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Résumé

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connâıt
présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-
supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intel-
ligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiel-
lement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers
sujets de recherche liés au problème d’estimation de densité par l’entremise des
machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’ap-
prentissage profond. Nos contributions touchent les domaines de l’échantillonnage,
l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de
représentations invariantes.

Cette thèse débute par l’exposition d’un nouvel algorithme d’échantillonnage
adaptatif, qui ajuste (de façon automatique) la température des châınes de Markov
sous simulation, afin de maintenir une vitesse de convergence élevée tout au long
de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum
de vraisemblance stochastique (SML), notre algorithme engendre une robustesse
accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse
de convergence. Nos résultats sont présentés dans le domaine des BMs, mais la
méthode est générale et applicable à l’apprentissage de tout modèle probabiliste
exploitant l’échantillonnage par châınes de Markov.

Tandis que le gradient du maximum de vraisemblance peut-être approximé par
échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonc-
tion de partition. Contrairement aux approches traditionnelles qui considèrent un
modèle donné comme une bôıte noire, nous proposons plutôt d’exploiter la dyna-
mique de l’apprentissage en estimant les changements successifs de log-partition
encourus à chaque mise à jour des paramètres. Le problème d’estimation est refor-
mulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un
graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au
paramètre de température.

Sur le thème de l’optimisation, nous présentons également un algorithme per-
mettant d’appliquer, de manière efficace, le gradient naturel à des machines de
Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était
limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre
algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul expli-
cite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur
linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur:
en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement
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que SML. Son implémentation demeure malheureusement inefficace en temps de
calcul.

Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage
de représentations invariantes. À cette fin, nous utilisons la famille de machines de
Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir
modéliser des distributions binaires et parcimonieuses. Les variables latentes bi-
naires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en
associant à chacune d’elles, un vecteur de variables latentes continues (dénommées
“slabs”). Ceci se traduit par une invariance accrue au niveau de la représenta-
tion et un meilleur taux de classification lorsque peu de données étiquetées sont
disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage
de représentations pouvant séparer les facteurs de variations présents dans le si-
gnal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux
groupes de facteurs latents) et formulons le problème comme l’un de“pooling”dans
des sous-espaces vectoriels complémentaires.

Mots-clés: réseaux de neurones, apprentissage profond, apprentissage non-supervisé,
apprentissage supervisé, machines de Boltzmann, modèles à base d’énergie, Mar-
kov Chain Monte Carlo (MCMC), échantillonnage, fonction de partition, gradient
naturel, modèle bilinéaire, apprentissage de représentations.



Summary

Despite the current widescale success of deep learning in training large scale hi-
erarchical models through supervised learning, unsupervised learning promises to
play a crucial role towards solving general Artificial Intelligence, where agents are
expected to learn with little to no supervision. The work presented in this thesis
tackles the problem of unsupervised feature learning and density estimation, using
a model family at the heart of the deep learning phenomenon: the Boltzmann Ma-
chine (BM). We present contributions in the areas of sampling, partition function
estimation, optimization and the more general topic of invariant feature learning.

With regards to sampling, we present a novel adaptive parallel tempering method
which dynamically adjusts the temperatures under simulation to maintain good
mixing in the presence of complex multi-modal distributions. When used in the
context of stochastic maximum likelihood (SML) training, the improved ergodicity
of our sampler translates to increased robustness to learning rates and faster per
epoch convergence. Though our application is limited to BM, our method is gen-
eral and is applicable to sampling from arbitrary probabilistic models using Markov
Chain Monte Carlo (MCMC) techniques. While SML gradients can be estimated
via sampling, computing data likelihoods requires an estimate of the partition func-
tion. Contrary to previous approaches which consider the model as a black box,
we provide an efficient algorithm which instead tracks the change in the log par-
tition function incurred by successive parameter updates. Our algorithm frames
this estimation problem as one of filtering performed over a 2D lattice, with one
dimension representing time and the other temperature.

On the topic of optimization, our thesis presents a novel algorithm for applying
the natural gradient to large scale Boltzmann Machines. Up until now, its appli-
cation had been constrained by the computational and memory requirements of
computing the Fisher Information Matrix (FIM), which is square in the number of
parameters. The Metric-Free Natural Gradient algorithm (MFNG) avoids comput-
ing the FIM altogether by combining a linear solver with an efficient matrix-vector
operation. The method shows promise in that the resulting updates yield faster
per-epoch convergence, despite being slower in terms of wall clock time.

Finally, we explore how invariant features can be learnt through modifications
to the BM energy function. We study the problem in the context of the spike
& slab Restricted Boltzmann Machine (ssRBM), which we extend to handle both
binary and sparse input distributions. By associating each spike with several slab
variables, latent variables can be made invariant to a rich, high dimensional sub-
space resulting in increased invariance in the learnt representation. When using
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the expected model posterior as input to a classifier, increased invariance trans-
lates to improved classification accuracy in the low-label data regime. We conclude
by showing a connection between invariance and the more powerful concept of
disentangling factors of variation. While invariance can be achieved by pooling
over subspaces, disentangling can be achieved by learning multiple complementary
views of the same subspace. In particular, we show how this can be achieved us-
ing third-order BMs featuring multiplicative interactions between pairs of random
variables.

Keywords: neural network, deep learning, unsupervised learning, supervised
learning, Boltzmann machines, energy-based models, Markov CHain Monte Carlo,
parallel tempering, partition function, natural gradient, bilinear models, feature
learning.
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Canada for their computational resources.



1 Introduction

Artificial perception is the keystone of Artificial Intelligence (AI). By giving

computers the ability to extract meaningful data from signals such as speech or

vision, computers will finally gain the ability to perceive, reason and interact with

the world. The field of neural networks and deep learning has made remarkable

headway in the past few years towards achieving this goal. The exponential in-

crease in computational power and the wide availability of data have enabled the

end-to-end training of complex systems starting from the raw data and whose pa-

rameters are optimized jointly for a given task. This is in stark contrast to the

more traditional feature engineering approach which relies on domain experts to

craft low-level features, in order to extract relevant information from the signal.

Deep learning systems currently in use at Google and Microsoft have dramatically

improved the state of the art in speech recognition (Dahl et al., 2010; Hinton et al.,

2012), large scale object recognition in natural images (Krizhevsky et al., 2012),

machine translation and even drug discovery i.

While the seminal Deep Learning paper of Hinton et al. (2006) relied on a

combination of supervised and unsupervised learning, much of the recent successes

of deep learning can be attributed to standard supervised learning. While earlier

work in this area had relied on shallow neural networks, i.e. networks having a single

non-linearity, today’s models comprise several layers of non-linear transformations

which act to extract a hierarchical representation of the data. Such models can

now be trained successfully due in large part to advances in modeling, in particular

the use of novel activation functions more amenable to gradient descent, as well as

increasingly powerful forms of regularization.

One drawback of such methods however is their reliance on large amounts of

labeled data, which is generally expensive and sometimes even impossible to ob-

tain. In such settings where few labeled examples are available, methods exploiting

unsupervised learning remain state-of-the-art, as shown in several recent machine

i. Merck Molecular Activity Challenge. https://www.kaggle.com/c/MerckActivity
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learning competitions (Goodfellow et al., 2013; Mesnil et al., 2011). Using hu-

man perception as a guide, one also wonders whether supervised learning is truly

the yellow brick road to solving general machine perception. Perception “in the

wild” undoubtedly involves a myriad of tasks to be performed jointly (object de-

tection, position estimation, motion prediction, etc.) and for which it seems infea-

sible to first have to collect labeled data. Some tasks may even be novel, in that

they have to be learnt through very few (if not zero) training examples, again a

domain in which unsupervised learning has proven crucial (Salakhutdinov et al.,

2010; Richard Socher and Ng, 2013). Finally, generative models of data can also

be predicted to play a large role in perception pipelines where the signal is noisy,

ambiguous or subject to large occlusions. In this setting, models can use their

knowledge of the world to “fill in” missing or occluded information, prior to clas-

sification. These observations have greatly motivated the work presented in this

thesis, which centers on using Boltzmann machines (BM), a class of probabilistic

generative model, for performing feature extraction and density modeling. Each

chapter of this thesis thus tackles fundamental issues in learning and using such

models: from better sampling and training algorithms, to exploring novel energy

formulations that promote invariant feature extraction. The document is struc-

tured as follows.

Chapter 1 presents a general purpose introduction to Machine Learning, includ-

ing areas of supervised and unsupervised learning. A particular focus is placed on

the Multi-layer Perceptron, a model at the heart of the deep learning phenomenon.

Chapter 2 narrows the focus to unsupervised deep learning, presenting a compre-

hensive review of Restricted, Deep and general Boltzmann Machines, their training

algorithms along with tools required for their analysis.

Subsequent chapters present work which appeared in either journal, conference

proceedings or workshops.

Chapters 3 and 4 present a novel adaptive parallel tempering algorithm, which

dynamically optimizes the hyper-parameters of Parallel Tempering (PT) enabling a

more robust estimation of the model’s sufficient statistics and consequently, better

convergence properties during training.
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Chapters 5 and 6 extend this work by exploiting the adaptive tempering frame-

work to dynamically track the partition function during the course of training.

Chapters 7 and 8 While first-order gradient descent is the method of choice

for training BMs, this chapter introduces an algorithm belonging to the family of

truncated Newton methods, to efficiently train BMs via the natural gradient.

The remaining chapters focus on the topic of feature extraction.

Chapters 9 and 10 present extensions to the Spike & Slab Restricted Boltzmann

Machine (ssRBM), a model specifically crafted to capture covariance information

in the input. First introduced in Courville et al. (2011a), the ssRBM is extended

to binary and sparse data. This journal paper also highlights the importance of

subspace pooling in learning invariant representations.

Chapters 11 and 12 conclude this thesis with a more ambitious endeavour: a

model which aims to disentangle the factors of variation present in the data, via

multiplicative interactions of latent variables.

1.1 Introduction to Machine Learning

The goal of Machine Learning (ML) is to develop algorithms which learn to

model statistical regularities in data, such that it can apply this knowledge to

novel situations. An ML algorithm thus takes as input a set of training data D

and outputs a function f ∗ ∈ F , which is optimal in some respect. The fitness

of a function to model or make predictions on D, is encoded in a task-specific

loss-function L. The optimal function f ∗ can then defined as the function which

minimizes the average loss on the training set, a procedure known as Empirical

Risk Minimization. Mathematically, this translates to:

f ∗
ERM

← argmin
f∈F

1

|D|

�

x∈D

L(x, f) := argmin
f∈F

R(D, f), (1.1)
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where R(D, f) is a short-hand notation for the empirical risk. When working with

probabilistic models, ERM is equivalent to the maximum likelihood learning prin-

ciple, which aims to pick the model parameters θ which maximize the probability

of the training data under the model distribution.

While learning consists in minimizing the empirical risk on a fixed training set,

the true quantity we care to minimize is Eπ [L(x, f)], i.e. expected loss under the

complete empirical distribution π(x), with x ∼ π(x), also known as the general-

ization error. R(D, f) is however a biased estimator of this quantity. Given a

sufficiently wide family of functions F , we can always minimize R(D, f) to an arbi-

trarily small value. To obtain an unbiased estimator of the generalization error, we

therefore resort to using a separate held-out set called the test set Dtest and monitor

R(Dtest, f) during training. The model is said to be overfitting when minimizing

Eq. 1.1 leads to an increase in R(Dtest, f).

Regularization

There are two basic strategies for preventing overfitting: (1) we can pick F to

be small enough, such that overfitting is close to impossible or (2) we can maintain

F as is, but add a regularization term Ω(f) to the cost function of Eq. (1.1) such

that complex functions f are penalized. The regularized optimization objective

then becomes:

f ∗
← argmin

f∈F
[R(D, f) + λΩ(f)] , (1.2)

where λ controls the relative weight of the regularization term with respect to R.

Since λ cannot be optimized through direct minimization of Eq. (1.2) (it would

trivially lead to λ∗ = 0), it is referred to as a hyper-parameter. Typical algorithms

can have dozens of hyper-parameters, which are optimized separately on a held-out

dataset Dvalid, called the validation set. The process which picks optimal values

for f and all associated hyper-parameters is referred to as model selection. It is

formalized below in the case of a single hyper-parameter λ ∈ Λ, where Λ represents
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a (finite) set of candidate values.

{f ∗
λi
;λi ∈ Λ} ← {argmin

f∈F
[R(D, f) + λiΩ(f)] ;λi ∈ Λ} (1.3)

f ∗
← argmin

i

{R(Dvalid, f
∗
λi
) + λiΩ(f

∗
λi
);λi ∈ Λ}. (1.4)

When dealing with multiple hyper-parameters, one can simply adjust the pro-

cedure to consider the Cartesian product of all allowable hyper-parameter values.

The optimal hyper-parameters will again be those yielding minimal error on the

validation set. This procedure is referred to as grid search. Grid search can be very

expensive however as it scales exponentially in the number of hyper-parameters.

Recently, more efficient model selection algorithms have been proposed including

random search (Bergstra and Bengio, 2012) and black-box optimization methods

(Snoek et al., 2012a; Bergstra et al., 2011).

Bias vs. Variance

Define f to be the solution of the unconstrained minimization problem under the

full data distribution, i.e. f ← argminEπ [L(x, f)]. Empirical risk minimization

yields an estimate f ∗
ERM

of f which is both biased and suffers from variance. The

bias of the estimate stems from our choice of model family F , which may not be

rich enough to encompass the true underlying function f , i.e. f /∈ F . The variance

in our estimate on the other hand stems from the finite nature of our training

data: different instantiations of the training set D1,D2, · · · ,Di, would each yield a

separate function f ∗
1 , f

∗
2 , · · · , f

∗
i
, each having their own generalization error.

Maximum Likelihood vs. Bayesian Learning

In the maximum likelihood framework, learning is seen as a function minimiza-

tion problem. This results in a single probabilistic model for making predictions on

test data, which is subject to overfitting. Bayesian approaches to machine learn-

ing avoid this issue by considering the parameters themselves as random variables.

Bayes theorem is unsurprisingly at the core of this approach:

p (θ | D) =
p (D | θ) p (θ)

p (D)
. (1.5)
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Here, p(θ) is a prior distribution on the model parameters. Learning in this setting

amounts to sampling model parameters from the posterior distribution p(θ | D).

This approach, while computationally expensive, is immune to overfitting as pre-

dictions are averaged over all possible models, taking into account model com-

plexity and the data likelihood. Alternatively, one can also optimize the posterior

directly, a method called Maximum A Posteriori (MAP). This approach has inter-

esting connections to maximum likelihood learning, since log p(θ | D) = log p(D |

θ) + log p(θ) + cte follows the form of Eq. 1.2, with log p(θ) acting as the regular-

ization term.

Non-parametric Models

In this thesis, we only consider parametric forms of F , such that F = {f(x; θ) :

θ ∈ Θ}. There are however non-parametric approaches to machine learning, which

make no inherent assumptions about the class of function we wish to learn. Such

algorithms often use the training data itself to model the distribution, relying on

notions of proximity to generalize. The quintessential non-parametric classifier is

the Nearest-Neighbor algorithm (Bishop, 2006) which predicts the label y� asso-

ciated with test example x�, as a function of the labels of neighboring training

samples (according to some distance metric). These methods however suffer from

the curse of dimensionality i and their inability to generalize non-locally.

1.2 Learning the Model Parameters

This section describes the most popular methods for performing the minimiza-

tion problem of Eq. 1.2, which exploit first and second order derivatives of the loss

function.

1.2.1 Stochastic Gradient Descent

Assuming the loss L(θ) is differentiable, with θ ∈ RN , first-order gradient de-

scent (GD) provides a simple way to minimize Eq. (1.2). GD is an iterative al-

i. The curse of dimensionality states that the number of training examples must grow expo-
nentially with the dimensionality of the data manifold.
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gorithm which sequentially updates the parameters θt, by taking a small step in

the opposite direction of the gradient. This gradient is given by the vector of par-

tial derivatives J = [ ∂L
∂θ1

, ..., ∂L
∂θd

] evaluated at θt, while the length of the step is

controlled by a learning rate hyper-parameter �.

Algorithm 1 Batch Gradient Descent Algorithm

Initialize model to f(x; θ0)
while stopping condition is not met do
δθ ← 0
for all z ∈ D do: δθ ← δθ + ∂L(z,f(z;θt)

∂θ
|θ=θt

θt+1 ← θt − �δθ; t ← t+ 1
end while
return f(x; θt)

Formally, for a given value of the parameters θ, the gradient descent direction

∇GD can be formalized as the solution to the following constrained minimization

problem.

∇GD ← argmin∆θ
Eπ [L (f(x; θ +∆θ)] (1.6)

s.t. (∆θ)T (∆θ) = cte.

In other words, we are looking for the optimal direction which minimizes our ex-

pected loss while ensuring constant progress in parameter space (i.e. the norm of our

parameter update is constant). In first-order gradient descent, the above problem is

solved by replacing the objective function by its first-order Taylor approximation,

and rewriting the constraint as a Lagrangian. This results in a function κ(∆θ),

which is a second-order polynomial of ∆θ:

κ (∆θ) = cte+ Eπ [J ]∆θ + λ∆θT∆θ, (1.7)

∇GD is obtained by solving the equation ∂κ

∂∆θ
= 0 for ∆θ:

∇GD = −� · Eπ [J ]
T , (1.8)

with learning rate � = −1/(2λ).

∇GD can be approximated in a number of ways. Algorithm 1 shows a particular



1.2 Learning the Model Parameters 8

variant of GD called Batch Gradient Descent (BGD), which approximates the ex-

pectation with an empirical average over the complete training set. Given certain

conditions i on the learning rate �, this procedure is guaranteed to converge to the

global minimum if L is convex, or otherwise, to a local minimum.

An alternative learning algorithm, known as Stochastic Gradient Descent (SGD)

has proven very efficient in practice (LeCun et al., 1998). Its computational effi-

ciency stems from a finite sample approximation to the expectation Eπ. While this

does not technically follow the gradient of R(D, fθ), SGD converges much faster in

practice due to the redundancies in the data. The randomness introduced by the

stochastic updates has also been shown to help with escaping from local minima.

In theory, SGD approximates the expected loss-derivative with a single point es-

timate. The resulting optimization procedure can sometimes suffer from excessive

variance in this estimate. SGD with mini-batches addresses this issue by estimating

the gradient on a small group of training examples X = {x(n) ∈ D; 1 ≤ n ≤ N},

called a mini-batch.

Despite being limited to a linear convergence rate, several extensions to gradient

descent can offer faster convergence, under some conditions. The most popular of

these methods is probably gradient descent with momentum also known as the

Heavy-Ball method (Nocedal and Wright, 2006). Its update direction is given by

interpolating the (latest) first-order gradient with the previous update direction:

θt+1 = θt − �1Eπ [J ]
T + �2 (θt − θt−1) . (1.9)

1.2.2 Exploiting Curvature

The gradient descent direction achieves a linear rate of convergence by approx-

imating the loss function around θt by its first-order Taylor approximation. In

theory, faster rates can be achieved by exploiting higher-order terms of the Taylor

approximation. Newton’s Method starts from the constrained minimization prob-

lem of Eq. 1.6 and replaces the loss function by a second-order Taylor expansion.

The Newton direction is then obtained by minimizing the following function:

κ (∆θ) = cte+ Eπ [J ]∆θ +
1

2
∆θTEπ [H]∆θ + �∆θT∆θ.

i. The learning rate should have a decreasing profile. Denoting the learning rate at time t as
�t, GD will converge to a global or local minimum if limt→∞

�
t �t = ∞ and limt→∞

�
t �

2
t < ∞.
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Here H :=
�
∂
2Lθ
∂θ2

�
is the Hessian of the loss function, a matrix square in the number

of parameters N . The Newton direction is again obtained by minimizing κ (∆θ),

yielding:

∇N = − (H + �)−1
· Eπ [J ]

T (1.10)

While Newton’s method achieved a quadratic rate of convergence, each evalu-

ation of the gradient is more computationally intensive as it requires inverting an

N ×N matrix. Many algorithms have been developed which trade-off approximat-

ing∇N for computational efficiency. For example, truncated Newtonmethods often

run only a few iterations of the Conjugate Gradient algorithm to obtain a coarse

approximation to the solution of the linear system Hx = −Eπ [J ]
T . Quasi-Newton

methods on the other hand avoid computing H directly. They exploit temporal

smoothness in consecutive values of Ht: new estimates can then be obtained via

low-rank updates of first-order gradients. The most popular method in this family

is probably the (L)BFGS method (Byrd et al., 1995).

For a complete review of optimization methods, we refer the reader to the book

of Nocedal and Wright (2006).

1.3 Supervised Learning

We have so far avoided discussing the particular form of the loss-function L.

This is because the choice of L is tightly linked to the task being considered. In

supervised learning, the goal is to learn a mapping between observations x ∈ RD

and an associated label y. The dataset D thus contains pairs of observations (x, y)

such that D = {(x(i), y(i)) : 1 ≤ i ≤ N}. We consider the pairs (x(i), y(i)) as being

i.i.d. samples of the true distribution π(x, y).

Classification

When the task involves classifying x into one of M distinct categories, y is

technically discrete. For practical reasons however, we treat y as a vector using a

one-hot encoding of its class: y is thus a vector of length M whose entries are all 0,
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except for yj = 1 to indicate that x belongs to class j. Given the above notation,

the goal is then to learn a model pθ(y|x) of the true conditional distribution π(y|x).

Note that pθ(y|x) is also vector-valued and contains the estimated class membership

probabilities pθ(yj|x) of input x. The class predicted by the model is then given

by argmax
j
pθ(yj|x). For binary classification, a popular choice for L is the cross-

entropy loss function, defined as:

LCE((x, y), pθ) = −y log pθ(y|x)− (1− y) log(1− pθ(y|x)) (1.11)

In the case of multi-class classification, this generalizes to:

LMCE((x, y), pθ) =
�

j

−yj log pθ(yj|x) (1.12)

Regression

In regression tasks, the label y is continuous with y ∈ RM . An example ap-

plication would be to predict the position of an object in an image. In this case,

the goal is for fθ(x) to model certain statistics of the true posterior distribution.

Assuming a Gaussian noise model on the observations y, we can learn a model of

the conditional mean E[π(y|x)], by minimizing Eq. 1.2 with the mean-squared loss:

LMSE((x, y), pθ) = (fθ(x)− y)2 (1.13)

Probabilistic Interpretation

While the choice of these loss functions may appear arbitrary, their particular

form can be easily derived from a probabilistic perspective. Binary classification

can be thought of as modeling the target or class label y as a Bernoulli distributed

random variable, i.e. y ∼ B(y; p) = py(1 − p)1−y. Instead of parametrizing and

learning p directly however, we instead define p := f(x; θ) and learn the parameters

θ of some function f . Minimizing Eq. 1.11, then corresponds to maximizing the

probability of the empirical distribution under the model defined by fθ(x; θ). For

a classification task involving M possible targets, y is simply modeled as being a

multinomial distribution. Similarly, the mean-squared error loss typically used in

regression stems from modeling y ∼ N (y; f(x; θ), σ2), i.e. a normal distribution

with mean f(x; θ) and standard deviation σ.
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1.3.1 Logistic Regression

The simplest and most popular supervised learning module is undoubtedly (bi-

nary) Logistic Regression, shown in Figure 1.1 (left). It is a directed graphical

model which learns the conditional distribution p(y | x), i.e. the predictive distri-

bution of the class label y ∈ {0, 1} given an input x ∈ RD. Mathematically, it is

defined as follows:

pθ(y | x) = sigmoid(c+
�

i

Wixi) = sigmoid(a(x)). (1.14)

Logistic regression belongs to the class of linear classifiers as it carves the in-

put space RD in two mutually exclusive regions, using a linear decision boundary.

This boundary is defined by the hyper-plane with tangent vector W and offset c.

Concretely, the class conditional probability is obtained in two steps. First, the

linear mapping a(x) can be interpreted as computing a distance between point x

and the separating hyper-plane (with the sign reflecting class membership). The

sigmoid function, defined as:

sigmoid(x) =
1

1 + exp (−x)
, (1.15)

then squashes this distance to the unit interval, in order for it to be interpretable

as a probability measure. It is referred to as an activation function. Optimizing the

model parameters θ = [c,W ] using the cross-entropy loss, yields a convex objective

which can be minimized analytically. Logistic regression can be easily adapted to

the multi-class setting, where y ∈ {0, 1}M by using a weight-matrix W ∈ RD×M ,

bias vector c ∈ RM and the softmax activation function, which given an input

vector x yields a vector whose i-th entry is given by:

[softmax(x)]
i
=

exp (xi)�
j
exp (xj)

(1.16)

1.3.2 Multilayer Perceptron

Multi-Layer Perceptrons (MLP) or Artificial Neural Networks are the non-linear

extensions of Logistic Regression. While they can be used both for regression and

classification; we again focus on the latter. A single hidden-layer MLP models the
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class conditional as follows:

h(x) = sigmoid(c+
D�

i

W (1)
ij

xi) := sigmoid(a(1)(x)) (1.17)

pθ(y | x) = sigmoid(b+
Nh�

j

W (2)
kj

hj) := sigmoid(a(2)(h)). (1.18)

A graphical depiction of the model is shown in Figure 1.1 (right). The reader

should recognize Eq. (1.17) as Nh independent logistic regression classifiers, which

implements a non-linear mapping of the data distribution from RD to RNh . Each

hidden unit hj represents the probability that the j-th binary feature (encoded by

the vector W (1)T
j
) is present in x. Equation (1.18) then stacks a second layer of

logistic regression on top of this hidden representation, with a weight matrixW (2) ∈

RNh×1. This layer performs a second non-linear mapping from RNh to R which

implements a linear classification boundary in the space of hidden variables. The

mapping performed by the hidden layer allows the MLP to implement a powerful

non-linear decision boundary. By scaling the number of hidden units, MLPs can

actually implement arbitrarily complex decision boundaries, a property known as

universal approximation (Hornik et al., 1989). This comes at a price however: the

loss function is no longer convex meaning that MLPs suffer from problems of local

minima during optimization.

Figure 1.1: (left) Graphical Representation of Logistic Regression. Directed connections from
xi to the summation node represent the weighted contributions Wijxi. s represents the sigmoid
activation function. (right) Multi-Layer Perceptron. Each unit in the hidden layer represents a
logistic regression classifier. The hidden layer then forms the input to another stage of logistic
classifiers.
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Backpropagation

The parameters θ = [c,W (1), b,W (2)] of the MLP can be learnt by gradient

descent on the cross-entropy loss function LCE. Gradients ∂LCE
∂θ

can be computed

efficiently through an algorithm called backpropagation (Rumelhart et al., 1986),

which applies dynamic programming to the chain rule of derivation. The procedure

starts by computing the gradient on LCE with respect to the linear output units ok,

defined as ∂LCE

∂a
(2)
k

= ∂LCE
∂yk

∂yk

∂a
(2)
k

. The gradients on the weights of each layer are then

obtained as follows (gradients on the biases can be obtained in a similar manner):

∂LCE

∂W (2)
kj

=
∂LCE

∂a(2)
k

∂a(2)
k

∂W (2)
kj

. (1.19)

∂LCE

∂W (1)
ij

=
�

k

�
∂LCE

∂a(2)
k

∂a(2)
k

∂hj

�
∂hj

∂a(1)
j

∂a(1)
j

∂W (1)
ij

. (1.20)

SGD is the method of choice for optimizing MLPs, with the number of hidden

units Nh and learning rate � being treated as hyper-parameters.

Ill-conditioning of Deep Networks

SGD can break-down however for deep networks consisting of a cascade of non-

linear functions h(l)(x) : Rnl−1 → Rnl , for l ∈ [1, L]. By extending the derivation of

Eq. 1.20 to the multi-layer setting, we can write the gradients on the parameters

of layer l in vector format, as an expression involving products of jacobians:

∂LCE

∂θ(l)
=

∂LCE

∂h(L)

�
L−1�

�=l

∂h(�+1)

∂h(l)

�
∂h(l)

∂a(l)
∂a(l)

∂θ(l)
. (1.21)

This is problematic in that, for deep networks (with large L), the gradients on

the parameters of layer one involve products of L jacobians. Depending on the

eigenvalues of these matrices, this product can be extremely ill-behaved leading to

the famous vanishing or exploding gradient problem, first analyzed in Hochreiter

(1991) and independently by Bengio et al. (1994) in the case of Recurrent Neural

Networks (RNN). These issues can be mitigated with proper initialization of the

network parameters (Glorot and Bengio, 2010; Sutskever et al., 2013); alternative

activation functions such as the hyperbolic tangent, Rectified Linear Unit (ReLU)
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(Nair and Hinton, 2010; Glorot et al., 2011), softsign (Bergstra et al., 2009) or

max non-linearity (Goodfellow et al., 2013). Alternatively, second-order methods

have also been shown to help with the ill-conditioning of deep networks, either

through learning rate adaptation schemes which incorporate curvature information

(Schaul et al., 2012), momentum (Sutskever et al., 2013) or second-order optimiza-

tion methods such as Hessian-Free optimization (Martens, 2010).

Regularization

Because MLPs are non-linear classifiers, great care must be taken to avoid over-

fitting. One can thus employ L1 i or L2 regularization ii, which penalizes the norms

of the parameters. Early-stopping can also be used to avoid over-fitting: after each

parameter update, we monitor the performance on the validation set and stop the

optimization process when R(Dvalid, pθ) becomes worse than R(D, pθ). Recently,

Dropout (Hinton et al., 2012) in combination with Rectified Linear units (ReLU)

has proven to be a much more effective form of regularization and has led to state-

of-the-art results on a number of benchmark tasks. At training time, dropout

multiplies each hidden unit with a binary random variable, effectively preventing

the zeroed-out units from contributing to the network’s prediction. This procedure

effectively trains an exponential number of models with shared parameters, each

having their own connectivity pattern. At test time, one can recover the average

prediction (across the exponential mixture of MLPs) by a simple feed-forward pass

and a linear rescaling of the parameters.

1.3.3 Convolutional Neural Networks

Another member of the MLP family worth mentioning is the Convolutional

Neural Network (CNN) (LeCun and Bengio, 1994), which is employed in Chap-

ter 10. CNNs replace the dot-product in the activation function of the i-th layer

by a convolution operation. The hidden layer of a CNN is thus given by the vector

h(x), with entries hj(x) = sigmoid(c+W T

j
∗x), where ∗ represents the convolution

operation. Fig. 1.2 shows a CNN applied to a black & white image.

When the input x is a 2D image, the convolutional operator leads to each filter

i. L1 regularization is defined as Ω(fθ) =
�

i |θi|
ii. L2 regularization is defined as Ω(fθ) =

�
i |θi|

2
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Figure 1.2: An example of a convolutional neural network, similar to LeNet-5. The CNN
alternates convolutional and sub-sampling layers.

W T

j
generating a 2D-lattice of activations called a feature map. These represent

filtered versions of the input. One can think of all the “pixels” in a feature map

as individual hidden units, which share parameters and are connected to a subset

of the input called the receptive field. The size of this receptive field is directly

controlled by the dimension of the filter W T

j
.

The main advantage of convolutional architectures is their scalability: their

number of parameters |θ| does not necessarily increase with the size of the input

image. This makes learning CNNs statistically efficient, leading to competitive

results across many datasets (Krizhevsky, 2010; Le et al., 2010; Jarrett et al., 2009).

CNNs are also naturally equivariant: given a translation operator T , a translated

input T (x) leads to a translated hidden representation T (h(x)). By introducing

max-pooling units (which subsample each filter map by preserving only the maximal

value in their receptive field), CNNs become invariant to small translations in

the input. Reminiscent of dropout, introducing stochasticity in the max-pooling

operation has been shown to greatly improve generalization performance (Zeiler

and Fergus, 2013) of convolutional networks.

1.4 Unsupervised Learning

The principle behind unsupervised learning is to extract the underlying struc-

ture in the empirical distribution. The training data thus consists of a set of unla-

beled examples D = {x(i) : 1 ≤ i ≤ N}, with x(i) ∼ π(x). Unsupervised learning

encompasses a wide range of models and applications. In clustering algorithms such
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as k-Means (Lloyd, 1982), the goal is to associate each example x(i) to a centroid,

which serves to summarize local statistics of the distribution. In dimensionality

reduction, one seeks to learn a mapping from a D to an N -dimensional space, with

N << D, which preserves as much information about the input distribution as

possible. Popular algorithms in this family include Principal Component Analy-

sis (PCA), Independent Component Analysis (Comon, 1994) as well as non-linear

dimensionality reduction techniques such as Local Linear Embedding (Roweis and

Saul, 2000) and t-SNE (van der Maaten and Hinton, 2008).

In this work, we are predominantly interested in the problem of density esti-

mation, which seeks to learn a model pθ(x) which minimizes KL (pθ�q). The most

popular loss function in this context is the negative log-likelihood loss.

LNLL(x, pθ) = − log pθ(x) (1.22)

.

1.4.1 Latent Variables and Expectation Maximization

We are particularly interested in models which capture statistics of the input

distribution through latent variables, i.e. unobserved quantities which help to ex-

plain key properties in the input. Such models define a joint-distribution pθ(x, h)

over the observation vector x and a vector h of latent variables. For simple models

where the latent variables can be marginalized analytically (e.g. the Restricted

Boltzmann Machine, Section 2.3.1), one can learn the parameters θ through max-

imum likelihood of the marginal distribution p(x) =
�

h
pθ(x, h). When latent

variables are binary however, this marginalization can often require a sum which is

exponential in the number of latent variables. In this setting and when the poste-

rior distribution pθ(h | x) is tractable, the maximum likelihood learning rule must

be adapted slightly, in a procedure known as Expectation-Maximization (EM).

Instead of optimizing the (log) marginal distribution directly, the EM algorithm

iteratively optimizes the expected logarithm of the joint distribution pθ(x, h), under

the model’s posterior. Somewhat surprisingly, both of these iterative gradient-based

methods can be shown to yield the same fixed points, i.e. local maxima of the

likelihood function. The crux of the proof relies on decomposing the log-likelihood
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Figure 1.3: Expectation-Maximization. See text for details.

into a lower-bound L(q, θ) and a positive KL divergence term, a decomposition

which holds for any choice of density q(h). See Appendix A for a detailed derivation.

log p (x) = L (q, θ) + KL (q�p) (1.23)

L (q, θ) =
�

h

q(h) log

�
p (x, h; θ)

q(h)

�

KL (q�p) = −

�

h

q(h) log

�
p (h | x; θ)

q(h)

�

Sketch of Proof. Starting from the model parameters θt, we choose qt to be the

exact model posterior, causing the KL divergence term to vanish and yielding

L (qt, θt) = log p (x; θt). Since parameters θt+1 are obtained via gradient ascent of

the functional L, we can also write L (qt, θt) ≤ L (qt, θt+1), with equality holding

only if the procedure has already converged to a local maxima. Finally, since the

lower-bound interpretation holds for any q(h) and since KL(qt�p(h | x; θt+1)) > 0

(qt is no longer the true model posterior for parameters θt+1), we also know that

L (qt, θt+1) < log p (x; θt+1).

Putting all this together, we can write

log p (x; θt) = L (qt, θt) ≤ L (qt, θt+1) < log p (x; θt+1) .

For a more thorough treatment of the EM algorithm, we refer the reader to

Bishop (2006).
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1.4.2 Variational Methods

The EM algorithm can be applied to models having an intractable posterior

distribution by using the framework of variational inference (Bishop, 2006). In this

case, the E-step aims to find a tractable distribution q which approximates the true

model posterior. Since q is only an approximation however, the E-step does not

lead to a tight lower-bound since KL(q�p(h�x)) > 0. As such, the M-step (which

optimizes the lower-bound wrt. the model parameters) is no longer guaranteed to

improve the log-probability of the model on every iteration. Despite this lack of

theoretical guarantees, variational learning methods have been shown to work well

in practice given the right choice of distribution q.

While picking the right variational distribution can be an art form in and of

itself, two popular methods are used in practice. One can pick q(x;ω) to be part

of some parametric family Q = {q(x;ω) : ω ∈ Ω}. The E-step then amounts

to finding the optimal parameters ω∗ which maximize the lower-bound L(q) (or

alternatively minimize the KL divergence). Another popular method which is used

in Chapters 8 and 12 is to constrain q to be factorial, a method known as mean-field

(Parisi, 1988). Formally, mean-field assumes the following factorized form for the

variational distribution: q(x) =
�

M

1 qi(xi), i.e. a product of M factors over disjoint

sets of random variables. The Euler-Lagrange equation (derived in Appendix A)

specifies how to derive, from this constraint, the closed-form analytic solution to

each factor qi.

log qi(xi) = Eq/i
[log p(x, h)] , with q/i :=

�

j∈[1,M ],j �=i

qj(xj). (1.24)

Starting from some initial conditions, one iterates over the above equations

for each factor qi. Each such iteration is guaranteed to increased the variational

lower-bound. This process is repeated until each qi converges, at which point the

E-step is complete: the lower-bound is as tight as possible given the mean-field

approximation. The algorithm then proceeds with the M-step by performing a

single step of gradient ascent of L(q) wrt. the model parameters. We again refer

the reader to Bishop (2006); Koller and Friedman (2009) for more details.
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Figure 1.4: Directed Bayes Networks. (left) p(x1, . . . , x5) = p(x5 | x4)p(x4 | x2, x3)p(x3 |

x1)p(x2)p(x1). (middle) Naive Bayes classifier. (right) Factor Analysis or Sparse Coding.

1.4.3 Directed vs. Undirected Graphical Models

It can be prohibitively expensive to learn a full joint distributions pθ(x), as the

naive parametrization tends to grow exponentially in the dimensionality of x. One

can drastically reduce the number of parameters to learn by exploiting conditional

independencies present (or assumed to be present) in the data distribution. The

field of graphical models (Koller and Friedman, 2009) formalizes these concepts by

combining elements of probability and graph theory. A graphical model represents

a probability distribution pθ(x), x ∈ RD through a graph G = (V,E), where

V = {1, · · · , D} is the set of vertices and E ⊂ V ×V the set of edges. Each vertex

Vi represents a random variable xi, while the absence of an edge between variables

encodes conditional independencies present in the underlying distribution. The

probability mass function is defined as a product of factors, computed over local

subsets of the vertices. There are two broad families of graphical models.

Directed Bayes Networks In Directed Bayes Networks (BN) or directed graph-

ical models, pθ(x) is defined as a product of normalized conditional distributions,

where the conditional dependencies are captured via a Directed Acyclic Graph

(DAG). Denoting Vπ(i) to be the set of parents of node Vi (and xπ(i) the associated

random variables), the pdf associated with G is obtained as:

pθ(x) =
D�

i=1

pθi
�
xi|xA(i)

�
. (1.25)

One should recognize the chain rule of probability, where some factors in the

complete expansion p(x) = p(xD | xD−1, . . . , x1)p(xD−1 | xD−2, . . . , x1) . . . p(x2 |
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x1)p(x1) have been zeroed-out due to conditional independencies encoded in the

graph structure. Examples of BNs are given in Figure 1.4 for an arbitrary distribu-

tion (left) along with the naive Bayes classifier (middle) which models the input

variables (x1, x2, . . . , xD) as being independent when conditioned on the class label

y.

Figure 1.4 (right) shows the graphical model underpinning several popular fea-

ture (or dictionary) learning methods, which model the input x as the linear com-

bination of a latent code h ∈ RN with a feature (or dictionary) matrix W ∈ RD×N .

More precisely, real-valued inputs are modeled as p(x | h) = N (x | Wh+ µ,Ψ),

with mean vector µ ∈ RD and covariance matrix Ψ ∈ RD×D. Setting the prior

p(h) to be Gaussian with an isotropic or diagonal covariance matrix Ψ recovers

the famous probabilistic PCA (Tipping and Bishop, 1999) and Factor Analysis

algorithms (Basilevsky, 1994) respectively. Sparse Coding (Olshausen and Field,

1996) models the input as the linear combination of a small subset of basis filters

( columns of the weight matrix W ). This is achieved by using a sparsity inducing

prior on h, such as the Laplace distribution, and setting N >> D. Compared

to similar feature learning algorithms presented in Chapter 2, Sparse Coding (and

directed models in general) benefits from the property of explaining away. While

hi and hj are independent random variables, they become dependent when con-

ditioning on the input variable x. This is a powerful reasoning mechanism which

allows the latent features to “compete” in explaining the input. Unfortunately, this

also tends to make inference more complex, often requiring iterative inference al-

gorithms. Sampling in BNs is also very straightforward and can be performed in a

single top-down pass in a procedure known as ancestral sampling. i

Markov Random Fields Undirected graphical models, also known as Boltzmann

Machines or Markov Random Fields (MRFs) with latent variables are the central

topic of this thesis. Since edges are undirected, the decomposition pθ(x) cannot

rely on a topological ordering of the graph, but instead decomposes the pdf as a

product of factors defined over cliques of the graph, i.e. subset of vertices which

are fully connected. Denoting xCk as the variables belonging to the k-th clique, the

i. To sample from the model of Fig. 1.4 (left), start by sampling from the ancestral nodes,
then repeatedly sample from the conditional distributions following a topological ordering of the
nodes. The procedure is as follows: x1 ∼ p(x1), x2 ∼ p(x2), x3 ∼ p(x3 | x1 = x1), x4 ∼ p(x4 |

x3 = x3, x2 = x2), x5 ∼ p(x5 | x4 = x4).
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pdf can then be written as:

pθ(x) =
1

Z

K�

k=1

ψ (xCk) . (1.26)

Here ψ are the potential functions which are constrained to be positive, and Z

is the partition function or normalization constant. Popular examples of MRFs

include Ising Models, Conditional Random Fields (Lafferty et al., 2001) and the

Restricted and Deep Boltzmann Machines which are the subject of Chapter 2.

The formalism of graphical models represents a powerful framework for reason-

ing about distributions. Tasks such as computing posterior distributions, MAP

estimates or marginals can all be made more efficient by exploiting the structure of

the graph. The simplest such algorithm, variable elimination, exploits conditional

independencies to determine the ordering in which variables should be summed

(or integrated) out. Message passing algorithms exploit dynamic programming to

perform these tasks efficiently, by reusing intermediate computations. When G is

tree-structured, sum-product and max-product algorithms can compute marginals

or MAP (respectively) of full or conditional distributions in a time linear in the

number of nodes. Message passing algorithms can also be extended to perform

exact inference on general acyclic graphs via the junction tree algorithm (which

is exponential in the treewidth of the graph), or approximate inference in general

“loopy” graphs using loopy belief propagation. For a more thorough treatment of

this material, we refer the reader to Koller and Friedman (2009); Wainwright and

Jordan (2008).

1.4.4 Unsupervised Learning for Feature Extraction

The intersection of unsupervised and supervised learning has recently become a

dynamic area of research. This was spearheaded by the work of Hinton et al. (2006)

which showed that the parameters of Restricted Boltzmann Machines, learnt in an

unsupervised manner, could be used as an initialization point for feed-forward clas-

sification networks such as MLPs and fine-tuned for the supervised task through

the standard backpropagation algorithm. Compared to random initialization, this

led to an increased robustness to local minima as well as better generalization

performance. This was later analyzed by Erhan et al. (2010), which showed that
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unsupervised pre-training could be interpreted as a powerful new form of regular-

ization for traditional MLPs. Since, unsupervised feature learning has also proven

crucial to other formalisms such as Self-Taught Learning (Raina et al., 2007) and

Transfer Learning (Mesnil et al., 2011) and has spawned an entire field of research,

called Deep Learning.

At a high-level, the above confirms a very simple intuition: the latent variables

which are good at capturing statistical structure in π(x) can also be useful for

modeling related conditional distributions π(y | x). Instead of using the parame-

ters learnt through unsupervised learning to initialize a feed-forward network, one

can thus simply treat the model’s posterior distribution pθ(h | x) as providing a

non-linear mapping from RD → RNh and use the resulting representation as input

to a classifier. The following question then comes to mind: how can we encour-

age representations learnt through unsupervised learning to be useful for auxiliary

tasks, such as classification ? Is the maximum likelihood learning rule of Eq. 1.22

sufficient to discover such a representation ? What are the particular model struc-

tures which encourage learning a richer and more diverse set of features ? These

are the questions which the newly emerging field of unsupervised feature learning

aims to answer.

Bengio (2009); Wiskott and Sejnowski (2002); Goodfellow et al. (2009); Ben-

gio and Courville (2013) have identified invariance as the key property of what

constitutes a “good” representation. Ideally, latent factors should capture useful

properties of the input (e.g. useful for discriminating between classes) while being

invariant to other irrelevant factors of variations. One such example in object cat-

egorization tasks is the “contrast” present in natural images. Contrast can greatly

impact global statistics, but is completely irrelevant for object identity. Unsur-

prisingly, preprocessing natural images with Local Contrast Normalization (LCN)

(Pinto et al., 2008) (i.e. making the input itself invariant to local changes in con-

trast) is a well known technique for improving object classification performance

in natural images, as is using richer model classes which learn features based on

second-order statistics of the input, such as the Spike & Slab RBM (Courville et al.,

2011b), the topic of Chapter 10.

Other factors of variation such as object position or identity are inherently more

difficult to deal with, as they combine in a very non-linear manner to generate the
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image pixels. Furthermore, each one of these factors may be considered relevant,

depending on whether the final task is one of object classification or object de-

tection: object recognition system should be invariant to position, while object

localization should be invariant to object identity. Bengio (2009) thus proposes

disentangling the factors of variation as the holy-grail of feature extraction.

The resulting representation should factorize such that the variations along a given

factor are encoded in a subset of the latent units, which are themselves invariant

to all other factors of variation. The Bilinear RBM proposed in Chapter 12 is our

attempt at tackling this very difficult issue.



2 Unsupervised Deep

Learning

Hinton et al. (2006), Bengio et al. (2007) and Ranzato et al. (2007) represent

a significant breakthrough in the field of neural network research. This work ex-

ploited unsupervised learning in order to initialize the parameters of a deep MLP,

through a greedy layer-wise pretraining algorithm. Fine-tuning these parameters

through backpropagation led to state of the art results and pioneered a new field

of research. Deep Learning combines two core concepts: leveraging unsupervised

learning algorithms for feature extraction and using deep hierarchical models which

are hypothesized to be more statistically efficient than shallow architectures. This

chapter focuses on one of the main building blocks of deep networks: the Restricted

Boltzmann Machine.

2.1 Boltzmann Machines

In the remainder of this document, we focus on a particular class of probabilistic

generative model called Boltzmann Machines (BM) (Hinton et al., 1984). BMs

encode a probability distribution p(x) through an energy function, which assigns

low energy to states with high probability, and high energy to less probable states.

This energy is a function of model parameters θ and random variables which can

either be observed (visible) or latent (hidden). The parameters of the model serve to

encode relationships between these various random variables, with latent variables

acting as explanatory factors of the data. Formally, the energy of the visible units

v and hidden units h is denoted by E(v, h; θ) or equivalently Eθ(v, h) i.

i. Depending on context, we may also drop the dependence on θ from the notation altogether
and write E(v, h).
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Energy is converted to probability through the Gibbs distribution:

p(v, h) =
1

Z
exp (−Eθ(v, h)) (2.1)

where Z =
�

v,h
exp(−Eθ(v, h)) is the finite partition function, which ensures that

p(v, h) is normalized. We can recover the marginal distribution p(v) by summing

over the latent variables:

p(v) =
1

Z

�

h

exp (−Eθ(v, h)) . (2.2)

It is also useful to define the Free-Energy function:

Fθ(v) = − log
�

h

exp−Eθ(v,h), (2.3)

which allows us to write p(v) = 1
Z
exp (−Fθ(v)).

The prototypical Boltzmann machine energy function is defined over a set of

binary random variables x ∈ {0, 1}n, a concatenation of the vector of visible and

hidden variables. It is defined as:

EBM(x) = −
1

2
xTWx− bTx. (2.4)

Here the parameters of the model are the symmetric weight matrix W ∈ Rn×n and

bias vector b ∈ Rn. Denoting x−i as the vector x with the i-th entry skipped, the

above energy function induces i the following conditional distribution:

p(xi|x−i) = sigmoid

�
�

j �=i

Wijxj + bi

�
(2.5)

At a high-level, we can see that each unit in the BM is stochastically activated, with

an activation probability which depends on the dot-product between the feature

vectorWi(−i) (defined as the vectorWi· without entryWii) and the vector of random

variables x−i. This feature vector can thus be thought of as expressing a preference

for the particular pattern of activations preferred by unit xi. Repeatedly iterating

i. We skip the derivation of this specific conditional distribution, in favor of the RBM condi-
tionals of Section 2.3.1.



2.2 Maximum Likelihood Learning 26

over the above conditional (for all i) implements the Gibbs sampling procedure

which can be used to generate samples from either the full model distribution p(x)

or from any conditional distributions by clamping a subset of the units. As we shall

see in the following section, the goal of learning is then to fit the parameters such

that the sufficient statistics of the model (in this case xixj and xi) are approximately

equal (on average) when the model is left “free-running” (with no units clamped)

or when a subset of the units are clamped to training data.

Relationship to Other Models

Boltzmann Machines are also closely related to Markov Random Field and Ising

models. They belong to the more general class of Energy-Based Models (LeCun and

Huang, 2005; LeCun et al., 2006), which are un-normalized density models. Similar

to Boltzmann machines, EBMs define an energy function E(x), the parameters of

which are adapted to lower the energy around training examples and raise the

energy of configurations not supported by the data. Contrary to BMs however,

the energy does not necessarily integrate to a finite quantity. As we shall see in

Section 2.8, this lack of partition function greatly impacts their training algorithm.

2.2 Maximum Likelihood Learning

As with any other probabilistic model, the parameters of a Boltzmann machine

can be estimated through maximum likelihood. Recall the following notation: a

training set D having i.i.d. examples drawn from an empirical distribution π(x)

and a model denoted as p(x; θ). Maximum likelihood finds the optimal parameters

θ∗ which maximize the likelihood function L(D, pθ) =
�

x(i)∈D p(x(i); θ):

θ∗ ← argmax
θ

L (D, pθ) ⇔

θ∗ ← argmin
θ

Eπ [− log p(x; θ)] , (2.6)

with the equivalence stemming from the monotonicity of the logarithm. Note that

we also recast maximum likelihood as a minimization problem in order to follow
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convention. Alternatively, one can view maximum likelihood as minimizing the

KL-divergence between the empirical and model distributions i, defined as:

KL(π�p) =
�

x

π(x) log
π(x))

p(x)
(2.7)

Provided the free-energy function is tractable and differentiable almost every-

where, Eq. 2.6 can be minimized through gradient descent (as shown in Section 1.2).

The gradient of the negative log-likelihood (NLL) function of a Boltzmann Machine

with free-energy function F (x), can be derived as follows:

− log p(x; θ) = F (x) + logZ

= F (x) + log
�

x

exp [−F (x)]

−
∂ log p(x)

∂θ
=

∂F (x)

∂θ
+

1

Z

�

x

∂ exp [−F (x)]

∂θ

=
∂F (x)

∂θ
−

1

Z

�

x

exp [−F (x)]
∂F (x)

∂θ

=
∂F (x)

∂θ
−

�

x

p(x)
∂F (x)

∂θ

=
∂F (x)

∂θ
− Ep

�
∂F (x)

∂θ

�
(2.8)

Replacing the expectation of Eq. 2.6 by a sample average, the maximum likeli-

hood SGD update equations for θ, at the t-th parameter update, becomes:

θt+1 ← θt − �

�
1

|D|

�

x∈D

�
∂F (x)

∂θ

�
− Ep

�
∂F (x�)

∂θ

��
(2.9)

We denote the model with parameters θt as pt(x). It can be seen that the log-

likelihood gradient involves the computation of two terms. The first term can be

computed analytically and has the effect of decreasing the (free)-energy at training

points. It is referred to as the positive phase. The summation can be taken across

i. The equivalence can be proven trivially.
KL(π�p) =

�
x π(x) log

π(x)
p(x) =

�
x π(x) log π(x)−

�
x π(x) log p(x).

argminθ KL(π�p) ⇔ argminθ −
�

x π(x) log p(x) ⇔ argmaxθ Eπ [log p(x)]
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the entire training set for batch gradient descent, or over a subset of the data when

using gradient descent with mini-batches. The second term aims to increase the

probability of all configurations of the visible units, and is called the negative phase.

Its computation is problematic however, since it involves an expectation over the

model distribution, which is intractable for all but the smallest models.

The log-likelihood gradient can thus further be approximated by replacing the

expectation with a sample average. Given the ability to generate a set of model

samples Xt = {xn ∼ pt(x); 0 < n < N}, a gradient estimator can be computed and

applied, yielding:

θt+1 ← θt − �

�
1

|D|

�

x∈D

�
∂F (x)

∂θ

�
−

1

N

�

x�∈Xt

�
∂F (x�)

∂θ

��
(2.10)

We refer to x as positive samples, since they are training examples used to

estimate the positive phase, while x� are referred to as negative or model samples

or alternatively, as particles of some sampling algorithm. Typically, we choose

N = |D| in order to match the variances of the positive and negative phases.

When the free-energy function is not tractable, as is the case with the Deep

Boltzmann Machine (DBM, see Section 2.5.2), we can re-derive the update equation

with respect to the model’s energy function E(x).

θt+1 ← θt − �

�
1

|D|

�

x∈D

Ep(h|v=x)

�
∂E(x)

∂θ

�
− Ep

�
∂E(x�)

∂θ

��
(2.11)

For these models, estimating the positive phase often becomes the bottleneck.

While several algorithms have been developed which allow for efficient approxi-

mations to the negative phase gradients, these same methods cannot be used to

approximate expectations with respect to the model’s posterior. The common so-

lution is then to resort to variational learning methods, presented in Sections 1.4.2

and 2.4.5.
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2.3 Restricted Boltzmann Machines

2.3.1 RBM for Binary Data

The RBM is characterized by the following energy function:

Eθ(v, h) = −

nv�

i=1

nh�

j=1

Wijhjvi −
�

j

cjhj −

�

i

bivi, (2.12)

which groups nv visible units and nh hidden units into two separate layers, inter-

acting through the weight matrix W ∈ Rnh×nv . Connections between units of the

same layer are prohibited, differentiating it from other more general Boltzmann

Machines. b ∈ Rnv and c ∈ Rnh are the offsets of the visible and hidden units

respectively, and serve much the same purpose as in the MLP. While the random

variable v and h can belong to many probability distributions, we will focus here

on the binary-binary RBM, where v ∈ {0, 1}nv and h ∈ {0, 1}nh .

Conditionals

Before we can perform learning or inference in this model, we first need to derive

its conditional distributions p(h|v) and p(v|h).

p(h|v) =
p(v, h)

p(v)
=

exp [−Eθ(v, h)]�
h
exp [−Eθ(v, h)]

=
exp

�
−
�

j
hj (cj +

�
i
Wijvi)

�
exp (−

�
i
bivi)

�
h
exp

�
−
�

j
hj (cj +

�
i
Wijvi)

�
exp (−

�
i
bivi)

=

�
j
exp [−hj (cj +

�
i
Wijvi)]�

h

�
j
exp [−hj (cj +

�
i
Wijvi)]

=
�

j

exp [−hj (cj +
�

i
Wijvi)]

1 + exp [−cj −
�

i
Wijvi]
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We recover the following activation functions:

p(h|v) =
�

j

p(hj|v) (2.13)

p(hj = 1|v) = sigmoid

�
cj +

�

i

Wijvi

�
(2.14)

By symmetry of the energy function, we can write:

p(v|h) =
�

i

p(vi|h) (2.15)

p(vi = 1|h) = sigmoid

�
bi +

�

j

Wijhj

�
(2.16)

Eqs.(2.13-2.16) show that hidden units are conditionally independent, given

the visible layer (and vice-versa). This property greatly facilitates generating the

set Xt of negative phase samples, required for learning in Eq. 2.10. Because of

its factorial posteriors, we can generate approximate samples of p(v) efficiently

by performing block Gibbs sampling (Robert and Casella, 1999). We can obtain

each sample x� ∈ Xt by simulating a Markov chain which alternates sampling

h(k) ∼ pt(h|v = v(k−1)) and v(k+1) ∼ pt(v|h(k)). The samples in Xt are the v(k)’s

obtained for large values of k (typically in the order of thousands), at which point

the Markov chain is deemed to have converged to its stationary distribution.
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Free-Energy

We can derive the free-energy of the binary-binary RBM as follows:

Fθ(v) = − log
�

h

exp−Eθ(v,h)

= − log

�
exp

�
−

�

i

bivi

�
�

h

�

j

exp

�
−hj

�
cj +

�

i

Wijvi

���

= −

�

i

bivi − log
�

j

1 + exp

�
−cj −

�

i

Wijvi

�

= −

�

i

bivi −
�

j

log

�
1 + exp

�
−cj −

�

i

Wijvi

��
(2.17)

2.3.2 RBM for Continuous Data

When v is a continuous vector in Rnv , the energy function of the RBM must

be adapted slightly. Here we aim to model p(v | h) as the product of independent

Gaussian distributions where as in Eq. 2.16, the mean of p(vi | h) is given by the

product Wi·h. Introducing the parameter Λii ∈ R to be the diagonal precision

matrix of unit vi, we thus want:

pGRBM(vi|h) = N

�
v; bi +

�

j

Wijhj,Λ
− 1

2
ii

�

∝ exp




−
Λii

2

�
vi −

�
bi +

�

j

Wijhj

��2



 , (2.18)

where N (x;µ, σ) denotes that x is normally distributed with mean µ and stan-

dard deviation σ. Given this modeling objective, we can now work backwards from

the Gaussian RBM (GRBM) conditional to define the GRBM energy function. It

is obtained by taking the log of Eq.2.18 and expanding the square. Since RBMs

prohibit connections between hidden units, we drop all terms involving products

hjhk, with k �= j, along with any constant terms (terms which are not a function

of the random variables v and h). Denoting Λ as the diagonal matrix whose i-th
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entry on the diagonal is Λii, the resulting energy function is thus given by:

EGRBM(v, h) =
1

2
vTΛv − vTΛWh− bTv − cTh (2.19)

With a few lines of algebra, this energy function can be shown to yield the

following conditional distribution p(hj | v),

p(hj = 1|v) = sigmoid

�
cj +

�

i

ΛiiWijvi

�
(2.20)

and free-energy function:

FGRBM(v) =
1

2
vTΛv − bTv −

�

j

log

�
1 + exp

�
−cj −

�

i

viΛiiWij

��
. (2.21)

In practice, it can be very difficult to learn the precision parameter Λ through

first-order gradient descent. It is therefore common practice to standardize the

dataset to have unit standard deviation (per input dimension) and keep the condi-

tional precision fixed to some value greater or equal to one (Hinton, 2010).

Capturing higher-order statistics

While the GRBM was specifically crafted to model continuous data, it remains

a coarse model for learning rich and complex distributions such as that formed by

natural images. In particular, the GRBM inference process (and hence the repre-

sentation formed by its latent variables when conditioned on the visible units) is

unable to take into account second (or higher) order statistics of the input pixels. i

This is especially damning as a core statistical property of natural images is the

high correlation between neighboring pixels (Simoncelli and Olshausen, 2001). Con-

cretely, this limitation stems from the GRBM’s conditional distribution p(h | v),

which involves a simple linear combination of the input pixels vk. Capturing higher-

order statistics would require products such as vk · vl to appear in the activation

function: in other words higher-order polynomials of the input vector v.

Two such models have been proposed in the Boltzmann Machine family. The

i. This limitation mirrors that found in the GRBM generative process, whereby p(x | h) is
constrained to have a diagonal covariance matrix.
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mean-covariance RBM (Ranzato and Hinton, 2010) implements this by introducing

“covariance” hidden units which interact with the visible layer through a quadratic

energy term in v. It is thus a special case of third-order Boltzmann machines, which

are presented in Section 2.6.1. The spike and slab RBM (Courville et al., 2011a)

takes a different route altogether. It augments each binary hidden unit hj with a

continuous slab variable sj ∈ R, whose role is to modulate the precise contribution

of each feature vector W·j in the visible-hidden unit interaction term. While the

posterior p(h, s | v) remains linear in v, the slab variables can be integrated out

analytically, yielding a sigmoidal activation function of a second-order polynomial

in v. The spike and slab formulation also has the benefit of being amenable to

Gibbs sampling unlike the mcRBM, with Ranzato and Hinton (2010) resorting to

Hybrid Monte Carlo (Neal, 1996) instead. The spike and slab RBM, along with

several of its extensions are the topic of the paper presented in Chapter 10.

2.4 Approximations to Maximum Likelihood

and Other Inductive Principles

The maximum likelihood learning rule of Eq. 2.10 require a fresh set of negative

phase samples for each gradient update. This is impractical as it technically requires

running a Markov chain to convergence for each gradient update! For this reason,

various algorithms have been developed, which differ both in their computational

complexity and in their approximation to the negative phase. These are covered in

the following section.

2.4.1 Stochastic Maximum Likelihood

Stochastic Maximum Likelihood (SML) or Persistent Contrastive Divergence

(PCD) (Younes, 1998; Tieleman, 2008) exploits the fact that the model changes

only slightly between consecutive gradient updates. As such, samples Xt−1 are still

somewhat representative of model pt. SML thus initializes the Markov chains at

time-step t with elements from Xt−1, drastically reducing the burn-in time of the

Markov chain in the process. Only a few steps of Gibbs sampling are typically used
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to generate the samples Xt. In practice, this number can even be as low as one

(Tieleman, 2008). Algorithm 2 formalizes the SML update algorithm.

Algorithm 2 Stochastic Maximum Likelihood Update

Obtain (mini)-batch of training examples X+
t = {x ∈ D}.

Initialize (mini)-batch of samples x(0)
t from Xt−1, approx. samples of pt−1.

for k = 0 : K do
Generate (mini)-batch of samples h(k)

t ∼ pt(h|v = x(k)
t ).

Generate (mini)-batch of samples x(k+1)
t ∼ pt(v|h = h(k)

t ).
end for
Define Xt as the (mini)-batch of samples x(k)

t .

θt+1 ← θt − �
�

1
|X+

t |

�
x∈X+

t

�
∂F (x)
∂θ

�
−

1
|Xt|

�
x�∈Xt

�
∂F (x�)

∂θ

��
.

The crucial assumption in SML is that k steps of Gibbs sampling are sufficient

to reach the new equilibrium distribution. Unfortunately, this may not always be

the case. Denoting the state of the Markov chain after k steps of Gibbs sampling as

p(k)t , Tieleman and Hinton (2009) showed that SML actually follows the gradient

of KL(π�pt) − KL(p(k)t �pt). If the gradient vectors of both these terms have a

positive dot-product, SML will successfully minimize KL(π�pt), and thus maximize

the model likelihood. Otherwise, SML may diverge from the maximum likelihood

solution.

SML thus relies on KL(p(k)t �pt) being small throughout training. However, for a

fixed value of k, this quantity is known to increase with training time. Intuitively,

this occurs because as the parameters increase in magnitude, the Markov chain

becomes increasingly deterministic (the conditional probabilities become increas-

ingly peaked around 0/1), which in turn reduces the mixing rate or ergodicity i of

the chain. Younes (1998) establishes some necessary conditions for convergence,

showing that a decreasing learning rate schedule is required to offset this loss of

ergodicity. ii

i. We use the term “ergodicity” rather loosely, to reflect the amount of time required for the
states sampled by the Markov chain to reflect the true expectation we wish to measure.

ii. The learning rate �t should decrease such that
�∞

t=0 �t = ∞ while
�∞

t=0 �
2
t < ∞.
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2.4.2 The Fast-Weight Effect and FPCD

It may come as a surprise to the Markov chain practitioner that a single step of

Gibbs sampling suffices to draw samples from pt(x) when initialized with samples

from pt−1(x). Tieleman and Hinton (2009)’s investigations into the matter revealed

an interesting link between the mixing rate of the Markov chain and learning:

the gradient update at time-step t − 1 biases the Markov chain towards moving

away from the configuration Xt−1. By reducing the probability of Xt−1, learning

encourages the chain to move to another region of input space, increasing the mixing

rate of the chain in the process. This phenomenon, coined the “fast-weight effect”,

is especially pronounced when using large learning rates. Unfortunately, this is at

odds with SML which requires a decreasing learning rate to guarantee convergence.

Fast PCD (FPCD) (Tieleman and Hinton, 2009) addresses this issue by in-

troducing an additional set of fast weights WF , which combine additively with the

normal RBM weightsW in the negative phase of learning. WeightsWF are updated

using the same gradient as W , but using a separate learning rate which remains

large throughout training. This allows the “normal“ learning rate (the one oper-

ating on all other parameters of the model) to be annealed throughout training,

while still maintaining the fast-weight effect in the negative phase Markov chain.

A strong L2 penalty on WF ensures that their effect on the model is only tempo-

rary and that the KL divergence between the models defined with and without the

fast-weights remains small. While its theoretical foundations are weak, the FPCD

update algorithm of Algorithm 3 has been found to work well in practice.

2.4.3 Tempered SML

Alternatively, one may also use more powerful sampling algorithms in the nega-

tive phase of learning, such that the resulting Markov chain maintains good mixing

properties throughout training. One such strategy employed in Desjardins et al.

(2010b); Cho et al. (2010); Salakhutdinov (2010b,a), relies on generating sam-

ples from the tempered Gibbs distribution p(v; βi) = 1
Z(βi)

exp [−βiF (v)], where

β ∈ [0, 1] is an inverse temperature parameter. At high temperatures (β << 1),

p(v; β) becomes more uniform over the sampling space, resulting in a smoothed

version of p(v; β = 1) which is easier to sample from. Desjardins et al. (2010b);

Salakhutdinov (2010b,a) offer competing solutions on how to best exploit these
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Algorithm 3 Fast PCD Update
WF,t: fast-weight matrix at time-step t.
θt = {Wt, bt, ct}: “normal” RBM parameters at time-step t.
θF,t = {Wt +WF,t, bt, ct}: “fast” RBM parameters at time-step t.
λ: hyper-parameter controlling amount of L2 regularization on WF .
�, �F : “normal” and “fast” learning rates.

Obtain (mini)-batch of training examples X+
t = {x ∈ D}.

Initialize (mini)-batch of samples x(0)
t from Xt−1, approx. samples of pt−1.

for k = 0 : K do
Generate (mini)-batch of samples h(k)

t ∼ pt(h|v = x(k)
t ; θF,t).

Generate (mini)-batch of samples x(k+1)
t ∼ pt(v|h = h(k)

t ; θF,t).
end for
Define Xt as the (mini)-batch of samples x(k)

t .

θt+1 ← θt − �
�

1
|X+

t |

�
x∈X+

t

�
∂F (x;θt)

∂θ

�
−

1
|Xt|

�
x�∈Xt

�
∂F (x�;θF,t)

∂θ

��
.

WF,t+1 ← WF,t − �F
�

1
|X+

t |

�
x∈X+

t

�
∂F (x;θt)
∂WF

�
−

1
|Xt|

�
x�∈Xt

�
∂F (x�;θF,t)

∂WF

�
+ λWF,t

�
.

fast-mixing chains to generate samples from p(v; β = 1).

In Desjardins et al. (2010b), we proposed using Parallel Tempering (PT) in

the negative phase of SML, which resulted in increased performance and added

robustness towards the choice of learning rate and the number of training epochs.

PT relies on sampling from an extended system composed of multiple RBM models:

Mt = {M1,t,M2,t, . . . ,MM,t} using a set of M parallel Markov chains, with the

i-th chain drawing samples from the associated RBM, Mi,t. We introduce the

notation Mi,t to refer to the model at time-step t, with probability distribution

pt(v; βi) ≡ pi,t(v) and associated partition function Zi,t. Formally, PT provides a

mechanism for sampling from the product distribution pt =
�

M

i=1 {pt(v; βi)} by

alternating two Metropolis-Hastings transition operators which leave pt invariant.

The first consists in performing k steps of Gibbs sampling independently, for

each of the M model distributions. This operator leaves each chain invariant (as in

the standard RBM setting) and thus also pt. For large M , low values of βi have the

effet of smoothing the energy function, making the MCMC simulation increasingly

efficient with temperature. The second transition operator consists in swapping

replicas (or samples) between neighboring chains. Denoting xi,t ∼ pi,t, the swap

between chains (i,i+1) is accepted with probability ri,t, computed by the standard

Metropolis-Hastings algorithm (Metropolis et al., 1953). Since each swap is local
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in that it only affects densities pi and pi+1, most terms in the expression of pt drop

out, yielding:

ri,t = max

�
1,

pi,t(xi+1,t)pi+1,t(xi,t)

pi,t(xi,t)pi+1,t(xi+1,t)

�
. (2.22)

These swaps ensure that samples from highly ergodic chains are gradually

swapped into lower temperatures. This allows samples to escape from local min-

ima of the energy landscape, by gradually being swapped to higher temperatures,

mixing, and slowly annealing back to the nominal temperature.

Several swapping schedules i have been proposed in Lingenheil et al. (2009)

which satisfy detailed balance, guaranteeing that for large enough k, xi,t ∼ pi,t.

While Desjardins et al. (2010b) employed a random selection strategy, Lingenheil

et al. (2009) advocates using the Deterministic Even Odd (DEO) algorithm. The

resulting SML-PT update algorithm is shown in Algorithm 4.

Algorithm 4 SML with Parallel Tempering (SML-PT) Update

Obtain (mini)-batch of training examples X+
t = {x ∈ D}.

Initialize (mini)-batch of samples x(0)
i,t

from Xi,t−1, ∀i ∈ [1,M ].
Perform k steps of Gibbs sampling for Mi,t, yielding a (mini)-batch of samples
xi,t, ∀i.
for all even chains i (and all samples in mini-batch) do
swap xi,t ↔ xi+1,t with probability ri,t.

end for
for all odd chains i (and all samples in mini-batch) do
swap xi,t ↔ xi+1,t with probability ri,t.

end for
Define Xi,t as the (mini)-batch of samples xi,t.

θt+1 ← θt − �
�

1
|X+

t |

�
x∈X+

t

�
∂F (x;θt)

∂θ

�
−

1
|X1,t|

�
x�∈X1,t

�
∂F (x�;θF,t)

∂θ

��
.

2.4.4 Contrastive Divergence

Contrastive Divergence (CD) (Hinton, 2002), the algorithm first proposed for

training Deep Networks, remains one of the leading inductive principles for train-

ing energy-based models. It relies on the same functional form of the maximum

i. The swapping schedule refers to the algorithm for selecting the pairs (i, j) of chains to swap
and its ordering.
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likelihood gradient (Eq. 2.6), but changes the nature of the negative samples. Sim-

ilar to SML, negative samples Xt are generated by running a Markov chain (with

pt(v) as its stationary distribution) for only k-steps. The difference however, is

that these chains are initialized with a positive training example instead of Xt−1

(as with SML). Since the equilibrium distribution of the Markov chain will tend

towards π(x) with learning (assuming convergence), initializing its state from a

training example x ∈ D should help bypass the long burn-in process required by

maximum likelihood. The CD-k update algorithm is shown in Algorithm 5.

Algorithm 5 Contrastive Divergence Update

Obtain (mini)-batch of training examples X+
t = {x ∈ D}.

Initialize (mini)-batch of samples x(0)
t from X

+
t .

for k = 0 : K do
Generate (mini)-batch of samples h(k)

t ∼ pt(h|v = x(k)
t ).

Generate (mini)-batch of samples x(k+1)
t ∼ pt(v|h = h(k)

t ).
end for
Define Xt as the (mini)-batch of samples x(k)

t .

θt+1 ← θt − �
�

1
|X+

t |

�
x∈X+

t

�
∂F (x)
∂θ

�
−

1
|Xt|

�
x�∈Xt

�
∂F (x�)

∂θ

��
.

CD has proven extremely successful as a pre-training and feature extraction

algorithm for deep networks. From a generative model point of view however, CD

has been shown to perform worse in terms of log-likelihood than other algorithms

in the SML family (Marlin et al., 2010; Desjardins et al., 2010b).

2.4.5 Variational SML

Estimating the positive phase gradient of Eq. 2.11 requires computing an ex-

pectation of the energy derivative over the model’s posterior distribution. For some

models like the DBM or bilinear ssRBM of Chapters 8 and 12, this term does not

have a closed form solution. Furthermore, using MCMC to approximate this ex-

pectation is problematic as it is an expectation wrt. a conditional distribution.

One would thus have to run an MCMC simulation to convergence for each training

example, a prohibitively expensive solution. This is in stark contrast to the neg-

ative phase expectation which admits an efficient solution based on MCMC (see

Section 2.4.1). For these types of models, we instead turn to variational learning

methods, which were first described in Section 1.4.2.
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When using the mean-field assumption for BMs, recall that q(h) =
�

M

1 qi(hi)

and q/i =
�

j �=i
qj(hj). Starting from the Euler-Lagrange equation (Eq. 1.24),

the logarithm of factor i takes on a simple form: it is the expected value of the

(negative) energy function under q/i:

log qi(hi) = Eq/i
[log p(x, h)]

= Eq/i

�
log

1

Z
exp {−E(x, h)}

�

= Eq/i
[−E(x, h)] + cte, (2.23)

where the constant term stems from the log-partition function and is simply rolled

into the normalization constant of qi(xi). The E-step thus consists in clamping the

visible units to x and repeatedly iterating (∀i ∈ [1,M ]) Eq. 2.23 until convergence,

yielding q∗(h): the optimal mean-field distribution minimizing KL(q�p(h�x)).

As in the standard EM algorithm (see Section 1.4.1), the M-step then consists

in a gradient ascent step of the lower-bound L(q) wrt. θ, computed as follows:

L(q) =
�

h

q∗(h) log

�
p (x, h; θ)

q∗(h)

�

= −Eq∗(h) [E (x, h; θ)]− logZ +H [q∗(h)] ,

∂L(q)

∂θ
= −Eq∗(h)

�
∂

∂θ
E (x, h; θ)

�
+ Ep(v,h)

�
∂E

∂θ

�
. (2.24)

Notice that the update direction is almost identical to Eq. 2.11, with the only

difference being that the positive phase expectation is computed wrt. our varia-

tional approximation. The variational Stochastic Maximum Likelihood algorithm

is obtained by again approximating the negative phase expectation via a sample

average which computes sufficient statistics over a persistent Markov chain, as in

Section 2.4.1.
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Figure 2.1: Graphical model of the Deep Belief Network (DBN) and Deep Boltzmann Ma-
chine (DBM). (left) A DBN is composed of undirected connections between the top two layers
and directed connections going down. The hashed arrows represent the conditional distribution
p(h(l)|h(l−1)) learnt during the pretraining phase and can be used to perform approximate infer-
ence. (right) DBMs are similar in structure but have undirected connections between all layers.
See Sec. 2.5.2. Images reproduced with permission from Bengio (2009).

2.5 Multi-Layer Models

RBMs can serve as simple unsupervised feature extractors, which learn to model

the input distribution through a linear combination of basis functions. Inspired by

the success of deep MLPs, RBMs have been extended to include multiple layers of

latent variables, which together form a powerful hierarchical representation. Two

popular variants are presented below.

2.5.1 Deep Belief Networks

Deep Belief Networks (Hinton et al., 2006) learn to extract such a deep hierarchi-

cal representation, by stacking multiple layers of RBMs. Their training algorithm

is a greedy iterative procedure, which trains the RBM in layer l to model the poste-

rior distribution of the RBM at layer l−1. In doing so, one obtains an increasingly

more abstract representation of the input. Denoting v := h(0) and L the number

of layers, its joint distribution is given by:

pθ(v, h
(1), · · · , h(L)) =

�
L−1�

l=1

p(h(l−1)
|h(l))

�
p(h(L−1), h(L)). (2.25)
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The graphical model is depicted in Fig. 2.1.

In its original formulation, the DBN was applied to a classification problem,

by training the L-th RBM on the concatenation of h(L−1) and the class labels.

The bottom-up recognition weights were used to perform approximate inference,

by setting h(l) to the expected value of p(h(l)|h(l−1)) (see Eq. 2.13). The label

was then selected as the one having minimal free-energy, as measured by the L-th

RBM. Conversely, one may also sample from the model by first sampling h(L−1) ∼

p(h(L−1), h(L)) and using the top-down directed connections to generate v.

Bengio et al. (2007) proposed an alternative method for performing classifi-

cation using DBNs. They showed that the parameters obtained by the greedy

layer-wise strategy could be used as an initialization point for deep (feed-forward)

MLPs (with an equivalent architecture). The model parameters could then be fine-

tuned through standard supervised learning (i.e. backpropagation algorithm of

Section 1.3.2). At the time of publication, both of the above pretraining strategies

led to significant improvements on the MNIST classification task, dropping from

1.8% error on MNIST to 1.2%. Erhan et al. (2010) later showed that these gains

in performance stemmed largely from a regularization effect, i.e. constraining the

parameters of the model to be close to those obtained via unsupervised learning.

The benefit of these hierarchical models was epitomized in Lee et al. (2009)

however, where a convolutional version of the DBN (CDBN) was trained on nat-

ural images. In a completely unsupervised manner, the CDBN learnt lower-level

features resembling Gabor-filter, reminiscent of cells in area V1 of the visual cortex

(Olshausen and Field, 1996), which combined to form object parts and object de-

tectors in the higher layers. The features encoded by a each layer were also found

to be increasingly invariant and class specific.

2.5.2 Deep Boltzmann Machines

The Deep Boltzmann Machine (DBM) (Salakhutdinov and Hinton, 2009a) is

the natural extension of the RBM to deep architectures. It is composed of multiple

layers of random variables, with undirected connections between units in adjacent

layers, as shown in Fig. 2.1 (right). The energy function of a two layer DBM is
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given below:

E(v, h(1), h(2)) =−

nv�

i=1

nh1�

j=1

h(1)
j
W (1)

ij
vi −

nh1�

j=1

nh2�

k=1

h(2)
k
W (2)

jk
h(2)
j

−

�

k

c(2)
k
h(2)
k

−

�

j

c(1)
j
h(1)
j

−

�

i

bivi, (2.26)

We modify the RBM notation slightly, introducing the superscript notation to

indicate that weightsW (k) and biases c(k) belong to the k-th hidden layer. From the

graphical depiction of Fig. 2.1, it is clear that layers h(2) and v are conditionally in-

dependent given h(1). As such, their conditional distributions are identical to those

obtained through RBMs with weights W (2) and W (1) respectively. p(h(1)|v, h(2)) on

the other hand is much more interesting and shows how deeper layers help modulate

the activations of lower-level units:

p(h(1)
j

= 1|v, h(2)) = sigmoid

�
nv�

i

W (1)
ij

vi +
nh2�

k

W (2)
jk

h(2)
k

+ c(1)
j

�
. (2.27)

Unlike the RBM, the DBM posterior is not factorial and does not have a closed

form solution. As such, the maximum likelihood gradient can either be computed

as shown in Eq. 2.11, by estimating the positive phase expectation via MCMC, or

more commonly, as in Eq. 2.24 using variational inference to estimate the positive

phase statistics. Negative phase sampling remains efficient through block Gibbs

sampling however: even layers can be sampled jointly when conditioned on odd

layers, and vice-versa.

Layer-wise Pretraining . Reminiscent of the difficulties in training deep MLPs,

Salakhutdinov and Hinton (2009a) found that first-order gradient descent was in-

capable of optimizing the joint likelihood p(v, h(1), h(2)) ∝ exp
�
−E(v, h(1), h(2))

�

from random parameter initialization. They thus proposed an adapted version of

the DBN layer-wise pretraining algorithm, which is modified to account for future

top-down interactions. Pretraining is then followed by joint training via variational

SML. Salakhutdinov (2010a); Salakhutdinov and Hinton (2009a) reports state of

the art results on test-set log-likelihood for the MNIST (LeCun et al., 1998) and

NORB (LeCun et al., 2004) datasets. The samples generated by these trained

models are shown in Fig. 2.2.
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Figure 2.2: (left) Examples images from the NORB dataset. (right) Samples generated by a
trained DBM. Image reproduced with permission from Salakhutdinov and Hinton (2009a).

The Centering Trick Montavon and Muller (2012) recently showed that with

a simple reparametrization of the DBM energy function, one could do away with

greedy layer-wise pretraining and directly learn the model parameters jointly through

simple gradient descent. The trick consists in performing a linear reparametriza-

tion of the energy function such that singleton or pairwise potential functions are

taken wrt. “centered” random variables, i.e. variables having zero mean, as shown

below:

E(v, h(1), h(2)) =−
�
vT − ζv

�T
W (1)

�
h(1)

− ζh1
�

(2.28)

−

�
h(1)T

− ζh1
�T

W (2)
�
h(2)

− ζh2
�

−
�
vT − ζv

�
b−

�
h(1)T

− ζh1
�
c(1) −

�
h(2)T

− ζh2
�
c(2).

The centering coefficients {ζv, ζh1, ζh2} are not learnt, but adapted deterministically

to maintain zero-mean activation of each variable. Surprisingly, the method also

works by fixing the centering coefficients of the latent variables to 0.5 (a good

approximation to their expected value given small initial weights), and the visible

centering coefficients to the log-odds ratio of the empirical distribution, a well

known trick for speeding up optimization of RBMs (Hinton, 2010). Montavon and

Muller (2012) provides empirical evidence that the centering reparametrization

improves the conditioning of the Hessian, thus improving the convergence rate of
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first-order gradient descent.

The centering trick is closely related to data normalization for RBM training

(Tang and Sutskever, 2011) and the skip-connections used in feed-forward MLPs

(Schraudolph, 1998; Raiko et al., 2012).

2.6 Higher-Order Models

The RBM belongs to the family of Boltzmann Machines whose conditional

distributions are linear in either v or h. Recently, multiple models have been

proposed with energy terms which are quadratic in the visible units, such as the

mean-covariance RBM (Ranzato et al., 2010; Ranzato and Hinton, 2010) and the

spike & slab RBM (Courville et al., 2011a,b), allowing hidden units to capture both

mean pixel intensities, as well as their variance. At the time of their publication,

this increased representational capacity translated directly to state of the art results

on natural image datasets such as CIFAR10 (Krizhevsky and Hinton, 2009).

2.6.1 Third-Order Boltzmann Machines

Higher-order Boltzmann Machines (BM) are another promising family of mod-

els, which allow for more complex relationships between random variables, through

multiplicative interactions. They are “higher-order” in the sense that each weight

connects to more than two random variables, allowing them to capture correlations

between three or more units. The general form of a third-order binary RBM is

given below:

E(v, g, h) = −

ng�

i=1

nh�

j=1

nv�

k=1

Wijkvkgihj −

ng�

i=1

bigi −
nh�

j=1

djhj −

nv�

k=1

ckvk. (2.29)

Random variables are grouped into tree layers v ∈ {0, 1}nv , g ∈ {0, 1}ng , h ∈

{0, 1}nh and interact through the weight 3-tensor W ∈ Rnv×ng×nh . c ∈ Rnv ,

b ∈ Rng , d ∈ Rnh are again offsets which account for the base-rate activity of the

units. When both layers v and g are observed, with layer h being latent, the model
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is referred to as a Gated RBM (G3RBM) i and has been used extensively to model

image transformations (Memisevic and Hinton, 2007, 2010) as well as sequences

(Taylor and Hinton, 2009). We explore two of its variants in the sections below.

2.6.2 Gated RBM

We can get a better insight into third-order RBMs by looking at what happens

to the energy-function of Eq. (2.29) when we condition on one of the variables. For

example, conditioning on g, we obtain the energy function:

E(v, h|g) =−

nh�

j=1

nv�

k=1

W g

jk
vkhj −

nh�

j=1

djhj −

nv�

k=1

ckvk (2.30)

with W g

jk
=

ng�

i=1

Wijkgi

This is simply a“normal”(second-order) RBM, whose weights are modulated by the

activations of g, as shown in Fig. 2.3 (left). Gated RBMs (Memisevic and Hinton,

2007) exploit this mechanism to model image transformations between an input

image g and a transformed version v. By maximizing the conditional distribution

p(v, h|g), the G3RBM essentially learns an exponential mixture of RBMs: one

for every image being conditioned on (albeit with shared parameters). Instead of

modeling image features as in traditional RBMs, the G3RBM will thus learn to

model the differences between inputs g and v.

Another way to view this, is to see what happens when conditioning on the

hidden units (Fig. 2.3 (left)). A fixed configuration of h yields an RBM with weight

matrix W h, with entries
�

j
Wijkhj, which serves to model the joint distribution

p(g, v|h). The conditional activation of v will thus be given by p(vk = 1|g, h) =

sigmoid(
�

i
W h

ik
gi), which is a non-linear mapping from g to v.

In Memisevic and Hinton (2007), the G3RBM was successfully applied to mod-

eling transformations, as well as extracting optical flow from natural videos. The

quality of the mapping provided by the G3RBM can also be used to define a metric

which is invariant to the learnt transformations T (x). Indeed, if two images x and

y are related through T , the euclidian distance between y and the“mapped”version

of x, ŷ ∼ p(v|g = x), should be low (and high otherwise).

i. The acronym GRBM is usually reserved for the Gaussian RBM.
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2.6.3 Factored Gated RBM

Unfortunately, the G3RBM suffers from a prohibitively high number of param-

eters, which limits its application to models with a small number of units. Fortu-

nately, the G3RBM is in some sense, over-parametrized. Consecutive video frames

in natural images are often related by a small number of locally coherent transfor-

mations, stemming from either global motion (i.e. from a pan/tilt of the camera)

or the independent motion of objects within the scene. One can thus imagine

encoding these transformations with much fewer parameters than ng × nh × nv.

To this end, Memisevic and Hinton (2010) proposed a factored version of the

G3RBM, where the dense weight tensor is replaced by the outer product of 3 low-

rank matrices, as shown in Eq. (2.31). A graphical depiction of the model is shown

in Fig. 2.3 (right).

E(v, g, h) =−

nf�

f=1

�
ng�

i=1

W g

if
gi

��
nh�

j=1

W h

jf
hj

��
nv�

k=1

W v

kf
vk

�
(2.31)

−

ng�

i=1

bigi −
nh�

j=1

djhj −

nv�

k=1

ckvk.

The weight tensor W is thus replaced by 3 weight matrices W g ∈ Rnf×ng ,

W h ∈ Rnf×nh and W v ∈ Rnf×nv . These project the inputs g and v into an nf

dimensional factor space, where they interact multiplicatively. Latent factors then

encode a preference for a given pattern of activation of the factors. nf thus controls

the complexity of the learnable transformations, along with the computational

complexity of the model.

Memisevic and Hinton (2010) have shown that such a model can learn the

same types of transformations as a G3RBM, but with less parameters and at a

fraction of the computational cost. While Memisevic and Hinton (2010) focused

on simple global affine transformations, early results suggest that factored G3RBM

can also learn more complex, local transformations: factors then specialize to model

transformations in specific regions of the input space.
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Figure 2.3: Graphical depiction of Gated RBM with (left) dense weight matrix and (right)
factored weight matrix. Image reproduced with permission from Memisevic and Hinton (2010).

2.6.4 Bilatent Models of Data

While the G3RBM exploits the higher-order RBM terms to great success, they

remain limited in the expressiveness of the model: just like RBMs, they represent

data as linear combinations of latent factors. This is a severe limitation since, as

was mentioned in Chapter 1, real world images are the result of complex interac-

tions between many factors of variation (scene geometry, textures, lighting, etc.).

Multiplicative interactions of latent factors thus seem interesting for their ability

to enrich the model.

Tenenbaum and Freeman (2000) were the first to explore this question in the

context of directed graphical models, followed by Grimes and Rao (2005); Olshausen

et al. (2007). They put forward a bilinear generative model, wherein images are

formed by the pairwise multiplicative interactions of two latent factors: one repre-

senting the “content”, with the other accounting for the “style“ or the transforma-

tions present in the image. Borrowing the notation from Grimes and Rao (2005),

an image z of dimension K is formed as follows:

z = f(x, y) =
m�

i=1

n�

j=1

wijxiyj, (2.32)

where wij is the K dimensional basis vector {wijk; 1 ≤ k ≤ K} and xi, yj are

scalar coefficients which weigh the contribution of each basis in the final image.

For a fixed value of y, we can rewrite Eq. (2.32) as z =
�

m

i=1 W
y

i
xi, where we
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have defined W y =
�

j
wijyj. Much like in the G3RBM, a different set of M basis

vectors is thus obtained for each value of y. Those are in turn linearly combined

to form the final image z. Under the assumption of additive Gaussian noise (with

variance σ2), parameters can then be learnt by maximizing the image likelihood

given by P (z|x,y) = N (z; f(x,y), σ2).

Unfortunately, this is a very difficult optimization problem: Grimes and Rao

(2005) theorize that since there are many ways to decompose an image, P (z|x,y)

is plagued by local minima. Their solution is thus to add additional constraints on

x and y: these codes should be sparse, meaning that only a few xi’s and yi’s should

be active for a given image. The resulting bilinear sparse coding algorithm then

corresponds to minimizing the following cost function:

E({wij},x,y) =

�����z−
m�

i=1

n�

j=1

wijxiyj

�����

2

+ α
m�

i=1

S(xi) + β
n�

j=1

S(yj), (2.33)

where α and β are hyper-parameters, and S(x) is a sparsity function which penalizes

the activation of x. As with normal (linear) sparse coding, the above can be

minimized through the Expectation-Maximization (EM) algorithm), an iterative

procedure which alternates (1) inferring the latent states given fixed values of the

parameters and (2) minimizing Eq. (2.33) with respect to parameters, given the

values of x and y obtained in step 1. The procedure is nevertheless adapted slightly

to account for the bilinear encoding. A simplified version of the algorithm used in

Grimes and Rao (2005) is shown in Algorithm 6.

When trained on natural images undergoing a series of translations, Algorithm 6

succeeds in learning a set localized edge detectors, whose location is controlled by

y. Of critical importance, the bilinear sparse coding generates a representation x of

the image which remains invariant to transformations of the input, while preserving

the details of the transformation in y.
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Algorithm 6 Bilinear Sparse Coding Update
{Ts}: set of transformations we wish to model, 1 ≤ s ≤ r.
Tc represents the identity transformation.

Randomly initialize parameters W ∈ Rk×m×n.
Randomly initialize Y ∈ Rn×r, with Ys = {Yjs} representing transform Ts.
while not converged do
Generate (mini)-batch of training examples Z = {z ∈ D}.
Infer X given parameters W , code Yc and sparsity α.
for s ∈ [1..r] do
Generate transformed images Z � = Ts(Z).
Infer Y �

s
given Z �, X,W,α.

Update Ys as a moving average of Y �
s
.

W ← W −
1
r

∂E(W,X,Ys)
∂W

.
Normalize columns of Ys.

end for
Normalize basis vectors {wij}.

end while

2.7 Estimating the Partition Function

Performing model selection can be particularly tricky for RBMs. Because the

partition function is usually intractable, we lose the ability to compare models

in terms of probabilities. Two options are thus available for choosing hyper-

parameters: using a surrogate criteria such as classification error to assess the

quality of the learnt features, or using estimates of the partition function. In this

section, we briefly review the most popular algorithms which can be used to this

effect. In particular, Annealed Importance Sampling and Bridge Sampling will play

a crucial role in Chapter 6, where we propose a novel algorithm for tracking the

partition function of RBMs during learning.

2.7.1 Importance Sampling

Importance Sampling offers the basic tools for approximating the ratio of two

partition functions. Let p1(x) = 1
Z1
p̃1(x) and pM(x) = 1

ZM
p̃M(x), we can rewrite
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Z1 as:

Z1 =
�

x

p̃1(x) =
�

x

pM(x)
p̃1(x)

pM(x)
=

�

x

pM(x)w(x) = EpM [w(x)] , (2.34)

as long as pM(x) > 0 whenever p̃1(x) > 0, and where w(x) = p̃1(x)/pM(x) are

defined as the importance weights. Assuming ZM is known, that we can easily

sample from pM and denoting XM = {xn ∼ pM(x); 1 ≤ n ≤ N}, we can estimate

Z1 as follows:

Z1 ≈
1

|XM |

�

x∈XM

w(x) ⇔ (2.35)

logZ1 ≈ logZM + log
�

x∈XM

p̃1(x)

p̃M(x)
− log |XM | (2.36)

Unfortunately, Minka (2005) showed that minimizing the variance of the im-

portance sampling estimate of Z1 is equivalent to minimizing a divergence of pM

and p1. This means that the above procedure will therefore work well if pM ≈ p1,

making it much less attractive in practice.

2.7.2 Annealed Importance Sampling

To get around this limitation, one can define a set of intermediate distributions

pi(x) = 1
Zi
p̃i(x), which “bridge the gap” between p1 and pM , as first described

in Neal (2001). This will enable us to write the ratio Z1/ZM as the product of

importance weights, measured on neighboring chains (pi, pi+1). We start with the

importance sampling identity for chains (p1, p2):

Z1 =
�

x1

p2(x1)
p̃1(x1)

p2(x1)
(2.37)

If Ti is a transition operator which leaves pi invariant (such as the Gibbs sam-

pling operator), then by definition p2(x1) =
�

x2
p2(x2)T2(x1; x2). This allows us
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to rewrite Eq. 2.37 as:

Z1 =
�

x1

�

x2

p2(x2)T2(x1; x2)
p̃1(x1)

p2(x1)

=
�

x1

�

x2

p̃2(x2)

Z2
T2(x1; x2)p̃1(x1)

Z2

p̃2(x1)

=
�

x1

�

x2

p3(x2)T2(x1; x2)
p̃2(x2)

p3(x2)

p̃1(x1)

p̃2(x1)

Recursively (and shifting the indices of xi to the right by one), this leads to:

Z1 =
�

x2

�

x3

· · ·

�

xM

pM(xM)TM−1(xM−1; xM) · · ·T2(x2; x3) (2.38)

p̃M−1(xM)

pM(xM)

p̃M−2(xM−1)

p̃M−1(xM−1)
· · ·

p̃2(x3)

p̃3(x3)

p̃1(x2)

p̃2(x2)
.

Replacing the above expectations with a sample average, the AIS estimate of

the log-partition is then given by:

logZ1 ≈ logZM +
1

N

N�

n=1

w(n) , with

w(n) =
p̃M−1(x

(n)
M

)

p̃M(x(n)
M

)

p̃M−2(x
(n)
M−1)

p̃M−1(x
(n)
M−1)

· · ·
p̃2(x

(n)
3 )

p̃3(x
(n)
3 )

p̃1(x
(n)
2 )

p̃2(x
(n)
2 )

. (2.39)

The variance of this estimator is:

σ2
AIS

≈
Var[w(n)]

[
�

n
w(n)]2

. (2.40)

Once again, we use x(n)
i

to denote the n-th sample of pi(x). eq 6.2 is at the

basis of the Annealed Importance Sampling (AIS) procedure (Neal, 2001), which is

presented as Algorithm 7. Salakhutdinov and Murray (2008) shows how AIS can

be applied to estimating the partition function of an RBM.
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Algorithm 7 Annealed Importance Sampling

for j ∈ [1..N ] do
sample xM ∼ pM .
sample xM−1 ∼ TM−1.
· · ·

sample x2 ∼ T2.
compute w(j) = p̃M−1(xM )

p̃M (xM )
p̃M−2(xM−1)
p̃M−1(xM−1)

· · ·
p̃2(x3)
p̃3(x3)

p̃1(x2)
p̃2(x2)

end for
logZ1 ≈ logZM + log

�
N

j=1 w
(j) − logN .

2.7.3 Bridge Sampling

Bridge sampling (Bennett, 1976) addresses the shortcomings of importance

sampling in a slightly different manner. It relies on a single distribution p∗,

which interpolates between pM (pdf with known partition function ZM) and p1

(pdf whose partition function Z1 we wish to estimate). Given the sample sets

XM = {xn ∼ pM(x); 1 ≤ n ≤ N} and X1 = {x�
n
∼ p1(x); 1 ≤ n ≤ N}, the

difference in the log-partition functions is simply estimated by the difference of

log-importance weights between each distribution and the bridge.

logZ1 ≈ logZM + log

�
N�

n=1

p̃∗(xn)

p̃M(xn)

�
− log

�
N�

n=1

p̃∗(x�
n
)

p̃1(x�
n
)

�
(2.41)

= logZM + log

�
N�

n=1

un

�
− log

�
N�

n=1

vn

�
,

with un = p̃∗(xn)/p̃M(xn) and vn = p̃∗(x�
n
)/p̃1(x�

n
). The variance of this estimator

of logZ1 is then given by:

σ2
bridge

≈
Var[un]

[
�

n
un]

2 +
Var[vn]

[
�

n
vn]

2 (2.42)

This formulation is much more forgiving and allows for KL(pM�p1) to be much

larger than required by normal importance sampling, or even AIS when computing

importance weights across neighboring chains. This is because p∗ is chosen in some

optimal fashion to have large support both with pM and p1. One such optimal

distribution is p(opt)∗ (x) ∝
p̃M (x)p̃1(x)

rp̃M (x)+p̃1(x)
where r = Z1/ZM . This definition appears
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circular however: to estimate Z1 we should use the optimal bridge distribution

p(opt)∗ , which is itself a function of Z1. Fortunately, Neal (2005) showed that it is

possible to start with a coarse estimate of r and use the resulting bridge distribution

to refine the estimate of Z1 recursively.

2.8 Non-probabilistic Generative Models

Maximum likelihood learning of probabilistic models is a central pillar of this

thesis. Our focus on the ML estimator (MLE) stems both from efficiency guar-

antees i, as well as empirical results (Marlin et al., 2010). In practice however,

the intractability of the partition function requires us to use (stochastic) approx-

imations to MLE, which invalidates any theoretical guarantees of efficiency. As

such, this motivates exploring alternative inductive principles which bypass issues

linked to the partition function. Alternatively, we may also use entirely new model

families, which make no inherent assumption of normalization.

2.8.1 Score Matching

Score Matching (Hyvärinen, 2005) is one such alternative inductive principle.

It defines a score function ψi(p, x), which does not depend on the partition function

of pdf p, and then minimizes a cost Jθ such that ψi(p, x) ≈ ψi(π, x), ∀x ∈ D. In

particular, Hyvärinen (2005) defines:

ψi(p, v) =
∂ log p(v)

∂vi
(2.43)

JSM �(θ) = Eπ(v)

�
nv�

i=1

1

2
(ψi(π, v)− ψi(p, v))

2

�
. (2.44)

Since we cannot compute ψi(π, v), JSM �(θ) is not very useful in practice. Through

partial integration however, it can be shown that

i. MLE achieves the Cramer-Rao bound, meaning that as the sample size goes to infinity, it
obtains the lowest possible mean squared error of any unbiased estimator. Note that this property
does not necessarily hold for stochastic ML used throughout this thesis.
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argmin
θ
JSM �(θ) ≡ argmin

θ
JSM(θ), where JSM is defined as:

JSM(θ) = Eπ(v)

�
nv�

i=1

1

2
ψi(pθ, v)

2 +
∂ψi(pθ, v)

∂vi

�
. (2.45)

One can thus minimize the mean squared error between the score of the empirical

and model distributions by minimizing JSM . Minimizing Eq. 2.45 with a sample

average in lieu of an expectation, aims to learn model configurations which lo-

cally maximize the log-probability around training points. While penalizing the

square of the score at training points could lead to either local minima or max-

ima of the log-probability, the second term penalizes positive values for the second

derivative hence promoting critical points which correspond to local maxima of

log-probability.

Score matching has been shown to be a consistent estimator i much like max-

imum likelihood (Hyvärinen, 2005). Score Matching has also been extended in a

number of ways. Ratio matching is the analogous principle when working with

binary data (Hyvärinen, 2007), and has been successfully applied to RBMs in

Dauphin and Bengio (2013) when training on sparse high-dimensional inputs. Note

however, that these methods remain somewhat limited for applications to deep net-

works, as they require an analytically tractable free-energy function, which is usu-

ally not the case for deep networks. Other methods in this family including Noise

Contrastive Estimation (NCE) (Gutmann and Hyvarinen, 2010), Generalized NCE

(Gutmann and Hirayama, 2011) and Margin Learning (Weston et al., 2008).

2.8.2 Auto-Encoders

Autoencoders on the other hand are deterministic neural networks, which are

trained via backpropagation to reconstruct the input itself. The function fθ(x) im-

plemented by an autoencoder is typically broken down into two steps: an encoding

function enc(x) which maps the input from RD to RNh , and a decoding function

dec(h) which maps back into input space, such that r(x) = dec(enc(x)) ∈ RD.

While encoders and decoders may have an arbitrary rich parametrization in prac-

i. Assuming the data was generated by model pθ∗ , the consistency claims that θ = θ∗ =
argminθ JSM (θ).
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tice (i.e. deep MLPs), the prototypical “shallow” auto-encoder is defined as:

h := enc(x) = fe
�
xTWe + b

�
(2.46)

x̂ := dec(h) = fd
�
hTWd + c

�
,

where We ∈ RD×Nh , Wd ∈ RD are the encoding and decoding weight matrices

(respectively), b and c are offset vectors and fe and fd are activations functions.

Typically, encoder and decoder share the same weight matrix with Wd = W T

e
.

As is typically done with neural networks, activation and loss functions are

matched to deal with the input distribution: for continuous data, one typically

optimizes the mean-squared error with fd the identity function, while for binary

data, we use the cross-entropy loss with fd(x) = sigmoid(x). The encoding func-

tion fe(x) admits a variety of non-linearities, but is most commonly chosen to be

sigmoidal or of the rectified linear variety. Deep auto-encoders extend encoders

and decoders to have multiple levels of non-linearities, allowing them to capture

high-level abstract features of the input. Autoencoders have been used with great

success in a multitude of settings: for classification using the features extracted by

the encoder as input to a classifier, as pretraining for deep MLPs (Bengio et al.,

2007), as a dimensionality reduction method (Hinton and Salakhutdinov, 2006) and

finally for image denoising applications (including structured noise) (Hinton and

Salakhutdinov, 2006; Cho, 2013).

Sparsity Regularization . When working with auto-encoders, special care must

be taken to regularize the reconstruction function r(x). Indeed if Nh > D and fe is

linear, then the training loss can be minimized trivially by setting We = I. Aside

from L1 and L2 regularization, one popular method for regularizing autoencoders

is to enforce h to be high-dimensional but sparse, so as to model v as a linear

combination of a limited subset of basis filters (i.e. columns of the We matrix).

This is similar to sparse coding and can be achieved by introducing the following

regularization term to the loss function, λ
�

j
|hj|.

Denoising Auto-Encoders (DAE) (Vincent et al., 2008) prevent learning the

identity function by asking the autoencoder to reconstruct the input from a noisy or

corrupted version of itself. Formally, an autoencoder introduces a lossy corruption
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process C(x̃ | x) and minimizes the loss L(r(x̃), x), where L can be the mean-square

or cross-entropy loss. For binary inputs, popular choices for C includemasking noise

(which sets each bit xi to 0 with some probability), salt & pepper noise (which

randomly sets bits to either 1 or 0) and additive Gaussian noise when working with

continuous inputs.

Contractive Auto-Encoders (CAE) (Rifai et al., 2011) introduce a regulariza-

tion term which penalizes, for similar inputs, deviations in hidden unit activations.

Concretely, this is achieved by penalizing the Frobenius norm of the encoder func-

tion’s Jacobian, i.e. by minimizing the loss function below:

LCAE = L(r(x), x) + λ
�

i,j

�
∂hj

∂xi

�2

. (2.47)

The above trade-off between reconstruction error and invariance in the encoding

yields encoding functions whose Jacobians have fewer large singular values. This

led the authors to hypothesize that the contraction penalty encourages CAEs to

learn the leading directions of variation at any point along the data manifold, i.e.

the tangent vectors of the manifold.

2.8.3 Auto-Encoders as Generative Models

While auto-encoders have been very successful at performing feature extraction

or as pretraining for deep MLPs, one commonly perceived flaw is that they fail

to learn a proper density model of the empirical distribution. Score matching

provided the first piece of evidence linking auto-encoders to energy-based models.

Vincent (2011) showed that optimizing the DAE objective was equivalent (under

some conditions) to applying a regularized form of score matching to a Gaussian

RBMs. Independently, score matching of the GRBM energy function was shown

in Swersky et al. (2011), to lead to a loss function almost identical to Eq.2.47,

when using LMCE and a linear reconstruction. The only difference is the lack of

hyper-parameter λ, and a discrepancy in the squaring of the hj(1− hj) term. i

Progress in this direction is moving dramatically. Alain and Bengio (2013)

i. hj(1− hj) stems from computing ∂hj

∂x when h has a sigmoidal activation function.
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proved that when minimizing the DAE loss under some conditions i, one could

recover the score of an underlying pdf by computing (r(x)− x)/σ2 (where σ is the

standard-deviation of the noise). In the general setting of r(x) being parametric or

when r(x) does not correspond to the derivative of an energy function, one can still

recover the underlying pdf via sampling. In this earlier work, Alain and Bengio

(2013) proposed using Metropolis-Hastings with a local Gaussian kernel and using

the vector field r(x)− x to compute an approximate acceptance ratio.

Generalized DAEs (Bengio et al., 2013) represent a new framework linking auto-

encoders to density models (which holds for general input and noise distributions)

and constitute a new inductive principle for learning probabilistic density models.

Given a noise or corruption process C (x̃ | x), an auto-encoder can be thought as

learning the conditional probability pθ(x | x̃). One can then recover the underlying

pdf by simulating a Markov chain, which alternates sampling x̃t ∼ C (x̃ | x = xt−1)

and xt ∼ pθ (x | x̃ = x̃t). The ergodicity of this chain is proven under mild as-

sumptions of the corruption process: if pθ(x|x̃) is a consistent estimator of the

true conditional p(x|x̃), then the stationary distribution is a consistent estimator

of p(x). Bengio et al. (2013) further generalize this concept by augmenting the

state of the Markov chain to include latent variables. A GSN is defined by the

following two conditionals: ht ∼ p(h|h = ht−1, x = xt−1) := f(xt−1, ht−1, �) and

xt ∼ p(x|h = ht−1). Here f is an arbitrary non-linear function, e.g. an MLP,

and σ is a noise random variable. The latent variables affords GSNs the ability

to learn complex multi-layered distributions, while enabling faster mixing of the

above Markov chain. Being stochastic feed-forward models, GSNs also side-step is-

sues of intractable inference typically encountered with probabilistic models having

multiple layers of latent variables, like the Deep Boltzmann machine.

2.8.4 Predictive Sparse Decomposition (PSD)

Inference in RBMs is both exact and trivial, but comes at the expense of an

intractable partition function. In constrast, directed models like sparse coding have

a tractable gradient but require a computationally expensive inference process,

which makes it ill-suited for feature extraction.

i. Mean-squared error, continuous inputs, non-parametric reconstruction function r(x) (i.e.
having infinite capacity) and in the limit of zero-noise.
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Predictive Sparse Decomposition (PSD) (Kavukcuoglu et al., 2008) represents

an interesting compromise between both approaches. PSD starts from the loss

function optimized by sparse-coding i and adds an additional term which penal-

izes configurations of latent variables which are not well predicted by an encoding

function enc(x, θe). The PSD loss function is given by:

LPSD(x, h,W, θe) = �x−Wh�2 + α�Z − enc(x, θe)�
2 + λ|h|. (2.48)

While training still requires an expensive iterative process, at test time, one can

simply use the learnt encoder to perform approximate inference. The resulting

features were found to yield better classification accuracy when fed to an object

recognition pipeline (compared to exact inference) and at a much lower compu-

tational cost. While Kavukcuoglu et al. (2008) proposed parametrizing enc(x) as

an MLP, Gregor and LeCun (2010) proposed using a (truncated) recursive neural

network whose particular structure mimics the inference process of sparse coding.

i. Sparse coding using hard-EM and a Laplace prior on h can be seen as alternatively mini-
mizing the loss LSC(x, h,W ) = �x−Wh�2 + λ|h|: once for h given fixed x and W , and once for
W given fixed x and h.



3 Prologue to First Article

3.1 Article Details

Adaptive Parallel Tempering for Stochastic Maximum Likelihood Learn-

ing of RBMs. Guillaume Desjardins, Aaron Courville and Yoshua Bengio.

Presented at the Deep Learning and Unsupervised Feature Learning Workshop,

of the 24th Annual Conference on Neural Information Processing Systems (NIPS

2010).

Personal Contribution. This workshop paper is the result of a close collabora-

tion with my co-authors. The theoretical contributions of the adaptive tempering

scheme were developed jointly with Aaron Courville. I implemented the algorithm,

datasets and performed all of the experiments reported in the paper. I also con-

tributed heavily to the writing (especially sections regarding algorithmic details

and the experiments section), with Aaron Courville and Yoshua Bengio providing

the introductory and background materials.

3.2 Context

This paper is part of larger corpus of work aimed at using tempering methods,

to more efficiently and accurately estimate the sufficient statistics of BMs.

This paper is a follow-up to Desjardins et al. (2010b), which was first to propose

using Parallel Tempering (PT) to estimate the negative phase statistics of RBMs.

This work showed how the increased ergodicity of the PT sampler could yield a

more robust training procedure along with faster (per update) convergence.

Concurrently, Salakhutdinov (2010b) proposed using the Tempered Transitions

(TT) algorithm of Neal (1994) to draw samples of the BM. This can be considered
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as the serial implementation of our PT approach: while PT simulates M parallel

chains in parallel, TT simulates a single chain whose temperature is adjusted grad-

ually. Each iteration is therefore cheaper, in terms of both memory and runtime,

however more iterations are required before obtained a new sample at the nominal

temperature. Both methods also suffer from similar drawbacks: if the set of tem-

peratures is not chosen properly, PT can suffer from low swap rates between chains

at neighboring temperatures, while TT can suffer from a high rejection ratio.

The PT approach was also concurrently developed in Cho et al. (2010). In

contrast to our earlier work which showed improved per-update convergence, this

paper also showed that the method was efficient from a computational perspective.

The paper presented in Chapter 4 addresses some of the main shortcomings of

these methods: automating the choice of temperatures to simulate and reducing

the computational cost of the method.

3.3 Contributions

The success of the above methods relies crucially on the choice of temperatures

T to simulate. Unfortunately, no closed form solution exists for selecting the op-

timal set of temperatures in the general BM setting. As such, the choice of T

is left as a hyper-parameter, which must be tuned through trial and error. The

difficulty of this process is exacerbated in the context of learning, where we expect

the optimal setting T ∗ to change as the model parameters are updated.

The paper presented in Chapter 4 provides a method for automatically tuning

the set of temperatures based on the principle of return-time minimization (Katz-

graber et al., 2006). Starting from a uniform spacing, temperatures are adapted in

order to minimize the amount of time required for a sample to perform a round-

trip between the lower and highest temperatures. Compared to the naive approach

where temperatures are adapted to optimize local swap statistics, this procedure

optimizes the temperatures using a global criterion, which increases the ergodicity

of the sampler.
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Our algorithm, dubbed SML with Adaptive Parallel Tempering (SML-APT)

also introduced a method for dynamically adjusting the number of chains under

simulation. This process gradually increases the computational complexity of the

sampling algorithm, as the complexity of the model distribution increases.

3.4 Recent Developments

While our temperature adaptation scheme works well in practice, its underlying

principle remains a heuristic. While the return-time minimization is intuitively

attractive, it does not prevent a degenerate scenario where samples constantly

“return” to the same mode, thus preventing the sampler from exploring the modes

of the distribution. While this issue was not observed in practice, it is a rather

fundamental issue which stems from using a fixed set of temperatures T , which is

independent of the state of the sampler (i.e. the current set of samples). As such,

the issue of adaptive tempering methods is far from solved.

Recently, Salakhutdinov (2010a) proposed an alternative adaptive tempering

method, which combines Simulated Tempering (Marinari and Parisi, 1992) with

the Wang-Landau (WL) algorithm (Wang and Landau, 2001). Adaptive Simulated

Tempering (AST) samples from the joint distribution p(x, k) = wk exp(−βkE(x)),

where k is a temperature index. The sampler is updated in two steps: (1) for a

fixed value of k, x is updated via Gibbs sampling (2) for fixed x, a Metropolis-

Hastings (MH) move is then proposed to increase or decrease the temperature, as

a function of the weights w. Crucially, these are adapted so as to guarantee that

each sample spends “equal time” on average at each temperature, a method known

as the flat-histogram method. The method is thus similar in spirit to our approach:

samples are encouraged to burn-in at high temperatures, while the WL weights

or temperatures (in SML-APT) are adapted to guarantee that these fast-mixing

samples regularly visit the nominal temperature.



4

Adaptive Parallel

Tempering for Stochastic

Maximum Likelihood

Learning of RBMs

RRestricted Boltzmann Machines (RBM) have attracted a lot of atten-

tion of late, as one the principle building blocks of deep networks. Training

RBMs remains problematic however, because of the intractability of their parti-

tion function. The maximum likelihood gradient requires a very robust sampler

which can accurately sample from the model despite the loss of ergodicity often

incurred during learning. While using Parallel Tempering in the negative phase of

Stochastic Maximum Likelihood (SML-PT) helps address the issue, it imposes a

trade-off between computational complexity and high ergodicity, and requires care-

ful hand-tuning of the temperatures. In this paper, we show that this trade-off is

unnecessary. The choice of optimal temperatures can be automated by minimizing

average return time (a concept first proposed by Katzgraber et al. (2006)) while

chains can be spawned dynamically, as needed, thus minimizing the computational

overhead. We show on a synthetic dataset, that this results in better likelihood

scores.

4.1 Introduction

Restricted Boltzmann Machines (RBM) (Freund and Haussler, 1994; Welling

et al., 2005; Hinton et al., 2006) have become a model of choice for learning unsuper-

vised features for use in deep feed-forward architectures (Hinton et al., 2006; Ben-

gio, 2009) as well as for modeling complex, high-dimensional distributions (Welling

et al., 2005; Taylor and Hinton, 2009; Larochelle et al., 2010). Their success can be

explained in part through the bipartite structure of their graphical model. Units

are grouped into a visible layer v and a hidden layer h(1), prohibiting connections

within the same layer. The use of latent variables affords RBMs a rich model-

ing capacity, while the conditional independence property yields a trivial inference
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procedure.

RBMs are parametrized by an energy function E(v, h(1)) which is converted

to probability through the Boltzmann distribution, after marginalizing out the

hidden units. The probability of a given configuration p(v) is thus given by

p(v) = 1
Z

�
h(1) exp(−E(v, h(1))), where Z is the partition function defined as

Z =
�

v,h(1) exp(−E(v, h(1))).

Despite their popularity, direct learning of these models through maximum

likelihood remains problematic. The maximum likelihood gradient with respect to

the parameters θ of the model is:

∂ log p(v)

∂θ
= −

�

h(1)

p(h(1)
|v)

∂E(v, h(1))

∂θ
+

�

v−,h−

p(v−,h−)
∂E(v−,h−)

∂θ
(4.1)

The first term is trivial to calculate and is referred to as the positive phase,

as it raises the probability of training data. The second term or negative phase

is intractable in most applications of interest, as it involves an expectation over

p(v, h(1)). Many learning algorithms have been proposed in the literature to address

this issue:

• Contrastive Divergence (CD) (Hinton, 1999, 2002) replaces the expectation

with a finite set of negative samples, which are obtained by running a short

Markov chain initialized at positive training examples. This yields a biased,

but low-variance gradient which has been shown to work well as a feature

extractor for deep networks such as the Deep Belief Network (Hinton et al.,

2006).

• Stochastic Maximum Likelihood (SML) or Persistent Contrastive Divergence

(PCD) (Younes, 1998; Tieleman, 2008) on the other hand, relies on a persis-

tent Markov chain to sample the negative particles. The chain is run for a

small number of steps between consecutive model updates, with the assump-

tion that the Markov chain will stay close to its equilibrium distribution as

the parameters evolve. Learning actually encourages this process, in what is

called the “fast-weight effect” (Tieleman and Hinton, 2009).

• Ratio Matching and Score Matching (Hyvärinen, 2005, 2007) avoid the issue

of the partition function altogether by replacing maximum likelihood by an-

other learning principle, based on matching the change in likelihood to that

implied by the empirical distribution.
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Marlin et al. (2010) recently compared these algorithms on a variety of tasks

and found SML to be the most attractive method when taking computational

complexity into account. Unfortunately, these results fail to address the main

shortcomings of SML. First, it relies on Gibbs sampling to extract negative samples:

a poor choice when sampling from multi-modal distributions. Second, to guarantee

convergence, the learning rate must be annealed throughout learning in order to

offset the loss of ergodicity i incurred by the Markov chain due to parameter updates

(Younes, 1998; Desjardins et al., 2010b). Using tempering in the negative phase of

SML (Desjardins et al., 2010b; Cho et al., 2010; Salakhutdinov, 2010b,a) appears

to address these issues to some extent. By performing a random walk in the joint

(configuration, temperature) space, negative particles can escape regions of high

probability and travel between disconnected modes. Also, since high temperature

chains are inherently more ergodic, the sampler as a whole exhibits better mixing

and results in better convergence properties than traditional SML.

Tempering is still no panacea however. Great care must be taken to select the

set of temperatures T = {T1, ..., TM ;T1 < Ti < TM ∀i ∈ [1,M ],M ∈ N} over which

to run the simulation. Having too few or incorrectly spaced chains can result in high

rejection ratios (tempered transition), low return rates (simulated tempering) or low

swap rates between neighboring chains (parallel tempering), which all undermine

the usefulness of the method. In this work, we show that the choice of T can be

automated for parallel tempering, both in terms of optimal temperature spacing, as

well as the number of chains to simulate. Our algorithm relies heavily on the work

of Katzgraber et al. (2006), who were the first to show that optimal temperature

spacing can be obtained by minimizing the average return time of particles under

simulation.

The paper is organized as follows. We start with a brief review of SML, then

explore the details behind SML with Parallel Tempering (SML-PT) as described in

Desjardins et al. (2010b). Following this, we show how the algorithm of Katzgraber

et al. can be adapted to the online gradient setting for use with SML-PT and

show how chains can be created dynamically, so as to maintain a given level of

ergodicity throughout training. We then proceed to show various results on a

complex synthetic dataset.

i. We use the term “ergodicity” rather loosely, to reflect the amount of time required for the
states sampled by the Markov chain, to reflect the true expectation we wish to measure.
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4.2 SML with Optimized Parallel Tempering

4.2.1 Parallel Tempered SML (SML-PT)

We start with a very brief review of SML, which will serve mostly to anchor

our notation. For details on the actual algorithm, we refer the interested reader

to Tieleman and Hinton (2009); Marlin et al. (2010). RBMs are parametrized by

θ = {W (1),b, c}, where bi is the i-th hidden bias, cj the j-th visible bias and Wij

is the weight connecting units hi to vj. They belong to the family of log-linear

models whose energy function is given by E(x) = −
�

k
θkφk(x), where φk are

functions associated with each parameter θk. In the case of RBMs, x = (v, h(1)) and

φ(v, h(1)) = (h(1)vT , h(1),v). For this family of model, the gradient of Equation 4.1

simplifies to:

∂ log p(v)

∂θ
= Ep(h(1)|v)[φ(v, h

(1))]− Ep(v,h(1))[φ(v, h
(1))]. (4.2)

As was mentioned previously, SML approximates the gradient by drawing neg-

ative phase samples (i.e. to estimate the second expectation) from a persistent

Markov chain, which attempts to track changes in the model. If we denote the

state of this chain at time step t as v−
t and the i-th training example as v(i),

then the stochastic gradient update follows φ(v(i), ˜h(1)) − φ(ṽ−
t+k

, ˜h(1)
−
t+k

), where
˜h(1) = E[h(1)|v = v(i)], and ṽ−

t+k
is obtained after k steps of alternating Gibbs

starting from state v−
t and ˜h(1)

−
t+k

= E[h(1)|v = v−
t+k

].

Training an RBM using SML-PT maintains the positive phase as is. During the

negative phase however, we create and sample from an extended set of M persistent

chains, {pβi(v, h
(1))|i ∈ [1,M ], βi ≥ βj ⇐⇒ i < j}. Here each pβi(v, h

(1)) =
exp(−βiE(x))

Z(βi)
represents a smoothed version of the distribution we wish to sample

from, with the inverse temperature βi = 1/Ti ∈ [0, 1] controlling the degree of

smoothing. Distributions with small β values are easier to sample from as they

exhibit greater ergodicity.

After performing k Gibbs steps for each of the M intermediate distributions,

cross-temperature state swaps are proposed between neighboring chains using a

Metropolis-Hastings-based swap acceptance criterion. If we denote by xi the joint

state (visible and hidden) of the i-th chain, the swap acceptance ratio ri for swap-
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ping chains (i,i+ 1) is given by:

ri = max(1,
pβi(xi+1)pβi+1(xi)

pβi(xi)pβi+1(xi+1)
) (4.3)

Although one might reduce variance by using free-energies to compute swap

ratios, we prefer using energies as the above factorizes nicely into the following

expression:

ri = exp((βi − βi+1) · (E(xi)− E(xi+1))), (4.4)

While many swapping schedules are possible, we use the Deterministic Even

Odd algorithm (DEO) (Lingenheil et al., 2009), described below.

4.2.2 Return Time and Optimal Temperatures

Conventional wisdom for choosing the optimal set T has relied on the “flat

histogram” method which selects the parameters βi such that the pair-wise swap

ratio ri is constant and independent of the index i. Under certain conditions (such

as when sampling from multi-variate Gaussian distributions), this can lead to a

geometric spacing of the temperature parameters (Neal, 1994). Behrens et al.

(2010) has recently shown that geometric spacing is actually optimal for a wider

family of distributions characterized by Eβ(E(x)) = K1/β +K2, where Eβ denotes

the expectation over inverse temperature and K1, K2 are arbitrary constants.

Since this is clearly not the case for RBMs, we turn to the work of Katzgraber

et al. (2006) who propose a novel measure for optimizing T . Their algorithm

directly maximizes the ergodicity of the sampler by minimizing the time taken

for a particle to perform a round-trip between β1 and βM . This is defined as the

average “return time” τrt. The benefit of their method is striking: temperatures

automatically pool around phase transitions, causing spikes in local exchange rates

and maximizing the “flow” of particles in temperature space.

The algorithm works as follows. For Ns sampling updates:

• assign a label to each particle: those swapped into β1 are labeled as “up”

particles. Similarly, any “up” particle swapped into βM becomes a “down”

particle.
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• after each swap proposal, update the histograms nu(i), nd(i), counting the

number of “up” and“down”particles for the Markov chain associated with βi.

• define fup(i) = nu(i)
nu(i)+nd(i)

, the fraction of “up”-moving particles at βi. By

construction, notice that fup(β1) = 1 and fup(βM) = 0. fup thus defines a

probability distribution of “up” particles in the range [β1, βM ].

• The new inverse temperature parameters β� are chosen as the ordered set

which assigns equal probability mass to each chain. This yields an fup curve

which is linear in the chain index.

The above procedure is applied iteratively, each time increasing Ns so as to

fine-tune the βi’s. To monitor return time, we can simply maintain a counter τi

for each particle xi, which is (1) incremented at every sampling iteration and (2)

reset to 0 whenever xi has label “down” and is swapped into β1. A lower-bound for

return time is then given by τ̂rt =
�

M

i=0 τi.

4.2.3 Optimizing T while Learning

Online Beta Adaptation

While the above algorithm exhibits the right properties, it is not very well

suited to the context of learning. When training an RBM, the distribution we are

sampling from is continuously changing. As such, one would expect the optimal set

T to evolve over time. We also do not have the luxury of performing Ns sampling

steps after each gradient update.

Our solution is simple: the histograms nu and nd are updated using an expo-

nential moving average, whose time constant is in the order of the return time τ̂rt.

Using τ̂rt as the time constant is crucial as it allows us to maintain flow statistics

at the proper timescale. If an “up” particle reaches the i-th chain, we update nu(i)

as follows:

nt+1
u

(i) = nt

u
(i)(1− 1/τ̂ t

rt
) + 1/τ̂ t

rt
, (4.5)

where τ̂ t
rt
is the estimated return time at time t.

Using the above, we can estimate the set of optimal inverse temperatures β�
i
.

Beta values are updated by performing a step in the direction of the optimal value:

βt+1
i

= βt

i
+µ(β�

i
−βt

i
), where µ is a learning rate on β. The properties of Katzgraber
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et al. (2006) naturally enforce the ordering constraint on the βi’s.

Choosing M and βM

Another important point is that Katzgraber et al. (2006) optimizes the set T

while keeping the bounds β1 and βM fixed. While β1 = 1 is a natural choice, we

expect the optimal βM to vary during learning. For this reason, we err on the side

of caution and use βM = 0, relying on a chain spawning process to maintain

sufficiently high swap rates between neighboring parallel chains. Spawning chains

as required by the sampler should therefore result in increased stability, as well as

computational savings.

Lingenheil et al. (2009) performed an interesting study where they compared

the round trip rate 1/τrt to the average swap rate measured across all chains. They

found that the DEO algorithm, which alternates between proposing swaps between

chains {(i, i + 1); ∀ even i} followed by {(i, i + 1); ∀ odd i}), gave rise to a concave

function with a broad maximum around an average swap rate of r̄ =
�

i
ri ≈ 0.4

Our temperature adaptation therefore works in two phases:

1. The algorithm of Katzgraber et. al is used to optimize {βi; 1 < i < M}, for

a fixed M.

2. Periodically, a chain is spawned whenever r̄ < r̄min, a hyper-parameter of the

algorithm.

Empirically, we have observed increased stability when the index j of the new

chain is selected such that j = argmax
i
(|fup(i)−fup(i+1)|), i ∈ [1,M−1]. To avoid

a long burn-in period, we initialize the new chain with the state of the (j + 1)-th

chain and choose its inverse temperature as the mean (βj + βj+1)/2. A small but

fixed burn-in period allows the system to adapt to the new configuration.

4.3 Results and Discussion

We evaluate our adaptive SML-PT algorithm (SML-APT) on a complex, syn-

thetic dataset. This dataset is heavily inspired from the one used in Desjardins

et al. (2010b) and was specifically crafted to push the limits of the algorithm.
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It is an online dataset of 28x28 binary images, where each example is sampled

from a mixture model with probability density function fX(x) =
�5

m=1 wmfYm(x).

Our dataset thus consists of 5 mixture components whose weights wm are sampled

uniformly in the unit interval and normalized to one. Each mixture component

Ym is itself a random 28x28 binary image, whose pixels are independent random

variables having a probability pm of being flipped. From the point of view of a

sampler performing a random walk in image space, pm is inversely proportional

to the difficulty of finding the mode in question. The complexity of our synthetic

dataset comes from our particular choice of wm and pm. i Large wm and small pm

lead to modes which are difficult to sample and in which a Gibbs sampler would

tend to get trapped. Large pm values on the other hand will tend to intercept

”down”moving particles and thus present a challenge for parallel tempering.

Figure 4.1(a) compares the results of training a 10 hidden unit RBM, using

standard SML, SML-PT with {10, 20, 50} parallel chains and our new SML-APT

algorithm. We performed 105 updates (followed by 2 · 104 steps of sampling) with

mini-batches of size 5 and tested learning rates in {10−3, 10−4}, β learning rates in

{10−3, 10−4, 10−5}. For each algorithm, we show the results for the best performing

hyper-parameters, averaging over 5 different runs. Results are plotted with respect

to computation time to show the relative computational cost of each algorithm.

As we can see, standard SML fails to learn anything meaningful: the Gibbs

sampler is unable to cope with the loss in ergodicity and the model diverges. SML-

PT on the other hand performs much better. Using more parallel chains in SML-PT

consistently yields a better likelihood score, as well as reduced variance. This seems

to confirm that using more parallel chains in SML-PT increases the ergodicity

of the sampler. Finally, SML-APT outperforms all other methods. As we will

see in Figure 4.2, it does so using only 20 parallel chains. Unfortunately, the

computational cost seems similar to 50 parallel chains. We hope this can be reduced

to the same cost as SML-PT with 20 chains in the near future. Also interesting

to note, while the variance of all methods increase with training time, SML-APT

seems immune to this issue.

We now compare the various metrics being optimized by our adaptive algorithm.

Figure 4.1(b) shows the average return time for each of the algorithms. We can

see that SML-APT achieves a return time which is comparable to SML-PT with

i. w = [0.3314, 0.2262, 0.0812, 0.0254, 0.3358] and p = [0.0001, 0.0137, 0.0215, 0.0223, 0.0544]
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(a) Log-likelihood (b) Return Time

Figure 4.1: (a) Comparison of training likelihood as a function of time for standard SML, SML-
PT with 10/20/50 chains and the proposed SML-APT (initialized with 10 chains). SML-APT
adapts the temperature set T = {T1, ..., TM ;T1 < Ti < TM} to minimize round trip time between
chains T1 and TM , and modifies the number of chains M to maintain a minimal average swap
rate. The resulting sampler exhibits greater ergodicity and yields better likelihood scores than
standard SML and SML-PT, without requiring a careful hand-tuning of T . (b) Average return
time of each algorithm. SML-APT successfully minimizes this metric resulting in a return time
similar to SML-PT 10, while still outperforming SML-PT 50 in terms of likelihood. Errors bars
represent standard error on the mean.

10 chains, while achieving a better likelihood score than SML-PT 50.

We now select the best performing seeds for SML-PT with 50 chains and SML-

APT, and show in Figure 4.2, the resulting fup(i) curves obtained at the end of

training.

The blue curve plots fup as a function of beta index, while the red curves plots

fup as a function of β. We can see that SML-APT results in a more or less linear

curve for fup(i), which is not the case for SML-PT. In Figure 4.3(a) we can see the

effect on the pair-wise swap statistics ri. As reported in Katzgraber et al. (2006),

optimizing T to maintain a linear fup leads to temperatures pooling around the

bottleneck. In comparison, SML-PT fails to capture this phenomenon regardless

of whether it uses 20 or 50 parallel chains (figures 4.3(b)-4.3(c)).

Finally, Figure 4.4 shows the evolution of the inverse temperature parameters

throughout learning. We can see that the position of the bottleneck in temperature

space changes with learning. As such, a manual tuning of temperatures would be

hopeless in achieving optimal return times.



4.4 Conclusion 71

(a) SML-APT (b) SML-PT 50

Figure 4.2: Return time is minimized by tagging each particle with a label: “up” if the particle
visited T1 more recently than TM and “down” otherwise. Histograms nu(i) and nd(i) track the
number of up/down particles at each temperature Ti. Temperatures are modified such that the
ratio fup(i) = nu(i)/(nu(i)+nd(i)) is linear in the index i. (a) fup curve obtained with SML-APT,
as a function of temperature index (blue) and inverse temperature (red). SML-APT achieves a
linear fup in the temperature index i. (b) Typical fup curve obtained with SML-PT (here using
50 chains). fup is not linear in the index i, which translates to larger return times as shown in
Fig. ??.

4.4 Conclusion

We have introduced a new adaptive training algorithm for RBMs, which we call

Stochastic Maximum Likelihood with Adaptive Parallel Tempering (SML-APT). It

leverages the benefits of PT in the negative phase of SML, but adapts and spawns

new temperatures so as to minimize return time. The resulting negative phase

sampler thus exhibits greater ergodicity. Using a synthetic dataset, we have shown

that this can directly translate to a better and more stable likelihood score. In the

process, SML-APT also greatly reduces the number of hyper-parameters to tune:

temperature set selection is not only automated, but optimal. The end-user is left

with very few dials: a standard learning rate on βi and a minimum average swap

rate r̄min below which to spawn.

Much work still remains. In terms of computational cost, we would like a model

trained with SML-APT and resulting in M chains, to always be upper-bounded

by SML-PT initialized with M chains. Obviously, the above experiments should

also be repeated with larger RBMs on natural datasets, such as MNIST or Caltech
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(a) SML-APT (b) SML-PT 20 (c) SML-PT 50

Figure 4.3: Pairwise swap statistics obtained after 105 updates. Minimizing return time causes
SML-APT to pool temperatures around bottlenecks, achieving large swap rates (0.9) around
bottenecks with relatively few chains. SML-PT on the other hand results in a much flatter
distribution, requiring around 50 chains to reach swap rates close to 0.8.

Silhouettes. i.
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Figure 4.4: Adaptive temperatures during SML-APT training

Graphical depiction of the set {βi; i ∈ [1,M ]}, of inverse temperature parameters
used by SML-APT during learning. Temperatures pool around a bottleneck to
minimize return time, while new chains are spawned to maintain a given average
swap rate. Note that the last 20k updates actually correspond to a pure sampling

phase (i.e. a learning rate of 0).



5 Prologue to Second Article

5.1 Article Details

On Tracking the Partition Function. Guillaume Desjardins, Aaron Courville

and Yoshua Bengio. Proceedings of the 25th Annual Conference on Neural Infor-

mation Processing Systems (NIPS 2011).

Personal Contribution. The idea that one could leverage gradient descent to

track the partition function during learning, came from my personal experimen-

tation with SML-APT and AIS. I implemented the algorithm and performed all

of the experiments reported in the paper. The inference equations were developed

jointly with Aaron Courville. I also contributed heavily to the writing of the paper,

with Aaron Courville writing most of the Introduction and Section 6.5.

5.2 Context

While the partition function is not required for estimating the SML gradient

nor for feature extraction, it remains an important quantity which is crucial in per-

forming model comparison, early-stopping, Bayesian learning of MRFs and simply

evaluating probabilities. To this day, the method of choice for estimating the parti-

tion function of MRFs remains AIS (Salakhutdinov and Murray, 2008), presented

in Section 6.2.1. While AIS can be made highly accurate by scaling the number of

particles (mini-batch size) and the number of intermediate temperatures, it comes

at a large computational cost.
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5.3 Contributions

The contribution of this paper is a novel algorithm which exploits our previously

developed Adaptive Parallel Tempering (APT) algorithm and the smoothness of

gradient descent training to obtain an online estimate of the partition function.

The computational cost of our method is similar to that of training alone. Our

method relies on estimating both the change in log-partition function incurred by

each parameter update, and the delta in log-partition function between neighboring

chains simulated by SML-APT. These observations are integrated into a Kalman-

like filter to obtain an online estimate.

5.4 Recent Developments

To the authors’ knowledge, since the publication of this paper, no new algo-

rithms have been proposed which tackle the direct problem of estimating logZ

in an online fashion. There are however several recent developments in partition

function estimation which are worth mentioning.

In Coupled Adaptive Simulated Tempering (CAST), Salakhutdinov (2010a)

used the Wang-Landau (WL) algorithm to ensure that Simulated Tempering evenly

distributed its simulation time across all rungs of the temperature ladder. The con-

cept can be more generally applied to untempered MRFs however, by clustering

the state-space directly through a binning of the energy function. The WL tran-

sition operator then exploits the density of states function i to ensure that the

Markov chain spends equal time in each energy bin. Stefano Ermon and Selman

(2011) proposed two improvements to this general formulation. Observing that

the partition function is dominated by low-energy configurations, they propose

saturating the energy function before performing the binning process. This pre-

vents the Markov chain from spending time in configurations having little to no

impact on the partition function estimate. Second, the WL transition operator is

modified to incorporate a focused random walk which gives higher probability to

i. The density of states function n(E) counts the number of input configuration yielding the
same energy level. One commonly used estimator for n(E) is a basic histogram, which bins the
energy function into a fixed set of levels.
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lower energy configurations. The resulting algorithm MCMCFocusedFlatSAT was

shown to yield faster and better estimates of the partition function for Markov

Logic Networks and Ising Models, compared to standard Gibbs sampling or varia-

tional approaches. Recently, Stefano Ermon and Selman (2012) introduced a novel

message passing algorithm called Density Propagation to estimate the density of

states function, whose efficiency stems from exploiting the structure of the graph-

ical model. To date, neither of these methods have been applied to general BMs

with latent variables.

Jianzhu Ma and Xu (2013) recently introduced Langevin Importance Sampling

(LIS) for estimating the partition function of MRFs. Similar to Simulated Temper-

ing and CAST, LIS samples from the joint distribution p(x, β) ∝ exp (−E(x, β)).

Instead of using WL or a random walk to explore temperature space however, LIS

updates the temperature parameter following the Langevin equation, which com-

bines gradient information of log p with Gaussian noise. This allows the method

to efficiently explore the energy landscape while allowing samples to escape from

local minima of the energy function by raising the temperature. This is contrary

to AIS which deterministically anneals the temperature during simulation. Despite

similarities to CAST, LIS has so far only been applied to the problem of parti-

tion function estimation and does not yet constitute a viable training algorithm for

MRFs.

The focus on adaptive tempering methods (whether for learning or partition

function estimation) highlights the importance of selecting a proper temperature

set T . Recently, Roger Grosse and Salakhutdinov (2013) made a significant dis-

covery in the context of AIS. When considering a fixed set of temperatures, one

typically chooses a geometric spacing for the interpolating distributions such that

pk = p(1−βk)
A

pβk
B
. For models in the exponential family, this is analogous to inter-

polating between model parameters θA and θB. In this work, the authors propose

instead to interpolate between the expected sufficient statistics of the model, i.e.

the moments. This results in a more efficient estimate of the partition function,

both in the number of chains required and number of burn-in steps required at each

temperature.



6 On Tracking the Partition

Function

Markov Random Fields (MRFs) have proven very powerful both as den-

sity estimators and feature extractors for classification. However, their

use is often limited by an inability to estimate the partition function Z. In this

paper, we exploit the gradient descent training procedure of Restricted Boltzmann

Machines (a type of MRF) to track the partition function during learning. Our

method relies on two distinct sources of information: (1) estimating the change ∆Z

incurred by each gradient update, (2) estimating the difference in Z over a small

set of tempered distributions using bridge sampling. The two sources of informa-

tion are then combined using an inference procedure similar to Kalman filtering.

Learning MRFs through Tempered Stochastic Maximum Likelihood, we can esti-

mate Z using no more temperatures than are required for learning. Comparing to

both exact values and estimates using Annealed Importance Sampling (AIS), we

show on several datasets that our method is able to accurately track the partition

function. In contrast to AIS, our method provides this estimate at each time-step,

at a computational cost similar to that required for training alone.

6.1 Introduction

In many domains of application, problems are naturally expressed as a Gibbs

measure, where the distribution over the domain is given by:

P (x) =
1

Z(β)
exp{−βE(x)}, with Z(β) =

�

x

exp{−βE(x)}. (6.1)

E(x) is referred to as the “energy” of configuration x, and β is a free parameter

known as the inverse temperature. Z(β) is the normalization factor commonly

referred to as the partition function.
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Models of this kind include the Markov Random Field (MRF), which has been

very popular within the vision and natural language processing communities. MRFs

with latent variables – in particular Restricted Boltzmann Machines (RBMs) (Hin-

ton et al., 2006) – are among the most well-studied building block for deep architec-

tures (Bengio, 2009), e.g. being used in the unsupervised initialization of both Deep

Belief Networks (Hinton et al., 2006) and Deep Boltzmann Machines (Salakhutdi-

nov and Hinton, 2009b).

As illustrated in Eq. 6.1, the partition function is computed by summing over

all variable configurations. Since the number of configurations summed over in

Eq. 6.1 scales exponentially with the number of variables, exact calculation of the

partition function is generally computationally intractable. Without the partition

function, probabilities under the model can only be determined up to a multi-

plicative constant, which seriously limits the model’s utility. One method recently

proposed for estimating Z(β) is Annealed Importance Sampling (AIS) (Neal, 2001;

Salakhutdinov and Murray, 2008). In AIS, Z(β) is approximated by the sum of

a set of importance-weighted samples drawn from the model distribution. With a

large number of variables, drawing a set of importance-weighted samples is gen-

erally subject to extreme variance in the importance weights. AIS alleviates this

issue by annealing the model distribution through a series of slowly changing distri-

butions that link the target model distribution to one where the partition function

is tractable. While AIS is quite successful, it generally requires the use of tens

of thousands of annealing distributions in order to achieve accurate results. This

computationally intensive requirement renders AIS inappropriate as a means of

maintaining a running estimate of the partition function throughout training.

Having ready access to the partition function throughout learning opens the

door to a range of possibilities. Likelihood could be used as a basis for model

comparison throughout training; early-stopping could be accomplished by moni-

toring an estimate of the likelihood of a validation set. Another important appli-

cation is in Bayesian inference in MRFs (Murray and Ghahramani, 2004) where

we require the partition function for each value of the parameters in the region

of support. Tracking the partition function would also enable simultaneous esti-

mation of all the parameters of a heterogeneous model, for example an extended

directed graphical model with Gibbs distributions forming some of the model com-

ponents. Another example application is the case where an MRF is combined with
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other graphical models (e.g., a mixture model) and where learning proceeds on-

line, i.e., updating the parameters after each new example is shown. In this work,

we consider a method of tracking the partition function throughout learning. We

exploit the basic observation that typically the parameters tend to change slowly

during training; consequently, Z(β) also tends to evolve slowly. This is true, for

example, with models trained by simple stochastic gradient descent. Stochastic

gradient descent is one of the most popular methods for training MRFs precisely

because second order optimization methods typically require a deterministic gra-

dient, whereas sampling-based estimators are the only practical option for models

with an intractable partition function.

Our proposed method is based on a variation of the well-known Kalman filter: it

combines a bridge estimator of the partition function (Bennett, 1976) and a version

of AIS that is applied to estimate the change in Z(β) from one training iteration

to the next. With a limited computational budget, each method on its own tends

not to provide a reliable estimate. However, by combining these estimates with

a Kalman filter, we are able to reliably and accurately track the evolution of the

partition function throughout learning. Our method is built on the parallel tem-

pering framework similar to the method established in Desjardins et al. (2010b) for

use in training Restricted Boltzmann Machines (RBMs). In doing so, our partition

function estimator can make use of the samples generated in the course of training

to provide an online estimate of the partition function while incurring relatively

little additional computation. In this work we concentrate on tracking the parti-

tion functions of RBMs. However, the method we propose is readily applicable to

tracking the partition function of other MRFs.

6.2 Previous Work

Estimating the partition function of an undirected graphical model has long

been an important goal. Unsurprisingly, there are a wide range of methods which

attempt to address this issue. Here we will focus on the two methods that are

among the most established and successful partition function estimation strategies,

namely Annealed Importance Sampling (AIS) (Neal, 2001) and Bridge Sampling

(Bennett, 1976).
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6.2.1 Annealed Importance Sampling

Given an unnormalized probability density function p̃(x) whose normalization

constant Zp is unknown and q(x) = q̃(x)/Zq, simple importance sampling allows one

to estimate logZp as logZq + log 1
K

�
x∈X

p̃(x)
q̃(x)) , where X = {x(k); x(k) ∼ q(x), 1 ≤

k ≤ K}. However, if the KL divergence of p = p̃/Zp and q is large, the variance of

the importance weights (ratio of the two unnormalized probabilities) will be large

and the estimate of Zp will be poor.

AIS addresses this issue by introducing a set of intermediate distributions

{p1(x), . . . , pτ−1(x)}, such that KL(pi||q) < KL(pj||q) and KL(pi||p) > KL(pj||p)

for i < j. Relabeling distribution q as p0 and p as pτ , it can be shown that

Zτ/Z0 ≈
1
K

�
K

k=1 w
(k), with:

w(k) =
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(k)
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≈
Var[w(k)]

[
�

k
w(k)]2

. (6.2)

where x(k)
0 is the k-th sample from p0 and the x(k)

i
’s are either drawn independently

from pi, or sampled from a Markov chain with transition operator Ti(xi; xi−1) (con-

verging to fixed point pi). This has been shown to be unbiased, with a variance

σ2
AIS

defined above.

This variance can be mitigated in two ways: either by increasing the num-

ber of intermediate distributions τ or by using a larger number K of importance

weights (Neal, 2001).

6.2.2 Bridge Sampling

Bridge sampling (Bennett, 1976) addresses the shortcomings of importance sam-

pling in a slightly different manner. It relies on a single distribution p∗, interpolating

between p0 (for which partition function Z0 is known) and p1 (for which we want to

estimate Z1), and estimates Z1/Z0 as the ratio of the expected importance weights

between each distribution and the bridge, with variance σ2
bridge

.

Z1

Z0
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K�

k=1
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(6.3)
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This formulation is much more forgiving, and allows for KL(p0||p1) to be much

larger than required by normal importance sampling or AIS when computing im-

portance weights across neighboring chains. This is because p∗ is chosen in some

optimal fashion to have large support both with p0 and p1. One such optimal dis-

tribution is p(opt)∗ (x) ∝
p0(x)p1(x)

rp0(x)+p1(x)
where r = Z1/Z0. While this appears to be a

chicken and egg issue, it is possible to start with a coarse estimate of r and use the

resulting bridge distribution to refine our estimate recursively (Neal, 2005), a trick

which our tracking algorithm exploits with great success.

6.3 Training Restricted Boltzmann Machines

Our proposed partition function tracking strategy is potentially applicable to

any Gibbs distribution model that is undergoing relatively smooth changes in the

partition function. Here, we concentrate on its application to the Restricted Boltz-

mann Machine, since it has become the model of choice for learning unsupervised

features for use in deep feed-forward architectures (Hinton et al., 2006; Bengio,

2009) as well as for modeling complex, high-dimensional distributions (Welling

et al., 2005; Taylor and Hinton, 2009; Larochelle et al., 2010).

While several algorithms have been proposed for training RBMs, our method

builds upon Stochastic Maximum Likelihood (SML) (Tieleman, 2008) which ap-

proximates the maximum likelihood gradient by drawing negative phase samples

from a persistent Markov chain, which attempts to track changes in the model. If

we denote the state of this chain at time step t as v−
t and the i-th training example

as v(i), then the stochastic gradient update follows φ(v(i), ˜h(1)) − φ(ṽ−
t+k

, ˜h(1)
−
t+k

),

where ˜h(1) = E[h(1)|v = v(i)] and φ is the potential function. ṽ−
t+k

is obtained after

k steps of alternating Gibbs starting from state v−
t and ˜h(1)

−
t+k

= E[h(1)|v = v−
t+k

].

We refer the reader to Bengio (2009) for a more complete overview.
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6.4 Parallel Tempering

In Desjardins et al. (2010b), a parallel tempering strategy was employed to

improve mixing of the SML negative-phase Markov chain in an algorithm referred

to as SML-PT (Parallel Tempering). Better mixing results in a lower variance

estimate of the negative gradient. Other effective strategies exist for improving

the mixing of the SML negative phase Markov chain (Tieleman and Hinton, 2009;

Salakhutdinov, 2010b,a). From the perspective of tracking the partition function

however, we will see in Section 6.2.2 the parallel tempering scheme of Desjardins

et al. (2010b) presents a rather unique advantage.

At a given time step t of the learning process, we sample from an extended

system composed of multiple RBM models: Mt = {M1,t,M2,t, . . . ,MM,t} using

a set of M parallel Markov chains, with the ith chain drawing samples from the

associated RBM, Mi,t. Each Mi,t is defined by its joint probability distribution:

pi,t(v, h(1)) = exp(−βiE(x))/Zi,t represents a smoothed version of the distribution

we wish to sample from, with the inverse temperature βi = 1/Ti ∈ [0, 1] (with

TM = 0) controlling the degree of smoothing. Distributions with small β values

are easier to sample from as they exhibit greater ergodicity. Each RBM in the

extended system has its own unique partition function Zi,t.

After performing k Gibbs steps for each of the M Model distributions, cross-

temperature state swaps are proposed between neighboring chains using a Metropolis-

Hastings-based swap acceptance criterion. If we denote by xi,t the joint state (visi-

ble and hidden) of the i-th chain at learning iteration t, the swap acceptance ratio

ri for swapping chains (i,i+ 1) is given by:

ri = max

�
1,

pi,t(xi+1,t)pi+1,t(xi,t)

pi,t(xi,t)pi+1,t(xi+1,t)

�
(6.4)

While many swapping schedules are possible, we use the Deterministic Even Odd

algorithm (Lingenheil et al., 2009).
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6.5 Tracking the Partition Function

Consider again the Parallel Tempering extended system construction. For each

learning time step t we have the set of RBMs Mt = {M1,t,M2,t, . . . ,MM,t}.

Associated with each of the RBM is a partition function Zi,t. Unrolling the extended

system in time (learning iterations), we can envision a 2-dimensional lattice of

RBMs indexed by (i, t) (although only one temporal slice needs to be stored).

6.5.1 AIS between learning iterations

First, consider the sequence of models for just one temperature i, up to learning

iteration t, with associated partition function: Zi,0, Zi,1, . . . , Zi,t. SML training of

the RBM model parameters is a stochastic gradient descent algorithm (typically

over a minibatch of N ∈ [1, 100] examples) where the parameters change by small

increments following the SML approximation of the gradient. This implies that

both the model distribution and the partition function change relatively slowly over

learning increments with a rate of change being a function of the SML learning rate;

i.e. we expect pi,t(v, h(1)) and Zi,t to be close to pi,t−1(v, h(1)) and Zi,t−1 respectively.

This sequence of slowly changing distributions is reminiscent of the sequence of

annealing distributions used in AIS. Specifically, we can estimate the ratio of parti-

tion functions between consecutive learning iterations as Zi,t/Zi,t−1 ≈
1
N

�
N

n=1 w
(n)

where w(n) is defined in Eq. 6.2. In the log domain, the estimate of the difference

in log partition functions is given by:

O∆t

i,t
= log

�
1

N

N�

n=1

w(n)

�
≈ logZi,t − logZi,t−1 (6.5)

If we also choose the model at learning iteration t = 0 to be a model whose partition

function can be computed tractably, i.e. the model parameters connecting v to h(1)

are zero, then we can, in principle, use the sequence of models that emerge from

the learning process to provide an “online” estimate of the partition function.

In practice, the number of intermediate distributions connecting pi,t to pi,t−1

is going to be a function of the learning rate, with larger learning rates requiring

more chains. However typically pi,t is quite close to pi,t−1 and we require only very

few intermediate distributions. For reasons of computational efficiency, we use no
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intermediate distributions in our experiments, as it allows us to reuse the particles

sampled during learning.

6.5.2 Bridging the parallel tempering temperature gaps

Consider now the other dimension of our parallel tempered lattice of RBMs:

temperature. As described in Sec. 6.4, in parallel tempering, the distributions at

neighboring temperatures are designed to have significant overlap in their densities

in order to permit particle swaps. However, pi,t(v, h(1)) and pi+1,t(v, h(1)) are not so

close that we can use them as the intermediate distributions of AIS. AIS typically

requires thousands of intermediate chains, and maintaining that number of par-

allel chains would carry a prohibitive computational burden. On the other hand,

the Parallel Tempering strategy of spacing the temperature to ensure moderately

frequent swapping nicely matches the ideal operating regime of Bridge Sampling.

In the log domain, we can estimate the difference of the log partition functions

between neighboring chains (i− 1) and i by:

O∆β

i,t
= log

N�

n=1

p∗
�
x(n)
i−1,t

�

pi−1,t

�
x(n)
i−1,t

� − log
N�

n=1

p∗
�
x(n)
i,t

�

pi,t
�
x(n)
i,t

� ≈ logZi,t − logZi−1,t (6.6)

where x(n)
i,t

is the n-th sample from pi,t and p∗(x
(n)
i,t

) is the bridging distribution

described in Sec. 6.2.2. Finally, similarly to the initial distribution at time-step

t = 0, we specify that the highest temperature chain corresponds to a model MM,t,

for all t, with βM = 0, whose partition function is analytically tractable. Again,

in the case of the RBM this is trivially satisfied by ensuring that the parameters

tying the v to the h(1) are zeroed out.

In principle, the Bridge Sampler alone would be capable of arriving at an ac-

curate estimate of the partition function for each model in the extended system

at every learning iteration by repeated application of Bridge Sampling. Unfortu-

nately, reducing the variance sufficiently to provide useful estimates of the partition

function would require using a relatively large number of samples at each tempera-

ture. Within the context of RBM training, the required number of samples at each

of the parallel chains would have an excessive computational cost. Fortunately,

as described in the next section, it is possible to combine multiple high variance
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partition function estimates to achieve an accurate estimate.

6.5.3 Kalman Filtering the Log Partition Function

In the above we have described two paths to arrive at an estimate of the partition

function for each the RBMsMt,i in the lattice. In this section we describe a method

to fuse all available information regarding each partition function to improve the

overall accuracy of the estimate of every partition function while not sacrificing

computational tractability.

Our strategy is to formally treat the unknown partition functions as latent

variables and consider statistical estimates of the difference between neighboring

log partition functions on the lattice, O∆t

t
and O∆β

t as observed quantities, used

to refine the joint distribution over the log partition functions. We follow the

treatment of Neal (2001) in characterizing our uncertainty regarding logZi,t as a

Gaussian distribution. We also characterize the evolution of the partition functions

as independent Gaussian processes. Our tracking algorithm is a variation on the

famous Kalman filter.

Let ζt = [logZ1,t, . . . , logZM,t, bt], where bt is a random process introduced to

account for the systematic bias of the “learning path” AIS when the same samples

used to compute O(∆t)
: are also used in gradient estimation. Our model for the evo-

lution of the system {ζt, O
(∆t)
t

, O(∆β)
t

} is described in Fig. B.1. We use the notation

N (µ,Σ) to refer to a Gaussian distribution with mean µ and variance Σ. The

model parameters µ0 and Σ0 specify the initial mean and covariance matrix of the

latent state ζ0: µ0 = [logZ1,0, . . . , logZM,0, 0], where each Zi,0 is tractable to compute

exactly and the initial bias distribution has mean zero, and Σ0 = Diag[0, . . . , 0,σ2
b0
]

is a diagonal covariance matrix. The model dynamics are simple and represent our

assumption that the partition function is slowly changing. The conditional expec-

tation of ζt is ζt−1 with fixed diagonal covariance Σζ = Diag[σ2
Z
, . . . ,σ2

Z
,σ2

b
]. See

Section 12.5 for the heuristics used to set σb0 , σb and σZ . The observation distribu-

tions in given in Fig. B.1 over O(∆t)
t and O(∆β)

t encode the relationship between the

latent log partition function values and the statistical measurements given by AIS

over learning iterations, O(∆t)
t

= [O(∆t)
1,t , . . . , O(∆t)

M−1,t]
T , and by the Bridge Sampler

over the parallel chains, O(∆β)
t

= [O(∆β)
1,t , . . . , O(∆β)

M−1,t]
T , respectively. The matrix C

encodes the relationship between the elements of ζt and ζt−1 and O(∆t)
t , while H
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O
∆t
1,t

O
∆t
2,t O

∆β
1,tO

∆β
1,t−1

O
∆β
M−1,t−1 O

∆β
M−1,t

ζM,t−1 ζM,t

ζ2,t

ζ1,tζ1,t−1

ζ2,t−1

btbt−1

System Equations:

p(ζ0) = N (µ0,Σ0)

p(ζt | ζt−1) = N (ζt−1,Σζ)

p(O(∆t)
t | ζt, ζt−1) = N (C[ζt, ζt−1]T , Σ∆t)

p(O(∆β)
t | ζt) = N (Hζt,Σ∆β)

C =




IM−1 −IM−1

1
0
...
0





H =





−1 +1 0 0 0

0 −1 +1 0
... 0

. . . 0
0 0 0 −1 +1 0





Figure 6.1: Graphical model capturing the evolution of the log-partition function

A directed graphical model for partition function tracking. The shaded nodes
represent observed variables, and the double-walled nodes represent the

analytically tractable logZM,: with β = 0 (infinite temperature). For clarity of
presentation, the graph shows the bias term as distinct from the other ζi,t, recall

bt = ζM+1,t
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encodes the relationship between the elements of ζt and O(∆β)
t . The elements of the

diagonal matrices Σ∆t and Σ∆β are updated online from the estimated variances of

AIS (Eq. 6.2) and of the Bridge Sampler (Eq. 6.3) respectively.

6.5.4 Inference over the latent state

We now consider the steps involved in the inference process in moving from

an estimate of the posterior over the latent state at time t − 1 to an estimate of

the posterior at time t. We begin by assuming we know the posterior p(ζt−1 |

O(∆t)
t−1:0, O

(∆β)
t−1:0), where O(·)

t−1:0 = [O(·)
1 , . . . , O(·)

t−1]. We define p(ζt−1 | O(∆t)
t−1:0, O

(∆β)
t−1:0) ∼

N (µt−1,t−1, Pt−1,t−1), that is µt−1,t−1 and Pt−1,t−1 are the posterior mean and co-

variance at time t − 1. The two indices indicate which is the latest observation

being conditioned upon for each of the two types of observations. For example,

µt,t−1 represents the posterior mean given O(∆t)
t:0 and O(∆β)

t−1:0.

Departing from the typical Kalman filter setting, O(∆t)
t depends on both ζt and

ζt−1. So in order to incorporate this observation into our estimate of the latent

state, we need to specify the prior joint distribution:

p
�
ζt−1, ζt | O

(∆t)
t−1:0, O

(∆β)
t−1:0

�
= N (ζt−1,Σζ)N (µt−1,t−1, Pt−1,t−1) = N (ηt−1,t−1, Vt−1,t−1)

where ηt−1,t−1 =

�
µt−1,t−1

µt−1,t−1

�
and Vt−1,t−1 =

�
Pt−1,t−1 Pt−1,t−1

Pt−1,t−1 Σζ + Pt−1,t−1

�

Incorporating the observation O(∆t)
t into the joint distribution over ζt−1 and ζt

yields, through Bayes rule, p(ζt−1, ζt | O(∆t)
t:0 , O(∆β)

t−1:0) = N (ηt,t−1 , Vt,t−1) where

Vt,t−1 = (V −1
t,t−1 +CTΣ−1

∆t
C)−1 and ηt,t−1 = Vt,t−1(CTΣ∆tO

(∆t)
t

+ V −1
t−1,t−1ηt−1,t−1). Now

that the AIS estimate is incorporated into the model, we no longer require the ζt−1

component of the joint conditional distribution. Marginalizing over ζt−1, and we

define

p
�
ζt | O(∆t)

t:0 , O(∆β)
t−1:0

�
=

�
p
�
ζt−1, ζt | O(∆t)

t:0 , O(∆β)
t−1:0

�
dζt−1 = N (µt,t−1 , Pt,t−1)

(6.7)

where µt,t−1 = [ηt,t−1]2 is vector with the lower M + 1 elements and Pt,t−1 =

[Vt,t−1]2,2 is the lower right-hand quadrant of Vt,t−1. It remains only to incorporate

the Bridge Sampler estimate O(∆β)
t by a second application of Bayes rule: p(ζt |
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Figure 6.2: Comparison of exact test-set likelihood and estimated likelihood as given by
AIS and our tracking algorithm. We trained a 25-hidden unit RBM for 300k updates
using SML, with a learning rate schedule µt = min(µi

α

t+1 , µi), with (left) µi = 0.001 and

(right) µi = 0.01 varying α ∈ {103, 104, 105}.

O(∆t)
t:0 , O(∆β)

t:0 , O(∆β)
t

) = N (µt,t, Pt,t) , where Pt,t = (P−1
t,t−1 + HTΣ−1

∆β
H)−1 and µt,t =

Pt,t(HTΣ∆βO
(∆β)
t

+ P−1
t,t−1µt,t−1)

6.6 Experimental Results

6.6.1 Comparing to Exact Likelihood

In this section, we compare the performance of our tracking algorithm to the

exact likelihood, obtained by marginalizing over the hidden units. We chose 25

hidden units and trained on the ubiquitous MNIST dataset (LeCun et al., 1998)

for 300k updates, using both fixed and adaptive learning rates. The main results

are shown in Figure 6.2.

In Figure 6.2 (left), we can see that our tracker provides a very good fit to

the likelihood for a base learning rate of µi = 0.001 and decrease constants α in

{103, 104, 105}. Increasing the base learning rate to µi = 0.01 in Figure 6.2 (right),

we maintain a good fit up to α = 104, with a small dip in performance at 50k

updates. Our tracker fails however to capture the oscillatory behavior engendered

by too high of a learning rate (µi = 0.01,α = 105). It is interesting to note that
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the failure mode of our algorithm seems to coincide with an unstable optimization

process.

6.6.2 Comparing to AIS for Large-scale Models

We now test the performance of our tracking algorithm on larger models, where

exact computation of the likelihood is no longer possible. Our baseline for compar-

ison is thus AIS i. Our models consisted of RBMs with 500 hidden units, trained

using SML-APT (Desjardins et al., 2010b) on the MNIST and Caltech Silhouettes

(Marlin et al., 2010) datasets. We performed 200k updates, with learning rate

parameters µi ∈ {.01, .001} and α ∈ {103, 104, 105}.

On MNIST, AIS estimated the test-likelihood of our best model at −94.34±3.08

(where ± indicates the 3σ confidence interval), while our tracking algorithm re-

ported a value −89.96. On Caltech Silhouettes, our model reached −134.23±21.14

according to AIS, while our tracker reported −114.31. To put these numbers in

perspective, Salakhutdinov and Murray (2008) reports values of −125.53, −105.50

and −86.34 for 500 hidden unit RBMs trained with CD-1, CD-3 and CD-25 respec-

tively. Marlin et al. (2010) seem to report around −120 for Caltech Silhouettes,

again using 500 hidden units.

Figure 6.3 (left) shows a detailed view of the Kalman filter measurements and

its output, for the best performing MNIST model. We can see that the variance

on O(∆β)
t (bridge sampling estimate) grows slowly over time, which is mitigated

by a decreasing variance on O(∆t)
t . As the model converges and the learning rate

is decreasing, Mt−1 and Mt become progressively closer and the “learning path”

AIS estimate becomes more robust. An important point to note is that a naive

linear-spacing of temperatures yielded low exchange rates between neighboring tem-

peratures, with adverse effects on the quality of our Bridge Sampling estimates. As

a result, we observed a drop in performance, both in likelihood as well as tracking

performance. Adaptive Tempering (Desjardins et al., 2010b) proved crucial in get-

ting good tracking. Temperatures were thus automatically tuned to maximize the

flow of particles between extremal temperatures. This has the effect of increasing

the overlap between adjacent distributions pi,t, pi+1,t, yielding better bridge sam-

i. Our base AIS configuration was 103 chains spaced linearly between β = [0, 0.5], 104 chains
for the interval [0.5, 0.9] and 104 between [0.9, 1.0]. We report the estimated logZ by averaging
over 100 annealed importance weights.
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Figure 6.3: (left) Kalman filter measurements O(∆t)
t

, O(∆β)
t

and estimate ζt during

training. Note that O(∆t)
t

represents the estimated likelihood change between consecutive

gradient updates. “bias b” shows the estimated bias on O(∆t)
t

, induced by the gradient
updates. Both green curves correspond to the right-hand axis. Point estimate of the
partition function as given by AIS. The confidence interval at three standard-deviation
of the AIS value at 200k updates was measured to be 3.08. (right) Example of early-
stopping on dna dataset.

pling estimates.

6.6.3 Early-Stopping Experiments

Our final set of experiments highlights the performance of our algorithm on

a wide-variety of datasets. Their use was motivated by their recent inclusion in

Larochelle and Murray (2011). Model selection was done using grid-search, based

on validation set performance. Because of tracking, our algorithm afforded us the

ability to perform early-stopping, the advantages of which are highlighted in Fig. 6.3

(right).

We tested parameters in the following range: number of hidden units in {100, 200,

500, 1000} (depending on dataset size), learning rates in {10−2, 10−3, 10−4} either

held constant during training or annealed with constants α ∈ {103, 104, 105}. For

tempering, we used 10 fixed temperatures, spaced linearly between β = [0, 1]. SGD

was performed using mini-batches of size {10, 100} when estimating the gradient,

and mini-batches of size {10, 20} for our set of tempered-chains (we thus simulate

10 × {10, 20} tempered chains in total). As can be seen in Table 6.1, our tracker

performs very well compared to the AIS estimates and across all datasets. Efforts
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Dataset RBM RBM-25 NADE
Kalman AIS

adult -15.24 -15.70 (± 0.50) -16.29 -13.19
connect4 -15.77 -16.81 (± 0.67) -22.66 -11.99
dna -87.97 -88.51 (± 0.97) -96.90 -84.81
mushrooms -10.49 -14.68 (± 30.75) -15.15 -9.81
nips -270.10 -271.23 (± 0.58) -277.37 -273.08
ocr letters -33.87 -31.45 (± 2.70) -43.05 -27.22
rcv1 -46.89 -48.61 (± 0.69) -48.88 -46.66
web -28.95 -29.91 (± 0.74) -29.38 -28.39

Table 6.1: Estimated likelihoods of misc. UCI datasets, obtained via tracking

Test set likelihood on various datasets. Models were trained using SML-PT.
Early-stopping was performed by monitoring likelihood on a hold-out validation set,
using our running estimate of the partition function. Best models (i.e. the choice of

hyper-parameters) were then chosen according to the AIS likelihood estimate. Results
for 25-hidden unit RBMs and NADE are taken from Larochelle and Murray (2011), and
appear simply to provide context. ± indicates a confidence interval of three standard

deviations.

to lower the variance of the AIS estimate proved unsuccessful, even going as far as

105 intermediate distributions.

6.7 Conclusion and Discussion

In this paper, we have shown that while exact calculation of the partition func-

tion of RBMs may be intractable, one can exploit the smoothness of gradient

descent learning, in order to approximately track the evolution of the log-partition

function during learning. Our method exploits the Parallel Tempering framework.

At each time-step t, Bridge Sampling allows us to estimate the ∆Zi between ad-

jacent chains providing a path to a known partition function ZM . AIS can then

be applied with very few interpolating chains between models at nearby learning

iterations. For small enough learning rates, this can even be reduced to zero, as

was the case in our experiment, and results in large computational gains. Treating

the logZi’s as unknown variables, the formalism of the Gaussian graphical model
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of Figure B.1 allowed us to combine multiple sources of information, smooth out

the estimates and achieve good tracking of the partition function.

The method presented in the paper is also computationally attractive, with

only a small computational overhead relative to SML-PT training. The added

computational cost lies in the computation of the importance weights for AIS and

Bridge Sampling. However, this boils down to computing free-energies which are

mostly pre-computed in the course of gradient updates with the sole exception

being the computation of an extra pi,t(xi,t−1) term in the “learning path” AIS.

In comparison to AIS, our method allows us to fairly accurately track the par-

tition function, and at a per-point estimate cost well below that of AIS. Having a

reliable and accurate online estimate of the partition function opens the doors to

interesting research avenues.



7 Prologue to Third Article

7.1 Article Details

Metric-Free Natural Gradient for Joint-Training of Boltzmann Ma-

chines. Guillaume Desjardins, Razvan Pascanu, Aaron Courville and Yoshua Ben-

gio. International Conference on Learning Representations (ICLR), 2013.

Personal Contribution. The particular form of the natural gradient for BMs was

derived by myself, with the generic derivation of the natural gradient being joint

work with Razvan Pascanu and Aaron Courville. I was the main author for the

DBM code, and developed the MFNG algorithm with Razvan Pascanu, who also

provided the crucial code for Conjugate Gradient and MinRes. The experiments

and writing are my own, with the exception of the results found in Figure 8.2.

7.2 Context

The Hessian-Free (HF) optimization method of Martens (2010); Martens and

Sutskever (2011) represents an important breakthrough in training deep and recur-

rent neural networks. Until its publication, pretraining was the method of choice

for successfully training deep multi-layer perceptrons (Hinton et al., 2006; Ben-

gio et al., 2007; Lee et al., 2009). Using Hessian-Free, the authors were able to

outperform pre-trained auto-encoders of Hinton and Salakhutdinov (2006) using

pure supervised learning. Later, this same method was adapted to learn long-term

dependencies in Recurrent Neural Networks (RNN), seemingly bypassing issues of

exploding and vanishing gradients (Bengio et al., 1994). HF belongs to the family

of truncated Newton methods explored in Section 1.2.2. In addition to using CG to

compute the Newton update direction H−1g (where H is the Hessian matrix and g

the estimated gradient), HF bypasses the need for computing or storing the Hessian
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matrix explicitly by using the R-operator, an efficient mechanism for computing

Hessian-vector products.

At the time of publication however, it was not clear how the above could be

adapted to the probabilistic setting of BMs.

Subsequently, Montavon and Muller (2012) showed how centering (see Sec-

tion 2.5.2) could enable joint-training of DBMs. This paper provided convincing

evidence that our previous reliance on greedy layer-wise pretraining (Salakhutdi-

nov and Hinton, 2009a) stemmed from issues of optimization. This motivated us

to revisit second-order optimization methods for BMs, to determine if they could

not only subsume the centering trick but improve training altogether.

7.3 Contributions

To the authors’ knowledge, this paper introduced the first practical algorithm

for applying the natural gradient to large Boltzmann Machines. As with HF, our

method uses a linear solver to invert the Fisher Information Matrix (FIM) and

precludes the need to compute or store it explicitly through an efficient matrix-

vector operation.

Our paper shows that the Metric-Free Natural Gradient (MFNG) algorithm

(and its diagonal approximation) improves convergence speed when training DBMs

via variational SML. Unfortunately, the method as presented in the paper is not

yet computationally efficient. Surprisingly, we also found that the natural gradient

was not a replacement for proper centering of the energy function.

7.4 Recent Developments

Concurrent to our work, Pascanu and Bengio (2013) showed that using Newton’s

method with the extended Gauss-Newton (EGN) matrix in lieu of the Hessian, was

directly equivalent to the natural gradient algorithm. Since this approximation was

found to work best in Martens (2010), HF and MFNG are essentially equivalent

at a high-level: both are efficient implementations of the natural gradient, HF



7.4 Recent Developments 95

being tailored to the optimization of deterministic functions and MFNG to the

optimization of MRFs.

Since publication, it was brought to our attention that Byrd et al. (2011) may

provide the key to making our method computationally efficient. In the context of a

truncated Newton method, they found that it was preferable to use a much smaller

batch size for estimating the Hessian and allocate more capacity towards a careful

estimation of the gradient (via a larger batch size). Pascanu and Bengio (2013) also

observed improved performance when using a separate set of samples for estimating

the FIM, than to estimate the gradient. With regards to the need for centering, we

are currently exploring two hypotheses. (1) The benefits of centering might stem

from its global re-parametrization of the energy, whereas the natural gradient is

only locally invariant to re-parametrizations of the model. (2) Alternatively, our

treatment of latent variables in the derivation of the FIM might be to blame for

our inability to perform joint-training without centering. In particular, we have

observed that for a fixed setting of the parameters, centering the BM energy can

greatly reduce the number of iterations required for inference. Given a maximal

number of inference iterations, the failure of MFNG alone to perform joint-training

might therefore stem from failures of the inference process. This suggests taking

into account the manifold structure of the posterior in the context of inference.

Finally, our paper also failed to cite the Information Geometry Optimization

(IGO) algorithm of Arnold et al. (2011), which applied the natural gradient to a toy

RBM and predates our work. In addition to the (local) invariance properties of the

natural gradient to re-parametrization of the model, their method also incorporates

invariances to re-parametrizations of the input and monotonic transformations of

the function undergoing optimization.



8
Metric-Free Natural

Gradient for Joint-Training

of Boltzmann Machines

This paper introduces the Metric-Free Natural Gradient (MFNG) algorithm

for training Boltzmann Machines. Similar in spirit to the Hessian-Free

method of Martens (2010), our algorithm belongs to the family of truncated Newton

methods and exploits an efficient matrix-vector product to avoid explicitly storing

the natural gradient metric L. This metric is shown to be the expected second

derivative of the log-partition function (under the model distribution), or equiv-

alently, the covariance of the vector of partial derivatives of the energy function.

We evaluate our method on the task of joint-training a 3-layer Deep Boltzmann

Machine and show that MFNG does indeed have faster per-epoch convergence

compared to Stochastic Maximum Likelihood with centering, though wall-clock

performance is currently not competitive.

8.1 Introduction

Boltzmann Machines (BM) have become a popular method in Deep Learning for

performing feature extraction and probability modeling. The emergence of these

models as practical learning algorithms stems from the development of efficient

training algorithms, which estimate the negative log-likelihood gradient by either

contrastive (Carreira-Perpiñan and Hinton, 2005) or stochastic (Tieleman, 2008;

Younes, 1998) approximations. However, the success of these models has for the

most part been limited to the Restricted Boltzmann Machine (RBM) (Freund and

Haussler, 1992), whose architecture allows for efficient exact inference. Unfortu-

nately, this comes at the cost of the model’s representational capacity, which is

limited to a single layer of latent variables. The Deep Boltzmann Machine (DBM)

(Salakhutdinov and Hinton, 2009a) addresses this by defining a joint energy func-

tion over multiple disjoint layers of latent variables, where interactions within a
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layer are prohibited. While this affords the model a rich inference scheme incor-

porating top-down feedback, it also makes training much more difficult, requiring

until recently an initial greedy layer-wise pretraining scheme. Since, Montavon

and Muller (2012) have shown that this difficulty stems from an ill-conditioning

of the Hessian matrix, which can be addressed by a simple reparameterization of

the DBM energy function, a trick called centering (an analogue to centering and

skip-connections found in the deterministic neural network literature (Schraudolph,

1998; Raiko et al., 2012)). As the barrier to joint-training i is overcoming a chal-

lenging optimization problem, it is apparent that second-order gradient methods

might prove to be more effective than simple stochastic gradient methods. This

should prove especially important as we consider models with increasingly complex

posteriors or higher-order interactions between latent variables.

To this end, we explore the use of the Natural Gradient (Amari, 1998), which

seems ideally suited to the stochastic nature of Boltzmann Machines. Our paper is

structured as follows. Section 8.2 provides a detailed derivation of the natural gra-

dient, including its specific form for BMs. While most of these equations have pre-

viously appeared in Amari et al. (1992), our derivation aims to be more accessible

as it attempts to derive the natural gradient from basic principles, while minimizing

references to Information Geometry. Section 8.3 represents the true contribution

of the paper: a practical natural gradient algorithm for BMs which exploits the

persistent Markov chains of Stochastic Maximum Likelihood (SML) (Tieleman,

2008), with a Hessian-Free (HF) like algorithm (Martens, 2010). The method,

named Metric-Free Natural Gradient (MFNG) (in recognition of the similarities

of our method to HF), avoids explicitly storing the natural gradient metric L and

uses a linear solver to perform the required matrix-vector product L−1Eq [∇ log pθ].

Preliminary experimental results on DBMs are presented in Section 8.4, with the

discussion appearing in Section 8.5.

i. Joint-training refers to the act of jointly optimizing θ (the concatenation of all model pa-
rameters, across all layers of the DBM) through maximum likelihood. This is in contrast to
Salakhutdinov and Hinton (2009a), where joint-training is preceded by a greedy layer-wise pre-
training strategy.
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8.2 The Natural Gradient

8.2.1 Motivation and Derivation

The main insight behind the natural gradient is that the space of all probability

distributions P = {pθ(x); θ ∈ Θ, x ∈ χ} forms a Riemannian manifold. Learning,

which typically proceeds by iteratively adapting the parameters θ to fit an empirical

distribution q, thus traces out a path along this manifold. An immediate conse-

quence is that following the direction of steepest descent in the original Euclidean

parameter space does not correspond to the direction of steepest descent along P .

To do so, one needs to account for the metric describing the local geometry of the

manifold, which is given by the Fisher Information matrix (Amari, 1985), shown in

Equation 8.4. While this metric is typically derived from Information Geometry,

a derivation more accessible to a machine learning audience can be obtained as

follows.

The natural gradient aims to find the search direction ∆θ which minimizes a

given objective function, such that the Kullback–Leibler divergenceKL(pθ � pθ+∆θ)

remains constant throughout optimization. This constraint ensures that we make

constant progress regardless of the curvature of the manifold P and enforces an

invariance to the parameterization of the model. The natural gradient for maximum

likelihood can thus be formalized as:

∇N := ∆θ∗ ← argmin∆θ
Eq [− log pθ+∆θ(x)] (8.1)

s.t. KL(pθ � pθ+∆θ) = const.

In order to derive a useful parameter update rule, we will consider the KL

divergence under the assumption ∆θ → 0. We also assume we have a discrete and

bounded domain χ over which we define the probability mass function i pθ. Taking

the Taylor series expansion of log pθ+∆θ around θ, and denoting ∇f as the column

vector of partial derivatives with ∂f

∂θi
as the i-th entry, and ∇2f the Hessian matrix

i. When clear from context, we will drop the argument of pθ to save space.
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with ∂
2
f

∂θi∂θj
in position (i, j), we have:

KL(pθ � pθ+∆θ) ≈

�

χ

pθ log pθ −
�

χ

pθ

�
log pθ + (∇ log pθ)

T ∆θ +
1

2
∆θT

�
∇

2 log pθ
�
∆θ

�

=
1

2
∆θTEpθ

�
−∇

2 log pθ
�
∆θ (8.2)

with the transition stemming from the fact that
�

χ
pθ

∂ log pθ
∂θi

= ∂

∂θi

�
x∈χ pθ(x) =

0. Replacing the objective function of Equation 8.1 by its first-order Taylor ex-

pansion and rewriting the constraint as a Lagrangian, we arrive at the following

formulation for L(θ,∆θ), the loss function which the natural gradient seeks to

minimize.

L(θ,∆θ) = Eq [− log pθ] + Eq [−∇ log pθ]
T ∆θ +

λ

2
∆θTEpθ

�
−∇

2 log pθ
�
∆θ.

Setting ∂L
∂∆θ

to zero yields the natural gradient direction ∇N :

∇N = L−1Eq [∇ log pθ] with L = Epθ

�
−∇

2 log pθ
�

(8.3)

or equivalently L = Epθ

�
∇ log pθ∇

T log pθ
�

(8.4)

While its form is reminiscent of the Newton direction, the natural gradient multi-

plies the estimated gradient by the inverse of the expected Hessian of log pθ (Equa-

tion 8.3) or equivalently by the Fisher Information matrix (FIM, Equation 8.4).

The equivalence between both expressions can be shown trivially, with the details

appearing in the Appendix. We stress that both of these expectations are computed

with respect to the model distribution, and thus computing the metric L does not

involve the empirical distribution in any way. The FIM for Boltzmann Machines is

thus not equal to the uncentered covariance of the maximum likelihood gradients.

In the following, we pursue our derivation from the form given in Equation 8.4.

8.2.2 Natural Gradient for Boltzmann Machines

Derivation. Boltzmann machines define a joint distribution over a vector of bi-

nary random variables x ∈ {0, 1}N by way of an energy function E(x) = −
�

k<l
Wklxkxl−�

k
bkxk, with weight matrixW ∈ RN×N and bias vector b ∈ RN . Energy and prob-

ability are related by the Boltzmann distribution, such that p(x) = 1
Z
exp (−E(x)),
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with Z the partition function defined by Z =
�

x
exp (−E(x)).

Starting from the expression of L found in Equation 8.3, we can derive the

natural gradient metric for Boltzmann Machines.

L(BM) = Epθ

�
∇

2E(x) +∇
2 logZ

�
= Epθ

�
∇

2 logZ
�

The natural gradient metric for first-order BMs takes on a surprisingly simple

form: it is the expected Hessian of the log-partition function. With a few lines of

algebra (whose details are presented in the Appendix), we can rewrite it as follows:

L(BM) = Epθ

�
(∇E(x)− Epθ

[∇E(x)])T (∇E(x)− Epθ
[∇E(x)])

�
(8.5)

L(BM) is thus given by the covariance of ∇E, measured under the model dis-

tribution pθ. Concretely, if we denote Wkl and Wmn as the i and j-th parameters

of the model respectively, the entry Lij will take on the value −E [xkxlxmxn] +

E [xkxl]E [xmxn].

Discussion. When computing the Taylor expansion of the KL divergence in

Equation 8.2, we glossed over an important detail. Namely, how to handle latent

variables in pθ(x), a topic first discussed in Amari et al. (1992). If x = [v, h], we

could just as easily have derived the natural gradient by considering the constraint

KL (
�

h
pθ(v, h) �

�
h
pθ+∆θ(v, h)) = const. Alternatively, since the distinction be-

tween visible and hidden units is entirely artificial (since the KL divergence does

not involve the empirical distribution), we may simply wish to consider the dis-

tribution obtained by analytically integrating out a maximal number of random

variables. In a DBM, this would entail marginalizing over all odd or even layers,

a strategy employed with great success in the context of AIS (Salakhutdinov and

Hinton, 2009a). In this work however, we only consider the metric obtained by

considering the KL divergence between the full joint distributions pθ and pθ+∆θ.
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8.3 Metric-Free Natural Gradient

Implementation

We can compute the natural gradient ∇N by first replacing the expectations of

Equation 8.5 by a finite sample approximation. We can do this efficiently by reusing

the model samples generated by the persistent Markov chains of SML. Given the

size of the matrix being estimated however, we expect this method to require a

larger number of chains than is typically used. The rest of the method is similar to

the Hessian-Free (HF) algorithm of Martens (2010): we exploit an efficient matrix-

vector implementation combined with a linear-solver, such as Conjugate Gradient

or MinRes (Paige and Saunders, 1975), to solve the system Ly = Eq [∇ log pθ] for

y ∈ RN . Additionally, we replace the expectation on the rhs. of this previous

equation by an average computed over a mini-batch of training examples (sampled

from the empirical distribution q), as is typically done in the stochastic learning

setting.

For Boltzmann Machines, the matrix-vector product Ly can be computed in a

straightforward manner, without recourse to Pearlmutter’s R-operator (Pearlmut-

ter, 1994). Starting from a sampling approximation to Equation 8.5, we simply

push the dot product inside of the expectation as follows:

L(BM)y ≈
�
S − S̄

�T ��
S − S̄

�
y
�

(8.6)

with S ∈ RM×N , the matrix with entries smj =
∂E(xm)

∂θj

and S̄ ∈ RN , the vector with entries sj =
1

M

�

m

smj

and xm ∼ pθ(x),m ∈ [1,M ].

By first computing the matrix-vector product (S − S̄)y, we can easily avoid

computing the full N ×N matrix L. Indeed, the result of this operation is a vector

of length M , which is then left-multiplied by a matrix of dimension N×M , yielding

the matrix-vector product Ly ∈ RN . A single iteration of the MFNG is presented

in Algorithm 8. A full open-source implementation is also available online. i.

i. https://github.com/gdesjardins/MFNG
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Algorithm 8 MFNG iteration(θ,X+,Z−
old
)

θ: parameters of the model. N :=| θ |.
X+: mini-batch of training examples, with X+ = {xm;m ∈ [1,M ]}.

Z
−
old
: previous state of Markov chains, with Z = {zm := (vm, h

(1)
m , h(2)

m );m ∈ [0,M ]}.

• Generate positive phase samples
• Initializing M Markov chains from state Z−

old
, generate negative phase samples

Z−
new

.

• Compute the vectors s+
m
= ∂E(z+m)

∂θ
and s−

m
= ∂E(z−m)

∂θ
, ∀m.

• Compute negative log-likelihood gradient as g = 1
M

�
m
(s+

m
− s−

m
).

• Denote S ∈ RM×N as the matrix with rows s−
m
and S̄ = 1

M

�
m
s−
m
.

# Solve the system “Ly = g” for y, given L = (S − S̄)T (S − S̄) and an initial
zero vector.
# computeLy is a function which performs equation 8.6, without instantiating
L.

• ∇Nθ ← CGSolve(computeLy, S, g, zeros(N))

8.4 Experiments

We performed a proof-of-concept experiment to determine whether our Metric-

Free Natural Gradient (MFNG) algorithm is suitable for joint-training of com-

plex Boltzmann Machines. To this end, we compared our method to Stochastic

Maximum Likelihood and a diagonal approximation of MFNG on a 3-layer Deep

Boltzmann Machine trained on MNIST (LeCun et al., 1998). All algorithms were

run in conjunction with the centering strategy of Montavon and Muller (2012),

which proved crucial to successfully joint-train all layers of the DBM (even when

using MFNG) i. We chose a small 3-layer DBM with 784-400-100 units at the first,

second and third layers respectively, to be comparable to Montavon and Müller

(2012). Hyper-parameters were varied as follows. For inference, we ran 5 iterations

of either mean-field as implemented in Salakhutdinov and Hinton (2009a) or Gibbs

sampling. The learning rate was kept fixed during training and chosen from the

set {5 · 10−3, 10−3, 10−4}. For MinRes, we set the damping coefficient to 0.1 and

used a fixed tolerance of 10−5 (used to determine convergence). Finally, we tested

i. The centering coefficients were initialized as in Montavon and Muller (2012), but were
otherwise held fixed during training.
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all algorithms on minibatch sizes of either 25, 128 or 256 elements i. Finally, since

we are comparing optimization algorithms, hyper-parameters were chosen based on

the training set likelihood (though we still report the associated test errors). All

experiments used the MinRes linear solver, both for its speed and its ability to

return pseudo-inverses when faced with ill-conditioning.

Figure 8.1 (left) shows the likelihood as estimated by Annealed Importance Sam-

pling (Salakhutdinov and Hinton, 2009a; Neal, 2001) as a function of the number

of epochs ii. Under this metric, MFNG achieves the fastest convergence, obtaining

a training/test set likelihood of −71.26/−72.84 nats after 94 epochs. In compar-

ison, MFNG-diag obtains −73.22/−74.05 nats and SML −80.12/−79.71 nats in

100 epochs. The picture changes however when plotting likelihood as a function of

CPU-time, as shown in Figure 8.1 (right). Given a wall-time of 8000s for MFNG

and SML, and 5000s for MFNG-diag iii, SML is able to perform upwards of 1550

epochs, resulting in an impressive likelihood score of −64.94 / −67.73. Note that

these results were obtained on the binary-version of MNIST (thresholded at 0.5)

in order to compare to Montavon and Müller (2012). These results are therefore

not directly comparable to Salakhutdinov and Hinton (2009a), which binarizes the

dataset through sampling (by treating each pixel activation as the probability p of

a Bernouilli distribution).

Figure 8.2 shows a breakdown of the algorithm runtime, for various components

of the algorithm. These statistics were collected in the early stages of training, but

are generally representative of the bigger picture. While the linear solver clearly

dominates the runtime, there are a few interesting observations to make. For small

models and batch sizes greater than 256, a single evaluation of Ly appears to be

of the same order of magnitude as a gradient evaluation. In all cases, this cost is

smaller than that of sampling, which represents a non-negligible part of the total

computational budget. This suggests that MFNG could become especially attrac-

i. We expect larger minibatch sizes to be preferable, however simulating this number of Markov
chains in parallel (on top of all other memory requirements) was sufficient to hit the memory
bottlenecks of GPUs.

ii. While we do not report error margins for AIS likelihood estimates, the numbers proved
robust to changes in the number of particles and temperatures being simulated. To obtain such
robust estimates, we implemented all the tricks described in Salakhutdinov and Hinton (2009a)
and Salakhutdinov and Murray (2008): pA a zero-weight base-rate model whose biases are set by

maximum likelihood; interpolating distributions pi ∝ p(1−βi)
A p(βi)

B , with pB the target distribution;
and finally analytical integration of all odd-layers.
iii. This discrepancy will be resolved in the next revision.
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Figure 8.1: Estimated model likelihood as a function of (left) epochs and (right) CPU-time for
MFNG, its diagonal approximation (MFNG-diag) and SML. All methods were run in conjunction
with the DBM centering trick (Montavon and Muller, 2012), with centering coefficients held fixed
during training. Our grid search yielded the following hyper-parameters: batch size of 256/128
for MFNG(-diag)/SGD; 5 steps of mean-field / sampling-based inference for MFNG(-diag)/SGD
and a learning rate of 5 · 10−3.

tive for models which are expensive to sample from. Overall however, restricting

the number of CG/MinRes iterations appears key to computational performance,

which can be achieved by increasing the damping factor α. How this affects con-

vergence in terms of likelihood is left for future work.

8.5 Discussion and Future Work

While the wall-clock performance of MFNG is not currently competitive with

SML, we believe there are still many avenues to explore to improve computational

efficiency. Firstly, we performed almost no optimization of the various MinRes

hyper-parameters. In particular, we ran the algorithm to convergence with a fixed

tolerance of 10−5. While this typically resulted in relatively few iterations (around

15), this level of precision might not be required (especially given the stochastic

nature of the algorithm). Additionally, it could be worth exploiting the same strat-

egy as HF where the linear solver is initialized by the solution found in the previous

iteration. This may prove much more efficient than the current approach of initial-

izing the solver with a zero vector. Pre-conditioning is also a well-known method

for accelerating the convergence speed of linear solvers (Chapelle and Erhan, 2011).
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Figure 8.2: Breakdown of algorithm runtime, when we vary (left) the batch size (with fixed
model architecture 784 − 400 − 100) and (right) the model size (with fixed batch size of 256).
Runtime is additive in the order given by the labels (top to bottom). Dotted lines denote inter-
mediate steps, while continuous lines denote full steps. Data was collected on a Nvidia GTX 480
card.

Our implementation used a simple diagonal regularization of L. The Jacobi pre-

conditioner could be implemented easily however by computing the diagonal of L

in a first-pass.

Finally, while our single experiment offers little evidence in support of either

conclusion, it may very well be possible that MFNG is simply not computationally

efficient for DBMs, compared to SML with centering. In this case, it would be

worth applying the method to either (i) models with known ill-conditioning, such as

factored 3-rd order Boltzmann Machines or (ii) models and distributions exhibiting

complex posterior distributions. In such scenarios, we may wish to maximize the

use of the positive phase statistics (which were obtained at a high computational

cost) by performing larger jumps in parameter space. It remains to be seen how

this would interact with SML, where the burn-in period of the persistent chains is

directly tied to the magnitude of ∆θ.



9 Prologue to Fourth Article

9.1 Article Details

The Spike-and-Slab RBM and Extensions to Discrete and Sparse

Data Distributions. Aaron Courville, Guillaume Desjardins, James Bergstra

and Yoshua Bengio. To appear in IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 2014.

Personal Contribution. My contributions to this paper were in the extensions

of the ssRBM to binary and spike & slab input data, along with the development

of the subspace ssRBM, the insights of which were gleaned from my work on the

bilinear ssRBM of Chapter 12. In particular, I implemented the code and ran all

of the experiments of Sections 10.7.2, 10.8.2 and 10.9, and wrote the associated

sections of the paper. I also contributed heavily to solving the instability issues

of the subspace ssRBM which led to us modeling the visible units as truncated

Gaussians.

9.2 Context

Higher-order statistics play a crucial role in natural image statistics (Simoncelli

and Olshausen, 2001). As such, they should be a focus of representation learning.

While hierarchical representations offer a powerful framework for doing so, it may

be more efficient (statistically speaking) to capture or learn to be invariant to simple

concepts, like local pixel correlations, in lower layers of the hierarchy or even within

a single stage of feature extraction.

Earlier work on this topic in the areas of feed-forward neural networks include

Minsky and Papert (1969); Giles and Maxwell (1987) and Bergstra et al. (2009)

to name a few. In the context of unsupervised learning via energy-based models,
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these include the mean-covariance (Ranzato and Hinton, 2010) and mean-“Product

of Student-t”(mPoT) RBM (Ranzato et al., 2010), which modified the RBM energy

function to include squares of a (linear) data projection term and as such belong

to the more generally family of 3-rd order BMs (see Section 2.6.1). Courville

et al. (2011a,b) provided an alternative solution to capturing higher-order statistics:

augmenting each binary random variable with a continuous slab component.

The subsequent chapter is a journal submission dedicated to this model fam-

ily. It is a superset of the results found in these earlier papers, along with novel

extensions of the model.

9.3 Contributions

The following paper offers a unified view of the spike & slab RBM family of

models. The ssRBM offers a flexible framework for density modeling, in which the

learnt features are sensitive to both first and second order statistics of the input.

This framework is shown to be flexible in that it can be adapted to cover various

input distributions: Bernoulli, multinomial, spike & slab or normal. This is in

stark contrast to the mean-covariance RBM (mcRBM) which has been limited to

modeling continuous data, due to its reliance on Hybrid Monte Carlo (HMC) for

sampling.

In addition to previously published results, our contributions highlight the im-

portance of learning rich invariant features for classification. To this end, we relied

exclusively on the ssRBM to perform feature extraction, followed by a simple linear

SVM for classification (and hence no fine-tuning). This allows us to independently

assess the quality of the learnt features.

Our results are clear. By capturing properties of both the mean and covariance

of input pixels, the binary input ssRBM is able to significantly outperform a vanilla

RBM, while a 2-layer spike & slab DBN is able to match the results of Hinton

et al. (2006) without the need for fine-tuning. Similarly, we show how the subspace

ssRBM can lead to increased invariance of the latent representations, which directly

translates to improved performance in the low-labeled data regime.
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These results paint a coherent picture. Rich, invariant representations can be

learnt in an unsupervised manner. These can then serve as input to classifiers

having a reduced model complexity, a clear advantage when working with small

labeled datasets. While this is in stark contrast to the current trend of learning

large feed-forward classification networks via loads of supervised data (Krizhevsky

et al., 2012; Goodfellow et al., 2013), we believe it is important to keep the above

conclusion in mind moving forward, as limited access to labeled data (even in the

limit of one-shot learning) might prove to be more representative of the general AI

problem.



10

The Spike-and-Slab RBM

and Extensions to Discrete

and Sparse Data

Distributions

The spike-and-slab restricted Boltzmann machine (ssRBM) is defined

by having both a real-valued “slab” variable and a binary “spike” variable

associated with each unit in the hidden layer. The ssRBM uses its slab variables to

model the conditional covariance of the observation – thought to be important in

capturing the statistical properties of natural images. In this paper, we present the

canonical ssRBM framework together with some extensions of the model. These

extensions highlight the flexibility of the spike-and-slab RBM as a platform for ex-

ploring more sophisticated probabilistic models of high dimensional data in general

and natural image data in particular. Here, we introduce the subspace ssRBM fo-

cused on the task of learning invariant features. We highlight the behaviour of the

ssRBM and its extensions through experiments with the MNIST digit recognition

task and the CIFAR-10 object classification task.

10.1 Introduction

Unsupervised feature learning for natural images is presently the subject of

intense research. Approaches to object recognition (Coates et al., 2011; Coates and

Ng, 2011a,b), scene analysis (Socher et al., 2011) and activity recognition (Le et al.,

2011) have largely converged on a classification pipeline that begins with at least

one feature extraction phase. While standard feature extraction schemes such as

SIFT (Lowe, 1999) are popular, superior performance has been demonstrated by

incorporating learned features.

A large variety of modeling paradigms have been applied to the problem, includ-

ing autoencoders (Vincent et al., 2008; Rifai et al., 2011), sparse coding (Olshausen

and Field, 1996), and energy-based models. One of the most popular energy-based

modeling paradigms for unsupervised feature learning is the restricted Boltzmann
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machine (RBM). An RBM is a Markov random field with a bipartite graph struc-

ture consisting of a visible layer and a hidden layer. The bipartite structure excludes

connections between the variables within each layer so that the latent variables are

conditionally independent given the visible variables and vice versa. The factorial

nature of these conditional distributions enables efficient Gibbs sampling which

forms the basis of the most popular RBM learning algorithms such as contrastive

divergence (Hinton, 2002) and stochastic maximum likelihood (Tieleman, 2008).

Both as a feature learning scheme (Ranzato and Hinton, 2010) and especially

as a generative model of natural images (Ranzato et al., 2010, 2011; Kivinen and

Williams, 2012), RBM-based methods have shown considerable promise. As the

canonical energy model for real-valued data, the Gaussian RBM has long been pop-

ular as a means of extracting features from natural image data. However, recently

Ranzato et al. (2010) have argued that the Gaussian RBM inductive bias is not

well suited to the statistical variations present in natural image data. In response

to these insights, several alternative models have been proposed to better account

for the kinds of variation we see in natural images. These include the mean and

covariance RBM (mcRBM) and the mean-product of t-distribution (mPoT) model.

Unlike the Gaussian RBM which uses its hidden units to encode the conditional

mean of pixels, these models use their hidden units to encode the conditional co-

variance of the pixels. One drawback of both of these models is that, unlike the

standard RBM, the conditional distribution over the observation given the hidden

units is not factorial. As a result, the usual (and efficient) inference and training

strategies are not compatible with these models.

In this paper, we develop the spike-and-slab RBM (ssRBM). The ssRBM is

defined as having each hidden unit associated with the product of a binary spike

latent variable and a real-valued slab latent variable. The name spike-and-slab

is inspired from terminology in the statistics literature (Mitchell and Beauchamp,

1988), where the term refers to a prior consisting of a mixture between two com-

ponents: the spike, a discrete probability mass at zero; and the slab, a density

(typically uniformly distributed) over a continuous domain.

Spike-and-slab models have previously been explored in the context of factor

analyzer-like directed graphical models (Garrigues and Olshausen, 2008; Zhou et al.,

2009; Lücke and Sheikh, 2011; Mohamed et al., 2011; Titsias and Lázaro-Gredilla,

2011; Goodfellow et al., 2012) as well as in a hierarchical extension of such mod-



10.1 Introduction 111

els (Hinton et al., 1998). The primary advantage that our ssRBM offers over these

directed spike-and-slab models is its comparative ease of inference. The ssRBM

shares the RBM’s well-known efficient posterior computation, making it an appro-

priate basis for scalable representation learning.

As a model of natural images, the ssRBM is interesting in that, like the mcRBM

and the mPoT model, its binary hidden units encode the conditional covariance of

the pixels while simultaneously maintaining the simple conditional independence

structure that underlies efficient learning and inference in the traditional RBM. In

the ssRBM, this is accomplished by exploiting real-valued latent slab variables, as

was done in Martens and Sutskever (2010). Marginalizing over these variables re-

sults in the conditional covariance being parametrized by the binary hidden units.

However, conditioning on the slab variables recovers the traditional RBM condi-

tional independence structure.

In this paper, we present the canonical ssRBM framework together with several

extensions of the model. These extensions demonstrate the flexibility of the spike-

and-slab RBM as a platform for exploring more sophisticated probabilistic models

of high dimensional data. In particular, we present variations of the ssRBM model

to binary data and to sparse real-valued data that can be represented as spike-and-

slab data (either real-valued or exactly zero). Finally, we also present an extension

of the ssRBM termed the subspace ssRBM that ties single binary “spike” variables

to subspaces of the observation space. These subspaces are defined through sets of

feature vectors, each associated with a slab variable, that span the subspaces. We

demonstrate how learned feature subspaces can improve the performance of the

extracted features, particularly when the number of training examples is low.

10.1.1 The Gaussian RBM as a Model of Images

The Gaussian RBM is the simplest RBM that models real-valued data. Taking

the number of hidden units to be N and dimensionality of the input to be D, we let

hi ∈ {0, 1} for i ranging from 1 to N denote the binary hidden units and x ∈ RD

denote a single real-valued observation vector. Assuming that x is drawn from a

centered distribution, the Gaussian RBM is specified by the energy function:

E(x, h) =
1

2
xTΛx−

N�

i=1

xTWihi −

N�

i=1

bihi, (10.1)
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Figure 10.1: GRBM inductive bias

An illustration of the Gaussian RBM inductive bias (with one hidden unit) and the
statistical structure of natural images. The Gaussian RBM exhibits undesirable

sensitivity to local variation in contrast.

where Wi is the weight vector of the ith hidden unit, Λ is the diagonal precision

matrix on the visible units, and b are the hidden unit biases. From E(x, h) we can

derive the conditional distribution over the inputs given the hidden units:

p(x | h) = N (Wh, σI), (10.2)

where N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ. We

can interpret the Gaussian RBM marginal as a Gaussian mixture model with each

setting of the hidden units specifying the position of a mixture component. While

the number of mixture components scales exponentially with N , these components

share a set of parameters that only scales linearly with N .

Ranzato and Hinton (2010) suggest that the Gaussian RBM is unsatisfactory as

a model of natural images because of the model’s constant conditional covariance.

They argue that the relevant statistics of natural images are captured by the co-

variance of pixel values rather than absolute pixel values. This point is supported

by the widespread use of preprocessing methods that standardize the global scaling

of pixel values across each image in a dataset. Figure 10.1 illustrates the mismatch

between the Gaussian RBM inductive bias and a simplified view of the kind of

variation we would expect to see in natural images.

The inductive bias of the Gaussian RBM has real consequences on its ability to

model natural images. Figure 10.1 illustrates the effect of this bias on an inpainting
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(a) Inpainting frame

(b) Gaussian RBM inpainting

(c) Spike-and-slab RBM inpainting

Figure 10.2: Inpainting using the GRBM vs. spike & slab RBM

(a) Image of Brodatz texture D68, the top half of which was used for training, and
inpainting frames. (b) Inpainting with the Gaussian RBM (trained tile-convolutionally

– see Luo et al. (2013) for details). (c) Inpainting with the ssRBM model in the
identical training and text configuration as the Gaussian RBM.

task. The model was trained on a natural texture, shown in Figure 10.2(a), in a

tiled-convolutional configuration (see Luo et al. (2013) for details). Figure 10.2(b)

shows the results of inpainting with the Gaussian RBM. The inpainted regions

exhibit a clearly visible mismatch in contrast at the border of the inpainted region

of the image. The spike-and-slab RBM, on the other hand, is better able to match

the contrast at the boundary of the inpainted region, as shown in 10.2(c).

Despite its disadvantages, the Gaussian RBM has the significant advantage

that it preserves the classic RBM property that the two conditionals, p(x | h) and

P (h | x) are factorized. Alternatives energy formulations such as Ranzato et al.

(2010) and Ranzato and Hinton (2010) trade this important property away in order

to model more interesting (at least, non-diagonal) covariance between pixel values.

Consequently, the Gaussian RBM remains a standard approach to modeling images

and other continuous data in the RBM framework.
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10.2 The Spike-and-Slab RBM

In this section we present the spike-and-slab restricted Boltzmann machine (ss-

RBM): an extension of the RBM framework designed to improve on the Gaussian

RBM as a model of natural images. The ssRBM specifies interactions between

three random vectors: the vector x representing the observed data, the latent bi-

nary“spike”variables h and the latent real-valued“slab”variables s. The ith hidden

unit is associated with the product of the spike element hi and the slab element si of

the real-valued variable. Combined, their product gives each hidden unit a sparse

value, i.e. either real-valued or zero. Let there be N hidden units: h ∈ [0, 1]N ,

s ∈ RN and a observation vector of dimension D: x ∈ RD. The ssRBM model is

defined via the energy function:

E(x, s, h) = −

N�

i=1

xTWisihi +
1

2
xT

�
Λ+

N�

i=1

Φihi

�
x

+
1

2

N�

i=1

αis
2
i
−

N�

i=1

αiµisihi −

N�

i=1

bihi +
N�

i=1

αiµ
2
i
hi, (10.3)

where, as with the Gaussian RBM Wi denotes the ith weight vector (Wi ∈ RD),

bi is the bias of spike hi, and Λ is a diagonal precision matrix on the observations

x. The ssRBM, though, introduces additional parameters beyond those in the

Gaussian RBM. Namely, each αi > 0 is a scalar precision parameter for the real-

valued slab variable si; each Φi is a non-negative diagonal matrix that defines an

h-dependent quadratic penalty on x; and each µi is a mean parameter for the slab

variable si. With the energy function thus defined, the joint probability distribution

over the model variables is given by:

p(x, s, h) =
1

Z
exp {−E(x, s, h)} (10.4)

where Z is the normalizing partition function. The ssRBM joint distribution has

the very important property that it corresponds to the standard RBM bipartite

graph structure with the distinction that the hidden units are considered to form

N cliques consisting of paired spike and slab variables hi and si.

One way to understand the ssRBM model is to consider the form of its various

conditional distributions. We will begin by comparing the conditional form of
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p(x | h) as it arises in the Gaussian RBM (recall Eq. 10.2) and the ssRBM models.

In the ssRBM, we recover this conditional by marginalizing out the slab variables

s:

p(x | h) =
1

P (h)

1

Z

�
exp {−E(x, s, h)} ds

= N

�
Cx|h

N�

i=1

Wiµihi , Cx|h

�
(10.5)

where Cx|h =
�
Λ+

�
N

i=1Φihi −
�

N

i=1 α
−1
i

hiWiW T

i

�−1
. The last equality holds only

if the covariance matrix Cx|h is positive definite, which is not guaranteed from the

parametrization. In Section 10.3, we will discuss a few strategies, via constraints

on Λ and Φ, to ensure positive definiteness of Cx|h.

From Eq. 10.5 we see that, like the Gaussian RBM, the conditional p(x | h)

is Gaussian-distributed, however unlike the Gaussian RBM, the hidden units not

only encode the conditional mean but also specify the conditional covariance Cx|h.

Delving a bit deeper into the parametrization of the conditional p(x | h), we see

that the conditional mean of x given h and principal axis of conditional covariance

are related: active hidden variables (hi = 1) for which µi is relatively large will tend

to align the mean with the principal axes of variance, whereas hidden variables for

which µi is close to zero will only affect the directions of conditional variance.

This flexibility for the model to adaptively assign capacity to model either the

conditional mean or the conditional variance represents an innovation of the ssRBM

over previous work.

While the conditional p(x | h) demonstrates that the ssRBM is appropriately

parametrized for natural image modeling in that its conditional covariance is fully

general (i.e. not restricted to be diagonal as in the Gaussian RBM), the non-

diagonal covariance has another immediate consequence for learning: unlike the

Gaussian RBM, the elements of the ssRBM conditional p(x | h) are not indepen-

dent. This implies we cannot sample easily and efficiently from this conditional

using block Gibbs sampling. It might seem we have gained modeling power at the

expense of a more challenging sampling scenario (options include Hybrid Monte

Carlo (Neal, 1993), HMC). However, in the case of the ssRBM, another option is

available.

In addition to marginalizing out the slab variables s, it is also enlightening to
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condition on them, so that:

p(x | s, h) =
1

p(s, h)

1

Z
exp {−E(x, s, h)}

= N

�
Cx|s,h

N�

i=1

Wisihi , Cx|s,h

�
(10.6)

where Cx|s,h =
�
Λ+

�
N

i=1 Φihi

�−1
. That is, the conditional distribution of x given

both s and h is, once again, Gaussian distributed. Critically though, with diagonal

Λ and Φi (∀ i ∈ [1, N ]), the conditional covariance Cx|s,h is also diagonal. The

diagonal covariance allows us to sample from p(x | s, h) using block Gibbs sampling.

Equation 10.16 also shows the role played by Φi in augmenting the precision with

the activation of hi. Indeed, hidden unit i contributes a component not only to the

mean proportional to Wisi, but also to the global scaling of the conditional mean.

The next conditional distribution we consider is the conditional over the slabs

s given the spikes h and the observation x:

p(s | x, h) =
N�

i=1

N
��
α−1
i
xTWi + µi

�
hi , α−1

i

�
. (10.7)

As was the case with p(x | s, h), the conditional p(s | x, h) is once again Gaussian

distributed with diagonal covariance. Equation 10.7 also shows how the mean of

the slab variable si, given hi = 1, is linearly dependent on x, and as the precision

αi → ∞, si converges in probability to µi.

Finally we consider the conditional distribution over the latent spike variables

h given the observations. When we marginalize over s, this time we find that the

conditional does factorize, i.e. P (h | x) =
�

N

i
P (hi | x) with

P (hi = 1 | x) =
1

p(x)

1

Zi

�
exp {−E(x, s, h)} ds

= sigm

�
1

2
α−1
i
(xTWi)

2 + xTWiµi −
1

2
xTΦix+ bi

�
, (10.8)

where sigm indicates a logistic sigmoid. Equation 10.8 shows the interaction be-

tween three data-dependent terms. The first term, 1
2α

−1
i
(xTWi)2, is the contri-

bution due to the variance in s about its mean (note the scaling with α−1
i
) and
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(a) s mean param. µ (b) s precision param. α

(c) h bias b (d) x precision param. Φ

Figure 10.3: Sensitivity analysis of the ssRBM activation function.

The sensitivity of the spike-and-slab RBM feature activation curves, given by
E[s · h | x], to changes to model parameters (in the case of a one dimensional input v).
Default values for the model parameters are: µ = 0.0, α = 1.0, b = −3.0 and Φ = 0.0.

Unless specified by the legend, all parameter are at their default values.

appears in the sigmoid as a result of marginalizing out s. This term is always

non-negative, so it always acts to increase P (hi | x). Countering this tendency

to activate hi is the other term quadratic in x, −1
2x

TΦix, that is always a non-

positive contribution to the sigmoid argument. In addition to these two quadratic

terms, there is the term xTWiµi whose behaviour mimics the data-dependent term

in the analogous Gaussian RBM version of the conditional distribution over h:

PGRBM(hi | x) = sigm
�
xTWi + bi

�
.

One of the interesting aspects of the model is that, when using the model as a

feature learning mechanism, the ssRBM offers a choice in the feature representation

of the data. One natural choice is the expected product of the spike and slab

variables, E[s · h | x]. This choice has the potential advantage that, like the RBM

with rectified linear hidden units (Nair and Hinton, 2010), the feature activations

scale with the intensity of activation, through the action of the slab variable s. In

this way, the feature response can be said to be equivariant with respect to changes
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in intensity. Figure 10.3 shows how the quantity E[s ·h | x] changes as a function of

the model parameters. On the other hand, sometimes it is desirable to be invariant

with respect to changes in the intensity of activation. By taking P (h | x) as the

feature representation, the model can encode correlation patterns while remaining

relatively insensitive to local changes in intensity. In the case of natural images,

intensity often reflects illumination conditions and contrast levels – factors that are

often irrelevant to tasks of interest such as object classification (Bergstra et al.,

2011).

10.3 Positive Definite Constraints

The conditional p(x | h) is only a well-defined Gaussian distribution if the

covariance matrix Cx|h is positive definite (PD). However, as previously noted the

form of Cx|h (in Eq. 10.5) is not parametrized to guarantee that this condition is

met. In particular, if there exists an x such that xTCx|hx ≤ 0, then the covariance

matrix is not PD.

One way to deal with this issue is to restrict the domain of x to a finite box or

ball that encompasses all training data. In the case of the box constraint, this would

imply replacing the conditional Gaussian distribution of the visible variables in eqn.

10.16 with a truncated Gaussian distribution. In some cases (including the case of

pixel arrays from a CCD sensor) this restriction may be natural, because there are

physical reasons why observation vectors must necessarily be limited in magnitude.

Generally though, it would be preferable not to fix the modeling domain a priori,

and instead permit the training algorithm free reign over all of RD. To that end,

this section examines several techniques for constraining the basic ssRBM so that

the conditional covariance Cx|h, or equivalently the conditional precision matrix,

remains PD.

Specifically, we wish to constrain:

xTC−1
x|hx > 0 ∀x �= 0

That is, we need to ensure that Λ +
�

N

i=1Φihi is, in some sense, large enough to

offset
�

N

i=1 α
−1
i

WiW T

i
hi. Here we consider two basic strategies: (1) define Λ to be
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large enough to offset a worst-case setting of the h; and (2) define the Φi to ensure

that the contribution of each active hi is itself PD.

10.3.1 Constraining Λ

One option to ensure that Cx|h remains PD for all patterns of h activation is

to constrain Λ to be large enough. In setting a constraint on Λ, we will ignore the

contribution of the Φi terms (which leads to non-tightness of the constraint). Since

the contribution of every α−1
i
WiW T

i
hi term is negative semi-definite, the worst case

setting of the h would be to have hi = 1 for all i ∈ [1, N ]. This implies that Λ must

be constrained such that:

xT
�
Λ−

N�

i=1

α−1
i

WiW
T

i

�
x > 0 ∀x �= 0. (10.9)

If we constrain Λ to be a scalar matrix, i.e. Λ = λI, then the problem of

enforcing a PD precision matrix reduces to ensuring that λ is greater than the

maximum eigenvalue, ρ, of
�

N

i=1 α
−1
i
WiW T

i
. In practice we use the power iteration

method to quickly estimate an upper bound on the maximum eigenvalue, and then

constrain λ > ρ throughout training.

10.3.2 Constraining Φi

Another option to ensure that Cx|h remains PD for all patterns of h activation

is to constrain Φi to be large enough to ensure that the contribution of each hi is

PD. Let Wij be the jth element of the filter Wi (or equivalently, the ijth element

of the weight matrix W) and let Φij denote the jjth element of the diagonal Φi

matrix. We can ensure that Cx|h is positive definite if we constrain Φij either as i:

Φij = ζij + α−1
�

j

W 2
ij
I, (10.10)

where Φij takes the form of a scalar matrix, or as

Φij = ζij + α−1DW 2
ij
, (10.11)

i. Courville et al. (2011b) present the details of the derivation of this constraint.



10.4 Learning in the ssRBM 120

where the jth elements on the diagonal of Φi is scaled with W 2
ij
(recall D is the

dimension of the observation vector). In both cases, the parameter ζij > 0 provides

an extra degree of freedom to Φij to be estimated through maximum likelihood

learning. These are of course not the only option for parametrization of Φi. However

they are particularly simple constraints that offer complimentary behaviour. In

the case of Φij parametrized as in Eq. 10.10, the presence of the
�

N

i
Φihi as a

scaling term implies that the activation of any hi will have an effect on the scaling

of the mean across the entire observation vector irrespective of how localized is

the corresponding filter Wi. Unsurprisingly, use of this parametrization tends to

encourage both sparse activation of hi and Wi having relatively large receptive

fields. The parametrization of Φij as in Eq. 10.11 has the property that the Φi

receptive fields are steered in the direction of Wi. Where Wi is near zero, Φi is

relatively unconstrained. This is an appealing property for modeling images or

other data that give rise to sparse receptive fields Wi. We will empirically explore

these constraints and there effect on the ssRBM as a feature learning and extraction

algorithm.

10.4 Learning in the ssRBM

As is typical of RBM-styled models, learning in the ssRBM is rooted in the

ability to efficiently draw samples from the model via block Gibbs sampling. As

previously discussed, the conditionals P (h | x), p(x | h), p(s | x, h) and p(x | s, h)

possess some important properties with regard to sampling. First, consider the

standard RBM Gibbs sampling scheme of iteratively sampling from P (h | x) and

p(x | h) with s marginalized out. Sampling from P (h | x) is straightforward, as

Equation 10.8 indicates that the hi are all conditionally independent given x. Under

the assumption of a positive definite covariance matrix, the conditional distribution

p(x | h) is multivariate Gaussian with non-diagonal covariance Cx|h. As previously

discussed, sampling from p(x | h) would require the calculation of the covariance

matrix (via matrix inverse) with every weight update. Fortunately, in the case of

the ssRBM, rather than sampling directly from p(x | h), we can sample the slab

vector from p(s | h, x), which is Gaussian distributed with diagonal covariance.

Then, given both s and h, we can sample x from the conditional p(x | s, h),
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which is also Gaussian distributed with diagonal covariance. Taken all together

the triplet P (h | x), p(s | x, h) and p(x | s, h) forms a three-phase block-Gibbs

sampling scheme that allows us to sample efficiently from the ssRBM.

In training, we use the stochastic maximum likelihood algorithm (SML, also

known as persistent contrastive divergence) (Tieleman, 2008). We follow the data

log likelihood gradient ∂

∂θi

��
T

t=1 log p(xt)
�
, is:

−

T�

t=1

�
∂

∂θi
E(xt, s, h)

�

p(s,h|xt)

+ T

�
∂

∂θi
E(x, s, h)

�

p(x,s,h)

The log likelihood gradient takes the form of a difference between two expec-

tations, over p(s, h | xt) in the “clamped” condition, and over p(x, s, h) in the “un-

clamped” condition. As with the standard RBM, the expectations over p(s, h | xt)

are amenable to analytic evaluation. The expectations over the model distribution

p(x, s, h) is approximated by samples drawn from the ssRBM three-phase Block

Gibbs sampler. Typically in SML, only one or a few Markov Chain (Gibbs) simu-

lations are performed between each parameter update.

10.5 Related Models of Conditional Covariance

As discussed in the introduction, there are other Boltzmann Machine-based

models with the goal of modeling the kind of statistical structure found in natural

images. For instance, as previously discussed, RBMs with rectified linear hidden

units (Nair and Hinton, 2010) possess a similar equivariance of intensity as the

ssRBM slab variables. However, unlike the model of Nair and Hinton (2010),

the ssRBM is expressed naturally as a simple energy function. This allows us to

consider simple extensions of the model that we consider in later sections. The

models that are most closely related to the ssRBM are the mcRBM (Ranzato and

Hinton, 2010) and the mPoT model (Ranzato et al., 2010). Here we briefly review

these models and compare them to the spike-and-slab RBM.
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10.5.1 The Mean and Covariance RBM

Similar to the ssRBM, mean and covariance RBM (mcRBM) is a Boltzmann ma-

chine that models the observation x as a multivariate Gaussian distributed quantity

with general covariance structure. However it does so via a very different mech-

anism. The mcRBM uses its hidden layer to independently parametrize both the

mean and covariance of the data through two sets of binary hidden units. The model

combines the covariance RBM (cRBM) (Ranzato et al., 2010) with the Gaussian

RBM. The cRBM components model the conditional covariance structure, with

the Gaussian RBM capturing the conditional mean. With Nc covariance units:

hc ∈ {0, 1}Nc , and Nm mean units: hm ∈ {0, 1}Nm , the mcRBM model is defined

via the energy function:

Emc(x, h
c, hm) = −

1

2

N
c�

j=1

hc

j

�
xTCj

�2
−

N
c�

j=1

bc
j
hc

i
+ Em(x, h

m),

where Cj is the weight vector associated with covariance unit hc

i
and bc is a vector

of covariance unit biases. The energy function defines a conditional distribution

over the observations given hm and hc with a fully general multivariate Gaussian

distribution:

pmc(x | hm, hc) = N

�
Σ

�
N

m�

j=1

Wjh
m

�
,Σ

�
, (10.12)

with covariance matrix Σ =
��

N
c

j=1 hjCjCT

j
+ I

�−1
. The conditional distributions

over the binary hidden units hm

i
and hc

i
form the basis for the feature representation

in the mcRBM and are given by:

Pmc(h
m

i
= 1 | x) = sigm
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The mcRBM can be trained using contrastive divergence or SML which require

the ability to draw samples from the model. However, due to its non-diagonal

conditional covariance structure, sampling from pmcRBM(x | hm, hc) would require

computing the Σ−1 at every iteration of learning. This leads to an impractical
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computational burden for even moderately sized observations. Ranzato and Hinton

(2010) avoid direct sampling from the conditional 10.12 by sampling directly from

the marginal p(x) using hybrid Monte Carlo (Neal, 1993) on the the mcRBM free

energy.

10.5.2 Mean - Product of Student’s T-distributions

The mean-product of Student’s t-distribution (mPoT) model (Ranzato et al.,

2010) extends the PoT model (Welling et al., 2003) in a manner similar to how the

mcRBM extends the cRBM. Specifically by include nonzero Gaussian means by the

addition of Gaussian RBM-like hidden units. The PoT model is an energy-based

model where the conditional distribution over the observation is a multivariate

Gaussian (non-diagonal covariance) and the complementary conditional distribu-

tion over the hidden variables are a set of conditionally independent Gamma dis-

tributions. The mPoT energy function is given as:

Emp(x, h
m, hc) = Em(x, h

m) +
�

j

�
hc

j

�
1 +

1

2

�
CT

j
x
�2
�
+ (1− γj) log h

c

j

�

where Cj is the weight vector associated with covariance unit hc

j
. The mPoT

model energy function specifies a multivariate Gaussian conditional distribution

over x with non-diagonal covariance. While the covariance units hc are condition-

ally Gamma-distributed:

Pmp(h
c

j
| x) = G

�
γj, 1 +

1

2

�
CT

j
x
�2
�

As both the mPoT model and mcRBM give rise to multivariate Gaussian condi-

tional distributions over the observations with non-diagonal covariance structure,

it is unsurprising that mPoT parameter learning encounters the same difficulties as

encountered with the mcRBM. Ranzato et al. (2010) also advocate direct sampling

of p(x) via hybrid Monte Carlo.

10.5.3 Comparing the ssRBM to the mcRBM, mPoT

The mcRBM and the mPoT model differ from the ssRBM in a number of in-

teresting ways. First, while both the mcRBM and mPoT models resort to hybrid
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Monte Carlo, the design of the ssRBM admits a simple and efficient Gibbs sam-

pling scheme. It remains to be determined if this difference impacts their relative

feasibility though it seems likely that the ssRBM might prove a more flexible frame-

work for further extensions. The later sections of the paper set out to highlight

this aspect of the model.

Another difference between these models is how the conditional covariance of

the observation is parametrized. The mcRBM and mPoT both model the covari-

ance structure of the observation as
��

N
c

j=1 h
c

j
CjCT

j
+ I

�−1
, using the activation

of the hidden units hj > 0 to enforce constraints on the conditional covariance in

the direction Cj. In contrast, the ssRBM specifies the conditional covariance of

the observations as
�
Λ+

�
N

i=1 Φihi −
�

N

i=1 α
−1
i
hiWiW T

i

�−1
, i.e. using the hidden

spike activations hi = 1 to pinch the precision matrix along the direction speci-

fied by the corresponding weight vector. In fact, the covariance structure of the

ssRBM conditional p(x | h) (Eq. 10.5) is very similar to the product of probabilis-

tic principal components analysis (PoPPCA) model (Williams and Agakov, 2002)

with components corresponding to the µ-ssRBM weight vectors associated with the

active hidden units (hi = 1). In the over-complete setting, sparse activation with

the ssRBM parametrization permits significant variance (above the nominal vari-

ance given by Λ−1) only in the select directions of the sparsely activated hi. In the

case of the mPoT model or the mcRBM, an over-complete set of constraints on the

covariance implies that capturing arbitrary covariance along a particular direction

of the input requires removing potentially all constraints with positive projection

in that direction. This would suggest that these models are less well suited in the

overcomplete setting.

10.6 Exp. I: ssRBM on Natural Images

In this section, we demonstrate the utility of the ssRBM on the CIFAR-10

dataset (Krizhevsky and Hinton, 2009) by classifying images and by sampling from

the model. Our experiments explore the roles of µ and Φ and the effects of the Λ

and Φ PD constraints. In this first set of experiments we use the CIFAR-10 image

classification dataset consisting of 40K training images, 10K validation images,

and 10K test images. The images are 32-by-32 pixel RGB images. Each image is
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Figure 10.4: ZCA-whitened training data and parameters learnt by the ssRBM reveal
filters that neatly separate luminance and color oriented edges. The combination of W
and Φ gives individual units more representational flexibility, and yields a wider variety
of features.

labelled with one of ten object categories (aeroplane, automobile, bird, cat, deer,

dog, frog, horse, ship, truck) according to the most prominent object in the image.

10.6.1 Classification

We evaluate the ssRBM as a feature-extraction scheme by plugging it into the

classification pipeline developed by Coates et al. (2011). Broadly, the ssRBM is

fit to (192-dimensional) 8x8 RGB image patches, and then applied convolutionally

to the 32x32 images. The image patches (starting from pixels between 0 and 255)

on which the ssRBM was trained were centered, and then normalized by dividing

by the square root of their variance plus a noise-cancelling constant (c = 10). The

normalized patches were whitened by ZCA (Hyvärinen et al., 2001) with a small

positive constant (0.1) added to all eigenvalues. The resulting patches (Figure 12.4,

top left) are mostly grey with high spatial frequencies amplified, and lower spatial

frequencies attenuated. Our models were trained from the 16 non-overlapping 8x8

patches from each of the first 10K training set images in CIFAR-10 (for a total of

160K training examples).
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Table 10.1: The performance of ssRBM variants with 256 hidden units in CIFAR-10
image classification (± 95% confidence intervals). “no PD” = without PD constraint.

Model Accuracy (%)
no PD, µ free, Φ free 73.1 ± 0.9
no PD, µ free, Φ = 0 71.43 ± 0.9
no PD, µ = 0, Φ free 71.19 ± 0.9
no PD, µ = 0, Φ = 0 68.92 ± 0.9
PD by Diag. W (Eq. 10.11) 69.1 ± 0.9
PD by Λ (Eq. 10.9) 68.3 ± 0.9
PD by scal. mat. (Eq. 10.10) 67.1 ± 0.9

Models were trained for one hundred thousand minibatches of 100 patches. On

an NVIDIA GTX 285 GPU this training took on the order of 15 minutes for most

models. We used SML training (Younes, 1998; Tieleman, 2008). Classification

was done with an �2-regularized SVM. The SVM was applied to the conditional

mean value of latent spike (h) variables, extracted from every 8x8 image patch in

the 32x32 CIFAR-10 image. Prior to classification, our conditional h values were

spatially pooled into 9 regions, analogous to the 4 quadrants employed in Coates

et al. (2011). For a model with N hidden units, the classifier operated on a feature

vector of 9N elements.

Figure 12.4 shows the filters W and Φ for the trained ssRBM. When Φ = 0, the

ssRBM filters display the characteristic Gabor-like edge detectors and look similar

to filters learned using a variety of methods such as sparse coding. When Φ is free to

be estimated via approximate likelihood maximization, they tend to form localized

receptive fields that match those of the corresponding filters W . Comparing the

filtersW , between the Φ = 0 and Φ free, shows that Φ can have a significant impact

on the evolution of the filters. When Φ is free, the filters W display significantly

more variety of form.

Table 10.1 shows the results of an ablative analysis on the ssRBM model. For

this comparison all variants were trained with a mild sparsity penalty aimed at

maintaining 15% activity, and were configured with 256 hidden units. The sparsity

penalty is a KL-divergence penalty penalizing average spike variable activity above

and below 15% activity. This penalty was done to ensure that all of the hidden

units are engaged by the model. The strength of regularization was picked to be

just strong enough to have the desired effect, of engaging the full set of hidden units.
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Table 10.2: The performance of ssRBM relative to other generative feature-learning
models in the literature for CIFAR-10 (± 95% confidence interval).

Model Accuracy (%)
ssRBM (4096 units) 76.7 ± 0.9
ssRBM (1024 units) 76.2 ± 0.9
ssRBM (512 units) 74.1 ± 0.9
ssRBM (256 units) 73.1 ± 0.9
Deep net, learned RFs (3200) 82.0 ± 0.9
conv. trained DBN 78.9 ± 0.9
mcRBM (225 factors) 68.2 ± 0.9
cRBM (900 factors) 64.7 ± 0.9
cRBM (225 factors) 63.6 ± 0.9
Gaussian RBM 59.7 ± 1.0

We experimented with simplifications to the energy function µ = 0 and Φ = 0. We

found that the full model, with both µ and Φ, without any constraint to operate in

a strictly PD regime, worked the best. Removing the µ or Φ term from the energy

function cost about 1.5% classification accuracy, and removing both cost about 3%.

The constraints that the model operate in a strictly PD regime also detracted from

classification performance by between 4% and 6%.

Table 10.2 situates the performance of the ssRBM in the literature of results

on CIFAR-10. The ssRBM outperforms related energy models GRBM, cRBM,

and mcRBM as a feature extractor for classification on CIFAR-10. Although some

of the differences in performance may almost certainly be attributable to differ-

ences in the pre-processing and classification details Ranzato and Hinton (2010),

as we’ve argued in Section 10.5.3, since the mcRBM models the data in terms

of constraints rather than directions of variance, they are less well suited to the

sparse and overcomplete regime where we see the best performance for the ssRBM.

In this task, it appears that the ability to model the conditional mean, exhibited

by both the ssRBM and the mcRBM is important factor in improving performance

over models such as the cRBM that are not able to model the conditional mean

with its hidden units. The “conv. trained DBN” result is the convolutionally

trained two-layer Deep Belief Network (DBN) with rectified linear units, reported

in Krizhevsky (2010). Recently this method has been improved via a Bayesian op-

timization scheme (Snoek et al., 2012b) to achieve 85.0% accuracy. The “Deep net,
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learned RFs”result is from Coates and Ng (2011b), a deep neural network is formed

by greedy layer-wise unsupervised training, using vector quantization (clustering)

to learn the filters and a correlation-based mechanism to learn receptive fields for

higher-layer units. Earlier work by Coates and Ng (2011a) has shown that even

simple dictionary-learning algorithms such as K-means can yield highly effective

feature extractors for CIFAR-10, if only they are used to extract sufficiently many

features (thousands). Training the ssRBM with thousands of hidden units yielded

less marginal gain than was observed in the case of K-means, but this is possibly

because we did not properly optimize the hyper-parameters for this case.

10.6.2 Model Samples

We also trained a version of the ssRBM convolutionally, following the convo-

lutional RBM described in Krizhevsky (2010). Our convolutional implementation

of the ssRBM included 1000 fully-connected units to capture global structure, and

64 hidden units for every image position using 9x9 RGB filters. The model was

trained on the CIFAR dataset, centered and globally contrast normalized. Filters

W and Φ were shared across the image, though independent scalar-parameters µi,

αi, and hidden unit bias bi were allocated for each individual hidden unit.

Figure 10.5 illustrates some samples drawn from the model. The samples are

taken from the negative phase at the end of training, with the learning rate annealed

to near zero, (≈ 10−6). These samples exhibit global coherence, and sharp region

boundaries. Qualitatively, these samples compare favorably with samples from

similar energy-based models, such as those featured in Ranzato et al. (2010) with

samples drawn from the mPoT model. Much like we see in binary and Gaussian

RBMs, the negative phase Gibbs sampler for a thoroughly trained ssRBM can

mix very slowly, as it does in this convolutionally-trained version. As is the case

with these other models, we can turn to established methods, such as tempering

to overcome this challenge to sampling (Salakhutdinov, 2010b; Desjardins et al.,

2010b; Cho et al., 2010).
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Figure 10.5: Samples of an ssRBM trained on CIFAR-10

(Left) Samples drawn from a convolutionally trained ssRBM (Left), and (Right) closest
matching images from the CIFAR-10 training set (L2 distance with contrast normalized
training images). Samples have the general appearance of dataset images, and the dis-
similarity to corresponding training images indicates that the model has not memorized
training points.

10.7 ssRBM for Discrete Data

Unlike related models such as the mcRBM and mPoT, the ssRBM provides a

natural framework for capturing conditional covariance in discrete data. Here we

will outline an ssRBM model for binary observations v ∈ {0, 1}D. A formulation

for multinomial-valued observations (v ∈ {1, . . . , c}D) would be similar.

10.7.1 Model

The spike-and-slab energy function serves perfectly well when v is binary:

E(v, s, h) =−
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except that compared with the original energy function (Eq. 10.3) the quadratic

in x is redundant, and in Eq. 10.13 it collapses to the linear term
�

D

j=1 ρjvj with

visible biases ρj, for j ∈ [1, . . . , D]. Note that we have set Φi = 0 to simplify the

parametrization of the model. This is the case for all of the extensions we will

consider in the remainder of this article. Even with binary data, the real-valued

slab variables s are meaningful. Their variation will capture covariance information
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in the binary v, just as in the case of real-valued x.

With regards to the conditionals, the first thing to note is that changing x from a

real-valued vector to the binary vector v does not affect the conditional distributions

over s or h that arise from conditioning on v. The conditionals p(s | v, h) and

P (h | v) are identical to their form in the case of real-valued x and are given

by Eqs. 10.7 and 10.5 respectively. The conditional distributions over v are of

course affected by its binary nature. It is straightforward to show that, given s,

the conditional distribution over the binary visible vector v factorizes:

p(v | s, h) =
p(v, s, h)

p(s, h)

=
1
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so that the conditionals over the individual elements of v can be expressed by:

p(vj = 1 | s, h) = sigmoid

�
N�

i=1
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�
.

This conditional is similar to the standard RBM model over binary data, with the

addition of real-valued si variable.

We can glean some insight into the role of the si by considering the conditional

over v with s marginalized out.
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While this distribution is less familiar than the Gaussian that emerged as p(x | h) in

the real-valued case (Eq. 10.5), marginalizing out s critically renders the elements

of the input v conditionally dependent. An ssRBM on binary-valued observations

is not a reparametrized vanilla RBM. Sampling p(v | h) directly would be difficult,

perhaps requiring sequential Gibbs sampling from the elements of v. Unlike in

the real-valued setting, a discrete domain for v removes any concern regarding the

potential for a non-PSD conditional covariance.
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Empirical investigation of the utility of the ssRBM on binary or discrete data

is left for future work. However, it is not hard to imagine that in some tasks the

real-valued modeling of discrete covariance might be useful. To take document

modeling as one example, it may well be desirable to learn a feature representation

that captures the covariance of word counts (or the covariance of the probability

of word appearance), conditional on an abstract topic identified by the distributed

representation of the binary vector h.

10.7.2 Exp. II: Binary Visible Data

We evaluate the binary extension of the ssRBM on MNIST, the hand-written

character recognition dataset (LeCun et al., 1998). As with our previous classi-

fication experiments, we first perform unsupervised learning using SML and in a

second phase, use the latent representation of the RBM (conditional mean of the

latent variables h) as input to an �2-regularized linear SVM.

We compare the ssRBM to a traditional binary-binary RBM, choosing the

hyper-parameters through random-search (Bergstra and Bengio, 2012). For each

model family, we ran 100 different experiments varying the hyper-parameters as

follows: number of hidden units in [500, 1500], initial weights sampled from a zero-

mean normal distribution with standard deviation in {10−3, 10−2, 10−1, 0.5}, sparse

activation targets (as described in Hinton (2010)) in {0.05, 0.1, 0.2} and giving the

sparsity regularization term a weight in {0, 10−1, 10−2, 10−3, 10−4}. Learning rates

were chosen to have a linear decreasing schedule, with start and end points ran-

domly sampled i from {10−2, 10−3, 10−4} and performed up to 500k updates with

a mini-batch of size 64. While the unsupervised training was performed on the

entire 60k training set, the SVM was trained on the first 50k labels of the MNIST

training set only, using the last 10k to select the hyper-parameters. Test set error

is reported after retraining the optimal SVM on the entire training set.

The 20 best resulting models are shown in Figure 10.6. Overall, the lowest

classification error obtained by the binary ssRBM is 1.39%, while the RBM achieves

1.67%. In comparison, Local Coordinate Coding achieves 1.64% error (Yu and

Zhang, 2010). Interestingly, the filters obtained by the best performing ssRBM

are noticeably different than those obtained with an RBM. A random subset of

i. We additionally constrain the learning rate endpoint to be smaller or equal to the starting
learning rate.
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Figure 10.6: MNIST classification results using the binary-input ssRBM

MNIST Classification Results. Plot shows test vs. validation error for the 20-best RBM
and (binary) ssRBM models.

filters is shown in Figure 10.7. The ssRBM filters appear more diverse, capturing

both local (pen-strokes, letter-boxing artifacts) and some more global filters (digit

outlines, as well as high-frequency circular gratings).

10.8 ssRBM for Spike-and-Slab Data

One variation of the ssRBM framework that may be of particular interest is

how it can be used to model sparse, real-valued data. In particular, we consider a

spike-and-slab RBM on spike-and-slab modeled data (S4RBM). That is we consider

an observation pair [x, v] where x is a real-valued slab vector and v are binary spike

variables. Obviously this setting is interesting from the perspective of stacking the

ssRBM to form a spike-and-slab deep belief net (ssDBN). We can train an ssRBM

to model the hidden unit activations of the ssRBM in the layer below. However

it might also be an excellent way to model sparse real-valued data where elements

of the observation vector are either exactly zero or otherwise real-valued. In this

setting, the observation is modeled as the element-wise product x◦v. When vj = 0,

one may easily impute the missing x (as it is not directly observed).
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(a) RBM filters. (b) ssRBM filters.

Figure 10.7: Filters learnt by the binary-input ssRBM, trained on MNIST

Random subset of filters drawn from the best performing (Left) RBM and (Right)
binary-visible ssRBM models of the MNIST classification experiments of Section 10.7.2.
ssRBM filters are noticeably different and appear more diverse, capturing both local

and global structure in the input.

10.8.1 Model

The ssRBM with spike-and-slab observations is defined by the energy function:

E(x,v, s, h) =
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where the model parameters are defined as before, with ρj for j ∈ [1, . . . , D] acting

as a bias on v and λj is the precision weight for xj. Note: while it is techni-

cally straightforward to include the terms involving the Φi to the S4RBM energy

function, we have suppressed them to simplify the model.

As one might expect, the conditionals reveal a symmetry between the condition-

als P (v | s, h) and p(x | v, s, h) and the conditionals P (h | x, v) and p(s | x, v, h),
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all of which factorize with the conditional distributions over the elements given by:
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In the case of spike-and-slab observations, the block Gibbs sampling scheme be-

comes a 4-phase algorithm iteratively drawing samples from the conditionals P (h |

x, v), p(s | x, v, h), P (v | s, h) and then p(x | v, s, h).

As revealed in the ssRBM experiments in section 10.6, using parameter con-

straints to ensure that the marginal distribution of the data remains well defined

(with a positive definite covariance matrix) resulted in a decrease in classification

performance. For this reason, our experiments with the S4RBM used no such con-

straint. Provided we initialized the model in a stable (PD) regime and used a

sufficiently small learning rate (<= 1e-3), we did not experience any difficulty in

maintaining stability.

10.8.2 Exp. III: Spike-and-Slab Data

We trained stacked S4RBMs on the output of the best 1-layer model of Sec-

tion 10.7.2. We employed the typical greedy layer-wise training procedure of Deep

Belief Networks and used the concatenation of all binary latent variables as input

to a �2-regularized linear SVM. MNIST results are shown in Table 10.3.

The 2-layer ssDBN achieves an impressive test error of 1.21%, which is compa-

rable to the original Deep Belief Network results of Hinton et al. (2006), but were

obtained without the need for fine-tuning. The rich latent representation learnt

by the ssRBM thus seems better suited at capturing discriminative information

present in the input.
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Table 10.3: Classification error obtained by ssDBNs on MNIST.

Model Validation (%) Test (%)
ssRBM (1363 units) 1.49 1.39
ssDBN (1363-1000 units) 1.27 1.21
ssDBN (1363-1000-1000 units) 1.29 1.21

10.9 Subspace Spike-and-Slab RBM

The principle that invariant features can actually emerge, using only unsuper-

vised learning, from the organization of features into subspaces was first established

in the ASSOM model (Kohonen, 1996). Since then, the same basic strategy has

reappeared in a number of different models and learning paradigms (Hyvärinen

and Hoyer, 2000; Le et al., 2010; Kavukcuoglu et al., 2009; Ranzato and Hinton,

2010). The strategy is to group filters together by, for example, using a variable

(the pooling feature) that gates the activation for all elements of the group. This

gated activation mechanism causes the filters within the group to share a common

window on the dataset, which in turn leads to filter groups composed of mutually

complementary filters. In the end, the span of the filter vectors defines a subspace

which specifies the directions in which the pooling feature is invariant. Somewhat

surprisingly, this basic strategy has repeatedly demonstrated that useful invariant

features can be learned in a strictly unsupervised fashion, using only the statistical

structure inherent in the data.

In this section we explore how the spike-and-slab model can be straightfor-

wardly extended to a subspace feature learning method: the subspace ssRBM. We

arrive at the subspace ssRBM by simply generalizing the slab variable associated

with hidden unit i to a slab vector of dimension L: si ∈ RL and associating an

independent weight vector Wil with each element of the slab vector. What this

extension implies is that each binary spike variable hi is associated with a set of L

slab variables and their associated weight vectors. Modifying the original ssRBM

energy function to incorporate this extension is a trivial matter of converting the

relevant scalar operations to vector and matrix operations (not shown). All condi-

tionals are equivalent except the conditional P (hi = 1 | x) which must incorporate

all interactions between the observations and the weight vectors associated with hi:
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Table 10.4: MNIST classification error of a subspace (binary input) ssRBM with
(a) N = 500 hidden units and a pooling size L ∈ {1, 3, 5} and (b) L = 1 with
N ∈ {500, 1.5K, 2.5K} as a function of the number of supervised training examples.

Number of N=500 N=500 L=1
Labels L=1 L=3 L=5 N=1500 N=2500
10 18.21 14.51 13.44 19.17 22.00
100 5.82 5.22 5.03 6.32 6.70
1000 2.94 2.70 2.69 2.64 2.99
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In contrast to the standard ssRBM or the S4RBM, when applied to real-valued

data, subspace-ssRBM is more susceptible slipping outside the parameter regime

in which the marginal distribution over the visible units is assured to be positive

definite. Rather than enforce the parameter constraints we explored in Sec. 10.3,

we opted for a simple box constraint on the visible variables that enclosed the

training data. For each data points all dimensions that fell outside the interval

were clipped to the interval boundary. In order to enforce the box constraint for

the negative phase samples (see Sec. 10.4), for each dimension of x, we use a

truncated normal (T N ) distribution with truncation interval [xL, xH ]:

p(xj | s, h) = T N
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where Cxj |s,h =
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that is the jth element along the diagonal of the covariance matrix Cx|s,h. This

distribution defines a Gaussian distribution for xL < xj < xH and P ((xj >= xH) ∪

(xj <= xL)) = 0. In our experiments this constraint on the domain of the visible

units worked well.
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10.9.1 Exp. IV: Subspace ssRBM

We now attempt to quantify the effect of pooling on classification performance.

In particular, we try to determine whether for a fixed network capacity (i.e. number

of filters), it is better to use pooling (L > 1) or simply increase the number of hidden

units to L×N .

MNIST: We trained various subspace (binary input-valued) ssRBM models on

MNIST, measuring classification error as a function of both pooling size and number

of training examples used by the SVM. Models were chosen to have either N = 500

with L ∈ {1, 3, 5} or L = 1 with N ∈ {500, 1.5K, 2.5K} hidden units. The number

of training labels was restricted to {10, 100, 1K} (per class). Hyperparameters

were otherwise chosen from a range similar to Section 10.7.2, with the exception of

learning rates which were held constant in {10−1, 10−2, 10−3}.

The results are presented in Table 10.4. We can see that for models having

equivalent capacity, pooling is always beneficial in the low-labeled data regime

(shown in italic). When limiting ourselves to 10 training labels, the best pooling

model (N = 500, L = 5) achieves 13.44% classification error, a reduction of 29.9%

compared to the 19.17% error achieved by the best un-pooled configuration (N =

1500, L = 1). Pooling remains beneficial when using 100 labels, decreasing the

error of the best non-pooled model from 6.32% to 5.03% with pooling, a decrease

of about 20.4%. When using 1k labels, the benefits of pooling seem to be offset by

the benefits of using a larger output layer: a model with N = 1500 hidden units

and no-pooling achieved 2.64% error, compared to 2.69% with pooling.

These results should not come as a surprise. It is a fairly well known result that

large over-complete representations are best when using simple linear classifiers

(Coates et al., 2011). In the low-data regime however, training a large output

layer becomes problematic due to overfitting. By allowing each hidden unit to be

invariant to a larger subspace of the input, pooling can yield a richer representation,

while restricting the dimensionality of the output.

A random subset of filters from a competitive pooling model with L = 3 is

shown in Figure 10.8(left). We can see that filters belonging to the same pool

(consecutive groups of 3 filters, e.g. outlined in red or blue) tend to learn similar

pen-strokes, often with offsets in position, curvature or phase.
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Table 10.5: CIFAR-10 classification error of a fully-connected subspace ssRBM with (a)
N = 500, L ∈ {1, 3, 5} and (b) L = 1 with N ∈ {500, 1.5K, 2.5K} as a function of the
number of supervised training examples.

Number of N=500 N=500 L=1
Labels L=1 L=3 L=5 N=1500 N=2500
500 57.23 53.16 51.10 58.09 57.37
1000 54.29 50.42 48.26 53.56 52.88
2000 52.34 48.95 46.57 49.64 47.66

CIFAR-10: We now perform similar experiments on the CIFAR-10 dataset. Prior

to training, the images were preprocessed by first performing global contrast nor-

malization, followed by a ZCA whitening transform. We again compare models with

N = 500 and L ∈ {1, 3, 5} to models with no-pooling and N ∈ {500, 1.5K, 2.5K}

and vary the number of training labels in {500, 1K, 2K} i. The results are shown in

Table 10.5. With (N = 500, L = 5), we achieve 51.1% error, an 11% reduction in

error compared to the 57.37% achieved with (N = 2500, L = 1). As with MNIST,

this relative boost in performance drops as we increase the number of training la-

bels at our disposal: an 8.74% reduction in error with 1k labels, and 2.3% using

2k labels. Note that the goal of this experiment was to perform a comparative

analysis. We did not employ convolutional architectures, depth nor large models

of 10k units. This explains the gap with other published results (Yu and Zhang,

2010; Krizhevsky, 2010).

Figure 10.8(right) shows a random subset of filters, obtained with L = 3. We

can clearly see a topological structure, which emerges from the pooling. Filters

belonging to the same pool are similar but span rich subspaces through subtle

shifts in phase, curvature and orientation of the Gabor-like filters. Interestingly,

we also see filters with two (sometimes overlapping) edge detectors, which was not

observed with L = 1 (not shown).

i. Using fewer labels yielded a significantly worse performance, regardless of model capacity
and pooling size.
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Figure 10.8: Filters learnt by a subspace ssRBM on MNIST and CIFAR-10

Random subset of filters drawn from competitive pooled (Left) binary-input ssRBM
with L = 3, trained on MNIST, and (Right) ssRBM with L = 3 trained on global
contrast-normalized and whitened CIFAR-10 images. Filters belonging to the same
pool are arranged in contiguous blocks of L filters, with two examples shown with a

blue and red outline.

10.10 Conclusion

The spike-and-slab RBM offers a powerful framework for modeling real-valued

input data, in particular, we have explored its suitability for natural images. Unlike

the Gaussian RBM which is limited to modeling diagonal conditional covariances,

the slab variables affords the ssRBM rich modeling capacity. Contrary to the

mcRBM and mPoT models however, this does not come at the expense of the

simple RBM conditional dependency structure: the ssRBM allows for an efficient

blocks Gibbs sampling algorithm, by conditioning on the slab variables when sam-

pling from the visible units. One potential drawback of the ssRBM parametriza-

tion however, is that its energy function does not guarantee that the conditional

covariance on units x be positive definite. This issue can be side-stepped however
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by imposing additional constraints on Λ and Φ. On the competitive CIFAR-10

dataset, the ssRBM was shown to outperform many of its competing methods.

Since it does not rely on HMC for generating visible samples, the ssRBM can also

be naturally extended to modeling covariances in binary data and even sparse data.

In this paper we have also proposed two novel variants of the spike-and-slab

latent variable framework that target (1) discrete (especially binary) data and (2)

spike-and-slab data. We use the first of these to show how the spike-and-slab

framework can yield superior performance as a feature extractor compared to the

standard RBM for classification on the MNIST dataset. We then showed how

we can use the model variant with spike-and-slab data to support the stacking of

spike-and-slab RBMs in a spike-and-slab deep belief network (ssDBN). This model

was shown to provide fairly competitive results on MNIST classification without

the use of fine-tuning the model parameters for the discriminative task. We expect

that fine-tuning the ssDBN would result in further improvements in performance.

Finally, by extending slab variables to be vector-valued, one can learn features

(spikes) which are invariant to a subspace spanned by the set of filters associated

with each slab. We demonstrate the utility of this modeling framework on the

MNIST and CIFAR-10 dataset in the low-data limit. We should note that in the

low-labeled-training-data regime, that organizing the model capacity in the form

of these pools leads to a significant boost in classification performance.
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11.1 Article Details

Disentangling Factors of Variation via Generative Entangling. Guil-
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Personal Contribution. This paper is again the result of a close and ongoing

collaboration. Yoshua Bengio and Aaron Courville have a long standing interest

in disentangling factors of variation, and the original idea to extend the ssRBM

to the bilinear setting is Aaron Courville’s. The particular form of the model was

however developed jointly, after gaining new insights from the subspace ssRBM.

All of the coding and experimentation was performed by myself. The motivation

and model development sections of the paper were written by Aaron and Yoshua,

while I wrote the experimental and discussion sections of the paper. I would also

like to acknowledge and thank Ian Goodfellow, for developing an earlier version of

the toy dataset of Section 12.5.1.

11.2 Context

Chapter 10 has focused on learning rich invariant representations in the ssRBM

framework. Invariance has been a key driver in representation learning research. It

is typically obtained via spatial pooling; bag of (visual) words or spatial pyramid

approaches from computer vision; priors such as sparsity or slowness which have

been found to induce invariance; or learning richer invariant subspaces directly,

through the non-linear combination of small filter banks as seen in Chapter 10
i. Invariance however is a lossy process: while translation invariance might be a

i. See Chapter 12 for references and a more thorough treatment of the material.



11.3 Contributions 142

desirable property for object detection, it is completely at-odds with the related

task of object localization. This has led to a renewed effort to learn representations

which preserve as much information as possible about the input, while disentangling

the factors of variation (Bengio et al., 2013).

This is the topic of Chapter 12. It follows in the footsteps of bilinear sparse

coding (Tenenbaum and Freeman, 2000; Grimes and Rao, 2005; Olshausen et al.,

2007), transforming auto-encoders (Hinton et al., 2011), implicit mixtures of RBMs

(Nair and Hinton, 2009), general work on higher-order RBMs (Memisevic and Hin-

ton, 2010) and previous strictly supervised approaches to learning disentangled

representations (Osadchy et al., 2007).

11.3 Contributions

The main contribution of this paper is a framework for learning to disentangle

factors of variation in a completely unsupervised manner: factors are discovered

automatically via an unsupervised learning procedure which is agnostic to the un-

derlying factors present in the input. This is contrast to the work of Tenenbaum

and Freeman (2000); Grimes and Rao (2005) presented in Section 2.6.4: their work

relied on a structured training procedure in which subsets of units are clamped while

the input undergoes a known transformation. While transforming auto-encoders

(Hinton et al., 2011) offer a powerful hierarchical framework for disentangling pose

parameters, they similarly require advance knowledge of the transformations.

Our approach is also general in that the full rank nature of the weight tensor

allows it to capture arbitrary transformations of the data. Computational efficiency

is maintained via sparsity. In contrast, the approach of Olshausen et al. (2007) (also

completely unsupervised) was specifically crafted to separate amplitude from phase.

Another significant contribution is the connection between disentangling and

multi-way pooling. While invariance can be obtained by pooling over a subspace,

disentangling can be achieved by pooling over multiple complimentary views of a

given subspace.

Finally, the following paper represents to our knowledge the first successful

attempt at training third-order BMs, where two of the factors are latent.
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11.4 Recent Developments

It recently came to our attention that we failed to cite the work of Culpepper

et al. (2011), which predates publication of our work. Of all papers published on

the topic, it is the most similar to ours. Theirs is essentially a directed model equiv-

alent of a bilatent, factored third-order BM (see Section 2.6.3). This is particularly

interesting as our inability to train a factored bilatent ssRBM is what eventually

led to us using a sparse weight tensor instead. Another core, and perhaps crucial

difference between both methods, is in the use of different priors for each group of

latent variable (Gaussian vs. sparsity inducing), which has the benefit of breaking

the symmetry between latents g and h. Finally, the use of a second order optimiza-

tion (L-BFGS) may explain their ability to train such a factored bi-latent model.

This may warrant revisiting the factored bilatent ssRBM, but using the MFNG

training algorithm of Chapter 8 instead of (variational) SML.

Tang et al. (2013) proposed disentangling factors of variation through a multi-

linear extension of Factor Analysis (FA), dubbed Tensor Analyzers (TA). TAs

model the input x as a multi-linear interaction between a K-th order factor loading

tensor and K Gaussian latent variables z1, · · · , zk. The model’s training procedure

is similar to FA and relies on the EM algorithm (see Section 1.4.1): due to the

multi-linear interactions, inference is no longer closed form however and must be

approximated via Gibbs sampling. This is similar to our bilinear ssRBM, which

relies on either Gibbs or a variational approximation to the posterior. TAs are

shown to outperform FA in modeling complex distributions. On a facial recog-

nition task, the ability to separate identity information from lighting conditions

also provides the model with impressive one-shot learning performance on held-

out data. This echoes our conclusions from Chapter 10, where learning the right

invariance drastically improved performance in the low-labeled data regime.

The TA is closely related to our bilinear ssRBM formulation. At a high-level,

it can be considered as the directed model equivalent of our bilinear model. A core

difference is in the prior distribution: TAs use a Gaussian prior, while our bilinear

model relies on a spike & slab prior to perform non-linear density estimation. The

block-sparsity structure of our model also implements a mixture of bilinear ssRBMs,

where each block can model local bilinear interactions, much like the proposed

Mixture of TAs. In terms of drawbacks, inference in TAs appears rather costly as
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a single evaluation of p(z1 | x, z2) requires a matrix-inversion which is cubic in the

dimensionality of z1. In contrast, sampling from the same conditional is linear in

the bilinear ssRBM, but learning as a whole suffers from having to estimate the

gradient through the partition function.

Rifai et al. (2012) proposed a novel solution for separating K additive factors.

The Contractive Discriminative Analysis (CDA) loss linearly combines the loss

functions of K independent CAEs (trained jointly to reconstruct a given input),

with up to K logistic regressors. When labeled data is available for the k-th factor,

a linear classifier is trained to predict the associated factor label from the latent

representation of the k-th CAE. To promote learning complimentary views on the

data, additional terms in the loss function penalize colinear directions of variation

between the encoding function of the CAEs. At the time of publication, this led to

state-of-the-art results on the Toronto Face Dataset (TFD) (Susskind et al., 2010).

We hypothesize that the shallow encoder put forth in Rifai et al. (2012) would pre-

vent the CDA from disentangling factors having multiplicative interactions. While

the CDA framework does allow for a richer parametrization of encoding and de-

coding functions, its potential to disentangle general multiplicative factors remains

to be seen.

Similarly, the point-wise mixture RBM (pmRBM) (Sohn et al., 2013) exploits a

bilatent third-order BM to dynamically assign each input pixel to one of K groups.

In this manner, the pmRBM can learn to distinguish foreground (class relevant)

from background (class irrelevant) features. While the motivation is entirely differ-

ent, this model can be thought as a special case of our bilinear model: the groupings

can be implemented via a particular sparsity pattern of the weight tensor, while

the latent variable g found in the bilinear model is modified to have a multinomial

distribution.



12
Disentangling Factors of

Variation via Generative

Entangling

Here we propose a novel model family with the objective of learning to disen-

tangle the factors of variation in data. Our approach is based on the spike-

and-slab restricted Boltzmann machine which we generalize to include higher-order

interactions among multiple latent variables. Seen from a generative perspective,

the multiplicative interactions emulates the entangling of factors of variation. In-

ference in the model can be seen as disentangling these generative factors. Unlike

previous attempts at disentangling latent factors, the proposed model is trained

using no supervised information regarding the latent factors. We apply our model

to the task of facial expression classification.

12.1 Introduction

In many machine learning tasks, data originates from a generative process in-

volving complex interaction of multiple factors. Alone each factor accounts for a

source of variability in the data. Together their interaction gives rise to the rich

structure characteristic of many of the most challenging domains of application.

Consider, for example, the task of facial expression recognition. Two images of dif-

ferent individuals with the same facial expression may result in images that are well

separated in pixel space. On the other hand, two images of the same individuals

showing different expressions may well be positioned very close together in pixel

space. In this simplified scenario, there are two factors at play: (1) the identity

of the individual, and (2) the facial expression. One of these factors, the identity,

is irrelevant to the task of facial expression recognition and yet of the two factors

it could well dominate the representation of the image in pixel space. As a result,

pixel space-based facial expression recognition systems seem likely to suffer poor

performance due to the variation in appearance of individual faces.
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Importantly, these interacting factors frequently do not combine as simple su-

perpositions that can be easily separated by choosing an appropriate affine pro-

jection of the data. Rather, these factors often appear tightly entangled in the

raw data. Our challenge is to construct representations of the data that cope

with the reality of entangled factors of variation and provide features that may be

appropriate to a wide variety of possible tasks. In the context of our face data

example, a representation capable of disentangling identity and expression would

be an effective representation for either the facial recognition or facial expression

classification.

In an effort to cope with these factors of variation, there has been a broad-

based movement in machine learning and in application domains such as computer

vision toward hand-engineering feature sets that are invariant to common sources

of variation in data. This is the motivation behind both the inclusion of feature

pooling stages in the convolutional network architecture (LeCun et al., 1989) and

the recent trend toward representations based on large scale pooling of low-level

features (Wang et al., 2009; Coates et al., 2011). These approaches all stem from

the powerful idea that invariant features of the data can be induced through the

pooling together of a set of simple filter responses. Potentially even more powerful

is the notion that one can actually learn which filters to be pooled together from

purely unsupervised data, and thereby extract directions of variance over which the

pooling features become invariant (Kohonen et al., 1979; Kohonen, 1996; Hyvärinen

and Hoyer, 2000; Le et al., 2010; Kavukcuoglu et al., 2009; Ranzato and Hinton,

2010; Courville et al., 2011a). However, in situations where there are multiple

relevant but entangled factors of variation that give rise to the data, we require a

means of feature extraction that disentangles these factors in the data rather than

simply learn to represent some of these factors at the expense of those that are lost

in the filter pooling operation.

Here we propose a novel model family with the objective of learning to disen-

tangle the factors of variation evident in the data. Our approach is based on the

spike-and-slab restricted Boltzmann machine (ssRBM) (Courville et al., 2011b)

which has recently been shown to be a promising model of natural image data. We

generalize the ssRBM to include higher-order interactions among multiple binary

latent variables. Seen from a generative perspective, the multiplicative interactions

of the binary latent variables emulates the entangling of the factors that give rise
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to the data. Conversely, inference in the model can be seen as an attempt to assign

credit to the various interacting factors for their combined account of the data – in

effect, to disentangle the generative factors. Our approach relies only on unsuper-

vised approximate maximum likelihood learning of the model parameters, and as

such we do not require the use of any label information in defining the factors to be

disentangled. We believe this to be a research direction of critical importance, as

it is almost never the case that label information exists for all factors responsible

for variations in the data distribution.

12.2 Learning Invariant Features Versus

Learning to Disentangle Features

The principle that invariant features can actually emerge, using only unsuper-

vised learning, from the organization of features into subspaces was first estab-

lished in the ASSOM model (Kohonen, 1996). Since then, the same basic strategy

has reappeared in a number of different models and learning paradigms, includ-

ing topological independent component analysis (Hyvärinen and Hoyer, 2000; Le

et al., 2010), invariant predictive sparse decomposition (IPSD) (Kavukcuoglu et al.,

2009), as well as in Boltzmann machine-based approaches (Ranzato and Hinton,

2010; Courville et al., 2011a). In each case, the basic strategy is to group filters

together by, for example, using a variable (the pooling feature) that gates the ac-

tivation for all elements of the group. This gated activation mechanism causes

the filters within the group to share a common window on the dataset, which in

turn leads to filter groups composed of mutually complementary filters. In the

end, the span of the filter vectors defines a subspace which specifies the directions

in which the pooling feature is invariant. Somewhat surprisingly, this basic strat-

egy has repeatedly demonstrated that useful invariant features can be learned in

a strictly unsupervised fashion, using only the statistical structure inherent in the

data. While remarkable, one important problem with using this learning strategy

is that the invariant representation formed by the pooling features offers a some-

what incomplete view on the data as the detailed representation of the lower-level

features is abstracted away in the pooling procedure. While we would like higher
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level features to be more abstract and exhibit greater invariance, we have little

control over what information is lost through feature subspace pooling.

Invariant features, by definition, have reduced sensitivity in the direction of in-

variance. This is the goal of building invariant features and fully desirable if the

directions of invariance all reflect sources of variance in the data that are uninfor-

mative to the task at hand. However, it is often the case that the goal of feature

extraction is the disentangling or separation of many distinct but informative fac-

tors in the data. In this situation, the methods of generating invariant features –

namely, the feature subspace method – may be inadequate. Returning to our facial

expression classification example from the introduction, consider a pooling feature

made invariant to the expression of a subject by forming a subspace of low-level

filters that represent the subject with various facial expressions (forming a basis

for the subspace). If this is the only pooling feature that is associated with the

appearance of this subject, then the facial expression information is lost to the

model representation formed by the set of pooling features. As illustrated in our

hypothetical facial expression classification task, this loss of information becomes

a problem when the information that is lost is necessary to successfully complete

the task at hand.

Obviously, what we really would like is for a particular feature set to be invariant

to the irrelevant features and disentangle the relevant features. Unfortunately, it

is often difficult to determine a priori which set of features will ultimately be

relevant to the task at hand. Further, as is often the case in the context of deep

learning methods (Collobert and Weston, 2008), the feature set being trained may

be destined to be used in multiple tasks that may have distinct subsets of relevant

features. Considerations such as these lead us to the conclusion that the most

robust approach to feature learning is to disentangle as many factors as possible,

discarding as little information about the data as is practical. This is the motivation

behind our proposed higher-order spike-and-slab Boltzmann machine.
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Figure 12.1: Higher-Order ssRBM energy function

Energy function of our higher-order spike & slab RBM (ssRBM), used to disen-
tangle (multiplicative) factors of variation in the data. Two groups of latent spike
variables, g and h, interact to explain the data v, through the weight tensor W .
While the ssRBM instantiates a slab variable sj for each hidden unit hj, our higher-
order model employs a slab sij for each pair of spike variables (gi,hj). µij and αij

are respectively the mean and precision parameters of sij. An additional set of
spike variables f are used to gate groups of latent variables h, g and serve to pro-
mote group sparsity. Most parameters are thus indexed by an extra subscript k.
Finally, e, c and d are standard bias terms for variables f , g and h, while Λ is a
diagonal precision matrix on the visible vector.

12.3 Higher-order Spike-and-Slab Boltzmann

Machines

In this section, we introduce a model which makes some progress toward the

ambitious goal of disentangling factors of variation. The model is based on the

Boltzmann machine, an undirected graphical model. In particular we build on the

spike-and-slab restricted Boltzmann Machine (ssRBM) (Courville et al., 2011a), a

model family that has previously shown promise as a means of learning invariant

features via subspace pooling. The original ssRBM model possessed a limited form

of higher-order interaction of two latent random variables: the spike and the slab.

Our extension adds higher-order interactions between four distinct latent random

variables. These include one set of slab variables and three interacting binary spike

variables. Unlike the ssRBM, the interactions between the latent variables violate

the conditional independence constraint of the restricted Boltzmann machine and

therefore does not belong to this class of models. As a consequence, exact inference

in the model is not tractable and we resort to a mean-field approximation.

Our strategy in promoting this model is that we intend to disentangle factors

of variation via inference (recovering the posterior distribution over our latent vari-
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ables) in a generative model. In the context of generative models, inference can

roughly be thought of as running the generative process in reverse. Thus if we wish

our inference process to disentangle factors of variation, our generative process

should describe a means of factor entangling. The generative model we propose

here represents one possible means of factor entangling.

Let v ∈ RD be the random visible vector that represents our observations with

its mean zeroed. We build a latent representation of this data with binary latent

variables f ∈ {0, 1}K , g ∈ {0, 1}M×K and h ∈ {0, 1}N×K . In the spike-and-slab

context, we can think of f , g and h as a factored representation of the “spike”

variables. We also include a set of real valued “slab” variables s ∈ RM×N×K , with

element sijk associated with hidden units fk, gik and hjk. The interaction between

these variables is defined through the energy function of Fig. 12.1.

The parameters are defined as follows. W ∈ RD×M×N×K is a weight 4-tensor

connecting visible units to the interacting latent variables, these can be interpreted

as forming a basis in image space; µ ∈ RM×N×K and α ∈ RM×N×K are tensors

describing the mean and precision of each sijk; Λ ∈ RD×D is a diagonal precision

matrix on the visible vector; and finally c ∈ RM×K , d ∈ RN×K and e ∈ RK

are biases on the matrices g, h and vector f respectively. The energy function

fully specifies the joint probability distribution over the variables v, s ,f , g and h:

p(v, s, f, g, h) = 1
Z
exp {−E(v, s, f, g, h)} where Z is the partition function which

ensures that the joint distribution is normalized.

As specified above, the energy function is similar to the ssRBM energy function

(Courville et al., 2011a,b), but includes a factored representation of the standard

ssRBM spike variable. Yet, clearly the properties of the model are highly dependent

on the topology of the interactions between the real-valued slab variables sijk, and

three binary spike variables fk, gik and hjk. We adopt a strategy that permits

local interactions within small groups of f , g and h in a block-like organizational

pattern as specified in Fig. 12.2. The local block structure allows the model to

work incrementally towards disentangling the features by focusing on manageable

subparts of the problem.

Similar to the standard spike-and-slab restricted Boltzmann machine (Courville

et al., 2011a,b), the energy function in Eq. 12.1 gives rise to a Gaussian conditional
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Figure 12.2: Block-sparse connectivity pattern with dense interactions between g and
h within each block (only shown for k-th block). Each block is gated by a separate fk
variable.

over the visible variables:

p(v | s, f, g, h) = N
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Here we have a four-way multiplicative interaction in the latent variables s, f , g

and h. The real-valued slab variable sijk acts to scale the contribution of the weight

vector W·ijk. As a consequence, after marginalizing out s, the factors f , g and h can

also be seen as contributing both to the conditional mean and conditional variance

of p(v | f, g, h):
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This is an important property of the spike-and-slab framework that is also shared

by other latent variable models of real-valued data such as the mean-covariance

restricted Boltzmann machine (mcRBM) (Ranzato and Hinton, 2010) and the mean

Product of T-distributions model (mPoT) (Ranzato et al., 2010).
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From a generative perspective, the model can be thought of as consisting of a

set of K factor blocks whose activity is gated by the f variables. Within each block,

the variables g·k and h·k can be thought of as local latent factors whose interaction

gives rise to the active block’s contribution to the visible vector. Crucially, the

multiplicative interaction between the g·k and h·k for a given block k is mediated

by the weight tensor W·,·,·,k and the corresponding slab variables s·,·,k. Contrary to

more standard probabilistic factor models whose factors simply sum to give rise to

the visible vector, the individual contributions of the elements of g·k and h·k are

not easily isolated from one another. We can think of the generative process as

entangling the local block factor activations.

From an encoding perspective, we are interested in using the posterior distribu-

tion over the latent variables as a representation or encoding of the data. Unlike

in RBMs, in the case of the proposed model where we have higher-order inter-

actions over the latent variables, the posterior over the latent variables does not

factorize cleanly. By marginalizing over the slab variables s, we can recover a set

of conditionals describing how the binary latent variables f , g and h interact. The

conditional P (f | v, g, h) is given below.

P (fk = 1 |v, g, h) = sigm
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It illustrates that with the factor configuration given in Fig. 12.2, the factors fk

are activated (assume value 1) through the sum-pooled response of all the weight

vectors W·ijk (∀1 ≤ i ≤ M and 1 ≤ j ≤ N) differentially gated by the values of gik

and hjk, whose conditionals are respectively given by:

P (gik = 1 |v, f, h) = sigm
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For completeness, we also include the Gaussian conditional distribution over

the slab variables s

p(sijk | v, f, g, h) = N
��
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vTW·ijk· + µijk
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From an encoding perspective, the gating pattern on the g and h variables,

evident from Fig. 12.2 and from the conditionals distributions, defines a form of

local bilinear interaction (Tenenbaum and Freeman, 2000). We can interpret the

values of gik and hjk within block k acting as basis indicators, in dimensions i and

j, for the linear subspace in the visible space defined by W·ijksijk.

From this perspective, we can think of [g·k, h·K ] as defining a block-local binary

coordination encoding of the data. Consider the case illustrated by Fig. 12.2, where

we have M = 5, N = 5 and the number of blocks (K) is 4. For each block, we have

M × N = 25 filters which we encode using M + N = 10 binary latent variables,

where each gik (alternately hjk) effectively pools over the subspace characterized

by the variables hjk, 1 ≤ j ≤ N (alternately gik, 1 ≤ i ≤ M) through their relative

interaction with W·ijksijk. As a concrete example, imagine that the structure of the

weight tensor was such that, along the dimension indexed by i, the weight vectors

W·ijk form oriented Gabor-like edge detectors of different orientations. Yet along

the dimension indexed by j, the weight vectors W·ijk form oriented Gabor-like edge

detectors of different colors. In this hypothetical example, gik encodes orientation

information while being invariance to the color of the edge, while hjk encodes color

information while being invariant to orientation. Hence we could say that we have

disentangled the latent factors.

12.3.1 Higher-order Interactions as a Multi-Way Pooling

Strategy

As alluded to above, one interpretation of the role of g and h is as distinct and

complementary sum-pooled feature sets. Returning to Fig. 12.2, we can see that,

for each block, the gik pool across the columns of the kth block, along the ith row,

while the h·k pool across rows, along the jth column. The f variables are also

interpretable as pooling across all elements of the block. One way to interpret the

complementary pooling structures of the g and h is as a multi-way pooling strategy.

This particular pooling structure was chosen to study the potential of learning

the kind of bilinear interaction that exists between the g·k and h·k within a block.

The fk are present to promote block cohesion by gating the interaction of between

g·k and h·k and the visible vector v.

This higher-order structure is of course just one choice of many possible higher-
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order interaction architectures. One can easily imagine defining arbitrary overlap-

ping pooling regions, with the number of overlapping pooling regions specifying

the order of the latent variable interaction. We believe that explorations of over-

lapping pooling regions of this type is a promising direction of future inquiry. One

potentially interesting direction is to consider overlapping blocks (such as our f

blocks). The overlap will define a topology over the features as they will share

lower-level features (i.e. the slab variables). A topology thus defined could po-

tentially be exploited to build higher-level data representations that possess local

receptive fields. These kind of local receptive fields have been shown to be useful

in building large and deep models that perform well in object classification tasks

in natural images (Coates et al., 2011).

12.3.2 Variational inference and unsupervised learning

Due to the multiplicative interaction between the latent variables f , g and h,

computation of P (f | v), P (g | v) and P (h | v) is intractable. While the slab variables

also interact multiplicatively, we are able to analytically marginalize over them.

Consequently we resort to a variational approximation of the joint conditional

P (f, g, h | v) with the standard mean-field structure. i.e. we choose Qv(f, g, h) =

Qv(f)Qv(g)Qv(h) such that the KL divergence KL(Qv(f, g, h)�P (f, g, h | v)) is mini-

mized, or equivalently, that the variational lower bound L(Qv) on the log likelihood

of the data is maximized:

max
Qv

L(Qv) = max
Qv

�

f,g,h

Qv(f)Qv(g)Qv(h) log

�
p(f, g, h | v)

Qv(f)Qv(g)Qv(h)

�
,

where the sums are taken over all values of the elements of f , g and h respec-

tively. Maximizing this lower bound with respect to the variational parameters

f̂k ≡ Qv(fk = 1), ĝik ≡ Qv(gik = 1) and ĥjk ≡ Qv(hjk = 1), results in the set of
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approximating factored distributions:
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The above equations form a set of fixed point equations which we iterate until

the values of all Qv(fk), Qv(gik) and Qv(hjk) converge. Since the expression for

f̂k does not depend on f̂k� , ∀k�, ĝik does not depend on ĝi�k� , ∀i�, k�, and ĥjk does

not depend on ĥj�k� , ∀i�, k�, we can define a three stage update strategy where we

update the values of all K values of f̂ in parallel, then update all K ×M values of

ĝ in parallel and finally update all K ×N values of ĥ in parallel.

Following the variational EM training approach (Saul et al., 1996), we alter-

nately maximize the lower bound L(Qv) with respect to the variational param-

eters f̂ , ĝ and ĥ (E-step) and maximizing L(Qv) with respect to the model pa-

rameters (M-step). The gradient of L(Qv) with respect to the model parameters

θ = {W,µ,α,Λ, b, c, d, e} is given by:

∂L(Qv)

∂θ
=

�
�

f,g,h

Qv(f)Qv(g)Qv(h)Ep(s|v,f,g,h)

�
−
∂E

∂θ

��
+ Ep(v,s,g,h)

�
∂E

∂θ

�
(12.1)

where E is the energy function given in Eq. 12.1. As is evident from Eq. 12.1,

the gradient of L(Qv) with respect to the model parameters contains two terms: a

positive phase that depends on the data v and a negative phase, derived from the

partition function of the joint p(v, s, f, g, h) that does not. We adopt a training

strategy similar to that of Salakhutdinov and Hinton (2009a), in that we combine

a variational approximation of the positive phase of the gradient with a block

Gibbs sampling-based stochastic approximation of the negative phase. Our Gibbs

sampler alternately samples, in parallel, each set of random variables, sampling

from p(f | v, g, h), p(g | v, f, h), p(h | v, f, g), p(s | v, f, g, h), and finally sampling

from p(v | f, g, h, s).
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12.3.3 The Challenge of Unsupervised Learning to Disen-

tangle

Above we have briefly outlined our procedure for training the unsupervised

learning. The web of interactions between the latent random variables, particularly

those between g and h, makes the unsupervised learning of the model parameters a

particularly challenging learning problem. It is the difficultly of learning that moti-

vates our block-wise organization of the interactions between the g and h variables.

The block structure allows the interactions between g and h to remain local, with

each g interacting with relatively few h and each h interacting with relatively few

g. This local neighborhood structure allows the inference and learning procedures

to better manage the complexities of teasing apart the latent variable interactions

and adapting the model parameters to (approximately) maximize likelihood.

By using many of these blocks of local interactions we can leverage the known

tractable learning properties of models such as the RBM. Specifically, if we consider

each block as a kind of super hidden unit gated by f , then with no interactions

across blocks (apart from those mediated by the mutual connections to the visible

units) the model assumes the form of an RBM.

While our chosen interaction structure allows our higher-order model to be

able to learn, one consequence is that the model is only capable of disentangling

relatively local factors that appear within a single block. We suggest that one

promising avenue to accomplish more extensive disentangling is to consider stacking

multiple version of the proposed model and consider layer-by-layer disentangling

of the factors of variation present in the data. The idea is to start with local

disentangling and move gradually toward disentangling non local and more abstract

factors.

12.4 Related Work

The model proposed here was strongly influenced by previous attempts to dis-

entangle factors of variation in data using latent variable models. One of the ear-

lier efforts in this direction also used higher-order interactions of latent variables,

specifically bilinear (Tenenbaum and Freeman, 2000; Grimes and Rao, 2005) and
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multilinear (Vasilescu and Terzopoulos, 2005) models. One critical difference be-

tween these previous attempts to disentangle factors of variation and our method is

that unlike these previous methods, we are attempting to learn to disentangle from

entirely unsupervised information. In this way, one can interpret our approach as

an attempt to extend the subspace feature pooling approach to the problem of

disentangling factors of variation.

Bilinear models are essentially linear models where the higher-level state is

factored into the product of two variables. Formally, the elements of observation

x are given by xk =
�

i

�
j
Wijkyizj, ∀k, where yi and zj are elements of the two

factors (y and z) representing the observation andWijk is an element of the tensor of

model parameters (Tenenbaum and Freeman, 2000). The tensor W can be thought

of as a generalization of the typical weight matrix found in most unsupervised

models we have considered above. Tenenbaum and Freeman (2000) developed

an EM-based algorithm to learn the model parameters and demonstrated, using

images of letters from a set of distinct fonts, that the model could disentangle the

style (font characteristics) from content (letter identity). Grimes and Rao (2005)

later developed a bilinear sparse coding model of a similar form as described above

but included additional terms to the objective function to render the elements

of both y and z sparse. They also require observation of the factors in order to

train the model, and used the model to develop transformation invariant features

of natural images. Multilinear models are simply a generalization of the bilinear

model where the number of factors that can be composed together is 2 or more.

Vasilescu and Terzopoulos (2005) develop a multilinear ICA model, which they use

to model images of faces, to disentangle factors of variation such as illumination,

views (orientation of the image plane relative to the face) and identities of the

people.

Hinton et al. (2011) also propose to disentangle factors of variation by learning

to extract features associated with pose parameters, where the changes in pose

parameters (but not the feature values) are known at training time. The proposed

model is also closely related to recent work (Memisevic and Hinton, 2010), where

higher-order Boltzmann Machines are used as models of spatial transformations in

images. While there are a number of differences between this model and ours, the

most significant difference is our use of multiplicative interactions between latent

variables. While they included higher-order interactions within the Boltzmann en-
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ergy function, they were used exclusively between observed variables, dramatically

simplifying the inference and learning procedures. Another major point of depar-

ture is that instead of relying on low-rank approximations to the weight tensor, our

approach employs highly structured and sparse connections between latent vari-

ables (e.g. gik is not interact with or hjk� for k� �= k), reminiscent of recent work on

structured sparse coding (Gregor et al., 2011) and structured l1-norms (Bach et al.,

2011). As discussed above, our use of a sparse connection structure allows us to

isolate groups of interacting latent variables. Keeping the interactions local in this

way, is a key component of our ability to successfully learn using only unsupervised

data.

12.5 Experiments

12.5.1 Toy Experiment

We showcase the ability of our model to disentangle factors of variation, by

training it on a synthetic dataset, a subset of which is shown in Fig. 12.3 (top).

Each color image, of size 3 × 20 is composed of one basic object of varying color,

which can appear at five different positions. The constraint is that all objects

in a given image must be of the same color. Additive Gaussian noise is super-

imposed on the resulting images to facilitate mixing of the RBM negative phase.

A bilinear ssRBM with M = 3 and N = 5 should in theory have the capacity

to disentangle the two factors of variation present in the data, as there are 23

possible colors and 25 configurations of object placement. The resulting filters are

shown in Fig. 12.3 (bottom): the model has successfully learnt a binary encoding

of color along g-units (rows) and positions along h (columns). Note that this

would have been extremely difficult to perform without multiplicative interactions

of latent variables: an RBM with 15 hidden units technically has the capacity to

learn similar filters, however it would be incapable of enforcing mutual exclusivity

between hidden units of different color. The bilinear ssRBM model on the other

hand generates near-perfect samples (not shown), while factoring the representation

for use in deeper layers.
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Figure 12.3: (top) Samples from our synthetic dataset (before noise). In each image, a figure

“X” can appear at five different positions, in one of eight basic colors. Objects in a given image

must all be of the same color. (bottom) Filters learnt by a bilinear ssRBM with M = 3, N = 5,

which succesfully show disentangling of color information (rows) from position (columns).

12.5.2 Toronto Face Dataset

We evaluate our model on the recently introduced Toronto Face Dataset (TFD)

(Susskind et al., 2010), which contains a large number of black & white 48 × 48

preprocessed facial images. These span a wide range of identities and emotions and

as such, the dataset is well suited to study the problem of disentangling: models

which can successfully separate identity from emotion should perform well at the

supervised learning task, which involves classifying images into one of seven cate-

gories: {anger, disgust, fear, happy, sad, surprise, neutral}. The dataset is divided

into two parts: a large unlabeled set (meant for unsupervised feature learning) and

a smaller labeled set. Note that emotions appear much more prominently in the

latter, since these are acted out and thus prone to exaggeration. In contrast, most

of the unlabeled set contains natural expressions over a wider range of individuals.

In the course of this work, we have made several key refinements to the original

spike-and-slab formulation. Notably, since the slab variables {sijk; ∀j} can be inter-

preted as coordinates in the subspace of the spike variable gik (which spans the set

of filters {W·,ijk, ∀j}), it is natural for these filters to be unit-norm. Each maximum

likelihood gradient update is thus followed by a projection of the filters onto the

unit-norm ball. Similarly, there exists an over-parametrization in the direction of

W·,ijk and the sign of µijk, the parameter controlling the mean of sijk. We thus con-

strain µijk to be positive, in our case greater than 1. Similar constraints are applied

on B and α to ensure that the variances on the visible and slab variables remain

bounded. While previous work (Courville et al., 2011b) used the expected value of

the spike variables as the input to classifiers, or higher-layers in deep networks, we

found that the above re-parametrization consistently lead to better results when

using the product of expectations of h and s. For pooled models, we simply take
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Figure 12.4: Example blocks obtained with K = 100, M = N = 5. The filters
(inner-most dimension of tensor W ) in each block exhibit global cohesion, specializing
themselves to a subset of identities and emotions: {happiness, fear, neutral} in (left) and
{happiness, anger} in (right). In both cases, g-units (which pool over columns) encode
emotions, while h-units (which pool over rows) are more closely tied to identity.

the product of each binary spike, with the norm of its associated slab vector.

Disentangling Emotion from Identity. We begin with a qualitative evaluation

of our model, by visualizing the learned filters (inner-most dimension of the matrix

W ) and pooling structures. We trained a model with K = 100 and M = N =

5 (that is to say 100 blocks of 5 × 5 interacting g and h units) on a weighted

combination of the labeled and unlabeled training sets. Doing so (as opposed to

training on the unlabeled set only) allows for greater interpretability of the results,

as emotion is a more prominent factor of variation in the labeled set). The results,

shown in Figure 12.4, clearly show global cohesion within blocks pooled by fk,

with row and column structure correlating with variances in appearance/identity

and emotions.

Disentangling via Unsupervised Feature Learning. We now evaluate the

representation learnt by our disentangling RBM, by measuring its usefulness for the

task of emotion recognition. Our main objective here is to evaluate the usefulness

of disentangling, over traditional approaches of pooling, as well as the use of larger,

unpooled models. We thus consider ssRBMs with 3000 and 5000 features, with

either (i) no pooling (i.e. K = 5000 spikes with N = 1 slabs per spike), (ii) pooling



12.5 Experiments 161

Factored Unfactored
Model K M N valid test valid test

ssRBM 3000 1 n/a n/a 76.0% 75.7%
ssRBM 999 3 72.9% 74.4% 74.9% 73.5%
hossRBM 330 3 3 76.0% 75.7% 75.3% 75.2%
hossRBM 120 5 5 71.4% 70.7% 74.5% 74.2%

ss-RBM 5000 1 n/a n/a 76.7% 76.3%
ss-RBM 1000 5 74.2% 74.0% 75.9% 74.6%
hossRBM 555 3 3 77.6% 77.4% 76.2% 75.9%
hossRBM 200 5 5 73.3% 73.3% 75.6% 75.3%

Table 12.1: Classification accuracy for Toronto Face Dataset. We compare our higher-order
ssRBM for various block sizes K and pooling regions M × N . The comparison is against first-
order ssRBMs, which thus pool in a single dimension of size N . First four models contain
approximately 3, 000 filters, while bottom four contain 5, 000. In both cases, we compare the
effect of using the factored representation, to the unfactored representation.

along a single dimension (i.e. K = 1000 spike variables, pooling N = 5 slabs) or

(iii) disentangled through our higher-order ssRBM (i.e. K = 200, with g and h

units arranged in a M ×N grid, with M = N = 5).

We followed the standard TFD training protocol of performing unsupervised

training on the unlabeled set, and then using the learnt representation as input to

a linear SVM, trained and cross-validated on the labeled set. Table 12.1 shows the

test accuracy obtained by various spike-and-slab models, averaged over the 5-folds.

We report two sets of numbers for models with pooling or disentangling: one

where we use the “factored representation”, which is the element-wise product of

spike variables with the norm of their associated slab vector, and the “unfactored

representation”: the higher-dimensional representation formed by considering all

slab variables, each multiplied by their associated spikes.

We can see that the higher-order ssRBM achieves the best result: 77.4%, using

the factored representation. The fact that that our model outperforms the “unfac-

tored”one, confirms our disentangling hypothesis: our model has successfully learnt

a lower-dimensional (factored) representation of the data, useful for classification.

For reference, a linear SVM classifier on the pixels achieves 71.5% (Susskind et al.,

2010), an MLP trained with supervised backprop 72.72% i, while a deep mPoT

i. Salah Rifai, personal communication.
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model (Ranzato et al., 2011), which exploits local receptive fields achieves 82.4%.

12.6 Conclusion

We have presented a higher-order extension of the spike-and-slab restricted

Boltzmann machine that factors the standard binary spike variable into three in-

teracting factors. From a generative perspective, these interactions act to entangle

the factors represented by the latent binary variables. Inference is interpreted as

a process of disentangling the factors of variation in the data. As previously men-

tioned, we believe an important direction of future research to be the exploration

of methods to gradually disentangle the factors of variation by stacking multiple

instantiations of proposed model into a deep architecture.



A Variational Inference

A.0.1 Variational Lower Bound

The log-likelihood of p(v) can be decomposed into the variational lower-bound

L(q) and a KL divergence term as shown below. A similar derivation is obtained

for discrete random variables by replacing integrals with summation. To unclutter

notation, we omit dh to indicate that the integrals are computed over the latent

variables.
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A.0.2 Euler-Lagrange Equations

Assuming a factorial form for the variational distribution such that q (Z) =
�

M

i=1 qi (Zi), the mean-field update equations are given by the Euler-Lagrange equa-

tions shown below. Note that these are simply an expanded version of the derivation

found in Bishop (2006).
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Here, the entropy terms on qi with i �= j are considered constants, because

we increase the lower bound wrt. one qj, iterating over qj ∈ [1,M ]. Lets define

ln p̃ (X,Zj) = Ei �=j [ln p (X,Z)]. The above is actually a Kullback-Divergence as
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can be shown below:

L (q) =

�
qj
�
E�

i �=j qi
[ln p (X,Z)]

�
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�
qjln (qj) dZj + cte
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�
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= −KL (qj�p̃ (X,Zj))

Maximizing L (q) with respect to qj is thus equivalent to minimizing the KL

divergence term, which is solved trivially by:

q∗
j
(Zj) = p̃ (X,Zj) ln q

∗
j

= Ei �=j [ln p (X,Z)]



B On Tracking The Partition

Function

The supplementary material provides a more comprehensive view of our log

partition function tracking algorithm. The notation is mostly identical to that of

the paper and is summarized below for convenience. One minor difference however,

is that we make widespread use of the notations A:,l and Am,: to indicate the vectors

formed by the l-th column and m-th row of matrix A (respectively).

qi,t RBM at inverse temp. βi at time-step t. qi,t(x) = q̃i,t(x)/Zi,t, with i ∈ [1,M ].

θ set of model parameters.

Fi,t(x) free-energy assigned by qi,t to input configuration x.

ζi,t log partition function of model qi,t.

Xi,t mini-batch of samples {x(n)
i,t ∼ qi,t(x);n ∈ [1, N ]}.

Yt additional mini-batch of samples {x(n)
1,t ∼ q1,t(x);n ∈ [1, NY ]}, NY ≥ N .

D set of training examples.

µt,t, Pt,t estimated mean and covariance of posterior distribution p(ζt | O
(∆t)
t:0 , O(∆β)

t:0 ) .

Σζ fixed covariance matrix of p(ζt|ζt−1).

�init, �t initial learning rate and rate at time t.

si,t coarse estimate of Zi+1,t/Zi,t used to generate bridging distribution q∗.

q∗
i,t

bridging distribution with q∗i,t(x) =
q̃i,t(x)q̃i+1,t(x)

si,tq̃i,t(x)+q̃i+1,t(x)
.

r(q1, q2, x1, x2) swap probability used by PT, with ri,t = min
�
1, q̃1(x2)q̃2(x1)

q̃1(x1)q̃2(x2)

�
.

B.1 Parallel Tempering Algorithm

We divide our algorithm into three parts. Algorithm 9 presents the pseudo-code

for the Parallel Tempering sampling algorithm. For details, we refer the reader to

Desjardins et al. (2010b).
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Algorithm 9 sample_PT (q:,t,X:,t−1, k)

Initialize Xi,t as empty sets, ∀i ∈ [1,M ].

for n ∈ [1, N ] do

for i ∈ [1,M ] do

Initialize Markov chain associated with model qi,t with state x(n)
i,t−1.

Perform k steps of Gibbs sampling, yielding x(n)
i,t

.
end for

Swap x(n)
i,t

↔ x(n)
i+1,t with prob. r(qi,t, qi+1,t, x

(n)
i,t

, x(n)
i+1,t) , ∀ even i.

Swap x(n)
i,t

↔ x(n)
i+1,t with prob. r(qi,t, qi+1,t, x

(n)
i,t

, x(n)
i+1,t) , ∀ odd i.

Xi,t ← Xi,t ∪ {x(n)
i,t

} , ∀i.
end for

return X:,t.

B.2 Kalman Filter

Algorithm 10 presents the tracking algorithm. The statistical estimate O(∆t)
i,t

is

computed as an average of importance weights, measured between adjacent models

qi,t and qi,t−1. The estimate O(∆β)
i,t

is computed through bridge sampling, applied

to models qi+1,t and qi,t. These observations are combined through a Kalman filter,

which also exploits a smoothness prior on the evolution of ζt.

We include the graphical model, system equations and inference equations in

Figures B.1 & B.2 for completeness. We however refer the reader to the accompa-

nying paper for a more thorough description of these figures.

B.3 Simultaneous Tracking and Learning

Finally, Algorithm 11 ties everything together, performing joint training and

estimation of the log partition function. Note that using two sets of samples

from the target distribution (X1,t and Yt) is not required. Their use is inspired

from Salakhutdinov (2010a) and allows us to separately tune N , the number of

“tempered” mini-batches and NY , the size of the mini-batch used to estimate the

gradient.
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O
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∆β
M−1,t

ζM,t−1 ζM,t

ζ2,t

ζ1,tζ1,t−1

ζ2,t−1

btbt−1

System Equations:

p(ζ0) = N (µ0,Σ0)

p(ζt | ζt−1) = N (ζt−1,Σζ)

p(O(∆t)
t | ζt, ζt−1) = N (C[ζt, ζt−1]T , Σ∆t)

p(O(∆β)
t | ζt) = N (Hζt,Σ∆β)

C =




IM

1
0
...
0

−IM

0
0
...
0





H =





−1 +1 0 0 0

0 −1 +1 0
... 0

. . . 0
0 0 0 −1 +1 0





Figure B.1: Graphical model capturing the evolution of the log-partition function

A directed graphical model for log partition function tracking. The shaded nodes
represent observed variables, and the double-walled nodes represent the tractable ζM,:

with βM = 0. For clarity of presentation, we show the bias term as distinct from the
other ζi,t (recall bt = ζM+1,t.)
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Inference Equations:

(i) p
�
ζt−1, ζt | O

(∆t)
t−1:0, O

(∆β)
t−1:0

�
= N (ηt−1,t−1, Vt−1,t−1)

with ηt−1,t−1 =

�
µt−1,t−1

µt−1,t−1

�
and Vt−1,t−1 =

�
Pt−1,t−1 Pt−1,t−1

Pt−1,t−1 Σζ + Pt−1,t−1

�

(ii) p(ζt−1, ζt | O
(∆t)
t:0 , O(∆β)

t−1:0) = N (ηt,t−1 , Vt,t−1)

with Vt,t−1 = (V −1
t−1,t−1 + CTΣ−1

∆t
C)−1 and ηt,t−1 = Vt,t−1(CTΣ∆tO

(∆t)
t

+ V −1
t−1,t−1ηt−1,t−1)

(iii) p
�
ζt | O(∆t)

t:0 , O(∆β)
t−1:0

�
= N (µt,t−1 , Pt,t−1) with µt,t−1 = [ηt,t−1]2 and Pt,t−1 = [Vt,t−1]2,2

(iv) p(ζt | O
(∆t)
t:0 , O(∆β)

t:0 ) = N (µt,t, Pt,t)

with Pt,t = (P−1
t,t−1 +HTΣ−1

∆β
H)−1 and µt,t = Pt,t(HTΣ∆βO

(∆β)
t

+ P−1
t,t−1µt,t−1)

Figure B.2: Inference equations for tracking the partition function

Inference equations for our log partition tracking algorithm, a variant on the Kalman
filter. For any vector v and matrix V , we use the notation [v]2 to denote the vector
obtained by preserving the bottom half elements of v and [V ]2,2 to indicate the lower

right-hand quadrant of V .

Algorithm 10 kalman_filter (q:,t−1, q:,t, µt−1,t−1, Pt−1,t−1, si,t,Σζ)

Using µt−1,t−1, Pt−1,t−1 and Σζ , compute ηt−1,t−1 and Vt−1,t−1 through equation
(i).

for i ∈ [1,M ] do

w(n)
i,t

←
q̃i,t

�
x
(n)
i,t−1

�

q̃i,t−1

�
x
(n)
i,t−1

� ; O(∆t)
i,t

← log
�

1
N

�
N

n=1 w
(n)
i,t

�
; Σ∆t ← Diag

�
Var[wi,t]��

n w
(n)
i,t

�2

�

end for

Using O(∆t)
i,t

and Σ∆t, compute ηt,t−1 and Vt,t−1. through equation (ii).
Compute µt,t−1 and Pt,t−1 using equation (iii).

for i ∈ [1,M − 1] do

u(n)
i,t

←
q
∗
i,t

�
x
(n)
i,t

�

q̃i,t

�
x
(n)
i,t

� ; v(n)
i,t

←
q
∗
i,t

�
x
(n)
i+1,t

�

q̃i+1,t

�
x
(n)
i+1,t

�

O(∆β)
i,t

← log 1
N

�
N

n=1 u
(n)
i,t

− log 1
N

�
N

n=1 v
(n)
i,t

Σ∆β ← Diag

�
Var[ui,t]��

n u
(n)
i,t

�2 +
Var[vi,t]��

n v
(n)
i,t

�2

�

end for

Using O(∆β)
i,t

and Σ∆β, compute ηt,t and Vt,t through equation (iv).
Return (ηt,t, Vt,t).
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Algorithm 11 main

Initialize θ1 and compute exact log partition functions ζ:,1.
Initialize µ1,1 with ζ:,1, P1,1[1 : M, 1 : M ] = 0 and P1,1[M + 1,M + 1] = �init · σ2

b
.

Initialize samples X:,1 and Y:,1 according to the RBM visible biases.
Initialize si,1 to exp(ζi+1,1 − ζi,1), ∀i ∈ [1,M − 1].

for t ∈ [2, T ] do

Obtain training examples X+
t = {x(n) ∈ D;n ∈ [1, N ]}

θt ← θt−1 − �t
�

1
N

�
x∈X+

t

�
∂F (x;θt)

∂θ

�
−

1
N

�
y∈Yt

�
∂F (y;θF,t)

∂θ

��
.

Choose N samples from Yt to swap with X1,t.

X:,t ← sample_PT (q:,t,X:,t−1, k).

Yt ← sample_Gibbs (q1,t,Yt−1, k).

(µt,t, Pt,t) ← kalman_filter (q:,t−1, q:,t, µt−1,t−1, Pt−1,t−1, si,t,Σζ)

ζ̂:,t ← µt,t; si,t+1 ← exp(ζ̂i+1,t − ζ̂i,t), ∀i ∈ [1,M − 1].

end for



CMetric-Free Natural

Gradient

We include the following derivations for completeness.

C.0.1 Expected Hessian of logZ and Fisher Information.
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C.0.2 Derivation of Equation 8.5

log p(x) = −E(x)− logZ

∂ log p(x)
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