network is the complete network, and

Structural Homophily is not binding. As a result, the model in (2.4) is not identified.

I now explore the precision of the estimator when individuals have a relatively large

resource constraint, compared to the size of the population. I find that the estimator

performs better when the maximal number of links is small compared to the size

33Using the Kamada-Kawai algorithm is a standard way of drawing networks on the plane.
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Figure 2.6 – Typical network, with β = [2 6], and κi ∼ U [1, 4]

(a) In the type space

�1

�2

(b) K.K. representation33

of the population, and that the precision of the estimator can be improved by

increasing the dispersion of the population on the type space.

Table 2.1 and Figure I.1 to I,4 (Appendix I.4) show the simulation results.

Since the parameters are only scale-identified, I report only the relative estimates.

Simulations show that as the number of links increases (relative to the size of the

population), the precision of the estimator is increased, but the estimates can be

slightly biased upward. However, this problem vanishes as the distribution of the

population over the type space increases.

I now turn to the implementation of the estimation technique. In the next

section, I use the Add Health database to address the role of race in the formation

of friendship networks.

2.5 Empirical Application : High-School Friendship Networks

I wish to estimate the weights of the distance function that leads to the for-

mation of the friendship networks of American teenagers. I am particularly inter-
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Tableau 2.I – Monte Carlo Simulations

Standard Deviation (σ)

κi 10 12 14 16
{1, 2} 3.031 3.024 3.02 3.01

( 0.026 ) ( 0.028 ) ( 0.02 ) ( 0.02 )
{3, 4} 3.077 3.045 3.03 3.02

( 0.027 ) ( 0.028 ) ( 0.03 ) ( 0.02 )
{5, 6} 3.089 3.050 3.03 3.03

( 0.029 ) ( 0.029 ) ( 0.03 ) ( 0.03 )
{7, 8} 3.104 3.069 3.05 3.03

( 0.032 ) ( 0.030 ) ( 0.03 ) ( 0.03 )
{9, 10} 3.107 3.081 3.05 3.04

( 0.033 ) ( 0.030 ) ( 0.03 ) ( 0.03 )
{11, 12} 3.112 3.082 3.05 3.04

( 0.034 ) ( 0.033 ) ( 0.03 ) ( 0.03 )
{13, 14} 3.117 3.082 3.05 3.04

( 0.044 ) ( 0.039 ) ( 0.04 ) ( 0.04 )
{15, 16} 3.122 3.090 3.06 3.05

( 0.047 ) ( 0.071 ) ( 0.06 ) ( 0.06 )

ested in the role of race, as previous studies have suggested there is a significant

race-based preference bias in the choice of friendship relations among teenagers.

Currarini et al. (2010) use a search model in order to estimate the preference bias

for Asians, Blacks, Hispanics and Whites. They show that Asians have the lar-

gest preference bias, followed by Whites, Hispanics and Blacks. Using a different

approach, Mele (2011) estimates the role that homophilic preferences toward race

plays in the formation of friendship networks. He shows that all racial groups have

strong homophilic preferences, although he does not capture any strong differences

between groups. Interestingly, I find strong evidence that the racial preference bias

varies across racial groups, although I find that Blacks have the strongest bias,

followed by Asians and Whites.

As in the two papers mentioned, I use the Add Health database as it is particu-

larly well suited for my model. Recall that the model presented in sections 2.2 and

2.3 assumes that the individuals of the same population meet with probability one.

A convincing empirical implementation then requires that the observed populations
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are small enough. To that effect, the Add Health database provides information

on students’ high-schools, which are quite small entities.34 Specifically, the sample

includes the race, and the friendship networks of 5,466 teenagers, coming from 98

high schools in the U.S. The variable of interest is race. I assume that a student’s

type is his or her race. Thus the type space has 4 dimensions : White, Black, Asian,

Native. Formally, Θ = {0, 1}4, so a student who considers himself as Black-Asian

would be of type θ = (0, 1, 1, 0). I assume the following distance function :

ln d(xi, xj) =
4∑
r=1

βrI{xri 6=xrj} + εij (2.5)

where I{P} is an indicator function that takes value 1 if P is true, and 0 other-

wise. For instance, the distance between a teenager i who is White, and a teenager

j who is Black, is d(xi, xj) = βwhite + βblack. The β’s measure the relative strength

of the preference bias toward individuals of a particular racial group, e.g. being

Black, v.s. being non-Black.

The Add Health questionnaire asks each teenager to identify their best friends

(up to 10, and a maximum 5 males and 5 females). I assume that two individuals

are friends only if they attend the same school. This assumption is standard in

the literature using Add Health data. This allows each school (the set of teenagers

and the network) to be treated as an observation. Thus, the database contains 98

observations (i.e. 98 schools). Table 2.II summarizes the data :

Tableau 2.II – Descriptive Statistics

Variable Mean Standard Deviation
White 0.733 0.442
Black 0.150 0.357
Asian/Pacific 0.031 0.174
Native 0.062 0.242
Degree 2.064 1.284

34For that reason, and for computational reasons, I limit myself to schools for which I observe
less than 300 students, which is about 68% of the schools in the database. I also remove the
isolated individuals, as they provide no relevant information (see p.18, last paragraph).



28

I estimate the model (2.4), using the distance function in (2.5). The estimated

weights (β̂1, ..., β̂4) and the corresponding standard errors are shown in Table 2.III.

Since the weights are only scale-identified, I report the relative effects. The estima-

tion shows that the weight associated with the Blacks’ dimension is the greatest

(2.270 times greater than the Whites’, and 1.796 times greater than the Asians’).

The Asians’ dimension is the second in magnitude (1.264 times greater than the

Whites’). I find no statistically significant relative weight for the Natives’ dimen-

sion. Notice that this is independent of the relative proportion of each racial group

in the population, and the (unobserved) individuals’ time constraints.

Tableau 2.III – Relative Estimated Weights (White normalized to 1)†

Black Asian Native
Estimate†† 2.270** 1.264** -0.199
SE (0.244) (0.157) (0,150)
Robust SE††† [0.304] [0.294] [0.171]

† S.E computed using the delta method.
†† ∗∗ for 1% significance level.
††† Robust SE using the (sandwich) variance-covariance matrix for pseudo-m.l.e.

Turning back to the distance functions, one can reconstruct the distance bet-

ween the different racial groups from the estimates in Table 2.III. Recall that, for

instance, the distance between a Black and a White is d(black, white) = βblack +

βwhite. Then, according to Table 2.III, the distance between Blacks and Asians

is the greatest (d = 3.534), followed by the distance between Blacks and Whites

(d = 3.270) and the one between Whites and Asians (d = 2.264). This shows that,

in order to correctly specify the impact of homophilic preferences on the crea-

tion of links, one has to take in to account the impact of the preference biases of

both individuals involved. Structural homophily allows to identify those preference

biases.

I now discuss the limitations of my approach and suggest some potential gene-

ralizations.
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2.6 Going Further

I have shown that structural homophily can be obtained by a non-cooperative

game of network formation. Under Finiteness or (strict) Convexity, any Bilateral

Equilibrium of the game features structural homophily. I also have shown that

structural homophily has empirical implications. I develop an estimation technique

that can be used to estimate some parameters of the model, namely the weights of

the distance function. I can then identify which social characteristics significantly

influence the network formation process. Being able to estimate the magnitude

of these relevant characteristics is an important step in the process of designing

efficient policies, as it allows the policy makers to target relevant characteristics.

To illustrate this method, I estimated the weights of the distance function in the

context of friendship networks for teenagers. I found significant differences in the

homophilic preference bias between racial groups.

The model developed in this paper is a first step toward a better understan-

ding of network formation processes under time constraints. However, there are

still many unanswered questions. For instance, the results in section 3 are based on

the Finiteness or Convexity assumption. Those are arguably strong assumptions as

they imply that individuals invest as much as they can in their existing links. This

may not be true in general. However, the study of the model under a concavity

assumption faces difficult existence issues. One could address this issue by consi-

dering weaker solution concepts such as Pairwise Stability (Jackson and Wolinsky,

1996) which potentially exhibit less structured equilibrium networks.

Another potential extension would be to introduce probabilities of meeting bet-

ween individuals. Without meeting probabilities, the set of potential friends is the

same for every individuals, i.e. the whole population. In general, in large popula-

tion, some individuals may not know themselves, which would obviously prevent

them from creating a link. A simple way to introduce meeting probabilities would

be to assume that the set of potential friends is limited to individuals that have

“met”. Hence, individuals can only invest resources in links with individuals in a
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subset of the population. In that case, the (ex-post) strategy space would not be

the same for every individual, but structural homophily would still hold in equili-

brium (provided that the set of potential friends is known). More elaborate models

could however assume that meeting friends is a costly process. The individuals

would then be allowed to endogenously choose the amount of resource they spend

searching for friends.35 As the estimation technique does not require the observa-

tion of the time constraints, structural homophily is likely to hold in equilibrium.

However, in both extensions, the estimated parameters may not be interpreted in

terms of preferences. If homophily affects the preferences and the random meeting

process, it is unclear how those two effects can be identified.

35A nice example of a search model with homophilic preferences is Currarini et al. (2009).
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CHAPITRE 3

MY FRIEND FAR FAR AWAY : ASYMPTOTIC PROPERTIES OF

PAIRWISE STABLE NETWORKS1

3.1 Introduction

How do social networks form ? Specifically, how can we measure the influence

of an individual’s socioeconomic characteristics on the identity of his peers ? We

know that many social networks exhibit strong racial or religious segregation (see

for instance Echenique and Fryer 2007, Watts 2006, and Mele 2007). This observa-

tion raises many interesting questions regarding the cause of this segregation. For

instance, we would like to be able to distinguish the impact of the individuals’ cha-

racteristics (e.g. race), and the impact of the individuals’ positions in the networks

(e.g. popularity). The shape of the existing social networks also have measurable

effects on individuals’ choices. Many studies show a strong influence of an indi-

vidual’s peers on his actions, ranging from unhealthy consumption choices (e.g.

Fortin and Yazbeck 2011 and the references therein) to labor force participation

(e.g. van der Leij et al. 2009, and Patacchini and Zenou 2012). However, since

most social networks are endogenously formed, the estimated influence of peers is

likely to be biased.2 Understanding how the networks are formed could then allow

us to control for this endogeneity and suggest policy instruments that would help

influence network formation processes.

In this paper, we provide a simple Maximum Likelihood estimator which al-

lows us to recover underlying preference parameters for pairwise stable networks

(Jackson and Wolinsky, 1996). The approach is compelling as it only requires the

observation of a single network. We show that the estimator is consistent and

asymptotically normally distributed provided that individuals’ preferences exhibit

1This chapter is a joint work with Ismael Mourifié.
2The literature on peer effects have only recently considered explicitly the endogeneity of social

networks. See for instance Goldsmith-Pinkham and Imbens (2011), and Blume et al. (2011).
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a weak version of homophily. Homophily is one of the most robust empirical fact

about social networks. It formalizes the observation that similar individuals are

more likely to interact with each other. As homophily is featured by both theoreti-

cal (e.g. Bramoullé et al. 2012, and Currarini et al. 2009), and empirical (e.g. Mele

2007, and Christakis et al. 2010) models of network formation, our methodology

is applicable to many existing models of network formation. We apply this new

methodology to the formation of communication networks, using a database on

the Yahoo !’s Instant Messaging service. We find that the probability that a link is

created is strongly influenced by the local density of the network, by their general

Internet usage, and by their socio-economic and Internet behavior differences.

A fundamental challenge in estimating a network formation process is the highly

dependent nature of most socio-economic relationships. Consider for instance the

case of friendship networks. The probability that Adam and Beth are friends de-

pends on their individual characteristics. However, it may also depends on the fact

that Beth is friend with Charlotte (who maybe does not like Adam). The proba-

bility that Adam and Beth are friends may then depend on Charlotte’s individual

characteristics. Hence, the observation “Adam and Beth are friends” depends on

Charlotte’s characteristics. However, if individuals have homophilic preferences, the

probability that Adam and Beth are friends should be primarily influenced by indi-

viduals similar to them. If Adam and Beth are high-school teenagers for instance,

the probability that they become friends increases if they go the the same school,

or if they attend the same classes. Accordingly, if Beth and Charlotte are friends,

there is a greater probability that they go to the same school, or at least that they

live in the same country. Then, Donald, a elderly man, living in a different coun-

try (hence having individual characteristics quite different from those of Adam,

Beth and Charlotte) probably does not influence much the probability that Adam

and Beth become friends. We generalize this argument and show that homophily

implies a generalization of the φ-mixing property used in time-series and spatial

econometric models. This fact allows us to define a consistent estimation strategy

based on a Quasi Maximum Likelihood estimator.
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This paper contributes to the empirical literature on strategic network forma-

tion. Two main approaches have been proposed. The first approach is specifically

interested in estimating homophilic preferences (see for instance Boucher 2012,

and Currarini et al. 2010) and uses standard frequentist approaches, i.e. standard

Maximum Likelihood estimators. As these papers assume ex-ante homophily, they

are limited in their scope of applications. Also, the maximum likelihood methods

proposed require the observation of many (mostly independent) social networks,

which is not always available in existing databases.

The second approach requires the observation of only one network, at one point

in time. As the observations are highly dependent, standard maximum likelihood

methods are not consistent. Accordingly, most papers use a Bayesian approach, and

as the likelihood function cannot usually be written explicitly, most papers rely on

simulation methods such as Markov Chain Monte Carlo (in particular Christakis

et al. 2010, Mele 2010, and Goldsmith-Pinkham and Imbens 2011). If they put

less restrictions on the individuals’ preferences, those methods are however quite

complex to implement in practice, and the computing time needed makes them

unsuitable for large database.

We contribute to this literature by providing a explicit Quasi Maximum Like-

lihood Estimator (QMLE) when we observe only one social network, at one point

in time. We introduce a weakened notion of homophily, and show that it implies

that our QMLE is consistent and asymptotically normally distributed. In order to

do so, we use Large Laws of Numbers and Central Limit Theorems due to Jenish

and Prucha (2009), as well as estimators for the variance-covariance matrices due

to Conley (1999) and Bester et al. (2011).

The remaining of the paper is organized as follows. In section 3.2.1, we present

the economy. In section 3.2.2, we propose an estimator of the equilibrium social

network which allows to recover the underlying individuals’ preferences. In section

3.3, we derive the asymptotic distribution of our estimator, and in section 3.4, we

define a class of network formation models suited to our econometric framework. In

section 3.5, we provide an application using the formation of online communication
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network, and we discuss policy-making implications and potential avenues for future

research in section 3.6.

3.2 The basic framework

3.2.1 The Economy

Let N = {1, ..., n} be the set of individuals. Each individual is characterized by

a random vector of T ≥ 1 characteristics xi = (x1
i , ..., x

T
i ) ∈ X . We assume that

X ⊂ RT and we define the distance between two individuals as d(i, j) = d(xi, xj),

where d is a distance on RT . Finally, we note x = (x1, ..., xn) ∈ X n the matrix

of individual characteristics. Is it worth noting that the choice of the distance

function d is arbitrary. In general, the choice of this distance function will be

context-dependent. In particular, the distance can represent spatial preferences of

the individuals.3 We provide an example in section 3.5.

Let m = n(n−1)
2

be the number of possible pairs of individuals (i, j) for i 6= j

in the economy. We assume that individuals interact in a network gm = (N,W),

where W is a n×n symmetric matrix that takes values wij = 1 if i ∈ N and j ∈ N
are linked by a socio-economic relationship (e.g. friendship), and wij = 0 otherwise.

For a given set of individuals N , the set of all possible networks is noted Gm. For

a given network gm ∈ Gm, we will note ij ∈ gm if wij = 1. We will also denote by

g− ij, the network gm from which we removed the link between i and j. If ij /∈ gm,

then gm − ij = gm. We define gm + ij similarly.

The set of links an individual has is noted Ni(g) = {j ∈ N : ij ∈ gm}. The

cardinality of that set is the degree of an individual, formally ni(gm) = |Ni(gm)|.
The geodesic distance (or shortest path) between i and j in the network gm equals

the minimal number of existing links in gm such that j can be reached from i.

Let ρij(gm) be the geodesic distance between i and j in the network gm. We say

that i and j are connected in gm if ρij(gm) < ∞. If i and j are not connected, we

let ρij(gm) = ∞. Let Rgm
ij = {k ∈ N |min(ρik(gm), ρjk(gm)) < ∞} be the set of

3See in particular Henry and Mourifié (2011) for spatial preferences on the euclidean space.
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individuals connected either to i or to j. For V ⊂ N , we note gm|V the network

restricted to individuals in V , i.e. for all i, j ∈ V , we have (w|V )ij = wij, while we

have (w|V )ij = 0 if i ∈ N \ V or j ∈ N \ V . Let also xV ∈ X |V | be the matrix of

individual characteristics of individuals in V .

We assume that the network gm = (N,W) is endogenous and determined as

a function of the individuals’ (stochastic) utilities. An individual has preferences

over the set of characteristics and the network structure in the economy, i.e. ui :

Gm × X n → R. Specifically, we write ui(gm, x; θ, εi) where θ ∈ (θ1, ..., θK) ∈ Θ

is the set of parameters to be estimated, and the vector εi = (εi1, ..., εin) is the

unobserved component of the utility function. It will be convenient to use the

following representation of the utility function.

Definition 6 Given gm and x, the value for i ∈ N of a link with j ∈ N \ {i} is

given by

Hj
i (gm, x; θ, εi) = ui(gm, x; θ, εi)− ui(gm − ij, x; θ, εi)

Given Hj
i (gm, x; θ, εi) for all i, j ∈ N , we want to know what information can be

retrieved from the observation of a single network gm ∈ Gm, and a set of individual

characteristics x ∈ X n. We concentrate on the properties of the network gm and

not on the specific dynamic process by which the network is created. For instance,

we do not require the links to be added in a specific order to the network. We rather

assume that the observed network gm is stable. We are interested in a particular

notion of stability, introduced by Jackson and Wolinsky (1996).

Definition 7 A network gm is Pairwise Stable if, for all i, j ∈ N , the two

following conditions hold simultaneously :

1) if wij = 1 then [ Hj
i (gm, x; θ, εi) ≥ 0 and H i

j(gm, x; θ, εj) ≥ 0 ]

2) if wij = 0 then [ Hj
i (gm + ij, x; θ, εi) > 0 implies H i

j(gm + ij, x; θ, εj) < 0 ]

Then, a link is created iff it is profitable for both individuals involved.4 Let

PSN ⊆ Gm be the set of pairwise stable networks. The existence and multiplicity

4Notice that conditions 1 and 2 of definition 7 are mutually exclusives as wij ∈ {0, 1}.
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of equilibria are discussed in section 3.4.3. For now, assume that there exists a

unique pairwise stable network. Pairwise stability is extensively used in the lite-

rature on strategic network formation.5 Any potential deviation from a pairwise

stable network results from a single pair of individuals changing the status of its

link. That is, any admissible deviation is such that gm ∈ Gm goes from gm to gm+ij

for some i, j ∈ N , or from gm to gm − ij for some i, j ∈ N . Pairwise stability can

then be viewed as the weakest bilateral extension from the set of individually ra-

tional networks.6 We study the asymptotic properties of pairwise stable networks.

In the next section, we present the econometric framework.

3.2.2 The Econometric Framework

We want to know what information can be retrieved from the observation of a

single pairwise stable network. Specifically, suppose that we observe a set of m pairs

of individuals. The set of pairs is noted Sm, with typical elements s and r. Any two

individuals i and j necessarily belong to some pair s, where s = (s1, s2) = (i, j). For

each pair, we observe the status (linked or not) of the pair and the socio-economic

characteristics of the individuals in the pair (age, gender, income...). We formally

define the position of a pair s ∈ Sm in X as the average point between s1 and s2,

i.e. xs ∈ X such that xs =
xs1+xs2

2
.7 Accordingly, the distance between two pairs r

and s is equal to d(s, r) = d(xr, xs) = d( s1+s2
2
, r1+r2

2
).

In this section, we show that pairwise stability allows to express the probability

of a link’s status in terms of the observable socio-economic characteristics. We

present our first assumption.

Assumption 3 (Preferences) For all i, j ∈ N ,

(3.1) Hj
i (gm, x; θ, εi) = hji (gm, x; θ) + εij, with εij|gm, x ∼ N(0, 1).

5See for instance Jackson (2008, chapter 6).
6For comparisons between stability concepts on networks, see for instance Bloch and Jackson

(2006) and Chakrabarti and Gilles (2007).
7This is done without loss of generality. The method is robust to other definitions of a pair’s

position in X , as long as xs is located in a given neighbourhood of xs1 and xs2 .
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(3.2) hji (gm, x; θ) is three times continuously differentiable in θ.

(3.3) Θ is a compact subset of RK, for K ≥ 1.

Assumption 3.2 and 3.3 are standard technical requirements. Assumption 3.1

deserves more attention. The error term εij is interpreted as a random shock on the

value of the pair, hence εij = εji. The separability of the error term is quite standard

(see Additive Random Utility Models, following McFadden, 1981). Also, as our

endogenous variable (i.e. the status of a pair) is discrete, only scale-identification

can be achieved. There is then no loss of generality in normalizing the variance of

the error term. We assume that εij follows a normal distribution for convenience

(for instance, it allows to present our estimator as a standard Probit, see below).

In general, our method can be adapted to many distributional assumptions. In

particular, all our results are valid for any distribution for which the left-tail of the

cdf distribution is exponentially bounded. Notice that while the εij are identically

distributed, they are not necessarily independent.

We want to estimate θ ∈ Θ, given the fact that the observed network gm is

pairwise stable. Given definition 2, a link ij is created (i.e. wij = 1) if and only

if Hj
i (gm, x; θ, εi) ≥ 0 and H i

j(gm, x; θ, εj) ≥ 0. Then, under assumption 3.1, the

probability that wij = 1 for i, j ∈ N is equal to Φ(min{hji (gm, x; θ), hij(gm, x; θ)}),
where Φ is the c.d.f. for the standardized normal distribution. We then propose the

following QMLE.

Lm(θ) =
1

m

∑
ij:i<j

wij ln[Φ(min{hji (gm, x; θ), hij(gm, x; θ)})]

+ (1− wij) ln[1− Φ(min{hji (gm + ij, x; θ), hij(gm + ij, x; θ)})] (3.1)

This is actually a standard probit model.8 However, the estimator

θ̂ = argmaxθ∈ΘLm(θ) is not necessarily consistent (as m→∞) since the observa-

tions can be dependent. For instance, hji (gm, x; θ) may depends on the number of

8Notice that P (wij = 0)+P (wij = 1) = 1 since the two conditions in definition 7 are mutually
exclusives.
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links i and j have in the network gm. In the next section, we find sufficient condi-

tions for the consistency and asymptotic normality of θ̂ = argmaxθ∈ΘLm(θ) when

the number of pairs m goes to infinity.

3.3 Limited Dependence Theorems

In this section, we present two theorems for dependent observations. We show

that under φ-mixing, θ ∈ Θ can be consistently estimated using the model in

(3.1). Those theorems are useful since, as we show in section 4, there exist simple

conditions on hji which imply φ-mixing.9

We start by introducing the following random variable, for all pairs s ∈ Sm :

Zs,m =

1 if Hs2
s1

(gm, x; θ, εs1) ≥ 0 and Hs1
s2

(gm, x; θ, εs2) ≥ 0

0 otherwise

The random field {Zs,m; s ∈ Sm,m ∈ N} is defined on the probability space

(Ω,F ,P), where Ω = {0, 1}m, F is a σ-algebra on Ω, and P is a probability measure

on Ω. To clarify the exposition, we use the following simplifying notation :

qs,m(zs,m|x, gm, θ) = ws ln[Φ(min{hs2s1(gm, x; θ), hs1s2(gm, x; θ)})]

+ (1− ws) ln[1− Φ(min{hs2s1(gm + s, x; θ), hs1s2(gm + s, x; θ)})]

so (3.1) can be written as :

Lm(θ) =
1

m

∑
s∈Sm

qs,m(zs,m|x, gm, θ) (3.2)

We also use qs,m(θ) = qs,m(zs,m|x, gm, θ) when there is no ambiguity.

We now turn to the dependence structure of (3.2). For any two events A ∈ A
and B ∈ B, where A,B are sub-σ-algebras of F , the φ-mixing coefficient is given

9Our results can easily be adapted to other mixing definitions such as α-mixing.
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by

φ(A,B) = sup{|P(A|B)− P(A)|, A ∈ A, B ∈ B,P(B) > 0}

This is analog to standard time-series models. In a time dependent model,

the estimation is consistent if limr→∞ supt φ(F t−∞,F∞t+r) = 0, where F t2t1 is the σ-

algebra for the realizations from time t1 to time t2.10 We want to apply the same

basic approach when the dependence between A and B goes through X . Then,

instead of characterizing an observation by its position in time, we define it by its

position in X . Since the dependence in X is more complex than time-dependence,

the asymptotic convergence of the φ-mixing coefficient is not sufficient. In order

to show the consistency and asymptotic normality of θ̂ = argmaxθLm(θ), we use

Large Laws of Numbers and Central Limit theorems for dependent observations on

random fields developped by Jenish and Prucha (2009, Theorems 1,2 and 3). Lets

introduce the following definition.

Definition 8 Let A,B ⊂ Ω, with corresponding σ-algebra Am and Bm. Let also

|A| and |B| denote the number of pairs of individuals in A and B. We define the

following function :

φ̄k,l(r) = sup
m

sup
A,B

(φ(Am,Bm), |A| ≤ k, |B| ≤ l, d(A,B) ≥ r)

where d(A,B) is the Hausdorff distance on X for the set of pairs in A and B.

We will show that a sufficient condition for the consistency and the asymptotic

normality of θ̂ = argmaxθLm(θ) is the following :

Assumption 4 (φ-mixing)

(4.1)
∑∞

r=1 r
T−1φ̄

1/2
1,1 (r) <∞

(4.2)
∑∞

r=1 r
T−1φ̄k,l(r) <∞, for k + l ≤ 4

(4.3) φ̄1,∞(r) = O(r−T−ε) for some ε > 0.

Recall that T ≥ 1 is the dimension of X . In words, not only φ̄k,l(r) has to

converge to 0, but this convergence has to be fast enough. In section 4, we give

10See for instance White (2001).
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sufficient conditions under which assumption 4 holds. For the moment, we show

the validity of the estimation technique given that φ-mixing is respected. The first

theorem concerns the consistency of θ̂ = argmaxθ∈Θ Lm(θ). First, we need some

regularity conditions.

Assumption 5 (Regularity I)

(5.1) There exists a unique θ0 ∈ int Θ maximizing limm→∞ E[Lm(θ)].

(5.2) For all s1, s2 ∈ N , d(s1, s2) ≥ d0 for some d0 > 0.

(5.3) supm sups E[supθ∈Θ |qs,m(θ)|(1+η)] <∞ for some η > 0.

(5.4) supm sups E[supθ∈Θ |
∂qm,s(θ)

∂θ
|] <∞.

Assumption 5.1 is the identification condition. Assumption 5.2 is the increasing

domain assumption. It ensures that the distance goes to infinity as the number

of individuals goes to infinity. Given the existence of a minimal distance d0, the

sub-space of X which contains all the individuals has to expand (with respect to d)

as the number of individuals increases. This assumption describes how the space

of individual characteristics X is filled as the number of pairs m goes to infinity.

Finally, assumption 5.3 and 5.4 require standard moment conditions on the payoff

function. We have the following.

Theorem 3.3.1 (Consistency) Suppose that assumptions 3 and 5 hold, and that

assumption (4.2) is respected for k = l = 1. Then, the estimator θ̂ = argmaxθ∈Θ Lm(θ)

is consistent as m→∞.

We still need to derive the asymptotic distribution of θ̂. We define the following

matrices :

D0(θ0) = limm→∞E[
∂2Lm(θ0)

∂θ∂θ′
]

B0(θ0) = limm→∞mE[
∂Lm(θ0)

∂θ

(
∂Lm(θ0)

∂θ

)′
]

Now, since the asymptotic normality of the estimator requires more structure

than the one needed for consistency, we need assumptions 4.1-4.3, as well as the

following additional regularity conditions.
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Assumption 6 (Regularity II)

(6.1) B0(θ0) > 0.

(6.2) D0(θ0) is invertible.

(6.3) supm sups E[supθ∈Θ ‖Dm,s(θ)‖1+η] <∞ for some η > 0.

(6.4) supm sups E[supθ∈Θ ‖
∂Dm,s(θ)

∂θ
‖] <∞.

(6.5) supm sups E[supθ∈Θ |
∂qs,m(θ)

∂θ
|2] <∞

where Dm,s(θ) = ∂2qs,m(θ)

∂θ∂θ′
. Those assumptions are quite standard and are sufficient

to show the asymptotic normality of our estimator.11

Theorem 3.3.2 (Asymptotic Normality) Let m → ∞. Under assumptions

3, 4, 5 and 6, the estimator θ̂ = argmaxθ∈Θ Lm(θ) is normally distributed with

variance-covariance matrix given by D−1
0 B0D

−1
0 /m.

The Variance-Covariance Matrix is the equivalent for our setting of the Hete-

roskedasticity and Autocorrelation Consistent (HAC) variance-covariance matrix.

The estimation of those variances is not straightforward. The estimation of D0(θ0)

follows from theorems 3.3.1 and 3.3.2 since D0(θ) has the same dependence struc-

ture as limm→∞ ELm(θ). A consistent estimator is then Dm(θ̂) = 1
m

∑m
s=1Ds,m(θ̂).

Defining a consistent estimator for B0(θ0) is more challenging. We suggest two ap-

proaches to estimate B0(θ0). The first one is based on a generalization of standard

HAC estimators and is due to Conley (1999). The estimator Bm(θ) is formally des-

cribed in the appendix II. Under mixing conditions, Bm(θ) is a consistent estimator

for B0(θ0). Although valid, this estimator can be very computationally intensive

when the number of dimensions of X increases (say, T ≥ 4). An alternative ap-

proach have been suggest by Bester et al. (2011), where they propose to use the well

known Variance Cluster (VC) estimator (also formally described in appendix II).

Although the estimator is not consistent under weak dependence, they show that

the estimator converges to a well defined random variable and that the standard

t-test are still valid. In other words, under mixing conditions, inference using the

11Formally, the proof of theorem 3.3.2 derives the limit distribution for
√
m(θ̂− θ0). We report

the asymptotic distribution of θ̂ for presentation purposes.
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VC estimator is valid, even if the estimator itself is not consistent. This estima-

tor has the advantage of requiring little computational time and to be simple to

implement.

In this section, we have shown that under φ-mixing and some regularity condi-

tions, θ ∈ Θ can be recovered using (3.1). In the next section, we show that an

asymptotic version of the homophily principle is a sufficient condition for φ-mixing,

as defined in assumption 4.

3.4 Models of network formation

3.4.1 A First Example

We now turn to economic models of network formation. We want to find suf-

ficient conditions on hji (gm, x; θ) such that assumption 4 holds. To clarify the pre-

sentation, we start with a simple example. Assume for the moment that

hji = hji [Ni(gm), Nj(gm), d(i, j)]. (3.3)

That is, the value of a link depends only on the (direct) links the individuals

have, and the distance between them. Given this specific dependence structure, we

will show that a weak version of the homophily principle is sufficient to achieve

φ-mixing.

Homophily is a prominent feature of social networks. It characterizes the em-

pirical fact that similar individuals have a higher probability of being linked.12 We

assume the following :

Assumption 7 (Asymptotic Homophily) For all i, j ∈ N ,

(7.1) hji (gm, x; θ)→ −∞ as d(i, j)→∞.

(7.2) limd→∞ exp
{
−hji (gm,x;θ)2

2d

}
∈ [0, 1).

12Many definitions of homophily exist in the economic literature, see for instance Currarini et
al. (2009) and Bramoullé et al. (2012). In particular, some papers explicitly define homophily
using a distance function on the space of individual characteristics : for instance, Johnson and
Gilles (2000), Marmaros and Sacerdote (2006), and Iijima and Kamada (2010).
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Assumption (7.1) simply says that if the distance between two individuals is

infinite, the probability that they form a link is equal to 0. Condition (7.2) limits

the asymptotic concavity of hji in d. For example, suppose that hji (d) = O(dη)

for some η. Then, assumption 7.2 holds if η > 1
2
, but not if η ≤ 1

2
. Notice that

assumption 7 only requires that homophily holds asymptotically hence allowing for

a wide range of non-homophilic preferences. We provide an example in section 5.

We show that, under the specification in (3.3), Asymptotic Homophily is suf-

ficient for φ-mixing. Before we present the formal result, we provide a graphical

intuition. Consider Figure 3.1, where we assumed that X = R2. Individuals are

represented as circles, and pairs as stars.

Figure 3.1 – φ-mixing on Networks (I)

A

B

s

s1

s2

r1

r2

r

The φ-mixing condition says that, as the distance between A and B tends

to infinity, the realizations on A and B (i.e. the status of the pairs within those

subsets) are independent. Consider pairs s and r. As the distance between r and

s increases, the distance between the individuals within those pairs (i.e. s1, s2 and

r1, r2) increases as well. Under assumption 7, as the distance between, s2 and r1

goes to infinity, the probability that they form a link goes to zero. Since, under

the specification in (3.3), payoffs only depends on direct links, the status of s will

therefore be independent of the status of r. The argument holds for any pairs in A

and B.

Before presenting the formal statement, we need to add one more regularity

assumption. Recall that a necessary condition for theorems 3.3.1 and 3.3.2 was
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the existence of a minimal distance d0. However, in order to show that asymptotic

homophily is sufficient for φ-mixing, we need to be more specific about the how

the space of individual characteristics is filled as the number of individuals goes to

infinity. Specifically, we assume :

Assumption 8 limm→∞md
T+ε
m ηdm <∞ for all η ∈ [0, 1) and for some ε > 0.

where dm represent the fact that the distance increases as m→∞ (increasing

domain).13 This is in essence a distributional assumption for the individuals in X .

It requires that the tails of the distributions are large enough. If the distribution

of individuals on the type is too concentrated, the mixing coefficient φ̄1,∞(r) will

decrease as m increases, but not enough for assumption 4 to hold. Given this last

regularity assumption, we have the following :

Proposition 3.4.1 Let m→∞. Suppose that the payoff function is given by (3.3)

for all i, j ∈ N . Then, assumptions 3, 7 and 8 imply assumption 4.

When the payoffs are only dependent through direct links, it is sufficient to show

that the probability of a link between an individual in a pair in A and an individual

in a pair in B goes to zero fast enough. Since we assumed (assumption 3) that the

error term is normally distributed, this probability decreases at exponential rate,

which is sufficiently fast in the sense of assumption 4.

Assumption 7 is quite natural, and allows to adapt many known theoretical

models to our setting. Consider for instance the “Local Spillover” model from

Goyal and Joshi (2006) :14

hji (gm, x) = ψ(ni(gm)− 1, nj(gm)− 1)− cij

where ψ : N2 → R, and cij is some positive constant. In this example, the value of a

link between i and j is equal to a function of the number of links they have, minus

13Specifically assumption 8 must be satisfied for any sequence dm.
14Formally, we are assuming the homogeneity of the function ψ, compared to their original

model.
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a link-dependent cost. One could adapt their model, and introduce the observed

heterogeneity by letting cij = d(i, j), i.e. a cost equal to the distance between

the two individuals in X . Doing so would guarantee the Asymptotic Homophily

assumption. We now turn to more general network formation processes.

3.4.2 More General Models

Proposition 3.4.1 provides a first encouraging result for the estimation of prefe-

rences on networks. However, the specification in (3.3) excludes many interesting

models of network formation. For instance, one could be interested in the following

model. Let C(gm, λ) = (I− λW)−1W1 be the n× 1 vector of Bonacich centrality

in the network g, represented by the adjacency matrix W, for some λ ∈ (0, 1). The

Bonacich centrality accounts for the total number of links (direct and indirect) an

individual has, and can be interpreted as a measure of popularity.15

Now, define the payoffs as : hji = h(ci(gm, λ), cj(gm, λ), d(i, j)). This payoff func-

tion does not respect the conditions of proposition 3.4.1 since it depends on indirect

links. We will see that we can nonetheless use the same argument to allow for such

models. First, we provide some intuition on the class of models which do not res-

pect the φ-mixing condition. Suppose that the payoff function is of the following

form.16

hji (gm, x) = ψ(ni(gm), nj(gm), L(gm,−i−j))− cij

where L(gm,−i−j) =
∑

k 6=i,j nk(gm,−i−j) is the total number of links in the network

gm,−i−j, obtained from gm by removing all links individuals i and j have in gm.17

In that case, the value of a link depends on the whole network, irrespective of the

individuals’ characteristics. This model does not have the property that the depen-

dence vanishes as the distance between individuals increases, and hence φ-mixing

is not respected. In order to achieve φ-mixing, we have to limit the dependence to

the network structure. Specifically :

15See for instance Mihaly (2009).
16This is a loose adaptation of the “Playing the Field” model from Goyal and Joshi (2006)
17Specifically, gm,−i−j = gm − i1− ...− in− j1− ...− jn.
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Assumption 9 (Component Dependence) For all i, j ∈ N , hji (gm, x; θ) =

hji (gm|Rg
ij
, xRg

ij
; θ)

This condition states that the dependence through the network is limited to

(finitely) connected individuals. Suppose that the number of individuals in the po-

pulation is finite. Then, the probability that i and j form a link depends only on the

characteristics of the individuals in the same component as i or j.18 When however,

the number of individuals (hence the number of pairs) goes to infinity, we may have

two individuals connected through an infinite path. Assumption 9 states that, in

that case, those individuals can be treated as disconnected. In other words indivi-

duals are unaffected by infinitely distant (in the network) neighbors. Most models

of network formation respect this condition as they assume some decay factor.19 No-

tice that the previous example where hji (gm, x) = ψ(ni(gm), nj(gm), L(gm,−i−j))−cij
does not respect assumption 9. Since hji depends on L(gm,−i−j), the payoff function

may depend on links between individuals not connected to i nor to j.

Now, by analogy to the specification in (3.3), we see that it is sufficient for

assumption 4 to hold to show that the probability that any two individuals, say

s2 and r1 are connected through some path goes to zero, i.e. P (s2 ↔ r1) → 0.

However, this probability does not only depend on the individuals in pairs in A

and B, but also on the individuals in pairs “between” the sets. Figure 3.2 illustrates.

When the number of pairs m (hence the number of individuals n) goes to

infinity, there may exists a path of individuals, each of them separated by a finite

distance, so P (A ↔ B) may well be strictly positive. However, since the distance

between A and B goes to infinity, this path has to be infinite (i.e. contains an

infinite number of individuals). Hence, under assumption 9, the realizations over A

and B are independent. Formally,

Proposition 3.4.2 Assumptions 3, 7, 8 and 9 imply assumption 4 as m→∞.

18A component is a maximally connected subnetwork.
19Links of degree 1 have more influence than links of degree 2, which have more influence

than links of degree 3... and so on. Examples include generalizations the Connection Model from
Jackson and Wolinsky (1996), and models based on the Bonacich centrality.
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Figure 3.2 – φ-mixing on Networks (II)
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Proposition 3.4.2 shows that the class of models that can be estimated using

(3.1) is quite large. It also provide easy to check conditions for applied researchers

wanting to estimate some arbitrary model of network formation. In practice, provi-

ded that the choosen structural form for hji (g, x; θ) respects Asymptotic Homophily

and Component Dependence, one can estimate θ ∈ Θ using the ML estimator de-

fined in (3.1).

In the next section, we discuss the existence and potential multiplicity of pair-

wise stable networks.

3.4.3 Existence and Multiplicity

In the previous sections, we implicitly assumed that the set of pairwise stable

networks was non-empty, and unique. In general, this may not be true. General

conditions for the existence of a pairwise stable network are well known.20 One re-

sult that is particularly adapted to our setting is the fact that monotone preferences

imply the existence of at least one pairwise stable network. Formally :

Definition 9 (Monotonicity) A payoff function is monotone if for any gm, g
′
m ∈

Gm such that gm ⊆ g′m, we have that hji (gm, x, θ) ≤ hji (g
′
m, x, θ) for all i, j ∈ N .

20For general existence results for pairwise stable networks, see Jackson and Watts (2001) and
Chakrabarti and Gilles (2007).
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Monotone payoff functions have the convenient property that the set of pairwise

stable networks is non-empty, irrespective of the value of the unobserved term εij.

To see why, consider the following simple algorithm. Starting from the empty net-

work, we add links sequentially if Hj
i (gm+ij, x; θ, εi) ≥ 0 and H i

j(gm+ij, x; θ, εj) ≥
0. The link creation process stops when there exists no such profitable link creation.

Since the payoff function is monotone, the creation of a link increases the value of

the existing links so Hj
i (g+ ij, x; θ, εi) ≥ 0 implies that Hj

i (g+ ij + kl, x; θ, εi) ≥ 0

for any link kl. The network generated by this sequential creation of links is then

pairwise stable.

Another issue that has not been addressed is the potential existence of multiple

equilibria.21 A specific feature of pairwise stable networks is the complexity of the

equilibrium set. In general, one cannot explicitly find the set of pairwise stable

networks, as showing existence is already challenging. Also, recall that we assumed

that we observe only one equilibrium of the game, and not the other (potential)

equilibria. Then, in the presence of multiple equilibria, our estimator should not

be interpreted as a QMLE, but remains a well defined a extremum estimator,

where the objective function is a specific feature of the model : the probability that

the observed network is pairwise stable. However, the validity of the estimation

procedure under the potential presence of other potential equilibria is unclear.

Formally understanding the properties of the estimator under multiple equilibria

goes far beyond the scope of this paper and is left for future research.

In the next section, we provides an empirical application of our method using

communication networks.

3.5 Instant Messaging Networks

In this section, we apply the methodology developed in the previous sections

to estimate a model of network formation using a database provided by Yahoo !.

The Instant Messaging (IM) database is particularly well suited to our estimation

21See Bisin et al. (2011), Galichon and Henry (2011), and Tamer (2003).
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strategy as the variance of the observed characteristics is quite large (see Tables

3.II and 3.III).

We use the Yahoo ! IM database which includes data on the communications

among users of their IM service. We assume that there exists a link between two

individuals if we recorded at least one communication between them. The database

includes data on a little more than 20 million individuals. Each individual is cha-

racterized by his age, gender, reported country and Internet usage.22 The precise

description of the variables used can be found in Table 3.I.

We use the following structural model, which assumes that the probability that

two individuals form a link is explained by the local density of the network, the indi-

viduals’ general Internet usage (measured by the number of Yahoo’s pages viewed)

and by the social distance between the individuals. Here, “social distance” means

gender, age, geographical distances, and differences in the topic of the Internet

pages visited (sports, finance, news...). Specifically, we define :

hji (g, x; θ) = θ1(ni(g) + nj(g)) + θ2(PVi + PVj) + θ3∆(Genderij)

+θ4∆(Ageij) + θ5∆∗(countryij) + θ6∆(PVWeather,ij) (3.4)

+θ7∆(PVNews,ij) + θ8∆(PVFinance,ij) + θ9∆(PVSports,ij)

+θ10∆(PVFlickr,ij) + θ11

where θ1 > 0, and θ11 represents the intrinsic value of a link. The restriction θ1 > 0

is needed to ensure that preferences are monotonic, which implies the existence

of a Pairwise Stable network (see section 3.4.3). It’s easy to show that under the

specification in (3.4), the estimator in (3.1) is globally concave.

22Data was collected in October 2007 using a snowball procedure. For a more detailed descrip-
tion of the database, see Sinan et al. (2009a) and Sinan et al. (2009b).
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Now, a particular issue with our database is that it is far too big to be used

in its totality.25 We then use a random sample of the database. The sub-sampling

procedure is as follows.

First, we randomly select a subset of pairs. Then, for every individuals in every

pairs of the subset, we compute ni(g) and nj(g) over the whole sample. Using this

procedure, our sub-sample includes the total number of links the individuals have,

including links with individuals that are excluded from our sub-sample. The final

sub-sample has 74229 pairs of individuals, including 173781 individuals. Table 3.II

gives summary statistics for individuals, and Table 3.III gives summary statistics

for pairs.

Tableau 3.II – Descriptive Statistics for the individuals

Variable Mean Std. Dev.
Gender (Female = 1) 0.598 0.490
Age 29.782 11.494
PV 794.595 1402.652
PVWeather 0.241 2.718
PVNews 3.807 44.494
PVFinance 4.028 115.700
PVSports 13.139 170.008
PVFlickr 6.590 179.007
ni(g) 1.062 2.400
nb countries 228
nb indiv. 173 781

Following Bester et al. (2011), we estimate the specification in (3.4) using

Cluster-Robust standard errors.26 Marginal effects are reported in Table 3.IV. No-

tice that while we assumed θ1 > 0 in (3.4), we did not used that restriction for the

estimation.

25Recall that the number of pairs is m = n(n− 1)/2 ≈ (20 000 000)2/2 = 2× 1014.
26The estimation procedure is simple enough. One can simply use the preprogrammed probit

command available in most statistical packages.
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Tableau 3.III – Descriptive Statistics for the pairs

Variable Mean Std. Dev.
Links 0.008 0.090
ni(g) + nj(g) 4.070 3.333
PVi + PVj 1.583 1.988
∆(gender) 0.479 0.500
∆(age) 10.921 12.058
∆∗(country)(1000Km) 6.656 5.829
∆(PVWeather) 0.001 0.008
∆(PVNews) 0.005 0.028
∆(PVFinance) 0.006 0.046
∆(PVSports) 0.014 0.085
∆(PVFlickr) 0.007 0.052
nb. pairs 74 229

3.5.1 Results

The estimation (Table 3.IV) shows that the probability that a link is created

is influenced by the local density of the networks (i.e. ni(g) + nj(g)), as well as

by the general Internet usage. Non-surprisingly, frequent Internet users have a

higher probability of interacting through the IM service. Interestingly, however,

the connectivity of the individuals in the IM network seems to have an additional

positive effect on the probability of creating a link. This could reflect the fact that

frequent users of the IM service have higher probability of interacting together. The

estimation also shows strong effects of the distance on the probability of a link.

The positive effect of the variable ∆(Gender) seems to indicate that the IM service

is highly used by heterosexual couples. The effect of the age distance is negative,

which is coherent with homophily on with respect to the age of the individuals. The

geographic distance seems to have a negative impact, although it is not significantly

different from zero. The proximity in the topic of the Internet pages viewed by the

users also seems to have a negative effect, however the difference in the percentage

of sports pages viewed his captured significantly.

As this application shows, the approach used in this paper is promising as it

has the advantage of being intuitive, flexible, and simple to implement.
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Tableau 3.IV – Estimation Results (Marginal Effects)

Variable Coefficient (Std. Err.)
ni(g) + n(g) 0.00049** (0.00008)
PVi + PVj 0.00024* (0.00011)
∆(Gender) 0.00105* (0.00052)
∆(Age) -0.00006* (0.00003)
∆∗(Country) -0.00004 (0.00005)
∆(PVWeather) -0.03598 (0.05562)
∆(PVNews) -0.00045 (0.01775)
∆(PVFinance) -0.00412 (0.00627)
∆(PVSports) -0.00918* (0.00446)
∆(PVFlickr) 0.00124 (0.00457)
Significance levels : ∗ : 5% ∗∗ : 1%

3.6 Conclusion and Discussions

In this paper, we have developed a micro-founded econometric model of network

formation which requires the observation of only one social network. We have shown

that an asymptotic version of homophily is sufficient for φ-mixing, which implies

that the estimation of the underlying preference parameters can be achieved using

a simple Maximum Likelihood estimator. The methodology is appealing as it is

simple, and allows to estimate many theoretical models of network formation. We

have provided an empirical application using Yahoo ! Instant Messaging database.

We have shown that the probability that a link is created is strongly influenced

by the local density of the network, by general internet usage, and by the social

distance between individuals.
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CHAPITRE 4

DO PEERS AFFECT STUDENT ACHIEVEMENT ? EVIDENCE

FROM CANADA USING GROUP SIZE VARIATION1

4.1 Introduction

Evaluating peer effects in academic achievement is important for parents, tea-

chers and schools. These effects also play a prominent role in policy debates concer-

ning ability tracking, racial integration and school vouchers (for a recent survey,

see Epple and Romano 2011). However, despite a growing literature on the sub-

ject, the evidence regarding the magnitude of peer effects on student achievement

is mixed (e.g., Sacerdote 2001, Hanushek et al. 2003, Stinebrickner and Stine-

brickner 2006, Ammermueller and Pischke 2009). This lack of consensus partly

reflects various econometric issues that any empirical study on peer effects must

address. Identifying and estimating peer effects raises three basic challenges. First,

the relevant peer groups must be determined. Who interacts with whom ? Second,

peer effects must be identified from confounding factors. Especially, spurious cor-

relation between students’ outcomes may arise from self-selection into groups and

from common unobserved shocks. Third, identifying the precise type of peer effect

at work may be hard. Simultaneity, also called the reflection problem by Manski

(1993), may prevent separating contextual effects, i.e., the influence of peers’ cha-

racteristics, from the endogenous effect, i.e., the influence of peers’ outcome. This

issue is important since only the endogenous effect is the source of a social mul-

tiplier. Researchers have adopted various approaches to solve these three issues ;

we discuss the methods and results of previous studies in more detail in the next

section. As will be clear, however, there is no simple methodological answer to these

three challenges.

1This chapter is a joint work with Yann Bramoullé, Habiba Djebbari and Bernard Fortin, and
published in The Journal of Applied Econometrics
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In this paper, we provide, to our knowledge, the first application of a novel

approach developed by Lee (2007) for identifying and estimating peer effects. In

principle the approach is promising, as it allows to solve the problem of correlated

effects and the reflection problem with standard observational (non-experimental)

data. Moreover the exclusion restrictions imposed by the model are explicitly deri-

ved from its structural specification and provide natural instruments. The econo-

metric model does rely on a number of crucial assumptions, however, which makes

its confrontation to real data particularly important. We empirically assess the ap-

proach using original administrative data on test scores at the end of secondary

school in the Canadian province of Québec. We investigate the presence of peer ef-

fects in student achievement in Mathematics, Science, French, and History. In the

process, we also provide new economic insights regarding the sources of identifica-

tion in the model. This matters in particular to assess its robustness to alternative

(non-linear) approaches.

The econometric model relies on three key assumptions. First, individuals inter-

act in groups known to the modeler. This means that the population of students is

partitioned in groups (e.g., classes, grade levels) and that students are affected by

all their peers in their groups but by none outside of it. This assumption is typical

in studies of academic achievement but clearly arises from data constraints. Second,

each individual’s peer group is everyone in his group excluding himself. While this

assumption seems innocuous and has been used in most empirical studies, it is a

key source of identification in the model, as it will become clear below. In fact, it

is a main source of difference between Manski’s (1993) and Lee’s models. Manski’s

approach can be interpreted as one in which each individual’s peer group includes

himself.2 Third, individual outcome is determined by a linear-in-means model with

group fixed effects. Thus, the test score of a student is affected by his characteristics

and by the average test score and characteristics in his peer group. In addition, it

2More precisely, Manski studies a social interactions model which, in terms of identification,
has the same properties as a model where individuals interact in groups and each individual is
included in his peer group (see Bramoullé et al. 2009).
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may be affected by any kind of correlated group-level unobservable.

Lee (2007) shows that peer effects are identified in such a framework when there

are sufficient groups of different sizes. One important contribution of our paper is

to clarify the economic intuition behind identification. Regarding the estimation of

parameters, one potentially important limitation of the method, however, is that

convergence in distribution of the peer effect estimates may occur at low rates when

the average group size is large relative to the number of groups in the sample (Lee

2007). This is also intuitive : excluding the individual or not from his peer group

does not change much when its size is relatively large.

Here two remarks are in order. First, these results are to be distinguished from

the idea that the group size is a factor in a school’s production function (e.g.,

Krueger 2003). In Lee’s model, the effects of group sizes which are separable from

the peer effects are controlled for by fixed effects in the structural model. Second,

Lee’s identification method differs from the variance contrast approach developed

by Graham (2008). The basic idea in this approach is that peer effects will induce

intra-group dependencies in behavior that introduce variance restrictions on the

error terms. These restrictions are used to identify the composite (endogenous +

contextual) social interaction effects under the assumption that the variance matrix

parameters are independent of the reference group size.

We use administrative data on academic achievement for a large sample of se-

condary schools in the Province of Québec obtained from the Ministry of Education,

Recreation and Sports (MERS). Our dependent variables are individual scores on

four standardized tests taken in June 2005 (Math, Sciences, French and History)

by fourth and fifth grade secondary school students. All 4th and 5th grade students

in the province must pass these tests to graduate. One advantage of these data is

that all candidates in the province take the same exams, no matter their school

and location. This feature effectively allows us to consider test scores as draws

from a common underlying distribution. Another advantage is that our sample is
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representative and quite large. We have the scores of all students for a 75% ran-

dom sample of Québec schools which, over the four subjects, yields 194,553 test

scores for 116,534 students. In terms of interaction patterns, the structure of the

data leads us to make the following natural assumption. We assume that the peer

group of a student contains all other students in the same school qualified to take

the same test in June 2005. In practice, a small number of students postpone test-

taking to August 2005. We extend Lee’s methodology in the empirical modeling to

address this issue. However, since the difference between observed group sizes and

actual group sizes is small, the correction has little effect on the results. Following

Lee (2007), we estimate the model in two ways : through generalized instrumen-

tal variables (IV) and, under stronger parametric conditions, through conditional

maximum likelihood robust to non-normal disturbances (pseudo CML).

Our results are mixed though consistent with the model. We do provide evidence

of some endogenous and contextual peer effects. Based on pseudo CML estimates,

we find that the endogenous peer effect is positive, significant and quite high in

Math (0.83). Moreover it is within the range of previous estimates (see Sacerdote

2011 for a recent survey). However, the effect is smaller and non significant in

History (0.64), French (0.30), and Science (−0.23).3 Endogenous peer effects esti-

mates obtained from IV methods are highly imprecise with our data even in Math.

The higher precision of our pseudo CML estimates is consistent with results in

Lee (2007) showing that CML estimators are asymptotically more efficient than IV

estimators. As regards contextual peer effects, we find evidence that some of them

matter, based on both pseudo CML and IV estimators. For instance, results from

pseudo CML indicate that interacting with older students (a proxy for repeaters)

has a negative effect on own test score in all subjects except Math (not significant).

It is remarkable that even with large average group size relative to the number

of groups, we are able to identify some peer effects. However there is also much

3The effect of individual characteristics, such as gender, age, and socioeconomic background,
on test scores are precisely estimated by either method, and these estimates generally conform to
expectations.
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dispersion in group sizes within our samples. We suspect that this helps identifica-

tion. We study this issue systematically through Monte-Carlo simulations. We find

that indeed increasing group size dispersion has a positive impact on the precision

of estimates.

The remainder of the paper is organized as follows. We discuss past research

in section 4.2 and present our econometric model and the estimation methods

in section 4.3. We describe our dataset in section 4.4. We present our empirical

results in section 4.5 and run Monte Carlo experiments in section 4.6. We conclude

in section 4.7.

4.2 Previous research

In this section, we give a brief overview of the recent literature on student

achievement and peer effects, and we explain how our study complements and

enhances current knowledge on peer interactions in academic outcomes.4

As discussed above, measuring peer effects is complex as it raises three basic

interrelated problems : the determination of reference groups, the problem of cor-

related effects and the reflection problem. The choice of reference groups is often

severely constrained by the availability of data. In particular, there are still few

databases providing information on the students’ social networks ; the Add Health

dataset is an exception, see e.g. Calvo-Armengol et al. (2009) and Lin (2010).5 For

this reason, many studies focus on the grade-within-school level (e.g., Hanushek et

al. 2003, Angrist and Lang 2004). Other studies analyze peer effects at the class-

room level (e.g., Kang 2007, Ammermueller and Pischke 2009). The administrative

data we use in this study do not provide information on classes or teachers. The-

refore, we assume that for each subject the relevant reference group for a student

4For two recent comprehensive surveys on peer effects in education, see Sacerdote (2011) and
Epple and Romano (2011).

5Bramoullé et al. (2009) determine conditions under which endogenous and contextual peer
effects are identified when students interact through a social network known by the modeler and
when correlated effects are fixed within subnetworks. See also section 3.4.2. in this paper.
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taking the test contains all other students in the same school who have completed

all courses in the subject matter by June 2005. Thus, given that the reference group

is likely to include students from other classes, one should probably expect peer

effects to be smaller than at the classroom level.6

Two main strategies have been used to handle the problem of correlated effects.

A first strategy has been to exploit data where students are randomly or quasi-

randomly assigned within their groups (e.g., Sacerdote 2001, Zimmerman 2003,

Kang 2007). Results on the impact of contextual effects using randomly assigned

roommates as peers are usually low though significant. However, Stinebrickner and

Stinebrickner (2006) have argued that these studies tend to underestimate true

peer effects as the true influence of roommates is unclear. A second strategy uses

observational data to estimate peer effects. This approach is usually based on two

assumptions. First, fixed effects allow to take correlated effects into account. With

cross section data, these effects are usually defined at a level higher than peer

groups. Otherwise, peer effects are absorbed in these effects and cannot therefore

be identified. For instance, Ammermueller and Pischke (2009) introduce school

fixed effects to estimate peer effects at the class level for fourth grader in six

European countries. Contrary to this approach, our model allows to include fixed

effects at the peer group level even with cross-section data. This is so because each

student within a group has his own reference group (since he is excluded from

it). The second assumption is that one observes exogenous shocks to peer group

composition which allow to identify a composite (endogenous + contextual) peer

effect. The strategy uses either cross-section or panel data. With cross-section data,

demographic variations across grades but within schools are usually exploited (see

Bifulco et al. 2010). With panel data, demographic variations across cohorts but

within school-grades are usually exploited (see Hanushek et al. 2003).

The reflection problem is handled using two main strategies. In most papers,

6In fact, at the end of secondary level, classes and teachers are usually different depending on
the subject matter taught.
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no solution for this difficult problem is provided. Rather, researchers estimate

a reduced-form linear-in-means model, and no attempt is made to separate the

contextual and endogenous peer effects. Only composite parameters are estimated

(Sacerdote 2001, Ammermueller and Pischke 2009). Note however that a number of

these papers (often implicitly) assume that there are no contextual effects. In this

case, the composite parameter(s) allow(s) to identify the endogenous peer effect.

In a second strategy, one uses instruments to obtain consistent estimates of the

endogenous peer effect (e.g., Evans et al. 1992, Gaviria and Raphael 2001). The

problem here is to choose suitable instruments. For instance, Rivkin (2001) argues

that the use of metropolitan-wide aggregate variables as instruments in the Evans

et al. (1992) study exacerbates the biases in peer effect estimates. In our paper,

we provide some results based on instrumental methods. However, our instruments

are naturally derived from the structure of the model.

In short, various strategies have been proposed to address the three basic issues

that occur in the estimation of peer effects. But most rely on strong assumptions

that are difficult to motivate and may not hold in practice. Some of them require

panel data while others rely on experiments that randomly allocate students within

their peer group. This makes the results in Lee (2007) particularly interesting, as

they show that both endogenous and contextual peer effects may be fully identified

even with observational data in cross-section.

4.3 Econometric model and estimation methods

4.3.1 Econometric model

We review and adapt the structural model suggested by Lee in the context of

our application. Lee’s model builds on and extends the standard linear-in-means

model of peer effects (Moffitt 2001) to groups with various sizes. The set of students

{i = 1, ...M} is supposed to be partionned into groups of peers indexed by r =

1, ..., R. Let Mr be the rth group of peers, of size mr. All students in the same

group have the same number of peers since they interact with all others in the
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group. We assume that student i who belongs to group r is excluded from his own

reference group. Let Mri be student i’s group of peers, of size mr − 1. A peer is

any fellow student whose academic performance and personal characteristics may

affect i’s performance. Let yri be the test score obtained by student i. Let xri be

a 1 ×K vector of characteristics of i and Xr be the mr ×K matrix of individual

characteristics. For expository purposes, the model is first presented with a unique

characteristic (K = 1), defined by his family socio-economic background. Another

departure from the linear-in-means model is the inclusion of a term αr that captures

all group invariant unobserved variables (e.g., same learning environment, similar

preferences of school or motivation towards education). The error term εri reflects

other unobservable characteristics associated with i.

We do not change any other assumption of the linear-in-means model. In par-

ticular, we assume that a student’s performance to the standardized test may be

affected by the average performance in his group of reference, by his family socioe-

conomic background, and by the average socioeconomic background in his group.

Formally, the basic structural equation is given by :

yri = αr +β

∑
j∈Mri

yrj

mr − 1
+γxri + δ

∑
j∈Mri

xrj

mr − 1
+ εri, E(εri| Xr,mr, αr) =0, (4.1)

where β captures the endogenous effect, γ the individual effect and δ the contextual

effect. Observe that eq. (4.1) can be derived from the first-order conditions of a

choice-theoretic non-cooperative (Nash) model where each student’s performance

is obtained from the maximisation of his quadratic utility function which depends

on his individual characteristics, his performance and his reference group’s mean

performance and mean characteristics.

Importantly, we assume strict exogeneity of mr and {xri : i = 1, ...,mr} condi-

tional on the unobserved effect αr, i.e., E(εri| Xr,mr, αr) =0. This exogeneity as-

sumption can notably accommodate situations where peer group size is endogenous.
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Suppose that, everything else equal, brighter students attend smaller schools, i.e.,

schools where the cohort of students eligible to take the province-wide test in the

subject matter (our peer groups) is small. In this case, peer group size mr may

well depend on unobserved common characteristics of the student’s group, αr :

E(αr| Xr,mr) 6=0. Our model allows for this type of correlation. However, condi-

tional on these common characteristics, peer group size mr is assumed to be inde-

pendent of the student’s idiosyncratic unobserved characteristics :

E(εri| Xr,mr, αr) =0. We maintain this assumption throughout our analysis.

To eliminate group-invariant correlated effects, we next apply a within trans-

formation to eq. ( 4.1). In particular, as we noted above, when the effect of group

size is separable from peer and individual effects, it is captured by αr. The model

can address the problem of selection or endogenous peer group formation. For ins-

tance, school choice may depend on some unobserved factors specific to a school (

e.g., reputation, unobserved quality) and determine the type of students who are

attracted by these schools. The advantage of the within transformation is that we

compare students of the same type. This transformation also allows to control for

common environment effects. Resources available at the school level (e.g., teaching,

physical infrastructure) may affect the performance of all the students. Again, by

comparing students within the same school, we can abstract from these effects. The

within reduced form equation for students in the rth group can be written as :

yri − ȳr =
γ − δ

mr−1

1 + β
mr−1

(xri − x̄r) +
1

1 + β
mr−1

(εri − ε̄r) (4.2)

where means ȳr, x̄r and ε̄r are computed over all students in the group. Now assume

that γβ+ δ 6= 0. Only one composite parameter can be recovered from the reduced

form for each group size mr. At least three sizes are thus necessary to identify the

three structural parameters β, γ and δ.7

7It is easy to show that when γβ + δ = 0, only γ is identified.
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4.3.2 Interpretation of identification

The fact that the parameters of the structural within eq.(4.2) may be fully

identified is quite surprising, and deserves some elaboration. Indeed, under the

alternative assumption that means are inclusive, that is, i ∈Mri, peers are the same

for everyone in a group Mri = Mr, and peer effects cannot be separated out from

group fixed effects. So somehow assuming that the individual is excluded from his

own peer group allows to solve two difficult identification problems : distinguishing

true peer effects from correlated effects and further distinguishing endogenous from

contextual peer effects. Intuitively, where does identification come from ?

Suppose first that the endogenous effect is absent β = 0. Note that each indi-

vidual has different peers : i 6= k implies that Mri 6= Mrk. A first key observation

is that, within a group, individual attributes xi are perfectly negatively correlated

with mean peer attributes (
∑

j∈Mri
xj)/(mr − 1).8 Thus, students with an ability

above average necessarily have peers with a mean ability below average, and vice

versa. If the individual and the contextual effects γ and δ are positive, this negative

correlation tends to reduce the dispersion in outcomes. In such a group setting, peer

effects lower the difference in achievement between high and low ability students.9

Formally, the impact of the difference in attributes on the difference in outcomes

changes from γ to γ − δ/(mr − 1) when introducing peer effects [see eq. (4.2)].

So variations in group sizes can be used to identify contextual peer effects. The

second key observation is that this reduction is stronger in smaller groups. The

variance in mean peer attributes is simply higher in smaller groups, reflecting the

relatively larger effect of excluding one individual from the mean. And as group size

increases, mean peer attributes converge to the group mean, and peer effects have

increasingly less bite on how differences in covariates affect differences in outcomes.

Next, consider the reflection problem. Observe that outcomes are subject to a

8To see this, observe that
∑

j∈Mri
xj = (

∑
j∈Mr

xj)−xi. So if xi < xk then 1
mr−1

∑
j∈Mri

xj >
1

mr−1
∑

j∈Mrk
xj .

9In contrast if γ > 0 and δ < 0, this negative correlation helps amplify the dispersion in
outcomes.
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similar negative correlation : within a group, students with grades above average

necessarily have peers with grades below average. So if β > 0, endogenous peer

effects lead to a further reduction in outcome dispersion. However, simultaneity

now implies that this decrease in impact is non-linear in the peer coefficient : from

γ − δ/(mr − 1) to (γ − δ/(mr − 1))/(1 + β/(mr − 1)) [see eq. (4.2)]. The difference

in the shapes of impact reduction can then be used to identify endogenous from

contextual peer effects.

Finally, this understanding is useful to assess the robustness of the identification

strategy to changes in the econometric model. In particular, it is easy to see that

if xi < xk then the distribution of attributes in i’s peer group Mri first-order

stochastically dominates the distribution in Mrk. So identification is likely to hold,

in general, if we replaced the mean in equation (1) by the median, the variance, or

many other moments of the distribution.10

4.3.3 Treatment of missing values

One problem we face in our sample is that we do not always observe the scores

of all students within a group. For instance, some students may postpone test-

taking to the next session due to illness. We next use a correction first developed

by Davezies et al. (2009) to allow for this possibility. Our setting is one where

the total number of students (including those who postpone test-taking) in each

group is known, but we only observe the test scores of subsamples Nr of size nr

of each group Mr, with nr ≤ mr and
R∑
r=1

nr = N . We assume that a student’s

decision to postpone exam-taking is random or depends on the observable strictly

exogenous variables, conditional on the fixed group effect. We show how to adapt

Lee’s analysis to this more general setting. Let Lr be the complement of Nr, i.e. ,

10Of course, one has to address a basic modeling question first, that is, whether the implied
model is coherent. A model has this property when a specific nonlinear structure generates a
unique solution for outcomes.
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Lr = Mr −Nr.
11 The structural equation becomes :

yri = α̃r+β

∑
j∈Nri

yrj

mr − 1
+γxri+δ

∑
j∈Nri

xrj

mr − 1
+εri, E(εri| Xr,mr, αr) = 0, (4.3)

where i now denotes an observed individual in the sample (but not any one in the

rth group) and α̃r = αr + β
∑

j∈Lr
yrj

mr−1
+ δ

∑
j∈Lr

xrj

mr−1
is the new group fixed effect.

Under our assumptions, estimators are consistent, even if we do not observe test

scores for all students in each group. Moreover, effects stemming from unobserved

individuals are the same for all the individuals observed in the sample from the

rth group. They are therefore picked up by the group fixed effect. Using the within

transformation, one obtains the same equation as (4.2) but where means ȳr, x̄r and

ε̄r are computed only over all observed students in the group.

4.3.4 Estimation methods

4.3.4.1 CML Estimator

We consider estimation under both pseudo Conditional Maximum Likelihood

(or CML) and Instrumental Variables (or IV) identification conditions.

To present pseudo CML and IV estimators, it is easier to express eq. (4.3) in

matrix notations. We now allow for any number of characteristics, so that γ is a

K × 1 vector of individual effects and δ a K × 1 vector of contextual ones. Recall

that in this setting, students are affected by all others in their group and by none

outside of it. This means that the observed social interactions can be modelled

as a N × N block-diagonal matrix G = Diag(G1, ...,GR), such that for all r,

Gr is comprised of elements grij = 1
mr−1

if i 6= j and grii = 0. In other terms,

Gr = 1
mr−1

(ιnrι
′
nr
− Inr), where ιnr is a nr × 1 vector of ones and Inr the identity

matrix of dimension nr. Eq. (4.3) can be re-written in matrix form as follows :

yr = ιnr α̃r + βGryr + Xrγ + GrXrδ + εr, (4.4)

11If Nri denotes the group of peers of student i, we also have Lr = Mri −Nri.
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where E(εr | Xr,Gr, α̃r)=0.

Applying the operator matrix Jr = Inr − 1
nr
ιnrι

′
nr

allows us to obtain deviations

with respect to the mean for the observed group members. Pre-multiplying eq. (4.4)

by Jr eliminates the group fixed effect and yields :

Jryr = βJrGryr + JrXrγ + JrGrXrδ + Jrεr (4.5)

Elementary linear algebra tells us that JrGr = − 1
mr−1

Jr. Letting JrAr = A∗r, we

obtain
mr − 1 + β

mr − 1
y∗r = X∗r

(mr − 1)γ − δ
mr − 1

+ ε∗r

which is equivalent to eq. (4.2).

To derive the pseudo CML estimator, we assume (possibly wrongly) that the

εir’s are i.i.d. N(0, σ2). It follows that, given Xr, mr, and nr, the pseudo density

of y∗r is a multivariate normal distribution with mean X∗r
(mr−1)γ−δ
mr−1+β

and variance

(σ mr−1
mr−1+β

)2Jr.
12 The pseudo log likelihood function to be maximized can then be

expressed as follows :

lnL = c+
R∑
r=1

(nr − 1) ln (mr − 1 + β)− N −R
2

ln
(
σ2
)

− 1

2σ2

R∑
r=1

(
mr − 1 + β

mr − 1
y∗r −X∗r

(mr − 1)γ − δ
mr − 1

)′
×(

mr − 1 + β

mr − 1
y∗r −X∗r

(mr − 1)γ − δ
mr − 1

)
,

where c is a constant. This log likelihood function excludes any fixed effects. It is a

conditional log likelihood function as it is conditional on the sufficient statistics yr,

(as well as on the Xr’s, the mr’s, and the nr’s), for r = 1, ...R. Under the assumption

that the εir’s are correctly specified and i.i.d. N(0, σ2), Lee (2007) shows that the

CML estimators of β, γ, δ and σ are consistent and asymptotically efficient under

regularity conditions and provided there is sufficient variation in group sizes.

12Note that only nr − 1 elements of ε∗r are linearly independent.
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Even if the assumed density of y∗r is misspecified, the pseudo CML estimator

is consistent provided that the conditional mean of the y∗r ’s is correctly specified.

This is the case since the normal density belongs to the Linear Exponential Family

(see Gourieroux et al. 1984). Of course, the estimator is no longer asymptotically

efficient. Moreover, one has to compute the robust covariance matrix using the

sandwich formula J−1IJ−1, where J is minus the expectation of the Hessian ma-

trix and I the expectation of the outer-product-of-the-gradient matrix. A further

advantage of this computation is that it allows us to see whether an apparent

precision of CML estimators is driven by the normality assumption used in Lee

(2007).

4.3.4.2 2SLS and Generalized 2SLS estimators

Alternatively, the structural equation (4.4) can be estimated by instrumental

(IV) methods. To see how the methods work, define a N×N block-diagonal matrix

J = Diag(J1, ...,JR). Concatenating eq. (4.5) over all groups yields :

Jy = βJGy + JXγ + JGXδ + Jε. (4.6)

where y (resp. X) is obtained by stacking the vectors yr (resp. the matrices Xr),

for r = 1, ..., R.

The reduced form of the model is :

Jy = (I−βG)−1(JXγ + JGXδ) + (I− βG)−1Jε. (4.7)

Identification can be given a natural interpretation in terms of instrumental va-

riables. If i /∈ Mri and there are at least three different group sizes, E[JGy|X,G]

is not perfectly collinear to (JX,JGX) and the model is identified [see Bramoullé

et al. (2009) for more details]. Moreover JG2X can be used as a matrix of valid
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instruments for JGy.13

One advantage of an IV approach over pseudo CML is that it requires less

structure. Specifically, we do not assume that the specified density function of the

yr’s, potentially partially misspecified, is normal. Also we do not use the structure

on the error terms for identification purpose. Thus, identification in this case is

semi-parametric, or “distribution-free”. Of course, this comes at a price : the IV

estimator is asymptotically less efficient than the pseudo CML, since the latter

imposes more structure on the distribution of error terms.

In addition, we can derive a Generalized IV estimator as proposed in Kelejian

and Prucha (1998), and discussed in Lee (2007). Assuming homoskedasticity, it

yields an asymptotically optimal (best) IV estimator and reduces to a two-step

estimation method in our case. More precisely, our first step consists in estima-

ting a 2SLS as described above, by using as instruments S = (JX,JGX,JG2).

The second step consists in estimating a G2SLS estimator using as instruments

Ẑ = (ĴGy,JX,JGX), where ĴGy is computed from the reduced form ( 4.7)

premultiplied by G and using the first-step estimates.

4.4 Data

We gathered for this analysis original data from the Québec Government MERS.

These administrative data provide detailed information on individual scores on

standardized tests taken in June 2005 on four subjects (Math, Sciences, French

and History) by fourth and fifth grade secondary school students. They also include

information on the age, gender, language spoken at home and socioeconomic status

of students. Sampling has been done in two steps. The population of interest is the

set of all fourth and fifth grade secondary school students who are candidates to the

MERS examinations in June 2005. This population is comprised of 152,580 students

13In fact, JrGr = − 1
mr−1Jr and JrG

2
r = 1

(mr−1)2 Jr, hence instruments are built here by

premultiplying characteristics (in deviation) by group-dependent weights and by stacking them
across groups.
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in total. In the first step, a 75% random sample of secondary schools offering fourth

and fifth grade classes in the 2004-2005 school year have been selected. In the second

step, all fourth and fifth grade students in these schools have been included. Overall,

we have 194,553 individual test scores for 116,534 students.14

There are many advantages to the use of our data. First, all 4th and 5th grade

students must take tests on these four subjects to qualify for secondary school

graduation. This means that our results do not pertain to a selected sample of

schools. In particular, both public and private school students have to take these

tests. Another advantage is that the tests are standardized, i.e., designed and

applied uniformly within the province of Québec. We use test results gathered by

the MERS, so there is less scope for measurement error with these data than with

survey data on grades. Finally, although survey data may have provided information

on a larger set of covariates, sample sizes in our study are larger than in typical

school surveys.

Given the lack of information on the structure of relevant social interactions,

we assume that the peer group for a student taking a test is comprised of all other

students in the same school who are qualified to take the test in June 2005. Two

test sessions are offered for those who completed coursework in the Spring semester.

We thus consider as belonging to the same group all those who belong to the same

school and who take a subject test in one of the two consecutive sessions of June

and August 2005. We know the number of students in each of these groups. But we

only observe test scores for the set of students who took the test in June. Therefore

we do not always observe the scores of all students within a group. We offered a

correction for this problem in our discussion of the econometric model, and our

empirical results below incorporate this correction. In any case an overwhelming

majority of the students do take the tests in June, so the correction has little effect

on the results.

14There are more individual test scores than students as some students take test in more than
one subject matter.
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We use for this study French, History, Science and Math test results as reported

in the MERS administrative data. Students in a regular track take History and

Science tests in Secondary 4. The French test is commonly taken in Secondary

5. Finally, we focus on students who take the Math test in Secondary 5 (Math

514). This completes their mathematical training for secondary school. Note that

the MERS administers a unique test to all secondary school students in French,

History and Science. In contrast, it administers different tests in Math, depending

on academic options chosen early on by the students. We report here results for

students following the regular mathematical training (Math 514). We focus on this

test in our analysis.

We provide descriptive statistics in Table III.I.15 For each subject, the dependent

variable in our econometric model is the test score obtained in the provincial stan-

dardized test. The average score is between 70% and 75% in French, Science and

History tests. It is lower and about 62% in Math. In samples for which the regular

track for the test is Secondary 5 (resp. Secondary 4), the average age of students

is close to 16 (resp. 15). Most students taking French and Math (98% and 96%)

are enrolled in Secondary 5. Most of those taking Science and History are enrolled

in Secondary 4 (92% and 96%). Between 52% and 55% of students are female, and

between 11% and 13% of students speak a language at home which is different

from the language of instruction (Foreign variable).16 Between 30% and 34% of

students come from a relatively high socioeconomic background and between 40%

and 42% from a medium one. We use an index of socio-economic status provided

by the MERS. This index is computed from data from the 2001 census. It uses

information on the level of education of the mother (a weight of 2/3) and the job

status of parents (weight of 1/3). Low socio-economic status corresponds to the

three lowest deciles of the index (high socio-economic status to the three highest

deciles).

15All Tables can be found in appendix III.
16The language of instruction is French in most schools, and English otherwise.
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We observe test scores and characteristics of students taking the same test in

June 2005. Sample sizes are 41, 778 for French, 54, 981 for Science, 15, 771 for Math,

and 55, 057 for History. We also observe the number of students who completed

coursework but postpone test-taking to August 2005. There are 118 students post-

poning French, 186 postponing History, 195 postponing Science, and 160 postpo-

ning Math. We observe between 314 and 382 peer groups depending on the subject

matter considered. The average group size is between 50 (Math) and 146 (Science).

The ratio between the number of groups and the average group size varies between

2.36 (French) and 7.23 (Math). These numbers are relatively small, which suggests

that our estimates could be subject to weak identification problems. The group

size standard deviation is quite large, however, varying between 50 (in Math) and

about 135 (in Science and History). We expect such dispersion in group sizes to

help identification. We analyze these issues in more details in Section 4.6.

4.5 Empirical Results

4.5.1 CML and pseudo CML estimates

Table III.II reports the results of maximum likelihood estimation with unrobust

(CML) and robust (pseudo CML) standard errors. The model estimated is the

linear-in-means model with group fixed effects, individual impacts, and endogenous

and contextual peer effects. We find that the estimated endogenous peer effect

lies between −0.24 and 0.83. Using unrobust standard errors (in brackets), the

endogenous effect is significantly different from zero and positive for Math (β̂ =

0.82), and History (β̂ = 0.65). It is not significant for French (β̂ = 0.33) and for

Science (β̂ = −0.23). Based on robust standard errors, it is no longer significant

for History (p-value= 10,82%) but still significant for Math. One thus concludes

that regarding this peer effect, inference appears to be driven by normality for one

subject (History). In general standard errors are larger using pseudo CML than

CML, but their differences are not so important.

Two reasons may explain why the endogenous peer effects in Math is significant
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in our sample. First, the standard error of the estimates is smaller in Math than in

other subjects. This is consistent with the fact that the average group size relative to

the number of groups is close to three times smaller in Math than in other subjects.

Second, our endogenous effect estimate is much larger in Math (0.82). How does

this result compare with other studies ? Sacerdote (2011) has recently provided a

survey of studies of endogenous peer effects in test scores for primary and secondary

schools based on linear-in-means models (see his Table 4.2.). Interestingly, in most

reported studies (5 over 6) which analyze achievement in both Math and Reading,

the endogenous peer effect is larger in Math. In addition, this effect is often very

high and exceeds the value we have estimated. Thus Hoxby (2000) reports a 1.7

to 6.8-point increase in own score in relation with a 1-point increase in mean score

of peers in some specifications. Betts and Zau (2004) show a 1.9-point increase

in association with a 1-point increase in mean math score of peers. On the other

hand, Hanushek et al. (2003) obtain a Math peer effect of 0.4.17 So our estimate

lies on the average to high side of the range of previous estimates. Observe finally

that our results in Math are larger than those usually obtained in studies based

on randomized experiments (e.g., Sacerdote 2001, Zimmerman 2003). One possible

explanation is that peers used in these papers are often people from the same

dorm. These individuals do not necessary represent those who exercise significant

influence on students’ scholar achievement.

The relatively large endogenous peer effect in Math may reflect the fact that

mathematics provide more opportunities for interactions among students. And,

probably more than in other subjects, it may also reflect general effects such as

disruption. For instance, it is likely that success in Math requires much concen-

tration in class from the average student. Now suppose that there is a student

(with low grade in Math) in class who is characterized by his propensity to disrupt

learning by bad behavior or asking poor questions. His behavior may have large

negative effects on his peers’ scholar achievement (e.g., see Lazear 2001) and thus

17Kang (2007, p. 475) also provide a survey of endogenous peer effects in achievement in
mathematics which is broadly consistent with results reported in Sacerdote (2011).
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generates strong endogenous peer effects.

Regarding the individual characteristics, most of them have a significant effect

on test scores, and the signs of these effects essentially conform to expectations.

All test scores decrease significantly with age. Since older students have often re-

peated a grade, being younger is a natural proxy for ability. Test scores are signifi-

cantly higher for female students than for male students, except for History where

male students perform significantly better than female students. This is broadly

consistent with results from previous studies. For instance, results from the 2000

Program for International Student Assessment (PISA) show that Québec female

students perform better than males on reading literacy tests but that the differences

in performance on mathematics and science tests are smaller and not significant

(see Québec Government 2001). Similarly, in our analysis, the difference in perfor-

mance is quantitatively large in French but much smaller in the other disciplines.

The performance of foreign students is, non surprisingly, significantly lower than

for non-foreign students on the French test, but higher for Science and History and

not significantly different for Math. Secondary 5 students tend to perform signi-

ficantly better on all tests than Secondary 4 students, which reflects the positive

impact of an additional year of schooling on test scores. Finally, students from a

higher socioeconomic category perform significantly better in all tests.

As far as contextual variables are concerned, a few of them have a significant

impact on student performance. Average age of other students has a negative and

significant effect on all test scores except Math where it is positive but not signifi-

cant. These results also conform our expectations. When the number of repeaters

rises (as reflected by an increase in mean age of our peers at a given grade level),

this will tend to reduce own test score. Proportion of other students enrolled in

Secondary 5 have a large positive and significant effect on own score in French.

Peers’ socioeconomic background has little effect on own schooling performance.

The proportion of female students among peers has a positive and significant effect

in Math. When significant, the magnitude of contextual effects is always larger
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than the magnitude of individual effects. This is not surprising as it captures the

effect of a unit change in the characteristic of every other student in the group.18

4.5.2 Reflection problem

One way of addressing the simultaneity problem without exploiting group size

variations is to exclude at least one contextual variable from the outcome equation

and to use it as an instrument for average test score. We estimate a model similar

to the one presented in Table III.II but excluding contextual effects that are not

individually significant in the pseudo CML specification (i.e., for which the null

that δ = 0 is not rejected) ; see Table III.VI. Using likelihood ratio tests, we reject

the null that these δ’s are jointly equal to zero for French but not for the other

subjects. This suggests that the exclusion restrictions may be valid for these latter

samples. Therefore, the pseudo CML estimators provided in Table III.VI should

be consistent and asymptotically more efficient than those provided in Table III.II

for the Science, Math and History tests. Results however appear to be robust to

these new specifications. Observe finally that we could not have known this a priori

without an estimation of the full model.

Overall, this shows the interest of Lee’s solution to the reflection problem. Es-

timating a model with both endogenous and contextual peer effects is needed to

recover the different types of peer effects at work.

4.5.3 2SLS and G2SLS estimates

Tables III.III, and Table III.VII provide the 2SLS and G2SLS estimation re-

sults of the linear-in-means model of peer effects with group fixed effects, individual

impacts, and endogenous and contextual peer effects. In contrast to the CML and

pseudo CML estimates of Table III.II, none of the endogenous effects is statistically

significant. This is consistent with Lee’s (2007, p. 345) result that the asymptotic

18We have also estimate a second-order pseudo CML in which restrictions are directly incorpo-
rated in the variance term and estimated. Results are quite similar with those presented in Table
III.III.
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efficiency of IV estimators is smaller than that of the CML. Estimated individual

effects are quite similar to the corresponding CML estimates. Some contextual ef-

fects are similar while others are different. For instance, the proportion of other

students in Secondary 5 still has a large and positive effect on own French score

as well as no significant effects for the other subjects. In contrast, average age

among peers now has a positive and significant effect on own score for most sub-

jects, rather than a negative one. This could be explained by differences in small

sample properties of both methods, possibly aggravated by the imprecision in the

estimation of the endogenous peer effect.

Table III.III also reports two standard test results giving information on ins-

trumental variables properties. We first look at Sargan tests on the validity of

instruments and the over-identification restrictions of the model. We do not reject

the null for Science, Math and History, but we reject it for French. While this may

indicate a problem of model specification in this last case, one must be cautious in

interpreting the test given the likely low convergence of peer effects IV estimates.

We then compute Stock and Yogo test statistics on weak identification. Based on

the definition that a group of instruments is weak when the bias of the IV esti-

mator relative to the bias of ordinary least squares exceeds a certain threshold b,

say 5%, one rejects the null that the instruments are weak for all subject matters.

Finally, Hausman tests have been performed to test the equality of pseudo CML

and G2SLS estimators. Under the null, both of these estimators are consistent,

but pseudo CML estimators are asymptotically more efficient ; under the alterna-

tive, G2SLS estimators are consistent whereas pseudo CML estimators are not. For

each subject, we could not reject the null. This suggests the absence of specification

errors in the model.

4.6 Monte Carlo simulations

In this section, we study through simulations the effect of group sizes and their

distribution on the precision and bias of our estimates. Lee (2007) shows that the
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CML and IV estimators may converge in distribution at low rates when the ratio

between the the number of groups and the average group size is small. Since this

ratio varies between 2.36 and 7.23 in our samples, a problem of weak identification

could in principle emerge. However, the standard deviation of the distribution of

group sizes is also relatively large (see Table III.I), and we suspect that this may

help identification. To study these issues, we realize two simulation exercises. First,

we vary group sizes in a systematic manner and study how this affects the bias

and precision of estimators. To focus on the approach which provides the most

reasonable findings in our empirical analysis, we report results on the model using

CML.19 We look at uniform distributions, vary the size of the distribution’s support

and partly calibrate simulation parameters on our data. Second, we look at bias

and precision of estimates for fully calibrated simulations, when group sizes are

exactly the same as in the data. Overall, while our analysis confirms Lee’s earlier

results, we also find a strong positive impact of the dispersion in group sizes on

the strength of identification. Especially, conditional maximum likelihood performs

well on fully calibrated simulations. This suggests that the bias due to small sample

issues is likely low in the results presented in Table III.II.

For each simulation exercise, we keep the number of observations fixed around

42, 000, and run 1, 000 replications. We first consider average sizes of 10, 20, 40, 80

and 120. We pick group sizes from the following intervals with decreasing length :

• Average size of 10 : [3, 17], [5, 15], [7, 13] and [9, 11],

• Average size of 20 : [3, 37], [8, 32], [13, 27] and [18, 22],

• Average size of 40 : [3, 77], [12, 68], [21, 59], [30, 50] and [39, 41],

• Average size of 80 : [3, 157], [18, 142], [33, 127], [48, 112] and [63, 97],

• Average size of 120 : [3, 237], [28, 212], [53, 187], [78, 162] and [103, 137].

19 In an earlier version of the paper, we also provided results for IV estimates. Basically, the
results are qualitatively the same for IV as those for CML but, as expected, the magnitude of the
bias and the loss in precision are always larger for IV than for CML.
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For each of the intervals described above, we proceed in the following manner :

- pick a group size from a uniform distribution for which the support is defined

by the minimum and maximum value of the interval ;

- truncate this value by eliminating its decimal portion ;

- repeat step 1 and 2 as long as the total number of observations is below or equal

to 42, 000.

To reduce computing time, we assume that students have the same characteris-

tics except for age and gender. We assume that age follows a normal distribution

and gender follows a Bernoulli distribution. We calibrate the moments of these

distributions on the sample of students taking the French test : average age is 16,

variance of age is 0.25, and proportion of girls is 0.55. Values of the structural pa-

rameters β, γ and δ are set close to the estimated coefficients for the French test :

β = 0.35, γage = −8, γgender = 3.8, δage = −40, δgender = −25.

We assume that the values of ε in the structural equation are drawn randomly

from a normal distribution with mean zero and variance σ2 = 1. We generate the

endogenous variable y from the reduced-form equation in deviation form.

Looking at Table III.IV, we first compare simulation results across average

group sizes and then we examine how estimators perform for a given average group

size as dispersion in group size decreases. Separate horizontal panels in Table 4

pertain to different values of average group size. We report the average estimated

coefficient and standard error for the endogenous effect (first vertical panel), the

contextual effect associated with age (second vertical panel) and the contextual

effect associated with gender (third vertical panel). We find that even for the largest

average group size (i.e., 120), CML may perform well in terms of bias and precision

(first line in the last horizontal panel of Table 4). The biases of CML get in general

larger as average group size increases. The CML estimate of the endogenous effect

attains a plateau at the value 1. This is consistent with the fact that the CML

estimator tends towards the naive OLS estimator as group sizes become larger. In
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general, peer effects are also less precisely estimated in large groups than in small

groups.

Our main new result concerns the effect of group size dispersion. When we

fix the value of the average group size and reduce the length of the interval from

which group sizes are picked, we find that the bias of CML typically increases while

the precision typically decreases. In Table III.IV, this amounts to looking at each

horizontal panel separately. Observe however that since we roughly pick group sizes

from a uniform distribution holding average group size fixed, reducing the interval’s

length affects the two parameters of the size distribution (i.e., the minimum and

maximum value of its support) and a number of its moments. In particular, this

leads to a reduction in variance and to an increase in the size of the smallest groups.

In general, both the variance and the size of smallest groups may matter and the

strength of identification may depend on the size distribution in complex ways. We

leave a deeper investigation of this issue to future research.

We next fully calibrate the simulations’ parameters on the data. We use obser-

ved group sizes in the French sample, calibrate the model parameters

{β, γage, γgender, δage, δgender} and moments of the explanatory variables as previously,

and set the variance of the error term in the structural equation equal to the esti-

mated variance in the French sample (σ̂2 = 154.7). Simulation results which now

report both CML and IV estimates are reported in Table III.V. The CML esti-

mator has small bias and standard error, while the IV estimator is not precisely

estimated and the bias is large. These results confirm for CML what we obtained

from picking group sizes at random ; they show that dispersion in group sizes help

identification. Besides, this suggests that small sample bias may be relatively high

in the IV estimates of Tables III.III, and of Table III.VII but relatively low for the

CML estimates of Table III.II.



79

4.7 Conclusion

This paper provides an analysis of social interactions in scholar achievement

when students interact through groups. Based on a linear-in-means approach with

group fixed effects (Lee 2007), we make two main contributions regarding the iden-

tification and estimation of peer effects. First, we provide a new intuition for identi-

fication. We show that full identification of the model relies on three key properties :

(1) Since the individual is excluded from his peer group, above average students

have below average peers (with respect to any attribute). Therefore, when indivi-

dual and peer effects are positive, peer effects then tend to reduce the dispersion in

outcomes. (2) This reduction is stronger in smaller groups, reflecting the larger ef-

fect of excluding one individual from the mean. (3) Contextual and endogenous peer

effects generate reductions of different shapes, which allow to identify both of them.

Second, as regards the estimation of peer effects, the model is applied to origi-

nal administrative data providing individual scores on standardized tests taken in

June 2005 in four subjects by fourth and fifth grade secondary school students in

the Province of Québec (Canada). Based on a pseudo conditional maximum like-

lihood approach, our results indicate that students significantly benefit from their

peers’ higher test scores in Math but not in other subjects such as Science, History

and French. Two reasons may explain these results. First, this is likely to reflect

the fact that Math provides more opportunities for interactions among students.

Second, in our sample, the average group size (relative to the number of groups)

is close to three times smaller in Math that in other subjects. As suggested by Lee

(2007), accurate estimation of peer effects requires relatively small groups. This is

also confirmed by our Monte Carlo simulations. These results should be warning

applied researchers in the future against using data in which the size of groups is

too large. Besides, our simulations indicate that, for a given average group size,

increasing group size dispersion improves the precision of peer effects estimates.

In fact, our results suggest that, conditional on estimating on the whole sample,
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even data on larger groups may provide useful information for estimation purposes.

The basic intuition is that data on very large groups can be used to provide more

precise individual effects estimators. In turn, this indirectly provides more efficient

estimates of the peer effects from data on smaller groups. So, future estimations

of Lee’s model may benefit from data with relatively small average group size but

relatively large group size dispersion, including both small and large groups.

In terms of public policy, the fact that the endogenous peer effects appear to be

very large in Math suggests that a reform that improves the amount and quality of

Math learning is likely to yield very high returns in terms of scholar achievement.

This is so since such a reform will not only have direct effects on student per-

formance in Math but also strong indirect effects through the additional external

benefits generated by the social multiplier. Remarkably, our analysis also shows

that the indirect peer effects of the reform will reduce performance inequalities in

Math across students. This is the case because low-ability students have better

peers (since their peers exclude them) and high-ability students have worse peers

(for the same reason). Moreover, the strong negative effects of the average age of

peers on scholar achievement (except in Math) suggest that resources invested by

the government to reduce the number of repeaters may have an important indirect

positive impact on student performance. One limitation of Lee ’s linear-in-means

approach is that it imposes that average test score over all schools are not influen-

ced by a reallocation of students across schools (see Sacerdote 2011). Therefore, the

model does not have much to say about issues such as optimal school composition

by race or ability.

Our research could be extended in many directions. It would be interesting

to evaluate the validity of this approach by using data where group membership

is experimentally manipulated and group sizes are heterogenous (as in Sacerdote

2001). One could also analyze how group size variations may help to identify peer

effects when the outcome is a discrete variable (e.g., pass or fail). Brock and Durlauf

(2007) have studied peer effects identification with discrete outcomes but they
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ignore group size variations. A third potentially fruitful direction of research would

be to analyze a nonlinear version of Lee’s approach. Thus, student achievement

could depend on the mean and standard deviation of peers attributes. Overall,

we think that this first empirical application confirmed the interest of the method.

Many more applications in different settings are needed, however, in order to gain a

thorough understanding of the method’s advantages, limitations, and applicability

for public policy.
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CHAPITRE 5

CONCLUSION

Comme discuté dans l’introduction au chapitre 1, les essais de cette thèse

s’intéressent à la fois à l’analyse de P(G|X) et de P(y|G,X). Je prend ici le temps

de discuter quelques limites de ces approches et certaines avenues potentielles pour

la recherche future.

Une des faiblesses de la litérature sur la formation de réseaux est leur limitation

en terme d’implications sur les politiques publiques. Bien sûr, être capable d’iden-

tifier quelles variables socioéconomiques influencent le processus de formation d’un

réseau est un premier pas important. Par contre, le fait est que les causes pour

lesquelles ces variables sont importantes demeurent en grande partie inconnues.

La raison est que P(G|X) représente une forme réduite de plusieurs phénomènes,

i.e. P(G|y(X),X). Par exemple, supposons que y représente la consommation de

cigarettes d’adolescents et que cette consomation soit influencée par le niveau

d’éducation des parents de ces adolescents. Supposons aussi que la consommation

de cigarettes soit une variable importante quant à la formation de liens d’amitié.

L’étude de P(G|X) identifiera le niveau d’éducation des parents comme une variable

importante en ce qui à trait à la formation de liens d’amitié chez les adolescents. Si

cela est vrai, malheureusement, l’approche par forme réduite ne permet pas d’iden-

tifier la raison pour laquelle X influence G. L’étude de P(G|y,X) quant à elle est

loin d’être triviale en raison de l’endogénéité de y. L’identification de l’impact de

y et X sur G est l’un des défis importants à surmonter.

Du côté de la littérature sur les effets de pairs, le problème inverse se pose.

L’étude de P(y|G,X) permet de bien identifier les effets importants pour la création

de politique publiques. Par contre, l’endogénéité potentielle de G peut être

problématique en pratique. Dans le cas ou les interactions se font en groupe (comme

au chapitre 4), ce problème est moins important. Par contre, lorsque les effets de

pairs passent, par exemple, par un réseau d’amitiés, il se peut très bien d’une va-
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riable inobservée affecte la formation du réseau, ce qui entrâıne naturellement un

biais dans l’estimation de y.

Une avenue prometteuse est l’étude de la probabilité jointe P(y,G|X). C’est

entre autres cette avenue qui est empruntée par Goldsmith-Pinkham et Imbens

(2012), où les auteurs étudient P(y,G|X) = P(y|G,X) · P(G|X). Encore ici, par

contre, P(G|X) représente une forme réduite comprenant simultanément plusieurs

effets. De plus, on comprend encore mal les fondement microéconomiques de ce

genre de models. C’est-à-dire, supposons que les individus choisissent en premier

lieu le réseau G, et ensuite leur action y sur ce réseau. Quelles sont les conditions

sur P(y|G,X) et P(G|X) tel que (y,G) soit un équilibre parfait en sous-jeu ?

La littérature empirique sur les réseaux sociaux est donc encore jeune et il existe

encore beaucoup plus de questions que de réponses. À la lumière des phénomènes

identifiés dans cette thèse je reste convaincu que beaucoup de réponses passeront

par une meilleure compréhension des incitatifs des agents, donc par la création de

modèles microéconomiques orientés vers une application empirique.
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Québec Government. (2001) : “PISA 2000. The Performance of Canadian

Youth in Reading, Mathematics and Science. Results for Québec Students Aged

15”, Ministry of Education, Recreation and Sports.



90

Rivas J. (2009) “Friendship Selection”, International Journal of Game Theory,

38, 521-538

Rivkin, S. G. (2001) : “Tiebout Sorting, Aggregation and the Estimation of Peer

Group Effects”, Economics of Education Review, Vol. 20, 201-209.
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Annexe I

Appendix I

I.1 Appendix I.1

Proof of lemma 2.3.1

Let x∗ be some NE, and suppose that (i, j) is a deviating pair in the sense of a

WBE. Let (x̃i, x̃j) be some joint deviation for (i, j). We need to show that x̃ji > xj∗i

and x̃ij > xi∗j .

Since (x̃i, x̃j) is a profitable deviation (in the sense of a WBE), we have

ui(x̃i, x̃j, x
∗
−i−j) > ui(x

∗) (I.1)

uj(x̃i, x̃j, x
∗
−i−j) > uj(x

∗)

Since x∗ is a NE, we have

ui(xi, x
∗
−i) ≤ ui(x

∗) (I.2)

uj(xj, x
∗
−j) ≤ uj(x

∗)

for all xi, and xj. In particular, condition (I.2) holds for xi = x̃i and xj = x̃j.

Putting conditions (I.1) and (I.2) together, we have : ui(x̃i, x̃j, x
∗
−i−j) > ui(x̃i, x

∗
−i)

and uj(x̃i, x̃j, x
∗
−i−j) > uj(x̃j, x

∗
−j). Since the utility function is linear in the links,

this is equivalent to vi(x̃
j
i , x̃

i
j, dij) > vi(x̃

j
i , x

i∗
j , dij) and vj(x̃

j
i , x̃

i
j, dij) > vj(x̃

i
j, x

j∗
i , dij).

The production functions are strictly increasing in the second argument, so we

must have x̃ji > xj∗i and x̃ij > xi∗j . (If xj∗i = xi∗j = 0, we have vi(x̃
j
i , x̃

i
j, dij) > 0 and

vj(x̃
i
j, x̃

j
i , dij) > 0, and the result is straightforward.) �
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Proof of theorem 2.3.2

First, we show that x̃ produced by the assignment algorithm (see appendix B)

is a NE. By construction, we have vi(ξ, ξ, dij) ≥ 0, and wi(ξ) ≥ 0, hence removing

a link is never profitable. Now, the only link that an individual can unilaterally

create is the individual link. Suppose that it is profitable to do so for i ∈ N . Then

either [δi < κi and wi(ξ) > 0], or [δi = κi and wi(ξ) > minj∈gi vi(ξ, ξ, dij)]. By

construction, both are impossible.

Now, suppose that x̃ is a NE, but not a WBE. That is, there exists i, j ∈ N
such that j /∈ gi (from lemma 2.3.1, since xji ∈ {0, ξ}) who want to deviate, i.e.

create a link between them. There are 2 cases :

1. δi = κi. Then, i needs to remove a link in order to create a new link. (Since

x̃ is a NE, he won’t remove more than one link.) Then, this implies that

there exists k ∈ gi such that vi(ξ, ξ, dij) > vi(ξ, ξ, dik) ≥ 0. This implies that

dij < dik.

We now turn to j. If δj = κj, the same argument applies for j, then vj(ξ, ξ, dij) >

vj(ξ, ξ, djl) for some l ∈ gj (and vi(ξ, ξ, dij) > vi(ξ, ξ, dik)). Since we have

dij < dik and dij < djl, this contradicts the fact that x̃ was created by the

assignment algorithm.

If δj < κj, j has at least ξ to invest. Together with the fact that dij < dik,

this contradicts the fact that x̃ is produced by the assignment algorithm.

2. δi < ki and δj < kj. This is impossible since, from the assignment algorithm,

it implies that vi(ξ, ξ, dij) < 0 or vj(ξ, ξ, dij) < 0.

�

Proof of theorem 2.3.3

We need to show that the allocation x̃ ∈ X, which is produced by the assignment

algorithm (see appendix B), is a WBE of Γ.
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We first show that x̃ is a NE. Suppose that it is not ; that is, there exists i ∈ N
such that x̃i is not individually rational. Since for any i, j ∈ N , we have xji ∈ {0, ξ}.
This means that i wants to create an additional link. (Unilaterally reducing the

investment in a link necessarily lowers i’s payoff.) The only link that i can create

on his own is the individual link. There are two cases :

1. x̃ii = 0 and δi < κi. Then, by construction from the assignment algorithm,

this implies that wi(ξ) < 0. So i has no individual profitable deviation, since

wi(x̃
j
i ) < wi(ξ).

2. x̃ii = 0 and δi = κi. Then, if i has a profitable deviation, there exists J ⊆ gi

such that wi(
∑

j∈J εj) >
∑

j∈J{vi(ξ, ξ, dij) − vi(ξ − εj, ξ, dij)}. That is, i is

reducing his investments in links in J in order to invest in his individual link.

Let d∗ = maxj∈J dij, we have

wi(
∑
j∈J

εj) >
∑
j∈J

{vi(ξ, ξ, dij)− vi(ξ − εj, ξ, dij)}

≥
∑
j∈J

{vi(ξ, ξ, d∗)− vi(ξ − εj, ξ, d∗)} (I.3)

≥ vi(ξ, ξ, d
∗)− vi(ξ −

∑
j∈J

εj, ξ, d
∗) (I.4)

where (8) follows from vxd(x, ξ, d) ≤ 0, and (9) follows from vxx(x, ξ, d) ≥ 0.

Now, since vxx(x, ξ, d) ≥ 0, if (8) is true for
∑

j∈J εj < ξ, it is also true for∑
j∈J εj = ξ, hence wi(ξ) > vi(ξ, ξ, d

∗). This contradicts the fact that x̃ was

created by the assignment algorithm.

We still need to show that x̃ is a WBE. Suppose that it’s not, i.e. there exists

(i, j) and (xi, xj) such that ui(xi, xj, x̃−i−j) > ui(x̃) and uj(xj, xi, x̃−i−j) > uj(x̃).

From the construction of x̃, it must be the case that i, j are such that x̃ji = x̃ij = 0.

Again, we have 2 cases :

1. δi < κi and δj < κj. This is impossible since, from the assignment algorithm,

it implies that vi(ξ, ξ, dij) < 0.
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2. δi = κi. Then, if i has a profitable deviation, there exists K ⊆ gi such

that vi(
∑

k∈K εk, x
i
j, dij) >

∑
k∈K{vi(ξ, ξ, dik) − vi(ξ − εk, ξ, dik)}. Let d∗i =

maxk∈K dik, we have

vi(
∑
k∈K

εk, x
i
j, dij) >

∑
k∈K

{vi(ξ, ξ, dik)− vi(ξ − εk, ξ, dik)}

≥
∑
k∈K

{vi(ξ, ξ, d∗i )− vi(ξ − εk, ξ, d∗i )} (I.5)

≥ vi(ξ, ξ, d
∗
i )− vi(ξ −

∑
k∈K

εj, ξ, d
∗
i ) (I.6)

where (10) follows from vxd(x, ξ, d) ≤ 0, and (11) follows from vxx(x, ξ, d) ≥ 0.

Now, since vxx(x, ξ, d) ≥ 0, if (11) is true for
∑

k∈K εk < ξ, it is also true for∑
k∈K εk = ξ, hence vi(ξ, x

i
j, dij) > vi(ξ, ξ, d

∗
i ).

We now turn to j. If δj = κj, the same argument applies for j ; then vj(ξ, ξ, dij) >

vj(ξ, ξ, d
∗
j) (and vi(ξ, ξ, dij) > vi(ξ, ξ, d

∗
i )). Since we have dij < d∗i and dij < d∗j ,

this contradicts the fact that x̃ was created by the assignment algorithm.

If δj < κj, j has at least ξ to invest (and it is profitable to invest up to ξ since

vx(x, y, d) > 0), then together with the fact that dij < d∗i , this contradicts

the fact that x̃ is produced by the assignment algorithm.

�

Proof of proposition 2.3.4

From theorem 3.3, it is sufficient to show that for any i, j ∈ N , xji ∈ {0, ξ}, at

any NE.

Consider some i, j ∈ N , and suppose that xji ∈ (0, ξ). I show that this implies

that there exists k ∈ N such that xki ∈ (0, ξ). Suppose otherwise. Then, i still

has resources available. Since vx(x, y, d) > 0, i could increase xji and be better off.

Hence, x is not a NE, so it is not a WBE. Hence, there exists k ∈ N \{i} such that

xki ∈ (0, ξ). There are 2 cases :
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1. [k = i]. Since x is a NE, we must have the following.

• If xii + xji ≥ ξ, then

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(ξ) + vi(x

j
i + xii − ξ, xij, dij)

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(x

j
i + xii − ξ) + vi(ξ, x

i
j, dij)

Rewriting, we have

wi(ξ)− wi(xii) ≤ vi(x
j
i , x

i
j, dij)− vi(x

j
i + xii − ξ, xij, dij)

wi(x
i
i)− wi(x

j
i + xii − ξ) ≥ vi(ξ, x

i
j, dij)− vi(x

j
i , x

i
j, dij)

Since vxx(x, y, d) > 0, we have vi(ξ, x
i
j, dij)−vi(x

j
i , x

i
j, dij) > vi(x

j
i , x

i
j, dij)−

vi(x
j
i + xii − ξ, xij, dij), and since w′′(x) > 0, we have wi(ξ) − wi(xii) >

wi(x
i
i)−wi(x

j
i+x

i
i−ξ). This is in contradiction with the above conditions,

hence x is not a NE.

• If xii + xji < ξ, then

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(x

i
i + xji ) + vi(0, x

i
j, dij)

wi(x
i
i) + vi(x

j
i , x

i
j, dij) ≥ wi(0) + vi(x

i
i + xji , x

i
j, dij)

Rewriting, we have

wi(x
i
i + xji )− wi(xii) ≤ vi(x

j
i , x

i
j, dij)− vi(0, xij, dij)

wi(x
i
i)− wi(0) ≥ vi(x

i
i + xji , x

i
j, dij)− vi(x

j
i , x

i
j, dij)

Since vxx(x, y, d) > 0, we have vi(x
j
i + xii, x

i
j, dij) − vi(x

j
i , x

i
j, dij) >

vi(x
j
i , x

i
j, dij)− vi(0, xij, dij), and since w′′(x) > 0, we have wi(x

j
i + xii)−

wi(x
i
i) > wi(x

i
i) − wi(0). Again, this is in contradiction with the above

conditions, hence x is not a NE.
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i 6= k and i 6= j .

Since x is a NE, we must have the following :

• If xki + xji ≥ ξ, then

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(ξ, x

i
k, dik) + vi(x

j
i + xki − ξ, xij, dij)

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(x

j
i + xki − ξ, xik, dik) + vi(ξ, x

i
j, dij)

Rewriting, we have

vi(ξ, x
i
k, dik)− vi(xki , xik, dik) ≤ vi(x

j
i , x

i
j, dij)− vi(x

j
i + xki − ξ, xij, dij)

vi(x
k
i , x

i
k, dik)− vi(x

j
i + xki − ξ, xik, dik) ≥ vi(ξ, x

i
j, dij)− vi(x

j
i , x

i
j, dij)

Since vxx(x, y, d) > 0, we have vi(ξ, x
i
j, dij)−vi(x

j
i , x

i
j, dij) > vi(x

j
i , x

i
j, dij)−

vi(x
j
i +xki −ξ, xij, dij), and vi(ξ, x

i
k, dik)−vi(xki , xik, dik) > vi(x

k
i , x

i
k, dik)−

vi(x
j
i +x

k
i −ξ, xik, dik). This is in contradiction with the above conditions,

hence x is not a NE.

• If xii + xji < ξ, then

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(x

j
i + xki , x

i
k, dik) + vi(0, x

i
j, dij)

vi(x
k
i , x

i
k, dik) + vi(x

j
i , x

i
j, dij) ≥ vi(0, x

i
k, dik) + vi(x

j
i + xki , x

i
j, dij)

Rewriting, we have

vi(x
j
i + xki , x

i
k, dik)− vi(xki , xik, dik) ≤ vi(x

j
i , x

i
j, dij)− vi(0, xij, dij)

vi(x
k
i , x

i
k, dik)− vi(0, xik, dik) ≥ vi(x

j
i + xki , x

i
j, dij)− vi(x

j
i , x

i
j, dij)

Since vxx(x, y, d) > 0, we have vi(x
j
i + xki , x

i
j, dij) − vi(x

j
i , x

i
j, dij) >

vi(x
j
i , x

i
j, dij) − vi(0, x

i
j, dij), and vi(x

j
i + xki , x

i
k, dik) − vi(x

k
i , x

i
k, dik) >

vi(x
k
i , x

i
k, dik) − vi(0, x

i
k, dik). This is in contradiction with the above

conditions, hence x is not a NE.
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�

Proof of proposition 2.3.5

The proof is obvious from the proof of theorem 2.3.2 and theorem 2.3.3. One

only has to remark that for any i, j, k ∈ N , vi(ξ, ξ, dij) ≥ vi(ξ, ξ, dik) implies that

vi(ξ, ξ, dij) > vi(ξ, ξ, dik) if we assume that dij 6= dkl. �

Proof of proposition 2.3.7

The fact that any Strong NE needs to be produced by the assignment algorithm

follows from propositions 2.3.2 and 2.3.4. Suppose that x∗ ∈ X is a BE, but not a

Strong NE. There exists S ⊂ N and xS ∈ ×i∈SXi such that ui(xS, x
∗
−S) > ui(x

∗)

for all i ∈ S. We will show that under Strict Convexity or Finiteness, this implies

that there exists a bilateral deviation.

Under Finiteness, xi ∈ {0, ξ}n for all i ∈ S. Using the same argument as the

one used in lemma 2.3.1, there exist at least one project created under a deviation

by coalition S. That is, ∃i, j ∈ S, such that xj∗i = xi∗j = 0 and xji = xij = ξ. Since

the utility functions are additive, this implies that i, j have a profitable bilateral

deviation. Since resources invested in the link (i, j) must have come either from

unused resources or from the deleation of another link since xji ∈ {0, ξ} for all

i, j ∈ N .

Under Convexity, if it is profitable to withdraw resources from one link and

invest in two new links, it is even better to invest in only one of those links. (This

is exactly the argument used in proposition 2.3.3). Specifically, suppose that there

exists i, j, k ∈ S such that xji , x
k
i > 0, and xj∗i = xk∗i = 0. Then, either xji = ξ and

xki = 0 or xji = 0 and xki = ξ is better for i. Then, i is willing to make a bilateral

deviation with j (wlog). Since the utilities are linear, it is also profitable for k (since

it is under a joint deviation in S). Hence, there exists a bilateral deviation between

i and j. �
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I.2 Appendix I.2

The Assignment Algorithm

I generate a network g (represented by the adjacency matrix A) in which every

individual invests as much as possible in every active link (i.e. xji ∈ {0, ξi} for all

i, j ∈ N).

Let ηji = vi(ξ, ξ, dij) for all i, j ∈ N such that i 6= j, and ηii = wi(ξ), for all

i ∈ N . This function represents the value of a link between two individuals. Now,

define the (not necessarily unique) ordered list L0 as follows : L0 = (dij)i,j∈N :i<j,

such that L0
1 ≤ L0

2 ≤ ... ≤ L0
m. The list L0 is an ordered list of distance values, for

all pairs of individuals. The number of elements in L0 is the number of possible

pairings between individuals in N , i.e. n(n−1)/2. Let L0
l be the element of position

l in the list L0. I note (L0
l )
−1 = (i, j) if L0

l = dij.

The algorithm computes g and takes Lt = L0 as inputs. It operates in two steps.

1 Take the first element of the list Lt, i.e. Lt1. Let Lt1 = dij.

If aii = 0 or ajj = 0,

1. If ηii ≥ ηji and ηii ≥ 0, then aii = 1

2. If ηjj ≥ ηij and ηjj ≥ 0, then ajj = 1

Otherwise,

1. If ηji ≥ 0 and ηij ≥ 0, then set aij = aji = 1.

2. If ηji < 0, then generate L∗i = Lt \ {dik}k∈N :dik∈Lt. (That is, remove all

distances associates with i, since all the following distances will be greater

than dij.)

3. If ηij < 0, then generate L∗i = Lt \ {djk}k∈N :djk∈Lt, i.e. do the same for j as

we did for i.

Generate Lt+1 = {(d ∈ Li∗ ∩ Lj∗) \ dij}.
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2 Repeat (1) for t = 1, .... until |Lt| = 0 or until ∃i ∈ N such that δi = κi.

For all i ∈ N such that δi = κi, generate L∗i = Lt \ {dik}k∈N :dik∈Lt. (That

is, remove all distances associated with i, since he has no resources left.) Then,

generate Lt+1 = ∩i∈NLi∗ and repeat (1).

After the algorithm stops, I generate the allocation x̃ as follows. For all i, j ∈ N ,

if aij = 1, x̃ji = ξ, otherwise x̃ji = 0. Notice that by definition x̃ ∈ X.
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I.3 Appendix I.3

The Likelihood Function

I assume that no individual is isolated. The definition of structural homophily

is : For all ij /∈ g, dij ≥ dik for all k ∈ gi or dij ≥ djk for all k ∈ gj. Then, since the

εij are independents, and ln(d) ≥ ln(d′) iff d ≥ d′, the probability that g exhibits

structural homophily is

Πij /∈g
{

Πk∈giP(dij ≥ dik) + Πk∈gjP(dij ≥ djk)− Πk∈giP(dij ≥ dik)Πk∈gjP(dij ≥ djk)
}

This gives :

P(dij ≥ dik) = P(
R∑
r=1

βrρr(θi, θj) + εij ≥
R∑
r=1

βrρr(θi, θk) + εik)

At this point, the normalization of ε is necessary for the identification of β.

Simplifying the last expression, we have :

P(dij ≥ dik) = P(Z ≥
R∑
r=1

βr[ρr(θi, θk)− ρr(θi, θj)])

= 1− Φ(
R∑
r=1

βr[ρr(θi, θk)− ρr(θi, θj)])
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I.4 Appendix I.4

Figure I.1 – Standard deviation : 10



xxvii

Figure I.2 – Standard deviation : 12

Figure I.3 – Standard deviation : 14
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Figure I.4 – Standard deviation : 16



Annexe II

Appendix II

Proof of Theorem 3.3.1

Under assumption 5.1, it is sufficient to show that :1

sup
θ∈Θ
|Lm(θ)− E(Lm(θ))| →a.s. 0, as m→∞.

In order to show that this condition hold, it is sufficient to show that the conditions

of theorem 2 and 3 from Jenish and Prucha (2009) hold. Specifically,

1. d(r, s) > d0 > 0 for any r, s ∈ Sm

2. (Θ, ‖.‖) is a totally bounded metric space.

3. Domination :

lim sup
m→∞

1

|Sm|

m∑
s=1

E(q̄ps,m1{q̄ps,m>k})→ 0 as k →∞,

for some p ≥ 1, and where q̄s,m = supθ |qs,m(zs,m|x, gm, θ)|.

4. Stochastic equicontinuity : For every ε > 0,

limsupm
1

|Sm|

m∑
s=1

P (sup
θ′∈Θ

sup
θ∈B(θ′,δ)

|qs,m(θ)− qs,m(θ′)| > ε)→ 0 as δ → 0,

where B(θ′, δ) is the open ball {θ ∈ Θ : ‖(θ′ − θ)‖ < δ}.

5. supm sups∈Sm
E[supθ∈Θ |qs,m(θ)|(1+η)] <∞ for some η > 0.

6.
∑∞

d=1 d
T−1φ̄1,1(d) <∞.

1see for instance Gallant and White (1988), pp.18.
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Condition 1 is implied by assumption 5.2. Condition 2 is verified by construction,

and condition 5 and 6 are just assumption 5.3 and φ-mixing(2). Conditions 3 and

4 hold from the following : Under condition 5, supθ |qs,m(zs,m|x, gm, θ)| is L(1+η)

integrable which implies the uniform L(1+η) integrability of |qs,m(zs,m|x, gm, θ)|.
The next lemma shows that assumption 5.4 implies condition 4.

Lemma II.0.1 Condition 4 is implied by assumption 5.4.

Proof From the mean value theorem, we can write

qs,m(θ) = qs,m(θ′) +
∂qs,m(θ̃)

∂θ
(θ − θ′),

Thus,

|qs,m(θ)− qs,m(θ′)| ≤ |∂qs,m(θ̃)

∂θ
|‖(θ − θ′)‖

≤ sup
θ∈Θ
|∂qs,m(θ)

∂θ
|‖(θ − θ′)‖.

According to Proposition 1 of Jenish and Prucha (2009), qs,m(θ) is L0 stochastically

equicontinuous on Θ if the following Cesàro sums is finite. i.e

limsupm
1

|Sm|

m∑
s=1

E(sup
θ∈Θ
|∂qs,m(θ)

∂θ
|) <∞.

However, under assumption 5.4, each term of the Cesàro sums is finite, in the sense

that supm sups∈Sm
E[supθ∈Θ |

∂qs,m(θ)

∂θ
|] <∞. This fact completes the proof. �

From the previous lemma, conditions 1-6 are respected, hence theorem 2 and 3

from Jenish and Prucha (2009) apply. This completes the proof. �
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Proof of Theorem 3.3.2

We want to show that
√
m(θ̂m − θ0) ⇒ N(0, D0(θ0)−1B0(θ0)D0(θ0)−1). From

the mean value theorem, we have that

∂Lm(θ̂m)

∂θ
=

∂Lm(θ0)

∂θ
+
∂2Lm(θm)

∂θ∂θ′

0 =
∂Lm(θ0)

∂θ
+
∂2Lm(θm)

∂θ∂θ′
(θ̂m − θ0).

and

√
m(θ̂m − θ0) = −

√
m[
∂2Lm(θm)

∂θ∂θ′
]−1∂Lm(θ0)

∂θ

= −[
∂2Lm(θm)

∂θ∂θ′
]−1[

σm√
m

][σ−1
m Qm],

where σ2
m = V ar(Qm) and Qm =

∑m
s=1

∂qs,m(θ0)

∂θ
.

Then, it is sufficient to show the following :

1. σ2
m

m
→ B0(θ0) ;

2. σ−1
m Qm ⇒ N(0, I) ;

3. [∂
2Lm(θm)
∂θ∂θ′

]→p D0(θ0).

Again, we proceed in a series of lemmata.

Lemma II.0.2 Under assumptions 5.1, σ2
m

m
→ B0(θ0).

Proof

1

m
σ2
m =

1

m
V ar(m

∂Lm(θ0)

∂θ
)

= mE[
∂Lm(θ0)

∂θ

∂Lm(θ0)

∂θ′
] +mE[

∂Lm(θ0)

∂θ
]E[

∂Lm(θ0)

∂θ′
]

= mE[
∂Lm(θ0)

∂θ

(
∂Lm(θ0)

∂θ

)′
].
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where the last inequality holds since E[∂Lm(θ0)
∂θ

] = 0, as θ0 maximizes E[Lm(θ)]

(Assumption 5.1). Hence, σ2
m

m
→ B0(θ0). �

Lemma II.0.3 Under assumptions 3, and 6, σ−1
m Qm ⇒ N(0, I)

Proof It is sufficient to show that the conditions for theorem 1 from Jenish and

Prucha (2009) hold. Specifically,

1. d(r, s) > d0 > 0 for any r, s ∈ Sm.

2. φ-mixing on Random Fields.

3. supm sups∈Sm
E[supθ∈Θ |

∂qs,m(θ)

∂θ
|2] <∞.

4. lim infm→∞
σ2
m

m
> 0.

Condition 1 is implied by assumption 5.2. Condition 3 is just assumption 6.5,

and condition 4 is implied by lemma II.0.2. �

Lemma II.0.4 ∂2Lm(θm)
∂θθ′

→p D0(θ0)

Proof The proof is identical to the proof for the consistency of θ̂, replacing qs,m(θ)

by Ds,m(θ), and using assumptions 6.3 and 6.4 instead of assumptions 5.3 and 5.4.

�

Putting together lemmata 7.2, 7.3 and 7.4 completes the proof. �

Proof of Proposition 3.4.1

Let Hj
i = hji [Ni(g), Nj(g), d(i, j)] + εij where ε ∼ N(0, 1). We show that under

assumption 7 and 8, φ-mixing is respected. Recall that φ(A,B) = sup{|P (A|B)−
P (A)|, A ∈ A, B ∈ B, P (B) > 0}. Formally, A and B are subsets of pairs, i.e.

A,B ∈ Sm. Let i ∈ s ∈ A and j ∈ s ∈ B.

We have that P (A) = P (A|∃ij ∈ g)P (∃ij ∈ g) + P (A|@ij ∈ g)P (@ij ∈ g) and

P (A|B) = P (A|B ∩ ∃ij ∈ g)P (∃ij ∈ g) + P (A|B ∩ @ij ∈ g)P (@ij ∈ g). Since the
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payoff function only depends on direct links, P (A|B ∩ @ij ∈ g) = P (A|@ij ∈ g).

Hence, we can rewrite

φ(A,B) = φ(A,B|∃ij ∈ g)P (∃ij ∈ g)

Since, for any A,B, φ(A,B) ∈ [0, 1], we have that φ(A,B) ≤ P (∃ij ∈ g). Let

h̄(d) = supθ supg supij h
j
i (g, x, d; θ) and h(d) = infθ infg infij h

j
i (g, x, d; θ). We then

have that φ̄k,l ≤ 4klΦ[h̄(d)] since there can be a maximum of 2k individuals in A

and 2l individuals in B. That is, the sum of the probabilities for each possible pairs

between A and B, and for the maximal value for hji . Notice that by the properties

of the Hausdorf distance, if d(i, j) ≥ c for some c > 0 and all i ∈ s ∈ A and

j ∈ r ∈ B, then d(A,B) ≥ c.

Now, we know that the Chernoff bound for Φ is such that Φ[h̄(d)] ≤ 1
2

exp{−1
2
h̄(d)2}

for h̄(d) < 0, which is true for d big enough from assumption (7.1). Then, a suf-

ficient condition for assumption (4.1) and (4.2) is φ̄k,l(d) ≤ 2kl exp{−1
2
h̄(d)2} for

k + l ≤ 4 or equivalently :

dT−1φ̄k,l(d) ≤ 2kldT−1 exp{−1

2
h̄(d)2}

for all d > d̄ for some d̄ > 0 and k + l ≤ 4. Then, assumption (4.1) and (4.2) hold

if
∑∞

d=1 d
T−1 exp{−1

2
h̄(d)2} converges. According to Cauchy’s rule, this last sum

converges if limd→∞ exp
{
− h̄(d)2

2d

}
∈ [0, 1). Which is true under assumption (7.2).

Now, φ-mixing (3) is different since l = ∞, so the upper bound goes to infi-

nity. Specifically, condition (3) implies that there exists C > 0, m, d such that

dT+εφ̄1,m(d) ≤ C, for some ε > 0, for all m > m and d > d. Using the Chernoff

bound again we have that dT+εφ̄1,m(d) is bounded when m goes to infinity if

lim
m→∞

mdT+ε
m exp

{
− h̄(dm)2

2dm

}
<∞

assuming the increasing domain assumption 8, and the asymptotic homophily as-

sumption (7.2). �
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Proof of Proposition 3.4.2

Let P (A↔ B) be the probability that there exist a path between an individual

in a site in A and and individual in a site in B. Using the same argument as in

the proof of proposition 3.4.1, we have that φ(A,B) ≤ P (A↔ B). The probability

P (A−B) is however not trivial to compute. Instead, we use the fact that P (A−B) =

P (∃k − B : ik ∈ g) for some i in a site in A. Since k is connected to B, there are

two possibilities : (1) the distance between k and B is finite, or (2) the distance

between k and B is infinite, and k is reached from B using an infinite number of

links.

We start with the second possibility. In that case, from assumption 9, the rea-

lization on B does not depends on k, hence P (A|B) = P (A).

Now, suppose that the distance between k and B is finite. Then, as in the proof

of proposition 3.4.1, we can write

dT−1φ̄k,l(d) ≤ 2kmdT−1 exp{−1

2
h̄(d)2}

for all d > d̄ for some d̄ > 0. The remaining of the proof is omitted as it is identical

to the proof of proposition 3.4.1. �

Conley’s (1999) estimator

Conley (1999) provides an estimator when X ⊂ R2 and {Zs,m; s ∈ Sm,m ∈ N}
is α-mixing and stationary. This approach has also been recently used by Wang et

al. (2010) in the context of the estimation of a spatial probit. We propose to extend

Conley’s (1999) estimator for X ⊂ RT , where T ≥ 1.

We consider a compact subset of the space of individual characteristics, i.e.

Y ⊂ X . We define a random process Λ on a regular lattice on Y such that Λy = 1

if the location y = (y1, ..., yT ) is sampled, and Λy = 0 otherwise. We assume

that Λ is independent of the underlying random field, has finite expectation, and is

stationary. Intuitively, since the lattice is regular, it gives an idea of the dependence

structure between the observations. Consider Figure 1 below, where X = R2 for
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presentation purposes. Sampled pairs are represented by the black circles.

Figure II.1 – Regular Lattice and Dependence Structure

(a) Uniform Dependence Structure (b) Directed Dependence Structure

In Figure 1a, sites are distributed more or less uniformly in Y . In Figure 1b

however, the dependence structure seems to be more directed. Now, lets define

ȳ = (ȳ1, ..., ȳT ) to be the maximal location for Λy in every dimension. Notice that

this quantity is well defined since Y is compact. For instance, for the lattice in

Figure 1, ȳ = (6, 5).

Now, let q̂y(θ) = 1
n(y)

∑
s∈y qs,m(θ), where s ∈ y is a sampled pairs s in location

y, and n(y) is the number of sampled pairs in location y. We define the following

process, for any location y :

Ry(θ) =


∂q̂y
∂θ

(θ) if Λy = 1

0 otherwise

Let m∗ be the number of sampled locations.2 We can now present our proposed

2A simple way to compute m∗ is to count the number of times Λy = 1.
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estimator, based on a generalization of Conley (1999) :

Bm(θ) =
1

m∗

ỹ1∑
y1=0

...

ỹT∑
yT =0

ȳ1∑
y′1=y1+1

...

ȳT∑
y′T =yT +1

Γỹ(y)
[
Ry′(θ)R

′
y′−y(θ) +Ry′−y(θ)R

′
y′(θ)

]
− 1

m∗

ȳ1∑
y1=1

...

ȳT∑
yT =1

Ry(θ)R
′
y(θ) (II.1)

Where ỹ < ȳ, and Γỹ(y) is a kernel function. For instance, Conley (1999) pro-

posed to use ỹ = o(ȳ1/3), i.e. a bound of the same order as the cubic root of ȳ, and

the following Bartlett window kernel :

Γỹ(y) =

(1− |y1|
ỹ1

)...(1− |yT |
ỹT

) for |y1| < ỹ1, ..., |yT | < ỹT

0 otherwise

As in the estimation of HAC variances, the precise choice of ỹ and Γỹ(y) will

depend on the specific application. With that regard, we can easily show that the

estimator in (II.1) when T = 1 is equivalent to a HAC estimator.

Lets rewrite the estimator for T = 1 :

Bm(θ) =
2

m

ỹ1∑
k=0

ȳ1∑
y=k+1

Γỹ(k)Ry(θ)R
′
y−k(θ)−

1

m

ȳ1∑
y=1

Ry(θ)R
′
y(θ)

= γ̂(0) + 2

ỹ1∑
k=1

Γỹ(k)γ̂(k)

where γ̂(0) = 1
m

∑ȳ1
y=0 Ry(θ)R

′
y(θ) is the estimation of the variance of the process

Ry, and γ̂(k) = 1
m

∑ȳ1
y=k+1 Ry(θ)R

′
y−k(θ) the estimation of the autocovariance of

the process Ry. Then, in one dimension our proposed estimator become exactly

the HAC variance estimator for the covariance stationary process Ry, using the

Bartlett kernel. In our case here, under some φ mixing conditions we may ensure

that γ(k)→ 0 as k →∞.
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Bester et al. (2012)

Let X be partitioned into groups, or clusters : c = 1, ..., C. Bester et al. (2012)

propose to use the following CV estimator :

B̂m(θ) =
1

m

∑
s∈S

∑
r∈S

I(cs = cr)
∂qs,m(θ)

∂θ

(
∂qs,m(θ)

∂θ

)′

Where cs is the group in which s ∈ S is located. This is the usual Cluster-Variance

estimator. It has the advantage of being easy and fast to implement. In practice,

the constructions of those groups is not necessarily straightforward. Bester et al.

(2012) recommend to use a relatively small number of large groups. An important

requirement however is a boundary condition which states that most of the pairs

in groups are located in the interior (i.e. not on the boundary) of those groups in

X . Specifically, let ∂(cs) be the boundary of the group cs, and c̄m be the average

number of pairs in a group, then one should have ∂(cs) < c̄
(T−1)/T
m , where T ≥ 1 is

the dimension of X .
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Appendix III

Tableau III.I – Descriptive statistics

Course Variable Mean S.D.
French Score 72.647 14.086
(Sec. 5) Age 16.142 0.488

Socio-ec. Index - -
Perc. High 0.328 0.469
Perc. Med. 0.409 0.492

Gender (Female=1) 0.549 0.500
Foreign 0.111 0.310
Secondary 5 0.985 0.120
Number of observations 41778
Number of groups 314
Size of true groups 133.4 115.7
Size of observed groups 133.1 115.4

Science Score 74.689 17.671
(Sec. 4) Age 15.255 0.610

Socio-ec. Index - -
Perc. High 0.338 0.470
Perc. Med. 0.402 0.490

Gender (Female=1) 0.527 0.499
Foreign 0.127 0.333
Secondary 5 0.077 0.267
Number of observations 54981
Number of groups 378
Size of true groups 146.0 134.2
Size of observed groups 145.5 133.7
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Tableau III.I – Descriptive statistics (continued)

Course Variable Mean S.D.
Math † Score 62.088 15.83
(Sec. 5) Age 16.272 0.574

Socio-ec. Index - -
Perc. High 0.303 0.460
Perc. Med. 0.400 0.490

Gender (Female=1) 0.540 0.498
Foreign 0.111 0.314
Secondary 5 0.957 0.202
Number of observations 15771
Number of groups 361
Size of true groups 50.7 49.9
Size of observed groups 49.9 49.7

History Score 70.156 17.280
(Sec. 4) Age 15.230 0.580

Socio-ec. Index - -
Perc. High 0.337 0.473
Perc. Med. 0.403 0.491

Gender (Female=1) 0.533 0.499
Foreign 0.127 0.333
Secondary 5 0.044 0.205
Number of observations 55057
Number of groups 382
Size of true groups 144.6 134.8
Size of observed groups 144.1 134.5

† Math refers to Math 514 (Secondary 5 regular course).
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Tableau III.II – Peer Effects on Student Achievementa

Conditional Maximum Likelihood and Pseudo Conditional Maximum Likelihood

French Science Math History
Endogenous effect 0.296 -0.231 0.827** 0.641

(0.605) (0.414) (0.319) (0.399)
[0.327] [0.234] [0.249] [0.272]

Contextual effects
Age -39.435** -19.493* 0.838 -31.607**

(12.798) (10.237) (9.874) (13.655)
[10.987] [8.893] [7.382] [9.471]

Socio-ec. Index (High) 16.613 8.941 29.310* -6.367
(15.096) (21.637) (15.422) (17.505)
[17.530] [22.454] [15.580] [18.947]

Socio-ec. Index (Medium) -4.765 22.156 18.246 -6.713
(14.907) (18.648) (13.334) (19.207)
[16.870] [17.783] [13.726] [18.565]

Gender (Female=1) -24.870 14.852 15.558* -11.837
(15.927) (13.425) (9.006) (12.633)
[14.393] [12.178] [9.491] [12.413]

Foreign -26.699* -8.844 -2.654 29.148*
(14.828) (13.737) (12.802) (15.304)
[15.861] [16.953] [12.143] [18.007]

Secondary 5 167.926** -0.334 -6.080 24.041
(54.842) (25.048) (39.168) (24.027)
[41.179] [19.956] [26.056] [21.166]

(continued on the next page)
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Tableau III.II – Peer Effects on Student Achievement (continued)a

Conditional Maximum Likelihood and Pseudo Conditional Maximum Likelihood

French Science Math History
Individual effects

Age -7.998** -8.293** -4.868** -7.942**
(0.239) (0.269) (0.330) (0.253)
[0.162] [0.151] [0.271] [0.151]

Socio-ec. Index (High) 1.423** 1.609** 2.112** 2.019**
(0.308) (0.297) (0.496) (0.322)
[0.245] [0.268] [0.500] [0.261]

Socio-ec. Index (Medium) 0.670** 0.785** 1.189** 0.795**
(0.266) (0.260) (0.464) (0.272)
[0.220] [0.230] [0.435] [0.234]

Gender (Female=1) 3.807** 0.319 1.018** -1.641**
(0.196) (0.200) (0.325) (0.207)
[0.162] [0.158] [0.301] [0.159]

Foreign -2.596** 2.095** -0.081 0.806**
(0.314) (0.380) (0.513) (0.384)
[0.279] [0.278] [0.548] [0.284]

Secondary 5 10.519** 1.653** 6.474** 3.126**
(1.258) (0.560) (1.096) (0.537)
[0.676] [0.328] [0.767] [0.399]

Log-likelihood -162548.552 -226078.181 -62420.961 -226216.108

Notes :
CML unrobust standard errors in brackets. Pseudo CML robust standard errors in
parentheses.
** indicates 5% significance level, based on robust s.e.
* indicates 10% significance level, based on robust s.e.
aThe dependent variable is the score on June 2005 provincial secondary exams.
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Tableau III.III – Peer Effects on Student Achievementa

2SLS Estimation with Group Fixed Effectb

French Sciences Math History
Endogenous effect 1.378 -0.509 -0.037 0.787

(1.468) (0.764) (0.477) (0.980)
Individual effects

Age -7.690** -7.962** -4.606** -7.609**
(0.197) (0.167) (0.228) (0.163)

Socio-ec. Index (High) 1.373** 1.754** 1.836** 2.041**
(0.242) (0.250) (0.423) (0.248)

Socio-ec. Index (Medium) 0.661** 0.826** 1.069** 0.803**
(0.221) (0.219) (0.365) (0.221)

Gender (Female=1) 3.871** 0.333** 0.965** -1.553**
(0.164) (0.159) (0.265) (0.157)

Foreign -2.514** 2.128** -0.005 0.716**
(0.282) (0.270) (0.496) (0.276)

Secondary 5 9.516** 1.415** 6.674** 2.910**
(0.781) (0.327) (0.741) (0.390)

Contextual effects
Age 4.205 13.496** 6.713** 8.552**

(4.845) (3.050) (1.712) (4.036)
Socio-ec. Index (High) 7.364 30.997* 15.962** -6.246

(17.305) (16.678) (7.641) (15.620)
Socio-ec. Index (Medium) -7.103 26.344* 13.501* -8.047

(16.813) (13.908) (7.555) (14.598)
Gender (Female=1) -21.310* 15.637 13.237** 0.567

(12.261) (12.202) (5.808) (11.708)
Foreign -15.732 -2.232 -0.065 19.385

(12.571) (11.449) (7.189) (12.903)
Secondary 5 40.184 -17.370 7.825 2.537

(36.380) (14.470) (21.360) (23.060)
Sargan Test 23.52 0.54 1.40 5.35
[ p-value ] [0.00] [1.00] [0.97] [0.50]
Stock and Yogo Test 706.84 1055.92 464.43 660.40
[ Critical Value for b=0.05
at sign. level of 5% ] [18.37] [18.37] [18.37] [18.37]

Notes :
Robust standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
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Tableau III.V – Simulations Calibrated on French Sample

(1000 replications)

CML 2SLS G2SLS OLS
Endogenous effect 0.391 -0.873 0.495 -33.571

(0.101) (0.852) (167.702) (3.688)
Individual effects

Age -8.002 -7.920 -8.006 -5.758
(0.145) (0.149) (10.021) (0.545)

Gender (Female=1) 3.798 3.822 3.828 4.480
(0.147) (0.139) (1.693) (0.554)

Contextual effects
Age -39.996 -38.085 -39.540 17.373

(9.996) (7.579) (167.394) (76.788)
Gender (Female=1) -25.329 -16.703 -21.857 210.526

(10.733) (10.092) (692.625) (74.714)
Notes : Average standard errors are in parentheses. The group sizes
are calibrated on our French sample. σ2 = σ̂2 (calibrated)= 154.704.
True value of parameters : Endogenous effect : 0.35 ; Individual effects
- Age : -8 ; Individual effects - Gender : 3.8 ; Contextual effects - Age :
-40 ; Contextual effects - Gender : -25.
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Tableau III.VI – Peer Effects on Student Achievementa

Pseudo Conditional Maximum Likelihood (constrained)

French Science Math History
Endogenous effect 0.297 -0.31 0.801** 0.655

(0.610) (0.399) (0.300) (0.405)
Individual effects

Age -8.011** -8.297** -4.884** -7.908**
(0.238) (0.266) (0.267) (0.247)

Socio-ec. Index (High) 1.314** 1.536** 1.845** 2.062**
(0.264) (0.255) (0.487) (0.290)

Socio-ec. Index (Medium) 0.698** 0.636** 0.818** 0.842**
(0.217) (0.220) (0.374) (0.231)

Gender (Female=1) 3.983** 0.221 1.026** -1.563**
(0.150) (0.173) (0.326) (0.179)

Foreign -2.537** 2.156** 0 0.812**
(0.306) (0.349) (0.439) (0.385)

Secondary 5 10.499** 1.657** 6.571** 2.944**
(1.258) (0.517) (0.861) (0.498)

Contextual effects
Age -41.056** -20.456* - -27.305**

(12.476) (11.646) (11.887)
Socio-ec. Index (High) - - 17.124 -

(15.546)
Socio-ec. Index (Medium) - - - -

Gender (Female=1) - - 16.215* -
(9.087)

Foreign -19.559 - - 29.865**
(11.969) (15.082)

Secondary 5 165.537** - - -
(54.645)

Log-likelihood -162551.11 -226079.659 -62421.964 -226217.241
Likelihood Ratiob 5.122* 2.864 2.006 2.262

Notes :
Robust standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
b The LR statistic is used to test the joint equality to zero of contextual effects that are
not individually significant (at 10%) in the pseudo CML unconstrained version (see
Table 2).
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Tableau III.VII – Peer Effects on Student Achievementa

Generalized 2SLS Estimationb

French Sciences Math History
Endogenous effect -2.104 -0.015 -0.162 -2.753

(3.619) (0.734) (0.465) (1.717)
Individual effects

Age -7.390** -8.012** -4.582** -7.306**
(0.348) (0.165) (0.227) (0.203)

Socio-ec. Index (High) 1.542** 1.718** 1.844** 2.222**
(0.293) (0.251) (0.421) (0.250)

Socio-ec. Index (Medium) 0.867** 0.803** 1.080** 0.921**
(0.293) (0.220) (0.362) (0.219)

Gender (Female=1) 3.770** 0.318** 0.966** -1.536**
(0.186) (0.161) (0.264) (0.150)

Foreign -2.568** 2.144** 0.006 0.642**
(0.283) (0.273) (0.494) (0.268)

Secondary 5 9.797** 1.471** 6.701** 2.560**
(0.799) (0.327) (0.739) (0.393)

Contextual effects
Age 15.211 11.514** 7.014** 22.639**

(11.684) (2.967) (1.646) (6.808)
Socio-ec. Index (High) 31.802 25.140 16.299** 25.748

(30.455) (16.904) (7.431) (18.608)
Socio-ec. Index (Medium) 21.574 23.091 14.010* 10.015

(31.981) (14.514) (7.338) (14.788)
Gender (Female=1) -20.267* 13.639 13.265** -1.936

(11.040) (12.713) (5.676) (9.533)
Foreign -28.226 -1.320 0.354 9.226

(18.593) (12.377) (7.041) (12.411)
Secondary 5 79.885* -12.062 9.953 -31.537

(46.845) (15.235) (21.115) (20.155)

Notes :
Robust standard errors in parentheses
** indicates 5% significance level
* indicates 10% significance level
aThe dependent variable is the score on June 2005 provincial secondary exams.
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